
Oracle® XML DB
Developer's Guide

21c
F30645-01
November 2020



Oracle XML DB Developer's Guide, 21c

F30645-01

Copyright © 2002, 2020, Oracle and/or its affiliates.

Primary Author:  Drew Adams

Contributors:  Oracle XML DB development, product management, and quality assurance teams.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience xliv

Documentation Accessibility xlv

Related Documents xlv

Conventions xlvi

Code Examples xlvi

Syntax Descriptions xlviii

Part I    Oracle XML DB Basics

1   Introduction to Oracle XML DB

1.1 Overview of Oracle XML DB 1-1

1.2 Oracle XML DB Benefits 1-2

1.2.1 Data and Content Unified 1-4

1.2.1.1 Database Capabilities for Working with XML 1-5

1.2.1.2 Advantages of Storing Data as XML in the Database 1-7

1.2.2 Data Duality: XML and Relational 1-8

1.2.2.1 Use XMLType Views If Your Data Is Not XML 1-8

1.2.3 Efficient Storage and Retrieval of Complex XML Documents 1-9

1.3 Oracle XML DB Architecture 1-9

1.4 Oracle XML DB Features 1-10

1.4.1 XMLType Data Type 1-11

1.4.2 XMLType Storage Models 1-12

1.4.3 XML Schema Support in Oracle XML DB 1-13

1.4.4 DTD Support in Oracle XML DB 1-15

1.4.5 Static Data Dictionary Views Related to XML 1-16

1.4.6 SQL/XML Standard Functions 1-17

1.4.7 Programmatic Access to Oracle XML DB (Java, PL/SQL, and C) 1-17

1.4.8 Oracle XML DB Repository: Overview 1-18

1.5 Standards Supported by Oracle XML DB 1-19

1.6 Oracle XML DB Technical Support 1-21

iii



1.7 Oracle XML DB Examples 1-21

1.8 Oracle XML DB Case Studies and Demonstrations on OTN 1-21

2   Getting Started with Oracle XML DB

2.1 Oracle XML DB Installation 2-1

2.2 Oracle XML DB Use Cases 2-1

2.3 Application Design Considerations for Oracle XML DB 2-2

2.3.1 XML Data Storage 2-4

2.3.2 The Structure of Your XML Data 2-5

2.3.3 Languages Used to Implement Your Application 2-5

2.3.4 XML Processing Options 2-5

2.3.5 Oracle XML DB Repository Access 2-6

2.3.6 Oracle XML DB Cooperates with Other Database Options and Features 2-7

3   Overview of How To Use Oracle XML DB

3.1 Creating XMLType Tables and Columns 3-2

3.2 Creating Virtual Columns on XMLType Data Stored as Binary XML 3-3

3.3 Partitioning Tables That Contain XMLType Data Stored as Binary XML 3-4

3.4 Enforcing XML Data Integrity Using the Database 3-6

3.4.1 Enforcing Referential Integrity Using SQL Constraints 3-7

3.5 Loading XML Content into Oracle XML DB 3-11

3.5.1 Loading XML Content Using SQL or PL/SQL 3-11

3.5.2 Loading XML Content Using Java 3-13

3.5.3 Loading XML Content Using C 3-13

3.5.4 Loading Large XML Files that Contain Small XML Documents 3-14

3.5.5 Loading Large XML Files Using SQL*Loader 3-15

3.5.6 Loading XML Documents into the Repository Using
DBMS_XDB_REPOS 3-15

3.5.7 Loading Documents into the Repository Using Protocols 3-16

3.6 Querying XML Content Stored in Oracle XML DB 3-16

3.6.1 PurchaseOrder XML Document Used in Examples 3-17

3.6.2 Retrieving the Content of an XML Document Using Pseudocolumn
OBJECT_VALUE 3-18

3.6.3 Accessing Fragments or Nodes of an XML Document Using
XMLQUERY 3-19

3.6.4 Accessing Text Nodes and Attribute Values Using XMLCAST and
XMLQUERY 3-20

3.6.5 Searching an XML Document Using XMLEXISTS, XMLCAST, and
XMLQUERY 3-22

3.6.6 Performing SQL Operations on XMLType Fragments Using XMLTABLE 3-25

3.7 Updating XML Content Stored in Oracle XML DB 3-28

iv



3.8 Generating XML Data from Relational Data 3-31

3.8.1 Generating XML Data from Relational Data Using SQL/XML Functions 3-31

3.8.2 Generating XML Data from Relational Data Using DBURITYPE 3-36

3.9 Character Sets of XML Documents 3-38

3.9.1 XML Encoding Declaration 3-39

3.9.2 Character-Set Determination When Loading XML Documents into the
Database 3-39

3.9.3 Character-Set Determination When Retrieving XML Documents from
the Database 3-40

Part II    Manipulation of XML Data in Oracle XML DB

4   XQuery and Oracle XML DB

4.1 Overview of the XQuery Language 4-1

4.1.1 XPath Expressions Are XQuery Expressions 4-2

4.1.2 XQuery: A Functional Language Based on Sequences 4-3

4.1.2.1 XQuery Is About Sequences 4-4

4.1.2.2 XQuery Is Referentially Transparent 4-4

4.1.2.3 XQuery Update Has Side Effects on Your Data 4-5

4.1.2.4 XQuery Update Snapshots 4-5

4.1.2.5 XQuery Full Text Provides Full-Text Search 4-6

4.1.3 XQuery Expressions 4-6

4.1.4 FLWOR Expressions 4-8

4.2 Overview of XQuery in Oracle XML DB 4-9

4.2.1 When To Use XQuery 4-10

4.2.2 Predefined XQuery Namespaces and Prefixes 4-10

4.3 SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast 4-11

4.3.1 XMLQUERY SQL/XML Function in Oracle XML DB 4-12

4.3.2 XMLTABLE SQL/XML Function in Oracle XML DB 4-14

4.3.2.1 Chaining Calls to SQL/XML Function XMLTABLE 4-16

4.3.3 XMLEXISTS SQL/XML Function in Oracle XML DB 4-18

4.3.4 Using XMLExists to Find a Node 4-19

4.3.5 XMLCAST SQL/XML Function in Oracle XML DB 4-20

4.3.6 Using XMLCAST to Extract the Scalar Value of an XML Fragment 4-21

4.4 URI Scheme oradb: Querying Table or View Data with XQuery 4-22

4.5 Oracle XQuery Extension Functions 4-23

4.5.1 ora:sqrt XQuery Function 4-24

4.5.2 ora:tokenize XQuery Function 4-24

4.6 Oracle XQuery Extension-Expression Pragmas 4-24

4.7 XQuery Static Type-Checking in Oracle XML DB 4-27

v



4.8 Oracle XML DB Support for XQuery 4-29

4.8.1 Support for XQuery and SQL 4-29

4.8.1.1 Implementation Choices Specified in the XQuery Standards 4-30

4.8.1.2 XQuery Features Not Supported by Oracle XML DB 4-30

4.8.1.3 XQuery Optional Features 4-30

4.8.2 Support for XQuery Functions and Operators 4-31

4.8.2.1 XQuery Functions fn:doc, fn:collection, and fn:doc-available 4-31

4.8.3 Support for XQuery Full Text 4-32

4.8.3.1 XQuery Full Text, XML Schema-Based Data, and Pragma
ora:no_schema 4-33

4.8.3.2 Restrictions on Using XQuery Full Text with XMLExists 4-33

4.8.3.3 Supported XQuery Full Text FTSelection Operators 4-33

4.8.3.4 Supported XQuery Full Text Match Options 4-34

4.8.3.5 Unsupported XQuery Full Text Features 4-35

4.8.3.6 XQuery Full Text Errors 4-35

5   Query and Update of XML Data

5.1 Using XQuery with Oracle XML DB 5-2

5.1.1 XQuery Sequences Can Contain Data of Any XQuery Type 5-3

5.1.2 Querying XML Data in Oracle XML DB Repository Using XQuery 5-4

5.1.3 Querying Relational Data Using XQuery and URI Scheme oradb 5-6

5.1.4 Querying XMLType Data Using XQuery 5-11

5.1.5 Using Namespaces with XQuery 5-18

5.2 Querying XML Data Using SQL and PL/SQL 5-20

5.3 Using the SQL*Plus XQUERY Command 5-25

5.4 Using XQuery with XQJ to Access Database Data 5-26

5.5 Using XQuery with PL/SQL, JDBC, and ODP.NET to Access Database Data 5-27

5.6 Updating XML Data 5-30

5.6.1 Updating an Entire XML Document 5-31

5.6.2 Replacing XML Nodes 5-32

5.6.2.1 Updating XML Data to NULL Values 5-38

5.6.3 Inserting Child XML Nodes 5-40

5.6.4 Deleting XML Nodes 5-43

5.6.5 Creating XML Views of Modified XML Data 5-44

5.7 Performance Tuning for XQuery 5-45

5.7.1 Rule-Based and Cost-Based XQuery Optimization 5-46

5.7.2 XQuery Optimization over Relational Data 5-47

5.7.3 XQuery Optimization over XML Schema-Based XMLType Data 5-48

5.7.4 Diagnosis of XQuery Optimization: XMLOptimizationCheck 5-51

5.7.5 Performance Improvement for fn:doc and fn:collection on Repository
Data 5-52

vi



5.7.5.1 Use EQUALS_PATH and UNDER_PATH Instead of fn:doc and
fn:collection 5-52

5.7.5.2 Using Oracle XQuery Pragma ora:defaultTable 5-53

6   Indexes for XMLType Data

6.1 Oracle XML DB Tasks Involving Indexes 6-1

6.2 Overview of Indexing XMLType Data 6-4

6.2.1 XMLIndex Addresses the Fine-Grained Structure of XML Data 6-5

6.2.2 Oracle Text Indexes for XML Data 6-6

6.2.3 Optimization Chooses the Right Indexes to Use 6-6

6.2.4 Function-Based Indexes Are Deprecated for XMLType 6-6

6.3 XMLIndex 6-7

6.3.1 Advantages of XMLIndex 6-8

6.3.2 Structured and Unstructured XMLIndex Components 6-9

6.3.3 XMLIndex Structured Component 6-11

6.3.3.1 Ignore the Index Content Tables; They Are Transparent 6-13

6.3.3.2 Data Type Considerations for XMLIndex Structured Component 6-13

6.3.3.3 Exchange Partitioning and XMLIndex 6-15

6.3.4 XMLIndex Unstructured Component 6-17

6.3.4.1 Ignore the Path Table – It Is Transparent 6-20

6.3.4.2 Column VALUE of an XMLIndex Path Table 6-21

6.3.4.3 Secondary Indexes on Column VALUE 6-22

6.3.4.4 XPath Expressions That Are Not Indexed by an XMLIndex
Unstructured Component 6-23

6.3.5 Creating, Dropping, Altering, and Examining an XMLIndex Index 6-23

6.3.6 Using XMLIndex with an Unstructured Component 6-24

6.3.6.1 Creating Additional Secondary Indexes on an XMLIndex Path
Table 6-26

6.3.7 Use of XMLIndex with a Structured Component 6-28

6.3.7.1 Using Namespaces and Storage Clauses with an XMLIndex
Structured Component 6-30

6.3.7.2 Adding a Structured Component to an XMLIndex Index 6-31

6.3.7.3 Using Non-Blocking ALTER INDEX with an XMLIndex Structured
Component 6-32

6.3.7.4 Modifying the Data Type of a Structured XMLIndex Component 6-34

6.3.7.5 Dropping an XMLIndex Structured Component 6-35

6.3.7.6 Indexing the Relational Tables of a Structured XMLIndex
Component 6-35

6.3.8 How to Tell Whether XMLIndex is Used 6-35

6.3.9 Turning Off Use of XMLIndex 6-41

6.3.10 XMLIndex Path Subsetting: Specifying the Paths You Want to Index 6-42

6.3.10.1 Examples of XMLIndex Path Subsetting 6-43

vii



6.3.10.2 XMLIndex Path-Subsetting Rules 6-44

6.3.11 Guidelines for Using XMLIndex with an Unstructured Component 6-44

6.3.12 Guidelines for Using XMLIndex with a Structured Component 6-46

6.3.13 XMLIndex Partitioning and Parallelism 6-47

6.3.14 Asynchronous (Deferred) Maintenance of XMLIndex Indexes 6-48

6.3.14.1 Syncing an XMLIndex Index in Case of Error ORA-08181 6-50

6.3.15 Collecting Statistics on XMLIndex Objects for the Cost-Based
Optimizer 6-51

6.3.16 Data Dictionary Static Public Views Related to XMLIndex 6-51

6.3.17 PARAMETERS Clause for CREATE INDEX and ALTER INDEX 6-53

6.3.17.1 Using a Registered PARAMETERS Clause for XMLIndex 6-54

6.3.17.2 PARAMETERS Clause Syntax for CREATE INDEX and ALTER
INDEX 6-54

6.3.17.3 Usage of XMLIndex_parameters_clause 6-61

6.3.17.4 Usage of XMLIndex_parameters 6-62

6.3.17.5 Usage of PATHS Clause 6-62

6.3.17.6 Usage of create_index_paths_clause and
alter_index_paths_clause 6-62

6.3.17.7 Usage of pikey_clause, path_id_clause, and order_key_clause 6-62

6.3.17.8 Usage of value_clause 6-63

6.3.17.9 Usage of async_clause 6-63

6.3.17.10 Usage of groups_clause and alter_index_group_clause 6-63

6.3.17.11 Usage of XMLIndex_xmltable_clause 6-63

6.3.17.12 Usage of column_clause 6-64

6.4 Indexing XML Data for Full-Text Queries 6-64

6.4.1 Creating and Using an XML Search Index 6-65

6.4.2 What To Do If an XML Search Index Is Not Picked Up 6-67

6.4.3 Pragma ora:no_schema: Using XML Schema-Based Data with XQuery
Full Text 6-67

6.4.4 Pragma ora:use_xmltext_idx: Forcing the Use of an XML Search Index 6-68

6.4.5 Migrating from Using Oracle Text Index to XML Search Index 6-69

6.5 Indexing XMLType Data Stored Object-Relationally 6-71

6.5.1 Indexing Non-Repeating Text Nodes or Attribute Values 6-72

6.5.2 Indexing Repeating (Collection) Elements 6-73

7   Transformation and Validation of XMLType Data

7.1 XSL Transformation and Oracle XML DB 7-1

7.1.1 SQL Function XMLTRANSFORM and XMLType Method TRANSFORM() 7-4

7.1.1.1 XMLTRANSFORM and XMLType.transform(): Examples 7-4

7.1.2 XSL Transformation Using DBUri Servlet 7-10

7.2 Validation of XMLType Instances 7-12

viii



7.2.1 Partial and Full XML Schema Validation 7-13

7.2.1.1 Partial Validation 7-14

7.2.1.2 Full Validation 7-14

7.2.2 Validating XML Data Stored as XMLType: Examples 7-16

Part III    Relational Data To and From XML Data

8   Generation of XML Data from Relational Data

8.1 Overview of Generating XML Data 8-1

8.2 Generation of XML Data Using SQL Functions 8-2

8.2.1 XMLELEMENT and XMLATTRIBUTES SQL/XML Functions 8-3

8.2.1.1 Escape of Characters in Generated XML Data 8-6

8.2.1.2 Formatting of XML Dates and Timestamps 8-7

8.2.1.3 XMLElement Examples 8-7

8.2.2 XMLFOREST SQL/XML Function 8-11

8.2.3 XMLCONCAT SQL/XML Function 8-13

8.2.4 XMLAGG SQL/XML Function 8-14

8.2.5 XMLPI SQL/XML Function 8-17

8.2.6 XMLCOMMENT SQL/XML Function 8-18

8.2.7 XMLSERIALIZE SQL/XML Function 8-19

8.2.8 XMLPARSE SQL/XML Function 8-20

8.2.9 XMLCOLATTVAL Oracle SQL Function 8-21

8.2.10 XMLCDATA Oracle SQL Function 8-23

8.3 Generation of XML Data Using DBMS_XMLGEN 8-24

8.3.1 Using PL/SQL Package DBMS_XMLGEN 8-24

8.3.2 Functions and Procedures of Package DBMS_XMLGEN 8-26

8.3.3 DBMS_XMLGEN Examples 8-32

8.4 SYS_XMLAGG Oracle SQL Function 8-49

8.5 Ordering Query Results Before Aggregating, Using XMLAGG ORDER BY
Clause 8-50

8.6 Returning a Rowset Using XMLTABLE 8-50

9   Relational Views over XML Data

9.1 Introduction to Creating and Using Relational Views over XML Data 9-1

9.2 Creating a Relational View over XML: One Row for Each XML Document 9-2

9.3 Creating a Relational View over XML: Mapping XML Nodes to Columns 9-3

9.4 Indexing Binary XML Data Exposed Using a Relational View 9-4

9.5 Querying XML Content As Relational Data 9-5

ix



10  
 

XMLType Views

10.1 What Are XMLType Views? 10-1

10.2 CREATE VIEW for XMLType Views: Syntax 10-3

10.3 Creating Non-Schema-Based XMLType Views 10-3

10.4 Creating XML Schema-Based XMLType Views 10-4

10.4.1 Creating XML Schema-Based XMLType Views Using SQL/XML
Publishing Functions 10-4

10.4.1.1 Using Namespaces with SQL/XML Publishing Functions 10-7

10.4.2 Creating XML Schema-Based XMLType Views Using Object Types or
Object Views 10-11

10.4.2.1 Creating XMLType Employee View, with Nested Department
Information 10-12

10.4.2.2 Creating XMLType Department View, with Nested Employee
Information 10-16

10.5 Creating XMLType Views from XMLType Tables 10-19

10.6 Referencing XMLType View Objects Using SQL Function REF 10-20

10.7 Using DML (Data Manipulation Language) on XMLType Views 10-20

Part IV    XMLType APIs

11  
 

PL/SQL APIs for XMLType

11.1 Overview of PL/SQL APIs for XMLType 11-1

11.1.1 PL/SQL APIs for XMLType: Features 11-2

11.1.1.1 Lazy Load of XML Data (Lazy Manifestation) 11-2

11.1.1.2 XMLType Data Type Supports XML Schema 11-2

11.1.1.3 XMLType Supports Data in Different Character Sets 11-3

11.1.2 PL/SQL APIs for XMLType: References 11-3

11.2 PL/SQL DOM API for XMLType (DBMS_XMLDOM) 11-5

11.2.1 Overview of the W3C Document Object Model (DOM)
Recommendation 11-7

11.2.1.1 Oracle XML Developer's Kit Extensions to the W3C DOM
Standard 11-7

11.2.1.2 Supported W3C DOM Recommendations 11-8

11.2.1.3 Difference Between DOM and SAX 11-8

11.2.2 PL/SQL DOM API for XMLType (DBMS_XMLDOM): Features 11-9

11.2.2.1 PL/SQL DOM API Support for XML Schema 11-9

11.2.2.2 Enhanced DOM Performance 11-10

11.2.3 Application Design Using Oracle XML Developer's Kit and Oracle
XML DB 11-10

11.2.4 Preparing XML Data to Use the PL/SQL DOM API for XMLType 11-11

11.2.5 XML Schema Types Are Mapped to SQL Object Types 11-11

x



11.2.5.1 DOM Fidelity for XML Schema Mapping 11-12

11.2.6 Wrap Existing Data as XML with XMLType Views 11-13

11.2.7 DBMS_XMLDOM Methods Supported by Oracle XML DB 11-13

11.2.8 PL/SQL DOM API for XMLType: Node Types 11-13

11.2.9 PL/SQL Function NEWDOMDOCUMENT and DOMDOCUMENT
Nodes 11-15

11.2.10 DOM NodeList and NamedNodeMap Objects 11-16

11.2.11 Overview of Using the PL/SQL DOM API for XMLType
(DBMS_XMLDOM) 11-16

11.2.12 PL/SQL DOM API for XMLType – Examples 11-17

11.2.13 Large Node Handling Using DBMS_XMLDOM 11-19

11.2.14 Get-Push Model for Large Node Handling 11-22

11.2.15 Get-Pull Model for Large Node Handling 11-23

11.2.16 Set-Pull Model for Large Node Handling 11-24

11.2.17 Set-Push Model for Large Node Handling 11-26

11.2.18 Determining Binary Stream or Character Stream for Large Node
Handling 11-27

11.3 PL/SQL Parser API for XMLType (DBMS_XMLPARSER) 11-27

11.4 PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR) 11-29

11.4.1 PL/SQL XSLT Processor for XMLType: Features 11-30

11.4.2 Using the PL/SQL XSLT Processor API for XMLType
(DBMS_XSLPROCESSOR) 11-30

12  
 

PL/SQL Package DBMS_XMLSTORE

12.1 Using Package DBMS_XMLSTORE 12-1

12.2 Inserting an XML Document Using DBMS_XMLSTORE 12-2

12.3 Updating XML Data Using DBMS_XMLSTORE 12-4

12.4 Deleting XML Data Using DBMS_XMLSTORE 12-5

13  
 

Java DOM API for XMLType

13.1 Overview of Java DOM API for XMLType 13-2

13.2 Access to XMLType Data Using JDBC 13-3

13.2.1 Using JDBC to Access XML Documents in Oracle XML DB 13-3

13.3 Manipulating XML Database Documents Using JDBC 13-5

13.4 Loading a Large XML Document into the Database Using JDBC 13-10

13.5 MS Windows Java Security Manager Permissions for Java DOM API with a
Thick Connection 13-11

13.6 Creating XML Schema-Based Documents 13-12

13.7 XMLType Instance Representation in Java (JDBC or SQLJ) 13-13

13.8 Classes of Java DOM API for XMLType 13-13

13.9 Using the Java DOM API for XMLType 13-14

xi



13.10 Large XML Node Handling with Java 13-15

13.10.1 Stream Extensions to Java DOM 13-16

13.10.1.1 Get-Pull Model 13-17

13.10.1.2 Get-Push Model 13-18

13.10.1.3 Set-Pull Model 13-18

13.10.1.4 Set-Push Model 13-19

13.11 Using the Java DOM API and JDBC with Binary XML 13-20

14  
 

C DOM API for XMLType

14.1 Overview of the C DOM API for XMLType 14-1

14.2 Access to XMLType Data Stored in the Database Using OCI 14-2

14.3 Creating XMLType Instances on the Client 14-3

14.4 XML Context Parameter for C DOM API Functions 14-3

14.4.1 OCIXmlDbInitXmlCtx() Syntax 14-3

14.4.2 OCIXmlDbFreeXmlCtx() Syntax 14-4

14.5 Initializing and Terminating an XML Context 14-4

14.6 Using the C API for XML with Binary XML 14-8

14.7 Using the Oracle XML Developer's Kit Pull Parser with Oracle XML DB 14-11

14.8 Common XMLType Operations in C 14-16

15  
 

Oracle XML DB and Oracle Data Provider for .NET

15.1 Oracle XML DB and ODP.NET XML 15-1

15.2 Using XMLType Data with ODP.NET 15-1

Part V   XML Schema and Object-Relational XMLType

16  
 

Choice of XMLType Storage and Indexing

16.1 Introduction to Choosing an XMLType Storage Model and Indexing
Approaches 16-1

16.2 XMLType Use Case Spectrum: Data-Centric to Document-Centric 16-3

16.3 Common Use Cases for XML Data Stored as XMLType 16-4

16.3.1 XMLType Use Case: No XML Fragment Updating or Querying 16-5

16.3.2 XMLType Use Case: Data Integration from Diverse Sources with
Different XML Schemas 16-5

16.3.3 XMLType Use Case: Staged XML Data for ETL 16-6

16.3.4 XMLType Use Case: Semi-Structured XML Data 16-6

16.3.5 XMLType Use Case: Business Intelligence Queries 16-7

16.3.6 XMLType Use Case: XML Queries Involving Full-Text Search 16-8

xii



16.4 XMLType Storage Model Considerations 16-8

16.5 XMLType Indexing Considerations 16-9

16.6 XMLType Storage Options: Relative Advantages 16-10

17  
 

XML Schema Storage and Query: Basic

17.1 Overview of XML Schema 17-2

17.1.1 XML Schema for Schemas 17-3

17.1.2 XML Schema Features 17-3

17.1.3 XML Instance Documents 17-3

17.1.4 XML Namespaces and XML Schemas 17-3

17.1.5 Overview of Editing XML Schemas 17-3

17.2 Overview of Using XML Schema with Oracle XML DB 17-4

17.2.1 Why Use XML Schema with Oracle XML DB? 17-6

17.2.2 Overview of Annotating an XML Schema to Control Naming, Mapping,
and Storage 17-6

17.2.3 DOM Fidelity 17-8

17.2.4 XMLType Methods Related to XML Schema 17-9

17.3 XML Schema Registration with Oracle XML DB 17-9

17.3.1 XML Schema Registration Actions 17-11

17.3.2 Registering an XML Schema with Oracle XML DB 17-11

17.3.3 SQL Types and Tables Created During XML Schema Registration 17-13

17.3.4 Default Tables for Global Elements 17-14

17.3.5 Database Objects That Depend on Registered XML Schemas 17-15

17.3.6 Local and Global XML Schemas 17-15

17.3.6.1 Local XML Schema 17-16

17.3.6.2 Global XML Schema 17-17

17.3.7 Fully Qualified XML Schema URLs 17-18

17.3.8 Deletion of an XML Schema 17-18

17.3.9 Listing All Registered XML Schemas 17-20

17.4 Creation of XMLType Tables and Columns Based on XML Schemas 17-21

17.4.1 Specification of XMLType Storage Options for XML Schema-Based
Data 17-24

17.4.1.1 Binary XML Storage of XML Schema-Based Data 17-25

17.4.1.2 Object-Relational Storage of XML Schema-Based Data 17-27

17.5 Ways to Identify XML Schema Instance Documents 17-29

17.5.1 Attributes noNamespaceSchemaLocation and schemaLocation 17-30

17.5.2 XML Schema and Multiple Namespaces 17-31

17.6 XML Schema Data Types Are Mapped to Oracle XML DB Storage 17-31

xiii



18  
 

XML Schema Storage and Query: Object-Relational Storage

18.1 Object-Relational Storage of XML Documents 18-2

18.1.1 How Collections Are Stored for Object-Relational XMLType Storage 18-3

18.1.2 SQL Types Created during XML Schema Registration for Object-
Relational Storage 18-4

18.1.3 Default Tables Created during XML Schema Registration 18-5

18.1.4 Do Not Use Internal Constructs Generated during XML Schema
Registration 18-6

18.1.5 Generated Names are Case Sensitive 18-6

18.1.6 SYS_XDBPD$ and DOM Fidelity for Object-Relational Storage 18-6

18.2 Oracle XML Schema Annotations 18-8

18.2.1 Common Uses of XML Schema Annotations 18-9

18.2.2 XML Schema Annotation Example 18-10

18.2.3 Annotating an XML Schema Using DBMS_XMLSCHEMA_ANNOTATE 18-14

18.2.4 Available Oracle XML DB XML Schema Annotations 18-15

18.2.5 XML Schema Annotation Guidelines for Object-Relational Storage 18-17

18.2.5.1 Avoid Creation of Unnecessary Tables for Unused Top-Level
Elements 18-18

18.2.5.2 Provide Your Own Names for Default Tables 18-19

18.2.5.3 Turn Off DOM Fidelity If Not Needed 18-19

18.2.5.4 Annotate Time-Related Elements with a Timestamp Data Type 18-19

18.2.5.5 Add Table and Column Properties 18-20

18.2.5.6 Store Large Collections Out of Line 18-20

18.2.6 Querying a Registered XML Schema to Obtain Annotations 18-21

18.2.6.1 You Can Apply Annotations from One XML Schema to Another 18-22

18.3 Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data
Types 18-22

18.3.1 Example of Mapping XML Schema Data Types to SQL 18-23

18.3.2 XML Schema Attribute Data Types Mapped to SQL 18-24

18.3.2.1 You Can Override the SQLType Value in an XML Schema When
Declaring Attributes 18-25

18.3.3 XML Schema Element Data Types Mapped to SQL 18-25

18.3.3.1 Override of the SQLType Value in an XML Schema When
Declaring Elements 18-25

18.3.4 How XML Schema simpleType Is Mapped to SQL 18-26

18.3.4.1 NCHAR, NVARCHAR2, and NCLOB SQLType Values Are Not
Supported for SQLType 18-29

18.3.4.2 simpleType: How XML Strings Are Mapped to SQL VARCHAR2
Versus CLOB 18-30

18.3.4.3 How XML Schema Time Zones Are Mapped to SQL 18-30

18.3.5 How XML Schema complexType Is Mapped to SQL 18-31

18.3.5.1 Attribute Specification in a complexType XML Schema
Declaration 18-31

xiv



18.4 complexType Extensions and Restrictions in Oracle XML DB 18-32

18.4.1 complexType Declarations in XML Schema: Handling Inheritance 18-33

18.4.2 How a complexType Based on simpleContent Is Mapped to an Object
Type 18-35

18.4.3 How any and anyAttribute Declarations Are Mapped to Object Type
Attributes 18-36

18.5 Creating XML Schema-Based XMLType Columns and Tables 18-37

18.6 Overview of Partitioning XMLType Tables and Columns Stored Object-
Relationally 18-39

18.6.1 Examples of Partitioning XMLType Data Stored Object-Relationally 18-40

18.6.2 Partition Maintenance for XMLType Data Stored Object-Relationally 18-41

18.7 Specification of Relational Constraints on XMLType Tables and Columns 18-42

18.7.1 Adding Unique Constraints to the Parent Element of an Attribute 18-44

18.8 Out-Of-Line Storage of XMLType Data 18-45

18.8.1 Setting Annotation Attribute xdb:SQLInline to false for Out-Of-Line
Storage 18-46

18.8.2 Storing Collections in Out-Of-Line Tables 18-49

18.9 Considerations for Working with Complex or Large XML Schemas 18-51

18.9.1 Circular and Cyclical Dependencies Among XML Schemas 18-52

18.9.1.1 For Circular XML Schema Dependencies Set Parameter
GENTABLES to TRUE 18-53

18.9.1.2 complexType Declarations in XML Schema: Handling Cycles 18-53

18.9.1.3 Cyclical References Among XML Schemas 18-56

18.9.2 Support for Recursive Schemas 18-59

18.9.2.1 defaultTable Shared Among Common Out-Of-Line Elements 18-60

18.9.2.2 Query Rewrite when DOCID is Present 18-62

18.9.2.3 DOCID Column Creation Disabling 18-63

18.9.3 XML Fragments Can Be Mapped to Large Objects (LOBs) 18-63

18.9.4 ORA-01792 and ORA-04031: Issues with Large XML Schemas 18-64

18.9.5 Considerations for Loading and Retrieving Large Documents with
Collections 18-66

18.9.5.1 Guidelines for Configuration Parameters xdbcore-loadableunit-
size and xdbcore-xobmem-bound 18-67

18.10 Debugging XML Schema Registration for XML Data Stored Object-
Relationally 18-68

19  
 

XPath Rewrite for Object-Relational Storage

19.1 Overview of XPath Rewrite for Object-Relational Storage 19-1

19.2 Common XPath Expressions that Are Rewritten 19-3

19.3 XPath Rewrite for Out-Of-Line Tables 19-4

19.4 Guidelines for Using Execution Plans to Analyze and Optimize XPath
Queries 19-5

xv



19.4.1 Guideline: Look for underlying tables versus XML functions in
execution plans 19-6

19.4.2 Guideline: Name the object-relational tables, so you recognize them in
execution plans 19-7

19.4.3 Guideline: Create an index on a column targeted by a predicate 19-7

19.4.4 Guideline: Create indexes on ordered collection tables 19-10

19.4.5 Guideline: Use XMLOptimizationCheck to determine why a query is
not rewritten 19-11

20  
 

XML Schema Evolution

20.1 Overview of XML Schema Evolution 20-1

20.2 Copy-Based Schema Evolution 20-2

20.2.1 Scenario for Copy-Based Evolution 20-3

20.2.2 COPYEVOLVE Parameters and Errors 20-6

20.2.3 Limitations of Procedure COPYEVOLVE 20-8

20.2.4 Guidelines for Using Procedure COPYEVOLVE 20-9

20.2.4.1 Top-Level Element Name Changes 20-10

20.2.4.2 User-Created Virtual Columns of Tables Other Than Default
Tables 20-10

20.2.4.3 Ensure That the XML Schema and Dependents Are Not Used by
Concurrent Sessions 20-10

20.2.4.4 Rollback When Procedure DBMS_XMLSCHEMA.COPYEVOLVE
Raises an Error 20-11

20.2.4.5 Failed Rollback From Insufficient Privileges 20-11

20.2.4.6 Privileges Needed for XML Schema Evolution 20-11

20.2.5 Update of Existing XML Instance Documents Using an XSLT
Stylesheet 20-12

20.2.6 Examples of Using Procedure COPYEVOLVE 20-14

20.3 In-Place XML Schema Evolution 20-17

20.3.1 Restrictions for In-Place XML Schema Evolution 20-18

20.3.1.1 Backward-Compatibility Restrictions 20-18

20.3.1.2 Other Restrictions on In-Place Evolution 20-20

20.3.2 Supported Operations for In-Place XML Schema Evolution 20-21

20.3.3 Guidelines for Using In-Place XML Schema Evolution 20-23

20.3.4 inPlaceEvolve Parameters 20-23

20.3.5 The diffXML Parameter Document 20-24

20.3.5.1 diffXML Operations and Examples 20-25

Part VI    Oracle XML DB Repository

xvi



21  
 

Access to Oracle XML DB Repository Data

21.1 Overview of Oracle XML DB Repository 21-2

21.1.1 Oracle XML DB Provides Name-Level Locking 21-4

21.1.2 Two Ways to Access Oracle XML DB Repository Resources 21-5

21.1.3 Database Schema (User Account) XDB and Oracle XML DB
Repository 21-6

21.2 Repository Terminology and Supplied Resources 21-7

21.2.1 Repository Terminology 21-7

21.2.2 Predefined Repository Files and Folders 21-8

21.3 Oracle XML DB Repository Resources 21-9

21.3.1 Where Is Repository Data Stored? 21-10

21.3.1.1 Names of Generated Tables 21-10

21.3.1.2 How Object-Relational Storage Is Defined for Repository
Resources 21-10

21.3.1.3 Oracle ASM Virtual Folder 21-11

21.3.2 How Documents are Stored in Oracle XML DB Repository 21-11

21.3.3 Repository Data Access Control 21-12

21.3.4 Repository Path-Name Resolution 21-13

21.3.5 Link Types 21-13

21.3.5.1 Repository Links and Document Links 21-14

21.3.5.2 Hard Links and Weak Links 21-14

21.3.5.3 Creating a Weak Link with No Knowledge of Folder Hierarchy 21-16

21.3.5.4 How and When to Prevent Multiple Hard Links 21-17

21.4 Navigational or Path Access to Repository Resources 21-17

21.4.1 Access to Oracle XML DB Resources Using Internet Protocols 21-19

21.4.1.1 Where You Can Use Oracle XML DB Protocol Access 21-20

21.4.1.2 Overview of Protocol Access to Oracle XML DB 21-20

21.4.1.3 Retrieval of Oracle XML DB Resources 21-21

21.4.1.4 Storage of Oracle XML DB Resources 21-21

21.4.1.5 Internet Protocols and XMLType: XMLType Direct Stream Write 21-21

21.4.2 Access to Oracle ASM Files Using Protocols and Resource APIs – For
DBAs 21-21

21.5 Query-Based Access to Repository Resources 21-23

21.6 Servlet Access to Repository Resources 21-24

21.7 Operations on Repository Resources 21-25

21.8 Accessing the Content of Repository Resources Using SQL 21-32

21.9 Access to the Content of XML Schema-Based Documents 21-33

21.9.1 Accessing Resource Content Using Element XMLRef in Joins 21-34

21.10 Update of the Content of Repository Documents 21-35

21.10.1 Update of Repository Content Using Internet Protocols 21-35

21.10.2 Update of Repository Content Using SQL 21-36

xvii



21.10.2.1 Updating a Document in the Repository by Updating Its
Resource Document 21-37

21.10.2.2 Updating an XML Schema-Based Document in the Repository
by Updating the Default Table 21-38

21.11 Querying Resources in RESOURCE_VIEW and PATH_VIEW 21-39

21.12 Oracle XML DB Hierarchical Repository Index 21-43

22  
 

Configuration of Oracle XML DB Repository

22.1 Resource Configuration Files 22-2

22.2 Configuring a Resource 22-3

22.3 Common Configuration Parameters 22-4

22.3.1 Configuration Element ResConfig 22-5

22.3.2 Configuration Elements defaultChildConfig and configuration 22-5

22.3.3 Configuration Element applicationData 22-6

23  
 

Use of XLink and XInclude with Oracle XML DB

23.1 Overview of XLink and XInclude 23-2

23.2 Link Types for XLink and XInclude 23-3

23.2.1 XLink and XInclude Links Model Document Relationships 23-3

23.2.2 XLink Link Types and XInclude Link Types 23-3

23.3 XInclude: Compound Documents 23-4

23.4 Oracle XML DB Support for XLink 23-5

23.5 Oracle XML DB Support for XInclude 23-6

23.5.1 Expanding Compound-Document Inclusions 23-7

23.5.2 Validation of Compound Documents 23-9

23.5.3 Update of a Compound Document 23-9

23.5.4 Compound Document Versioning, Locking, and Access Control 23-9

23.6 Use View DOCUMENT_LINKS to Examine XLink and XInclude Links 23-10

23.6.1 Querying DOCUMENT_LINKS for XLink Information 23-11

23.6.2 Querying DOCUMENT_LINKS for XInclude Information 23-12

23.7 Configuration of Repository Resources for XLink and XInclude 23-12

23.7.1 Configure the Treatment of Unresolved Links: Attribute UnresolvedLink 23-14

23.7.2 Configure the Type of Document Links to Create: Element LinkType 23-15

23.7.3 Configure the Path Format for Retrieval: Element PathFormat 23-16

23.7.4 Configure Conflict-Resolution for XInclude: Element ConflictRule 23-16

23.7.5 Configure the Decomposition of Documents Using XInclude: Element
SectionConfig 23-17

23.7.6 XLink and XInclude Configuration Examples 23-18

23.8 Manage XLink and XInclude Links Using DBMS_XDB_REPOS.processLinks 23-20

xviii



24  
 

Repository Access Using RESOURCE_VIEW and PATH_VIEW

24.1 Overview of Oracle XML DB RESOURCE_VIEW and PATH_VIEW 24-2

24.1.1 RESOURCE_VIEW Definition and Structure 24-4

24.1.2 PATH_VIEW Definition and Structure 24-5

24.1.3 The Difference Between RESOURCE_VIEW and PATH_VIEW 24-5

24.1.4 Operations You Can Perform Using UNDER_PATH and
EQUALS_PATH 24-6

24.2 Oracle SQL Functions That Use RESOURCE_VIEW and PATH_VIEW 24-7

24.2.1 UNDER_PATH SQL Function 24-7

24.2.2 EQUALS_PATH SQL Function 24-9

24.2.3 PATH SQL Function 24-9

24.2.4 DEPTH SQL Function 24-10

24.3 Accessing Repository Data Paths, Resources and Links: Examples 24-10

24.4 Deleting Repository Resources: Examples 24-17

24.4.1 Deleting Nonempty Folder Resources 24-18

24.5 Updating Repository Resources: Examples 24-19

24.6 Working with Multiple Oracle XML DB Resources 24-21

24.7 Performance Guidelines for Oracle XML DB Repository Operations 24-23

24.8 Searching for Resources Using Oracle Text 24-24

25  
 

Resource Versions

25.1 Overview of Oracle XML DB Repository Resource Versioning 25-1

25.2 Overview of PL/SQL Package DBMS_XDB_VERSION 25-3

25.3 Resource Versions and Resource IDs 25-4

25.4 Resource Versions and ACLs 25-5

25.5 Resource Versioning Examples 25-6

26  
 

PL/SQL Access to Oracle XML DB Repository

26.1 DBMS_XDB_REPOS: Access and Manage Repository Resources 26-1

26.2 DBMS_XDB_REPOS: ACL-Based Security Management 26-3

26.3 DBMS_XDB_CONFIG: Configuration Management 26-7

27  
 

Repository Access Control

27.1 Access Control Concepts 27-2

27.1.1 Authentication and Authorization 27-3

27.1.2 Principal: A User or Role 27-3

27.1.2.1 Database Roles and ACLs Map Privileges to Users 27-4

27.1.2.2 Principal DAV::owner 27-4

xix



27.1.3 Privilege: A Permission 27-4

27.1.4 Access Control Entry (ACE) 27-5

27.1.5 Access Control List (ACL) 27-6

27.2 Database Privileges for Repository Operations 27-6

27.3 Privileges 27-7

27.3.1 Atomic Privileges 27-8

27.3.2 Aggregate Privileges 27-8

27.4 ACLs and ACEs 27-9

27.4.1 System ACLs 27-10

27.4.2 ACL and ACE Evaluation 27-11

27.4.3 ACL Validation 27-12

27.4.4 Element invert: Complement the Principals in an ACE 27-12

27.5 Overview of Working with Access Control Lists (ACLs) 27-12

27.5.1 Creating an ACL Using DBMS_XDB_REPOS.CREATERESOURCE 27-14

27.5.2 Retrieving an ACL Document, Given its Repository Path 27-14

27.5.3 Setting the ACL of a Resource 27-15

27.5.4 Deleting an ACL 27-15

27.5.5 Updating an ACL 27-16

27.5.6 Retrieving the ACL Document that Protects a Given Resource 27-17

27.5.7 Retrieving Privileges Granted to the Current User for a Particular
Resource 27-18

27.5.8 Checking Whether the Current User Has Privileges on a Resource 27-19

27.5.9 Checking Whether a User Has Privileges Using the ACL and Resource
Owner 27-19

27.5.10 Retrieving the Path of the ACL that Protects a Given Resource 27-20

27.5.11 Retrieving the Paths of All Resources Protected by a Given ACL 27-21

27.6 ACL Caching 27-21

27.7 Repository Resources and Database Table Security 27-22

27.7.1 Optimization: Do not enforce ACL-based security if you do not need it 27-23

27.8 Integration Of Oracle XML DB with LDAP 27-24

28  
 

Repository Access Using Protocols

28.1 Overview of Oracle XML DB Protocol Server 28-1

28.1.1 Session Pooling 28-2

28.2 Oracle XML DB Protocol Server Configuration Management 28-3

28.2.1 Protocol Server Configuration Parameters 28-4

28.2.2 Configuring Secure HTTP (HTTPS) 28-8

28.2.2.1 Enabling the HTTP Listener to Use SSL 28-9

28.2.2.2 Enabling TCPS Dispatcher 28-10

28.2.3 Using Listener Status to Check Port Configuration 28-10

28.2.4 Configuring Protocol Port Parameters after Database Consolidation 28-11

xx



28.2.5 Configuration and Management of Authentication Mechanisms for
HTTP 28-11

28.2.5.1 Nonces for Digest Authentication 28-13

28.2.6 Oracle XML DB Repository and File-System Resources 28-13

28.2.7 Protocol Server Handles XML Schema-Based or Non-Schema-Based
XML Documents 28-14

28.2.8 Event-Based Logging 28-14

28.2.9 Auditing of HTTP and FTP Protocols 28-14

28.3 FTP and the Oracle XML DB Protocol Server 28-14

28.3.1 Oracle XML DB Protocol Server: FTP Features 28-15

28.3.1.1 FTP Features That Are Not Supported 28-16

28.3.1.2 Supported FTP Client Methods 28-16

28.3.1.3 FTP Quote Methods 28-17

28.3.1.4 Uploading Content to Oracle XML DB Repository Using FTP 28-18

28.3.1.5 Using FTP with Oracle ASM Files 28-20

28.3.1.6 Using FTP on the Standard Port Instead of the Oracle XML DB
Default Port 28-22

28.3.1.7 Using IPv6 IP Addresses with FTP 28-23

28.3.1.8 FTP Server Session Management 28-23

28.3.1.9 Handling Error 421. Modifying the Default Timeout Value of an
FTP Session 28-24

28.3.1.10 FTP Client Failure in Passive Mode 28-24

28.4 HTTP(S) and Oracle XML DB Protocol Server 28-24

28.4.1 Oracle XML DB Protocol Server: HTTP(S) Features 28-24

28.4.1.1 Supported HTTP(S) Client Methods 28-26

28.4.1.2 Using HTTP(S) on a Standard Port Instead of an Oracle XML DB
Default Port 28-26

28.4.1.3 Use of IPv6 IP Addresses with HTTP(S) 28-27

28.4.1.4 HTTPS: Support for Secure HTTP 28-28

28.4.1.5 Control of URL Expiration Time 28-28

28.4.1.6 Anonymous Access to Oracle XML DB Repository Using HTTP 28-29

28.4.1.7 Use of Java Servlets with HTTP(S) 28-30

28.4.1.8 Embedded PL/SQL Gateway 28-30

28.4.1.9 Transmission of Multibyte Data From a Client 28-31

28.4.1.10 Characters That Are Not ASCII in URLs 28-32

28.4.1.11 Character Sets for HTTP(S) 28-32

28.5 WebDAV and Oracle XML DB 28-33

28.5.1 Oracle XML DB WebDAV Features 28-33

28.5.1.1 WebDAV Features That Are Not Supported by Oracle XML DB 28-34

28.5.1.2 WebDAV Client Methods Supported by Oracle XML DB 28-35

28.5.2 WebDAV and Microsoft Windows 28-35

28.5.3 Creating a WebFolder in Microsoft Windows For Use With Oracle
XML DB Repository 28-36

xxi



28.5.3.1 Use of WebDAV with Windows Explorer to Copy Files into
Oracle XML DB Repository 28-37

29  
 

User-Defined Repository Metadata

29.1 Overview of Metadata and XML 29-1

29.1.1 Kinds of Metadata – Uses of the Term 29-2

29.1.2 User-Defined Resource Metadata 29-3

29.1.3 Scenario: Metadata for a Photo Collection 29-3

29.2 Using XML Schemas to Define Resource Metadata 29-4

29.3 Addition, Modification, and Deletion of Resource Metadata 29-6

29.3.1 Adding Metadata Using APPENDRESOURCEMETADATA 29-7

29.3.2 Deleting Metadata Using DELETERESOURCEMETADATA 29-8

29.3.3 Adding Metadata Using SQL DML 29-9

29.3.4 Adding Metadata Using WebDAV PROPPATCH 29-10

29.4 Querying XML Schema-Based Resource Metadata 29-11

29.5 XML Image Metadata from Binary Image Metadata 29-12

29.6 Adding Non-Schema-Based Resource Metadata 29-13

29.7 PL/SQL Procedures Affecting Resource Metadata 29-15

30  
 

Oracle XML DB Repository Events

30.1 Overview of Repository Events 30-1

30.1.1 Repository Events: Use Cases 30-2

30.1.2 Repository Events and Database Triggers 30-2

30.1.3 Repository Event Listeners and Event Handlers 30-3

30.1.4 Repository Event Configuration 30-3

30.2 Possible Repository Events 30-4

30.3 Repository Operations and Events 30-6

30.4 Repository Event Handler Considerations 30-7

30.5 Configuration of Repository Events 30-10

30.5.1 Configuration Element event-listeners 30-11

30.5.2 Configuration Element listener 30-11

30.5.3 Repository Events Configuration Examples 30-12

31  
 

Guidelines for Oracle XML DB Applications in Java

31.1 Overview of Oracle XML DB Java Applications 31-2

31.2 HTTP(S): Access Java Servlets or Directly Access XMLType Resources 31-2

31.3 Use JDBC XMLType Support to Access Many XMLType Object Elements 31-2

31.4 Use Servlets to Manipulate and Write Out Data Quickly as XML 31-3

31.5 Oracle XML DB Java Servlet Support Restrictions 31-3

xxii



31.6 Configuration of Oracle XML DB Servlets 31-3

31.7 HTTP Request Processing for Oracle XML DB Servlets 31-7

31.8 Session Pool and Oracle XML DB Servlets 31-8

31.9 Native XML Stream Support 31-8

31.10 Oracle XML DB Servlet APIs 31-8

31.11 Oracle XML DB Servlet Example 31-9

32  
 

Data Access Using URIs

32.1 Overview of Oracle XML DB URI Features 32-2

32.2 URIs and URLs 32-2

32.3 URIType and its Subtypes 32-3

32.3.1 Overview of DBUris and XDBUris 32-5

32.3.2 URIType PL/SQL Methods 32-5

32.3.2.1 HTTPURIType PL/SQL Method GETCONTENTTYPE() 32-7

32.3.2.2 DBURIType PL/SQL Method GETCONTENTTYPE() 32-7

32.3.2.3 DBURIType PL/SQL Method GETCLOB() 32-8

32.3.2.4 DBURIType PL/SQL Method GETBLOB() 32-8

32.4 Accessing Data Using URIType Instances 32-9

32.5 XDBUris: Pointers to Repository Resources 32-12

32.5.1 XDBUri URI Syntax 32-12

32.5.2 Using XDBUri: Examples 32-13

32.6 DBUris: Pointers to Database Data 32-14

32.6.1 View the Database as XML Data 32-15

32.6.2 DBUri URI Syntax 32-17

32.6.3 DBUris are Scoped to a Database and Session 32-19

32.6.4 Using DBUris —Examples 32-19

32.6.4.1 Targeting a Table Using a DBUri 32-20

32.6.4.2 Targeting a Row in a Table Using a DBUri 32-21

32.6.4.3 Targeting a Column Using a DBUri 32-21

32.6.4.4 Retrieving the Text Value of a Column Using a DBUri 32-23

32.6.4.5 Targeting a Collection Using a DBUri 32-24

32.7 Create New Subtypes of URIType Using Package URIFACTORY 32-25

32.7.1 Registering New URIType Subtypes with Package URIFACTORY 32-26

32.8 SYS_DBURIGEN SQL Function 32-27

32.8.1 Rules for Passing Columns or Object Attributes to SYS_DBURIGEN 32-28

32.8.2 Using SQL Function SYS_DBURIGEN: Examples 32-29

32.8.2.1 Inserting Database References Using SYS__DBURIGEN 32-30

32.8.2.2 Returning Partial Results Using SYS__DBURIGEN 32-30

32.8.2.3 Returning URLs to Inserted Objects Using SYS_DBURIGEN 32-31

32.9 DBUriServlet 32-32

xxiii



32.9.1 Overriding the MIME Type Using a URL 32-34

32.9.2 Customizing DBUriServlet 32-34

32.9.3 Using Roles for DBUriServlet Security 32-35

32.9.4 Configuring Package URIFACTORY to Handle DBUris 32-36

32.9.5 Table or View Access from a Web Browser Using DBUri Servlet 32-37

33  
 

Native Oracle XML DB Web Services

33.1 Overview of Native Oracle XML DB Web Services 33-1

33.2 Configuring and Enabling Web Services for Oracle XML DB 33-2

33.2.1 Configuring Web Services for Oracle XML DB 33-3

33.2.2 Enabling Web Services for a Specific User 33-4

33.3 Query Oracle XML DB Using a Web Service 33-4

33.4 Access to PL/SQL Stored Procedures Using a Web Service 33-7

33.4.1 Using a PL/SQL Function with a Web Service: Example 33-8

Part VII    Oracle Tools that Support Oracle XML DB

34  
 

Administration of Oracle XML DB

34.1 Upgrade or Downgrade of an Existing Oracle XML DB Installation 34-1

34.1.1 Authentication Considerations for Database Installation, Upgrade and
Downgrade 34-2

34.1.1.1 Authentication Considerations for a Database Installation 34-3

34.1.1.2 Authentication Considerations for a Database Upgrade 34-3

34.1.1.3 Authentication Considerations for a Database Downgrade 34-4

34.1.2 Automatic Installation of Oracle XML DB 34-4

34.1.3 Validation of ACL Documents and Configuration File 34-4

34.2 Administration of Oracle XML DB Using Oracle Enterprise Manager 34-5

34.3 Configuration of Oracle XML DB Using xdbconfig.xml 34-6

34.3.1 Oracle XML DB Configuration File, xdbconfig.xml 34-6

34.3.1.1 Element xdbconfig (Top-Level) 34-7

34.3.1.2 Element sysconfig (Child of xdbconfig) 34-7

34.3.1.3 Element userconfig (Child of xdbconfig) 34-8

34.3.1.4 Element protocolconfig (Child of sysconfig) 34-8

34.3.1.5 Element httpconfig (Child of protocolconfig) 34-8

34.3.1.6 Element servlet (Descendant of httpconfig) 34-9

34.3.1.7 Oracle XML DB Configuration File Example 34-10

34.3.1.8 Oracle XML DB Configuration API 34-12

34.3.1.9 Configuration of Mappings from Default Namespace to Schema
Location 34-13

xxiv



34.3.1.10 Configuration of XML File Extensions 34-15

34.4 Oracle XML DB and Database Consolidation 34-16

34.5 Package DBMS_XDB_ADMIN 34-17

35  
 

How to Load XML Data

35.1 Overview of Loading XMLType Data Into Oracle Database 35-1

35.2 Load XMLType Data Using SQL*Loader 35-2

35.2.1 Load XMLType LOB Data Using SQL*Loader 35-3

35.2.1.1 Load LOB Data Using Predetermined Size Fields 35-3

35.2.1.2 Load LOB Data Using Delimited Fields 35-3

35.2.1.3 Load XML Columns Containing LOB Data from LOBFILEs 35-4

35.2.1.4 Specify LOBFILEs 35-4

35.2.2 Load XMLType Data Directly from a Control File Using SQL*Loader 35-4

35.2.3 Loading Large XML Documents Using SQL*Loader 35-5

36  
 

Export and Import of Oracle XML DB Data

36.1 Overview of Exporting and Importing XMLType Tables 36-1

36.2 Export/Import Limitations for Oracle XML DB Repository 36-3

36.3 Export/Import Syntax and Examples 36-3

36.3.1 Performing a Table-Mode Export /Import 36-3

36.3.2 Performing a Schema-Mode Export/Import 36-4

37  
 

XML Data Exchange Using Oracle Database Advanced Queuing

37.1 XML and Oracle Database Advanced Queuing 37-1

37.1.1 Oracle Database Advanced Queuing and XML Message Payloads 37-2

37.1.2 Advantages of Using Oracle Database Advanced Queuing 37-3

37.2 Oracle Database Advanced Queuing 37-3

37.2.1 Message Queuing 37-4

37.3 XMLType Attributes in Object Types 37-4

37.4 Internet Data Access Presentation (iDAP): SOAP for AQ 37-5

37.5 iDAP Architecture 37-5

37.5.1 XMLType Queue Payloads 37-6

37.6 Guidelines for Using XML and Oracle Database Advanced Queuing 37-8

37.6.1 Store AQ XML Messages with Many PDFs as One Record 37-9

37.6.2 Add New Recipients After Messages Are Enqueued 37-9

37.6.3 Enqueue and Dequeue XML Messages 37-10

37.6.4 Parse Messages with XML Content from AQ Queues 37-10

37.6.5 Prevent the Listener from Stopping Until an XML Document Is
Processed 37-10

xxv



37.6.6 HTTPS with AQ 37-10

37.6.7 Store XML in Oracle AQ Message Payloads 37-11

37.6.8 iDAP and SOAP 37-11

Part VIII    Appendixes

A   Oracle-Supplied XML Schemas and Examples

A.1 XDBResource.xsd: XML Schema for Oracle XML DB Resources A-2

A.2 XDBResConfig.xsd: XML Schema for Resource Configuration A-13

A.3 acl.xsd: XML Schema for ACLs A-17

A.4 xdbconfig.xsd: XML Schema for Configuring Oracle XML DB A-21

A.5 xdiff.xsd: XML Schema for Comparing Schemas for In-Place Evolution A-35

A.6 Purchase-Order XML Schemas A-38

A.7 XSLT Stylesheet Example, PurchaseOrder.xsl A-48

A.8 Loading XML Data Using C (OCI) A-54

A.9 Initializing and Terminating an XML Context (OCI) A-57

B   Oracle XML DB Restrictions

Index

xxvi



List of Examples

3-1 Creating a Table with an XMLType Column 3-2

3-2 Creating a Table of XMLType 3-2

3-3 Creating a Virtual Column for an XML Attribute in an XMLType Table 3-3

3-4 Creating a Virtual Column for an XML Attribute in an XMLType Column 3-4

3-5 Partitioning a Relational Table That Has an XMLType Column 3-5

3-6 Partitioning an XMLType Table 3-5

3-7 Error From Attempting to Insert an Incorrect XML Document 3-6

3-8 Constraining a Binary XML Table Using a Virtual Column 3-8

3-9 Constraining a Binary XML Column Using a Virtual Column: Uniqueness 3-8

3-10 Constraining a Binary XML Column Using a Virtual Column: Foreign Key 3-9

3-11 Enforcing Database Integrity When Loading XML Using FTP 3-10

3-12 Creating a Database Directory 3-12

3-13 Inserting XML Content into an XMLType Table 3-12

3-14 Inserting Content into an XMLType Table Using Java 3-13

3-15 Inserting Content into an XMLType Table Using C 3-13

3-16 Inserting XML Content into the Repository Using CREATERESOURCE 3-16

3-17 PurchaseOrder XML Instance Document 3-17

3-18 Retrieving an Entire XML Document Using OBJECT_VALUE 3-18

3-19 Accessing XML Fragments Using XMLQUERY 3-19

3-20 Accessing a Text Node Value Using XMLCAST and XMLQuery 3-21

3-21 Searching XML Content Using XMLExists, XMLCast, and XMLQuery 3-22

3-22 Joining Data from an XMLType Table and a Relational Table 3-24

3-23 Accessing Description Nodes Using XMLTABLE 3-26

3-24 Counting the Number of Elements in a Collection Using XMLTABLE 3-27

3-25 Counting the Number of Child Elements in an Element Using XMLTABLE 3-27

3-26 Updating a Text Node 3-28

3-27 Replacing an Entire Element Using XQuery Update 3-29

3-28 Changing Text Node Values Using XQuery Update 3-30

3-29 Generating XML Data Using SQL/XML Functions 3-33

3-30 Creating XMLType Views Over Conventional Relational Tables 3-34

3-31 Querying XMLType Views 3-35

3-32 Generating XML Data from a Relational Table Using DBURIType and getXML() 3-37

3-33 Restricting Rows Using an XPath Predicate 3-37

3-34 Restricting Rows and Columns Using an XPath Predicate 3-38

4-1 Chaining XMLTable Calls 4-17

xxvii



4-2 Finding a Node Using SQL/XML Function XMLExists 4-19

4-3 Extracting the Scalar Value of an XML Fragment Using XMLCAST 4-21

4-4 Static Type-Checking of XQuery Expressions: oradb URI scheme 4-28

4-5 Static Type-Checking of XQuery Expressions: XML Schema-Based Data 4-28

5-1 Creating Resources for Examples 5-2

5-2 XMLQuery Applied to a Sequence of Items of Different Types 5-3

5-3 FLOWR Expression Using for, let, order by, where, and return 5-4

5-4 FLOWR Expression Using Built-In Functions 5-5

5-5 Querying Relational Data as XML Using XMLQuery 5-7

5-6 Querying Relational Data as XML Using a Nested FLWOR Expression 5-8

5-7 Querying Relational Data as XML Using XMLTable 5-10

5-8 Querying an XMLType Column Using XMLQuery PASSING Clause 5-13

5-9 Using XMLTABLE with XML Schema-Based Data 5-14

5-10 Using XMLQUERY with XML Schema-Based Data 5-15

5-11 Using XMLTABLE with PASSING and COLUMNS Clauses 5-15

5-12 Using XMLTABLE with RETURNING SEQUENCE BY REF 5-16

5-13 Using Chained XMLTABLE with Access by Reference 5-17

5-14 Using XMLTABLE to Decompose XML Collection Elements into Relational Data 5-17

5-15 Using XMLQUERY with a Namespace Declaration 5-18

5-16 Using XMLTABLE with the XMLNAMESPACES Clause 5-19

5-17 Querying XMLTYPE Data 5-21

5-18 Querying Transient XMLTYPE Data Using a PL/SQL Cursor 5-22

5-19 Extracting XML Data and Inserting It into a Relational Table Using SQL 5-22

5-20 Extracting XML Data and Inserting It into a Table Using PL/SQL 5-24

5-21 Searching XML Data Using SQL/XML Functions 5-24

5-22 Extracting Fragments Using XMLQUERY 5-25

5-23 Using the SQL*Plus XQUERY Command 5-25

5-24 Using XQuery with PL/SQL 5-27

5-25 Using XQuery with JDBC 5-28

5-26 Using XQuery with ODP.NET and C# 5-29

5-27 Updating XMLType Data Using SQL UPDATE 5-31

5-28 Updating XMLTYPE Data Using SQL UPDATE and XQuery Update 5-32

5-29 Updating Multiple Text Nodes and Attribute Nodes 5-33

5-30 Updating Selected Nodes within a Collection 5-34

5-31 Incorrectly Updating a Node That Occurs Multiple Times in a Collection 5-36

5-32 Correctly Updating a Node That Occurs Multiple Times in a Collection 5-37

5-33 NULL Updates – Element and Attribute 5-38

xxviii



5-34 NULL Updates – Text Node 5-39

5-35 Inserting an Element into a Collection 5-41

5-36 Inserting an Element that Uses a Namespace 5-41

5-37 Inserting an Element Before an Element 5-42

5-38 Inserting an Element as the Last Child Element 5-42

5-39 Deleting an Element 5-43

5-40 Creating a View Using Updated XML Data 5-44

5-41 Optimization of XMLQuery over Relational Data 5-47

5-42 Optimization of XMLTable over Relational Data 5-47

5-43 Optimization of XMLQuery with Schema-Based XMLType Data 5-48

5-44 Optimization of XMLTable with Schema-Based XMLType Data 5-49

5-45 Unoptimized Repository Query Using fn:doc 5-52

5-46 Optimized Repository Query Using EQUALS_PATH 5-53

5-47 Repository Query Using Oracle XQuery Pragma ora:defaultTable 5-53

6-1 Making Query Data Compatible with Index Data – SQL Cast 6-14

6-2 Making Query Data Compatible with Index Data – XQuery Cast 6-15

6-3 Exchange-Partitioning Tables That Have an XMLIndex Structured Component 6-16

6-4 Exchange-Partitioning Reference-Partitioned Tables That Use XMLIndex 6-16

6-5 Data Used in Example of Exchange-Partitioning for Reference-Partitioned Tables 6-16

6-6 Path Table Contents for Two Purchase Orders 6-19

6-7 Creating an XMLIndex Index 6-24

6-8 Obtaining the Name of an XMLIndex Index on a Particular Table 6-24

6-9 Renaming and Dropping an XMLIndex Index 6-24

6-10 Naming the Path Table of an XMLIndex Index 6-25

6-11 Determining the System-Generated Name of an XMLIndex Path Table 6-25

6-12 Specifying Storage Options When Creating an XMLIndex Index 6-25

6-13 Dropping an XMLIndex Unstructured Component 6-26

6-14 Determining the Names of the Secondary Indexes of an XMLIndex Index 6-26

6-15 Creating a Function-Based Index on Path-Table Column VALUE 6-27

6-16 Trying to Create a Numeric Index on Path-Table Column VALUE Directly 6-27

6-17 Creating a Numeric Index on Column VALUE with Procedure createNumberIndex 6-28

6-18 Creating a Date Index on Column VALUE with Procedure createDateIndex 6-28

6-19 Creating an Oracle Text CONTEXT Index on Path-Table Column VALUE 6-28

6-20 Showing All Secondary Indexes on an XMLIndex Path Table 6-28

6-21 XMLIndex with a Structured Component, Using Namespaces and Storage Options 6-30

6-22 XMLIndex with a Structured Component, Specifying TABLESPACE at the Index Level 6-31

6-23 XMLIndex Index: Adding a Structured Component 6-32

xxix



6-24 Using DBMS_XMLINDEX.PROCESS_PENDING To Index XML Data 6-34

6-25 Dropping an XMLIndex Structured Component 6-35

6-26 Creating a B-tree Index on an XMLIndex Index Content Table 6-35

6-27 Checking Whether an XMLIndex Unstructured Component Is Used 6-37

6-28 Obtaining the Name of an XMLIndex Index from Its Path-Table Name 6-38

6-29 Extracting Data from an XML Fragment Using XMLIndex 6-38

6-30 Using a Structured XMLIndex Component for a Query with Two Predicates 6-39

6-31 Using a Structured XMLIndex Component for a Query with Multilevel Chaining 6-40

6-32 Turning Off XMLIndex Using Optimizer Hints 6-42

6-33 XMLIndex Path Subsetting with CREATE INDEX 6-43

6-34 XMLIndex Path Subsetting with ALTER INDEX 6-44

6-35 XMLIndex Path Subsetting Using a Namespace Prefix 6-44

6-36 Creating an XMLIndex Index in Parallel 6-48

6-37 Using Different PARALLEL Degrees for XMLIndex Internal Objects 6-48

6-38 Specifying Deferred Synchronization for XMLIndex 6-50

6-39 Manually Synchronizing an XMLIndex Index Using SYNCINDEX 6-50

6-40 Automatic Collection of Statistics on XMLIndex Objects 6-51

6-41 Creating an XML Search Index 6-66

6-42 XQuery Full Text Query 6-66

6-43 Execution Plan for XQuery Full Text Query 6-67

6-44 XQuery Full Text Query with XML Schema-Based Data: Error ORA-18177 6-68

6-45 Using XQuery Pragma ora:no_schema with XML Schema-Based Data 6-68

6-46 Full-Text Query with XQuery Pragma ora:use_xmltext_idx 6-69

6-47 CREATE INDEX Using XMLCAST and XMLQUERY on a Singleton Element 6-73

6-48 CREATE INDEX Using EXTRACTVALUE on a Singleton Element 6-73

7-1 XSLT Stylesheet Example: PurchaseOrder.xsl 7-2

7-2 Registering an XML Schema and Inserting XML Data 7-5

7-3 Using SQL Function XMLTRANSFORM to Apply an XSL Stylesheet 7-7

7-4 Using XMLType Method TRANSFORM() with a Transient XSL Stylesheet 7-8

7-5 Using XMLTRANSFORM to Apply an XSL Stylesheet Retrieved Using XDBURIType 7-9

7-6 Error When Inserting Incorrect XML Document (Partial Validation) 7-14

7-7 Forcing Full XML Schema Validation Using a CHECK Constraint 7-15

7-8 Enforcing Full XML Schema Validation Using a BEFORE INSERT Trigger 7-15

7-9 Validating XML Using Method ISSCHEMAVALID() in SQL 7-16

7-10 Validating XML Using Method ISSCHEMAVALID() in PL/SQL 7-17

7-11 Validating XML Using Method SCHEMAVALIDATE() within Triggers 7-17

7-12 Checking XML Validity Using XMLISVALID Within CHECK Constraints 7-17

xxx



8-1 XMLELEMENT: Formatting a Date 8-8

8-2 XMLELEMENT: Generating an Element for Each Employee 8-8

8-3 XMLELEMENT: Generating Nested XML 8-9

8-4 XMLELEMENT: Generating Employee Elements with Attributes ID and Name 8-9

8-5 XMLELEMENT: Characters in Generated XML Data Are Not Escaped 8-9

8-6 Creating a Schema-Based XML Document Using XMLELEMENT with Namespaces 8-10

8-7 XMLELEMENT: Generating an Element from a User-Defined Data-Type Instance 8-10

8-8 XMLFOREST: Generating Elements with Attribute and Child Elements 8-11

8-9 XMLFOREST: Generating an Element from a User-Defined Data-Type Instance 8-12

8-10 XMLCONCAT: Concatenating XMLType Instances from a Sequence 8-13

8-11 XMLCONCAT: Concatenating XML Elements 8-14

8-12 XMLAGG: Generating a Department Element with Child Employee Elements 8-15

8-13 XMLAGG: Using GROUP BY to Generate Multiple Department Elements 8-15

8-14 XMLAGG: Generating Nested Elements 8-16

8-15 Using SQL/XML Function XMLPI 8-18

8-16 Using SQL/XML Function XMLCOMMENT 8-18

8-17 Using SQL/XML Function XMLSERIALIZE 8-20

8-18 Using SQL/XML Function XMLPARSE 8-21

8-19 XMLCOLATTVAL: Generating Elements with Attribute and Child Elements 8-22

8-20 Using Oracle SQL Function XMLCDATA 8-23

8-21 DBMS_XMLGEN: Generating Simple XML 8-33

8-22 DBMS_XMLGEN: Generating Simple XML with Pagination (Fetch) 8-34

8-23 DBMS_XMLGEN: Generating XML Using Object Types 8-35

8-24 DBMS_XMLGEN: Generating XML Using User-Defined Data-Type Instances 8-37

8-25 DBMS_XMLGEN: Generating an XML Purchase Order 8-38

8-26 DBMS_XMLGEN: Generating a New Context Handle from a REF Cursor 8-42

8-27 DBMS_XMLGEN: Specifying NULL Handling 8-43

8-28 DBMS_XMLGEN: Generating Recursive XML with a Hierarchical Query 8-45

8-29 DBMS_XMLGEN: Binding Query Variables Using SETBINDVALUE() 8-47

8-30 Using XMLAGG ORDER BY Clause 8-50

8-31 Returning a Rowset Using XMLTABLE 8-51

9-1 Creating a Relational View of XML Content 9-2

9-2 Accessing Individual Members of a Collection Using a View 9-4

9-3 XMLIndex Index that Matches Relational View Columns 9-5

9-4 XMLTable Expression Returned by PL/SQL Function getSIDXDefFromView 9-5

9-5 Querying Master Relational View of XML Data 9-6

9-6 Querying Master and Detail Relational Views of XML Data 9-6

xxxi



9-7 Business-Intelligence Query of XML Data Using a View 9-7

10-1 Creating an XMLType View Using XMLELEMENT 10-3

10-2 Registering XML Schema emp_simple.xsd 10-5

10-3 Creating an XMLType View Using SQL/XML Publishing Functions 10-6

10-4 Querying an XMLType View 10-7

10-5 Using Namespace Prefixes with SQL/XML Publishing Functions 10-7

10-6 XML Schema with No Target Namespace 10-8

10-7 Creating a View for an XML Schema with No Target Namespace 10-9

10-8 Using SQL/XML Functions in XML Schema-Based XMLType Views 10-9

10-9 Creating Object Types for Schema-Based XMLType Views 10-13

10-10 Creating and Registering XML Schema emp_complex.xsd 10-13

10-11 Creating XMLType View emp_xml Using Object Type emp_t 10-15

10-12 Creating an Object View and an XMLType View Based on the Object View 10-15

10-13 Creating Object Types 10-16

10-14 Registering XML Schema dept_complex.xsd 10-17

10-15 Creating XMLType View dept_xml Using Object Type dept_t 10-18

10-16 Creating XMLType View dept_xml Using Relational Data Directly 10-18

10-17 Creating an XMLType View by Restricting Rows from an XMLType Table 10-19

10-18 Creating an XMLType View by Transforming an XMLType Table 10-19

10-19 Determining Whether an XMLType View Is Implicitly Updatable, and Updating It 10-20

11-1 Creating and Manipulating a DOM Document 11-18

11-2 Creating an Element Node and Obtaining Information About It 11-19

11-3 Creating a User-Defined Subtype of SYS.util_BinaryOutputStream() 11-22

11-4 Retrieving Node Value with a User-Defined Stream 11-23

11-5 Get-Pull of Binary Data 11-24

11-6 Get-Pull of Character Data 11-24

11-7 Set-Pull of Binary Data 11-25

11-8 Set-Push of Binary Data 11-26

11-9 Parsing an XML Document 11-28

11-10 Transforming an XML Document Using an XSL Stylesheet 11-31

12-1 Inserting Data with Specified Columns 12-2

12-2 Updating Data with Key Columns 12-4

12-3 DBMS_XMLSTORE.DELETEXML Example 12-5

13-1 Querying an XMLType Table Using JDBC 13-3

13-2 Selecting XMLType Data Using getString() and getCLOB() 13-4

13-3 Returning XMLType Data Using getSQLXML() 13-4

13-4 Returning XMLType Data Using an Output Parameter 13-4

xxxii



13-5 Updating an XMLType Column Using SQL Constructor XMLType and Java String 13-6

13-6 Updating an XMLType Column Using SQLXML 13-6

13-7 Retrieving Metadata About an XMLType Column Using JDBC 13-6

13-8 Updating an XMLType Column Using JDBC 13-7

13-9 Updated Purchase-Order Document 13-9

13-10 Inserting an XMLType column using JDBC 13-10

13-11 Converting an XML String to an OracleClob Instance 13-11

13-12 Policy File Granting Permissions for Java DOM API 13-12

13-13 Creating a DOM Object with the Java DOM API 13-12

13-14 Using the Java DOM API with a Binary XML Column 13-22

14-1 Using OCIXMLDBINITXMLCTX() and OCIXMLDBFREEXMLCTX() 14-5

14-2 Using the C API for XML with Binary XML 14-9

14-3 Using the Oracle XML DB Pull Parser 14-11

14-4 Using the DOM to Count Ordered Parts 14-17

15-1 Retrieve XMLType Data to .NET 15-2

17-1 Registering an XML Schema Using DBMS_XMLSCHEMA.REGISTERSCHEMA 17-13

17-2 Objects Created During XML Schema Registration 17-14

17-3 Registering a Local XML Schema 17-16

17-4 Registering a Global XML Schema 17-17

17-5 Deleting an XML Schema with DBMS_XMLSCHEMA.DELETESCHEMA 17-20

17-6 Data Dictionary Table for Registered Schemas 17-20

17-7 Creating XML Schema-Based XMLType Tables and Columns 17-23

17-8 Creating an Object-Relational XMLType Table with Default Storage 17-28

17-9 Specifying Object-Relational Storage Options for XMLType Tables and Columns 17-28

17-10 Using STORE ALL VARRAYS AS 17-29

18-1 SQL Object Types for Storing XMLType Tables 18-5

18-2 Default Table for Global Element PurchaseOrder 18-6

18-3 Using Common Schema Annotations 18-11

18-4 Registering an Annotated XML Schema 18-12

18-5 Using DBMS_XMLSCHEMA_ANNOTATE 18-14

18-6 Querying View USER_XML_SCHEMAS for a Registered XML Schema 18-21

18-7 Querying Metadata from a Registered XML Schema 18-21

18-8 Mapping XML Schema Data Types to SQL Data Types Using Attribute SQLType 18-23

18-9 XML Schema Inheritance: complexContent as an Extension of complexTypes 18-34

18-10 Inheritance in XML Schema: Restrictions in complexTypes 18-34

18-11 XML Schema complexType: Mapping complexType to simpleContent 18-35

18-12 XML Schema: Mapping complexType to any/anyAttribute 18-36

xxxiii



18-13 Creating an XMLType Table that Conforms to an XML Schema 18-38

18-14 Creating an XMLType Table for Nested Collections 18-38

18-15 Using DESCRIBE with an XML Schema-Based XMLType Table 18-38

18-16 Specifying Partitioning Information During XML Schema Registration 18-41

18-17 Specifying Partitioning Information During Table Creation 18-41

18-18 Integrity Constraints and Triggers for an XMLType Table Stored Object-Relationally 18-43

18-19 Adding a Unique Constraint to the Parent Element of an Attribute 18-44

18-20 Setting SQLInline to False for Out-Of-Line Storage 18-47

18-21 Generated XMLType Tables and Types 18-48

18-22 Querying an Out-Of-Line Table 18-48

18-23 Storing a Collection Out of Line 18-49

18-24 Generated Out-Of-Line Collection Type 18-50

18-25 Renaming an Intermediate Table of REF Values 18-50

18-26 XPath Rewrite for an Out-Of-Line Collection 18-51

18-27 XPath Rewrite for an Out-Of-Line Collection, with Index on REFs 18-51

18-28 An XML Schema with Circular Dependency 18-52

18-29 XML Schema: Cycling Between complexTypes 18-55

18-30 XML Schema: Cycling Between complexTypes, Self-Reference 18-56

18-31 An XML Schema that Includes a Non-Existent XML Schema 18-57

18-32 Using the FORCE Option to Register XML Schema xm40.xsd 18-58

18-33 Trying to Create a Table Using a Cyclic XML Schema 18-58

18-34 Using the FORCE Option to Register XML Schema xm40a.xsd 18-58

18-35 Recursive XML Schema 18-59

18-36 Out-of-line Table 18-61

18-37 Invalid Default Table Sharing 18-61

18-38 Oracle XML DB XML Schema: Mapping complexType XML Fragments to LOBs 18-64

19-1 XPath Rewrite 19-2

19-2 XPath Rewrite for an Out-Of-Line Table 19-5

19-3 Using an Index with an Out-Of-Line Table 19-5

19-4 Execution Plan Generated When XPath Rewrite Does Not Occur 19-7

19-5 Analyzing an Execution Plan to Determine a Column to Index 19-9

19-6 Using DBMS_XMLSTORAGE_MANAGE.XPATH2TABCOLMAPPING 19-9

19-7 Creating an Index on a Column Targeted by a Predicate 19-9

19-8 Creating a Function-Based Index for a Column Targeted by a Predicate 19-9

19-9 Execution Plan Showing that Index Is Picked Up 19-9

19-10 Creating a Function-Based Index for a Column Targeted by a Predicate 19-10

19-11 Execution Plan for a Selection of Collection Elements 19-11

xxxiv



19-12 Creating an Index for Direct Access to an Ordered Collection Table 19-11

20-1 Revised Purchase-Order XML Schema 20-3

20-2 evolvePurchaseOrder.xsl: XSLT Stylesheet to Update Instance Documents 20-12

20-3 Loading Revised XML Schema and XSLT Stylesheet 20-16

20-4 Updating an XML Schema Using DBMS_XMLSCHEMA.COPYEVOLVE 20-17

20-5 Splitting a Complex Type into Two Complex Types 20-19

20-6 diffXML Parameter Document 20-26

21-1 Querying PATH_VIEW to Determine Link Type 21-15

21-2 Obtaining the OID Path of a Resource 21-16

21-3 Creating a Weak Link Using an OID Path 21-17

21-4 Accessing a Text Document in the Repository Using XDBURITYPE 21-33

21-5 Accessing Resource Content Using RESOURCE_VIEW 21-33

21-6 Accessing XML Documents Using Resource and Namespace Prefixes 21-33

21-7 Querying Repository Resource Data Using SQL Function REF and Element XMLRef 21-34

21-8 Selecting XML Document Fragments Based on Metadata, Path, and Content 21-35

21-9 Updating a Text Document Using UPDATE and XQuery Update on the Resource 21-37

21-10 Updating an XML Node Using UPDATE and XQuery Update on the Resource 21-38

21-11 Updating XML Schema-Based Documents in the Repository 21-39

21-12 Accessing Resources Using EQUALS_PATH and RESOURCE_VIEW 21-40

21-13 Determining the Path to XSLT Stylesheets Stored in the Repository 21-41

21-14 Counting Resources Under a Path 21-41

21-15 Listing the Folder Contents in a Path 21-42

21-16 Listing the Links Contained in a Folder 21-42

21-17 Finding Paths to Resources that Contain Purchase-Order XML Documents 21-42

21-18 Execution Plan Output for a Folder-Restricted Query 21-43

22-1 Resource Configuration File 22-6

22-2 applicationData Element 22-6

23-1 XInclude Used in a Book Document to Include Parts and Chapters 23-5

23-2 Expanding Document Inclusions Using XDBURIType 23-8

23-3 Querying Document Links Mapped From XLink Links 23-11

23-4 Querying Document Links Mapped From XInclude Links 23-12

23-5 Mapping XInclude Links to Hard Document Links, with OID Retrieval 23-18

23-6 Mapping XLInk Links to Weak Links, with Named-Path Retrieval 23-19

23-7 Configuring XInclude Document Decomposition 23-19

23-8 Repository Document, Showing Generated xi:include Elements 23-19

24-1 Determining Paths Under a Path: Relative 24-11

24-2 Determining Paths Under a Path: Absolute 24-11

xxxv



24-3 Determining Paths Not Under a Path 24-11

24-4 Determining Paths Using Multiple Correlations 24-12

24-5 Relative Path Names for Three Levels of Resources 24-12

24-6 Extracting Resource Metadata Using UNDER_PATH 24-13

24-7 Using Functions PATH and DEPTH with PATH_VIEW 24-13

24-8 Extracting Link and Resource Information from PATH_VIEW 24-14

24-9 All Repository Paths to a Certain Depth Under a Path 24-15

24-10 Locating a Repository Path Using EQUALS_PATH 24-15

24-11 Retrieve RESID of a Given Resource 24-15

24-12 Obtaining the Path Name of a Resource from its RESID 24-16

24-13 Folders Under a Given Path 24-16

24-14 Joining RESOURCE_VIEW with an XMLType Table 24-17

24-15 Deleting Resources 24-18

24-16 Deleting Links to Resources 24-18

24-17 Deleting a Nonempty Folder 24-19

24-18 Updating a Resource 24-20

24-19 Updating a Path in the PATH_VIEW 24-21

24-20 Updating Resources Based on Attributes 24-22

24-21 Finding Resources Inside a Folder 24-22

24-22 Copying Resources 24-23

24-23 Find All Resources Containing "Paper" 24-25

24-24 Find All Resources Containing "Paper" that are Under a Specified Path 24-25

25-1 Creating a Repository Resource 25-7

25-2 Creating a Version-Controlled Resource 25-8

25-3 Retrieving Resource Content by Referencing the Resource ID 25-8

25-4 Checking Out a Version-Controlled Resource 25-8

25-5 Updating Resource Content 25-8

25-6 Checking In a Version-Controlled Resource 25-9

25-7 Retrieving Resource Version Content Using XDBURITYPE and CREATEOIDPATH 25-9

25-8 Retrieving Resource Version Content Using GETCONTENTSCLOBBYRESID 25-10

25-9 Retrieving Resource Version Metadata Using GETRESOURCEBYRESID 25-10

25-10 Canceling a Check-Out Using UNCHECKOUT 25-11

26-1 Managing Resources Using DBMS_XDB_REPOS 26-3

26-2 Using DBMS_XDB_REPOS.GETACLDOCUMENT 26-4

26-3 Using DBMS_XDB_REPOS.SETACL 26-5

26-4 Using DBMS_XDB_REPOS.CHANGEPRIVILEGES 26-5

26-5 Using DBMS_XDB_REPOS.GETPRIVILEGES 26-6

xxxvi



26-6 Using DBMS_XDB_CONFIG.CFG_GET 26-9

26-7 Using DBMS_XDB_CONFIG.CFG_UPDATE 26-10

27-1 Simple Access Control Entry (ACE) that Grants a Privilege 27-5

27-2 Simple Access Control List (ACL) that Grants a Privilege 27-6

27-3 Complementing a Set of Principals with Element invert 27-12

27-4 Creating an ACL Using CREATERESOURCE 27-14

27-5 Retrieving an ACL Document, Given its Repository Path 27-15

27-6 Setting the ACL of a Resource 27-15

27-7 Deleting an ACL 27-16

27-8 Updating (Replacing) an Access Control List 27-16

27-9 Appending ACEs to an Access Control List 27-17

27-10 Deleting an ACE from an Access Control List 27-17

27-11 Retrieving the ACL Document for a Resource 27-18

27-12 Retrieving Privileges Granted to the Current User for a Particular Resource 27-18

27-13 Checking If a User Has a Certain Privileges on a Resource 27-19

27-14 Checking User Privileges Using ACLCheckPrivileges 27-19

27-15 Retrieving the Path of the ACL that Protects a Given Resource 27-20

27-16 Retrieving the Paths of All Resources Protected by a Given ACL 27-21

27-17 ACL Referencing an LDAP User 27-25

27-18 ACL Referencing an LDAP Group 27-25

28-1 Listener Status with FTP and HTTP(S) Protocol Support Enabled 28-10

28-2 Uploading Content to the Repository Using FTP 28-19

28-3 Navigating Oracle ASM Folders 28-21

28-4 Transferring Oracle ASM Files Between Databases with FTP proxy Method 28-21

28-5 FTP Connection Using IPv6 28-23

28-6 Modifying the Default Timeout Value of an FTP Session 28-24

29-1 Registering an XML Schema for Technical Photo Information 29-5

29-2 Registering an XML Schema for Photo Categorization 29-5

29-3 Add Metadata to a Resource – Technical Photo Information 29-7

29-4 Add Metadata to a Resource – Photo Content Categories 29-7

29-5 Delete Specific Metadata from a Resource 29-8

29-6 Adding Metadata to a Resource Using DML with RESOURCE_VIEW 29-9

29-7 Adding Metadata Using WebDAV PROPPATCH 29-10

29-8 Query XML Schema-Based Resource Metadata 29-12

29-9 Add Non-Schema-Based Metadata to a Resource 29-13

30-1 Resource Configuration File for Java Event Listeners with Preconditions 30-13

30-2 Resource Configuration File for PL/SQL Event Listeners with No Preconditions 30-14

xxxvii



30-3 PL/SQL Code Implementing Event Listeners 30-15

30-4 Java Code Implementing Event Listeners 30-16

30-5 Invoking Event Handlers 30-18

31-1 An Oracle XML DB Servlet 31-9

31-2 Registering and Mapping an Oracle XML DB Servlet 31-10

32-1 Using HTTPURIType PL/SQL Method GETCONTENTTYPE() 32-7

32-2 Creating and Querying a URI Column 32-9

32-3 Using Different Kinds of URI, Created in Different Ways 32-10

32-4 Access a Repository Resource by URI Using an XDBUri 32-13

32-5 Using PL/SQL Method GETXML with XMLCAST and XMLQUERY 32-14

32-6 Targeting a Complete Table Using a DBUri 32-20

32-7 Targeting a Particular Row in a Table Using a DBUri 32-21

32-8 Targeting a Specific Column Using a DBUri 32-22

32-9 Targeting an Object Column with Specific Attribute Values Using a DBUri 32-22

32-10 Retrieve Only the Text Value of a Node Using a DBUri 32-23

32-11 Targeting a Collection Using a DBUri 32-24

32-12 URIFACTORY: Registering the ECOM Protocol 32-26

32-13 SYS_DBURIGEN: Generating a DBUri that Targets a Column 32-28

32-14 Passing Columns with Single Arguments to SYS_DBURIGEN 32-29

32-15 Inserting Database References Using SYS_DBURIGEN 32-30

32-16 Creating the Travel Story Table 32-30

32-17 A Function that Returns the First 20 Characters 32-31

32-18 Creating a Travel View for Use with SYS_DBURIGEN 32-31

32-19 Retrieving a URL Using SYS_DBURIGEN in RETURNING Clause 32-31

32-20 Changing the Installation Location of DBUriServlet 32-35

32-21 Restricting Servlet Access to a Database Role 32-36

32-22 Registering a Handler for a DBUri Prefix 32-37

33-1 Adding a Web Services Configuration Servlet 33-3

33-2 Verifying Addition of Web Services Configuration Servlet 33-3

33-3 XML Schema for Database Queries To Be Processed by Web Service 33-5

33-4 Input XML Document for SQL Query Using Query Web Service 33-6

33-5 Output XML Document for SQL Query Using Query Web Service 33-6

33-6 Definition of PL/SQL Function Used for Web-Service Access 33-8

33-7 WSDL Document Corresponding to a Stored PL/SQL Function 33-9

33-8 Input XML Document for PL/SQL Query Using Web Service 33-10

33-9 Output XML Document for PL/SQL Query Using Web Service 33-10

34-1 Oracle XML DB Configuration File 34-10

xxxviii



34-2 Updating the Configuration File Using CFG_UPDATE and CFG_GET 34-13

35-1 Data File filelist.dat: List of XML Files to Load 35-5

35-2 Control File load_datra.ctl, for Loading Purchase-Order XML Documents 35-6

35-3 Loading XML Data Using Shell Command sqlldr 35-6

36-1 Exporting XMLType Data in TABLE Mode 36-4

36-2 Importing XMLType Data in TABLE Mode 36-4

36-3 Creating Table po2 36-5

36-4 Exporting XMLType Data in SCHEMA Mode 36-5

36-5 Importing XMLType Data in SCHEMA Mode 36-5

36-6 Importing XMLType Data in SCHEMA Mode, Remapping Schema 36-6

37-1 Creating a Queue Table and Queue 37-6

37-2 Creating a Transformation to Convert Message Data to XML 37-7

37-3 Applying a Transformation before Sending Messages Overseas 37-7

37-4 XMLType and AQ: Dequeuing Messages 37-7

A-1 Unannotated Purchase-Order XML Schema A-38

A-2 Annotated Purchase-Order XML Schema A-41

A-3 Revised Annotated Purchase-Order XML Schema A-43

A-4 PurchaseOrder.xsl XSLT Stylesheet A-48

A-5 Inserting XML Data into an XMLType Table Using C A-54

A-6 Using OCIXmlDbInitXmlCtx() and OCIXmlDbFreeXmlCtx() A-57

xxxix



List of Figures

1-1 Oracle XML DB Benefits 1-3

1-2 Unifying Data and Content: Some Common XML Architectures 1-4

1-3 XMLType Storage 1-10

1-4 Oracle XML DB Repository Architecture 1-19

2-1 Oracle XML DB Storage Options for XML Data 2-4

3-1 Loading Content into the Repository Using Windows Explorer 3-16

4-1 XMLQUERY Syntax 4-12

4-2 XMLTABLE Syntax 4-14

4-3 XMLExists Syntax 4-18

4-4 XMLCast Syntax 4-20

6-1 XML Use Cases and XML Indexing 6-10

7-1 XMLTRANSFORM Syntax 7-4

7-2 Using XMLTRANSFORM 7-4

7-3 Database XSL Transformation of a PurchaseOrder Using DBUri Servlet 7-11

7-4 Database XSL Transformation of Departments Table Using DBUri Servlet 7-12

8-1 XMLELEMENT Syntax 8-4

8-2 XMLAttributes Clause Syntax (XMLATTRIBUTES) 8-5

8-3 XMLFOREST Syntax 8-11

8-4 XMLCONCAT Syntax 8-13

8-5 XMLAGG Syntax 8-14

8-6 XMLPI Syntax 8-17

8-7 XMLComment Syntax 8-18

8-8 XMLSerialize Syntax 8-19

8-9 XMLParse Syntax 8-20

8-10 XMLCOLATTVAL Syntax 8-21

8-11 XMLCDATA Syntax 8-23

8-12 Using PL/SQL Package DBMS_XMLGEN 8-25

8-13 SYS_XMLAGG Syntax 8-49

10-1 Creating XMLType Views Clause: Syntax 10-3

11-1 Using the PL/SQL DOM API for XMLType 11-17

11-2 Using the PL/SQL Parser API for XMLType 11-28

11-3 Using the PL/SQL XSLT Processor for XMLType 11-31

13-1 Using the Java DOM API for XMLType 13-15

16-1 XML Use Cases and XMLType Storage Models 16-3

17-1 XMLSpy Graphical Representation of a Purchase-Order XML Schema 17-4

xl



17-2 XMLSpy Support for Oracle XML DB Schema Annotations 17-8

17-3 Creating an XMLType Table – CREATE TABLE Syntax 17-22

17-4 Creating an XMLType Table – XMLType_table Syntax 17-22

17-5 Creating an XMLType Table – table_properties Syntax 17-22

17-6 Creating an XMLType Table – XMLType_virtual_columns Syntax 17-22

17-7 How Oracle XML DB Maps XML Schema-Based XMLType Tables 17-32

18-1 simpleType Mapping: XML Strings to SQL VARCHAR2 or CLOB 18-27

18-2 Mapping complexType to SQL for Out-Of-Line Storage 18-46

18-3 Cross Referencing Between Different complexTypes in the Same XML Schema 18-54

18-4 Self-Referencing Complex Type within an XML Schema 18-55

18-5 Cyclical References Between XML Schemas 18-57

18-6 Mapping complexType XML Fragments to CLOB Instances 18-63

21-1 A Folder Tree, Showing Hierarchical Structures in the Repository 21-3

21-2 Oracle XML DB Folders in Windows Explorer 21-18

21-3 Accessing Repository Data Using HTTP(S)/WebDAV and a Web Browser 21-18

21-4 Path-Based Access Using HTTP and a URL 21-19

21-5 Oracle ASM Virtual Folder Hierarchy 21-22

21-6 Updating and Editing Content Stored in Oracle XML DB Using Microsoft Word 21-36

24-1 Accessing Repository Resources Using RESOURCE_VIEW and PATH_VIEW 24-3

24-2 RESOURCE_VIEW and PATH_VIEW Structure 24-3

24-3 RESOURCE_VIEW and PATH_VIEW Explained 24-6

24-4 UNDER_PATH Syntax 24-7

24-5 EQUALS_PATH Syntax 24-9

24-6 PATH Syntax 24-10

28-1 Oracle XML DB Architecture: Protocol Server 28-3

28-2 Creating a WebFolder in Microsoft Windows 28-37

28-3 Copying Files into Oracle XML DB Repository 28-38

32-1 A DBUri Corresponds to an XML Visualization of Relational Data 32-16

32-2 SYS_DBURIGEN Syntax 32-28

37-1 Oracle Database Advanced Queuing and XML Message Payloads 37-3

37-2 iDAP Architecture for Performing AQ Operations Using HTTP(S) 37-6

xli



List of Tables

1-1 Static Data Dictionary Views Related to XML 1-16

3-1 SQL*Loader – Conventional and Direct-Path Load Modes 3-15

4-1 Common XPath Constructs 4-2

4-2 Predefined Namespaces and Prefixes 4-11

4-3 oradb Expressions: Column Types for Comparisons 4-23

6-1 Basic XML Indexing Tasks 6-2

6-2 Tasks Involving XMLIndex Indexes with a Structured Component 6-2

6-3 Tasks Involving XMLIndex Indexes with an Unstructured Component 6-2

6-4 Miscellaneous Tasks Involving XMLIndex Indexes 6-3

6-5 XML and SQL Data Type Correspondence for XMLIndex 6-13

6-6 XMLIndex Path Table 6-18

6-7 Index Synchronization 6-49

6-8 XMLIndex Static Public Views 6-52

6-9 Migrating Oracle-Specific XML Queries to XQuery Full Text 6-70

8-1 DBMS_XMLGEN Functions and Procedures 8-26

11-1 PL/SQL APIs Related to XML 11-4

11-2 XML and HTML DOM Node Types and Their Child Node Types 11-14

13-1 Java DOM API for XMLType: Classes 13-14

14-1 OCIXmlDbInitXMlCtx() Parameters 14-4

14-2 Common XMLType Operations in C 14-16

16-1 XMLType Storage Model Considerations 16-8

16-2 XMLType Indexing Considerations 16-10

16-3 XMLType Storage Models: Relative Advantages 16-10

17-1 XMLType Methods Related to XML Schema 17-9

17-2 CREATE TABLE Encoding Options for Binary XML 17-26

18-1 Annotations in Elements 18-15

18-2 Annotations in Elements Declaring Global complexType Elements 18-17

18-3 XML Schema String Data Types Mapped to SQL 18-27

18-4 XML Schema Binary Data Types (hexBinary/base64Binary) Mapped to SQL 18-27

18-5 Default Mapping of Numeric XML Schema Primitive Types to SQL 18-28

18-6 XML Schema Date and Time Data Types Mapped to SQL 18-28

18-7 Default Mapping of Other XML Schema Primitive and Derived Data Types to SQL 18-28

19-1 Sample of XPath Expressions that Are Rewritten to Underlying SQL Constructs 19-3

20-1 Parameters of Procedure DBMS_XMLSCHEMA.COPYEVOLVE 20-6

20-2 Errors Associated with Procedure DBMS_XMLSCHEMA.COPYEVOLVE 20-7

xlii



20-3 XML Schema Evolution: XMLType Table Temporary Table Columns 20-15

20-4 XML Schema Evolution: XMLType Column Temporary Table Columns 20-15

20-5 Procedure COPYEVOLVE Mapping Table 20-16

20-6 Parameters of Procedure DBMS_XMLSCHEMA.INPLACEEVOLVE 20-24

21-1 Synonyms for Oracle XML DB Repository Terms 21-8

21-2 Differences Between PATH_VIEW and RESOURCE_VIEW 21-23

21-3 Accessing Oracle XML DB Repository: API Options 21-26

24-1 Structure of RESOURCE_VIEW 24-5

24-2 Structure of PATH_VIEW 24-5

24-3 UNDER_PATH SQL Function Signature 24-8

25-1 Oracle XML DB Versioning Terms 25-2

25-2 PL/SQL Functions and Procedures in Package DBMS_XDB_VERSION 25-3

26-1 DBMS_XDB_REPOS Resource Access and Management Subprograms 26-2

26-2 DBMS_XDB_REPOS: Security Management Subprograms 26-4

26-3 DBMS_XDB_CONFIG: Configuration Management Subprograms 26-7

27-1 Database Privileges Needed for Operations on Oracle XML DB Resources 27-7

27-2 Atomic Privileges 27-8

27-3 Aggregate Privileges 27-9

28-1 Common Protocol Configuration Parameters 28-5

28-2 Configuration Parameters Specific to FTP 28-6

28-3 Configuration Parameters Specific to HTTP(S)/WebDAV (Except Servlet) 28-6

30-1 Predefined Repository Events 30-4

30-2 Oracle XML DB Repository Operations and Events 30-6

31-1 XML Elements Defined for Servlet Deployment Descriptors 31-3

31-2 Java Servlet 2.2 Methods that Are Not Implemented 31-9

32-1 URIType PL/SQL Methods 32-5

32-2 URIFACTORY PL/SQL Methods 32-25

32-3 DBUriServlet: Optional Arguments 32-33

33-1 Web Service Mapping Between XML and Oracle Database Data Types 33-8

34-1 DBMS_XDB_ADMIN Management Procedures 34-17

xliii



Preface

This manual describes Oracle XML DB, and how you can use it to store, generate,
manipulate, manage, and query XML data in the database.

After introducing you to the heart of Oracle XML DB, namely the XMLType framework
and Oracle XML DB Repository, the manual provides a brief introduction to design
criteria to consider when planning your Oracle XML DB application. It provides
examples of how and where you can use Oracle XML DB.

The manual then describes ways you can store and retrieve XML data using Oracle
XML DB, APIs for manipulating XMLType data, and ways you can view, generate,
transform, and search on existing XML data. The remainder of the manual discusses
how to use Oracle XML DB Repository, including versioning and security, how
to access and manipulate repository resources using protocols, SQL, PL/SQL, or
Java, and how to manage your Oracle XML DB application using Oracle Enterprise
Manager. It also introduces you to XML messaging and Oracle Database Advanced
Queuing XMLType support.

• Audience
Oracle XML DB Developer's Guide is intended for developers building XML Oracle
Database applications.

• Documentation Accessibility

• Related Documents

• Conventions

• Code Examples
The code examples in this book are for illustration only. In many cases, however,
you can copy and paste parts of examples and run them in your environment.

• Syntax Descriptions
Syntax descriptions are provided for various SQL, PL/SQL, or other command-line
constructs in graphic form or Backus Naur Form (BNF).

Audience
Oracle XML DB Developer's Guide is intended for developers building XML Oracle
Database applications.

An understanding of XML, XML Schema, XQuery, XPath, and XSL is helpful when
using this manual.

Many examples provided here are in SQL, PL/SQL, Java, or C. A working knowledge
of one of these languages is presumed.

Preface

xliv



Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• Oracle Database XML Java API Reference

• Oracle XML Developer's Kit Programmer's Guide

• Oracle Database Error Messages

• Oracle Text Application Developer's Guide

• Oracle Text Reference

• Oracle Database Concepts

• Oracle Database Java Developer's Guide

• Oracle Database Development Guide

• Oracle Database Advanced Queuing User's Guide

• Oracle Database PL/SQL Packages and Types Reference

Many of the examples in this book use the Oracle Database sample schemas. Refer
to Oracle Database Sample Schemas for information about how these database
schemas were created and how you can use them yourself.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at OTN Registration

For additional information, see:

• Extensible Markup Language (XML) 1.0

• XML Schema and XML Schema resources

• XML Schema Part 0: Primer

• XML Schema Part 1: Structures

• XML Schema Part 2: Datatypes

• XML Schemas reference list

• XML and MIME Media-Types

• XML Pointer Language (XPointer)

Preface

xlv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


• XML Path Language (XPath) Version 1.0

• XML Path Language (XPath) 2.0

• XPath Tutorial

• Unicode in XML and other Markup Languages, Unicode Technical Report #20

• Namespaces in XML 1.0

• XML Information Set

• Document Object Model (DOM)

• XSL Transformations (XSLT) Version 1.0

• Extensible Stylesheet Language (XSL) Version 1.1

• XSL references

• XSLT Tutorial

• Web Services Activity

• FTP Protocol Specification, IETF RFC959

• ISO/IEC 13249-2:2000, Information technology - Database languages - SQL
Multimedia and Application Packages - Part 2: Full-Text, International Organization
For Standardization, 2000

Note:

Throughout this manual, XML Schema refers to the XML Schema 1.0
recommendation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Code Examples
The code examples in this book are for illustration only. In many cases, however, you
can copy and paste parts of examples and run them in your environment.

• Standard Database Schemas
Many of the examples in this book use the standard database schemas that
are included in your database. In particular, database schema OE contains
XML purchase-order documents in XMLType table purchaseorder, and XML

Preface

xlvi

https://www.w3.org/TR/xpath20
https://www.w3.org/TR/xslt-10/


documents with warehouse information in XMLType column warehouse_spec of
table warehouses.

• Pretty Printing of XML Data
To promote readability, especially of lengthy or complex XML data, output is
sometimes shown pretty-printed (formatted) in code examples.

• Execution Plans
Some of the code examples in this book present execution plans. These are for
illustration only. Running examples that are presented here in your environment is
likely to result in different execution plans from those presented here.

• Reminder About Case Sensitivity
SQL is case-insensitive. XML is case-sensitive. Keep this in mind when you mix
SQL and XML.

Standard Database Schemas
Many of the examples in this book use the standard database schemas that
are included in your database. In particular, database schema OE contains XML
purchase-order documents in XMLType table purchaseorder, and XML documents with
warehouse information in XMLType column warehouse_spec of table warehouses.

The purchase-order documents are also contained in Oracle XML DB Repository,
under the repository path /home/OE/PurchaseOrders/2002/. The XML schema that
governs these documents is file purchaseorder.xsd, at repository location /home/OE/
purchaseorder.xsd. An XSLT stylesheet that is used in some examples to transform
purchase-order documents is file purchaseorder.xsl, at repository location /home/OE/
purchaseorder.xsl. This XML schema and stylesheet can also be found in Oracle-
Supplied XML Schemas and Examples.

See Also:

• Oracle Database Sample Schemas for information about database
schema HR

• Oracle Database Sample Schemas for information about database
schema OE

Pretty Printing of XML Data
To promote readability, especially of lengthy or complex XML data, output is
sometimes shown pretty-printed (formatted) in code examples.

Execution Plans
Some of the code examples in this book present execution plans. These are for
illustration only. Running examples that are presented here in your environment is
likely to result in different execution plans from those presented here.

Preface

xlvii



Reminder About Case Sensitivity
SQL is case-insensitive. XML is case-sensitive. Keep this in mind when you mix SQL
and XML.

When examining the examples in this book, keep in mind the following:

• SQL is case-insensitive, but names in SQL code are implicitly uppercase, unless
you enclose them in double quotation marks (").

• XML is case-sensitive. You must refer to SQL names in XML code using the
correct case: uppercase SQL names must be written as uppercase.

For example, if you create a table named my_table in SQL without using double
quotation marks, then you must refer to it in XML code as "MY_TABLE".

Syntax Descriptions
Syntax descriptions are provided for various SQL, PL/SQL, or other command-line
constructs in graphic form or Backus Naur Form (BNF).

See Oracle Database SQL Language Reference for information about how to interpret
these descriptions.

Preface

xlviii



Part I
Oracle XML DB Basics

The basics of Oracle XML DB are introduced.

• Introduction to Oracle XML DB
Oracle XML DB provides Oracle Database with native XML support by
encompassing both the SQL and XML data models in an interoperable way.

• Getting Started with Oracle XML DB
Some preliminary design criteria are presented for consideration when planning
your Oracle XML DB solution.

• Overview of How To Use Oracle XML DB
An overview of the various ways of using Oracle XML DB is presented.



1
Introduction to Oracle XML DB

Oracle XML DB provides Oracle Database with native XML support by encompassing
both the SQL and XML data models in an interoperable way.

• Overview of Oracle XML DB
Oracle XML DB is a set of Oracle Database technologies related to high-
performance handling of XML data: storing, generating, accessing, searching,
validating, transforming, evolving, and indexing. It provides native XML support by
encompassing both the SQL and XML data models in an interoperable way.

• Oracle XML DB Benefits
Oracle XML DB supports all major XML, SQL, Java, and Internet standards.
It provides high performance and scalability for XML operations. It brings
database features such as transaction control, data integrity, replication, reliability,
availability, security, and scalability to the world of XML.

• Oracle XML DB Architecture
Oracle XML DB gives you protocol and programmatic access to XML data in
the form of local and remote XMLType tables and views. It provides a WebDAV
repository with resource versioning and access control.

• Oracle XML DB Features
Oracle XML DB provides standard database features such as transaction control,
data integrity, replication, reliability, availability, security, and scalability, while
also allowing for efficient indexing, querying, updating, and searching of XML
documents in an XML-centric manner.

• Standards Supported by Oracle XML DB
Oracle XML DB supports all major XML, SQL, Java, and Internet standards.

• Oracle XML DB Technical Support
Besides the regular channels of support through your customer representative or
consultant, technical support for Oracle Database XML-enabled technologies is
available free through Oracle Technology Network (OTN).

• Oracle XML DB Examples
The examples that illustrate the use of Oracle XML DB and XMLType are based on
various database schemas, sample XML documents, and sample XML schemas.

• Oracle XML DB Case Studies and Demonstrations on OTN
Visit Oracle Technology Network (OTN) to view Oracle XML DB examples, white
papers, case studies, and demonstrations.

1.1 Overview of Oracle XML DB
Oracle XML DB is a set of Oracle Database technologies related to high-
performance handling of XML data: storing, generating, accessing, searching,
validating, transforming, evolving, and indexing. It provides native XML support by
encompassing both the SQL and XML data models in an interoperable way.

Oracle XML DB is included as part of Oracle Database starting with Oracle9i Release
2 (9.2).

1-1



Oracle XML DB and the XMLType abstract data type make Oracle Database XML-
aware. Storing XML data as an XMLType column or table lets the database perform
XML-specific operations on the content. This includes XML validation and optimization.
XMLType storage allows highly efficient processing of XML content in the database.

Oracle XML DB includes the following features:

• An abstract SQL data type, XMLType, for XML data.

• Enterprise-level Oracle Database features for XML content: reliability, availability,
scalability, and security. XML-specific memory management and optimizations.

• Industry-standard ways to access and update XML data. You can use FTP,
HTTP(S), and WebDAV to move XML content into and out of Oracle Database.
Industry-standard APIs provide programmatic access and manipulation of XML
content using Java, C, and PL/SQL.

• Ways to store, query, update, and transform XML data while accessing it using
SQL and XQuery.

• Ways to perform XML operations on SQL data.

• Oracle XML DB Repository: a simple, lightweight repository where you can
organize and manage database content, including XML content, using a file/
folder/URL metaphor.

• Ways to access and combine data from disparate systems through gateways,
using a single, common data model. This reduces the complexity of developing
applications that must deal with data from different stores.

• Ways to use Oracle XML DB in conjunction with Oracle XML Developer's Kit
(XDK) to build applications that run in the middle tier in either Oracle Fusion
Middleware or Oracle Database.

Oracle XML DB functionality is partially based on the Oracle XML Developer's Kit C
implementations of the relevant XML standards, such as XML Parser, XSLT Virtual
Machine, XML DOM, and XML Schema Validator.

Related Topics

• XMLType Data Type
Using XMLType, XML developers can leverage the power of XML standards while
working in the context of a relational database, and SQL developers can leverage
the power of a relational database while working with XML data.

See Also:

• Oracle XML DB on OTN for the latest news and white papers about
Oracle XML DB

• Oracle XML Developer's Kit Programmer's Guide

1.2 Oracle XML DB Benefits
Oracle XML DB supports all major XML, SQL, Java, and Internet standards. It
provides high performance and scalability for XML operations. It brings database

Chapter 1
Oracle XML DB Benefits

1-2



features such as transaction control, data integrity, replication, reliability, availability,
security, and scalability to the world of XML.

Figure 1-1 presents an overview of the standards supported by Oracle XML DB.

Figure 1-1    Oracle XML DB Benefits

Oracle

XML DB

Unifies Data
and Content

Efficient Storage and 
Retrieval of Complex

XML Documents

Higher performance
of XML operations

Higher scalability 
of XML operations

Enhanced native 
database support for 
XML

Stores and manages 
structured, unstructured, 
and semi-structured data

Transparent XML and 
 SQL interoperability

Exploits database 
features:

Exploits XML features:

Helps
Integrate

Applications

XMLType views 
over local or remote 
sources

Connectivity to other 
databases, files, ...

Uniform SQL / XML 
queries over data 
integrated from 
multiple sources

indexing, searching

updating, transaction processing

manages constraints

multiple data views

speeds up XML storage, retrieval

supports standards for storing, 
modifying, retrieving data

structure and storage independence

facilitates presentation and data display

facilitates B2B data exchange

Data Duality:
XML and

Relational

XMLType views of 
relational data

Relational views of 
XMLType data

Facilitates migrating 
legacy and non-XML 
data to XML data

• Data and Content Unified
With Oracle XML DB, you can store and manage data that is structured,
unstructured, and semi-structured using a standard data model and standard
SQL and XML. You can perform SQL operations on XML documents and XML
operations on object-relational (such as table) data.

• Data Duality: XML and Relational
Oracle XML DB presents a symmetric, dual view of data: as XML and as
relational.

Chapter 1
Oracle XML DB Benefits

1-3



• Efficient Storage and Retrieval of Complex XML Documents
Oracle XML DB provides high performance and scalability for XML operations,
letting you manage the storage and retrieval of complex, large, or many XML
documents.

1.2.1 Data and Content Unified
With Oracle XML DB, you can store and manage data that is structured, unstructured,
and semi-structured using a standard data model and standard SQL and XML.
You can perform SQL operations on XML documents and XML operations on object-
relational (such as table) data.

Most application data and Web content is stored in a relational database, a file system,
or both. XML data is often used for data exchange, and it can be generated from a
relational database or a file system. As the volume of XML data exchanged grows, the
cost of regenerating this data grows, and these storage methods become less effective
at accommodating XML content.

Figure 1-2    Unifying Data and Content: Some Common XML Architectures

Application Server

Applications

XML Processing  and

Repository Layer

RDBMS

Structured Data


and Metadata

Multimedia and


Document Content

Application Server

Applications

RDBMS

Structured DataMultimedia, Document


Content and XML,


Metadata

XML

Repository

Oracle

Application


Server

Applications

Oracle

XML DB

Multimedia and


Document Content,


Structured Data,


XML, Metadata

File

System

Non-Native XML Processing Separate Data and Content Servers Oracle XML DB

Organizations often manage their structured data and unstructured data differently:

• Unstructured data, stored in tables, makes document access transparent and table
access complex.

• Structured data, often stored in binary large objects (such as in BLOB instances),
makes access more complex and table access transparent.

Chapter 1
Oracle XML DB Benefits

1-4



• Database Capabilities for Working with XML
Oracle Database provides database capabilities for working with XML: indexing
and search; updates and transaction processing; managing relationships using
constraints; multiple data views; high performance and scalability. It supports XML
Schema, XQuery, XPath, and DOM.

• Advantages of Storing Data as XML in the Database
Storing data as XML in the database provides these advantages: storage
independence, ease of presentation, and ease of interchange.

1.2.1.1 Database Capabilities for Working with XML
Oracle Database provides database capabilities for working with XML: indexing and
search; updates and transaction processing; managing relationships using constraints;
multiple data views; high performance and scalability. It supports XML Schema,
XQuery, XPath, and DOM.

• Indexing and search – Just as your database data can be more or less
structured, so can your queries. One query can look for all product definitions
created between March and April 2014. Another query can look for products
whose descriptions contain the words "wireless" and "router" but not the term
"wireless router".

A query such as the former targets structured data, and it is typically supported by
a B-tree index on a date column. A query such as the latter targets unstructured
data, and for Oracle Database it is typically supported by an Oracle Text (full-text)
index. Applications can of course combine structured and unstructured queries,
and targeted data can be a mix of structured and unstructured data.

For XML data the situation is similar. Oracle XML DB provides indexing features
that let you target the gamut of XML possibilities, from data and queries that are
highly structured to those that are highly unstructured.

See Also:

– Query and Update of XML Data

– Generation of XML Data from Relational Data

– Indexing XML Data for Full-Text Queries

– Oracle Text Application Developer's Guide

– Oracle Text Reference

• Updates and transaction processing – Commercial relational databases use
fast updates of subparts of records, with minimal contention between users
trying to update. As traditionally document-centric data participate in collaborative
environments through XML, this requirement becomes more important. File or
CLOB storage cannot provide the granular concurrency control that Oracle XML DB
does.

Chapter 1
Oracle XML DB Benefits

1-5



See Also:

Query and Update of XML Data

• Managing relationships – Data with any structure typically has foreign-key
constraints. XML data stores generally lack this feature, so you must implement
any constraints in application code. Oracle XML DB enables you to constrain
XML data according to XML schema definitions, and hence achieve control over
relationships that structured data has always enjoyed.

See Also:

– XML Schema Storage and Query: Basic

– The purchase-order examples in Query and Update of XML Data

• Multiple views of data – Most enterprise applications need to group data together
in different ways for different modules. This is why relational views are necessary
—to allow for these multiple ways to combine data. By allowing views on XML,
Oracle XML DB creates different logical abstractions on XML for, say, consumption
by different types of applications.

See Also:

XMLType Views

• Performance and scalability – Users expect data storage, retrieval, and query
to be fast. Loading a file or CLOB value, and parsing, are typically slower than
relational data access. Oracle XML DB dramatically speeds up XML storage and
retrieval.

See Also:

– Getting Started with Oracle XML DB

– Overview of How To Use Oracle XML DB

• Ease of development – Databases are foremost an application platform that
provides standard, easy ways to manipulate, transform, and modify individual data
elements. While typical XML parsers give standard read access to XML data they
do not provide an easy way to modify and store individual XML elements. Oracle
XML DB supports several standard ways to store, modify, and retrieve data. These
include XML Schema, XQuery, XPath, DOM, and Java.

Chapter 1
Oracle XML DB Benefits

1-6



See Also:

– XQuery and Oracle XML DB

– Java DOM API for XMLType

– Repository Access Using RESOURCE_VIEW and PATH_VIEW

– PL/SQL Access to Oracle XML DB Repository

1.2.1.2 Advantages of Storing Data as XML in the Database
Storing data as XML in the database provides these advantages: storage
independence, ease of presentation, and ease of interchange.

• Storage independence: When you use relational design, your client programs
must know where your data is stored, in what format, what table, and what the
relationships are among those tables. XMLType enables you to write applications
without that knowledge and lets database administrators map structured data to
physical table and column storage.

See Also:

Access to Oracle XML DB Repository Data

• Ease of presentation: XML is understood natively by Web browsers, many popular
desktop applications, and most Internet applications. Relational data is generally
not accessible directly from applications. Additional programming is required to
make relational data accessible to standard clients. Oracle XML DB stores data as
XML and makes it available as XML outside the database. No extra programming
is required to display database content.

See Also:

– Transformation and Validation of XMLType Data.

– Generation of XML Data from Relational Data.

– XMLType Views.

• Ease of interchange – XML is the language of choice in business-to-business
(B2B) data exchange. If you are forced to store XML in an arbitrary table structure,
you are using some kind of proprietary translation. Whenever you translate a
language, information is lost and interchange suffers. By natively understanding
XML and providing DOM fidelity in the storage/retrieval process, Oracle XML DB
enables a clean interchange.

Chapter 1
Oracle XML DB Benefits

1-7



See Also:

– Transformation and Validation of XMLType Data

– XMLType Views

1.2.2 Data Duality: XML and Relational
Oracle XML DB presents a symmetric, dual view of data: as XML and as relational.

A key feature of Oracle XML DB is that it lets you work with XML data as if it were
relational data and relational data as if it were XML data. You can leverage the
power of the relational model when working with XML content, and you can leverage
the flexibility of XML when working with relational content. You can use the most
appropriate tools for different aspects of a particular business problem.

This duality means that the same data can be exposed as rows in a table and
manipulated using SQL or exposed as nodes in an XML document and manipulated
using XQuery, the DOM, or XSL transformation. Access and processing techniques
are independent of the underlying storage method.

These features can provide simple solutions to common business problems:

• You can generate XML data directly from a SQL query. You can transform the
XML data into other formats, such as HTML, using the database-resident XSLT
processor.

• You can access XML content without converting between different data
formats, using SQL queries, on-line analytical processing (OLAP), and business-
intelligence/data warehousing operations.

• You can perform text and spatial data operations on XML content.

• Use XMLType Views If Your Data Is Not XML
XMLType views provide a way for you to wrap existing relational or object-relational
data in XML format.

1.2.2.1 Use XMLType Views If Your Data Is Not XML
XMLType views provide a way for you to wrap existing relational or object-relational
data in XML format.

This can be especially useful if your legacy data is not in XML format but you must
migrate it to XML format. Using XMLType views, you need not alter your application
code or the stored data.

To use XMLType views, you must first register an XML schema with annotations that
represent a bidirectional mapping between XML Schema data types and either SQL
data types or binary XML encoding types. You can then create an XMLType view
conforming to this mapping, by providing an underlying query that constructs instances
of the appropriate types.

Related Topics

• XMLType Views
You can create XMLType views over relational and object-relational data.

Chapter 1
Oracle XML DB Benefits

1-8



1.2.3 Efficient Storage and Retrieval of Complex XML Documents
Oracle XML DB provides high performance and scalability for XML operations, letting
you manage the storage and retrieval of complex, large, or many XML documents.

These are the major performance features of Oracle XML DB:

• Native XMLType. Abstract data type XMLType has two storage models, each
optimized to work efficiently for a particular set of use cases. See Query and
Update of XML Data and Choice of XMLType Storage and Indexing

• Optimized processing of XQuery, XPath, and XSLT. See Performance Tuning for
XQuery and Transformation and Validation of XMLType Data.

• Indexing XML data for structured or full-text search. See Indexes for XMLType
Data.

• A lazily evaluated virtual DOM. See PL/SQL DOM API for XMLType
(DBMS_XMLDOM).

• A hierarchical index over Oracle XML DB Repository. See Performance Guidelines
for Oracle XML DB Repository Operations.

• Parallelism and Oracle Exadata Smart Scan. Query and update of XML data can
be carried out in parallel. Oracle Exadata Smart Scan is enabled automatically for
XML data.

1.3 Oracle XML DB Architecture
Oracle XML DB gives you protocol and programmatic access to XML data in the form
of local and remote XMLType tables and views. It provides a WebDAV repository with
resource versioning and access control.

Figure 1-3 shows the software architecture of Oracle XML DB. The main features are:

• Storage of XMLType tables and views.

– You can index XMLType tables and views using XMLIndex, B-tree, and Oracle
Text indexes.

– You can store data that is in XMLType views in local or remote tables. You can
access remote tables using database links.

• Support for XQuery, including XQuery Update and XQuery Full Text.

• Oracle XML DB Repository. You can store any kind of documents in the repository,
including XML documents that are associated with an XML schema that is
registered with Oracle XML DB. You can access documents in the repository in
any of the following ways:

– HTTP(S), through the HTTP protocol handler

– WebDAV and FTP, through the WebDAV and FTP protocol handlers

– SQL, through Oracle Net Services, including Java Database Connectivity
(JDBC)

Chapter 1
Oracle XML DB Architecture

1-9



Figure 1-3    XMLType Storage

Oracle 
Database

Direct
HTTP

Access

HTTP
Protocol
Handler

Oracle
Net

Access

XQuery
and SQL
Engine

JDBC

WebDAV Access
and 

FTP Access

DAV, FTP
Protocol
Handlers

Local
Tables DBLinks

Remote
Tables

Accessed
via DBLinks

Indexes:
• XMLIndex
• B-Tree
• XML Full 
 Text

XML Schemas

XMLType
Tables

XMLType
Views

Repository

Hierarchical
Index

Oracle XML DB

Binary XML
Storage

 Object-Relational
Storage

1.4 Oracle XML DB Features
Oracle XML DB provides standard database features such as transaction control, data
integrity, replication, reliability, availability, security, and scalability, while also allowing
for efficient indexing, querying, updating, and searching of XML documents in an
XML-centric manner.

The hierarchical nature of XML presents a traditional relational database with some
challenges:

Chapter 1
Oracle XML DB Features

1-10



• In a relational database, the table-row metaphor locates content. Primary-Key
Foreign-Key relationships help define the relationships between content. Content
is accessed and updated using the table-row-column metaphor.

• XML, on the other hand, uses hierarchical techniques to achieve the same
functionality. A URL is used to locate an XML document. URL-based standards
such as XLink are used to define relationships between XML documents. W3C
Recommendations such as XPath are used to access and update content
contained within XML documents. Both URLs and XPath expressions are based
on hierarchical metaphors. A URL uses a path through a folder hierarchy to
identify a document, whereas XPath uses a path through the node hierarchy of
an XML document to access part of an XML document.

Oracle XML DB addresses these challenges by introducing SQL functions and
methods that allow the use of XML-centric metaphors, such as XQuery and XPath
expressions for querying and updating XML Documents.

• XMLType Data Type
Using XMLType, XML developers can leverage the power of XML standards while
working in the context of a relational database, and SQL developers can leverage
the power of a relational database while working with XML data.

• XMLType Storage Models
XMLType is an abstract data type that provides different storage models to best
fit your data and your use of it. As an abstract data type, your applications and
database queries gain in flexibility: the same interface is available for all XMLType
operations.

• XML Schema Support in Oracle XML DB
Support for the World Wide Web Consortium (W3C) XML Schema
Recommendation is a key feature in Oracle XML DB.

• DTD Support in Oracle XML DB
An XML schema is in general a much more powerful way to define XML document
structure than is a DTD. You can nevertheless use DTDs to some extent with
Oracle XML DB.

• Static Data Dictionary Views Related to XML
Several static data dictionary views are related to XML.

• SQL/XML Standard Functions
Oracle XML DB provides the SQL functions that are defined in the SQL/XML
standard.

• Programmatic Access to Oracle XML DB (Java, PL/SQL, and C)
All Oracle XML DB functionality is accessible from C, PL/SQL, and Java.

• Oracle XML DB Repository: Overview
Oracle XML DB Repository is a component of Oracle Database that lets you
handle XML data using a file/folder/URL metaphor.

1.4.1 XMLType Data Type
Using XMLType, XML developers can leverage the power of XML standards while
working in the context of a relational database, and SQL developers can leverage the
power of a relational database while working with XML data.

XMLType is an abstract native SQL data type for XML data. It provides PL/SQL and
Java constructors for creating an XMLType instance from a VARCHAR2, CLOB, BLOB, or
BFILE instance. And it provides PL/SQL methods for various XML operations.

Chapter 1
Oracle XML DB Features

1-11



You can use XMLType as you would any other SQL data type. For example, you can
create an XMLType table or view, or an XMLType column in a relational table.

You can use XMLType in PL/SQL stored procedures for parameters, return values, and
variables.

You can also manipulate XMLType data using application programming interfaces
(APIs) for the Java and C languages, including Java Database Connectivity (JDBC),
XQuery for Java (XQJ), and Oracle Data Provider for .NET (ODP.NET).

XMLType is an Oracle Database object type, so you can also create a table of XMLType
object instances. By default, an XMLType table or column can contain any well-formed
XML document.

You can constrain XMLType tables or columns to conform to an XML schema, in which
case the database ensures that only XML data that validates against the XML schema
is stored in the column or table. invalid documents are excluded.

See Also:

• Oracle Database Object-Relational Developer's Guide for information
about Oracle Database object types and object-relational storage

• Oracle XML Developer's Kit Programmer's Guide for information about
using XQJ

• Oracle Database PL/SQL Packages and Types Reference for
information about XMLType constructors and methods

1.4.2 XMLType Storage Models
XMLType is an abstract data type that provides different storage models to best fit your
data and your use of it. As an abstract data type, your applications and database
queries gain in flexibility: the same interface is available for all XMLType operations.

XMLType tables and columns can be stored in these ways:

• Binary XML storage (the default) – XMLType data is stored in a post-parse,
binary format designed specifically for XML data. Binary XML is compact, post-
parse, XML schema-aware XML data. This is also referred to as post-parse
persistence.

• Object-relational storage – XMLType data is stored as a set of objects. This is also
referred to as structured storage and object-based persistence.

Note:

Starting with Oracle Database 12c Release 1 (12.1.0.1), the unstructured
(CLOB) storage model for XMLType is deprecated. Use binary XML storage
instead.

Chapter 1
Oracle XML DB Features

1-12



With the use of appropriate indexes, binary XML storage offers good performance
for most use cases. However, some advanced use cases can benefit from using
object-relational storage.

You can change XMLType storage from one model to another using database import/
export. Your application code need not change. You can change XML storage options
when tuning your application.

For binary XML storage, SecureFiles is the default storage option.1 However, if either
of the following is true then it is not possible to use SecureFiles LOB storage. In that
case, BasicFiles is the default option for binary XML data:

• The tablespace for the XMLType table does not use automatic segment space
management.

• A setting in file init.ora prevents SecureFiles LOB storage. For example, see
parameter DB_SECUREFILE.

Related Topics

• Choice of XMLType Storage and Indexing
Important design choices for your application include what XMLType storage model
to use and which indexing approaches to use.

• Export and Import of Oracle XML DB Data
You can use Oracle Data Pump to export and import XMLType tables for use with
Oracle XML DB.

See Also:

• Oracle Database SQL Language Reference, section "CREATE TABLE",
clause "LOB_storage_clause"

• Oracle Database SecureFiles and Large Objects Developer's Guide for
information about LOB storage options SecureFiles and BasicFiles

• Oracle Database Administrator’s Guide for information about automatic
segment space management

• Oracle Database Reference for information about parameter
DB_SECUREFILE

1.4.3 XML Schema Support in Oracle XML DB
Support for the World Wide Web Consortium (W3C) XML Schema Recommendation is
a key feature in Oracle XML DB.

XML Schema specifies the structure, content, and certain semantics of XML
documents. It is described in detail at http://www.w3.org/TR/soap12-part0/.

The W3C Schema Working Group publishes a particular XML schema, often referred
to as the schema for schemas, that provides the definition, or vocabulary, of the XML

1 Prior to Oracle Database 11g Release 2 (11.2.0.2) the BasicFiles option was the default for binary XML storage.
Use of the BasicFiles option for binary XML data is deprecated.

Chapter 1
Oracle XML DB Features

1-13



Schema language. An XML schema definition (XSD2), also called an XML schema,
is an XML document that is compliant with the vocabulary defined by the schema for
schemas.

An XML schema uses vocabulary defined by the schema for schemas to create a
collection of XML Schema type definitions and element declarations that comprise
a vocabulary for describing the contents and structure of a new class of XML
documents, the XML instance documents that conform to that XML schema.

Note:

This manual uses the term "XML schema" (lower-case "s") to reference
any XML schema that conforms to the W3C XML Schema (upper-case "S")
Recommendation. Since an XML schema is used to define a class of XML
documents, the term "instance document" is often used to describe an XML
document that conforms to a particular XML schema.

The XML Schema language provides strong typing of elements and attributes. It
defines numerous scalar data types. This base set of data types can be extended
to define more complex types, using object-oriented techniques such as inheritance
and extension. The XML Schema vocabulary also includes constructs that you can
use to define complex types, substitution groups, repeating sets, nesting, ordering,
and so on. Oracle XML DB supports all of the constructs defined by the XML Schema
Recommendation, except for redefines.

XML schemas are commonly used as a mechanism for checking (validating) whether
XML instance documents conform with their specifications. Oracle XML DB includes
XMLType methods and SQL functions that you can use to validate XML documents
against an XML schema.

In Oracle XML DB, you can use a standard data model for all of your data, regardless
of how structured it is. You can use XML Schema to automatically create database
tables for storing your XML data. XML schema-based data maintains DOM fidelity and
allows for significant database optimizations.

XML schema-based data can be stored using either Oracle XML DB XMLType storage
model: binary XML storage or object-relational storage. Non-schema-based XML data
can be stored only using binary XML storage.

You can also wrap existing relational and object-relational data as XMLType views,
which can optionally be XML schema-based. You can map from incoming XML
documents to XMLType storage, specifying the mapping using a registered XML
schema.

Related Topics

• Choice of XMLType Storage and Indexing
Important design choices for your application include what XMLType storage model
to use and which indexing approaches to use.

2 xsd is the prefix used in the schema of schemas for the XML Schema namespace, hence it is also the
namespace prefix used for the XML Schema data types, such as xsd:string. xsd is also used often as the file
extension of XML schema files.

Chapter 1
Oracle XML DB Features

1-14



• XML Schema Storage and Query: Basic
XML Schema is a standard for describing the content and structure of XML
documents. You can register, update, and delete an XML schema used with
Oracle XML DB. You can define storage structures to use for your XML schema-
based data and map XML Schema data types to SQL data types.

1.4.4 DTD Support in Oracle XML DB
An XML schema is in general a much more powerful way to define XML document
structure than is a DTD. You can nevertheless use DTDs to some extent with Oracle
XML DB.

Like an XML schema, A DTD is a set of rules that define the allowable structure of
an XML document. DTDs are text files that derive their format from SGML. They can
be associated with an XML document by using DTD element DOCTYPE or by using an
external file through a DOCTYPE reference.

Oracle XML DB uses XML Schema, not DTDs, to define structured mappings to
XMLType storage, but XML processors can still access and interpret your DTDs.

Note:

You can use a DTD to obtain the XML entities defined in it. The entities are
the only information used from the DTD. The structural and type information
in the DTD is not used by Oracle XML DB.

Inline DTD Definitions

When an XML instance document has an inline DTD definition, that definition is used
during document parsing. Any DTD validations and entity declaration handling are
done at this point. However, once parsed, the entity references are replaced with
actual values and the original entity reference is lost.

External DTD Definitions

Oracle XML DB supports external DTD definitions if they are stored in Oracle
XML DB Repository. Applications needing to process an XML document containing
an external DTD definition such as /public/flights.dtd must first ensure that the
DTD document is stored in Oracle XML DB at path /public/flights.dtd.

Related Topics

• Access to Oracle XML DB Repository Data
There are several ways to access and manipulate data in Oracle XML DB
Repository, including using standard protocols such as FTP and HTTP(S)/
WebDAV; Oracle XML DB resource Application Program Interfaces (APIs); and
the repository views RESOURCE_VIEW and PATH_VIEW.

Chapter 1
Oracle XML DB Features

1-15



1.4.5 Static Data Dictionary Views Related to XML
Several static data dictionary views are related to XML.

Table 1-1 lists these views. Information about a given view can be obtained by using
SQL command DESCRIBE:

DESCRIBE USER_XML_SCHEMAS

Table 1-1    Static Data Dictionary Views Related to XML

Schema Description

USER_XML_SCHEMAS Registered XML schemas owned by the current user

ALL_XML_SCHEMAS Registered XML schemas usable by the current user

DBA_XML_SCHEMAS Registered XML schemas in Oracle XML DB

USER_XML_TABLES XMLType tables owned by the current user

ALL_XML_TABLES XMLType tables usable by the current user

DBA_XML_TABLES XMLType tables in Oracle XML DB

USER_XML_TAB_COL
S

XMLType table columns owned by the current user

ALL_XML_TAB_COLS XMLType table columns usable by the current user

DBA_XML_TAB_COLS XMLType table columns in Oracle XML DB

USER_XML_VIEWS XMLType views owned by the current user

ALL_XML_VIEWS XMLType views usable by the current user

DBA_XML_VIEWS XMLType views in Oracle XML DB

USER_XML_VIEW_CO
LS

XMLType view columns owned by the current user

ALL_XML_VIEW_COL
S

XMLType view columns usable by the current user

DBA_XML_VIEW_COL
S

XMLType view columns in Oracle XML DB

In addition to the views ALL_XML_TABLES, DBA_XML_TABLES, and USER_XML_TABLES,
views ALL_OBJECT_TABLES, DBA_OBJECT_TABLES, and USER_OBJECT_TABLES provide
tablespace and other storage information for XMLType data stored object-relationally.

See Also:

• Oracle Database Reference

• Oracle Database PL/SQL Packages and Types Reference

Chapter 1
Oracle XML DB Features

1-16



1.4.6 SQL/XML Standard Functions
Oracle XML DB provides the SQL functions that are defined in the SQL/XML standard.

SQL/XML functions fall into two groups:

• Functions that you can use to generate XML data from the result of a SQL query.
In this book, these are called SQL/XML publishing functions. They are also
sometimes called SQL/XML generation functions.

• Functions that you can use to query and update XML content as part of normal
SQL operations. In this book, these are called SQL/XML query and update
functions.

Using SQL/XML functions you can address XML content in any part of a SQL
statement. These functions use XQuery or XPath expressions to traverse the XML
structure and identify the nodes on which to operate. The ability to embed XQuery and
XPath expressions in SQL statements greatly simplifies XML access.

See Also:

Oracle Database SQL Language Reference for information about Oracle
support for the SQL/XML standard

1.4.7 Programmatic Access to Oracle XML DB (Java, PL/SQL, and C)
All Oracle XML DB functionality is accessible from C, PL/SQL, and Java.

You can build Web-based applications that take advantage of Oracle XML DB in
various ways, including these:

• Using servlets and Java Server Pages (JSP). A typical API accesses data using
Java Database Connectivity (JDBC).

• Using Extensible Stylesheet Language (XSL) plus XML Server Pages (XSP). A
typical API accesses data in the form of XML documents that are processed using
a Document Object Model (DOM) API implementation.

Oracle XML DB supports such styles of application development. It provides Java,
PL/SQL, and C implementations of the DOM API. Applications that use JDBC, such
as those based on servlets, need prior knowledge of the data structure they are
processing. Oracle JDBC drivers allow you to access and update XMLType tables
and columns, and call PL/SQL procedures that access Oracle XML DB Repository.
Applications that use DOM, such as those based on XSLT transformations, typically
require less knowledge of the data structure. DOM-based applications use string
names to identify pieces of content, and must dynamically walk through the DOM tree
to find the required information. For this, Oracle XML DB supports the use of the DOM
API to access and update XMLType columns and tables. Programming to a DOM API
is more flexible than programming through JDBC, but it may require more resources at
run time.

Chapter 1
Oracle XML DB Features

1-17



1.4.8 Oracle XML DB Repository: Overview
Oracle XML DB Repository is a component of Oracle Database that lets you handle
XML data using a file/folder/URL metaphor.

Oracle XML DB Repository contains resources, which can be either folders
(directories, containers) or files.

A resource, whether folder or file, has these properties:

• It is identified by a path and name.

• It has content (data), which can be XML data but need not be.

• It has a set of system-defined metadata (properties), such as Owner and
CreationDate, in addition to its content. Oracle XML DB uses this information
to manage the resource.

• It might also have user-defined metadata. Like system-defined metadata, this is
information that is not part of the content, but is associated with it.

• It has an associated access control list that determines who can access the
resource, and for what operations.

Although Oracle XML DB Repository treats XML content specially, you can use the
repository to store other kinds of data besides XML. You can use the repository to
access any data that is stored in Oracle Database.

You can access data in the repository in the following ways:

• SQL – Using views RESOURCE_VIEW and PATH_VIEW

• Standard protocols – FTP, HTTP(S), and WebDAV

• PL/SQL – Using PL/SQL package DBMS_XDB_REPOS

• Java – Using the Oracle XML DB resource API for Java

Besides providing APIs for accessing and manipulating repository data, Oracle
XML DB provides APIs for the following repository services, which are based on IETF
WebDAV:

• Versioning – Using PL/SQL package DBMS_XDB_VERSION

• ACL Security – Using access control lists (ACLs)

• Foldering – Using repository path names

Figure 1-4 illustrates the architecture of Oracle XML DB Repository.

Chapter 1
Oracle XML DB Features

1-18



Figure 1-4    Oracle XML DB Repository Architecture

Table

Name ACL Property 1 Property N Property N

RESOURCE_VIEW (XMLType)

Name ACL Property 1 Property N Extra Content Parent

abc

LOB

XMLType
Rows

Tables or
Views
of XML

Application Logical View of 
Oracle XML DB Repository

Path

Database View of Oracle XML DB Repository 

XML
Search
Index

XMLIndex
Index

B-Tree
Index

Hierarchical
Index

Oracle Database

WebDAV

FTP

Related Topics

• Oracle XML DB Repository
Oracle XML DB Repository lets you version your data, implement and manage
security, and use APIs to access and manipulate repository resources.

1.5 Standards Supported by Oracle XML DB
Oracle XML DB supports all major XML, SQL, Java, and Internet standards.

These include the following:

• W3C XML Schema 1.0 Recommendation. You can register XML schemas,
validate stored XML content against XML schemas, or constrain XML stored in
the server to XML schemas.

• W3C XQuery 1.0 Recommendation and W3C XPath 2.0 Recommendation. You
can search or traverse XML stored inside the database using XQuery and XPath,
either from HTTP(S) requests or from SQL.

• ANSI/ISO/IEC 9075-14:2011, Information technology—Database languages—SQL
—Part 14: XML-Related Specifications (SQL/XML).

Chapter 1
Standards Supported by Oracle XML DB

1-19



• W3C DOM Recommendation Levels 1.0 and 2.0 Core. You can retrieve XML
stored in the server as an XML DOM, for dynamic access.

• Java Database Connectivity (JDBC) API. Provides Java access to XML data.

• XQuery API for Java (XQJ). Provides Java access to XML data using XQuery.

• W3C XSL 1.0 Recommendation. You can transform XML documents at the server
using XSLT.

• Protocol support. You can store or retrieve XML data from Oracle XML DB using
Oracle Net or standard protocols such as HTTP(S), FTP, and IETF WebDAV.

• Java Servlet version 2.2, (except: the servlet WAR file, web.xml, is not supported
in its entirety; only one ServletContext; one web-app are currently supported; and
stateful servlets are not supported).

• Web services: SOAP 1.1. You can access XML stored in the server from SOAP
requests. You can build, publish, or find Web Services using Oracle XML DB and
Oracle Fusion Middleware, using WSDL and UDDI. You can use Oracle Database
Advanced Queuing IDAP, the SOAP specification for queuing operations, on XML
stored in Oracle Database.

• W3C XML Linking Language (Xlink) 1.0 Recommendation. You can define various
types of links between XML documents.

• W3C XML Pointer Language (XPointer) Recommendation and XPointer
Framework. You can include the content of multiple XML documents or fragments
in a single infoset.

See Also:

• SQL/XML Standard Functions for more information about the SQL/XML
functions

• Oracle XML Developer's Kit Programmer's Guide for information about
using XQJ

• Oracle Database SQL Language Reference for information about Oracle
support for the SQL/XML standard

• Use of XLink and XInclude with Oracle XML DB for more information
about XLink and XPointer support

• Repository Access Using Protocols for more information about protocol
support

• Guidelines for Oracle XML DB Applications in Java for information about
using the Java servlet

• XML Data Exchange Using Oracle Database Advanced Queuing and
Oracle Database Advanced Queuing User's Guide for information about
using SOAP

Chapter 1
Standards Supported by Oracle XML DB

1-20



1.6 Oracle XML DB Technical Support
Besides the regular channels of support through your customer representative or
consultant, technical support for Oracle Database XML-enabled technologies is
available free through Oracle Technology Network (OTN).

1.7 Oracle XML DB Examples
The examples that illustrate the use of Oracle XML DB and XMLType are based on
various database schemas, sample XML documents, and sample XML schemas.

Related Topics

• Oracle-Supplied XML Schemas and Examples
Full listings are provided here for the Oracle XML DB-supplied XML schemas,
purchase-order XML schemas and an XSLT stylesheet used in various examples,
and C-language (OCI) examples for loading XML content into Oracle XML DB and
initializing and terminating an XML context.

1.8 Oracle XML DB Case Studies and Demonstrations on
OTN

Visit Oracle Technology Network (OTN) to view Oracle XML DB examples, white
papers, case studies, and demonstrations.

Oracle XML DB is presented on OTN at Oracle XML DB on OTN.

Comprehensive XML classes on how to use Oracle XML DB are also available. See
the Oracle University link on OTN.

Detailed Oracle XML DB case studies available on OTN include the following:

• Oracle XML DB Downloadable Demonstration. This detailed demonstration
illustrates how to use many Oracle XML DB features. Parts of this demonstration
are also included in Overview of How To Use Oracle XML DB.

• SAX Loader Application. This demonstrates an efficient way to break up large files
containing multiple XML documents outside the database and insert them into the
database as a set of separate documents. This is provided as a standalone and a
Web-based application.

Chapter 1
Oracle XML DB Technical Support

1-21



2
Getting Started with Oracle XML DB

Some preliminary design criteria are presented for consideration when planning your
Oracle XML DB solution.

• Oracle XML DB Installation
Oracle XML DB is installed automatically if Database Configuration Assistant
(DBCA) is used to build Oracle Database using the general-purpose template.

• Oracle XML DB Use Cases
Oracle XML DB is suited for any application where some or all of the data
processed is represented using XML.

• Application Design Considerations for Oracle XML DB
When planning an Oracle XML DB application it can be worthwhile to consider
some preliminary design criteria.

2.1 Oracle XML DB Installation
Oracle XML DB is installed automatically if Database Configuration Assistant (DBCA)
is used to build Oracle Database using the general-purpose template.

You can determine whether or not Oracle XML DB is already installed. If it is installed,
then the following are true:

• Database schema (user account) XDB exists. To check that, run this query:

SELECT * FROM ALL_USERS;

• View RESOURCE_VIEW exists. To check that, use this command:

DESCRIBE RESOURCE_VIEW

See Also:

• Administration of Oracle XML DB for information about installing Oracle
XML DB manually

• Oracle Database Security Guide

2.2 Oracle XML DB Use Cases
Oracle XML DB is suited for any application where some or all of the data processed is
represented using XML.

2-1



Oracle XML DB provides for high-performance database ingestion, storage,
processing and retrieval of XML data. It also lets you quickly and easily generate
XML from existing relational data. Applications for which Oracle XML DB is particularly
suited include the following:

• Business-to-business (B2B) and application-to-application (A2A) integration

• Internet

• Content-management

• Messaging

• Web Services

A typical Oracle XML DB application has at least one of the following characteristics:

• Large numbers of XML documents must be ingested or generated

• Large XML documents must be processed or generated

• High-performance searching is needed, both within a document and across large
collections of documents

• High levels of security are needed

• Fine-grained security is needed

• Data processing must use XML documents, and data must be stored in relational
tables

• Programming must support open standards such as SQL, XML, XQuery, XPath,
and XSL

• Information must be accessed using standard Internet protocols such as FTP,
HTTP(S)/WebDAV, and Java Database Connectivity (JDBC)

• XML data must be queried from SQL

• Analytic capabilities must be applied to XML data

• XML documents must be validated against an XML schema

2.3 Application Design Considerations for Oracle XML DB
When planning an Oracle XML DB application it can be worthwhile to consider some
preliminary design criteria.

These include the following:

• The ways that you intend to store your XML data

• The structure of your XML data

• The languages used to implement your application

• The ways you intend to process your XML data

However, in general Oracle recommends that you start with the following Oracle
XML DB features. For most use cases they are all that you need to consider.

• Storage model – binary XML

• Indexing – XML search index, XMLIndex with structured component

• Database language – SQL, with SQL/XML functions

Chapter 2
Application Design Considerations for Oracle XML DB

2-2



• XML languages – XQuery and XSLT

• Client APIs – OCI, thin JDBC, SQL .NET

• XML Data Storage
There are several ways to store XML data in Oracle Database.

• The Structure of Your XML Data
How structured your XML data is, and whether it is based on an XML schema, can
influence how you store it.

• Languages Used to Implement Your Application
You can program your Oracle XML DB applications in Java (JDBC, Java Servlets)
or PL/SQL.

• XML Processing Options
Oracle XML DB offers a full range of XML processing options.

• Oracle XML DB Repository Access
Design considerations for applications that use Oracle XML DB Repository include
access method, security needs, and whether you need versioning.

• Oracle XML DB Cooperates with Other Database Options and Features
Oracle XML DB is an integrated part of Oracle Database, and works well with
other database options and features.

Related Topics

• Choice of XMLType Storage and Indexing
Important design choices for your application include what XMLType storage model
to use and which indexing approaches to use.

• SQL/XML Standard Functions
Oracle XML DB provides the SQL functions that are defined in the SQL/XML
standard.

• XQuery and Oracle XML DB
The XQuery language is one of the main ways that you interact with XML data
in Oracle XML DB. Support for the language includes SQL*Plus commandXQUERY
and SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast.

• Transformation and Validation of XMLType Data
There are several Oracle SQL functions and XMLType APIs for transforming
XMLType data using XSLT stylesheets and for validating XMLType instances against
an XML schema.

• C DOM API for XMLType
The C DOM API for XMLType lets you operate on XMLType instances using a DOM
in C.

• Java DOM API for XMLType
The Java DOM API for XMLType lets you operate on XMLType instances using a
DOM. You can use it to manipulate XML data in Java, including fetching it through
Java Database Connectivity (JDBC).

• Oracle XML DB and Oracle Data Provider for .NET
Oracle Data Provider for Microsoft .NET (ODP.NET) is an implementation of a data
provider for Oracle Database. It uses Oracle native APIs to offer fast and reliable
access to Oracle data and features from any .NET application.

Chapter 2
Application Design Considerations for Oracle XML DB

2-3



2.3.1 XML Data Storage
There are several ways to store XML data in Oracle Database.

Storage of XMLType tables and views is outlined in Figure 2-1.

Figure 2-1    Oracle XML DB Storage Options for XML Data

XMLType
Views

Oracle XML DB Data
Storage Options

Your Storage Option
Affects Performance

and Data Fidelity
If you have existing 
relational data use 
XMLType Views

Binary
XML

Storage

SQL / XML
Operators

Relational
Tables

Object
Types

XMLType
Tables and
Columns

Can define the
views using:

Object-Relational
Storage

Object
Tables

Object
Views

Object
Constructors

Relational
Tables

If you have existing relational data, you can access it as XML data by creating XMLType
views over it. You can use the following to define the XMLType views:

• SQL/XML functions. See Generation of XML Data from Relational Data and
XQuery and Oracle XML DB.

• Object types: object tables, object constructors, and object views.

Regardless of which storage options you choose for your application, Oracle XML DB
provides the same functionality. Though the storage model you use can affect
your application performance and XML data fidelity, it is totally independent of how
frequently you query or update your data and what APIs your application uses.

Related Topics

• XMLType Storage Models
XMLType is an abstract data type that provides different storage models to best
fit your data and your use of it. As an abstract data type, your applications and
database queries gain in flexibility: the same interface is available for all XMLType
operations.

Chapter 2
Application Design Considerations for Oracle XML DB

2-4



2.3.2 The Structure of Your XML Data
How structured your XML data is, and whether it is based on an XML schema, can
influence how you store it.

If your XML data is not XML Schema-based, then, regardless of how structured it is,
you can store it in an XMLType table or view as binary XML, or you can store it as a file
in an Oracle XML DB Repository folder. You cannot store it object-relationally.

If your XML data is XML Schema-based then you must store it as binary XML or
object-relationally.

Related Topics

• Choice of XMLType Storage and Indexing
Important design choices for your application include what XMLType storage model
to use and which indexing approaches to use.

2.3.3 Languages Used to Implement Your Application
You can program your Oracle XML DB applications in Java (JDBC, Java Servlets) or
PL/SQL.

Related Topics

• Java DOM API for XMLType
The Java DOM API for XMLType lets you operate on XMLType instances using a
DOM. You can use it to manipulate XML data in Java, including fetching it through
Java Database Connectivity (JDBC).

• Guidelines for Oracle XML DB Applications in Java
Design guidelines are presented for writing Oracle XML DB applications in Java.
This includes guidelines for writing and configuring Java servlets for Oracle
XML DB.

• PL/SQL APIs for XMLType
There are several PL/SQL packages that provide APIs for XMLType.

• PL/SQL Access to Oracle XML DB Repository
PL/SQL packages DBMS_XDB_CONFIG and DBMS_XDB_REPOS together provide the
Oracle XML DB resource application program interface (API) for PL/SQL. You use
the former to configure Oracle XML DB and its repository. You use the latter to
perform other, non-configuration operations on the repository.

2.3.4 XML Processing Options
Oracle XML DB offers a full range of XML processing options.

The following are available and should be considered when designing your Oracle
XML DB application:

• XML Generation and XMLType views. Whether you need to generate (or
regenerate) XML data. See Generation of XML Data from Relational Data.

• Whether your application is data-centric or document-centric, or both. See
Overview of How To Use Oracle XML DB.

Chapter 2
Application Design Considerations for Oracle XML DB

2-5



• DOM fidelity, document fidelity. XMLType storage, whether object-relational or
binary XML, preserves DOM fidelity. That is, A DOM created from an XML
document stored as XMLType is identical to a DOM created from the original
document. However, there could be differences in insignificant whitespace. See
DOM Fidelity, SYS_XDBPD$ and DOM Fidelity for Object-Relational Storage, and
PL/SQL APIs for XMLType.

If you need to preserve document fidelity (insignificant whitespace) in addition to
DOM fidelity, then store two copies of your original document: one as an XMLType
instance for database use and XML processing, the other as a CLOB instance to
provide document fidelity.

• XPath searching. You can use XPath syntax embedded in a SQL statement
to query XML content in the database. See Query and Update of XML Data,
Access to Oracle XML DB Repository Data, and Repository Access Using
RESOURCE_VIEW and PATH_VIEW.

• How often XML documents are accessed, updated, and manipulated. See Query
and Update of XML Data.

• Whether you need to update fragments or whole documents. You can use XPath
expressions to specify individual elements and attributes of your document during
updates, without rewriting the entire document. This is more efficient, especially for
large XML documents. See Updating XML Data.

• Which kinds of indexing best suit your application and data. See Indexes for
XMLType Data.

• XSLT. Whether you need to transform the XML data to HTML, WML, or other
languages, and, if so, how your application does this. While storing XML
documents in Oracle XML DB, you can optionally ensure that their structure
complies with (validates against) specific XML schemas. See Transformation and
Validation of XMLType Data.

2.3.5 Oracle XML DB Repository Access
Design considerations for applications that use Oracle XML DB Repository include
access method, security needs, and whether you need versioning.

There are two main repository access methods:

• Navigation-based access or path-based access. This is suitable for both content/
document and data oriented applications. Oracle XML DB provides the following
languages and access APIs:

– SQL access through resource and path views. See Repository Access Using
RESOURCE_VIEW and PATH_VIEW.

– PL/SQL access using package DBMS_XDB or packages DBMS_XDB_ADMIN,
DBMS_XDB_CONFIG and DBMS_XDB_REPOS. See PL/SQL Access to Oracle
XML DB Repository .

– Protocol-based access using HTTP(S)/WebDAV or FTP, most suited to
content-oriented applications. See Repository Access Using Protocols.

• Query-based access. This can be most suited to data oriented applications. Oracle
XML DB provides access using SQL queries through the following APIs:

– Java access (through JDBC). See Java DOM API for XMLType.

– PL/SQL access. See PL/SQL APIs for XMLType.

Chapter 2
Application Design Considerations for Oracle XML DB

2-6



These options for accessing repository data are also discussed in Access to Oracle
XML DB Repository Data.

You can also consider the following access criteria:

• What levels of security you need. See Repository Access Control.

• Whether you need to version the data. See Resource Versions.

2.3.6 Oracle XML DB Cooperates with Other Database Options and
Features

Oracle XML DB is an integrated part of Oracle Database, and works well with other
database options and features.

• Oracle Database Advanced Queuing (AQ) – merge XML payloads. See XML
Data Exchange Using Oracle Database Advanced Queuing and Oracle Database
Advanced Queuing User's Guide

• Oracle GoldenGate and Oracle Active Data Guard – replicate and safeguard XML
data, or perform a rolling upgrade. See Oracle GoldenGate and Oracle Data
Guard Concepts and Administration

• Oracle Exadata Storage Server Software – high-performance, scalable, and highly
available use of XML data. See Oracle Exadata Storage Server Software User's
Guide.

• Oracle Real Application Clusters (Oracle RAC) – Use XML data with clusters
of database instances. See Oracle Real Application Clusters Administration and
Deployment Guide

• Oracle Multitenant option – Use XML data with a multitenant architecture, where
each pluggable database has its own Oracle XML DB Repository. See Oracle
Multitenant Administrator's Guide

• Compression and Encryption – You can compress or encrypt binary XML data that
uses SecureFiles LOB storage. For XML data stored object-relationally, you can
compress or encrypt XML elements and attributes individually.

• Parallel Execution – Execution of the following operations can be carried out in
parallel:

– A query of XMLType data

– DML for XMLType data stored as binary XML using SecureFiles LOBs

– A direct load for an XMLType table on which an Oracle Text CONTEXT index is
defined

See Also:

Oracle Database Concepts

Chapter 2
Application Design Considerations for Oracle XML DB

2-7



3
Overview of How To Use Oracle XML DB

An overview of the various ways of using Oracle XML DB is presented.

This overview illustrates how to do the following: create and partition XMLType tables
and columns; enforce data integrity, load, query, and update database XML content;
and generate XML data from relational data. It also explains how Oracle XML DB
determines which character sets are used for XML documents.

Purchase Order Documents Illustrate Key XML Schema Features

Many of the examples presented in this chapter illustrate techniques for accessing
and managing XML content in purchase-order documents. Purchase orders are highly
structured documents, but you can also use the techniques shown here to work with
XML documents that have little structure.

The purchase-order documents used for the examples here conform to a purchase-
order XML schema that demonstrates some key features of a typical XML document:

• Global element PurchaseOrder is an instance of the complexType
PurchaseOrderType

• PurchaseOrderType defines the set of nodes that make up a PurchaseOrder
element

• LineItems element consists of a collection of LineItem elements

• Each LineItem element consists of two elements: Description and Part

• Part element has attributes Id, Quantity, and UnitPrice

• Creating XMLType Tables and Columns
Creating a table or column of XMLType is straightforward because it is an abstract
data type.

• Creating Virtual Columns on XMLType Data Stored as Binary XML
You can create virtual columns only for XMLType data that is stored as binary XML.
Such columns are useful for partitioning or constraining the data.

• Partitioning Tables That Contain XMLType Data Stored as Binary XML
You can partition a table that contains XMLType data stored as binary XML.

• Enforcing XML Data Integrity Using the Database
You can combine the power of SQL and XML with the ability of the database to
enforce rules.

• Loading XML Content into Oracle XML DB
There are several ways to load XML content into Oracle XML DB.

• Querying XML Content Stored in Oracle XML DB
There are many ways to query XML content in Oracle XML DB and retrieve it.

• Updating XML Content Stored in Oracle XML DB
You can update XML content, replacing either the entire contents of a document or
only particular parts of a document.

3-1



• Generating XML Data from Relational Data
You can use Oracle XML DB to generate XML data from relational data.

• Character Sets of XML Documents
There are a few ways in which Oracle XML DB determines which character sets
are used for XML documents

See Also:

• Application Design Considerations for Oracle XML DB for recommended
Oracle XML DB features for most uses

• XMLType APIs, XML Schema and Object-Relational XMLType , and
Oracle XML DB Repository for information about more advanced Oracle
XML DB features

• Purchase-Order XML Schemas for the purchase-order XML schemas
used for examples in this chapter

3.1 Creating XMLType Tables and Columns
Creating a table or column of XMLType is straightforward because it is an abstract data
type.

The basic CREATE TABLE statement, specifying no storage options and no XML
schema, stores XMLType data as binary XML.1

Example 3-1 creates an XMLType column, and Example 3-2 creates an XMLType table.

Example 3-1    Creating a Table with an XMLType Column

CREATE TABLE mytable1 (key_column VARCHAR2(10) PRIMARY KEY,
                       xml_column XMLType);

Example 3-2    Creating a Table of XMLType

CREATE TABLE mytable2 OF XMLType;

Related Topics

• Creation of XMLType Tables and Columns Based on XML Schemas
You can create XMLType tables and columns that are constrained to a global
element defined by an XML schema. After an XMLType column has been
constrained to a particular element and a particular schema, it can only contain
documents that are compliant with the schema definition of that element.

1 The XMLType storage model for XML schema-based data is whatever was specified during registration of the
referenced XML schema. If no storage model was specified during registration, then object-relational storage is
used.

Chapter 3
Creating XMLType Tables and Columns

3-2



3.2 Creating Virtual Columns on XMLType Data Stored as
Binary XML

You can create virtual columns only for XMLType data that is stored as binary XML.
Such columns are useful for partitioning or constraining the data.

You create virtual columns for XML data the same way you create them for other
data types, but you use a slightly different syntax. (In particular, you cannot specify
constraints in association with the column definition.)

You create a virtual column based on an XML element or attribute by defining it in
terms of a SQL expression that involves that element or attribute. The column is thus
function-based.

You use SQL/XML functions XMLCast and XMLQuery to do this, as shown in
Example 3-3 and Example 3-4. The XQuery expression argument to function XMLQuery
must be a simple XPath expression that uses only the child and attribute axes.

Example 3-3 creates XMLType table po_binaryxml, stored as binary XML. It creates
virtual column date_col, which represents the XML data in attribute /PurchaseOrder/
@orderDate.

Example 3-4 creates relational table rel_tab, which has two columns: VARCHAR2
column key_col for the primary key, and XMLType column xml_col for the XML data.

Because XMLType is an abstract data type, if you create virtual columns on an XMLType
table or column then those columns are hidden. They do not show up in DESCRIBE
statements, for example. This hiding enables tools that use operations such as
DESCRIBE to function normally and not be misled by the virtual columns.

Note:

If you use a virtual column for interval partitioning then it must have data
type NUMBER or DATE, otherwise an error is raised. Use SQL/XML functions
XMLCast and XMLQuery to cast to the proper data type.

See Also:

Oracle Database SQL Language Reference for information about creating
tables with virtual columns

Example 3-3    Creating a Virtual Column for an XML Attribute in an XMLType
Table

CREATE TABLE po_binaryxml OF XMLType
  XMLTYPE STORE AS BINARY XML
  VIRTUAL COLUMNS
    (date_col AS (XMLCast(XMLQuery('/PurchaseOrder/@orderDate'

Chapter 3
Creating Virtual Columns on XMLType Data Stored as Binary XML

3-3



                                   PASSING OBJECT_VALUE RETURNING 
CONTENT)
                          AS DATE)));

Example 3-4    Creating a Virtual Column for an XML Attribute in an XMLType
Column

CREATE TABLE reltab (key_col VARCHAR2(10) PRIMARY KEY,
                     xml_col XMLType)
  XMLTYPE xml_col STORE AS BINARY XML
  VIRTUAL COLUMNS
    (date_col AS (XMLCast(XMLQuery('/PurchaseOrder/@orderDate'
                                   PASSING xml_col RETURNING CONTENT)
                          AS DATE)));

Related Topics

• Partitioning Tables That Contain XMLType Data Stored as Binary XML
You can partition a table that contains XMLType data stored as binary XML.

• Enforcing Referential Integrity Using SQL Constraints
You can use SQL constraints and database triggers to ensure data-integrity
properties such as uniqueness and foreign-key relations.

3.3 Partitioning Tables That Contain XMLType Data Stored
as Binary XML

You can partition a table that contains XMLType data stored as binary XML.

There are two possibilities:

• The table is relational, with an XMLType column and a non-XMLType column.

• The table is of data type XMLType.

In the case of an XMLType column, you use the non-XMLType column as the partitioning
key. This is illustrated in Example 3-5.

This case presents nothing new or specific with respect to XML data. The fact that one
of the columns contains XMLType data is irrelevant. Things are different for the other
case: partitioning an XMLType table.

XML data has its own structure, which (except for object-relational storage of XMLType)
is not reflected directly in database data structure. For XMLType data stored as binary
XML, individual XML elements and attributes are not mapped to individual database
columns or tables.

Therefore, to partition binary XML data according to the values of individual elements
or attributes, the standard approach for relational data does not apply. Instead, you
must create virtual columns that represent the XML data of interest, and then use
those virtual columns to define the constraints or partitions that you need.

The technique is as follows:

1. Define virtual columns that correspond to the XML elements or attributes that you
are interested in.

Chapter 3
Partitioning Tables That Contain XMLType Data Stored as Binary XML

3-4



2. Use those columns to partition the XMLType data as a whole.

This is illustrated in Example 3-6: virtual column date_col targets the orderDate
attribute of element PurchaseOrder in a purchase-order document. This column is
used as the partitioning key.

For best performance using a partitioned table containing XML data, Oracle
recommends that you use an XMLType column rather than an XMLType table, and you
therefore partition using a non-XMLType column.

Note:

• You can partition an XMLType table using a virtual column only if the
storage model is binary XML. Range, hash, and list partitioning are
supported.

• Partitioning of XMLType tables stored as XML is supported starting with
11g Release 2 (11.2). It is supported only if the database compatibility
(parameter compatible in file init.ora) is 11.2 or higher.

• If a relational table has an XMLType column, you cannot partition the table
using that column to define virtual columns of XML data.

Example 3-5    Partitioning a Relational Table That Has an XMLType Column

CREATE TABLE reltab (key_col VARCHAR2(10) PRIMARY KEY,
                     xml_col XMLType)
  XMLTYPE xml_col STORE AS BINARY XML
  PARTITION BY RANGE (key_col)
    (PARTITION P1 VALUES LESS THAN ('abc'),
     PARTITION P2 VALUES LESS THAN (MAXVALUE));

Example 3-6    Partitioning an XMLType Table

CREATE TABLE po_binaryxml OF XMLType
  XMLTYPE STORE AS BINARY XML
  VIRTUAL COLUMNS
    (date_col AS (XMLCast(XMLQuery('/PurchaseOrder/@orderDate'
                                   PASSING OBJECT_VALUE RETURNING 
CONTENT)
                          AS DATE)))
  PARTITION BY RANGE (date_col)
    (PARTITION orders2001 VALUES LESS THAN (to_date('01-JAN-2002')),
     PARTITION orders2002 VALUES LESS THAN (MAXVALUE));

Related Topics

• XMLIndex Partitioning and Parallelism
If you partition an XMLType table, or a table with an XMLType column, using range,
list, or hash partitioning, you can also create an XMLIndex index on the table.
You can optionally ensure that index creation and maintenance are carried out in
parallel.

Chapter 3
Partitioning Tables That Contain XMLType Data Stored as Binary XML

3-5



• Overview of Partitioning XMLType Tables and Columns Stored Object-Relationally
When you partition an object-relational XMLType table or a table with an XMLType
column that is stored object-relationally and you use list, range, or hash
partitioning, any ordered collection tables (OCTs) or out-of-line tables within the
data are automatically partitioned accordingly, by default.

3.4 Enforcing XML Data Integrity Using the Database
You can combine the power of SQL and XML with the ability of the database to
enforce rules.

You can use SQL to supplement the functionality provided by XML schema. Only well-
formed XML documents can be stored in XMLType tables or columns. A well-formed
XML document is one that conforms to the syntax of the XML version declared in its
XML declaration. This includes having a single root element, properly nested tags, and
so forth. Additionally, if the XMLType table or column is constrained to an XML schema
then only documents that conform to that XML schema can be stored in that table or
column. Any attempt to store or insert any other kind of XML document in an XML
schema-based XMLType raises an error. Example 3-7 illustrates this.

Such an error occurs only when content is inserted directly into an XMLType table. It
indicates that Oracle XML DB did not recognize the document as a member of the
class defined by the XML schema. For a document to be recognized as a member of
the class defined by the schema, the following conditions must be true:

• The name of the XML document root element must match the name of global
element used to define the XMLType table or column.

• The XML document must include the appropriate attributes from the XMLSchema-
instance namespace, or the XML document must be explicitly associated
with the XML schema using the XMLType constructor or XMLType method
createSchemaBasedXML().

If the constraining XML schema declares a targetNamespace, then the instance
documents must contain the appropriate namespace declarations to place the root
element of the document in the targetNamespace defined by the XML schema.

Note:

XML constraints are enforced only within individual XML documents.
Database (SQL) constraints are enforced across sets of XML documents.

Example 3-7    Error From Attempting to Insert an Incorrect XML Document

INSERT INTO purchaseorder
  VALUES (XMLType(bfilename('XMLDIR', 'Invoice.xml'),
                  nls_charset_id('AL32UTF8')))
  VALUES (XMLType(bfilename('XMLDIR', 'Invoice.xml'),
                  nls_charset_id('AL32UTF8')))
          *
ERROR at line 2:
ORA-19007: Schema - does not match expected
http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd.

Chapter 3
Enforcing XML Data Integrity Using the Database

3-6



• Enforcing Referential Integrity Using SQL Constraints
You can use SQL constraints and database triggers to ensure data-integrity
properties such as uniqueness and foreign-key relations.

Related Topics

• Partial and Full XML Schema Validation
When you insert XML Schema-based documents into the database they can be
validated partially or fully.

3.4.1 Enforcing Referential Integrity Using SQL Constraints
You can use SQL constraints and database triggers to ensure data-integrity properties
such as uniqueness and foreign-key relations.

The W3C XML Schema Recommendation defines a powerful language for defining
the contents of an XML document. However, there are some simple data
management concepts that are not currently addressed by the W3C XML Schema
Recommendation. These include the ability to ensure that the value of an element or
attribute has either of these properties:

• It is unique across a set of XML documents (a UNIQUE constraint).

• It exists in a particular data source that is outside of the current document
(FOREIGN KEY constraint).

With Oracle XML DB, however, you can enforce such constraints. The mechanisms
that you use to enforce integrity on XML data are the same as those you use to
enforce integrity on relational data. Simple rules, such as uniqueness and foreign-key
relationships, can be enforced by specifying SQL constraints. More complex rules can
be enforced by specifying database triggers.

Oracle XML DB lets you use the database to enforce business rules on XML content,
in addition to enforcing rules that can be specified using XML Schema constructs.
The database enforces these business rules regardless of whether XML is inserted
directly into a table or uploaded using one of the protocols supported by Oracle XML
DB Repository.

XML data has its own structure, which (except for object-relational storage of XMLType)
is not reflected directly in database data structure. For XMLType data stored as binary
XML, individual XML elements and attributes are not mapped to individual database
columns or tables.

Therefore, to constrain binary XML data according to the values of individual elements
or attributes, the standard approach for relational data does not apply. Instead, you
must create virtual columns that represent the XML data of interest, and then use
those virtual columns to define the constraints that you need.

The technique is as follows:

1. Define virtual columns that correspond to the XML elements or attributes that you
are interested in.

2. Use those columns to constrain the XMLType data as a whole.

The binary XML data can be in an XMLType table or an XMLType column of a relational
table. In the former case, you can include creation of the constraint as part of the
CREATE TABLE statement, if you like. For the latter case, you must create the constraint
using an ALTER TABLE statement, after the relational table has been created.

Chapter 3
Enforcing XML Data Integrity Using the Database

3-7



See also:

Oracle Database Error Messages Reference

Example 3-8    Constraining a Binary XML Table Using a Virtual Column

This example illustrates the technique for an XMLType table. It defines virtual column
c_xtabref using the Reference element in a purchase-order document. It defines
uniqueness constraint reference_is_unique on that column, which ensures that the
value of node /PurchaseOrder/Reference/text() is unique across all documents
that are stored in the table. It fills the table with the data from OE.purchaseorder. It
then tries to insert a duplicate document, DuplicateReference.xml, which violates the
uniqueness constraint, raising an error.

CREATE TABLE po_binaryxml OF XMLType
  (CONSTRAINT reference_is_unique UNIQUE (c_xtabref))
  XMLTYPE STORE AS BINARY XML
  VIRTUAL COLUMNS
    (c_xtabref AS (XMLCast(XMLQuery('/PurchaseOrder/Reference'
                                    PASSING OBJECT_VALUE RETURNING 
CONTENT)
                           AS VARCHAR2(32))));
 
INSERT INTO po_binaryxml SELECT OBJECT_VALUE FROM OE.purchaseorder;

132 rows created.
 
INSERT INTO po_binaryxml
  VALUES (XMLType(bfilename('XMLDIR', 'DuplicateReference.xml'),
                  nls_charset_id('AL32UTF8')));
INSERT INTO po_binaryxml
*
ERROR at line 1:
ORA-00001: unique constraint (OE.REFERENCE_IS_UNIQUE) violated
 

Example 3-9    Constraining a Binary XML Column Using a Virtual Column:
Uniqueness

This example illustrates the technique for an XMLType column of a relational table. It
defines virtual column c_xcolref and uniqueness constraint fk_ref, which references
the uniqueness constraint defined in Example 3-8. As in Example 3-8, this ensures
that the value of node /PurchaseOrder/Reference/text() is unique across all
documents that are stored in XMLType column po_binxml_col.

The example fills the XMLType column with the same data from OE.purchaseorder. It
then tries to insert duplicate document, DuplicateReference.xml, which violates the
uniqueness constraint, raising an error.

CREATE TABLE po_reltab (po_binxml_col XMLType)
  XMLTYPE po_binxml_col STORE AS BINARY XML
  VIRTUAL COLUMNS

Chapter 3
Enforcing XML Data Integrity Using the Database

3-8



    (c_xcolref AS (XMLCast (XMLQuery('/PurchaseOrder/Reference'
                                    PASSING po_binxml_col RETURNING 
CONTENT)
                           AS VARCHAR2(32))));

ALTER TABLE po_reltab ADD CONSTRAINT reference_is_unique UNIQUE 
(c_xcolref));

INSERT INTO po_reltab SELECT OBJECT_VALUE FROM OE.purchaseorder;
INSERT INTO po_reltab
  VALUES (XMLType(bfilename('XMLDIR', 'DuplicateReference.xml'),
                  nls_charset_id('AL32UTF8')));
INSERT INTO po_reltab
*
ERROR at line 1:
ORA-00001: unique constraint (OE.REFERENCE_IS_UNIQUE) violated

Example 3-10    Constraining a Binary XML Column Using a Virtual Column:
Foreign Key

This example is similar to Example 3-9, but it uses a foreign-key constraint, fk_ref,
which references the column with the uniqueness constraint defined in Example 3-8.
Insertion of the document in file DuplicateReference.xml succeeds here, since
that document is in (virtual) column c_tabref of table po_binaryxml. Insertion of a
document that does not match any document in table po_binaryxml.

CREATE TABLE po_reltab (po_binxml_col XMLType)
  XMLTYPE po_binxml_col STORE AS BINARY XML
  VIRTUAL COLUMNS
    (c_xcolref AS (XMLCast (XMLQuery('/PurchaseOrder/Reference'
                                     PASSING po_binxml_col
                                     RETURNING CONTENT)
                           AS VARCHAR2(32))));

ALTER TABLE po_reltab ADD CONSTRAINT fk_ref
                          FOREIGN KEY (c_xcolref)
                          REFERENCES po_binaryxml(c_xtabref);

INSERT INTO po_reltab
  VALUES (XMLType(bfilename('XMLDIR', 'DuplicateReference.xml'),
                  nls_charset_id('AL32UTF8')));

INSERT INTO po_reltab
  VALUES (
    '<PurchaseOrder><Reference>Not Compliant</Reference></
PurchaseOrder>');
INSERT INTO po_reltab VALUES ('<PurchaseOrder><Reference>Not Compliant
</Reference></PurchaseOrder>')
*
ERROR at line 1:
ORA-02291: integrity constraint (OE.FK_REF) violated - parent key not 
found

Chapter 3
Enforcing XML Data Integrity Using the Database

3-9



Example 3-11    Enforcing Database Integrity When Loading XML Using FTP

Integrity rules defined using constraints and triggers are also enforced when XML
schema-based XML content is loaded into Oracle XML DB Repository. This example
shows that database integrity is also enforced when a protocol, such as FTP, is used
to upload XML schema-based XML content into Oracle XML DB Repository. In this
case, additional constraints, besides uniqueness, were also violated.

$ ftp localhost 2100
Connected to localhost.
220 mdrake-sun FTP Server (Oracle XML DB/Oracle Database 10g Enterprise 
Edition
Release 10.1.0.0.0 - Beta) ready.
Name (localhost:oracle10): QUINE
331 Password required for QUINE
Password: password
230 QUINE logged in
ftp> cd /source/schemas
250 CWD Command successful
ftp> put InvalidReference.xml
200 PORT Command successful
150 ASCII Data Connection
550- Error Response
ORA-00604: error occurred at recursive SQL level 1
ORA-31154: invalid XML document
ORA-19202: Error occurred in XML processing
LSX-00221: "SBELL-20021009" is too short (minimum length is 18)
ORA-06512: at "SYS.XMLTYPE", line 333
ORA-06512: at "QUINE.VALIDATE_PURCHASEORDER", line 3
ORA-04088: error during execution of trigger 
'QUINE.VALIDATE_PURCHASEORDER'
550 End Error Response
ftp> put InvalidElement.xml
200 PORT Command successful
150 ASCII Data Connection
550- Error Response
ORA-30937: No schema definition for 'UserName' (namespace '##local') in 
parent
'PurchaseOrder'
550 End Error Response
ftp> put DuplicateReference.xml
200 PORT Command successful
150 ASCII Data Connection
550- Error Response
ORA-00604: error occurred at recursive SQL level 1
ORA-00001: unique constraint (QUINE.REFERENCE_IS_UNIQUE) violated
550 End Error Response
ftp> put InvalidUser.xml
200 PORT Command successful
150 ASCII Data Connection
550- Error Response
ORA-00604: error occurred at recursive SQL level 1
ORA-02291: integrity constraint (QUINE.USER_IS_VALID) violated - parent 
key not

Chapter 3
Enforcing XML Data Integrity Using the Database

3-10



 found
550 End Error Response

When an error occurs while a document is being uploaded using a protocol, Oracle
XML DB provides the client with the full SQL error trace. How the error is interpreted
and reported to you is determined by the error-handling built into the client application.
Some clients, such as a command line FTP tool, report the error returned by Oracle
XML DB, while others, such as Microsoft Windows Explorer, report a generic error
message.

Related Topics

• Specification of Relational Constraints on XMLType Tables and Columns
For XMLType data stored object-relationally, you can specify typical relational
constraints for elements and attributes that occur only once in an XML document.

• Creating Virtual Columns on XMLType Data Stored as Binary XML
You can create virtual columns only for XMLType data that is stored as binary XML.
Such columns are useful for partitioning or constraining the data.

3.5 Loading XML Content into Oracle XML DB
There are several ways to load XML content into Oracle XML DB.

• Loading XML Content Using SQL or PL/SQL

• Loading XML Content Using Java
With a DOM you can use Java to load a SQLXML instance.

• Loading XML Content Using C
With a DOM you can use C code to load an XMLType instance.

• Loading Large XML Files that Contain Small XML Documents
When loading large XML files consisting of a collection of smaller XML documents,
it is often more efficient to use Simple API for XML (SAX) parsing to break the file
into a set of smaller documents, and then insert those documents.

• Loading Large XML Files Using SQL*Loader
You can use SQL*Loader to load large amounts of XML data into Oracle
Database.

• Loading XML Documents into the Repository Using DBMS_XDB_REPOS
You can use PL/SQL package DBMS_XDB_REPOS to load XML documents into
Oracle XML DB Repository. You can access repository documents (resources)
using path-based rather than table-based techniques.

• Loading Documents into the Repository Using Protocols
You can load documents, including XML documents, from a local file system into
Oracle XML DB Repository using popular protocols.

3.5.1 Loading XML Content Using SQL or PL/SQL
You can use a simple INSERT operation in SQL or PL/SQL to load an XML document
into the database.

Before the document can be stored as an XMLType column or table, you must convert it
into an XMLType instance using one of the XMLType constructors.

Chapter 3
Loading XML Content into Oracle XML DB

3-11



XMLType constructors allow an XMLType instance to be created from different sources,
including VARCHAR, CLOB, and BFILE values. The constructors accept additional
arguments that reduce the amount of processing associated with XMLType creation.
For example, if you are sure that a given source XML document is valid, you
can provide an argument to the constructor that disables the type-checking that is
otherwise performed.

In addition, if the source data is not encoded in the database character set, an XMLType
instance can be constructed using a BFILE or BLOB value. The encoding of the source
data is specified through the character set id (csid) argument of the constructor.

When you use SQL INSERT to insert a large document containing collections into
XMLType tables (but not into XMLType columns), Oracle XML DB optimizes load time
and memory usage.

Example 3-13 shows how to insert XML content into an XMLType table. Before making
this insertion, you must create a database directory object that points to the directory
containing the file to be processed. To do this, you must have the CREATE ANY
DIRECTORY privilege.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for a
description of the XMLType constructors

• Oracle Database SQL Language Reference, under GRANT

Example 3-12    Creating a Database Directory

CREATE DIRECTORY xmldir AS path_to_folder_containing_XML_file;

Example 3-13    Inserting XML Content into an XMLType Table

INSERT INTO mytable2 VALUES (XMLType(bfilename('XMLDIR', 'purchaseOrder.xml'),
                                     nls_charset_id('AL32UTF8')));

The value passed to nls_charset_id indicates that the encoding for the file to be read
is UTF-8.

Related Topics

• Query and Update of XML Data
There are many ways for applications to query and update XML data that is in
Oracle Database, both XML schema-based and non-schema-based.

• PL/SQL APIs for XMLType: References
The PL/SQL Application Programming Interfaces (APIs) for XMLType are
described.

• Considerations for Loading and Retrieving Large Documents with Collections
Oracle XML DB configuration file xdbconfig.xml has parameters that control the
amount of memory used by the loading operation: xdbcore-loadableunit-size
and xdbcore-xobmem-bound.

Chapter 3
Loading XML Content into Oracle XML DB

3-12



3.5.2 Loading XML Content Using Java
With a DOM you can use Java to load a SQLXML instance.

Example 3-14 shows how to load XML content into Oracle XML DB by first creating a
SQLXML instance in Java, given a Document Object Model (DOM).

A simple bulk loader application is available at Oracle XML DB on OTN. It shows how
to load a directory of XML files into Oracle XML DB using Java Database Connectivity
(JDBC). JDBC is a set of Java interfaces to Oracle Database.

Example 3-14    Inserting Content into an XMLType Table Using Java

public void doInsert(Connection conn, Document doc)
throws Exception
{
  String query = "INSERT INTO purchaseorder VALUES (?)";
  SQLXML sx = conn.createSQLXML();
  DOMResult dom = sx.setResult(DOMResult.class);
  dom.setNode(doc);
  PreparedStatement statement = conn.prepareStatement(query);
  statement.setSQLXML(1, sx);
  statement.execute();
}

3.5.3 Loading XML Content Using C
With a DOM you can use C code to load an XMLType instance.

Example 3-15 shows how to insert XML content into an XMLType table using C code,
by creating an XMLType instance given a DOM (see Oracle XML Developer's Kit
Programmer's Guide). See Loading XML Data Using C (OCI) for a complete listing
of this example.

Note:

For simplicity in demonstrating this feature, this example does not perform
the password management techniques that a deployed system normally
uses. In a production environment, follow the Oracle Database password
management guidelines, and disable any sample accounts. See Oracle
Database Security Guide for password management guidelines and other
security recommendations.

Example 3-15    Inserting Content into an XMLType Table Using C

. . .
void main()
{
  OCIType *xmltdo;
  xmldocnode  *doc;
  ocixmldbparam params[1];
  xmlerr       err;

Chapter 3
Loading XML Content into Oracle XML DB

3-13



  xmlctx  *xctx;
  oratext *ins_stmt;
  sword    status;
  xmlnode *root;
  oratext buf[10000];
 
  /* Initialize envhp, svchp, errhp, dur, stmthp */
  init_oci_connect();
 
  /* Get an XML context */
  params[0].name_ocixmldbparam = XCTXINIT_OCIDUR;
  params[0].value_ocixmldbparam = &dur;
  xctx = OCIXmlDbInitXmlCtx(envhp, svchp, errhp, params, 1);
  if (!(doc = XmlLoadDom(xctx, &err, "file", filename,
                         "schema_location", schemaloc, NULL)))
    {
      printf("Parse failed.\n");
      return;
    }
  else
    printf("Parse succeeded.\n");
  root = XmlDomGetDocElem(xctx, doc);
  printf("The xml document is :\n");
  XmlSaveDom(xctx, &err, (xmlnode *)doc, "buffer", buf, "buffer_length", 10000, NULL);
  printf("%s\n", buf);
 
  /* Insert the document into my_table */
  ins_stmt = (oratext *)"insert into purchaseorder values (:1)";
  status = OCITypeByName(envhp, errhp, svchp, (const text *) "SYS",
                         (ub4) strlen((const char *)"SYS"), (const text *) "XMLTYPE",
                         (ub4) strlen((const char *)"XMLTYPE"), (CONST text *) 0,
                         (ub4) 0, OCI_DURATION_SESSION, OCI_TYPEGET_HEADER,
                         (OCIType **) &xmltdo);
  if (status == OCI_SUCCESS)
    {
      status = exec_bind_xml(svchp, errhp, stmthp, (void *)doc,
                             xmltdo, ins_stmt);
    }
  if (status == OCI_SUCCESS)
    printf ("Insert successful\n");
  else
    printf ("Insert failed\n");
 
  /* Free XML instances */
  if (doc)
    XmlFreeDocument((xmlctx *)xctx, (xmldocnode *)doc);
  /* Free XML CTX */
  OCIXmlDbFreeXmlCtx(xctx);
  free_oci();
}

3.5.4 Loading Large XML Files that Contain Small XML Documents
When loading large XML files consisting of a collection of smaller XML documents, it
is often more efficient to use Simple API for XML (SAX) parsing to break the file into a
set of smaller documents, and then insert those documents.

SAX is an XML standard interface provided by XML parsers for event-based
applications. You can use SAX to load a database table from very large XML files
in the order of 30 MB or larger, by creating individual documents from a collection of
nodes. You can also bulk load XML files.

Chapter 3
Loading XML Content into Oracle XML DB

3-14



See Also:

• SAX Project for information about SAX

• Oracle XML DB on OTN, for an application example that loads large files
using SAX

3.5.5 Loading Large XML Files Using SQL*Loader
You can use SQL*Loader to load large amounts of XML data into Oracle Database.

SQL*Loader loads in one of two modes, conventional or direct path. Table 3-1
compares these modes.

Table 3-1    SQL*Loader – Conventional and Direct-Path Load Modes

Conventional Load Mode Direct-Path Load Mode

Uses SQL to load data into Oracle Database. This
is the default mode.

Bypasses SQL and streams the data
directly into Oracle Database.

Advantage: Follows SQL semantics. For example
triggers are fired and constraints are checked.

Advantage: This loads data much faster
than the conventional load mode.

Disadvantage: This loads data slower than with
the direct load mode.

Disadvantage: SQL semantics is not
obeyed. For example triggers are not fired
and constraints are not checked.

When loading LOBs with SQL*Loader direct-path load, much memory can be used. If
the message SQL*Loader 700 (out of memory) appears, then it is likely that more
rows are being included in each load call than can be handled by your operating
system and process memory. Workaround: use the ROWS option to read a smaller
number of rows in each data save.

Related Topics

• How to Load XML Data
The main way to load XML data into Oracle XML DB is to use SQL*Loader.

3.5.6 Loading XML Documents into the Repository Using
DBMS_XDB_REPOS

You can use PL/SQL package DBMS_XDB_REPOS to load XML documents into Oracle
XML DB Repository. You can access repository documents (resources) using path-
based rather than table-based techniques.

To load an XML document into the repository under a given path, use PL/SQL function
DBMS_XDB_REPOS.createResource. Example 3-16 illustrates this.

Many operations for configuring and using Oracle XML DB are based on processing
one or more XML documents. Examples include registering an XML schema and
performing an XSL transformation. The easiest way to make these XML documents
available to Oracle Database is to load them into Oracle XML DB Repository.

Chapter 3
Loading XML Content into Oracle XML DB

3-15



Example 3-16    Inserting XML Content into the Repository Using
CREATERESOURCE

DECLARE
  res BOOLEAN;
BEGIN
  res := DBMS_XDB_REPOS.createResource(
           '/home/QUINE/purchaseOrder.xml',
           bfilename('XMLDIR', 'purchaseOrder.xml'),
           nls_charset_id('AL32UTF8'));
END;/

3.5.7 Loading Documents into the Repository Using Protocols
You can load documents, including XML documents, from a local file system into
Oracle XML DB Repository using popular protocols.

Oracle XML DB Repository can store XML documents that are either XML schema-
based or non-schema-based. It can also store content that is not XML data, such as
HTML files, image files, and Microsoft Word documents.

You can load XML documents from a local file system into Oracle XML DB Repository
using protocols such as WebDAV, from Windows Explorer or other tools that support
WebDAV. Figure 3-1 shows a simple drag and drop operation for copying the contents
of the SCOTT folder from the local hard drive to folder poSource in Oracle XML DB
Repository.

Figure 3-1    Loading Content into the Repository Using Windows Explorer

The copied folder might contain, for example, an XML schema document, an HTML
page, and some XSLT stylesheets.

3.6 Querying XML Content Stored in Oracle XML DB
There are many ways to query XML content in Oracle XML DB and retrieve it.

Chapter 3
Querying XML Content Stored in Oracle XML DB

3-16



Note:

For efficient query performance you typically need to create indexes. For
information about indexing XML data, see Indexes for XMLType Data.

• PurchaseOrder XML Document Used in Examples
An XML schema defines the purchase-order documents used in examples.

• Retrieving the Content of an XML Document Using Pseudocolumn
OBJECT_VALUE
Pseudocolumn OBJECT_VALUE can be used as an alias for the value of an object
table.

• Accessing Fragments or Nodes of an XML Document Using XMLQUERY
You can use SQL/XML function XMLQuery to extract the nodes that match an
XQuery expression. The result is returned as an instance of XMLType.

• Accessing Text Nodes and Attribute Values Using XMLCAST and XMLQUERY
You can access text node and attribute values using SQL/XML standard functions
XMLQuery and XMLCast.

• Searching an XML Document Using XMLEXISTS, XMLCAST, and XMLQUERY
You can use SQL/XML standard functions XMLExists, XMLCast, and XMLQuery in a
SQL WHERE clause to limit query results.

• Performing SQL Operations on XMLType Fragments Using XMLTABLE
You can use SQL/XML function XMLTable to perform SQL operations on a set of
nodes that match an XQuery expression.

3.6.1 PurchaseOrder XML Document Used in Examples
An XML schema defines the purchase-order documents used in examples.

Examples presented here are based on the PurchaseOrder XML document shown in
Example 3-17.

Example 3-17    PurchaseOrder XML Instance Document

<PurchaseOrder 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:noNamespaceSchemaLocation=
    "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd">
  <Reference>SBELL-2002100912333601PDT</Reference>
  <Actions>
    <Action>
      <User>SVOLLMAN</User>
    </Action>
  </Actions>
  <Reject/>
  <Requestor>Sarah J. Bell</Requestor>
  <User>SBELL</User>
  <CostCenter>S30</CostCenter>
  <ShippingInstructions>
    <name>Sarah J. Bell</name>
    <address>400 Oracle Parkway

Chapter 3
Querying XML Content Stored in Oracle XML DB

3-17



      Redwood Shores
      CA
      94065
      USA</address>
    <telephone>650 506 7400</telephone>
  </ShippingInstructions>
  <SpecialInstructions>Air Mail</SpecialInstructions>
  <LineItems>
    <LineItem ItemNumber="1">
      <Description>A Night to Remember</Description>
      <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
    </LineItem>
    <LineItem ItemNumber="2">
      <Description>The Unbearable Lightness Of Being</Description>
      <Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
    </LineItem>
    <LineItem ItemNumber="3">
      <Description>Sisters</Description>
      <Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
    </LineItem>
  </LineItems>
</PurchaseOrder>

3.6.2 Retrieving the Content of an XML Document Using
Pseudocolumn OBJECT_VALUE

Pseudocolumn OBJECT_VALUE can be used as an alias for the value of an object table.

For an XMLType table that consists of a single column of XMLType, the entire XML
document is retrieved. (OBJECT_VALUE replaces the value(x) and SYS_NC_ROWINFO$
aliases used in releases prior to Oracle Database 10g Release 1.)

In Example 3-18, the SQL*Plus settings PAGESIZE and LONG are used to ensure that
the entire document is printed correctly, without line breaks. (The output has been
formatted for readability.)

Example 3-18    Retrieving an Entire XML Document Using OBJECT_VALUE

SELECT OBJECT_VALUE FROM purchaseorder;
 
OBJECT_VALUE
-----------------------------------------------------------------------
<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://localhost:8080/source/schemas
/poSource/xsd/purchaseOrder.xsd">
  <Reference>SBELL-2002100912333601PDT</Reference>
  <Actions>
    <Action>
      <User>SVOLLMAN</User>
    </Action>
  </Actions>
  <Reject/>
  <Requestor>Sarah J. Bell</Requestor>
  <User>SBELL</User>

Chapter 3
Querying XML Content Stored in Oracle XML DB

3-18



  <CostCenter>S30</CostCenter>
  <ShippingInstructions>
    <name>Sarah J. Bell</name>
    <address>400 Oracle Parkway
Redwood Shores
CA
94065
USA</address>
    <telephone>650 506 7400</telephone>
  </ShippingInstructions>
  <SpecialInstructions>Air Mail</SpecialInstructions>
  <LineItems>
    <LineItem ItemNumber="1">
      <Description>A Night to Remember</Description>
      <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
    </LineItem>
    <LineItem ItemNumber="2">
      <Description>The Unbearable Lightness Of Being</Description>
      <Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
    </LineItem>
    <LineItem ItemNumber="3">
      <Description>Sisters</Description>
      <Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
    </LineItem>
  </LineItems>
</PurchaseOrder>
 
1 row selected.

3.6.3 Accessing Fragments or Nodes of an XML Document Using
XMLQUERY

You can use SQL/XML function XMLQuery to extract the nodes that match an XQuery
expression. The result is returned as an instance of XMLType.

Example 3-19 illustrates this with several queries.

Example 3-19    Accessing XML Fragments Using XMLQUERY

The following query returns an XMLType instance containing the Reference element
that matches the XPath expression.

SELECT XMLQuery('/PurchaseOrder/Reference'
                PASSING OBJECT_VALUE RETURNING CONTENT)
  FROM purchaseorder;

XMLQUERY('/PURCHASEORDER/REFERENCE'PASSINGOBJECT_
-------------------------------------------------
<Reference>SBELL-2002100912333601PDT</Reference>
 
1 row selected.

Chapter 3
Querying XML Content Stored in Oracle XML DB

3-19



The following query returns an XMLType instance containing the first LineItem element
in the LineItems collection:

SELECT XMLQuery('/PurchaseOrder/LineItems/LineItem[1]'
                PASSING OBJECT_VALUE RETURNING CONTENT)
  FROM purchaseorder;

XMLQUERY('/PURCHASEORDER/LINEITEMS/LINEITEM[1]'PASSINGOBJECT_
-------------------------------------------------------------
<LineItem ItemNumber="1">
  <Description>A Night to Remember</Description>
  <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</LineItem>
 
1 row selected.

The following query returns an XMLType instance that contains the three Description
elements that match the XPath expression. These elements are returned as nodes in
a single XMLType instance. The XMLType instance does not have a single root node; it is
an XML fragment.

SELECT XMLQuery('/PurchaseOrder/LineItems/LineItem/Description'
                PASSING OBJECT_VALUE RETURNING CONTENT)
  FROM purchaseorder;

XMLQUERY('/PURCHASEORDER/LINEITEMS/LINEITEM/DESCRIPTION'PASSINGOBJECT_
----------------------------------------------------------------------
<Description>A Night to Remember</Description>
<Description>The Unbearable Lightness Of Being</Description>
<Description>Sisters</Description>
 
1 row selected.

Related Topics

• Performing SQL Operations on XMLType Fragments Using XMLTABLE
You can use SQL/XML function XMLTable to perform SQL operations on a set of
nodes that match an XQuery expression.

3.6.4 Accessing Text Nodes and Attribute Values Using XMLCAST
and XMLQUERY

You can access text node and attribute values using SQL/XML standard functions
XMLQuery and XMLCast.

To do this, the XQuery expression passed to XMLQuery must uniquely identify a single
text node or attribute value within the document – that is, a leaf node. Example 3-20
illustrates this using several queries.

Chapter 3
Querying XML Content Stored in Oracle XML DB

3-20



See Also:

XQuery and Oracle XML DB for information on SQL/XML functions XMLQuery
and XMLCast

Example 3-20    Accessing a Text Node Value Using XMLCAST and XMLQuery

The following query returns the value of the text node associated with the Reference
element that matches the target XPath expression. The value is returned as a
VARCHAR2 value.

SELECT  XMLCast(XMLQuery('$p/PurchaseOrder/Reference/text()'
                         PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
                AS VARCHAR2(30))
  FROM purchaseorder;
 
XMLCAST(XMLQUERY('$P/PURCHASEO
------------------------------
SBELL-2002100912333601PDT
 
1 row selected.

The following query returns the value of the text node associated with a Description
element contained in a LineItem element. The particular LineItem element is
specified by its Id attribute value. The predicate that identifies the LineItem element is
[Part/@Id="715515011020"]. The at-sign character (@) specifies that Id is an attribute
rather than an element. The value is returned as a VARCHAR2 value.

SELECT XMLCast(
         XMLQuery('$p/PurchaseOrder/LineItems/LineItem[Part/@Id="715515011020"]/
Description/text()'
                  PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(30))
  FROM purchaseorder;
 
XMLCAST(XMLQUERY('$P/PURCHASEO
------------------------------
Sisters
 
1 row selected.

The following query returns the value of the text node associated with the Description
element contained in the first LineItem element. The first LineItem element is
indicated by the position predicate[1].

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/LineItems/LineItem[1]/Description'
                        PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(4000))
  FROM purchaseorder;
 
XMLCAST(XMLQUERY('$P/PURCHASEORDER/LINEITEMS/LINEITEM[1]/

Chapter 3
Querying XML Content Stored in Oracle XML DB

3-21



DESCRIPTION'PASSINGOBJECT_VALUEAS"P"
--------------------------------------------------------------------------------------
-------
A Night to Remember
 
1 row selected.

3.6.5 Searching an XML Document Using XMLEXISTS, XMLCAST,
and XMLQUERY

You can use SQL/XML standard functions XMLExists, XMLCast, and XMLQuery in a
SQL WHERE clause to limit query results.

SQL/XML standard function XMLExists evaluates whether or not a given document
contains a node that matches a W3C XPath expression. It returns a Boolean value of
true if the document contains the node specified by the XPath expression supplied
to the function and a value of false if it does not. Since XPath expressions can
contain predicates, XMLExists can determine whether or not a given node exists in the
document, and whether or not a node with the specified value exists in the document.

Similarly, functions XMLCast and XMLQuery let you limit query results to documents that
satisfy some property. Example 3-21 illustrates the use of XMLExists, XMLCast, and
XMLQuery to search for documents.

Example 3-22 performs a join based on the values of a node in an XML document and
data in another, relational table.

See Also:

XQuery and Oracle XML DB for information about SQL/XML functions
XMLQuery, XMLExists, and XMLCast

Example 3-21    Searching XML Content Using XMLExists, XMLCast, and XMLQuery

The following query uses XMLExists to check if the XML document contains an
element named Reference that is a child of the root element PurchaseOrder:

SELECT count(*) FROM purchaseorder
  WHERE XMLExists('$p/PurchaseOrder/Reference' PASSING OBJECT_VALUE AS "p");

  COUNT(*)
----------
       132

1 row selected.

The following query checks if the value of the text node associated with the Reference
element is SBELL-2002100912333601PDT:

SELECT count(*) FROM purchaseorder
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");

  COUNT(*)

Chapter 3
Querying XML Content Stored in Oracle XML DB

3-22



----------
         1
1 row selected.

This query checks whether the XML document contains a root element PurchaseOrder
that contains a LineItems element that contains a LineItem element that contains a
Part element with an Id attribute.

SELECT count(*) FROM purchaseorder
  WHERE XMLExists('$p/PurchaseOrder/LineItems/LineItem/Part/@Id'
                  PASSING OBJECT_VALUE AS "p");
 
  COUNT(*)
----------
       132
 
1 row selected.

The following query checks whether the XML document contains a root element
PurchaseOrder that contains a LineItems element that contains a LineItem element
that contains a Part element with Id attribute value 715515009058.

SELECT count(*) FROM purchaseorder
  WHERE XMLExists('$p/PurchaseOrder/LineItems/LineItem/Part[@Id="715515009058"]'
                  PASSING OBJECT_VALUE AS "p");
 
  COUNT(*)
----------
        21

The following query checks whether the XML document contains a root element
PurchaseOrder that contains a LineItems element whose third LineItem element
contains a Part element with Id attribute value 715515009058.

SELECT count(*) FROM purchaseorder
  WHERE XMLExists(
          '$p/PurchaseOrder/LineItems/LineItem[3]/Part[@Id="715515009058"]'
          PASSING OBJECT_VALUE AS "p");

  COUNT(*)
----------
         1
1 row selected.

The following query limits the results of the SELECT statement to rows where the text
node associated with element User starts with the letter S. XQuery does not include
support for LIKE-based queries.

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference' PASSING OBJECT_VALUE AS "p"
                        RETURNING CONTENT)
               AS VARCHAR2(30))
  FROM purchaseorder
  WHERE XMLCast(XMLQuery('$p/PurchaseOrder/User' PASSING OBJECT_VALUE AS "p"
                         RETURNING CONTENT)
                AS VARCHAR2(30))
        LIKE 'S%';
 
XMLCAST(XMLQUERY('$P/PURCHASEORDER
----------------------------------
SBELL-20021009123336231PDT
SBELL-20021009123336331PDT

Chapter 3
Querying XML Content Stored in Oracle XML DB

3-23



SKING-20021009123336321PDT
...
36 rows selected.

The following query uses XMLExists to limit the results of a SELECT statement to rows
where the text node of element User contains the value SBELL.

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference' PASSING OBJECT_VALUE AS "p"
                        RETURNING CONTENT)
               AS VARCHAR2(30)) "Reference"
  FROM purchaseorder
  WHERE XMLExists('$p/PurchaseOrder[User="SBELL"]' PASSING OBJECT_VALUE AS "p");

Reference
------------------------------
SBELL-20021009123336231PDT
SBELL-20021009123336331PDT
SBELL-20021009123337353PDT
SBELL-20021009123338304PDT
SBELL-20021009123338505PDT
SBELL-20021009123335771PDT
SBELL-20021009123335280PDT
SBELL-2002100912333763PDT
SBELL-2002100912333601PDT
SBELL-20021009123336362PDT
SBELL-20021009123336532PDT
SBELL-20021009123338204PDT
SBELL-20021009123337673PDT
 
13 rows selected.

The following query uses SQL/XML functions XMLQuery and XMLExists to find the
Reference element for any PurchaseOrder element whose first LineItem element
contains an order for the item with Id 715515009058. Function XMLExists is used in
the WHERE clause to determine which rows are selected, and XMLQuery is used in the
SELECT list to control which part of the selected documents appears in the result.

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference' PASSING OBJECT_VALUE AS "p"
                        RETURNING CONTENT)
               AS VARCHAR2(30)) "Reference"
  FROM purchaseorder
  WHERE XMLExists('$p/PurchaseOrder/LineItems/LineItem[1]/Part[@Id="715515009058"]'
                  PASSING OBJECT_VALUE AS "p");

Reference
-------------------------
SBELL-2002100912333601PDT
 
1 row selected.

Example 3-22    Joining Data from an XMLType Table and a Relational Table

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference' PASSING OBJECT_VALUE AS "p"
                        RETURNING CONTENT)
               AS VARCHAR2(30))
  FROM purchaseorder p, hr.employees e
  WHERE XMLCast(XMLQuery('$p/PurchaseOrder/User' PASSING OBJECT_VALUE AS "p"
                         RETURNING CONTENT)
                AS VARCHAR2(30)) = e.email
    AND e.employee_id = 100;
 

Chapter 3
Querying XML Content Stored in Oracle XML DB

3-24



XMLCAST(XMLQUERY('$P/PURCHASEOREDER
-----------------------------------
SKING-20021009123336321PDT
SKING-20021009123337153PDT
SKING-20021009123335560PDT
SKING-20021009123336952PDT
SKING-20021009123336622PDT
SKING-20021009123336822PDT
SKING-20021009123336131PDT
SKING-20021009123336392PDT
SKING-20021009123337974PDT
SKING-20021009123338294PDT
SKING-20021009123337703PDT
SKING-20021009123337383PDT
SKING-20021009123337503PDT
 
13 rows selected.

3.6.6 Performing SQL Operations on XMLType Fragments Using
XMLTABLE

You can use SQL/XML function XMLTable to perform SQL operations on a set of nodes
that match an XQuery expression.

Example 3-19 demonstrates how to extract an XMLType instance that contains the
node or nodes that match an XPath expression. When the document contains multiple
nodes that match the supplied XPath expression, such a query returns an XML
fragment that contains all of the matching nodes. Unlike an XML document, an XML
fragment has no single element that is the root element.

This kind of result is common in these cases:

• When you retrieve the set of elements contained in a collection, in which case all
nodes in the fragment are of the same type – see Example 3-23

• When the target XPath expression ends in a wildcard, in which case the nodes in
the fragment can be of different types – see Example 3-25

You can use SQL/XML function XMLTable to break up an XML fragment contained in
an XMLType instance, inserting the collection-element data into a new, virtual table,
which you can then query using SQL — in a join expression, for example. In particular,
converting an XML fragment into a virtual table makes it easier to process the result of
evaluating an XMLQuery expression that returns multiple nodes.

See Also:

XQuery and Oracle XML DB for more information about SQL/XML function
XMLTable

Example 3-23 shows how to access the text nodes for each Description element
in the PurchaseOrder document. It breaks up the single XML Fragment output from
Example 3-19 into multiple text nodes.

Chapter 3
Querying XML Content Stored in Oracle XML DB

3-25



Example 3-24 counts the number of elements in a collection. It also shows how SQL
keywords such as ORDER BY and GROUP BY can be applied to the virtual table data
created by SQL/XML function XMLTable.

Example 3-25 shows how to use SQL/XML function XMLTable to count the number
of child elements of a given element. The XPath expression passed to XMLTable
contains a wildcard (*) that matches all elements that are direct descendants of a
PurchaseOrder element. Each row of the virtual table created by XMLTable contains a
node that matches the XPath expression. Counting the number of rows in the virtual
table provides the number of element children of element PurchaseOrder.

Example 3-23    Accessing Description Nodes Using XMLTABLE

SELECT des.COLUMN_VALUE
  FROM purchaseorder p,
       XMLTable('/PurchaseOrder/LineItems/LineItem/Description'
                PASSING p.OBJECT_VALUE) des
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");
 
COLUMN_VALUE
------------
<Description>A Night to Remember</Description>
<Description>The Unbearable Lightness Of Being</Description>
<Description>Sisters</Description>

3 rows selected.

To use SQL to process the contents of the text nodes, the example converts the
collection of Description nodes into a virtual table, using SQL/XML function XMLTable.
The virtual table has three rows, each of which contains a single XMLType instance with
a single Description element.

The XPath expression targets the Description elements. The PASSING clause says to
use the contents (OBJECT_VALUE) of XMLType table purchaseorder as the context for
evaluating the XPath expression.

The XMLTable expression thus depends on the purchaseorder table. This is a left
lateral join. This correlated join ensures a one-to-many (1:N) relationship between the
purchaseorder row accessed and the rows generated from it by XMLTable. Because
of this correlated join, the purchaseorder table must appear before the XMLTable
expression in the FROM list. This is a general requirement in any situation where the
PASSING clause refers to a column of the table.

Each XMLType instance in the virtual table contains a single Description element.
You can use the COLUMNS clause of XMLTable to break up the data targeted by the
XPath expression 'Description' into a column named description of SQL data type
VARCHAR2(256). The 'Description' expression that defines this column is relative to
the context XPath expression, '/PurchaseOrder/LineItems/LineItem'.

SELECT des.description
  FROM purchaseorder p,
       XMLTable('/PurchaseOrder/LineItems/LineItem' PASSING p.OBJECT_VALUE
                COLUMNS description VARCHAR2(256) PATH 'Description') des
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");

DESCRIPTION
---------------------------------

Chapter 3
Querying XML Content Stored in Oracle XML DB

3-26



A Night to Remember
The Unbearable Lightness Of Being
Sisters
 
3 rows selected.

The COLUMNS clause lets you specify precise SQL data types, which can make static
type-checking more helpful. This example uses only a single column (description).
To expose data that is contained at multiple levels in an XMLType table as individual
rows in a relational view, apply XMLTable to each document level to be broken up and
stored in relational columns. See Example 9-2 for an example.

Example 3-24    Counting the Number of Elements in a Collection Using
XMLTABLE

SELECT reference, count(*)
  FROM purchaseorder,
       XMLTable('/PurchaseOrder' PASSING OBJECT_VALUE
                COLUMNS reference VARCHAR2(32) PATH 'Reference',
                        lineitem  XMLType      PATH 'LineItems/LineItem'),
       XMLTable('LineItem' PASSING lineitem)
  WHERE XMLExists('$p/PurchaseOrder[User="SBELL"]'
                  PASSING OBJECT_VALUE AS "p")
  GROUP BY reference
  ORDER BY reference;

REFERENCE                    COUNT(*)
--------------------------   --------
SBELL-20021009123335280PDT         20
SBELL-20021009123335771PDT         21
SBELL-2002100912333601PDT           3
SBELL-20021009123336231PDT         25
SBELL-20021009123336331PDT         10
SBELL-20021009123336362PDT         15
SBELL-20021009123336532PDT         14
SBELL-20021009123337353PDT         10
SBELL-2002100912333763PDT          21
SBELL-20021009123337673PDT         10
SBELL-20021009123338204PDT         14
SBELL-20021009123338304PDT         24
SBELL-20021009123338505PDT         20

13 rows selected.

The query in this example locates the set of XML documents that match the XPath
expression to SQL/XML function XMLExists. It generates a virtual table with two
columns:

• reference, containing the Reference node for each document selected

• lineitem, containing the set of LineItem nodes for each document selected

It counts the number of LineItem nodes for each document. A correlated join ensures
that the GROUP BY correctly determines which LineItem elements belong to which
PurchaseOrder element.

Example 3-25    Counting the Number of Child Elements in an Element Using
XMLTABLE

SELECT count(*)
  FROM purchaseorder p, XMLTable('/PurchaseOrder/*' PASSING p.OBJECT_VALUE)

Chapter 3
Querying XML Content Stored in Oracle XML DB

3-27



  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");
 
  COUNT(*)
----------
         9

1 row selected.

3.7 Updating XML Content Stored in Oracle XML DB
You can update XML content, replacing either the entire contents of a document or
only particular parts of a document.

The ability to perform partial updates on XML documents is very powerful, particularly
when you make small changes to large documents, as it can significantly reduce the
amount of network traffic and disk input-output required to perform the update.

You can make multiple changes to a document in a single operation. Each change
uses an XQuery expression to identify a node to be updated, and specifies the new
value for that node.

Example 3-26 updates the text node associated with element User.

Example 3-27 replaces an entire element within an XML document. The XQuery
expression references the element, and the replacement value is passed as an
XMLType object.

You can make multiple changes to a document in one statement. Example 3-28
changes the values of text nodes belonging to elements CostCenter and
SpecialInstructions in a single SQL UPDATE statement.

Example 3-26    Updating a Text Node

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/User' PASSING OBJECT_VALUE AS 
"p"
                                                RETURNING CONTENT)
               AS VARCHAR2(60))
  FROM purchaseorder
  WHERE XMLExists('$p/
PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");
 
XMLCAST(XMLQUERY('$P/PURCHAS
----------------------------
SBELL
 
1 row selected.

UPDATE purchaseorder
SET OBJECT_VALUE =
    XMLQuery('copy $i := $p1 modify
                (for $j in $i/PurchaseOrder/User
                 return replace value of node $j with $p2)
              return $i'
             PASSING OBJECT_VALUE AS "p1", 'SKING' AS "p2"
             RETURNING CONTENT)

Chapter 3
Updating XML Content Stored in Oracle XML DB

3-28



    WHERE XMLExists(
            '$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
            PASSING OBJECT_VALUE AS "p");

1 row updated.

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/User' PASSING OBJECT_VALUE AS 
"p"
                                                RETURNING CONTENT)
               AS VARCHAR2(60))
  FROM purchaseorder
  WHERE XMLExists('$p/
PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");
 
XMLCAST(XMLQUERY('$P/PURCHAS
----------------------------
SKING

1 row selected.

Example 3-27    Replacing an Entire Element Using XQuery Update

SELECT XMLQuery('$p/PurchaseOrder/LineItems/LineItem[1]'
                PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
  FROM purchaseorder
  WHERE XMLExists('$p/
PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");
 
XMLQUERY('$P/PURCHAS
--------------------
<LineItem ItemNumber="1">
  <Description>A Night to Remember</Description>
  <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</LineItem>
 
1 row selected.

UPDATE purchaseorder
  SET OBJECT_VALUE =
        XMLQuery(
          'copy $i := $p1 modify
             (for $j in $i/PurchaseOrder/LineItems/LineItem[1]
              return replace node $j with $p2)
           return $i'
          PASSING OBJECT_VALUE AS "p1",
                  XMLType('<LineItem ItemNumber="1">
                             <Description>The Lady Vanishes</
Description>
                             <Part Id="37429122129" UnitPrice="39.95"
                                   Quantity="1"/>
                           </LineItem>') AS "p2"
          RETURNING CONTENT)

Chapter 3
Updating XML Content Stored in Oracle XML DB

3-29



        WHERE XMLExists(
                '$p/
PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                PASSING OBJECT_VALUE AS "p");
 
1 row updated.

SELECT XMLQuery('$p/PurchaseOrder/LineItems/LineItem[1]'
                PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
  FROM purchaseorder
  WHERE XMLExists('$p/
PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");

XMLQUERY('$P/PURCHAS
--------------------
<LineItem ItemNumber="1">
  <Description>The Lady Vanishes</Description>
  <Part Id="37429122129" UnitPrice="39.95" Quantity="1"/>
</LineItem>
 
1 row selected.

Example 3-28    Changing Text Node Values Using XQuery Update

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/CostCenter'
                        PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(4)) "Cost Center",
       XMLCast(XMLQuery('$p/PurchaseOrder/SpecialInstructions'
                        PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(2048)) "Instructions"
  FROM purchaseorder
  WHERE XMLExists('$p/
PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");

Cost Center  Instructions
------------ ------------
S30          Air Mail
 
1 row selected.

UPDATE purchaseorder
  SET OBJECT_VALUE =
        XMLQuery('copy $i := $p1 modify
                    ((for $j in $i/PurchaseOrder/CostCenter
                      return replace value of node $j with $p2),
                     (for $j in $i/PurchaseOrder/SpecialInstructions
                      return replace value of node $j with $p3))
                 return $i'
                 PASSING OBJECT_VALUE AS "p1",
                         'B40' AS "p2",
                         'Priority Overnight Service' AS "p3"
                 RETURNING CONTENT)

Chapter 3
Updating XML Content Stored in Oracle XML DB

3-30



        WHERE XMLExists(
                '$p/
PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                PASSING OBJECT_VALUE AS "p");
 
1 row updated.

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/CostCenter'
                        PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(4)) "Cost Center",
       XMLCast(XMLQuery('$p/PurchaseOrder/SpecialInstructions'
                        PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(2048)) "Instructions"
  FROM purchaseorder
  WHERE XMLExists('$p/
PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");
 
Cost Center  Instructions
------------ --------------------------
B40          Priority Overnight Service
 
1 row selected.

3.8 Generating XML Data from Relational Data
You can use Oracle XML DB to generate XML data from relational data.

• Generating XML Data from Relational Data Using SQL/XML Functions
You can use standard SQL/XML functions to generate one or more XML
documents.

• Generating XML Data from Relational Data Using DBURITYPE
You can generate XML data from relational data using SQL function DBURIType.

Related Topics

• XQuery and Oracle XML DB
The XQuery language is one of the main ways that you interact with XML data
in Oracle XML DB. Support for the language includes SQL*Plus commandXQUERY
and SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast.

• Generation of XML Data from Relational Data
Oracle XML DB provides features for generating (constructing) XML data from
relational data in the database. There are both SQL/XML standard functions and
Oracle-specific functions and packages for generating XML data from relational
content.

3.8.1 Generating XML Data from Relational Data Using SQL/XML
Functions

You can use standard SQL/XML functions to generate one or more XML documents.

SQL/XML function XMLQuery is the most general way to do this. Other SQL/XML
functions that you can use for this are the following:

Chapter 3
Generating XML Data from Relational Data

3-31



• XMLElement creates a element

• XMLAttributes adds attributes to an element

• XMLForest creates forest of elements

• XMLAgg creates a single element from a collection of elements

The query in Example 3-29 uses these functions to generate an XML document that
contains information from the tables departments, locations, countries, employees,
and jobs.

This query generates element Department for each row in the departments table.

• Each Department element contains attribute DepartmentID. The value of
DepartmentID comes from the department_id column. The Department element
contains sub-elements Name, Location, and EmployeeList.

• The text node associated with the Name element comes from the name column in
the departments table.

• The Location element has child elements Address, City, State, Zip, and
Country. These elements are constructed by creating a forest of named elements
from columns in the locations and countries tables. The values in the columns
become the text node for the named element.

• The EmployeeList element contains an aggregation of Employee Elements. The
content of the EmployeeList element is created by a subquery that returns the set
of rows in the employees table that correspond to the current department. Each
Employee element contains information about the employee. The contents of the
elements and attributes for each Employee element is taken from tables employees
and jobs.

The output generated by SQL/XML functions is generally not pretty-printed. The only
exception is function XMLSerialize — use XMLSerialize to pretty-print. This lets the
other SQL/XML functions (1) avoid creating a full DOM when generating the required
output, and (2) reduce the size of the generated document. This lack of pretty-printing
by most SQL/XML functions does not matter to most applications. However, it makes
verifying the generated output manually more difficult.

You can also create and query an XMLType view that is built using the SQL/XML
generation functions. Example 3-30 and Example 3-31 illustrate this. Such an XMLType
view has the effect of persisting relational data as XML content. Rows in XMLType
views can also be persisted as documents in Oracle XML DB Repository.

In Example 3-31, the XPath expression passed to SQL/XML function XMLExists
restricts the query result set to the node that contains the Executive department
information. The result is shown pretty-printed here for clarity.

Note:

XPath rewrite on XML expressions that operate on XMLType views is
only supported when nodes referenced in the XPath expression are not
descendants of an element created using SQL function XMLAgg.

Chapter 3
Generating XML Data from Relational Data

3-32



Example 3-29    Generating XML Data Using SQL/XML Functions

SELECT XMLElement(
         "Department",
         XMLAttributes(d.Department_id AS "DepartmentId"),
         XMLForest(d.department_name AS "Name"),
         XMLElement(
           "Location",
           XMLForest(street_address AS "Address",
                     city AS "City",
                     state_province AS "State",
                     postal_code AS "Zip",
                     country_name AS "Country")),
           XMLElement(
             "EmployeeList",
             (SELECT XMLAgg(
                       XMLElement(
                         "Employee",
                         XMLAttributes(e.employee_id AS 
"employeeNumber"),
                         XMLForest(
                           e.first_name AS "FirstName", 
                           e.last_name AS "LastName",
                           e.email AS "EmailAddress",
                           e.phone_number AS "PHONE_NUMBER",
                           e.hire_date AS "StartDate",
                           j.job_title AS "JobTitle",
                           e.salary AS "Salary",
                           m.first_name || ' '
                           || m.last_name AS "Manager"),
                         XMLElement("Commission", e.commission_pct)))
                FROM hr.employees e, hr.employees m, hr.jobs j
                WHERE e.department_id = d.department_id
                  AND j.job_id = e.job_id
                  AND m.employee_id = e.manager_id)))
  AS XML
  FROM hr.departments d, hr.countries c, hr.locations l
  WHERE department_name = 'Executive'
    AND d.location_id = l.location_id
    AND l.country_id  = c.country_id;

The query returns the following XML:

XML
------------------------------------------------------------------------
---
<Department DepartmentId="90"><Name>Executive</
Name><Location><Address>2004
 Charade Rd</Address><City>Seattle</City><State>Washingto
n</State><Zip>98199</Zip><Country>United States of
 America</Country></Location><EmployeeList><Employee
 employeeNumber="101"><FirstNa
me>Neena</FirstName><LastName>Kochhar</LastName><EmailAddress>NKOCHHAR</
EmailAdd

Chapter 3
Generating XML Data from Relational Data

3-33



ess><PHONE_NUMBER>515.123.4568</PHONE_NUMBER><Start
Date>2005-09-21</StartDate><JobTitle>Administration Vice
 President</JobTitle><Salary>17000</Salary><Manager>Steven King</
Manager><Com
mission></Commission></Employee><Employee
 employeeNumber="102"><FirstName>Lex</FirstName><LastName>De
 Haan</LastName><EmailAddress>L
DEHAAN</EmailAddress><PHONE_NUMBER>515.123.4569</PHONE
NUMBER><StartDate>2001-01-13</StartDate><JobTitle>Administration Vice 
Presiden
t</JobTitle><Salary>17000</Salary><Manager>Steven
 King</Manager><Commission></Commission></Employee></EmployeeList></
Department>

Example 3-30    Creating XMLType Views Over Conventional Relational Tables

CREATE OR REPLACE VIEW department_xml OF XMLType
  WITH OBJECT ID (substr(
                    XMLCast(
                      XMLQuery('$p/Department/Name'
                               PASSING OBJECT_VALUE AS "p"
                               RETURNING CONTENT)
                      AS VARCHAR2(30)),
                    1,
                    128))
  AS
  SELECT XMLElement(
           "Department",
           XMLAttributes(d.department_id AS "DepartmentId"),
           XMLForest(d.department_name AS "Name"),
           XMLElement("Location", XMLForest(street_address AS "Address",
                                            city AS "City",
                                            state_province AS "State",
                                            postal_code AS "Zip",
                                            country_name AS "Country")),
           XMLElement(
             "EmployeeList",
             (SELECT XMLAgg(
                       XMLElement(
                          "Employee",
                          XMLAttributes(e.employee_id AS 
"employeeNumber"),
                          XMLForest(e.first_name AS "FirstName",
                                    e.last_name AS "LastName",
                                    e.email AS "EmailAddress",
                                    e.phone_number AS "PHONE_NUMBER",
                                    e.hire_date AS "StartDate",
                                    j.job_title AS "JobTitle",
                                    e.salary AS "Salary",
                                    m.first_name || ' ' ||
                                    m.last_name AS "Manager"),
                          XMLElement("Commission", e.commission_pct)))
                FROM hr.employees e, hr.employees m, hr.jobs j
                WHERE e.department_id = d.department_id

Chapter 3
Generating XML Data from Relational Data

3-34



                  AND j.job_id = e.job_id
                  AND m.employee_id = e.manager_id))).extract('/*')
    AS XML
    FROM hr.departments d, hr.countries c, hr.locations l
    WHERE d.location_id = l.location_id
      AND l.country_id  = c.country_id;

Example 3-31    Querying XMLType Views

SELECT OBJECT_VALUE FROM department_xml
  WHERE XMLExists('$p/Department[Name="Executive"]'
                  PASSING OBJECT_VALUE AS "p");
 
OBJECT_VALUE
------------------------------------------------
<Department DepartmentId="90">
  <Name>Executive</Name>
  <Location>
    <Address>2004 Charade Rd</Address>
    <City>Seattle</City>
    <State>Washington</State>
    <Zip>98199</Zip>
    <Country>United States of America</Country>
  </Location>
  <EmployeeList>
    <Employee employeeNumber="101">
      <FirstName>Neena</FirstName>
      <LastName>Kochhar</LastName>
      <EmailAddress>NKOCHHAR</EmailAddress>
      <PHONE_NUMBER>515.123.4568</PHONE_NUMBER>
      <StartDate>2005-09-21</StartDate>
      <JobTitle>Administration Vice President</JobTitle>
      <Salary>17000</Salary>
      <Manager>Steven King</Manager>
      <Commission/>
    </Employee>
    <Employee employeeNumber="102">
      <FirstName>Lex</FirstName>
      <LastName>De Haan</LastName>
      <EmailAddress>LDEHAAN</EmailAddress>
      <PHONE_NUMBER>515.123.4569</PHONE_NUMBER>
      <StartDate>2001-01-13</StartDate>
      <JobTitle>Administration Vice President</JobTitle>
      <Salary>17000</Salary>
      <Manager>Steven King</Manager>
      <Commission/>
    </Employee>
  </EmployeeList>
</Department>
 
1 row selected.

Chapter 3
Generating XML Data from Relational Data

3-35



As can be seen from the following execution plan output, Oracle XML DB is able to
correctly rewrite the XPath-expression argument in the XMLExists expression into a
SELECT statement on the underlying relational tables.

SELECT OBJECT_VALUE FROM department_xml
  WHERE XMLExists('$p/Department[Name="Executive"]' PASSING OBJECT_VALUE AS "p");

PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------------------------------------
Plan hash value: 2414180351

------------------------------------------------------------------------------------------------------------
| Id  | Operation                              | Name              | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                       |                   |     1 |    80 |     3   (0)| 00:00:01 |
|   1 |  SORT AGGREGATE                        |                   |     1 |   115 |            |          |
|*  2 |   HASH JOIN                            |                   |    10 |  1150 |     7  (15)| 00:00:01 |
|*  3 |    HASH JOIN                           |                   |    10 |   960 |     5  (20)| 00:00:01 |
|   4 |     TABLE ACCESS BY INDEX ROWID BATCHED| EMPLOYEES         |    10 |   690 |     2   (0)| 00:00:01 |
|*  5 |      INDEX RANGE SCAN                  | EMP_DEPARTMENT_IX |    10 |       |     1   (0)| 00:00:01 |
|   6 |     TABLE ACCESS FULL                  | JOBS              |    19 |   513 |     2   (0)| 00:00:01 |
|   7 |    TABLE ACCESS FULL                   | EMPLOYEES         |   107 |  2033 |     2   (0)| 00:00:01 |
|   8 |  NESTED LOOPS                          |                   |     1 |    80 |     3   (0)| 00:00:01 |
|   9 |   NESTED LOOPS                         |                   |     1 |    68 |     3   (0)| 00:00:01 |
|* 10 |    TABLE ACCESS FULL                   | DEPARTMENTS       |     1 |    19 |     2   (0)| 00:00:01 |
|  11 |    TABLE ACCESS BY INDEX ROWID         | LOCATIONS         |     1 |    49 |     1   (0)| 00:00:01 |
|* 12 |     INDEX UNIQUE SCAN                  | LOC_ID_PK         |     1 |       |     0   (0)| 00:00:01 |
|* 13 |   INDEX UNIQUE SCAN                    | COUNTRY_C_ID_PK   |     1 |    12 |     0   (0)| 00:00:01 |
------------------------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   2 - access("M"."EMPLOYEE_ID"="E"."MANAGER_ID")
   3 - access("J"."JOB_ID"="E"."JOB_ID")
   5 - access("E"."DEPARTMENT_ID"=:B1)
  10 - filter("D"."DEPARTMENT_NAME"='Executive')
  12 - access("D"."LOCATION_ID"="L"."LOCATION_ID")
  13 - access("L"."COUNTRY_ID"="C"."COUNTRY_ID")
 
30 rows selected.

3.8.2 Generating XML Data from Relational Data Using DBURITYPE
You can generate XML data from relational data using SQL function DBURIType.

Function DBURIType exposes one or more rows in a given table or view as a single
XML document. The name of the root element is derived from the name of the table or
view. The root element contains a set of ROW elements. There is one ROW element for
each row in the table or view. The children of each ROW element are derived from the
columns in the table or view. Each child element contains a text node with the value of
the column for the given row.

Example 3-32 shows how to use SQL function DBURIType to access the contents of
table departments in database schema HR. It uses method getXML() to return the
resulting document as an XMLType instance.

Example 3-33 shows how to use an XPath predicate to restrict the rows that are
included in an XML document generated using DBURIType. The XPath expression in
the example restricts the XML document to DEPARTMENT_ID columns with value 10.

Chapter 3
Generating XML Data from Relational Data

3-36



SQL function DBURIType provides a simple way to expose some or all rows in
a relational table as one or more XML documents. The URL passed to function
DBURIType can be extended to return a single column from the view or table, but in
that case the URL must also include predicates that identify a single row in the target
table or view.

Example 3-34 illustrates this. The predicate [DEPARTMENT_ID="10"] causes the query
to return the value of column department_name for the departments row where column
department_id has the value 10.

SQL function DBURIType is less flexible than the SQL/XML functions:

• It provides no way to control the shape of the generated document.

• The data can come only from a single table or view.

• The generated document consists of one or more ROW elements. Each ROW element
contains a child for each column in the target table.

• The names of the child elements are derived from the column names.

To control the names of the XML elements, to include columns from more than one
table, or to control which columns from a table appear in the generated document,
create a relational view that exposes the desired set of columns as a single row, and
then use function DBURIType to generate an XML document from the contents of that
view.

Example 3-32    Generating XML Data from a Relational Table Using DBURIType
and getXML()

SELECT DBURIType('/HR/DEPARTMENTS').getXML() FROM DUAL;
 
DBURITYPE('/HR/DEPARTMENTS').GETXML()
------------------------------------------------------
<?xml version="1.0"?>
<DEPARTMENTS>
 <ROW>
  <DEPARTMENT_ID>10</DEPARTMENT_ID>
  <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME>
  <MANAGER_ID>200</MANAGER_ID>
  <LOCATION_ID>1700</LOCATION_ID>
 </ROW>
...
 <ROW>
  <DEPARTMENT_ID>20</DEPARTMENT_ID>
  <DEPARTMENT_NAME>Marketing</DEPARTMENT_NAME>
  <MANAGER_ID>201</MANAGER_ID>
  <LOCATION_ID>1800</LOCATION_ID>
 </ROW>
</DEPARTMENTS>

Example 3-33    Restricting Rows Using an XPath Predicate

SELECT DBURIType('/HR/DEPARTMENTS/ROW[DEPARTMENT_ID="10"]').getXML()
  FROM DUAL;
 
DBURITYPE('/HR/DEPARTMENTS/ROW[DEPARTMENT_ID="10"]').GETXML()

Chapter 3
Generating XML Data from Relational Data

3-37



------------------------------------------------------------------
<?xml version="1.0"?>
 <ROW>
  <DEPARTMENT_ID>10</DEPARTMENT_ID>
  <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME>
  <MANAGER_ID>200</MANAGER_ID>
  <LOCATION_ID>1700</LOCATION_ID>
 </ROW>

1 row selected.

Example 3-34    Restricting Rows and Columns Using an XPath Predicate

SELECT DBURIType(
         '/HR/DEPARTMENTS/ROW[DEPARTMENT_ID="10"]/DEPARTMENT_NAME').getXML()
  FROM DUAL;
 
DBURITYPE('/HR/DEPARTMENTS/ROW[DEPARTMENT_ID="10"]/DEPARTMENT_NAME').GETXML()
-----------------------------------------------------------------------------
<?xml version="1.0"?>
 <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME>
 
1 row selected.

3.9 Character Sets of XML Documents
There are a few ways in which Oracle XML DB determines which character sets are
used for XML documents

Caution:

AL32UTF8 is the Oracle Database character set that is appropriate for
XMLType data. It is equivalent to the IANA registered standard UTF-8
encoding, which supports all valid XML characters.

Do not confuse Oracle Database database character set UTF8 (no hyphen)
with database character set AL32UTF8 or with character encoding UTF-8.
Database character set UTF8 has been superseded by AL32UTF8. Do not
use UTF8 for XML data. Character set UTF8 supports only Unicode version
3.1 and earlier. It does not support all valid XML characters. AL32UTF8 has
no such limitation.

Using database character set UTF8 for XML data could potentially stop a
system or affect security negatively. If a character that is not supported by
the database character set appears in an input-document element name,
a replacement character (usually "?") is substituted for it. This terminates
parsing and raises an exception. It can cause an irrecoverable error.

• XML Encoding Declaration
You can use an XML encoding declaration to explicitly specify the character
encoding to use for a given XML entity.

Chapter 3
Character Sets of XML Documents

3-38



• Character-Set Determination When Loading XML Documents into the Database
Except for XML data obtained from a CLOB or VARCHAR value, character encoding
is determined by an encoding declaration when a document is loaded into the
database.

• Character-Set Determination When Retrieving XML Documents from the Database
Except for XML data stored in a CLOB or VARCHAR value, you can specify the
encoding to be used when it is retrieved from Oracle XML DB using a SQL client,
programmatic APIs, or transfer protocols.

3.9.1 XML Encoding Declaration
You can use an XML encoding declaration to explicitly specify the character encoding
to use for a given XML entity.

Each XML document is composed of units called entities. Each entity in an XML
document can use a different encoding for its characters. Entities that are stored in an
encoding other than UTF-8 or UTF-16 must begin with an XML declaration containing
an encoding specification indicating the character encoding in use. For example:

<?xml version='1.0' encoding='EUC-JP' ?>

Entities encoded in UTF-16 must begin with the Byte Order Mark (BOM), as described
in Appendix F of the XML 1.0 Reference. For example, on big-endian platforms, the
BOM required of a UTF-16 data stream is #xFEFF.

In the absence of both the encoding declaration and the BOM, the XML entity is
assumed to be encoded in UTF-8. Because ASCII is a subset of UTF-8, ASCII entities
do not require an encoding declaration.

In many cases, external sources of information are available, besides the XML data, to
provide the character encoding in use. For example, the encoding of the data can be
obtained from the charset parameter of the Content-Type field in an HTTP(S) request
as follows:

Content-Type: text/xml; charset=ISO-8859-4

3.9.2 Character-Set Determination When Loading XML Documents
into the Database

Except for XML data obtained from a CLOB or VARCHAR value, character encoding is
determined by an encoding declaration when a document is loaded into the database.

For XML data obtained from a CLOB or VARCHAR value, any encoding declaration
present is ignored,, because these two data types are always encoded in the database
character set.

In addition, when loading data into Oracle XML DB, either through programmatic APIs
or transfer protocols, you can provide external encoding to override the document
encoding declaration. An error is raised if you try to load a schema-based XML
document that contains characters that are not legal in the determined encoding.

The following examples show different ways to specify external encoding:

Chapter 3
Character Sets of XML Documents

3-39



• Using PL/SQL function DBMS_XDB_REPOS.createResource to create a file resource
from a BFILE, you can specify the file encoding with the CSID argument. If a
zero CSID is specified then the file encoding is auto-detected from the document
encoding declaration.

CREATE DIRECTORY xmldir AS '/private/xmldir';
CREATE OR REPLACE PROCEDURE loadXML(filename VARCHAR2, file_csid 
NUMBER) IS
  xbfile  BFILE;
  RET     BOOLEAN;
BEGIN
  xbfile := bfilename('XMLDIR', filename);
  ret := DBMS_XDB_REPOS.createResource('/public/
mypurchaseorder.xml', 
                                       xbfile,
                                       file_csid);
END;/

• Use the FTP protocol to load documents into Oracle XML DB. Use the quote
set_charset FTP command to indicate the encoding of the files to be loaded.

ftp> quote set_charset Shift_JIS  
ftp> put mypurchaseorder.xml

• Use the HTTP(S) protocol to load documents into Oracle XML DB. Specify the
encoding of the data to be transmitted to Oracle XML DB in the request header.

Content-Type: text/xml; charset= EUC-JP

3.9.3 Character-Set Determination When Retrieving XML Documents
from the Database

Except for XML data stored in a CLOB or VARCHAR value, you can specify the encoding
to be used when it is retrieved from Oracle XML DB using a SQL client, programmatic
APIs, or transfer protocols.

When XML data is stored as a CLOB or VARCHAR2 value, the encoding declaration, if
present, is always ignored for retrieval, just as for storage. The encoding of a retrieved
document can thus be different from the encoding explicitly declared in that document.

The character set for an XML document retrieved from the database is determined in
the following ways:

• SQL client – If a SQL client (such as SQL*Plus) is used to retrieve XML data, then
the character set is determined by the client-side environment variable NLS_LANG.
In particular, this setting overrides any explicit character-set declarations in the
XML data itself.

For example, if you set the client side NLS_LANG variable to
AMERICAN_AMERICA.AL32UTF8 and then retrieve an XML document with encoding
EUC_JP provided by declaration <?xml version="1.0" encoding="EUC-JP"?>, the
character set of the retrieved document is AL32UTF8, not EUC_JP.

Chapter 3
Character Sets of XML Documents

3-40



• PL/SQL and APIs – Using PL/SQL or programmatic APIs, you can retrieve XML
data into VARCHAR, CLOB, or XMLType data types. As for SQL clients, you can control
the encoding of the retrieved data by setting NLS_LANG.

You can also retrieve XML data into a BLOB value using XMLType and URIType
methods. These let you specify the character set of the returned BLOB value. Here
is an example:

CREATE OR REPLACE FUNCTION getXML(pathname VARCHAR2, charset 
VARCHAR2) 
  RETURN BLOB IS
  xblob BLOB;
BEGIN
  SELECT XMLSERIALIZE(DOCUMENT e.RES AS BLOB ENCODING charset) INTO 
xblob
    FROM RESOURCE_VIEW e WHERE equals_path(e.RES, pathname) = 1;
  RETURN xblob;
END;
/

• FTP – You can use the FTP quote set_nls_locale command to set the character
set:

ftp> quote set_nls_locale EUC-JP
ftp> get mypurchaseorder.xml

• HTTP(S) – You can use the Accept-Charset parameter in an HTTP(S) request:

/httptest/mypurchaseorder.xml  1.1 HTTP/Host: localhost:2345
Accept: text/*
Accept-Charset:  iso-8859-1, utf-8

Related Topics

• FTP Quote Methods
Oracle Database supports several FTP quote methods, which provide information
directly to Oracle XML DB.

• Character Sets for HTTP(S)
You can control the character sets used for data that is transferred using HTTP(S).

See Also:

Oracle Database Globalization Support Guide for information about
NLS_LANG

Chapter 3
Character Sets of XML Documents

3-41



Part II
Manipulation of XML Data in Oracle
XML DB

The following are covered here: XQuery, XMLType operations, and indexing of XML
data.

• XQuery and Oracle XML DB
The XQuery language is one of the main ways that you interact with XML data
in Oracle XML DB. Support for the language includes SQL*Plus commandXQUERY
and SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast.

• Query and Update of XML Data
There are many ways for applications to query and update XML data that is in
Oracle Database, both XML schema-based and non-schema-based.

• Indexes for XMLType Data
You can create indexes on your XML data, to focus on particular parts of it that you
query often and thus improve performance. There are various ways that you can
index XMLType data, whether it is XML schema-based or non-schema-based, and
regardless of the XMLType storage model you use.

• Transformation and Validation of XMLType Data
There are several Oracle SQL functions and XMLType APIs for transforming
XMLType data using XSLT stylesheets and for validating XMLType instances against
an XML schema.



4
XQuery and Oracle XML DB

The XQuery language is one of the main ways that you interact with XML data in
Oracle XML DB. Support for the language includes SQL*Plus commandXQUERY and
SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast.

• Overview of the XQuery Language
XQuery is the W3C language designed for querying and updating XML data.

• Overview of XQuery in Oracle XML DB
Oracle XML DB support for the XQuery language is provided through a
native implementation of SQL/XML functions XMLQuery, XMLTable, XMLExists,
and XMLCast. As a convenience, SQL*Plus command XQUERY is also provided,
which lets you enter XQuery expressions directly — in effect, this command turns
SQL*Plus into an XQuery command-line interpreter.

• SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast
SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast are defined by
the SQL/XML standard as a general interface between the SQL and XQuery
languages.

• URI Scheme oradb: Querying Table or View Data with XQuery
You can use XQuery function fn:collection to query data that is in database
tables and views.

• Oracle XQuery Extension Functions
Oracle XML DB adds some XQuery functions to those provided in the W3C
standard. These additional functions are in the Oracle XML DB namespace,
http://xmlns.oracle.com/xdb, which uses the predefined prefix ora.

• Oracle XQuery Extension-Expression Pragmas
The W3C XQuery specification lets an implementation provide implementation-
defined extension expressions. An XQuery extension expression is an XQuery
expression that is enclosed in braces ({, }) and prefixed by an implementation-
defined pragma. The Oracle implementation provides several such pragmas.

• XQuery Static Type-Checking in Oracle XML DB
When possible, Oracle XML DB performs static (compile time) type-checking of
queries.

• Oracle XML DB Support for XQuery
Oracle XML DB support for the XQuery language includes SQL support and
support for XQuery functions and operators.

4.1 Overview of the XQuery Language
XQuery is the W3C language designed for querying and updating XML data.

Oracle XML DB supports the following W3C XQuery standards:

• XQuery 1.0 Recommendation

• XQuery Update Facility 1.0 Recommendation

4-1



• XQuery and XPath Full Text 1.0 Recommendation

This section presents an overview of the XQuery language. For more information,
consult a recent book on the language or refer to the standards documents that define
it, all of which are available at http://www.w3c.org/.

• XPath Expressions Are XQuery Expressions
The XPath language is a W3C Recommendation for navigating XML documents.
It is a subset of the XQuery language: an XPath expression is also an XQuery
expression.

• XQuery: A Functional Language Based on Sequences
XQuery is similar to SQL in many ways, but just as SQL is designed for
querying structured, relational data, XQuery is designed especially for querying
semi-structured, XML data from a variety of data sources.

• XQuery Expressions
XQuery expressions are case-sensitive. An XQuery expression is either a simple
expression or an updating expression, the latter being an expression that
represents data modification. More precisely, these are the possible XQuery
expressions:

• FLWOR Expressions
Just as for XQuery in general, there is a lot to learn about FLWOR expressions in
particular. This section provides a brief overview.

4.1.1 XPath Expressions Are XQuery Expressions
The XPath language is a W3C Recommendation for navigating XML documents. It is a
subset of the XQuery language: an XPath expression is also an XQuery expression.

XPath models an XML document as a tree of nodes. It provides a set of operations
that walk this tree and apply predicates and node-test functions. Applying an XPath
expression to an XML document results in a set of nodes. For example, the
expression /PO/PONO selects all PONO child elements under the PO root element of a
document.

Table 4-1 lists some common constructs used in XPath.

Table 4-1    Common XPath Constructs

XPath Construct Description

/ Denotes the root of the tree in an XPath expression. For example, /PO refers to the child
of the root node whose name is PO.

/ Used as a path separator to identify the child element nodes of a given element node. For
example, /PurchaseOrder/Reference identifies Reference elements that are children
of PurchaseOrder elements that are children of the root element.

// Used to identify all descendants of the current node. For example, PurchaseOrder//
ShippingInstructions matches any ShippingInstructions element under the
PurchaseOrder element.

* Used as a wildcard to match any child node. For example, /PO/*/STREET matches any
street element that is a grandchild of the PO element.

Chapter 4
Overview of the XQuery Language

4-2



Table 4-1    (Cont.) Common XPath Constructs

XPath Construct Description

[ ] Used to denote predicate expressions. XPath supports a rich list of binary operators
such as or, and, and not. For example, /PO[PONO = 20 and PNAME = "PO_2"]/
SHIPADDR selects the shipping address element of all purchase orders whose purchase-
order number is 20 and whose purchase-order name is PO_2.

Brackets are also used to denote a position (index). For example, /PO/PONO[2] identifies
the second purchase-order number element under the PO root element.

Functions XPath and XQuery support a set of built-in functions such as substring, round,
and not. In addition, these languages provide for extension functions through the
use of namespaces. Oracle XQuery extension functions use the namespace prefix
ora, for namespace http://xmlns.oracle.com/xdb. See Oracle XQuery Extension
Functions .

An XPath expression must identify a single node or a set of element, text, or attribute
nodes. The result of evaluating an XPath expression is never a Boolean expression.

You can select XMLType data using PL/SQL, C, or Java. You can also use XMLType
method getNumberVal() to retrieve XML data as a NUMBER value.

Note:

Oracle SQL functions and XMLType methods respect the W3C XPath
recommendation, which states that if an XPath expression targets no nodes
when applied to XML data, then an empty sequence must be returned. An
error must not be raised in this case.

4.1.2 XQuery: A Functional Language Based on Sequences
XQuery is similar to SQL in many ways, but just as SQL is designed for querying
structured, relational data, XQuery is designed especially for querying semi-structured,
XML data from a variety of data sources.

You can use XQuery to query XML data wherever it is found, whether it is stored in
database tables, available through Web Services, or otherwise created on the fly. In
addition to querying XML data, XQuery can be used to construct XML data. In this
regard, XQuery can serve as an alternative or a complement to both XSLT and the
other SQL/XML publishing functions, such as XMLElement.

XQuery builds on the Post-Schema-Validation Infoset (PSVI) data model, which unites
the XML Information Set (Infoset) data model and the XML Schema type system.
XQuery defines a new data model, the XQuery Data Model (XDM), which is based on
sequences. Another name for an XQuery sequence is an XDM instance.

• XQuery Is About Sequences
XQuery is all about manipulating sequences. This makes XQuery similar to a
set-manipulation language, except that sequences are ordered and can contain
duplicate items. XQuery sequences differ from the sequences in some other
languages in that nested XQuery sequences are always flattened in their effect.

Chapter 4
Overview of the XQuery Language

4-3



• XQuery Is Referentially Transparent
XQuery is a functional language. As such, it consists of a set of possible
expressions that are evaluated and whose evaluation returns values (results).

• XQuery Update Has Side Effects on Your Data
Referential transparency applies to the evaluation of XQuery expressions. It does
not imply that this evaluation never has a side effect on your data. In particular,
you use XQuery Update to modify your data. That modification is a side effect of
evaluating an XQuery updating expression.

• XQuery Update Snapshots
An XQuery expression (query) can call for more than one update operation.
XQuery Update performs all such operations for the same query as an atomic
operation: either they all succeed or none of them do (if an error is raised).

• XQuery Full Text Provides Full-Text Search
The XQuery and XPath Full Text 1.0 Recommendation (XQuery Full Text) defines
XQuery support for full-text searches in queries. It defines full-text selection
operators that perform the search and return instances of the AllMatches model,
which complements the XQuery Data Model (XDM).

4.1.2.1 XQuery Is About Sequences
XQuery is all about manipulating sequences. This makes XQuery similar to a set-
manipulation language, except that sequences are ordered and can contain duplicate
items. XQuery sequences differ from the sequences in some other languages in that
nested XQuery sequences are always flattened in their effect.

In many cases, sequences can be treated as unordered, to maximize optimization –
where this is available, it is under your control. This unordered mode can be applied
to join order in the treatment of nested iterations (for), and it can be applied to the
treatment of XPath expressions (for example, in /a/b, the matching b elements can be
processed without regard to document order).

An XQuery sequence consists of zero or more items, which can be either atomic
(scalar) values or XML nodes. Items are typed using a rich type system that is based
upon the types of XML Schema. This type system is a major change from that of
XPath 1.0, which is limited to simple scalar types such as Boolean, number, and string.

4.1.2.2 XQuery Is Referentially Transparent
XQuery is a functional language. As such, it consists of a set of possible expressions
that are evaluated and whose evaluation returns values (results).

The result of evaluating an XQuery expression has two parts, at least one of which is
empty: (a) a sequence (an XDM instance) and (b) a pending update list. Informally,
the sequence is sometimes spoken of as the expression value, especially when the
pending update list is empty, meaning that no data updates are involved.

As a functional language, XQuery is also referentially transparent. This means that
the same expression evaluated in the same context returns the same value.

Exceptions to this desirable mathematical property include the following:

• XQuery expressions that derive their value from interaction with the external
environment. For example, an expression such as fn:current-time(...) or
fn:doc(...) does not necessarily always return the same value, since it depends

Chapter 4
Overview of the XQuery Language

4-4



on external conditions that can change (the time changes; the content of the target
document might change).

In some cases, like that of fn:doc, XQuery is defined to be referentially
transparent within the execution of a single query: within a query, each invocation
of fn:doc with the same argument results in the same document.

• XQuery expressions that are defined to be dependent on the particular XQuery
language implementation. The result of evaluating such expressions might vary
between implementations. Function fn:doc is an example of a function that is
essentially implementation-defined.

XQuery Update is not in the list; it does not present an exception to referential
transparency. See XQuery Update Has Side Effects on Your Data.

Referential transparency applies also to XQuery variables: the same variable in
the same context has the same value. Functional languages are like mathematics
formalisms in this respect and unlike procedural, or imperative, programming
languages. A variable in a procedural language is really a name for a memory location;
it has a current value, or state, as represented by its content at any time. A variable in
a declarative language such as XQuery is really a name for a static value.

4.1.2.3 XQuery Update Has Side Effects on Your Data
Referential transparency applies to the evaluation of XQuery expressions. It does not
imply that this evaluation never has a side effect on your data. In particular, you use
XQuery Update to modify your data. That modification is a side effect of evaluating an
XQuery updating expression.

The side effect is one thing; the expression value is another. The value returned from
evaluation includes the pending update list that describes the updates to carry out. For
a given XQuery expression, this description is the same regardless of the context in
which evaluation occurs (with the above-mentioned exceptions).

The XQuery Update standard defines how the XDM instances of your data are
updated. How those updates are propagated to persistent data stores (for example
XMLType tables and columns) is implementation-dependent.

4.1.2.4 XQuery Update Snapshots
An XQuery expression (query) can call for more than one update operation. XQuery
Update performs all such operations for the same query as an atomic operation: either
they all succeed or none of them do (if an error is raised).

The unit of change is thus an entire XQuery query. To effect this atomic update
behavior, before evaluating your query XQuery Update takes a snapshot of the data
(XDM instances) whose modification is called for by the query. It also adds the update
operations called for by the query to the pending update list. The snapshot is an
evaluation context for an XDM instance that is the update target.

As the last step of XQuery expression evaluation, the pending update list is processed,
applying the indicated update operations in an atomic fashion, and terminating the
snapshot.

The atomic nature of snapshot semantics means that a set of update operations used
in a given query are not necessarily applied in the order written. In fact, the order
of applying update operations is fixed and specified by the XQuery Update Feature
standard.

Chapter 4
Overview of the XQuery Language

4-5



This means that an update operation does not see the result of any other update
operation for the same query. There is no notion of an intermediate or interim update
state – all updates for a query are applied together, atomically.

4.1.2.5 XQuery Full Text Provides Full-Text Search
The XQuery and XPath Full Text 1.0 Recommendation (XQuery Full Text) defines
XQuery support for full-text searches in queries. It defines full-text selection operators
that perform the search and return instances of the AllMatches model, which
complements the XQuery Data Model (XDM).

An AllMatches instance describes all possible solutions to a full-text query for a given
search context item. Each solution is described by a Match instance, which contains
the search-context tokens (StringInclude instances) that must be included and those
(StringExclude instances) that must be excluded.

In short, XQuery Full Text adds a full-text contains expression to the XQuery language.
You use such an expression in your query to search the text of element nodes and
their descendent elements (you can also search the text of attribute nodes).

4.1.3 XQuery Expressions
XQuery expressions are case-sensitive. An XQuery expression is either a simple
expression or an updating expression, the latter being an expression that represents
data modification. More precisely, these are the possible XQuery expressions:

• Basic updating expression – an insert, delete, replace, or rename expression,
or a call to an updating function (see the XQuery Update Facility 1.0
Recommendation).

• Updating expression – a basic updating expression or an expression (other
than a transform expression) that contains another updating expression (this is a
recursive definition).

• Simple expression – An XQuery 1.0 expression. It does not call for any updating.

The pending update list that results from evaluating a simple expression is empty. The
sequence value that results from evaluating an updating expression is empty.

Simple expressions include the following:

• Primary expression – literal, variable, or function application. A variable name
starts with a dollar-sign ($) – for example, $foo. Literals include numerals, strings,
and character or entity references.

• XPath expression – Any XPath expression. The XPath 2.0 standard is a subset
of XQuery.

• FLWOR expression – The most important XQuery expression, composed of the
following, in order, from which FLWOR takes its name: for, let, where, order by,
return.

• XQuery sequence – The comma (,) constructor creates sequences. Sequence-
manipulating functions such as union and intersect are also available. All
XQuery sequences are effectively flat: a nested sequence is treated as its
flattened equivalent. Thus, for instance, (1, 2, (3, 4, (5), 6), 7) is treated as
(1, 2, 3, 4, 5, 6, 7). A singleton sequence, such as (42), acts the same in
most XQuery contexts as does its single item, 42. Remember that the result of any
XQuery expression is a sequence.

Chapter 4
Overview of the XQuery Language

4-6



• Direct (literal) constructions – XML element and attribute syntax automatically
constructs elements and attributes: what you see is what you get. For example,
the XQuery expression <a>33</a> constructs the XML element <a>33</a>.

• Computed (dynamic) constructions – You can construct XML data at run time
using computed values. For example, the following XQuery expression constructs
this XML data: <foo toto="5"><bar>tata titi</bar> why? </foo>.

<foo>attribute toto {2+3},
     element bar {"tata", "titi"},
     text {" why? "}</foo>

In this example, element foo is a direct construction; the other constructions are
computed. In practice, the arguments to computed constructors are not literals
(such as toto and "tata"), but expressions to be evaluated (such as 2+3). Both
the name and the value arguments of an element or attribute constructor can
be computed. Braces ({, }) are used to mark off an XQuery expression to be
evaluated.

• Conditional expression – As usual, but remember that each part of the
expression is itself an arbitrary expression. For instance, in this conditional
expression, each of these subexpressions can be any XQuery expression:
something, somethingElse, expression1, and expression2.

 if (something < somethingElse) then expression1 else expression2

• Arithmetic, relational expression – As usual, but remember that each relational
expression returns a (Boolean1) value. Examples:

2 + 3
42 < $a + 5
(1, 4) = (1, 2)
5 > 3 eq true()

• Quantifier expression – Universal (every) and existential (some) quantifier
functions provide shortcuts to using a FLWOR expression in some cases.
Examples:

every $foo in doc("bar.xml")//Whatever satisfies $foo/@bar > 42
some $toto in (42, 5), $titi in (123, 29, 5) satisfies $toto = $titi

• Regular expression – XQuery regular expressions are based on XML Schema
1.0 and Perl. (See Support for XQuery Functions and Operators.)

• Type expression – An XQuery expression that represents an XQuery
type. Examples: item(), node(), attribute(), element(), document-node(),
namespace(), text(), xs:integer, xs:string.2

Type expressions can have occurrence indicators: ? (optional: zero or one), *
(zero or more), + (one or more). Examples: document-node(element())*, item()+,
attribute()?.

1 The value returned is a sequence, as always. However, in XQuery, a sequence of one item is equivalent to that
item itself. In this case, the single item is a Boolean value.

2 Namespace prefix xs is predefined for the XML Schema namespace, http://www.w3.org/2001/XMLSchema.

Chapter 4
Overview of the XQuery Language

4-7



XQuery also provides operators for working with types. These include cast as,
castable as, treat as, instance of, typeswitch, and validate. For example,
"42" cast as xs:integer is an expression whose value is the integer 42. (It is
not, strictly speaking, a type expression, because its value does not represent a
type.)

• Full-text contains expression – An XQuery expression that represents a full-
text search. This expression is provided by the XQuery and XPath Full Text 1.0
Recommendation. A full-text contains expression (FTContainsExpr) supported by
Oracle has these parts: a search context that specifies the items to search, and a
full-text selection that filters those items, selecting matches.

The selection part is itself composed of the following:

– Tokens and phrases used for matching.

– Optional match options, such as the use of stemming.

– Optional Boolean operators for combining full-text selections.

– Optional constraint operators, such as positional filters (e.g. ordered
window).

See Support for XQuery Full Text.

4.1.4 FLWOR Expressions
Just as for XQuery in general, there is a lot to learn about FLWOR expressions in
particular. This section provides a brief overview.

FLWOR is the most general expression syntax in XQuery. FLWOR (pronounced
"flower") stands for for, let, where, order by, and return. A FLWOR expression
has at least one for or let clause and a return clause; single where and order by
clauses are optional. Only the return clause can contain an updating expression; the
other clauses cannot.

• for – Bind one or more variables each to any number of values, in turn. That is,
for each variable, iterate, binding the variable to a different value for each iteration.

At each iteration, the variables are bound in the order they appear, so that the
value of a variable $earlier that is listed before a variable $later in the for list,
can be used in the binding of variable $later. For example, during its second
iteration, this expression binds $i to 4 and $j to 6 (2+4):

 for $i in (3, 4), $j in ($i, 2+$i)

• let – Bind one or more variables.

Just as with for, a variable can be bound by let to a value computed using
another variable that is listed previously in the binding list of the let (or an
enclosing for or let). For example, this expression binds $j to 5 (3+2):

let $i := 3, $j := $i + 2

• where – Filter the for and let variable bindings according to some condition. This
is similar to a SQL WHERE clause.

• order by – Sort the result of where filtering.

• return – Construct a result from the ordered, filtered values. This is the result of
the FLWOR expression as a whole. It is a flattened sequence.

Chapter 4
Overview of the XQuery Language

4-8



If the return clause contains an updating expression then that expression is
evaluated for each tuple generated by the other clauses. The pending update lists
from these evaluations are then merged as the result of the FLWOR expression.

Expressions for and let act similarly to a SQL FROM clause. Expression where
acts like a SQL WHERE clause Expression order by is similar to ORDER BY in SQL.
Expression return is like SELECT in SQL. Except for the two keywords whose names
are the same in both languages (where, order by), FLWOR clause order is more or
less opposite to the SQL clause order, but the meanings of the corresponding clauses
are quite similar.

Using a FLWOR expression (with order by) is the only way to construct an XQuery
sequence in any order other than document order.

4.2 Overview of XQuery in Oracle XML DB
Oracle XML DB support for the XQuery language is provided through a native
implementation of SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast.
As a convenience, SQL*Plus command XQUERY is also provided, which lets you enter
XQuery expressions directly — in effect, this command turns SQL*Plus into an XQuery
command-line interpreter.

Oracle XML DB compiles XQuery expressions that are passed as arguments to
SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast. This compilation
produces SQL query blocks and operator trees that use SQL/XML functions and
XPath functions. A SQL statement that includes XMLQuery, XMLTable, XMLExists, or
XMLCast is compiled and optimized as a whole, leveraging both relational database
and XQuery-specific optimization technologies. Depending on the XML storage and
indexing methods used, XPath functions can be further optimized. The resulting
optimized operator tree is executed in a streaming fashion.

Note:

Oracle XML Developer's Kit (XDK) supports XQuery on the mid-tier. You do
not need access to Oracle Database to use XQuery. XDK lets you evaluate
XQuery expressions using XQuery API for Java (XQJ).

• When To Use XQuery
You can use XQuery to do many of the same things that you might do using
the SQL/XML generation functions or XSLT; there is a great deal of overlap. The
decision to use one or the other tool to accomplish a given task can be based on
many considerations, most of which are not specific to Oracle Database. Please
consult external documentation on this general question.

• Predefined XQuery Namespaces and Prefixes
Several namespaces and prefixes are predefined for use with XQuery in Oracle
XML DB.

Chapter 4
Overview of XQuery in Oracle XML DB

4-9



Related Topics

• SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast
SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast are defined by
the SQL/XML standard as a general interface between the SQL and XQuery
languages.

• Using the SQL*Plus XQUERY Command
You can evaluate an XQuery expression using the SQL*Plus XQUERY command.

• Query and Update of XML Data
There are many ways for applications to query and update XML data that is in
Oracle Database, both XML schema-based and non-schema-based.

See Also:

• Oracle XQuery Extension Functions for Oracle-specific XQuery functions
that extend the language

• Oracle XML DB Support for XQuery for details about Oracle XML DB
support for XQuery

• Oracle XML Developer's Kit Programmer's Guide for information about
using XQJ

4.2.1 When To Use XQuery
You can use XQuery to do many of the same things that you might do using the
SQL/XML generation functions or XSLT; there is a great deal of overlap. The decision
to use one or the other tool to accomplish a given task can be based on many
considerations, most of which are not specific to Oracle Database. Please consult
external documentation on this general question.

A general pattern of use is that XQuery is often used when the focus is the world of
XML data, and the SQL/XML generation functions (XMLElement, XMLAgg, and so on)
are often used when the focus is the world of relational data.

Other things being equal, if a query constructs an XML document from fragments
extracted from existing XML documents, then it is likely that an XQuery FLOWR
expression is simpler (simplifying code maintenance) than extracting scalar values
from relational data and constructing appropriate XML data using SQL/XML generation
functions. If, instead, a query constructs an XML document from existing relational
data, the SQL/XML generation functions can often be more suitable.

With respect to Oracle XML DB, you can expect the same general level of
performance using the SQL/XML generation functions as with XMLQuery and XMLTable
— all are subject to rewrite optimizations.

4.2.2 Predefined XQuery Namespaces and Prefixes
Several namespaces and prefixes are predefined for use with XQuery in Oracle
XML DB.

Chapter 4
Overview of XQuery in Oracle XML DB

4-10



Table 4-2    Predefined Namespaces and Prefixes

Prefix Namespace Description

ora http://xmlns.oracle.com/xdb Oracle XML DB namespace

local http://www.w3.org/2003/11/xpath-local-functions XPath local function declaration
namespace

fn http://www.w3.org/2003/11/xpath-functions XPath function namespace

xml http://www.w3.org/XML/1998/namespace XML namespace

xs http://www.w3.org/2001/XMLSchema XML Schema namespace

xsi http://www.w3.org/2001/XMLSchema-instance XML Schema instance namespace

You can use these prefixes in XQuery expressions without first declaring them in the
XQuery-expression prolog. You can redefine any of them except xml in the prolog. All
of these prefixes except ora are predefined in the XQuery standard.

4.3 SQL/XML Functions XMLQUERY, XMLTABLE,
XMLExists, and XMLCast

SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast are defined by the
SQL/XML standard as a general interface between the SQL and XQuery languages.

They are referred to in this book as SQL/XML query and update functions. As is the
case for the other SQL/XML functions, these functions let you take advantage of the
power and flexibility of both SQL and XML. Using these functions, you can construct
XML data using relational data, query relational data as if it were XML, and construct
relational data from XML data.

SQL functions XMLExists and XMLCast are documented elsewhere in this chapter. This
section presents functions XMLQuery and XMLTable, but many of the examples in this
chapter use also XMLExists and XMLCast. In terms of typical use:

• XMLQuery and XMLCast are typically used in a SELECT list.

• XMLTable is typically used in a SQL FROM clause.

• XMLExists is typically used in a SQL WHERE clause.

Both XMLQuery and XMLTable evaluate an XQuery expression. In the XQuery
language, an expression always returns a sequence of items. Function XMLQuery
aggregates the items in this sequence to return a single XML document or fragment.
Function XMLTable returns a SQL table whose rows each contain one item from the
XQuery sequence.

• XMLQUERY SQL/XML Function in Oracle XML DB
Use SQL/XML function XMLQuery to construct or query XML data.

• XMLTABLE SQL/XML Function in Oracle XML DB
You use SQL/XML function XMLTable to decompose the result of an XQuery-
expression evaluation into the relational rows and columns of a new, virtual table.
You can insert this data into a pre-existing database table, or you can query it
using SQL — in a join expression, for example.

Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast

4-11



• XMLEXISTS SQL/XML Function in Oracle XML DB
SQL/XML standard function XMLExists checks whether a given XQuery
expression returns a non-empty XQuery sequence. If so, the function returns TRUE.
Otherwise, it returns FALSE.

• Using XMLExists to Find a Node
You can use SQL/XML standard function XMLExists to find a given node. You can
create function-based indexes using XMLExists. You can also create an XMLIndex
index to help speed up arbitrary XQuery searching.

• XMLCAST SQL/XML Function in Oracle XML DB
You can use SQL/XML function XMLCast to cast an XQuery value to a SQL data
type.

• Using XMLCAST to Extract the Scalar Value of an XML Fragment
You can use standard SQL/XML function XMLCast to extract the scalar value of an
XML fragment.

See Also:

• Oracle Database SQL Language Reference for information about Oracle
support for the SQL/XML standard

• http://www.w3.org/TR/xquery-30/ for information about the XQuery
language

• Generation of XML Data Using SQL Functions for information about
using other SQL/XML functions with Oracle XML DB

4.3.1 XMLQUERY SQL/XML Function in Oracle XML DB
Use SQL/XML function XMLQuery to construct or query XML data.

The function takes as arguments an XQuery expression, as a string literal, and an
optional XQuery context item, as a SQL expression. The context item establishes the
XPath context in which the XQuery expression is evaluated. Additionally, XMLQuery
accepts as arguments any number of SQL expressions whose values are bound to
XQuery variables during the XQuery expression evaluation.

The function returns the result of evaluating the XQuery expression, as an XMLType
instance.

Figure 4-1    XMLQUERY Syntax

XMLQUERY

( XQuery_string

XML_passing_clause

RETURNING CONTENT

NULL ON EMPTY

)

Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast

4-12



XML_passing_clause ::=

PASSING

BY VALUE

expr

AS identifier

,

• XQuery_string is a complete XQuery expression, possibly including a prolog, as a
literal string.

• The XML_passing_clause is the keyword PASSING followed by one or more SQL
expressions (expr) that each return an XMLType instance or an instance of a SQL
scalar data type (that is, not an object or collection data type). Each expression
(expr) can be a table or view column value, a PL/SQL variable, or a bind variable
with proper casting. All but possibly one of the expressions must each be followed
by the keyword AS and an XQuery identifier. The result of evaluating each expr
is bound to the corresponding identifier for the evaluation of XQuery_string.
If there is an expr that is not followed by an AS clause, then the result of
evaluating that expr is used as the context item for evaluating XQuery_string.
Oracle XML DB supports only passing BY VALUE, not passing BY REFERENCE, so
the clause BY VALUE is implicit and can be omitted.

• RETURNING CONTENT indicates that the value returned by an application of XMLQuery
is an instance of parameterized XML type XML(CONTENT), not parameterized type
XML(SEQUENCE). It is a document fragment that conforms to the extended Infoset
data model. As such, it is a single document node with any number of children.
The children can each be of any XML node type; in particular, they can be text
nodes.

Oracle XML DB supports only the RETURNING CONTENT clause of SQL/XML function
XMLQuery; it does not support the RETURNING SEQUENCE clause.

You can pass an XMLType column, table, or view as the context-item argument to
function XMLQuery — see, for example, Example 5-8.

To query a relational table or view as if it were XML data, without having to first create
a SQL/XML view on top of it, use XQuery function fn:collection within an XQuery
expression, passing as argument a URI that uses the URI-scheme name oradb
together with the database location of the data. See URI Scheme oradb: Querying
Table or View Data with XQuery.

Note:

Prior to Oracle Database 11g Release 2, some users employed Oracle SQL
functions extract and extractValue to do some of what can be done better
using SQL/XML functions XMLQuery and XMLCast. SQL functions extract
and extractValue are deprecated in Oracle Database 11g Release 2.

Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast

4-13



See Also:

Oracle Database SQL Language Reference for reference information about
SQL/XML function XMLQuery in Oracle Database

4.3.2 XMLTABLE SQL/XML Function in Oracle XML DB
You use SQL/XML function XMLTable to decompose the result of an XQuery-
expression evaluation into the relational rows and columns of a new, virtual table.
You can insert this data into a pre-existing database table, or you can query it using
SQL — in a join expression, for example.

SeeExample 5-9.

You use XMLTable in a SQL FROM clause.

Figure 4-2    XMLTABLE Syntax

XMLTABLE (

XML_namespaces_clause ,

XQuery_string XMLTABLE_options )

XML_namespaces_clause ::=

XMLNAMESPACES (
string AS identifier

DEFAULT string

,

)

Note: You can specify at most one DEFAULT string clause.

XMLTABLE_options ::=

XML_passing_clause RETURNING SEQUENCE BY REF COLUMNS XML_table_column

,

XML_passing_clause ::=

PASSING

BY VALUE

expr

AS identifier

,

Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast

4-14



XML_table_column ::=

column

FOR ORDINALITY

datatype

XMLTYPE

( SEQUENCE ) BY REF

PATH string DEFAULT expr

• XQuery_string is sometimes called the row pattern of the XMLTable call. It is a
complete XQuery expression, possibly including a prolog, as a literal string. The
value of the expression serves as input to the XMLTable function; it is this XQuery
result that is decomposed and stored as relational data.

• The optional XMLNAMESPACES clause contains XML namespace declarations that
are referenced by XQuery_string and by the XPath expression in the PATH clause
of XML_table_column.

• The XML_passing_clause is the keyword PASSING followed by one or more SQL
expressions (expr) that each return an XMLType instance or an instance of a SQL
scalar data type (that is, not an object or collection data type). Each expression
(expr) can be a table or view column value, a PL/SQL variable, or a bind variables
with proper casting. All but possibly one of the expressions must each be followed
by the keyword AS and an XQuery identifier. The result of evaluating each expr
is bound to the corresponding identifier for the evaluation of XQuery_string.
If there is an expr that is not followed by an AS clause, then the result of
evaluating that expr is used as the context item for evaluating XQuery_string.
Oracle XML DB supports only passing BY VALUE, not passing BY REFERENCE, so
the clause BY VALUE is implicit and can be omitted.

• The optional COLUMNS clause defines the columns of the virtual table to be created
by XMLTable.

– If you omit the COLUMNS clause, then XMLTable returns a row with a single
XMLType pseudo-column, named COLUMN_VALUE.

– FOR ORDINALITY specifies that column is to be a column of generated row
numbers (SQL data type NUMBER). The row numbers start with 1. There must
be at most one FOR ORDINALITY clause.

– For each resulting column except the FOR ORDINALITY column, you must
specify the column data type, which can be XMLType or any other SQL data
type (called datatype in the syntax description). The resulting column content
is an instance of the data type specified.

– For data type XMLType, if you also include the specification (SEQUENCE) BY REF
then a reference to the source data targeted by the PATH expression (string)
is returned as the column content. Otherwise, column contains a copy of that
targeted data.

Returning the XMLType data by reference lets you specify other columns whose
paths target nodes in the source data that are outside those targeted by the
PATH expression for column. See Example 5-13.

Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast

4-15



– The optional PATH clause specifies that the portion of the XQuery result that is
addressed by XQuery expression string is to be used as the column content.
This XQuery expression is sometimes called the column pattern. You can
use multiple PATH clauses to split the XQuery result into different virtual-table
columns.

If you omit PATH, then the XQuery expression column is assumed. For
example, these two expressions are equivalent:

XMLTable(... COLUMNS foo)
XMLTable(... COLUMNS foo PATH 'FOO')

The XQuery expression string must represent a relative path; it is relative to
the path XQuery_string.

– The optional DEFAULT clause specifies the value to use when the PATH
expression results in an empty sequence (or NULL). Its expr is an XQuery
expression that is evaluated to produce the default value.

See Also:

Oracle Database SQL Language Reference for reference information about
SQL/XML function XMLTable in Oracle Database

Note:

Prior to Oracle Database 11g Release 2, some users employed Oracle
SQL function XMLSequence within a SQL TABLE collection expression, that
is, TABLE (XMLSequence(...)), to do some of what can be done better using
SQL/XML function XMLTable. Function XMLSequence is deprecated in Oracle
Database 11g Release 2.

See Oracle Database SQL Language Reference for information about the
SQL TABLE collection expression.

• Chaining Calls to SQL/XML Function XMLTABLE
When you need to expose data contained at multiple levels in an XMLType table as
individual rows in a relational table (or view), you use the same general approach
as for breaking up a single level: Use SQL/XML function XMLTable to define the
columns making up the table and map the XML nodes to those columns.

4.3.2.1 Chaining Calls to SQL/XML Function XMLTABLE
When you need to expose data contained at multiple levels in an XMLType table as
individual rows in a relational table (or view), you use the same general approach as
for breaking up a single level: Use SQL/XML function XMLTable to define the columns
making up the table and map the XML nodes to those columns.

But in this case you apply function XMLTable to each document level that is to
be broken up and stored in relational columns. Use this technique of chaining

Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast

4-16



multiple XMLTable calls whenever there is a one-to-many (1:N) relationship between
documents in the XMLType table and the rows in the relational table.

You pass one level of XMLType data from one XMLTable call to the next, specifying its
column type as XMLType.

When you chain two XMLTable calls, the row pattern of each call should target the
deepest node that is a common ancestor to all of the nodes that are referenced in the
column patterns of that call.

This is illustrated in Example 4-1.

Each PurchaseOrder element in XMLType table po_binaryxml contains a LineItems
element, which in turn contains one or more LineItem elements. Each LineItem
element has child elements, such as Description, and an ItemNumber attribute. To
make such lower-level data accessible as a relational value, you use XMLTable to
project the collection of LineItem elements.

When element PurchaseOrder is decomposed by the first call to XMLTable, its
descendant LineItem element is mapped to a column of type XMLType, which contains
an XML fragment. That column is then passed to a second call to XMLTable to be
broken by it into its various parts as multiple columns of relational values.

The first call to XMLTable uses /PurchaseOrder as the row pattern, because
PurchaseOrder is the deepest common ancestor node for the column patterns,
Reference and LineItems/LineItem.

The second call to XMLTable uses /LineItem as its row pattern, because that node
is the deepest common ancestor node for each of its column patterns (@ItemNumber,
Description, Part/@Id, and so on).

The column pattern (LineItems/LineItem) for the column (po.lineitem) that is
passed from the first XMLTable call t o the second ends with the repeating element
(LineItem) that the second XMLTable call decomposes. That repeating element, written
with a leading slash (/), is used as the first element of the row pattern for the second
XMLTable call.

The row pattern in each case is thus expressed as an absolute path; that is, it starts
with /. It is the starting point for decomposition by XMLTable. Column patterns, on the
other hand, never start with a slash (/); they are always relative to the row pattern of
the same XMLTable call.

Example 4-1    Chaining XMLTable Calls

  SELECT po.reference, li.*
    FROM po_binaryxml p,
         XMLTable('/PurchaseOrder' PASSING p.OBJECT_VALUE
                  COLUMNS
                    reference VARCHAR2(30) PATH 'Reference',
                    lineitem  XMLType      PATH 'LineItems/LineItem') po,
         XMLTable('/LineItem' PASSING po.lineitem
                  COLUMNS
                    itemno      NUMBER(38)    PATH '@ItemNumber',
                    description VARCHAR2(256) PATH 'Description',
                    partno      VARCHAR2(14)  PATH 'Part/@Id',
                    quantity    NUMBER(12, 2) PATH 'Part/@Quantity',
                    unitprice   NUMBER(8, 4)  PATH 'Part/@UnitPrice') li;

Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast

4-17



4.3.3 XMLEXISTS SQL/XML Function in Oracle XML DB
SQL/XML standard function XMLExists checks whether a given XQuery expression
returns a non-empty XQuery sequence. If so, the function returns TRUE. Otherwise, it
returns FALSE.

Figure 4-3 describes the syntax for function XMLExists.

Figure 4-3    XMLExists Syntax

XMLEXISTS ( XQuery_string

XML_passing_clause

)

XML_passing_clause ::=

PASSING

BY VALUE

expr

AS identifier

,

• XQuery_string is a complete XQuery expression, possibly including a prolog,
as a literal string. It can contain XQuery variables that you bind using the
XQuery PASSING clause (XML_passing_clause in the syntax diagram). The
predefined namespace prefixes recognized for SQL/XML function XMLQuery are
also recognized in XQuery_string — see Predefined XQuery Namespaces and
Prefixes.

• The XML_passing_clause is the keyword PASSING followed by one or more SQL
expressions (expr) that each return an XMLType instance or an instance of a SQL
scalar data type. All but possibly one of the expressions must each be followed
by the keyword AS and an XQuery identifier. The result of evaluating each expr
is bound to the corresponding identifier for the evaluation of XQuery_string.
If there is an expr that is not followed by an AS clause, then the result of
evaluating that expr is used as the context item for evaluating XQuery_string.
Oracle XML DB supports only passing BY VALUE, not passing BY REFERENCE, so
the clause BY VALUE is implicit and can be omitted.

If an XQuery expression such as /PurchaseOrder/Reference or /PurchaseOrder/
Reference/text() targets a single node, then XMLExists returns true for that
expression. If XMLExists is called with an XQuery expression that locates no nodes,
then XMLExists returns false.

Function XMLExists can be used in queries, and it can be used to create function-
based indexes to speed up evaluation of queries.

Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast

4-18



Note:

Oracle XML DB limits the use of XMLExists to a SQL WHERE clause or CASE
expression. If you need to use XMLExists in a SELECT list, then wrap it in a
CASE expression:

CASE WHEN XMLExists(...) THEN 'TRUE' ELSE 'FALSE' END

Note:

Prior to Oracle Database 11g Release 2, some users employed Oracle
SQL function existsNode to do some of what can be done better using
SQL/XML function XMLExists. Function existsNode is deprecated in Oracle
Database 11g Release 2. The two functions differ in these important ways:

• Function existsNode returns 0 or 1. Function XMLExists returns a
Boolean value, TRUE or FALSE.

• You can use existsNode in a query SELECT list. You cannot use
XMLExists directly in a SELECT list, but you can use XMLExists within
a CASE expression in a SELECT list.

4.3.4 Using XMLExists to Find a Node
You can use SQL/XML standard function XMLExists to find a given node. You can
create function-based indexes using XMLExists. You can also create an XMLIndex
index to help speed up arbitrary XQuery searching.

Example 4-2 uses XMLExists to select rows with SpecialInstructions set to
Expedite.

Example 4-2    Finding a Node Using SQL/XML Function XMLExists

SELECT OBJECT_VALUE
  FROM purchaseorder
  WHERE XMLExists('/PurchaseOrder[SpecialInstructions="Expedite"]'
                  PASSING OBJECT_VALUE);
 
OBJECT_VALUE
--------------------------------------------------------------------
<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast

4-19



<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 
13 rows selected.

4.3.5 XMLCAST SQL/XML Function in Oracle XML DB
You can use SQL/XML function XMLCast to cast an XQuery value to a SQL data type.

Figure 4-4 describes the syntax for SQL/XML standard function XMLCast.

Figure 4-4    XMLCast Syntax

XMLCAST ( value_expression AS datatype )

SQL/XML standard function XMLCast casts its first argument to the scalar SQL data
type specified by its second argument. The first argument is a SQL expression that is
evaluated. Any of the following SQL data types can be used as the second argument:

• NUMBER

• VARCHAR2

• CHAR

• CLOB

• BLOB

• REF XMLTYPE

• any SQL date or time data type

Note:

Unlike the SQL/XML standard, Oracle XML DB limits the use of XMLCast
to cast XML to a SQL scalar data type. Oracle XML DB does not support
casting XML to XML or from a scalar SQL type to XML.

The result of evaluating the first XMLCast argument is an XML value. It is converted to
the target SQL data type by using the XQuery atomization process and then casting
the XQuery atomic values to the target data type. If this conversion fails, then an error
is raised. If conversion succeeds, the result returned is an instance of the target data
type.

Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast

4-20



Note:

• Prior to Oracle Database 11g Release 2, some users employed Oracle
SQL function extractValue to do some of what can be done better using
SQL/XML functions XMLQuery and XMLCast. Function extractValue is
deprecated in Oracle Database 11g Release 2.

• Function extractValue raises an error when its XPath expression
argument matches multiple text nodes. XMLCast applied to an XMLQuery
result returns the concatenation of the text nodes — it does not raise an
error.

Related Topics

• Indexing XMLType Data Stored Object-Relationally
You can effectively index XMLType data that is stored object-relationally by creating
B-tree indexes on the underlying database columns that correspond to XML
nodes.

• XMLIndex

4.3.6 Using XMLCAST to Extract the Scalar Value of an XML
Fragment

You can use standard SQL/XML function XMLCast to extract the scalar value of an
XML fragment.

The query in Example 4-3 extracts the scalar value of node Reference.

Example 4-3    Extracting the Scalar Value of an XML Fragment Using XMLCAST

SELECT XMLCast(XMLQuery('/PurchaseOrder/Reference' PASSING OBJECT_VALUE
                                                   RETURNING CONTENT)
               AS VARCHAR2(100)) "REFERENCE"
  FROM purchaseorder
  WHERE XMLExists('/PurchaseOrder[SpecialInstructions="Expedite"]'
                  PASSING OBJECT_VALUE);
 
REFERENCE
----------------------------
AMCEWEN-20021009123336271PDT
SKING-20021009123336321PDT
AWALSH-20021009123337303PDT
JCHEN-20021009123337123PDT
AWALSH-20021009123336642PDT
SKING-20021009123336622PDT
SKING-20021009123336822PDT
AWALSH-20021009123336101PDT
WSMITH-20021009123336412PDT
AWALSH-20021009123337954PDT
SKING-20021009123338294PDT
WSMITH-20021009123338154PDT

Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast

4-21



TFOX-20021009123337463PDT
 
13 rows selected.

4.4 URI Scheme oradb: Querying Table or View Data with
XQuery

You can use XQuery function fn:collection to query data that is in database tables
and views.

Besides using XQuery functions fn:doc and fn:collection to query resources in
Oracle XML DB Repository (see Querying XML Data in Oracle XML DB Repository
Using XQuery), you can use fn:collection to query data in database tables and
views.

To do this, you pass function fn:collection a URI argument that specifies the table
or view to query. The Oracle URI scheme oradb identifies this usage: without it, the
argument is treated as a repository location.

The table or view that is queried can be relational or of type XMLType. If relational, its
data is converted on the fly and treated as XML. The result returned by fn:collection
is always an XQuery sequence.

• For an XMLType table, the root element of each XML document returned by
fn:collection is the same as the root element of an XML document in the table.

• For a relational table, the root element of each XML document returned by
fn:collection is ROW. The children of the ROW element are elements with the
same names (uppercase) as columns of the table. The content of a child element
corresponds to the column data. That content is an XML element if the column
is of type XMLType; otherwise (the column is a scalar type), the content is of type
xs:string.

The format of the URI argument passed to fn:collection is as follows:

• For an XMLType or relational table or view, TABLE, in database schema DB-SCHEMA:

oradb:/DB-SCHEMA/TABLE/

You can use PUBLIC for DB-SCHEMA if TABLE is a public synonym or TABLE is a table
or view that is accessible to the database user currently logged in.

• For an XMLType column in a relational table or view:

oradb:/DB-SCHEMA/REL-TABLE/ROWPRED/X-COL

REL-TABLE is a relational table or view; PRED is an XPath predicate that does not
involve any XMLType columns; and X-COL is an XMLType column in REL-TABLE. PRED
is optional; DB-SCHEMA, REL-TABLE, and X-COL are required.

Optional XPath predicate PRED must satisfy the following conditions:

• It does not involve any XMLType columns.

• It involves only conjunctions (and) and disjunctions (or) of general equality and
inequality comparisons (=, !=, >, <, >=, and <=).

Chapter 4
URI Scheme oradb: Querying Table or View Data with XQuery

4-22



• For each comparison operation: Either both sides name (non-XML) columns in
REL-TABLE or one side names such a column and the other is a value of the proper
type, as specified in Table 4-3. Use of any other type raises an error.

Table 4-3    oradb Expressions: Column Types for Comparisons

Relational Column Type XQuery Value Type

VARCHAR2, CHAR xs:string or string literal

NUMBER, FLOAT, BINARY_FLOAT, BINARY_DOUBLE xs:decimal, xs:float, xs:double, or
numeric literal

DATE, TIMESTAMP, TIMESTAMP WITH TIMEZONE,
TIMESTAMP WITH LOCAL TIMEZONE

xs:date, xs:time, or xs:dateTime

INTERVAL YEAR TO MONTH xs:yearMonthDuration

INTERVAL DAY TO SECOND xs:dayTimeDuration

RAW xs:hexBinary

ROWID xs:string or string literal

For example, this XQuery expression represents all XML documents in XMLType
column warehouse_spec of table oe.warehouses, for the rows where column
warehouse_id has a value less than 6:

fn:collection('oradb:/OE/WAREHOUSES/ROW[WAREHOUSE_ID < 6]/
WAREHOUSE_SPEC')

Related Topics

• Querying Relational Data Using XQuery and URI Scheme oradb
Examples are presented that use XQuery to query relational table or view data as
if it were XML data. The examples use XQuery function fn:collection, passing
as argument a URI that uses the URI-scheme name oradb together with the
database location of the data.

4.5 Oracle XQuery Extension Functions
Oracle XML DB adds some XQuery functions to those provided in the W3C
standard. These additional functions are in the Oracle XML DB namespace, http://
xmlns.oracle.com/xdb, which uses the predefined prefix ora.

Note:

• ora:sqrt XQuery Function
Oracle XQuery function ora:sqrt returns the square root of its numeric argument,
which can be of XQuery type xs:decimal, xs:float, or xs:double. The returned
value is of the same XQuery type as the argument.

Chapter 4
Oracle XQuery Extension Functions

4-23



• ora:tokenize XQuery Function
Oracle XQuery function ora:tokenize lets you use a regular expression to split
the input string target_string into a sequence of strings.

4.5.1 ora:sqrt XQuery Function
Oracle XQuery function ora:sqrt returns the square root of its numeric argument,
which can be of XQuery type xs:decimal, xs:float, or xs:double. The returned
value is of the same XQuery type as the argument.

ora:sqrt Syntax

ora:sqrt (number)

4.5.2 ora:tokenize XQuery Function
Oracle XQuery function ora:tokenize lets you use a regular expression to split the
input string target_string into a sequence of strings.

ora:tokenize Syntax

ora:tokenize (target_string, match_pattern [, match_parameter])

Function ora:tokenize treats each substring that matches the regular-expression
match_pattern as a separator indicating where to split. It returns the sequence
of tokens as an XQuery value of type xs:string* (a sequence of xs:string
values). If target_string is the empty sequence, it is returned. Optional argument
match_parameter is a code that qualifies matching: case-sensitivity and so on.

The argument types are as follows:

• target_string – xs:string?3

• match_pattern – xs:string

• match_parameter – xs:string

4.6 Oracle XQuery Extension-Expression Pragmas
The W3C XQuery specification lets an implementation provide implementation-defined
extension expressions. An XQuery extension expression is an XQuery expression that
is enclosed in braces ({, }) and prefixed by an implementation-defined pragma. The
Oracle implementation provides several such pragmas.

No other pragmas are recognized than those listed here. Use of any other pragma,
or use of any of these pragmas with incorrect pragma content (for example,
(#ora:view_on_null something_else #)), raises an error.

In the ora:view_on_null examples here, assume that table null_test has columns a
and b of type VARCHAR2(10), and that column b (but not a) is empty.

3 The question mark (?) here is a zero-or-one occurrence indicator that indicates that the argument can be the
empty sequence. See XQuery Expressions.

Chapter 4
Oracle XQuery Extension-Expression Pragmas

4-24



• (#ora:child-element-name name #) – Specify the name to use for a child element
that is inserted. In general, without this pragma the name of the element to be
inserted is unknown at compile time. Specifying the name allows for compile-time
optimization, to improve runtime performance.

As an example, the following SQL statement specifies LineItem as the name of
the element node that is inserted as a child of element LineItems. The element
data to be inserted is the value of XQuery variable p2, which comes from bind
variable :1.

UPDATE oe.purchaseorder p SET p.OBJECT_VALUE =
  XMLQuery(
    'copy $i :=
       $p1 modify (for $j in $i/PurchaseOrder/LineItems
                     return (#ora:child-element-name LineItem #)
                            {insert node $p2 into $j)
                  return $i'
    PASSING p.OBJECT_VALUE AS "p1", :1 AS "p2" RETURNING CONTENT)
  WHERE XMLQuery(
          '/PurchaseOrder/Reference/text()'
          PASSING p.OBJECT_VALUE RETURNING CONTENT).getStringVal() =
            'EMPTY_LINES';

This pragma applies to XMLType data stored either object-relationally or as binary
XML.

• (#ora:defaultTable #) – Specify the default table used to store repository data.
Use this to improve the performance of repository queries that use Query function
fn:doc or fn:collection. See Using Oracle XQuery Pragma ora:defaultTable.

• (#ora:invalid_path empty #) – Treat an invalid XPath expression as if its
targeted nodes do not exist. For example:

SELECT XMLQuery('(#ora:invalid_path empty #)
                 {exists($p/PurchaseOrder//NotInTheSchema)}'
                PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
  FROM oe.purchaseorder p;

The XML schema for table oe.purchaseorder does not allow any such node
NotInTheSchema as a descendant of node PurchaseOrder. Without the pragma,
the use of this invalid XPath expression would raise an error. But with the pragma,
the calling context acts just as if the XPath expression had targeted no nodes.
That calling context in this example is XQuery function exists, which returns
XQuery Boolean value false when passed an empty node sequence. (XQuery
function exists is used in this example only to illustrate the behavior; the pragma
is not especially related to function exists.)

• (#ora:view_on_null empty #) – XQuery function fn:collection returns an
empty XML element for each NULL column. For example, the following query
returns <ROW><A>x</A><B></B></ROW>:

SELECT XMLQuery('(#ora:view_on_null empty #)
                 {for $i in fn:collection("oradb:/PUBLIC/
NULL_TEST")/ROW 
                  return $i}'

Chapter 4
Oracle XQuery Extension-Expression Pragmas

4-25



                RETURNING CONTENT)
  FROM DUAL;

• (#ora:view_on_null null #) – XQuery function fn:collection returns
no element for a NULL column. For example, the following query returns
<ROW><A>x</A></ROW>:

SELECT XMLQuery('(#ora:view_on_null null #)
                 {for $i in fn:collection("oradb:/PUBLIC/
NULL_TEST")/ROW 
                  return $i}'
                RETURNING CONTENT)
  FROM DUAL;

• (#ora:no_xmlquery_rewrite #) – Do not optimize XQuery procedure calls in the
XQuery expression that follows the pragma; use functional evaluation instead.

This has the same effect as the SQL hint /*+ NO_XML_QUERY_REWRITE */, but the
scope of the pragma is only the XQuery expression that follows it (not an entire
SQL statement).

See Also:

Turning Off Use of XMLIndex for information about optimizer hint
NO_XML_QUERY_REWRITE

• (#ora:xmlquery_rewrite #)4 – Try to optimize the XQuery expression that
follows the pragma. That is, if possible, do not evaluate it functionally.

As an example of using both ora:no_xmlquery_rewrite and
ora:xmlquery_rewrite, in the following query the XQuery expression argument
to XMLQuery will in general be evaluated functionally, but the fn:collection
subexpressions that are preceded by pragma ora:xmlquery_rewrite will be
optimized, if possible.

SELECT XMLQuery('(#ora:no_xmlquery_rewrite#) (: Do not optimize 
expression :)
                 {for $i in (#ora:xmlquery_rewrite#) (: Optimize 
subexp. :)
                            {fn:collection("oradb:/HR/REGIONS")},
                      $j in (#ora:xmlquery_rewrite#) (: Optimize 
subexpr. :)
                            {fn:collection("oradb:/HR/COUNTRIES")}
                  where $i/ROW/REGION_ID = $j/ROW/REGION_ID
                    and $i/ROW/REGION_NAME = $regionname
                  return $j}'
         PASSING CAST('&REGION' AS VARCHAR2(40)) AS "regionname"
           RETURNING CONTENT)
  AS asian_countries FROM DUAL;

4 Prior to Oracle Database 12c Release 1 (12.1.0.1), pragmas ora:no_xmlquery_rewrite and
ora:xmlquery_rewrite were named ora:xq_proc and ora:xq_qry, respectively. They were renamed for
readability, with no change in meaning.

Chapter 4
Oracle XQuery Extension-Expression Pragmas

4-26



• (#ora:no_schema #) – Do not raise an error if an XQuery Full Text expression is
used with XML Schema-based XMLType data. Instead, implicitly cast the data to
non XML-Schema-based data. In particular, this means ignore XML Schema data
types.

Oracle supports XQuery Full Text only for XMLType data stored as binary XML, so
this pragma applies only for the same case.

• (#ora:use_xmltext_idx #) – Use an XML search index, if available, to evaluate
the query. Do not use an XMLIndex index or streaming evaluation.

An XML search index applies only to XMLType data stored as binary XML, so this
pragma does also.

• (#ora:transform_keep_schema #) – Retain XML Schema information for the
documents returned by the XQuery expression that follows the pragma. This is
useful for XQuery Update, which uses copy semantics.

Without the pragma, when XML schema-based data is copied during an XQuery
Update operation, the XML schema information is lost. This is the behavior
specified by the XQuery Update standard. If you then try to insert the updated
data into an XML schema-based column or table then an error is raised: the data
to be inserted is untyped, so it does not conform to the XML schema.

If you use the pragma then the data retains its XML schema information,
preventing the insertion error. Here is an example of using the pragma:

SELECT XMLQuery('declare default element namespace
                 "http://xmlns.oracle.com/xdb/xdbconfig.xsd"; (: :)
                 (#ora:transform_keep_schema#)
                 {copy $NEWXML :=
                   $XML modify (for $CFG in $NEWXML/xdbconfig//
httpconfig 
                                  return (replace value of node
                                          $CFG/http-port with 
xs:int($PORTNO)))
                               return $NEWXML}'
                PASSING CFG AS "XML", 81 as "PORTNO" RETURNING 
CONTENT)
  FROM DUAL;

4.7 XQuery Static Type-Checking in Oracle XML DB
When possible, Oracle XML DB performs static (compile time) type-checking of
queries.

Oracle XML DB type-checks all XQuery expressions. Doing this at run time can be
costly, however. As an optimization technique, whenever there is sufficient static type
information available for a given query at compile time, Oracle XML DB performs static
(compile time) type-checking of that query. Whenever sufficient static type information
is not available for a given query at compile time, Oracle XML DB uses dynamic
(run-time) type checking for that query.

Static type-checking can save execution time by raising errors at compile time. Static
type-checking errors include both data-type errors and the use of XPath expressions
that are invalid with respect to an XML schema.

Chapter 4
XQuery Static Type-Checking in Oracle XML DB

4-27



Typical ways of providing sufficient static type information at query compile time
include the following:

• Using XQuery with fn:doc or fn:collection over relational data.

• Using XQuery to query an XMLType table, column, or view whose XML Schema
information is available at query compile time.

• Using XQuery Update with a transform expression whose input is from an XMLType
table or column that is based on an XML schema.

This section presents examples that demonstrate the utility of static type-checking and
the use of these two means of communicating type information.

The XML data produced on the fly by fn:collection together with URI scheme oradb
has ROW as its top-level element, but the query of Example 4-4 incorrectly lacks that
ROW wrapper element. This omission raises a query compile-time error. Forgetting
that fn:collection with oradb wraps relational data in this way is an easy mistake
to make, and one that could be difficult to diagnose without static type-checking.
Example 5-5 shows the correct code.

In Example 4-5, XQuery static type-checking finds a mismatch between an XPath
expression and its target XML schema-based data. Element CostCenter is misspelled
here as costcenter (XQuery and XPath are case-sensitive). Example 5-11 shows the
correct code.

Example 4-4    Static Type-Checking of XQuery Expressions: oradb URI scheme

-- This produces a static-type-check error, because "ROW" is missing.
SELECT XMLQuery('for $i in fn:collection("oradb:/HR/REGIONS"),
                     $j in fn:collection("oradb:/HR/COUNTRIES")
                 where $i/REGION_ID = $j/REGION_ID and $i/REGION_NAME = "Asia"
                 return $j'
                RETURNING CONTENT) AS asian_countries
  FROM DUAL;
SELECT XMLQuery('for $i in fn:collection("oradb:/HR/REGIONS"),
*
ERROR at line 1:
ORA-19276: XPST0005 - XPath step specifies an invalid element/attribute name:
(REGION_ID)

Example 4-5    Static Type-Checking of XQuery Expressions: XML Schema-Based Data

-- This results in a static-type-check error: CostCenter is not the right case.
SELECT xtab.poref, xtab.usr, xtab.requestor
  FROM purchaseorder,
       XMLTable('for $i in /PurchaseOrder where $i/costcenter eq "A10" return $i'
                PASSING OBJECT_VALUE
                COLUMNS poref     VARCHAR2(20) PATH 'Reference',
                        usr       VARCHAR2(20) PATH 'User' DEFAULT 'Unknown',
                        requestor VARCHAR2(20) PATH 'Requestor') xtab;
  FROM purchaseorder,
       *
ERROR at line 2:
ORA-19276: XPST0005 - XPath step specifies an invalid element/attribute name:
(costcenter)

Chapter 4
XQuery Static Type-Checking in Oracle XML DB

4-28



4.8 Oracle XML DB Support for XQuery
Oracle XML DB support for the XQuery language includes SQL support and support
for XQuery functions and operators.

• Support for XQuery and SQL
Support for the XQuery language in Oracle XML DB is designed to provide the
best fit between the worlds of relational storage and querying XML data. Oracle
XML DB is a general XQuery implementation, but it is in addition specifically
designed to make relational and XQuery queries work well together.

• Support for XQuery Functions and Operators
Oracle XML DB supports all of the XQuery functions and operators included in the
latest XQuery 1.0 and XPath 2.0 Functions and Operators specification, with a few
exceptions.

• Support for XQuery Full Text
Oracle XML DB supports XQuery Full Text for XMLType data that is stored as
binary XML. Oracle Text technology provides the full-text indexing and search that
is the basis of this support.

4.8.1 Support for XQuery and SQL
Support for the XQuery language in Oracle XML DB is designed to provide the best
fit between the worlds of relational storage and querying XML data. Oracle XML DB
is a general XQuery implementation, but it is in addition specifically designed to make
relational and XQuery queries work well together.

The specific properties of the Oracle XML DB XQuery implementation are described in
this section. The XQuery standard explicitly calls out certain aspects of the language
processing as implementation-defined or implementation-dependent. There are also
some features that are specified by the XQuery standard but are not supported by
Oracle XML DB.

• Implementation Choices Specified in the XQuery Standards
The XQuery standards specify several aspects of language processing that are to
be defined by the implementation.

• XQuery Features Not Supported by Oracle XML DB
The features specified by the XQuery standard that are not supported by Oracle
XML DB are specified.

• XQuery Optional Features
The optional XQuery features that are not supported by Oracle XML DB are
specified.

Related Topics

• Support for XQuery Full Text
Oracle XML DB supports XQuery Full Text for XMLType data that is stored as
binary XML. Oracle Text technology provides the full-text indexing and search that
is the basis of this support.

Chapter 4
Oracle XML DB Support for XQuery

4-29



4.8.1.1 Implementation Choices Specified in the XQuery Standards
The XQuery standards specify several aspects of language processing that are to be
defined by the implementation.

• Implicit time zone support – In Oracle XML DB, the implicit time zone is always
assumed to be Z, and instances of xs:date, xs:time, and xs:datetime that are
missing time zones are  automatically converted to UTC.

• copy-namespaces default value – The default value for a copy-namespaces
declaration (used in XQuery Update) is inherit.

• Revalidation mode – The default mode for XQuery Update transform expression
revalidation is skip. However, if the result of a transform expression is an update
to XML schema-based data in an XMLType table or column, then XML schema
validation is enforced.

4.8.1.2 XQuery Features Not Supported by Oracle XML DB
The features specified by the XQuery standard that are not supported by Oracle
XML DB are specified.

• Copy-namespace mode – Oracle XML DB supports only preserve and inherit
for a copy-namespaces declaration. If an existing element node is copied by an
element constructor or a document constructor, all in-scope namespaces of the
original element are retained in the copy. Otherwise, the copied node inherits all
in-scope namespaces of the constructed node. An error is raised if you specify
no-preserve or no-inherit.

• Version encoding – Oracle XML DB does not support an optional encoding
declaration in a version declaration. That is, you cannot include (encoding an-
encoding) in a declaration xquery version a-version;. In particular, you cannot
specify an encoding used in the query. An error is raised if you include an
encoding declaration.

• xml:id – Oracle XML DB does not support use of xml:id. If you use xml:id, then
an error is raised.

• XQuery prolog default-collation declaration.

• XQuery prolog boundary-space declaration.

• XQuery data type xs:duration. Use either xs:yearMonthDuration or
xs:DayTimeDuration instead.

• XQuery Update function fn:put.

4.8.1.3 XQuery Optional Features
The optional XQuery features that are not supported by Oracle XML DB are specified.

The XQuery standard specifies that some features are optional for a given
implementation. The following optional XQuery features are not supported by Oracle
XML DB:

• Schema Validation Feature

• Module Feature

Chapter 4
Oracle XML DB Support for XQuery

4-30



The following optional XQuery features are supported by Oracle XML DB:

• XQuery Static Typing Feature

• XQuery Update Static Typing Feature

Related Topics

• XQuery Static Type-Checking in Oracle XML DB
When possible, Oracle XML DB performs static (compile time) type-checking of
queries.

4.8.2 Support for XQuery Functions and Operators
Oracle XML DB supports all of the XQuery functions and operators included in the
latest XQuery 1.0 and XPath 2.0 Functions and Operators specification, with a few
exceptions.

Oracle XML DB does not support the following XQuery functions and operators:

• Function fn:tokenize. Use Oracle XQuery function ora:tokenize instead.

• Functions fn:id and fn:idref.

• Function fn:collection without arguments.

• Optional collation parameters for XQuery functions.

• XQuery Functions fn:doc, fn:collection, and fn:doc-available
Oracle XML DB supports XQuery functions fn:doc, fn:collection, and fn:doc-
available for all resources in Oracle XML DB Repository.

4.8.2.1 XQuery Functions fn:doc, fn:collection, and fn:doc-available
Oracle XML DB supports XQuery functions fn:doc, fn:collection, and fn:doc-
available for all resources in Oracle XML DB Repository.

Function fn:doc returns the repository file resource that is targeted by its URI
argument; it must be a file of well-formed XML data. Function fn:collection is
similar, but works on repository folder resources (each file in the folder must contain
well-formed XML data).

When used with Oracle URI scheme oradb, fn:collection can return XML data
derived on the fly from existing relational data that is not in the repository.

XQuery function fn:collection raises an error when used with URI scheme oradb, if
its targeted table or view, or a targeted column, does not exist. Functions fn:doc and
fn:collection do not raise an error if the repository resource passed as argument is
not found. Instead, they return an empty sequence.

You can determine whether a given document exists using XQuery function fn:doc-
available. It returns true if its document argument exists, false if not.

See Also:

XQuery 3.0 Functions and Operators

Chapter 4
Oracle XML DB Support for XQuery

4-31



4.8.3 Support for XQuery Full Text
Oracle XML DB supports XQuery Full Text for XMLType data that is stored as binary
XML. Oracle Text technology provides the full-text indexing and search that is the
basis of this support.

Refer to the XQuery and XPath Full Text 1.0 Recommendation (hereafter XQuery Full
Text, or XQFT) for information about any terms that are not detailed here.

Oracle supports XQuery Full Text only for XMLType data that is stored as binary XML.
You can perform a full-text search of XMLType data that is stored object-relationally
using an Oracle Text index, but not using XQuery Full Text.

A general rule for understanding Oracle support for XQuery Full Text is that the Oracle
implementation of XQFT is based on Oracle Text, which provides full-text indexing
and search for Oracle products and for applications developed using them. The XQFT
support details provided in this section are a consequence of this Oracle Text based
implementation.

• XQuery Full Text, XML Schema-Based Data, and Pragma ora:no_schema
Use Oracle pragma ora:no_schema with XQuery Full Text to query XML Schema-
based XMLType data that is stored as binary XML. The data is treated as if it were
non XML Schema-based.

• Restrictions on Using XQuery Full Text with XMLExists
Restrictions are specified for using XQuery Full Text with SQL/XML function
XMLExists.

• Supported XQuery Full Text FTSelection Operators
Oracle XML DB supports a subset of the XQuery Full Text FTSelection operators.

• Supported XQuery Full Text Match Options
Oracle XML DB supports a subset of the XQuery Full Text match options.

• Unsupported XQuery Full Text Features
The XQuery Full Text features that are not supported by Oracle XML DB are
specified.

• XQuery Full Text Errors
Compile-time errors that can be raised when you use XQuery Full Text are
described.

See Also:

• Oracle Text Application Developer's Guide

• Oracle Text Reference

Chapter 4
Oracle XML DB Support for XQuery

4-32



4.8.3.1 XQuery Full Text, XML Schema-Based Data, and Pragma
ora:no_schema

Use Oracle pragma ora:no_schema with XQuery Full Text to query XML Schema-
based XMLType data that is stored as binary XML. The data is treated as if it were non
XML Schema-based.

You can use XQuery Full Text to query XMLType data that is stored as binary XML.
However, if you use it with XML Schema-based data then you must also use the
XQuery extension-expression pragma ora:no_schema in your query, or else an error is
raised.

And if you use ora:no_schema then, for purposes of XQuery Full Text, the XML data
is implicitly cast to non XML Schema-based data. In other words, Oracle support of
XQuery Full Text treats all XML data as if it were not based on an XML schema.

In particular, this means that if you include in your query an XQuery Full Text condition
that makes use of XML Schema data types, such type considerations are ignored.
A comparison of two XML Schema date values, for instance, is handled as a simple
string comparison. Oracle support for XQuery Full Text is not XML Schema-aware.

Related Topics

• Pragma ora:no_schema: Using XML Schema-Based Data with XQuery Full Text
Oracle recommends in general that you use non XML Schema-based XMLType
data when you use XQuery Full Text and an XML search index. But you can
in some circumstances use XML Schema-based XMLType data that is stored as
binary XML. Oracle XQuery pragma ora:no_schema can be useful in this context.

4.8.3.2 Restrictions on Using XQuery Full Text with XMLExists
Restrictions are specified for using XQuery Full Text with SQL/XML function
XMLExists.

You can pass only one XMLType instance as a SQL expression in the PASSING clause
of SQL/XML function XMLExists, and each of the other, non-XMLType SQL expressions
in that clause must be either a compile-time constant of a SQL built-in data type or a
bind variable that is bound to an instance of such a data type. If this restriction is not
respected then compile-time error ORA-18177 is raised.

4.8.3.3 Supported XQuery Full Text FTSelection Operators
Oracle XML DB supports a subset of the XQuery Full Text FTSelection operators.

Oracle XML DB supports only the following XQuery Full Text FTSelection operators.
Any applicable restrictions are noted. Use of the terms "must" and "must not" means
that an error is raised if the specified restriction is not respected. Use of any operators
not listed here raises an error.

• FTAnd (ftand)

• FTMildNot (not in)

Chapter 4
Oracle XML DB Support for XQuery

4-33



Each operand for operator FTMildNot must be either a term or a phrase, that is, an
instance of FTWords. It must not be an expression. Oracle handles FTMildNot the
same way it handles Oracle Text operator MNOT.

• FTOr (ftor)

• FTOrder (ordered)

Oracle supports the use of FTOrder only when used in the context of a window
(FTWindow). Otherwise, it is not supported. For example, you can use ordered
window 5 words, but you cannot use only ordered without also window. Oracle
handles FTOrder the same way it handles Oracle Text operator NEAR with a TRUE
value for option ORDER.

• FTUnaryNot (ftnot)

FTUnaryNot must be used with FTAnd. You cannot use FTUnaryNot by itself. For
example, you can use ftand ftnot, but you cannot use only ftnot without also
ftand. Oracle handles FTUnaryNot the same way it handles Oracle Text operator
NOT.

• FTWindow (window)

Oracle handles FTWindow the same way it handles Oracle Text operator NEAR.
You must specify the window size only in words, not in sentences or paragraphs
(for example, window 2 paragraphs), and you must specify it as a numeric
constant that is less than or equal to 100.

• FTWords

FTWordsValue must be an XQuery literal string or a SQL bind variable whose
value is passed to SQL function XMLExists or XMLQuery from a SQL expression
whose evaluation returns a non-XMLType value.

In addition, FTAnyallOption, if present, must be any. That is, FTWords must
correspond to a sequence with only one item.

Note:

Even though FTWords corresponds to a sequence of only one item, you
can still search for a phrase of multiple words, by using a single string
for the entire phrase. So for example, although Oracle XML DB does not
support using {"found" "necklace"} for FTWords, you can use "found
necklace".

4.8.3.4 Supported XQuery Full Text Match Options
Oracle XML DB supports a subset of the XQuery Full Text match options.

Oracle XML DB supports only the following XQuery Full Text match options. Any
applicable restrictions are noted. Use of the terms "must" and "must not" means that
an error is raised if the specified restriction is not respected. Use of any match options
not listed here raises an error.

• FTStemOption (stemming, no stemming)

Chapter 4
Oracle XML DB Support for XQuery

4-34



The default behavior specified in the XQuery and XPath Full Text 1.0
Recommendation is used for each unsupported match option, with the following
exceptions:

• FTLanguage (unsupported) – The language used is the language defined by the
default lexer, which means the language that was used when the database was
installed.

• FTStopWordOption (unsupported) – The stoplist used is the stoplist defined for
that language.

See Also:

• Oracle Text Reference for information about the default lexer

• Oracle Text Reference for information about the stoplist used for each
supported language

4.8.3.5 Unsupported XQuery Full Text Features
The XQuery Full Text features that are not supported by Oracle XML DB are specified.

In addition to all FTSelection operators not mentioned in Supported XQuery Full Text
FTSelection Operators and all match options not mentioned in Supported XQuery Full
Text Match Options, Oracle XML DB does not support the following XQuery Full Text
features:

• FTIgnoreOption

• FTWeight (weight declarations, used with FTPrimaryWithOptions)

• FTScoreVar (score variables, used with XQuery ForClause and LetClause or with
XPath 2.0 SimpleForClause)

4.8.3.6 XQuery Full Text Errors
Compile-time errors that can be raised when you use XQuery Full Text are described.

A compile-time error is raised whenever you use an XQuery Full Text (XQFT) feature
that Oracle does not support.

In addition, compile-time error ORA-18177 is raised whenever you use a supported
XQFT expression in a SQL WHERE clause (typically in XMLExists), if you did not create
a corresponding XML search index or if that index is not picked up.

Related Topics

• Unsupported XQuery Full Text Features
The XQuery Full Text features that are not supported by Oracle XML DB are
specified.

Chapter 4
Oracle XML DB Support for XQuery

4-35



See Also:

• Indexing XML Data for Full-Text Queries for information about creating
an XML search index and handling error ORA-18177

• Performance Tuning for XQuery for information about axes other than
forward and descendent

• Oracle Database SQL Language Reference for information about SQL
built-in data types

Chapter 4
Oracle XML DB Support for XQuery

4-36



5
Query and Update of XML Data

There are many ways for applications to query and update XML data that is in Oracle
Database, both XML schema-based and non-schema-based.

• Using XQuery with Oracle XML DB
XQuery is a very general and expressive language, and SQL/XML functions
XMLQuery, XMLTable, XMLExists, and XMLCast combine that power of expression
and computation with the strengths of SQL.

• Querying XML Data Using SQL and PL/SQL
You can query XML data from XMLType columns and tables in various ways.

• Using the SQL*Plus XQUERY Command
You can evaluate an XQuery expression using the SQL*Plus XQUERY command.

• Using XQuery with XQJ to Access Database Data
XQuery API for Java (XQJ), also known as JSR-225, provides an industry-
standard way for Java programs to access XML data using XQuery. It lets you
evaluate XQuery expressions against XML data sources and process the results
as XML data.

• Using XQuery with PL/SQL, JDBC, and ODP.NET to Access Database Data
You can use XQuery with the Oracle APIs for PL/SQL, JDBC, and Oracle Data
Provider for .NET (ODP.NET).

• Updating XML Data
There are several ways you can use Oracle XML DB features to update XML data,
whether it is transient or stored in database tables.

• Performance Tuning for XQuery
A SQL query that involves XQuery expressions can often be automatically
rewritten (optimized) in one or more ways. This optimization is referred to as XML
query rewrite or optimization. When this happens, the XQuery expression is, in
effect, evaluated directly against the XML document without constructing a DOM in
memory.

See Also:

• Overview of How To Use Oracle XML DB for XMLType storage
recommendations

• XML Schema Storage and Query: Basic for how to work with XML
schema-based XMLType tables and columns

• XQuery and Oracle XML DB for information about updating XML data
using XQuery Update

5-1



5.1 Using XQuery with Oracle XML DB
XQuery is a very general and expressive language, and SQL/XML functions XMLQuery,
XMLTable, XMLExists, and XMLCast combine that power of expression and computation
with the strengths of SQL.

You typically use XQuery with Oracle XML DB in the following ways. The examples
here are organized to reflect these different uses.

• Query XML data in Oracle XML DB Repository.

See Querying XML Data in Oracle XML DB Repository Using XQuery.

• Query a relational table or view as if it were XML data. To do this, you use XQuery
function fn:collection, passing as argument a URI that uses the URI-scheme
name oradb together with the database location of the data.

See Querying Relational Data Using XQuery and URI Scheme oradb.

• Query XMLType data, possibly decomposing the resulting XML into relational data
using function XMLTable.

See Querying XMLType Data Using XQuery.

Example 5-1 creates Oracle XML DB Repository resources that are used in some of
the other examples in this chapter.

Example 5-1    Creating Resources for Examples

DECLARE
  res BOOLEAN;
  empsxmlstring VARCHAR2(300):= 
    '<?xml version="1.0"?>
     <emps>
       <emp empno="1" deptno="10" ename="John" salary="21000"/>
       <emp empno="2" deptno="10" ename="Jack" salary="310000"/>
       <emp empno="3" deptno="20" ename="Jill" salary="100001"/>
     </emps>';
  empsxmlnsstring VARCHAR2(300):=
    '<?xml version="1.0"?>
     <emps xmlns="http://example.com">
       <emp empno="1" deptno="10" ename="John" salary="21000"/>
       <emp empno="2" deptno="10" ename="Jack" salary="310000"/>
       <emp empno="3" deptno="20" ename="Jill" salary="100001"/>
     </emps>';
  deptsxmlstring VARCHAR2(300):=
    '<?xml version="1.0"?>
     <depts>
       <dept deptno="10" dname="Administration"/>
       <dept deptno="20" dname="Marketing"/>
       <dept deptno="30" dname="Purchasing"/>
     </depts>';
BEGIN
  res := DBMS_XDB_REPOS.createResource('/public/emps.xml',   empsxmlstring);
  res := DBMS_XDB_REPOS.createResource('/public/empsns.xml', empsxmlnsstring);
  res := DBMS_XDB_REPOS.createResource('/public/depts.xml',  deptsxmlstring);
END;
/

Chapter 5
Using XQuery with Oracle XML DB

5-2



• XQuery Sequences Can Contain Data of Any XQuery Type
XQuery is a general sequence-manipulation language. Its expressions and their
results are not necessarily XML data. An XQuery sequence can contain items of
any XQuery type, which includes numbers, strings, Boolean values, dates, and
various types of XML node (document-node(), element(), attribute(), text(),
namespace(), and so on).

• Querying XML Data in Oracle XML DB Repository Using XQuery
Examples are presented that use XQuery with XML data in Oracle XML DB
Repository. You use XQuery functions fn:doc and fn:collection to query file
and folder resources in the repository, respectively.

• Querying Relational Data Using XQuery and URI Scheme oradb
Examples are presented that use XQuery to query relational table or view data as
if it were XML data. The examples use XQuery function fn:collection, passing
as argument a URI that uses the URI-scheme name oradb together with the
database location of the data.

• Querying XMLType Data Using XQuery
Examples are presented that use XQuery to query XMLType data.

• Using Namespaces with XQuery
You can use the XQuery declare namespace declaration in the prolog of
an XQuery expression to define a namespace prefix. You can use declare
default namespace to establish the namespace as the default namespace for the
expression.

5.1.1 XQuery Sequences Can Contain Data of Any XQuery Type
XQuery is a general sequence-manipulation language. Its expressions and their
results are not necessarily XML data. An XQuery sequence can contain items of any
XQuery type, which includes numbers, strings, Boolean values, dates, and various
types of XML node (document-node(), element(), attribute(), text(), namespace(),
and so on).

Example 5-2 provides a sampling. It applies SQL/XML function XMLQuery to an XQuery
sequence that contains items of several different kinds:

• an integer literal: 1

• a arithmetic expression: 2 + 3

• a string literal: "a"

• a sequence of integers: 100 to 102

• a constructed XML element node: <A>33</A>

Example 5-2 also shows construction of a sequence using the comma operator (,) and
parentheses ((, )) for grouping.

The sequence expression 100 to 102 evaluates to the sequence (100, 101, 102),
so the argument to XMLQuery here is a sequence that contains a nested sequence.
The sequence argument is automatically flattened, as is always the case for XQuery
sequences. The argument is, in effect, (1, 5, "a", 100, 101, 102, <A>33</A>).

Example 5-2    XMLQuery Applied to a Sequence of Items of Different Types

SELECT XMLQuery('(1, 2 + 3, "a", 100 to 102, <A>33</A>)'
                RETURNING CONTENT) AS output

Chapter 5
Using XQuery with Oracle XML DB

5-3



  FROM DUAL;

OUTPUT
--------------------------
1 5 a 100 101 102<A>33</A>
 
1 row selected.

5.1.2 Querying XML Data in Oracle XML DB Repository Using XQuery
Examples are presented that use XQuery with XML data in Oracle XML DB
Repository. You use XQuery functions fn:doc and fn:collection to query file and
folder resources in the repository, respectively.

The examples here use XQuery function fn:doc to obtain a repository file that contains
XML data, and then bind XQuery variables to parts of that data using for and let
FLWOR-expression clauses.

Example 5-3 queries two XML-document resources in Oracle XML DB Repository: /
public/emps.xml and /public/depts.xml. It illustrates the use of fn:doc and each of
the possible FLWOR-expression clauses.

Example 5-4 also uses each of the FLWOR-expression clauses. It shows the use of
XQuery functions doc, count, avg, and integer, which are in the namespace for built-
in XQuery functions, http://www.w3.org/2003/11/xpath-functions. This namespace
is bound to the prefix fn.

Example 5-3    FLOWR Expression Using for, let, order by, where, and return

SELECT XMLQuery('for $e in doc("/public/emps.xml")/emps/emp
                 let $d :=
                   doc("/public/depts.xml")//dept[@deptno = $e/@deptno]/@dname
                 where $e/@salary > 100000
                 order by $e/@empno
                 return <emp ename="{$e/@ename}" dept="{$d}"/>'
                RETURNING CONTENT) FROM DUAL;

XMLQUERY('FOR$EINDOC("/PUBLIC/EMPS.XML")/EMPS/EMPLET$D:=DOC("/PUBLIC/DEPTS.XML")
--------------------------------------------------------------------------------
<emp ename="Jack" dept="Administration"></emp><emp ename="Jill" dept="Marketing"
></emp>
 
1 row selected.

In this example, the various FLWOR clauses perform these operations:

• for iterates over the emp elements in /public/emps.xml, binding variable $e to
the value of each such element, in turn. That is, it iterates over a general list of
employees, binding $e to each employee.

• let binds variable $d to a sequence consisting of all of the values of dname
attributes of those dept elements in /public/emps.xml whose deptno attributes
have the same value as the deptno attribute of element $e (this is a join
operation). That is, it binds $d to the names of all of the departments that have
the same department number as the department of employee $e. (It so happens

Chapter 5
Using XQuery with Oracle XML DB

5-4



that the dname value is unique for each deptno value in depts.xml.) Unlike for,
let never iterates over values; $d is bound only once in this example.

• Together, for and let produce a stream of tuples ($e, $d), where $e represents
an employee and $d represents the names of all of the departments to which
that employee belongs —in this case, the unique name of the employee's unique
department.

• where filters this tuple stream, keeping only tuples with employees whose salary is
greater than 100,000.

• order by sorts the filtered tuple stream by employee number, empno (in ascending
order, by default).

• return constructs emp elements, one for each tuple. Attributes ename and dept
of these elements are constructed using attribute ename from the input and $d,
respectively. The element and attribute names emp and ename in the output have
no necessary connection with the same names in the input document emps.xml.

Example 5-4    FLOWR Expression Using Built-In Functions

SELECT XMLQuery('for $d in fn:doc("/public/depts.xml")/depts/dept/@deptno
                 let $e := fn:doc("/public/emps.xml")/emps/emp[@deptno = $d]
                 where fn:count($e) > 1
                 order by fn:avg($e/@salary) descending
                 return
                   <big-dept>{$d,
                              <headcount>{fn:count($e)}</headcount>,
                              <avgsal>{xs:integer(fn:avg($e/@salary))}</avgsal>}
                   </big-dept>'
                RETURNING CONTENT) FROM DUAL;

XMLQUERY('FOR$DINFN:DOC("/PUBLIC/DEPTS.XML")/DEPTS/DEPT/@DEPTNOLET$E:=FN:DOC("/P
--------------------------------------------------------------------------------
<big-dept deptno="10"><headcount>2</headcount><avgsal>165500</avgsal></big-dept>
 
1 row selected.

In this example, the various FLWOR clauses perform these operations:

• for iterates over deptno attributes in input document /public/depts.xml, binding
variable $d to the value of each such attribute, in turn.

• let binds variable $e to a sequence consisting of all of the emp elements in input
document /public/emps.xml whose deptno attributes have value $d (this is a join
operation).

• Together, for and let produce a stream of tuples ($d, $e), where $d represents a
department number and $e represents the set of employees in that department.

• where filters this tuple stream, keeping only tuples with more than one employee.

• order by sorts the filtered tuple stream by average salary in descending order.
The average is computed by applying XQuery function avg (in namespace fn) to
the values of attribute salary, which is attached to the emp elements of $e.

• return constructs big-dept elements, one for each tuple produced by order by.
The text() node of big-dept contains the department number, bound to $d.
A headcount child element contains the number of employees, bound to $e,

Chapter 5
Using XQuery with Oracle XML DB

5-5



as determined by XQuery function count. An avgsal child element contains the
computed average salary.

Related Topics

• XQuery Functions fn:doc, fn:collection, and fn:doc-available
Oracle XML DB supports XQuery functions fn:doc, fn:collection, and fn:doc-
available for all resources in Oracle XML DB Repository.

5.1.3 Querying Relational Data Using XQuery and URI Scheme oradb
Examples are presented that use XQuery to query relational table or view data as
if it were XML data. The examples use XQuery function fn:collection, passing as
argument a URI that uses the URI-scheme name oradb together with the database
location of the data.

Example 5-5 uses Oracle XQuery function fn:collection in a FLWOR expression
to query two relational tables, regions and countries. Both tables belong to sample
database schema HR. The example also passes scalar SQL value Asia to XQuery
variable $regionname. Any SQL expression can be evaluated to produce a value
passed to XQuery using PASSING. In this case, the value comes from a SQL*Plus
variable, REGION. You must cast the value to the scalar SQL data type expected, in this
case, VARCHAR2(40).

In Example 5-5, the various FLWOR clauses perform these operations:

• for iterates over sequences of XML elements returned by calls to fn:collection.
In the first call, each element corresponds to a row of relational table hr.regions
and is bound to variable $i. Similarly, in the second call to fn:collection, $j is
bound to successive rows of table hr.countries. Since regions and countries
are not XMLType tables, the top-level element corresponding to a row in each table
is ROW (a wrapper element). Iteration over the row elements is unordered.

• where filters the rows from both tables, keeping only those pairs of rows whose
region_id is the same for each table (it performs a join on region_id) and whose
region_name is Asia.

• return returns the filtered rows from table hr.countries as an XML document
containing XML fragments with ROW as their top-level element.

Example 5-6 uses fn:collection within nested FLWOR expressions to query
relational data.

In Example 5-6, the various FLWOR clauses perform these operations:

• The outer for iterates over the sequence of XML elements returned by
fn:collection: each element corresponds to a row of relational table
oe.warehouses and is bound to variable $i. Since warehouses is not an XMLType
table, the top-level element corresponding to a row is ROW. The iteration over the
row elements is unordered.

• The inner for iterates, similarly, over a sequence of XML elements returned
by fn:collection: each element corresponds to a row of relational table
hr.locations and is bound to variable $j.

• where filters the tuples ($i, $j), keeping only those whose location_id child is the
same for $i and $j (it performs a join on location_id).

Chapter 5
Using XQuery with Oracle XML DB

5-6



• The inner return constructs an XQuery sequence of elements STREET_ADDRESS,
CITY, and STATE_PROVINCE, all of which are children of locations-table ROW
element $j; that is, they are the values of the locations-table columns of the same
name.

• The outer return wraps the result of the inner return in a Location element, and
wraps that in a Warehouse element. It provides the Warehouse element with an id
attribute whose value comes from the warehouse_id column of table warehouses.

Example 5-7 uses SQL/XML function XMLTable to decompose the result of an XQuery
query to produce virtual relational data. The XQuery expression used in this example
is identical to the one used in Example 5-6; the result of evaluating the XQuery
expression is a sequence of Warehouse elements. Function XMLTable produces a
virtual relational table whose rows are those Warehouse elements. More precisely, in
this example the value of pseudocolumn COLUMN_VALUE for each virtual-table row is an
XML fragment (of type XMLType) with a single Warehouse element.

See Also:

• Example 5-41 for the execution plan of Example 5-6

• Example 5-42 for the execution plan of Example 5-7

Example 5-5    Querying Relational Data as XML Using XMLQuery

DEFINE REGION = 'Asia'
SELECT XMLQuery('for $i in fn:collection("oradb:/HR/REGIONS"),
                     $j in fn:collection("oradb:/HR/COUNTRIES")
                   where $i/ROW/REGION_ID = $j/ROW/REGION_ID
                     and $i/ROW/REGION_NAME = $regionname
                   return $j'
                PASSING CAST('&REGION' AS VARCHAR2(40)) AS "regionname"
                RETURNING CONTENT) AS asian_countries
  FROM DUAL;

This produces the following result. (The result is shown here pretty-printed, for clarity.)

ASIAN_COUNTRIES
-----------------------------------------
<ROW>
  <COUNTRY_ID>AU</COUNTRY_ID>
  <COUNTRY_NAME>Australia</COUNTRY_NAME>
  <REGION_ID>3</REGION_ID>
</ROW>
<ROW>
  <COUNTRY_ID>CN</COUNTRY_ID>
  <COUNTRY_NAME>China</COUNTRY_NAME>
  <REGION_ID>3</REGION_ID>
</ROW>
<ROW>
  <COUNTRY_ID>HK</COUNTRY_ID>
  <COUNTRY_NAME>HongKong</COUNTRY_NAME>

Chapter 5
Using XQuery with Oracle XML DB

5-7



  <REGION_ID>3</REGION_ID>
</ROW>
<ROW>
  <COUNTRY_ID>IN</COUNTRY_ID>
  <COUNTRY_NAME>India</COUNTRY_NAME>
  <REGION_ID>3</REGION_ID>
</ROW>
<ROW>
  <COUNTRY_ID>JP</COUNTRY_ID>
  <COUNTRY_NAME>Japan</COUNTRY_NAME>
  <REGION_ID>3</REGION_ID>
</ROW>
<ROW>
  <COUNTRY_ID>SG</COUNTRY_ID>
  <COUNTRY_NAME>Singapore</COUNTRY_NAME>
  <REGION_ID>3</REGION_ID>
</ROW>
 
1 row selected.

Example 5-6    Querying Relational Data as XML Using a Nested FLWOR Expression

CONNECT hr
Enter password: password

Connected.

GRANT SELECT ON LOCATIONS TO OE
/
CONNECT oe
Enter password: password

Connected.

SELECT XMLQuery(
         'for $i in fn:collection("oradb:/OE/WAREHOUSES")/ROW
          return <Warehouse id="{$i/WAREHOUSE_ID}">
                   <Location>
                     {for $j in fn:collection("oradb:/HR/LOCATIONS")/ROW
                      where $j/LOCATION_ID eq $i/LOCATION_ID 
                      return ($j/STREET_ADDRESS, $j/CITY, $j/STATE_PROVINCE)}
                   </Location>    
                 </Warehouse>'
         RETURNING CONTENT) FROM DUAL;

This query is an example of using nested FLWOR expressions. It accesses relational
table warehouses, which is in sample database schema oe, and relational table
locations, which is in sample database schema HR. To run this example as user oe,
you must first connect as user hr and grant permission to user oe to perform SELECT
operations on table locations.

Chapter 5
Using XQuery with Oracle XML DB

5-8



This produces the following result. (The result is shown here pretty-printed, for clarity.)

XMLQUERY('FOR$IINFN:COLLECTION("ORADB:/OE/WAREHOUSES")/ROWRETURN
----------------------------------------------------------------
<Warehouse id="1">
  <Location>
    <STREET_ADDRESS>2014 Jabberwocky Rd</STREET_ADDRESS>
    <CITY>Southlake</CITY>
    <STATE_PROVINCE>Texas</STATE_PROVINCE>
  </Location>
</Warehouse>
<Warehouse id="2">
  <Location>
    <STREET_ADDRESS>2011 Interiors Blvd</STREET_ADDRESS>
    <CITY>South San Francisco</CITY>
    <STATE_PROVINCE>California</STATE_PROVINCE>
  </Location>
</Warehouse>
<Warehouse id="3">
  <Location>
    <STREET_ADDRESS>2007 Zagora St</STREET_ADDRESS>
    <CITY>South Brunswick</CITY>
    <STATE_PROVINCE>New Jersey</STATE_PROVINCE>
  </Location>
</Warehouse>
<Warehouse id="4">
  <Location>
    <STREET_ADDRESS>2004 Charade Rd</STREET_ADDRESS>
    <CITY>Seattle</CITY>
    <STATE_PROVINCE>Washington</STATE_PROVINCE>
  </Location>
</Warehouse>
<Warehouse id="5">
  <Location>
    <STREET_ADDRESS>147 Spadina Ave</STREET_ADDRESS>
    <CITY>Toronto</CITY>
    <STATE_PROVINCE>Ontario</STATE_PROVINCE>
  </Location>
</Warehouse>
<Warehouse id="6">
  <Location>
    <STREET_ADDRESS>12-98 Victoria Street</STREET_ADDRESS>
    <CITY>Sydney</CITY>
    <STATE_PROVINCE>New South Wales</STATE_PROVINCE>
  </Location>
</Warehouse>
<Warehouse id="7">
  <Location>
    <STREET_ADDRESS>Mariano Escobedo 9991</STREET_ADDRESS>
    <CITY>Mexico City</CITY>
    <STATE_PROVINCE>Distrito Federal,</STATE_PROVINCE>
  </Location>
</Warehouse>
<Warehouse id="8">
  <Location>

Chapter 5
Using XQuery with Oracle XML DB

5-9



    <STREET_ADDRESS>40-5-12 Laogianggen</STREET_ADDRESS>
    <CITY>Beijing</CITY>
  </Location>
</Warehouse>
<Warehouse id="9">
  <Location>
    <STREET_ADDRESS>1298 Vileparle (E)</STREET_ADDRESS>
    <CITY>Bombay</CITY>
    <STATE_PROVINCE>Maharashtra</STATE_PROVINCE>
  </Location>
</Warehouse>
 
1 row selected.

Example 5-7    Querying Relational Data as XML Using XMLTable

SELECT * 
  FROM XMLTable(
         'for $i in fn:collection("oradb:/OE/WAREHOUSES")/ROW
          return <Warehouse id="{$i/WAREHOUSE_ID}">
                   <Location>
                     {for $j in fn:collection("oradb:/HR/LOCATIONS")/ROW
                      where $j/LOCATION_ID eq $i/LOCATION_ID 
                      return ($j/STREET_ADDRESS, $j/CITY, $j/STATE_PROVINCE)}
                   </Location>
                 </Warehouse>');

This produces the same result as Example 5-6, except that each Warehouse element is
output as a separate row, instead of all Warehouse elements being output together in a
single row.

COLUMN_VALUE
--------------------------------------------------------
<Warehouse id="1">
  <Location>
    <STREET_ADDRESS>2014 Jabberwocky Rd</STREET_ADDRESS>
    <CITY>Southlake</CITY>
    <STATE_PROVINCE>Texas</STATE_PROVINCE>
  </Location>
</Warehouse>
<Warehouse id="2">
  <Location>
    <STREET_ADDRESS>2011 Interiors Blvd</STREET_ADDRESS>
    <CITY>South San Francisco</CITY>
    <STATE_PROVINCE>California</STATE_PROVINCE>
  </Location>
</Warehouse>
. . .
 
9 rows selected.

Chapter 5
Using XQuery with Oracle XML DB

5-10



5.1.4 Querying XMLType Data Using XQuery
Examples are presented that use XQuery to query XMLType data.

The query in Example 5-8 passes an XMLType column, warehouse_spec, as context
item to XQuery, using function XMLQuery with the PASSING clause. It constructs a
Details element for each of the warehouses whose area is greater than 80,000: /
Warehouse/Area > 80000.

In Example 5-8, function XMLQuery is applied to the warehouse_spec column in each
row of table warehouses. The various FLWOR clauses perform these operations:

• for iterates over the Warehouse elements in each row of column warehouse_spec
(the passed context item): each such element is bound to variable $i, in turn. The
iteration is unordered.

• where filters the Warehouse elements, keeping only those whose Area child has a
value greater than 80,000.

• return constructs an XQuery sequence of Details elements, each of which
contains a Docks and a Rail child elements. The num attribute of the constructed
Docks element is set to the text() value of the Docks child of Warehouse. The
text() content of Rail is set to true or false, depending on the value of the
RailAccess attribute of element Warehouse.

The SELECT statement in Example 5-8 applies to each row in table warehouses. The
XMLQuery expression returns the empty sequence for those rows that do not match
the XQuery expression. Only the warehouses in New Jersey and Seattle satisfy the
XQuery query, so they are the only warehouses for which <Details>...</Details> is
returned.

Example 5-9 uses SQL/XML function XMLTable to query an XMLType table,
oe.purchaseorder, which contains XML Schema-based data. It uses the PASSING
clause to provide the purchaseorder table as the context item for the XQuery-
expression argument to XMLTable. Pseudocolumn COLUMN_VALUE of the resulting virtual
table holds a constructed element, A10po, which contains the Reference information
for those purchase orders whose CostCenter element has value A10 and whose User
element has value SMCCAIN. The query performs a join between the virtual table and
database table purchaseorder.

The PASSING clause of function XMLTable passes the OBJECT_VALUE of XMLType
table purchaseorder, to serve as the XPath context. The XMLTable expression thus
depends on the purchaseorder table. Because of this, table purchaseorder must
appear before the XMLTable expression in the FROM list. This is a general requirement
in any situation involving data dependence.

Chapter 5
Using XQuery with Oracle XML DB

5-11



Note:

Whenever a PASSING clause refers to a column of an XMLType table in a
query, that table must appear before the XMLTable expression in the query
FROM list. This is because the XMLTable expression depends on the XMLType
table — a left lateral (correlated) join is needed, to ensure a one-to-many
(1:N) relationship between the XMLType table row accessed and the rows
generated from it by XMLTable.

Example 5-10 is similar to Example 5-9 in its effect. It uses XMLQuery, instead of
XMLTable, to query oe.purchaseorder. These two examples differ in their treatment
of the empty sequences returned by the XQuery expression. In Example 5-9, these
empty sequences are not joined with the purchaseorder table, so the overall SQL-
query result set has only ten rows. In Example 5-10, these empty sequences are part
of the overall result set of the SQL query, which contains 132 rows, one for each of the
rows in table purchaseorder. All but ten of those rows are empty, and show up in the
output as empty lines. To save space here, those empty lines have been removed.

See Also:

Example 5-43 for the execution plan of Example 5-10

Example 5-11 uses XMLTable clauses PASSING and COLUMNS. The XQuery expression
iterates over top-level PurchaseOrder elements, constructing a PO element for each
purchase order with cost center A10. The resulting PO elements are then passed to
XMLTable for processing.

In Example 5-11, data from the children of PurchaseOrder is used to construct
the children of PO, which are Ref, Type, and Name. The content of Type is taken
from the content of /PurchaseOrder/SpecialInstructions, but the classes of
SpecialInstructions are divided up differently for Type.

Function XMLTable breaks up the result of XQuery evaluation, returning it as three
VARCHAR2 columns of a virtual table: poref, priority, and contact. The DEFAULT
clause is used to supply a default priority of Regular.

Example 5-11 does not use the clause RETURNING SEQUENCE BY REF, which means
that the XQuery sequence returned and then used by the COLUMNS clause is passed
by value, not by reference. That is, a copy of the targeted nodes is returned, not a
reference to the actual nodes.

When the returned sequence is passed by value, the columns specified in a COLUMNS
clause cannot refer to any data that is not in that returned copy. In particular, they
cannot refer to data that precedes the targeted nodes in the source data.

To be able to refer to an arbitrary part of the source data from column specifications
in a COLUMNS clause, you need to use the clause RETURNING SEQUENCE BY REF,
which causes the sequence resulting from the XQuery expression to be returned by
reference.

Chapter 5
Using XQuery with Oracle XML DB

5-12



Example 5-12 shows the use of clause RETURNING SEQUENCE BY REF, which allows
column reference to refer to a node that is outside the nodes targeted by the XQuery
expression. Because the sequence of LineItem nodes is returned by reference, the
code has access to the complete tree of nodes, so it can navigate upward and then
back down to node Reference.

Clause RETURNING SEQUENCE BY REF lets you specify that the result of evaluating
the top-level XQuery expression used to generate rows for XMLTable be returned by
reference. The same kind of choice is available for the result of evaluating a PATH
expression in a COLUMNS clause. To specify that such a result be returned by reference
you use XMLType (SEQUENCE) BY REF as the column data type.

Example 5-13 illustrates this. It chains together two XMLTable tables, t1 and t2,
returning XML data from the source document by reference:

• For column reference of the top-level table, t1, because it corresponds to a node
outside element LineItem (just as in Example 5-12)

• For column part of table t1, because it is passed to table t2, whose column item
targets data outside node Part

In table t1, the type used for column part is XMLType (SEQUENCE) BY REF, so that the
part data is a reference to the source data targeted by its PATH expression, LineItem/
Part. This is needed because the PATH expression for column item in table t2 targets
attribute ItemNumber of the parent of element Part, LineItem. Without specifying that
part is a reference, it would be a copy of just the Part element, so that using PATH
expression ../@ItemNumber would raise an error.

Example 5-14 uses SQL/XML function XMLTable to break up the XML data in an
XMLType collection element, LineItem, into separate columns of a virtual table.

See Also:

• Example 5-44 for the execution plan of Example 5-14

• Creating a Relational View over XML: Mapping XML Nodes to Columns,
for an example of applying XMLTable to multiple document levels
(multilevel chaining)

Example 5-8    Querying an XMLType Column Using XMLQuery PASSING Clause

SELECT warehouse_name, 
       XMLQuery(
         'for $i in /Warehouse 
          where  $i/Area > 80000 
          return <Details>
                   <Docks num="{$i/Docks}"/>
                   <Rail>{if ($i/RailAccess = "Y")
                          then "true"
                          else "false"}
                   </Rail>
                 </Details>'

Chapter 5
Using XQuery with Oracle XML DB

5-13



         PASSING warehouse_spec RETURNING CONTENT) big_warehouses
  FROM oe.warehouses;

This produces the following output:

WAREHOUSE_NAME
--------------
BIG_WAREHOUSES
--------------
Southlake, Texas
 
 
San Francisco
 
 
New Jersey
<Details><Docks num=""></Docks><Rail>false</Rail></Details>
 
Seattle, Washington
<Details><Docks num="3"></Docks><Rail>true</Rail></Details>
 
Toronto
 
 
Sydney
 
 
Mexico City
 
 
Beijing
 
 
Bombay
 
 
9 rows selected.

Example 5-9    Using XMLTABLE with XML Schema-Based Data

SELECT xtab.COLUMN_VALUE
  FROM purchaseorder, XMLTable('for $i in /PurchaseOrder
                                where $i/CostCenter eq "A10"
                                  and $i/User eq "SMCCAIN"
                                return <A10po pono="{$i/Reference}"/>'
                               PASSING OBJECT_VALUE) xtab;
 
COLUMN_VALUE
---------------------------------------------------
<A10po pono="SMCCAIN-20021009123336151PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336341PDT"></A10po>
<A10po pono="SMCCAIN-20021009123337173PDT"></A10po>
<A10po pono="SMCCAIN-20021009123335681PDT"></A10po>
<A10po pono="SMCCAIN-20021009123335470PDT"></A10po>

Chapter 5
Using XQuery with Oracle XML DB

5-14



<A10po pono="SMCCAIN-20021009123336972PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336842PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336512PDT"></A10po>
<A10po pono="SMCCAIN-2002100912333894PDT"></A10po>
<A10po pono="SMCCAIN-20021009123337403PDT"></A10po>
 
10 rows selected.

Example 5-10    Using XMLQUERY with XML Schema-Based Data

SELECT XMLQuery('for $i in /PurchaseOrder
                 where $i/CostCenter eq "A10"
                   and $i/User eq "SMCCAIN"
                 return <A10po pono="{$i/Reference}"/>'
                PASSING OBJECT_VALUE
                RETURNING CONTENT)
  FROM purchaseorder;
 
XMLQUERY('FOR$IIN/PURCHASEORDERWHERE$I/COSTCENTEREQ
---------------------------------------------------
<A10po pono="SMCCAIN-20021009123336151PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336341PDT"></A10po>
<A10po pono="SMCCAIN-20021009123337173PDT"></A10po>
<A10po pono="SMCCAIN-20021009123335681PDT"></A10po>
<A10po pono="SMCCAIN-20021009123335470PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336972PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336842PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336512PDT"></A10po>
<A10po pono="SMCCAIN-2002100912333894PDT"></A10po>
<A10po pono="SMCCAIN-20021009123337403PDT"></A10po>
 
132 rows selected.

Example 5-11    Using XMLTABLE with PASSING and COLUMNS Clauses

SELECT xtab.poref, xtab.priority, xtab.contact
  FROM purchaseorder,
       XMLTable('for $i in /PurchaseOrder
                 let $spl := $i/SpecialInstructions
                 where $i/CostCenter eq "A10"
                 return <PO>
                          <Ref>{$i/Reference}</Ref>
                          {if ($spl eq "Next Day Air" or $spl eq "Expedite") then
                             <Type>Fastest</Type>
                           else if ($spl eq "Air Mail") then
                             <Type>Fast</Type>
                           else ()}
                          <Name>{$i/Requestor}</Name>
                        </PO>'
                PASSING OBJECT_VALUE
                COLUMNS poref    VARCHAR2(20) PATH 'Ref',
                        priority VARCHAR2(8)  PATH 'Type' DEFAULT 'Regular',
                        contact  VARCHAR2(20) PATH 'Name') xtab;
 

Chapter 5
Using XQuery with Oracle XML DB

5-15



POREF                PRIORITY CONTACT
-------------------- -------- --------------------
SKING-20021009123336 Fastest  Steven A. King
SMCCAIN-200210091233 Regular  Samuel B. McCain
SMCCAIN-200210091233 Fastest  Samuel B. McCain
JCHEN-20021009123337 Fastest  John Z. Chen
JCHEN-20021009123337 Regular  John Z. Chen
SKING-20021009123337 Regular  Steven A. King
SMCCAIN-200210091233 Regular  Samuel B. McCain
JCHEN-20021009123338 Regular  John Z. Chen
SMCCAIN-200210091233 Regular  Samuel B. McCain
SKING-20021009123335 Regular  Steven X. King
SMCCAIN-200210091233 Regular  Samuel B. McCain
SKING-20021009123336 Regular  Steven A. King
SMCCAIN-200210091233 Fast     Samuel B. McCain
SKING-20021009123336 Fastest  Steven A. King
SKING-20021009123336 Fastest  Steven A. King
SMCCAIN-200210091233 Regular  Samuel B. McCain
JCHEN-20021009123335 Regular  John Z. Chen
SKING-20021009123336 Regular  Steven A. King
JCHEN-20021009123336 Regular  John Z. Chen
SKING-20021009123336 Regular  Steven A. King
SMCCAIN-200210091233 Regular  Samuel B. McCain
SKING-20021009123337 Regular  Steven A. King
SKING-20021009123338 Fastest  Steven A. King
SMCCAIN-200210091233 Regular  Samuel B. McCain
JCHEN-20021009123337 Regular  John Z. Chen
JCHEN-20021009123337 Regular  John Z. Chen
JCHEN-20021009123337 Regular  John Z. Chen
SKING-20021009123337 Regular  Steven A. King
JCHEN-20021009123337 Regular  John Z. Chen
SKING-20021009123337 Regular  Steven A. King
SKING-20021009123337 Regular  Steven A. King
SMCCAIN-200210091233 Fast     Samuel B. McCain
 
32 rows selected.

Example 5-12    Using XMLTABLE with RETURNING SEQUENCE BY REF

SELECT t.*
  FROM purchaseorder,
       XMLTable('/PurchaseOrder/LineItems/LineItem' PASSING OBJECT_VALUE
                RETURNING SEQUENCE BY REF
                COLUMNS reference   VARCHAR2(30) PATH '../../Reference',
                        item        VARCHAR2(4)  PATH '@ItemNumber',
                        description VARCHAR2(45) PATH 'Description') t
  WHERE item = 5;
 
REFERENCE                      ITEM DESCRIPTION
------------------------------ ---- ------------------------------------
AMCEWEN-20021009123336171PDT   5    Coup De Torchon (Clean Slate)
AMCEWEN-20021009123336271PDT   5    The Unbearable Lightness Of Being
PTUCKER-20021009123336191PDT   5    The Scarlet Empress
PTUCKER-20021009123336291PDT   5    The Unbearable Lightness Of Being

Chapter 5
Using XQuery with Oracle XML DB

5-16



SBELL-20021009123336231PDT     5    Black Narcissus
SBELL-20021009123336331PDT     5    Fishing With John 1 -3
SKING-20021009123336321PDT     5    The Red Shoes
SMCCAIN-20021009123336151PDT   5    Wages of Fear
SMCCAIN-20021009123336341PDT   5    The Most Dangerous Game
VJONES-20021009123336301PDT    5    Le Trou
 
10 rows selected.

Example 5-13    Using Chained XMLTABLE with Access by Reference

SELECT t1.reference, t2.id, t2.item
  FROM purchaseorder,
       XMLTable('/PurchaseOrder/LineItems' PASSING OBJECT_VALUE
                RETURNING SEQUENCE BY REF
                COLUMNS part XMLType (SEQUENCE) BY REF
                          PATH 'LineItem/Part',
                        reference VARCHAR2(30)
                          PATH '../Reference') t1,
       XMLTable('.' PASSING t1.part
                RETURNING SEQUENCE BY REF
                COLUMNS id   VARCHAR2(12) PATH '@Id',
                        item NUMBER       PATH '../@ItemNumber') t2;

Example 5-14    Using XMLTABLE to Decompose XML Collection Elements into
Relational Data

SELECT lines.lineitem, lines.description, lines.partid,
       lines.unitprice, lines.quantity
  FROM purchaseorder,
       XMLTable('for $i in /PurchaseOrder/LineItems/LineItem
                 where $i/@ItemNumber >= 8
                  and $i/Part/@UnitPrice > 50
                  and $i/Part/@Quantity > 2
                 return $i'
                PASSING OBJECT_VALUE
                COLUMNS
                  lineitem    NUMBER       PATH '@ItemNumber',
                  description VARCHAR2(30) PATH 'Description',
                  partid      NUMBER       PATH 'Part/@Id',
                  unitprice   NUMBER       PATH 'Part/@UnitPrice',
                  quantity    NUMBER       PATH 'Part/@Quantity') 
lines; 

LINEITEM DESCRIPTION                           PARTID UNITPRICE QUANTITY
-------- ------------------------------ ------------- --------- --------
      11 Orphic Trilogy                   37429148327        80        3
      22 Dreyer Box Set                   37429158425        80        4
      11 Dreyer Box Set                   37429158425        80        3
      16 Dreyer Box Set                   37429158425        80        3
       8 Dreyer Box Set                   37429158425        80        3
      12 Brazil                           37429138526        60        3
      18 Eisenstein: The Sound Years      37429149126        80        4
      24 Dreyer Box Set                   37429158425        80        3

Chapter 5
Using XQuery with Oracle XML DB

5-17



      14 Dreyer Box Set                   37429158425        80        4
      10 Brazil                           37429138526        60        3
      17 Eisenstein: The Sound Years      37429149126        80        3
      16 Orphic Trilogy                   37429148327        80        4
      13 Orphic Trilogy                   37429148327        80        4
      10 Brazil                           37429138526        60        4
      12 Eisenstein: The Sound Years      37429149126        80        3
      12 Dreyer Box Set                   37429158425        80        4
      13 Dreyer Box Set                   37429158425        80        4
 
17 rows selected.

5.1.5 Using Namespaces with XQuery
You can use the XQuery declare namespace declaration in the prolog of an XQuery
expression to define a namespace prefix. You can use declare default namespace to
establish the namespace as the default namespace for the expression.

Note:

Be aware of the following pitfall, if you use SQL*Plus: If the semicolon (;) at
the end of a namespace declaration terminates a line, SQL*Plus interprets it
as a SQL terminator. To avoid this, you can do one of the following:

• Place the text that follows the semicolon on the same line.

• Place a comment, such as (: :), after the semicolon, on the same line.

• Turn off the recognition of the SQL terminator with SQL*Plus command
SET SQLTERMINATOR.

Example 5-15 illustrates use of a namespace declaration in an XQuery expression.

An XQuery namespace declaration has no effect outside of its XQuery expression. To
declare a namespace prefix for use in an XMLTable expression outside of the XQuery
expression, use the XMLNAMESPACES clause. This clause also covers the XQuery
expression argument to XMLTable, eliminating the need for a separate declaration in
the XQuery prolog.

In Example 5-16, XMLNAMESPACES is used to define the prefix e for the namespace
http://example.com. This namespace is used in the COLUMNS clause and the XQuery
expression of the XMLTable expression.

Example 5-15    Using XMLQUERY with a Namespace Declaration

SELECT XMLQuery('declare namespace e = "http://example.com";
ERROR:
ORA-01756: quoted string not properly terminated
 
                 for $i in doc("/public/empsns.xml")/e:emps/e:emp
SP2-0734: unknown command beginning "for $i in ..." - rest of line ignored.
...

Chapter 5
Using XQuery with Oracle XML DB

5-18



-- This works - do not end the line with ";".
SELECT XMLQuery('declare namespace e = "http://example.com"; for
                     $i in doc("/public/empsns.xml")/e:emps/e:emp
                 let $d := 
                   doc("/public/depts.xml")//dept[@deptno=$i/@deptno]/@dname
                 where $i/@salary > 100000
                 order by $i/@empno
                 return <emp ename="{$i/@ename}" dept="{$d}"/>'
                RETURNING CONTENT) FROM DUAL;
 
XMLQUERY('DECLARENAMESPACEE="HTTP://EXAMPLE.COM";FOR$IINDOC("/PUBLIC/EMPSNS.XML"
--------------------------------------------------------------------------------
<emp ename="Jack" dept=""></emp><emp ename="Jill" dept=""></emp>

-- This works too - add a comment after the ";".
SELECT XMLQuery('declare namespace e = "http://example.com";  (: :)
                 for $i in doc("/public/empsns.xml")/e:emps/e:emp
                 let $d := doc("/public/depts.xml")//dept[@deptno=$i/@deptno]/@dname
                 where $i/@salary > 100000
                 order by $i/@empno
                 return <emp ename="{$i/@ename}" dept="{$d}"/>'
                RETURNING CONTENT) FROM DUAL;
 
XMLQUERY('DECLARENAMESPACEE="HTTP://EXAMPLE.COM";(::)FOR$IINDOC("/PUBLIC/EMPSNS.
--------------------------------------------------------------------------------
<emp ename="Jack" dept=""></emp><emp ename="Jill" dept=""></emp>
 
1 row selected.

-- This works too - tell SQL*Plus to ignore the ";".

SET SQLTERMINATOR OFF
 
SELECT XMLQuery('declare namespace e = "http://example.com";
                 for $i in doc("/public/empsns.xml")/e:emps/e:emp
                 let $d :=
                   doc("/public/depts.xml")//dept[@deptno=$i/@deptno]/@dname
                 where $i/@salary > 100000
                 order by $i/@empno
                 return <emp ename="{$i/@ename}" dept="{$d}"/>'
                RETURNING CONTENT) FROM DUAL
/
 
XMLQUERY('DECLARENAMESPACEE="HTTP://EXAMPLE.COM";FOR$IINDOC("/PUBLIC/EMPSNS.XML"
--------------------------------------------------------------------------------
<emp ename="Jack" dept=""></emp><emp ename="Jill" dept=""></emp>

Example 5-16    Using XMLTABLE with the XMLNAMESPACES Clause

SELECT * FROM XMLTable(XMLNAMESPACES ('http://example.com' AS "e"),
                       'for $i in doc("/public/empsns.xml")
                        return $i/e:emps/e:emp'
                       COLUMNS name VARCHAR2(6) PATH '@ename',
                               id   NUMBER      PATH '@empno');

Chapter 5
Using XQuery with Oracle XML DB

5-19



This produces the following result:

NAME           ID
------ ----------
John            1
Jack            2
Jill            3
 
3 rows selected.

It is the presence of qualified names e:ename and e:empno in the COLUMNS clause
that necessitates using the XMLNAMESPACES clause. Otherwise, a prolog namespace
declaration (declare namespace e = "http://example.com") would suffice for the
XQuery expression itself.

Because the same namespace is used throughout the XMLTable expression, a default
namespace could be used: XMLNAMESPACES (DEFAULT 'http://example.com'). The
qualified name $i/e:emps/e:emp could then be written without an explicit prefix: $i/
emps/emp.

5.2 Querying XML Data Using SQL and PL/SQL
You can query XML data from XMLType columns and tables in various ways.

• Select XMLType data using SQL, PL/SQL, or Java.

• Query XMLType data using SQL/XML functions such as XMLQuery. See Querying
XMLType Data Using XQuery.

• Perform full-text search using XQuery Full Text. See Support for XQuery Full Text
and Indexes for XMLType Data.

The examples in this section illustrate different ways you can use SQL and PL/SQL
to query XML data. Example 5-17 inserts two rows into table purchaseorder,
then queries data in those rows using SQL/XML functions XMLCast, XMLQuery, and
XMLExists.

Example 5-18 uses a PL/SQL cursor to query XML data. It uses a local XMLType
instance to store transient data.

Example 5-19 and Example 5-20 both use SQL/XML function XMLTable to extract data
from an XML purchase-order document. They then insert that data into a relational
table. Example 5-19 uses SQL; Example 5-20 uses PL/SQL.

Example 5-20 defines and uses a PL/SQL procedure to extract data from an XML
purchase-order document and insert it into a relational table.

Example 5-21 tabulates the purchase orders whose shipping address contains the
string "Shores" and which were requested by customers whose names contain the
string "ll" (double L). These purchase orders are grouped by customer and counted.
The example uses XQuery Full Text to perform full-text search.

Example 5-22 extracts the fragments of a document that are identified by an XPath
expression. The XMLType instance returned by XMLQuery can be a set of nodes, a
singleton node, or a text value. Example 5-22 uses XMLType method isFragment() to
determine whether the result is a fragment.

Chapter 5
Querying XML Data Using SQL and PL/SQL

5-20



Note:

You cannot insert fragments into XMLType columns. You can use SQL/XML
function XMLQuery to convert a fragment into a well-formed document.

Example 5-17    Querying XMLTYPE Data

INSERT INTO purchaseorder 
  VALUES (XMLType(bfilename('XMLDIR', 
'SMCCAIN-2002091213000000PDT.xml'),
                  nls_charset_id('AL32UTF8')));
 
INSERT INTO purchaseorder
  VALUES (XMLType(bfilename('XMLDIR', 
'VJONES-20020916140000000PDT.xml'),
                  nls_charset_id('AL32UTF8')));
 
SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference'
                        PASSING po.OBJECT_VALUE AS "p" RETURNING 
CONTENT)
               AS VARCHAR2(30)) reference,
       XMLCast(XMLQuery('$p/PurchaseOrder/*//User'
                        PASSING po.OBJECT_VALUE AS "p" RETURNING 
CONTENT)
               AS VARCHAR2(30)) userid,
       CASE
         WHEN XMLExists('$p/PurchaseOrder/Reject/Date'
                        PASSING po.OBJECT_VALUE AS "p")
           THEN 'Rejected'
           ELSE 'Accepted'
       END "STATUS",
       XMLCast(XMLQuery('$p//Date'
                        PASSING po.OBJECT_VALUE AS "p" RETURNING 
CONTENT)
               AS VARCHAR2(12)) status_date
  FROM purchaseorder po
  WHERE XMLExists('$p//Date' PASSING po.OBJECT_VALUE AS "p")
  ORDER BY XMLCast(XMLQuery('$p//Date' PASSING po.OBJECT_VALUE AS "p"
                                       RETURNING CONTENT)
                   AS VARCHAR2(12));
 

REFERENCE                        USERID   STATUS   STATUS_DATE
-------------------------------- -------- -------- ------------
VJONES-20020916140000000PDT      SVOLLMAN Accepted 2002-10-11
SMCCAIN-2002091213000000PDT      SKING    Rejected 2002-10-12
 
2 rows selected.

Chapter 5
Querying XML Data Using SQL and PL/SQL

5-21



Example 5-18     Querying Transient XMLTYPE Data Using a PL/SQL Cursor

DECLARE
  xNode      XMLType;
  vText      VARCHAR2(256);
  vReference VARCHAR2(32);
  CURSOR getPurchaseOrder(reference IN VARCHAR2) IS
           SELECT OBJECT_VALUE XML
             FROM purchaseorder
             WHERE XMLExists('$p/PurchaseOrder[Reference=$r]'
                             PASSING OBJECT_VALUE AS "p",
                                     reference    AS "r");
BEGIN
  vReference := 'EABEL-20021009123335791PDT';
  FOR c IN getPurchaseOrder(vReference) LOOP
    xNode := c.XML.extract('//Requestor');
    SELECT XMLSerialize(CONTENT
                        XMLQuery('//text()'
                                 PASSING xNode RETURNING CONTENT))
           INTO vText FROM DUAL;
    DBMS_OUTPUT.put_line('The Requestor for Reference '
                         || vReference || ' is '|| vText);
  END LOOP;
  vReference := 'PTUCKER-20021009123335430PDT';
  FOR c IN getPurchaseOrder(vReference) LOOP
    xNode := c.XML.extract('//LineItem[@ItemNumber="1"]/Description');
    SELECT XMLSerialize(CONTENT
                        XMLQuery('//text()' PASSING xNode RETURNING 
CONTENT))
           INTO vText FROM DUAL;
    DBMS_OUTPUT.put_line('The Description of LineItem[1] for Reference '
                         || vReference || ' is '|| vText);
  END LOOP;
END;
/
The Requestor for Reference EABEL-20021009123335791PDT is Ellen S. Abel
The Description of LineItem[1] for Reference 
PTUCKER-20021009123335430PDT is
 Picnic at
Hanging Rock
 
PL/SQL procedure successfully completed.

Example 5-19    Extracting XML Data and Inserting It into a Relational Table Using SQL

CREATE TABLE purchaseorder_table (reference           VARCHAR2(28) PRIMARY KEY,
                                  requestor           VARCHAR2(48),
                                  actions             XMLType,
                                  userid              VARCHAR2(32),
                                  costcenter          VARCHAR2(3),
                                  shiptoname          VARCHAR2(48),
                                  address             VARCHAR2(512),
                                  phone               VARCHAR2(32),
                                  rejectedby          VARCHAR2(32),
                                  daterejected        DATE,
                                  comments            VARCHAR2(2048),
                                  specialinstructions VARCHAR2(2048));

Chapter 5
Querying XML Data Using SQL and PL/SQL

5-22



 
CREATE TABLE purchaseorder_lineitem (reference,
                                     FOREIGN KEY ("REFERENCE")
                                       REFERENCES "PURCHASEORDER_TABLE" ("REFERENCE") ON DELETE CASCADE,
                                     lineno      NUMBER(10), PRIMARY KEY ("REFERENCE", "LINENO"),
                                     upc         VARCHAR2(14),
                                     description VARCHAR2(128),
                                     quantity    NUMBER(10),
                                     unitprice   NUMBER(12,2));
 

INSERT INTO purchaseorder_table (reference, requestor, actions, userid, costcenter, shiptoname, address,
                                 phone, rejectedby, daterejected, comments, specialinstructions)
  SELECT t.reference, t.requestor, t.actions, t.userid, t.costcenter, t.shiptoname, t.address, 
          t.phone, t.rejectedby, t.daterejected, t.comments, t.specialinstructions
    FROM purchaseorder p,
         XMLTable('/PurchaseOrder' PASSING p.OBJECT_VALUE
                  COLUMNS reference           VARCHAR2(28)   PATH 'Reference',
                          requestor           VARCHAR2(48)   PATH 'Requestor',
                          actions             XMLType        PATH 'Actions',
                          userid              VARCHAR2(32)   PATH 'User',
                          costcenter          VARCHAR2(3)    PATH 'CostCenter',
                          shiptoname          VARCHAR2(48)   PATH 'ShippingInstructions/name',
                          address             VARCHAR2(512)  PATH 'ShippingInstructions/address',
                          phone               VARCHAR2(32)   PATH 'ShippingInstructions/telephone',
                          rejectedby          VARCHAR2(32)   PATH 'Reject/User',
                          daterejected        DATE           PATH 'Reject/Date',
                          comments            VARCHAR2(2048) PATH 'Reject/Comments',
                          specialinstructions VARCHAR2(2048) PATH 'SpecialInstructions') t
    WHERE t.reference = 'EABEL-20021009123336251PDT';
 
INSERT INTO purchaseorder_lineitem (reference, lineno, upc, description, quantity, unitprice)
  SELECT t.reference, li.lineno, li.upc, li.description, li.quantity, li.unitprice
    FROM purchaseorder p,
         XMLTable('/PurchaseOrder' PASSING p.OBJECT_VALUE
                  COLUMNS reference VARCHAR2(28) PATH 'Reference',
                          lineitem XMLType PATH 'LineItems/LineItem') t,
         XMLTable('LineItem' PASSING t.lineitem
                  COLUMNS lineno      NUMBER(10)    PATH '@ItemNumber',
                          upc         VARCHAR2(14)  PATH 'Part/@Id',
                          description VARCHAR2(128) PATH 'Description',
                          quantity    NUMBER(10)    PATH 'Part/@Quantity',
                          unitprice   NUMBER(12,2)  PATH 'Part/@UnitPrice') li
    WHERE t.reference = 'EABEL-20021009123336251PDT';
 

SELECT reference, userid, shiptoname, specialinstructions FROM purchaseorder_table;
 
REFERENCE                        USERID   SHIPTONAME                                       
SPECIALINSTRUCTIONS
-------------------------------- -------- ------------------------------------------------ 
-------------------
EABEL-20021009123336251PDT       EABEL    Ellen S. Abel                                    Counter to 
Counter
 
SELECT reference, lineno, upc, description, quantity FROM purchaseorder_lineitem;
 
REFERENCE                            LINENO UPC            DESCRIPTION                          QUANTITY
-------------------------------- ---------- -------------- ---------------------------------- ----------
EABEL-20021009123336251PDT                1 37429125526    Samurai 2: Duel at Ichijoji Temple          3
EABEL-20021009123336251PDT                2 37429128220    The Red Shoes                               4
EABEL-20021009123336251PDT                3 715515009058   A Night to Remember                         1

Chapter 5
Querying XML Data Using SQL and PL/SQL

5-23



Example 5-20    Extracting XML Data and Inserting It into a Table Using PL/SQL

CREATE OR REPLACE PROCEDURE insertPurchaseOrder(purchaseorder XMLType) AS reference VARCHAR2(28);
BEGIN
  INSERT INTO purchaseorder_table (reference, requestor, actions, userid, costcenter, shiptoname, address,
                                   phone, rejectedby, daterejected, comments, specialinstructions)
    SELECT * FROM XMLTable('$p/PurchaseOrder' PASSING purchaseorder AS "p"
                           COLUMNS reference           VARCHAR2(28)   PATH 'Reference',
                                   requestor           VARCHAR2(48)   PATH 'Requestor',
                                   actions             XMLType        PATH 'Actions',
                                   userid              VARCHAR2(32)   PATH 'User',
                                   costcenter          VARCHAR2(3)    PATH 'CostCenter',
                                   shiptoname          VARCHAR2(48)   PATH 'ShippingInstructions/name',
                                   address             VARCHAR2(512)  PATH 'ShippingInstructions/address',
                                   phone               VARCHAR2(32)   PATH 'ShippingInstructions/telephone',
                                   rejectedby          VARCHAR2(32)   PATH 'Reject/User',
                                   daterejected        DATE           PATH 'Reject/Date',
                                   comments            VARCHAR2(2048) PATH 'Reject/Comments',
                                   specialinstructions VARCHAR2(2048) PATH 'SpecialInstructions');
 
  INSERT INTO purchaseorder_lineitem (reference, lineno, upc, description, quantity, unitprice)
    SELECT t.reference, li.lineno, li.upc, li.description, li.quantity, li.unitprice
    FROM XMLTable('$p/PurchaseOrder' PASSING purchaseorder AS "p"
                  COLUMNS reference VARCHAR2(28) PATH 'Reference',
                          lineitem XMLType PATH 'LineItems/LineItem') t,
         XMLTable('LineItem' PASSING t.lineitem
                  COLUMNS lineno NUMBER(10)    PATH '@ItemNumber',
                          upc VARCHAR2(14)  PATH 'Part/@Id',
                          description VARCHAR2(128) PATH 'Description',
                          quantity NUMBER(10)    PATH 'Part/@Quantity',
                          unitprice NUMBER(12,2)  PATH 'Part/@UnitPrice') li;
END;

CALL insertPurchaseOrder(XMLType(bfilename('XMLDIR', 'purchaseOrder.xml'), nls_charset_id('AL32UTF8')));
 

SELECT reference, userid, shiptoname, specialinstructions FROM purchaseorder_table;
 
REFERENCE                        USERID   SHIPTONAME                                       SPECIALINSTRUCTIONS
-------------------------------- -------- ------------------------------------------------ -------------------
SBELL-2002100912333601PDT        SBELL    Sarah J. Bell                                    Air Mail

 
SELECT reference, lineno, upc, description, quantity FROM purchaseorder_lineitem;
 
REFERENCE                 LINENO UPC          DESCRIPTION                        QUANTITY
------------------------- ------ ------------ ---------------------------------- --------
SBELL-2002100912333601PDT      1 715515009058 A Night to Remember                       2
SBELL-2002100912333601PDT      2 37429140222  The Unbearable Lightness Of Being         2
SBELL-2002100912333601PDT      3 715515011020 Sisters                                   4

Example 5-21    Searching XML Data Using SQL/XML Functions

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Requestor'
                        PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(128)) name,
       count(*)
  FROM purchaseorder po
  WHERE
    XMLExists(
      'declare namespace ora="http://xmlns.oracle.com/xdb"; (: :)
       $p/PurchaseOrder/ShippingInstructions[address/text() contains text "Shores"]'
      PASSING po.OBJECT_VALUE AS "p")
    AND XMLCast(XMLQuery('$p/PurchaseOrder/Requestor/text()'
                         PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
                AS VARCHAR2(128))
        LIKE '%ll%'

Chapter 5
Querying XML Data Using SQL and PL/SQL

5-24



  GROUP BY XMLCast(XMLQuery('$p/PurchaseOrder/Requestor'
                            PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
                   AS VARCHAR2(128));

NAME                   COUNT(*)
-------------------- ----------
Allan D. McEwen               9
Ellen S. Abel                 4
Sarah J. Bell                13
William M. Smith              7

Example 5-22    Extracting Fragments Using XMLQUERY

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference' PASSING po.OBJECT_VALUE AS "p"
                                                     RETURNING CONTENT)
               AS VARCHAR2(30)) reference,
       count(*)
  FROM purchaseorder po, XMLTable('$p//LineItem[Part/@Id="37429148327"]' PASSING OBJECT_VALUE AS "p")
  WHERE XMLQuery('$p/PurchaseOrder/LineItems/LineItem[Part/@Id="37429148327"]'
                 PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT).isFragment() = 1
  GROUP BY XMLCast(XMLQuery('$p/PurchaseOrder/Reference' PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
                   AS VARCHAR2(30))
  ORDER BY XMLCast(XMLQuery('$p/PurchaseOrder/Reference' PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
                   AS VARCHAR2(30));
 
REFERENCE                          COUNT(*)
-------------------------------- ----------
TFOX-20021009123337784PDT                 3

5.3 Using the SQL*Plus XQUERY Command
You can evaluate an XQuery expression using the SQL*Plus XQUERY command.

Example 5-23 shows how you can enter an XQuery expression directly at the
SQL*Plus command line, by preceding the expression with the SQL*Plus command
XQUERY and following it with a slash (/) on a line by itself. Oracle Database treats
XQuery expressions submitted with this command the same way it treats XQuery
expressions in SQL/XML functions XMLQuery and XMLTable. Execution is identical, with
the same optimizations.

There are also a few SQL*Plus SET commands that you can use for settings that are
specific to XQuery. Use SHOW XQUERY to see the current settings.

• SET XQUERY BASEURI – Set the base URI for XQUERY. URIs in XQuery expressions
are relative to this URI.

• SET XQUERY CONTEXT – Specify a context item for subsequent XQUERY evaluations.

See Also:

SQL*Plus User's Guide and Reference

Example 5-23    Using the SQL*Plus XQUERY Command

SQL> XQUERY for $i in fn:collection("oradb:/HR/DEPARTMENTS")
  2  where $i/ROW/DEPARTMENT_ID < 50
  3  return $i
  4  /

Chapter 5
Using the SQL*Plus XQUERY Command

5-25



 
Result Sequence
--------------------------------------------------------------------------------
<ROW><DEPARTMENT_ID>10</DEPARTMENT_ID><DEPARTMENT_NAME>Administration</DEPARTMEN
T_NAME><MANAGER_ID>200</MANAGER_ID><LOCATION_ID>1700</LOCATION_ID></ROW>
 
<ROW><DEPARTMENT_ID>20</DEPARTMENT_ID><DEPARTMENT_NAME>Marketing</DEPARTMENT_NAM
E><MANAGER_ID>201</MANAGER_ID><LOCATION_ID>1800</LOCATION_ID></ROW>
 
<ROW><DEPARTMENT_ID>30</DEPARTMENT_ID><DEPARTMENT_NAME>Purchasing</DEPARTMENT_NA
ME><MANAGER_ID>114</MANAGER_ID><LOCATION_ID>1700</LOCATION_ID></ROW>
 
<ROW><DEPARTMENT_ID>40</DEPARTMENT_ID><DEPARTMENT_NAME>Human Resources</DEPARTME
NT_NAME><MANAGER_ID>203</MANAGER_ID><LOCATION_ID>2400</LOCATION_ID></ROW>

5.4 Using XQuery with XQJ to Access Database Data
XQuery API for Java (XQJ), also known as JSR-225, provides an industry-standard
way for Java programs to access XML data using XQuery. It lets you evaluate XQuery
expressions against XML data sources and process the results as XML data.

Oracle provides two XQuery engines for evaluating XQuery expressions: one in Oracle
XML DB, for use with XML data in the database, and one in Oracle XML Developer's
Kit, for use with XML data outside the database.

Similarly, Oracle provides two mid-tier XQJ implementations for accessing these two
XQuery engines. Both implementations are part of Oracle XML Developer's Kit (XDK).
You use XDK to access XML data with XQJ, regardless of whether that data resides in
the database or elsewhere.

In particular, you can use XDK and XQJ to access XML data in Oracle XML DB. A
typical use case for this feature is to access data stored in remote databases from a
local Java program.

See Also:

• XQuery API for Java (XQJ) 1.0 Specification, March 2009

This specification is quite concrete and helpful, with understandable
examples.

• Oracle XML Developer's Kit Programmer's Guide for complete
information about using XQJ with Oracle XML Developer's Kit

• Oracle XML Developer's Kit Programmer's Guide for information,
including examples, about using XQJ with XDK to access XML data in
the database

Chapter 5
Using XQuery with XQJ to Access Database Data

5-26



5.5 Using XQuery with PL/SQL, JDBC, and ODP.NET to
Access Database Data

You can use XQuery with the Oracle APIs for PL/SQL, JDBC, and Oracle Data
Provider for .NET (ODP.NET).

Example 5-24 shows how to use XQuery with PL/SQL, in particular, how to bind
dynamic variables to an XQuery expression using the XMLQuery PASSING clause. The
bind variables :1 and :2 are bound to the PL/SQL bind arguments nbitems and
partid, respectively. These are then passed to XQuery as XQuery variables itemno
and id, respectively.

Example 5-25 shows how to use XQuery with JDBC, binding variables by position with
the PASSING clause of SQL/XML function XMLTable.

Example 5-26 shows how to use XQuery with ODP.NET and the C# language. The C#
input parameters :nbitems and :partid are passed to XQuery as XQuery variables
itemno and id, respectively.

Example 5-24    Using XQuery with PL/SQL

DECLARE
  sql_stmt VARCHAR2(2000); -- Dynamic SQL statement to execute
  nbitems  NUMBER := 3; -- Number of items
  partid   VARCHAR2(20):= '715515009058'; -- Part ID
  result   XMLType;
  doc      DBMS_XMLDOM.DOMDocument;
  ndoc     DBMS_XMLDOM.DOMNode;
  buf      VARCHAR2(20000);
BEGIN
  sql_stmt :=
    'SELECT XMLQuery(
              ''for $i in fn:collection("oradb:/OE/PURCHASEORDER") ' ||
               'where count($i/PurchaseOrder/LineItems/LineItem) = $itemno ' ||
                 'and $i/PurchaseOrder/LineItems/LineItem/Part/@Id = $id ' ||
               'return $i/PurchaseOrder/LineItems'' ' ||
              'PASSING :1 AS "itemno", :2 AS "id" ' ||
              'RETURNING CONTENT) FROM DUAL';
 
  EXECUTE IMMEDIATE sql_stmt INTO result USING nbitems, partid;
  doc  := DBMS_XMLDOM.newDOMDocument(result);
  ndoc := DBMS_XMLDOM.makeNode(doc);
  DBMS_XMLDOM.writeToBuffer(ndoc, buf);
  DBMS_OUTPUT.put_line(buf);
END;
/

This produces the following output:

<LineItems>
  <LineItem ItemNumber="1">
    <Description>Samurai 2: Duel at Ichijoji Temple</Description>
    <Part Id="37429125526" UnitPrice="29.95" Quantity="3"/>
  </LineItem>
  <LineItem ItemNumber="2">
    <Description>The Red Shoes</Description>
    <Part Id="37429128220" UnitPrice="39.95" Quantity="4"/>

Chapter 5
Using XQuery with PL/SQL, JDBC, and ODP.NET to Access Database Data

5-27



  </LineItem>
  <LineItem ItemNumber="3">
    <Description>A Night to Remember</Description>
    <Part Id="715515009058" UnitPrice="39.95" Quantity="1"/>
  </LineItem>
</LineItems>
<LineItems>
  <LineItem ItemNumber="1">
    <Description>A Night to Remember</Description>
    <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
  </LineItem>
  <LineItem ItemNumber="2">
    <Description>The Unbearable Lightness Of Being</Description>
    <Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
  </LineItem>
  <LineItem ItemNumber="3">
    <Description>Sisters</Description>
    <Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
  </LineItem>
</LineItems>

PL/SQL procedure successfully completed.

Example 5-25    Using XQuery with JDBC

import java.sql.*;
import oracle.sql.*;
import oracle.jdbc.*;
import oracle.xdb.XMLType; 
import java.util.*;
 
public class QueryBindByPos
{
  public static void main(String[] args) throws Exception, SQLException
  {
    System.out.println("*** JDBC Access of XQuery using Bind Variables ***");
    DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
    OracleConnection conn
      = (OracleConnection)
        DriverManager.getConnection("jdbc:oracle:oci8:@localhost:1521:ora11gR1", "oe", "oe");
    String xqString
      = "SELECT COLUMN_VALUE" +
          "FROM XMLTable('for $i in fn:collection(\"oradb:/OE/PURCHASEORDER\") " +
                         "where $i/PurchaseOrder/Reference= $ref " +
                         "return $i/PurchaseOrder/LineItems' " +
                        "PASSING ? AS \"ref\")";
    OraclePreparedStatement stmt = (OraclePreparedStatement)conn.prepareStatement(xqString);
    String refString = "EABEL-20021009123336251PDT"; // Set the filter value
    stmt.setString(1, refString); // Bind the string
    ResultSet rs = stmt.executeQuery();
    while (rs.next())
    {
       SQLXML sqlXml = rs.getSQLXML(1);
       System.out.println("LineItem Description: " + sqlXml.getString());
       sqlXml.free();
    }
    rs.close();
    stmt.close();
  }
}

Chapter 5
Using XQuery with PL/SQL, JDBC, and ODP.NET to Access Database Data

5-28



This produces the following output:

*** JDBC Access of Database XQuery with Bind Variables ***
LineItem Description: Samurai 2: Duel at Ichijoji Temple
LineItem Description: The Red Shoes
LineItem Description: A Night to Remember

Example 5-26    Using XQuery with ODP.NET and C#

using System;
using System.Data;
using System.Text;
using System.IO;
using System.Xml;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;
 
namespace XQuery
{
  /// <summary>
  /// Demonstrates how to bind variables for XQuery calls
  /// </summary>
  class XQuery
  {
    /// <summary>
    /// The main entry point for the application.
    /// </summary>
    static void Main(string[] args)
    {
      int rows = 0;
      StreamReader sr = null;
 
      // Create the connection.
      string constr = "User Id=oe;Password=***********;Data Source=ora11gr2"; // Replace with real password.
      OracleConnection con = new OracleConnection(constr);
      con.Open();
 
      // Create the command.
      OracleCommand cmd = new OracleCommand("", con);
 
      // Set the XML command type to query.
      cmd.CommandType   = CommandType.Text;
        
      // Create the SQL query with the XQuery expression.
      StringBuilder blr = new StringBuilder();
      blr.Append("SELECT COLUMN_VALUE FROM XMLTable");
      blr.Append("(\'for $i in fn:collection(\"oradb:/OE/PURCHASEORDER\") ");
      blr.Append("   where count($i/PurchaseOrder/LineItems/LineItem) = $itemno ");
      blr.Append("      and $i/PurchaseOrder/LineItems/LineItem/Part/@Id = $id ");
      blr.Append("   return $i/PurchaseOrder/LineItems\' ");
      blr.Append("  PASSING :nbitems AS \"itemno\", :partid AS \"id\")");
 
      cmd.CommandText = blr.ToString();
      cmd.Parameters.Add(":nbitems", OracleDbType.Int16, 3, ParameterDirection.Input);
      cmd.Parameters.Add(":partid", OracleDbType.Varchar2, "715515009058", ParameterDirection.Input);
 
      // Get the XML document as an XmlReader.
      OracleDataReader dr = cmd.ExecuteReader();
      dr.Read();
 
      // Get the XMLType column as an OracleXmlType
      OracleXmlType xml = dr.GetOracleXmlType(0);
 
      // Print the XML data in the OracleXmlType object
      Console.WriteLine(xml.Value);
      xml.Dispose();
 
      // Clean up.

Chapter 5
Using XQuery with PL/SQL, JDBC, and ODP.NET to Access Database Data

5-29



      cmd.Dispose();
      con.Close();
      con.Dispose();
    }
  }
}

This produces the following output:

<LineItems>
  <LineItem ItemNumber="1">
    <Description>Samurai 2: Duel at Ichijoji Temple</Description>
    <Part Id="37429125526" UnitPrice="29.95" Quantity="3"/>
  </LineItem>
  <LineItem ItemNumber="2">
    <Description>The Red Shoes</Description>
    <Part Id="37429128220" UnitPrice="39.95" Quantity="4"/>
  </LineItem>
  <LineItem ItemNumber="3">
    <Description>A Night to Remember</Description>
    <Part Id="715515009058" UnitPrice="39.95" Quantity="1"/>
  </LineItem>
</LineItems>

Related Topics

• PL/SQL APIs for XMLType
There are several PL/SQL packages that provide APIs for XMLType.

• Java DOM API for XMLType
The Java DOM API for XMLType lets you operate on XMLType instances using a
DOM. You can use it to manipulate XML data in Java, including fetching it through
Java Database Connectivity (JDBC).

• Oracle XML DB and Oracle Data Provider for .NET
Oracle Data Provider for Microsoft .NET (ODP.NET) is an implementation of a data
provider for Oracle Database. It uses Oracle native APIs to offer fast and reliable
access to Oracle data and features from any .NET application.

5.6 Updating XML Data
There are several ways you can use Oracle XML DB features to update XML data,
whether it is transient or stored in database tables.

• Updating an Entire XML Document
To update an entire XML document, use a SQL UPDATE statement.

• Replacing XML Nodes
You can use XQuery Update with a SQL UPDATE statement to update an existing
XML document instead of creating a new document. The entire document is
updated, not just the part of it that is selected.

• Inserting Child XML Nodes
You can use XQuery Update to insert new children (either a single attribute or
one or more elements of the same type) under parent XML elements. The XML
document that is the target of the insertion can be schema-based or non-schema-
based.

• Deleting XML Nodes
An example uses XQuery Update to delete XML nodes.

Chapter 5
Updating XML Data

5-30



• Creating XML Views of Modified XML Data
You can use XQuery Update to create new views of XML data.

5.6.1 Updating an Entire XML Document
To update an entire XML document, use a SQL UPDATE statement.

The right side of the UPDATE statement SET clause must be an XMLType instance. This
can be created in any of the following ways:

• Use SQL functions or XML constructors that return an XML instance.

• Use the PL/SQL DOM APIs for XMLType that change and bind an existing XML
instance.

• Use the Java DOM API that changes and binds an existing XML instance.

Updates for non-schema-based documents stored as binary XML can be made in a
piecewise manner.

Example 5-27 updates an XMLType instance using a SQL UPDATE statement.

Example 5-27    Updating XMLType Data Using SQL UPDATE

SELECT t.reference, li.lineno, li.description
  FROM purchaseorder po,
       XMLTable('$p/PurchaseOrder' PASSING po.OBJECT_VALUE AS "p"
                COLUMNS reference VARCHAR2(28) PATH 'Reference',
                        lineitem  XMLType      PATH 'LineItems/LineItem') t,
       XMLTable('$l/LineItem' PASSING t.lineitem AS "l"
                COLUMNS lineno      NUMBER(10)    PATH '@ItemNumber',
                        description VARCHAR2(128) PATH 'Description') li
  WHERE t.reference = 'DAUSTIN-20021009123335811PDT' AND ROWNUM < 6;
 
REFERENCE                         LINENO DESCRIPTION
-------------------------------- ------- -----------------
DAUSTIN-20021009123335811PDT           1 Nights of Cabiria
DAUSTIN-20021009123335811PDT           2 For All Mankind
DAUSTIN-20021009123335811PDT           3 Dead Ringers
DAUSTIN-20021009123335811PDT           4 Hearts and Minds
DAUSTIN-20021009123335811PDT           5 Rushmore

UPDATE purchaseorder po
  SET po.OBJECT_VALUE = XMLType(bfilename('XMLDIR','NEW-
DAUSTIN-20021009123335811PDT.xml'),
                                nls_charset_id('AL32UTF8'))
  WHERE XMLExists('$p/PurchaseOrder[Reference="DAUSTIN-20021009123335811PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");

SELECT t.reference, li.lineno, li.description
  FROM purchaseorder po,
       XMLTable('$p/PurchaseOrder' PASSING po.OBJECT_VALUE AS "p"
                COLUMNS reference VARCHAR2(28) PATH 'Reference',
                        lineitem  XMLType      PATH 'LineItems/LineItem') t,
       XMLTable('$l/LineItem' PASSING t.lineitem AS "l"
                COLUMNS lineno      NUMBER(10)    PATH '@ItemNumber',
                        description VARCHAR2(128) PATH 'Description') li

Chapter 5
Updating XML Data

5-31



  WHERE t.reference = 'DAUSTIN-20021009123335811PDT';
 
REFERENCE                         LINENO DESCRIPTION
-------------------------------- ------- --------------------------------
DAUSTIN-20021009123335811PDT           1 Dead Ringers
DAUSTIN-20021009123335811PDT           2 Getrud
DAUSTIN-20021009123335811PDT           3 Branded to Kill

5.6.2 Replacing XML Nodes
You can use XQuery Update with a SQL UPDATE statement to update an existing XML
document instead of creating a new document. The entire document is updated, not
just the part of it that is selected.

In Example 5-28 we pass the SQL string literal 'SKING' to the XQuery expression as
a variable ($p2). In this simple example, since the value is a string literal, we could
have simply used replace value of node $j with "SKING". That is, you can just
use a literal XQuery string here, instead of passing a literal string from SQL to XQuery.
In real-world examples you will typically pass a value that is available only at runtime;
Example 5-28 shows how to do that. This is also true of other examples.

Example 5-29 updates multiple text nodes and attribute nodes.

Example 5-30 updates selected nodes within a collection.

Example 5-31 illustrates the common mistake of using an XQuery Update replace-
value operation to update a node that occurs multiple times in a collection. The UPDATE
statement sets the value of the text node of a Description element to The Wizard
of Oz, where the current value of the text node is Sisters. The statement includes
an XMLExists expression in the WHERE clause that identifies the set of nodes to be
updated.

Instead of updating only the intended node, Example 5-31 updates the values of all
text nodes that belong to the Description element. This is not what was intended.

A WHERE clause can be used only to identify which documents must be updated, not
which nodes within a document must be updated.

After the document has been selected, the XQuery expression passed to XQuery
Update determines which nodes within the document must be updated. In this case,
the XQuery expression identifies all three Description nodes, so all three of the
associated text nodes were updated.

To correctly update a node that occurs multiple times within a collection, use the
XQuery expression passed XQuery Update to identify which nodes in the XML
document to update. By introducing the appropriate predicate into the XQuery
expression, you can limit which nodes in the document are updated. Example 5-32
illustrates the correct way to update one node within a collection.

Example 5-28    Updating XMLTYPE Data Using SQL UPDATE and XQuery Update

SELECT XMLQuery('$p/PurchaseOrder/Actions/Action[1]' PASSING po.OBJECT_VALUE AS "p"
                                                     RETURNING CONTENT) action
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");
 

Chapter 5
Updating XML Data

5-32



ACTION
--------------------------------
<Action>
  <User>SVOLLMAN</User>
</Action>

UPDATE purchaseorder po
  SET po.OBJECT_VALUE =
    XMLQuery('copy $i := $p1 modify
              (for $j in $i/PurchaseOrder/Actions/Action[1]/User
               return replace value of node $j with $p2)
              return $i' PASSING po.OBJECT_VALUE AS "p1",
                                'SKING' AS "p2" RETURNING CONTENT)
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");
 
SELECT XMLQuery('$p/PurchaseOrder/Actions/Action[1]' PASSING po.OBJECT_VALUE AS "p"
                                                     RETURNING CONTENT) action
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");
 
ACTION
---------------------------------
<Action>
  <User>SKING</User>
</Action>

Example 5-29    Updating Multiple Text Nodes and Attribute Nodes

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Requestor'
                        PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(30)) name,
       XMLQuery('$p/PurchaseOrder/LineItems'
                PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT) lineitems
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");
 
NAME             LINEITEMS
---------------- ------------------------------------------------------------------------
Sarah J. Bell    <LineItems>
                   <LineItem ItemNumber="1">
                     <Description>A Night to Remember</Description>
                     <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
                   </LineItem>
                   <LineItem ItemNumber="2">
                     <Description>The Unbearable Lightness Of Being</Description>
                     <Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
                   </LineItem>
                   <LineItem ItemNumber="3">
                     <Description>Sisters</Description>
                     <Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
                   </LineItem>
                 </LineItems>

UPDATE purchaseorder
  SET OBJECT_VALUE =
    XMLQuery('copy $i := $p1 modify
                ((for $j in $i/PurchaseOrder/Requestor
                  return replace value of node $j with $p2),

Chapter 5
Updating XML Data

5-33



                 (for $j in $i/PurchaseOrder/LineItems/LineItem[1]/Part/@Id
                  return replace value of node $j with $p3),
                 (for $j in $i/PurchaseOrder/LineItems/LineItem[1]/Description
                  return replace value of node $j with $p4),
                 (for $j in $i/PurchaseOrder/LineItems/LineItem[3]
                  return replace node $j with $p5))
                return $i'
             PASSING OBJECT_VALUE AS "p1",
                     'Stephen G. King' AS "p2",
                     '786936150421' AS "p3",
                     'The Rock' AS "p4",
                     XMLType('<LineItem ItemNumber="99">
                                <Description>Dead Ringers</Description>
                                <Part Id="715515009249" UnitPrice="39.95" Quantity="2"/>
                              </LineItem>') AS "p5"
             RETURNING CONTENT)
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Requestor'
                        PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(30)) name,
       XMLQuery('$p/PurchaseOrder/LineItems'
                PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT) lineitems
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");
 
NAME             LINEITEMS
---------------- ------------------------------------------------------------------
Stephen G. King  <LineItems>
                   <LineItem ItemNumber="1">
                     <Description>The Rock</Description>
                     <Part Id="786936150421" UnitPrice="39.95" Quantity="2"/>
                   </LineItem>
                   <LineItem ItemNumber="2">
                     <Description>The Unbearable Lightness Of Being</Description>
                     <Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
                   </LineItem>
                   <LineItem ItemNumber="99">
                     <Description>Dead Ringers</Description>
                     <Part Id="715515009249" UnitPrice="39.95" Quantity="2"/>
                   </LineItem>
                 </LineItems>

Example 5-30    Updating Selected Nodes within a Collection

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Requestor'
                        PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(30)) name,
       XMLQuery('$p/PurchaseOrder/LineItems'
                PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT) lineitems
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");
 
NAME             LINEITEMS
---------------- ----------------------------------------------------------------
Sarah J. Bell    <LineItems>
                   <LineItem ItemNumber="1">
                     <Description>A Night to Remember</Description>
                     <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
                   </LineItem>

Chapter 5
Updating XML Data

5-34



                   <LineItem ItemNumber="2">
                     <Description>The Unbearable Lightness Of Being</Description>
                     <Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
                   </LineItem>
                   <LineItem ItemNumber="3">
                     <Description>Sisters</Description>
                     <Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
                   </LineItem>
                 </LineItems>

UPDATE purchaseorder
  SET OBJECT_VALUE =
      XMLQuery(
        'copy $i := $p1 modify
           ((for $j in $i/PurchaseOrder/Requestor
             return replace value of node $j with $p2),
            (for $j in $i/PurchaseOrder/LineItems/LineItem/Part[@Id="715515009058"]/
@Quantity
             return replace value of node $j with $p3),
            (for $j in $i/PurchaseOrder/LineItems/LineItem
                         [Description/text()="The Unbearable Lightness Of Being"]
             return replace node $j with $p4))
           return $i'
        PASSING OBJECT_VALUE AS "p1",
                'Stephen G. King' AS "p2",
                25 AS "p3",
                XMLType('<LineItem ItemNumber="99">
                           <Part Id="786936150421" Quantity="5" UnitPrice="29.95"/>
                           <Description>The Rock</Description>
                         </LineItem>') AS "p4"
        RETURNING CONTENT)
      WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                      PASSING OBJECT_VALUE AS "p");

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Requestor'
                        PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(30)) name,
       XMLQuery('$p/PurchaseOrder/LineItems'
                PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT) lineitems
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");
 
NAME             LINEITEMS
---------------- -------------------------------------------------------------
Stephen G. King  <LineItems>
                   <LineItem ItemNumber="1">
                     <Description>A Night to Remember</Description>
                     <Part Id="715515009058" UnitPrice="39.95" Quantity="25"/>
                   </LineItem>
                   <LineItem ItemNumber="99">
                     <Part Id="786936150421" Quantity="5" UnitPrice="29.95"/>
                     <Description>The Rock</Description>
                   </LineItem>
                   <LineItem ItemNumber="3">

Chapter 5
Updating XML Data

5-35



                     <Description>Sisters</Description>
                     <Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
                   </LineItem>
                 </LineItems>

Example 5-31    Incorrectly Updating a Node That Occurs Multiple Times in a Collection

SELECT XMLCast(des.COLUMN_VALUE AS VARCHAR2(256))
  FROM purchaseorder,
       XMLTable('$p/PurchaseOrder/LineItems/LineItem/Description'
                PASSING OBJECT_VALUE AS "p") des
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");
 
XMLCAST(DES.COLUMN_VALUEASVARCHAR2(256))
----------------------------------------
The Lady Vanishes
The Unbearable Lightness Of Being
Sisters
 
3 rows selected.

UPDATE purchaseorder
  SET OBJECT_VALUE =
        XMLQuery('copy $i := $p1 modify
                    (for $j in $i/PurchaseOrder/LineItems/LineItem/Description
                     return replace value of node $j with $p2)
                  return $i'
                 PASSING OBJECT_VALUE AS "p1", 'The Wizard of Oz' AS "p2"
                 RETURNING CONTENT)
        WHERE XMLExists('$p/PurchaseOrder/LineItems/LineItem[Description="Sisters"]'
                        PASSING OBJECT_VALUE AS "p")
          AND XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                        PASSING OBJECT_VALUE AS "p");
 
1 row updated.

SELECT XMLCast(des.COLUMN_VALUE AS VARCHAR2(256))
  FROM purchaseorder,
       XMLTable('$p/PurchaseOrder/LineItems/LineItem/Description'
                PASSING OBJECT_VALUE AS "p") des
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");
 
XMLCAST(DES.COLUMN_VALUEASVARCHAR2(256))
----------------------------------------
The Wizard of Oz
The Wizard of Oz
The Wizard of Oz
 
3 rows selected.

Chapter 5
Updating XML Data

5-36



Example 5-32    Correctly Updating a Node That Occurs Multiple Times in a Collection

SELECT XMLCast(des.COLUMN_VALUE AS VARCHAR2(256))
  FROM purchaseorder,
       XMLTable('$p/PurchaseOrder/LineItems/LineItem/Description'
                PASSING OBJECT_VALUE AS "p") des
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");
 
XMLCAST(DES.COLUMN_VALUEASVARCHAR2(256))
----------------------------------------

A Night to Remember
The Unbearable Lightness Of Being
Sisters

3 rows selected.

UPDATE purchaseorder
 SET OBJECT_VALUE =
       XMLQuery('copy $i := $p1 modify
                   (for $j in $i/PurchaseOrder/LineItems/LineItem/Description
                                [text()="Sisters"]
                    return replace value of node $j with $p2)
                 return $i'
                PASSING OBJECT_VALUE       AS "p1",
                        'The Wizard of Oz' AS "p2" RETURNING CONTENT)
       WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                       PASSING OBJECT_VALUE AS "p");
 
1 row updated.

SELECT XMLCast(des.COLUMN_VALUE AS VARCHAR2(256))
  FROM purchaseorder,
       XMLTable('$p/PurchaseOrder/LineItems/LineItem/Description'
                PASSING OBJECT_VALUE AS "p") des
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");
 
XMLCAST(DES.COLUMN_VALUEASVARCHAR2(256))
----------------------------------------
A Night to Remember
The Unbearable Lightness Of Being
The Wizard of Oz

3 rows selected.

• Updating XML Data to NULL Values
Certain considerations apply to updating XML data to NULL values.

Chapter 5
Updating XML Data

5-37



5.6.2.1 Updating XML Data to NULL Values
Certain considerations apply to updating XML data to NULL values.

• If you update an XML element to NULL, the attributes and children of the
element are removed, and the element becomes empty. The type and namespace
properties of the element are retained. See Example 5-33.

• If you update an attribute value to NULL, the value appears as the empty string.
See Example 5-33.

• If you update the text node of an element to NULL, the content (text) of the element
is removed. The element itself remains, but it is empty. See Example 5-34.

Example 5-33 updates all of the following to NULL:

• The Description element and the Quantity attribute of the LineItem element
whose Part element has attribute Id value 715515009058.

• The LineItem element whose Description element has the content (text) "The
Unbearable Lightness Of Being".

Example 5-33 shows two different but equivalent ways to remove the value of a node.
For element Description and attribute Quantity, a literal XQuery empty sequence,
(), replaces the existing value directly. For element LineItem, SQL NULL is passed
into the XQuery expression to provide the empty node value. Since the value used is
literal, it is simpler not to pass it from SQL to XQuery. But in real-world examples you
will often pass a value that is available only at runtime. Example 5-33 shows how to do
this for an empty XQuery sequence: pass a SQL NULL value.

Example 5-34 updates the text node of a Part element whose Description attribute
has value "A Night to Remember" to NULL. The XML data for this example
corresponds to a different, revised purchase-order XML schema – see Scenario for
Copy-Based Evolution. In that XML schema, Description is an attribute of the Part
element, not a sibling element.

See Also:

Example 3-26

Example 5-33    NULL Updates – Element and Attribute

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Requestor'
                        PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(30)) name,
       XMLQuery('$p/PurchaseOrder/LineItems'
                PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT) lineitems
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");
 
NAME             LINEITEMS
---------------- -------------------------------------------------------------------
Sarah J. Bell    <LineItems>
                   <LineItem ItemNumber="1">

Chapter 5
Updating XML Data

5-38



                     <Description>A Night to Remember</Description>
                     <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
                   </LineItem>
                   <LineItem ItemNumber="2">
                     <Description>The Unbearable Lightness Of Being</Description>
                     <Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
                   </LineItem>
                   <LineItem ItemNumber="3">
                     <Description>Sisters</Description>
                     <Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
                   </LineItem>
                 </LineItems>

UPDATE purchaseorder
  SET OBJECT_VALUE = 
      XMLQuery(
        'copy $i := $p1 modify
           ((for $j in $i/PurchaseOrder/LineItems/LineItem[Part/@Id="715515009058"]/Description
             return replace value of node $j with ()) ,
            (for $j in $i/PurchaseOrder/LineItems/LineItem/Part[@Id="715515009058"]/@Quantity
             return replace value of node $j with ()) ,
            (for $j in $i/PurchaseOrder/LineItems/LineItem
                         [Description/text()= "The Unbearable Lightness Of Being"]
             return replace node $j with $p2)) 
         return $i'
        PASSING OBJECT_VALUE AS "p1", NULL AS "p2"
        RETURNING CONTENT)
      WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                      PASSING OBJECT_VALUE AS "p");

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Requestor'
                        PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(30)) name,
       XMLQuery('$p/PurchaseOrder/LineItems'
                PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT) lineitems
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");
 
NAME             LINEITEMS
---------------- ----------------------------------------------------------------
Sarah J. Bell    <LineItems>
                   <LineItem ItemNumber="1">
                     <Description/>
                     <Part Id="715515009058" UnitPrice="39.95" Quantity=""/>
                   </LineItem>
                   <LineItem/>
                   <LineItem ItemNumber="3">
                     <Description>Sisters</Description>
                     <Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
                   </LineItem>
                 </LineItems>

Example 5-34    NULL Updates – Text Node

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/LineItems/LineItem/Part[@Description="A Night to Remember"]'
                        PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(128)) part
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[@Reference="SBELL-2003030912333601PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");

Chapter 5
Updating XML Data

5-39



PART
----
<Part Description="A Night to Remember" UnitCost="39.95">715515009058</Part>

UPDATE purchaseorder
  SET OBJECT_VALUE =
      XMLQuery(
        'copy $i := $p1 modify
           (for $j in $i/PurchaseOrder/LineItems/LineItem/Part[@Description="A Night to Remember"]
            return replace value of node $j with $p2)
         return $i
        PASSING OBJECT_VALUE AS "p1", NULL AS "p2" RETURNING CONTENT)
  WHERE XMLExists('$p/PurchaseOrder[@Reference="SBELL-2003030912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/LineItems/LineItem/Part[@Description="A Night to Remember"]'
                        PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(128)) part
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[@Reference="SBELL-2003030912333601PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");

PART
----
<Part Description="A Night to Remember" UnitCost="39.95"/>

5.6.3 Inserting Child XML Nodes
You can use XQuery Update to insert new children (either a single attribute or one or
more elements of the same type) under parent XML elements. The XML document
that is the target of the insertion can be schema-based or non-schema-based.

Example 5-35 inserts a new LineItem element as a child of element LineItems. It
uses the Oracle XQuery pragma ora:child-element-name to specify the name of the
inserted child element as LineItem.

If the XML data to be updated is XML schema-based and it refers to a namespace,
then the data to be inserted must also refer to the same namespace. Otherwise, an
error is raised because the inserted data does not conform to the XML schema.

Note:

Be aware that using XQuery Update to update XML schema-based data
results in an error being raised if you try to store the updated data back into
an XML schema-based column or table. To prevent this, use XQuery pragma
ora:transform_keep_schema. See Oracle XQuery Extension-Expression
Pragmas.

Example 5-36 is the same as Example 5-35, except that the LineItem element to be
inserted refers to a namespace. This assumes that the relevant XML schema requires
a namespace for this element.

Example 5-37 inserts a LineItem element before the first LineItem element.

Example 5-38 inserts a Date element as the last child of an Action element.

Chapter 5
Updating XML Data

5-40



Example 5-35    Inserting an Element into a Collection

SELECT XMLQuery('$p/PurchaseOrder/LineItems/LineItem[@ItemNumber=222]'
                PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="AMCEWEN-20021009123336171PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");

XMLQUERY('$P/PURCHASEORDER/LINEITEMS/LINEITEM[@ITEMNUMBER=222]'
---------------------------------------------------------------

1 row selected.

UPDATE purchaseorder
  SET OBJECT_VALUE = 
      XMLQuery('copy $i := $p1 modify
                  (for $j in $i/PurchaseOrder/LineItems
                   return (# ora:child-element-name LineItem #)
                          {insert node $p2 into $j})
                return $i'
               PASSING OBJECT_VALUE AS "p1",
                       XMLType('<LineItem ItemNumber="222">
                                  <Description>The Harder They Come</Description>
                                  <Part Id="953562951413" UnitPrice="22.95" Quantity="1"/>
                                </LineItem>') AS "p2"
               RETURNING CONTENT)
      WHERE XMLExists('$p/PurchaseOrder[Reference="AMCEWEN-20021009123336171PDT"]'
                      PASSING OBJECT_VALUE AS "p");

SELECT XMLQuery('$p/PurchaseOrder/LineItems/LineItem[@ItemNumber=222]'
                PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="AMCEWEN-20021009123336171PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");

XMLQUERY('$P/PURCHASEORDER/LINEITEMS/LINEITEM[@ITEMNUMBER=222]'
---------------------------------------------------------------
<LineItem ItemNumber="222">
  <Description>The Harder They Come</Description>
  <Part Id="953562951413" UnitPrice="22.95" Quantity="1"/>
</LineItem>

1 row selected.

Example 5-36    Inserting an Element that Uses a Namespace

UPDATE purchaseorder
  SET OBJECT_VALUE = 
      XMLQuery('declare namespace e = "films.xsd"; (: :)
                copy $i := $p1 modify
                  (for $j in $i/PurchaseOrder/LineItems
                   return (# ora:child-element-name e:LineItem #)
                          {insert node $p2 into $j})
                return $i'
               PASSING OBJECT_VALUE AS "p1",
                       XMLType('<e:LineItem ItemNumber="222">
                                  <Description>The Harder They Come</Description>
                                  <Part Id="953562951413" UnitPrice="22.95" Quantity="1"/>
                                </e:LineItem>') AS "p2"
               RETURNING CONTENT)

Chapter 5
Updating XML Data

5-41



      WHERE XMLExists('$p/PurchaseOrder[Reference="AMCEWEN-20021009123336171PDT"]'
                      PASSING OBJECT_VALUE AS "p");

Example 5-37    Inserting an Element Before an Element

SELECT XMLQuery('$p/PurchaseOrder/LineItems/LineItem[1]'
                PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="AMCEWEN-20021009123336171PDT"]'
                   PASSING po.OBJECT_VALUE AS "p");

XMLQUERY('$P/PURCHASEORDER/LINEITEMS/LINEITEM[1]'PASSINGPO.OBJECT_
------------------------------------------------------------------
<LineItem ItemNumber="1">
  <Description>Salesman</Description>
  <Part Id="37429158920" UnitPrice="39.95" Quantity="2"/>
</LineItem>

UPDATE purchaseorder
  SET OBJECT_VALUE = 
      XMLQuery('copy $i := $p1 modify
                  (for $j in $i/PurchaseOrder/LineItems/LineItem[1]
                   return insert node $p2 before $j)
                return $i'
               PASSING OBJECT_VALUE AS "p1",
                       XMLType('<LineItem ItemNumber="314">
                                  <Description>Brazil</Description>
                                  <Part Id="314159265359" UnitPrice="69.95" 
                                        Quantity="2"/>
                                </LineItem>') AS "p2"
               RETURNING CONTENT)
      WHERE XMLExists('$p/
PurchaseOrder[Reference="AMCEWEN-20021009123336171PDT"]'
                      PASSING OBJECT_VALUE AS "p");

SELECT XMLQuery('$p/PurchaseOrder/LineItems/LineItem[position() <= 2]'
                PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="AMCEWEN-20021009123336171PDT"]'
                   PASSING po.OBJECT_VALUE AS "p");

XMLQUERY('$P/PURCHASEORDER/LINEITEMS/LINEITEM[POSITION()<=2]'PASSINGPO.OBJECT_
------------------------------------------------------------------------------
<LineItem ItemNumber="314">
  <Description>Brazil</Description>
  <Part Id="314159265359" UnitPrice="69.95" Quantity="2"/>
</LineItem>
<LineItem ItemNumber="1">
  <Description>Salesman</Description>
  <Part Id="37429158920" UnitPrice="39.95" Quantity="2"/>
</LineItem>

Example 5-38    Inserting an Element as the Last Child Element

SELECT XMLQuery('$p/PurchaseOrder/Actions/Action[1]'
                PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="AMCEWEN-20021009123336171PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");

XMLQUERY('$P/PURCHASEORDER/ACTIONS/ACTION[1]'PASSINGPO.OBJECT_VALUE

Chapter 5
Updating XML Data

5-42



-------------------------------------------------------------------
<Action>
  <User>KPARTNER</User>
</Action>

UPDATE purchaseorder
  SET OBJECT_VALUE = 
      XMLQuery('copy $i := $p1 modify
                  (for $j in $i/PurchaseOrder/Actions/Action[1]
                   return insert nodes $p2 as last into $j)
                return $i'
               PASSING OBJECT_VALUE AS "p1",
                       XMLType('<Date>2002-11-04</Date>') AS "p2"
               RETURNING CONTENT)
      WHERE XMLExists('$p/
PurchaseOrder[Reference="AMCEWEN-20021009123336171PDT"]'
                      PASSING OBJECT_VALUE AS "p");

SELECT XMLQuery('$p/PurchaseOrder/Actions/Action[1]'
                PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="AMCEWEN-20021009123336171PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");

XMLQUERY('$P/PURCHASEORDER/ACTIONS/ACTION[1]'PASSINGPO.OBJECT_VALUE
-------------------------------------------------------------------
<Action>
  <User>KPARTNER</User>
  <Date>2002-11-04</Date>
</Action>

5.6.4 Deleting XML Nodes
An example uses XQuery Update to delete XML nodes.

Example 5-39 deletes the LineItem element whose ItemNumber attribute has value
222.

Example 5-39    Deleting an Element

SELECT XMLQuery('$p/PurchaseOrder/LineItems/LineItem[@ItemNumber=222]'
                PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="AMCEWEN-20021009123336171PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");

XMLQUERY('$P/PURCHASEORDER/LINEITEMS/LINEITEM[@ITEMNUMBER=222]'PASSINGPO
------------------------------------------------------------------------
<LineItem ItemNumber="222">
  <Description>The Harder They Come</Description>
  <Part Id="953562951413" UnitPrice="22.95" Quantity="1"/>
</LineItem>

UPDATE purchaseorder
  SET OBJECT_VALUE = 
      XMLQuery('copy $i := $p modify
                  delete nodes $i/PurchaseOrder/LineItems/LineItem[@ItemNumber="222"]
                return $i'

Chapter 5
Updating XML Data

5-43



               PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
      WHERE XMLExists('$p/PurchaseOrder[Reference="AMCEWEN-20021009123336171PDT"]'
                      PASSING OBJECT_VALUE AS "p");

SELECT XMLQuery('$p/PurchaseOrder/LineItems/LineItem[@ItemNumber=222]'
                PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="AMCEWEN-20021009123336171PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");

XMLQUERY('$P/PURCHASEORDER/LINEITEMS/LINEITEM[@ITEMNUMBER=222]'PASSINGPO
------------------------------------------------------------------------
 
1 row selected.

5.6.5 Creating XML Views of Modified XML Data
You can use XQuery Update to create new views of XML data.

Example 5-40 creates a view of table purchaseorder.

Example 5-40    Creating a View Using Updated XML Data

CREATE OR REPLACE VIEW purchaseorder_summary OF XMLType AS
  SELECT XMLQuery('copy $i := $p1 modify
                     ((for $j in $i/PurchaseOrder/Actions
                       return replace value of node $j with ()),
                      (for $j in $i/PurchaseOrder/ShippingInstructions
                       return replace value of node $j with ()),
                      (for $j in $i/PurchaseOrder/LineItems
                       return replace value of node $j with ()))
                   return $i'
                  PASSING OBJECT_VALUE AS "p1" RETURNING CONTENT)
    FROM purchaseorder p;

SELECT OBJECT_VALUE FROM purchaseorder_summary
  WHERE XMLExists('$p/PurchaseOrder[Reference="DAUSTIN-20021009123335811PDT"]'
                  PASSING OBJECT_VALUE AS "p");
 
OBJECT_VALUE
---------------------------------------------------------------------------
<PurchaseOrder
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:noNamespaceSchemaLocation=
      "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd">
  <Reference>DAUSTIN-20021009123335811PDT</Reference>
  <Actions/>
  <Reject/>
  <Requestor>David L. Austin</Requestor>
  <User>DAUSTIN</User>
  <CostCenter>S30</CostCenter>
  <ShippingInstructions/>
  <SpecialInstructions>Courier</SpecialInstructions>

Chapter 5
Updating XML Data

5-44



  <LineItems/>
</PurchaseOrder>

5.7 Performance Tuning for XQuery
A SQL query that involves XQuery expressions can often be automatically rewritten
(optimized) in one or more ways. This optimization is referred to as XML query
rewrite or optimization. When this happens, the XQuery expression is, in effect,
evaluated directly against the XML document without constructing a DOM in memory.

XPath expressions are a proper subset of XQuery expressions. XPath rewrite is
a subset of XML query rewrite that involves rewriting queries that involve XPath
expressions.

XPath rewrite includes all of the following:

• Single-pass streaming of XMLType data stored as binary XML – A set of XPath
expressions is evaluated in a single scan of the data.

• XMLIndex optimizations – A SQL statement that uses an XPath expression is
rewritten to an equivalent SQL statement that does not use it but which instead
references the relational XMLIndex tables. The rewritten SQL statement can also
make use of any B-tree indexes on the underlying XMLIndex tables.

• Optimizations for XMLType data stored object-relationally and for XMLType views –
A SQL statement that uses an XPath expression is rewritten to an equivalent SQL
statement that does not use it but which instead references the object-relational
or relational data structures that underly the XMLType data. The rewritten SQL
statement can also make use of any B-tree indexes on the underlying data
structures. This can take place for both queries and update operations.

Just as query tuning can improve SQL performance, so it can improve XQuery
performance. You tune XQuery performance by choosing appropriate XML storage
models and indexes.

As with database queries generally, you determine whether tuning is required by
examining the execution plan for a query. If the plan is not optimal, then consult the
following documentation for specific tuning information:

• For object-relational storage: XPath Rewrite for Object-Relational Storage

• For binary XML storage: Indexes for XMLType Data

In addition, be aware that the following expressions can be expensive to process, so
they might add performance overhead when processing large volumes of data:

• XQuery expressions that use the following axes (use forward and descendent
axes instead):

– ancestor

– ancestor-or-self

– descendant-or-self

– following

– following-sibling

– namespace

Chapter 5
Performance Tuning for XQuery

5-45



– parent

– preceding

– preceding-sibling

• XQuery expressions that involve node identity (for example, using the order-
comparison operators << and >>)

Topics in this section present execution plans for some of the examples shown in
XQuery and Oracle XML DB, to indicate how they are executed.

• Rule-Based and Cost-Based XQuery Optimization
Several competing optimization possibilities can exist for queries with XQuery
expressions, depending on various factors such as the XMLType storage model and
indexing that are used.

• XQuery Optimization over Relational Data
Use of SQL/XML functions XMLQuery and XMLTable over relational data can be
optimized. Examples are included that use XQuery expressions that target XML
data created on the fly using fn:collection together with URI scheme oradb.

• XQuery Optimization over XML Schema-Based XMLType Data
Use of SQL/XML functions XMLQuery and XMLTable XML Schema-based data can
be optimized. Examples are included that use XQuery expressions that target an
XML schema-based XMLType table stored object-relationally.

• Diagnosis of XQuery Optimization: XMLOptimizationCheck
You can examine an execution plan for your SQL code to determine whether
XQuery optimization occurs or the plan is instead suboptimal.

• Performance Improvement for fn:doc and fn:collection on Repository Data
You can improve the performance of fn:doc and fn:collection queries over the
Oracle XML DB Repository, by linking them to the actual database tables that hold
the repository data being queried.

Related Topics

• Oracle XML DB Support for XQuery
Oracle XML DB support for the XQuery language includes SQL support and
support for XQuery functions and operators.

5.7.1 Rule-Based and Cost-Based XQuery Optimization
Several competing optimization possibilities can exist for queries with XQuery
expressions, depending on various factors such as the XMLType storage model and
indexing that are used.

By default, Oracle XML DB follows a prioritized set of rules to determine which of the
possible optimizations should be used for any given query and context. This behavior
is referred to as rule-based XML query rewrite.

Alternatively, Oracle XML DB can use cost-based XML query rewrite. In this
mode, Oracle XML DB estimates the performance of the various XML optimization
possibilities for a given query and chooses the combination that is expected to be most
performant.

You can impose cost-based optimization for a given SQL statement by using the
optimizer hint /*+ COST_XML_QUERY_REWRITE */.

Chapter 5
Performance Tuning for XQuery

5-46



5.7.2 XQuery Optimization over Relational Data
Use of SQL/XML functions XMLQuery and XMLTable over relational data can be
optimized. Examples are included that use XQuery expressions that target XML data
created on the fly using fn:collection together with URI scheme oradb.

Example 5-41 shows the optimization of XMLQuery over relational data accessed as
XML. Example 5-42 shows the optimization of XMLTable in the same context.

Example 5-41    Optimization of XMLQuery over Relational Data

Here again is the query of Example 5-6, together with its execution plan, which shows
that the query has been optimized.

SELECT XMLQuery(
         'for $i in fn:collection("oradb:/OE/WAREHOUSES")/ROW
          return <Warehouse id="{$i/WAREHOUSE_ID}">
                   <Location>
                     {for $j in fn:collection("oradb:/HR/LOCATIONS")/ROW
                      where $j/LOCATION_ID eq $i/LOCATION_ID 
                      return ($j/STREET_ADDRESS, $j/CITY, $j/STATE_PROVINCE)}
                   </Location>    
                 </Warehouse>'
         RETURNING CONTENT) FROM DUAL;

PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------------------
Plan hash value: 3341889589

-------------------------------------------------------------------------------------------
| Id  | Operation                    | Name       | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT             |            |     1 |       |     2   (0)| 00:00:01 |
|   1 |  SORT AGGREGATE              |            |     1 |    41 |            |          |
|   2 |   TABLE ACCESS BY INDEX ROWID| LOCATIONS  |     1 |    41 |     1   (0)| 00:00:01 |
|*  3 |    INDEX UNIQUE SCAN         | LOC_ID_PK  |     1 |       |     0   (0)| 00:00:01 |
|   4 |  SORT AGGREGATE              |            |     1 |     6 |            |          |
|   5 |   TABLE ACCESS FULL          | WAREHOUSES |     9 |    54 |     2   (0)| 00:00:01 |
|   6 |  FAST DUAL                   |            |     1 |       |     2   (0)| 00:00:01 |
-------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   3 - access("LOCATION_ID"=:B1)
 
18 rows selected.

Example 5-42    Optimization of XMLTable over Relational Data

Here again is the query of Example 5-7, together with its execution plan, which shows
that the query has been optimized.

SELECT * 
  FROM XMLTable(
         'for $i in fn:collection("oradb:/OE/WAREHOUSES")/ROW
          return <Warehouse id="{$i/WAREHOUSE_ID}">
                   <Location>
                     {for $j in fn:collection("oradb:/HR/LOCATIONS")/ROW
                      where $j/LOCATION_ID eq $i/LOCATION_ID 
                      return ($j/STREET_ADDRESS, $j/CITY, $j/STATE_PROVINCE)}

Chapter 5
Performance Tuning for XQuery

5-47



                   </Location>
                 </Warehouse>');

PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------------------
Plan hash value: 1021775546
 
-------------------------------------------------------------------------------------------
| Id  | Operation                    | Name       | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT             |            |     9 |    54 |     2   (0)| 00:00:01 |
|   1 |  SORT AGGREGATE              |            |     1 |    41 |            |          |
|   2 |   TABLE ACCESS BY INDEX ROWID| LOCATIONS  |     1 |    41 |     1   (0)| 00:00:01 |
|*  3 |    INDEX UNIQUE SCAN         | LOC_ID_PK  |     1 |       |     0   (0)| 00:00:01 |
|   4 |  TABLE ACCESS FULL           | WAREHOUSES |     9 |    54 |     2   (0)| 00:00:01 |
-------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   3 - access("LOCATION_ID"=:B1)
 
16 rows selected.

5.7.3 XQuery Optimization over XML Schema-Based XMLType Data
Use of SQL/XML functions XMLQuery and XMLTable XML Schema-based data can be
optimized. Examples are included that use XQuery expressions that target an XML
schema-based XMLType table stored object-relationally.

Example 5-43 shows the optimization of XMLQuery over an XML schema-based
XMLType table. Example 5-44 shows the optimization of XMLTable in the same context.

Example 5-43    Optimization of XMLQuery with Schema-Based XMLType Data

Here again is the query of Example 5-10, together with its execution plan, which
shows that the query has been optimized.

SELECT XMLQuery('for $i in /PurchaseOrder
                 where $i/CostCenter eq "A10"
                   and $i/User eq "SMCCAIN"
                 return <A10po pono="{$i/Reference}"/>'
                PASSING OBJECT_VALUE
                RETURNING CONTENT)
  FROM purchaseorder;
 

PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------------
Plan hash value: 3611789148
 
-------------------------------------------------------------------------------------
| Id  | Operation           | Name          | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT    |               |     1 |   530 |     5   (0)| 00:00:01 |
|   1 |  SORT AGGREGATE     |               |     1 |       |            |          |
|*  2 |   FILTER            |               |       |       |            |          |
|   3 |    FAST DUAL        |               |     1 |       |     2   (0)| 00:00:01 |
|*  4 |    TABLE ACCESS FULL| PURCHASEORDER |     1 |   530 |     5   (0)| 00:00:01 |
-------------------------------------------------------------------------------------

Chapter 5
Performance Tuning for XQuery

5-48



 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   2 - filter(:B1='SMCCAIN' AND :B2='A10')
   4 - filter(SYS_CHECKACL("ACLOID","OWNERID",xmltype('<privilege
              xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
              xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
              xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
              http://xmlns.oracle.com/xdb/acl.xsd DAV:http://xmlns.oracle.com/xdb/dav.xsd">
              <read-properties/><read-contents/></privilege>'))=1)
 
22 rows selected.

Example 5-44    Optimization of XMLTable with Schema-Based XMLType Data

Here again is the query of Example 5-14, together with its execution plan, which
shows that the query has been optimized. The XQuery result is never materialized.
Instead, the underlying storage columns for the XML collection element LineItem are
used to generate the overall result set.

SELECT lines.lineitem, lines.description, lines.partid,
       lines.unitprice, lines.quantity
  FROM purchaseorder,
       XMLTable('for $i in /PurchaseOrder/LineItems/LineItem
                 where $i/@ItemNumber >= 8
                   and $i/Part/@UnitPrice > 50
                   and $i/Part/@Quantity > 2
                 return $i'
                PASSING OBJECT_VALUE
                COLUMNS lineitem    NUMBER       PATH '@ItemNumber',
                        description VARCHAR2(30) PATH 'Description',
                        partid      NUMBER       PATH 'Part/@Id',
                        unitprice   NUMBER       PATH 'Part/@UnitPrice',
                        quantity    NUMBER       PATH 'Part/@Quantity') lines;
 

-----------------------------------------------------------------------------------------------
| Id  | Operation                    | Name           | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT             |                |     4 |   384 |     7   (0)| 00:00:01 |
|   1 |  NESTED LOOPS                |                |       |       |            |          |
|   2 |   NESTED LOOPS               |                |     4 |   384 |     7   (0)| 00:00:01 |
|*  3 |    TABLE ACCESS FULL         | PURCHASEORDER  |     1 |    37 |     5   (0)| 00:00:01 |
|*  4 |    INDEX RANGE SCAN          | SYS_C005478    |    17 |       |     1   (0)| 00:00:01 |
|*  5 |   TABLE ACCESS BY INDEX ROWID| LINEITEM_TABLE |     3 |   177 |     2   (0)| 00:00:01 |
-----------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   3 - filter(SYS_CHECKACL("ACLOID","OWNERID",xmltype('<privilege
              xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
              xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
              xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
              http://xmlns.oracle.com/xdb/acl.xsd
              DAV:http://xmlns.oracle.com/xdb/dav.xsd"><read-prop
              erties/><read-contents/></privilege>'))=1)
   4 - access("NESTED_TABLE_ID"="PURCHASEORDER"."SYS_NC0003400035$")
   5 - filter("SYS_NC00013$">50 AND "SYS_NC00012$">2 AND "ITEMNUMBER">=8 AND
              "SYS_NC_TYPEID$" IS NOT NULL)

Chapter 5
Performance Tuning for XQuery

5-49



 
25 rows selected.

This example traverses table oe.purchaseorder completely. The XMLTable expression
is evaluated for each purchase-order document. It is more efficient to have the
XMLTable expression, not the purchaseorder table, drive the SQL-query execution.

Although the XQuery expression has been rewritten to relational expressions, you can
improve this optimization by creating an index on the underlying relational data — you
can optimize this query in the same way that you would optimize a purely SQL query.
That is always the case with XQuery in Oracle XML DB: the optimization techniques
you use are the same as those you use in SQL.

The UnitPrice attribute of collection element LineItem is an appropriate index target.
The governing XML schema specifies that an ordered collection table (OCT) is used to
store the LineItem elements.

However, the name of this OCT was generated by Oracle XML DB when the XML
purchase-order documents were decomposed as XML schema-based data. Instead
of using table purchaseorder from sample database schema HR, you could manually
create a new purchaseorder table (in a different database schema) with the same
properties and same data, but having OCTs with user-friendly names.

Assuming that this has been done, the following statement creates the appropriate
index:

CREATE INDEX unitprice_index ON lineitem_table("PART"."UNITPRICE");

With this index defined, the query of Example 5-14 results in the following execution
plan, which shows that the XMLTable expression has driven the overall evaluation.

PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------------
Plan hash value: 1578014525
 
----------------------------------------------------------------------------------------
| Id  | Operation          | Name              | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT   |                   |     3 |   624 |     8   (0)| 00:00:01 |
|   1 |  NESTED LOOPS      |                   |     3 |   624 |     8   (0)| 00:00:01 |
|*  2 |   INDEX UNIQUE SCAN| SYS_IOT_TOP_49323 |     3 |   564 |     5   (0)| 00:00:01 |
|*  3 |    INDEX RANGE SCAN| UNITPRICE_INDEX   |    20 |       |     2   (0)| 00:00:01 |
|*  4 |   INDEX UNIQUE SCAN| SYS_C004411       |     1 |       |     0   (0)| 00:00:01 |
----------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   2 - access("SYS_NC00013$">50)
       filter("ITEMNUMBER">=8 AND "SYS_NC00012$">2)
   3 - access("SYS_NC00013$">50)
   4 - access("NESTED_TABLE_ID"="PURCHASEORDER"."SYS_NC0003400035$")
 
Note
-----
   - dynamic sampling used for this statement
 
23 rows selected.

Chapter 5
Performance Tuning for XQuery

5-50



5.7.4 Diagnosis of XQuery Optimization: XMLOptimizationCheck
You can examine an execution plan for your SQL code to determine whether XQuery
optimization occurs or the plan is instead suboptimal.

In the latter case, a note such as the following appears immediately after the plan:

Unoptimized XML construct detected (enable XMLOptimizationCheck
for more information)

You can also compare the execution plan output with the plan output that you
see after you use the optimizer hint NO_XML_QUERY_REWRITE, which turns off XQuery
optimization.

In addition, you can use the SQL*Plus SET command with system variable
XMLOptimizationCheck to turn on an XML diagnosability mode for SQL:

SET XMLOptimizationCheck ON

When this mode is on, the plan of execution is automatically checked for XQuery
optimization, and if the plan is suboptimal then an error is raised and diagnostic
information is written to the trace file indicating which operators are not rewritten.

The main advantage of XMLOptimizationCheck is that it brings a potential problem
to your attention immediately. For this reason, you might find it preferable to leave
it turned on at all times. Then, if an application change or a database change for
some reason prevents a SQL operation from rewriting, execution is stopped instead of
performance being negatively impacted without your being aware of the cause.

Note:

• XMLOptimizationCheck was not available prior to Oracle Database 11g
Release 2 (11.2.0.2). Users of older releases directly manipulated event
19201 to obtain XQuery optimization information.

• OCI users can use OCIStmtExecute or event 19201. Only the event is
available to Java users.

See Also:

Turning Off Use of XMLIndex for information about optimizer hint
NO_XML_QUERY_REWRITE

Chapter 5
Performance Tuning for XQuery

5-51



5.7.5 Performance Improvement for fn:doc and fn:collection on
Repository Data

You can improve the performance of fn:doc and fn:collection queries over the
Oracle XML DB Repository, by linking them to the actual database tables that hold the
repository data being queried.

In Oracle XML DB, you can use XQuery functions fn:doc and fn:collection to
reference documents and collections in Oracle XML DB Repository.

When repository XML data is stored object-relationally or as binary XML, queries
that use fn:doc and fn:collection are evaluated functionally; that is, they are not
optimized to access the underlying storage tables directly. To improve the performance
of such queries, you must link them to the actual database tables that hold the
repository data being queried. You can do that in either of the following ways:

• Join view RESOURCE_VIEW with the XMLType table that holds the data, and then
use the Oracle SQL functions equals_path and under_path instead of the XQuery
functions fn:doc and fn:collection, respectively. These SQL functions reference
repository resources in a performant way.

• Use the Oracle XQuery extension-expression pragma ora:defaultTable.

Both methods have the same effect. Oracle recommends that you use the
ora:defaultTable pragma because it lets you continue to use the XQuery standard
functions fn:doc and fn:collection and it simplifies your code.

These two methods are illustrated in the examples of this section.

• Use EQUALS_PATH and UNDER_PATH Instead of fn:doc and fn:collection
Using Oracle SQL functions equals_path and under_path instead of XQuery
functions fn:doc and fn:collection can improve performance.

• Using Oracle XQuery Pragma ora:defaultTable
You can use Oracle XQuery extension-expression pragma ora:defaultTable to
improve the performance of querying repository data.

5.7.5.1 Use EQUALS_PATH and UNDER_PATH Instead of fn:doc and
fn:collection

Using Oracle SQL functions equals_path and under_path instead of XQuery functions
fn:doc and fn:collection can improve performance.

SQL function equals_path references a resource located at a specified repository
path, and SQL function under_path references a resource located under a specified
repository path. Example 5-45 and Example 5-46 illustrate this for functions fn:doc
and equals_path; functions fn:collection and under_path are treated similarly.

Example 5-45    Unoptimized Repository Query Using fn:doc

SELECT XMLQuery(
         'let $val :=
               fn:doc("/home/OE/PurchaseOrders/2002/Sep/VJONES-20021009123337583PDT.xml")
               /PurchaseOrder/LineItems/LineItem[@ItemNumber =19]

Chapter 5
Performance Tuning for XQuery

5-52



          return $val' RETURNING CONTENT)
  FROM DUAL;

Example 5-46    Optimized Repository Query Using EQUALS_PATH

SELECT XMLQuery('let $val := $DOC/PurchaseOrder/LineItems/LineItem[@ItemNumber = 19]
                 return $val' PASSING OBJECT_VALUE AS "DOC" RETURNING CONTENT)
  FROM RESOURCE_VIEW rv, purchaseorder p
  WHERE ref(p) = XMLCast(XMLQuery('declare default element namespace 
                                   "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                                   fn:data1(/Resource/XMLRef)'
                                  PASSING rv.RES RETURNING CONTENT)
                         AS REF XMLType)
    AND equals_path(rv.RES, '/home/OE/PurchaseOrders/2002/Sep/VJONES-20021009123337583PDT.xml')
        = 1;

5.7.5.2 Using Oracle XQuery Pragma ora:defaultTable
You can use Oracle XQuery extension-expression pragma ora:defaultTable to
improve the performance of querying repository data.

Oracle XQuery extension-expression pragma ora:defaultTable lets you specify the
default table used to store repository data that you query. The query is rewritten
to automatically join the default table to view RESOURCE_VIEW and use Oracle SQL
functions equals_path and under_path instead of XQuery functions fn:doc and
fn:collection, respectively. The effect is thus the same as coding the query manually
to use an explicit join and equals_path or under_path. Example 5-47 illustrates this;
the query is rewritten automatically to what is shown in Example 5-46.

For clarity of scope Oracle recommends that you apply pragma ora:defaultTable
directly to the relevant document or collection expression, fn:doc or fn:collection,
rather than to a larger expression.

Example 5-47    Repository Query Using Oracle XQuery Pragma ora:defaultTable

SELECT XMLQuery('for $doc in (#ora:defaultTable PURCHASEORDER #)
                             {fn:doc("/home/OE/PurchaseOrders/2002/Sep/VJONES-20021009123337583PDT.xml")}
                   let $val := $doc/PurchaseOrder/LineItems/LineItem[@ItemNumber = 19]
                     return $val}'
                RETURNING CONTENT)
  FROM DUAL;

1 XQuery function fn:data is used here to atomize its argument, in this case returning the XMLRef node's typed 
atomic value.

Chapter 5
Performance Tuning for XQuery

5-53



6
Indexes for XMLType Data

You can create indexes on your XML data, to focus on particular parts of it that you
query often and thus improve performance. There are various ways that you can index
XMLType data, whether it is XML schema-based or non-schema-based, and regardless
of the XMLType storage model you use.

Note:

The execution plans shown here are for illustration only. If you run the
examples presented here in your environment then your execution plans
might not be identical.

• Oracle XML DB Tasks Involving Indexes
Common tasks involving indexes for XML data are described.

• Overview of Indexing XMLType Data
Database indexes improve performance by providing faster access to table data.
The use of indexes is particularly recommended for online transaction processing
(OLTP) environments involving few updates.

• XMLIndex

• Indexing XML Data for Full-Text Queries
When you need full-text search over XML data, Oracle recommends that you store
your XMLType data as binary XML and you use XQuery Full Text (XQFT). You use
an XML search index for this. This is the topic of this section.

• Indexing XMLType Data Stored Object-Relationally
You can effectively index XMLType data that is stored object-relationally by creating
B-tree indexes on the underlying database columns that correspond to XML
nodes.

See Also:

• Oracle Database Concepts for an overview of indexing

• Oracle Database Development Guide for information about using
indexes in application development

6.1 Oracle XML DB Tasks Involving Indexes
Common tasks involving indexes for XML data are described.

6-1



Table 6-1 identifies the documentation for some basic user tasks involving indexes for
XML data.

Table 6-1    Basic XML Indexing Tasks

For information about how to... See...

Choose an indexing approach Overview of Indexing XMLType Data

Index XMLType data stored object-relationally Indexing XMLType Data Stored Object-
Relationally, Guideline: Create indexes on
ordered collection tables

Create, drop, or rename an XMLIndex index Example 6-7, Example 6-9

Obtain the name of an XMLIndex index for a given table or column Example 6-8

Determine whether a given XMLIndex index is used in evaluating a
query

How to Tell Whether XMLIndex is Used

Turn off use of an XMLIndex index Turning Off Use of XMLIndex

Table 6-2 identifies the documentation for some user tasks involving XMLIndex indexes
that have a structured component.

Table 6-2    Tasks Involving XMLIndex Indexes with a Structured Component

For information about how to... See...

Create an XMLIndex index with a structured component Example 6-23, Example 6-21

Drop the structured component of an XMLIndex index (drop all
structure groups)

Example 6-25

Ensure data type correspondence between a query and an XMLIndex
index with a structured component

Data Type Considerations for XMLIndex
Structured Component

Create a B-tree index on a content table of an XMLIndex structured
component

Example 6-26

Create an Oracle Text CONTEXT index on a content table of an
XMLIndex structured component

Example 6-46

Table 6-3 identifies the documentation for some user tasks involving XMLIndex indexes
that have an unstructured component.

Table 6-3    Tasks Involving XMLIndex Indexes with an Unstructured Component

For information about how to... See...

Create an XMLIndex index with an unstructured component Example 6-10, Example 6-12,
Example 6-33, Example 6-35,
Example 6-36, Example 6-37,
Example 6-38

Drop the unstructured component of an XMLIndex index (drop the
path table)

Example 6-13

Name the path table when creating an XMLIndex index Example 6-10

Specify storage options when creating an XMLIndex index Example 6-12

Show all existing secondary indexes on an XMLIndex path table Example 6-14, Example 6-20

Chapter 6
Oracle XML DB Tasks Involving Indexes

6-2



Table 6-3    (Cont.) Tasks Involving XMLIndex Indexes with an Unstructured Component

For information about how to... See...

Obtain the name of a path table for an XMLIndex index Example 6-11

Obtain the name of an XMLIndex index with an unstructured
component, given its path table

Example 6-28

Create a secondary index on an XMLIndex path table Using XMLIndex with an Unstructured
Component

Obtain information about all of the secondary indexes on an
XMLIndex path table

Example 6-20

Create a function-based index on a path-table VALUE column Example 6-15

Create a numeric index on a path-table VALUE column Example 6-17

Create a date index on a path-table VALUE column Example 6-18

Create an Oracle Text CONTEXT index on a path-table VALUE column Example 6-19

Exclude or include particular XPath expressions from use by an
XMLIndex index

XMLIndex Path Subsetting: Specifying the
Paths You Want to Index

Specify namespace prefixes for XPath expressions used for
XMLIndex

XMLIndex Path Subsetting: Specifying the
Paths You Want to Index

Exclude or include particular XPath expressions from use by an
XMLIndex index

XMLIndex Path Subsetting: Specifying the
Paths You Want to Index

Specify namespace prefixes for XPath expressions used for
XMLIndex

XMLIndex Path Subsetting: Specifying the
Paths You Want to Index

Table 6-4 identifies the documentation for some other user tasks involving XMLIndex
indexes.

Table 6-4    Miscellaneous Tasks Involving XMLIndex Indexes

For information about how to... See...

Specify that an XMLIndex index should be created and maintained
using parallel processes

XMLIndex Partitioning and Parallelism

Change the parallelism of an XMLIndex path table to tune index
performance

XMLIndex Partitioning and Parallelism

Schedule maintenance for an XMLIndex index Asynchronous (Deferred) Maintenance of
XMLIndex Indexes

Manually synchronize an XMLIndex index and its base table Asynchronous (Deferred) Maintenance of
XMLIndex Indexes

Collect statistics on a table or index for the cost-based optimizer Example 6-40

Create an XML search index Example 6-41

Use an XML search index for full-text search of XML data stored as
binary XML

Example 6-42

Show whether an XML search index is used in a query Example 6-43

Create an Oracle Text CONTEXT index on a content table of an
XMLIndex structured component

Example 6-46

Chapter 6
Oracle XML DB Tasks Involving Indexes

6-3



6.2 Overview of Indexing XMLType Data
Database indexes improve performance by providing faster access to table data. The
use of indexes is particularly recommended for online transaction processing (OLTP)
environments involving few updates.

The principle way you index XML data is using XMLIndex. You can also use Oracle
Text CONTEXT indexes to supplement the use of XMLIndex.

Here is a summary decision tree, as the place to start when choosing ways to index
XMLType data stored as binary XML:1

If your XML data contains islands of structured, predictable data, and your
queries are known

Use XMLIndex with a structured component to index the structured islands (even if the
data surrounding these islands is unstructured).

A structured index component reflects the queries you use. You can change this set
of known queries over time, provided you update the index definition accordingly. See
XMLIndex Structured Component.

If you need to query full-text content within your XML data

Use an XML search index. See Oracle Text Indexes for XML Data.

If you need to support ad-hoc XML queries that involve predicates

Use XMLIndex with an unstructured component – see XMLIndex Unstructured
Component.

Does your XML data contain islands of data that is highly structured and predictable
(even if the surrounding data might be unstructured)?

• Yes. Use XMLIndex with a structured component to index the islands. See
"XMLIndex Structured Component" on page 6‐12.

• No. Do you need to query full-text content within your XML data?

– Yes. Use an XML search index. See "Oracle Text Indexes for XML Data" on
page 6‐5.

– No. Do you need to support ad-hoc XML queries that involve predicates? If so,
use XMLIndex with an unstructured component – see "XMLIndex Unstructured
Component" on page 6‐16. If not, do not bother to index your XML data.

• XMLIndex Addresses the Fine-Grained Structure of XML Data
You can create indexes on one or more relational columns, or on a functional
expression. XML data, however, has its own, fine-grained structure, which is not
necessarily reflected in the structure of the database tables used to store it. For
this reason, effectively indexing XML data can be a bit different from indexing most
database data.

1 For XMLType data stored object-relationally, see Indexing XMLType Data Stored Object-Relationally. If your data
is highly structured throughout, or your queries are not known at index creation time, then this approach might be
appropriate.

Chapter 6
Overview of Indexing XMLType Data

6-4



• Oracle Text Indexes for XML Data
Besides accessing XML nodes such as elements and attributes, it is sometimes
important to provide fast access to particular passages within XML text nodes. To
query such content within XML data, you can use XQuery Full Text (XQFT) or
Oracle-specific full-text constructs.

• Optimization Chooses the Right Indexes to Use
Which indexes are used when more than one might apply in a given case? Cost-
based optimization determines the index or indexes to use, so that performance is
maximized.

• Function-Based Indexes Are Deprecated for XMLType
In releases prior to Oracle Database 11g Release 2 (11.2), function-based indexes
were sometimes appropriate for use with XMLType data when an XPath expression
targeted a singleton node. Oracle recommends that you use the structured
component of XMLIndex instead.

6.2.1 XMLIndex Addresses the Fine-Grained Structure of XML Data
You can create indexes on one or more relational columns, or on a functional
expression. XML data, however, has its own, fine-grained structure, which is not
necessarily reflected in the structure of the database tables used to store it. For
this reason, effectively indexing XML data can be a bit different from indexing most
database data.

For object-relational XMLType storage, XML objects such as elements and attributes
correspond to object-relational columns and tables. Creating B-tree indexes on
those columns and tables thus provides an excellent way to effectively index the
corresponding XML objects. Here, the storage model directly reflects the fine-grained
structure of the XML data, so there is no special problem for indexing structured XML
data. See Indexing XMLType Data Stored Object-Relationally.

In object-relational XMLType storage, an XML document is broken up and stored
object-relationally, but you can choose to store one or more of its XML fragments
as embedded CLOB instances. A typical use case for this is mapping an XML-schema
complexType or a complex element to CLOB storage, because you generally access the
entire fragment as a unit.

But such an embedded CLOB fragment also acts as an opaque unit when it comes to
indexing; its parts are not indexed individually.

Similarly, standard indexing is not helpful for binary XML storage. In both of these
cases, indexing a database column using the standard sorts of index (B-tree, bitmap)
is generally not helpful for accessing particular parts of an XML document.

XMLIndex provides a general, XML-specific index that indexes the internal structure of
XML data. One of its main purposes is to overcome the indexing limitation presented
by binary XML storage.

• An XMLIndex index with an unstructured component indexes the XML tags of
your document and identifies document fragments based on XPath expressions
that target them. It can also index scalar node values, to provide quick lookup
based on individual values or ranges of values. It also records document hierarchy
information for each node it indexes: relations parent–child, ancestor–descendant,
and sibling. This index component is particularly useful for queries that extract
XML fragments from documents that have little or variable structure.

Chapter 6
Overview of Indexing XMLType Data

6-5



• An XMLIndex index with a structured component indexes highly structured and
predictable parts of XML data that is nevertheless for the most part unstructured.
This index component is particularly useful for queries that project and use such
islands of structured content.

Related Topics

• XMLIndex

6.2.2 Oracle Text Indexes for XML Data
Besides accessing XML nodes such as elements and attributes, it is sometimes
important to provide fast access to particular passages within XML text nodes. To
query such content within XML data, you can use XQuery Full Text (XQFT) or Oracle-
specific full-text constructs.

In either case, you create an appropriate Oracle Text (full-text) index. In the case of
XQFT, the index is an XML search index, which is designed specifically for use with
XMLType data stored as binary XML.

Full-text indexing is particularly useful for document-centric applications, which often
contain a mix of XML elements and text-node content. Full-text searching can often
be made more powerful, more focused, by combining it with structural XML searching,
that is, by restricting it to certain parts of an XML document, which are identified by
using XPath expressions.

Related Topics

• Indexing XML Data for Full-Text Queries
When you need full-text search over XML data, Oracle recommends that you store
your XMLType data as binary XML and you use XQuery Full Text (XQFT). You use
an XML search index for this. This is the topic of this section.

6.2.3 Optimization Chooses the Right Indexes to Use
Which indexes are used when more than one might apply in a given case? Cost-
based optimization determines the index or indexes to use, so that performance is
maximized.

Oracle Text indexes apply only to text, which for XML data means text nodes.
Whenever text nodes are targeted and a corresponding Oracle Text index is defined, it
is used. If other indexes are also appropriate in a particular context, then they can be
used as well. However, just because an index is defined and it might appear applicable
in a given situation does not mean that it will be used. It will not be used if the
cost-based optimizer deems that its use is not cost-effective.

6.2.4 Function-Based Indexes Are Deprecated for XMLType
In releases prior to Oracle Database 11g Release 2 (11.2), function-based indexes
were sometimes appropriate for use with XMLType data when an XPath expression
targeted a singleton node. Oracle recommends that you use the structured component
of XMLIndex instead.

Doing so obviates the overhead associated with maintenance operations on function-
based indexes, and it increases the number of situations in which the optimizer can

Chapter 6
Overview of Indexing XMLType Data

6-6



correctly select the index. No changes to existing DML statements are required as a
result of this.

It continues to be the case that, for object-relational storage of XMLType, defining
an index for (deprecated) Oracle SQL function extractValue often leads, by XPath
rewrite, to automatic creation of B-tree indexes on the underlying objects (instead of
a function-based index on extractValue). The XPath target here must be a singleton
element or attribute. A similar shortcut exists for XMLCast applied to XMLQuery.

Related Topics

• Indexing XMLType Data Stored Object-Relationally
You can effectively index XMLType data that is stored object-relationally by creating
B-tree indexes on the underlying database columns that correspond to XML
nodes.

• XMLIndex Structured Component
You create and use the structured component of an XMLIndex index for queries
that project fixed, structured islands of XML content, even if the surrounding data
is relatively unstructured.

6.3 XMLIndex
• Advantages of XMLIndex

B-tree indexes can be used advantageously with object-relational XMLType storage
— they provide sharp focus by targeting the underlying objects directly. They are
generally ineffective, however, in addressing the detailed structure (elements and
attributes) of an XML document stored using binary XML. That is the special
domain of XMLIndex.

• Structured and Unstructured XMLIndex Components
XMLIndex is used to index XML data that is unstructured or semi-structured, that is,
data that generally has little or no fixed structure. It applies to XMLType data that is
stored as binary XML.

• XMLIndex Structured Component
You create and use the structured component of an XMLIndex index for queries
that project fixed, structured islands of XML content, even if the surrounding data
is relatively unstructured.

• XMLIndex Unstructured Component
Unlike a B-tree index, which you define for a specific database column that
represents an individual XML element or attribute, or the XMLIndex structured
component, which applies to specific, structured document parts, the unstructured
component of an XMLIndex index is, by default, very general.

• Creating, Dropping, Altering, and Examining an XMLIndex Index
Basic operations on an XMLIndex index include creating it, dropping it, altering it,
and examining it. Examples are presented.

• Using XMLIndex with an Unstructured Component
You can perform various operations on an XMLIndex index that has an
unstructured component, including manipulating the path table and the secondary
indexes of that component.

• Use of XMLIndex with a Structured Component
An XMLIndex structured component indexes specific islands of structure in your
XML data.

Chapter 6
XMLIndex

6-7



• How to Tell Whether XMLIndex is Used
To know whether a particular XMLIndex index has been used in resolving a query,
you can examine an execution plan for the query.

• Turning Off Use of XMLIndex
You can turn off the use of XMLIndex by using optimizer hint: /*+
NO_XML_QUERY_REWRITE */ or optimizer hint /*+ NO_XMLINDEX_REWRITE */.

• XMLIndex Path Subsetting: Specifying the Paths You Want to Index
If you know which XPath expressions you are most likely to query then you can
narrow the focus of XMLIndex indexing and thus improve performance.

• Guidelines for Using XMLIndex with an Unstructured Component
There are several guidelines that can help you use XMLIndex with an unstructured
component.

• Guidelines for Using XMLIndex with a Structured Component
There are several guidelines that can help you use XMLIndex with a structured
component.

• XMLIndex Partitioning and Parallelism
If you partition an XMLType table, or a table with an XMLType column, using range,
list, or hash partitioning, you can also create an XMLIndex index on the table.
You can optionally ensure that index creation and maintenance are carried out in
parallel.

• Asynchronous (Deferred) Maintenance of XMLIndex Indexes
You can defer the cost of maintaining an XMLIndex index that has only an
unstructured component, performing maintenance only at commit time or when
database load is reduced. This can improve DML performance, and it can enable
bulk loading of unsynchronized index rows when an index is synchronized.

• Collecting Statistics on XMLIndex Objects for the Cost-Based Optimizer
The Oracle Database cost-based optimizer determines how to most cost-
effectively evaluate a given query, including which indexes, if any, to use. For it
to be able to do this accurately, you must collect statistics on various database
objects.

• Data Dictionary Static Public Views Related to XMLIndex
Information about the standard database indexes is available in static
public views USER_INDEXES, ALL_INDEXES, and DBA_INDEXES. Similar information
about XMLIndex indexes is available in static public views USER_XML_INDEXES,
ALL_XML_INDEXES, and DBA_XML_INDEXES.

• PARAMETERS Clause for CREATE INDEX and ALTER INDEX
Creation or modification of an XMLIndex index often involves the use of a
PARAMETERS clause with SQL statement CREATE INDEX or ALTER INDEX. You can
use it to specify index characteristics in detail.

6.3.1 Advantages of XMLIndex
B-tree indexes can be used advantageously with object-relational XMLType storage
— they provide sharp focus by targeting the underlying objects directly. They are
generally ineffective, however, in addressing the detailed structure (elements and
attributes) of an XML document stored using binary XML. That is the special domain of
XMLIndex.

Chapter 6
XMLIndex

6-8



XMLIndex is a domain index; it is designed specifically for the domain of XML data. It
is a logical index. An XMLIndex index can be used for SQL/XML functions XMLQuery,
XMLTable, XMLExists, and XMLCast.

XMLIndex presents the following advantages over other indexing methods:

• An XMLIndex index is effective in any part of a query;  it is not limited to use in a
WHERE clause. This is not the case for any of the other kinds of indexes you might
use with XML data.

• An XMLIndex index with an unstructured component can speed access to both
SELECT list data and FROM list data, making it useful for XML fragment extraction,
in particular. Function-based indexes, which are deprecated, cannot be used to
extract document fragments.

• You can use an XMLIndex index with either XML schema-based or non-schema-
based XMLType data stored as binary XML. B-tree indexing is appropriate only for
XML schema-based data that is stored object-relationally.

• You can use an XMLIndex index for searches with XPath expressions that target
collections, that is, nodes that occur multiple times within a document. This is not
the case for function-based indexes.

• You need no prior knowledge of the XPath expressions that might be used in
queries. The unstructured component of an XMLIndex index can be completely
general. This is not the case for function-based indexes.

• If you have prior knowledge of the XPath expressions to be used in queries, then
you can improve performance either by using a structured XMLIndex component
that targets fixed, structured islands of data that are queried often.

• XMLIndex indexing — both index creation and index maintenance — can be carried
out in parallel, using multiple database processes. This is not the case for function-
based indexes, which are deprecated.

6.3.2 Structured and Unstructured XMLIndex Components
XMLIndex is used to index XML data that is unstructured or semi-structured, that is,
data that generally has little or no fixed structure. It applies to XMLType data that is
stored as binary XML.

Semi-structured XML data can sometimes nevertheless contain islands of predictable,
structured data. An XMLIndex index can therefore have two components: a structured
component, used to index such islands, and an unstructured component, used to
index data that has little or variable structure.

A structured component can help with queries that project and use islands of
structured content. A typical example is a free-form specification with fixed fields
author, date, and title. An unstructured component can help with queries that extract
XML fragments. Either component can be omitted from a given XMLIndex index.

Unlike a structured component, an unstructured component is general and relatively
untargeted. It is appropriate for general indexing of document-centric XML data. A
typical example is an XML web document or a book chapter.

You can create an XMLIndex index with both structured and unstructured components.
A typical use case is supporting queries that extract an XML fragment from
a document whenever some structured data is also present. The unstructured
component is used for the fragment extraction. The structured component is used for

Chapter 6
XMLIndex

6-9



a query predicate that checks for the structured data (for example, in the SQL WHERE
clause).

Though you can restrict an unstructured component to apply only to certain XPath
subsets, its path table indexes node content that can be of different scalar types, which
can require you to create multiple secondary indexes on the VALUE column to deal
with the different data types — see Secondary Indexes on Column VALUE. Using an
unstructured component alone can also lead to inefficiencies involving multiple probes
and self-joins of its path table, for queries that project structured islands.

On the other hand, a structured component is not suited for queries that involve little
structure or queries that extract XML fragments. Use a structured component to index
structured islands of data; use an unstructured component to index data that has little
structure.

The last row indicates the applicability of XMLIndex for different XML data use cases. It
shows that XMLIndex is appropriate for semi-structured XML data, however it is stored
(last three columns). And an XMLIndex index with a structured component is useful for
document-centric data that contains structured islands (fourth column).

Figure 6-1    XML Use Cases and XML Indexing

Data-Centric

Use Case XML schema-based data, with 
little variation and little structural 
change over time

Typical Data Employee record

Storage Model Object-Relational 
(Structured)

Indexing B-tree index

Document-Centric

Variable, free-form data, with 
some fixed embedded 
structures

Variable, free-form data

Technical article, with author, 
date, and title fields

Web document or book chapter

Binary XML

· XMLIndex index with structured
  and unstructured components

· XML search index

· XMLIndex index with
 unstructured component

· XML search index

Related Topics

• XMLIndex Structured Component
You create and use the structured component of an XMLIndex index for queries
that project fixed, structured islands of XML content, even if the surrounding data
is relatively unstructured.

• XMLIndex Unstructured Component
Unlike a B-tree index, which you define for a specific database column that
represents an individual XML element or attribute, or the XMLIndex structured
component, which applies to specific, structured document parts, the unstructured
component of an XMLIndex index is, by default, very general.

Chapter 6
XMLIndex

6-10



See Also:

Advantages of XMLIndex for a summary of the advantages provided by each
XMLIndex component type

6.3.3 XMLIndex Structured Component
You create and use the structured component of an XMLIndex index for queries
that project fixed, structured islands of XML content, even if the surrounding data is
relatively unstructured.

A structured XMLIndex component organizes such islands in a relational format. In
this it is similar to SQL/XML function XMLTable, and the syntax you use to define the
structured component reflects this similarity. The relational tables used to store the
indexing data are data-type aware, and each column can be of a different scalar data
type.

You can thus think of the act of creating the structured component of an XMLIndex
index as decomposing a structured portion of your XML data into relational format.
This differs from the object-relational storage model of XMLType in these ways:

• A structured index component explicitly decomposes particular portions of your
data, which you specify — portions that you commonly query. Object-relational
XMLType storage involves automatic decomposition of an entire XMLType table or
column.

• The structured component of an XMLIndex index applies to both XML schema-
based and non-schema-based data. Object-relational XMLType storage applies
only to data that is based on an XML schema.

• The decomposed data for a structured XMLIndex component is stored in addition to
the XMLType data, as an index, rather than being the storage model for the XMLType
data itself.

• For a structured XMLIndex component, the same data can be projected multiple
times, as columns of different data type.

The index content tables used for the structured component of an XMLIndex index are
part of the index, but because they are normal relational tables you can, in turn, index
them using any standard relational indexes, including indexes that satisfy primary-key
and foreign-key constraints. You can also index them using domain indexes, such as
an Oracle Text CONTEXT index.

Another way to look at the structured component of an XMLIndex index sees that it
acts as a generalized function-based index. A function-based index is similar to a
structured XMLIndex component that has only one relational column.

If you find that for a particular application you are creating multiple function-based
indexes, then consider using an XMLIndex index with a structured component instead.
Create also B-tree indexes on the columns of the structured index component.

Chapter 6
XMLIndex

6-11



Note:

• Queries that use SQL/XML function XMLTable can typically be
automatically rewritten to use the relational indexing tables of an
XMLIndex structured component. In particular, SQL ORDER BY, GROUP BY,
and window constructs operating on columns of an XMLTable virtual table
are rewritten to the same constructs operating on the real columns of the
relational indexing tables of the structured XMLIndex component.

The relational tables used for XMLIndex structured indexing also contain
some internal, system-defined columns. These internal columns might
change in the future, so do not write code that depends on any
assumptions about their existence or contents.

• Queries that use Oracle SQL function XMLSequence within a SQL
TABLE collection expression, that is, TABLE (XMLSequence(...)), are
not rewritten to use the indexing tables of an XMLIndex structured
component. Oracle SQL function XMLSequence is deprecated in Oracle
Database 11g Release 2; use standard SQL/XML function XMLTable
instead.

See Oracle Database SQL Language Reference for information about
the SQL TABLE collection expression.

• Ignore the Index Content Tables; They Are Transparent
Although the index content tables of an XMLIndex structured component are
normal relational tables, they are also read-only: you cannot add or drop their
columns or modify (insert, update, or delete) their rows.

• Data Type Considerations for XMLIndex Structured Component
The relational tables that are used for an XMLIndex structured component use SQL
data types. XQuery expressions that are used in queries use XML data types
(XML Schema data types and XQuery data types).

• Exchange Partitioning and XMLIndex
In exchange partitioning, you exchange a table with a partition of another table.
The first table must have the same structure as the partition of the second table,
with which it is to be exchanged. The two tables must also be similar with respect
to indexing with an XMLIndex index.

Related Topics

• Use of XMLIndex with a Structured Component
An XMLIndex structured component indexes specific islands of structure in your
XML data.

• SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast
SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast are defined by
the SQL/XML standard as a general interface between the SQL and XQuery
languages.

• Function-Based Indexes Are Deprecated for XMLType
In releases prior to Oracle Database 11g Release 2 (11.2), function-based indexes
were sometimes appropriate for use with XMLType data when an XPath expression

Chapter 6
XMLIndex

6-12



targeted a singleton node. Oracle recommends that you use the structured
component of XMLIndex instead.

6.3.3.1 Ignore the Index Content Tables; They Are Transparent
Although the index content tables of an XMLIndex structured component are normal
relational tables, they are also read-only: you cannot add or drop their columns or
modify (insert, update, or delete) their rows.

You can thus generally ignore the relational index content tables. You cannot access
them, other than to DESCRIBE them and create (secondary) indexes on them. You
need never explicitly gather statistics on them. You need only collect statistics on
the XMLIndex index itself or the base table on which the XMLIndex index is defined;
statistics are collected and maintained on the index content tables transparently.

Related Topics

• Collecting Statistics on XMLIndex Objects for the Cost-Based Optimizer
The Oracle Database cost-based optimizer determines how to most cost-
effectively evaluate a given query, including which indexes, if any, to use. For it
to be able to do this accurately, you must collect statistics on various database
objects.

6.3.3.2 Data Type Considerations for XMLIndex Structured Component
The relational tables that are used for an XMLIndex structured component use SQL
data types. XQuery expressions that are used in queries use XML data types (XML
Schema data types and XQuery data types).

XQuery typing rules can automatically change the data type of a subexpression, to
ensure coherence and type-checking. For example, if a document that is queried using
XPath expression /PurchaseOrder/LineItem[@ItemNumber = 25] is not XML schema-
based, then the subexpression @ItemNumber is untyped, and it is then automatically
cast to xs:double by the XQuery = comparison operator. To index this data using an
XMLIndex structured component you must use BINARY_DOUBLE as the SQL data type.

This is a general rule. For an XMLIndex index with structured component to
apply to a query, the data types must correspond. Table 6-5 shows the data-type
correspondences.

Table 6-5    XML and SQL Data Type Correspondence for XMLIndex

XML Data Type SQL Data Type

xs:decimal INTEGER or NUMBER

xs:double BINARY_DOUBLE

xs:float BINARY_FLOAT

xs:date DATE, TIMESTAMP WITH TIMEZONE

xs:dateTime TIMESTAMP, TIMESTAMP WITH TIMEZONE

xs:dayTimeDuration INTERVAL DAY TO SECOND

xs:yearMonthDuration INTERVAL YEAR TO MONTH

Chapter 6
XMLIndex

6-13



Note:

If the XML data type is xs:date or xs:dateTime, and if you know that
the data that you will query and for which you are creating an index will
not contain a time-zone component, then you can increase performance
by using SQL data type DATE or TIMESTAMP. If the data might contain a
time-zone component, then you must use SQL data type TIMESTAMP WITH
TIMEZONE.

If the XML and SQL data types involved do not have a built-in one-to-one
correspondence, then you must make them correspond (according to Table 6-5), in
order for the index to be picked up for your query. There are two ways you can do this:

• Make the index correspond to the query – Define (or redefine) the column in
the structured index component, so that it corresponds to the XML data type. For
example, if a query that you want to index uses the XML data type xs:double,
then define the index to use the corresponding SQL data type, BINARY_DOUBLE.

• Make the query correspond to the index – In your query, explicitly cast the
relevant parts of an XQuery expression to data types that correspond to the SQL
data types used in the index content table.

Example 6-1 and Example 6-2 show how you can cast an XQuery expression in your
query to match the SQL data type used in the index content table.

Notice that the number 25 plays a different role in these two examples, even though
in both cases it is the purchase-order item number. In Example 6-1, 25 is a SQL
number of data type INTEGER; in Example 6-2, 25 is an XQuery number of data type
xs:decimal.

In Example 6-1, the XMLQuery result is cast to SQL type INTEGER, which is compared
with the SQL value 25. In Example 6-2, the value of attribute ItemNumber is cast (in
XQuery) to the XML data type xs:decimal, which is compared with the XQuery value
25 and which corresponds to the SQL data type (INTEGER) used for the index. There
are thus two different kinds of data-type conversion in these examples, but they both
convert query data to make it type-compatible with the index content table.

See Also:

Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data
Types for information about the built-in correspondence between XML
Schema data types and SQL data types

Example 6-1    Making Query Data Compatible with Index Data – SQL Cast

SELECT count(*) FROM purchaseorder
  WHERE XMLCast(XMLQuery('$p/PurchaseOrder/LineItem/@ItemNumber'
                         PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
                AS INTEGER)
        = 25;

Chapter 6
XMLIndex

6-14



Example 6-2    Making Query Data Compatible with Index Data – XQuery Cast

SELECT count(*) FROM purchaseorder
  WHERE XMLExists('$p/PurchaseOrder/LineItem[xs:decimal(@ItemNumber) = 25]'
                  PASSING OBJECT_VALUE AS "p");

6.3.3.3 Exchange Partitioning and XMLIndex
In exchange partitioning, you exchange a table with a partition of another table. The
first table must have the same structure as the partition of the second table, with which
it is to be exchanged. The two tables must also be similar with respect to indexing with
an XMLIndex index.

One of the following must be true:

• Neither table has an XMLIndex index.

• Both have an XMLIndex index, and one of the following is true:

– Neither index has a structured component.

– Both indexes have a structured component.

If none of those conditions holds then you cannot perform exchange partitioning.

If both tables have an XMLIndex index with a structured component then in the general
case you must perform some preprocessing before invoking ALTER TABLE EXCHANGE
PARTITION, and you must perform some postprocessing after invoking it. Otherwise,
the exchange-partition operation raises an error.

You use PL/SQL procedures exchangePreProc and exchangePostProc in package
DBMS_XMLSTORAGE_MANAGE to perform this preprocessing and postprocessing, as
illustrated in Example 6-3. Each of the XMLType tables there, table and
exchange_table, has an XMLIndex index that has a structured component.

In the special case of reference-partitioned tables there are foreign-key constraints
involved, so things are a bit more complex. In this case, you use PL/SQL procedure
refPartitionExchangeIn or refPartitionExchangeOut, to load data into (exchange-
in) or out of (exchange-out) the partitioned tables, respectively.

Example 6-4 illustrates this, loading data from exchange tables parent_ex and
child_ex into base tables parent and child. Example 6-5 shows the table and index
definitions.

See Also:

• Oracle Database SQL Language Reference

• Oracle Database Data Cartridge Developer's Guide for general
information about using ALTER TABLE EXCHANGE PARTITION with tables
that have domain indexes (XMLIndex is a domain index)

• Oracle Database PL/SQL Packages and Types Reference for
information about procedures exchangePreProc, exchangePostProc,
refPartitionExchangeIn, and refPartitionExchangeIOut in package
DBMS_XMLSTORAGE_MANAGE.

Chapter 6
XMLIndex

6-15



Example 6-3    Exchange-Partitioning Tables That Have an XMLIndex Structured
Component

EXEC DBMS_XMLSTORAGE_MANAGE.exchangePreProc(USER, 'table');
EXEC DBMS_XMLSTORAGE_MANAGE.exchangePreProc(USER, 'exchange_table');

ALTER TABLE table EXCHANGE PARTITION partition WITH TABLE exchange_table
  WITH VALIDATION UPDATE INDEXES;

EXEC DBMS_XMLSTORAGE_MANAGE.exchangePostProc(USER, 'table');
EXEC DBMS_XMLSTORAGE_MANAGE.exchangePostProc(USER, 'exchange_table');

Example 6-4    Exchange-Partitioning Reference-Partitioned Tables That Use
XMLIndex

In this example:

• parent is the partitioned base table.

• child is a reference-partitioned child table with XMLType column xcol.

• child_xidx is an XMLIndex index with a structured component, defined on column
xcol of table child. This is a local index, which is partitioned.

• parent_ex is the exchange table for base table parent.

• child_ex is the exchange table for child table child.

• child_xidx_ex is an XMLIndex index with a structured component, defined on
column xcol of table child_ex. This is not a local index (unlike the case for index
child_xidx).

• USER is the owner (database schema) of the tables.

This example performs an exchange-in operation, loading data from the exchange
tables into the partitioned tables. An exchange-out operations, which loads data out
of the partitioned tables into the exchange tables, would look the same, except that it
would use procedure refPartitionExchangeOut instead. The procedure is passed the
relevant tables and the necessary ALTER TABLE ... EXCHANGE statements.

EXEC DBMS_XMLSTORAGE_MANAGE.refPartitionExchangeIn(
       USER, 'parent', 'child', 'parent_ex', 'child_ex',
       'ALTER TABLE parent EXCHANGE PARTITION part_all WITH TABLE 
parent_ex
          INCLUDING INDEXES WITH VALIDATION UPDATE INDEXES',
       'ALTER TABLE child  EXCHANGE PARTITION part_all WITH TABLE 
child_ex
          INCLUDING INDEXES WITH VALIDATION UPDATE INDEXES');

Example 6-5    Data Used in Example of Exchange-Partitioning for Reference-Partitioned Tables

This example shows the creation operations for the tables and indexes used in
Example 6-4.

CREATE TABLE parent (id      NUMBER PRIMARY KEY,
                     created DATE)
  PARTITION BY RANGE (created)

Chapter 6
XMLIndex

6-16



    (PARTITION part_2014 VALUES LESS THAN (to_date('01-jan-2015', 'dd-mon-yyyy')),
     PARTITION part_all  VALUES LESS THAN (maxvalue));

CREATE TABLE child (parent_id NUMBER NOT NULL,
                    xcol      XMLType,
                    CONSTRAINT child_tab_fk FOREIGN KEY (parent_id)
                                            REFERENCES parent (id)
                    ENABLE VALIDATE)
  XMLType COLUMN xcol STORE AS BINARY XML PARTITION BY REFERENCE 
(child_tab_fk);

CREATE INDEX child_xidx ON child p (xcol) INDEXTYPE IS XDB.XMLIndex
  PARAMETERS ('XMLTable po_index_tab ''purchaseorder''
               COLUMNS pid NUMBER(4) PATH ''@id''') LOCAL ;

CREATE TABLE parent_ex (id      NUMBER PRIMARY KEY,
                        created DATE);

CREATE TABLE child_ex (parent_id NUMBER NOT NULL,
                       xcol      XMLType,
                       CONSTRAINT child_tab_fk1 FOREIGN KEY (parent_id)
                                                REFERENCES parent_ex(id)
                      ENABLE VALIDATE)
  XMLType COLUMN xcol STORE AS BINARY XML;

CREATE INDEX child_ex_xidx ON child_ex p (xcol) INDEXTYPE IS 
XDB.XMLIndex
  PARAMETERS ('XMLTable po_index_tab_ex ''purchaseorder''
               COLUMNS pid NUMBER(4) PATH ''@id''');

6.3.4 XMLIndex Unstructured Component
Unlike a B-tree index, which you define for a specific database column that represents
an individual XML element or attribute, or the XMLIndex structured component, which
applies to specific, structured document parts, the unstructured component of an
XMLIndex index is, by default, very general.

Unless you specify a more narrow focus by detailing specific XPath expressions to use
or not to use in indexing, an unstructured XMLIndex component applies to all possible
XPath expressions for your XML data.

The unstructured component of an XMLIndex index has three logical parts:

• A path index – This indexes the XML tags of a document and identifies its various
document fragments.

• An order index – This indexes the hierarchical positions of the nodes in an
XML document. It keeps track of parent–child, ancestor–descendant, and sibling
relations.

Chapter 6
XMLIndex

6-17



• A value index – This indexes the values of an XML document. It provides lookup
by either value equality or value range. A value index is used for values in query
predicates (WHERE clause).

The unstructured component of an XMLIndex index uses a path table and a set
of (local) secondary indexes on the path table, which implement the logical parts
described above. Two secondary indexes are created automatically:

• A pikey index, which implements the logical indexes for both path and order.

• A real value index, which implements the logical value index.

You can modify these two indexes or create additional secondary indexes. The path
table and its secondary indexes are all owned by the owner of the base table upon
which the XMLIndex index is created.

The pikey index handles paths and order relationships together, which gives the best
performance in most cases. If you find in some particular case that the value index is
not picked up when think it should be, you can replace the pikey index with separate
indexes for the paths and order relationships. Such (optional) indexes are called path
id and order key indexes, respectively. For best results, contact Oracle Support if you
find that the pikey index is not sufficient for your needs in some case.

The path table contains one row for each indexed node in the XML document. For
each indexed node, the path table stores:

• The corresponding rowid of the table that stores the document.

• A locator, which provides fast access to the corresponding document fragment.
For binary XML storage of XML schema-based data, it also stores data-type
information.

• An order key, to record the hierarchical position of the node in the document. You
can think of this as a Dewey decimal key like that used in library cataloging and
Internet protocol SNMP. In such a system, the key 3.21.5 represents the node
position of the fifth child of the twenty-first child of the third child of the document
root node.

• An identifier that represents an XPath path to the node.

• The effective text value of the node.

Table 6-6 shows the main information2 that is in the path table.

Table 6-6    XMLIndex Path Table

Column Data Type Description

PATHID RAW(8) Unique identifier for the XPath path to the node.

RID ROWID Rowid of the table used to store the XML data.

ORDER_KEY RAW(1000) Decimal order key that identifies the hierarchical
position of the node. (Document ordering is
preserved.)

LOCATOR RAW(2000) Fragment-location information. Used for fragment
extraction. For binary XML storage of XML schema-
based data, data-type information is also stored here.

VALUE VARCHAR2(4000) Effective text value the node.

2 The actual path table implementation may be slightly different.

Chapter 6
XMLIndex

6-18



The pikey index uses path table columns PATHID, RID, and ORDER_KEY to represent the
path and order indexes. An optional path id index uses columns PATHID and RID to
represent the path index. A value index is an index on the VALUE column.

Example 6-6 explores the contents of the path table for two purchase-order
documents.

Example 6-6    Path Table Contents for Two Purchase Orders

<PurchaseOrder>
 <Reference>SBELL-2002100912333601PDT</Reference>
 <Actions>
  <Action>
   <User>SVOLLMAN</User>
  </Action>
 </Actions>
 . . .
</PurchaseOrder>

<PurchaseOrder>
 <Reference>ABEL-20021127121040897PST</Reference>
 <Actions>
  <Action>
   <User>ZLOTKEY</User>
  </Action>
  <Action>
   <User>KING</User>
  </Action>
 </Actions>
 . . .
</PurchaseOrder>

An XMLIndex index on an XMLType table or column storing these purchase orders
includes a path table that has one row for each indexed node in the XML documents.
Suppose that the system assigns the following PATHIDs when indexing the nodes
according to their XPath expressions:

PATHID Indexed XPath

1 /PurchaseOrder

2 /PurchaseOrder/Reference

3 /PurchaseOrder/Actions

4 /PurchaseOrder/Actions/Action

5 /PurchaseOrder/Actions/Action/User

The resulting path table would then be something like this (column LOCATOR is not
shown):

PATHID RID ORDER_KEY VALUE

1 R1 1 SBELL-2002100912333601PDTSVOLLMAN

2 R1 1.1 SBELL-2002100912333601PDT

Chapter 6
XMLIndex

6-19



PATHID RID ORDER_KEY VALUE

3 R1 1.2 SVOLLMAN

4 R1 1.2.1 SVOLLMAN

5 R1 1.2.1.1 SVOLLMAN

1 R2 1 ABEL-20021127121040897PSTZLOTKEYKING

2 R2 1.1 ABEL-20021127121040897PST

3 R2 1.2 ZLOTKEYKING

4 R2 1.2.1 ZLOTKEY

5 R2 1.2.1.1 ZLOTKEY

4 R2 1.2.2 KING

5 R2 1.2.2.1 KING

• Ignore the Path Table – It Is Transparent
Though you can create secondary indexes on path-table columns, you can
generally ignore the path table itself.

• Column VALUE of an XMLIndex Path Table
A secondary index on column VALUE is used with XPath expressions in a WHERE
clause that have predicates involving string matches. For example:

• Secondary Indexes on Column VALUE
Even if you do not specify a secondary index for column VALUE when you create
an XMLIndex index, a default secondary index is created on column VALUE. This
default index has the default properties — in particular, it is an index for text (string-
valued) data only.

• XPath Expressions That Are Not Indexed by an XMLIndex Unstructured
Component
A few types of XPath expressions are not indexed by XMLIndex.

6.3.4.1 Ignore the Path Table – It Is Transparent
Though you can create secondary indexes on path-table columns, you can generally
ignore the path table itself.

You cannot access the path table, other than to DESCRIBE it and create (secondary)
indexes on it. You need never explicitly gather statistics on the path table. You need
only collect statistics on the XMLIndex index or the base table on which the XMLIndex
index is defined; statistics are collected and maintained on the path table and its
secondary indexes transparently.

Related Topics

• Collecting Statistics on XMLIndex Objects for the Cost-Based Optimizer
The Oracle Database cost-based optimizer determines how to most cost-
effectively evaluate a given query, including which indexes, if any, to use. For it
to be able to do this accurately, you must collect statistics on various database
objects.

Chapter 6
XMLIndex

6-20



6.3.4.2 Column VALUE of an XMLIndex Path Table
A secondary index on column VALUE is used with XPath expressions in a WHERE clause
that have predicates involving string matches. For example:

/PurchaseOrder[Reference/text() = "SBELL-2002100912333601PDT"]

Column VALUE stores the effective text value of an element or an attribute node —
comments and processing instructions are ignored during indexing.

• For an attribute, the effective text value is the attribute value.

• For a simple element (an element that has no children), the effective text value is
the concatenation of all of the text nodes of the element.

• For a complex element (an element that has children), the effective text value is
the concatenation of (1) the text nodes of the element itself and (2) the effective
text values of all of its simple-element descendants. (This is a recursive definition.)

The effective text value is limited (truncated), however, to 4000 bytes for a simple
element or attribute and to 80 bytes for a complex element.

Column VALUE is a fixed size, VARCHAR2(4000). Any overflow (beyond 4000 bytes)
during index creation or update is truncated.

In addition to the 4000-byte limit for column VALUE, there is a limit on the size of a
key for the secondary index created on this column. This is the case for B-tree and
function-based indexes as well; it is not an XMLIndex limitation. The index-key size limit
is a function of the block size for your database. It is this limit that determines how
much of VALUE is indexed.

Thus, only the first 4000 bytes of the effective text value are stored in column VALUE,
and only the first N bytes of column VALUE are indexed, where N is the index-key size
limit (N < 4000). Because of the index-key size limit, the index on column VALUE acts
only as a preliminary filter for the effective text value.

For example, suppose that your database block size requires that the VALUE index be
no larger than 800 bytes, so that only the first 800 bytes of the effective text value is
indexed. The first 800 bytes of the effective text value is first tested, using XMLIndex,
and only if that text prefix matches the query value is the rest of the effective text value
tested.

The secondary index on column VALUE is an index on SQL function substr (substring
equality), because that function is used to test the text prefix. This function-based
index is created automatically as part of the implementation of XMLIndex for column
VALUE.

For example, the XPath expression /PurchaseOrder[Reference/text() = :1] in a
query WHERE clause might, in effect, be rewritten to a test something like this:

substr(VALUE, 1 800) = substr(:1, 1, 800) AND VALUE = :1;

This conjunction contains two parts, which are processed from left to right. The first
test uses the index on function substr as a preliminary filter, to eliminate text whose
first 800 bytes do not match the first 800 bytes of the value of bind variable :1.

Chapter 6
XMLIndex

6-21



Only the first test uses an index — the full value of column VALUE is not indexed. After
preliminary filtering by the first test, the second test checks the entire effective text
value — that is, the full value of column VALUE — for full equality with the value of :1.
This check does not use an index.

Even if only the first 800 bytes of text is indexed, it is important for query performance
that up to 4000 bytes be stored in column VALUE, because that provides quick, direct
access to the data, instead of requiring, for example, extracting it from deep within a
CLOB-instance XML document. If the effective text value is greater than 4000 bytes,
then the second test in the WHERE-clause conjunction requires accessing the base-table
data.

Neither the VALUE column 4000-byte limit nor the index-key size affect query results in
any way; they can affect only performance.

Note:

Because of the possibility of the VALUE column being truncated, an Oracle
Text CONTEXT index created on the VALUE column might return incorrect
results.

As mentioned, XMLIndex can be used with XML schema-based data. If an XML
schema specifies a defaultValue value for a given element or attribute, and a
particular document does not specify a value for that element or attribute, then the
defaultValue value is used for the VALUE column.

6.3.4.3 Secondary Indexes on Column VALUE
Even if you do not specify a secondary index for column VALUE when you create an
XMLIndex index, a default secondary index is created on column VALUE. This default
index has the default properties — in particular, it is an index for text (string-valued)
data only.

You can, however, create a VALUE index of a different type. For example, you can
create a number-valued index if that is appropriate for many of your queries. You can
create multiple secondary indexes on the VALUE column. An index of a particular type
is used only when it is appropriate. For example, a number-valued index is used only
when the VALUE column is a number; it is ignored for other values. Secondary indexes
on path-table columns are treated like any other secondary indexes — you can alter
them, drop them, mark them unusable, and so on.

See Also:

• Using XMLIndex with an Unstructured Component for examples of
creating secondary indexes on column VALUE

• PARAMETERS Clause for CREATE INDEX and ALTER INDEX for the
syntax of the PARAMETERS clause

Chapter 6
XMLIndex

6-22



6.3.4.4 XPath Expressions That Are Not Indexed by an XMLIndex Unstructured
Component

A few types of XPath expressions are not indexed by XMLIndex.

• Applications of XPath functions. In particular, user-defined XPath functions are not
indexed.

• Axes other than child, descendant, and attribute, that is, axes parent,
ancestor, following-sibling, preceding-sibling, following, preceding, and
ancestor-or-self.

• Expressions using the union operator, | (vertical bar).

6.3.5 Creating, Dropping, Altering, and Examining an XMLIndex Index
Basic operations on an XMLIndex index include creating it, dropping it, altering it, and
examining it. Examples are presented.

You create an XMLIndex index by declaring the index type to be XDB.XMLIndex, as
illustrated in Example 6-7.

This creates an XMLIndex index named po_xmlindex_ix on XMLType table po_binxml.
The index has only an unstructured component, no structured component.

You specify inclusion of a structured component in an XMLIndex index by including a
structured_clause in the PARAMETERS clause. You specify inclusion of an unstructured
component by including a path_table_clause in the PARAMETERS clause.

You can do this when you create the XMLIndex index or when you modify it. If, as
in Example 6-7, you specify neither a structured_clause nor a path_table_clause,
then only an unstructured component is included.

If an XMLIndex index has both an unstructured and a structured component, then you
can drop either of these components using ALTER INDEX.

You can obtain the name of an XMLIndex index on a particular XMLType table (or
column), as shown in Example 6-8. You can also select INDEX_NAME from DBA_INDEXES
or ALL_INDEXES, as appropriate.

You rename or drop an XMLIndex index just as you would any other index, as
illustrated in Example 6-9. This renaming changes the name of the XMLIndex index
only. It does not change the name of the path table — you can rename the path table
separately.

Similarly, you can change other index properties using other ALTER INDEX options,
such as REBUILD. XMLIndex is no different from other index types in this respect.

The RENAME clause of an ALTER INDEX statement for XMLIndex applies only to the
XMLIndex index itself. To rename the path table and secondary indexes, you must
determine the names of these objects and use appropriate ALTER TABLE or ALTER
INDEX statements on them directly. Similarly, to retrieve the physical properties of the
secondary indexes or alter them in any other way, you must obtain their names, as in
Example 6-14.

Chapter 6
XMLIndex

6-23



See Also:

• structured_clause ::=

• path_table_clause ::=

• drop_path_table_clause ::=

• alter_index_group_clause ::=

Example 6-7    Creating an XMLIndex Index

CREATE INDEX po_xmlindex_ix ON po_binxml (OBJECT_VALUE) INDEXTYPE IS 
XDB.XMLIndex;

Example 6-8    Obtaining the Name of an XMLIndex Index on a Particular Table

SELECT INDEX_NAME FROM USER_INDEXES
  WHERE TABLE_NAME = 'PO_BINXML' AND ITYP_NAME = 'XMLINDEX';

INDEX_NAME
---------------
PO_XMLINDEX_IX
 
1 row selected.

Example 6-9    Renaming and Dropping an XMLIndex Index

ALTER INDEX po_xmlindex_ix RENAME TO new_name_ix;

DROP INDEX new_name_ix;

Related Topics

• PARAMETERS Clause Syntax for CREATE INDEX and ALTER INDEX
The syntax for the PARAMETERS clause for CREATE INDEX and ALTER INDEX is
defined.

6.3.6 Using XMLIndex with an Unstructured Component
You can perform various operations on an XMLIndex index that has an unstructured
component, including manipulating the path table and the secondary indexes of that
component.

To include an unstructured component in an XMLIndex index, you can use a
path_table_clause in the PARAMETERS clause when you create or modify the XMLIndex
index — see path_table_clause ::=.

If you do not specify a structured component, then the index will have an unstructured
component, even if you do not specify the path table. It is however generally a good
idea to specify the path table, so that it has a recognizable, user-oriented name that
you can refer to in other XMLIndex operations.

Chapter 6
XMLIndex

6-24



Example 6-10 shows how to name the path table ("my_path_table") when creating an
XMLIndex index with an unstructured component.

If you do not name the path table then its name is generated by the system, using the
index name you provide to CREATE INDEX as a base. Example 6-11 shows this for the
XMLIndex index created in Example 6-7.

By default, the storage options of a path table and its secondary indexes are derived
from the storage properties of the base table on which the XMLIndex index is created.
You can specify different storage options by using a PARAMETERS clause when you
create the index, as shown in Example 6-12. The PARAMETERS clause of CREATE INDEX
(and ALTER INDEX) must be between single quotation marks (').

Because XMLIndex is a logical domain index, not a physical index, all physical
attributes are either zero (0) or NULL.

If an XMLIndex index has both an unstructured and a structured component, then
you can use ALTER INDEX to drop the unstructured component. To do this, you drop
the path table. Example 6-13 illustrates this. (This assumes that you also have a
structured component — Example 6-23 results in an index with both structured and
unstructured components.)

In addition to specifying storage options for the path table, Example 6-12 names the
secondary indexes on the path table.

Like the name of the path table, the names of the secondary indexes on the path-table
columns are generated automatically using the index name as a base, unless you
specify them in the PARAMETERS clause. Example 6-14 illustrates this, and shows how
you can determine these names using public view USER_IND_COLUMNS. It also shows
that the pikey index uses three columns.

See Also:

Example 6-20 for a similar, but more complex example

Example 6-10    Naming the Path Table of an XMLIndex Index

CREATE INDEX po_xmlindex_ix ON po_binxml (OBJECT_VALUE) INDEXTYPE IS XDB.XMLIndex
  PARAMETERS ('PATH TABLE my_path_table');

Example 6-11    Determining the System-Generated Name of an XMLIndex Path
Table

SELECT PATH_TABLE_NAME FROM USER_XML_INDEXES
  WHERE TABLE_NAME = 'PO_BINXML' AND INDEX_NAME = 'PO_XMLINDEX_IX';
 
PATH_TABLE_NAME
------------------------------
SYS67567_PO_XMLINDE_PATH_TABLE
 
1 row selected.

Example 6-12    Specifying Storage Options When Creating an XMLIndex Index

CREATE INDEX po_xmlindex_ix ON po_binxml (OBJECT_VALUE) INDEXTYPE IS XDB.XMLIndex
  PARAMETERS

Chapter 6
XMLIndex

6-25



    ('PATH TABLE po_path_table
      (PCTFREE 5 PCTUSED 90 INITRANS 5
       STORAGE (INITIAL 1k NEXT 2k MINEXTENTS 3 BUFFER_POOL KEEP)
       NOLOGGING ENABLE ROW MOVEMENT PARALLEL 3)
      PIKEY INDEX po_pikey_ix (LOGGING PCTFREE 1 INITRANS 3)
      VALUE INDEX po_value_ix (LOGGING PCTFREE 1 INITRANS 3)');

Example 6-13    Dropping an XMLIndex Unstructured Component

ALTER INDEX po_xmlindex_ix PARAMETERS('DROP PATH TABLE');

Example 6-14    Determining the Names of the Secondary Indexes of an
XMLIndex Index

SELECT INDEX_NAME, COLUMN_NAME, COLUMN_POSITION FROM USER_IND_COLUMNS
  WHERE TABLE_NAME IN (SELECT PATH_TABLE_NAME FROM USER_XML_INDEXES
                         WHERE INDEX_NAME = 'PO_XMLINDEX_IX')
  ORDER BY INDEX_NAME, COLUMN_NAME;
 
INDEX_NAME                     COLUMN_NAME  COLUMN_POSITION
------------------------------ ------------ ---------------
SYS67563_PO_XMLINDE_PIKEY_IX   ORDER_KEY                  3
SYS67563_PO_XMLINDE_PIKEY_IX   PATHID                     2
SYS67563_PO_XMLINDE_PIKEY_IX   RID                        1
SYS67563_PO_XMLINDE_VALUE_IX   SYS_NC00006$               1
 
4 rows selected.

• Creating Additional Secondary Indexes on an XMLIndex Path Table
You can add extra secondary indexes to an XMLIndex unstructured component.

Related Topics

• PARAMETERS Clause Syntax for CREATE INDEX and ALTER INDEX
The syntax for the PARAMETERS clause for CREATE INDEX and ALTER INDEX is
defined.

6.3.6.1 Creating Additional Secondary Indexes on an XMLIndex Path Table
You can add extra secondary indexes to an XMLIndex unstructured component.

Examples Example 6-15, Example 6-17, Example 6-18, and Example 6-19 add extra
secondary indexes to the XMLIndex index created in Example 6-12.

You can create any number of additional secondary indexes on the VALUE column
of the path table of an XMLIndex index. These can be of different types, including
function-based indexes and Oracle Text indexes.

Whether or not a given index is used for a given element occurrence when processing
a query is determined by whether it is of the appropriate type for that value and
whether it is cost-effective to use it.

Example 6-15 creates a function-based index on column VALUE of the path table using
SQL function substr. This might be useful if your queries often use substr applied to
the text nodes of XML elements.

If you have many elements whose text nodes represent numeric values, then it
can make sense to create a numeric index on the column VALUE. However, doing
so directly, in a manner analogous to Example 6-15, raises an ORA-01722 error

Chapter 6
XMLIndex

6-26



(invalid number) if some of the element values are not numbers. This is illustrated in
Example 6-16.

What is needed is an index that is used for numeric-valued elements but is ignored for
element occurrences that do not have numeric values. Procedure createNumberIndex
of package DBMS_XMLINDEX exists specifically for this purpose. You pass it the names
of the database schema, the XMLIndex index, and the numeric index to be created.
Creation of a numeric index is illustrated in Example 6-17.

Because such an index is specifically designed to ignore elements that do not have
numeric values, its use does not detect their presence. If there are non-numeric
elements and, for whatever reason, the XMLIndex index is not used in some query,
then an ORA-01722 error is raised. However, if the index is used, no such error is
raised, because the index ignores non-numeric data. As always, the use of an index
never changes the result set — it never gives you different results, but use of an index
can prevent you from detecting erroneous data.

Creating a date-valued index is similar to creating a numeric index; you use procedure
DBMS_XMLINDEX.createDateIndex. Example 6-18 shows this.

Example 6-19 creates an Oracle Text CONTEXT index on column VALUE. This is useful
for full-text queries on text values of XML elements. If a CONTEXT index is defined on
column VALUE, then it is used during predicate evaluation. An Oracle Text index is
independent of all other VALUE-column indexes.

The query in Example 6-20 shows all of the secondary indexes created on the
path table of an XMLIndex index. The indexes created explicitly are in bold. Note in
particular that some indexes, such as the function-based index created on column
VALUE, do not appear as such; the column name listed for such an index is a system-
generated name such as SYS_NC00007$. You cannot see these columns by executing a
query with COLUMN_NAME = 'VALUE' in the WHERE clause.

See Also:

• Column VALUE of an XMLIndex Path Table for information about the
possibility of an Oracle Text CONTEXT index created on the VALUE column
returning incorrect results

• Oracle Text Reference for information about CREATE INDEX parameter
TRANSACTIONAL

• Oracle Database PL/SQL Packages and Types Reference
for information on PL/SQL procedures createNumberIndex and
createDateIndex in package DBMS_XMLINDEX

Example 6-15    Creating a Function-Based Index on Path-Table Column VALUE

CREATE INDEX fn_based_ix ON po_path_table (substr(VALUE, 1, 100));

Example 6-16    Trying to Create a Numeric Index on Path-Table Column VALUE
Directly

CREATE INDEX direct_num_ix ON po_path_table (to_binary_double(VALUE));
CREATE INDEX direct_num_ix ON po_path_table (to_binary_double(VALUE))
                                             *

Chapter 6
XMLIndex

6-27



ERROR at line 1:
ORA-01722: invalid number

Example 6-17    Creating a Numeric Index on Column VALUE with Procedure
createNumberIndex

CALL DBMS_XMLINDEX.createNumberIndex('OE', 'PO_XMLINDEX_IX', 'API_NUM_IX');

Example 6-18    Creating a Date Index on Column VALUE with Procedure
createDateIndex

CALL DBMS_XMLINDEX.createDateIndex('OE', 'PO_XMLINDEX_IX', 'API_DATE_IX', 
                                   'dateTime');

Example 6-19    Creating an Oracle Text CONTEXT Index on Path-Table Column
VALUE

CREATE INDEX po_otext_ix ON po_path_table (VALUE)
  INDEXTYPE IS CTXSYS.CONTEXT PARAMETERS('TRANSACTIONAL');

Example 6-20    Showing All Secondary Indexes on an XMLIndex Path Table

SELECT c.INDEX_NAME, c.COLUMN_NAME, c.COLUMN_POSITION, e.COLUMN_EXPRESSION
  FROM USER_IND_COLUMNS c LEFT OUTER JOIN USER_IND_EXPRESSIONS e
    ON (c.INDEX_NAME = e.INDEX_NAME)
  WHERE c.TABLE_NAME IN (SELECT PATH_TABLE_NAME FROM USER_XML_INDEXES
                           WHERE INDEX_NAME = 'PO_XMLINDEX_IX')
  ORDER BY c.INDEX_NAME, c.COLUMN_NAME;
 
INDEX_NAME           COLUMN_NAME  COLUMN_POSITION COLUMN_EXPRESSION
-------------------- ------------ --------------- ----------------------
API_DATE_IX          SYS_NC00009$               1 SYS_EXTRACT_UTC(SYS_XMLCONV("V
                                                  ALUE",3,8,0,0,181))
API_NUM_IX           SYS_NC00008$               1 TO_BINARY_DOUBLE("VALUE")
FN_BASED_IX          SYS_NC00007$               1 SUBSTR("VALUE",1,100)
PO_OTEXT_IX          VALUE                      1
PO_PIKEY_IX          ORDER_KEY                  3
PO_PIKEY_IX          PATHID                     2
PO_PIKEY_IX          RID                        1
PO_VALUE_IX          SYS_NC00006$               1 SUBSTRB("VALUE",1,1599)
 
8 rows selected.

Related Topics

• Indexing XML Data for Full-Text Queries
When you need full-text search over XML data, Oracle recommends that you store
your XMLType data as binary XML and you use XQuery Full Text (XQFT). You use
an XML search index for this. This is the topic of this section.

6.3.7 Use of XMLIndex with a Structured Component
An XMLIndex structured component indexes specific islands of structure in your XML
data.

To include a structured component in an XMLIndex index, you use a
structured_clause in the PARAMETERS clause when you create or modify the XMLIndex
index — see structured_clause ::=.

Chapter 6
XMLIndex

6-28



A structured_clause specifies the structured islands that you want to index. You
use the keyword GROUP to specify each structured island: an island thus corresponds
syntactically to a structure group. If you specify no group explicitly, then the predefined
group DEFAULT_GROUP is used. For ALTER INDEX, you precede the GROUP keyword
with the modification operation keyword: ADD_GROUP specifies a new group (island);
DROP_GROUP deletes a group.

Why have multiple groups within a single index, instead of simply using multiple
XMLIndex indexes? The reason is that XMLIndex is a domain index, and you can create
only one domain index of a given type on a given database column.

The syntax for defining a structure group, that is, indexing a structured island, is
similar to the syntax for invoking SQL/XML function XMLTable: you use keywords
XMLTable and COLUMNS to define relational columns, and you use multilevel chaining
of XMLTable to handle collections. To simplify the creation of such an index, you
can use PL/SQL function DBMS_XMLSTORAGE_MANAGE.getSIDXDefFromView to provide
exactly the XMLTable expression needed for creating the index.

• Using Namespaces and Storage Clauses with an XMLIndex Structured
Component
When you create an XMLIndex index that has a structured component you can
specify XML namespaces and storage options to use.

• Adding a Structured Component to an XMLIndex Index
You can use ALTER INDEX to add a structured component to an existing XMLIndex
index.

• Using Non-Blocking ALTER INDEX with an XMLIndex Structured Component
You can prevent ALTER INDEX from blocking when you add a group or column for
the structured component of an XMLIndex index, so that queries that use the index
do not need to wait.

• Modifying the Data Type of a Structured XMLIndex Component
If an error is raised because some of your data does not match the data type used
for the corresponding column of the structured XMLIndex component, you can in
some cases simply modify the index by passing keyword MODIFY_COLUMN_TYPE to
ALTER INDEX.

• Dropping an XMLIndex Structured Component
If an XMLIndex index has both an unstructured and a structured component, then
you can use ALTER INDEX to drop the structured component. You do this by
dropping all of the structure groups that compose the structured component.

• Indexing the Relational Tables of a Structured XMLIndex Component
Because the tables used for the structured component of an XMLIndex index
are normal relational tables, you can index them using any standard relational
indexes.

Related Topics

• Using a Registered PARAMETERS Clause for XMLIndex
The string value used for the PARAMETERS clause of a CREATE INDEX or ALTER
INDEX statement has a 1000-character limit. To get around this limitation, you can
use PL/SQL procedures registerParameter and modifyParameter in package
DBMS_XMLINDEX.

Chapter 6
XMLIndex

6-29



• Data Type Considerations for XMLIndex Structured Component
The relational tables that are used for an XMLIndex structured component use SQL
data types. XQuery expressions that are used in queries use XML data types
(XML Schema data types and XQuery data types).

See Also:

• Indexing Binary XML Data Exposed Using a Relational View for
information about using DBMS_XMLSTORAGE_MANAGE.getSIDXDefFromView

• Example 6-30

• Indexing XML Data for Full-Text Queries

• structured_clause ::=

• Usage of XMLIndex_xmltable_clause for information about an XMLType
column in an XMLTable clause

• Usage of column_clause for information about keywords COLUMNS and
VIRTUAL

6.3.7.1 Using Namespaces and Storage Clauses with an XMLIndex Structured
Component

When you create an XMLIndex index that has a structured component you can specify
XML namespaces and storage options to use.

Example 6-21 shows the creation of an XMLIndex index that has only a structured
component (no path-table clause) and that uses the XMLNAMESPACES clause to specify
namespaces. It specifies that the index data be compressed and use tablespace
USERTBS1. The example assumes a binary XML table po_binxml with non XML
schema-based data.

Each of the (identical) TABLESPACE clauses in Example 6-21 applies at the table level
(tables po_ptab and li_tab).

In general you can specify storage options at both the table level and the partition
level. A specification at the partition level overrides one at the table level. A
TABLESPACE clause can also be specified at the index level, that is, so that it applies
to all of the partitions and tables used for the index. If TABLESPACE is specified at more
than one level, the partition level overrides the table level, which overrides the index
level.

Example 6-22 specifies the same TABLESPACE for each of the tables used in the index.
This commonality can be factored out by specifying the TABLESPACE at the index level,
as shown in Example 6-22.

Example 6-21    XMLIndex with a Structured Component, Using Namespaces and Storage
Options

CREATE INDEX po_struct ON po_binxml (OBJECT_VALUE) INDEXTYPE IS XDB.XMLIndex
  PARAMETERS ('XMLTable po_ptab
                 (TABLESPACE "USERTBS1" COMPRESS FOR OLTP)
                  XMLNAMESPACES (DEFAULT ''http://www.example.com/po''),

Chapter 6
XMLIndex

6-30



                 ''/purchaseOrder''
                 COLUMNS orderdate   DATE          PATH ''@orderDate'',
                         id          BINARY_DOUBLE PATH ''@id'',
                         items       XMLType       PATH ''items/item'' VIRTUAL
               XMLTable li_tab
                 (TABLESPACE "USERTBS1" COMPRESS FOR OLTP)
                  XMLNAMESPACES (DEFAULT ''http://www.example.com/po''),
                 ''/item'' PASSING items
                 COLUMNS partnum     VARCHAR2(15)  PATH ''@partNum'',
                         description CLOB          PATH ''productName'',
                         usprice     BINARY_DOUBLE PATH ''USPrice'',
                         shipdat     DATE          PATH ''shipDate''');

Example 6-22    XMLIndex with a Structured Component, Specifying TABLESPACE at the Index
Level

CREATE INDEX po_struct ON po_binxml (OBJECT_VALUE) INDEXTYPE IS XDB.XMLIndex
  PARAMETERS ('XMLTable po_ptab,
                  XMLNAMESPACES (DEFAULT ''http://www.example.com/po''),
                 ''/purchaseOrder''
                 COLUMNS orderdate   DATE          PATH ''@orderDate'',
                         id          BINARY_DOUBLE PATH ''@id'',
                         items       XMLType       PATH ''items/item'' VIRTUAL
               XMLTable li_tab,
                  XMLNAMESPACES (DEFAULT ''http://www.example.com/po''),
                 ''/item'' PASSING items
                 COLUMNS partnum     VARCHAR2(15)  PATH ''@partNum'',
                         description CLOB          PATH ''productName'',
                         usprice     BINARY_DOUBLE PATH ''USPrice'',
                         shipdat     DATE          PATH ''shipDate''
               TABLESPACE "USERTBS1" COMPRESS FOR OLTP)');

6.3.7.2 Adding a Structured Component to an XMLIndex Index
You can use ALTER INDEX to add a structured component to an existing XMLIndex
index.

Example 6-23 shows the creation of an XMLIndex index with only an unstructured
component. An unstructured component is created because the PARAMETERS clause
explicitly names the path table.

Example 6-23 then uses ALTER INDEX to add a structured component (group) named
po_item. This structure group includes two relational tables, each specified with
keyword XMLTable.

The top-level table, po_idx_tab, has columns reference, requestor, username, and
lineitem. Column lineitem is of type XMLType. It represents a collection, so it is
passed to the second XMLTable construct to form the second-level relational table,
po_index_lineitem, which has columns itemno, description, partno, quantity, and
unitprice.

The keyword VIRTUAL is required for an XMLType column. It specifies that the XMLType
column itself is not materialized: its data is stored in the XMLIndex index only in the
form of the relational columns specified by its corresponding XMLTable table.

Chapter 6
XMLIndex

6-31



You cannot create more than one XMLType column in a given XMLTable clause. To
achieve that effect, you must instead define an additional group.

Example 6-23 also illustrates the use of a registered parameter string in the
PARAMETERS clause. It uses PL/SQL procedure DBMS_XMLINDEX.registerParameter to
register the parameters string named myparam. Then it uses ALTER INDEX to update the
index parameters to include those in the string myparam.

Example 6-23    XMLIndex Index: Adding a Structured Component

CREATE INDEX po_xmlindex_ix ON po_binxml (OBJECT_VALUE)
  INDEXTYPE IS XDB.XMLIndex PARAMETERS ('PATH TABLE path_tab');

BEGIN
  DBMS_XMLINDEX.registerParameter(
    'myparam',
    'ADD_GROUP GROUP po_item
       XMLTable po_idx_tab ''/PurchaseOrder''
         COLUMNS reference   VARCHAR2(30)  PATH ''Reference'',
                 requestor   VARCHAR2(30)  PATH ''Requestor'',
                 username    VARCHAR2(30)  PATH ''User'',
                 lineitem    XMLType       PATH ''LineItems/LineItem'' 
VIRTUAL
       XMLTable po_index_lineitem ''/LineItem'' PASSING lineitem
         COLUMNS itemno      BINARY_DOUBLE PATH ''@ItemNumber'',
                 description VARCHAR2(256) PATH ''Description'',
                 partno      VARCHAR2(14)  PATH ''Part/@Id'',
                 quantity    BINARY_DOUBLE PATH ''Part/@Quantity'',
                 unitprice   BINARY_DOUBLE PATH ''Part/@UnitPrice''');
END;
/

ALTER INDEX po_xmlindex_ix PARAMETERS('PARAM myparam');

6.3.7.3 Using Non-Blocking ALTER INDEX with an XMLIndex Structured
Component

You can prevent ALTER INDEX from blocking when you add a group or column for the
structured component of an XMLIndex index, so that queries that use the index do not
need to wait.

When you use ALTER INDEX to add a group or a column for the structured component
of an XMLIndex index, this index-maintenance operation obtains an exclusive DDL lock
on the base table and the index.

The base table is locked to DML operations, and the index cannot be used for
queries until the ALTER INDEX operation is finished. This means that during this index
maintenance the index cannot be used by other sessions that query or perform DML
operations on the base table. The duration of the ALTER INDEX operation and the
attendant locking depends on the volume of data in the base XMLType column.

You can avoid or work around this problem as follows:

Chapter 6
XMLIndex

6-32



1. Use keyword NONBLOCKING before ADD_GROUP or ADD_COLUMN in the PARAMETERS
clause of the ALTER INDEX statement that creates the structured-component group
or column.

This updates the index as needed, but it does not index any base-table data.
Because it does not depend on the base-table data it is quick regardless of the
base-table size.

2. Invoke PL/SQL procedure DBMS_XMLINDEX.process_pending.

This procedure indexes rows of the base table and populates tables of the index,
just as if keyword NONBLOCKING were absent. However, in this case only a few
rows are locked at a time while they are processed and the changes committed.
Rows that have already been locked for some other purpose are skipped. This can
significantly reduce lock contention and allow indexing of some rows to proceed at
the same time as querying or DML on other rows.

When procedure process_pending finishes it returns, as OUT parameters:

• The number of rows that it could not index. This is either because they were
locked for another purpose or because an error was raised (this number
includes the number returned as the other OUT parameter).

After you think those locks have been removed, invoke procedure
process_pending again to try to process those pending rows.

• The number of rows that it could not index because an error was raised. (This
should be rare.)

Check table SYS_AIXSXI_index_number_ERRORTAB for information about those
errors, then take action to fix the underlying problems. index_number is the
object number of the index.

3. Repeat step 2 as many times as necessary until procedure process_pending
indicates that all rows have been successfully indexed or you encounter an
insurmountable problem and decide to cancel the indexing operation altogether.

You can cancel the indexing at any time (before step 2) by using keywords
NONBLOCKING ABORT in the PARAMETERS clause of a separate ALTER INDEX
statement for the same XMLIndex index.

4. If all rows have been successfully indexed then use keywords NONBLOCKING
COMPLETE in the PARAMETERS clause of a separate ALTER INDEX statement for the
same XMLIndex index.

Example 6-24 illustrates this.

Just as table SYS_AIXSXI_index_number_ERRORTAB reports errors, so table
SYS_AIXSXI_index_number_PENDINGTAB records the current status of each base-table
row: whether or not it has been indexed. A row might not yet be indexed because it is
locked by for some other purpose or because trying to index it raised an error. In the
latter case, consult SYS_AIXSXI_index_number_ERRORTAB for specific information about
the error.

See Also:

alter_index_group_clause ::=

Chapter 6
XMLIndex

6-33



Example 6-24    Using DBMS_XMLINDEX.PROCESS_PENDING To Index XML Data

CREATE INDEX po_struct ON po_binxml (OBJECT_VALUE) INDEXTYPE IS XDB.XMLIndex
  PARAMETERS ('XMLTable po_idx_tab
                 ''/PurchaseOrder''
                 COLUMNS reference   VARCHAR2(30)  PATH ''Reference'',
                         requestor   VARCHAR2(30)  PATH ''Requestor'',
                         username    VARCHAR2(30)  PATH ''User'',
                         lineitem    XMLType       PATH ''LineItems/LineItem'' VIRTUAL
               XMLTable po_index_lineitem
                 ''/LineItem'' PASSING lineitem
                 COLUMNS itemno      BINARY_DOUBLE PATH ''@ItemNumber'',
                         description VARCHAR2(256) PATH ''Description'',
                         partno      VARCHAR2(14)  PATH ''Part/@Id'',
                         quantity    BINARY_DOUBLE PATH ''Part/@Quantity'',
                         unitprice   BINARY_DOUBLE PATH ''Part/@UnitPrice''');
 
ALTER INDEX po_struct
  PARAMETERS('NONBLOCKING ADD_GROUP GROUP po_action_group 
              XMLTABLE po_idx_tab
                ''/PurchaseOrder''
                COLUMNS actions       XMLType       PATH  ''Actions/Action'' VIRTUAL
              XMLTABLE po_idx_action
                ''/Action'' PASSING actions
                COLUMNS actioned_by   VARCHAR2(10)  PATH  ''User'',
                        date_actioned TIMESTAMP     PATH  ''Date''');

DECLARE
  num_pending NUMBER := 0;
  num_errored NUMBER := 0;
BEGIN
 DBMS_XMLINDEX.process_pending('oe', 'po_struct', num_pending, num_errored);
 DBMS_OUTPUT.put_line('Number of rows still pending = ' || num_pending);
 DBMS_OUTPUT.put_line('Number of rows with errors   = ' || num_errored);
END;
/
Number of rows still pending = 0
Number of rows with errors   = 0
 
PL/SQL procedure successfully completed.

ALTER INDEX po_struct PARAMETERS('NONBLOCKING COMPLETE');

6.3.7.4 Modifying the Data Type of a Structured XMLIndex Component
If an error is raised because some of your data does not match the data type used
for the corresponding column of the structured XMLIndex component, you can in some
cases simply modify the index by passing keyword MODIFY_COLUMN_TYPE to ALTER
INDEX.

You can, for example, expand a VARCHAR2(30) column to, say, VARCHAR2(40) if it
needs to accommodate data that is up to 40 characters. This is simpler and more
efficient than dropping the column and then adding a new column. The new data type
must be compatible with the old one: the same restrictions apply as apply for ALTER
TABLE MODIFY COLUMN.

Chapter 6
XMLIndex

6-34



See Also:

• Oracle Database SQL Language Reference for information about ALTER
TABLE MODIFY COLUMN

• modify_column_type_clause :==

6.3.7.5 Dropping an XMLIndex Structured Component
If an XMLIndex index has both an unstructured and a structured component, then you
can use ALTER INDEX to drop the structured component. You do this by dropping all of
the structure groups that compose the structured component.

Example 6-25 shows how to drop the structured component that was added in
Example 6-23, by dropping its only structure group, po_item.

Example 6-25    Dropping an XMLIndex Structured Component

ALTER INDEX po_xmlindex_ix PARAMETERS('DROP_GROUP GROUP po_item');

6.3.7.6 Indexing the Relational Tables of a Structured XMLIndex Component
Because the tables used for the structured component of an XMLIndex index are
normal relational tables, you can index them using any standard relational indexes.

This is explained in section XMLIndex Structured Component. It is illustrated by
Example 6-26, which creates a B-tree index on the reference column of the index
content table (structured fragment) for the XMLIndex index of Example 6-23.

Example 6-26    Creating a B-tree Index on an XMLIndex Index Content Table

CREATE INDEX idx_tab_ref_ix ON po_idx_tab (reference);

6.3.8 How to Tell Whether XMLIndex is Used
To know whether a particular XMLIndex index has been used in resolving a query, you
can examine an execution plan for the query.

It is at query compile time that Oracle Database determines whether or not a given
XMLIndex index can be used, that is, whether the query can be rewritten into a query
against the index.

For an unstructured XMLIndex component, if it cannot be determined at compile time
that an XPath expression in the query is a subset of the paths you specified to be used
for XMLIndex indexing, then the unstructured component of the  index  is not used.

For example, if the path /PurchaseOrder/LineItems//* is included for indexing, then
a query with /PurchaseOrder/LineItems/LineItem/Description can use the index,
but a query with //Description cannot. The latter also matches potential Description
elements that are not children of /PurchaseOrder/LineItems, and it is not possible at
compile time to know if such additional Description elements are present in the data.

You can examine the execution plan for a query to see whether a particular XMLIndex
index has been used in resolving the query.

Chapter 6
XMLIndex

6-35



• If the unstructured component of the index is used, then its path table, order key,
or path id is referenced in the execution plan. The execution plan does not directly
indicate that a domain index was used; it does not refer to the XMLIndex index by
name. See Example 6-27 and Example 6-29.

• If the structured component of the index is used, then one or more of its
index content tables is called out in the execution plan. See Example 6-30 and
Example 6-31.

See Also:

Oracle Database SQL Tuning Guide

Example 6-27 shows that the XMLIndex index created in Example 6-10 is used in a
particular query. The reference to MY_PATH_TABLE in the execution plan here indicates
that the XMLIndex index (created in Example 6-10) is used in this query. Similarly,
reference to columns LOCATOR, ORDER_KEY, and PATHID indicates the same thing.

Given the name of a path table from an execution plan such as this, you can obtain the
name of its XMLIndex index as shown in Example 6-28. (This is more or less opposite
to the query in Example 6-11.)

XMLIndex can be used for XPath expressions in the SELECT list, the FROM list, and the
WHERE clause of a query, and it is useful for SQL/XML functions XMLQuery, XMLTable,
XMLExists, and XMLCast. Unlike function-based indexes, which are deprecated for
XMLType, XMLIndex indexes can be used when you extract data from an XML fragment
in a document.

Example 6-29 illustrates this.

The execution plan for the query in Example 6-29 shows, by referring to the path
table, that XMLIndex is used. It also shows the use of Oracle internal SQL function
sys_orderkey_depth — see Guidelines for Using XMLIndex with an Unstructured
Component.

Example 6-30 shows an execution plan that indicates that the XMLIndex index created
in Example 6-23 is picked up for a query that uses two WHERE clause predicates. It is
the same query as in Example 6-46, and the same XML search index is in effect, as is
also shown in the execution plan.

With only the unstructured XMLIndex component, the query would have involved a join
of the path table to itself, because of the two different paths in the WHERE clause.

The presence in Example 6-30 of the path table name, path_tab, indicates that the
unstructured component of the index is used. The presence of the index content table
po_idx_tab indicates that the structured index component is used. The presence of
the XML search index, po_ctx_idx, indicates that it too is used.

Example 6-31 shows an execution plan that indicates that the same XMLIndex index
is also picked up for a query that uses multilevel XMLTable chaining. With only the
unstructured XMLIndex component, this query too would involve a join of the path table
to itself, because of the different paths in the two XMLTable function calls.

Chapter 6
XMLIndex

6-36



The execution plan shows direct access to the relational index content tables,
po_idx_tab and po_index_lineitem. There is no access at all to the path table,
path_tab.

Example 6-27    Checking Whether an XMLIndex Unstructured Component Is Used

SET AUTOTRACE ON EXPLAIN

SELECT XMLQuery('/PurchaseOrder/Requestor' PASSING OBJECT_VALUE RETURNING CONTENT) FROM po_binxml
  WHERE XMLExists('/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]' PASSING OBJECT_VALUE);
 
XMLQUERY('/PURCHASEORDER/REQUESTOR'PASSINGOBJECT_VALUERETURNINGCONTENT)
-----------------------------------------------------------------------
<Requestor>Sarah J. Bell</Requestor>
 
1 row selected.
 
 
Execution Plan
. . .
------------------------------------------------------------------------------------------------------------
----
| Id  | Operation                       | Name                         | Rows  | Bytes | Cost (%CPU)| 
Time     |
------------------------------------------------------------------------------------------------------------
----
|   0 | SELECT STATEMENT                |                              |     1 |    24 |    28   (4)| 
00:00:01 |
|   1 |  SORT GROUP BY                  |                              |     1 |  3524 |            
|          |
|*  2 |   TABLE ACCESS BY INDEX ROWID   | MY_PATH_TABLE                |     2 |  7048 |     3   (0)| 
00:00:01 |
|*  3 |    INDEX RANGE SCAN             | SYS67616_PO_XMLINDE_PIKEY_IX |     1 |       |     2   (0)| 
00:00:01 |
|   4 |  NESTED LOOPS                   |                              |     1 |    24 |    28   (4)| 
00:00:01 |
|   5 |   VIEW                          | VW_SQ_1                      |     1 |    12 |    26   (0)| 
00:00:01 |
|   6 |    HASH UNIQUE                  |                              |     1 |  5046 |            
|          |
|   7 |     NESTED LOOPS                |                              |     1 |  5046 |    26   (0)| 
00:00:01 |
|*  8 |      TABLE ACCESS BY INDEX ROWID| MY_PATH_TABLE                |     1 |  3524 |    24   (0)| 
00:00:01 |
|*  9 |       INDEX RANGE SCAN          | SYS67616_PO_XMLINDE_VALUE_IX |    73 |       |     1   (0)| 
00:00:01 |
|* 10 |      TABLE ACCESS BY INDEX ROWID| MY_PATH_TABLE                |     1 |  1522 |     2   (0)| 
00:00:01 |
|* 11 |       INDEX RANGE SCAN          | SYS67616_PO_XMLINDE_PIKEY_IX |     1 |       |     1   (0)| 
00:00:01 |
|  12 |   TABLE ACCESS BY USER ROWID    | PO_BINXML                    |     1 |    12 |     1   (0)| 
00:00:01 |
------------------------------------------------------------------------------------------------------------
----
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   2 - filter(SYS_XMLI_LOC_ISNODE("SYS_P0"."LOCATOR")=1)
   3 - access("SYS_P0"."RID"=:B1 AND "SYS_P0"."PATHID"=HEXTORAW('76E2') )
   8 - filter("SYS_P4"."VALUE"='SBELL-2002100912333601PDT' AND "SYS_P4"."PATHID"=HEXTORAW('4F8C')  AND
              SYS_XMLI_LOC_ISNODE("SYS_P4"."LOCATOR")=1)
   9 - access(SUBSTRB("VALUE",1,1599)='SBELL-2002100912333601PDT')
  10 - filter(SYS_XMLI_LOC_ISNODE("SYS_P2"."LOCATOR")=1)
  11 - access("SYS_P4"."RID"="SYS_P2"."RID" AND "SYS_P2"."PATHID"=HEXTORAW('4E36')  AND
              "SYS_P2"."ORDER_KEY"<"SYS_P4"."ORDER_KEY")
       filter("SYS_P4"."ORDER_KEY"<SYS_ORDERKEY_MAXCHILD("SYS_P2"."ORDER_KEY") AND

Chapter 6
XMLIndex

6-37



              SYS_ORDERKEY_DEPTH("SYS_P2"."ORDER_KEY")+1=SYS_ORDERKEY_DEPTH("SYS_P4"."ORDER_KEY"))
. . .

Example 6-28    Obtaining the Name of an XMLIndex Index from Its Path-Table
Name

SELECT INDEX_NAME FROM USER_XML_INDEXES
  WHERE PATH_TABLE_NAME = 'MY_PATH_TABLE';
 
INDEX_NAME
------------------------------
PO_XMLINDEX_IX
 
1 row selected.

Example 6-29    Extracting Data from an XML Fragment Using XMLIndex

SET AUTOTRACE ON EXPLAIN

 
SELECT li.description, li.itemno
  FROM po_binxml, XMLTable('/PurchaseOrder/LineItems/LineItem'
                           PASSING OBJECT_VALUE
                           COLUMNS "DESCRIPTION" VARCHAR(40) PATH 'Description',
                                   "ITEMNO"      INTEGER     PATH '@ItemNumber') li
  WHERE XMLExists('/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE);
 
DESCRIPTION                                  ITEMNO
---------------------------------------- ----------
A Night to Remember                               1
The Unbearable Lightness Of Being                 2
Sisters                                           3
 
3 rows selected.

Execution Plan

------------------------------------------------------------------------------------------------------------
----
| Id  | Operation                         | Name                         | Rows  | Bytes |Cost (%CPU)| 
Time    |
------------------------------------------------------------------------------------------------------------
----
|   0 | SELECT STATEMENT                  |                              |     1 |  1546 |   30   (4)|
00:00:01 |
|*  1 |  FILTER                           |                              |       |       |           
|          |
|*  2 |   TABLE ACCESS BY INDEX ROWID     | MY_PATH_TABLE                |     1 |  3524 |    3   (0)|
00:00:01 |
|*  3 |    INDEX RANGE SCAN               | SYS67616_PO_XMLINDE_PIKEY_IX |     1 |       |    2   (0)|
00:00:01 |
|*  4 |  FILTER                           |                              |       |       |           
|         |
|*  5 |   TABLE ACCESS BY INDEX ROWID     | MY_PATH_TABLE                |     1 |  3524 |    3   (0)|
00:00:01 |

Chapter 6
XMLIndex

6-38



|*  6 |    INDEX RANGE SCAN               | SYS67616_PO_XMLINDE_PIKEY_IX |     1 |       |    2   (0)|
00:00:01 |
|   7 |  NESTED LOOPS                     |                              |       |       |           
|         |
|   8 |   NESTED LOOPS                    |                              |     1 |  1546 |   30   (4)|
00:00:01 |
|   9 |    NESTED LOOPS                   |                              |     1 |    24 |   28   (4)|
00:00:01 |
|  10 |     VIEW                          | VW_SQ_1                      |     1 |    12 |   26   (0)|
00:00:01 |
|  11 |      HASH UNIQUE                  |                              |     1 |  5046 |           
|         |
|  12 |       NESTED LOOPS                |                              |     1 |  5046 |   26   (0)|
00:00:01 |
|* 13 |        TABLE ACCESS BY INDEX ROWID| MY_PATH_TABLE                |     1 |  3524 |   24   (0)|
00:00:01 |
|* 14 |         INDEX RANGE SCAN          | SYS67616_PO_XMLINDE_VALUE_IX |    73 |       |    1   (0)|
00:00:01 |
|* 15 |        TABLE ACCESS BY INDEX ROWID| MY_PATH_TABLE                |     1 |  1522 |    2   (0)|
00:00:01 |
|* 16 |         INDEX RANGE SCAN          | SYS67616_PO_XMLINDE_PIKEY_IX |     1 |       |    1   (0)|
00:00:01 |
|  17 |     TABLE ACCESS BY USER ROWID    | PO_BINXML                    |     1 |    12 |    1   (0)|
00:00:01 |
|* 18 |    INDEX RANGE SCAN               | SYS67616_PO_XMLINDE_PIKEY_IX |     1 |       |    1   (0)|
00:00:01 |
|* 19 |   TABLE ACCESS BY INDEX ROWID     | MY_PATH_TABLE                |     1 |  1522 |    2   (0)|
00:00:01 |
------------------------------------------------------------------------------------------------------------
----
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   1 - filter(:B1<SYS_ORDERKEY_MAXCHILD(:B2))
   2 - filter(SYS_XMLI_LOC_ISNODE("SYS_P2"."LOCATOR")=1)
   3 - access("SYS_P2"."RID"=:B1 AND "SYS_P2"."PATHID"=HEXTORAW('28EC')  AND "SYS_P2"."ORDER_KEY">:B2 AND
              "SYS_P2"."ORDER_KEY"<SYS_ORDERKEY_MAXCHILD(:B3))
       filter(SYS_ORDERKEY_DEPTH("SYS_P2"."ORDER_KEY")=SYS_ORDERKEY_DEPTH(:B1)+1)
   4 - filter(:B1<SYS_ORDERKEY_MAXCHILD(:B2))
   5 - filter(SYS_XMLI_LOC_ISNODE("SYS_P5"."LOCATOR")=1)
   6 - access("SYS_P5"."RID"=:B1 AND "SYS_P5"."PATHID"=HEXTORAW('60E0')  AND "SYS_P5"."ORDER_KEY">:B2 AND
              "SYS_P5"."ORDER_KEY"<SYS_ORDERKEY_MAXCHILD(:B3))
       filter(SYS_ORDERKEY_DEPTH("SYS_P5"."ORDER_KEY")=SYS_ORDERKEY_DEPTH(:B1)+1)
  13 - filter("SYS_P10"."VALUE"='SBELL-2002100912333601PDT' AND "SYS_P10"."PATHID"=HEXTORAW('4F8C')  AND
              SYS_XMLI_LOC_ISNODE("SYS_P10"."LOCATOR")=1)
  14 - access(SUBSTRB("VALUE",1,1599)='SBELL-2002100912333601PDT')
  15 - filter(SYS_XMLI_LOC_ISNODE("SYS_P8"."LOCATOR")=1)
  16 - access("SYS_P10"."RID"="SYS_P8"."RID" AND "SYS_P8"."PATHID"=HEXTORAW('4E36')  AND
              "SYS_P8"."ORDER_KEY"<"SYS_P10"."ORDER_KEY")
       filter("SYS_P10"."ORDER_KEY"<SYS_ORDERKEY_MAXCHILD("SYS_P8"."ORDER_KEY") AND
              SYS_ORDERKEY_DEPTH("SYS_P8"."ORDER_KEY")+1=SYS_ORDERKEY_DEPTH("SYS_P10"."ORDER_KEY"))
  18 - access("PO_BINXML".ROWID="SYS_ALIAS_4"."RID" AND "SYS_ALIAS_4"."PATHID"=HEXTORAW('3748') )
  19 - filter(SYS_XMLI_LOC_ISNODE("SYS_ALIAS_4"."LOCATOR")=1)
 
Note
-----
   - dynamic sampling used for this statement (level=2)

Example 6-30    Using a Structured XMLIndex Component for a Query with Two Predicates

EXPLAIN PLAN FOR
  SELECT XMLQuery('/PurchaseOrder/LineItems/LineItem'
                  PASSING OBJECT_VALUE RETURNING CONTENT)
    FROM po_binxml
    WHERE XMLExists('/PurchaseOrder/LineItems/LineItem

Chapter 6
XMLIndex

6-39



                     [Description contains text "Picnic"]'
                    PASSING OBJECT_VALUE)
      AND XMLExists('/PurchaseOrder[User="SBELL"]' PASSING OBJECT_VALUE);
 
Explained.
 

------------------------------------------------------------------------------------------------------------
----
| Id  | Operation                            | Name                         |Rows|Bytes| Cost (%CPU)| 
Time     |
------------------------------------------------------------------------------------------------------------
----
|   0 | SELECT STATEMENT                     |                              |   1| 2051|     9   (0)| 
00:00:01 |
|   1 |  SORT GROUP BY                       |                              |   1| 3524|            
|          |
|*  2 |   TABLE ACCESS BY INDEX ROWID BATCHED| PATH_TAB                     |   2| 7048|     3   (0)| 
00:00:01 |
|*  3 |    INDEX RANGE SCAN                  | SYS86751_PO_XMLINDE_PIKEY_IX |   1|     |     2   (0)| 
00:00:01 |
|   4 |  NESTED LOOPS SEMI                   |                              |   1| 2051|     6   (0)| 
00:00:01 |
|   5 |   TABLE ACCESS BY INDEX ROWID        | PO_BINXML                    |   1| 2024|     4   (0)| 
00:00:01 |
|*  6 |    DOMAIN INDEX                      | PO_CTX_IDX                   |    |     |     4   (0)| 
00:00:01 |
|*  7 |   TABLE ACCESS BY INDEX ROWID BATCHED| PO_IDX_TAB                   |  13|  351|     2   (0)| 
00:00:01 |
|*  8 |    INDEX RANGE SCAN                  | SYS86751_86755_OID_IDX       |   1|     |     1   (0)| 
00:00:01 |
------------------------------------------------------------------------------------------------------------
----
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   2 - filter(SYS_XMLI_LOC_ISNODE("SYS_P1"."LOCATOR")=1)
   3 - access("SYS_P1"."RID"=:B1 AND "SYS_P1"."PATHID"=HEXTORAW('3748') )
   6 - access("CTXSYS"."CONTAINS"(SYS_MAKEXML(0,"XMLDATA"),'<query><textquery grammar="CONTEXT"
              lang="english">{Picnic} INPATH
              (/PurchaseOrder/LineItems/LineItem/Description)</textquery><xquery><offset>0</
              offset></xquery></query>')>0)
   7 - filter("SYS_SXI_0"."USERNAME"='SBELL')
   8 - access("PO_BINXML"."SYS_NC_OID$"="SYS_SXI_0"."OID")
 
Note
-----
   - dynamic sampling used for this statement (level=2)
 
30 rows selected.

Example 6-31    Using a Structured XMLIndex Component for a Query with Multilevel Chaining

EXPLAIN PLAN FOR
  SELECT po.reference, li.*
    FROM po_binxml p,
         XMLTable('/PurchaseOrder' PASSING p.OBJECT_VALUE
                  COLUMNS reference   VARCHAR2(30)  PATH 'Reference',
                          lineitem    XMLType       PATH 'LineItems/LineItem') po,
         XMLTable('/LineItem' PASSING po.lineitem
                  COLUMNS itemno      BINARY_DOUBLE PATH '@ItemNumber',

Chapter 6
XMLIndex

6-40



                          description VARCHAR2(256) PATH 'Description',
                          partno      VARCHAR2(14)  PATH 'Part/@Id',
                          quantity    BINARY_DOUBLE PATH 'Part/@Quantity',
                          unitprice   BINARY_DOUBLE PATH 'Part/@UnitPrice') li
    WHERE po.reference = 'SBELL-20021009123335280PDT';
 

-------------------------------------------------------------------------------------------------------
| Id  | Operation                    | Name                   | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT             |                        |    17 | 20366 |     8   (0)| 00:00:01 |
|   1 |  NESTED LOOPS                |                        |       |       |            |          |
|   2 |   NESTED LOOPS               |                        |    17 | 20366 |     8   (0)| 00:00:01 |
|   3 |    NESTED LOOPS              |                        |     1 |   539 |     3   (0)| 00:00:01 |
|*  4 |     TABLE ACCESS FULL        | PO_IDX_TAB             |     1 |   529 |     3   (0)| 00:00:01 |
|*  5 |     INDEX UNIQUE SCAN        | SYS_C007442            |     1 |    10 |     0   (0)| 00:00:01 |
|*  6 |    INDEX RANGE SCAN          | SYS86751_86759_PKY_IDX |    17 |       |     1   (0)| 00:00:01 |
|   7 |   TABLE ACCESS BY INDEX ROWID| PO_INDEX_LINEITEM      |    17 | 11203 |     5   (0)| 00:00:01 |
-------------------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   4 - filter("SYS_SXI_2"."REFERENCE"='SBELL-20021009123335280PDT')
   5 - access("P"."SYS_NC_OID$"="SYS_SXI_2"."OID")
   6 - access("SYS_SXI_2"."KEY"="SYS_SXI_3"."PKEY")
 
Note
-----
   - dynamic sampling used for this statement
 
25 rows selected.

Related Topics

• Collecting Statistics on XMLIndex Objects for the Cost-Based Optimizer
The Oracle Database cost-based optimizer determines how to most cost-
effectively evaluate a given query, including which indexes, if any, to use. For it
to be able to do this accurately, you must collect statistics on various database
objects.

6.3.9 Turning Off Use of XMLIndex
You can turn off the use of XMLIndex by using optimizer hint: /*+
NO_XML_QUERY_REWRITE */ or optimizer hint /*+ NO_XMLINDEX_REWRITE */.

Each of these hints turns off the use of all XMLIndex indexes. In addition to turning
off the use of XMLIndex, NO_XML_QUERY_REWRITE turns off all XQuery optimization
(XMLIndex is part of XPath rewrite).

Example 6-32 shows the use of these optimizer hints.

Note:

The NO_INDEX optimizer hint does not apply to XMLIndex.

Chapter 6
XMLIndex

6-41



See Also:

XQuery Optional Features for information about XQuery pragmas
ora:no_xmlquery_rewrite and ora:xmlquery_rewrite, which you can use
for fine-grained control of XQuery optimization

Example 6-32    Turning Off XMLIndex Using Optimizer Hints

SELECT /*+ NO_XMLINDEX_REWRITE */ 
  count(*) FROM po_binxml WHERE XMLExists('$p/*' PASSING OBJECT_VALUE AS "p");

SELECT /*+ NO_XML_QUERY_REWRITE */
  count(*) FROM po_binxml WHERE XMLExists('$p/*' PASSING OBJECT_VALUE AS "p");

6.3.10 XMLIndex Path Subsetting: Specifying the Paths You Want to
Index

If you know which XPath expressions you are most likely to query then you can narrow
the focus of XMLIndex indexing and thus improve performance.

One of the advantages of an XMLIndex index with an unstructured component is that
it is very general: you need not specify which XPath locations to index; you need
no prior knowledge of the XPath expressions that will be queried. By default, an
unstructured XMLIndex component indexes all possible XPath locations in your XML
data.

However, if you are aware of the XPath expressions that you are most likely
to query, then you can narrow the focus of XMLIndex indexing and thus improve
performance. Having fewer indexed nodes means less space is required for indexing,
which improves index maintenance during DML operations. Having fewer indexed
nodes improves DDL performance, and having a smaller path table improves query
performance.

You narrow the focus of indexing by pruning the set of XPath expressions (paths)
corresponding to XML fragments to be indexed, specifying a subset of all possible
paths. You can do this in two alternative ways:

• Exclusion – Start with the default behavior of including all possible XPath
expressions, and exclude some of them from indexing.

• Inclusion – Start with an empty set of XPath expressions to be used in indexing,
and add paths to this inclusion set.

You can specify path subsetting either when you create an XMLIndex index using
CREATE INDEX or when you modify it using ALTER INDEX. In both cases, you provide
the subsetting information in the PATHS parameter of the statement's PARAMETERS
clause. For exclusion, you use keyword EXCLUDE. For inclusion, you use keyword
INCLUDE for ALTER INDEX and no keyword for CREATE INDEX (list the paths to include).
You can also specify namespace mappings for the nodes targeted by the PATHS
parameter.

For ALTER INDEX, keyword INCLUDE or EXCLUDE is followed by keyword ADD or REMOVE,
to indicate whether the list of paths that follows the keyword is to be added or

Chapter 6
XMLIndex

6-42



removed from the inclusion or exclusion list. For example, this statement adds path /
PurchaseOrder/Reference to the list of paths to be excluded from indexing:

ALTER INDEX po_xmlindex_ix REBUILD
  PARAMETERS ('PATHS (EXCLUDE ADD (/PurchaseOrder/Reference))');

To alter an XMLIndex index so that it includes all possible paths, use keyword
INDEX_ALL_PATHS. See alter_index_paths_clause ::=.

Note:

If you create an XMLIndex index that has both structured and unstructured
components, then, by default, any nodes indexed in the structured
component are also indexed in the unstructured component; that is, they
are not automatically excluded from the unstructured component. If you do
not want unstructured XMLIndex indexing to apply to them, then you must
explicitly use path subsetting to exclude them.

• Examples of XMLIndex Path Subsetting
Some examples are presented of defining XMLIndex indexes on subsets of XPath
expressions.

• XMLIndex Path-Subsetting Rules
Rules that apply to XMLIndex path subsetting are described.

Related Topics

• PARAMETERS Clause Syntax for CREATE INDEX and ALTER INDEX
The syntax for the PARAMETERS clause for CREATE INDEX and ALTER INDEX is
defined.

6.3.10.1 Examples of XMLIndex Path Subsetting
Some examples are presented of defining XMLIndex indexes on subsets of XPath
expressions.

Example 6-33    XMLIndex Path Subsetting with CREATE INDEX

CREATE INDEX po_xmlindex_ix ON po_binxml (OBJECT_VALUE)
  INDEXTYPE IS XDB.XMLIndex
  PARAMETERS ('PATHS (INCLUDE (/PurchaseOrder/LineItems//* 
                               /PurchaseOrder/Reference))');

This statement creates an index that indexes only top-level element PurchaseOrder
and some of its children, as follows:

• All LineItems elements and their descendants

• All Reference elements

It does that by including the specified paths, starting with an empty set of paths to be
used for the index.

Chapter 6
XMLIndex

6-43



Example 6-34    XMLIndex Path Subsetting with ALTER INDEX

ALTER INDEX po_xmlindex_ix REBUILD
  PARAMETERS ('PATHS (INCLUDE ADD (/PurchaseOrder/Requestor 
                                   /PurchaseOrder/Actions/Action//*))');

This statement adds two more paths to those used for indexing. These paths index
element Requestor and descendants of element Action (and their ancestors).

Example 6-35    XMLIndex Path Subsetting Using a Namespace Prefix

If an XPath expression to be used for XMLIndex indexing uses namespace prefixes,
you can use a NAMESPACE MAPPING clause to the PATHS list, to specify those prefixes.
Here is an example:

CREATE INDEX po_xmlindex_ix ON po_binxml (OBJECT_VALUE) INDEXTYPE IS XDB.XMLIndex
  PARAMETERS ('PATHS (INCLUDE (/PurchaseOrder/LineItems//*   /PurchaseOrder/
ipo:Reference)
                     NAMESPACE MAPPING (xmlns="http://xmlns.oracle.com"
                                        xmlns:ipo="http://xmlns.oracle.com/ipo"))');

6.3.10.2 XMLIndex Path-Subsetting Rules
Rules that apply to XMLIndex path subsetting are described.

• The paths must reference only child and descendant axes, and they must test
only element and attribute nodes or their names (possibly using wildcards). In
particular, the paths must not involve predicates.

• You cannot specify both path exclusion and path inclusion; choose one or the
other.

• If an index was created using path exclusion (inclusion), then you can modify
it using only path exclusion (inclusion) — index modification must either further
restrict or further extend the path subset. For example, you cannot create an index
that includes certain paths and subsequently modify it to exclude certain paths.

6.3.11 Guidelines for Using XMLIndex with an Unstructured
Component

There are several guidelines that can help you use XMLIndex with an unstructured
component.

These guidelines are applicable only when the two alternatives discussed return the
same result set.

• Avoid prefixing // with ancestor elements. For example, use //c, not /a/b//c,
provided these return the same result set.

• Avoid prefixing /* with ancestor elements. For example, use /*/*/*, not /a/*/*,
provided these return the same result set.

Chapter 6
XMLIndex

6-44



• In a WHERE clause, use XMLExists rather than XMLCast of XMLQuery. This can
allow optimization that, in effect, invokes a subquery against the path-table VALUE
column. For example, use this:

SELECT count(*) FROM purchaseorder p 
  WHERE 
    XMLExists('$p/PurchaseOrder/LineItems/LineItem/Part[@Id="715515011020"]'
              PASSING OBJECT_VALUE AS "p");

Do not use this:

SELECT count(*) FROM purchaseorder p
  WHERE XMLCast(XMLQuery('$p/PurchaseOrder/LineItems/LineItem/Part/
@Id'
                         PASSING OBJECT_VALUE AS "p" RETURNING 
CONTENT)
                AS VARCHAR2(14))
        = "715515011020";

• When possible, use count(*), not count(XMLCast(XMLQuery(...)), in a SELECT
clause. For example, if you know that a LineItem element in a purchase-order
document has only one Description child, use this:

SELECT count(*) FROM po_binxml, XMLTable('//LineItem'
  PASSING OBJECT_VALUE);

Do not use this:

SELECT count(li.value)
 FROM po_binxml p,
      XMLTable('//LineItem' PASSING p.OBJECT_VALUE
               COLUMNS value VARCHAR2(30) PATH 'Description') li;

• Reduce the number of XPath expressions used in a query FROM list as much as
possible. For example, use this:

SELECT li.description
  FROM po_binxml p,
       XMLTable(
         'PurchaseOrder/LineItems/LineItem' PASSING p.OBJECT_VALUE
         COLUMNS description VARCHAR2(256) PATH 'Description') li;

Do not use this:

SELECT li.description
  FROM po_binxml p,
       XMLTable('PurchaseOrder/LineItems' PASSING p.OBJECT_VALUE) 
ls,
       XMLTable('LineItems/LineItem'      PASSING ls.OBJECT_VALUE
                COLUMNS description VARCHAR2(256)
                                    PATH 'Description') li;

Chapter 6
XMLIndex

6-45



• If you use an XPath expression in a query to drill down inside a virtual
table (created, for example, using SQL/XML function XMLTable), then create a
secondary index on the order key of the path table using Oracle SQL function
sys_orderkey_depth. Here is an example of such a query; the selection navigates
to element Description inside virtual line-item table li.

SELECT li.description
  FROM po_binxml p,
       XMLTable(
         'PurchaseOrder/LineItems/LineItem' PASSING p.OBJECT_VALUE
         COLUMNS description VARCHAR2(256) PATH 'Description') li;

Such queries are evaluated using function sys_orderkey_depth, which returns the
depth of the order-key value. Because the order index uses two columns, the
index needed is a composite index over columns ORDER_KEY and RID, as well as
over function sys_orderkey_depth applied to the ORDER_KEY value. For example:

CREATE INDEX depth_ix ON my_path_table
  (RID, sys_orderkey_depth(ORDER_KEY), ORDER_KEY);

See Also:

Example 6-29 for an example that shows the use of
sys_orderkey_depth

6.3.12 Guidelines for Using XMLIndex with a Structured Component
There are several guidelines that can help you use XMLIndex with a structured
component.

• Use XMLIndex with a structured component to project and index XML data as
relational columns. Do not use function-based indexes; they are deprecated for
use with XML. See Function-Based Indexes Are Deprecated for XMLType.

• Ensure data type correspondence between a query and an XMLIndex index
that has a structured component. See Data Type Considerations for XMLIndex
Structured Component.

• If you create a relational view over XMLType data (for example, using SQL function
XMLTable), then consider also creating an XMLIndex index with a structured
component that targets the same relational columns. See Relational Views over
XML Data.

• Instead of using a single XQuery expression for both fragment extraction and
value filtering (search), use SQL/XML function XMLQuery in the SELECT clause to
extract fragments and XMLExists in the WHERE clause to filter values.

This lets Oracle XML DB evaluate fragment extraction functionally or by using
streaming evaluation. For value filtering, this lets Oracle XML DB pick up an
XMLIndex index that has a relevant structured component.

Chapter 6
XMLIndex

6-46



• To order query results, use a SQL ORDER BY clause, together with SQL/XML
function XMLTable. Avoid using the XQuery order by clause. This is particularly
pertinent if you use an XMLIndex index with a structured component.

6.3.13 XMLIndex Partitioning and Parallelism
If you partition an XMLType table, or a table with an XMLType column, using range, list,
or hash partitioning, you can also create an XMLIndex index on the table. You can
optionally ensure that index creation and maintenance are carried out in parallel.

To ensure parallel index creation and maintenance, you use a PARALLEL clause (with
optional degree) when creating or altering an XMLIndex index.

If you use the keyword LOCAL when you create the XMLIndex index, then the index and
all of its storage tables are locally equipartitioned with respect to the base table.

If you do not use the keyword LOCAL then you cannot create an XMLIndex index on a
partitioned table. Also, if you composite-partition a table, then you cannot create an
XMLIndex index on it.

If you use a PARALLEL clause and the base table is partitioned or enabled for
parallelism, then this can improve the performance for both DML operations (INSERT,
UPDATE, DELETE) and index DDL operations (CREATE, ALTER, REBUILD).

Specifying parallelism for an index can also consume more storage, because storage
parameters apply separately to each query server process. For example, an index
created with an INITIAL value of 5M and a parallelism degree of 12 consumes at least
60M of storage during index creation.

The syntax for the parallelism clause for CREATE INDEX and ALTER INDEX is the same
as for other domain indexes:

{ NOPARALLEL | PARALLEL [ integer ] }

Example 6-36 creates an XMLIndex index with a parallelism degree of 10. If the base
table is partitioned, then this index is equipartitioned.

In Example 6-36, the path table and the secondary indexes are created with the
same parallelism degree as the XMLIndex index itself, 10, by inheritance. You can
specify different parallelism degrees for these by using separate PARALLEL clauses.
Example 6-37 demonstrates this. Again, because of keyword LOCAL, if the base table is
partitioned, then this index is equipartitioned.

In Example 6-37, the XMLIndex index itself is created serially, because of NOPARALLEL.
The secondary index po_pikey_ix is also populated serially, because no parallelism
is specified explicitly for it; it inherits the parallelism of the XMLIndex index. The path
table itself is created with a parallelism degree of 10, and the secondary index value
column, po_value_ix, is populated with a degree of 5, due to their explicit parallelism
specifications.

Any parallelism you specify for an XMLIndex index, its path table, or its secondary
indexes is exploited during subsequent DML operations and queries.

There are two places where you can specify parallelism for XMLIndex: within the
PARAMETERS clause parenthetical expression and after it.

Chapter 6
XMLIndex

6-47



See Also:

Oracle Database SQL Language Reference for information on the CREATE
INDEX parallel clause

Example 6-36    Creating an XMLIndex Index in Parallel

CREATE INDEX po_xmlindex_ix ON sale_info (sale_po_clob)
  INDEXTYPE IS XDB.XMLIndex 
  LOCAL PARALLEL 10;

Example 6-37    Using Different PARALLEL Degrees for XMLIndex Internal
Objects

CREATE INDEX po_xmlindex_ix ON sale_info (sale_po_clob)
  INDEXTYPE IS XDB.XMLIndex 
  LOCAL NOPARALLEL PARAMETERS ('PATH TABLE po_path_table (PARALLEL 10)
                                PIKEY INDEX po_pikey_ix
                                VALUE INDEX po_value_ix (PARALLEL 5)');

Related Topics

• PARAMETERS Clause Syntax for CREATE INDEX and ALTER INDEX
The syntax for the PARAMETERS clause for CREATE INDEX and ALTER INDEX is
defined.

• Structured and Unstructured XMLIndex Components
XMLIndex is used to index XML data that is unstructured or semi-structured, that is,
data that generally has little or no fixed structure. It applies to XMLType data that is
stored as binary XML.

6.3.14 Asynchronous (Deferred) Maintenance of XMLIndex Indexes
You can defer the cost of maintaining an XMLIndex index that has only an unstructured
component, performing maintenance only at commit time or when database load
is reduced. This can improve DML performance, and it can enable bulk loading of
unsynchronized index rows when an index is synchronized.

This feature applies to an XMLIndex index that has only an unstructured component.
If you specify asynchronous maintenance for an XMLIndex index that has a structured
component (even if it also has an unstructured component), then an error is raised.

By default, XMLIndex indexing is updated (maintained) at each DML operation, so
that it remains in sync with the base table. In some situations, you might not require
this, and using possibly stale indexes might be acceptable. In that use case, you can
decide to defer the cost of index maintenance, performing at commit time only or
at some time when database load is reduced. This can improve DML performance.
It can also improve index maintenance performance by enabling bulk loading of
unsynchronized index rows when an index is synchronized.

Using a stale index has no effect, other than performance, on DML operations. It can
have an effect on query results, however: If the index is not up-to-date at query time,

Chapter 6
XMLIndex

6-48



then the query results might not be up-to-date either. Even if only one column of a
base table is of data type XMLType, all queries on that table reflect the database data
as of the last synchronization of the XMLIndex index on the XMLType column.

You can specify index maintenance deferment using the parameters clause of a
CREATE INDEX or ALTER INDEX statement.

Be aware that even if you defer synchronization for an XMLIndex index, the following
database operations automatically synchronize the index:

• Any DDL operation on the index – ALTER INDEX or creation of secondary indexes

• Any DDL operation on the base table – ALTER TABLE or creation of another index

Table 6-7 lists the synchronization options and the ASYNC clause syntax you use to
specify them. The ASYNC clause is used in the PARAMETERS clause of a CREATE INDEX or
ALTER INDEX statement for XMLIndex.

Table 6-7    Index Synchronization

When to Synchronize ASYNC Clause Syntax

Always ASYNC (SYNC ALWAYS)

This is the default behavior. You can specify it explicitly, to cancel a
previous ASYNC specification.

Upon commit ASYNC (SYNC ON COMMIT)

Periodically ASYNC (SYNC EVERY "repeat_interval")

repeat_interval is the same as for the calendaring syntax of
DBMS_SCHEDULER

To use EVERY, you must have the CREATE JOB privilege.

Manually, on demand ASYNC (SYNC MANUAL)

You can manually synchronize the index using PL/SQL procedure
DBMS_XMLINDEX.syncIndex.

Optional ASYNC syntax parameter STALE is intended for possible future use; you need
never specify it explicitly. It has value FALSE whenever ALWAYS is used; otherwise it has
value TRUE. Specifying an explicit STALE value that contradicts this rule raises an error.

Example 6-38 creates an XMLIndex index that is synchronized every Monday at 3:00
pm, starting tomorrow.

Example 6-39 manually synchronizes the index created in Example 6-38.

When XMLIndex index synchronization is deferred, all DML changes (inserts, updates,
and deletions) made to the base table since the last index synchronization are
recorded in a pending table, one row per DML operation. The name of this table
is the value of column PEND_TABLE_NAME of static public views USER_XML_INDEXES,
ALL_XML_INDEXES, and DBA_XML_INDEXES.

You can examine this table to determine when synchronization might be appropriate
for a given XMLIndex index. The more rows there are in the pending table, the more
the index is likely to be in need of synchronization.

If the pending table is large, then setting parameter REINDEX to TRUE when calling
syncIndex, as in Example 6-39, can improve performance. When REINDEX is TRUE, all

Chapter 6
XMLIndex

6-49



of the secondary indexes are dropped and then re-created after the pending table data
is bulk-loaded.

See Also:

• Oracle Database PL/SQL Packages and Types Reference, section
"Calendaring Syntax", for the syntax of repeat_interval

• Oracle Database PL/SQL Packages and Types Reference for
information on PL/SQL procedure DBMS_XMLINDEX.syncIndex

Example 6-38    Specifying Deferred Synchronization for XMLIndex

CREATE INDEX po_xmlindex_ix ON po_binxml (OBJECT_VALUE) INDEXTYPE IS XDB.XMLIndex
  PARAMETERS ('ASYNC (SYNC EVERY "FREQ=HOURLY; INTERVAL = 1")');

Example 6-39    Manually Synchronizing an XMLIndex Index Using SYNCINDEX

EXEC DBMS_XMLINDEX.syncIndex('OE', 'PO_XMLINDEX_IX', REINDEX => TRUE);

• Syncing an XMLIndex Index in Case of Error ORA-08181
If a query raises error ORA-08181, check whether the base XMLType table of the
query has an XMLIndex index with an unstructured component. If so, then manually
synchronize the XMLIndex index using DBMS_XMLINDEX.syncIndex.

6.3.14.1 Syncing an XMLIndex Index in Case of Error ORA-08181
If a query raises error ORA-08181, check whether the base XMLType table of the
query has an XMLIndex index with an unstructured component. If so, then manually
synchronize the XMLIndex index using DBMS_XMLINDEX.syncIndex.

This applies only if error ORA-08181 is raised in the following situation:

1. In a pluggable database, PDB1, you created an XMLType table or column XTABCOL,
which you indexed using an XMLIndex index that has an unstructured component.

2. You plugged PDB1 into a container database.

3. You cloned PDB1 to a new pluggable database, PDB2.

4. Error ORA-08181 is raised when you query XTABCOL in PDB2.

If the error is raised even after synchronizing then seek another cause. Error
ORA-08181 is a general error that can be raised in various situations, of which this
is only one.

Related Topics

• Oracle XML DB and Database Consolidation
Each pluggable database has its own Oracle XML DB Repository, and its own
Oracle XML DB configuration file, xdbconfig.xml.

Chapter 6
XMLIndex

6-50



6.3.15 Collecting Statistics on XMLIndex Objects for the Cost-Based
Optimizer

The Oracle Database cost-based optimizer determines how to most cost-effectively
evaluate a given query, including which indexes, if any, to use. For it to be able to do
this accurately, you must collect statistics on various database objects.

Note:

The following applies only to procedures in package DBMS_STATS; it does not
apply to ANALYZE INDEX.

For XMLIndex, you normally need to collect statistics on only the base
table on which the XMLIndex index is defined (using, for example, procedure
DBMS_STATS.gather_table_stats). This automatically collects statistics for the
XMLIndex index itself, as well as the path table, its secondary indexes, and any
structured component content tables and their secondary indexes.

If you delete statistics on the base table (using procedure
DBMS_STATS.delete_table_stats), then statistics on the other objects are also
deleted. Similarly, if you collect statistics on the XMLIndex index (using procedure
DBMS_STATS.gather_index_stats), then statistics are also collected on the path
table, its secondary indexes, and any structured component content tables and their
secondary indexes.

Example 6-40 collects statistics on the base table po_binxml. Statistics are
automatically collected on the XMLIndex index, its path table, and the secondary path-
table indexes.

See Also:

Data Dictionary Static Public Views Related to XMLIndex for information
about database views that record statistics information for an XMLIndex index

Example 6-40    Automatic Collection of Statistics on XMLIndex Objects

CALL DBMS_STATS.gather_table_stats(USER, 'PO_BINXML', ESTIMATE_PERCENT => NULL);

6.3.16 Data Dictionary Static Public Views Related to XMLIndex
Information about the standard database indexes is available in static public views
USER_INDEXES, ALL_INDEXES, and DBA_INDEXES. Similar information about XMLIndex
indexes is available in static public views USER_XML_INDEXES, ALL_XML_INDEXES, and
DBA_XML_INDEXES.

Table 6-8 describes the columns in each of these views.

Chapter 6
XMLIndex

6-51



Table 6-8    XMLIndex Static Public Views

Column Name Type Description

ASYNC VARCHAR2 Asynchronous index updating specification. See
Asynchronous (Deferred) Maintenance of XMLIndex
Indexes.

EX_OR_INCLUDE VARCHAR2 Path subsetting:

• FULLY_IX – The index uses no path subsetting.
• EXCLUDE – The index uses only exclusion

subsetting.
• INCLUDE – The index uses only inclusion

subsetting.

INDEX_NAME VARCHAR2 Name of the XMLIndex index.

INDEX_OWNER VARCHAR2 Owner of the index. Not available for
USER_XML_INDEXES.

INDEX_TYPE VARCHAR2 The types of components the index is composed of:
STRUCTURED, UNSTRUCTURED, or STRUCTURED AND
UNSTRUCTURED.

PARAMETERS XMLType Information from the PARAMETERS clause that was
used to create the index.

If an unstructured XMLIndex component is present,
the PARAMETERS clause can include the set of XPath
paths defining path-subsetting and the name of a
scheduler job for synchronization.

If a structured component is present, the
PARAMETERS clause includes the name of the
structure group and the table definitions provided
by XMLTable, including the XQuery expressions that
define the columns.

PATH_TABLE_NAME VARCHAR2 Name of the XMLIndex path table.

PEND_TABLE_NAME VARCHAR2 Name of the table that records base-table DML
operations since the last index synchronization. See
Asynchronous (Deferred) Maintenance of XMLIndex
Indexes.

TABLE_NAME VARCHAR2 Name of the base table on which the index is
defined.

TABLE_OWNER VARCHAR2 Owner of the base table on which the index is
defined.

These views provide information about an XMLIndex index, but there is no single static
data dictionary view that provides information about the statistics gathered for an
XMLIndex index. This statistics information is distributed among the following views:

• USER_INDEXES, ALL_INDEXES, DBA_INDEXES – Column LAST_ANALYZED provides the
date when the XMLIndex index was last analyzed.

• USER_TAB_STATISTICS, ALL_TAB_STATISTICS, DBA_TAB_STATISTICS – Column
TABLE_NAME provides information about the structured and unstructured
components of an XMLIndex index. For information about the structured or
unstructured component, query using the name of the path table or the XMLTable
table as TABLE_NAME, respectively.

Chapter 6
XMLIndex

6-52



• USER_IND_STATISTICS, ALL_IND_STATISTICS, DBA_IND_STATISTICS – Column
INDEX_NAME provides information about each of the secondary indexes for an
XMLIndex index. for information about a given secondary index, query using the
name of that secondary index as INDEX_NAME.

6.3.17 PARAMETERS Clause for CREATE INDEX and ALTER INDEX
Creation or modification of an XMLIndex index often involves the use of a PARAMETERS
clause with SQL statement CREATE INDEX or ALTER INDEX. You can use it to specify
index characteristics in detail.

You can use PL/SQL procedures registerParameter and modifyParameter in
package DBMS_XMLINDEX to bypass the 1000-character PARAMETERS clause limit.

• Using a Registered PARAMETERS Clause for XMLIndex
The string value used for the PARAMETERS clause of a CREATE INDEX or ALTER
INDEX statement has a 1000-character limit. To get around this limitation, you can
use PL/SQL procedures registerParameter and modifyParameter in package
DBMS_XMLINDEX.

• PARAMETERS Clause Syntax for CREATE INDEX and ALTER INDEX
The syntax for the PARAMETERS clause for CREATE INDEX and ALTER INDEX is
defined.

• Usage of XMLIndex_parameters_clause
When you create an XMLIndex index, if there is no XMLIndex_parameters_clause,
then the new index has only an unstructured component. If there is an
XMLIndex_parameters_clause, but the PARAMETERS argument is empty (''), then
the result is the same: an index with only an unstructured component.

• Usage of XMLIndex_parameters
Certain considerations apply to using XMLIndex_parameters.

• Usage of PATHS Clause
Certain considerations apply to using the PATHS clause.

• Usage of create_index_paths_clause and alter_index_paths_clause
Certain considerations apply to using create_index_paths_clause and
alter_index_paths_clause.

• Usage of pikey_clause, path_id_clause, and order_key_clause
Syntactically, each of the clauses pikey_clause, path_id_clause, and
order_key_clause is optional. A pikey index is created even if you do not specify a
pikey_clause. To create a path id index or an order-key index, you must specify a
path_id_clause or an order_key_clause, respectively.

• Usage of value_clause
Certain considerations apply to using value_clause.

• Usage of async_clause
Certain considerations apply to using the ASYNC clause.

• Usage of groups_clause and alter_index_group_clause
Clause groups_clause is used only with CREATE INDEX (or following ADD GROUP in
clause alter_index_group_clause). Clause alter_index_group_clause is used
only with ALTER INDEX.

• Usage of XMLIndex_xmltable_clause
Certain considerations apply to using XMLIndex_xmltable_clause.

Chapter 6
XMLIndex

6-53



• Usage of column_clause
Certain considerations apply to using column_clause.

See Also:

• Oracle Database SQL Language Reference for the syntax of
index_attributes

• Oracle Database SQL Language Reference for the syntax of
segment_attributes_clause

• Oracle Database SQL Language Reference for the syntax of
table_properties

• Oracle Database SQL Language Reference for the syntax of
parallel_clause

• Oracle Database SQL Language Reference for additional information
about the syntax and semantics of CREATE INDEX

• Oracle Database SQL Language Reference for additional information
about the syntax and semantics of ALTER INDEX

• Oracle Database PL/SQL Packages and Types Reference, section
"Calendaring Syntax", for the syntax of repeat_interval

6.3.17.1 Using a Registered PARAMETERS Clause for XMLIndex
The string value used for the PARAMETERS clause of a CREATE INDEX or ALTER
INDEX statement has a 1000-character limit. To get around this limitation, you
can use PL/SQL procedures registerParameter and modifyParameter in package
DBMS_XMLINDEX.

For each of these procedures, you provide a string of parameters (unlimited in length)
and an identifier under which the string is registered. Then, in the index PARAMETERS
clause, you provide the identifier preceded by the keyword PARAM, instead of a literal
string.

The identifier must already have been registered before you can use it in a CREATE
INDEX or ALTER INDEX statement.

See Also:

Example 6-23

6.3.17.2 PARAMETERS Clause Syntax for CREATE INDEX and ALTER INDEX
The syntax for the PARAMETERS clause for CREATE INDEX and ALTER INDEX is defined.

Chapter 6
XMLIndex

6-54



XMLIndex_parameters_clause ::=

PARAMETERS ( ’
XMLIndex_parameters

PARAM identifier
’ )

See Also:

Usage of XMLIndex_parameters_clause

XMLIndex_parameters ::=

XMLIndex_parameter_clause TABLESPACE identifier

See Also:

Usage of XMLIndex_parameters

XMLIndex_parameter_clause ::=

unstructured_clause

structured_clause

async_clause

unstructured_clause ::=

PATHS
create_index_paths_clause

alter_index_paths_clause

path_table_clause

pikey_clause

path_id_clause

order_key_clause

value_clause

drop_path_table_clause

parallel_clause

Chapter 6
XMLIndex

6-55



create_index_paths_clause ::=

(
INCLUDE ( XPaths_list )

EXCLUDE ( XPaths_list )

namespace_mapping_clause

)

See Also:

• Usage of PATHS Clause

• Usage of create_index_paths_clause and alter_index_paths_clause

alter_index_paths_clause ::=

(

INDEX_ALL_PATHS

INCLUDE

EXCLUDE

ADD

REMOVE
( XPaths_list )

namespace_mapping_clause )

See Also:

• Usage of PATHS Clause

• Usage of create_index_paths_clause and alter_index_paths_clause

namespace_mapping_clause ::=

NAMESPACE MAPPING ( namespace )

path_table_clause ::=

PATH TABLE

identifier ( segment_attributes_clause table_properties )

pikey_clause ::=

PIKEY

INDEX

identifier ( index_attributes )

Chapter 6
XMLIndex

6-56



See Also:

Usage of pikey_clause, path_id_clause, and order_key_clause

path_id_clause ::=

PATH ID

INDEX

identifier ( index_attributes )

See Also:

Usage of pikey_clause, path_id_clause, and order_key_clause

order_key_clause ::=

ORDER KEY

INDEX

identifier ( index_attributes )

See Also:

Usage of pikey_clause, path_id_clause, and order_key_clause

value_clause ::=

VALUE

INDEX

identifier ( index_attributes )

See Also:

Usage of value_clause

drop_path_table_clause ::=

DROP PATH TABLE

Chapter 6
XMLIndex

6-57



parallel_clause ::=

NOPARALLEL

PARALLEL

integer

structured_clause ::=

groups_clause

alter_index_group_clause

See Also:

Usage of groups_clause and alter_index_group_clause

async_clause ::=

ASYNC ( SYNC

ALWAYS

MANUAL

EVERY repeat_interval

ON COMMIT

STALE (
FALSE

TRUE
)

)

See Also:

Usage of async_clause

groups_clause ::=

group_clause

See Also:

Usage of groups_clause and alter_index_group_clause

Chapter 6
XMLIndex

6-58



group_clause ::=

GROUP identifier

XMLIndex_xmltable_clause

See Also:

Usage of groups_clause and alter_index_group_clause

XMLIndex_xmltable_clause ::=

XMLTABLE identifier

( segment_attributes_clause

table_compression inmemory_table_clause

table_properties )

XML_namespaces_clause ,

XQuery_string

PASSING identifier

COLUMNS column_clause

,

Syntax elements XML_namespaces_clause and XQuery_string are the same as
for SQL/XML function XMLTable.

See Also:

• Usage of XMLIndex_xmltable_clause

• XMLTABLE SQL/XML Function in Oracle XML DB

column_clause ::=

column

FOR ORDINALITY

datatype PATH string

VIRTUAL

Chapter 6
XMLIndex

6-59



Syntax element column_clause is similar, but not identical, to XML_table_column
in SQL/XML function XMLTable.

See Also:

• Usage of column_clause

• XMLTABLE SQL/XML Function in Oracle XML DB

alter_index_group_clause ::=

NONBLOCKING

ADD_GROUP groups_clause

DROP_GROUP

GROUP identifier

,

NONBLOCKING

add_column_clause

drop_column_clause

NONBLOCKING ABORT

NONBLOCKING COMPLETE

modify_column_type_clause

See Also:

Usage of groups_clause and alter_index_group_clause

add_column_clause :==

ADD_COLUMN add_column_options

add_column_options :==

GROUP identifier

XMLTABLE identifier

xml_namespaces_clause ,

COLUMNS column_clause

,

Syntax element XML_namespaces_clause is the same as for SQL/XML function
XMLTable. See XMLTABLE SQL/XML Function in Oracle XML DB.

Chapter 6
XMLIndex

6-60



drop_column_clause :==

DROP_COLUMN drop_column_options

drop_column_options :==

GROUP identifier

XMLTABLE identifier COLUMNS identifier

,

modify_column_type_clause :==

MODIFY_COLUMN_TYPE modify_column_type_options

modify_column_type_options :==

GROUP identifier

XMLTABLE identifier COLUMNS identifier identifier

,

6.3.17.3 Usage of XMLIndex_parameters_clause
When you create an XMLIndex index, if there is no XMLIndex_parameters_clause,
then the new index has only an unstructured component. If there is an
XMLIndex_parameters_clause, but the PARAMETERS argument is empty (''), then the
result is the same: an index with only an unstructured component.

See Also:

• Oracle Database SQL Language Reference for information about the
use context for XMLIndex_parameters_clause in CREATE INDEX

• Oracle Database SQL Language Reference for information about the
use context for XMLIndex_parameters_clause in ALTER INDEX

Chapter 6
XMLIndex

6-61



6.3.17.4 Usage of XMLIndex_parameters
Certain considerations apply to using XMLIndex_parameters.

• There can be at most one XMLIndex_parameter_clause of each type in
XMLIndex_parameters. For example, there can be at most one PATHS clause, at
most one path_table_clause, and so on.

• If there is no structured_clause when you create an XMLIndex index, then
the new index has only an unstructured component. If there is only a
structured_clause, then the new index has only a structured component.

6.3.17.5 Usage of PATHS Clause
Certain considerations apply to using the PATHS clause.

• There can be at most one PATHS clause in a CREATE INDEX statement.
That is, there can be at most one occurrence of PATHS followed by
create_index_paths_clause.

• Clause create_index_paths_clause is used only with CREATE INDEX;
alter_index_paths_clause is used only with ALTER INDEX.

6.3.17.6 Usage of create_index_paths_clause and alter_index_paths_clause
Certain considerations apply to using create_index_paths_clause and
alter_index_paths_clause.

• The INDEX_ALL_PATHS keyword rebuilds the index to include all paths.
This keyword is available only for alter_index_paths_clause, not
create_index_paths_clause.

• An explicit list of paths to index can include wildcards and //.

• XPaths_list is a list of one or more XPath expressions, each of which includes
only child axis, descendant axis, name test, and wildcard (*) constructs.

• If XPaths_list is omitted from create_index_paths_clause, all paths are indexed.

• For each unique namespace prefix that is used in an XPath expression in
XPaths_list, a standard XML namespace declaration is needed, to provide the
corresponding namespace information.

• You can change an index in ways that are not reflected directly in the syntax by
dropping it and then creating it again as needed. For example, to change an index
that was defined by including paths to one that is defined by excluding paths, drop
it and then create it using EXCLUDE.

6.3.17.7 Usage of pikey_clause, path_id_clause, and order_key_clause
Syntactically, each of the clauses pikey_clause, path_id_clause, and
order_key_clause is optional. A pikey index is created even if you do not specify
a pikey_clause. To create a path id index or an order-key index, you must specify a
path_id_clause or an order_key_clause, respectively.

Chapter 6
XMLIndex

6-62



6.3.17.8 Usage of value_clause
Certain considerations apply to using value_clause.

• Column VALUE is created as VARCHAR2(4000).

• If clause value_clause consists only of the keyword VALUE, then the value index is
created with the usual default attributes.

• If clause path_id_clause consists only of the keywords PATH ID, then the path-id
index is created with the usual default attributes.

• If clause order_key_clause consists only of the keywords ORDER KEY, then the
order-key index is created with the usual default attributes.

6.3.17.9 Usage of async_clause
Certain considerations apply to using the ASYNC clause.

• Use this feature only with an XMLIndex index that has only an unstructured
component. If you specify an ASYNC clause for an XMLIndex index that has a
structured component, then an error is raised.

• ALWAYS means automatic synchronization occurs for each DML statement.

• MANUAL means no automatic synchronization occurs. You must manually
synchronize the index using DBMS_XMLINDEX.syncIndex.

• EVERY repeat_interval means automatically synchronize the index at interval
repeat_interval. The syntax of repeat_interval is the same as that for PL/SQL
package DBMS_SCHEDULER, and it must be enclosed in double quotation marks (").
To use EVERY you must have the CREATE JOB privilege.

• ON COMMIT means synchronize the index immediately after a commit operation.
The commit does not return until the synchronization is complete. Since the
synchronization is performed as a separate transaction, there can be a short
period when the data is committed but index changes are not yet committed.

• STALE is optional. A value of TRUE means that query results might be stale; a value
of FALSE means that query results are always up-to-date. The default value, and
the only permitted explicitly specified value, is as follows.

– For ALWAYS, STALE is FALSE.

– For any other ASYNC option besides ALWAYS, STALE is TRUE.

6.3.17.10 Usage of groups_clause and alter_index_group_clause
Clause groups_clause is used only with CREATE INDEX (or following ADD GROUP in
clause alter_index_group_clause). Clause alter_index_group_clause is used only
with ALTER INDEX.

6.3.17.11 Usage of XMLIndex_xmltable_clause
Certain considerations apply to using XMLIndex_xmltable_clause.

• The XQuery_string expression in XMLIndex_xmltable_clause must not use the
XQuery functions ora:view (desupported), fn:doc, or fn:collection.

Chapter 6
XMLIndex

6-63



• Oracle XML DB raises an error if a given XMLIndex_xmltable_clause contains
more than one column_clause of data type XMLType. To achieve the effect of
defining two such virtual columns, you must instead add a separate group_clause.

• The PASSING clause in XMLIndex_xmltable_clause is optional. If not present, then
an XMLType column is passed implicitly, as follows:

– For the first XMLIndex_xmltable_clause in a parameters clause, the XMLType
column being indexed is passed implicitly. (When indexing an XMLType table,
pseudocolumn OBJECT_VALUE is passed.)

– For each subsequent XMLIndex_xmltable_clause, the VIRTUAL XMLType
column of the preceding XMLIndex_xmltable_clause is passed implicitly.

6.3.17.12 Usage of column_clause
Certain considerations apply to using column_clause.

When you use multilevel chaining of XMLTable in an XMLIndex index, the XMLTable
table at one level corresponds to an XMLType column at the previous level. The syntax
description shows keyword VIRTUAL as optional. In fact, it is used only for such an
XMLType column, in which case it is required. It is an error to use it for a non-XMLType
column. VIRTUAL specifies that the XMLType column itself is not materialized, meaning
that its data is stored in the index only in the form of the relational columns specified
by its corresponding XMLTable table.

6.4 Indexing XML Data for Full-Text Queries
When you need full-text search over XML data, Oracle recommends that you store
your XMLType data as binary XML and you use XQuery Full Text (XQFT). You use an
XML search index for this. This is the topic of this section.

If portability and standardized code are not a concern, or if your XMLType data is stored
object-relationally, then you can alternatively use the Oracle-specific full-text constructs
and syntax provided by Oracle Text, specifically Oracle SQL function contains.

You can perform XQuery Full Text (XQFT) queries on XMLType data that is stored
as binary XML. If you use an XQFT full-text predicate in an XMLExists expression
within a SQL WHERE clause, then you must create an XML search index. This section
describes the creation and use of such an index.

• Creating and Using an XML Search Index
An XQuery Full Text query can use an XML search index to improve performance.

• What To Do If an XML Search Index Is Not Picked Up
You can modify your query to ensure that certain conditions are satisfied, so its
evaluation picks up an XML search index.

• Pragma ora:no_schema: Using XML Schema-Based Data with XQuery Full Text
Oracle recommends in general that you use non XML Schema-based XMLType
data when you use XQuery Full Text and an XML search index. But you can
in some circumstances use XML Schema-based XMLType data that is stored as
binary XML. Oracle XQuery pragma ora:no_schema can be useful in this context.

• Pragma ora:use_xmltext_idx: Forcing the Use of an XML Search Index
You can use XQuery pragma ora:use_xmltext_idx to force the use of an XML
search index.

Chapter 6
Indexing XML Data for Full-Text Queries

6-64



• Migrating from Using Oracle Text Index to XML Search Index
If you have legacy queries for XMLType data stored as binary XML that use
SQL function CONTAINS and an Oracle Text index that is not XML-enabled, then
consider using XQuery Full Text constructs instead.

Related Topics

• Support for XQuery Full Text
Oracle XML DB supports XQuery Full Text for XMLType data that is stored as
binary XML. Oracle Text technology provides the full-text indexing and search that
is the basis of this support.

See Also:

Example 6-46

6.4.1 Creating and Using an XML Search Index
An XQuery Full Text query can use an XML search index to improve performance.

To create an XML search index you must be granted database role CTXAPP. More
generally, this role is needed to create Oracle Text indexes, to set Oracle Text index
preferences, or to use Oracle Text PL/SQL packages.

Before creating the index, you must create an Oracle Text path section group and set
its XML_ENABLE attribute to t. This makes the path section group XML-aware.

For best performance, create an index preference of type BASIC_STORAGE in the Oracle
Text data dictionary, specifying the following attributes:

• D_TABLE_CLAUSE – Specify SECUREFILE storage for column DOC of index data
table $D, which contains information about the structure of your XML documents.
Specify caching and medium compression.

• I_TABLE_CLAUSE – Specify SECUREFILE storage for column TOKEN_INFO of index
data table $I, which contains information about full-text tokens and their
occurrences in the indexed documents. Specify caching (but not compression).

This is illustrated in Example 6-41, which uses a non XML-schema-based XMLType
table, po_binxml (which has the same data as table purchaseorder in standard
database schema OE).

Index preference BASIC_STORAGE specifies the tablespace and creation parameters for
the database tables and indexes that constitute an Oracle Text index.

Chapter 6
Indexing XML Data for Full-Text Queries

6-65



See Also:

• Oracle Text Reference for information about section groups

• Oracle Text Reference for information about procedure
CTX_DDL.set_sec_grp_attr

• Oracle Text Reference for information about procedure
CTX_DDL.create_preference

• Oracle Text Reference for information about procedure
CTX_DDL.set_attribute

• Oracle Text Reference for information about preference BASIC_STORAGE,
D_TABLE_CLAUSE, and I_TABLE_CLAUSE

Example 6-42 queries the data to retrieve the Description elements whose text
contains both Big and Street, in that order.

Example 6-43 shows the execution plan for the query, which indicates that index
po_ctx_idx is picked up.

Example 6-41    Creating an XML Search Index

BEGIN
  CTX_DDL.create_section_group('mysecgroup', 'PATH_SECTION_GROUP');
  CTX_DDL.set_sec_grp_attr('mysecgroup', 'XML_ENABLE', 'T');

  CTX_DDL.create_preference('mypref', 'BASIC_STORAGE');
  CTX_DDL.set_attribute('mypref',
                        'D_TABLE_CLAUSE',
                        'TABLESPACE my_ts
                         LOB(DOC) STORE AS SECUREFILE 
                         (TABLESPACE my_ts COMPRESS MEDIUM CACHE)');
  CTX_DDL.set_attribute('mypref',
                        'I_TABLE_CLAUSE',
                        'TABLESPACE my_ts
                         LOB(TOKEN_INFO) STORE AS SECUREFILE
                         (TABLESPACE my_ts NOCOMPRESS CACHE)');
END;
/

CREATE INDEX po_ctx_idx ON po_binxml(OBJECT_VALUE)
  INDEXTYPE IS CTXSYS.CONTEXT
  PARAMETERS('storage mypref section group mysecgroup');

Example 6-42    XQuery Full Text Query

SELECT XMLQuery('for $i in /PurchaseOrder/LineItems/LineItem/Description
                   where $i[. contains text "Big" ftand "Street"]
               return <Title>{$i}</Title>'
               PASSING OBJECT_VALUE RETURNING CONTENT)
  FROM po_binxml
  WHERE XMLExists('/PurchaseOrder/LineItems/LineItem/Description
                   [. contains text "Big" ftand "Street"]'
                  PASSING OBJECT_VALUE);

Chapter 6
Indexing XML Data for Full-Text Queries

6-66



Example 6-43    Execution Plan for XQuery Full Text Query

------------------------------------------------------------------------------------------
| Id  | Operation                   | Name       | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |            |     1 |  2014 |     4   (0)| 00:00:01 |
|   1 |  TABLE ACCESS BY INDEX ROWID| PO_BINXML  |     1 |  2014 |     4   (0)| 00:00:01 |
|*  2 |   DOMAIN INDEX              | PO_CTX_IDX |       |       |     4   (0)| 00:00:01 |
------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   2 - access("CTXSYS"."CONTAINS"(SYS_MAKEXML(0,"XMLDATA"),'<query><textquery
              grammar="CONTEXT" lang="english"> ( ( {Big} ) and ( {Street} ) )  INPATH
              (/PurchaseOrder/LineItems/LineItem/Description)</textquery></query>')>0)
 
Note
-----
   - dynamic sampling used for this statement (level=2)
   - Unoptimized XML construct detected (enable XMLOptimizationCheck for more information)
 
21 rows selected.

6.4.2 What To Do If an XML Search Index Is Not Picked Up
You can modify your query to ensure that certain conditions are satisfied, so its
evaluation picks up an XML search index.

If you use an XQuery full-text predicate in an XMLExists expression within a SQL
WHERE clause, but you do not create an XML search index or the index cannot be used
for some reason, then compile-time error ORA-18177 is raised.

If this error is raised then your execution plan does not indicate that the index is picked
up. In the plan you do not see operation DOMAIN INDEX followed by the name of the
index.

In that case, try to change your query to enable the index to be used. The following
conditions must both apply for the index to be picked up:

• The expression that computes the XML nodes for the search context must be an
XPath expression whose steps are only along forward and descendent axes.

• You can pass only one XMLType instance as a SQL expression in the PASSING
clause of SQL/XML function XMLExists, and each of the other, non-XMLType SQL
expressions in that clause must be either a compile-time constant of a SQL built-in
data type or a bind variable that is bound to an instance of such a data type.

6.4.3 Pragma ora:no_schema: Using XML Schema-Based Data with
XQuery Full Text

Oracle recommends in general that you use non XML Schema-based XMLType data
when you use XQuery Full Text and an XML search index. But you can in some
circumstances use XML Schema-based XMLType data that is stored as binary XML.
Oracle XQuery pragma ora:no_schema can be useful in this context.

By default, when an XML search index is used to evaluate XML Schema-based data,
compile-time error ORA-18177 is raised. This is because the full-text indexing itself
makes no use of the associated XML schema: it is not type-aware. It treats all of
the text that it applies to as untyped. This error is raised even if you type-cast data

Chapter 6
Indexing XML Data for Full-Text Queries

6-67



appropriately and thus do not depend on the XML schema to cast types implicitly.
Example 6-44 illustrates this.

The error raised draws this to your attention, in case you might be expecting a full-text
condition in your query to depend on XML Schema types and typed operations.

In order to use a condition that depends on types you must explicitly cast the relevant
XQuery expressions to the appropriate types. Do not expect Oracle XML DB to use
the XML schema to perform implicit type casting. Failure to type-cast appropriately can
lead to results that you might not expect.

Example 6-45 shows a query of XML Schema-based data that uses explicit type-
casting to ensure that the proper condition is evaluated.

However, most uses of XQuery Full Text expressions, even with XML Schema-based
data, do not involve data that is typed. Just remember that if you do use a condition
that makes use of typed data then you must cast to the proper type.

In sum, if you are sure that your query does not involve typed data, or if you judge
that it is all right to treat particular typed data as if it were untyped, or if you explicitly
type-cast any data that needs to be typed, then you can use Oracle XQuery pragma
ora:no_schema in your query to inhibit raising the error and allow evaluation of the
query using an XML search index.

Example 6-44    XQuery Full Text Query with XML Schema-Based Data: Error
ORA-18177

SELECT XMLQuery('/PurchaseOrder/LineItems/LineItem'
                PASSING OBJECT_VALUE RETURNING CONTENT)
  FROM oe.purchaseorder
  WHERE XMLExists('/PurchaseOrder
                   [LineItems/LineItem/@ItemNumber > xs:integer("20")
                    and Actions/Action/User contains text "KPARTNER"]'
                  PASSING OBJECT_VALUE);
  FROM oe.purchaseorder
          *
ERROR at line 3:
ORA-18177: XQuery full text expression '/PurchaseOrder
[LineItems/LineItem/@ItemNumber > xs:integer("20")
and Actions/Action/User contains text "KPARTNER"]'
cannot be evaluated using XML text index

Example 6-45    Using XQuery Pragma ora:no_schema with XML Schema-Based
Data

SELECT XMLQuery('/PurchaseOrder/LineItems/LineItem'
                PASSING OBJECT_VALUE RETURNING CONTENT)
  FROM oe.purchaseorder
  WHERE XMLExists('(# ora:no_schema #)
                   {/PurchaseOrder
                    [LineItems/LineItem/@ItemNumber > xs:integer("20")
                     and Actions/Action/User contains text "KPARTNER"]}'
                  PASSING OBJECT_VALUE);

6.4.4 Pragma ora:use_xmltext_idx: Forcing the Use of an XML Search
Index

You can use XQuery pragma ora:use_xmltext_idx to force the use of an XML search
index.

Chapter 6
Indexing XML Data for Full-Text Queries

6-68



A given query involving XML data can be evaluated in various ways, depending on
the existence of different indexes and other factors. Sometimes the default evaluation
method is not the most performant and it would be more efficient to force the use of an
existing XML search index. You can use XQuery pragma ora:use_xmltext_idx to do
this. (An XML search index applies only to XMLType data stored as binary XML.)

For example, a WHERE clause might include two XMLExists expressions, only one of
which involves an XQuery full-text condition, and you might have an XMLIndex index
that applies to the XMLExists expression that has no full-text condition. With such a
query it is typically more efficient to use an XML search index to evaluate the entire
WHERE clause.

Even in some cases where there is no full-text condition in the query, the use of an
XML search index can provide the most efficient query evaluation.

The query in Example 6-46 illustrates the use of pragma ora:use_xmltext_idx. Only
the first of the XMLExists clauses uses a full-text condition. Because of the pragma,
the full-text index (po_ctx_idx, created in Example 6-41) is used for both XMLExists
clauses.

Example 6-46    Full-Text Query with XQuery Pragma ora:use_xmltext_idx

SELECT XMLQuery('/PurchaseOrder/LineItems/LineItem'
                PASSING OBJECT_VALUE RETURNING CONTENT)
  FROM po_binxml
  WHERE XMLExists('/PurchaseOrder/LineItems/LineItem
                   [Description contains text "Picnic"]' PASSING OBJECT_VALUE)
    AND XMLExists('(# ora:use_xmltext_idx #) {/PurchaseOrder[User="SBELL"]}'
                  PASSING OBJECT_VALUE);

6.4.5 Migrating from Using Oracle Text Index to XML Search Index
If you have legacy queries for XMLType data stored as binary XML that use SQL
function CONTAINS and an Oracle Text index that is not XML-enabled, then consider
using XQuery Full Text constructs instead.

The XQuery and XPath Full Text (XQFT) standard is supported by Oracle XML DB
starting with Oracle Database 12c Release 1 (12.1). This support applies only to
XMLType data stored as binary XML. Prior to that release, for full-text querying of XML
data you could use only an Oracle Text index that was not XML-enabled (not an XML
search index), and your full-text queries necessarily used Oracle-specific constructs:
SQL function CONTAINS.

If you have legacy code that does this, Oracle recommends that you migrate that code
to use XQFT. This section provides information about which XQFT constructs you can
use to replace the use of CONTAINS .

This use of an Oracle Text index can also be replaced by the use of an XML search
index. To replace a query that uses HASPATH by one that uses a simple XQuery
expression, you use Oracle XQuery pragma ora:use_xmltext_idx to specify that the
XML search index is to be picked up. This section also illustrates this.

Table 6-9 provides a mapping from typical queries that use Oracle-specific constructs
to queries that use XQuery Full Text.

Chapter 6
Indexing XML Data for Full-Text Queries

6-69



Table 6-9    Migrating Oracle-Specific XML Queries to XQuery Full Text

Original Example Replacement Example

CONTAINS(t.x, 'HASPATH (/P/LIs/LI/
Description1)') > 0

XMLExists('(# ora:use_xmltext_idx #) 
           {$d/P/LIs/LI/Description1}'
          PASSING t.x AS "d")

Or if the data is XML Schema-based:

XMLExists('(# ora:use_xmltext_idx #)
           {(# ora:no_schema #) 
            {$d/P/LIs/LI/Description1}}'
          PASSING t.x AS "d")

CONTAINS(t.x, 'Big INPATH
               (/P/LIs/LI/Description)') 
> 0

XMLExists('$d/P/LIs/LI/Description
           [. contains text "Big"]'
          PASSING t.x AS "d")

Or if the data is XML Schema-based:

XMLExists('(# ora:no_schema #)
           {$d/P/LIs/LI/Description
           [. contains text "Big"]}'
          PASSING t.x AS "d")

CONTAINS(t.x, '(Big) AND (Street) INPATH
               (/P/LIs/LI/Description)') 
> 0

XMLExists('$d/P/LIs/LI/Description
           [. contains text "Big" ftand 
"Street"]'
          PASSING t.x AS "d")

CONTAINS(t.x, '(Big) OR (Street) INPATH
               (/P/LIs/LI/Description)') 
> 0

XMLExists('$d/P/LIs/LI/Description
           [. contains text "Big" ftor 
"Street"]'
          PASSING t.x AS "d")

CONTAINS(t.x, '({Big}) NOT ({Street}) 
INPATH
               (/P/LIs/LI/Description)') 
> 0

XMLExists('$d/P/LIs/LI/Description
           [. contains text
            "Big" ftand ftnot "Street"]'
          PASSING t.x AS "d")

Chapter 6
Indexing XML Data for Full-Text Queries

6-70



Table 6-9    (Cont.) Migrating Oracle-Specific XML Queries to XQuery Full Text

Original Example Replacement Example

CONTAINS(t.x, '({Street}) MNOT ({Big 
Street}) INPATH
               (/P/LIs/LI/Description)') 
> 0

XMLExists('$d/P/LIs/LI/Description
           [. contains text
            "Street" not in "Big 
Street"]'
          PASSING t.x AS "d")

CONTAINS(t.x, '(NEAR (({Big}, {Street}), 
3) INPATH
               (/P/LIs/LI/Description)') 
> 0

XMLExists('$d/P/LIs/LI/Description
           [. contains text
            "Big" ftand "Street" window 
3 words]'
          PASSING t.x AS "d")

(Not applicable – Oracle Text queries are not XML
namespace aware.) XMLExists('declare namespace

           ipo="http://www.example.com/
IPO";
           /ipo:P/ipo:LIs/ipo:LI/
ipo:Description
           [. contains text "Big"]'
          PASSING t.x AS "d")

1 The path test can contain a predicate expression, which is the same for both the original query (with HASPATH) and its
replacement. For example: /PurchaseOrder/LineItems/LineItem/Part[@Id < "31415927"].

6.5 Indexing XMLType Data Stored Object-Relationally
You can effectively index XMLType data that is stored object-relationally by creating
B-tree indexes on the underlying database columns that correspond to XML nodes.

If the data to be indexed is a singleton, that is, if it can occur only once in any
XML instance document, then you can use a shortcut of ostensibly creating a function-
based index, where the expression defining the index is a functional application, with
an XPath-expression argument that targets the singleton data. A shortcut is defined for
XMLCast applied to XMLQuery, and another shortcut is defined for (deprecated) Oracle
SQL function extractValue.

In many cases, Oracle XML DB then automatically creates appropriate indexes on
the underlying object-relational tables or columns; it does not create a function-based
index on the targeted XMLType data as the CREATE INDEX statement would suggest.

In the case of the extractValue shortcut, the index created is a B-tree index. In the
case of XMLCast applied to XMLQuery, the index created is a function-based index on
the scalar value resulting from the functional expression.

If the data to be indexed is a collection, then you cannot use such a shortcut; you must
create the B-tree indexes manually.

Chapter 6
Indexing XMLType Data Stored Object-Relationally

6-71



• Indexing Non-Repeating Text Nodes or Attribute Values
Table purchaseorder in sample database schema OE is stored object-relationally.
Each purchase-order document has a single Reference element; this element is
a singleton. You can thus use a shortcut to create an index on the underlying
object-relational data.

• Indexing Repeating (Collection) Elements
In XMLType data stored object-relationally, a collection is stored as an ordered
collection table (OCT) of an XMLType instance, which means that you can directly
access its members. Because object-relational storage directly reflects the fine-
grained structure of the XML data, you can create indexes that target individual
collection members.

6.5.1 Indexing Non-Repeating Text Nodes or Attribute Values
Table purchaseorder in sample database schema OE is stored object-relationally. Each
purchase-order document has a single Reference element; this element is a singleton.
You can thus use a shortcut to create an index on the underlying object-relational data.

Example 6-47 shows a CREATE INDEX statement that ostensibly tries to create a
function-based index using XMLCast applied to XMLQuery, targeting the text content of
element Reference. (The content of this element is only text, so targeting the element
is the same as targeting its text node using XPath node test text().)

Example 6-48 ostensibly tries to create a function-based index using (deprecated)
Oracle SQL function extractValue, targeting the same data.

In reality, in both Example 6-47 and Example 6-48 no function-based index is created
on the targeted XMLType data. Instead, Oracle XML DB rewrites the CREATE INDEX
statements to create indexes on the underlying scalar data.

See Also:

Example 19-7 and Example 19-8 for information about XPath rewrite as it
applies to such CREATE INDEX statements

In some cases when you use either of these shortcuts, the CREATE INDEX statement is
not able to create an index on the underlying scalar data as described, and it instead
actually does create a function-based index on the referenced XMLType data. (This is
so, even if the value of the index might be a scalar.)

If this happens, drop the index, and create instead an XMLIndex index with a structured
component that targets the same XPath. As a general rule, Oracle recommends
against using a function-based index on XMLType data.

This is an instance of a general rule for XMLType data, regardless of the storage
method used: Use an XMLIndex with a structured component instead of a function-
based index. This rule applies starting with Oracle Database 11g Release 2 (11.2).
Respecting this rule obviates the overhead associated with maintenance operations
on function-based indexes, and it can increase the number of situations in which the
optimizer can correctly select the index.

Chapter 6
Indexing XMLType Data Stored Object-Relationally

6-72



Example 6-47    CREATE INDEX Using XMLCAST and XMLQUERY on a Singleton
Element

CREATE INDEX po_reference_ix ON purchaseorder
  (XMLCast(XMLQuery ('$p/PurchaseOrder/Reference' PASSING po.OBJECT_VALUE AS "p"
                                                  RETURNING CONTENT)
              AS VARCHAR2(128)));

Example 6-48    CREATE INDEX Using EXTRACTVALUE on a Singleton Element

CREATE INDEX po_reference_ix ON purchaseorder
  (extractValue(OBJECT_VALUE, '/PurchaseOrder/Reference'));

Related Topics

• Function-Based Indexes Are Deprecated for XMLType
In releases prior to Oracle Database 11g Release 2 (11.2), function-based indexes
were sometimes appropriate for use with XMLType data when an XPath expression
targeted a singleton node. Oracle recommends that you use the structured
component of XMLIndex instead.

6.5.2 Indexing Repeating (Collection) Elements
In XMLType data stored object-relationally, a collection is stored as an ordered
collection table (OCT) of an XMLType instance, which means that you can directly
access its members. Because object-relational storage directly reflects the fine-
grained structure of the XML data, you can create indexes that target individual
collection members.

You must create such indexes manually. The special feature of automatically
creating B-tree indexes when you ostensibly create a function-based index for
(deprecated) Oracle SQL function extractValue does not apply to collections (the
XPath expression passed to extractValue must target a singleton).

To create B-tree indexes for a collection, you must understand the structure of the
SQL object that is used to manage the collection. Given this information, you can
use conventional object-relational SQL code to created the indexes directly on the
appropriate SQL-object attributes. Refer to Guideline: Create indexes on ordered
collection tables for an example of how to do this.

Chapter 6
Indexing XMLType Data Stored Object-Relationally

6-73



7
Transformation and Validation of XMLType
Data

There are several Oracle SQL functions and XMLType APIs for transforming XMLType
data using XSLT stylesheets and for validating XMLType instances against an XML
schema.

• XSL Transformation and Oracle XML DB
You can apply XSL transformations to XML Schema-based documents using the
built-in Oracle XML DB XSLT processor. In-database XML-specific optimizations
can significantly reduce the memory required, eliminate the overhead associated
with parsing, and reduce network traffic.

• Validation of XMLType Instances
Besides needing to know whether a particular XML document is well-formed, you
often need to know whether it conforms to a given XML schema, that is, whether it
is valid with respect to that XML schema.

7.1 XSL Transformation and Oracle XML DB
You can apply XSL transformations to XML Schema-based documents using the
built-in Oracle XML DB XSLT processor. In-database XML-specific optimizations can
significantly reduce the memory required, eliminate the overhead associated with
parsing, and reduce network traffic.

The W3C XSLT Recommendation defines an XML language for specifying how to
transform XML documents from one form to another. See XSL Transformations (XSLT)
Version 1.0 for information about the XSLT standard.

Transformation can include mapping from one XML schema to another or mapping
from XML to some other format such as HTML or WML.

XSL transformation can be costly in terms of the amount of memory and processing
required. In typical XSL processors, the entire source document and stylesheet must
be parsed and loaded into memory, before processing can begin. Typically, XSL
processors use DOM to provide dynamic memory representations of document and
stylesheet, to allow random access to their different parts. The XSL processor then
applies the stylesheet to the source document, generating a third document.

Parsing and loading the document and stylesheet into memory before beginning
transformation requires significant memory and processor resources. It is especially
inefficient when only a small part of the document needs to be transformed.

Oracle XML DB includes an XSLT processor that performs XSL transformations
inside the database. In this way, it can provide XML-specific optimizations that can
significantly reduce the memory required to perform the transformation, eliminate
overhead associated with parsing, and reduce network traffic.

These optimizations are available, however, only when the source for the
transformation is a schema-based XML document. In that case, there is no need to

7-1

https://www.w3.org/TR/xslt-10/
https://www.w3.org/TR/xslt-10/


parse before processing can begin. The Oracle XML DB lazily loaded virtual DOM
loads content only on demand, as the nodes are accessed. This also reduces the
memory required, because only parts of the document that need to be processed are
loaded.

You can transform XML data in the following ways:

• In Oracle Database – Using Oracle SQL function XMLtransform, XMLType method
transform(), or PL/SQL package DBMS_XSLPROCESSOR

• In the middle tier – Using Oracle XML Developer's Kit transformation options ,
such as XSLT Processor for Java.

See Also:

• Oracle Database SQL Language Reference for information about SQL
function XMLTransform

• PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
and Oracle Database PL/SQL Packages and Types Reference for
information about PL/SQL package DBMS_XSLPROCESSOR

• Oracle XML Developer's Kit Programmer's Guide for information about
XSLT Processor for Java

Each of these XML transformation methods takes as input a source XML document
and an XSL stylesheet in the form of XMLType instances. For SQL function
XMLtransform and XMLType method transform(), the result of the transformation can
be an XML document or a non-XML document, such as HTML. However, for PL/SQL
package DBMS_XSLPROCESSOR, the result of the transformation is expected to be a
valid XML document. Any HTML data generated by a transformation using package
DBMS_XSLPROCESSOR is XHTML data, which is both valid XML data and valid HTML
data.

Example 7-1 shows part of an XSLT stylesheet, PurchaseOrder.xsl. The complete
stylesheet is given in XSLT Stylesheet Example, PurchaseOrder.xsl.

These is nothing Oracle XML DB-specific about the stylesheet of Example 7-1. A
stylesheet can be stored in an XMLType table or column or stored as non-schema-
based XML data inside Oracle XML DB Repository.

Example 7-1    XSLT Stylesheet Example: PurchaseOrder.xsl

<?xml version="1.0" encoding="WINDOWS-1252"?>
<xsl:stylesheet version="1.0"
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  xmlns:xdb="http://xmlns.oracle.com/xdb" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <xsl:template match="/">
    <html>
      <head/>
      <body bgcolor="#003333" text="#FFFFCC" link="#FFCC00" vlink="#66CC99" alink="#669999">
        <FONT FACE="Arial, Helvetica, sans-serif">
          <xsl:for-each select="PurchaseOrder"/>
          <xsl:for-each select="PurchaseOrder">
            <center>
              <span style="font-family:Arial; font-weight:bold">
                <FONT COLOR="#FF0000">

Chapter 7
XSL Transformation and Oracle XML DB

7-2



                  <B>PurchaseOrder </B>
                </FONT>
              </span>
            </center>
            <br/>
            <center>
              <xsl:for-each select="Reference">
                <span style="font-family:Arial; font-weight:bold">
                  <xsl:apply-templates/>
                </span>
              </xsl:for-each>
            </center>
          </xsl:for-each>
          <P>
            <xsl:for-each select="PurchaseOrder">
              <br/>
            </xsl:for-each>
            <P/>
            <P>
              <xsl:for-each select="PurchaseOrder">
                <br/>
              </xsl:for-each>
            </P>
          </P>
          <xsl:for-each select="PurchaseOrder"/>
          <xsl:for-each select="PurchaseOrder">
            <table border="0" width="100%" BGCOLOR="#000000">
              <tbody>
                <tr>
                  <td WIDTH="296">
                    <P>
                      <B>
                        <FONT SIZE="+1" COLOR="#FF0000" FACE="Arial, Helvetica, sans-serif">Internal</FONT>
                      </B>
                    </P>

                    ...

                  </td>
                  <td width="93"/>
                  <td valign="top" WIDTH="340">
                    <B>
                      <FONT COLOR="#FF0000">
                        <FONT SIZE="+1">Ship To</FONT>
                      </FONT>
                    </B>
                    <xsl:for-each select="ShippingInstructions">
                      <xsl:if test="position()=1"/>
                    </xsl:for-each>
                    <xsl:for-each select="ShippingInstructions">
                    </xsl:for-each>
 
                      ...

• SQL Function XMLTRANSFORM and XMLType Method TRANSFORM()
SQL function XMLtransform transforms an XML document by using an XSLT
stylesheet. It returns the processed output as XML, HTML, and so on, as specified
by the stylesheet.

• XSL Transformation Using DBUri Servlet
You can apply an XSL transformation to XML content that is generated by the
DBUri servlet.

Chapter 7
XSL Transformation and Oracle XML DB

7-3



7.1.1 SQL Function XMLTRANSFORM and XMLType Method
TRANSFORM()

SQL function XMLtransform transforms an XML document by using an XSLT
stylesheet. It returns the processed output as XML, HTML, and so on, as specified
by the stylesheet.

Figure 7-1 shows the syntax of Oracle SQL function XMLtransform. This function takes
as arguments an XMLType instance and an XSLT stylesheet. The stylesheet can be an
XMLType instance or a VARCHAR2 string literal. It applies the stylesheet to the instance
and returns an XMLType instance.

Figure 7-1    XMLTRANSFORM Syntax

XMLTRANSFORM ( XMLType_instance ,
XMLType_instance

string
)

You can alternatively use XMLType method transform() as an alternative to Oracle
SQL function XMLtransform. It has the same functionality.

Figure 7-2 shows how XMLtransform transforms an XML document by using an XSLT
stylesheet. It returns the processed output as XML, HTML, and so on, as specified
by the XSLT stylesheet. You typically use XMLtransform when retrieving or generating
XML documents stored as XMLType in the database.

See Also:

Figure 1-3 in Introduction to Oracle XML DB

Figure 7-2    Using XMLTRANSFORM

XSLT stylesheet

XMLType instance
(table, column, view)

transformed XMLType instance
(HTML, XML, ...)

XMLtransform

• XMLTRANSFORM and XMLType.transform(): Examples
Examples illustrate how to use Oracle SQL function XMLtransform and XMLType
method transform() to transform XML data stored as XMLType to various formats.

7.1.1.1 XMLTRANSFORM and XMLType.transform(): Examples
Examples illustrate how to use Oracle SQL function XMLtransform and XMLType
method transform() to transform XML data stored as XMLType to various formats.

Example 7-2 sets up an XML schema and tables that are needed to run other
examples in this chapter. The call to deleteSchema here ensures that there is

Chapter 7
XSL Transformation and Oracle XML DB

7-4



no existing XML schema before creating one. If no such schema exists, then
deleteSchema raises an error.

Example 7-3 stores an XSLT stylesheet, then retrieves it and uses it with Oracle SQL
function XMLTransform to transform the XML data stored in Example 7-2.

Example 7-4 uses XMLType method transform() with an XSL stylesheet created on
the fly.

Example 7-5 uses XMLTransform to apply an XSL stylesheet to produce HTML code.
PL/SQL constructor XDBURIType reads the XSL stylesheet from Oracle XML DB
Repository.

Only part of the HTML result is shown in Example 7-5. Omitted parts are indicated with
an ellipsis (. . .). Figure 7-3 shows what the transformed result looks like in a Web
browser.

Example 7-2    Registering an XML Schema and Inserting XML Data

BEGIN
  -- Delete the schema, if it already exists.
  DBMS_XMLSCHEMA.deleteSchema('http://www.example.com/schemas/ipo.xsd',4);
END;
/
BEGIN
  -- Register the schema
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://www.example.com/schemas/ipo.xsd',
    SCHEMADOC => '<schema targetNamespace="http://www.example.com/IPO"
                          xmlns="http://www.w3.org/2001/XMLSchema"
                          xmlns:ipo="http://www.example.com/IPO">
                    <!-- annotation>
                      <documentation xml:lang="en">
                       International Purchase order schema for Example.com
                       Copyright 2000 Example.com. All rights reserved.
                      </documentation>
                    </annotation -->
                    <element name="purchaseOrder" type="ipo:PurchaseOrderType"/>
                    <element name="comment" type="string"/>
                    <complexType name="PurchaseOrderType">
                      <sequence>
                        <element name="shipTo"     type="ipo:Address"/>
                        <element name="billTo"     type="ipo:Address"/>
                        <element ref="ipo:comment" minOccurs="0"/>
                        <element name="items"      type="ipo:Items"/>
                      </sequence>
                      <attribute name="orderDate" type="date"/>
                    </complexType>
                    <complexType name="Items">
                      <sequence>
                        <element name="item" minOccurs="0" maxOccurs="unbounded">
                          <complexType>
                            <sequence>
                              <element name="productName" type="string"/>
                              <element name="quantity">
                                <simpleType>
                                  <restriction base="positiveInteger">
                                    <maxExclusive value="100"/>
                                  </restriction>
                                </simpleType>
                              </element>

Chapter 7
XSL Transformation and Oracle XML DB

7-5



                              <element name="USPrice"    type="decimal"/>
                              <element ref="ipo:comment" minOccurs="0"/>
                              <element name="shipDate"   type="date" minOccurs="0"/>
                            </sequence>
                            <attribute name="partNum" type="ipo:SKU" use="required"/>
                          </complexType>
                        </element>
                      </sequence>
                    </complexType>
                    <complexType name="Address">
                      <sequence>
                        <element name="name"    type="string"/>
                        <element name="street"  type="string"/>
                        <element name="city"    type="string"/>
                        <element name="state"   type="string"/>
                        <element name="country" type="string"/>
                        <element name="zip"     type="string"/>
                      </sequence>
                    </complexType>
                    <simpleType name="SKU">
                      <restriction base="string">
                        <pattern value="[0-9]{3}-[A-Z]{2}"/>
                      </restriction>
                    </simpleType>
                  </schema>',
    LOCAL     => TRUE,
    GENTYPES  => TRUE);
END;
/

-- Create table to hold XML purchase-order documents, and insert the documents
DROP TABLE po_tab;
CREATE TABLE po_tab (id NUMBER, xmlcol XMLType) 
 XMLType COLUMN xmlcol
 XMLSCHEMA "http://www.example.com/schemas/ipo.xsd"
 ELEMENT "purchaseOrder";

INSERT INTO po_tab 
  VALUES(1, XMLType(
              '<?xml version="1.0"?>
               <ipo:purchaseOrder
                 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                 xmlns:ipo="http://www.example.com/IPO"
                 xsi:schemaLocation="http://www.example.com/IPO
                                     http://www.example.com/schemas/ipo.xsd"
                 orderDate="1999-12-01">
                 <shipTo>
                   <name>Helen Zoe</name>
                   <street>121 Broadway</street>
                   <city>Cardiff</city>
                   <state>Wales</state>
                   <country>UK</country>
                   <zip>CF2 1QJ</zip>
                 </shipTo>
                 <billTo>
                   <name>Robert Smith</name>
                   <street>8 Oak Avenue</street>
                   <city>Old Town</city>
                   <state>CA</state>
                   <country>US</country>
                   <zip>95819</zip>

Chapter 7
XSL Transformation and Oracle XML DB

7-6



                 </billTo>
                 <items>
                   <item partNum="833-AA">
                     <productName>Lapis necklace</productName>
                     <quantity>1</quantity>
                     <USPrice>99.95</USPrice>
                     <ipo:comment>Want this for the holidays!</ipo:comment>
                     <shipDate>1999-12-05</shipDate>
                   </item>
                 </items>
               </ipo:purchaseOrder>'));

Example 7-3    Using SQL Function XMLTRANSFORM to Apply an XSL
Stylesheet

DROP TABLE stylesheet_tab;
CREATE TABLE stylesheet_tab (id NUMBER, stylesheet XMLType);
INSERT INTO stylesheet_tab 
  VALUES (1, 
          XMLType(
            '<?xml version="1.0" ?>
             <xsl:stylesheet version="1.0" 
                             xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
               <xsl:template match="*">
                 <td>
                   <xsl:choose>
                     <xsl:when test="count(child::*) > 1">
                       <xsl:call-template name="nested"/>
                     </xsl:when>
                     <xsl:otherwise>
                       <xsl:value-of select="name(.)"/>:<xsl:value-of 
                                                          select="text()"/>
                     </xsl:otherwise>
                   </xsl:choose>
                 </td>
               </xsl:template>
               <xsl:template match="*" name="nested" priority="-1" 
mode="nested2">
                 <b>
                   <!-- xsl:value-of select="count(child::*)"/ -->
                   <xsl:choose>
                     <xsl:when test="count(child::*) > 1">
                       <xsl:value-of select="name(.)"/>:<xsl:apply-templates 
                                                          mode="nested2"/>
                     </xsl:when>
                     <xsl:otherwise>
                       <xsl:value-of select="name(.)"/>:<xsl:value-of 
                                                          select="text()"/>
                     </xsl:otherwise>
                   </xsl:choose>
                 </b>
               </xsl:template>
             </xsl:stylesheet>'));

SELECT XMLSerialize(DOCUMENT XMLtransform(x.xmlcol, y.stylesheet)
                    AS VARCHAR2(1000))
  AS result FROM po_tab x, stylesheet_tab y WHERE y.id = 1;

This produces the following output (pretty-printed here for readability):

Chapter 7
XSL Transformation and Oracle XML DB

7-7



RESULT
---------------------------------------------------------
<td>
  <b>ipo:purchaseOrder:
    <b>shipTo:
      <b>name:Helen Zoe</b>
      <b>street:100 Broadway</b>
      <b>city:Cardiff</b>
      <b>state:Wales</b>
      <b>country:UK</b>
      <b>zip:CF2 1QJ</b>
    </b>
    <b>billTo:
      <b>name:Robert Smith</b>
      <b>street:8 Oak Avenue</b>
      <b>city:Old Town</b>
      <b>state:CA</b>
      <b>country:US</b>
      <b>zip:95819</b>
    </b>
    <b>items:</b>
  </b>
</td>

Example 7-4    Using XMLType Method TRANSFORM() with a Transient XSL
Stylesheet

SELECT XMLSerialize(
         DOCUMENT
         x.xmlcol.transform(
           XMLType('<?xml version="1.0" ?>
                  <xsl:stylesheet
                      version="1.0"
                      xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
                    <xsl:template match="*">
                      <td>
                        <xsl:choose>
                          <xsl:when test="count(child::*) > 1">
                            <xsl:call-template name="nested"/>
                          </xsl:when>
                          <xsl:otherwise>
                            <xsl:value-of
                               select =
                                 "name(.)"/>:<xsl:value-of select="text()"/>
                          </xsl:otherwise>
                        </xsl:choose>
                      </td>
                    </xsl:template>
                    <xsl:template match="*" name="nested" priority="-1"
                                  mode="nested2">
                      <b>
                        <!-- xsl:value-of select="count(child::*)"/ -->
                        <xsl:choose>
                          <xsl:when test="count(child::*) > 1">
                            <xsl:value-of select="name(.)"/>:
                            <xsl:apply-templates mode="nested2"/>
                          </xsl:when>
                          <xsl:otherwise>
                            <xsl:value-of
                               select =
                                 "name(.)"/>:<xsl:value-of select="text()"/>

Chapter 7
XSL Transformation and Oracle XML DB

7-8



                          </xsl:otherwise>
                        </xsl:choose>
                      </b>
                    </xsl:template>
                  </xsl:stylesheet>'))
         AS varchar2(1000))
  FROM po_tab x;

Example 7-5    Using XMLTRANSFORM to Apply an XSL Stylesheet Retrieved
Using XDBURIType

SELECT
  XMLTransform(
    OBJECT_VALUE, 
    XDBURIType('/source/schemas/poSource/xsl/purchaseOrder.xsl').getXML())
  FROM purchaseorder
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
                  PASSING OBJECT_VALUE AS "p");
 
XMLTRANSFORM(OBJECT_VALUE, XDBURITYPE('/SOURCE/SCHEMAS/POSOURCE/XSL/PURCHASEORDER.XSL').GET
-------------------------------------------------------------------------------------------
--
<html xmlns:xdb="http://xmlns.oracle.com/xdb"
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <head/>
  <body bgcolor="#003333" text="#FFFFCC" link="#FFCC00" vlink="#66CC99" alink="#669999">
    <FONT FACE="Arial, Helvetica, sans-serif">
      <center>
        <span style="font-family:Arial; font-weight:bold">
          <FONT COLOR="#FF0000">
            <B>PurchaseOrder </B>
          </FONT>
        </span>
      </center>
      <br/>
      <center>
        <span style="font-family:Arial; font-weight:bold">SBELL-2002100912333601PDT</span>
      </center>
      <P>
        <br/>
        <P/>
        <P>
          <br/>
        </P>
      </P>
      <table border="0" width="100%" BGCOLOR="#000000">
        <tbody>
          <tr>
            <td WIDTH="296">
              <P>
                <B>
                  <FONT SIZE="+1" COLOR="#FF0000" FACE="Arial, Helvetica,
                        sans-serif">Internal</FONT>
                </B>
              </P>
              <table border="0" width="98%" BGCOLOR="#000099">

                                                     . . .

              </table>
            </td>
            <td width="93">
            </td>
            <td valign="top" WIDTH="340">
              <B>
                <FONT COLOR="#FF0000">
                  <FONT SIZE="+1">Ship To</FONT>

Chapter 7
XSL Transformation and Oracle XML DB

7-9



                </FONT>
              </B>
              <table border="0" BGCOLOR="#999900">
                . . .
              </table>
            </td>
          </tr>
        </tbody>
      </table>
      <br/>
      <B>
        <FONT COLOR="#FF0000" SIZE="+1">Items:</FONT>
      </B>
      <br/>
      <br/>
      <table border="0">
        . . .
      </table>
    </FONT>
  </body>
</html>
 
1 row selected.

7.1.2 XSL Transformation Using DBUri Servlet
You can apply an XSL transformation to XML content that is generated by the DBUri
servlet.

Figure 7-3 shows the result of such a transformation. The URL is the following (it is
split and truncated here):

http://localhost:8080/oradb/SCOTT/PURCHASEORDER/ROW/PurchaseOrder[Reference="SBELL-2003030912333601PDT"]
contenttype=text/html&transform=/home/SCOTT/xsl/purchaseOrder.xsl...

The presence of parameter transform causes the DBUri servlet to use SQL function
XMLTransform to apply the XSL stylesheet at /home/SCOTT/xsl/purchaseOrder.xsl
to the PurchaseOrder document that is identified by the main URL. The result of the
transformation, which is HTML code, is returned to the browser for display. The URL
also uses parameter contentType to specify that the MIME-type of the final document
is text/html.

Chapter 7
XSL Transformation and Oracle XML DB

7-10



Figure 7-3    Database XSL Transformation of a PurchaseOrder Using DBUri Servlet

Figure 7-4 shows table departments displayed as an HTML document. You need no
code to achieve this. You need only an XMLType view based on SQL/XML functions, an
industry-standard XSL stylesheet, and DBUri servlet.

Chapter 7
XSL Transformation and Oracle XML DB

7-11



Figure 7-4    Database XSL Transformation of Departments Table Using DBUri Servlet

7.2 Validation of XMLType Instances
Besides needing to know whether a particular XML document is well-formed, you often
need to know whether it conforms to a given XML schema, that is, whether it is valid
with respect to that XML schema.

XML schema-based data that is stored as binary XML it is automatically validated fully
whenever it is inserted or updated. This validation does not require building a DOM. It
is done using streaming, which is efficient and minimizes memory use.

For XMLType data that is stored object-relationally, full validation requires building a
DOM, which can be costly in terms of memory management. For this reason, Oracle
XML DB does not automatically perform full validation when you insert or update data
that is stored object-relationally.

However, in the process of decomposing XML data to store it object-relationally,
Oracle XML DB does automatically perform partial validation, to ensure that the
structure of the XML document conforms to the SQL data type definitions that were
derived from the XML schema.

If you require full validation for XMLType data stored object-relationally, then consider
validating on the client before inserting the data into the database or updating it.

You can use the following to perform full validation and manipulate the recorded
validation status of XML documents:

Chapter 7
Validation of XMLType Instances

7-12



• Oracle SQL function XMLIsValid and XMLType method IsSchemaValid() – Run the
validation process unconditionally. Do not record any validation status. Return:

– 1 if the document is determined to be valid.

– 0 if the document is determined to be invalid or the validity of the document
cannot be determined.

• XMLType method SchemaValidate() – Runs the validation process if the validation
status is 0, which it is by default. Sets the validation status to 1 if the document is
determined to be valid. (Otherwise, the status remains 0.)

• XMLType method isSchemaValidated() returns the recorded validation status of an
XMLType instance.

• XMLType method setSchemaValidated() sets (records) the validation status of an
XMLType instance.

The validation status indicates knowledge of validity, as follows:

• 1 means that the document is known to be valid.

• 0 means that validity of the document is unknown. The document might have been
shown to be invalid during a validation check, but that invalidity is not recorded.
A recorded validation status of 0 indicates only a lack of knowledge about the
document's validity.

• Partial and Full XML Schema Validation
When you insert XML Schema-based documents into the database they can be
validated partially or fully.

• Validating XML Data Stored as XMLType: Examples
Examples here illustrate how to use Oracle SQL function XMLIsValid and XMLType
methods isSchemaValid() and schemaValidate() to validate XML data being
stored as XMLType in Oracle XML DB.

See Also:

• Oracle Database SQL Language Reference for information about Oracle
SQL function XMLIsValid

• Oracle Database PL/SQL Packages and Types Reference
for information about XMLType methods IsSchemaValid(),
IsSchemaValidated(), SchemaValidate(), and setSchemaValidated()

7.2.1 Partial and Full XML Schema Validation
When you insert XML Schema-based documents into the database they can be
validated partially or fully.

• Partial Validation
For binary XML storage, Oracle XML DB validates XML Schema-based
documents fully when they are inserted into an XMLType table or column. For
object-relational XML storage, only a partial validation is performed. This is
because complete XML schema validation is quite costly for object-relational
storage, in terms of performance.

Chapter 7
Validation of XMLType Instances

7-13



• Full Validation
Loading XML Schema-based data into binary XML storage fully validates it against
the target XML schemas. For object-relational XMLType storage, you can force full
validation at any time.

7.2.1.1 Partial Validation
For binary XML storage, Oracle XML DB validates XML Schema-based documents
fully when they are inserted into an XMLType table or column. For object-relational XML
storage, only a partial validation is performed. This is because complete XML schema
validation is quite costly for object-relational storage, in terms of performance.

Partial validation ensures only that all of the mandatory elements and attributes are
present, and that there are no unexpected elements or attributes in the document.
That is, it ensures only that the structure of the XML document conforms to the SQL
data type definitions that were derived from the XML schema. Partial validation does
not ensure that the instance document is fully compliant with the XML schema.

Example 7-6 provides an example of failing partial validation while inserting an XML
document into table PurchaseOrder, which is stored object-relationally.

Example 7-6    Error When Inserting Incorrect XML Document (Partial Validation)

INSERT INTO purchaseorder
  VALUES(XMLType(bfilename('XMLDIR', 'InvalidElement.xml'),
                 nls_charset_id('AL32UTF8')));
  VALUES(XMLType(bfilename('XMLDIR', 'InvalidElement.xml'),
         *
ERROR at line 2:
ORA-30937: No schema definition for 'UserName' (namespace '##local') in 
parent
'/PurchaseOrder'

7.2.1.2 Full Validation
Loading XML Schema-based data into binary XML storage fully validates it against
the target XML schemas. For object-relational XMLType storage, you can force full
validation at any time.

To force full validation, use either of the following:

• Table level CHECK constraint

• PL/SQL BEFORE INSERT trigger

Both approaches ensure that only valid XML documents can be stored in the XMLType
table.

The advantage of a TABLE CHECK constraint is that it is easy to code. The disadvantage
is that it is based on Oracle SQL function XMLisValid, so it can only indicate whether
or not the XML document is valid. If an XML document is invalid, a TABLE CHECK
constraint cannot provide any information about why it is invalid.

A BEFORE INSERT trigger requires slightly more code. The trigger validates the
XML document by invoking XMLType method schemaValidate(). The advantage of
using schemaValidate() is that the exception raised provides additional information
about what was wrong with the instance document. Using a BEFORE INSERT trigger

Chapter 7
Validation of XMLType Instances

7-14



also makes it possible to attempt corrective action when an invalid document is
encountered.

• Full XML Schema Validation Costs Processing Time and Memory Usage
Unless you are using binary XML storage, full XML schema validation costs
processing time and memory. You should thus perform full XML schema validation
only when necessary.

7.2.1.2.1 Full XML Schema Validation Costs Processing Time and Memory Usage
Unless you are using binary XML storage, full XML schema validation costs
processing time and memory. You should thus perform full XML schema validation
only when necessary.

If you can rely on your application to validate an XML document then you can obtain
higher overall throughput with non-binary XML storage, by avoiding the overhead
associated with full validation. If you cannot be sure about the validity of incoming XML
documents, you can rely on the database to ensure that an XMLType table or column
contains only schema-valid XML documents.

Example 7-7 shows how to force a full XML schema validation by adding a CHECK
constraint to an XMLType table. In Example 7-7, the XML document InvalidReference
is a not valid with respect to the XML schema. The XML schema defines a minimum
length of 18 characters for the text node associated with the Reference element.
In this document, the node contains the value SBELL-20021009, which is only 14
characters long. Partial validation would not catch this error. Unless the constraint or
trigger is present, attempts to insert this document into the database would succeed.

Example 7-7    Forcing Full XML Schema Validation Using a CHECK Constraint

ALTER TABLE purchaseorder
  ADD CONSTRAINT validate_purchaseorder
  CHECK (XMLIsValid(OBJECT_VALUE) = 1);
 
Table altered.
 
INSERT INTO purchaseorder
  VALUES (XMLType(bfilename('XMLDIR', 'InvalidReference.xml'),
                  nls_charset_id('AL32UTF8')));

INSERT INTO purchaseorder
*
 
ERROR at line 1:
ORA-02290: check constraint (QUINE.VALIDATE_PURCHASEORDER) violated

Pseudocolumn OBJECT_VALUE can be used to access the content of an XMLType table
from within a trigger. Example 7-8 illustrates this, showing how to use a BEFORE INSERT
trigger to validate that the data being inserted into the XMLType table conforms to the
specified XML schema.

Example 7-8    Enforcing Full XML Schema Validation Using a BEFORE INSERT
Trigger

CREATE OR REPLACE TRIGGER validate_purchaseorder
   BEFORE INSERT ON purchaseorder

Chapter 7
Validation of XMLType Instances

7-15



   FOR EACH ROW
BEGIN
  IF (:new.OBJECT_VALUE IS NOT NULL) 
THEN :new.OBJECT_VALUE.schemavalidate();
  END IF;
END;
/

INSERT INTO purchaseorder
  VALUES (XMLType(bfilename('XMLDIR', 'InvalidReference.xml'),
                  nls_charset_id('AL32UTF8')));
  VALUES (XMLType( bfilename('XMLDIR', 'InvalidReference.xml'),
          *
ERROR at line 2:
ORA-31154: invalid XML document
ORA-19202: Error occurred in XML processing
LSX-00221: "SBELL-20021009" is too short (minimum length is 18)
LSX-00213: only 0 occurrences of particle "sequence", minimum is 1
ORA-06512: at "SYS.XMLTYPE", line 354
ORA-06512: at "QUINE.VALIDATE_PURCHASEORDER", line 3
ORA-04088: error during execution of trigger 
'QUINE.VALIDATE_PURCHASEORDER'

7.2.2 Validating XML Data Stored as XMLType: Examples
Examples here illustrate how to use Oracle SQL function XMLIsValid and XMLType
methods isSchemaValid() and schemaValidate() to validate XML data being stored
as XMLType in Oracle XML DB.

Example 7-9 and Example 7-10 show how to validate an XML instance against an
XML schema using PL/SQL method isSchemaValid().

XMLType method schemaValidate() can be used within INSERT and UPDATE triggers to
ensure that all instances stored in the table are validated against the XML schema.
Example 7-11 illustrates this.

Example 7-12 uses Oracle SQL function XMLIsValid to do the following:

• Verify that the XMLType instance conforms to the specified XML schema

• Ensure that the incoming XML documents are valid by using CHECK constraints

Note:

The validation functions and procedures described in Validation of XMLType
Instances facilitate validation checking. Of these, schemaValidate is the only
one that raises errors that indicate why validation has failed.

Example 7-9    Validating XML Using Method ISSCHEMAVALID() in SQL

SELECT x.xmlcol.isSchemaValid('http://www.example.com/schemas/ipo.xsd',
                              'purchaseOrder')
    FROM po_tab x;

Chapter 7
Validation of XMLType Instances

7-16



Example 7-10    Validating XML Using Method ISSCHEMAVALID() in PL/SQL

DECLARE
  xml_instance XMLType;
BEGIN
  SELECT x.xmlcol INTO xml_instance FROM po_tab x WHERE id = 1;
  IF xml_instance.isSchemaValid('http://www.example.com/schemas/ipo.xsd') = 0
    THEN raise_application_error(-20500, 'Invalid Instance');
    ELSE DBMS_OUTPUT.put_line('Instance is valid');
  END IF;
END;
/
Instance is valid
 
PL/SQL procedure successfully completed.

Example 7-11    Validating XML Using Method SCHEMAVALIDATE() within
Triggers

DROP TABLE po_tab;
CREATE TABLE po_tab OF XMLType 
  XMLSCHEMA "http://www.example.com/schemas/ipo.xsd" ELEMENT "purchaseOrder";

CREATE TRIGGER emp_trig BEFORE INSERT OR UPDATE ON po_tab FOR EACH ROW

DECLARE 
  newxml XMLType;
BEGIn
  newxml := :new.OBJECT_VALUE;
  XMLTYPE.schemavalidate(newxml);
END;
/

Example 7-12    Checking XML Validity Using XMLISVALID Within CHECK
Constraints

DROP TABLE po_tab;
CREATE TABLE po_tab OF XMLType 
   (CHECK(XMLIsValid(OBJECT_VALUE) = 1))
   XMLSCHEMA "http://www.example.com/schemas/ipo.xsd" ELEMENT "purchaseOrder";

Chapter 7
Validation of XMLType Instances

7-17



Part III
Relational Data To and From XML Data

There are various ways that you can view existing relational data as XML data.

• Generation of XML Data from Relational Data
Oracle XML DB provides features for generating (constructing) XML data from
relational data in the database. There are both SQL/XML standard functions and
Oracle-specific functions and packages for generating XML data from relational
content.

• Relational Views over XML Data
Relational database views over XML data provide conventional, relational access
to XML content.

• XMLType Views
You can create XMLType views over relational and object-relational data.



8
Generation of XML Data from Relational
Data

Oracle XML DB provides features for generating (constructing) XML data from
relational data in the database. There are both SQL/XML standard functions and
Oracle-specific functions and packages for generating XML data from relational
content.

• Overview of Generating XML Data
You can generate XML data using Oracle XML DB using standard SQL/XML
functions, Oracle-specific SQL functions, PL/SQL subprograms from package
DBMS_XMLGEN, or DBURIType.

• Generation of XML Data Using SQL Functions
Oracle XML DB provides SQL functions that you can use to construct XML data.
Most of these belong to the SQL/XML standard.

• Generation of XML Data Using DBMS_XMLGEN
PL/SQL package DBMS_XMLGEN creates XML documents from SQL query results. It
retrieves an XML document as a CLOB or XMLType value.

• SYS_XMLAGG Oracle SQL Function
Oracle SQL function sys_XMLAgg aggregates all XML documents or fragments
represented by an expression, producing a single XML document from them. It
wraps the results of the expression in a new element named ROWSET (by default).

• Ordering Query Results Before Aggregating, Using XMLAGG ORDER BY Clause
To use the XMLAgg ORDER BY clause before aggregation, specify the ORDER BY
clause following the first XMLAGG argument.

• Returning a Rowset Using XMLTABLE
You can use standard SQL/XML function XMLTable to return a rowset with relevant
portions of a document extracted as multiple rows.

See Also:

XQuery and Oracle XML DB for information about constructing XML data
using SQL/XML functions XMLQuery and XMLTable

8.1 Overview of Generating XML Data
You can generate XML data using Oracle XML DB using standard SQL/XML functions,
Oracle-specific SQL functions, PL/SQL subprograms from package DBMS_XMLGEN, or
DBURIType.

• Use standard SQL/XML functions. See Generation of XML Data Using SQL
Functions.

8-1



• Use Oracle SQL functions . See the following sections:

– XMLCOLATTVAL Oracle SQL Function

– XMLCDATA Oracle SQL Function

– SYS_XMLAGG Oracle SQL Function. This operates on groups of rows,
aggregating several XML documents into one.

• Use PL/SQL package DBMS_XMLGEN. See Generation of XML Data Using
DBMS_XMLGEN.

• Use a DBURIType instance to construct XML documents from database data. See
Data Access Using URIs.

See Also:

• Overview of How To Use Oracle XML DB

• Transformation and Validation of XMLType Data

• PL/SQL APIs for XMLType

• Java DOM API for XMLType

8.2 Generation of XML Data Using SQL Functions
Oracle XML DB provides SQL functions that you can use to construct XML data. Most
of these belong to the SQL/XML standard.

The standard XML-generation functions are also known as SQL/XML publishing or
generation functions.

The use of SQL/XML function XMLQuery is not limited to generating (publishing) XML
data. Function XMLQuery is very general and is referred to in this book as a SQL/XML
query and update function.

The following XML-generating SQL functions are Oracle-specific (not part of the
SQL/XML standard):

• XMLCOLATTVAL Oracle SQL Function.

• XMLCDATA Oracle SQL Function.

• SYS_XMLAGG Oracle SQL Function. This operates on groups of relational rows,
aggregating several XML documents into one.

All of the XML-generation SQL functions convert scalars and user-defined data-type
instances to their canonical XML format. In this canonical mapping, user-defined data-
type attributes are mapped to XML elements.

• XMLELEMENT and XMLATTRIBUTES SQL/XML Functions
SQL/XML standard function XMLElement constructs XML elements from relational
data. SQL/XML standard function XMLAttributes can be used together with
XMLElement, to specify attributes for the generated elements.

Chapter 8
Generation of XML Data Using SQL Functions

8-2



• XMLFOREST SQL/XML Function
You use SQL/XML standard function XMLForest to construct a forest of XML
elements.

• XMLCONCAT SQL/XML Function
You use SQL/XML standard function XMLConcat to construct an XML fragment by
concatenating multiple XMLType instances.

• XMLAGG SQL/XML Function
You use SQL/XML standard function XMLAgg to construct a forest of XML elements
from a collection of XML elements — it is an aggregate function.

• XMLPI SQL/XML Function
You use SQL/XML standard function XMLPI to construct an XML processing
instruction (PI).

• XMLCOMMENT SQL/XML Function
You use SQL/XML standard function XMLComment to construct an XML comment.

• XMLSERIALIZE SQL/XML Function
You use SQL/XML standard function XMLSerialize to obtain a string or LOB
representation of XML data.

• XMLPARSE SQL/XML Function
You use SQL/XML standard function XMLParse to parse a string containing XML
data and construct a corresponding XMLType instance.

• XMLCOLATTVAL Oracle SQL Function
Oracle SQL function XMLColAttVal generates a forest of XML column elements
containing the values of the arguments passed in. This function is an Oracle
extension to the SQL/XML ANSI-ISO standard functions.

• XMLCDATA Oracle SQL Function
You use Oracle SQL function XMLCDATA to generate an XML CDATA section.

See Also:

• XQuery and Oracle XML DB for information about constructing XML data
using SQL/XML function XMLQuery

• Oracle Database SQL Language Reference for information about Oracle
support for the SQL/XML standard

8.2.1 XMLELEMENT and XMLATTRIBUTES SQL/XML Functions
SQL/XML standard function XMLElement constructs XML elements from relational data.
SQL/XML standard function XMLAttributes can be used together with XMLElement, to
specify attributes for the generated elements.

SQL/XML standard function XMLElement takes as arguments an XML element name,
an optional collection of attributes for the element, and zero or more additional
arguments that make up the element content. It returns an XMLType instance.

Chapter 8
Generation of XML Data Using SQL Functions

8-3



Figure 8-1    XMLELEMENT Syntax

XMLELEMENT (

ENTITYESCAPING

NOENTITYESCAPING
NAME

identifier

EVALNAME value_expr

, XML_attributes_clause , value_expr

AS

c_alias

)

For an explanation of keywords ENTITYESCAPING and NOENTITYESCAPING, see Escape
of Characters in Generated XML Data. These keywords are Oracle extensions to
standard SQL/XML functions XMLElement and XMLAttributes.

The first argument to function XMLElement defines an identifier that names the root
XML element to be created. The root-element identifier argument can be defined using
a literal identifier (identifier, in Figure 8-1) or by EVALNAME followed by an expression
(value_expr) that evaluates to an identifier. However it is defined, the identifier must
not be NULL or else an error is raised. The possibility of using EVALNAME is an Oracle
extension to standard SQL/XML function XMLElement.

The optional XML-attributes-clause argument of function XMLElement specifies the
attributes of the root element to be generated. Figure 8-2 shows the syntax of this
argument.

In addition to the optional XML-attributes-clause argument, function XMLElement
accepts zero or more value_expr arguments that make up the content of the root
element (child elements and text content). If an XML-attributes-clause argument is
also present then these content arguments must follow the XML-attributes-clause
argument. Each of the content-argument expressions is evaluated, and the result is
converted to XML format. If a value argument evaluates to NULL, then no content is
created for that argument.

Note:

The AS preceding an alias (c_alias) is required by the SQL/XML standard,
but is optional for Oracle.

The optional XML-attributes-clause argument uses SQL/XML standard function
XMLAttributes to specify the attributes of the root element. Function XMLAttributes
can be used only in a call to function XMLElement. It cannot be used on its own.

Chapter 8
Generation of XML Data Using SQL Functions

8-4



Figure 8-2    XMLAttributes Clause Syntax (XMLATTRIBUTES)

XMLATTRIBUTES

(

ENTITYESCAPING

NOENTITYESCAPING

SCHEMACHECK

NOSCHEMACHECK

value_expr

AS

c_alias

AS EVALNAME value_expr

,

)

For an explanation of keywords ENTITYESCAPING and NOENTITYESCAPING, see Escape
of Characters in Generated XML Data. These keywords are Oracle extensions to
standard SQL/XML functions XMLElement and XMLAttributes.

Keywords SCHEMACHECK and NOSCHEMACHECK determine whether or not a run-time check
is made of the generated attributes, to see if any of them specify a schema location
that corresponds to an XML schema that is registered with Oracle XML DB, and, if so,
to try to generate XML schema-based XML data accordingly. The default behavior is
that provided by NOSCHEMACHECK: no check is made. In releases prior to 12c Release
1 (12.1), the default behavior is to perform the check. Keyword SCHEMACHECK can be
used to obtain backward compatibility.

A similar check is always made at compile time, regardless of the presence or
absence of NOSCHEMACHECK. This means, in particular, that if you use a string literal
to specify an XML schema location attribute value, then a (compile-time) check is
made, and, if appropriate, XML schema-based data is generated accordingly.

Keywords SCHEMACHECK and NOSCHEMACHECK are Oracle extensions to standard
SQL/XML function XMLAttributes.

Note:

If a view is created to generate XML data, function XMLAttributes is used
to add XML-schema location references, and the target XML schema has
not yet been registered with Oracle XML DB, then the XML data that is
generated is not XML schema-based. If the XML schema is subsequently
registered, then XML data that is generated thereafter is also not XML-
schema-based. To create XML schema-based data, you must recompile the
view.

Argument XML-attributes-clause itself contains one or more value_expr
expressions as arguments to function XMLAttributes. These are evaluated to obtain
the values for the attributes of the root element. (Do not confuse these value_expr
arguments to function XMLAttributes with the value_expr arguments to function

Chapter 8
Generation of XML Data Using SQL Functions

8-5



XMLElement, which specify the content of the root element.) The optional AS c_alias
clause for each value_expr specifies that the attribute name is c_alias, which can be
either a string literal or EVALNAME followed by an expression that evaluates to a string
literal.

Note:

The following are Oracle extensions to the standard SQL/XML syntax:

• The possibility of using EVALNAME.

• The fact that AS preceding an alias (c_alias) is optional.

If an attribute value expression evaluates to NULL, then no corresponding attribute is
created. The data type of an attribute value expression cannot be an object type or a
collection.

• Escape of Characters in Generated XML Data
As specified by the SQL/XML standard, characters in explicit identifiers are not
escaped in any way – it is up to you to ensure that valid XML names are used.
This applies to all SQL/XML functions.

• Formatting of XML Dates and Timestamps
The XML Schema standard specifies that dates and timestamps in XML data be
in standard formats. XML generation functions in Oracle XML DB produce XML
dates and timestamps according to this standard.

• XMLElement Examples
Examples here illustrate the use SQL/XML function XMLElement.

8.2.1.1 Escape of Characters in Generated XML Data
As specified by the SQL/XML standard, characters in explicit identifiers are not
escaped in any way – it is up to you to ensure that valid XML names are used. This
applies to all SQL/XML functions.

In particular, it applies to the root-element identifier of XMLElement (identifier, in
Figure 8-1) and to attribute identifier aliases named with AS clauses of XMLAttributes
(see Figure 8-2).

However, other XML data that is generated is escaped, by default, to ensure that
only valid XML NameChar characters are generated. As part of generating a valid XML
element or attribute name from a SQL identifier, each character that is disallowed in an
XML name is replaced with an underscore character (_), followed by the hexadecimal
Unicode representation of the original character, followed by a second underscore
character. For example, the colon character (:) is escaped by replacing it with _003A_,
where 003A is the hexadecimal Unicode representation.

Escaping applies to characters in the evaluated value_expr arguments to all SQL/XML
functions, including XMLElement and XMLAttributes. It applies also to the characters
of an attribute identifier that is defined implicitly from an XMLAttributes attribute value
expression that is not followed by an AS clause: the escaped form of the SQL column
name is used as the name of the attribute.

Chapter 8
Generation of XML Data Using SQL Functions

8-6



In some cases, you might not need or want character escaping. If you know, for
example, that the XML data being generated is well-formed, then you can save
some processing time by inhibiting escaping. You can do that by specifying the
keyword NOENTITYESCAPING for SQL/XML functions XMLElement and XMLAttributes.
Keyword ENTITYESCAPING imposes escaping, which is the default behavior. Keywords
NOENTITYESCAPING and ENTITYESCAPING are Oracle extensions to standard SQL/XML
functions XMLElement and XMLAttributes.

8.2.1.2 Formatting of XML Dates and Timestamps
The XML Schema standard specifies that dates and timestamps in XML data be in
standard formats. XML generation functions in Oracle XML DB produce XML dates
and timestamps according to this standard.

In releases prior to Oracle Database 10g Release 2, the database settings for date
and timestamp formats, not the XML Schema standard formats, were used for XML.
You can reproduce this previous behavior by setting the database event 19119, level
0x8, as follows:

ALTER SESSION SET EVENTS '19119 TRACE NAME CONTEXT FOREVER, LEVEL 0x8';

If you must otherwise produce a non-standard XML date or timestamp, use SQL
function to_char – see Example 8-1.

See Also:

XML Schema Part 2: Datatypes, D. ISO 8601 Date and Time Formats for the
XML Schema specification of XML date and timestamp formats

8.2.1.3 XMLElement Examples
Examples here illustrate the use SQL/XML function XMLElement.

Example 8-1 uses XMLElement to generate an XML date with a format that is different
from the XML Schema standard date format.

Example 8-2 uses XMLElement to generate an Emp element for each employee, with the
employee name as the content.

Example 8-3 uses XMLElement to generate an Emp element for each employee, with
child elements that provide the employee name and hire date.

Example 8-4 uses XMLElement to generate an Emp element for each employee, with
attributes id and name.

As mentioned in Escape of Characters in Generated XML Data, characters in the
root-element name and the names of any attributes defined by AS clauses are not
escaped. Characters in an identifier name are escaped only if the name is created
from an evaluated expression (such as a column reference).

Example 8-5 shows that, with XML data constructed using XMLElement, the root-
element name and the attribute name are not escaped. Invalid XML is produced

Chapter 8
Generation of XML Data Using SQL Functions

8-7



because greater-than sign (>) and a comma (,) are not allowed in XML element and
attribute names.

A full description of character escaping is included in the SQL/XML standard.

Example 8-6 illustrates the use of namespaces to create an XML schema-based
document. Assuming that an XML schema "http://www.oracle.com/Employee.xsd"
exists and has no target namespace, the query in Example 8-6 creates an XMLType
instance conforming to that schema:

Example 8-7 uses XMLElement to generate an XML document with employee
and department information, using data from sample database schema table
hr.departments.

Example 8-1    XMLELEMENT: Formatting a Date

-- With standard XML date format:
SELECT XMLElement("Date", hire_date)
  FROM hr.employees
  WHERE employee_id = 203;
 
XMLELEMENT("DATE",HIRE_DATE)
----------------------------
<Date>2002-06-07</Date>
 
1 row selected.
 
-- With an alternative date format:
SELECT XMLElement("Date", to_char(hire_date))
  FROM hr.employees
  WHERE employee_id = 203;
 
XMLELEMENT("DATE",TO_CHAR(HIRE_DATE))
-------------------------------------
<Date>07-JUN-02</Date>
 
1 row selected.

Example 8-2    XMLELEMENT: Generating an Element for Each Employee

SELECT e.employee_id, 
       XMLELEMENT ("Emp", e.first_name ||' '|| e.last_name) AS "RESULT"
   FROM hr.employees e
   WHERE employee_id > 200;

This query produces the following typical result:

EMPLOYEE_ID RESULT
----------- -----------------------------------
        201 <Emp>Michael Hartstein</Emp>
        202 <Emp>Pat Fay</Emp>
        203 <Emp>Susan Mavris</Emp>
        204 <Emp>Hermann Baer</Emp>
        205 <Emp>Shelley Higgins</Emp>
        206 <Emp>William Gietz</Emp>
 
6 rows selected.

SQL/XML function XMLElement can also be nested, to produce XML data with a nested
structure.

Chapter 8
Generation of XML Data Using SQL Functions

8-8



Example 8-3    XMLELEMENT: Generating Nested XML

SELECT XMLElement("Emp", 
                   XMLElement("name", e.first_name ||' '|| e.last_name),
                   XMLElement("hiredate", e.hire_date)) AS "RESULT" 
FROM hr.employees e 
WHERE employee_id > 200;

This query produces the following typical XML result:

RESULT
-----------------------------------------------------------------------
<Emp><name>Michael Hartstein</name><hiredate>2004-02-17</hiredate></Emp>
<Emp><name>Pat Fay</name><hiredate>2005-08-17</hiredate></Emp>
<Emp><name>Susan Mavris</name><hiredate>2002-06-07</hiredate></Emp>
<Emp><name>Hermann Baer</name><hiredate>2002-06-07</hiredate></Emp>
<Emp><name>Shelley Higgins</name><hiredate>2002-06-07</hiredate></Emp>
<Emp><name>William Gietz</name><hiredate>2002-06-07</hiredate></Emp>
 
6 rows selected.

Example 8-4    XMLELEMENT: Generating Employee Elements with Attributes ID
and Name

SELECT XMLElement("Emp", XMLAttributes(
                           e.employee_id as "ID",
                           e.first_name ||' ' || e.last_name AS "name"))
  AS "RESULT"
  FROM hr.employees e
  WHERE employee_id > 200;

This query produces the following typical XML result fragment:

RESULT
-----------------------------------------------
<Emp ID="201" name="Michael Hartstein"></Emp>
<Emp ID="202" name="Pat Fay"></Emp>
<Emp ID="203" name="Susan Mavris"></Emp>
<Emp ID="204" name="Hermann Baer"></Emp>
<Emp ID="205" name="Shelley Higgins"></Emp>
<Emp ID="206" name="William Gietz"></Emp>
 
6 rows selected.

Example 8-5    XMLELEMENT: Characters in Generated XML Data Are Not
Escaped

SELECT XMLElement("Emp->Special", 
                  XMLAttributes(e.last_name || ', ' || e.first_name
                                AS "Last,First"))
   AS "RESULT"
   FROM hr.employees e
   WHERE employee_id = 201;

This query produces the following result, which is not well-formed XML:

RESULT
--------------------------------------------------------------------
<Emp->Special Last,First="Hartstein, Michael"></Emp->Special>

1 row selected.

Chapter 8
Generation of XML Data Using SQL Functions

8-9



Example 8-6    Creating a Schema-Based XML Document Using XMLELEMENT
with Namespaces

SELECT XMLElement("Employee", 
                  XMLAttributes('http://www.w3.org/2001/XMLSchema' AS
                                  "xmlns:xsi",
                                'http://www.oracle.com/Employee.xsd' AS
                                  "xsi:nonamespaceSchemaLocation"),
                  XMLForest(employee_id, last_name, salary)) AS "RESULT"
   FROM hr.employees
   WHERE department_id = 10;

This creates the following XML document that conforms to XML schema
Employee.xsd. (The result is shown here pretty-printed, for clarity.)

RESULT
-----------------------------------------------------------------------------
<Employee xmlns:xsi="http://www.w3.org/2001/XMLSchema"
          xsi:nonamespaceSchemaLocation="http://www.oracle.com/Employee.xsd">
   <EMPLOYEE_ID>200</EMPLOYEE_ID>
   <LAST_NAME>Whalen</LAST_NAME>
   <SALARY>4400</SALARY>
</Employee>

1 row selected.

Example 8-7    XMLELEMENT: Generating an Element from a User-Defined Data-
Type Instance

CREATE OR REPLACE TYPE emp_t AS OBJECT ("@EMPNO" NUMBER(4),
                                         ENAME VARCHAR2(10));

CREATE OR REPLACE TYPE emplist_t AS TABLE OF emp_t;

CREATE OR REPLACE TYPE dept_t AS OBJECT ("@DEPTNO" NUMBER(2),
                                         DNAME VARCHAR2(14),
                                         EMP_LIST emplist_t);

SELECT XMLElement("Department",
                  dept_t(department_id,
                         department_name,
                         cast(MULTISET
                              (SELECT employee_id, last_name
                                 FROM hr.employees e
                                 WHERE e.department_id = d.department_id)
                              AS emplist_t)))
  AS deptxml
  FROM hr.departments d
  WHERE d.department_id = 10;

This produces an XML document which contains the Department element and the
canonical mapping of type dept_t.

DEPTXML
-------------
<Department>
  <DEPT_T DEPTNO="10">
    <DNAME>ACCOUNTING</DNAME>
    <EMPLIST>
      <EMP_T EMPNO="7782">
        <ENAME>CLARK</ENAME>

Chapter 8
Generation of XML Data Using SQL Functions

8-10



      </EMP_T>
      <EMP_T EMPNO="7839">
        <ENAME>KING</ENAME>
      </EMP_T>
      <EMP_T EMPNO="7934">
        <ENAME>MILLER</ENAME>
      </EMP_T>
    </EMPLIST>
  </DEPT_T>
</Department>

1 row selected.

8.2.2 XMLFOREST SQL/XML Function
You use SQL/XML standard function XMLForest to construct a forest of XML elements.

Its arguments are expressions to be evaluated, with optional aliases. Figure 8-3
describes the XMLForest syntax.

Figure 8-3    XMLFOREST Syntax

XMLFOREST ( value_expr

AS
c_alias

EVALNAME value_expr

,

)

Each of the value expressions (value_expr in Figure 8-3) is converted to XML format,
and, optionally, identifier c_alias is used as the attribute identifier (c_alias can be a
string literal or EVALNAME followed by an expression that evaluates to a string literal).
The possibility of using EVALNAME is an Oracle extension to standard SQL/XML function
XMLForest.

For an object type or collection, the AS clause is required. For other types, the AS
clause is optional. For a given expression, if the AS clause is omitted, then characters
in the evaluated value expression are escaped to form the name of the enclosing tag
of the element. The escaping is as defined in Escape of Characters in Generated XML
Data. If the value expression evaluates to NULL, then no element is created for that
expression.

Example 8-8 uses XMLElement and XMLForest to generate an Emp element for each
employee, with a name attribute and with child elements containing the employee hire
date and department as the content.

Example 8-8    XMLFOREST: Generating Elements with Attribute and Child
Elements

SELECT XMLElement("Emp", 
                  XMLAttributes(e.first_name ||' '|| e.last_name AS "name"),
                  XMLForest(e.hire_date, e.department AS "department"))
AS "RESULT"
FROM employees e WHERE e.department_id = 20;

(The WHERE clause is used here to keep the example brief.) This query produces the
following XML result:

Chapter 8
Generation of XML Data Using SQL Functions

8-11



RESULT
-------------------------------------
<Emp name="Michael Hartstein">
  <HIRE_DATE>2004-02-17</HIRE_DATE>
  <department>20</department>
</Emp>
<Emp name="Pat Fay">
  <HIRE_DATE>2005-08-17</HIRE_DATE>
  <department>20</department>
</Emp>

2 rows selected.

See Also:

Example 8-19

Example 8-9 uses XMLForest to generate hierarchical XML data from user-defined
data-type instances.

Example 8-9    XMLFOREST: Generating an Element from a User-Defined Data-
Type Instance

SELECT XMLForest(
  dept_t(department_id,
         department_name,
         cast(MULTISET
              (SELECT employee_id, last_name
                 FROM hr.employees e WHERE e.department_id = d.department_id)
              AS emplist_t))
         AS "Department")
  AS deptxml
  FROM hr.departments d
  WHERE department_id=10;

This produces an XML document with element Department containing attribute DEPTNO
and child element DNAME.

DEPTXML
---------------------------------
<Department DEPTNO="10">
  <DNAME>Administration</DNAME>
    <EMP_LIST>
      <EMP_T EMPNO="200">
        <ENAME>Whalen</ENAME>
      </EMP_T>
    </EMP_LIST>
</Department>

1 row selected.

You might want to compare this example with Example 8-7 and Example 8-24.

Chapter 8
Generation of XML Data Using SQL Functions

8-12



8.2.3 XMLCONCAT SQL/XML Function
You use SQL/XML standard function XMLConcat to construct an XML fragment by
concatenating multiple XMLType instances.

Figure 8-4 shows the XMLConcat syntax. Function XMLConcat has two forms:

• The first form takes as argument an XMLSequenceType value, which is a varray of
XMLType instances, and returns a single XMLType instance that is the concatenation
of all of the elements of the varray. This form is useful to collapse lists of XMLType
instances into a single instance.

• The second form takes an arbitrary number of XMLType instances and
concatenates them together. If one of the values is NULL, then it is ignored in
the result. If all the values are NULL, then the result is NULL. This form is used
to concatenate arbitrary number of XMLType instances in the same row. Function
XMLAgg can be used to concatenate XMLType instances across rows.

Figure 8-4    XMLCONCAT Syntax

XMLCONCAT ( XMLType_instance

,

)

Example 8-10 uses SQL/XML function XMLConcat to return a concatenation of XMLType
instances from an XMLSequenceType value (a varray of XMLType instances).

Example 8-10    XMLCONCAT: Concatenating XMLType Instances from a
Sequence

SELECT XMLSerialize(
         CONTENT
         XMLConcat(XMLSequenceType(
                   XMLType('<PartNo>1236</PartNo>'),
                   XMLType('<PartName>Widget</PartName>'),
                   XMLType('<PartPrice>29.99</PartPrice>')))
         AS CLOB)
  AS "RESULT"
  FROM DUAL;

This query returns a single XML fragment. (The result is shown here pretty-printed, for
clarity.)

RESULT
---------------
<PartNo>1236</PartNo>
<PartName>Widget</PartName>
<PartPrice>29.99</PartPrice>

1 row selected.

Example 8-11 uses XMLConcat to create and concatenate XML elements for employee
first and the last names.

Chapter 8
Generation of XML Data Using SQL Functions

8-13



Example 8-11    XMLCONCAT: Concatenating XML Elements

SELECT XMLConcat(XMLElement("first", e.first_name), 
                 XMLElement("last", e.last_name))
  AS "RESULT"
  FROM employees e;

This query produces the following XML fragment:

RESULT
--------------------------------------------
<first>Den</first><last>Raphaely</last>
<first>Alexander</first><last>Khoo</last>
<first>Shelli</first><last>Baida</last>
<first>Sigal</first><last>Tobias</last>
<first>Guy</first><last>Himuro</last>
<first>Karen</first><last>Colmenares</last>
 
6 rows selected.

8.2.4 XMLAGG SQL/XML Function
You use SQL/XML standard function XMLAgg to construct a forest of XML elements
from a collection of XML elements — it is an aggregate function.

Figure 8-5 describes the XMLAgg syntax.

Figure 8-5    XMLAGG Syntax

XMLAGG ( XMLType_instance

order_by_clause

)

The order_by_clause is the following:

ORDER BY [list of: expr [ASC|DESC] [NULLS {FIRST|LAST}]]

Numeric literals are not interpreted as column positions. For example, ORDER BY 1
does not mean order by the first column. Instead, numeric literals are interpreted as
any other literals.

As with SQL/XML function XMLConcat, any arguments whose value is NULL are
dropped from the result. SQL/XML function XMLAgg is similar to Oracle SQL function
sys_XMLAgg, but XMLAgg returns a forest of nodes and it does not accept an XMLFormat
parameter.

SQL/XML function XMLAgg can be used to concatenate XMLType instances across
multiple rows. It also accepts an optional ORDER BY clause, to order the XML values
being aggregated. Function XMLAgg produces one aggregated XML result for each
group. If there is no group by specified in the query, then it returns a single aggregated
XML result for all the rows of the query.

Example 8-12 uses SQL/XML functions XMLAgg and XMLElement to construct a
Department element that contains Employee elements that have employee job ID and
last name as their contents. It also orders the Employee elements in the department by
employee last name. (The result is shown pretty-printed, for clarity.)

Chapter 8
Generation of XML Data Using SQL Functions

8-14



Example 8-12    XMLAGG: Generating a Department Element with Child
Employee Elements

SELECT XMLElement("Department", XMLAgg(XMLElement("Employee",
                                                  e.job_id||' '||e.last_name)
                                       ORDER BY e.last_name))
  AS "Dept_list"     
  FROM hr.employees e
  WHERE e.department_id = 30 OR e.department_id = 40;

Dept_list
------------------
<Department>
  <Employee>PU_CLERK Baida</Employee>
  <Employee>PU_CLERK Colmenares</Employee>
  <Employee>PU_CLERK Himuro</Employee>
  <Employee>PU_CLERK Khoo</Employee>
  <Employee>HR_REP Mavris</Employee>
  <Employee>PU_MAN Raphaely</Employee>
  <Employee>PU_CLERK Tobias</Employee>
</Department>

1 row selected.

The result is a single row, because XMLAgg aggregates the employee rows.

Example 8-13 shows how to use the GROUP BY clause to group the returned set of rows
into multiple groups, forming multiple Department elements. (The result is shown here
pretty-printed, for clarity.)

Example 8-13    XMLAGG: Using GROUP BY to Generate Multiple Department
Elements

SELECT XMLElement("Department", XMLAttributes(department_id AS "deptno"), 
                  XMLAgg(XMLElement("Employee", e.job_id||' '||e.last_name)))
   AS "Dept_list"
   FROM hr.employees e
   GROUP BY e.department_id;

Dept_list
------------------
<Department deptno="30">
  <Employee>PU_MAN Raphaely</Employee>
  <Employee>PU_CLERK Colmenares</Employee>
  <Employee>PU_CLERK Himuro</Employee>
  <Employee>PU_CLERK Tobias</Employee>
  <Employee>PU_CLERK Baida</Employee>
  <Employee>PU_CLERK Khoo</Employee></Department>

<Department deptno="40">
  <Employee>HR_REP Mavris</Employee>
</Department>

2 rows selected.

You can order the employees within each department by using the ORDER BY clause
inside the XMLAgg expression.

Chapter 8
Generation of XML Data Using SQL Functions

8-15



Note:

Within the ORDER BY clause, Oracle Database does not interpret number
literals as column positions, as it does in other uses of this clause.

Function XMLAgg can be used to reflect the hierarchical nature of some relationships
that exist in tables. Example 8-14 generates a department element for department 30.
Within this element is a child element emp for each employee of the department. Within
each employee element is a dependent element for each dependent of that employee.

Example 8-14    XMLAGG: Generating Nested Elements

SELECT last_name, employee_id FROM employees WHERE department_id = 30;
 
LAST_NAME                 EMPLOYEE_ID
------------------------- -----------
Raphaely                          114
Khoo                              115
Baida                             116
Tobias                            117
Himuro                            118
Colmenares                        119
 
6 rows selected.
 

A dependents table holds the dependents of each employee.

CREATE TABLE hr.dependents (id NUMBER(4) PRIMARY KEY,
                            employee_id NUMBER(4),
                            name VARCHAR2(10));
Table created.
INSERT INTO dependents VALUES (1, 114, 'MARK');
1 row created.
INSERT INTO dependents VALUES (2, 114, 'JACK');
1 row created.
INSERT INTO dependents VALUES (3, 115, 'JANE');
1 row created.
INSERT INTO dependents VALUES (4, 116, 'HELEN');
1 row created.
INSERT INTO dependents VALUES (5, 116, 'FRANK');
1 row created.
COMMIT;
Commit complete.
 

The following query generates the XML data for a department that contains the
information about dependents. (The result is shown here pretty-printed, for clarity.)

SELECT
  XMLElement(
    "Department",
    XMLAttributes(d.department_name AS "name"),
    (SELECT
       XMLAgg(XMLElement("emp",
                         XMLAttributes(e.last_name AS name),
                         (SELECT XMLAgg(XMLElement("dependent",
                                        XMLAttributes(de.name AS "name")))

Chapter 8
Generation of XML Data Using SQL Functions

8-16



                            FROM dependents de
                            WHERE de.employee_id = e.employee_id)))
       FROM employees e
       WHERE e.department_id = d.department_id)) AS "dept_list"
  FROM departments d
  WHERE department_id = 30;
 
dept_list
--------------------------------------------------------------------------------
<Department name="Purchasing">
  <emp NAME="Raphaely">
    <dependent name="MARK"></dependent>
    <dependent name="JACK"></dependent>
  </emp><emp NAME="Khoo">
    <dependent name="JANE"></dependent>
  </emp>
  <emp NAME="Baida">
    <dependent name="HELEN"></dependent>
    <dependent name="FRANK"></dependent>
  </emp><emp NAME="Tobias"></emp>
  <emp NAME="Himuro"></emp>
  <emp NAME="Colmenares"></emp>
</Department>
 
1 row selected.

8.2.5 XMLPI SQL/XML Function
You use SQL/XML standard function XMLPI to construct an XML processing instruction
(PI).

Figure 8-6 shows the syntax:

Figure 8-6    XMLPI Syntax

XMLPI (

NAME

identifier

EVALNAME value_expr

, value_expr

)

Argument value_expr is evaluated, and the string result is appended to the optional
identifier (identifier), separated by a space. This concatenation is then enclosed
between "<?" and "?>" to create the processing instruction. That is, if string-result
is the result of evaluating value_expr, then the generated processing instruction is
<?identifier string-result?>. If string-result is the empty string, '', then the
function returns <?identifier?>.

As an alternative to using keyword NAME followed by a literal string identifier, you
can use keyword EVALNAME followed by an expression that evaluates to a string to
be used as the identifier. The possibility of using EVALNAME is an Oracle extension to
standard SQL/XML function XMLPI.

An error is raised if the constructed XML is not a legal XML processing instruction. In
particular:

• identifier must not be the word "xml" (uppercase, lowercase, or mixed case).

Chapter 8
Generation of XML Data Using SQL Functions

8-17



• string-result must not contain the character sequence "?>".

Function XMLPI returns an instance of XMLType. If string-result is NULL, then it
returns NULL.

Example 8-15 uses XMLPI to generate a simple processing instruction.

Example 8-15    Using SQL/XML Function XMLPI

SELECT XMLPI(NAME "OrderAnalysisComp",
             'imported, reconfigured, disassembled')
  AS pi FROM DUAL; 

This results in the following output:

PI
----------------------------------------------------------
<?OrderAnalysisComp imported, reconfigured, disassembled?>

1 row selected.

8.2.6 XMLCOMMENT SQL/XML Function
You use SQL/XML standard function XMLComment to construct an XML comment.

Figure 8-7 shows the syntax:

Figure 8-7    XMLComment Syntax

XMLCOMMENT ( value_expr )

Argument value_expr is evaluated to a string, and the result is used as the body
of the generated XML comment. The result is thus <!--string-result-->, where
string-result is the string result of evaluating value_expr. If string-result is the
empty string, then the comment is empty: <!---->.

An error is raised if the constructed XML is not a legal XML comment. In particular,
string-result must not contain two consecutive hyphens (-): "--".

Function XMLComment returns an instance of XMLType. If string-result is NULL, then
the function returns NULL.

Example 8-16 uses XMLComment to generate a simple XML comment.

Example 8-16    Using SQL/XML Function XMLCOMMENT

SELECT XMLComment('This is a comment') AS cmnt FROM DUAL; 

This query results in the following output:

CMNT
--------------------------
<!--This is a comment-->

Chapter 8
Generation of XML Data Using SQL Functions

8-18



8.2.7 XMLSERIALIZE SQL/XML Function
You use SQL/XML standard function XMLSerialize to obtain a string or LOB
representation of XML data.

Figure 8-8 shows the syntax of XMLSerialize:

Figure 8-8    XMLSerialize Syntax

XMLSERIALIZE (
DOCUMENT

CONTENT
value_expr

AS datatype

ENCODING xml_encoding_spec VERSION string_literal

NO INDENT

INDENT

SIZE = number
HIDE

SHOW
DEFAULTS

)

Argument value_expr is evaluated, and the resulting XMLType instance is serialized to
produce the content of the created string or LOB. If present1, the specified datatype
must be one of the following (the default data type is CLOB):

• VARCHAR2(N), where N is the size in bytes2

• CLOB

• BLOB

If you specify DOCUMENT, then the result of evaluating value_expr must be a well-
formed document. In particular, it must have a single root. If the result is not a well-
formed document, then an error is raised. If you specify CONTENT, however, then the
result of value_expr is not checked for being well-formed.

If value_expr evaluates to NULL or to the empty string (''), then function
XMLSerialize returns NULL.

The ENCODING clause specifies the character encoding for XML data that is
serialized as a BLOB instance. xml_encoding_spec is an XML encoding declaration
(encoding="..."). If datatype is BLOB and you specify an ENCODING clause, then the
output is encoded as specified, and xml_encoding_spec is added to the prolog to
indicate the BLOB encoding. If you specify an ENCODING clause with a datatype other
than BLOB, then an error is raised. For UTF-16 characters, xml_encoding_spec must be
one of the following:

• encoding=UTF-16BE – Big-endian UTF-16 encoding

1 The SQL/XML standard requires argument data-type to be present, but it is optional in the Oracle XML DB
implementation of the standard, for ease of use.

2 The limit is 32767 or 4000 bytes, depending on the value of initialization parameter MAX_STRING_SIZE.  See
Oracle Database PL/SQL Packages and Types Reference.

Chapter 8
Generation of XML Data Using SQL Functions

8-19



• encoding=UTF-16LE – Little-endian UTF-16 encoding

If you specify VERSION then the specified version is used in the XML declaration (<?xml
version="..." ...?>).

If you specify NO INDENT, then all insignificant whitespace is stripped, so that it does
not appear in the output. If you specify INDENT SIZE = N, where N is a whole number,
then the output is pretty-printed using a relative indentation of N spaces. If N is 0, then
pretty-printing inserts a newline character after each element, placing each element
on a line by itself, but there is no other insignificant whitespace in the output. If you
specify INDENT without a SIZE specification, then 2-space indenting is used. If you
specify neither NO INDENT nor INDENT, then the behavior (pretty-printing or not) is
indeterminate.

HIDE DEFAULTS and SHOW DEFAULTS apply only to XML schema-based data. If you
specify SHOW DEFAULTS and the input data is missing any optional elements or
attributes for which the XML schema defines default values, then those elements
or attributes are included in the output with their default values. If you specify HIDE
DEFAULTS, then no such elements or attributes are included in the output. HIDE
DEFAULTS is the default behavior.

Example 8-17 uses XMLSerialize to produce a CLOB instance containing serialized
XML data.

Example 8-17    Using SQL/XML Function XMLSERIALIZE

SELECT XMLSerialize(DOCUMENT XMLType('<poid>143598</poid>') AS CLOB)
  AS xmlserialize_doc FROM DUAL; 

This results in the following output:

XMLSERIALIZE_DOC
-------------------
<poid>143598</poid>

8.2.8 XMLPARSE SQL/XML Function
You use SQL/XML standard function XMLParse to parse a string containing XML data
and construct a corresponding XMLType instance.

Figure 8-9 shows the syntax:

Figure 8-9    XMLParse Syntax

XMLPARSE (
DOCUMENT

CONTENT
value_expr

WELLFORMED

)

Argument value_expr is evaluated to produce the string that is parsed. If you specify
DOCUMENT, then value_expr must correspond to a singly rooted, well-formed XML
document. If you specify CONTENT, then value_expr need only correspond to a well-
formed XML fragment (it need not be singly rooted).

Chapter 8
Generation of XML Data Using SQL Functions

8-20



Keyword WELLFORMED is an Oracle XML DB extension to the SQL/XML standard. When
you specify WELLFORMED, you are informing the parser that argument value_expr is
well-formed, so Oracle XML DB does not check to ensure that it is well-formed.

Function XMLParse returns an instance of XMLType. If value_expr evaluates to NULL,
then the function returns NULL.

Example 8-18 uses XMLParse to parse a string of XML code and produce an XMLType
instance.

Example 8-18    Using SQL/XML Function XMLPARSE

SELECT XMLParse(CONTENT 
                '124 <purchaseOrder poNo="12435">
                       <customerName> Acme Enterprises</customerName>
                       <itemNo>32987457</itemNo>
                     </purchaseOrder>'
                WELLFORMED)
  AS po FROM DUAL d;

This results in the following output:

PO
-----------------------------------------------
124 <purchaseOrder poNo="12435">
<customerName>Acme Enterprises</customerName>
<itemNo>32987457</itemNo>
</purchaseOrder>

See Also:

Extensible Markup Language (XML) 1.0 for the definition of well-formed XML
documents and fragments

8.2.9 XMLCOLATTVAL Oracle SQL Function
Oracle SQL function XMLColAttVal generates a forest of XML column elements
containing the values of the arguments passed in. This function is an Oracle extension
to the SQL/XML ANSI-ISO standard functions.

Figure 8-10 shows the XMLColAttVal syntax.

Figure 8-10    XMLCOLATTVAL Syntax

XMLCOLATTVAL ( value_expr

AS
c_alias

EVALNAME value_expr

,

)

Chapter 8
Generation of XML Data Using SQL Functions

8-21



The arguments are used as the values of the name attribute of the column element. The
c_alias values are used as the attribute identifiers.

As an alternative to using keyword AS followed by a literal string c_alias, you can use
AS EVALNAME followed by an expression that evaluates to a string to be used as the
attribute identifier.

Because argument values value_expr are used only as attribute values, they need not
be escaped in any way. This is in contrast to function XMLForest. It means that you can
use XMLColAttVal to transport SQL columns and values without escaping.

Example 8-19 uses XMLColAttVal to generate an Emp element for each employee,
with a name attribute, and with column elements that have the employee hire date and
department as the content.

Example 8-19    XMLCOLATTVAL: Generating Elements with Attribute and Child
Elements

SELECT XMLElement("Emp", 
                  XMLAttributes(e.first_name ||' '||e.last_name AS "fullname" ),
                  XMLColAttVal(e.hire_date, e.department_id AS "department"))
  AS "RESULT" 
  FROM hr.employees e
  WHERE e.department_id = 30;

This query produces the following XML result. (The result is shown here pretty-printed,
for clarity.)

RESULT
-----------------------------------------------------------
<Emp fullname="Den Raphaely">
  <column name = "HIRE_DATE">2002-12-07</column>
  <column name = "department">30</column>
</Emp>
<Emp fullname="Alexander Khoo">
  <column name = "HIRE_DATE">2003-05-18</column>
  <column name = "department">30</column>
</Emp>
<Emp fullname="Shelli Baida">
  <column name = "HIRE_DATE">2005-12-24</column>
  <column name = "department">30</column>
</Emp>
<Emp fullname="Sigal Tobias">
  <column name = "HIRE_DATE">2005-07-24</column>
  <column name = "department">30</column>
</Emp>
<Emp fullname="Guy Himuro">
  <column name = "HIRE_DATE">2006-11-15</column>
  <column name = "department">30</column>
</Emp>
<Emp fullname="Karen Colmenares">
  <column name = "HIRE_DATE">2007-08-10</column>
  <column name = "department">30</column>
</Emp>
 
6 rows selected.

Chapter 8
Generation of XML Data Using SQL Functions

8-22



See Also:

Example 8-8

8.2.10 XMLCDATA Oracle SQL Function
You use Oracle SQL function XMLCDATA to generate an XML CDATA section.

Figure 8-11 shows the syntax:

Figure 8-11    XMLCDATA Syntax

XMLCDATA ( value_expr )

Argument value_expr is evaluated to a string, and the result is used as the body of the
generated XML CDATA section, <![CDATA[string-result]]>, where string-result is
the result of evaluating value_expr. If string-result is the empty string, then the
CDATA section is empty: <![CDATA[]]>.

An error is raised if the constructed XML is not a legal XML CDATA section. In particular,
string-result must not contain two consecutive right brackets (]): "]]".

Function XMLCDATA returns an instance of XMLType. If string-result is NULL, then the
function returns NULL.

Example 8-20 uses XMLCDATA to generate an XML CDATA section.

Example 8-20    Using Oracle SQL Function XMLCDATA

SELECT XMLElement("PurchaseOrder",
                  XMLElement("Address",
                             XMLCDATA('100 Pennsylvania Ave.'),
                             XMLElement("City", 'Washington, D.C.')))
  AS RESULT FROM DUAL;
                            

This results in the following output. (The result is shown here pretty-printed, for clarity.)

RESULT
--------------------------
<PurchaseOrder>
  <Address>
    <![CDATA[100 Pennsylvania Ave.]]>
    <City>Washington, D.C.</City>
  </Address>
</PurchaseOrder>

Chapter 8
Generation of XML Data Using SQL Functions

8-23



8.3 Generation of XML Data Using DBMS_XMLGEN
PL/SQL package DBMS_XMLGEN creates XML documents from SQL query results. It
retrieves an XML document as a CLOB or XMLType value.

It provides a fetch interface, whereby you can specify the maximum number of rows
to retrieve and the number of rows to skip. For example, the first fetch could retrieve
a maximum of ten rows, skipping the first four. This is especially useful for pagination
requirements in Web applications.

Package DBMS_XMLGEN also provides options for changing tag names for ROW, ROWSET,
and so on. The parameters of the package can restrict the number of rows retrieved
and the enclosing tag names.

• Using PL/SQL Package DBMS_XMLGEN
You can use package DBMS_XMLGEN to generate XML data from relational data.

• Functions and Procedures of Package DBMS_XMLGEN
PL/SQL package DBMS_XMLGEN provides functions and procedures for generating
XML data from relational data.

• DBMS_XMLGEN Examples
Examples here illustrate the use of PL/SQL package DBMS_XMLGEN.

See Also:

• Oracle Database PL/SQL Packages and Types Reference

• Oracle XML Developer's Kit Programmer's Guide (compare
OracleXMLQuery with DBMS_XMLGEN)

8.3.1 Using PL/SQL Package DBMS_XMLGEN
You can use package DBMS_XMLGEN to generate XML data from relational data.

Figure 8-12 illustrates how to use package DBMS_XMLGEN. The steps are as follows:

1. Get the context from the package by supplying a SQL query and calling PL/SQL
function newContext.

2. Pass the context to all procedures or functions in the package to set the various
options. For example, to set the ROW element name, use setRowTag(ctx), where
ctx is the context got from the previous newContext call.

3. Get the XML result, using PL/SQL function getXML or getXMLType. By setting the
maximum number of rows to be retrieved for each fetch using PL/SQL procedure
setMaxRows, you can call either of these functions repeatedly, retrieving up to the
maximum number of rows for each call. These functions return XML data (as a
CLOB value and as an instance of XMLType, respectively), unless there are no rows
retrieved. In that case, these functions return NULL. To determine how many rows
were retrieved, use PL/SQL function getNumRowsProcessed.

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-24



4. You can reset the query to start again and repeat step 3.

5. Call PL/SQL procedure closeContext to free up any previously allocated
resources.

Figure 8-12    Using PL/SQL Package DBMS_XMLGEN

set

the options




REGISTER

Query

close




User, browser, 

client or 


application

bind

values

Generated

XML


as DOM
User, browser, 


client or 

application

Generated

XML


as String

fetch

XML

Using DBMS_XMLGEN to Generate XML





In conjunction with a SQL query, PL/SQL method DBMS_XMLGEN.getXML() typically
returns a result similar to the following, as a CLOB value:

<?xml version="1.0"?>
<ROWSET>
 <ROW>
  <EMPLOYEE_ID>100</EMPLOYEE_ID>
  <FIRST_NAME>Steven</FIRST_NAME>
  <LAST_NAME>King</LAST_NAME>
  <EMAIL>SKING</EMAIL>
  <PHONE_NUMBER>515.123.4567</PHONE_NUMBER>
  <HIRE_DATE>17-JUN-87</HIRE_DATE>
  <JOB_ID>AD_PRES</JOB_ID>
  <SALARY>24000</SALARY>
  <DEPARTMENT_ID>90</DEPARTMENT_ID>
 </ROW>
 <ROW>
  <EMPLOYEE_ID>101</EMPLOYEE_ID>
  <FIRST_NAME>Neena</FIRST_NAME>
  <LAST_NAME>Kochhar</LAST_NAME>
  <EMAIL>NKOCHHAR</EMAIL>
  <PHONE_NUMBER>515.123.4568</PHONE_NUMBER>
  <HIRE_DATE>21-SEP-89</HIRE_DATE>
  <JOB_ID>AD_VP</JOB_ID>
  <SALARY>17000</SALARY>
  <MANAGER_ID>100</MANAGER_ID>
  <DEPARTMENT_ID>90</DEPARTMENT_ID>

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-25



 </ROW>
</ROWSET>

The default mapping between relational data and XML data is as follows:

• Each row returned by the SQL query maps to an XML element with the default
element name ROW.

• Each column returned by the SQL query maps to a child element of the ROW
element.

• The entire result is wrapped in a ROWSET element.

• Binary data is transformed to its hexadecimal representation.

Element names ROW and ROWSET can be replaced with names you choose, using
DBMS_XMLGEN procedures setRowTagName and setRowSetTagName, respectively.

The CLOB value returned by getXML has the same encoding as the database character
set. If the database character set is SHIFTJIS, then the XML document returned is
also SHIFTJIS.

8.3.2 Functions and Procedures of Package DBMS_XMLGEN
PL/SQL package DBMS_XMLGEN provides functions and procedures for generating XML
data from relational data.

Table 8-1 describes the functions and procedures of package DBMS_XMLGEN.

Table 8-1    DBMS_XMLGEN Functions and Procedures

Function or Procedure Description

SUBTYPE ctxHandle IS NUMBER
The context handle used by all functions.

Document Type Definition (DTD) or schema specifications:

NONE CONSTANT NUMBER:= 0;

DTD CONSTANT NUMBER:= 1;

SCHEMA CONSTANT NUMBER:= 2;

Can be used in function getXML to specify whether to generate
a DTD or XML schema or neither (NONE). Only the NONE
specification is supported.

newContext()
Given a query string, generate a new context handle to be used in
subsequent functions.

newContext(
  queryString IN VARCHAR2)

Returns a new context

Parameter: queryString (IN)- the query string, the result of
which must be converted to XML

Returns: Context handle. Call this function first to obtain a handle
that you can use in the getXML and other functions to get the XML
back from the result.

newContext(
  queryString IN SYS_REFCURSOR)
  RETURN ctxHandle;

Creates a new context handle from a PL/SQL cursor variable. The
context handle can be used for the rest of the functions.

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-26



Table 8-1    (Cont.) DBMS_XMLGEN Functions and Procedures

Function or Procedure Description

newContextFromHierarchy(
  queryString IN VARCHAR2)
  RETURN ctxHandle;

Parameter: queryString (IN) - the query string, the result of
which must be converted to XML. The query is a hierarchical
query typically formed using a CONNECT BY clause, and the result
must have the same property as the result set generated by a
CONNECT BY query. The result set must have only two columns,
the level number and an XML value. The level number is used
to determine the hierarchical position of the XML value within the
result XML document.

Returns: Context handle. Call this function first to obtain a handle
that you can use in the getXML and other functions to get a
hierarchical XML with recursive elements back from the result.

setRowTag()
Sets the name of the element separating all the rows. The default
name is ROW.

setRowTag(ctx IN ctxHandle,
          rowTag IN VARCHAR2);

Parameters:

ctx(IN) - the context handle obtained from the newContext call.

rowTag(IN) - the name of the ROW element. A NULL value for
rowTag indicates that you do not want the ROW element to be
present.

Call this procedure to set the name of the ROW element, if you
do not want the default ROW name to show up. You can also set
rowTag to NULL to suppress the ROW element itself.

However, since function getXML returns complete XML
documents, not XML fragments, there must be a (single) root
element. Therefore, an error is raised if both the rowTag value
and the rowSetTag value (see setRowSetTag, next) are NULL
and there is more than one column or row in the output.

setRowSetTag()
Sets the name of the document root element. The default name is
ROWSET

setRowSetTag(
  ctx IN ctxHandle, 
  rowSetTag IN VARCHAR2);

Parameters:

ctx(IN) – the context handle obtained from the newContext call.

rowSetTag(IN) – the name of the document root element to be
used in the output. A NULL value for rowSetTag indicates that you
do not want the ROWSET element to be present.

Call this procedure to set the name of the document root element,
if you do not want the default name ROWSET to be used. You can
set rowSetTag to NULL to suppress printing of the document root
element.

However, since function getXML returns complete XML
documents, not XML fragments, there must be a (single) root
element. Therefore, an error is raised if both the rowTag value
and the rowSetTag value (see setRowTag, previous) are NULL
and there is more than one column or row in the output, or if the
rowSetTag value is NULL and there is more than one row in the
output.

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-27



Table 8-1    (Cont.) DBMS_XMLGEN Functions and Procedures

Function or Procedure Description

getXML()
Gets the XML document by fetching the maximum number of rows
specified. It appends the XML document to the CLOB passed in.

getXML(
  ctx IN ctxHandle, 
  clobval IN OUT NCOPY clob, 
  dtdOrSchema IN number:= NONE);

Parameters:

ctx(IN) - The context handle obtained from calling newContext.

clobval(IN/OUT) - the CLOB to which the XML document is to
be appended,

dtdOrSchema(IN) - whether you should generate the DTD or
Schema. This parameter is NOT supported.

Use this version of function getXML, to avoid any extra CLOB
copies and if you want to reuse the same CLOB for subsequent
calls. This getXML call is more efficient than the next flavor, though
this involves that you create the LOB locator. When generating the
XML, the number of rows indicated by the setSkipRows call are
skipped, then the maximum number of rows as specified by the
setMaxRows call (or the entire result if not specified) is fetched
and converted to XML. Use the getNumRowsProcessed function
to check if any rows were retrieved or not.

getXML()
Generates the XML document and returns it as a CLOB.

getXML(
  ctx IN ctxHandle, 
  dtdOrSchema IN number:= NONE) 
  RETURN clob;

Parameters:

ctx(IN) - The context handle obtained from calling newContext.

dtdOrSchema(IN) - whether to generate a DTD or XML schema.
This parameter is not supported.

Returns: A temporary CLOB containing the document. Free
the temporary CLOB obtained from this function using the
DBMS_LOB.freeTemporary call.

getXMLType(
  ctx IN ctxHandle, 
  dtdOrSchema IN number:= NONE)
  RETURN XMLType;

Parameters:

ctx(IN) - The context handle obtained from calling newContext.

dtdOrSchema(IN) - whether to generate a DTD or XML schema.
This parameter is not supported.

Returns: An XMLType instance containing the document.

getXML(
  sqlQuery IN VARCHAR2, 
  dtdOrSchema IN NUMBER := NONE)
  RETURN CLOB;

Converts the query results from the SQL query string sqlQuery to
XML format.

Returns: A CLOB instance.

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-28



Table 8-1    (Cont.) DBMS_XMLGEN Functions and Procedures

Function or Procedure Description

getXMLType(
  sqlQuery IN VARCHAR2, 
  dtdOrSchema IN NUMBER := 
NONE)   
  RETURN XMLType;

Converts the query results from the SQL query string sqlQuery to
XML format.

Returns: An XMLType instance.

getNumRowsProcessed()
Gets the number of SQL rows processed when generating XML
data using function getXML. This count does not include the
number of rows skipped before generating XML data.

getNumRowsProcessed(
  ctx IN ctxHandle) 
  RETURN number;

Parameter: queryString(IN)- the query string, the result of
which must be converted to XML

Returns: The number of SQL rows that were processed in the last
call to getXML.

You can call this to find out if the end of the result set has
been reached. This does not include the number of rows skipped
before generating XML data. Use this function to determine the
terminating condition if you are calling getXML in a loop. getXML
always generates an XML document even if there are no rows
present.

setMaxRows()
Sets the maximum number of rows to fetch from the SQL query
result for every invocation of the getXML call. It is an error
to call this function on a context handle created by function
newContextFromHierarchy.

setMaxRows(ctx IN ctxHandle, 
           maxRows IN NUMBER);

Parameters:

ctx(IN) - the context handle corresponding to the query
executed,

maxRows(IN) - the maximum number of rows to get for each call
to getXML.

The maxRows parameter can be used when generating paginated
results using this utility. For instance when generating a page of
XML or HTML data, you can restrict the number of rows converted
to XML and then in subsequent calls, you can get the next set of
rows and so on. This also can provide for faster response times.
It is an error to call this procedure on a context handle created by
function newContextFromHierarchy.

setSkipRows()
Skips a given number of rows before generating the XML output
for every call to getXML. It is an error to call this function on a
context handle created by function newContextFromHierarchy.

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-29



Table 8-1    (Cont.) DBMS_XMLGEN Functions and Procedures

Function or Procedure Description

setSkipRows(ctx IN ctxHandle, 
            skipRows IN NUMBER);

Parameters:

ctx(IN) - the context handle corresponding to the query
executed,

skipRows(IN) - the number of rows to skip for each call to
getXML.

The skipRows parameter can be used when generating paginated
results for stateless Web pages using this utility. For instance when
generating the first page of XML or HTML data, you can set
skipRows to zero. For the next set, you can set the skipRows
to the number of rows that you got in the first case. It is an
error to call this function on a context handle created by function
newContextFromHierarchy.

setConvertSpecialChars()
Determines whether or not special characters in the XML data
must be converted into their escaped XML equivalent. For
example, the < sign is converted to &lt;. The default behavior
is to perform escape conversions.

setConvertSpecialChars(
  ctx IN ctxHandle, 
  conv IN BOOLEAN);

Parameters:

ctx(IN) - the context handle to use,

conv(IN) - true indicates that conversion is needed.

You can use this function to speed up the XML processing
whenever you are sure that the input data cannot contain any
special characters such as <, >, ", ', and so on, which must
be preceded by an escape character. It is expensive to scan the
character data to replace the special characters, particularly if it
involves a lot of data. So, in cases when the data is XML-safe, this
function can be called to improve performance.

useItemTagsForColl()
Sets the name of the collection elements. The default name for
collection elements is the type name itself. You can override that
to use the name of the column with the _ITEM tag appended to it
using this function.

useItemTagsForColl(
  ctx IN ctxHandle);

Parameter: ctx(IN) - the context handle.

If you have a collection of NUMBER, say, the default tag name for
the collection elements is NUMBER. You can override this action
and generate the collection column name with the _ITEM tag
appended to it, by calling this procedure.

restartQuery()
Restarts the query and generate the XML from the first row again.

restartQuery(ctx IN ctxHandle);
Parameter: ctx(IN) - the context handle corresponding to the
current query. You can call this to start executing the query again,
without having to create a new context.

closeContext()
Closes a given context and releases all resources associated with
that context, including the SQL cursor and bind and define buffers,
and so on.

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-30



Table 8-1    (Cont.) DBMS_XMLGEN Functions and Procedures

Function or Procedure Description

closeContext(ctx IN ctxHandle);
Parameter: ctx(IN) - the context handle to close. Closes all
resources associated with this handle. After this you cannot use
the handle for any other DBMS_XMLGEN function call.

Conversion Functions

convert(
  xmlData IN varchar2, 
  flag IN NUMBER := 
ENTITY_ENCODE)    
  RETURN VARCHAR2;

Encodes or decodes the XML data string argument.

• Encoding refers to replacing entity references such as < to
their escaped equivalent, such as &lt;.

• Decoding refers to the reverse conversion.

convert(
  xmlData IN CLOB, 
  flag IN NUMBER := 
ENTITY_ENCODE) 
  RETURN CLOB;

Encodes or decodes the passed in XML CLOB data.

• Encoding refers to replacing entity references such as < to
their escaped equivalent, such as &lt;.

• Decoding refers to the reverse conversion.

NULL Handling

setNullHandling(ctx IN ctxHandle, 
                flag IN NUMBER);

The setNullHandling flag values are:

• DROP_NULLS CONSTANT NUMBER := 0;

This is the default setting and leaves out the tag for NULL
elements.

• NULL_ATTR CONSTANT NUMBER := 1;

This sets xsi:nil = "true".
• EMPTY_TAG CONSTANT NUMBER := 2;

This sets, for example, <foo/>.

useNullAttributeIndicator(
  ctx IN ctxHandle, 
  attrind IN BOOLEAN := TRUE);

useNullAttributeIndicator is a shortcut for
setNullHandling(ctx, NULL_ATTR).

setBindValue(
  ctx IN ctxHandle, 
  bindVariableName IN VARCHAR2, 
  bindValue IN VARCHAR2);

Sets bind value for the bind variable appearing in the query string
associated with the context handle. The query string with bind
variables cannot be executed until all of the bind variables are set
values using setBindValue.

clearBindValue(ctx IN ctxHandle);
Clears all the bind values for all the bind variables appearing in the
query string associated with the context handle. Afterward, all of
the bind variables must rebind new values using setBindValue.

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-31



8.3.3 DBMS_XMLGEN Examples
Examples here illustrate the use of PL/SQL package DBMS_XMLGEN.

Example 8-21 uses DBMS_XMLGEN to create an XML document by selecting employee
data from an object-relational table and putting the resulting CLOB value into a table.

Instead of generating all of the XML data for all rows, you can use the fetch interface
of package DBMS_XMLGEN to retrieve a fixed number of rows each time. This speeds
up response time and can help in scaling applications that need a Document Object
Model (DOM) Application Program Interface (API) on the resulting XML, particularly if
the number of rows is large.

Example 8-22 uses DBMS_XMLGEN to retrieve results from table HR.employees:

Example 8-23 uses DBMS_XMLGEN with object types to represent nested structures.

With relational data, the result is an XML document without nested elements. To obtain
nested XML structures, you can use object-relational data, where the mapping is as
follows:

• Object types map to XML elements – see XML Schema Storage and Query: Basic.

• Attributes of the type map to sub-elements of the parent element

Note:

Complex structures can be obtained by using object types and creating
object views or object tables. A canonical mapping is used to map object
instances to XML.

When used in column names or attribute names, the at-sign (@) is
translated into an attribute of the enclosing XML element in the mapping.

When you provide a user-defined data-type instance to DBMS_XMLGEN functions, the
user-defined data-type instance is mapped to an XML document using a canonical
mapping: the attributes of the user-defined data type are mapped to XML elements.
Attributes with names starting with an at-sign character (@) are mapped to attributes of
the preceding element.

User-defined data-type instances can be used for nesting in the resulting XML
document.

For example, consider the tables emp and dept defined in Example 8-24. To generate a
hierarchical view of the data, that is, departments with their employees, Example 8-24
defines suitable object types to create the structure inside the database.

The default name ROW is not present because it was set to NULL. The deptno and empno
have become attributes of the enclosing element.

Example 8-25 uses DBMS_XMLGEN.getXMLType to generate a purchase order document
in XML format using object views.

Example 8-26 shows how to open a cursor variable for a query and use that cursor
variable to create a new context handle for DBMS_XMLGEN.

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-32



See Also:

Oracle Database PL/SQL Language Reference for more information about
cursor variables (REF CURSOR)

Example 8-27 shows how to specify NULL handling when using DBMS_XMLGEN.

Function DBMS_XMLGEN.newContextFromHierarchy takes as argument a hierarchical
query string, which is typically formulated with a CONNECT BY clause. It returns a
context that can be used to generate a hierarchical XML document with recursive
elements.

The hierarchical query returns two columns, the level number (a pseudocolumn
generated by CONNECT BY query) and an XMLType instance. The level is used to
determine the position of the XMLType value within the hierarchy of the result XML
document.

It is an error to set the skip number of rows or the maximum number of rows for a
context created using newContextFromHierarchy.

Example 8-28 uses DBMS_ XMLGEN.newContextFromHierarchy to generate a manager–
employee hierarchy.

If the query string used to create a context contains host variables, you can use
PL/SQL method setBindValue() to give the variables values before query execution.
Example 8-29 illustrates this.

Example 8-21    DBMS_XMLGEN: Generating Simple XML

CREATE TABLE temp_clob_tab (result CLOB);

DECLARE
  qryCtx DBMS_XMLGEN.ctxHandle;
  result CLOB;
BEGIN
  qryCtx := DBMS_XMLGEN.newContext(
              'SELECT * FROM hr.employees WHERE employee_id = 101');
  -- Set the row header to be EMPLOYEE
  DBMS_XMLGEN.setRowTag(qryCtx, 'EMPLOYEE');
  -- Get the result
  result := DBMS_XMLGEN.getXML(qryCtx);
  INSERT INTO temp_clob_tab VALUES(result);
  --Close context
  DBMS_XMLGEN.closeContext(qryCtx);
END;
/

That generates the following XML document:

SELECT * FROM temp_clob_tab;

RESULT
-------------------------------------------------------
<?xml version="1.0"?>
<ROWSET>
 <EMPLOYEE>
  <EMPLOYEE_ID>101</EMPLOYEE_ID>
  <FIRST_NAME>Neena</FIRST_NAME>

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-33



  <LAST_NAME>Kochhar</LAST_NAME>
  <EMAIL>NKOCHHAR</EMAIL>
  <PHONE_NUMBER>515.123.4568</PHONE_NUMBER>
  <HIRE_DATE>21-SEP-05</HIRE_DATE>
  <JOB_ID>AD_VP</JOB_ID>
  <SALARY>17000</SALARY>
  <MANAGER_ID>100</MANAGER_ID>
  <DEPARTMENT_ID>90</DEPARTMENT_ID>
 </EMPLOYEE>
</ROWSET>
 
1 row selected.

Example 8-22    DBMS_XMLGEN: Generating Simple XML with Pagination (Fetch)

-- Create a table to hold the results
CREATE TABLE temp_clob_tab (result clob);
DECLARE
  qryCtx DBMS_XMLGEN.ctxHandle;
  result CLOB;
BEGIN
  -- Get the query context;
  qryCtx := DBMS_XMLGEN.newContext('SELECT * FROM hr.employees');
  -- Set the maximum number of rows to be 2
  DBMS_XMLGEN.setMaxRows(qryCtx, 2);
  LOOP
    -- Get the result
    result := DBMS_XMLGEN.getXML(qryCtx);
    -- If no rows were processed, then quit
    EXIT WHEN DBMS_XMLGEN.getNumRowsProcessed(qryCtx) = 0;
 
    -- Do some processing with the lob data
    --   Insert the results into a table.
    --   You can print the lob out, output it to a stream,
    --   put it in a queue, or do any other processing.
    INSERT INTO temp_clob_tab VALUES(result);
  END LOOP;
  --close context
  DBMS_XMLGEN.closeContext(qryCtx);
END;
/

SELECT * FROM temp_clob_tab WHERE rownum < 3;

RESULT
----------------------------------------------------------
<?xml version="1.0"?>
<ROWSET>
 <ROW>
  <EMPLOYEE_ID>100</EMPLOYEE_ID>
  <FIRST_NAME>Steven</FIRST_NAME>
  <LAST_NAME>King</LAST_NAME>
  <EMAIL>SKING</EMAIL>
  <PHONE_NUMBER>515.123.4567</PHONE_NUMBER>
  <HIRE_DATE>17-JUN-03</HIRE_DATE>
  <JOB_ID>AD_PRES</JOB_ID>
  <SALARY>24000</SALARY>
  <DEPARTMENT_ID>90</DEPARTMENT_ID>
 </ROW>
 <ROW>
  <EMPLOYEE_ID>101</EMPLOYEE_ID>

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-34



  <FIRST_NAME>Neena</FIRST_NAME>
  <LAST_NAME>Kochhar</LAST_NAME>
  <EMAIL>NKOCHHAR</EMAIL>
  <PHONE_NUMBER>515.123.4568</PHONE_NUMBER>
  <HIRE_DATE>21-SEP-05</HIRE_DATE>
  <JOB_ID>AD_VP</JOB_ID>
  <SALARY>17000</SALARY>
  <MANAGER_ID>100</MANAGER_ID>
  <DEPARTMENT_ID>90</DEPARTMENT_ID>
 </ROW>
</ROWSET>
 
<?xml version="1.0"?>
<ROWSET>
 <ROW>
  <EMPLOYEE_ID>102</EMPLOYEE_ID>
  <FIRST_NAME>Lex</FIRST_NAME>
  <LAST_NAME>De Haan</LAST_NAME>
  <EMAIL>LDEHAAN</EMAIL>
  <PHONE_NUMBER>515.123.4569</PHONE_NUMBER>
  <HIRE_DATE>13-JAN-01</HIRE_DATE>
  <JOB_ID>AD_VP</JOB_ID>
  <SALARY>17000</SALARY>
  <MANAGER_ID>100</MANAGER_ID>
  <DEPARTMENT_ID>90</DEPARTMENT_ID>
 </ROW>
 <ROW>
  <EMPLOYEE_ID>103</EMPLOYEE_ID>
  <FIRST_NAME>Alexander</FIRST_NAME>
  <LAST_NAME>Hunold</LAST_NAME>
  <EMAIL>AHUNOLD</EMAIL>
  <PHONE_NUMBER>590.423.4567</PHONE_NUMBER>
  <HIRE_DATE>03-JAN-06</HIRE_DATE>
  <JOB_ID>IT_PROG</JOB_ID>
  <SALARY>9000</SALARY>
  <MANAGER_ID>102</MANAGER_ID>
  <DEPARTMENT_ID>60</DEPARTMENT_ID>
 </ROW>
</ROWSET>
 
2 rows selected.

Example 8-23    DBMS_XMLGEN: Generating XML Using Object Types

CREATE TABLE new_departments (department_id   NUMBER PRIMARY KEY,
                              department_name VARCHAR2(20));
CREATE TABLE new_employees (employee_id       NUMBER PRIMARY KEY,
                            last_name         VARCHAR2(20),
                            department_id     NUMBER REFERENCES new_departments);
CREATE TYPE emp_t AS OBJECT ("@employee_id"   NUMBER,
                             last_name        VARCHAR2(20));
/
INSERT INTO new_departments VALUES (10, 'SALES');
INSERT INTO new_departments VALUES (20, 'ACCOUNTING');
INSERT INTO new_employees   VALUES (30, 'Scott', 10);
INSERT INTO new_employees   VALUES (31, 'Mary',  10);
INSERT INTO new_employees   VALUES (40, 'John',  20);
INSERT INTO new_employees   VALUES (41, 'Jerry', 20);
COMMIT;
CREATE TYPE emplist_t AS TABLE OF emp_t;
/

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-35



CREATE TYPE dept_t AS OBJECT ("@department_id" NUMBER,
                              department_name  VARCHAR2(20),
                              emplist          emplist_t);
/
CREATE TABLE temp_clob_tab (result CLOB);
DECLARE
  qryCtx DBMS_XMLGEN.ctxHandle;
  result CLOB;
BEGIN
  DBMS_XMLGEN.setRowTag(qryCtx, NULL);
  qryCtx := DBMS_XMLGEN.newContext
    ('SELECT dept_t(department_id,
                    department_name,
                    cast(MULTISET
                         (SELECT e.employee_id, e.last_name
                            FROM new_employees e
                            WHERE e.department_id = d.department_id)
                         AS emplist_t))
        AS deptxml
        FROM new_departments d');
  -- now get the result
  result := DBMS_XMLGEN.getXML(qryCtx);
  INSERT INTO temp_clob_tab VALUES (result);
  -- close context
  DBMS_XMLGEN.closeContext(qryCtx);
END;
/
SELECT * FROM temp_clob_tab;

Here is the resulting XML:

RESULT
--------------------------------------------
<?xml version="1.0"?>
<ROWSET>
 <ROW>
  <DEPTXML department_id="10">
   <DEPARTMENT_NAME>SALES</DEPARTMENT_NAME>
   <EMPLIST>
    <EMP_T employee_id="30">
     <LAST_NAME>Scott</LAST_NAME>
    </EMP_T>
    <EMP_T employee_id="31">
     <LAST_NAME>Mary</LAST_NAME>
    </EMP_T>
   </EMPLIST>
  </DEPTXML>
 </ROW>
 <ROW>
  <DEPTXML department_id="20">
   <DEPARTMENT_NAME>ACCOUNTING</DEPARTMENT_NAME>
   <EMPLIST>
    <EMP_T employee_id="40">
     <LAST_NAME>John</LAST_NAME>
    </EMP_T>
    <EMP_T employee_id="41">
     <LAST_NAME>Jerry</LAST_NAME>
    </EMP_T>
   </EMPLIST>
  </DEPTXML>
 </ROW>

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-36



</ROWSET>
 
1 row selected.

Example 8-24    DBMS_XMLGEN: Generating XML Using User-Defined Data-Type
Instances

CREATE TABLE dept (deptno NUMBER PRIMARY KEY, dname VARCHAR2(20));
CREATE TABLE emp (empno   NUMBER PRIMARY KEY, ename VARCHAR2(20), 
                  deptno  NUMBER REFERENCES dept);

-- empno is preceded by an at-sign (@) to indicate that it must 
-- be mapped as an attribute of the enclosing Employee element. 
CREATE TYPE emp_t AS OBJECT ("@empno" NUMBER,  -- empno defined as attribute
                              ename   VARCHAR2(20));
/
INSERT INTO DEPT VALUES (10, 'Sports');
INSERT INTO DEPT VALUES(20, 'Accounting');
INSERT INTO EMP VALUES(200, 'John',  10);
INSERT INTO EMP VALUES(300, 'Jack',  10);
INSERT INTO EMP VALUES(400, 'Mary',  20);
INSERT INTO EMP VALUES(500, 'Jerry', 20);
COMMIT;
CREATE TYPE emplist_t AS TABLE OF emp_t;
/
CREATE TYPE dept_t AS OBJECT("@deptno" NUMBER, 
                             dname     VARCHAR2(20),
                             emplist   emplist_t);
/
-- Department type dept_t contains a list of employees.
-- You can now query the employee and department tables and get 
-- the result as an XML document, as follows:
CREATE TABLE temp_clob_tab (result CLOB);
DECLARE
  qryCtx DBMS_XMLGEN.ctxHandle;
  RESULT CLOB;
BEGIN
  -- get query context
  qryCtx := DBMS_XMLGEN.newContext(
    'SELECT dept_t(deptno,
                   dname,
                   cast(MULTISET
                        (SELECT empno, ename FROM emp e WHERE e.deptno = 
d.deptno)
                        AS emplist_t))
       AS deptxml
       FROM dept d');
  -- set maximum number of rows to 5
  DBMS_XMLGEN.setMaxRows(qryCtx, 5);
  -- set no row tag for this result, since there is a single ADT column
  DBMS_XMLGEN.setRowTag(qryCtx, NULL);
  LOOP 
    -- get result
    result := DBMS_XMLGEN.getXML(qryCtx);
    -- if there were no rows processed, then quit
    EXIT WHEN DBMS_XMLGEN.getNumRowsProcessed(qryCtx) = 0;
    -- do something with the result
    INSERT INTO temp_clob_tab VALUES (result);
  END LOOP;
END;
/

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-37



The MULTISET keyword for Oracle SQL function cast treats the employees working
in the department as a list, which cast assigns to the appropriate collection type. A
department instance is created using constructor dept_t, and DBMS_XMLGEN routines
create the XML data for the object instance.

SELECT * FROM temp_clob_tab;

RESULT
---------------------------------
<?xml version="1.0"?>
<ROWSET>
 <DEPTXML deptno="10">
  <DNAME>Sports</DNAME>
  <EMPLIST>
   <EMP_T empno="200">
    <ENAME>John</ENAME>
   </EMP_T>
   <EMP_T empno="300">
    <ENAME>Jack</ENAME>
   </EMP_T>
  </EMPLIST>
 </DEPTXML>
 <DEPTXML deptno="20">
  <DNAME>Accounting</DNAME>
  <EMPLIST>
   <EMP_T empno="400">
    <ENAME>Mary</ENAME>
   </EMP_T>
   <EMP_T empno="500">
    <ENAME>Jerry</ENAME>
   </EMP_T>
  </EMPLIST>
 </DEPTXML>
</ROWSET>
 
1 row selected.

Example 8-25    DBMS_XMLGEN: Generating an XML Purchase Order

-- Create relational schema and define object views
-- DBMS_XMLGEN maps user-defined data-type attribute names that start
--    with an at-sign (@) to XML attributes
 
-- Purchase Order Object View Model
 
-- PhoneList varray object type
CREATE TYPE phonelist_vartyp AS VARRAY(10) OF VARCHAR2(20)
/
-- Address object type
CREATE TYPE address_typ AS OBJECT(Street VARCHAR2(200),
                                  City   VARCHAR2(200),
                                  State  CHAR(2),
                                  Zip    VARCHAR2(20))
/
-- Customer object type
CREATE TYPE customer_typ AS OBJECT(CustNo    NUMBER,
                                   CustName  VARCHAR2(200),
                                   Address   address_typ,
                                   PhoneList phonelist_vartyp)
/
-- StockItem object type

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-38



CREATE TYPE stockitem_typ AS OBJECT("@StockNo" NUMBER,
                                    Price      NUMBER,
                                    TaxRate    NUMBER)
/
-- LineItems object type
CREATE TYPE lineitem_typ AS OBJECT("@LineItemNo" NUMBER,
                                   Item          stockitem_typ,
                                   Quantity      NUMBER,
                                   Discount      NUMBER)
/
-- LineItems ordered collection table
CREATE TYPE lineitems_ntabtyp AS TABLE OF lineitem_typ 
/
-- Purchase Order object type
CREATE TYPE po_typ AUTHID CURRENT_USER
  AS OBJECT(PONO            NUMBER,
            Cust_ref        REF customer_typ,
            OrderDate       DATE,
            ShipDate        TIMESTAMP,
            LineItems_ntab  lineitems_ntabtyp,
            ShipToAddr      address_typ)
/
-- Create Purchase Order relational model tables
-- Customer table
CREATE TABLE customer_tab (CustNo     NUMBER NOT NULL,
                           CustName   VARCHAR2(200),
                           Street     VARCHAR2(200),
                           City       VARCHAR2(200),
                           State      CHAR(2),
                           Zip        VARCHAR2(20),
                           Phone1     VARCHAR2(20),
                           Phone2     VARCHAR2(20),
                           Phone3     VARCHAR2(20),
                           CONSTRAINT cust_pk PRIMARY KEY (CustNo));
-- Purchase Order table
CREATE TABLE po_tab (PONo       NUMBER,        /* purchase order number */
                     Custno     NUMBER     /*  foreign KEY referencing customer 
*/
                                CONSTRAINT po_cust_fk REFERENCES customer_tab, 
                     OrderDate  DATE,          /*  date of order */  
                     ShipDate   TIMESTAMP,     /* date to be shipped */    
                     ToStreet   VARCHAR2(200), /* shipto address */    
                     ToCity     VARCHAR2(200),    
                     ToState    CHAR(2),    
                     ToZip      VARCHAR2(20),
                     CONSTRAINT po_pk PRIMARY KEY(PONo));    
--Stock Table
CREATE TABLE stock_tab (StockNo NUMBER CONSTRAINT stock_uk UNIQUE,
                        Price   NUMBER,
                        TaxRate NUMBER);
--Line Items table
CREATE TABLE lineitems_tab (LineItemNo NUMBER,
                            PONo       NUMBER
                                       CONSTRAINT li_po_fk REFERENCES po_tab,
                            StockNo    NUMBER,
                            Quantity   NUMBER,
                            Discount   NUMBER,
                            CONSTRAINT li_pk PRIMARY KEY (PONo, LineItemNo));
-- Create Object views
-- Customer Object View
CREATE OR REPLACE VIEW customer OF customer_typ

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-39



  WITH OBJECT IDENTIFIER(CustNo)
  AS SELECT c.custno, c.custname,
            address_typ(c.street, c.city, c.state, c.zip),
            phonelist_vartyp(phone1, phone2, phone3)
       FROM customer_tab c;
--Purchase order view
CREATE OR REPLACE VIEW po OF po_typ
  WITH OBJECT IDENTIFIER (PONo)
  AS SELECT p.pono, make_ref(Customer, P.Custno), p.orderdate, p.shipdate,
            cast(MULTISET
                 (SELECT lineitem_typ(l.lineitemno,
                                      stockitem_typ(l.stockno, s.price,
                                                    s.taxrate),
                                      l.quantity, l.discount)
                    FROM lineitems_tab l, stock_tab s
                    WHERE l.pono = p.pono AND s.stockno=l.stockno)
                 AS lineitems_ntabtyp),
            address_typ(p.tostreet,p.tocity, p.tostate, p.tozip)
       FROM po_tab p;
-- Create table with XMLType column to store purchase order in XML format
CREATE TABLE po_xml_tab (poid  NUMBER, podoc XMLType)
/
-- Populate data
-------------------
-- Establish Inventory
INSERT INTO stock_tab VALUES(1004, 6750.00, 2);
INSERT INTO stock_tab VALUES(1011, 4500.23, 2);
INSERT INTO stock_tab VALUES(1534, 2234.00, 2);
INSERT INTO stock_tab VALUES(1535, 3456.23, 2);
-- Register Customers
INSERT INTO customer_tab
  VALUES (1, 'Jean Nance', '2 Avocet Drive',
          'Redwood Shores', 'CA', '95054',
          '415-555-1212', NULL, NULL);
INSERT INTO customer_tab
  VALUES (2, 'John Nike', '323 College Drive',
          'Edison', 'NJ', '08820',
          '609-555-1212', '201-555-1212', NULL);
-- Place orders
INSERT INTO po_tab
  VALUES (1001, 1, '10-APR-1997', '10-MAY-1997',
          NULL, NULL, NULL, NULL);
INSERT INTO po_tab
  VALUES (2001, 2, '20-APR-1997', '20-MAY-1997',
          '55 Madison Ave', 'Madison', 'WI', '53715');
-- Detail line items
INSERT INTO lineitems_tab VALUES(01, 1001, 1534, 12,  0);
INSERT INTO lineitems_tab VALUES(02, 1001, 1535, 10, 10);
INSERT INTO lineitems_tab VALUES(01, 2001, 1004,  1,  0);
INSERT INTO lineitems_tab VALUES(02, 2001, 1011,  2,  1);
 
-- Use package DBMS_XMLGEN to generate purchase order in XML format
--   and store XMLType in table po_xml 
DECLARE
  qryCtx DBMS_XMLGEN.ctxHandle;
  pxml XMLType;
  cxml CLOB;
BEGIN
  -- get query context;
  qryCtx := DBMS_XMLGEN.newContext('SELECT pono,deref(cust_ref) customer,
                                           p.orderdate,

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-40



                                           p.shipdate,
                                           lineitems_ntab lineitems,
                                           shiptoaddr
                                      FROM po p');
  -- set maximum number of rows to be 1,
  DBMS_XMLGEN.setMaxRows(qryCtx, 1);
  -- set ROWSET tag to NULL and ROW tag to PurchaseOrder
  DBMS_XMLGEN.setRowSetTag(qryCtx, NULL);
  DBMS_XMLGEN.setRowTag(qryCtx, 'PurchaseOrder');
  LOOP 
    -- get purchase order in XML format
    pxml := DBMS_XMLGEN.getXMLType(qryCtx);
    -- if there were no rows processed, then quit
    EXIT WHEN DBMS_XMLGEN.getNumRowsProcessed(qryCtx) = 0;
    -- Store XMLType po in po_xml table (get the pono out)
    INSERT INTO po_xml_tab(poid, poDoc)
      VALUES(XMLCast(XMLQuery('//PONO/text()' PASSING pxml RETURNING CONTENT)
                     AS NUMBER),
             pxml);
  END LOOP;
END;
/

This query then produces two XML purchase-order documents:

SELECT XMLSerialize(DOCUMENT x.podoc AS CLOB) xpo FROM po_xml_tab x;

XPO
---------------------------------------------------
 <PurchaseOrder>
  <PONO>1001</PONO>
  <CUSTOMER>
   <CUSTNO>1</CUSTNO>
   <CUSTNAME>Jean Nance</CUSTNAME>
   <ADDRESS>
    <STREET>2 Avocet Drive</STREET>
    <CITY>Redwood Shores</CITY>
    <STATE>CA</STATE>
    <ZIP>95054</ZIP>
   </ADDRESS>
   <PHONELIST>
    <VARCHAR2>415-555-1212</VARCHAR2>
   </PHONELIST>
  </CUSTOMER>
  <ORDERDATE>10-APR-97</ORDERDATE>
  <SHIPDATE>10-MAY-97 12.00.00.000000 AM</SHIPDATE>
  <LINEITEMS>
   <LINEITEM_TYP LineItemNo="1">
    <ITEM StockNo="1534">
     <PRICE>2234</PRICE>
     <TAXRATE>2</TAXRATE>
    </ITEM>
    <QUANTITY>12</QUANTITY>
    <DISCOUNT>0</DISCOUNT>
   </LINEITEM_TYP>
   <LINEITEM_TYP LineItemNo="2">
    <ITEM StockNo="1535">
     <PRICE>3456.23</PRICE>
     <TAXRATE>2</TAXRATE>
    </ITEM>
    <QUANTITY>10</QUANTITY>

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-41



    <DISCOUNT>10</DISCOUNT>
   </LINEITEM_TYP>
  </LINEITEMS>
  <SHIPTOADDR/>
 </PurchaseOrder>
 
 <PurchaseOrder>
  <PONO>2001</PONO>
  <CUSTOMER>
   <CUSTNO>2</CUSTNO>
   <CUSTNAME>John Nike</CUSTNAME>
   <ADDRESS>
    <STREET>323 College Drive</STREET>
    <CITY>Edison</CITY>
    <STATE>NJ</STATE>
    <ZIP>08820</ZIP>
   </ADDRESS>
   <PHONELIST>
    <VARCHAR2>609-555-1212</VARCHAR2>
    <VARCHAR2>201-555-1212</VARCHAR2>
   </PHONELIST>
  </CUSTOMER>
  <ORDERDATE>20-APR-97</ORDERDATE>
  <SHIPDATE>20-MAY-97 12.00.00.000000 AM</SHIPDATE>
  <LINEITEMS>
   <LINEITEM_TYP LineItemNo="1">
    <ITEM StockNo="1004">
     <PRICE>6750</PRICE>
     <TAXRATE>2</TAXRATE>
    </ITEM>
    <QUANTITY>1</QUANTITY>
    <DISCOUNT>0</DISCOUNT>
   </LINEITEM_TYP>
   <LINEITEM_TYP LineItemNo="2">
    <ITEM StockNo="1011">
     <PRICE>4500.23</PRICE>
     <TAXRATE>2</TAXRATE>
    </ITEM>
    <QUANTITY>2</QUANTITY>
    <DISCOUNT>1</DISCOUNT>
   </LINEITEM_TYP>
  </LINEITEMS>
  <SHIPTOADDR>
   <STREET>55 Madison Ave</STREET>
   <CITY>Madison</CITY>
   <STATE>WI</STATE>
   <ZIP>53715</ZIP>
  </SHIPTOADDR>
 </PurchaseOrder>
 
2 rows selected.

Example 8-26    DBMS_XMLGEN: Generating a New Context Handle from a REF
Cursor

CREATE TABLE emp_tab (emp_id       NUMBER PRIMARY KEY,
                      name         VARCHAR2(20),
                      dept_id      NUMBER);
Table created.
INSERT INTO emp_tab VALUES (122, 'Scott',  301);
1 row created.

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-42



INSERT INTO emp_tab VALUES (123, 'Mary',   472);
1 row created.
INSERT INTO emp_tab VALUES (124, 'John',   93);
1 row created.
INSERT INTO emp_tab VALUES (125, 'Howard', 488);
1 row created.
INSERT INTO emp_tab VALUES (126, 'Sue',    16);
1 row created.
COMMIT;
 
DECLARE
  ctx     NUMBER;
  maxrow  NUMBER;
  xmldoc  CLOB;
  refcur  SYS_REFCURSOR;
BEGIN
  DBMS_LOB.createtemporary(xmldoc, TRUE);
  maxrow := 3;
  OPEN refcur FOR 'SELECT * FROM emp_tab WHERE ROWNUM <= :1' USING maxrow;
  ctx := DBMS_XMLGEN.newContext(refcur);
   -- xmldoc will have 3 rows
  DBMS_XMLGEN.getXML(ctx, xmldoc, DBMS_XMLGEN.NONE);
  DBMS_OUTPUT.put_line(xmldoc);
  DBMS_LOB.freetemporary(xmldoc);
  CLOSE refcur;
  DBMS_XMLGEN.closeContext(ctx);
END;
/
<?xml version="1.0"?>
<ROWSET>
 <ROW>
  <EMP_ID>122</EMP_ID>
  <NAME>Scott</NAME>
  <DEPT_ID>301</DEPT_ID>
 </ROW>
 <ROW>
  <EMP_ID>123</EMP_ID>
  <NAME>Mary</NAME>
  <DEPT_ID>472</DEPT_ID>
 </ROW>
 <ROW>
  <EMP_ID>124</EMP_ID>
  <NAME>John</NAME>
  <DEPT_ID>93</DEPT_ID>
 </ROW>
</ROWSET>
 
PL/SQL procedure successfully completed.

Example 8-27    DBMS_XMLGEN: Specifying NULL Handling

CREATE TABLE emp_tab (emp_id       NUMBER PRIMARY KEY,
                      name         VARCHAR2(20),
                      dept_id      NUMBER);
Table created.
INSERT INTO emp_tab VALUES (30, 'Scott', NULL);
1 row created.
INSERT INTO emp_tab VALUES (31, 'Mary', NULL);
1 row created.
INSERT INTO emp_tab VALUES (40, 'John', NULL);
1 row created.

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-43



COMMIT;
CREATE TABLE temp_clob_tab (result CLOB);
Table created.
 
DECLARE
  qryCtx DBMS_XMLGEN.ctxHandle;
  result CLOB;
BEGIN
  qryCtx := DBMS_XMLGEN.newContext('SELECT * FROM emp_tab where name = :NAME');
  -- Set the row header to be EMPLOYEE
  DBMS_XMLGEN.setRowTag(qryCtx, 'EMPLOYEE');
  -- Drop nulls
  DBMS_XMLGEN.setBindValue(qryCtx, 'NAME', 'Scott');
  DBMS_XMLGEN.setNullHandling(qryCtx, DBMS_XMLGEN.DROP_NULLS);
  result := DBMS_XMLGEN.getXML(qryCtx);
  INSERT INTO temp_clob_tab VALUES(result);
  -- Null attribute
  DBMS_XMLGEN.setBindValue(qryCtx, 'NAME', 'Mary');
  DBMS_XMLGEN.setNullHandling(qryCtx, DBMS_XMLGEN.NULL_ATTR);
  result := DBMS_XMLGEN.getXML(qryCtx);
  INSERT INTO temp_clob_tab VALUES(result);
  -- Empty tag
  DBMS_XMLGEN.setBindValue(qryCtx, 'NAME', 'John');
  DBMS_XMLGEN.setNullHandling(qryCtx, DBMS_XMLGEN.EMPTY_TAG);
  result := DBMS_XMLGEN.getXML(qryCtx);
  INSERT INTO temp_clob_tab VALUES(result);
  --Close context
  DBMS_XMLGEN.closeContext(qryCtx);
END;
/
 
PL/SQL procedure successfully completed.
 
SELECT * FROM temp_clob_tab;
 
RESULT
-------------------------------------------
<?xml version="1.0"?>
<ROWSET>
 <EMPLOYEE>
  <EMP_ID>30</EMP_ID>
  <NAME>Scott</NAME>
 </EMPLOYEE>
</ROWSET>
 
<?xml version="1.0"?>
<ROWSET xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance">
 <EMPLOYEE>
  <EMP_ID>31</EMP_ID>
  <NAME>Mary</NAME>
  <DEPT_ID xsi:nil = "true"/>
 </EMPLOYEE>
</ROWSET>
 
<?xml version="1.0"?>
<ROWSET>
 <EMPLOYEE>
  <EMP_ID>40</EMP_ID>
  <NAME>John</NAME>
  <DEPT_ID/>
 </EMPLOYEE>

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-44



</ROWSET>
 
3 rows selected.

Example 8-28    DBMS_XMLGEN: Generating Recursive XML with a Hierarchical
Query

CREATE TABLE sqlx_display (id NUMBER, xmldoc XMLType);
Table created.

DECLARE
  qryctx DBMS_XMLGEN.ctxhandle;
  result XMLType;
BEGIN
  qryctx := 
    DBMS_XMLGEN.newContextFromHierarchy(
      'SELECT level, 
              XMLElement("employees", 
                         XMLElement("enumber", employee_id),
                         XMLElement("name", last_name),
                         XMLElement("Salary", salary),
                         XMLElement("Hiredate", hire_date))
         FROM hr.employees
         START WITH last_name=''De Haan'' CONNECT BY PRIOR employee_id=manager_id
         ORDER SIBLINGS BY hire_date');
  result := DBMS_XMLGEN.getxmltype(qryctx);
  DBMS_OUTPUT.put_line('<result num rows>');
  DBMS_OUTPUT.put_line(to_char(DBMS_XMLGEN.getNumRowsProcessed(qryctx)));
  DBMS_OUTPUT.put_line('</result num rows>');
  INSERT INTO sqlx_display VALUES (2, result);
  COMMIT;
  DBMS_XMLGEN.closecontext(qryctx);
END;
/
<result num rows>
6
</result num rows>
PL/SQL procedure successfully completed.

SELECT xmldoc FROM sqlx_display WHERE id = 2;

XMLDOC
-----------------------------------------------------
<?xml version="1.0"?>
<employees>
  <enumber>102</enumber>
  <name>De Haan</name>
  <Salary>17000</Salary>
  <Hiredate>2001-01-13</Hiredate>
  <employees>
    <enumber>103</enumber>
    <name>Hunold</name>
    <Salary>9000</Salary>
    <Hiredate>2006-01-03</Hiredate>
    <employees>
      <enumber>105</enumber>
      <name>Austin</name>
      <Salary>4800</Salary>
      <Hiredate>2005-06-25</Hiredate>
    </employees>
    <employees>

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-45



      <enumber>106</enumber>
      <name>Pataballa</name>
      <Salary>4800</Salary>
      <Hiredate>2006-02-05</Hiredate>
    </employees>
    <employees>
      <enumber>107</enumber>
      <name>Lorentz</name>
      <Salary>4200</Salary>
      <Hiredate>2007-02-07</Hiredate>
    </employees>
    <employees>
      <enumber>104</enumber>
      <name>Ernst</name>
      <Salary>6000</Salary>
      <Hiredate>2007-05-21</Hiredate>
    </employees>
  </employees>
</employees>

1 row selected.

By default, the ROWSET tag is NULL: there is no default ROWSET tag used to enclose
the XML result. However, you can explicitly set the ROWSET tag by using procedure
setRowSetTag, as follows:

CREATE TABLE gg (x XMLType);
Table created.

DECLARE
  qryctx DBMS_XMLGEN.ctxhandle;
  result CLOB;
BEGIN
  qryctx := DBMS_XMLGEN.newContextFromHierarchy(
              'SELECT level,
                      XMLElement("NAME", last_name) AS myname FROM hr.employees
               CONNECT BY PRIOR employee_id=manager_id
               START WITH employee_id = 102');
  DBMS_XMLGEN.setRowSetTag(qryctx, 'mynum_hierarchy');
  result:=DBMS_XMLGEN.getxml(qryctx);
  DBMS_OUTPUT.put_line('<result num rows>');
  DBMS_OUTPUT.put_line(to_char(DBMS_XMLGEN.getNumRowsProcessed(qryctx)));
  DBMS_OUTPUT.put_line('</result num rows>');
  INSERT INTO gg VALUES(XMLType(result));
  COMMIT;
  DBMS_XMLGEN.closecontext(qryctx);
END;
/
<result num rows>
6
</result num rows>
PL/SQL procedure successfully completed.

SELECT * FROM gg;
 
X
----------------------------------------------------------
<?xml version="1.0"?>
<mynum_hierarchy>
  <NAME>De Haan
    <NAME>Hunold

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-46



      <NAME>Ernst</NAME>
      <NAME>Austin</NAME>
      <NAME>Pataballa</NAME>
      <NAME>Lorentz</NAME>
    </NAME>
  </NAME>
</mynum_hierarchy>
 
1 row selected.

Example 8-29    DBMS_XMLGEN: Binding Query Variables Using
SETBINDVALUE()

-- Bind one variable
DECLARE
  ctx NUMBER;
  xmldoc CLOB;
BEGIN
  ctx := DBMS_XMLGEN.newContext(
           'SELECT * FROM employees WHERE employee_id = :NO');
  DBMS_XMLGEN.setBindValue(ctx, 'NO', '145');
  xmldoc := DBMS_XMLGEN.getXML(ctx);
  DBMS_OUTPUT.put_line(xmldoc);
  DBMS_XMLGEN.closeContext(ctx);
EXCEPTION
  WHEN OTHERS THEN DBMS_XMLGEN.closeContext(ctx);
  RAISE;
END;
/
<?xml version="1.0"?>
<ROWSET>
 <ROW>
  <EMPLOYEE_ID>145</EMPLOYEE_ID>
  <FIRST_NAME>John</FIRST_NAME>
  <LAST_NAME>Russell</LAST_NAME>
  <EMAIL>JRUSSEL</EMAIL>
  <PHONE_NUMBER>011.44.1344.429268</PHONE_NUMBER>
  <HIRE_DATE>01-OCT-04</HIRE_DATE>
  <JOB_ID>SA_MAN</JOB_ID>
  <SALARY>14000</SALARY>
  <COMMISSION_PCT>.4</COMMISSION_PCT>
  <MANAGER_ID>100</MANAGER_ID>
  <DEPARTMENT_ID>80</DEPARTMENT_ID>
 </ROW>
</ROWSET>
 
PL/SQL procedure successfully completed.

-- Bind one variable twice with different values
DECLARE
  ctx NUMBER;
  xmldoc CLOB;
BEGIN
  ctx := DBMS_XMLGEN.newContext('SELECT * FROM employees
                                   WHERE hire_date = :MDATE');
  DBMS_XMLGEN.setBindValue(ctx, 'MDATE', '01-OCT-04');
  xmldoc := DBMS_XMLGEN.getXML(ctx);
  DBMS_OUTPUT.put_line(xmldoc);
  DBMS_XMLGEN.setBindValue(ctx, 'MDATE', '10-MAR-05');
  xmldoc := DBMS_XMLGEN.getXML(ctx);
  DBMS_OUTPUT.put_line(xmldoc);

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-47



  DBMS_XMLGEN.closeContext(ctx);
EXCEPTION
  WHEN OTHERS THEN DBMS_XMLGEN.closeContext(ctx);
  RAISE;
END;
/
<?xml version="1.0"?>
<ROWSET>
 <ROW>
  <EMPLOYEE_ID>145</EMPLOYEE_ID>
  <FIRST_NAME>John</FIRST_NAME>
  <LAST_NAME>Russell</LAST_NAME>
  <EMAIL>JRUSSEL</EMAIL>
  <PHONE_NUMBER>011.44.1344.429268</PHONE_NUMBER>
  <HIRE_DATE>01-OCT-04</HIRE_DATE>
  <JOB_ID>SA_MAN</JOB_ID>
  <SALARY>14000</SALARY>
  <COMMISSION_PCT>.4</COMMISSION_PCT>
  <MANAGER_ID>100</MANAGER_ID>
  <DEPARTMENT_ID>80</DEPARTMENT_ID>
 </ROW>
</ROWSET>
 
<?xml version="1.0"?>
<ROWSET>
 <ROW>
  <EMPLOYEE_ID>147</EMPLOYEE_ID>
  <FIRST_NAME>Alberto</FIRST_NAME>
  <LAST_NAME>Errazuriz</LAST_NAME>
  <EMAIL>AERRAZUR</EMAIL>
  <PHONE_NUMBER>011.44.1344.429278</PHONE_NUMBER>
  <HIRE_DATE>10-MAR-05</HIRE_DATE>
  <JOB_ID>SA_MAN</JOB_ID>
  <SALARY>12000</SALARY>
  <COMMISSION_PCT>.3</COMMISSION_PCT>
  <MANAGER_ID>100</MANAGER_ID>
  <DEPARTMENT_ID>80</DEPARTMENT_ID>
 </ROW>
 <ROW>
  <EMPLOYEE_ID>159</EMPLOYEE_ID>
  <FIRST_NAME>Lindsey</FIRST_NAME>
  <LAST_NAME>Smith</LAST_NAME>
  <EMAIL>LSMITH</EMAIL>
  <PHONE_NUMBER>011.44.1345.729268</PHONE_NUMBER>
  <HIRE_DATE>10-MAR-97</HIRE_DATE>
  <JOB_ID>SA_REP</JOB_ID>
  <SALARY>8000</SALARY>
  <COMMISSION_PCT>.3</COMMISSION_PCT>
  <MANAGER_ID>146</MANAGER_ID>
  <DEPARTMENT_ID>80</DEPARTMENT_ID>
 </ROW>
</ROWSET>
PL/SQL procedure successfully completed.

-- Bind two variables 
DECLARE
  ctx NUMBER;
  xmldoc CLOB;
BEGIN
  ctx := DBMS_XMLGEN.newContext('SELECT * FROM employees
                                   WHERE employee_id = :NO

Chapter 8
Generation of XML Data Using DBMS_XMLGEN

8-48



                                     AND hire_date = :MDATE');
  DBMS_XMLGEN.setBindValue(ctx, 'NO', '145');
  DBMS_XMLGEN.setBindValue(ctx, 'MDATE', '01-OCT-04');
  xmldoc := DBMS_XMLGEN.getXML(ctx);
  DBMS_OUTPUT.put_line(xmldoc);
  DBMS_XMLGEN.closeContext(ctx);
EXCEPTION
  WHEN OTHERS THEN DBMS_XMLGEN.closeContext(ctx);
  RAISE;
END;
/
<?xml version="1.0"?>
<ROWSET>
 <ROW>
  <EMPLOYEE_ID>145</EMPLOYEE_ID>
  <FIRST_NAME>John</FIRST_NAME>
  <LAST_NAME>Russell</LAST_NAME>
  <EMAIL>JRUSSEL</EMAIL>
  <PHONE_NUMBER>011.44.1344.429268</PHONE_NUMBER>
  <HIRE_DATE>01-OCT-04</HIRE_DATE>
  <JOB_ID>SA_MAN</JOB_ID>
  <SALARY>14000</SALARY>
  <COMMISSION_PCT>.4</COMMISSION_PCT>
  <MANAGER_ID>100</MANAGER_ID>
  <DEPARTMENT_ID>80</DEPARTMENT_ID>
 </ROW>
</ROWSET>
PL/SQL procedure successfully completed.

8.4 SYS_XMLAGG Oracle SQL Function
Oracle SQL function sys_XMLAgg aggregates all XML documents or fragments
represented by an expression, producing a single XML document from them. It wraps
the results of the expression in a new element named ROWSET (by default).

Oracle function sys_XMLAgg is similar to standard SQL/XML function XMLAgg, but
sys_XMLAgg returns a single node and it accepts an XMLFormat parameter. You can
use that parameter to format the resulting XML document in various ways.

Figure 8-13    SYS_XMLAGG Syntax

SYS_XMLAGG ( expr

, fmt

)

See Also:

• Oracle Database SQL Language Reference for information about
sys_XMLAgg

• Oracle Database SQL Language Reference for information about an
XMLFormat parameter

Chapter 8
SYS_XMLAGG Oracle SQL Function

8-49



8.5 Ordering Query Results Before Aggregating, Using
XMLAGG ORDER BY Clause

To use the XMLAgg ORDER BY clause before aggregation, specify the ORDER BY clause
following the first XMLAGG argument.

This is illustrated in Example 8-30.

Example 8-30    Using XMLAGG ORDER BY Clause

CREATE TABLE dev_tab (dev         NUMBER,
                      dev_total   NUMBER,
                      devname     VARCHAR2(20));
Table created.
INSERT INTO dev_tab VALUES (16, 5,  'Alexis');
1 row created.
INSERT INTO dev_tab VALUES (2,  14, 'Han');
1 row created.
INSERT INTO dev_tab VALUES (1,  2,  'Jess');
1 row created.
INSERT INTO dev_tab VALUES (9,  88, 'Kurt');
1 row created.
COMMIT;

The result of the following query is aggregated according to the order of the dev
column. (The result is shown here pretty-printed, for clarity.)

SELECT XMLAgg(XMLElement("Dev", 
                         XMLAttributes(dev AS "id", dev_total AS 
"total"),
                         devname) 
              ORDER BY dev) 
  FROM dev_tab dev_total;

XMLAGG(XMLELEMENT("DEV",XMLATTRIBUTES(DEVAS"ID"
-----------------------------------------------
<Dev id="1" total="2">Jess</Dev>
<Dev id="2" total="14">Han</Dev>
<Dev id="9" total="88">Kurt</Dev>
<Dev id="16" total="5">Alexis</Dev>
 
1 row selected.

8.6 Returning a Rowset Using XMLTABLE
You can use standard SQL/XML function XMLTable to return a rowset with relevant
portions of a document extracted as multiple rows.

This is shown in Example 8-31.

Chapter 8
Ordering Query Results Before Aggregating, Using XMLAGG ORDER BY Clause

8-50



Example 8-31    Returning a Rowset Using XMLTABLE

CONNECT oe
Enter password: password

Connected.

SELECT item.descr, item.partid
  FROM purchaseorder,
       XMLTable('$p/PurchaseOrder/LineItems/LineItem' PASSING 
OBJECT_VALUE
                COLUMNS descr  VARCHAR2(256) PATH 'Description',
                        partid VARCHAR2(14)  PATH 'Part/@Id') item
  WHERE item.partid = '715515012027'
     OR item.partid = '715515011921'
  ORDER BY partid;

This returns a rowset with just the descriptions and part IDs, ordered by part ID.

DESCR
--------------
PARTID
--------------
My Man Godfrey
715515011921
 
My Man Godfrey
715515011921

My Man Godfrey
715515011921

My Man Godfrey
715515011921
 
My Man Godfrey
715515011921
 
My Man Godfrey
715515011921
 
My Man Godfrey
715515011921
 
Mona Lisa
715515012027
 
Mona Lisa
715515012027
 
Mona Lisa
715515012027
 
Mona Lisa

Chapter 8
Returning a Rowset Using XMLTABLE

8-51



715515012027
 
Mona Lisa
715515012027
 
Mona Lisa
715515012027
 
Mona Lisa
715515012027
 
Mona Lisa
715515012027
 
Mona Lisa
715515012027
 
16 rows selected.

Chapter 8
Returning a Rowset Using XMLTABLE

8-52



9
Relational Views over XML Data

Relational database views over XML data provide conventional, relational access to
XML content.

• Introduction to Creating and Using Relational Views over XML Data
You can use the XML-specific functions and methods provided by Oracle XML DB
to create conventional database views that provide relational access to XML
content. This lets programmers, tools, and applications that understand Oracle
Database, but not necessarily XML, work with XML content stored in the database.

• Creating a Relational View over XML: One Row for Each XML Document
To expose each document in an XMLType table as a row in a relational view, use
CREATE OR REPLACE VIEW AS SELECT, selecting from a join of the XMLType table
and a relational table that you create from the XML data using SQL/XML function
XMLTable.

• Creating a Relational View over XML: Mapping XML Nodes to Columns
To expose data from multiple levels of an XMLType table as individual rows
in a relational view, apply SQL/XML function XMLTable to each level. Use this
technique whenever there is a one-to-many (1:N) relationship between documents
in the XMLType table and rows in the view.

• Indexing Binary XML Data Exposed Using a Relational View
If the relational columns of the structured component of an XMLIndex index over
binary XML data match the columns of a relational view over that data, then the
view too is effectively indexed.

• Querying XML Content As Relational Data
Examples here show relational queries of XML data. They illustrate some of the
benefits provided by creating relational views over XMLType tables and columns.

9.1 Introduction to Creating and Using Relational Views over
XML Data

You can use the XML-specific functions and methods provided by Oracle XML DB
to create conventional database views that provide relational access to XML content.
This lets programmers, tools, and applications that understand Oracle Database, but
not necessarily XML, work with XML content stored in the database.

The relational views can use XQuery expressions and SQL/XML functions such as
XMLTable to define a mapping between columns in the view and nodes in an XML
document.

Related Topics

• XQuery and Oracle XML DB
The XQuery language is one of the main ways that you interact with XML data
in Oracle XML DB. Support for the language includes SQL*Plus commandXQUERY
and SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast.

9-1



• Indexes for XMLType Data
You can create indexes on your XML data, to focus on particular parts of it that you
query often and thus improve performance. There are various ways that you can
index XMLType data, whether it is XML schema-based or non-schema-based, and
regardless of the XMLType storage model you use.

9.2 Creating a Relational View over XML: One Row for Each
XML Document

To expose each document in an XMLType table as a row in a relational view, use
CREATE OR REPLACE VIEW AS SELECT, selecting from a join of the XMLType table and a
relational table that you create from the XML data using SQL/XML function XMLTable.

You use standard SQL/XML function XMLTable to map nodes in the XML document
to columns in the view. Use this technique whenever there is a one-to-one (1:1)
relationship between documents in the XMLType table and the rows in the view.

Example 9-1 creates relational view purchaseorder_master_view, which has one row
for each row in XMLType table po_binaryxml.

Example 9-1    Creating a Relational View of XML Content

CREATE TABLE po_binaryxml OF XMLType
  XMLTYPE STORE AS BINARY XML;

INSERT INTO po_binaryxml SELECT OBJECT_VALUE FROM OE.purchaseorder;

CREATE OR REPLACE VIEW purchaseorder_master_view AS
  SELECT po.*
    FROM po_binaryxml pur,
         XMLTable(
           '$p/PurchaseOrder' PASSING pur.OBJECT_VALUE as "p"
           COLUMNS
             reference       VARCHAR2(30)   PATH 'Reference',
             requestor       VARCHAR2(128)  PATH 'Requestor',
             userid          VARCHAR2(10)   PATH 'User',
             costcenter      VARCHAR2(4)    PATH 'CostCenter',
             ship_to_name    VARCHAR2(20)   PATH 'ShippingInstructions/name',
             ship_to_address VARCHAR2(256)  PATH 'ShippingInstructions/address',
             ship_to_phone   VARCHAR2(24)   PATH 'ShippingInstructions/telephone',
             instructions    VARCHAR2(2048) PATH 'SpecialInstructions') po;

View created.

DESCRIBE purchaseorder_master_view

Name            Null?    Type
--------------------------------------------
REFERENCE                VARCHAR2(30)
REQUESTOR                VARCHAR2(128)
USERID                   VARCHAR2(10)
COSTCENTER               VARCHAR2(4)
SHIP_TO_NAME             VARCHAR2(20)
SHIP_TO_ADDRESS          VARCHAR2(256)

Chapter 9
Creating a Relational View over XML: One Row for Each XML Document

9-2



SHIP_TO_PHONE            VARCHAR2(24)
INSTRUCTIONS             VARCHAR2(2048)

9.3 Creating a Relational View over XML: Mapping XML
Nodes to Columns

To expose data from multiple levels of an XMLType table as individual rows in a
relational view, apply SQL/XML function XMLTable to each level. Use this technique
whenever there is a one-to-many (1:N) relationship between documents in the XMLType
table and rows in the view.

That is, you use the same general approach as for breaking up a single level (see
Creating a Relational View over XML: One Row for Each XML Document): Define the
columns making up the view, and map the XML nodes to those columns. But in this
case you apply XMLTable to each document level that is to be broken up and stored in
relational columns.

For example, each PurchaseOrder element contains a LineItems element, which
in turn contains one or more LineItem elements. Each LineItem element has
child elements, such as Description, and an ItemNumber attribute. To make such
lower-level data accessible as a relational value, use XMLTable to project both the
PurchaseOrder element and the LineItem collection.

When element PurchaseOrder is broken up, its descendant LineItem element is
mapped to a column of type XMLType, which contains an XML fragment. That column is
then passed to a second call to XMLTable to be broken into its various parts as multiple
columns of relational values.

Example 9-2 illustrates this. It uses XMLTable to effect a one-to-many (1:N) relationship
between the documents in XMLType table po_binaryxml and the rows in relational view
purchaseorder_detail_view. The view provides access to the individual members of
a collection and exposes the collection members as a set of rows.

In Example 9-2, there is one row in view purchaseorder_detail_view for each
LineItem element in the XML documents stored in XMLType table po_binaryxml.

The CREATE OR REPLACE VIEW statement of Example 9-2 defines the set of relational
columns that make up the view. The SELECT statement passes table po_binaryxml as
context to function XMLTable to create virtual table p, which has columns reference
and lineitem. These columns contain the Reference and LineItem elements of the
purchase-order documents, respectively.

Column lineitem contains a collection of LineItem elements as an XMLType instance
— one row for each element. These rows are in turn passed to a second XMLTable
expression to serve as its context. This second XMLTable expression creates a virtual
table of line-item rows, with columns corresponding to various descendant nodes of
element LineItem. Most of these descendants are attributes (ItemNumber, Part/@Id,
and so on). One of the descendants is the child element Description.

Element Reference is projected in view purchaseorder_detail_view as
column reference. It provides a foreign key that can be used to join
rows in view purchaseorder_detail_view to corresponding rows in view
purchaseorder_master_view. The correlated join in the CREATE OR REPLACE VIEW
statement ensures that the one-to-many (1:N) relationship between element

Chapter 9
Creating a Relational View over XML: Mapping XML Nodes to Columns

9-3



Reference and the associated LineItem elements is maintained whenever the view
is accessed.

Example 9-2    Accessing Individual Members of a Collection Using a View

CREATE OR REPLACE VIEW purchaseorder_detail_view AS
  SELECT po.reference, li.*
    FROM po_binaryxml p,
         XMLTable('/PurchaseOrder' PASSING p.OBJECT_VALUE
                  COLUMNS
                    reference VARCHAR2(30) PATH 'Reference',
                    lineitem  XMLType      PATH 'LineItems/LineItem') po,
         XMLTable('/LineItem' PASSING po.lineitem
                  COLUMNS
                    itemno      NUMBER(38)    PATH '@ItemNumber',
                    description VARCHAR2(256) PATH 'Description',
                    partno      VARCHAR2(14)  PATH 'Part/@Id',
                    quantity    NUMBER(12, 2) PATH 'Part/@Quantity',
                    unitprice   NUMBER(8, 4)  PATH 'Part/@UnitPrice') li;

View created.

DESCRIBE purchaseorder_detail_view
Name           Null?    Type
----------------------------
REFERENCE               VARCHAR2(30)
ITEMNO                  NUMBER(38)
DESCRIPTION             VARCHAR2(256)
PARTNO                  VARCHAR2(14)
QUANTITY                NUMBER(12,2)
UNITPRICE               NUMBER(8,4)

9.4 Indexing Binary XML Data Exposed Using a Relational
View

If the relational columns of the structured component of an XMLIndex index over binary
XML data match the columns of a relational view over that data, then the view too is
effectively indexed.

When the XMLType data that is exposed in a relational view is stored as binary XML,
you can typically improve performance by creating an XMLIndex index that has a
structured component that matches the view columns. Such an index projects parts of
the XML data onto relational columns, just as the view does. When the columns of the
index match the columns of the view, the view is itself indexed.

To simplify the creation of such an XMLIndex index, you can PL/SQL function
DBMS_XMLSTORAGE_MANAGE.getSIDXDefFromView to provide exactly the XMLTable
expression needed for creating the index. That is the sole purpose of this function:
to return an XMLTable expression that you can use to create an XMLIndex index
for a relational view. It takes the view as argument and returns a CLOB instance.
Example 9-3 illustrates this.

Example 9-4 shows the XMLTable expression used in Example 9-3.

Chapter 9
Indexing Binary XML Data Exposed Using a Relational View

9-4



See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about PL/SQL function DBMS_XMLSTORAGE_MANAGE.getSIDXDefFromView

Example 9-3    XMLIndex Index that Matches Relational View Columns

CALL DBMS_XMLINDEX.registerParameter(
  'my_param',
  DBMS_XMLSTORAGE_MANAGE.getSIDXDefFromView('PURCHASEORDER_MASTER_VIEW'));1

CREATE INDEX my_idx on po_binaryxml (OBJECT_VALUE) INDEXTYPE IS XDB.XMLIndex
  PARAMETERS ('PARAM my_param');

Example 9-4    XMLTable Expression Returned by PL/SQL Function
getSIDXDefFromView

SELECT DBMS_XMLSTORAGE_MANAGE.getSIDXDefFromView('PURCHASEORDER_MASTER_VIEW')
  FROM DUAL;

XMLTABLE po_binaryxml_XTAB_1 '/PurchaseOrder' PASSING OBJECT_VALUE
  COLUMNS
    reference       VARCHAR2   (30) PATH 'Reference',
    requestor       VARCHAR2  (128) PATH 'Requestor',
    userid          VARCHAR2   (10) PATH 'User',
    costcenter      VARCHAR2    (4) PATH 'CostCenter',
    ship_to_name    VARCHAR2   (20) PATH 'ShippingInstructions/name',
    ship_to_address VARCHAR2  (256) PATH 'ShippingInstructions/address',
    ship_to_phone   VARCHAR2   (24) PATH 'ShippingInstructions/telephone',
    instructions    VARCHAR2 (2048) PATH 'SpecialInstructions'

Related Topics

• Use of XMLIndex with a Structured Component
An XMLIndex structured component indexes specific islands of structure in your
XML data.

9.5 Querying XML Content As Relational Data
Examples here show relational queries of XML data. They illustrate some of the
benefits provided by creating relational views over XMLType tables and columns.

Example 9-5 and Example 9-6 show how to query master and detail relational views
of XML data. Example 9-5 queries the master view to select the rows where column
userid starts with S.

Example 9-6 joins the master view and the detail view. It selects the
purchaseorder_detail_view rows where the value of column itemno is 1 and the
corresponding purchaseorder_master_view row contains a userid column with the
value SBELL.

Example 9-7 shows how to use relational views over XML content to perform
business-intelligence queries on XML documents. The example query selects

1 The view-name argument to getSIDXDefFromView must be uppercase, because that is how the name is 
recorded.

Chapter 9
Querying XML Content As Relational Data

9-5



PurchaseOrder documents that contain orders for titles identified by UPC codes
715515009058 and 715515009126.

The query in Example 9-7 determines the number of copies of each film title
that are ordered in each PurchaseOrder document. For example, for part number
715515009126, there are four PurchaseOrder documents where one copy of the item
is ordered and seven PurchaseOrder documents where three copies of the item are
ordered.

Example 9-5    Querying Master Relational View of XML Data

SELECT reference, costcenter, ship_to_name
  FROM purchaseorder_master_view
  WHERE userid LIKE 'S%';
 
REFERENCE                      COST SHIP_TO_NAME
------------------------------ ---- --------------
SBELL-20021009123336231PDT     S30  Sarah J. Bell
SBELL-20021009123336331PDT     S30  Sarah J. Bell
SKING-20021009123336321PDT     A10  Steven A. King
...
36 rows selected.

Example 9-6    Querying Master and Detail Relational Views of XML Data

SELECT d.reference, d.itemno, d.partno, d.description
  FROM purchaseorder_detail_view d, purchaseorder_master_view m
  WHERE m.reference = d.reference
    AND m.userid = 'SBELL'
    AND d.itemno = 1;

REFERENCE                      ITEMNO PARTNO         DESCRIPTION
------------------------------------------------------------------------
--
SBELL-20021009123336231PDT          1 37429165829    Juliet of the 
Spirits
SBELL-20021009123336331PDT          1 715515009225   Salo
SBELL-20021009123337353PDT          1 37429141625    The Third Man
SBELL-20021009123338304PDT          1 715515009829   Nanook of the North
SBELL-20021009123338505PDT          1 37429122228    The 400 Blows
SBELL-20021009123335771PDT          1 37429139028    And the Ship Sails 
on
SBELL-20021009123335280PDT          1 715515011426   All That Heaven 
Allows
SBELL-2002100912333763PDT           1 715515010320   Life of Brian - 
Python
SBELL-2002100912333601PDT           1 715515009058   A Night to Remember
SBELL-20021009123336362PDT          1 715515012928   In the Mood for 
Love
SBELL-20021009123336532PDT          1 37429162422    Wild Strawberries
SBELL-20021009123338204PDT          1 37429168820    Red Beard
SBELL-20021009123337673PDT          1 37429156322    Cries and Whispers

13 rows selected.

Chapter 9
Querying XML Content As Relational Data

9-6



Example 9-7    Business-Intelligence Query of XML Data Using a View

SELECT partno, count(*) "No of Orders", quantity "No of Copies"
  FROM purchaseorder_detail_view
  WHERE partno IN (715515009126, 715515009058)
  GROUP BY rollup(partno, quantity);
 
PARTNO         No of Orders No of Copies
-------------- ------------ ------------
715515009058              7            1
715515009058              9            2
715515009058              5            3
715515009058              2            4
715515009058             23
715515009126              4            1
715515009126              7            3
715515009126             11
                         34 
9 rows selected.

Chapter 9
Querying XML Content As Relational Data

9-7



10
XMLType Views

You can create XMLType views over relational and object-relational data.

• What Are XMLType Views?
XMLType views wrap existing relational and object-relational data in XML formats.
This lets you use existing data in contexts that expect XML data and exploit XML
features, including XML Schema.

• CREATE VIEW for XMLType Views: Syntax
The syntax for the CREATE VIEW clause for creating XMLType views is presented.

• Creating Non-Schema-Based XMLType Views
The XML data in a non XML Schema-based XMLType view is not constrained
to conform to a registered XML schema. You can create a non-schema-based
XMLType view using SQL/XML publishing functions.

• Creating XML Schema-Based XMLType Views
The XML data in an XML Schema-based XMLType view is constrained to conform
to an XML schema. You can create a schema-based XMLType view using
SQL/XML publishing functions or using object types or views.

• Creating XMLType Views from XMLType Tables
An XMLType view can be created on an XMLType table, for example, to transform
the XML data or to restrict the rows returned.

• Referencing XMLType View Objects Using SQL Function REF
You can reference an XMLType view object using SQL function ref.

• Using DML (Data Manipulation Language) on XMLType Views
A given XMLType view might not be implicitly updatable. In that case, you must
write instead-of triggers to handle all DML. To determine whether an XMLType view
is implicitly updatable, query it to see whether it is based on an object view or
constructor that is itself inherently updatable.

10.1 What Are XMLType Views?
XMLType views wrap existing relational and object-relational data in XML formats. This
lets you use existing data in contexts that expect XML data and exploit XML features,
including XML Schema.

The major advantages of using XMLType views are:

• You can exploit Oracle XML DB XML features that use XML Schema functionality
without having to migrate your base legacy data.

• With XMLType views, you can experiment with various forms of storage for your
data. You need not decide immediately whether to store it as XMLType or which
XMLType storage model to use.

XMLType views are similar to object views. Each row of an XMLType view corresponds to
an XMLType instance. The object identifier for uniquely identifying each row in the view
can be created using SQL/XML functions XMLCast and XMLQuery.

10-1



There are two types of XMLType views:

• Non-schema-based XMLType views. These views do not confirm to a particular
XML schema.

• XML schema-based XMLType views. As with XMLType tables, XMLType views
that conform to a particular XML schema are called XML schema-based XMLType
views. These provide stronger typing than non-schema-based XMLType views.

XPath rewrite of queries over XMLType views is enabled for both XML schema-based
and non-schema-based XMLType views. XPath rewrite is described in XPath Rewrite
for Object-Relational Storage.

To create an XML schema-based XMLType view, first register your XML schema. If
the view is an object view, that is, if it is constructed using an object type, then the
XML schema should have annotations that represent the bidirectional mapping from
XML to SQL object types. XMLType views conforming to this registered XML schema
can then be created by providing an underlying query that constructs instances of the
appropriate SQL object type.

You can create XMLType views in any of the following ways:

• Based on SQL/XML publishing functions, such as XMLElement, XMLForest,
XMLConcat, and XMLAgg. SQL/XML publishing functions can be used to construct
both non-schema-based XMLType views and XML schema-based XMLType views.
This enables construction of XMLType view from the underlying relational tables
directly without physically migrating those relational legacy data into XML.
However, to construct XML schema-based XMLType view, the XML schema must
be registered and the XML value generated by SQL/XML publishing functions
must be constrained to the XML schema.

• Based on object types or object views. This enables the construction of the
XMLType view from underlying relational or object relational tables directly without
physically migrating the relational or object relational legacy data into XML.
Creating an XML-schema-based XMLType view requires that you annotate the XML
schema with a mapping to existing object types or that you generate the XML
schema from the existing object types.

• Directly from an XMLType table.

Related Topics

• XML Schema Storage and Query: Basic
XML Schema is a standard for describing the content and structure of XML
documents. You can register, update, and delete an XML schema used with
Oracle XML DB. You can define storage structures to use for your XML schema-
based data and map XML Schema data types to SQL data types.

• Relational Views over XML Data
Relational database views over XML data provide conventional, relational access
to XML content.

• Choice of XMLType Storage and Indexing
Important design choices for your application include what XMLType storage model
to use and which indexing approaches to use.

Chapter 10
What Are XMLType Views?

10-2



10.2 CREATE VIEW for XMLType Views: Syntax
The syntax for the CREATE VIEW clause for creating XMLType views is presented.

Figure 10-1 shows this syntax. See Oracle Database SQL Language Reference for
details on the CREATE VIEW syntax.

Figure 10-1    Creating XMLType Views Clause: Syntax

OF XMLTYPE

XMLSchema_spec

WITH OBJECT
IDENTIFIER

ID

DEFAULT

( expr

,

)

10.3 Creating Non-Schema-Based XMLType Views
The XML data in a non XML Schema-based XMLType view is not constrained to
conform to a registered XML schema. You can create a non-schema-based XMLType
view using SQL/XML publishing functions.

Example 10-1 shows how to create an XMLType view using SQL/XML function
XMLELement.

Existing data in relational tables or views can be exposed as XML data this way. If
a view is generated using a SQL/XML publishing function then queries that access
that view using XQuery expressions can often be rewritten. These optimized queries
can then directly access the underlying relational columns. See XPath Rewrite for
Object-Relational Storage for details.

You can perform a DML operation on an XMLType view, but, in general, you must write
instead-of triggers to handle the DML operation.

See Also:

Generation of XML Data from Relational Data, for details on SQL/XML
publishing functions

Example 10-1    Creating an XMLType View Using XMLELEMENT

CREATE OR REPLACE VIEW emp_view OF XMLType
  WITH OBJECT ID (XMLCast(XMLQuery('/Emp/@empno'
                                   PASSING OBJECT_VALUE RETURNING CONTENT)
                          AS BINARY_DOUBLE)) AS
  SELECT XMLElement("Emp",
                    XMLAttributes(employee_id AS "empno"),
                    XMLForest(e.first_name ||' '|| e.last_name AS "name",
                              e.hire_date AS "hiredate"))
    AS "result" FROM employees e WHERE salary > 15000;

SELECT * FROM emp_view;
 

Chapter 10
CREATE VIEW for XMLType Views: Syntax

10-3



SYS_NC_ROWINFO$
-------------------------------------------------------------------------------------
<Emp empno="100"><name>Steven King</name><hiredate>2003-06-17</hiredate></Emp> 
<Emp empno="101"><name>Neena Kochhar</name><hiredate>2005-09-21</hiredate></Emp> 
<Emp empno="102"><name>Lex De Haan</name><hiredate>2001-01-13</hiredate></Emp> 

10.4 Creating XML Schema-Based XMLType Views
The XML data in an XML Schema-based XMLType view is constrained to conform
to an XML schema. You can create a schema-based XMLType view using SQL/XML
publishing functions or using object types or views.

Create a schema-based view in either of these ways:

• Using SQL/XML publishing functions.

• Using object types or object views. This is convenient when you already have
object types, views, and tables that you want to map to XML data.

• Creating XML Schema-Based XMLType Views Using SQL/XML Publishing
Functions
You can use SQL/XML publishing functions to create an XML Schema-based
XMLType view.

• Creating XML Schema-Based XMLType Views Using Object Types or Object
Views
You can create an XML Schema-based XMLType view from object types or views
by annotating the XML schema to define a mapping between XML types and SQL
object types and object attributes.

10.4.1 Creating XML Schema-Based XMLType Views Using SQL/XML
Publishing Functions

You can use SQL/XML publishing functions to create an XML Schema-based XMLType
view.

1. Create and register the XML schema document that contains the necessary XML
structures. You do not need to annotate the XML schema to define the mapping
between XML types and SQL object types.

2. Use SQL/XML publishing functions to create an XMLType view that conforms to the
XML schema.

These two steps are illustrated in Example 10-2 and Example 10-3, respectively.

Example 10-4 illustrates querying an XMLType view.

Example 10-2 assumes that you have an XML schema emp_simple.xsd that contains
XML structures defining an employee. It registers the XML schema with the target
location http://www.oracle.com/emp_simple.xsd.

When using SQL/XML publishing functions to generate XML schema-based content,
you must specify the appropriate namespace information for all of the elements and
also indicate the location of the schema using attribute xsi:schemaLocation. These
can be specified using the XMLAttributes clause. Example 10-3 illustrates this.

Chapter 10
Creating XML Schema-Based XMLType Views

10-4



Note:

Whenever you use SQL/XML function XMLAttributes with an XML schema
reference to create an XMLType view, register the XML schema before
creating the view, if possible. Otherwise, you must recompile the view after
registering the XML schema, in order for the generated documents to be
based on the XML schema.

In Example 10-3, function XMLElement creates XML element Employee. Function
XMLForest creates the children of element Employee. The XMLAttributes clause inside
XMLElement constructs the required XML namespace and schema location attributes,
so that the XML data that is generated conforms to the XML schema of the view. The
innermost call to XMLForest creates the children of element department, which is a
child of element Employee.

By default, the XML generation functions create a non-schema-based XML instance.
However, when the schema location is specified, using attribute xsi:schemaLocation
or xsi:noNamespaceSchemaLocation, Oracle XML DB generates XML schema-based
XML data. For XMLType views, as long as the names of the elements and attributes
match those in the XML schema, the XML data is converted implicitly into a valid
XML schema-based document. Any errors in the generated XML data are caught later,
when operations such as validation or extraction operations are performed on the XML
instance.

Example 10-4 queries the XMLType view, returning an XML result from tables
employees and departments. The result of the query is shown pretty-printed, for clarity.

Example 10-2    Registering XML Schema emp_simple.xsd

BEGIN
  DBMS_XMLSCHEMA.registerSchema(
   SCHEMAURL => 'http://www.oracle.com/emp_simple.xsd',
   SCHEMADOC => '<schema xmlns="http://www.w3.org/2001/XMLSchema"
                         targetNamespace="http://www.oracle.com/emp_simple.xsd"
                         version="1.0"
                         xmlns:xdb="http://xmlns.oracle.com/xdb" 
                         elementFormDefault="qualified"> 
                   <element name = "Employee"> 
                     <complexType> 
                       <sequence> 
                         <element name = "EmployeeId"
                                  type = "positiveInteger" minOccurs = "0"/> 
                         <element name = "Name"
                                  type = "string" minOccurs = "0"/> 
                         <element name = "Job"
                                  type = "string" minOccurs = "0"/> 
                         <element name = "Manager"
                                  type = "positiveInteger" minOccurs = "0"/> 
                         <element name = "HireDate"
                                  type = "date" minOccurs = "0"/> 
                         <element name = "Salary"
                                  type = "positiveInteger" minOccurs = "0"/> 
                         <element name = "Commission"

Chapter 10
Creating XML Schema-Based XMLType Views

10-5



                                  type = "positiveInteger" minOccurs = "0"/> 
                         <element name = "Dept"> 
                           <complexType> 
                             <sequence> 
                               <element name = "DeptNo"
                                        type = "positiveInteger" minOccurs = "0"/> 
                               <element name = "DeptName"
                                        type = "string" minOccurs = "0"/> 
                               <element name = "Location"
                                        type = "positiveInteger" minOccurs = "0"/> 
                             </sequence> 
                           </complexType> 
                         </element> 
                       </sequence> 
                     </complexType> 
                   </element> 
                 </schema>',
   LOCAL     => TRUE,
   GENTYPES  => TRUE);
END;

Example 10-3    Creating an XMLType View Using SQL/XML Publishing Functions

CREATE OR REPLACE VIEW emp_simple_xml OF XMLType
  XMLSCHEMA "http://www.oracle.com/emp_simple.xsd" ELEMENT "Employee"
   WITH OBJECT ID (XMLCast(XMLQuery('/Employee/EmployeeId/text()'
                                    PASSING OBJECT_VALUE
                                    RETURNING CONTENT)
                           AS BINARY_DOUBLE)) AS
   SELECT
     XMLElement("Employee",
                XMLAttributes(
                  'http://www.oracle.com/emp_simple.xsd' AS "xmlns" ,
                  'http://www.w3.org/2001/XMLSchema-instance' AS 
"xmlns:xsi",
                  'http://www.oracle.com/emp_simple.xsd
                   http://www.oracle.com/emp_simple.xsd'
                  AS "xsi:schemaLocation"),
                XMLForest(e.employee_id    AS "EmployeeId",
                          e.last_name      AS "Name",
                          e.job_id         AS "Job",
                          e.manager_id     AS "Manager",
                          e.hire_date      AS "HireDate",
                          e.salary         AS "Salary",
                          e.commission_pct AS "Commission",
                          XMLForest(
                            d.department_id   AS "DeptNo",
                            d.department_name AS "DeptName",
                            d.location_id     AS "Location") AS "Dept"))
     FROM employees e, departments d
     WHERE e.department_id = d.department_id;

Chapter 10
Creating XML Schema-Based XMLType Views

10-6



Example 10-4    Querying an XMLType View

SELECT OBJECT_VALUE AS RESULT FROM emp_simple_xml WHERE ROWNUM < 2;

RESULT
---------------------------------------------------------------------
<Employee xmlns="http://www.oracle.com/emp_simple.xsd"
          xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
          xsi:schemaLocation="http://www.oracle.com/emp_simple.xsd 
                              http://www.oracle.com/emp_simple.xsd">
  <EmployeeId>200</EmployeeId>
  <Name>Whalen</Name>
  <Job>AD_ASST</Job>
  <Manager>101</Manager>
  <HireDate>2003-09-17</HireDate>
  <Salary>4400</Salary>
  <Dept>
    <DeptNo>10</Deptno>
    <DeptName>Administration</DeptName>
    <Location>1700</Location>
  </Dept>
</Employee>

• Using Namespaces with SQL/XML Publishing Functions
If you have complex XML schemas involving namespaces, you must use the
partially escaped mapping provided by the SQL/XML publishing functions and
create elements with appropriate namespaces and prefixes.

10.4.1.1 Using Namespaces with SQL/XML Publishing Functions
If you have complex XML schemas involving namespaces, you must use the partially
escaped mapping provided by the SQL/XML publishing functions and create elements
with appropriate namespaces and prefixes.

The query in Example 10-5 creates XML instances that have the correct namespace,
prefixes, and target schema location. It can be used as the query in the definition of
view emp_simple_xml.

If the XML schema had no target namespace, then you could use attribute
xsi:noNamespaceSchemaLocation to indicate that. Example 10-6 shows such an XML
schema.

Example 10-7 creates a view that conforms to the XML schema in Example 10-6. The
XMLAttributes clause creates an XML element that contains the noNamespace schema
location attribute.

Example 10-8 creates view dept_xml, which conforms to XML schema dept.xsd.

Example 10-5    Using Namespace Prefixes with SQL/XML Publishing Functions

SELECT XMLElement("ipo:Employee", 
          XMLAttributes('http://www.oracle.com/emp_simple.xsd' AS "xmlns:ipo", 
                        'http://www.oracle.com/emp_simple.xsd 
                         http://www.oracle.com/emp_simple.xsd' AS "xmlns:xsi"),
            XMLForest(e.employee_id                     AS "ipo:EmployeeId", 

Chapter 10
Creating XML Schema-Based XMLType Views

10-7



                      e.last_name                       AS "ipo:Name",  
                      e.job_id                          AS "ipo:Job",
                      e.manager_id                      AS "ipo:Manager",
                      TO_CHAR(e.hire_date,'YYYY-MM-DD') AS "ipo:HireDate", 
                      e.salary                          AS "ipo:Salary",
                      e.commission_pct                  AS "ipo:Commission",
                 XMLForest(d.department_id   AS "ipo:DeptNo",
                           d.department_name AS "ipo:DeptName", d.location_id
       AS "ipo:Location") AS "ipo:Dept"))
       FROM employees e, departments d 
       WHERE e.department_id = d.department_id AND d.department_id = 20;
BEGIN
  -- Delete schema if it already exists (else error)
  DBMS_XMLSCHEMA.deleteSchema('emp-noname.xsd', 4); 
END;

XMLELEMENT("IPO:EMPLOYEE",XMLATTRIBUTES('HTTP://WWW.ORACLE.COM/
------------------------------------------------------------------------
<ipo:Employee
xmlns:ipo="http://www.oracle.com/emp_simple.xsd"
 xmlns:xsi="http://www.oracle.com/emp_simple.xsd
 http://www.oracle.com/emp_simple.xsd">
<ipo:EmployeeId>201</ipo:EmployeeId><ipo:Name>Hartstein</ipo:Name>
<ipo:Job>MK_MAN</ipo:Job><ipo:Manager>100</ipo:Manager>
<ipo:HireDate>2004-02-17</ipo:HireDate><ipo:Salary>13000</ipo:Salary>
<ipo:Dept><ipo:DeptNo>20</ipo:DeptNo><ipo:DeptName>Marketing</
ipo:DeptName>
<ipo:Location>1800</ipo:Location></ipo:Dept></ipo:Employee>
<ipo:Employee xmlns:ipo="http://www.oracle.com/emp_simple.xsd"
 xmlns:xsi="http://www.oracle.com/emp_simple.xsd 
 http://www.oracle.com/emp_simple.xsd"><ipo:EmployeeId>202</
ipo:EmployeeId>
<ipo:Name>Fay</ipo:Name><ipo:Job>MK_REP</ipo:Job><ipo:Manager>201</
ipo:Manager>
<ipo:HireDate>2005-08-17</ipo:HireDate><ipo:Salary>6000</ipo:Salary>
<ipo:Dept><ipo:DeptNo>20</ipo:Dept
No><ipo:DeptName>Marketing</ipo:DeptName><ipo:Location>1800</
ipo:Location>
</ipo:Dept>
</ipo:Employee>

Example 10-6    XML Schema with No Target Namespace

BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'emp-noname.xsd',
    SCHEMADOC => '<schema xmlns="http://www.w3.org/2001/XMLSchema"
                          xmlns:xdb="http://xmlns.oracle.com/xdb"> 
                    <element name = "Employee"> 
                      <complexType> 
                        <sequence> 
                          <element name = "EmployeeId" type = "positiveInteger"/> 
                          <element name = "Name" type = "string"/> 

Chapter 10
Creating XML Schema-Based XMLType Views

10-8



                          <element name = "Job" type = "string"/> 
                          <element name = "Manager" type = "positiveInteger"/> 
                          <element name = "HireDate" type = "date"/> 
                          <element name = "Salary" type = "positiveInteger"/> 
                          <element name = "Commission" type = "positiveInteger"/> 
                          <element name = "Dept"> 
                            <complexType> 
                              <sequence> 
                                <element name = "DeptNo" type = "positiveInteger" /> 
                                <element name = "DeptName" type = "string"/> 
                                <element name = "Location" type = "positiveInteger"/> 
                              </sequence> 
                            </complexType> 
                          </element> 
                        </sequence> 
                      </complexType> 
                    </element> 
                  </schema>',
    LOCAL     => TRUE,
    GENTYPES  => TRUE);
END;

Example 10-7    Creating a View for an XML Schema with No Target Namespace

CREATE OR REPLACE VIEW emp_xml OF XMLType
     XMLSCHEMA "emp-noname.xsd" ELEMENT "Employee"
     WITH OBJECT ID (XMLCast(XMLQuery('/Employee/EmployeeId/text()'
                                      PASSING OBJECT_VALUE
                                      RETURNING CONTENT)
                             AS BINARY_DOUBLE)) AS
     SELECT XMLElement(
       "Employee",
       XMLAttributes('http://www.w3.org/2001/XMLSchema-instance'
                       AS "xmlns:xsi",
                     'emp-noname.xsd' AS 
"xsi:noNamespaceSchemaLocation"),
       XMLForest(e.employee_id    AS "EmployeeId",
                 e.last_name      AS "Name",
                 e.job_id         AS "Job",
                 e.manager_id     AS "Manager",
                 e.hire_date      AS "HireDate",
                 e.salary         AS "Salary",
                 e.commission_pct AS "Commission",
                 XMLForest(d.department_id   AS "DeptNo",
                           d.department_name AS "DeptName",
                           d.location_id     AS "Location") AS "Dept"))
       FROM employees e, departments d
       WHERE e.department_id = d.department_id;

Example 10-8    Using SQL/XML Functions in XML Schema-Based XMLType Views

BEGIN
  -- Delete schema if it already exists (else error)
  DBMS_XMLSCHEMA.deleteSchema('http://www.oracle.com/dept.xsd', 4);

Chapter 10
Creating XML Schema-Based XMLType Views

10-9



END;
/

BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://www.oracle.com/dept.xsd',
    SCHEMADOC => '<schema xmlns="http://www.w3.org/2001/XMLSchema"
                          targetNamespace="http://www.oracle.com/dept.xsd"
                          version="1.0" 
                          xmlns:xdb="http://xmlns.oracle.com/xdb"
                          elementFormDefault="qualified"> 
                    <element name = "Department"> 
                      <complexType> 
                        <sequence> 
                          <element name = "DeptNo" type = "positiveInteger"/> 
                          <element name = "DeptName" type = "string"/> 
                          <element name = "Location" type = "positiveInteger"/> 
                          <element name = "Employee" maxOccurs = "unbounded"> 
                            <complexType> 
                              <sequence> 
                                <element name = "EmployeeId" type = 
"positiveInteger"/> 
                                <element name = "Name" type = "string"/> 
                                <element name = "Job" type = "string"/> 
                                <element name = "Manager" type = "positiveInteger"/> 
                                <element name = "HireDate" type = "date"/> 
                                <element name = "Salary" type = "positiveInteger"/> 
                                <element name = "Commission" type = 
"positiveInteger"/> 
                             </sequence> 
                            </complexType> 
                          </element> 
                        </sequence> 
                      </complexType> 
                    </element> 
                  </schema>',
    LOCAL     => TRUE,
    GENTYPES  => FALSE);
  END;
/

CREATE OR REPLACE VIEW dept_xml OF XMLType
  XMLSCHEMA "http://www.oracle.com/dept.xsd" ELEMENT "Department"
  WITH OBJECT ID (XMLCast(XMLQuery('/Department/DeptNo'
                                   PASSING OBJECT_VALUE RETURNING CONTENT)
                          AS BINARY_DOUBLE)) AS
  SELECT XMLElement(
    "Department",
    XMLAttributes(
      'http://www.oracle.com/emp.xsd' AS "xmlns" ,
      'http://www.w3.org/2001/XMLSchema-instance' AS "xmlns:xsi",
      'http://www.oracle.com/dept.xsd
       http://www.oracle.com/dept.xsd' AS "xsi:schemaLocation"),
    XMLForest(d.department_id AS "DeptNo",
              d.department_name AS "DeptName",

Chapter 10
Creating XML Schema-Based XMLType Views

10-10



              d.location_id AS "Location"),
    (SELECT XMLagg(
              XMLElement("Employee",
                         XMLForest(
                           e.employee_id AS "EmployeeId",
                           e.last_name AS "Name",
                           e.job_id AS "Job",
                           e.manager_id AS "Manager",
                           to_char(e.hire_date,'YYYY-MM-DD') AS "Hiredate",
                           e.salary AS "Salary",
                           e.commission_pct AS "Commission")))
       FROM employees e
       WHERE e.department_id = d.department_id))
     FROM departments d;

This is the XMLType instance that results:

SELECT OBJECT_VALUE AS result FROM dept_xml WHERE ROWNUM < 2;

RESULT
----------------------------------------------------------------
<Department
    xmlns="http://www.oracle.com/emp.xsd"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.oracle.com/dept.xsd 
                        http://www.oracle.com/dept.xsd">
  <DeptNo>10</DeptNo>
  <DeptName>Administration</DeptName>
  <Location>1700</Location>
  <Employee>
    <EmployeeId>200</EmployeeId>
    <Name>Whalen</Name>
    <Job>AD_ASST</Job>
    <Manager>101</Manager>
    <Hiredate>2003-09-17</Hiredate>
    <Salary>4400</Salary>
  </Employee>
</Department> 

10.4.2 Creating XML Schema-Based XMLType Views Using Object
Types or Object Views

You can create an XML Schema-based XMLType view from object types or views by
annotating the XML schema to define a mapping between XML types and SQL object
types and object attributes.

To create an XML Schema-based XMLType view from object types or object views, do
the following:

1. Create the object types, if they do not yet exist.

2. Create and then register the XML schema, annotating it to define the mapping
between XML types and SQL object types and attributes.

Chapter 10
Creating XML Schema-Based XMLType Views

10-11



Annotate the XML schema before registering it. You typically do this when you
wrap existing data to create an XMLType view.

When such an XML schema document is registered, the following validation can
occur:

• SQLType for attributes or elements based on simpleType. The SQL type must
be compatible with the XML type of the corresponding XMLType data. For
example, an XML string data type can be mapped only to a VARCHAR2 or a
Large Object (LOB) data type.

• SQLType specified for elements based on complexType. This is either a LOB
or an object type whose structure must be compatible with the declaration
of the complexType, that is, the object type must have the correct number of
attributes with the correct data types.

3. Create the XMLType view, specifying the XML schema URL and the root element
name. The query defining the view first constructs the object instances and then
converts them to XML.

a. Create an object view.

b. Create an XMLType view over the object view.

The topics in this section present examples of creating XML schema-based XMLType
views using object types or object views. They are based on relational tables that
contain employee and department data.

The same relational data is used to create each of two XMLType views. In the employee
view, emp_xml, the XML document describes an employee, with the employee's
department as nested information. In the department view, dept_xml, the XML data
describes a department, with the department's employees as nested information.

• Creating XMLType Employee View, with Nested Department Information
Examples here create XMLType view emp_xml based on object views.

• Creating XMLType Department View, with Nested Employee Information
XMLType view dept_xml is created so that each department in the view contains
nested employee information.

Related Topics

• XML Schema Storage and Query: Basic
XML Schema is a standard for describing the content and structure of XML
documents. You can register, update, and delete an XML schema used with
Oracle XML DB. You can define storage structures to use for your XML schema-
based data and map XML Schema data types to SQL data types.

10.4.2.1 Creating XMLType Employee View, with Nested Department
Information

Examples here create XMLType view emp_xml based on object views.

For the last step of the view creation, there are two alternatives:

• Step 3a. Create XMLType View emp_xml Using Object Type emp_t – create
XMLType view emp_xml using object type emp_t

• Step 3b. Create XMLType View emp_xml Using Object View emp_v – create
XMLType view emp_xml using object view emp_v

Chapter 10
Creating XML Schema-Based XMLType Views

10-12



• Step 1. Create Object Types for XMLType Employee View
Create an object type for an XML Schema-based view.

• Step 2. Create and Register XML Schema emp_complex.xsd
Create and register an XML schema, emp_complex.xsd. The schema maps XML
elements and attributes to corresponding object-relational object attributes.

• Step 3a. Create XMLType View emp_xml Using Object Type emp_t
Create an XMLType view using an object type.

• Step 3b. Create XMLType View emp_xml Using Object View emp_v
Create an XMLType view using an object view.

10.4.2.1.1 Step 1. Create Object Types for XMLType Employee View
Create an object type for an XML Schema-based view.

Example 10-9 creates the object types used in the other steps.

Example 10-9    Creating Object Types for Schema-Based XMLType Views

CREATE TYPE dept_t AS OBJECT 
      (deptno NUMBER(4), 
       dname  VARCHAR2(30), 
       loc    NUMBER(4)); 
/ 

CREATE TYPE emp_t AS OBJECT 
      (empno     NUMBER(6), 
       ename     VARCHAR2(25), 
       job       VARCHAR2(10), 
       mgr       NUMBER(6), 
       hiredate  DATE, 
       sal       NUMBER(8,2), 
       comm      NUMBER(2,2), 
       dept      dept_t); 
/

10.4.2.1.2 Step 2. Create and Register XML Schema emp_complex.xsd
Create and register an XML schema, emp_complex.xsd. The schema maps XML
elements and attributes to corresponding object-relational object attributes.

Create XML schema emp_complex.xsd, which specifies how XML elements and
attributes are mapped to corresponding object attributes in the object types (the
xdb:SQLType annotations), then register it. Example 10-10 registers it.

Example 10-10 creates and registers the XML schema using the target location
http://www.oracle.com/emp_complex.xsd.

Example 10-10    Creating and Registering XML Schema emp_complex.xsd

BEGIN
  -- Delete schema if it already exists (else error)
  DBMS_XMLSCHEMA.deleteSchema('http://www.oracle.com/emp_complex.xsd', 4);
END;
/

Chapter 10
Creating XML Schema-Based XMLType Views

10-13



COMMIT;
 
BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://www.oracle.com/emp_complex.xsd', 
    SCHEMADOC => '<?xml version="1.0"?>
                  <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
                              xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
                              xmlns:xdb="http://xmlns.oracle.com/xdb" 
                              xsi:schemaLocation="http://xmlns.oracle.com/xdb 
                                                  http://xmlns.oracle.com/xdb/XDBSchema.xsd">
                    <xsd:element name="Employee" type="EMP_TType" xdb:SQLType="EMP_T"/>
                    <xsd:complexType name="EMP_TType" xdb:SQLType="EMP_T" xdb:maintainDOM="false">
                      <xsd:sequence>
                        <xsd:element name="EMPNO" type="xsd:double" xdb:SQLName="EMPNO" 
                                     xdb:SQLType="NUMBER"/>
                        <xsd:element name="ENAME" xdb:SQLName="ENAME" xdb:SQLType="VARCHAR2">
                          <xsd:simpleType>
                            <xsd:restriction base="xsd:string">
                              <xsd:maxLength value="25"/>
                            </xsd:restriction>
                          </xsd:simpleType>
                        </xsd:element>
                        <xsd:element name="JOB" xdb:SQLName="JOB" xdb:SQLType="VARCHAR2">
                          <xsd:simpleType>
                            <xsd:restriction base="xsd:string">
                              <xsd:maxLength value="10"/>
                            </xsd:restriction>
                          </xsd:simpleType>
                        </xsd:element>
                        <xsd:element name="MGR" type="xsd:double" xdb:SQLName="MGR" 
                                     xdb:SQLType="NUMBER"/>
                        <xsd:element name="HIREDATE" type="xsd:date" xdb:SQLName="HIREDATE" 
                                     xdb:SQLType="DATE"/>
                        <xsd:element name="SAL" type="xsd:double" xdb:SQLName="SAL" 
                                     xdb:SQLType="NUMBER"/>
                        <xsd:element name="COMM" type="xsd:double" xdb:SQLName="COMM" 
                                     xdb:SQLType="NUMBER"/>
                        <xsd:element name="DEPT" type="DEPT_TType" xdb:SQLName="DEPT"
                                     xdb:SQLType="DEPT_T"/>
                      </xsd:sequence>
                    </xsd:complexType>
                    <xsd:complexType name="DEPT_TType" xdb:SQLType="DEPT_T" 
                                     xdb:maintainDOM="false">
                      <xsd:sequence>
                        <xsd:element name="DEPTNO" type="xsd:double" xdb:SQLName="DEPTNO" 
                                     xdb:SQLType="NUMBER"/>
                        <xsd:element name="DNAME" xdb:SQLName="DNAME" xdb:SQLType="VARCHAR2">
                          <xsd:simpleType>
                            <xsd:restriction base="xsd:string">
                              <xsd:maxLength value="30"/>
                            </xsd:restriction>
                          </xsd:simpleType>
                        </xsd:element>
                       <xsd:element name="LOC" type="xsd:double" xdb:SQLName="LOC" 
                                    xdb:SQLType="NUMBER"/>
                      </xsd:sequence>
                    </xsd:complexType>
                  </xsd:schema>', 
    LOCAL     => TRUE, 
    GENTYPES  => FALSE);
END;
/

Chapter 10
Creating XML Schema-Based XMLType Views

10-14



10.4.2.1.3 Step 3a. Create XMLType View emp_xml Using Object Type emp_t
Create an XMLType view using an object type.

Example 10-11 creates an XMLType view using object type emp_t.

Example 10-11 uses SQL/XML function XMLCast in the OBJECT ID clause to convert
the XML employee number to SQL data type BINARY_DOUBLE.

See Also:

Step 3b. Create XMLType View emp_xml Using Object View emp_v for an
alternative way to create view emp_xml, which uses object view emp_v

Example 10-11    Creating XMLType View emp_xml Using Object Type emp_t

CREATE OR REPLACE VIEW emp_xml OF XMLType 
  XMLSCHEMA "http://www.oracle.com/emp_complex.xsd"
  ELEMENT "Employee" 
    WITH OBJECT ID (XMLCast(XMLQuery('/Employee/EMPNO'
                                     PASSING OBJECT_VALUE RETURNING CONTENT)
                            AS BINARY_DOUBLE)) AS 
  SELECT emp_t(e.employee_id, e.last_name, e.job_id, e.manager_id, e.hire_date, 
               e.salary, e.commission_pct,
               dept_t(d.department_id, d.department_name, d.location_id)) 
    FROM employees e, departments d 
    WHERE e.department_id = d.department_id;

10.4.2.1.4 Step 3b. Create XMLType View emp_xml Using Object View emp_v
Create an XMLType view using an object view.

Example 10-12 creates object view emp_v and then creates XMLType view emp_xml
based on that object view.

See Also:

Step 3a. Create XMLType View emp_xml Using Object Type emp_t for an
alternative way to create view emp_xml, which uses object type emp_t

Example 10-12    Creating an Object View and an XMLType View Based on the
Object View

CREATE OR REPLACE VIEW emp_v OF emp_t WITH OBJECT ID (empno) AS 
  SELECT emp_t(e.employee_id, e.last_name, e.job_id, e.manager_id, e.hire_date,
               e.salary, e.commission_pct,
               dept_t(d.department_id, d.department_name, d.location_id)) 
    FROM employees e, departments d 
    WHERE e.department_id = d.department_id;
 
CREATE OR REPLACE VIEW emp_xml OF XMLType 
  XMLSCHEMA "http://www.oracle.com/emp_complex.xsd" ELEMENT "Employee"

Chapter 10
Creating XML Schema-Based XMLType Views

10-15



  WITH OBJECT ID DEFAULT AS
  SELECT VALUE(p) FROM emp_v p;

10.4.2.2 Creating XMLType Department View, with Nested Employee
Information

XMLType view dept_xml is created so that each department in the view contains nested
employee information.

For the last step of the view creation, there are two alternatives:

• Step 3a. Create XMLType View dept_xml Using Object Type dept_t – create
XMLType view dept_xml using the object type for a department, dept_t

• Step 3b. Create XMLType View dept_xml Using Relational Data Directly – create
XMLType view dept_xml using relational data directly

• Step 1. Create Object Types for XMLType Department View
Create an object type for an XML Schema-based view.

• Step 2. Register XML Schema dept_complex.xsd
Register XML schema dept_complex.xsd.

• Step 3a. Create XMLType View dept_xml Using Object Type dept_t
Create XMLType view dept_xml using object type dept_t.

• Step 3b. Create XMLType View dept_xml Using Relational Data Directly
You can use SQL/XML publishing functions to create XMLType view dept_xml from
the relational tables without using object type dept_t.

10.4.2.2.1 Step 1. Create Object Types for XMLType Department View
Create an object type for an XML Schema-based view.

Example 10-13 creates the object types used in the other steps.

Example 10-13    Creating Object Types

CREATE TYPE emp_t AS OBJECT (empno    NUMBER(6),
                             ename    VARCHAR2(25), 
                             job      VARCHAR2(10), 
                             mgr      NUMBER(6), 
                             hiredate DATE, 
                             sal      NUMBER(8,2), 
                             comm     NUMBER(2,2)); /

CREATE OR REPLACE TYPE emplist_t AS TABLE OF emp_t; 
/

CREATE TYPE dept_t AS OBJECT (deptno NUMBER(4),
                              dname  VARCHAR2(30), 
                              loc    NUMBER(4),
                              emps   emplist_t); 
/

Chapter 10
Creating XML Schema-Based XMLType Views

10-16



10.4.2.2.2 Step 2. Register XML Schema dept_complex.xsd
Register XML schema dept_complex.xsd.

Example 10-14 illustrates this.

Example 10-14    Registering XML Schema dept_complex.xsd

BEGIN
  -- Delete schema if it already exists (else error)
  DBMS_XMLSCHEMA.deleteSchema('http://www.oracle.com/dept_complex.xsd', 4);
END;
/

BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://www.oracle.com/dept_complex.xsd',
    SCHEMADOC => '<?xml version="1.0"?>
                  <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
                              xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
                              xmlns:xdb="http://xmlns.oracle.com/xdb"            
                              xsi:schemaLocation="http://xmlns.oracle.com/xdb 
                                                  http://xmlns.oracle.com/xdb/XDBSchema.xsd">
                    <xsd:element name="Department" type="DEPT_TType" xdb:SQLType="DEPT_T"/>
                    <xsd:complexType name="DEPT_TType" xdb:SQLType="DEPT_T" 
                                     xdb:maintainDOM="false">
                      <xsd:sequence>
                        <xsd:element name="DEPTNO" type="xsd:double" xdb:SQLName="DEPTNO" 
                                     xdb:SQLType="NUMBER"/>
                        <xsd:element name="DNAME" xdb:SQLName="DNAME" xdb:SQLType="VARCHAR2">
                          <xsd:simpleType>
                            <xsd:restriction base="xsd:string">
                              <xsd:maxLength value="30"/>
                            </xsd:restriction>
                          </xsd:simpleType>
                        </xsd:element>
                        <xsd:element name="LOC" type="xsd:double" xdb:SQLName="LOC" 
                                     xdb:SQLType="NUMBER"/>
                        <xsd:element name="EMPS" type="EMP_TType" maxOccurs="unbounded" 
                                     minOccurs="0" xdb:SQLName="EMPS" 
                                     xdb:SQLCollType="EMPLIST_T" xdb:SQLType="EMP_T"  
                                     xdb:SQLCollSchema="HR"/>
                      </xsd:sequence>
                    </xsd:complexType>
                    <xsd:complexType name="EMP_TType" xdb:SQLType="EMP_T" xdb:maintainDOM="false">
                      <xsd:sequence>
                        <xsd:element name="EMPNO" type="xsd:double" xdb:SQLName="EMPNO" 
                                     xdb:SQLType="NUMBER"/>
                        <xsd:element name="ENAME" xdb:SQLName="ENAME" xdb:SQLType="VARCHAR2">
                          <xsd:simpleType>
                            <xsd:restriction base="xsd:string">
                              <xsd:maxLength value="25"/>
                            </xsd:restriction>
                          </xsd:simpleType>
                        </xsd:element>
                        <xsd:element name="JOB" xdb:SQLName="JOB" xdb:SQLType="VARCHAR2">
                          <xsd:simpleType>
                            <xsd:restriction base="xsd:string">
                              <xsd:maxLength value="10"/>
                            </xsd:restriction>
                          </xsd:simpleType>
                        </xsd:element>
                        <xsd:element name="MGR" type="xsd:double" xdb:SQLName="MGR" 
                                     xdb:SQLType="NUMBER"/>
                        <xsd:element name="HIREDATE" type="xsd:date" xdb:SQLName="HIREDATE" 
                                     xdb:SQLType="DATE"/>

Chapter 10
Creating XML Schema-Based XMLType Views

10-17



                        <xsd:element name="SAL" type="xsd:double" xdb:SQLName="SAL" 
                                     xdb:SQLType="NUMBER"/>
                        <xsd:element name="COMM" type="xsd:double" xdb:SQLName="COMM"   
                                     xdb:SQLType="NUMBER"/>
                      </xsd:sequence>
                    </xsd:complexType>
                  </xsd:schema>', 
    LOCAL     => TRUE, 
    GENTYPES  => FALSE);
END;
/

10.4.2.2.3 Step 3a. Create XMLType View dept_xml Using Object Type dept_t
Create XMLType view dept_xml using object type dept_t.

Example 10-15 illustrates this.

Example 10-15    Creating XMLType View dept_xml Using Object Type dept_t

CREATE OR REPLACE VIEW dept_xml OF XMLType
  XMLSCHEMA "http://www.oracle.com/dept_complex.xsd" ELEMENT "Department"
  WITH OBJECT ID (XMLCast(XMLQuery('/Department/DEPTNO'
                                   PASSING OBJECT_VALUE RETURNING CONTENT)
                          AS BINARY_DOUBLE)) AS
  SELECT dept_t(d.department_id, d.department_name, d.location_id,
                cast(MULTISET
                     (SELECT emp_t(e.employee_id, e.last_name, e.job_id,
                                   e.manager_id, e.hire_date,
                                   e.salary, e.commission_pct) 
                        FROM employees e WHERE e.department_id = d.department_id) 
                     AS emplist_t))
    FROM departments d;

10.4.2.2.4 Step 3b. Create XMLType View dept_xml Using Relational Data Directly
You can use SQL/XML publishing functions to create XMLType view dept_xml from the
relational tables without using object type dept_t.

Example 10-16 illustrates this.

Note:

XML schema and element information must be specified at the view level,
because the SELECT list could arbitrarily construct XML of a different XML
schema from the underlying table.

Example 10-16    Creating XMLType View dept_xml Using Relational Data Directly

CREATE OR REPLACE VIEW dept_xml OF XMLType
  XMLSCHEMA "http://www.oracle.com/dept_complex.xsd" ELEMENT "Department"
  WITH OBJECT ID (XMLCast(XMLQuery('/Department/DEPTNO'
                                   PASSING OBJECT_VALUE RETURNING CONTENT)
                          AS BINARY_DOUBLE)) AS

Chapter 10
Creating XML Schema-Based XMLType Views

10-18



  SELECT  
    XMLElement(
      "Department",
      XMLAttributes('http://www.oracle.com/dept_complex.xsd' AS "xmlns",        
                    'http://www.w3.org/2001/XMLSchema-instance' AS "xmlns:xsi",
                    'http://www.oracle.com/dept_complex.xsd 
                     http://www.oracle.com/dept_complex.xsd' 
                      AS "xsi:schemaLocation"),
      XMLForest(d.department_id "DeptNo", d.department_name "DeptName",
                d.location_id "Location"),
      (SELECT XMLAgg(XMLElement("Employee",
                                XMLForest(e.employee_id "EmployeeId", 
                                          e.last_name "Name", 
                                          e.job_id "Job", 
                                          e.manager_id "Manager", 
                                          e.hire_date "Hiredate",
                                          e.salary "Salary",
                                          e.commission_pct "Commission")))
                      FROM employees e WHERE e.department_id = d.department_id))
    FROM departments d;

10.5 Creating XMLType Views from XMLType Tables
An XMLType view can be created on an XMLType table, for example, to transform the
XML data or to restrict the rows returned.

Example 10-17 creates an XMLType view by restricting the rows included from an
underlying XMLType table. It uses XML schema dept_complex.xsd to create the
underlying table — see Creating XMLType Department View, with Nested Employee
Information.

Example 10-18 shows how you can create an XMLType view by transforming XML data
using an XSL stylesheet.

Example 10-17    Creating an XMLType View by Restricting Rows from an
XMLType Table

CREATE TABLE dept_xml_tab OF XMLType 
    XMLSchema "http://www.oracle.com/dept_complex.xsd" ELEMENT "Department"
    NESTED TABLE XMLDATA."EMPS" STORE AS dept_xml_tab_tab1;
 
CREATE OR REPLACE VIEW dallas_dept_view OF XMLType 
    XMLSchema "http://www.oracle.com/dept.xsd" ELEMENT "Department"
        AS SELECT OBJECT_VALUE FROM dept_xml_tab 
           WHERE XMLCast(XMLQuery('/Department/LOC'
                                  PASSING OBJECT_VALUE RETURNING CONTENT)
                         AS VARCHAR2(20))
                 = 'DALLAS'; 

Here, dallas_dept_view restricts the XMLType table rows to those departments whose
location is Dallas.

Example 10-18    Creating an XMLType View by Transforming an XMLType Table

CREATE OR REPLACE VIEW hr_po_tab OF XMLType 
  ELEMENT "PurchaseOrder" WITH OBJECT ID DEFAULT AS

Chapter 10
Creating XMLType Views from XMLType Tables

10-19



  SELECT XMLtransform(OBJECT_VALUE, x.col1)
    FROM purchaseorder p, xsl_tab x;

Related Topics

• SQL Function XMLTRANSFORM and XMLType Method TRANSFORM()
SQL function XMLtransform transforms an XML document by using an XSLT
stylesheet. It returns the processed output as XML, HTML, and so on, as specified
by the stylesheet.

10.6 Referencing XMLType View Objects Using SQL
Function REF

You can reference an XMLType view object using SQL function ref.

SELECT ref(d) FROM dept_xml_tab d;

An XMLType view reference is based on one of the following object IDs:

• System-generated OID — for views on XMLType tables or object views

• Primary key based OID -- for views with OBJECT ID expressions

These REFs can be used to fetch OCIXMLType instances in the OCI Object cache, or
they can be used in SQL queries. These REFs act the same as REFs to object views.

10.7 Using DML (Data Manipulation Language) on XMLType
Views

A given XMLType view might not be implicitly updatable. In that case, you must write
instead-of triggers to handle all DML. To determine whether an XMLType view is
implicitly updatable, query it to see whether it is based on an object view or constructor
that is itself inherently updatable.

Example 10-19 illustrates this.

Example 10-19    Determining Whether an XMLType View Is Implicitly Updatable, and Updating It

CREATE TYPE dept_t AS OBJECT 
      (deptno NUMBER(4), 
       dname  VARCHAR2(30), 
       loc    NUMBER(4)); 
/

BEGIN
  -- Delete schema if it already exists (else error)
  DBMS_XMLSCHEMA.deleteSchema('http://www.oracle.com/dept_t.xsd', 4);
END;
/
COMMIT;
 
BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://www.oracle.com/dept_t.xsd',
    SCHEMADOC => '<?xml version="1.0"?>
                  <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
                              xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

Chapter 10
Referencing XMLType View Objects Using SQL Function REF

10-20



                              xmlns:xdb="http://xmlns.oracle.com/xdb" 
                              xsi:schemaLocation="http://xmlns.oracle.com/xdb 
                                                  http://xmlns.oracle.com/xdb/XDBSchema.xsd">
                    <xsd:element name="Department" type="DEPT_TType" xdb:SQLType="DEPT_T"/>
                    <xsd:complexType name="DEPT_TType" xdb:SQLType="DEPT_T"
                                     xdb:maintainDOM="false">
                      <xsd:sequence>
                        <xsd:element name="DEPTNO" type="xsd:double" xdb:SQLName="DEPTNO" 
                                     xdb:SQLType="NUMBER"/>
                        <xsd:element name="DNAME" xdb:SQLName="DNAME" xdb:SQLType="VARCHAR2">
                          <xsd:simpleType>
                            <xsd:restriction base="xsd:string">
                              <xsd:maxLength value="30"/>
                            </xsd:restriction>
                          </xsd:simpleType>
                        </xsd:element>
                        <xsd:element name="LOC" type="xsd:double" xdb:SQLName="LOC" 
                                     xdb:SQLType="NUMBER"/>
                      </xsd:sequence>
                    </xsd:complexType>
                  </xsd:schema>', 
    LOCAL     => TRUE, 
    GENTYPES  => FALSE);
END;
/

CREATE OR REPLACE VIEW dept_xml of XMLType
  XMLSchema "http://www.oracle.com/dept_t.xsd" element "Department"
  WITH OBJECT ID (XMLCast(XMLQuery('/Department/DEPTNO'
                                   PASSING OBJECT_VALUE RETURNING CONTENT)
                          AS BINARY_DOUBLE)) AS
  SELECT dept_t(d.department_id, d.department_name, d.location_id) 
    FROM departments d;

INSERT INTO dept_xml 
  VALUES (
    XMLType.createXML(
      '<Department 
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
         xsi:noNamespaceSchemaLocation="http://www.oracle.com/dept_t.xsd" >
         <DEPTNO>300</DEPTNO>
         <DNAME>Processing</DNAME>
         <LOC>1700</LOC>
       </Department>'));

UPDATE dept_xml d
  SET d.OBJECT_VALUE =
    XMLQuery('copy $i := $p1 modify
                (for $j in $i/Department/DNAME
                 return replace value of node $j with $p2)
              return $i'
             PASSING d.OBJECT_VALUE AS "p1", 'Shipping' AS "p2" RETURNING CONTENT)
    WHERE XMLExists('/Department[DEPTNO=300]' PASSING OBJECT_VALUE);

Chapter 10
Using DML (Data Manipulation Language) on XMLType Views

10-21



Part IV
XMLType APIs

You can use Oracle XML DB XMLType PL/SQL, Java, C APIs, and Oracle Data
Provider for .NET (ODP.NET) to access and manipulate XML data.

• PL/SQL APIs for XMLType
There are several PL/SQL packages that provide APIs for XMLType.

• PL/SQL Package DBMS_XMLSTORE
You can use PL/SQL package DBMS_XMLSTORE to insert, update, or delete data
from XML documents stored object-relationally. It uses a canonical XML mapping
similar to the one produced by package DBMS_XMLGEN. It converts the mapping to
object-relational constructs and then inserts, updates or deletes the corresponding
values in relational tables.

• Java DOM API for XMLType
The Java DOM API for XMLType lets you operate on XMLType instances using a
DOM. You can use it to manipulate XML data in Java, including fetching it through
Java Database Connectivity (JDBC).

• C DOM API for XMLType
The C DOM API for XMLType lets you operate on XMLType instances using a DOM
in C.

• Oracle XML DB and Oracle Data Provider for .NET
Oracle Data Provider for Microsoft .NET (ODP.NET) is an implementation of a data
provider for Oracle Database. It uses Oracle native APIs to offer fast and reliable
access to Oracle data and features from any .NET application.



11
PL/SQL APIs for XMLType

There are several PL/SQL packages that provide APIs for XMLType.

• Overview of PL/SQL APIs for XMLType
The PL/SQL Application Program Interfaces (APIs) for XMLType include a DOM
API, a parser API, and a processor API.

• PL/SQL DOM API for XMLType (DBMS_XMLDOM)
The PL/SQL DOM API for XMLType, DBMS_XMLDOM lets you operate on XMLType
instances using a DOM.

• PL/SQL Parser API for XMLType (DBMS_XMLPARSER)
The PL/SQL Parser API for XMLType (DBMS_XMLPARSER) builds a parsing result tree
that can be accessed by PL/SQL APIs. If parsing fails, it raises an error.

• PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
You can use PL/SQL package DBMS_XSLPROCESSOR to transform one XML
document to another or to convert XML data into HTML, PDF, or other formats.
This package traverses the DOM tree for the document and applies Extensible
Stylesheet Language Transformation (XSLT) statements to it to produce the
transformed document.

11.1 Overview of PL/SQL APIs for XMLType
The PL/SQL Application Program Interfaces (APIs) for XMLType include a DOM API, a
parser API, and a processor API.

• PL/SQL Document Object Model (DOM) API for XMLType (package DBMS_XMLDOM):
For accessing XMLType objects. You can access both XML schema-based and
non-schema-based documents.

A DOM is a tree-based object representation of an XML document in dynamic
memory. It enables programmatic access to its elements and attributes. The DOM
object and its interface is a W3C recommendation. It specifies the Document
Object Model of an XML document including APIs for programmatic access. DOM
views the parsed document as a tree of objects.

• PL/SQL XML Parser API for XMLType (package DBMS_XMLPARSER): For creating a
DOM and accessing the content and structure of XML documents.

• PL/SQL XSLT Processor for XMLType (package DBMS_XSLPROCESSOR): For
transforming XML documents to other formats using XSLT.

• PL/SQL APIs for XMLType: Features
You can use the PL/SQL APIs for XMLType to create XMLType tables, columns, and
views; construct XMLType instances from data encoded in different character sets;
and access and manipulate XMLType in various ways.

• PL/SQL APIs for XMLType: References
The PL/SQL Application Programming Interfaces (APIs) for XMLType are
described.

11-1



11.1.1 PL/SQL APIs for XMLType: Features
You can use the PL/SQL APIs for XMLType to create XMLType tables, columns, and
views; construct XMLType instances from data encoded in different character sets; and
access and manipulate XMLType in various ways.

• Lazy Load of XML Data (Lazy Manifestation)
Lazy XML loading loads rows of data only when they are requested, enhancing
scalability of your applications that involve large XML documents and many
concurrent users.

• XMLType Data Type Supports XML Schema
SQL data type XMLType supports XML Schema.

• XMLType Supports Data in Different Character Sets
You can use PL/SQL to create XMLType instances from data that is encoded in
any Oracle-supported character set. To do this, you use the PL/SQL XMLType
constructor or XMLType method createXML().

Related Topics

• Oracle XML DB Features
Oracle XML DB provides standard database features such as transaction control,
data integrity, replication, reliability, availability, security, and scalability, while
also allowing for efficient indexing, querying, updating, and searching of XML
documents in an XML-centric manner.

• Query and Update of XML Data
There are many ways for applications to query and update XML data that is in
Oracle Database, both XML schema-based and non-schema-based.

11.1.1.1 Lazy Load of XML Data (Lazy Manifestation)
Lazy XML loading loads rows of data only when they are requested, enhancing
scalability of your applications that involve large XML documents and many concurrent
users.

Because XMLType provides a dynamic memory or virtual Document Object Model
(DOM), it can use a memory conserving process called lazy XML loading, also
sometimes referred to as lazy manifestation. This process optimizes memory usage
by only loading rows of data when they are requested. It throws away previously-
referenced sections of the document if memory usage grows too large. Lazy XML
loading supports highly scalable applications that have many concurrent users
needing to access large XML documents.

11.1.1.2 XMLType Data Type Supports XML Schema
SQL data type XMLType supports XML Schema.

You can create an XML schema and annotate it with mappings from XML to object-
relational storage. To take advantage of the PL/SQL DOM API, first create an XML
schema and register it. Then, when you create XMLType tables and columns, you can
specify that these conform to the registered XML schema.

Chapter 11
Overview of PL/SQL APIs for XMLType

11-2



11.1.1.3 XMLType Supports Data in Different Character Sets
You can use PL/SQL to create XMLType instances from data that is encoded in any
Oracle-supported character set. To do this, you use the PL/SQL XMLType constructor
or XMLType method createXML().

The source XML data must be supplied using data type BFILE or BLOB. The encoding
of the data is specified through argument csid. When this argument is zero (0),
the encoding of the source data is determined from the XML prolog, as specified in
Appendix F of the XML 1.0 Reference.

Caution:

AL32UTF8 is the Oracle Database character set that is appropriate for
XMLType data. It is equivalent to the IANA registered standard UTF-8
encoding, which supports all valid XML characters.

Do not confuse Oracle Database database character set UTF8 (no hyphen)
with database character set AL32UTF8 or with character encoding UTF-8.
Database character set UTF8 has been superseded by AL32UTF8. Do not
use UTF8 for XML data. Character set UTF8 supports only Unicode version
3.1 and earlier. It does not support all valid XML characters. AL32UTF8 has
no such limitation.

Using database character set UTF8 for XML data could potentially stop a
system or affect security negatively. If a character that is not supported by
the database character set appears in an input-document element name,
a replacement character (usually "?") is substituted for it. This terminates
parsing and raises an exception. It could cause an irrecoverable error.

11.1.2 PL/SQL APIs for XMLType: References
The PL/SQL Application Programming Interfaces (APIs) for XMLType are described.

Table 11-1 lists the reference documentation for the PL/SQL APIs that you can use
to manipulate XML data. The main reference for PL/SQL APIs is Oracle Database
PL/SQL Packages and Types Reference.

See Also:

• Oracle Database XML Java API Reference for information about Java
APIs for XML

• Oracle Database XML C API Reference for information about C APIs for
XML

• Oracle Database XML C++ API Referencefor information about C++
APIs for XML

Chapter 11
Overview of PL/SQL APIs for XMLType

11-3



Table 11-1    PL/SQL APIs Related to XML

API Documentation Description

XMLType Oracle Database PL/SQL Packages
and Types Reference, chapter
"XMLType"

PL/SQL APIs with XML operations
on XMLType data – validation,
transformation.

Database URI types Oracle Database PL/SQL Packages
and Types Reference, chapter
"Database URI TYPEs"

Functions used for various URI types.

DBMS_METADATA Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_METADATA"

PL/SQL API for retrieving metadata from
the database dictionary as XML, or
retrieving creation DDL and submitting
the XML to re-create the associated
object.

DBMS_RESCONFIG Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_RESCONFIG"

PL/SQL API to operate on a resource
configuration list, and to retrieve listener
information for a resource.

DBMS_XDB_ADMIN Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XDB_ADMIN"

PL/SQL API for the management of
Oracle XML DB Repository by database
administrators.

DBMS_XDB_CONFIG Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XDB_CONFIG"

PL/SQL API for managing Oracle
XML DB configuration sessions.

DBMS_XDB_CONSTANTS Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XDB_CONSTANTS"

PL/SQL constants for use with Oracle
XML DB

DBMS_XDB_REPOS Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XDB_REPOS"

PL/SQL API for the use of Oracle
XML DB Repository by application
developers.

DBMS_XDBRESOURCE Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XDBRESOURCE"

PL/SQL API to operate on repository
resource metadata and contents.

DBMS_XDB_VERSION Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XDB_VERSION"

PL/SQL API for version management of
repository resources.

DBMS_XDBZ Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XDBZ"

Oracle XML DB Repository ACL-based
security.

DBMS_XEVENT Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XEVENT"

PL/SQL API providing event-related
types and supporting interface..

DBMS_XMLDOM Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XMLDOM"

PL/SQL implementation of the DOM API
for XMLType.

DBMS_XMLGEN Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XMLGEN"

PL/SQL API for transformation of SQL
query results into canonical XML format.

DBMS_XMLINDEX Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XMLINDEX

PL/SQL API for XMLIndex.

Chapter 11
Overview of PL/SQL APIs for XMLType

11-4



Table 11-1    (Cont.) PL/SQL APIs Related to XML

API Documentation Description

DBMS_XMLPARSER Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XMLPARSER"

PL/SQL implementation of the DOM
Parser API for XMLType.

DBMS_XMLSCHEMA Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XMLSCHEMA

PL/SQL API for managing XML schemas
within Oracle Database – schema
registration, deletion.

DBMS_XMLSCHEMA_ANNOTATE Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XMLSCHEMA_ANNOTATE
"

PL/SQL API for adding and
managing Oracle-specific XML Schema
annotations.

DBMS_XMLSTORAGE_MANAGE Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XMLSTORAGE_MANAGE"

PL/.SQL API managing and modifying
storage of XML data after XML schema
registration.

DBMS_XMLSTORE Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XMLSTORE"

PL/SQL API for storing XML data in
relational tables.

DBMS_XSLPROCESSOR Oracle Database PL/SQL Packages
and Types Reference, chapter
"DBMS_XSLPROCESSOR"

PL/SQL implementation of an XSLT
processor.

11.2 PL/SQL DOM API for XMLType (DBMS_XMLDOM)
The PL/SQL DOM API for XMLType, DBMS_XMLDOM lets you operate on XMLType
instances using a DOM.

• Overview of the W3C Document Object Model (DOM) Recommendation
The Document Object Model (DOM) recommended by the World Wide Web
Consortium (W3C) is a universal API for accessing the structure of XML
documents.

• PL/SQL DOM API for XMLType (DBMS_XMLDOM): Features
Oracle XML DB extends the Oracle Database XML development platform beyond
SQL support for storage and retrieval of XML data. It lets you operate on XMLType
instances using DOM in PL/SQL, Java, and C.

• Application Design Using Oracle XML Developer's Kit and Oracle XML DB
When you build applications based on Oracle XML DB, you do not need the
additional components provided by Oracle XML Developer's Kit (XDK). However,
you can use XDK components with Oracle XML DB to deploy a full suite of
XML-enabled applications that run end-to-end.

• Preparing XML Data to Use the PL/SQL DOM API for XMLType
Create an XML schema, annotate it to map XML to SQL objects, and register the
XML schema.

• XML Schema Types Are Mapped to SQL Object Types
An XML schema must be registered with Oracle XML DB before it can be
referenced by an XML document. When you register an XML schema, elements
and attributes it declares are mapped to attributes of corresponding SQL object
types within the database.

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-5



• Wrap Existing Data as XML with XMLType Views
To make existing relational and object-relational data available to your XML
applications, you can create XMLType views based on it. You can then access
the resulting XML data using the PL/SQL DOM API.

• DBMS_XMLDOM Methods Supported by Oracle XML DB
All DBMS_XMLDOM methods are supported by Oracle XML DB, with a few exceptions.

• PL/SQL DOM API for XMLType: Node Types
The DOM specifies the way elements within an XML document are used to
create an object-based tree structure. It defines and exposes interfaces to manage
and use the objects stored in XML documents. The DOM supports storage of
documents in diverse systems.

• PL/SQL Function NEWDOMDOCUMENT and DOMDOCUMENT Nodes
PL/SQL function newDOMDocument constructs a DOM document handle, given an
XMLType value. The resulting handle is of type DOMDocument.

• DOM NodeList and NamedNodeMap Objects
When you change the document structure underlying a DOMDocument instance, the
changes are reflected in all relevant NodeList and NamedNodeMap objects.

• Overview of Using the PL/SQL DOM API for XMLType (DBMS_XMLDOM)
Using PL/SQL package DBMS_XMLDOM typically involves creating DOM documents,
traversing or extending the DOM tree, and creating and manipulating nodes.

• PL/SQL DOM API for XMLType – Examples
Examples are presented of using the PL/SQL DOM API for XMLType.

• Large Node Handling Using DBMS_XMLDOM
Oracle XML DB provides abstract streams and stream-manipulation methods that
you can use to handle XML nodes that are larger than 64 K bytes.

• Get-Push Model for Large Node Handling
In this model, you retrieve the value of a DOM node, using a parser that is in push
mode. Oracle XML DB writes the node data to an output stream that the parser
reads.

• Get-Pull Model for Large Node Handling
In this model, you retrieve the value of a DOM node, using a parser that is in pull
mode. Oracle XML DB reads the event data from an input stream written by the
parser.

• Set-Pull Model for Large Node Handling
In this model, you set the value of a DOM node, using a parser that is in pull
mode. Oracle XML DB reads the event data from an input stream written by the
parser.

• Set-Push Model for Large Node Handling
In this model, you set the value of a DOM node, using a parser that is in push
mode. Oracle XML DB writes the node data to an output stream that the parser
reads.

• Determining Binary Stream or Character Stream for Large Node Handling
You can use subprogram DBMS_XMLDOM.useBinaryStream to determine whether to
use a character stream or a binary stream to access the content of a large node.

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-6



See Also:

Oracle Database PL/SQL Packages and Types Reference for descriptions of
the individual DBMS_XMLDOM methods

11.2.1 Overview of the W3C Document Object Model (DOM)
Recommendation

The Document Object Model (DOM) recommended by the World Wide Web
Consortium (W3C) is a universal API for accessing the structure of XML documents.

The DOM is a universal API for accessing the structure of XML documents. It
was originally developed to formalize Dynamic HTML, which is used for animation,
interaction, and dynamic updating of Web pages. DOM provides a language-neutral
and platform-neutral object model for Web pages and XML documents. DOM
describes language-independent and platform-independent interfaces to access and
operate on XML components and elements. It expresses the structure of an
XML document in a universal, content-neutral way. Applications can be written to
dynamically delete, add, and edit the content, attributes, and style of XML documents.
DOM makes it possible to create applications that work properly on all browsers,
servers, and platforms.

• Oracle XML Developer's Kit Extensions to the W3C DOM Standard
Oracle XML Developer's Kit (XDK) extends the W3C DOM API. These extensions
are supported by Oracle XML DB except for those relating to client-side operations
that are not applicable in the database. See the Simple API for XML (SAX)
interface in the Oracle XML Developer's Kit Java and C components.

• Supported W3C DOM Recommendations
All Oracle XML DB APIs for accessing and manipulating XML data comply with
standard XML processing requirements as approved by the W3C. The PL/SQL
DOM supports Levels 1 and 2 of the W3C DOM specifications.

• Difference Between DOM and SAX
DOM is the primary generic tree-based API for XML. SAX (Simple API for XML)
is the primary generic event-based programming interface between an XML parser
and an XML application.

11.2.1.1 Oracle XML Developer's Kit Extensions to the W3C DOM Standard
Oracle XML Developer's Kit (XDK) extends the W3C DOM API. These extensions are
supported by Oracle XML DB except for those relating to client-side operations that
are not applicable in the database. See the Simple API for XML (SAX) interface in the
Oracle XML Developer's Kit Java and C components.

See Also:

Oracle XML Developer's Kit Programmer's Guide

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-7



11.2.1.2 Supported W3C DOM Recommendations
All Oracle XML DB APIs for accessing and manipulating XML data comply with
standard XML processing requirements as approved by the W3C. The PL/SQL DOM
supports Levels 1 and 2 of the W3C DOM specifications.

• DOM Level 1.0 – The first formal Level of the DOM specifications, completed in
October 1998. Level 1.0 defines support for XML 1.0 and HTML.

• DOM Level 2.0 – Completed in November 2000, Level 2.0 extends Level 1.0
with support for XML 1.0 with namespaces and adds support for Cascading Style
Sheets (CSS) and events (user-interface events and tree manipulation events),
and enhances tree manipulations (tree ranges and traversal mechanisms). CSS
are a simple mechanism for adding style (fonts, colors, spacing, and so on) to
Web documents.

Oracle support for DOM is as follows:

• In Oracle9i release 1 (9.0.1), Oracle XML Developer's Kit for PL/SQL implemented
DOM Level 1.0 and parts of DOM Level 2.0.

• In Oracle9i release 2 (9.2) and Oracle Database 10g release 1 (10.1), the PL/SQL
API for XMLType implements DOM Levels 1.0 and Level 2.0 Core, and is fully
integrated in the database through extensions to the XMLType API.

11.2.1.3 Difference Between DOM and SAX
DOM is the primary generic tree-based API for XML. SAX (Simple API for XML) is the
primary generic event-based programming interface between an XML parser and an
XML application.

DOM works by creating objects. These objects have child objects and properties.
The child objects have their own child objects and properties, and so on. Objects are
referenced either by moving down the object hierarchy or by explicitly giving an HTML
element an ID attribute. For example:

<img src="employee_jdoe.gif" ID="0123jdoe">

Examples of structural manipulations are:

• Reordering elements

• Adding or deleting elements

• Adding or deleting attributes

• Renaming elements

See Also:

• Document Object Model (DOM)

• SAX Project

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-8



11.2.2 PL/SQL DOM API for XMLType (DBMS_XMLDOM): Features
Oracle XML DB extends the Oracle Database XML development platform beyond SQL
support for storage and retrieval of XML data. It lets you operate on XMLType instances
using DOM in PL/SQL, Java, and C.

The default action for the PL/SQL DOM API for XMLType (DBMS_XMLDOM) does the
following:

• Produce a parse tree that can be accessed by DOM APIs.

• Validate, if a DTD is found. Otherwise, do not validate.

• Raise an application error if parsing fails.

DTD validation occurs when the object document is manifested. If lazy manifestation is
employed, then the document is validated when it is used.

The PL/SQL DOM API exploits a C-based representation of XML in the server and
operates on XML schema-based XML instances. The PL/SQL, Java, and C DOM APIs
for XMLType comply with the W3C DOM Recommendations to define and implement
object-relational storage of XML data in relational or object-relational columns and as
dynamic memory instances of XMLType. See Preparing XML Data to Use the PL/SQL
DOM API for XMLType , for a description of W3C DOM Recommendations.

• PL/SQL DOM API Support for XML Schema
The PL/SQL DOM API for XMLType supports XML Schema. Oracle XML DB uses
annotations within an XML schema as metadata to determine the structure of an
XML document and the mapping of the document to a database schema.

• Enhanced DOM Performance
Oracle XML DB uses DOM to provide a standard way to translate data between
XML and multiple back-end data sources. This eliminates the need to use
separate XML translation techniques for the different data sources in your
environment.

11.2.2.1 PL/SQL DOM API Support for XML Schema
The PL/SQL DOM API for XMLType supports XML Schema. Oracle XML DB uses
annotations within an XML schema as metadata to determine the structure of an XML
document and the mapping of the document to a database schema.

Note:

For backward compatibility and flexibility, the PL/SQL DOM supports both
XML Schema-based documents and non-schema-based documents.

After an XML schema is registered with Oracle XML DB, the PL/SQL DOM API for
XMLType builds a tree representation of an associated XML document in dynamic
memory as a hierarchy of node objects, each with its own specialized interfaces. Most
node object types can have child node types, which in turn implement additional, more
specialized interfaces. Nodes of some node types can have child nodes of various
types, while nodes of other node types must be leaf nodes, which do not have child
nodes.

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-9



11.2.2.2 Enhanced DOM Performance
Oracle XML DB uses DOM to provide a standard way to translate data between XML
and multiple back-end data sources. This eliminates the need to use separate XML
translation techniques for the different data sources in your environment.

Applications needing to exchange XML data can use a single native XML database to
cache XML documents. Oracle XML DB can thus speed up application performance
by acting as an intermediate cache between your Web applications and your back-end
data sources, whether they are in relational databases or file systems.

Related Topics

• Java DOM API for XMLType
The Java DOM API for XMLType lets you operate on XMLType instances using a
DOM. You can use it to manipulate XML data in Java, including fetching it through
Java Database Connectivity (JDBC).

11.2.3 Application Design Using Oracle XML Developer's Kit and
Oracle XML DB

When you build applications based on Oracle XML DB, you do not need the additional
components provided by Oracle XML Developer's Kit (XDK). However, you can
use XDK components with Oracle XML DB to deploy a full suite of XML-enabled
applications that run end-to-end.

These XDK features are particularly useful for developing XML applications based on
Oracle XML DB.

• Simple API for XML (SAX) interface processing. SAX is an XML standard interface
provided by XML parsers and used by procedural and event-based applications.

• DOM interface processing, for structural and recursive object-based processing.

Oracle XML Developer's Kit contains the basic building blocks for creating applications
that run on a client, in a browser or a plug-in. Such applications typically read,
manipulate, transform and view XML documents. To provide a broad variety of
deployment options, Oracle XML Developer's Kit is available for Java, C, and C+
+. Oracle XML Developer's Kit is fully supported and comes with a commercial
redistribution license.

Oracle XML Developer's Kit for Java consists of these components:

• XML Parsers – Creates and parses XML using industry standard DOM and SAX
interfaces. Supports Java, C, C++, and the Java API for XML Processing (JAXP).

• XSL Processor – Transforms or renders XML into other text-based formats such
as HTML. Supports Java, C, and C++.

• XML Schema Processor – Uses XML simple and complex data types. Supports
Java, C, and C++.

• XML Class Generator, Oracle JAXB Class Generator – Automatically generate
C++ and Java classes, respectively, from DTDs and XML schemas, to send XML
data from Web forms or applications. Class generators accept an input file and
create a set of output classes that have corresponding functionality. For the XML

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-10



Class Generator, the input file is a DTD, and the output is a series of classes that
can be used to create XML documents conforming with the DTD.

• XML SQL Utility – Generates XML documents, DTDs, and XML schemas from
SQL queries. Supports Java.

• TransX Utility – Loads data encapsulated in XML into the database. Has
additional functionality useful for installations.

• XML Pipeline Processor – Invokes Java processes through XML control files.

• XSLT VM and Compiler – Provides a high-performance C-based XSLT
transformation engine that uses compiled XSL stylesheets.

• XML Java Beans – Parses, transforms, compares, retrieves, and compresses
XML documents using Java components.

See Also:

Oracle XML Developer's Kit Programmer's Guide

11.2.4 Preparing XML Data to Use the PL/SQL DOM API for XMLType
Create an XML schema, annotate it to map XML to SQL objects, and register the XML
schema.

To prepare data for using PL/SQL DOM APIs in Oracle XML DB:

1. Create a standard XML schema.

2. Annotate the XML schema with definitions for the SQL objects you use.

3. Register the XML schema, to generate the necessary database mappings.

You can then do any of the following:

• Use XMLType views to wrap existing relational or object-relational data in XML
formats, making it available to your applications in XML form. See Wrap Existing
Data as XML with XMLType Views.

• Insert XML data into XMLType columns.

• Use Oracle XML DB PL/SQL and Java DOM APIs to manipulate XML data stored
in XMLType columns and tables.

11.2.5 XML Schema Types Are Mapped to SQL Object Types
An XML schema must be registered with Oracle XML DB before it can be referenced
by an XML document. When you register an XML schema, elements and attributes
it declares are mapped to attributes of corresponding SQL object types within the
database.

After XML schema registration, XML documents that conform to the XML schema and
reference it can be managed by Oracle XML DB. Tables and columns for storing the
conforming documents can be created for root elements defined by the XML schema.

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-11



An XML schema is registered by using PL/SQL package DBMS_XMLSCHEMA and by
specifying the schema document and its schema-location URL. This URL is a name
that uniquely identifies the registered schema within the database. It need not
correspond to any real location — in particular, it need not indicate where the schema
document is located.

The target namespace of the schema is another URL used in the XML schema. It
specifies a namespace for the XML-schema elements and types. An XML document
should specify both the namespace of the root element and the schema-location URL
identifying the schema that defines this element.

When documents are inserted into Oracle XML DB using path-based protocols such
as HTTP(S) and FTP, the XML schema to which the document conforms is registered
implicitly, provided its name and location are specified and it has not yet been
registered.

• DOM Fidelity for XML Schema Mapping
Elements and attributes declared within an XML schema get mapped to separate
attributes of the corresponding SQL object type. Other information encoded
in an XML document, such as comments, processing instructions, namespace
declarations and prefix definitions, and whitespace, is not represented directly.

Related Topics

• XML Schema Storage and Query: Basic
XML Schema is a standard for describing the content and structure of XML
documents. You can register, update, and delete an XML schema used with
Oracle XML DB. You can define storage structures to use for your XML schema-
based data and map XML Schema data types to SQL data types.

See Also:

Oracle Database PL/SQL Packages and Types Reference descriptions of the
individual DBMS_XMLSCHEMA methods

11.2.5.1 DOM Fidelity for XML Schema Mapping
Elements and attributes declared within an XML schema get mapped to separate
attributes of the corresponding SQL object type. Other information encoded in an XML
document, such as comments, processing instructions, namespace declarations and
prefix definitions, and whitespace, is not represented directly.

To store this additional information, binary attribute SYS_XDBPD$ is present in all
generated SQL object types. This database attribute stores all information in the
original XML document that is not stored using the other database attributes. Retaining
this accessory information ensures DOM fidelity for XML documents stored in Oracle
XML DB: an XML document retrieved from the database is identical to the original
document that was stored.

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-12



Note:

In this book, attribute SYS_XDBPD$ has been omitted from most examples,
for simplicity. However, the attribute is always present in SQL object types
generated by schema registration.

Related Topics

• SYS_XDBPD$ and DOM Fidelity for Object-Relational Storage
In order to provide DOM fidelity for XML data that is stored object-relationally,
Oracle XML DB records all information that cannot be stored in any of the other
object attributes as instance-level metadata using the system-defined binary object
attribute SYS_XDBPD$ (positional descriptor, or PD).

11.2.6 Wrap Existing Data as XML with XMLType Views
To make existing relational and object-relational data available to your XML
applications, you can create XMLType views based on it. You can then access the
resulting XML data using the PL/SQL DOM API.

After you register an XML schema containing annotations that represent the mapping
between XML types and SQL object types, you can create an XMLType view that
conforms to the XML schema.

Related Topics

• XMLType Views
You can create XMLType views over relational and object-relational data.

11.2.7 DBMS_XMLDOM Methods Supported by Oracle XML DB
All DBMS_XMLDOM methods are supported by Oracle XML DB, with a few exceptions.

These methods are not supported by Oracle XML DB:

• writeExternalDTDToFile()

• writeExternalDTDToBuffer()

• writeExternalDTDToClob()

See Also:

Oracle Database PL/SQL Packages and Types Reference for descriptions of
the individual DBMS_XMLDOM methods

11.2.8 PL/SQL DOM API for XMLType: Node Types
The DOM specifies the way elements within an XML document are used to create an
object-based tree structure. It defines and exposes interfaces to manage and use the

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-13



objects stored in XML documents. The DOM supports storage of documents in diverse
systems.

In the DOM specification, the term "document" describes a container for many
different kinds of information or data, which the DOM objectifies.

When a request such as getNodeType(myNode) is invoked, it returns myNodeType,
which is the node type supported by the parent node. The following constants
represent the different types that a node can adopt:

• ELEMENT_NODE

• ATTRIBUTE_NODE

• TEXT_NODE

• CDATA_SECTION_NODE

• ENTITY_REFERENCE_NODE

• ENTITY_NODE

• PROCESSING_INSTRUCTION_NODE

• COMMENT_NODE

• DOCUMENT_NODE

• DOCUMENT_TYPE_NODE

• DOCUMENT_FRAGMENT_NODE

• NOTATION_NODE

Table 11-2 shows the node types for XML and HTML, and the allowed corresponding
child node types.

Table 11-2    XML and HTML DOM Node Types and Their Child Node Types

Node Type Children Node Types

Document Element (maximum of one), ProcessingInstruction, Comment, DocumentType
(maximum of one)

DocumentFragment Element, ProcessingInstruction, Comment, Text, CDATASection,
EntityReference

DocumentType
No children

EntityReference Element, ProcessingInstruction, Comment, Text, CDATASection,
EntityReference

Element Element, Text, Comment, ProcessingInstruction, CDATASection,
EntityReference

Attr Text, EntityReference

ProcessingInstruction
No children

Comment
No children

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-14



Table 11-2    (Cont.) XML and HTML DOM Node Types and Their Child Node Types

Node Type Children Node Types

Text
No children

CDATASection
No children

Entity Element, ProcessingInstruction, Comment, Text, CDATASection,
EntityReference

Notation
No children

Oracle XML DB DOM API for XMLType also specifies the following interfaces:

• A NodeList interface to handle ordered lists of Nodes, for example:

– The children of a Node

– Elements returned by method getElementsByTagName() of the element
interface

• A NamedNodeMap interface to handle unordered sets of nodes, referenced by
their name attribute, such as the attributes of an element.

11.2.9 PL/SQL Function NEWDOMDOCUMENT and
DOMDOCUMENT Nodes

PL/SQL function newDOMDocument constructs a DOM document handle, given an
XMLType value. The resulting handle is of type DOMDocument.

A typical usage scenario for a PL/SQL application is:

1. Fetch or construct an XMLType instance

2. Construct a DOMDocument node over the XMLType instance

3. Use the DOM API to access and manipulate the XML data

Note:

For DOMDocument, node types represent handles to XML fragments but
do not represent the data itself.

For example, if you copy a node value, DOMDocument clones the handle
to the same underlying data. Any data modified by one of the handles
is visible when accessed by the other handle. The XMLType value from
which the DOMDocument handle is constructed is the data, and reflects the
results of all DOM operations on it.

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-15



11.2.10 DOM NodeList and NamedNodeMap Objects
When you change the document structure underlying a DOMDocument instance, the
changes are reflected in all relevant NodeList and NamedNodeMap objects.

For example, if a DOM user gets a NodeList object containing the children of an
element, and then subsequently adds more children to that element (or removes
children, or modifies existing children) then those changes automatically propagate
to the NodeList without additional action from the user. Likewise, changes to a node
in the tree are propagated throughout all references to that node in NodeList and
NamedNodeMap objects.

The interfaces: Text, Comment, and CDATASection, all inherit from the CharacterData
interface.

11.2.11 Overview of Using the PL/SQL DOM API for XMLType
(DBMS_XMLDOM)

Using PL/SQL package DBMS_XMLDOM typically involves creating DOM documents,
traversing or extending the DOM tree, and creating and manipulating nodes.

Figure 11-1 illustrates the use of PL/SQL DOM API for XMLType (DBMS_XMLDOM).

• You can create a DOM document (DOMDocument) from an existing XMLType or as an
empty document. Procedure newDOMDocument processes the XMLType instance or
empty document.

This creates a DOMDocument instance.

• You can use DOM API PL/SQL methods such as createElement(),
createText(), createAttribute(), and createComment() to traverse and extend
the DOM tree.

• The results of PL/SQL methods such as DOMElement() and DOMText() can also be
passed to PL/SQL function makeNode to obtain the DOMNode interface.

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-16



Figure 11-1    Using the PL/SQL DOM API for XMLType

Select StatementCreatexml

CreateAttribute CreateComment . . .

XMLType

newDOMDocumentnewDOMDocument

DOMDocument

DOMNode Interface

(Empty 

document)

makeNode

DOMElement

Interface

DOMText

Interface

DOMAttibute

Interface

DOMComment

Interface

CreateTextNodeCreateElement

11.2.12 PL/SQL DOM API for XMLType – Examples
Examples are presented of using the PL/SQL DOM API for XMLType.

Remember to call procedure freeDocument for each DOMDocument instance, when you
are through with the instance. This procedure frees the document and all of its nodes.
You can still access XMLType instances on which DOMDocument instances were built,
even after the DOMDocument instances have been freed.

Example 11-1 creates a hierarchical, representation of an XML document in dynamic
memory: a DOM document.

Example 11-1 uses a handle to the DOM document to manipulate it: print it, change
part of it, and print it again after the change. Manipulating the DOM document by
its handle also indirectly affects the XML data represented by the document, so that
querying that data after the change shows the changed result.

The DOM document is created from an XMLType variable using PL/SQL function
newDOMDocument. The handle to this document is created using function makeNode. The
document is written to a VARCHAR2 buffer using function writeToBuffer, and the buffer
is printed using DBMS_OUTPUT.put_line.

After manipulating the document using various DBMS_XMLDOM procedures, the
(changed) data in the XMLType variable is inserted into a table and queried, showing
the change. It is only when the data is inserted into a database table that it becomes
persistent. Until then, it exists in memory only. This persistence is demonstrated by the
fact that the database query is made after the document (DOMDocument instance) has
been freed from dynamic memory.

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-17



Example 11-2 creates an empty DOM document, and then adds an element node
(<ELEM>) to the document. DBMS_XMLDOM API node procedures are used to obtain the
name (<ELEM>), value (NULL), and type (1 = element node) of the element node.

Example 11-1    Creating and Manipulating a DOM Document

CREATE TABLE person OF XMLType;

DECLARE 
  var       XMLType; 
  doc       DBMS_XMLDOM.DOMDocument; 
  ndoc      DBMS_XMLDOM.DOMNode; 
  docelem   DBMS_XMLDOM.DOMElement;
  node      DBMS_XMLDOM.DOMNode; 
  childnode DBMS_XMLDOM.DOMNode; 
  nodelist  DBMS_XMLDOM.DOMNodelist;
  buf       VARCHAR2(2000);
BEGIN 
  var := XMLType('<PERSON><NAME>ramesh</NAME></PERSON>');

  -- Create DOMDocument handle
  doc     := DBMS_XMLDOM.newDOMDocument(var); 
  ndoc    := DBMS_XMLDOM.makeNode(doc);

  DBMS_XMLDOM.writeToBuffer(ndoc, buf);
  DBMS_OUTPUT.put_line('Before:'||buf);

  docelem := DBMS_XMLDOM.getDocumentElement(doc);

  -- Access element
  nodelist := DBMS_XMLDOM.getElementsByTagName(docelem, 'NAME');
  node := DBMS_XMLDOM.item(nodelist, 0);
  childnode := DBMS_XMLDOM.getFirstChild(node);

  -- Manipulate element
  DBMS_XMLDOM.setNodeValue(childnode, 'raj');
  DBMS_XMLDOM.writeToBuffer(ndoc, buf);
  DBMS_OUTPUT.put_line('After:'||buf);
  DBMS_XMLDOM.freeDocument(doc);
  INSERT INTO person VALUES (var);
END;
/

This produces the following output:

Before:<PERSON>
  <NAME>ramesh</NAME>
</PERSON>
 
After:<PERSON>
  <NAME>raj</NAME>
</PERSON>

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-18



This query confirms that the data has changed:

SELECT * FROM person;
SYS_NC_ROWINFO$
---------------
<PERSON>
  <NAME>raj</NAME>
</PERSON>
 
1 row selected.

Example 11-2    Creating an Element Node and Obtaining Information About It

DECLARE
  doc   DBMS_XMLDOM.DOMDocument;
  elem  DBMS_XMLDOM.DOMElement;
  nelem DBMS_XMLDOM.DOMNode;
BEGIN
  doc := DBMS_XMLDOM.newDOMDocument;
  elem := DBMS_XMLDOM.createElement(doc, 'ELEM');
  nelem := DBMS_XMLDOM.makeNode(elem);
  DBMS_OUTPUT.put_line('Node name = ' || 
DBMS_XMLDOM.getNodeName(nelem));
  DBMS_OUTPUT.put_line('Node value = '|| 
DBMS_XMLDOM.getNodeValue(nelem));
  DBMS_OUTPUT.put_line('Node type = ' || 
DBMS_XMLDOM.getNodeType(nelem));
  DBMS_XMLDOM.freeDocument(doc);
END;
/

This produces the following output:

Node name = ELEM
Node value =
Node type = 1

11.2.13 Large Node Handling Using DBMS_XMLDOM
Oracle XML DB provides abstract streams and stream-manipulation methods that you
can use to handle XML nodes that are larger than 64 K bytes.

Prior to Oracle Database 11g Release 1 (11.1), each text node or attribute value
processed by Oracle XML DB was limited in size to 64 K bytes. Starting with release
11.1, this restriction no longer applies.

To overcome this size limitation and allow nodes to contain graphics files, PDF files,
and multibyte character encodings, the following abstract streams are available. These
abstract PL/SQL streams are analogous to the corresponding Java streams. Each
input stream has an associated writer, or data producer, and each output stream has
an associated reader, or data consumer.

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-19



• Binary Input Stream: This provides the data consumer with read-only access
to source data, as a sequential (non-array) linear space of bytes. The consumer
has iterative read access to underlying source data (whatever representation) in
binary format, that is, read access to source data in unconverted, "raw" format.
The consumer sees a sequence of bytes as they exist in the node. There is no
specification of the format or representation of the source data. In particular, there
is no associated character set.

• Binary Output Stream: This provides the data producer with write-only access to
target data as a sequential (non-array) linear space of bytes. The producer has
iterative write access to target data in binary format, that is, write access to target
data in pure binary format with no data semantics at all. The producer passes
a sequence of bytes and the target data is replaced by these bytes. No data
conversion occurs.

• Character Input Stream: This provides the data consumer iterative read-only
access to source data as a sequential (non-array) linear space of characters,
independent of the representation and format of the source data. Conversion of
the source data may or may not occur.

• Character Output Stream: This provides the data producer with iterative write-
only access to target data as a sequential (non-array) linear space of characters.
The producer passes a sequence of characters and the target data is replaced by
this sequence of characters. Conversion of the passed data may or may not occur.

Each of the input streams has the following abstract methods: open, read, and close.
Each of the output streams has the following abstract methods: open, write, flush, and
close. For output streams, you must close the stream before any nodes are physically
written.

There are four general node-access models, for reading and writing. Each access
model has both binary and character versions. Binary and character stream methods
defined on data type DOMNode realize these access models.

Your application acts as the client, with the parser as its service provider. The parser
mode determines whether the parser or your application drives the stream dataflow.

• For a parser in push mode, your application pushes data to the parser in an output
stream, and the parser returns the result of the requested operation.

• For a parser in pull mode, your application pulls data from the parser in an input
stream. Each data item in the stream is the result of a parsing event.

Each access model is described in a separate section, with an explanation of the
PL/SQL functions and procedures in package DBMS_XMLDOM that operate on large
nodes. The name of each subprogram reflects whether it reads (“get”) or writes (“set”)
data, and whether the parser is being used in push (“push”) or pull (“pull”) mode.

For all except the get-push and set-pull access models (whether binary or
character), Oracle supplies a concrete stream that you can use (implicitly). For
get-push and set-pull, you must define a subtype of the abstract stream type
that Oracle provides, and you must implement its access methods (open, close,
and so on). For get-push and set-pull, you then instantiate your stream type and
supply your stream as an argument to the access method. So, for example, you
would use my_node.getNodeValueAsCharacterStream(my-stream) for get-push, but
just my_node.getNodeValueAsCharacterStream() for get-pull. The latter requires no
explicit stream argument, because the concrete stream supplied by Oracle is used.

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-20



Note:

When you access a character-data stream, the access method you use
determines the apparent character set of the nodes accessed. If you use
Java to access the stream, then the character set seen by your Java
program is UCS2 (or an application-specified character set). If you use
PL/SQL to access the stream, then the character set seen by your PL/SQL
program is the database-session character set (or an application-specified
character set). In all cases, however, the XML data is stored in the database
in the database character set.

In the following descriptions, C1 is the character set of the node as stored
in the database, and C2 is the character set of the node as seen by your
program.

Related Topics

• Get-Push Model for Large Node Handling
In this model, you retrieve the value of a DOM node, using a parser that is in push
mode. Oracle XML DB writes the node data to an output stream that the parser
reads.

• Get-Pull Model for Large Node Handling
In this model, you retrieve the value of a DOM node, using a parser that is in pull
mode. Oracle XML DB reads the event data from an input stream written by the
parser.

• Set-Pull Model for Large Node Handling
In this model, you set the value of a DOM node, using a parser that is in pull
mode. Oracle XML DB reads the event data from an input stream written by the
parser.

• Set-Push Model for Large Node Handling
In this model, you set the value of a DOM node, using a parser that is in push
mode. Oracle XML DB writes the node data to an output stream that the parser
reads.

• Large XML Node Handling with Java
Oracle XML DB provides abstract streams and stream-manipulation methods
that you can use to handle XML nodes that are larger than 64 K bytes. Use
Java classes XMLNode and XMLAttr, together with a thick or kprb connection, to
manipulate large nodes.

See Also:

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database XML Java API Reference for information about Java
functions for handling large nodes

• Oracle Database XML C API Reference for information about C
functions for handling large nodes

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-21



11.2.14 Get-Push Model for Large Node Handling
In this model, you retrieve the value of a DOM node, using a parser that is in push
mode. Oracle XML DB writes the node data to an output stream that the parser reads.

To read a node value in this model, your application creates a binary output stream or
character output stream and passes this to Oracle XML DB. In this case, the source
data is the node value. Oracle XML DB populates the output stream by adding node
data to the stream. If the stream is a character output stream, then the character
set, C2, is the session character set, and node data is converted, if necessary, from
C1 to C2. Additionally, the data type of the node can be any that is supported by
Oracle XML DB. If the node data type is not character data then the node data is first
converted to character data in C2. If a binary output stream, the data type of the node
must be RAW or BLOB.

The procedures of the DBMS_XMLDOM package to be used for this case are:

PROCEDURE getNodeValueAsBinaryStream (n     IN DBMS_XMLDOM.domnode, 
                                      value IN 
SYS.utl_BinaryOutputStream);

The application passes an implementation of SYS.utl_BinaryOutputStream into which
Oracle XML DB writes the contents of the node. The data type of the node must be
RAW or CLOB or else an exception is raised.

PROCEDURE getNodeValueAsCharacterStream (
            n     IN DBMS_XMLDOM.domnode,
            value IN SYS.utl_CharacterOutputStream);

The node data is converted, as necessary, to the session character set and then
"pushed" into the SYS.utl_CharacterOutputStream.

The following example fragments illustrate reading the node value as binary data and
driving the write methods in a user-defined subtype of SYS.utl_BinaryOutPutStream,
which is called MyBinaryOutputStream:

Example 11-3    Creating a User-Defined Subtype of
SYS.util_BinaryOutputStream()

CREATE TYPE MyBinaryOutputStream UNDER SYS.utl_BinaryOutputStream (
    CONSTRUCTOR FUNCTION MyBinaryOutputStream ()
    RETURN SELF AS RESULT,
    MEMBER FUNCTION  write (bytes IN RAW) RETURN INTEGER,
    MEMBER PROCEDURE write (bytes IN RAW, offset IN INTEGER, length IN 
OUT 
           INTEGER),
    MEMBER FUNCTION flush () RETURN BOOLEAN,
    MEMBER FUNCTION close () RETURN BOOLEAN);
);

-- Put code here that implements these methods
...

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-22



Example 11-4    Retrieving Node Value with a User-Defined Stream

DECLARE
  ostream     MyBinaryOutputStream = MyBinaryOutputStream ();
  node        DBMS_XMLDOM.domnode;
  ...
BEGIN
  ...
  -- This drives the write methods in MyBinaryOutputStream,
  -- flushes the data, and closes the stream after the value has been
  -- completely written.
  DBMS_XMLDOM.getNodeValueAsBinaryStream (node, ostream);
  ...
END;

11.2.15 Get-Pull Model for Large Node Handling
In this model, you retrieve the value of a DOM node, using a parser that is in pull
mode. Oracle XML DB reads the event data from an input stream written by the
parser.

To read the value of a node in this model, Oracle XML DB creates a binary input
stream or character input stream and returns this to the caller. The character set, C2,
of the character input stream is the current session character set. Oracle XML DB
populates the input stream as the caller pulls the node data from the stream so Oracle
XML DB is again the producer of the data. If the stream is a character input stream,
then the node data type may be any supported by Oracle XML DB and node data, if
character, is converted, if necessary, from C1 to C2. If the node data is non-character,
it is converted to character in C2. If a binary input stream, the data type of the node
must be RAW or BLOB.

The functions of the DBMS_XMLDOM package to be used for this case are
getNodeValueAsBinaryStream and getNodeValueAsCharacterStream.

FUNCTION getNodeValueAsBinaryStream(n IN DBMS_XMLDOM.domnode) 
         RETURN SYS.utl_BinaryInputStream;

This function returns an instance of the new PL/SQL SYS.utl_BinaryInputStream that
can be read using defined methods as described in the section Set-Pull Model for
Large Node Handling. The node data type must be RAW or BLOB or else an exception is
raised.

FUNCTION getNodeValueAsCharacterStream (n IN DBMS_XMLDOM.domnode) 
         RETURN SYS.utl_CharacterInputStream;

This function returns an instance of the new PL/SQL SYS.utl_CharacterInputStream
that can be read using defined methods. If the node data is character it is converted
to the current session character set. If the node data is not character data, it is first
converted to character data.

Example 11-5 illustrates reading a node value as binary data in 50-byte increments:

Example 11-6 illustrates reading a node value as character data in 50-character
increments:

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-23



Example 11-5    Get-Pull of Binary Data

DECLARE
  istream      SYS.utl_BinaryInputStream;
  node         DBMS_XMLDOM.domnode;
  buffer       raw(50);
  numBytes     pls_integer;
  ...
BEGIN
  ...
  istream := DBMS_XMLDOM.getNodeValueAsBinaryStream (node);
  -- Read stream in 50-byte chunks
  LOOP
    numBytes := 50;
    istream.read ( buffer, numBytes);
    if numBytes <= 0 then
       exit;
    end if;
-- Process next 50 bytes of node value in buffer
END LOOP
...
END;

Example 11-6    Get-Pull of Character Data

DECLARE
  istream      SYS.utl_CharacterInputStream;
  node         DBMS_XMLDOM.domnode;
  buffer       varchar2(50);
  numChars     pls_integer;
  ...
BEGIN
  ...
  istream := DBMS_XMLDOM.getNodeValueAsCharacterStream (node);
-- Read stream in 50-character chunks
LOOP
   numChars := 50;
   istream.read ( buffer, numChars);
   IF numChars <= 0 then
      exit;
   END IF;
-- Process next 50 characters of node value in buffer
END LOOP 
...
END;

11.2.16 Set-Pull Model for Large Node Handling
In this model, you set the value of a DOM node, using a parser that is in pull mode.
Oracle XML DB reads the event data from an input stream written by the parser.

To write a node value in this mode, the application creates a binary input stream or
character input stream and passes this to Oracle XML DB.

The character set of the character input stream, C2, is the session character set.
Oracle XML DB pulls the data from the input stream and populates the node. If
the stream is a character input stream, then the data type of the node may be any
supported by Oracle XML DB. If the data type of the node is not character, the stream
data is first converted to the node data type. If the node data type is character, then
no conversion occurs, so the node data remains in character set C2. If the stream is

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-24



a binary input stream, then the data type of the node must be RAW or BLOB and no
conversion occurs.

The procedures of the DBMS_XMLDOM package to be used for this case are
setNodeValueAsBinaryStream and setNodeValueAsCharacterStream.

PROCEDURE setNodeValueAsBinaryStream(n IN DBMS_XMLDOM.domnode,
          value IN SYS.utl_BinaryInputStream);

The application passes in an implementation of SYS.utl_BinaryInputStream from
which Oracle XML DB reads data to populate the node. The data type of the node
must be RAW or BLOB or else an exception is raised.

PROCEDURE setNodeValueAsCharacterStream (n IN DBMS_XMLDOM.domnode,
          value IN SYS.utl_CharacterInputStream);

The application passes in an implementation of SYS.utl_CharacterInputStream from
which Oracle XML DB reads to populate the node. The data type of the node may
be any valid type supported by Oracle XML DB. If it is a non-character data type, the
character data read from the stream is converted to the data type of the node. If the
data type of the node is either character or CLOB, then no conversion occurs and the
character set of the node becomes the character set of the PL/SQL session.

Example 11-7 illustrates setting the node value to binary data produced by the read
methods defined in a user-defined subtype of SYS.utl_BinaryInputStream, which is
called MyBinaryInputStream:

You can use an object of type MyBinaryInputStream to set the value of a node as
follows:

DECLARE
  istream     MyBinaryInputStream = MyBinaryInputStream ();
  node        DBMS_XMLDOM.domnode;
  ...
BEGIN
  ...
  -- This drives the read methods in MyBinaryInputStream
  DBMS_XMLDOM.setNodeValueAsBinaryStream (node, istream);
  ...
END;

Example 11-7    Set-Pull of Binary Data

CREATE TYPE MyBinaryInputStream UNDER SYS.utl_BinaryInputStream (
    CONSTRUCTOR FUNCTION MyBinaryInputStream ()
    RETURN SELF AS RESULT,
  MEMBER FUNCTION read () RETURN RAW,
  MEMBER PROCEDURE read (bytes IN OUT RAW, numbytes IN OUT INTEGER),
  MEMBER PROCEDURE read (bytes IN OUT RAW,
                         offset IN INTEGER,
                         length IN OUT INTEGER),
  MEMBER FUNCTION close () RETURN BOOLEAN);

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-25



11.2.17 Set-Push Model for Large Node Handling
In this model, you set the value of a DOM node, using a parser that is in push mode.
Oracle XML DB writes the node data to an output stream that the parser reads.

To write a new node value in this mode, Oracle XML DB creates a binary output
stream or character output stream and returns this to the caller. The character set
of the character output stream, C2, is the current session character set. The caller
pushes data into the output stream and Oracle XML DB then writes this to the Oracle
XML DB Node. If the stream is a character output stream, then the data type of the
node may be any type supported by Oracle XML DB. In this case, the character data is
converted to the node data type. If the node data type is character, then the character
set, C1, is changed to C2. No data conversion occurs. If the stream is a binary input
stream, and the data type of the node must be RAW or BLOB. In this case, the stream is
read without data conversion.

The procedures of the DBMS_XMLDOM package to be used for this case are
setNodeValueAsBinaryStream and setNodeValueAsCharacterStream.

FUNCTION setNodeValueAsBinaryStream(n IN DBMS_XMLDOM.domnode) 
         RETURN SYS.utl_BinaryOutputStream;

This function returns an instance of SYS.utl_BinaryOutputStream into which the caller
can write the node value. The data type of the node must be RAW or BLOB or else an
exception is raised.

FUNCTION setNodeValueAsCharacterStream (n IN DBMS_XMLDOM.domnode) 
         RETURN SYS.utl_CharacterOutputStream;

This function returns an instance of the PL/SQL SYS.utl_CharacterOutputStream
type into which the caller can write the node value. The data type of the node can be
any valid Oracle XML DB data type. If the type is not character or CLOB, the character
data written to the stream is converted to the node data type. If the data type of the
node is character or CLOB, then the character data written to the stream is converted
from PL/SQL session character set to the character set of the node

Example 11-8 illustrates setting the value of a node to binary data by writing 50-byte
segments into the SYS.utl_BinaryOutputStream:

Example 11-8    Set-Push of Binary Data

DECLARE
  ostream      SYS.utl_BinaryOutputStream;
  node         DBMS_XMLDOM.domnode;
  buffer       raw(500);
  segment      raw(50);
  numBytes     pls_integer;
  offset       pls_integer;
  ...
BEGIN
  ...
  ostream := DBMS_XMLDOM.setNodeValueAsBinaryStream (node);
  offset := 0;

Chapter 11
PL/SQL DOM API for XMLType (DBMS_XMLDOM)

11-26



  length := 500;
  -- Write to stream in 50-byte chunks
  LOOP
    numBytes := 50;
    -- Get next 50 bytes of buffer
    ostream.write ( segment, offset, numBytes);
    length := length - numBytes;
    IF length  <= 0 then
       exit;
    END IF;
  END LOOP
  ostream.close();
  ...
END;

11.2.18 Determining Binary Stream or Character Stream for Large
Node Handling

You can use subprogram DBMS_XMLDOM.useBinaryStream to determine whether to use
a character stream or a binary stream to access the content of a large node.

FUNCTION useBinaryStream (n IN DBMS_XMLDOM.domnode) RETURN BOOLEAN;

This function returns TRUE if the data type of the node is RAW or BLOB, so that
the node value may be read or written using either a SYS.utl_BinaryInputStream
or a SYS.utl_BinaryOutputStream. If a value of FALSE is returned, the node
value can be accessed only using a SYS.utl_CharacterInputStream or a
SYS.utl_CharacterOutputStream.

11.3 PL/SQL Parser API for XMLType
(DBMS_XMLPARSER)

The PL/SQL Parser API for XMLType (DBMS_XMLPARSER) builds a parsing result tree that
can be accessed by PL/SQL APIs. If parsing fails, it raises an error.

A software module called an XML parser or processor reads XML documents and
provides access to their content and structure. An XML parser usually does its work on
behalf of another module, typically the application.

XML documents are made up of storage units, called entities, that contain either
parsed or unparsed data. Parsed data is made up of characters, some of which
constitute character data and some of which act as markup. Markup encodes a
description of the document storage layout and logical structure. XML provides a
mechanism for imposing constraints on the storage layout and logical structure.

Figure 11-2 illustrates how to use the PL/SQL Parser for XMLType (DBMS_XMLPARSER).
These are the steps:

1. Construct a parser instance using PL/SQL method newParser().

Chapter 11
PL/SQL Parser API for XMLType (DBMS_XMLPARSER)

11-27



2. Parse XML documents using PL/SQL methods such as parseBuffer(),
parseClob(), and parse(URI). An error is raised if the input is not a valid XML
document.

3. Call PL/SQL function getDocument on the parser to obtain a DOMDocument
interface.

Figure 11-2    Using the PL/SQL Parser API for XMLType

newParser

getDocument

parse (URI)parseBuffer

Parser

DOMDocument

. . .

Example 11-9 parses a simple XML document. It creates an XML parser (instance
of DBMS_XMLPARSER.parser) and uses it to parse the XML document (text) in variable
indoc. Parsing creates a DOM document, which is retrieved from the parser using
DBMS_XMLPARSER.getDocument. A DOM node is created that contains the entire
document, and the node is printed. After freeing (destroying) the DOM document, the
parser instance is freed using DBMS_XMLPARSER.freeParser.

Note:

Method DBMS_XMLPARSER.setErrorLog() is not supported.

See Also:

Oracle Database PL/SQL Packages and Types Reference for descriptions of
individual DBMS_XMLPARSER methods

Example 11-9    Parsing an XML Document

DECLARE
  indoc    VARCHAR2(2000);
  indomdoc DBMS_XMLDOM.DOMDocument;
  innode   DBMS_XMLDOM.DOMNode;
  myparser DBMS_XMLPARSER.parser;
  buf      VARCHAR2(2000);
BEGIN
  indoc := '<emp><name>De Selby</name></emp>';
  myParser := DBMS_XMLPARSER.newParser;

Chapter 11
PL/SQL Parser API for XMLType (DBMS_XMLPARSER)

11-28



  DBMS_XMLPARSER.parseBuffer(myParser, indoc);
  indomdoc := DBMS_XMLPARSER.getDocument(myParser);
  innode := DBMS_XMLDOM.makeNode(indomdoc);
  DBMS_XMLDOM.writeToBuffer(innode, buf);
  DBMS_OUTPUT.put_line(buf);
  DBMS_XMLDOM.freeDocument(indomdoc);
  DBMS_XMLPARSER.freeParser(myParser);
END;
/

This produces the following output:

<emp><name>De Selby</name></emp>

11.4 PL/SQL XSLT Processor for XMLType
(DBMS_XSLPROCESSOR)

You can use PL/SQL package DBMS_XSLPROCESSOR to transform one XML document
to another or to convert XML data into HTML, PDF, or other formats. This package
traverses the DOM tree for the document and applies Extensible Stylesheet Language
Transformation (XSLT) statements to it to produce the transformed document.

The W3C XSL Recommendation describes rules for transforming a source tree into
a result tree. A transformation expressed in XSL is called an XSLT stylesheet. The
transformation specified is achieved by associating patterns with templates defined in
the XSLT stylesheet. A template is instantiated to create part of the result tree. XSLT is
widely used to convert XML data to HTML for web browser display.

Note:

Oracle XML DB applications do not require a separate XML parser. However,
applications requiring external processing can still use the XML Parser
for PL/SQL first to expose the document structure. The XML Parser for
PL/SQL in Oracle XML Developer's Kit parses an XML document (or a
standalone DTD) so that the XML document can be processed by an
application, typically running on the client. PL/SQL APIs for XMLType are
used for applications that run on the server and are natively integrated in the
database. Benefits of running applications on the server include performance
improvements and enhanced access and manipulation options.

• PL/SQL XSLT Processor for XMLType: Features
PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR) follows the W3C XSLT
final recommendation (REC-xslt-19991116). It provides a convenient and efficient
way of applying a single XSL stylesheet to multiple documents.

• Using the PL/SQL XSLT Processor API for XMLType (DBMS_XSLPROCESSOR)
You create an XSLT processor, build a STYLESHEET object from a DOM document,
transform the document using the processor and the stylesheet, and use the DOM
API for XMLType to manipulate the result of XSLT processing.

Chapter 11
PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)

11-29



Related Topics

• Transformation and Validation of XMLType Data
There are several Oracle SQL functions and XMLType APIs for transforming
XMLType data using XSLT stylesheets and for validating XMLType instances against
an XML schema.

11.4.1 PL/SQL XSLT Processor for XMLType: Features
PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR) follows the W3C XSLT final
recommendation (REC-xslt-19991116). It provides a convenient and efficient way of
applying a single XSL stylesheet to multiple documents.

The methods in PL/SQL package DBMS_XSLPROCESSOR use PL/SQL data types
PROCESSOR and STYLESHEET, which are specific to the XSL Processor implementation.
All DBMS_XSLPROCESSOR methods are supported by Oracle XML DB, with the exception
of method setErrorLog().

See Also:

Oracle Database PL/SQL Packages and Types Reference for descriptions of
the individual DBMS_XSLPROCESSOR methods

11.4.2 Using the PL/SQL XSLT Processor API for XMLType
(DBMS_XSLPROCESSOR)

You create an XSLT processor, build a STYLESHEET object from a DOM document,
transform the document using the processor and the stylesheet, and use the DOM API
for XMLType to manipulate the result of XSLT processing.

Figure 11-3 illustrates how to use the XSLT Processor for XMLType
(DBMS_XSLPROCESSOR).

Chapter 11
PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)

11-30



Figure 11-3    Using the PL/SQL XSLT Processor for XMLType

newStylesheetnewProcessor

Stylesheet xmldocProcessor

DOMNode Interface

makeNode

XSL Document
(DOMDocument)

ProcessXSL

(DOMDocument)

setParams

DOMDocumentFragment Interface

These are the steps:

1. Construct an XSLT processor using newProcessor.

2. Use newStylesheet to build a STYLESHEET object from a DOM document.

3. Optionally, you can set parameters for the STYLESHEET object using setParams.

4. Use processXSL to transform a DOM document using the processor and
STYLESHEET object.

5. Use the PL/SQL DOM API for XMLType to manipulate the result of XSLT
processing.

Example 11-10 transforms an XML document using procedure processXSL. It uses
the same parser instance to create two different DOM documents: the XML text to
transform and the XSLT stylesheet. An XSL processor instance is created, which
applies the stylesheet to the source XML to produce a new DOM fragment. A
DOM node (outnode) is created from this fragment, and the node content is printed.
The output DOM fragment, parser, and XSLT processor instances are freed using
procedures freeDocFrag, freeParser, and freeProcessor, respectively.

Example 11-10    Transforming an XML Document Using an XSL Stylesheet

DECLARE
  indoc      VARCHAR2(2000);
  xsldoc     VARCHAR2(2000);
  myParser   DBMS_XMLPARSER.parser;
  indomdoc   DBMS_XMLDOM.DOMDocument;
  xsltdomdoc DBMS_XMLDOM.DOMDocument;
  xsl        DBMS_XSLPROCESSOR.stylesheet;
  outdomdocf DBMS_XMLDOM.DOMDocumentFragment;

Chapter 11
PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)

11-31



  outnode    DBMS_XMLDOM.DOMNode;
  proc       DBMS_XSLPROCESSOR.processor;
  buf        VARCHAR2(2000);
BEGIN
  indoc := '<emp><empno>1</empno> 
              <fname>robert</fname> 
              <lname>smith</lname>
              <sal>1000</sal>
              <job>engineer</job>
            </emp>';
  xsldoc := '<?xml version="1.0"?> 
             <xsl:stylesheet
               version="1.0"     
               xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
               <xsl:output encoding="utf-8"/>
               <!-- alphabetizes an xml tree -->
               <xsl:template match="*">
                 <xsl:copy>
                   <xsl:apply-templates select="*|text()">
                     <xsl:sort select="name(.)" data-type="text" 
                               order="ascending"/>
                   </xsl:apply-templates>
                 </xsl:copy>
               </xsl:template>
               <xsl:template match="text()">
                 <xsl:value-of select="normalize-space(.)"/>
               </xsl:template>
             </xsl:stylesheet>';
  myParser := DBMS_XMLPARSER.newParser;
  DBMS_XMLPARSER.parseBuffer(myParser, indoc);
  indomdoc   := DBMS_XMLPARSER.getDocument(myParser);
  DBMS_XMLPARSER.parseBuffer(myParser, xsldoc);
  xsltdomdoc := DBMS_XMLPARSER.getDocument(myParser);
  xsl        := DBMS_XSLPROCESSOR.newStyleSheet(xsltdomdoc, '');
  proc       := DBMS_XSLPROCESSOR.newProcessor;
  --apply stylesheet to DOM document   
  outdomdocf := DBMS_XSLPROCESSOR.processXSL(proc, xsl, indomdoc);
  outnode    := DBMS_XMLDOM.makeNode(outdomdocf); 
  -- PL/SQL DOM API for XMLType can be used here
  DBMS_XMLDOM.writeToBuffer(outnode, buf);
  DBMS_OUTPUT.put_line(buf);
  DBMS_XMLDOM.freeDocument(indomdoc);
  DBMS_XMLDOM.freeDocument(xsltdomdoc);
  DBMS_XMLDOM.freeDocFrag(outdomdocf);
  DBMS_XMLPARSER.freeParser(myParser);
  DBMS_XSLPROCESSOR.freeProcessor(proc);
END;
/

This produces the following output:

<emp>
<empno>1</empno>
<fname>robert</fname>

Chapter 11
PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)

11-32



<job>engineer</job>
<lname>smith</lname>
<sal>1000</sal>
</emp>

Chapter 11
PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)

11-33



12
PL/SQL Package DBMS_XMLSTORE

You can use PL/SQL package DBMS_XMLSTORE to insert, update, or delete data from
XML documents stored object-relationally. It uses a canonical XML mapping similar
to the one produced by package DBMS_XMLGEN. It converts the mapping to object-
relational constructs and then inserts, updates or deletes the corresponding values in
relational tables.

• Using Package DBMS_XMLSTORE
Create a context handle, perform one or more insertions, updates, or deletions,
and then close the context,

• Inserting an XML Document Using DBMS_XMLSTORE
You can use PL/SQL package DBMS_XMLSTORE to insert an XML document into a
table or view. It parses the document and creates an INSERT statement into which
it binds the values. By default, it inserts values into all of the columns represented
by elements in the XML document.

• Updating XML Data Using DBMS_XMLSTORE
You can use PL/SQL package DBMS_XMLSTORE to update (modify) existing data.
You specify which rows to update by calling procedure setKeyColumn once for
each of the columns that are used collectively to identify the row. (In SQL, you
would specify the rows using a WHERE clause in an UPDATE statement.)

• Deleting XML Data Using DBMS_XMLSTORE
You can use PL/SQL package DBMS_XMLSTORE to delete existing data. You specify
which rows to delete by calling procedure setKeyColumn once for each of the
columns that are used collectively to identify the row. (In SQL, you would specify
the rows using a WHERE clause in an UPDATE statement.)

12.1 Using Package DBMS_XMLSTORE
Create a context handle, perform one or more insertions, updates, or deletions, and
then close the context,

To use PL/SQL package DBMS_XMLSTORE, follow these steps:

1. Create a context handle by calling function DBMS_XMLSTORE.newContext and
supplying it with the table name to use for the DML operations. For case
sensitivity, double quotation mark (") the string that is passed to the function.

By default, XML documents are expected to use the <ROW> tag to identify rows.
This is the same default used by package DBMS_XMLGEN when generating XML
data. You can use function setRowTag to override this behavior.

2. (Optional) Perform one or more insertions, updates or deletions (you can repeat
this step):

• For insertions, to improve performance you can specify the list of columns to
insert by calling procedure DBMS_XMLSTORE.setUpdateColumn for each column.
The default behavior (if you do not specify the list of columns) is to insert

12-1



values for each column whose corresponding element is present in the XML
document.

• For updates, use function DBMS_XMLSTORE.setKeyColumn to specify one or
more (pseudo-) key columns, which are used to specify the rows to update.
You do this in the WHERE clause of a SQL UPDATE statement. The columns that
you specify need not be keys of the table, but together they must uniquely
specify the rows to update.

For example, in table employees, column employee_id uniquely identifies rows
(it is a key of the table). If the XML document that you use to update the table
contains element <EMPLOYEE_ID>2176</EMPLOYEE_ID>, then the rows where
employee_id equals 2176 are updated.

To improve performance, you can also specify the list of update columns
using DBMS_XMLSTORE.setUpdateColumn. The default behavior is to update all
of the columns in the row(s) identified by setKeyColumn whose corresponding
elements are present in the XML document.

• For deletions you specify (pseudo-) key columns to identify the row(s) to
delete. You do this the same way you specify rows to update (see previous).

3. Provide a document to DBMS_XMLSTORE function insertXML, updateXML, or
deleteXML. You can repeat this step to update several XML documents.

4. Close the context by calling function DBMS_XMLSTORE.closeContext.

12.2 Inserting an XML Document Using DBMS_XMLSTORE
You can use PL/SQL package DBMS_XMLSTORE to insert an XML document into a table
or view. It parses the document and creates an INSERT statement into which it binds
the values. By default, it inserts values into all of the columns represented by elements
in the XML document.

Example 12-1 uses DBM_XMLSTORE to insert the information for two new employees into
the employees table. The information to insert is provided as XML data.

Example 12-1    Inserting Data with Specified Columns

SELECT employee_id AS EMP_ID, salary, hire_date, job_id, email, 
last_name
  FROM employees WHERE department_id = 30;

EMP_ID     SALARY HIRE_DATE JOB_ID     EMAIL       LAST_NAME
------ ---------- --------- ---------- ---------- ----------
   114      11000 07-DEC-94 PU_MAN     DRAPHEAL     Raphaely
   115       3100 18-MAY-95 PU_CLERK   AKHOO            Khoo
   116       2900 24-DEC-97 PU_CLERK   SBAIDA          Baida
   117       2800 24-JUL-97 PU_CLERK   STOBIAS        Tobias
   118       2600 15-NOV-98 PU_CLERK   GHIMURO        Himuro
   119       2500 10-AUG-99 PU_CLERK   KCOLMENA   Colmenares

6 rows selected.

DECLARE
  insCtx DBMS_XMLSTORE.ctxType;
  rows NUMBER;

Chapter 12
Inserting an XML Document Using DBMS_XMLSTORE

12-2



  xmlDoc CLOB :=
    '<ROWSET>
       <ROW num="1">
         <EMPLOYEE_ID>920</EMPLOYEE_ID>
         <SALARY>1800</SALARY>
         <DEPARTMENT_ID>30</DEPARTMENT_ID>
         <HIRE_DATE>17-DEC-2002</HIRE_DATE>
         <LAST_NAME>Strauss</LAST_NAME>
         <EMAIL>JSTRAUSS</EMAIL>
         <JOB_ID>ST_CLERK</JOB_ID>
       </ROW>
       <ROW>
         <EMPLOYEE_ID>921</EMPLOYEE_ID>
         <SALARY>2000</SALARY>
         <DEPARTMENT_ID>30</DEPARTMENT_ID>
         <HIRE_DATE>31-DEC-2004</HIRE_DATE>
         <LAST_NAME>Jones</LAST_NAME>
         <EMAIL>EJONES</EMAIL>
         <JOB_ID>ST_CLERK</JOB_ID>
       </ROW>
     </ROWSET>';
BEGIN
  insCtx := DBMS_XMLSTORE.newContext('HR.EMPLOYEES'); -- Get saved 
context
  DBMS_XMLSTORE.clearUpdateColumnList(insCtx); -- Clear the update 
settings
 
  -- Set the columns to be updated as a list of values 
  DBMS_XMLSTORE.setUpdateColumn(insCtx, 'EMPLOYEE_ID'); 
  DBMS_XMLSTORE.setUpdateColumn(insCtx, 'SALARY'); 
  DBMS_XMLSTORE.setUpdateColumn(insCtx, 'HIRE_DATE');
  DBMS_XMLSTORE.setUpdateColumn(insCtx, 'DEPARTMENT_ID'); 
  DBMS_XMLSTORE.setUpdateColumn(insCtx, 'JOB_ID');
  DBMS_XMLSTORE.setUpdateColumn(insCtx, 'EMAIL');
  DBMS_XMLSTORE.setUpdateColumn(insCtx, 'LAST_NAME');

  -- Insert the doc. 
  rows := DBMS_XMLSTORE.insertXML(insCtx, xmlDoc);
  DBMS_OUTPUT.put_line(rows || ' rows inserted.');

  -- Close the context
  DBMS_XMLSTORE.closeContext(insCtx); 
END;
/

2 rows inserted.
 
PL/SQL procedure successfully completed.

SELECT employee_id AS EMP_ID, salary, hire_date, job_id, email, 
last_name
  FROM employees WHERE department_id = 30;

EMP_ID     SALARY HIRE_DATE JOB_ID     EMAIL       LAST_NAME
------ ---------- --------- ---------- ---------- ----------

Chapter 12
Inserting an XML Document Using DBMS_XMLSTORE

12-3



   114      11000 07-DEC-94 PU_MAN     DRAPHEAL     Raphaely
   115       3100 18-MAY-95 PU_CLERK   AKHOO            Khoo
   116       2900 24-DEC-97 PU_CLERK   SBAIDA          Baida
   117       2800 24-JUL-97 PU_CLERK   STOBIAS        Tobias
   118       2600 15-NOV-98 PU_CLERK   GHIMURO        Himuro
   119       2500 10-AUG-99 PU_CLERK   KCOLMENA   Colmenares
   920       1800 17-DEC-02 ST_CLERK   STRAUSS       Strauss
   921       2000 31-DEC-04 ST_CLERK   EJONES          Jones

8 rows selected.

12.3 Updating XML Data Using DBMS_XMLSTORE
You can use PL/SQL package DBMS_XMLSTORE to update (modify) existing data. You
specify which rows to update by calling procedure setKeyColumn once for each of the
columns that are used collectively to identify the row. (In SQL, you would specify the
rows using a WHERE clause in an UPDATE statement.)

You can think of this set of columns as acting like a set of key columns: together,
they specify a unique row to be updated. However, the columns that you use (with
setKeyColumn) need not be keys of the table — as long as they uniquely specify a row,
they can be used with calls to setKeyColumn.

Example 12-2 uses DBM_XMLSTORE to update information. Assuming that the first name
for employee number 188 is incorrectly recorded as Kelly, this example corrects that
first name to Pat. Since column employee_id is a primary key for table employees, a
single call to setKeyColumn specifying column employee_id is sufficient to identify a
unique row for updating.

The following UPDATE statement is equivalent to the use of DBM_XMLSTORE in
Example 12-2:

UPDATE hr.employees SET first_name = 'Pat' WHERE employee_id = 188; 

Example 12-2    Updating Data with Key Columns

SELECT employee_id, first_name FROM employees WHERE employee_id = 188;

EMPLOYEE_ID FIRST_NAME
----------- ----------
        188 Kelly
 
1 row selected.

DECLARE
  updCtx DBMS_XMLSTORE.ctxType; 
  rows NUMBER;
  xmlDoc CLOB :=
    '<ROWSET>
       <ROW>
         <EMPLOYEE_ID>188</EMPLOYEE_ID>
         <FIRST_NAME>Pat</FIRST_NAME>
       </ROW>
     </ROWSET>';

Chapter 12
Updating XML Data Using DBMS_XMLSTORE

12-4



BEGIN
   updCtx := DBMS_XMLSTORE.newContext('HR.EMPLOYEES'); -- get the 
context
   DBMS_XMLSTORE.clearUpdateColumnList(updCtx);        -- clear update 
settings

   -- Specify that column employee_id is a "key" to identify the row to 
update.
   DBMS_XMLSTORE.setKeyColumn(updCtx, 'EMPLOYEE_ID'); 
   rows := DBMS_XMLSTORE.updateXML(updCtx, xmlDoc);    -- update the 
table
   DBMS_XMLSTORE.closeContext(updCtx);                 -- close the 
context
END;
/

SELECT employee_id, first_name FROM employees WHERE employee_id = 188;

EMPLOYEE_ID FIRST_NAME
----------- ----------
        188 Pat
 
1 row selected.

12.4 Deleting XML Data Using DBMS_XMLSTORE
You can use PL/SQL package DBMS_XMLSTORE to delete existing data. You specify
which rows to delete by calling procedure setKeyColumn once for each of the columns
that are used collectively to identify the row. (In SQL, you would specify the rows using
a WHERE clause in an UPDATE statement.)

Example 12-3    DBMS_XMLSTORE.DELETEXML Example

SELECT employee_id FROM employees WHERE employee_id = 188;
 
EMPLOYEE_ID
-----------
        188
 
1 row selected.
 
DECLARE
  delCtx DBMS_XMLSTORE.ctxType;
  rows NUMBER;
  xmlDoc CLOB :=
    '<ROWSET>
       <ROW>
         <EMPLOYEE_ID>188</EMPLOYEE_ID>
         <DEPARTMENT_ID>50</DEPARTMENT_ID>
       </ROW>
     </ROWSET>';
BEGIN
  delCtx  := DBMS_XMLSTORE.newContext('HR.EMPLOYEES');
  DBMS_XMLSTORE.setKeyColumn(delCtx, 'EMPLOYEE_ID');

Chapter 12
Deleting XML Data Using DBMS_XMLSTORE

12-5



  rows := DBMS_XMLSTORE.deleteXML(delCtx, xmlDoc);
  DBMS_XMLSTORE.closeContext(delCtx);
END;
/
 
SELECT employee_id FROM employees WHERE employee_id = 188;
 
no rows selected.

Chapter 12
Deleting XML Data Using DBMS_XMLSTORE

12-6



13
Java DOM API for XMLType

The Java DOM API for XMLType lets you operate on XMLType instances using a DOM.
You can use it to manipulate XML data in Java, including fetching it through Java
Database Connectivity (JDBC).

• Overview of Java DOM API for XMLType
Oracle XML DB supports the Java Document Object Model (DOM) Application
Program Interface (API) for XMLType. This is a generic API for client and server, for
both XML Schema-based and non-schema-based documents.

• Access to XMLType Data Using JDBC
Java Database Connectivity (JDBC) is a SQL-based way for Java applications
to access any data in Oracle Database, including XML documents in Oracle
XML DB.

• Manipulating XML Database Documents Using JDBC
You can update, insert, and delete XMLType data stored in the database using Java
Database Connectivity (JDBC) with Oracle XML DB.

• Loading a Large XML Document into the Database Using JDBC
To load a large XML document into the database using Java Database
Connectivity (JDBC), use a Java CLOB object to hold the document, and use Java
method insertXML() to perform the insertion.

• MS Windows Java Security Manager Permissions for Java DOM API with a Thick
Connection
If you use Java Security Manager (class SecurityManager) on MS Windows
to implement a security policy for your application, then you must add certain
permissions to your security policy file, in order to use the Java DOM API for
XMLType with a thick connection.

• Creating XML Schema-Based Documents
To create XML Schema-based documents, Java DOM API for XMLType uses an
extension to specify which XML schema URL to use. It also verifies that the DOM
being created conforms to the specified XML schema, that is, that the appropriate
children are being inserted under the appropriate documents.

• XMLType Instance Representation in Java (JDBC or SQLJ)
An XMLType instance is represented in Java by oracle.xdb.XMLType. When an
instance of XMLType is fetched using JDBC or a SQLJ client, it is automatically
manifested as an object of the provided XMLType class.

• Classes of Java DOM API for XMLType
Oracle XML DB supports the W3C DOM Level 2 Recommendation. It also
provides Oracle-specific extensions, to facilitate interfacing your application with
Oracle XML Developer's Kit for Java. The Java DOM API for XMLType provides
classes that implement W3C DOM interfaces.

• Using the Java DOM API for XMLType
Retrieve data from an XMLType table or column and obtain a Java XMLDocument
instance from it. Manipulate elements of the DOM tree for the data using the Java
DOM API for XMLType.

13-1



• Large XML Node Handling with Java
Oracle XML DB provides abstract streams and stream-manipulation methods
that you can use to handle XML nodes that are larger than 64 K bytes. Use
Java classes XMLNode and XMLAttr, together with a thick or kprb connection, to
manipulate large nodes.

• Using the Java DOM API and JDBC with Binary XML
You can use the Java DOM API for XML and Java Database Connectivity (JDBC)
to read or write XML data that is encoded as binary XML from or to Oracle XML
DB. Doing so involves the usual read and write procedures.

Related Topics

• Using XQuery with XQJ to Access Database Data
XQuery API for Java (XQJ), also known as JSR-225, provides an industry-
standard way for Java programs to access XML data using XQuery. It lets you
evaluate XQuery expressions against XML data sources and process the results
as XML data.

13.1 Overview of Java DOM API for XMLType
Oracle XML DB supports the Java Document Object Model (DOM) Application
Program Interface (API) for XMLType. This is a generic API for client and server, for
both XML Schema-based and non-schema-based documents.

DOM is a tree-based object representation of XML documents in dynamic memory
that enables programmatic access to their elements and attributes. The DOM object
and interface are part of a W3C recommendation. As discussed in PL/SQL APIs for
XMLType, the Oracle XML DB DOM APIs are compliant with the W3C DOM Level 1.0
and Level 2.0 Core Recommendation.

The Java DOM API for XMLType handles all well-formed XML documents stored in
Oracle XML DB. It presents a uniform view of an XML document, whether it is XML
Schema-based or non-schema-based and whatever the underlying XMLType storage
model. The Java DOM API works on both client and server.

The Java DOM API for XMLType can be used to construct an XMLType instance from
data encoded in different character sets.

You can use the Java DOM API for XMLType to access XML documents stored in
Oracle XML DB Repository from Java applications. Naming conforms to the Java
binding for DOM as specified by the W3C DOM Recommendation. The repository can
contain both XML schema-based and non-schema-based documents.

To access XMLType data using JDBC, use the class oracle.xdb.XMLType.

The Java DOM API for XMLType is implemented using Java package
oracle.xml.parser.v2.

See Also:

Oracle Database XML Java API Reference

Chapter 13
Overview of Java DOM API for XMLType

13-2



13.2 Access to XMLType Data Using JDBC
Java Database Connectivity (JDBC) is a SQL-based way for Java applications to
access any data in Oracle Database, including XML documents in Oracle XML DB.

You use Java class oracle.xdb.XMLType or Java interface java.sql.SQLXML to create
XML data.

The JDBC 4.0 standard data type for XML data is java.sql.SQLXML. Method
getObject() returns an object of type oracle.xdb.XMLType. Starting with Oracle
Database 11g Release 2 (11.2.0.3), oracle.xdb.XMLType implements interface
java.sql.SQLXML.

• Using JDBC to Access XML Documents in Oracle XML DB
JDBC users can query an XMLType table to obtain a JDBC XMLType interface that
supports all SQL/XML functions supported by SQL data type XMLType. The Java
(JDBC) API for XMLType interface can implement the DOM document interface.

13.2.1 Using JDBC to Access XML Documents in Oracle XML DB
JDBC users can query an XMLType table to obtain a JDBC XMLType interface that
supports all SQL/XML functions supported by SQL data type XMLType. The Java
(JDBC) API for XMLType interface can implement the DOM document interface.

Example 13-1 illustrates how to use JDBC to query an XMLType table.

You can select XMLType data using JDBC in any of these ways:

• Use SQL/XML function XMLSerialize in SQL, and obtain the result as an
oracle.jdbc.OracleClob or java.lang.String instance in Java. The Java
snippet in Example 13-2 illustrates this.

• Call method getSQLXML() in the ResultSet to obtain the whole SQLXML instance.
The return value of this method is of type java.sql.SQLXML. Then you can use
Java methods in interface SQLXML to access the data. Example 13-3 shows how to
do this.

Example 13-3 shows the use of method getObject() to directly obtain an XMLType
instance from ResultSet.

Example 13-4 shows how to bind an output parameter of type XMLType to a SQL
statement. The output parameter is registered as having data type XMLType.

Example 13-1    Querying an XMLType Table Using JDBC

PreparedStatement statement = connection.prepareStatement(
  "SELECT e.poDoc FROM po_xml_tab e"); 

ResultSet resultSet = statement.executeQuery();

while(resultSet.next())
{
  // Get result as SQLXML data.
  // Use that to get a DomSource instance.
  SQLXML sqlXml = resultSet.getSQLXML(1);
  DomSource source = sqlXml.getSource(DOMSource.class);

Chapter 13
Access to XMLType Data Using JDBC

13-3



  // Get document from the DomSource instance as a DOM node.
  Document document = (Document) source.getNode();
  
  // Use the document object
  ...
}

Example 13-2    Selecting XMLType Data Using getString() and getCLOB()

PreparedStatement statement = connection.prepareStatement(
  "SELECT XMLSerialize(DOCUMENT e.poDoc AS CLOB) poDoc, " +
  "XMLSerialize(DOCUMENT e.poDoc AS VARCHAR2(2000)) poString " +
  " FROM po_xml_tab e");
     
ResultSet resultSet = statement.executeQuery();
while(resultSet.next())
{
  // The first result is an OracleClob instance
  OracleClob clob = resultSet.getClob(1));
  
  // The second result is a String instance
  String poString = resultSet.getString(2);

  // Use clob and poString
  ... 
}

Example 13-3    Returning XMLType Data Using getSQLXML()

PreparedStatement statement = connection.prepareStatement(
                           "SELECT e.poDoc FROM po_xml_tab e"); 

ResultSet resultSet = statement.executeQuery(); 

while(resultSet.next())
{ 
  // Get the SQLXML
  SQLXML sqlXml = resultSet.getSQLXML(1); 

  // Convert the SQLXML to an xmlString instance
  String xmlString = sqlXml.getString();

  //Use the xmlString instance
  ...
}

Example 13-4    Returning XMLType Data Using an Output Parameter

public void doCall (String[] args) throws Exception 
{ 
  //  CREATE OR REPLACE FUNCTION getPurchaseOrder(reference VARCHAR2) 
  //  RETURN XMLTYPE 

Chapter 13
Access to XMLType Data Using JDBC

13-4



  //  AS 
  //    xml XMLTYPE; 
  //  BEGIN 
  //    SELECT OBJECT_VALUE INTO xml 
  //      FROM purchaseorder 
  //      WHERE XMLCast(
  //              XMLQuery('$p/PurchaseOrder/Reference'
  //                       PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
  //              AS VARCHAR2(30))
  //            = reference;
  //      RETURN xml; 
  //  END;
  
  String SQLTEXT = "{? = call getPurchaseOrder('BLAKE-2002100912333601PDT')}"; 
  super.doSomething(args); 
  createConnection(); 
  try 
  { 
    System.out.println("SQL := " + SQLTEXT); 
    CallableStatement sqlStatement = getConnection().prepareCall(SQLTEXT); 
    sqlStatement.registerOutParameter (1, java.sql.Types.SQLXML); 
    sqlStatement.execute(); 

    SQLXML sqlXml = sqlStatement.getSQLXML(1); 
    System.out.println(sqlXml.getString()); 
  } 
  catch (SQLException exception) 
  { 
    if (sqlStatement != null) 
    { 
      sqlStatement.close(); 
      throw exception; 
    } 
  }
}

13.3 Manipulating XML Database Documents Using JDBC
You can update, insert, and delete XMLType data stored in the database using Java
Database Connectivity (JDBC) with Oracle XML DB.

Note:

XMLType method transform() works only with the OCI driver.

Not all oracle.xdb.XMLType functions are supported by the thin JDBC driver.
If you do not use oracle.xdb.XMLType classes and the OCI driver, you could
lose performance benefits associated with the intelligent handling of XML.

You can update, insert, or delete XMLType data in either of these ways:

Chapter 13
Manipulating XML Database Documents Using JDBC

13-5



• Bind a string to an INSERT, UPDATE, or DELETE statement, and use the XMLType
constructor inside SQL to construct the XML instance. Example 13-5 illustrates
this.

• Use setSQLXML() in a PreparedStatement instance to set an entire XMLType
instance. Example 13-6 illustrates this.

When selecting SQLXML values, JDBC describes the column as SQLXML. You can select
the column type name and compare it with SQLXML to see whether you are dealing with
a SQLXML instance. Example 13-7 illustrates this.

Example 13-8 updates element discount inside element PurchaseOrder stored in an
XMLType column. It uses JDBC and SQLXML. It uses the XML parser to update a DOM
tree and write the updated XML value to the XMLType column.

Example 13-9 shows the updated purchase order that results from Example 13-8.

Example 13-5    Updating an XMLType Column Using SQL Constructor XMLType
and Java String

PreparedStatement statement =
    connection.prepareStatement(
      "UPDATE po_xml_tab SET poDoc = XMLType(?)");

String poString = "<PO><PONO>200</PONO><PNAME>PO_2</PNAME></PO>";

// Bind the string
statement.setString(1,poString);
statement.execute();

Example 13-6    Updating an XMLType Column Using SQLXML

PreparedStatement statement =
    connection.prepareStatement("UPDATE po_xml_tab SET poDoc = ?");

String xmlString = "<PO><PONO>200</PONO><PNAME>PO_2</PNAME></PO>";
SQLXML sqlXml = connection.createSQLXML();
sqlXml.setString(xmlString);

// Bind the SQLXML
statement.setSQLXML(1, sqlXml);
statement.execute();

Example 13-7    Retrieving Metadata About an XMLType Column Using JDBC

PreparedStatement statement =
    connection.prepareStatement("SELECT poDoc FROM po_xml_tab");
ResultSet resultSet = statement.executeQuery();

// Get the resultSet metadata
ResultSetMetaData mdata = (ResultSetMetaData)resultSet.getMetaData();

// The column type is SQLXML
if (mdata.getColumnType(1) == java.sql.Types.SQLXML)
{

Chapter 13
Manipulating XML Database Documents Using JDBC

13-6



  // It is a SQLXML instance
}

Example 13-8    Updating an XMLType Column Using JDBC

public class UpdateXMLType
{
  static String qryStr =
    "SELECT x.poDoc from po_xml_tab x " +
    "WHERE XMLCast(XMLQuery('/PO/PONO/text()'" +
    " PASSING x.poDoc RETURNING CONTENT)" +
    " AS NUMBER)" +
    " = 200";

  static String updateXML(String xmlTypeStr)
  {
    System.out.println("\n===============================");
    System.out.println(xmlTypeStr);
    System.out.println("===============================");
    String outXML = null;

    try
    {
      DOMParser parser = new DOMParser();
      parser.setValidationMode(false);
      parser.setPreserveWhitespace (true);
      parser.parse(new StringReader(xmlTypeStr));

      System.out.println("XML string is well-formed");
      XMLDocument document = parser.getDocument();
      NodeList nl = document.getElementsByTagName("DISCOUNT");

      for(int i=0;i<nl.getLength();i++)      {
        XMLElement discount = (XMLElement)nl.item(i);
        XMLNode textNode    = (XMLNode)discount.getFirstChild();
        textNode.setNodeValue("10");
      }

      StringWriter sw = new StringWriter();
      document.print(new PrintWriter(sw));
      outXML = sw.toString();

      //Print modified xml
      System.out.println("\n===============================");
      System.out.println("Updated PurchaseOrder:");
      System.out.println(outXML);
      System.out.println("===============================");
    }
    catch (Exception e)
    {
      e.printStackTrace(System.out);
    }
    return outXML;
  }

Chapter 13
Manipulating XML Database Documents Using JDBC

13-7



  public static void main(String args[]) throws Exception
  {
    try
    {
      PreparedStatement statement = connection.createStatement();
      ResultSet resultSet = statement.executeQuery(qryStr);

      while(orset.next())
      {
        //retrieve PurchaseOrder xml document from database
        SQLXML sqlXml = resultSet.getSQLXML(1);

        //store this PurchaseOrder in po_xml_hist table
        statement = connection.prepareStatement(
                      "INSERT INTO po_xml_hist VALUES(?)");
        statement.setSQLXML(1,sqlXml); // bind the SQLXML instance
        statement.execute();

        //update "DISCOUNT" element
        String newXML = updateXML(sqlXml.getString());
        // create a new instance of an XMLtype from the updated value
        SQLXML sqlXml2 = connection.createSQLXML();
        sqlXml2.setString(newXml);
        
        // update PurchaseOrder xml document in database
        statement = connection.prepareStatement(
                       "UPDATE po_xml_tab x SET x.poDoc =? WHERE " +
                       "XMLCast(XMLQuery('/PO/PONO/text()'" +
                       " PASSING value(xmltab) RETURNING CONTENT)" +
                       " AS NUMBER)" +
                       "= 200");

        statement.setSQLXML(1, sqlXml2); // bind the XMLType instance
        statement.execute();
        connection.commit();
        System.out.println("PurchaseOrder 200 Updated!");
      }

      //delete PurchaseOrder 1001
      statement.execute("DELETE FROM po_xml x WHERE" +
                        "XMLCast(XMLQuery('/PurchaseOrder/PONO/text()'" 
+
                        " PASSING value(xmltab) RETURNING CONTENT)" +
                        " AS NUMBER)" +
                        "= 1001");

      System.out.println("PurchaseOrder 1001 deleted!");
    }
    catch(Exception e)
    {
      e.printStackTrace(System.out);
    }
  }
}

Chapter 13
Manipulating XML Database Documents Using JDBC

13-8



Example 13-9    Updated Purchase-Order Document

<?xml version = "1.0"?>
<PurchaseOrder>
  <PONO>200</PONO>
  <CUSTOMER>
   <CUSTNO>2</CUSTNO>
   <CUSTNAME>John Nike</CUSTNAME>
   <ADDRESS>
    <STREET>323 College Drive</STREET>
    <CITY>Edison</CITY>
    <STATE>NJ</STATE>
    <ZIP>08820</ZIP>
   </ADDRESS>
   <PHONELIST>
    <VARCHAR2>609-555-1212</VARCHAR2>
    <VARCHAR2>201-555-1212</VARCHAR2>
   </PHONELIST>
  </CUSTOMER>
  <ORDERDATE>20-APR-97</ORDERDATE>
  <SHIPDATE>20-MAY-97 12.00.00.000000 AM</SHIPDATE>
  <LINEITEMS>
   <LINEITEM_TYP LineItemNo="1">
    <ITEM StockNo="1004">
     <PRICE>6750</PRICE>
     <TAXRATE>2</TAXRATE>
    </ITEM>
    <QUANTITY>1</QUANTITY>
    <DISCOUNT>10</DISCOUNT>
   </LINEITEM_TYP>
   <LINEITEM_TYP LineItemNo="2">
    <ITEM StockNo="1011">
     <PRICE>4500.23</PRICE>
     <TAXRATE>2</TAXRATE>
    </ITEM>
    <QUANTITY>2</QUANTITY>
    <DISCOUNT>10</DISCOUNT>
   </LINEITEM_TYP>
  </LINEITEMS>
  <SHIPTOADDR>
   <STREET>55 Madison Ave</STREET>
   <CITY>Madison</CITY>
   <STATE>WI</STATE>
   <ZIP>53715</ZIP>
  </SHIPTOADDR>
</PurchaseOrder>

Chapter 13
Manipulating XML Database Documents Using JDBC

13-9



13.4 Loading a Large XML Document into the Database
Using JDBC

To load a large XML document into the database using Java Database Connectivity
(JDBC), use a Java CLOB object to hold the document, and use Java method
insertXML() to perform the insertion.

If a large XML document (greater than 4000 characters, typically) is inserted into an
XMLType table or column using a String object in JDBC, this run-time error occurs:

"java.sql.SQLException: Data size bigger than max size for this type"

This error can be avoided by using a Java OracleClob object to hold the large XML
document. Example 13-10 shows code that uses this technique. It defines XMLType
method insertXML(), which can be used to insert a large XML document into XMLType
column purchaseOrder of table poTable. The same approach can be used for an
XMLType table.

Method insertXML() uses an OracleClob object that contains the XML
document. Interface OracleClob is a sub-interface of the standard JDBC interface
java.sql.Clob. Method insertXML() binds the OracleClob object to a JDBC prepared
statement, which inserts the data into the XMLType column.

The prerequisites for using insertXML() are as follows:

• Oracle Database, release 9.2.0.1 or later.

• The target database table. Execute the following SQL before running the example:

CREATE TABLE poTable (purchaseOrder XMLType);

The formal parameters of XMLType method insertXML() are as follows:

• xmlString – XML data to be inserted into the XMLType column

• connection – database connection object (Oracle Connection Object)

Java method insertXML() calls method getCLOB() to create and return the CLOB
object that holds the XML data. The formal parameters of method getCLOB(), which is
defined in Example 13-11, are as follows:

• xmlString – XML data to be inserted into the XMLType column

• connection – database connection object (Oracle Connection Object)

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

Example 13-10    Inserting an XMLType column using JDBC

private void insertXML(Connection connection, String xmlString)
{
  OracleClob clob = null;
  try

Chapter 13
Loading a Large XML Document into the Database Using JDBC

13-10



  {
    String query = "INSERT INTO potable (purchaseOrder) VALUES (XMLType(?)) ";

    // Get the statement Object
    PreparedStatement statement = connection.prepareStatement(query);

    // Get the OracleClob instance from xmlString
    clob = getOracleClob(connection, xmlString);
    statement.setObject(1, clob);

    // Execute the prepared statement
    if (statement.executeUpdate () == 1)
    {
      System.out.println ("Successfully inserted a Purchase Order");
    }
  }
  catch(Exception exp)
  {
    exp.printStackTrace();
  }
  finally 
  {
    if(clob !=null)
      clob.close();
  }
}

Example 13-11    Converting an XML String to an OracleClob Instance

private OracleClob getOracleClob(Connection connection, String xmlString) throws 
SQLException
{
    OracleClob clob =(OracleClob) connection.createClob();
    clob.setString(1, xmlString);
    return clob;
}

13.5 MS Windows Java Security Manager Permissions for
Java DOM API with a Thick Connection

If you use Java Security Manager (class SecurityManager) on MS Windows
to implement a security policy for your application, then you must add certain
permissions to your security policy file, in order to use the Java DOM API for XMLType
with a thick connection.

Example 13-12 shows the contents of such a policy file, where the workspace folder
that contains the jars related to Oracle XML DB is c:\myworkspace. (The policy file
must be in the same folder.)

The libraries used in Example 13-12 are orageneric12 and oraxml12. The last two
characters (12 here) must correspond to your major database release number (so
for Oracle Database 13 Release 2, for example, you would use orageneric13 and
oraxml13).

Chapter 13
MS Windows Java Security Manager Permissions for Java DOM API with a Thick Connection

13-11



After you have created the policy file, you can invoke your program using the following
command-line switches:

-Djava.security.manager=default -
Djava.security.policy=c:\myworkspace\ojdbc.policy

Example 13-12    Policy File Granting Permissions for Java DOM API

grant codeBase "file:c:\myworkspace" {
  permission java.lang.RuntimePermission "loadLibrary.orageneric12";
  permission java.lang.RuntimePermission "loadLibrary.oraxml12";
}
 
grant codeBase "file:c:\myworkspace\xdb6.jar" {
  permission java.lang.RuntimePermission "loadLibrary.orageneric12";
  permission java.lang.RuntimePermission "loadLibrary.oraxml12";
}
 
grant codeBase "file:c:\myworkspace\ojdbc6.jar" {
  permission java.lang.RuntimePermission "loadLibrary.orageneric12";
  permission java.lang.RuntimePermission "loadLibrary.oraxml12";
}

13.6 Creating XML Schema-Based Documents
To create XML Schema-based documents, Java DOM API for XMLType uses an
extension to specify which XML schema URL to use. It also verifies that the DOM
being created conforms to the specified XML schema, that is, that the appropriate
children are being inserted under the appropriate documents.

Note:

The Java DOM API for XMLType does not perform type and constraint
checks.

Once the DOM object has been created, it can be saved to Oracle XML DB Repository
using the Oracle XML DB resource API for Java. The XML document is stored in the
appropriate format:

• As a BLOB instance for non-schema-based documents.

• In the format specified by the XML schema for XML schema-based documents.

Example 13-13 shows how you can use the Java DOM API for XMLType to create
a DOM object and store it in the format specified by the associated XML schema.
Validation against the XML schema is not shown here.

Example 13-13    Creating a DOM Object with the Java DOM API

PreparedStatement statement =
  connection.prepareStatement(
    "update po_xml_XMLTypetab set poDoc = ? ");                              

Chapter 13
Creating XML Schema-Based Documents

13-12



String xmlString = "<PO><PONO>200</PONO><PNAME>PO_2</PNAME></PO>";

OracleClob clob = (OracleClob)connection.createClob();
clob.setString(1, xmlString);
SQLXML sqlXml    = clob.toSQLXML();

DOMSource domSource = sqlXml.getSource(DOMSource.class);
Document  document  = (Document) domSource.getNode();
Element   rootElem  = document.createElement("PO");
document.insertBefore(document, rootElem, null);

SQLXML sqlXml2 = clob.toSQLXML();

DOMResult domResult = sqlXml2.setResult(DomResult.class);
domResult.setNode(document);
statement.setSQLXML(1, sqlXml2);
statement.execute();

13.7 XMLType Instance Representation in Java (JDBC or
SQLJ)

An XMLType instance is represented in Java by oracle.xdb.XMLType. When an
instance of XMLType is fetched using JDBC or a SQLJ client, it is automatically
manifested as an object of the provided XMLType class.

You can bind objects of this class as values to Data Manipulation Language (DML)
statements where an XMLType is expected.

13.8 Classes of Java DOM API for XMLType
Oracle XML DB supports the W3C DOM Level 2 Recommendation. It also provides
Oracle-specific extensions, to facilitate interfacing your application with Oracle XML
Developer's Kit for Java. The Java DOM API for XMLType provides classes that
implement W3C DOM interfaces.

XMLDocument is a class that represents the DOM for the instantiated XML document.
You can retrieve a SQLXML instance from a document and a connection object as
follows:

SQLXML sqlXml = connection.createSQLXML();
DOMResult domResult = sqlXml.setResult(DOMResult.class);
domResult.setNode(document);

Table 13-1 lists the Java DOM API for XMLType classes and the W3C DOM interfaces
they implement. The Java DOM API classes are in package oracle.xml.parser.v2.

Chapter 13
XMLType Instance Representation in Java (JDBC or SQLJ)

13-13



Table 13-1    Java DOM API for XMLType: Classes

Java DOM API for XMLType Class W3C DOM Interface Recommendation Class

XMLDocument org.w3c.dom.Document 

XMLCDATA org.w3c.dom.CDataSection 

XMLComment org.w3c.dom.Comment 

XMLPI org.w3c.dom.ProcessingInstruction 

XMLText org.w3c.dom.Text 

XMLEntity org.w3c.dom.Entity 

DTD org.w3c.dom.DocumentType 

XMLNotation org.w3c.dom.Notation 

XMLAttr org.w3c.dom.Attribute 

XMLDomImplementation org.w3c.dom.DOMImplementation 

XMLElement org.w3c.dom.Element 

XMLAttrList org.w3c.dom.NamedNodeMap 

XMLNode org.w3c.dom.Node 

See Also:

Oracle XML DB on OTN for Oracle extensions for interfacing an application
with Oracle XML Developer's Kit for Java

13.9 Using the Java DOM API for XMLType
Retrieve data from an XMLType table or column and obtain a Java XMLDocument
instance from it. Manipulate elements of the DOM tree for the data using the Java
DOM API for XMLType.

The Java DOM API for XMLType lets you find and retrieve nodes within a document
at any level. You can use it to create XML documents programmatically, including on
the fly (dynamically). These documents can conform to a registered XML schema or

Chapter 13
Using the Java DOM API for XMLType

13-14



not. The Java API for XMLType conforms to the DOM 2.0 recommendation, and it is
namespace-aware.

Figure 13-1 illustrates how to use the Java DOM API for XMLType.1 These are the
steps:

1. Retrieve the XML data from the XMLType table or XMLType column in the table.
When you fetch XML data, Oracle creates a Document instance. You can then use
method getNode() to retrieve an XMLDocument instance.

2. Use the Java DOM API for XMLType to manipulate elements of the DOM tree. The
XMLType instance holds the modified data, but the data is sent back using a JDBC
update.

The XMLType and XMLDocument instances should be closed using method free() in the
respective classes. This frees any underlying memory that is held.

Figure 13-1    Using the Java DOM API for XMLType

XMLType
Tables,
Columns,
Views

Oracle
Database

Oracle
XML DB

Oracle
XML DB

XMLType
Instance

XML DOM
Tree

Java DOM
API

Changed XML Data

Saved

back

in the

Database

JDBC

JDBC

13.10 Large XML Node Handling with Java
Oracle XML DB provides abstract streams and stream-manipulation methods that you
can use to handle XML nodes that are larger than 64 K bytes. Use Java classes
XMLNode and XMLAttr, together with a thick or kprb connection, to manipulate large
nodes.

Note:

The large-node feature works only with a thick or kprb connection. It does not
work with a thin connection.

1 This assumes that your XML data is pre-registered with an XML schema, and that it is stored in an XMLType
column.

Chapter 13
Large XML Node Handling with Java

13-15



Prior to Oracle Database 11g Release 1 (11.1), each text node or attribute value
processed by Oracle XML DB was limited in size to 64 K bytes. Starting with release
11.1, this restriction no longer applies.

The former restrictions on the size of nodes were because the Java methods to
set and get a node value supported only arguments of type java.lang.String. The
maximum size of a string is dependent on the implementation of the Java VM, but
it is bounded. Prior to Release 11.1, the Java DOM APIs to manage a node value,
contained within class oracle.xdb.dom.XDBNode.java, were these:

public String getNodeValue ();
public void setNodeValue (String value);

Prior to Release 11.1, the Java DOM APIs to manage an attribute, contained within
class oracle.xdb.dom.XDBAttribute.java, were these:

public String getValue ();
public void setValue (String value);

Package oracle.xdb.dom is deprecated, starting with Oracle Database 11g Release
1 (11.1). Java classes XDBNode and XDBAttribute in that package are replaced by
classes XMLNode and XMLAttr, respectively, in package oracle.xml.parser.v2. In
addition, these DOM APIs were extended in Release 11.1 to support text and binary
node values of arbitrary size.

• Stream Extensions to Java DOM
All Java String, Reader, and Writer data is represented in UCS2, which might
be different from the database character set. Additionally, node character data is
tagged with a character set id, which is set at the time the node value is populated.

Related Topics

• Large Node Handling Using DBMS_XMLDOM
Oracle XML DB provides abstract streams and stream-manipulation methods that
you can use to handle XML nodes that are larger than 64 K bytes.

13.10.1 Stream Extensions to Java DOM
All Java String, Reader, and Writer data is represented in UCS2, which might be
different from the database character set. Additionally, node character data is tagged
with a character set id, which is set at the time the node value is populated.

The following methods of oracle.xml.parser.v2.XMLNode.java can be used to
access nodes of size greater than 64 KB. These APIs throw exceptions if you try
to get or set a node that is not a leaf node (attribute, PI, CDATA, and so on). Also,
be sure to use close() which actually writes the value and frees resources used to
maintain the state for streaming access to nodes.

• Get-Pull Model
You can use methods getNodeValueAsBinaryStream() and
getNodeValueAsCharacterStream() to retrieve the value of a DOM node, using
a parser that is in pull mode. Oracle XML DB reads the event data from an input
stream written by the parser.

• Get-Push Model
In this model, you retrieve the value of a DOM node, using a parser that is in push
mode. Oracle XML DB writes the node data to an output stream that the parser
reads.

Chapter 13
Large XML Node Handling with Java

13-16



• Set-Pull Model
In this model, you set the value of a DOM node, using a parser that is in pull
mode. Oracle XML DB reads the event data from an input stream written by the
parser.

• Set-Push Model
In this model, you set the value of a DOM node, using a parser that is in push
mode. Oracle XML DB writes the node data to an output stream that the parser
reads.

13.10.1.1 Get-Pull Model
You can use methods getNodeValueAsBinaryStream() and
getNodeValueAsCharacterStream() to retrieve the value of a DOM node, using a
parser that is in pull mode. Oracle XML DB reads the event data from an input stream
written by the parser.

For a binary input stream:

public java.io.InputStream getNodeValueAsBinaryStream () 
  throws java.io.IOException,
         DOMException;

Method getNodeValueAsBinaryStream() returns an instance of java.io.InputStream
that can be read using the defined methods for this class. The data type of the node
must be RAW or BLOB. If not, an IOException is thrown. The following example fragment
illustrates reading the value of a node in binary 50-byte segments:

...
oracle.xml.parser.v2.XMLNode node = null;
...
java.io.InputStream value = node.getNodeValueAsBinaryStream ();
// now read InputStream...
byte buffer [] = new byte [50];
int returnValue = 0;
while ((returnValue = value.read (buffer)) != -1)
{
  // process next 50 bytes of node
}
...

For a character input stream:

public java.io.Reader getNodeValueAsCharacterStream() 
  throws java.io.IOException,
         DOMException;

Method getNodeValueAsCharacterStream() returns an instance of java.io.Reader
that can be read using the defined methods for this class. If the data type of the
node is neither character nor CLOB, the node data is first converted to character. All
node data is ultimately in character format and is converted to UCS2, if necessary.

Chapter 13
Large XML Node Handling with Java

13-17



The following example fragment illustrates reading the node value in segments of 50
characters:

...
oracle.xml.parser.v2.XMLNode node = null;
...
java.io.Reader value = node.getNodeValueAsCharacterStream ();
// now read InputStream
char buffer [] = new char [50];
int returnValue = 0;
while ((returnValue = value.read (buffer)) != -1)
{
  // process next 50 characters of node
}
...

13.10.1.2 Get-Push Model
In this model, you retrieve the value of a DOM node, using a parser that is in push
mode. Oracle XML DB writes the node data to an output stream that the parser reads.

For a binary output stream:

public void getNodeValueAsBinaryStream (java.io.OutputStream pushValue) 
  throws java.io.IOException,
         DOMException;

The state of the java.io.OutputStream specified by pushValue must be open. The
data type of the node must be RAW or BLOB. If not, an IOException is thrown. The
node binary data is written to pushValue using method write() of OutputStream, and
method close() is called when the node value has been completely written to the
stream.

For a character output stream:

public void getNodeValueAsCharacterStream (java.io.Writer pushValue) 
  throws java.io.IOException,
         DOMException;

The state of the java.io.Writer specified by pushValue must be open. If the data
type of the node is neither character nor CLOB, then the data is first converted to
character. The node data, always in character format, is converted, as necessary, to
UCS2 and then pushed into the java.io.Writer.

13.10.1.3 Set-Pull Model
In this model, you set the value of a DOM node, using a parser that is in pull mode.
Oracle XML DB reads the event data from an input stream written by the parser.

Chapter 13
Large XML Node Handling with Java

13-18



For a binary input stream:

public void setNodeValueAsBinaryStream (java.io.InputStream pullValue) 
  throws java.io.IOException,
         DOMException;

The state of the java.io.InputStream specified by pullValue must be open. The data
type of the node must be RAW or BLOB. If not, an IOException is thrown. The binary
data from pullValue is read in its entirety using method read() of InputStream and
replaces the node value.

import java.io.InputStream;
import oracle.xml.parser.*;
...
oracle.xml.parser.v2.XMLNode node = null;
...
byte [] buffer = new byte [500];
java.io.InputStream  istream; //user-defined input stream
node.setNodeValueAsBinaryStream (istream);

For a character input stream:

public void setNodeValueAsCharacterStream (java.io.Reader pullValue) 
  throws java.io.IOException,
         DOMException;

The state of the java.io.Reader specified by pullValue must be open. If the data
type of the node is neither character nor CLOB, the character data is converted from
UCS2 to the node data type. If the data type of the node is character or CLOB, then the
character data read from pullValue is converted from UCS2 to the character set of the
node.

13.10.1.4 Set-Push Model
In this model, you set the value of a DOM node, using a parser that is in push mode.
Oracle XML DB writes the node data to an output stream that the parser reads.

For a binary output stream:

public java.io.OutputStream setNodeValueAsBinaryStream () 
  throws java.io.IOException,
         DOMException;

Method setNodeValueAsBinaryStream() returns an instance of
java.io.OutputStream, into which the caller can write the node value. The data type
of the node must be RAW or BLOB. Otherwise, an IOException is raised. The following
example fragment illustrates setting the value of a node to binary data by writing to the
implementation of java.io.OutputStream provided by Oracle XML DB or Oracle XML
Developer's Kit.

Chapter 13
Large XML Node Handling with Java

13-19



For a character output stream:

public java.io.Writer setNodeValueAsCharacterStream () 
  throws java.io.IOException,
         DOMException;

Method setNodeValueAsCharacterStream() returns an instance of java.io.Writer
into which the caller can write the node value. The character data written is first
converted from UCS2 to the node character set, if necessary. If the data type of the
node is neither character nor CLOB, then the character data is converted to the node
data type. Similarly, the following example fragment illustrates setting the value of a
node to character data by writing to the implementation of java.io.Writer provided
by Oracle XML DB or Oracle XML Developer's Kit.

import java.io.Writer;
import oracle.xml.parser.*;
...
oracle.xml.parser.v2.XMLNode node = null;
...
char [] buffer = new char [500];
java.io.Writer  writer = node.setNodeValueAsCharacterStream ();
for (int k = 0; k < 10; k++)
{
  byte segment [] = new byte [50];
  // copy next subset of buffer into segment
  writer.write (segment);
}
writer.flush ();
writer.close();

Oracle XML DB creates a writer or OutputStream and passes it to the user who calls
method write() repeatedly until the complete node value has been written. The new
node value is reflected only when the user calls method close().

See Also:

• Oracle Database XML Java API Reference

• Oracle Database XML C API Reference for information about C
functions for large nodes

13.11 Using the Java DOM API and JDBC with Binary XML
You can use the Java DOM API for XML and Java Database Connectivity (JDBC) to
read or write XML data that is encoded as binary XML from or to Oracle XML DB.
Doing so involves the usual read and write procedures.

XML data can be stored in Oracle XML DB using data type XMLType, and one of the
storage models for this abstract data type is binary XML, a compact, XML Schema-
aware encoding of XML data. You can use binary XML as a storage model for XMLType

Chapter 13
Using the Java DOM API and JDBC with Binary XML

13-20



in the database, but you can also use it for XML data located outside the database.
Client-side processing of XML data can involve data stored in Oracle XML DB or
transient data that resides outside the database.

Binary XML is XML Schema-aware and can use various encoding schemes,
depending on your needs and your data. Because of this, in order to manipulate binary
XML data, you must have both the data and this metadata about the relevant XML
schemas and encodings.

For XMLType data stored in the database, this metadata is also stored in the database.
However, depending on how your database and data are set up, the metadata might
not be on the same server as the data it applies to. If this is the case, then, before you
can read or write binary XML data from or to the database, you must carry out these
steps:

1. Create a context instance for the metadata.

2. Associate this context with a data connection that you use to access binary XML
data in the database. A data connection can be a dedicated connection or a
connection pool. You use methods getDedicatedConn() and getConnPool() in
class java.sql.Connection to obtain handles to these two types of connection,
respectively.

Then, when your application needs to encode or decode binary XML data on the
data connection, it automatically fetches the metadata needed for that. The overall
sequence of actions is thus as follows:

1. Create an XML data connection object, in class java.sql.Connection.

2. Create one or more metadata contexts, as needed, using method
BinXMLMetadataProviderFactory.createDBMetadataProvider() in package
oracle.xml.binxml. A metadata context is sometimes referred to as a metadata
repository. You can create a metadata context from a dedicated connection or from
a connection pool.

3. Associate the metadata context(s) with the binary XML data connection(s).
Use method DBBinXMLMetadataProvider.associateDataConnection() in package
oracle.xml.binxml to do this.

4. (Optional) If the XML data originated outside of the database, use method
oracle.xdb.XMLType.setFormatPref() to specify that XML data to be sent to the
database be encoded in the binary XML format. This applies to a DOM document
(class oracle.xdb.XMLType). If you do not specify binary XML, the data is sent to
the database as text.

5. Use the usual Java methods to read and write XML data from and to the database.
Whenever it is needed for encoding or decoding binary XML documents, the
necessary metadata is fetched automatically using the metadata context.

Use the Java DOM API for XML to operate on the XML data at the client level.

Example 13-14 illustrates this.

See Also:

Oracle XML Developer's Kit Programmer's Guide

Chapter 13
Using the Java DOM API and JDBC with Binary XML

13-21



Example 13-14    Using the Java DOM API with a Binary XML Column

class PrintBinaryXML
{
  public static void printBinXML() throws SQLException, BinXMLException
  {
    // Create datasource to connect to local database
    OracleDataSource ods = new OracleDataSource();
    ods.setURL("jdbc:oracle:kprb");
    
    System.out.println("Starting Binary XML Java Example");

    // Create data connection
    Connection connection = ods.getConnection();
    // Create binary XML metadata context, using connection pool
    DBBinXMLMetadataProvider repos =
      BinXMLMetadataProviderFactory.createDBMetadataProvider();
    repos.setConnectionPool(ods);

    // Associate metadata context with data connection
    repos.associateDataConnection(connection);

    // Query XML data stored in SQLXML column as binary XML
    Statement statement = connection.createStatement();
    ResultSet resultSet = statement.executeQuery("SELECT doc FROM po_binxmltab");

    // Get the SQLXML object
    while (resultSet.next())
    {
      SQLXML sqlXml = resultSet.getSQLXML(1);

      // Convert SQLXML to a String
      String xmlString = sqlXml.getString();
      System.out.println(xmlString);
    }

    resultSet.close();
    statement.close();
    connection.close();

    System.out.println("Completed Binary XML Java Example");
  }
}

Related Topics

• XMLType Storage Models
XMLType is an abstract data type that provides different storage models to best
fit your data and your use of it. As an abstract data type, your applications and
database queries gain in flexibility: the same interface is available for all XMLType
operations.

Chapter 13
Using the Java DOM API and JDBC with Binary XML

13-22



14
C DOM API for XMLType

The C DOM API for XMLType lets you operate on XMLType instances using a DOM in C.

• Overview of the C DOM API for XMLType
The C DOM API for XMLType is a DOM API that is used for Oracle XML
Developer's Kit (XDK) and Oracle XML DB. You can use it for XML data that
is inside or outside the database.

• Access to XMLType Data Stored in the Database Using OCI
Oracle XML DB provides support for storing and manipulating XML instances
using abstract data type XMLType. These XML instances can be accessed and
manipulated on the client side using the Oracle Call Interface (OCI) in conjunction
with the C DOM API for XML.

• Creating XMLType Instances on the Client
You can construct new XMLType instances on the client side using the C DOM API
methods XMLCreateDocument() and XmlLoadDom().

• XML Context Parameter for C DOM API Functions
An XML context is a required parameter for all the C DOM API functions. This
opaque context encapsulates information about the data encoding, the error
message language, and so on. The contents of the context are different for Oracle
XML Developer's Kit applications and Oracle XML DB.

• Initializing and Terminating an XML Context
An example illustrates a C program that uses the C DOM API to construct an XML
document and save it to Oracle Database.

• Using the C API for XML with Binary XML
You can use the C API for XML to read or write XML data that is encoded as
binary XML from or to Oracle XML DB. Doing so involves the usual read and write
procedures.

• Using the Oracle XML Developer's Kit Pull Parser with Oracle XML DB
You can use the Oracle XML Developer's Kit pull parser with XMLType instances in
Oracle XML DB. When you use this parser, parsing is done on demand, so your
application drives the parsing process.

• Common XMLType Operations in C
Common XML operations are provided by the C API for XML.

14.1 Overview of the C DOM API for XMLType
The C DOM API for XMLType is a DOM API that is used for Oracle XML Developer's Kit
(XDK) and Oracle XML DB. You can use it for XML data that is inside or outside the
database.

DOM refers to compliance with the World Wide Web Consortium (W3C) DOM 2.0
Recommendation.

14-1



The C DOM API for XMLType also includes performance-improving extensions that you
can use in XDK for traditional storage of XML data, or in Oracle XML DB for storage as
an XMLType column in a table.

Note:

C DOM functions from releases prior to Oracle Database 10g Release 1 are
supported only for backward compatibility.

The C DOM API for XMLType is implemented on XMLType in Oracle XML DB. In the
W3C DOM Recommendation, the term "document" is used in a broad sense (URI,
file system, memory buffer, standard input and output). The C DOM API for XMLType
is a combined programming interface that includes all of the functionality needed by
Oracle XML Developer's Kit and Oracle XML DB applications. It provides XSLT and
XML Schema implementations. Although the DOM 2.0 Recommendation was followed
closely, some naming changes were required for mapping from the objected-oriented
DOM 2.0 Recommendation to the flat C namespace. For example, method getName()
was renamed to getAttrName().

The C DOM API for XMLType supersedes older Oracle APIs. In particular, the oraxml
interface (top-level, DOM, SAX, and XSLT) and oraxsd.h (Schema) interfaces will be
deprecated in a future release.

The reference documentation for the C and C++ Application Programming Interfaces
(APIs) that you can use to manipulate XML data is Oracle Database XML C API
Reference, and Oracle Database XML C++ API Reference.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about PL/SQL APIs for XML

• Oracle Database XML Java API Reference for information about Java
APIs for XML

14.2 Access to XMLType Data Stored in the Database Using
OCI

Oracle XML DB provides support for storing and manipulating XML instances using
abstract data type XMLType. These XML instances can be accessed and manipulated
on the client side using the Oracle Call Interface (OCI) in conjunction with the C DOM
API for XML.

You can bind and define XMLType values using the C DOM structure xmldocnode.
This structure can be used for binding, defining and operating on XML values in OCI
statements. You can use OCI statements to select XML data from the server, which
you can then use with C DOM API functions. Similarly, values can be bound back to
SQL statements directly.

Chapter 14
Access to XMLType Data Stored in the Database Using OCI

14-2



The main flow for an application program involves initializing the usual OCI handles,
such as server handle and statement handle, and then initializing an XML context
parameter. You can then either operate on XML instances in the database or create
new instances on the client side. The initialized XML context can be used with all of
the C DOM functions.

Related Topics

• XML Context Parameter for C DOM API Functions
An XML context is a required parameter for all the C DOM API functions. This
opaque context encapsulates information about the data encoding, the error
message language, and so on. The contents of the context are different for Oracle
XML Developer's Kit applications and Oracle XML DB.

14.3 Creating XMLType Instances on the Client
You can construct new XMLType instances on the client side using the C DOM API
methods XMLCreateDocument() and XmlLoadDom().

You can construct empty XMLType instances using XMLCreateDocument(). This is
similar to using OCIObjectNew() for other types.

You construct a non-empty XMLType instance using XmlLoadDom(), as follows:

1. Initialize the xmlctx as in Example 14-1.

2. Construct the XML data from a user buffer, local file, or URI. The return value, a
(xmldocnode*), can be used in the rest of the common C API.

3. If required, you can cast (xmldocnode *) to (void*) and provide it directly as the
bind value.

14.4 XML Context Parameter for C DOM API Functions
An XML context is a required parameter for all the C DOM API functions. This
opaque context encapsulates information about the data encoding, the error message
language, and so on. The contents of the context are different for Oracle XML
Developer's Kit applications and Oracle XML DB.

For Oracle XML DB, OCI functions OCIXmlDbInitXmlCtx()and
OCIXmlDbFreeXmlCtx(), respectively, initialize and terminate an XML context.

• OCIXmlDbInitXmlCtx() Syntax
OCI function OCIXmlDbInitXmlCtx()initializes an XML context.

• OCIXmlDbFreeXmlCtx() Syntax
OCI function OCIXmlDbFreeXmlCtx()terminates an XML context.

14.4.1 OCIXmlDbInitXmlCtx() Syntax
OCI function OCIXmlDbInitXmlCtx()initializes an XML context.

The syntax of OCIXmlDbInitXmlCtx() is as follows:

xmlctx *OCIXmlDbInitXMlCtx (OCIEnv        *envhp,
                            OCISvcHp      *svchp,

Chapter 14
Creating XMLType Instances on the Client

14-3



                            OCIError      *errhp,
                            ocixmldbparam *params,
                            ub4           num_params);

Table 14-1 describes the parameters.

Table 14-1    OCIXmlDbInitXMlCtx() Parameters

Parameter Description

envhp (IN) The OCI environment handle.

svchp (IN) The OCI service handle.

errhp (IN) The OCI error handle.

params (IN) An array of optional values:

• OCI duration. Default value is OCI_DURATION_SESSION.
• Error handler, which is a user-registered callback:

void (*err_handler) (sword errcode, 
                     (CONST OraText *) errmsg);

num_params (IN) Number of parameters to be read from params.

14.4.2 OCIXmlDbFreeXmlCtx() Syntax
OCI function OCIXmlDbFreeXmlCtx()terminates an XML context.

The syntax of OCIXmlDbFreeXmlCtx() is as follows, where parameter xctx (IN) is the
XML context to terminate.:

void OCIXmlDbFreeXmlCtx (xmlctx *xctx);

14.5 Initializing and Terminating an XML Context
An example illustrates a C program that uses the C DOM API to construct an XML
document and save it to Oracle Database.

Example 14-1 shows this. The document constructed is stored in table my_table. OCI
functions OCIXmlDbInitXmlCtx() and OCIXmlDbFreeXmlCtx() are used to initialize and
terminate the XML context, respectively. These functions are defined in header file
ocixmldb.h.

The code uses helper functions exec_bind_xml, init_oci_handles, and
free_oci_handles, which are not listed here. The complete listing of this example,
including the helper functions, can be found in Oracle-Supplied XML Schemas and
Examples, Initializing and Terminating an XML Context (OCI).

The C code in Example 14-1 assumes that the following SQL code has first been
executed to create table my_table in database schema capiuser:

CONNECT CAPIUSER
Enter password: password

Chapter 14
Initializing and Terminating an XML Context

14-4



Connected.

CREATE TABLE my_table OF XMLType;

Example 14-4 queries table my_table to show the data that was inserted by
Example 14-1.

Example 14-1    Using OCIXMLDBINITXMLCTX() and OCIXMLDBFREEXMLCTX()

#ifndef S_ORACLE
#endif
#ifndef ORATYPES_ORACLE
#include <oratypes.h>
#endif
#ifndef XML_ORACLE
#include <xml.h>
#endif
#ifndef OCIXML_ORACLE
#include <ocixml.h>
#endif
#ifndef OCI_ORACLE
#include <oci.h>
#endif
#include <string.h>
 
typedef struct test_ctx {
        OCIEnv *envhp;
        OCIError *errhp;
        OCISvcCtx *svchp;
        OCIStmt *stmthp;
        OCIServer *srvhp;
        OCIDuration dur;
        OCISession *sesshp;
        oratext *username;
        oratext *password;
} test_ctx;
 
/* Helper function 1: execute a sql statement which binds xml data */
static sword exec_bind_xml(OCISvcCtx *svchp,
                           OCIError *errhp,
                           OCIStmt *stmthp,
                           void *xml,
                           OCIType *xmltdo,
                           OraText *sqlstmt);
 
/* Helper function 2: Initialize OCI handles and connect */
static sword init_oci_handles(test_ctx *ctx);
 
/* Helper function 3: Free OCI handles and disconnect */
static sword free_oci_handles(test_ctx *ctx);
 
void main()
{
  test_ctx temp_ctx;
  test_ctx *ctx = &temp_ctx;

Chapter 14
Initializing and Terminating an XML Context

14-5



  OCIType *xmltdo = (OCIType *) 0;
  xmldocnode *doc = (xmldocnode *)0;
  ocixmldbparam params[1];
  xmlnode *quux, *foo, *foo_data, *top;
  xmlerr err;
  sword status = 0;
  xmlctx *xctx;
 
  oratext ins_stmt[] = "insert into my_table values (:1)"; 
  oratext tlpxml_test_sch[] = "<TOP/>";
  ctx->username = (oratext *)"capiuser";
  ctx->password = (oratext *)"***********"; /* Replace with real password */
 
  /* Initialize envhp, svchp, errhp, dur, stmthp */
  init_oci_handles(ctx);
 
  /* Get an xml context */
  params[0].name_ocixmldbparam = XCTXINIT_OCIDUR;
  params[0].value_ocixmldbparam = &ctx->dur;
  xctx = OCIXmlDbInitXmlCtx(ctx->envhp, ctx->svchp, ctx->errhp, params, 1);
 
  /* Start processing - first, check that this DOM supports XML 1.0 */
  printf("\n\nSupports XML 1.0? : %s\n",
         XmlHasFeature(xctx, (oratext *) "xml", (oratext *) "1.0") ?
         "YES" : "NO");
 
  /* Parse a document */
  if (!(doc = XmlLoadDom(xctx, &err, "buffer", tlpxml_test_sch,
                         "buffer_length", sizeof(tlpxml_test_sch)-1,
                         "validate", TRUE, NULL)))
  {
    printf("Parse failed, code %d\n", err);
  }
  else
  {
    /* Get the document element */
    top = (xmlnode *)XmlDomGetDocElem(xctx, doc);
 
    /* Print out the top element */
    printf("\n\nOriginal top element is :\n");   
    XmlSaveDom(xctx, &err, top, "stdio", stdout, NULL);
 
    /* Print out the document. The changes are reflected here */
    printf("\n\nOriginal document is :\n");
    XmlSaveDom(xctx, &err, (xmlnode *)doc, "stdio", stdout, NULL);
 
    /* Create some elements and add them to the document */
    quux = (xmlnode *) XmlDomCreateElem(xctx ,doc, (oratext *) "QUUX");
    foo = (xmlnode *) XmlDomCreateElem(xctx, doc, (oratext *) "FOO");
    foo_data = (xmlnode *) XmlDomCreateText(xctx, doc, (oratext *) "data");
    foo_data = XmlDomAppendChild(xctx, (xmlnode *) foo, (xmlnode *) foo_data);
    foo = XmlDomAppendChild(xctx, quux, foo);
    quux = XmlDomAppendChild(xctx, top, quux);
 
    /* Print out the top element */

Chapter 14
Initializing and Terminating an XML Context

14-6



    printf("\n\nNow the top element is :\n");   
    XmlSaveDom(xctx, &err, top, "stdio", stdout, NULL);
 
    /* Print out the document.  The changes are reflected here */
    printf("\n\nNow the document is :\n");
    XmlSaveDom(xctx, &err, (xmlnode *)doc, "stdio", stdout, NULL);
 
    /* Insert the document into my_table */
    status = OCITypeByName(ctx->envhp, ctx->errhp, ctx->svchp, 
                           (const text *) "SYS", (ub4) strlen((char *)"SYS"), 
                           (const text *) "XMLTYPE",
                           (ub4) strlen((char *)"XMLTYPE"), (CONST text *) 0,
                           (ub4) 0, OCI_DURATION_SESSION, OCI_TYPEGET_HEADER,
                           (OCIType **) &xmltdo);
    if (status == OCI_SUCCESS)
    {
      exec_bind_xml(ctx->svchp, ctx->errhp, ctx->stmthp, (void *)doc, xmltdo, 
                    ins_stmt);
    }
  }
  /* Free xml ctx */
  OCIXmlDbFreeXmlCtx(xctx);
 
  /* Free envhp, svchp, errhp, stmthp */
  free_oci_handles(ctx);
}

The output from compiling and running this C program is as follows:

Supports XML 1.0? : YES
 
Original top element is :
<TOP/>
 
Original document is :
<TOP/>
 
Now the top element is :
<TOP>
  <QUUX>
    <FOO>data</FOO>
  </QUUX>
</TOP>
 
Now the document is :
<TOP>
  <QUUX>
    <FOO>data</FOO>
  </QUUX>
</TOP>

This is the result of querying the constructed document in my_table:

SELECT * FROM my_table;

SYS_NC_ROWINFO$
---------------
<TOP> 

Chapter 14
Initializing and Terminating an XML Context

14-7



  <QUUX> 
    <FOO>data</FOO> 
  </QUUX> 
</TOP> 
 
1 row selected.

14.6 Using the C API for XML with Binary XML
You can use the C API for XML to read or write XML data that is encoded as
binary XML from or to Oracle XML DB. Doing so involves the usual read and write
procedures.

Binary XML is a compact, XML Schema-aware encoding of XML data. You can use
binary XML as a storage model for XMLType data in the database, but you can also use
it for XML data located outside the database.

Binary XML data is XML Schema-aware, and it can use various encoding schemes,
depending on your needs. In order to manipulate binary XML data, you must have
both the data and this metadata about the relevant XML schemas and encodings.

For XMLType data stored in the database, this metadata is also stored in the database.
However, depending on how your database and data are set up, the metadata might
not be on the same server as the data it applies to. If this is the case, then, before you
can read or write binary XML data from or to the database, you must carry out these
steps:

1. Create a context instance for the metadata.

2. Associate this context with a data connection that you use to access binary
XML data in the database. A data connection can be a dedicated connection
(OCISvcCtx) or a connection pool (OCICPool).

Then, when your application needs to encode or decode binary XML data on the data
connection, it automatically fetches the metadata needed for that. As is illustrated by
Example 14-2, the overall sequence of actions is as follows:

1. Create the usual OCI handles for environment (OCIEnv), connection (OCISvcCtx),
and error context (OCIError).

2. Create one or more metadata contexts, as needed. A metadata context is
sometimes referred to as a metadata repository, and OCIBinXMLReposCtx is
the OCI context data structure. You use OCIBinXMLCreateReposCtxFromConn
to create a metadata context from a dedicated connection and
OCIBinXMLCreateReposCtxFromCPool to create a context from a connection pool.

3. Associate the metadata context(s) with the binary XML data connection(s). You
use OCIBinXmlSetReposCtxForConn to do this.

4. (Optional) If the XML data originated outside of the database, use
setPicklePreference to specify that XML data to be sent to the database from
now on is in binary XML format. This applies to a DOM document (xmldomdoc). If
you do not specify binary XML, the data is stored as text (CLOB).

5. Use OCI libraries to read and write XML data from and to the database. Whenever
it is needed for encoding or decoding binary XML documents, the necessary
metadata is fetched automatically using the metadata context. Use the C DOM
API for XML to operate on the XML data at the client level.

Chapter 14
Using the C API for XML with Binary XML

14-8



See Also:

Oracle XML Developer's Kit Programmer's Guide

Example 14-2    Using the C API for XML with Binary XML

. . .
/* Private types and constants */
#define SCHEMA        (OraText *)"SYS"
#define TYPE          (OraText *)"XMLTYPE"
#define USER          (OraText *)"oe"
#define USER_LEN      (ub2)(strlen((char *)USER))
#define PWD           (OraText *)"oe"
#define PWD_LEN       (ub2)(strlen((char *)PWD))
#define NUM_PARAMS    1
static void checkerr(OCIError *errhp, sword status);
static sword create_env(OraText *user, ub2 user_len, OraText *pwd, ub2 pwd_len,
                        OCIEnv **envhp, OCISvcCtx **svchp, OCIError **errhp);
static sword run_example(OCIEnv *envhp, OCISvcCtx *svchp, OCIError *errhp,
                         OCIDuration dur);
static void cleanup(OCIEnv *envhp, OCISvcCtx *svchp, OCIError *errhp);
 
int main (int argc, char *argv[])
{
  OCIEnv     *envhp;
  OCISvcCtx  *svchp;
  OCIError   *errhp;
  printf("*** Starting Binary XML Example program\n");
  if (create_env(USER, USER_LEN, PWD, PWD_LEN, &envhp, &svchp, &errhp))
    {
      printf("FAILED: create_env()\n");
      cleanup(envhp, svchp, errhp);
      return OCI_ERROR;
    }
  if (run_example(envhp, svchp, errhp, OCI_DURATION_SESSION))
    {
      printf("FAILED: run_example()\n");
      cleanup(envhp, svchp, errhp);
      return OCI_ERROR;
    }
  cleanup(envhp, svchp, errhp);
  printf ("*** Completed Binary XML example\n");
  return OCI_SUCCESS;
}
 
static sword create_env(OraText *user, ub2 user_len,
                        OraText *pwd,  ub2 pwd_len,
                        OCIEnv **envhp, OCISvcCtx **svchp, OCIError **errhp)
{
  sword       status;
  OCIServer  *srvhp;
  OCISession *usrp;
  OCICPool   *poolhp;
  OraText    *poolname;
  ub4         poolnamelen;
  OraText    *database =(OraText *)"";
  OCIBinXmlReposCtx *rctx;
  /* Create and initialize environment. Allocate error handle. */

Chapter 14
Using the C API for XML with Binary XML

14-9



  . . .
  if ((status = OCIConnectionPoolCreate((dvoid *)*envhp, (dvoid*)*errhp,
                                        (dvoid *)poolhp, &poolname,
                                        (sb4 *)&poolnamelen, 
                                        (OraText *)0, 
                                        (sb4) 0, 1, 10, 1, 
                                        (OraText *)USER, 
                                        (sb4) USER_LEN, 
                                        (OraText *)PWD, 
                                        (sb4) PWD_LEN,
                                        OCI_DEFAULT)) != OCI_SUCCESS)
    {
      printf ("OCIConnectionPoolCreate - Fail %d\n", status);
      return OCI_ERROR;
    }
  status = OCILogon2((OCIEnv *)*envhp, *errhp, svchp, (OraText *)USER,
                     (ub4)USER_LEN, (const oratext *)PWD, (ub4)PWD_LEN,
                     (const oratext *)poolname, poolnamelen, OCI_CPOOL);
  if (status)
    {
      printf ("OCILogon2 - Fail %d\n", status);
      return OCI_ERROR;
    }
  OCIBinXmlCreateReposCtxFromCPool(*envhp, poolhp, *errhp, &rctx);
  OCIBinXmlSetReposCtxForConn(*svchp, rctx);
  return OCI_SUCCESS;
}
 
static sword run_example(OCIEnv *envhp, OCISvcCtx *svchp, OCIError *errhp,
                         OCIDuration dur)
{
  OCIType   *xmltdo = (OCIType *)0;
  OCIStmt   *stmthp;
  OCIDefine *defnp;
  xmldocnode *xmldoc = (xmldocnode *)0;
  ub4        xmlsize = 0;
  text      *selstmt = (text *)"SELECT doc FROM po_binxmltab";
  sword      status;
  struct xmlctx *xctx = (xmlctx *) 0;
  ocixmldbparam params[NUM_PARAMS];
  xmlerr xerr = (xmlerr) 0;
  /* Obtain type definition for XMLType. Allocate statement handle.
     Prepare SELECT statement. Define variable for XMLType. Execute statement. */
  . . .
  /* Construct xmlctx for using XML C API */
  params[0].name_ocixmldbparam = XCTXINIT_OCIDUR;
  params[0].value_ocixmldbparam = &dur;
  xctx = OCIXmlDbInitXmlCtx(envhp, svchp, errhp, params, NUM_PARAMS);
  /* Print result to local string */
  XmlSaveDom(xctx, &xerr, (xmlnode *)xmldoc, "stdio", stdout, NULL);
  /* Free instances */
  . . .
}

Related Topics

• XMLType Storage Models
XMLType is an abstract data type that provides different storage models to best
fit your data and your use of it. As an abstract data type, your applications and
database queries gain in flexibility: the same interface is available for all XMLType
operations.

Chapter 14
Using the C API for XML with Binary XML

14-10



14.7 Using the Oracle XML Developer's Kit Pull Parser with
Oracle XML DB

You can use the Oracle XML Developer's Kit pull parser with XMLType instances in
Oracle XML DB. When you use this parser, parsing is done on demand, so your
application drives the parsing process.

Your application accesses an XML document through a sequence of events, with start
tags, end tags, and comments, just as in Simple API for XML (SAX) parsing. However,
unlike the case of SAX parsing, where parsing events are handled by callbacks, in
pull parsing your application calls methods to ask for (pull) events only when it needs
them. This gives the application more control over XML processing. In particular,
filtering is more flexible with the pull parser than with the SAX parser.

You can also use the Oracle XML Developer's Kit pull parser to perform stream-based
XML Schema validation.

Example 14-3 shows how to use the Oracle XML DB pull parser with an XMLType
instance. To use the pull parser, you also need static library libxml10.a on UNIX and
Linux systems or oraxml10.dll on Microsoft Windows systems. You also need header
file xmlev.h.

See Also:

• Oracle XML Developer's Kit Programmer's Guide for information about
the Oracle XML Developer's Kit pull parser

• Oracle XML Developer's Kit Programmer's Guide for information on
using the pull parser for stream-based validation

Example 14-3    Using the Oracle XML DB Pull Parser

#define MAXBUFLEN 64*1024
void main()
{
  test_ctx temp_ctx;
  test_ctx *ctx = &temp_ctx;
  OCIType *xmltdo = (OCIType *) 0;
  ocixmldbparam params[1];
  sword status = 0;
  xmlctx *xctx;
  OCIDefine *defnp = (OCIDefine *) 0;
  oratext sel_stmt[] =
    "SELECT XMLSerialize(DOCUMENT x.OBJECT_VALUE AS CLOB) FROM PURCHASEORDER x where rownum = 1";
  OCILobLocator *cob;
  ub4 amtp, nbytes;
  ub1 bufp[MAXBUFLEN];
  ctx->username = (oratext *)"oe";
  ctx->password = (oratext *)"*************";    /* Replace with real password */
 
  /* Initialize envhp, svchp, errhp, dur, stmthp */
  init_oci_handles(ctx);
 

Chapter 14
Using the Oracle XML Developer's Kit Pull Parser with Oracle XML DB

14-11



  /* Get an xml context */
  params[0].name_ocixmldbparam = XCTXINIT_OCIDUR;
  params[0].value_ocixmldbparam = &ctx->dur;
  xctx = OCIXmlDbInitXmlCtx(ctx->envhp, ctx->svchp, ctx->errhp, params, 1);
 
  /* Start processing */
  printf("\n\nSupports XML 1.0? : %s\n",
         XmlHasFeature(xctx, (oratext *) "xml", (oratext *) "1.0") ?
         "YES" : "NO");
 
  /* Allocate the lob descriptor */
  status = OCIDescriptorAlloc((dvoid *) ctx->envhp, (dvoid **) &clob,
                       (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
  if (status)
  {
    printf("OCIDescriptorAlloc Failed\n");
    goto error;
  }
  status = OCIStmtPrepare(ctx->stmthp, ctx->errhp,
                 (CONST OraText *)sel_stmt, (ub4) strlen((char *)sel_stmt),
                 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
  if (status)
  {
    printf("OCIStmtPrepare Failed\n");
    goto error;
  }
  status = OCIDefineByPos(ctx->stmthp, &defnp, ctx->errhp, (ub4) 1,
                 (dvoid *) &clob, (sb4) -1, (ub2 ) SQLT_CLOB,
                 (dvoid *) 0, (ub2 *)0,
                 (ub2 *)0, (ub4) OCI_DEFAULT);
  if (status)
  {
    printf("OCIDefineByPos Failed\n");
    goto error;
  }
  status = OCIStmtExecute(ctx->svchp, ctx->stmthp, ctx->errhp, (ub4) 1,
                          (ub4) 0, (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
                          (ub4) OCI_DEFAULT);
  if (status)
  {
    printf("OCIStmtExecute Failed\n");
    goto error;
  }
  /* read the fetched value into a buffer */
  amtp = nbytes = MAXBUFLEN-1;
  status = OCILobRead(ctx->svchp, ctx->errhp, clob, &amtp,
                (ub4) 1, (dvoid *) bufp, (ub4) nbytes, (dvoid *)0,
                (sb4 (*)(dvoid *, CONST dvoid *, ub4, ub1)) 0,
                (ub2) 0, (ub1) SQLCS_IMPLICIT);
  if (status)
  {
    printf("OCILobRead Failed\n");
    goto error;
  }
  bufp[amtp] = '\0';
  if (amtp > 0)
  {
     printf("\n=> Query result of %s: \n%s\n", sel_stmt, bufp);
     /********** PULL PARSING ******************/
     status = pp_parse(xctx, bufp, amtp);
     if (status)

Chapter 14
Using the Oracle XML Developer's Kit Pull Parser with Oracle XML DB

14-12



       printf("Pull Parsing failed\n");
  }
error: 
  /* Free XML Ctx */
  OCIXmlDbFreeXmlCtx(xctx);
 
  /* Free envhp, svchp, errhp, stmthp */
  free_oci_handles(ctx);
}
#define ERRBUFLEN 256
sb4 pp_parse(xctx, buf, amt)
xmlctx  *xctx;
oratext *buf;
ub4     amt;
{
  xmlevctx *evctx;
  xmlerr   xerr = XMLERR_OK;
  oratext  message[ERRBUFLEN];
  oratext  *emsg = message;
  xmlerr   ecode;
  boolean  done, inattr = FALSE;
  xmlevtype event;
 
  /* Create an XML event context - Pull Parser Context */
  evctx = XmlEvCreatePPCtx(xctx, &xerr,
                           "expand_entities", FALSE,
                           "validate", TRUE,
                           "attr_events", TRUE,
                           "raw_buffer_len", 1024,
                           NULL);
 if (!evctx)
  {
    printf("FAILED: XmlEvCreatePPCtx: %d\n", xerr);
    return OCI_ERROR;
  }
  /* Load the document from input buffer */
  xerr = XmlEvLoadPPDoc(xctx, evctx, "buffer", buf, amt, "utf-8");
  if (xerr)
  {
    printf("FAILED: XmlEvLoadPPDoc: %d\n", xerr);
    return OCI_ERROR;
  }
  /* Process the events until END_DOCUMENT event or error */
  done = FALSE;
  while(!done)
  {
    event = XmlEvNext(evctx);
    switch(event)
    {
      case XML_EVENT_START_ELEMENT:
        printf("START ELEMENT: %s\n", XmlEvGetName0(evctx));
        break;
      case XML_EVENT_END_ELEMENT:
        printf("END ELEMENT: %s\n", XmlEvGetName0(evctx));
        break;
      case XML_EVENT_START_DOCUMENT:
        printf("START DOCUMENT\n");
        break;
      case XML_EVENT_END_DOCUMENT:
        printf("END DOCUMENT\n");
        done = TRUE;

Chapter 14
Using the Oracle XML Developer's Kit Pull Parser with Oracle XML DB

14-13



        break;
      case XML_EVENT_START_ATTR:
        printf("START ATTRIBUTE: %s\n", XmlEvGetAttrName0(evctx, 0));
        inattr = TRUE;
        break;
      case XML_EVENT_END_ATTR:
        printf("END ATTRIBUTE: %s\n", XmlEvGetAttrName0(evctx, 0));
        inattr = FALSE;
        break;
      case XML_EVENT_CHARACTERS:
        if (inattr)
          printf("ATTR VALUE: %s\n", XmlEvGetText0(evctx));
        else
          printf("TEXT: %s\n", XmlEvGetText0(evctx));
        break;
      case XML_EVENT_ERROR:
      case XML_EVENT_FATAL_ERROR:
        done = TRUE;
        ecode = XmlEvGetError(evctx, &emsg);
        printf("ERROR: %d: %s\n", ecode, emsg);
        break;
    }
  }
  /* Destroy the event context */
  XmlEvDestroyPPCtx(xctx, evctx);
  return OCI_SUCCESS;
}

The output from compiling and running this C program is as follows:

=> Query result of XMLSerialize(DOCUMENT x.OBJECT_VALUE AS CLOB) FROM PURCHASEORDER x where rownum = 1: 

<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
               xsi:noNamespaceSchemaLocation=
                 "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd">
  <Reference>AMCEWEN-20021009123336171PDT</Reference>
  <Actions>
    <Action>
      <User>KPARTNER</User>
    </Action>
  </Actions>
  <Reject/>
  <Requestor>Allan D. McEwen</Requestor>
  <User>AMCEWEN</User>
  <CostCenter>S30</CostCenter>
  <ShippingInstructions>
    <name>Allan D. McEwen</name>
    <address>Oracle Plaza
Twin Dolphin Drive
Redwood Shores
CA
94065
USA</address>
    <telephone>650 506 7700</telephone>
  </ShippingInstructions>
  <SpecialInstructions>Ground</SpecialInstructions>
  <LineItems>
    <LineItem ItemNumber="1">
      <Description>Salesman</Description>
      <Part Id="37429158920" UnitPrice="39.95" Quantity="2"/>
    </LineItem>
    . . .

Chapter 14
Using the Oracle XML Developer's Kit Pull Parser with Oracle XML DB

14-14



  </LineItems>
</PurchaseOrder>
 
START DOCUMENT
START ELEMENT: PurchaseOrder
START ATTRIBUTE: xmlns:xsi
ATTR VALUE: http://www.w3.org/2001/XMLSchema-instance
END ATTRIBUTE: xmlns:xsi
START ATTRIBUTE: xsi:noNamespaceSchemaLocation
ATTR VALUE: http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd
END ATTRIBUTE: xsi:noNamespaceSchemaLocation
START ELEMENT: Reference
TEXT: AMCEWEN-20021009123336171PDT
END ELEMENT: Reference
START ELEMENT: Actions
START ELEMENT: Action
START ELEMENT: User
TEXT: KPARTNER
END ELEMENT: User
END ELEMENT: Action
END ELEMENT: Actions
START ELEMENT: Reject
END ELEMENT: Reject
START ELEMENT: Requestor
TEXT: Allan D. McEwen
END ELEMENT: Requestor
START ELEMENT: User
TEXT: AMCEWEN
END ELEMENT: User
START ELEMENT: CostCenter
TEXT: S30
END ELEMENT: CostCenter
START ELEMENT: ShippingInstructions
START ELEMENT: name
TEXT: Allan D. McEwen
END ELEMENT: name
START ELEMENT: address
TEXT: Oracle Plaza
Twin Dolphin Drive
Redwood Shores
CA
94065
USA
END ELEMENT: address
START ELEMENT: telephone
TEXT: 650 506 7700
END ELEMENT: telephone
END ELEMENT: ShippingInstructions
START ELEMENT: SpecialInstructions
TEXT: Ground
END ELEMENT: SpecialInstructions
START ELEMENT: LineItems
START ELEMENT: LineItem
START ATTRIBUTE: ItemNumber
ATTR VALUE: 1
END ATTRIBUTE: ItemNumber
START ELEMENT: Description
TEXT: Salesman
END ELEMENT: Description
START ELEMENT: Part
START ATTRIBUTE: Id

Chapter 14
Using the Oracle XML Developer's Kit Pull Parser with Oracle XML DB

14-15



ATTR VALUE: 37429158920
END ATTRIBUTE: Id
START ATTRIBUTE: UnitPrice
ATTR VALUE: 39.95
END ATTRIBUTE: UnitPrice
START ATTRIBUTE: Quantity
ATTR VALUE: 2
END ATTRIBUTE: Quantity
END ELEMENT: Part
END ELEMENT: LineItem
. . .
END ELEMENT: LineItems
END ELEMENT: PurchaseOrder
END DOCUMENT

14.8 Common XMLType Operations in C
Common XML operations are provided by the C API for XML.

Table 14-2 provides the XMLType functional equivalent of common XML operations.

Table 14-2    Common XMLType Operations in C

Description C API XMLType Function

Create empty XMLType instance XmlCreateDocument()

Create from a source buffer XmlLoadDom()

Extract an XPath expression XmlXPathEvalexpr() and family

Transform using an XSLT stylesheet XmlXslProcess() and family

Check if an XPath exists XmlXPathEvalexpr() and family

Is document schema-based? XmlDomIsSchemaBased()

Get schema information XmlDomGetSchema()

Get document namespace XmlDomGetNodeURI()

Validate using schema XmlSchemaValidate()

Obtain DOM from XMLType Cast (void *) to (xmldocnode *)

Obtain XMLType from DOM Cast (xmldocnode *) to (void *)

See Also:

Oracle XML Developer's Kit Programmer's Guide "XML Parser for C"

Example 14-4 shows how to use the DOM to determine how many instances of a
particular part have been ordered. The part in question has Id 37429158722. See
Oracle-Supplied XML Schemas and Examples, Example A-6 for the definitions of
helper functions exec_bind_xml, free_oci_handles, and init_oci_handles.

Chapter 14
Common XMLType Operations in C

14-16



Example 14-4    Using the DOM to Count Ordered Parts

#ifndef S_ORACLE
#endif
#ifndef ORATYPES_ORACLE
#include <oratypes.h>
#endif
#ifndef XML_ORACLE
#include <xml.h>
#endif
#ifndef OCIXML_ORACLE
#include <ocixml.h>
#endif
#ifndef OCI_ORACLE
#include <oci.h>
#endif
#include <string.h>
 
typedef struct test_ctx {
        OCIEnv *envhp;
        OCIError *errhp;
        OCISvcCtx *svchp;
        OCIStmt *stmthp;
        OCIServer *srvhp;
        OCIDuration dur;
        OCISession *sesshp;
        oratext *username;
        oratext *password;
} test_ctx;
 
/* Helper function 1: execute a sql statement which binds xml data */
static sword exec_bind_xml(OCISvcCtx *svchp,
                           OCIError *errhp,
                           OCIStmt *stmthp,
                           void *xml,
                           OCIType *xmltdo,
                           OraText *sqlstmt);
 
/* Helper function 2: Initialize OCI handles and connect */
static sword init_oci_handles(test_ctx *ctx);
 
/* Helper function 3: Free OCI handles and disconnect */
static sword free_oci_handles(test_ctx *ctx);
 
void main()
{
  test_ctx temp_ctx;
  test_ctx *ctx = &temp_ctx;
  OCIType *xmltdo = (OCIType *) 0;
  xmldocnode *doc = (xmldocnode *)0;
  ocixmldbparam params[1];
  xmlnode *quux, *foo, *foo_data, *top;
  xmlerr err;
  sword status = 0;
  xmlctx *xctx;

Chapter 14
Common XMLType Operations in C

14-17



  ub4 xmlsize = 0;
  OCIDefine *defnp = (OCIDefine *) 0;
  oratext sel_stmt[] = "SELECT SYS_NC_ROWINFO$ FROM PURCHASEORDER";
  xmlnodelist *litems = (xmlnodelist *)0;
  xmlnode *item = (xmlnode *)item;
  xmlnode *part;
  xmlnamedmap *attrs;
  xmlnode *id;
  xmlnode *qty;
  oratext *idval;
  oratext *qtyval;
  ub4 total_qty;
  int i;
  int numdocs;
  
  ctx->username = (oratext *)"oe";
  ctx->password = (oratext *)"***********";   /* Replace with real password */

  /* Initialize envhp, svchp, errhp, dur, stmthp */
  init_oci_handles(ctx);
 
  /* Get an xml context */
  params[0].name_ocixmldbparam = XCTXINIT_OCIDUR;
  params[0].value_ocixmldbparam = &ctx->dur;
  xctx = OCIXmlDbInitXmlCtx(ctx->envhp, ctx->svchp, ctx->errhp, params, 1);
 
  /* Start processing */
  printf("\n\nSupports XML 1.0? : %s\n",
         XmlHasFeature(xctx, (oratext *) "xml", (oratext *) "1.0") ?
         "YES" : "NO");
 
  /* Get the documents from the database using a select statement */
  status = OCITypeByName(ctx->envhp, ctx->errhp, ctx->svchp, (const text *) "SYS",
                         (ub4) strlen((char *)"SYS"), (const text *) "XMLTYPE",
                         (ub4) strlen((char *)"XMLTYPE"), (CONST text *) 0,
                         (ub4) 0, OCI_DURATION_SESSION, OCI_TYPEGET_HEADER,
                         (OCIType **) &xmltdo);
  status = OCIStmtPrepare(ctx->stmthp, ctx->errhp,
                 (CONST OraText *)sel_stmt, (ub4) strlen((char *)sel_stmt),
                 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
  status = OCIDefineByPos(ctx->stmthp, &defnp, ctx->errhp, (ub4) 1, (dvoid *) 0,
                 (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0,
                 (ub2 *)0, (ub4) OCI_DEFAULT);
  status = OCIDefineObject(defnp, ctx->errhp, (OCIType *) xmltdo,
                  (dvoid **) &doc,
                  &xmlsize, (dvoid **) 0, (ub4 *) 0);
  status = OCIStmtExecute(ctx->svchp, ctx->stmthp, ctx->errhp, (ub4) 0, (ub4) 0,
                 (CONST OCISnapshot*) 0, (OCISnapshot*) 0, (ub4) OCI_DEFAULT);
 
  /* Initialize variables */
  total_qty = 0;
  numdocs = 0; 
 
  /* Loop through all the documents */
  while ((status = OCIStmtFetch2(ctx->stmthp, ctx->errhp, (ub4) 1, (ub4) 

Chapter 14
Common XMLType Operations in C

14-18



OCI_FETCH_NEXT,
                                 (ub4)1, (ub4) OCI_DEFAULT)) == 0)
  {
    numdocs++;
 
    /* Get all the LineItem elements */
    litems = XmlDomGetDocElemsByTag(xctx, doc, (oratext *)"LineItem");
    i = 0;
 
    /* Loop through all LineItems */
    while (item = XmlDomGetNodeListItem(xctx, litems, i))
    {
      /* Get the part */
      part = XmlDomGetLastChild(xctx, item);
     
      /* Get the attributes */
      attrs = XmlDomGetAttrs(xctx, (xmlelemnode *)part);
 
      /* Get the id attribute and its value */
      id = XmlDomGetNamedItem(xctx, attrs, (oratext *)"Id");
      idval = XmlDomGetNodeValue(xctx, id);
 
      /* Keep only parts with id 37429158722 */
      if (idval && (strlen((char *)idval) == 11 )
          && !strncmp((char *)idval, (char *)"37429158722", 11))
      {
        /* Get the quantity attribute and its value.*/
        qty = XmlDomGetNamedItem(xctx, attrs, (oratext *)"Quantity");
        qtyval = XmlDomGetNodeValue(xctx, qty);
 
        /* Add the quantity to total_qty */
        total_qty += atoi((char *)qtyval);
      }
      i++;
    }
    XmlFreeDocument(xctx, doc);
    doc = (xmldocnode *)0;
  }
  printf("Total quantity needed for part 37429158722 = %d\n", total_qty);
  printf("Number of documents in table PURCHASEORDER = %d\n", numdocs);
 
  /* Free Xml Ctx */
  OCIXmlDbFreeXmlCtx(xctx);
 
  /* Free envhp, svchp, errhp, stmthp */
  free_oci_handles(ctx);
}

The output from compiling and running this C program is as follows:

Supports XML 1.0? : YES
Total quantity needed for part 37429158722 = 42
Number of documents in table PURCHASEORDER = 132

Chapter 14
Common XMLType Operations in C

14-19



15
Oracle XML DB and Oracle Data Provider
for .NET

Oracle Data Provider for Microsoft .NET (ODP.NET) is an implementation of a data
provider for Oracle Database. It uses Oracle native APIs to offer fast and reliable
access to Oracle data and features from any .NET application.

It also uses and inherits classes and interfaces available in the Microsoft .NET
Framework Class Library. ODP.NET supports the following LOB data types natively
with .NET: BLOB, CLOB, NCLOB, and BFILE.

• Oracle XML DB and ODP.NET XML
ODP.NET supports XML data natively in the database, through Oracle XML DB.

• Using XMLType Data with ODP.NET
An example illustrates passing XMLType data from the database to .NET

15.1 Oracle XML DB and ODP.NET XML
ODP.NET supports XML data natively in the database, through Oracle XML DB.

ODP.NET:

• Stores XML data natively in Oracle Database as XMLType.

• Accesses relational and object-relational data as XML data from Oracle Database
to a Microsoft .NET environment, and processes the XML using Microsoft .NET
framework.

• Saves changes to the database server using XML data.

• Provides the following XML-specific classes:

– OracleXmlType

– OracleXmlStream

– OracleXmlQueryProperties

– OracleXmlSaveProperties

• Enhances classes OracleCommand, OracleConnection, and OracleDataReader.

15.2 Using XMLType Data with ODP.NET
An example illustrates passing XMLType data from the database to .NET

Example 15-1 retrieves XMLType data from the database to .NET and outputs the
results:

15-1



See Also:

Oracle Data Provider for .NET Developer's Guide for Microsoft Windows for
complete information about Oracle .NET support for Oracle XML DB.

Example 15-1    Retrieve XMLType Data to .NET

//Create OracleCommand and query XMLType 
OracleCommand xmlCmd = new OracleCommand(); 
poCmd.CommandText = "SELECT po FROM po_tab";
poCmd.Connection = conn;
// Execute OracleCommand and output XML results to an OracleDataReader 
OracleDataReader poReader = poCmd.ExecuteReader(); 
// ODP.NET native XML data type object from Oracle XML DB 
OracleXmlType poXml; 
string str = ""; //read XML results 
while (poReader.Read()) 
{ 
  // Return OracleXmlType object of the specified XmlType column 
  poXml = poReader.GetOracleXmlType(0);     
  // Concatenate output for all the records 
  str = str + poXml.Value; 
} //Output XML results to the screen 
Console.WriteLine(str); 

Chapter 15
Using XMLType Data with ODP.NET

15-2



Part V
XML Schema and Object-Relational
XMLType

The use of XML Schema and object-relational storage of XMLType data is covered.

• Choice of XMLType Storage and Indexing
Important design choices for your application include what XMLType storage model
to use and which indexing approaches to use.

• XML Schema Storage and Query: Basic
XML Schema is a standard for describing the content and structure of XML
documents. You can register, update, and delete an XML schema used with
Oracle XML DB. You can define storage structures to use for your XML schema-
based data and map XML Schema data types to SQL data types.

• XML Schema Storage and Query: Object-Relational Storage
Advanced techniques for XML Schema-based data include using object-relational
storage; annotating XML schemas; mapping Schema data types to SQL; using
complexType extensions and restrictions; creating, specifying relational constraints
on, and partitioning XML Schema-based data, storing XMLType data out of line,
working with complex or large schemas, and debugging schema registration.

• XPath Rewrite for Object-Relational Storage
For XMLType data stored object-relationally, queries involving XPath expression
arguments to various SQL functions can often be automatically rewritten to queries
against the underlying SQL tables, which are highly optimized.

• XML Schema Evolution
You can use XML schema evolution to update your XML schema after you have
registered it with Oracle XML DB.



16
Choice of XMLType Storage and Indexing

Important design choices for your application include what XMLType storage model to
use and which indexing approaches to use.

• Introduction to Choosing an XMLType Storage Model and Indexing Approaches
XMLType is an abstract SQL data type that provides different storage and indexing
models to best fit your XML data and your use of it. Because it is an abstract data
type, your applications and database queries gain in flexibility: the same interface
is available for all XMLType operations.

• XMLType Use Case Spectrum: Data-Centric to Document-Centric
When choosing an XMLType storage model, consider the nature of your XML data
and the ways you use it. There is a spectrum of use cases, ranging from most
data-centric to most document-centric.

• Common Use Cases for XML Data Stored as XMLType
Recommendations are provided for application use cases that correspond to
common use cases for XML data stored as XMLType.

• XMLType Storage Model Considerations
For most use cases, Oracle recommends that you use binary XML storage of
XMLType. Object-relational storage is appropriate in special cases.

• XMLType Indexing Considerations
For XMLType data stored object-relationally, create B-tree and bitmap indexes just
as you would for relational data. Use XMLIndex indexing with XMLType data that is
stored as binary XML.

• XMLType Storage Options: Relative Advantages
Each XMLType storage model has particular advantages and disadvantages.

16.1 Introduction to Choosing an XMLType Storage Model
and Indexing Approaches

XMLType is an abstract SQL data type that provides different storage and indexing
models to best fit your XML data and your use of it. Because it is an abstract data
type, your applications and database queries gain in flexibility: the same interface is
available for all XMLType operations.

Different applications use XML data in different ways. Sometimes it is constructed
from relational data sources, so it is relatively structured. Sometimes it is used for
extraction, transformation, and loading (ETL) operations, in which case it is also
quite structured. Sometimes it is used for free-form documents (unstructured or semi-
structured) such as books and articles.

Retrieval approaches can also be different for different kinds of data. Data-centric use
cases often involve a fixed set of queries, whereas document-centric use cases often
involve arbitrary (ad-hoc) queries.

16-1



Because there is a broad spectrum of XML usage, there is no one-size-fits-all
storage model that offers optimal performance and flexibility for every use case.
Oracle XML DB offers two storage models for XMLType, and several indexing methods
appropriate to these different storage models. You can tailor performance and
functionality to best fit the kind of XML data you have and the ways you use it.

Therefore, one key decision to make is which XMLType storage model to use for which
XML data. This chapter helps you choose the best storage option for a given use case.

XMLType tables and columns can be stored in the following ways:

• Binary XML storage – This is also referred to as post-parse persistence. It is
the default storage model for Oracle XML DB. It is a post-parse, binary format
designed specifically for XML data. Binary XML is compact and XML schema-
aware. The biggest advantage of Binary XML storage is flexibility: you can use
it for XML schema-based documents or for documents that are not based on
an XML schema. You can use it with an XML schema that allows for high data
variability or that evolves considerably or unexpectedly. This storage model also
provides efficient partial updating and streamable query evaluation.

• Object-relational storage – This is also referred to as structured storage and
object-based persistence. This storage model represents an entity-relationship
(ER) decomposition of the XML data. It provides the best performance for highly
structured data with a known and more or less fixed set of queries. Query
performance matches that of relational data, and updates can be performed in
place.

Note:

Starting with Oracle Database 12c Release 1 (12.1.0.1), the unstructured
(CLOB) storage model for XMLType is deprecated. Use binary XML storage
instead.

If you have exising XMLType data that is stored as CLOB data then consider
moving it to binary XML storage format using Oracle GoldenGate. If
document fidelity is important for a particular XML document then store a
copy of it in a relational CLOB column.

Oracle XML DB supports the following kinds of indexes on XMLType data.

• B-tree functional indexes on object-relational storage

• XML search index on binary XML storage

• XMLIndex with structured and unstructured components on binary XML storage

• B-tree indexes on the secondary tables created automatically for XMLIndex (both
structured and unstructured components) on binary XML storage

Different use cases call for different combinations of XMLType storage model and
indexes.

Chapter 16
Introduction to Choosing an XMLType Storage Model and Indexing Approaches

16-2



Related Topics

• Indexes for XMLType Data
You can create indexes on your XML data, to focus on particular parts of it that you
query often and thus improve performance. There are various ways that you can
index XMLType data, whether it is XML schema-based or non-schema-based, and
regardless of the XMLType storage model you use.

• XMLType Storage Options: Relative Advantages
Each XMLType storage model has particular advantages and disadvantages.

16.2 XMLType Use Case Spectrum: Data-Centric to
Document-Centric

When choosing an XMLType storage model, consider the nature of your XML data and
the ways you use it. There is a spectrum of use cases, ranging from most data-centric
to most document-centric.

This is illustrated in Figure 16-1 , which shows the most data-centric cases at the left
and the most document-centric cases at the right.

Figure 16-1    XML Use Cases and XMLType Storage Models

Data-Centric

Use Case XML schema-based data, with 
little variation and little structural 
change over time

Typical Data Employee record

Storage Model Object-Relational 
(Structured)

Indexing B-tree index

Document-Centric

Variable, free-form data, with 
some fixed embedded 
structures

Variable, free-form data

Technical article, with author, 
date, and title fields

Web document or book chapter

Binary XML

· XMLIndex index with structured
  and unstructured components

· XML search index

· XMLIndex index with
 unstructured component

· XML search index

Data-centric data is highly structured, with relatively static and predictable structure,
and your applications take advantage of this structure. The data conforms to an XML
schema.

Document-centric data can be divided into two cases:

• The data is generally without structure or is of variable structure. This includes the
case of documents that have both structured and unstructured parts. Document
structure can vary over time (evolution), and the content can be mixed (semi-
structured), with many elements containing both text nodes and child elements.
Many XML elements can be absent or can appear in different orders. Documents
might or might not conform to an XML schema.

Chapter 16
XMLType Use Case Spectrum: Data-Centric to Document-Centric

16-3



• The data is relatively structured, but your applications do not take advantage of
that structure: they treat the data as if it were without structure.

16.3 Common Use Cases for XML Data Stored as XMLType
Recommendations are provided for application use cases that correspond to common
use cases for XML data stored as XMLType.

If your use case is not a common one, so that it is not covered here, then refer to the
rest of this chapter for information about special cases.

Note:

This section is about the use of XML data that is persisted as XMLType.
One common use case for XML data involves the generation of XML data
from relational data. That case is not covered here, as it involves relational
storage and the generated XML data is not necessarily persisted.

(For cases where generated XML data is persisted as XMLType, see
XMLType Use Case: Staged XML Data for ETL.)

• XMLType Use Case: No XML Fragment Updating or Querying
In this use case there is no requirement to update or query fragments of XML data
that is stored in the database.

• XMLType Use Case: Data Integration from Diverse Sources with Different XML
Schemas
If your XML data comes from multiple data sources that use different XML
schemas then use binary XML storage.

• XMLType Use Case: Staged XML Data for ETL
In this use case, data is extracted from outside sources, transformed to fit
operational needs (typically relational), and then loaded into the database: extract,
transform, load (ETL). In particular, transformation distinguishes this use case.

• XMLType Use Case: Semi-Structured XML Data
In this use case, either your XML data is of variable form or large portions of
it are not well defined. There might not be an associated XML schema, or the
XML schema might allow for high data variability or evolve considerably or in
unexpected ways.

• XMLType Use Case: Business Intelligence Queries
To enable business-intelligence (BI) queries over XML data, you can use
SQL/XML function XMLTable to project values contained in the data as columns
of a virtual table. Then use analytic-function windows, together with SQL ORDER
BYand GROUP BY, to operate on columns of the virtual table.

• XMLType Use Case: XML Queries Involving Full-Text Search
If your application needs to perform full-text searches on XML data then use binary
XML storage and create XML search indexes that correspond to your queries.

Chapter 16
Common Use Cases for XML Data Stored as XMLType

16-4



Related Topics

• XMLType Indexing Considerations
For XMLType data stored object-relationally, create B-tree and bitmap indexes just
as you would for relational data. Use XMLIndex indexing with XMLType data that is
stored as binary XML.

• XMLType Storage Options: Relative Advantages
Each XMLType storage model has particular advantages and disadvantages.

16.3.1 XMLType Use Case: No XML Fragment Updating or Querying
In this use case there is no requirement to update or query fragments of XML data that
is stored in the database.

You have these options for this use case:

• Store it as XMLType using binary XML storage.

• Store it in a relational BLOB or CLOB column, preferably a SecureFiles LOB.

If you store the XML data in a relational LOB column, not as XMLType, Oracle
Database does not parse the data and it cannot guarantee its validity. (And you cannot
perform XMLType operations on the data.)

16.3.2 XMLType Use Case: Data Integration from Diverse Sources
with Different XML Schemas

If your XML data comes from multiple data sources that use different XML schemas
then use binary XML storage.

This use case has three subcases:

• If the XML data contains islands of structured, predictable data, and your queries
are known, then use XMLIndex with a structured component to index the structured
islands (even if the data surrounding these islands is unstructured). A structured
index component reflects the queries you use. An RSS news aggregator is an
example of such a use case.

• If there are no such structured islands or your queries are unknown ahead of time
(ad hoc) then use XMLIndex with an unstructured component.

• If you use queries that involve full-text search then use an XML search index,
together with XQuery pragma ora:no_schema.

Related Topics

• XMLIndex Structured Component
You create and use the structured component of an XMLIndex index for queries
that project fixed, structured islands of XML content, even if the surrounding data
is relatively unstructured.

• XMLIndex Unstructured Component
Unlike a B-tree index, which you define for a specific database column that
represents an individual XML element or attribute, or the XMLIndex structured
component, which applies to specific, structured document parts, the unstructured
component of an XMLIndex index is, by default, very general.

Chapter 16
Common Use Cases for XML Data Stored as XMLType

16-5



• Indexing XML Data for Full-Text Queries
When you need full-text search over XML data, Oracle recommends that you store
your XMLType data as binary XML and you use XQuery Full Text (XQFT). You use
an XML search index for this. This is the topic of this section.

• Oracle XQuery Extension-Expression Pragmas
The W3C XQuery specification lets an implementation provide implementation-
defined extension expressions. An XQuery extension expression is an XQuery
expression that is enclosed in braces ({, }) and prefixed by an implementation-
defined pragma. The Oracle implementation provides several such pragmas.

16.3.3 XMLType Use Case: Staged XML Data for ETL
In this use case, data is extracted from outside sources, transformed to fit operational
needs (typically relational), and then loaded into the database: extract, transform, load
(ETL). In particular, transformation distinguishes this use case.

ETL use cases often integrate data from multiple applications that are maintained or
hosted by multiple parties using different software and hardware systems. The data
that is extracted is often the responsibility of parties other than those who transform it
or use it after transformation.

The XML data involved is typically highly structured and conforms to an XML schema.
This use case covers both producing relational data from XML data and generating
XML data from relational data.

A subset of ETL use cases involve the need to efficiently update the XML data.
Updating can involve replacement of an entire XML document or changes to only
fragments of a document (partial updating).

Object-relational storage of XMLType data is generally appropriate for this use case.

Related Topics

• Relational Views over XML Data
Relational database views over XML data provide conventional, relational access
to XML content.

• Generation of XML Data from Relational Data
Oracle XML DB provides features for generating (constructing) XML data from
relational data in the database. There are both SQL/XML standard functions and
Oracle-specific functions and packages for generating XML data from relational
content.

16.3.4 XMLType Use Case: Semi-Structured XML Data
In this use case, either your XML data is of variable form or large portions of it are
not well defined. There might not be an associated XML schema, or the XML schema
might allow for high data variability or evolve considerably or in unexpected ways.

Binary XML storage of XMLType data is generally appropriate for this use case.

Use structured-component XMLIndex indexing when query paths are known, and use
path-subsetted unstructured-component XMLIndex indexing when paths are not known
beforehand (ad hoc queries). Use an XML search index for XQuery Full-Text queries.

Chapter 16
Common Use Cases for XML Data Stored as XMLType

16-6



Related Topics

• XMLIndex Structured Component
You create and use the structured component of an XMLIndex index for queries
that project fixed, structured islands of XML content, even if the surrounding data
is relatively unstructured.

• XMLIndex Unstructured Component
Unlike a B-tree index, which you define for a specific database column that
represents an individual XML element or attribute, or the XMLIndex structured
component, which applies to specific, structured document parts, the unstructured
component of an XMLIndex index is, by default, very general.

• Indexing XML Data for Full-Text Queries
When you need full-text search over XML data, Oracle recommends that you store
your XMLType data as binary XML and you use XQuery Full Text (XQFT). You use
an XML search index for this. This is the topic of this section.

16.3.5 XMLType Use Case: Business Intelligence Queries
To enable business-intelligence (BI) queries over XML data, you can use SQL/XML
function XMLTable to project values contained in the data as columns of a virtual table.
Then use analytic-function windows, together with SQL ORDER BYand GROUP BY, to
operate on columns of the virtual table.

For business-intelligence queries, you will generally do all of the following:

• Store your XMLType data as binary XML.

• Use an XMLIndex index with a structured component.

• Create relational views over the data using SQL/XML function XMLTable, where
the views project all columns of interest to the BI application.

• Write your application queries against these relational views.

If the XMLIndex index is created in one-to-one correspondence to these views, Oracle
Database automatically translates queries over the views to queries over the relational
tables of the structured XMLIndex component, providing relational performance.

When you use analytic-function windows, ORDER BY, or GROUP BY on a column of
the virtual table, these operations are translated to windows, ORDER BY, and GROUP
BY operations on the corresponding physical columns of the structured-component
XMLIndex tables.

Related Topics

• XMLIndex Structured Component
You create and use the structured component of an XMLIndex index for queries
that project fixed, structured islands of XML content, even if the surrounding data
is relatively unstructured.

• Relational Views over XML Data
Relational database views over XML data provide conventional, relational access
to XML content.

Chapter 16
Common Use Cases for XML Data Stored as XMLType

16-7



16.3.6 XMLType Use Case: XML Queries Involving Full-Text Search
If your application needs to perform full-text searches on XML data then use binary
XML storage and create XML search indexes that correspond to your queries.

Related Topics

• Indexing XML Data for Full-Text Queries
When you need full-text search over XML data, Oracle recommends that you store
your XMLType data as binary XML and you use XQuery Full Text (XQFT). You use
an XML search index for this. This is the topic of this section.

16.4 XMLType Storage Model Considerations
For most use cases, Oracle recommends that you use binary XML storage of XMLType.
Object-relational storage is appropriate in special cases.

Object-relational storage is not appropriate unless all of the following are true:

• You have an XML schema that rigorously specifies the detailed data format of all
XML documents that you intend to store in a given XMLType column or table. Your
applications are data-centric.

• You do not expect your XML schema to evolve frequently in ways that do not allow
in-place schema evolution.

• Your data is not especially sparse (does not include many elements that are empty
or missing).

• You do not necessarily insert and select whole XML documents at a time. Partial
updates and selections are common.

• You do not need document fidelity (DOM fidelity is sufficient).

Table 16-1 provides more detail about this. The guidelines it presents for choosing an
XMLType storage model are not independent: follow them in the order presented, row
by row, until a requirement in column If... is satisfied.

Table 16-1    XMLType Storage Model Considerations

If... Then...

1. You need the property of document fidelity,
preserving all original whitespace.

Use binary XML storage for database use and
XML processing. But also store a copy of
the original documents in a CLOB (relational)
column.

(It is your responsibility to keep the two
versions synchronized, if you update the data.)

2. You rarely need to select or update
only a portion of your XML data. Instead,
you typically insert and select whole XML
documents at a time.

Use binary XML storage.

Chapter 16
XMLType Storage Model Considerations

16-8



Table 16-1    (Cont.) XMLType Storage Model Considerations

If... Then...

3. You need to store XMLType instances that
conform to different XML schemas in the same
XMLType table or column.

(Oracle does not recommend this practice in
general, because it prohibits Oracle XML DB
from using the XML schemas to optimize XML
queries and other operations.)

Use binary XML storage.

4. You do not have an XML schema for your
data.

Use binary XML storage.

If you think that your data could benefit from
XML schema validation, then consider also
whether you can generate an XML schema for
it using a schema-generation tool.

5. You expect your XML schema to evolve
frequently or in unexpected ways, and you
cannot take advantage of in-place XML
schema evolution.

In-place evolution is generally permitted only
if the changes do not invalidate existing
documents and they do not involve changing
the storage model. See XML Schema
Evolution.

Use binary XML storage.

Use PL/SQL procedure
DBMS_XMLSCHEMA.copyEvolve to update the
XML schema.

6. Your XML data is very sparse. Use binary XML storage.

7. Your XML schema does not make use of
constructs such as elements any and choice,
which do not provide a detailed specification of
the data format.

(XML schema generators often include such
constructs in the generated schemas.)

Use object-relational storage.

8. You can modify your XML schema to
remove constructs such as any and choice
that prevent a rigorous definition of the
structure of your XML data.

Remove such constructs, then use object-
relational storage.

9. You cannot remove such constructs. Use binary XML storage.

16.5 XMLType Indexing Considerations
For XMLType data stored object-relationally, create B-tree and bitmap indexes just as
you would for relational data. Use XMLIndex indexing with XMLType data that is stored
as binary XML.

For general indexing of document-centric XML data, use XMLIndex with an
unstructured component. This is appropriate for queries that are ad hoc (arbitrary).

For data that contains predictable, fixed parts that you query frequently, use XMLIndex
with structured components for those parts. An example of this use case is a
specification that is generally free-form but that has fixed fields for the author, date,
and title.

Chapter 16
XMLType Indexing Considerations

16-9



To handle islands of structure within generally unstructured content, create an
XMLIndex index that has both structured and unstructured components. A use case
where you might use both components would be to support queries that extract
an XML fragment from a document whenever some structured data is present. The
structured component of the index would be used for a query WHERE clause condition
that checks for the structured data. The unstructured component would be used for the
fragment extraction.

Table 16-2 provides simple guidelines for indexing XMLType data that is stored as
binary XML. These guidelines are independent: you can use a combination of indexing
approaches if their If... conditions are satisfied.

Table 16-2    XMLType Indexing Considerations

If... Then...

Your data contains predictable islands of
structured data.

Use XMLIndex, with a structured component
for each of the structured islands.

You need to support full-text queries. Use XML search indexes.

You need to support ad-hoc XML queries
involving predicates.

Use XMLIndex, with an unstructured
component.

16.6 XMLType Storage Options: Relative Advantages
Each XMLType storage model has particular advantages and disadvantages.

Table 16-3 summarizes the advantages and disadvantages of each XMLType storage
model. Symbols + and – provide a rough indication of strength and weakness,
respectively.

Table 16-3    XMLType Storage Models: Relative Advantages

Quality Binary XML Storage Object-Relational Storage

Throughput (+) High throughput. Fast DOM loading.
There is a slight overhead from the binary
encoder/decoder.

(–) XML decomposition can result in reduced
throughput when ingesting or retrieving the
entire content of an XML document.

Indexing support XMLIndex and XML search indexes. B-tree, bitmap, and Oracle Text indexes on
specific elements or attributes.

Queries (+) Fast when using XMLIndex. Queries that
cannot use an index use streaming XPath
evaluation, which can also be fast.

(++) Relational query performance. You can
create B-tree indexes on the underlying
object-relational columns.

Update operations
(DML)

(+) In-place, piecewise update for
SecureFiles LOB storage.

(++) Relational update performance.
Columns are updated in place.

Data flexibility (+) Flexibility in the structure of the XML
documents that can be stored in an
XMLType column or table.

(–) Limited flexibility. Only documents that
conform to the XML schema can be stored.

XML schema flexibility (++) Both XML schema-based and non-
schema-based documents can be stored.
Documents conforming to any XML
schemas that have been registered can
be stored in the same XMLType table or
column.

(–) Only documents that conform to the
same XML schema can be stored in a given
XMLType table or column.

Chapter 16
XMLType Storage Options: Relative Advantages

16-10



Table 16-3    (Cont.) XMLType Storage Models: Relative Advantages

Quality Binary XML Storage Object-Relational Storage

Validation upon insert (++) XML schema-based data can be fully
validated when it is inserted, but this takes
time.

(+) XML data is partially validated when it is
inserted.

Compression and
Encryption

(+) Binary XML with SecureFiles LOB
storage can be compressed/encrypted.

(++) Each XML element/attribute can be
compressed/encrypted individually.

Chapter 16
XMLType Storage Options: Relative Advantages

16-11



17
XML Schema Storage and Query: Basic

XML Schema is a standard for describing the content and structure of XML
documents. You can register, update, and delete an XML schema used with Oracle
XML DB. You can define storage structures to use for your XML schema-based data
and map XML Schema data types to SQL data types.

The XML Schema Recommendation was created by the World Wide Web Consortium
(W3C) to describe the content and structure of XML documents. It includes the
full capabilities of Document Type Definitions (DTDs) so that existing DTDs can be
converted to XML Schema. XML schemas have additional capabilities compared to
DTDs.

• Overview of XML Schema
The W3C XML Schema Recommendation defines a standardized language
for specifying the structure, content, and certain semantics of a set of XML
documents. An XML schema can be considered as the metadata that describes a
class of XML documents.

• Overview of Using XML Schema with Oracle XML DB
Oracle XML DB supports registering XML schemas, validating documents against
an XML schema, generating XML schemas from SQL object types, mapping
from XML Schema to SQL, creating and querying XML Schema-based tables,
views, and columns, and automatically inserting data when XML Schema-based
documents are inserted into Oracle XML DB Repository.

• XML Schema Registration with Oracle XML DB
Before an XML schema can be used by Oracle XML DB, you must register it.
It can then be used to create XMLType tables and columns and to validate XML
documents. If schema registration fails then the database is restored to the state it
had prior to the registration attempt.

• Creation of XMLType Tables and Columns Based on XML Schemas
You can create XMLType tables and columns that are constrained to a global
element defined by an XML schema. After an XMLType column has been
constrained to a particular element and a particular schema, it can only contain
documents that are compliant with the schema definition of that element.

• Ways to Identify XML Schema Instance Documents
Before an XML document can be inserted into an XML Schema-based XMLType
table or column, the associated XML schema must be identified. You can do this
when you create the table or column, or you can use XMLSchema-instance to
explicitly add the required schema identification to the XML instance document.

• XML Schema Data Types Are Mapped to Oracle XML DB Storage
Data that conforms to an XML schema uses XML Schema data types. When this
XML data is stored in Oracle XML DB, its storage data types are derived from the
XML Schema data types using a default mapping and, optionally, using mapping
information that you specify using XML schema annotations.

17-1



See Also:

• XML Schema Storage and Query: Object-Relational Storage for more
advanced information about using XML Schema with Oracle XML DB

• XPath Rewrite for Object-Relational Storage for information about the
optimization of XPath expressions in Oracle XML DB

• XML Schema Part 0: Primer Second Edition for an introduction to XML
Schema

17.1 Overview of XML Schema
The W3C XML Schema Recommendation defines a standardized language for
specifying the structure, content, and certain semantics of a set of XML documents.
An XML schema can be considered as the metadata that describes a class of XML
documents.

This documentation refers to an XML Schema instance definition as an XML schema
(lowercase).

• XML Schema for Schemas
The W3C Schema working group publishes an XML schema, often referred
to as the "Schema for Schemas". This XML schema provides the definition,
or vocabulary, of the XML Schema language. All valid XML schemas can be
considered to be members of the class defined by this XML schema.

• XML Schema Features
XML Schema defines 47 scalar data types, for strong typing of elements and
attributes. It supports object-oriented inheritance and extension, so you can design
an XML schema with complex objects from base data types. It includes constructs
for defining and ordering, default values, mandatory content, nesting, repeated
sets, and redefines.

• XML Instance Documents
Documents conforming to an XML schema can be considered as instances of
the class defined by that XML schema. A common use of an XML schema is to
validate that a given such instance documentconforms to the rules defined by the
XML schema.

• XML Namespaces and XML Schemas
An XML schema can specify a targetNamespace attribute, whose value is a URL.
If omitted, the schema has no target namespace. The target namespace is the
namespace for everything defined in the XML schema. The targetNamespace
value is typically a URL where the XML schema can be accessed.

• Overview of Editing XML Schemas
You can author and edit XML schemas anyway you like.

Chapter 17
Overview of XML Schema

17-2



See Also:

XML Schema Part 0: Primer for a general description of the XML Schema
recommendation

17.1.1 XML Schema for Schemas
The W3C Schema working group publishes an XML schema, often referred to as the
"Schema for Schemas". This XML schema provides the definition, or vocabulary, of the
XML Schema language. All valid XML schemas can be considered to be members of
the class defined by this XML schema.

An XML schema is thus an XML document that conforms to the class defined by the
XML schema published at https://www.w3.org/2001/XMLSchema.

17.1.2 XML Schema Features
XML Schema defines 47 scalar data types, for strong typing of elements and
attributes. It supports object-oriented inheritance and extension, so you can design
an XML schema with complex objects from base data types. It includes constructs for
defining and ordering, default values, mandatory content, nesting, repeated sets, and
redefines.

Oracle XML DB supports all of the constructs defined by XML Schema, except for
redefines.

17.1.3 XML Instance Documents
Documents conforming to an XML schema can be considered as instances of the
class defined by that XML schema. A common use of an XML schema is to validate
that a given such instance documentconforms to the rules defined by the XML
schema.

17.1.4 XML Namespaces and XML Schemas
An XML schema can specify a targetNamespace attribute, whose value is a URL.
If omitted, the schema has no target namespace. The target namespace is the
namespace for everything defined in the XML schema. The targetNamespace value
is typically a URL where the XML schema can be accessed.

An XML instance document must specify the namespace of the root element of the
document (same as the target namespace of the XML schema that the instance
conforms to) and the location (URL) of the XML schema that defines this root element.
This information is specified by attribute xsi:schemaLocation. When the XML schema
has no target namespace, use attribute xsi:noNamespaceSchemaLocation to specify
the schema URL.

17.1.5 Overview of Editing XML Schemas
You can author and edit XML schemas anyway you like.

Chapter 17
Overview of XML Schema

17-3



For example, you can use any of the following:

• A simple text editor, such as Emacs or vi

• An XML Schema-aware editor, such as the XML editor included with Oracle
JDeveloper

• An explicit XML Schema authoring tool, such as XMLSpy from Altova Corporation

Figure 17-1 shows a purchase-order XML schema being edited using XMLSpy.
XMLSpy is a graphical XML tool from Altova Corporation that you can use to create
and edit XML schemas and other XML documents. See Altova.com for details.1

Figure 17-1    XMLSpy Graphical Representation of a Purchase-Order XML Schema

17.2 Overview of Using XML Schema with Oracle XML DB
Oracle XML DB supports registering XML schemas, validating documents against
an XML schema, generating XML schemas from SQL object types, mapping from
XML Schema to SQL, creating and querying XML Schema-based tables, views, and
columns, and automatically inserting data when XML Schema-based documents are
inserted into Oracle XML DB Repository.

1 XMLSpy also supports WebDAV and FTP protocols, so you can use it to directly access and edit content stored
in Oracle XML DB Repository.

Chapter 17
Overview of Using XML Schema with Oracle XML DB

17-4



XML schemas are stored in Oracle XML DB as XMLType instances, just like the
XML documents that reference them. You must register an XML schema with Oracle
XML DB in order to use it with XML data that is stored in the database.

Oracle XML DB takes advantage of the strong typing and other features of XML
Schema to process XML database data safely and efficiently.

To be registered with Oracle XML DB, an XML schema must conform to the root
XML Schema, XDBSchema.xsd. This is the XML schema for Oracle XML DB
XML schemas. You can access XDBSchema.xsd at Oracle XML DB Repository
location /sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBSchema.xsd.

Oracle XML DB uses annotated XML schemas as metadata. The standard XML
Schema definitions are used, along with several Oracle namespace attributes. These
attributes determine how XML instance documents get mapped to the database.
Because these attributes are in a different namespace from the XML Schema
namespace, such annotated XML schemas respect the XML Schema standard.

Oracle XML DB provides XML Schema support for the following tasks:

• Registering W3C-compliant XML schemas, both local and global.

• Validating your XML documents against registered XML schema definitions.

• Generating XML schemas from SQL object types.

• Referencing an XML schema owned by another user.

• Referencing a global XML schema when a local XML schema exists with the same
name.

• Generating a database mapping from your XML schemas during XML schema
registration. This includes generating SQL object types, collection types, and
default tables, and capturing the mapping information using XML schema
attributes.

• Specifying a particular SQL data type mapping when there are multiple allowed
mappings.

• Creating XMLType tables, views, and columns based on registered XML schemas.

• Manipulating and querying XML schema-based XMLType tables.

• Automatically inserting data into default tables when XML schema-based
documents are inserted into Oracle XML DB Repository using protocols (FTP,
HTTP(S)/WebDAV) and languages other than SQL.

• Why Use XML Schema with Oracle XML DB?
Common reasons to use XML Schema include validation, constraint definition,
storage specification, and optimization of document insertion, storage, and access.

• Overview of Annotating an XML Schema to Control Naming, Mapping, and
Storage
The W3C XML Schema Recommendation lets vendor-specific annotations be
added to an XML schema. Oracle XML DB uses annotations to control the
mapping between an XML schema and various database features. You can use
annotations to specify which tables store XML data. Annotation is especially useful
for object-relational storage.

Chapter 17
Overview of Using XML Schema with Oracle XML DB

17-5



• DOM Fidelity
DOM fidelity means that all information in an XML document is preserved except
whitespace that is insignificant. You can use DOM fidelity to ensure the accuracy
and integrity of XML documents stored in Oracle XML DB.

• XMLType Methods Related to XML Schema
The most important XMLType methods for working with XML schemas
are: isSchemaBased(), getSchemaURL(), schemaValidate(), isSchemaValid(),
isSchemaValidated(), and setSchemaValidated().

17.2.1 Why Use XML Schema with Oracle XML DB?
Common reasons to use XML Schema include validation, constraint definition, storage
specification, and optimization of document insertion, storage, and access.

• The most common use of XML Schema is as a mechanism for validating that
XML instance documents conform to a given XML schema, that is, verify that your
XML data conforms to its intended definition. This definition includes data types,
numbers of allowed item occurrences, and allowed lengths of items.

• An XML schema can also be used as a constraint when creating XMLType tables or
columns. For example, the table or column can be constrained to store only XML
documents that compliant with one of the global elements defined by the XML
schema.

• Oracle XML DB also uses XML Schema as a mechanism for defining how the
contents of an XMLType instance should be stored inside the database. Both binary
XML and object-relational storage models for XMLType support the use of XML
Schema. When XMLType data is stored object-relationally, XML Schema is used to
efficiently map XML Schema data types to SQL data types and object-relational
tables and columns.

• XML schema information can also improve the efficiency of document insertion
when you storing XML Schema-based documents in Oracle XML DB using
protocols FTP and HTTP(S).

• When XML instances must be handled without any prior information about them,
XML schemas can be useful in predicting optimum storage, fidelity, and access.

Related Topics

• XMLType Storage Models
XMLType is an abstract data type that provides different storage models to best
fit your data and your use of it. As an abstract data type, your applications and
database queries gain in flexibility: the same interface is available for all XMLType
operations.

17.2.2 Overview of Annotating an XML Schema to Control Naming,
Mapping, and Storage

The W3C XML Schema Recommendation lets vendor-specific annotations be added
to an XML schema. Oracle XML DB uses annotations to control the mapping between
an XML schema and various database features. You can use annotations to specify
which tables store XML data. Annotation is especially useful for object-relational
storage.

You can use XML schema annotations with Oracle XML DB to do the following:

Chapter 17
Overview of Using XML Schema with Oracle XML DB

17-6



• Specify which database tables are used to store the XML data.

• Override the default mapping between XML Schema data types and SQL data
types, for object-relational storage.

• Name the database objects and attributes that are created to store XML data (for
object-relational storage).

Example A-2 shows an annotated purchase-order XML schema. It defines the
following two XML namespaces:

• http://www.w3c.org/2001/XMLSchema. This is reserved by W3C for the Schema
for Schemas.

• http://xmlns.oracle.com/xdb. This is reserved by Oracle for the Oracle XML DB
schema annotations.

Before annotating an XML schema you must declare the Oracle XML DB namespace.
The Oracle XML DB namespace is http://xmlns.oracle.com/xdb. Example A-2
makes use of the namespace prefix xdb to abbreviate the Oracle XML DB namespace.

Example A-2 uses several XML schema annotations, including the following:

• defaultTable annotation in the PurchaseOrder element. This specifies that XML
documents, compliant with this XML schema are stored in a database table called
purchaseorder.

• SQLType annotation.

The first occurrence of annotation SQLType specifies that the name of the
SQL data type generated from complexType element PurchaseOrderType is
purchaseorder_t.

The second occurrence of annotation SQLType specifies that the name of the SQL
data type generated from complexType element LineItemType is lineitem_t.

• SQLCollType annotation. This specifies that the name of the SQL varray type that
manages the collection of LineItem elements is lineitem_v.

• SQLName annotation. This provides an explicit name for each SQL object attribute
of purchaseorder_t.

Figure 17-2 shows the XMLSpy Oracle tab, which facilitates adding Oracle XML DB
annotations to an XML schema while working in the graphical editor.

Chapter 17
Overview of Using XML Schema with Oracle XML DB

17-7



Figure 17-2    XMLSpy Support for Oracle XML DB Schema Annotations

17.2.3 DOM Fidelity
DOM fidelity means that all information in an XML document is preserved except
whitespace that is insignificant. You can use DOM fidelity to ensure the accuracy and
integrity of XML documents stored in Oracle XML DB.

Document Object Model (DOM) fidelity is the concept of retaining the structure
of a retrieved XML document, compared to the original XML document, for DOM
traversals.

With DOM fidelity, XML data retrieved from the database has the same information
as before it was inserted into the database, with the single exception of insignificant
whitespace. The term "DOM fidelity" is used because this kind of fidelity is particularly
important for DOM traversals.

With binary XML storage of XML data, all of the significant information is encoded in
the binary XML format, ensuring DOM fidelity.

Chapter 17
Overview of Using XML Schema with Oracle XML DB

17-8



See Also:

SYS_XDBPD$ and DOM Fidelity for Object-Relational Storage for
information about DOM fidelity and object-relational storage of XML data

17.2.4 XMLType Methods Related to XML Schema
The most important XMLType methods for working with XML schemas
are: isSchemaBased(), getSchemaURL(), schemaValidate(), isSchemaValid(),
isSchemaValidated(), and setSchemaValidated().

Table 17-1    XMLType Methods Related to XML Schema

XMLType Method Description

isSchemaBased() Returns TRUE if the XMLType instance is based on an XML schema, FALSE
otherwise.

getSchemaURL() The XML schema URL for an XMLType instance.

schemaValidate()
isSchemaValid()
isSchemaValidated()
setSchemaValidated()

Validation of an XMLType instance against a registered XML schema: validate, check
validation status, or set recorded validation status. See Transformation and Validation
of XMLType Data.

17.3 XML Schema Registration with Oracle XML DB
Before an XML schema can be used by Oracle XML DB, you must register it. It can
then be used to create XMLType tables and columns and to validate XML documents.
If schema registration fails then the database is restored to the state it had prior to the
registration attempt.

Like all DDL operations, XML schema registration is non-transactional. However,
registration is atomic, in this sense:

• If registration succeeds then the operation is auto-committed.

• If registration fails then the database is rolled back to the state it had before
registration began.

Because XML schema registration potentially involves creating object types and
tables, error recovery involves dropping any types and tables thus created. The entire
XML schema registration process is guaranteed to be atomic: either it succeeds or the
database is restored to its state before the start of registration.

Two items are required to register an XML schema with Oracle XML DB:

• The XML schema document

• A string that can be used as a unique identifier for the XML schema, after it
is registered with Oracle Database. XML instance documents use this unique
identifier to identify themselves as members of the class defined by the XML

Chapter 17
XML Schema Registration with Oracle XML DB

17-9



schema. The identifier is typically in the form of a URL, and is often referred to as
the schema location hint or the document location hint.

Note:

The act of registering an XML schema has no effect on the status of any
instance documents that are already loaded into Oracle XML DB Repository
and that reference that XML schema.

Such instance documents were treated as non XML-schema-based when
they were loaded. They remain such. After schema registration, you must
delete such documents and reload them, in order to obtain XML schema-
based documents.

• XML Schema Registration Actions
As part of registering an XML schema, Oracle XML DB performs several actions
that facilitate storing, accessing, and manipulating XML instances that conform to
the XML schema.

• Registering an XML Schema with Oracle XML DB
An example illustrates the use of PL/SQL procedure
DBMS_XMLSCHEMA.registerSchema to register an XML schema. The main
parameters of this procedure are the schema URL, the schema source document,
the character-set ID of the source-document encoding, and options that specify
how the schema should be registered.

• SQL Types and Tables Created During XML Schema Registration
Registration of an XML schema results in the creation of object types and tables.

• Default Tables for Global Elements
By default, tables with system-generated names are created for all global
elements. You can specify names to use instead. You can prevent the creation of
default tables for particular elements, which can reduce processor time and space
used, especially if an XML schema contains many global element definitions.

• Database Objects That Depend on Registered XML Schemas
Several kinds of database object can depend on registered XML schemas: tables,
views, other XML schemas, and cursors that reference an XML schema.

• Local and Global XML Schemas
An XML schema can be registered as local (visible only to its owner, by default) or
global (visible to all database users, by default).

• Fully Qualified XML Schema URLs
Fully qualified XML schema URLs permit explicit reference to particular XML
schemas. The name of the database user owning the XML schema is specified
as part of the URL. Fully qualified schema URLs belong to the Oracle XML DB
namespace.

• Deletion of an XML Schema
You can delete a registered XML schema using procedure
DBMS_XMLSCHEMA.deleteSchema.

• Listing All Registered XML Schemas
An example lists all XML schemas that are registered with Oracle XML DB.

Chapter 17
XML Schema Registration with Oracle XML DB

17-10



17.3.1 XML Schema Registration Actions
As part of registering an XML schema, Oracle XML DB performs several actions that
facilitate storing, accessing, and manipulating XML instances that conform to the XML
schema.

These include:

• Mapping XML Schema data types to Oracle XML DB storage. When XML schema-
based data is stored, its storage data types are derived from the XML Schema
data types using a default mapping and, optionally, using mapping information
that you specify using XML schema annotations. For binary XML storage, XML
Schema types are mapped to binary XML encoding types. For object-relational
storage, XML schema registration creates the appropriate SQL object types for the
object-relational storage of conforming documents.

• Creating default tables. XML schema registration generates default XMLType tables
for all global elements. You can use XML-schema annotations to control the
names of the tables, and to provide column-level and table-level storage clauses
and constraints for use during table creation.

After XML schema registration, documents that reference the XML schema using
the XML Schema instance mechanism can be processed automatically by Oracle
XML DB. For XML data that is stored object-relationally, XMLType tables and columns
can be created that are constrained to the global elements defined by the XML
schema.

Related Topics

• XML Schema Data Types Are Mapped to Oracle XML DB Storage
Data that conforms to an XML schema uses XML Schema data types. When this
XML data is stored in Oracle XML DB, its storage data types are derived from the
XML Schema data types using a default mapping and, optionally, using mapping
information that you specify using XML schema annotations.

• Default Tables Created during XML Schema Registration
You can create default tables as part of XML schema registration. Default tables
are most useful when documents are inserted using APIs and protocols such as
FTP and HTTP(S), which do not provide any table specification.

• Oracle XML Schema Annotations
You can annotate XML schemas to influence the objects and tables that are
generated by the XML schema registration process. You do this by adding Oracle-
specific attributes to complexType, element, and attribute definitions that are
declared by the XML schema.

17.3.2 Registering an XML Schema with Oracle XML DB
An example illustrates the use of PL/SQL procedure DBMS_XMLSCHEMA.registerSchema
to register an XML schema. The main parameters of this procedure are the schema
URL, the schema source document, the character-set ID of the source-document
encoding, and options that specify how the schema should be registered.

The main parameters to DBMS_XMLSCHEMA.registerSchema are as follows:

Chapter 17
XML Schema Registration with Oracle XML DB

17-11



• SCHEMAURL – the XML schema URL. This is a unique identifier for the XML schema
within Oracle XML DB. It is conventionally in the form of a URL, but this is not
a requirement. The XML schema URL is used with Oracle XML DB to identify
instance documents, by making the schema location hint identical to the XML
schema URL. Oracle XML DB never tries to access a Web server identified by the
specified URL.

Note:

– You cannot register an XML schema using the same SCHEMAURL as
any system-defined XML schema.

– The non-protocol part of the URL must be unique. The protocol part
(for example, http or https) is ignored in the test for uniqueness.

• SCHEMADOC – The XML schema source document. This is a VARCHAR, CLOB, BLOB,
BFILE, XMLType, or URIType value.

• CSID – The character-set ID of the source-document encoding, when schemaDoc is
a BFILE or BLOB value.

• OPTIONS – Options that specify how the XML schema should be registered.
The most important option is REGISTER_BINARYXML, which indicates that the XML
schema is used for binary XML storage.

See Also:

Oracle Database PL/SQL Packages and Types Reference

Example 17-1 registers the annotated XML schema of Example A-2.

In Example A-2, the unique identifier for the XML schema is:

http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd

The XML schema document was previously loaded into Oracle XML DB Repository at
this path: /source/schemas/poSource/xsd/purchaseOrder.xsd.

During XML schema registration, option SCHEMADOC specifies that PL/SQL constructor
XDBURIType is to access the content of the XML schema document, based on its
location in the repository. Other options passed to procedure registerSchema specify
that the schema in Example A-2 is to be registered as a local XML schema (option
LOCAL), and that SQL objects, and that tables are to be generated during the
registration process (option GENTABLES).

PL/SQL procedure DBMS_XMLSCHEMA.registerSchema performs the following
operations:

• Parses and validates the XML schema.

• Creates a set of entries in Oracle Data Dictionary that describe the XML schema.

Chapter 17
XML Schema Registration with Oracle XML DB

17-12



• Creates a set of SQL object definitions, based on complexType elements defined
in the XML schema.

• Creates an XMLType table for each global element defined by the XML schema.

By default, when an XML schema is registered, Oracle XML DB automatically
generates all of the SQL object types and XMLType tables required to manage the
instance documents. An XML schema can be registered as global or local.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about DBMS_XMLSCHEMA.registerSchema

Example 17-1    Registering an XML Schema Using DBMS_XMLSCHEMA.REGISTERSCHEMA

BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd',
    SCHEMADOC => XDBURIType('/source/schemas/poSource/xsd/purchaseOrder.xsd').getCLOB(),
    LOCAL     => TRUE,
    GENTYPES  => TRUE, 
    GENTABLES => TRUE);
END;
/

Related Topics

• Local and Global XML Schemas
An XML schema can be registered as local (visible only to its owner, by default) or
global (visible to all database users, by default).

• SQL Types and Tables Created During XML Schema Registration
Registration of an XML schema results in the creation of object types and tables.

17.3.3 SQL Types and Tables Created During XML Schema
Registration

Registration of an XML schema results in the creation of object types and tables.

Example 17-2 shows the SQL type definitions that were created during an XML
schema registration such as that of Example 17-1. These SQL type definitions include:

• purchaseorder_t. This type is used to persist the SQL objects generated from
a PurchaseOrder element. When an XML document containing a PurchaseOrder
element is stored in Oracle XML DB the document is broken up, and the contents
of the document are stored as an instance of purchaseorder_t.

• lineitems_t, lineitem_v, and lineitem_t. These types manage the collection
of LineItem elements that may be present in a PurchaseOrder document. Type
lineitems_t consists of a single attribute lineitem, defined as an instance of
type lineitem_v. Type lineitem_v is defined as a varray of linteitem_t objects.
There is one instance of the lineitem_t object for each LineItem element in the
document.

Chapter 17
XML Schema Registration with Oracle XML DB

17-13



Example 17-2    Objects Created During XML Schema Registration

DESCRIBE purchaseorder_t
 purchaseorder_t is NOT FINAL
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 SYS_XDBPD$                                         XDB.XDB$RAW_LIST_T
 REFERENCE                                          VARCHAR2(30 CHAR)
 ACTIONS                                            ACTIONS_T
 REJECTION                                          REJECTION_T
 REQUESTOR                                          VARCHAR2(128 CHAR)
 USERID                                             VARCHAR2(10 CHAR)
 COST_CENTER                                        VARCHAR2(4 CHAR)
 SHIPPING_INSTRUCTIONS                              SHIPPING_INSTRUCTIONS_T
 SPECIAL_INSTRUCTIONS                               VARCHAR2(2048 CHAR)
 LINEITEMS                                          LINEITEMS_T
 
DESCRIBE lineitems_t
 lineitems_t is NOT FINAL
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 SYS_XDBPD$                                         XDB.XDB$RAW_LIST_T
 LINEITEM                                           LINEITEM_V
 
DESCRIBE lineitem_v
 lineitem_v VARRAY(2147483647) OF LINEITEM_T
 LINEITEM_T is NOT FINAL
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 SYS_XDBPD$                                         XDB.XDB$RAW_LIST_T
 ITEMNUMBER                                         NUMBER(38)
 DESCRIPTION                                        VARCHAR2(256 CHAR)
 PART                                               PART_T

17.3.4 Default Tables for Global Elements
By default, tables with system-generated names are created for all global elements.
You can specify names to use instead. You can prevent the creation of default tables
for particular elements, which can reduce processor time and space used, especially if
an XML schema contains many global element definitions.

By default, when an XML schema is registered with the database, Oracle XML DB
generates a default table for each global element defined by the XML schema.

You can use attribute xdb:defaultTable to specify the name of the default table for
a given global element. Each xdb:defaultTable attribute value you provide must be
unique among all schemas registered by a given database user. If you do not supply
a nonempty default table name for some element, then a unique name is provided
automatically.

In practice, however, you do not want to create a default table for most global
elements. Elements that never serve as the root element for an XML instance
document do not need default tables — such tables are never used. Creating default
tables for all global elements can lead to significant overhead in processor time and
space used, especially if an XML schema contains a large number of global element
definitions.

As a general rule, then, you want to prevent the creation of a default table for any
global element (or any local element stored out of line) that you are sure will not be
used as a root element in any document. You can do this in one of the following ways:

Chapter 17
XML Schema Registration with Oracle XML DB

17-14



• Add the annotation xdb:defaultTable = "" (empty string) to the definition of
each global element that will not appear as the root element of an XML instance
document. Using this approach, you allow automatic default-table creation, in
general, and you prohibit it explicitly where needed, using xdb:defaultTable =
"".

• Set parameter GENTABLES to FALSE when registering the XML schema, and then
manually create the default table for each global element that can legally appear
as the root element of an instance document. Using this approach, you inhibit
automatic default-table creation, and you create only the tables that are needed,
by hand.

17.3.5 Database Objects That Depend on Registered XML Schemas
Several kinds of database object can depend on registered XML schemas: tables,
views, other XML schemas, and cursors that reference an XML schema.

More precisely:

• Tables or views that have an XMLType column that conforms to an element in an
XML schema.

• Other XML schemas that include or import a given XML schema as part of their
definition.

• Cursors that reference an XML schema. This includes references within functions
of package DBMS_XMLGEN. Such cursors are purely transient objects.

17.3.6 Local and Global XML Schemas
An XML schema can be registered as local (visible only to its owner, by default) or
global (visible to all database users, by default).

When you register an XML schema, PL/SQL package DBMS_XMLSCHEMA adds
a corresponding resource to Oracle XML DB Repository. The XML schema
URL determines the path name of the XML schema resource in the
repository (and it is associated with parameter SCHEMAURL of PL/SQL procedure
DBMS_XMLSCHEMA.registerSchema).

Note:

In Oracle Enterprise Manager, local and global registered XML schemas are
referred to as private and public, respectively.

• Local XML Schema
By default, an XML schema is local, meaning that it belongs to you alone, after
you register it with Oracle XML DB. A reference to the XML schema document is
stored in Oracle XML DB Repository under your user (database schema) name.

• Global XML Schema
In contrast to local XML schemas, a privileged user can register an XML schema
as global by specifying an argument to registration function DBMS_XMLSCHEMA. are
visible to all users. They are stored under folder /sys/schemas/PUBLIC/ in Oracle
XML DB Repository.

Chapter 17
XML Schema Registration with Oracle XML DB

17-15



17.3.6.1 Local XML Schema
By default, an XML schema is local, meaning that it belongs to you alone, after you
register it with Oracle XML DB. A reference to the XML schema document is stored in
Oracle XML DB Repository under your user (database schema) name.

Such XML schemas are referred to as local. By default, they are usable only by
you, the owner. In Oracle XML DB, local XML schema resources are created under
folder /sys/schemas/username. The rest of the repository path name is derived from
the schema URL.

For example, if the XML schema purchaseOrder.xsd is registered as a local schema
by user QUINE, it is given this path name:

/sys/schemas/QUINE/xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd

Database users need appropriate permissions and Access Control Lists (ACLs) to
create a resource with a given path name, in order to register the XML schema as
a local XML schema. Some ways in which a local XML schema can be registered
require one or more of the following privileges:

• ALTER SESSION

• CREATE PROCEDURE

• CREATE SESSION

• CREATE TABLE

• CREATE TRIGGER

• CREATE TYOE

Note:

Typically, only the owner of the XML schema can use it to define
XMLType tables, columns, or views, validate documents, and so
on. However, Oracle XML DB supports fully qualified XML schema
URLs. For example: http://xmlns.oracle.com/xdb/schemas/QUINE/
xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd. Privileged
users can use such an extended URL to specify XML schemas belonging
to other users (in this case, user QUINE).

Example 17-3    Registering a Local XML Schema

BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd',
    SCHEMADOC => bfilename('XMLDIR','purchaseOrder.xsd'),
    LOCAL     => TRUE,
    GENTYPES  => TRUE, 
    GENTABLES => FALSE, 
    CSID      => nls_charset_id('AL32UTF8'));

Chapter 17
XML Schema Registration with Oracle XML DB

17-16



END;
/

Related Topics

• Repository Access Control
Oracle Database provides classic database security such as row-level and
column-level secure access by database users. It also provides fine-grained
access control for resources in Oracle XML DB Repository. You can create, set,
and modify access control lists (ACLs).

17.3.6.2 Global XML Schema
In contrast to local XML schemas, a privileged user can register an XML schema as
global by specifying an argument to registration function DBMS_XMLSCHEMA. are visible
to all users. They are stored under folder /sys/schemas/PUBLIC/ in Oracle XML DB
Repository.

Note:

Access to folder /sys/schemas/PUBLIC is controlled by access control lists
(ACLs). By default, this folder is writable only by a database administrator.
You need write privileges on this folder to register global XML schemas. Role
XDBADMIN provides write access to this folder, assuming that it is protected by
the default ACLs. See Repository Access Control.

You can register a local schema with the same URL as an existing global schema. A
local schema always shadows (hides) any global schema with the same name (URL).

Example 17-4 illustrates the registration of a global schema.

Example 17-4    Registering a Global XML Schema

GRANT XDBADMIN TO QUINE;

Grant succeeded.

CONNECT quine
Enter password: password

Connected.

BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd',
    SCHEMADOC => bfilename('XMLDIR','purchaseOrder.xsd'),
    LOCAL     => FALSE,
    GENTYPES  => TRUE, 
    GENTABLES => FALSE, 
    CSID      => nls_charset_id('AL32UTF8'));
END;
/

If this global XML schema is registered by user QUINE, it is given this path name:

Chapter 17
XML Schema Registration with Oracle XML DB

17-17



/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd

Database users need appropriate permissions (ACL access) to create this resource in
order to register the XML schema as global.

17.3.7 Fully Qualified XML Schema URLs
Fully qualified XML schema URLs permit explicit reference to particular XML schemas.
The name of the database user owning the XML schema is specified as part of the
URL. Fully qualified schema URLs belong to the Oracle XML DB namespace.

By default, XML schema URLs are referenced within the scope of the current
database user. XML schema URLs are first resolved as the names of local XML
schemas owned by the current user.

• If there are no such XML schemas, then they are resolved as names of global
XML schemas.

• If there are no global XML schemas either, then Oracle XML DB raises an error.

The Oracle XML DB namespace is:

http://xmlns.oracle.com/xdb/schemas/<database-user>/<schemaURL-minus-protocol>

For example, suppose there is a registered global XML schema with the URL http://
www.example.com/po.xsd, and user QUINE has a local registered XML schema with the
same URL. Another user can reference the schema owned by QUINE as follows using
this fully qualified XML Schema URL:

http://xmlns.oracle.com/xdb/schemas/QUINE/www.example.com/po.xsd

The fully qualified URL for the global XML schema is:

http://xmlns.oracle.com/xdb/schemas/PUBLIC/www.example.com/po.xsd

Related Topics

• Local and Global XML Schemas
An XML schema can be registered as local (visible only to its owner, by default) or
global (visible to all database users, by default).

17.3.8 Deletion of an XML Schema
You can delete a registered XML schema using procedure
DBMS_XMLSCHEMA.deleteSchema.

This does the following, by default:

1. Checks that the current user has the appropriate privileges to delete the resource
corresponding to the XML schema within Oracle XML DB Repository. You can
control which users can delete which XML schemas, by setting the appropriate
ACLs on the XML schema resources.

2. Checks whether there are any tables dependent on the XML schema that is to
be deleted. If so, raises an error and cancels the deletion. This check is not
performed if option delete_invalidate or delete_cascade_force is used. In that
case, no error is raised.

Chapter 17
XML Schema Registration with Oracle XML DB

17-18



3. Removes the XML schema document from the Oracle XML DB Repository
(folder /sys/schemas).

4. Removes the XML schema document from DBA_XML_SCHEMAS, unless it was
registered for use with binary XML instances and neither delete_invalidate nor
delete_cascade_force is used.

5. Drops the default table, if either delete_cascade or delete_cascade_force is
used. Raises an error if delete_cascade is specified and there are instances in
other tables that are also dependent on the XML schema.

The following values are available for option DELETE_OPTION of procedure
DBMS_XMLSCHEMA.deleteSchema:

• DELETE_RESTRICT – Raise an error and cancel deletion if dependencies are
detected. This is the default behavior.

• DELETE_INVALIDATE – Do not raise an error if dependencies are detected. Instead,
mark each of the dependencies as being invalid.

• DELETE_CASCADE – Drop all types and default tables that were generated during
XML schema registration. Raise an error if there are instances that depend upon
the XML schema that are stored in tables other than the default table. However, do
not raise an error for any such instances that are stored in XMLType columns that
were created using ANY_SCHEMA. If the XML schema was registered for use with
binary XML, do not remove it from DBA_XML_SCHEMAS.

• DELETE_CASCADE_FORCE – Drop all types and default tables that were generated
during XML schema registration. Do not raise an error if there are instances that
depend upon the XML schema that are stored in tables other than the default
table. Instead, mark each of the dependencies as being invalid. Remove the XML
schema from DBA_XML_SCHEMAS.

See Also:

Oracle Database PL/SQL Packages and Types Reference

Example 17-5 illustrates the use of DELETE_CASCADE_FORCE.

If an XML schema was registered for use with binary XML, it is not removed from
DBA_XML_SCHEMAS when you delete it using option DELETE_RESTRICT (the default value)
or DELETE_CASCADE. Therefore, although you can no longer use the XML schema to
encode new XML instance documents, any existing documents in Oracle XML DB that
reference the XML schema can still be decoded using it.

This remains the case until you remove the XML schema from DBA_XML_SCHEMAS
using DBMS_XMLSCHEMA.purgeSchema. Oracle recommends that, in general, you use
delete_restrict or delete_cascade. Instead of using DELETE_CASCADE_FORCE, call
DBMS_XMLSCHEMA.purgeSchema when you are sure you no longer need the XML
schema.

Procedure purgeSchema removes the XML schema completely from Oracle
XML DB. In particular, it removes it from DBA_XML_SCHEMAS. Before you use
DBMS_XMLSCHEMA.purgeSchema, be sure that you have transformed all existing XML
documents that reference the XML schema to be purged, so they reference a different

Chapter 17
XML Schema Registration with Oracle XML DB

17-19



XML schema or no XML schema. Otherwise, it will be impossible to decode them after
the purge.

Example 17-5    Deleting an XML Schema with
DBMS_XMLSCHEMA.DELETESCHEMA

BEGIN
  DBMS_XMLSCHEMA.deleteSchema(
    SCHEMAURL => 'http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd',
    DELETE_OPTION => DBMS_XMLSCHEMA.DELETE_CASCADE_FORCE);
END;
/

17.3.9 Listing All Registered XML Schemas
An example lists all XML schemas that are registered with Oracle XML DB.

Example 17-6 shows how to use PL/SQL procedure DBMS_XMLSCHEMA.registerSchema
to obtain a list of all XML schemas registered with Oracle XML DB. You can
also examine views USER_XML_SCHEMAS, ALL_XML_SCHEMAS, USER_XML_TABLES, and
ALL_XML_TABLES.

Example 17-6    Data Dictionary Table for Registered Schemas

DESCRIBE DBA_XML_SCHEMAS

Name         Null? Type
------------ ----- -----------------------
OWNER              VARCHAR2(30)
SCHEMA_URL         VARCHAR2(700)
LOCAL              VARCHAR2(3)
SCHEMA             XMLTYPE(XMLSchema "http://xmlns.oracle.com/xdb/XDBSchema.xsd"
                           Element "schema")
INT_OBJNAME        VARCHAR2(4000)
QUAL_SCHEMA_URL    VARCHAR2(767)
HIER_TYPE          VARCHAR2(11)
BINARY             VARCHAR2(3)
SCHEMA_ID          RAW(16)
HIDDEN             VARCHAR2(3)

SELECT OWNER, LOCAL, SCHEMA_URL FROM DBA_XML_SCHEMAS;

OWNER   LOC   SCHEMA_URL
-----   ---   ----------------------
XDB     NO    http://xmlns.oracle.com/xdb/XDBSchema.xsd
XDB     NO    http://xmlns.oracle.com/xdb/XDBResource.xsd
XDB     NO    http://xmlns.oracle.com/xdb/acl.xsd
XDB     NO    http://xmlns.oracle.com/xdb/dav.xsd
XDB     NO    http://xmlns.oracle.com/xdb/XDBStandard.xsd
XDB     NO    http://www.w3.org/2001/xml.xsd
XDB     NO    http://xmlns.oracle.com/xdb/stats.xsd
XDB     NO    http://xmlns.oracle.com/xdb/xdbconfig.xsd
SCOTT   YES   http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd

13 rows selected.

Chapter 17
XML Schema Registration with Oracle XML DB

17-20



DESCRIBE DBA_XML_TABLES

Name         Null? Type
------------ ----- -----------------------
OWNER              VARCHAR2(30)
TABLE_NAME         VARCHAR2(30)
XMLSCHEMA          VARCHAR2(700)
SCHEMA_OWNER       VARCHAR2(30)
ELEMENT_NAME       VARCHAR2(2000)
STORAGE_TYPE       VARCHAR2(17)
ANYSCHEMA          VARCHAR2(3)
NONSCHEMA          VARCHAR2(3)

SELECT TABLE_NAME FROM DBA_XML_TABLES
  WHERE XMLSCHEMA = 'http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd';

TABLE_NAME
---------------------
PurchaseOrder1669_TAB

1 row selected.

17.4 Creation of XMLType Tables and Columns Based on
XML Schemas

You can create XMLType tables and columns that are constrained to a global element
defined by an XML schema. After an XMLType column has been constrained to a
particular element and a particular schema, it can only contain documents that are
compliant with the schema definition of that element.

You constrain an XMLType table column to a particular element and XML schema by
adding appropriate XMLSCHEMA and ELEMENT clauses to the CREATE TABLE operation.

Figures Figure 17-3 through Figure 17-6 show the syntax for creating an XMLType
table.

See Also:

Oracle Database SQL Language Reference for the complete description of
CREATE TABLE, including syntax elements such as object_properties.

Note:

To create an XMLType table in a different database schema from your own,
you must have not only privilege CREATE ANY TABLE but also privilege CREATE
ANY INDEX. This is because a unique index is created on column OBJECT_ID
when you create the table. Column OBJECT_ID stores a system-generated
object identifier.

Chapter 17
Creation of XMLType Tables and Columns Based on XML Schemas

17-21



Figure 17-3    Creating an XMLType Table – CREATE TABLE Syntax

CREATE

GLOBAL TEMPORARY

TABLE schema . table

relational_table

object_table

XMLType_table

Figure 17-4    Creating an XMLType Table – XMLType_table Syntax

OF XMLTYPE

( oject_properties ) XMLTYPE XMLType_storage XMLSchema_spec

XMLType_virtual_columns
ON COMMIT

DELETE

PRESERVE
ROWS

OID_clause OID_index_clause physical_properties table_properties

Figure 17-5    Creating an XMLType Table – table_properties Syntax

column_properties table_partitioning_clauses

CACHE

NOCACHE

RESULT_CACHE ( MODE
DEFAULT

FORCE
)

parallel_clause

ROWDEPENDENCIES

NOROWDEPENDENCIES

enable_disable_clause row_movement_clause flashback_archive_clause AS subquery

Figure 17-6    Creating an XMLType Table – XMLType_virtual_columns Syntax

VIRTUAL COLUMNS  ( column AS ( expr )

,

)

Chapter 17
Creation of XMLType Tables and Columns Based on XML Schemas

17-22



Note:

• Clause XMLType_virtual_columns can be used only for XMLType data
that is stored as binary XML. In particular, if you use it for data that is
stored object-relationally, and if you use a partitioning clause, then an
error is raised.

• For XML data, virtual columns are used primarily for partitioning or
defining SQL constraints. If your need is to project out specific XML data
in order to access it relationally, then consider using SQL/XML function
XMLTable or XMLIndex with a structured component.

A subset of the XPointer notation can also be used to provide a single URL that
contains the XML schema location and element name. See also Query and Update of
XML Data.

Example 17-7 shows two CREATE TABLE statements. The first creates
XMLType table purchaseorder_as_table. The second creates relational table
purchaseorder_as_column, which has XMLType column xml_document. In each
table, the XMLType instance is constrained to the PurchaseOrder element that is
defined by the XML schema registered with URL http://xmlns.oracle.com/xdb/
documentation/purchaseOrder.xsd.

There are two ways to specify XMLSchema and Element:

• as separate clauses, XMLSchema and Element

• using only the Element clause with an XPointer notation

The data associated with an XMLType table or column that is constrained to an XML
schema can be stored in different ways:

• Decomposed and stored object-relationally

• Stored as binary XML, using a single binary-XML column

Example 17-7    Creating XML Schema-Based XMLType Tables and Columns

CREATE TABLE purchaseorder_as_table OF XMLType
  XMLSCHEMA "http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd"
  ELEMENT "PurchaseOrder";

CREATE TABLE purchaseorder_as_column (id NUMBER, xml_document XMLType)
  XMLTYPE COLUMN xml_document
  ELEMENT
    "http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd#PurchaseOrder";

• Specification of XMLType Storage Options for XML Schema-Based Data
You can specify storage options to use when you manually create a table that
stores XML instance documents that reference an XML schema. To specify a
particular XMLType storage model, use a STORE AS clause in the CREATE TABLE
statement.

Chapter 17
Creation of XMLType Tables and Columns Based on XML Schemas

17-23



Related Topics

• Creating Virtual Columns on XMLType Data Stored as Binary XML
You can create virtual columns only for XMLType data that is stored as binary XML.
Such columns are useful for partitioning or constraining the data.

• XMLTABLE SQL/XML Function in Oracle XML DB
You use SQL/XML function XMLTable to decompose the result of an XQuery-
expression evaluation into the relational rows and columns of a new, virtual table.
You can insert this data into a pre-existing database table, or you can query it
using SQL — in a join expression, for example.

• XMLIndex Structured Component
You create and use the structured component of an XMLIndex index for queries
that project fixed, structured islands of XML content, even if the surrounding data
is relatively unstructured.

17.4.1 Specification of XMLType Storage Options for XML Schema-
Based Data

You can specify storage options to use when you manually create a table that stores
XML instance documents that reference an XML schema. To specify a particular
XMLType storage model, use a STORE AS clause in the CREATE TABLE statement.

Otherwise, the storage model specified during registration of the XML schema is used.
If no storage model was specified during registration, then object-relational storage is
used.

Besides specifying storage options for XML schema-based data, you can also specify
storage options for tables that are created automatically, by using XML schema
annotations.

• Binary XML Storage of XML Schema-Based Data
If you specify STORE AS BINARY_XML then binary XML storage is used. If you
specify an XML schema that the documents must conform to then you can use
that schema only to create XMLType tables and columns that are stored as binary
XML.

• Object-Relational Storage of XML Schema-Based Data
After you register an XML schema you can create an object-relational XMLType
table or column for documents that conform to that schema. You can optionally
specify object-relational storage options for the table or column.

Related Topics

• Oracle XML Schema Annotations
You can annotate XML schemas to influence the objects and tables that are
generated by the XML schema registration process. You do this by adding Oracle-
specific attributes to complexType, element, and attribute definitions that are
declared by the XML schema.

• Choice of XMLType Storage and Indexing
Important design choices for your application include what XMLType storage model
to use and which indexing approaches to use.

Chapter 17
Creation of XMLType Tables and Columns Based on XML Schemas

17-24



17.4.1.1 Binary XML Storage of XML Schema-Based Data
If you specify STORE AS BINARY_XML then binary XML storage is used. If you specify an
XML schema that the documents must conform to then you can use that schema only
to create XMLType tables and columns that are stored as binary XML.

You cannot use the same XML schema to create XMLType tables and columns that are
stored object-relationally.

The converse is also true: If you use object-relational storage for the registered XML
schema, then you can use only that XML schema to create XMLType tables and
columns that are stored as binary XML.

Binary XML storage offers a great deal of flexibility for XML data, especially concerning
the use of XML schemas. Binary XML encodes XML data differently, depending upon
whether or not an XML schema is used for the encoding, and it can encode the same
data differently using different XML schemas.

When an XML schema is taken into account for encoding binary XML data, the XML
Schema data types are mapped to encoded types for storage. Alternatively, you
can encode XML data as non-schema-based binary XML, whether or not the data
references an XML schema. In that case, any referenced XML schema is ignored, and
there is no encoding of XML Schema data types.

When you create an XMLType table or column and you use binary XML storage, you
can specify how to encode the column or table to make use of XML schemas. Choose
from among these possibilities:

• Encode the column or table data as non-schema-based binary XML. The XML
data stored in the column can nevertheless conform to an XML schema, but it
need not. Any referenced XML schema is ignored for encoding purposes, and
documents are not automatically validated when they are inserted or updated.

You can nevertheless explicitly validate an XML schema-based document that is
encoded as non-schema-based binary XML. This represents an important use
case: situations where you do not want to tie documents too closely to a particular
XML schema, because you might change it or delete it.

• Encode the column or table data to conform to a single XML schema. All rows
(documents) must conform to the same XML schema. You can nevertheless
specify, as an option, that non-schema-based documents can also be stored in
the same column.

• Encode the column or table data to conform to whatever XML schema it
references Each row (document) can reference any XML schema, and that XML
schema is used to encode that particular XML document. In this case also, you
can specify, as an option, that non-schema-based documents can also be stored
in the same column.

You can use multiple versions of the same XML schema in this way. Store
documents that conform to different versions. Each is encoded according to the
XML schema that it references.

You can specify that any XML schema can be used for encoding by using option ALLOW
ANYSCHEMA when you create the table.

Chapter 17
Creation of XMLType Tables and Columns Based on XML Schemas

17-25



Note:

• If you use option ALLOW ANYSCHEMA, then any XML schema referenced
by your instance documents is used only for validation. It is not used
at query time. Queries of your data treat it as if it were non XML schema-
based data.

• Oracle recommends that you do not use option ALLOW ANYSCHEMA if
you anticipate using copy-based XML schema evolution (see Copy-
Based Schema Evolution). If you use this option, it is impossible to
determine which rows (documents) might conform to the XML schema
that is evolved. Conforming rows are not transformed during copy-based
evolution, and afterward they are not decodable.

You can specify, for tables and columns that use XML schema-based encodings,
that they can accept also non-schema-based documents by using option ALLOW
NONSCHEMA. In the absence of keyword XMLSCHEMA, encoding is for non-schema-based
documents. In the absence of the keywords ALLOW NONSCHEMA but the presence of
keyword XMLSCHEMA, encoding is for the single XML schema specified. In the absence
of the keywords ALLOW NONSCHEMA but the presence of the keywords ALLOW ANYSCHEMA,
encoding is for any XML schema that is referenced.

An error is raised if you try to insert an XML document into an XMLType table or column
that does not correspond to the document.

The various possibilities are summarized in Table 17-2.

Table 17-2    CREATE TABLE Encoding Options for Binary XML

Storage Options Encoding Effect

STORE AS BINARY XML
Encodes all documents using the non-schema-based encoding.

STORE AS BINARY XML
 XMLSCHEMA ...

Encodes all documents using an encoding based on the referenced
XML schema.

Trying to insert or update a document that does not conform to the
XML schema raises an error.

STORE AS BINARY XML
 XMLSCHEMA ...
 ALLOW NONSCHEMA

Encodes all XML schema-based documents using an encoding based
on the referenced XML schema. Encodes all non-schema-based
documents using the non-schema-based encoding.

Trying to insert or update an XML schema-based document that does
not conform to the referenced XML schema raises an error.

STORE AS BINARY XML
 ALLOW ANYSCHEMA

Encodes all XML schema-based documents using an encoding based
on the XML schema referenced by the document.

Trying to insert or update a document that does not reference a
registered XML schema or that does not conform to the XML schema it
references raises an error.

Chapter 17
Creation of XMLType Tables and Columns Based on XML Schemas

17-26



Table 17-2    (Cont.) CREATE TABLE Encoding Options for Binary XML

Storage Options Encoding Effect

STORE AS BINARY XML
 ALLOW ANYSCHEMA
 ALLOW NONSCHEMA

Encodes all XML schema-based documents using an encoding based
on the XML schema referenced by the document. Encodes all non-
schema-based documents using the non-schema-based encoding.

Trying to insert or update an XML schema-based document that does
not conform to the registered XML schema it references raises an
error.

Note:

If you use CREATE TABLE with ALLOW NONSCHEMA but not ALLOW ANYSCHEMA,
then all documents, even XML schema-based documents, are encoded
using the non-schema-based encoding. If you later use ALTER TABLE with
ALLOW ANYSCHEMA on the same table, this has no effect on the encoding of
documents that were stored prior to the ALTER TABLE operation — all such
documents continue to be encoded using the non-schema-based encoding,
regardless of whether they reference an XML schema. Only XML schema-
based documents that you insert in the table after the ALTER TABLE operation
are encoded using XML schema-based encodings.

17.4.1.2 Object-Relational Storage of XML Schema-Based Data
After you register an XML schema you can create an object-relational XMLType table
or column for documents that conform to that schema. You can optionally specify
object-relational storage options for the table or column.

Suppose that you have registered a purchase-order XML schema, identified by URL
http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd. You then create
an object-relational XMLType table, purchaseorder_as_table, to store instances that
conform to element PurchaseOrder of the XML schema, as in Example 17-8.

This automatically creates hidden columns that correspond to the database object type
to which the PurchaseOrder element has been mapped. In addition, an XMLEXTRA
object column is created, to store top-level instance data such as namespace
declarations. XMLEXTRA is reserved for internal use.

Suppose that XML schema purchaseOrder.xsd defines element LineItems as a child
of element PurchaseOrder, and that LineItems is a collection of LineItem elements.

With object-relational storage, collections are mapped to SQL varray values. An XML
collection is any element that is defined by the XML schema with maxOccurs > 1,
allowing it to appear multiple times. By default, the entire contents of such a varray is
stored as a set of rows in an ordered collection table (OCT).

Example 17-9 creates table purchaseorder_as_table differently from Example 17-8. It
specifies additional storage options:

• The LineItems collection varray is stored as a LOB, not as a table.

• Tablespace USERS is used for storing element Notes.

Chapter 17
Creation of XMLType Tables and Columns Based on XML Schemas

17-27



• The table is compressed for online transaction processing (OLTP).

Note:

In releases prior to Oracle Database 11gR2, the default behavior for CREATE
TABLE was to store a collection using a varray stored as a LOB, not a varray
stored as a table.

Note:

When compression is specified for a parent XMLType table or column,
all descendant XMLType ordered collection tables (OCTs) are similarly
compressed.

See Also:

• Oracle XML Schema Annotations for information about specifying
storage options by using XML schema annotations

• Oracle Database SQL Language Reference for information about
compression for OLTP

As a convenience, if you need to specify that all varrays in an XMLType table or column
are to be stored as LOBs, or all are to be stored as tables, then you can use the
syntax clause STORE ALL VARRAYS AS, followed by LOBS or TABLES, respectively. This
is a convenient alternative to using multiple VARRAY...STORE AS clauses, one for each
collection. Example 17-10 illustrates this.

See Also:

Oracle Database SQL Language Reference for information about using
STORE ALL VARRAYS AS LOBS

Example 17-8    Creating an Object-Relational XMLType Table with Default
Storage

CREATE TABLE purchaseorder_as_table OF XMLType 
   ELEMENT
   "http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd#PurchaseOrder";

Example 17-9    Specifying Object-Relational Storage Options for XMLType
Tables and Columns

CREATE TABLE purchaseorder_as_table 
  OF XMLType (UNIQUE ("XMLDATA"."Reference"),
              FOREIGN KEY ("XMLDATA"."User") REFERENCES hr.employees (email))

Chapter 17
Creation of XMLType Tables and Columns Based on XML Schemas

17-28



ELEMENT
  "http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd#PurchaseOrder"
  VARRAY "XMLDATA"."LineItems"."LineItem" STORE AS LOB lineitem_lob
  LOB ("XMLDATA"."Notes")
    STORE AS (TABLESPACE USERS ENABLE STORAGE IN ROW 
              STORAGE(INITIAL 4K NEXT 32K))
    COMPRESS FOR OLTP;

CREATE TABLE purchaseorder_as_column (
  id NUMBER,
  xml_document XMLType,
  UNIQUE (xml_document."XMLDATA"."Reference"),
  FOREIGN KEY (xml_document."XMLDATA"."User") REFERENCES hr.employees (email))
  XMLTYPE COLUMN xml_document
  XMLSCHEMA "http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd"
  ELEMENT "PurchaseOrder"
  VARRAY xml_document."XMLDATA"."LineItems"."LineItem" STORE AS LOB lineitem_lob
  LOB (xml_document."XMLDATA"."Notes")
    STORE AS (TABLESPACE USERS ENABLE STORAGE IN ROW 
              STORAGE(INITIAL 4K NEXT 32K))
    COMPRESS FOR OLTP;

Example 17-10    Using STORE ALL VARRAYS AS

CREATE TABLE purchaseorder_as_table OF XMLType (UNIQUE ("XMLDATA"."Reference"),
  FOREIGN KEY ("XMLDATA"."User") REFERENCES hr.employees (email))
  ELEMENT
    "http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd#PurchaseOrder"
  STORE ALL VARRAYS AS LOBS;

17.5 Ways to Identify XML Schema Instance Documents
Before an XML document can be inserted into an XML Schema-based XMLType table
or column, the associated XML schema must be identified. You can do this when you
create the table or column, or you can use XMLSchema-instance to explicitly add the
required schema identification to the XML instance document.

To explicitly identify the XML schema when creating the XMLType table or column, you
can pass the name of the XML schema to the XMLType constructor, or you can invoke
XMLType method createSchemaBasedXML().

The advantage of the XMLSchema-instance mechanism is that it lets the Oracle
XML DB protocol servers recognize that an XML document inserted into Oracle
XML DB Repository is an instance of a registered XML schema. The content of the
instance document is automatically stored in the default table specified by that XML
schema.

The XMLSchema-instance mechanism is defined by the W3C XML Schema working
group. It is based on adding attributes that identify the target XML schema to the root
element of the instance document. These attributes are defined by the XMLSchema-
instance namespace.

To identify an instance document as a member of the class defined by a particular
XML schema you must declare the XMLSchema-instance namespace by adding a
namespace declaration to the root element of the instance document. For example:

xmlns:xsi = http://www.w3.org/2001/XMLSchema-instance

Chapter 17
Ways to Identify XML Schema Instance Documents

17-29



Once the XMLSchema-instance namespace has been declared and given a namespace
prefix, attributes that identify the XML schema can be added to the root element
of the instance document. In the preceding example, the namespace prefix for the
XMLSchema-instance namespace was defined as xsi. This prefix can then be used
when adding the XMLSchema-instance attributes to the root element of the instance
document.

Which attributes must be added depends on several factors. There are two
possibilities, noNamespaceSchemaLocation and schemaLocation. Depending on the
XML schema, one or both of these attributes is required to identify the XML schemas
that the instance document is associated with.

• Attributes noNamespaceSchemaLocation and schemaLocation
If the target XML schema does not declare a target namespace, attribute
noNamespaceSchemaLocation is used to identify the XML schema. The attribute
value is the schema location hint. This is the unique identifier that is passed to
PL/SQL procedure DBMS_XMLSCHEMA.registerSchema when the XML schema is
registered with the database.

• XML Schema and Multiple Namespaces
When an XML schema includes elements defined in multiple namespaces, an
entry must occur in the schemaLocation attribute for each of the XML schemas.
Each entry consists of the namespace declaration and the schema location hint.

17.5.1 Attributes noNamespaceSchemaLocation and schemaLocation
If the target XML schema does not declare a target namespace, attribute
noNamespaceSchemaLocation is used to identify the XML schema. The attribute value
is the schema location hint. This is the unique identifier that is passed to PL/SQL
procedure DBMS_XMLSCHEMA.registerSchema when the XML schema is registered with
the database.

For XML schema purchaseOrder.xsd, the correct definition of the root element of the
instance document would read as follows:

<PurchaseOrder
  xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
  xsi:noNamespaceSchemaLocation=
    "http://localhost:8080/source/schemas/poSource/xsd/
purchaseOrder.xsd">

If the target XML schema declares a target namespace, then the schemaLocation
attribute is used to identify the XML schema. The value of this attribute is a pair of
values separated by a space:

• The value of the target namespace declared in the XML schema

• The schema location hint, the unique identifier passed to procedure
DBMS_XMLSCHEMA.registerSchema when the schema is registered with the
database

For example, assume that the PurchaseOrder XML schema includes a target
namespace declaration. The root element of the schema would look like this:

<xs:schema targetNamespace="http://demo.oracle.com/xdb/purchaseOrder"
           xmlns:xs="http://www.w3.org/2001/XMLSchema"

Chapter 17
Ways to Identify XML Schema Instance Documents

17-30



           xmlns:xdb="http://xmlns.oracle.com/xdb"
           version="1.0">
   <xs:element name="PurchaseOrder" type="PurchaseOrderType"
               xdb:defaultTable="PURCHASEORDER"/>

In this case, the correct form of the root element of the instance document would read
as follows:

<PurchaseOrder
    xnlns="http://demo.oracle.com/xdb/purchaseOrder"
    xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
    xsi:schemaLocation=
      "http://demo.oracle.com/xdb/purchaseOrder
       http://mdrake-lap:8080/source/schemas/poSource/xsd/
purchaseOrder.xsd">

17.5.2 XML Schema and Multiple Namespaces
When an XML schema includes elements defined in multiple namespaces, an entry
must occur in the schemaLocation attribute for each of the XML schemas. Each entry
consists of the namespace declaration and the schema location hint.

The entries are separated from each other by one or more whitespace characters.

If the primary XML schema does not declare a target namespace, then the XML
instance document also needs to include a noNamespaceSchemaLocation attribute that
provides the schema location hint for the primary XML schema.

17.6 XML Schema Data Types Are Mapped to Oracle
XML DB Storage

Data that conforms to an XML schema uses XML Schema data types. When this XML
data is stored in Oracle XML DB, its storage data types are derived from the XML
Schema data types using a default mapping and, optionally, using mapping information
that you specify using XML schema annotations.

Whenever you do not specify a data type to use for storage, Oracle XML DB uses the
default mapping to annotate the XML schema appropriately, during registration. In this
way, the registered XML schema has a complete set of data-type annotations.

• For object-relational storage, XML Schema data types are mapped to SQL data
types.

• For binary XML storage, XML Schema data types are mapped to Oracle XML DB
binary XML encoding types.

Figure 17-7 shows how Oracle XML DB creates XML schema-based XMLType tables
using an XML document and a mapping specified in an XML schema. Depending
on the storage method specified in the XML schema, an XML instance document is
stored either as a binary XML value in a single XMLType column, or using multiple
object-relational columns.

Chapter 17
XML Schema Data Types Are Mapped to Oracle XML DB Storage

17-31



Figure 17-7    How Oracle XML DB Maps XML Schema-Based XMLType Tables

XML instance document: employees.xml
...
<employee>
  <first_name>Shelli</last_name>
  <last_name>Baida</last_name>
  <email>sbaida</email>
   ...
  <hire_date>24-DEC-97</hire_date>
   ...
  <dept_id>30</dept_id>
</employee>
...

XML schema: employees.xsd
...
<sequence>
 <element name="first_name" type="string"/>
 <element name="last_name" type="string"/>
 <element name="email" type="string"/>
 ...
 <element name="hire_date" type="date"/>
 ...
 <element name="dept_id" type="integer"/>
</sequence>
...

employees Tables

first_name last_name email dept_id

30baida sbaidashelli

Object-Relational
Storage

XML data stored in
object-relational columns and tables 

employees Tables

. . . XMLType 
Column

. . . . . .

Binary XML
Binary XML
Binary XML
Binary XML
Binary XML

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Binary XML Storage

XML data stored as
binary XML

Create
XMLType

Table

Related Topics

• Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data Types
You use PL/SQL package DBMS_XMLSCHEMA to map data types for XML Schema
attributes and elements to SQL data types.

Chapter 17
XML Schema Data Types Are Mapped to Oracle XML DB Storage

17-32



18
XML Schema Storage and Query: Object-
Relational Storage

Advanced techniques for XML Schema-based data include using object-relational
storage; annotating XML schemas; mapping Schema data types to SQL; using
complexType extensions and restrictions; creating, specifying relational constraints on,
and partitioning XML Schema-based data, storing XMLType data out of line, working
with complex or large schemas, and debugging schema registration.

• Object-Relational Storage of XML Documents
Object-relational storage of XML documents is based on decomposing the
document content into a set of SQL objects. These SQL objects are based on
the SQL 1999 Type framework. When an XML schema is registered with Oracle
XML DB, the required SQL type definitions are automatically generated from the
schema.

• Oracle XML Schema Annotations
You can annotate XML schemas to influence the objects and tables that are
generated by the XML schema registration process. You do this by adding Oracle-
specific attributes to complexType, element, and attribute definitions that are
declared by the XML schema.

• Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data Types
You use PL/SQL package DBMS_XMLSCHEMA to map data types for XML Schema
attributes and elements to SQL data types.

• complexType Extensions and Restrictions in Oracle XML DB
In XML Schema, complexType values are declared based on complexContent and
simpleContent. Oracle XML DB defines various extensions and restrictions to
complexType.

• Creating XML Schema-Based XMLType Columns and Tables
After an XML schema has been registered with Oracle XML DB, you can reference
it when you define XMLType tables or columns.

• Overview of Partitioning XMLType Tables and Columns Stored Object-Relationally
When you partition an object-relational XMLType table or a table with an XMLType
column that is stored object-relationally and you use list, range, or hash
partitioning, any ordered collection tables (OCTs) or out-of-line tables within the
data are automatically partitioned accordingly, by default.

• Specification of Relational Constraints on XMLType Tables and Columns
For XMLType data stored object-relationally, you can specify typical relational
constraints for elements and attributes that occur only once in an XML document.

• Out-Of-Line Storage of XMLType Data
By default, when XMLType data is stored object-relationally a child element is
mapped to an embedded SQL object attribute. Sometimes better performance
can be obtained by storing some XMLType data out of line. Use XML schema
annotation xdb:SQLInline to do this.

18-1



• Considerations for Working with Complex or Large XML Schemas
XML schemas can be complex. Examples of complex schemas include those that
are recursive and those that contain circular or cyclical references. Working with
complex or large XML schemas can be challenging and requires taking certain
considerations into account.

• Debugging XML Schema Registration for XML Data Stored Object-Relationally
For XML data stored object-relationally, you can monitor the object types and
tables created during XML schema registration by setting the event 31098 before
invoking PL/SQL procedure DBMS_XMLSCHEMA.registerSchema.

See Also:

• XML Schema Storage and Query: Basic for basic information about
using XML Schema with Oracle XML DB

• XPath Rewrite for Object-Relational Storage for information about the
optimization of XPath expressions in Oracle XML DB

• XML Schema Evolution for information about updating an XML schema
after you have registered it with Oracle XML DB

• XML Schema Part 0: Primer Second Edition for an introduction to XML
Schema

18.1 Object-Relational Storage of XML Documents
Object-relational storage of XML documents is based on decomposing the document
content into a set of SQL objects. These SQL objects are based on the SQL 1999
Type framework. When an XML schema is registered with Oracle XML DB, the
required SQL type definitions are automatically generated from the schema.

A SQL type definition is generated from each complexType defined by the XML
schema. Each element or attribute defined by the complexType becomes a SQL
attribute in the corresponding SQL type. Oracle XML DB automatically maps the 47
scalar data types defined by the XML Schema Recommendation to the 19 scalar data
types supported by SQL. A varray type is generated for each element and this can
occur multiple times.

The generated SQL types allow XML content that is compliant with the XML schema
to be decomposed and stored in the database as a set of objects, without any loss of
information. When an XML document is ingested, the constructs defined by the XML
schema are mapped directly to the equivalent SQL types. This lets Oracle XML DB
leverage the full power of Oracle Database when managing XML, and it can lead to
significant reductions in the amount of space required to store the document. It can
also reduce the amount of memory required to query and update XML content.

• How Collections Are Stored for Object-Relational XMLType Storage
You can store an ordered collection as a varray in an ordered collection table
(OCT), which can be a heap-based table. You can store the actual data out of line
by using varray entries that are REFs to the data.

Chapter 18
Object-Relational Storage of XML Documents

18-2



• SQL Types Created during XML Schema Registration for Object-Relational
Storage
Use TRUE as the value of parameter GENTYPES when you register an XML schema
for use with XML data stored object-relationally (TRUE is the default value).
Oracle XML DB then creates the appropriate SQL object types that enable object-
relational storage of conforming XML documents.

• Default Tables Created during XML Schema Registration
You can create default tables as part of XML schema registration. Default tables
are most useful when documents are inserted using APIs and protocols such as
FTP and HTTP(S), which do not provide any table specification.

• Do Not Use Internal Constructs Generated during XML Schema Registration
In general, the SQL constructs (data types, nested tables, and tables associated
with out-of-line storage) that are automatically generated during XML schema
registration are internal to Oracle XML DB. Oracle recommends that you do not
use them in your code.

• Generated Names are Case Sensitive
The names of any SQL tables, objects, and attributes generated by XML schema
registration are case sensitive.

• SYS_XDBPD$ and DOM Fidelity for Object-Relational Storage
In order to provide DOM fidelity for XML data that is stored object-relationally,
Oracle XML DB records all information that cannot be stored in any of the other
object attributes as instance-level metadata using the system-defined binary object
attribute SYS_XDBPD$ (positional descriptor, or PD).

18.1.1 How Collections Are Stored for Object-Relational XMLType
Storage

You can store an ordered collection as a varray in an ordered collection table (OCT),
which can be a heap-based table. You can store the actual data out of line by using
varray entries that are REFs to the data.

When you register an XML schema for XMLType data that is stored object-relationally
and you set registration parameter GENTABLES to TRUE, default tables are created
automatically to store the associated XML instance documents.

Order is preserved among XML collection elements when they are stored. The result is
an ordered collection.

You can store data in an ordered collection as a varray in a table. Each element in the
collection is mapped to a SQL object. The collection of SQL objects is stored as a set
of rows in a table, called an ordered collection table (OCT). Oracle XML DB stores a
collection as a heap-based OCT.

You can also use out-of-line storage for an ordered collection. This corresponds to
XML schema annotation SQLInline = "false", and it means that a varray of REFs in
the collection table (or the LOB) tracks the collection content, which is stored out of
line.

There is no requirement to annotate an XML schema before using it. Oracle XML DB
uses a set of default assumptions when processing an XML schema that contains no
annotations.

Chapter 18
Object-Relational Storage of XML Documents

18-3



Related Topics

• Setting Annotation Attribute xdb:SQLInline to false for Out-Of-Line Storage
Set XML schema annotation xdb:SQLInline to false to store an XML fragment
out of line. The element is mapped to a SQL object type with an embedded REF
attribute, which points to another XMLType instance that is stored out of line and
that corresponds to the XML fragment.

• Overview of Partitioning XMLType Tables and Columns Stored Object-Relationally
When you partition an object-relational XMLType table or a table with an XMLType
column that is stored object-relationally and you use list, range, or hash
partitioning, any ordered collection tables (OCTs) or out-of-line tables within the
data are automatically partitioned accordingly, by default.

See Also:

Object-Relational Storage of XML Documents for information about collection
storage when you create XMLType tables and columns manually using object-
relational storage

18.1.2 SQL Types Created during XML Schema Registration for
Object-Relational Storage

Use TRUE as the value of parameter GENTYPES when you register an XML schema
for use with XML data stored object-relationally (TRUE is the default value). Oracle
XML DB then creates the appropriate SQL object types that enable object-relational
storage of conforming XML documents.

By default, all SQL object types are created in the database schema of the user
who registers the XML schema. If annotation xdb:defaultSchema is used, then Oracle
XML DB attempts to create the object type using the specified database schema. The
current user must have the necessary privileges to create these object types.

Example 18-1 shows the SQL object types that are created automatically when XML
schema purchaseOrder.xsd is registered with Oracle XML DB.

Note:

By default, the names of the SQL object types and attributes are system-
generated. This is the case in Example 18-1. If the XML schema does not
contain attribute SQLName, then the SQL name is derived from the XML name.
You can use XML schema annotations to provide user-defined names (see
Oracle XML Schema Annotations for details).

Chapter 18
Object-Relational Storage of XML Documents

18-4



Note:

Starting with Oracle Database 12c Release 2 (12.2.0.1), if you register an
XML schema for object-relational storage for an application common user
then you must annotate each complex type in the schema with xdb:SQLType,
to name the SQL data type. Otherwise, an error is raised.

Example 18-1    SQL Object Types for Storing XMLType Tables

DESCRIBE "PurchaseOrderType1668_T"
  
"PurchaseOrderType1668_T" is NOT FINAL
Name                 Null?  Type
-------------------- ------ -------------------------------
SYS_XDBPD$                  XDB.XDB$RAW_LIST_T
Reference                   VARCHAR2(30 CHAR)
Actions                     ActionsType1661_T
Reject                      RejectionType1660_T
Requestor                   VARCHAR2(128 CHAR)
User                        VARCHAR2(10 CHAR)
CostCenter                  VARCHAR2(4 CHAR)
ShippingInstructions        ShippingInstructionsTyp1659_T
SpecialInstructions         VARCHAR2(2048 CHAR)
LineItems                   LineItemsType1666_T
Notes                       VARCHAR2(4000 CHAR)
 
DESCRIBE "LineItemsType1666_T"
 
"LineItemsType1666_T" is NOT FINAL
Name                 Null? Type
-------------------- ----- -------------------------------
SYS_XDBPD$                 XDB.XDB$RAW_LIST_T
LineItem                   LineItem1667_COLL
 
DESCRIBE "LineItem1667_COLL"

"LineItem1667_COLL" VARRAY(2147483647) OF LineItemType1665_T
"LineItemType1665_T" is NOT FINAL
Name                Null? Type
------------------- ----- --------------------------------
SYS_XDBPD$                XDB.XDB$RAW_LIST_T
ItemNumber                NUMBER(38)
Description               VARCHAR2(256 CHAR)
Part                      PartType1664_T

18.1.3 Default Tables Created during XML Schema Registration
You can create default tables as part of XML schema registration. Default tables are
most useful when documents are inserted using APIs and protocols such as FTP and
HTTP(S), which do not provide any table specification.

In such cases, the XML instance is inserted into the default table.

Example 18-2 describes the default purchase-order table.

If you provide a value for attribute xdb:defaultTable, then the XMLType table is
created with that name. Otherwise it is created with an internally generated name.

Chapter 18
Object-Relational Storage of XML Documents

18-5



Any text specified using attributes xdb:tableProps and xdb:columnProps is appended
to the generated CREATE TABLE statement.

Example 18-2    Default Table for Global Element PurchaseOrder

DESCRIBE "PurchaseOrder1669_TAB"

Name                        Null? Type
--------------------------- ----- -----------------------
TABLE of
  SYS.XMLTYPE(
    XMLSchema "http://xmlns.oracle.com/xdb/documentation/
purchaseOrder.xsd"
    Element "PurchaseOrder")
  STORAGE OBJECT-RELATIONAL TYPE "PurchaseOrderType1668_T"

18.1.4 Do Not Use Internal Constructs Generated during XML Schema
Registration

In general, the SQL constructs (data types, nested tables, and tables associated with
out-of-line storage) that are automatically generated during XML schema registration
are internal to Oracle XML DB. Oracle recommends that you do not use them in your
code.

More precisely, generated SQL data types, nested tables, and tables associated
with out-of-line storage are based on specific internal XML schema-to-object type
mappings that are subject to change and redefinition by Oracle at any time. In general:

• Do not use any generated SQL data types.

• Do not access or modify any generated nested tables or out-of-line tables.

You can, however, modify the storage options, such as partitioning, of generated
tables, and you can create indexes and constraints on generated tables. You can
also freely use any XML schema annotations provided by Oracle XML DB, including
annotations that name generated constructs.

18.1.5 Generated Names are Case Sensitive
The names of any SQL tables, objects, and attributes generated by XML schema
registration are case sensitive.

For instance, in Example 18-2, the name of table PurchaseOrder1669_TAB is derived
from the name of element PurchaseOrder, so it too is mixed case. You must therefore
refer to this table using a quoted identifier: "PurchaseOrder1669_TAB". Failure to do so
results in an object-not-found error, such as ORA-00942: table or view does not
exist.

18.1.6 SYS_XDBPD$ and DOM Fidelity for Object-Relational Storage
In order to provide DOM fidelity for XML data that is stored object-relationally, Oracle
XML DB records all information that cannot be stored in any of the other object
attributes as instance-level metadata using the system-defined binary object attribute
SYS_XDBPD$ (positional descriptor, or PD).

Chapter 18
Object-Relational Storage of XML Documents

18-6



With object-relational storage of XML data, the elements and attributes declared in
an XML schema are mapped to separate attributes of the corresponding SQL object
types. However, the following information in XML instance documents is not stored in
these object attributes:

• Namespace declarations

• Comments

• Prefix information

In order to provide DOM fidelity for XML data stored object-relationally, Oracle XML DB
uses a separate mechanism to keep track of this information: it is recorded as
instance-level metadata.

This metadata is tracked at the type level using the system-defined binary object
attribute SYS_XDBPD$. This object attribute is referred to as the positional descriptor,
or PD for short.

The PD is intended for Oracle XML DB internal use only. You should never directly
access or manipulate column PD.

The positional descriptor stores all information that cannot be stored in any of the
other object attributes. PD information is used to ensure the DOM fidelity of all XML
documents stored in Oracle XML DB. Examples of PD information include: ordering
information, comments, processing instructions, and namespace prefixes.

If DOM fidelity is not required, you can suppress the use of SYS_XDBPD$ by setting
attribute xdb:maintainDOM to false in the XML schema, at the type level.

Note:

For clarity, object attribute SYS_XDBPD$ is omitted in many examples in this
book. However, it is always present as a positional descriptor (PD) column
in all SQL object types that are generated by the XML schema registration
process.

In general, Oracle recommends that you do not suppress the PD
attribute, because the extra information, such as comments and processing
instructions, could be lost if there is no PD column.

Related Topics

• You Can Override the SQLType Value in an XML Schema When Declaring
Attributes
You can explicitly specify a SQLType value in an XML schema, as an annotation.
The SQL data type that you specify is used for XML schema validation, overriding
the default SQL data types.

• Override of the SQLType Value in an XML Schema When Declaring Elements
An element based on a complexType is, by default, mapped to a SQL object
type that contains object attributes corresponding to each of its sub-elements
and attributes. You can override this mapping by explicitly specifying a value for
attribute SQLType in the input XML schema.

Chapter 18
Object-Relational Storage of XML Documents

18-7



See Also:

DOM Fidelity for information about DOM fidelity and binary XML storage of
XML data

18.2 Oracle XML Schema Annotations
You can annotate XML schemas to influence the objects and tables that are generated
by the XML schema registration process. You do this by adding Oracle-specific
attributes to complexType, element, and attribute definitions that are declared by
the XML schema.

You can add such annotations manually by editing the XML schema document
or, for the most common annotations, by invoking annotation-specific PL/SQL
subprograms. See Oracle Database PL/SQL Packages and Types Reference, chapter
"DBMS_XMLSCHEMA_ANNOTATE".

If you edit an XML schema manually using the Altova XMLSpy editor then you can
take advantage of the Oracle tab in the editor for adding and editing Oracle-specific
annotations. See Figure 17-2.

Most XML attributes used by Oracle XML DB belong to the namespace http://
xmlns.oracle.com/xdb. XML attributes used for encoding XML data as binary
XML belong to the namespace http://xmlns.oracle.com/2004/CSX. To simplify
the process of annotating an XML schema, Oracle recommends that you declare
namespace prefixes in the root element of the XML schema.

• Common Uses of XML Schema Annotations
You can annotate an XML schema to customize the names of object-relational
tables, objects, and object attributes or to allow XPath rewrite when XQuery-
expression arguments target recursive XML data.

• XML Schema Annotation Example
A sample XML schema illustrates some of the most important Oracle XML DB
annotations.

• Annotating an XML Schema Using DBMS_XMLSCHEMA_ANNOTATE
PL/SQL package DBMS_XMLSCHEMA_ANNOTATE provides subprograms to annotate an
XML schema. Using these subprograms can often be more convenient and less
error prone than manually editing the XML schema.

• Available Oracle XML DB XML Schema Annotations
The Oracle XML DB annotations that you can specify in element and attribute
declarations are described, along with the PL/SQL subprograms in package
DBMS_XMLSCHEMA_ANNOTATE that you can use to manipulate them.

• XML Schema Annotation Guidelines for Object-Relational Storage
For XMLType data stored object-relationally, careful planning is called for, to
optimize performance. Similar considerations are in order as for relational data:
entity-relationship models, indexing, data types, table partitions, and so on. To
enable XPath rewrite and achieve optimal performance, you implement many such
design choices using XML schema annotations.

Chapter 18
Oracle XML Schema Annotations

18-8



• Querying a Registered XML Schema to Obtain Annotations
You can query database views USER_XML_SCHEMAS and ALL_XML_SCHEMAS to obtain
a registered XML schema with all of its annotations. The registered version of an
XML schema contains a full set of Oracle XML DB annotations. These annotations
were supplied by a user or set by default during XML schema registration.

18.2.1 Common Uses of XML Schema Annotations
You can annotate an XML schema to customize the names of object-relational tables,
objects, and object attributes or to allow XPath rewrite when XQuery-expression
arguments target recursive XML data.

Common reasons for wanting to annotate an XML schema include the following:

• To ensure that the names of the tables, objects, and object attributes created by
PL/SQL procedure DBMS_XMLSCHEMA.registerSchema for object-relational storage
of XMLType data are easy to recognize and compliant with any application-naming
standards. Set parameter GENTYPES or GENTABLES to TRUE for this (TRUE is the
default value for each of these parameters).

• To prevent the generation of mixed-case names that require the use of quoted
identifiers when working directly with SQL.

• To allow XPath rewrite for object-relational storage in the case of document-
correlated recursive XPath queries. This applies to certain applications of
SQL/XML access and query functions whose XQuery-expression argument targets
recursive XML data.

The most commonly used XML schema annotations are the following:

• xdb:defaultTable – Name of the default table generated for each global element
when parameter GENTABLES is TRUE. Setting this to the empty string, "", prevents a
default table from being generated for the element in question.

• xdb:SQLName – Name of the SQL object attribute that corresponds to each element
or attribute defined in the XML schema.

• xdb:SQLType – For complexType definitions, the corresponding object type. For
simpleType definitions, SQLType is used to override the default mapping between
XML schema data types and SQL data types. A common use of SQLType is to
define when unbounded strings should be stored as CLOB values, rather than as
VARCHAR(4000) CHAR values (the default). Note: You cannot use data type NCHAR,
NVARCHAR2, or NCLOB as the value of a SQLType annotation.

Note:

Starting with Oracle Database 12c Release 2 (12.2.0.1), if you register
an XML schema for object-relational storage for an application common
user then you must annotate each complex type in the schema with
xdb:SQLType, to name the SQL data type. Otherwise, an error is raised.

• xdb:SQLCollType – Used to specify the varray type that manages a collection of
elements.

• xdb:maintainDOM – Used to determine whether or not DOM fidelity should be
maintained for a given complexType definition

Chapter 18
Oracle XML Schema Annotations

18-9



You need not specify values for any of these attributes. Oracle XML DB provides
appropriate values by default during the XML schema registration process. However, if
you are using object-relational storage, then Oracle recommends that you specify the
names of at least the top-level SQL types, so that you can reference them later.

18.2.2 XML Schema Annotation Example
A sample XML schema illustrates some of the most important Oracle XML DB
annotations.

The XML schema in Example 18-3 is similar to the one in Example A-2, but it also
defines a Notes element and its type, NotesType.

• The schema element includes the declaration of the xdb namespace.

• The definition of global element PurchaseOrder includes a defaultTable
annotation that specifies that the name of the default table associated with this
element is purchaseorder.

• The definition of global complex type PurchaseOrderType includes a SQLType
annotation that specifies that the generated SQL object type is named
purchaseorder_t. Within the definition of this type, the following annotations are
used:

– The definition of element Reference includes a SQLName annotation that
specifies that the SQL attribute corresponding to XML element Reference is
named reference.

– The definition of element Actions includes a SQLName annotation that specifies
that the SQL attribute corresponding to XML element Actions is named
action_collection.

– The definition of element USER includes a SQLName annotation that specifies
that the SQL attribute corresponding to XML element User is named email.

– The definition of element LineItems includes a SQLName annotation that
specifies that the SQL attribute corresponding to XML element LineItems is
named lineitem_collection.

– The definition of element Notes includes a SQLType annotation that specifies
that the data type of the SQL attribute corresponding to XML element Notes is
CLOB.

• The definition of global complex type LineItemsType includes a SQLType
annotation that specifies that the generated SQL object type is named
lineitems_t. Within the definition of this type, the following annotation is used:

– The definition of element LineItem includes a SQLName annotation that
specifies that the data type of the SQL attribute corresponding to XML element
LineItems is named lineitem_varray, and a SQLCollName annotation that
specifies that the SQL object type that manages the collection is named
lineitem_v.

• The definition of global complex type LineItemType includes a SQLType annotation
that specifies that generated SQL object type is named lineitem_t.

• The definition of complex type PartType includes a SQLType annotation that
specifies that the SQL object type is named part_t. It also includes the annotation
xdb:maintainDOM = "false", specifying that there is no need for Oracle XML DB
to maintain DOM fidelity for elements based on this data type.

Chapter 18
Oracle XML Schema Annotations

18-10



Example 18-4 shows some of the tables and objects that are created when the
annotated XML schema of Example 18-3 is registered.

The following are results of this XML schema registration:

• A table called purchaseorder was created.

• Types called purchaseorder_t, lineitems_t, lineitem_v, lineitem_t, and
part_t were created. The attributes defined by these types are named according
to supplied the SQLName annotations.

• The Notes attribute defined by purchaseorder_t is of data type CLOB.

• Type part_t does not include a positional descriptor (PD) attribute.

• Ordered collection tables (OCTs) were created to manage the collections of
LineItem and Action elements.

Example 18-3    Using Common Schema Annotations

<xs:schema
  targetNamespace="http://xmlns.oracle.com/xdb/documentation/purchaseOrder"
  xmlns:xs="http://www.w3.org/2001/XMLSchema"
  xmlns:xdb="http://xmlns.oracle.com/xdb"
  xmlns:po="http://xmlns.oracle.com/xdb/documentation/purchaseOrder"
  version="1.0">
  <xs:element name="PurchaseOrder" type="po:PurchaseOrderType"
              xdb:defaultTable="PURCHASEORDER"/>
  <xs:complexType name="PurchaseOrderType" xdb:SQLType="PURCHASEORDER_T">
    <xs:sequence>
      <xs:element name="Reference" type="po:ReferenceType" minOccurs="1"
                  xdb:SQLName="REFERENCE"/>
      <xs:element name="Actions" type="po:ActionsType"
                  xdb:SQLName="ACTION_COLLECTION"/>
      <xs:element name="Reject" type="po:RejectionType" minOccurs="0"/>
      <xs:element name="Requestor" type="po:RequestorType"/>
      <xs:element name="User" type="po:UserType" minOccurs="1"
                  xdb:SQLName="EMAIL"/>
      <xs:element name="CostCenter" type="po:CostCenterType"/>
      <xs:element name="ShippingInstructions"
                  type="po:ShippingInstructionsType"/>
      <xs:element name="SpecialInstructions" type="po:SpecialInstructionsType"/>
      <xs:element name="LineItems" type="po:LineItemsType"
                  xdb:SQLName="LINEITEM_COLLECTION"/>
      <xs:element name="Notes" type="po:NotesType" xdb:SQLType="CLOB"/>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="LineItemsType" xdb:SQLType="LINEITEMS_T">
    <xs:sequence>
      <xs:element name="LineItem" type="po:LineItemType" maxOccurs="unbounded"
                  xdb:SQLCollType="LINEITEM_V" xdb:SQLName="LINEITEM_VARRAY"/>
   </xs:sequence>
  </xs:complexType>
  <xs:complexType name="LineItemType" xdb:SQLType="LINEITEM_T">
    <xs:sequence>
      <xs:element name="Description" type="po:DescriptionType"/>
      <xs:element name="Part" type="po:PartType"/>
    </xs:sequence>

Chapter 18
Oracle XML Schema Annotations

18-11



    <xs:attribute name="ItemNumber" type="xs:integer"/>
  </xs:complexType>
  <xs:complexType name="PartType" xdb:SQLType="PART_T" xdb:maintainDOM="false">
    <xs:attribute name="Id">
      <xs:simpleType>
        <xs:restriction base="xs:string">
          <xs:minLength value="10"/>
          <xs:maxLength value="14"/>
        </xs:restriction>
      </xs:simpleType>
    </xs:attribute>
    <xs:attribute name="Quantity" type="po:moneyType"/>
    <xs:attribute name="UnitPrice" type="po:quantityType"/>
  </xs:complexType>
  <xs:simpleType name="NotesType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="32767"/>
    </xs:restriction>
  </xs:simpleType>
</xs:schema>

Example 18-4    Registering an Annotated XML Schema

BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd',
    SCHEMADOC => bfilename('XMLDIR', 'purchaseOrder.Annotated.xsd'),
    LOCAL     => TRUE,
    GENTYPES  => TRUE,
    GENTABLES => TRUE,
    CSID      => nls_charset_id('AL32UTF8'));
END;
/
 
SELECT table_name, xmlschema, element_name FROM USER_XML_TABLES;
 
TABLE_NAME     XMLSCHEMA                             ELEMENT_NAME
-------------  -----------------------------------   -------------
PURCHASEORDER  http://xmlns.oracle.com/xdb/documen   PurchaseOrder
               tation/purchaseOrder.xsd              
 
1 row selected.
 
DESCRIBE purchaseorder

Name                            Null? Type
------------------------------  ----- -----------------
TABLE of SYS.XMLTYPE(XMLSchema
 "http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd"
 ELEMENT "PurchaseOrder") STORAGE Object-relational TYPE "PURCHASEORDER_T"
 
DESCRIBE purchaseorder_t

Chapter 18
Oracle XML Schema Annotations

18-12



PURCHASEORDER_T is NOT FINAL
Name                 Null? Type
-------------------- ----- --------------------------
SYS_XDBPD$                 XDB.XDB$RAW_LIST_T
REFERENCE                  VARCHAR2(30 CHAR)
ACTION_COLLECTION          ACTIONS_T
REJECT                     REJECTION_T
REQUESTOR                  VARCHAR2(128 CHAR)
EMAIL                      VARCHAR2(10 CHAR)
COSTCENTER                 VARCHAR2(4 CHAR)
SHIPPINGINSTRUCTIONS       SHIPPING_INSTRUCTIONS_T
SPECIALINSTRUCTIONS        VARCHAR2(2048 CHAR)
LINEITEM_COLLECTION        LINEITEMS_T
Notes                      CLOB

DESCRIBE lineitems_t
LINEITEMS_T is NOT FINAL
Name                 Null? Type
-------------------- ----- --------------------------
SYS_XDBPD$                 XDB.XDB$RAW_LIST_T
LINEITEM_VARRAY            LINEITEM_V

DESCRIBE lineitem_v

LINEITEM_V VARRAY(2147483647) OF LINEITEM_T
LINEITEM_T is NOT FINAL
Name                 Null? Type
-------------------- ----- --------------------------
SYS_XDBPD$                 XDB.XDB$RAW_LIST_T
ITEMNUMBER                 NUMBER(38)
DESCRIPTION                VARCHAR2(256 CHAR)
PART                       PART_T

DESCRIBE part_t
 
PART_T is NOT FINAL
Name                 Null? Type
-------------------- ----- --------------------------
ID                         VARCHAR2(14 CHAR)
QUANTITY                   NUMBER(12,2)
UNITPRICE                  NUMBER(8,4)

SELECT table_name, parent_table_column FROM USER_NESTED_TABLES
  WHERE parent_table_name = 'purchaseorder';

TABLE_NAME                       PARENT_TABLE_COLUMN
----------                       -----------------------   
SYS_NTNOHV+tfSTRaDTA9FETvBJw==   "XMLDATA"."LINEITEM_COLLECTION"."LINEITEM_VARRAY"
SYS_NTV4bNVqQ1S4WdCIvBK5qjZA==   "XMLDATA"."ACTION_COLLECTION"."ACTION_VARRAY"
 
2 rows selected.

Chapter 18
Oracle XML Schema Annotations

18-13



18.2.3 Annotating an XML Schema Using
DBMS_XMLSCHEMA_ANNOTATE

PL/SQL package DBMS_XMLSCHEMA_ANNOTATE provides subprograms to annotate an
XML schema. Using these subprograms can often be more convenient and less error
prone than manually editing the XML schema.

In particular, you can use the PL/SQL subprograms in a script, which you can run at
any time or multiple times, as needed. This can be especially useful if you are using
a large XML schema or a standard or other third-party XML schema that you do not
want to modify manually.

There are specific PL/SQL subprograms for each Oracle annotation. For example, you
use PL/SQL procedure setDefaultTable to add a xdb:defaultTable annotation, and
removeDefaultTable to remove a xdb:defaultTable annotation.

Each annotation subprogram has the following as its parameters:

• The XML schema to be annotated. This parameter is IN OUT.

• The name of the global element where the annotation is to be added or removed.

• The annotation (XML attribute) value.

• A Boolean flag indicating whether any corresponding existing annotation is to be
overwritten. By default, it is overwritten.

If the element to be annotated is not a global element then you provide the local
element name as an additional parameter. The global and local names together
identify the target element. The element with the local name must be a descendent
of the element with the global name.

If you use SQL*Plus, you can use PL/SQL procedure
DBMS_XMLSCHEMA_ANNOTATE.printWarnings to enable and disable printing of SQL*Plus
warnings during the use of other DBMS_XMLSCHEMA_ANNOTATE subprograms. By default,
no warnings are printed. An example of a warning is an inability to annotate the XML
schema because there is no element with the name you provided to the annotation
subprogram.

Example 18-5 uses subprograms in PL/SQL package DBMS_XMLSCHEMA_ANNOTATE to
produce the annotated XML schema shown in Example 18-3.

See Also:

Oracle Database PL/SQL Packages and Types Reference, chapter
"DBMS_XMLSCHEMA_ANNOTATE"

Example 18-5    Using DBMS_XMLSCHEMA_ANNOTATE

CREATE TABLE annotation_tab (id NUMBER, inp XMLType, out XMLType);
INSERT INTO annotation_tab VALUES (1, ... unannotated XML schema...);

DECLARE
  schema XMLType;
BEGIN
  SELECT t.inp INTO schema FROM annotation_tab t WHERE t.id = 1;

Chapter 18
Oracle XML Schema Annotations

18-14



  DBMS_XMLSCHEMA_ANNOTATE.setDefaultTable(schema, 'PurchaseOrder', 'PURCHASEORDER');
  DBMS_XMLSCHEMA_ANNOTATE.setSQLType(schema, 'PurchaseOrderType', 'PURCHASEORDER_T');
  DBMS_XMLSCHEMA_ANNOTATE.setSQLName(schema, 'complexType', 'PurchaseOrderType', 'element', 'Reference',
                                     'REFERENCE');
  DBMS_XMLSCHEMA_ANNOTATE.setSQLName(schema, 'complexType', 'PurchaseOrderType', 'element', 'Actions',
                                     'ACTIONS_COLLECTION');
  DBMS_XMLSCHEMA_ANNOTATE.setSQLName(schema, 'complexType', 'PurchaseOrderType', 'element', 'User', 'EMAIL');
  DBMS_XMLSCHEMA_ANNOTATE.setSQLName(schema, 'complexType', 'PurchaseOrderType', 'element', 'LineItems',
                                     'LINEITEM_COLLECTION');
  DBMS_XMLSCHEMA_ANNOTATE.setSQLType(schema, 'complexType', 'PurchaseOrderType', 'element', 'Notes', 'CLOB');
  DBMS_XMLSCHEMA_ANNOTATE.setSQLType(schema, 'LineItemsType', 'LINEITEMS_T');
  DBMS_XMLSCHEMA_ANNOTATE.setSQLCollType(schema, 'complexType', 'LineItemsType', 'LineItem', 'LINEITEM_V');
  DBMS_XMLSCHEMA_ANNOTATE.setSQLName(schema, 'complexType', 'LineItemsType', 'element', 'LineItem',
                                     'LINEITEM_VARRAY');
  DBMS_XMLSCHEMA_ANNOTATE.setSQLType(schema, 'LineItemType', 'LINEITEM_T');
  DBMS_XMLSCHEMA_ANNOTATE.setSQLType(schema, 'PartType', 'PART_T');
  DBMS_XMLSCHEMA_ANNOTATE.disableMaintainDom(schema, 'PartType');

UPDATE annotation_tab t SET t.out = schema WHERE t.id = 1;
END;
/

18.2.4 Available Oracle XML DB XML Schema Annotations
The Oracle XML DB annotations that you can specify in element and attribute
declarations are described, along with the PL/SQL subprograms in package
DBMS_XMLSCHEMA_ANNOTATE that you can use to manipulate them.

All annotations except those that have the prefix csx are applicable to XML schemas
registered for object-relational storage.

The following annotations apply to XML schemas that are registered for binary XML
storage:

• xdb:defaultTable

• xdb:tableProps

See Also:

Oracle Database PL/SQL Packages and Types Reference, chapter
"DBMS_XMLSCHEMA_ANNOTATE"

Table 18-1    Annotations in Elements

Attribute and PL/SQL Values Default Description

xdb:columnProps

No applicable PL/SQL.

Any
column
storage
clause

NULL Specifies the COLUMN storage clause that is
inserted into the default CREATE TABLE statement.
It is useful mainly for elements that get mapped to
SQL tables, namely top-level element declarations
and out-of-line element declarations.

Chapter 18
Oracle XML Schema Annotations

18-15



Table 18-1    (Cont.) Annotations in Elements

Attribute and PL/SQL Values Default Description

xdb:defaultTable

PL/SQL:

setDefaultTable
removeDefaultTable
enableDefaultTableCreation
disableDefaultTableCreation

Any table
name

Based on
element
name

Specifies the name of the SQL table into which
XML instances of this XML schema are stored. This
is most useful in cases where the XML data is
inserted from APIs and protocols, such as FTP and
HTTP(S), where the table name is not specified.
Applicable to object-relational storage and binary
XML storage.

xdb:maintainDOM

PL/SQL:

enableMaintainDOM
disableMaintainDOM

true |
false

true If true, then instances of this element are stored
so that they retain DOM fidelity on output. This
implies that all comments, processing instructions,
namespace declarations, and so on are retained, in
addition to the ordering of elements.

If false, then the output is not guaranteed to have
the same DOM action as the input.

xdb:SQLCollType

PL/SQL:

setSQLCollType
removeSQLCollType

Any SQL
collection
type

Name
generated
from element
name

Name of the SQL collection type that corresponds
to this XML element. The XML element must be
specified with maxOccurs > 1.

xdb:SQLInline

PL/SQL:

setOutOfLine
removeOutOfLine

true |
false

true If true, then this element is stored inline as an
embedded object attribute (or as a collection, if
maxOccurs > 1).

If false, then a REF value is stored (or a collection
of REF values, if maxOccurs > 1). This attribute is
forced to false in certain situations, such as cyclic
references, where SQL does not support inlining.

xdb:SQLName

PL/SQL:

setSQLName
removeSQLName

Any SQL
identifier

Element
name

Name of the attribute within the SQL object that
maps to this XML element.

xdb:SQLType

PL/SQL:

setSQLType
removeSQLType

Any SQL
data type1,
except
NCHAR,
NVARCHAR
2, and
NCLOB

Name
generated
from element
name

Name of the SQL type corresponding to this XML
element declaration.

xdb:tableProps

PL/SQL:

setTableProps
removeTableProps

Any table
storage
clause

NULL Specifies the TABLE storage clause that is
appended to the default CREATE TABLE statement.
This is meaningful mainly for global and out-of-line
elements. Applicable to object-relational storage
and binary XML storage.

Chapter 18
Oracle XML Schema Annotations

18-16



1 See Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data Types.

See Also:

Object-Relational Storage of XML Schema-Based Data for information about
specifying storage options when manually creating XMLType tables for object-
relational storage

Table 18-2    Annotations in Elements Declaring Global complexType Elements

Attribute Values Default Description

xdb:maintainDOM

PL/SQL:

enableMaintainDom
disableMaintainDom

true | false true If true, then instances of this element
are stored so that they retain DOM
fidelity on output. This implies that
all comments, processing instructions,
namespace declarations, and so on are
retained, in addition to the ordering of
elements.

If false, then the output is not
guaranteed to have the same DOM action
as the input.

xdb:SQLType

PL/SQL:

setSQLType
removeSQLType

Any SQL data
type1 except NCHAR,
NVARCHAR2, and
NCLOB

Name generated from
element name

Name of the SQL type that corresponds
to this XML element declaration.

1 See Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data Types.

18.2.5 XML Schema Annotation Guidelines for Object-Relational
Storage

For XMLType data stored object-relationally, careful planning is called for, to optimize
performance. Similar considerations are in order as for relational data: entity-
relationship models, indexing, data types, table partitions, and so on. To enable XPath
rewrite and achieve optimal performance, you implement many such design choices
using XML schema annotations.

• Avoid Creation of Unnecessary Tables for Unused Top-Level Elements
Whenever a top-level element in an XML schema is never used at the top level in
any corresponding XML instance, you can avoid the creation of associated tables
by adding annotation xdb:defaultTable = "" to the element in the XML schema.
An empty value for this attribute prevents default-table creation.

• Provide Your Own Names for Default Tables
For tuning purposes, you examine execution plan output for your queries. This
refers to the tables that underlie XMLType data stored object-relationally. By default,
these tables have system-generated names. Oracle recommends that you provide

Chapter 18
Oracle XML Schema Annotations

18-17



your own table names instead, especially for tables that you are sure to be
interested in.

• Turn Off DOM Fidelity If Not Needed
By default, XML schema registration generates tables that maintain DOM fidelity.
It is often the case that for data-centric XML data DOM fidelity is not needed. You
can improve the performance of storage, queries, and data modification by instead
using object-relational tables that do not maintain DOM fidelity.

• Annotate Time-Related Elements with a Timestamp Data Type
If your application needs to work with time-zone indicators, then annotate any
XML schema elements of type xs:time and xs:dateTime with xdb:SQLType =
"TIMESTAMP WITH TIME ZONE". This ensures that values containing time-zone
indicators can be stored, retrieved, and compared.

• Add Table and Column Properties
If a table or column underlying object-relational XMLType data needs additional
properties specified, such as partition, tablespace, or compression, use annotation
xdb:tableProps or xdb:columnProps. You can do this to add primary keys or
constraints, for example.

• Store Large Collections Out of Line
If you have large collections then you might need to use annotations
xdb:defaultTable and xdb:SQLInline to specify that collection elements be
stored out of line.

Related Topics

• XPath Rewrite for Object-Relational Storage
For XMLType data stored object-relationally, queries involving XPath expression
arguments to various SQL functions can often be automatically rewritten to queries
against the underlying SQL tables, which are highly optimized.

See Also:

Table 18-1

18.2.5.1 Avoid Creation of Unnecessary Tables for Unused Top-Level Elements
Whenever a top-level element in an XML schema is never used at the top level in
any corresponding XML instance, you can avoid the creation of associated tables by
adding annotation xdb:defaultTable = "" to the element in the XML schema. An
empty value for this attribute prevents default-table creation.

By default, XML schema registration creates a top-level table for each top-level
element defined in the schema. Some such elements might be used at top level in
XML instances that conform to the schema. For example, elements in an XML schema
might be top-level in order to be used as a REF target.

You can use PL/SQL procedure
DBMS_XMLSCHEMA_ANNOTATE.disableDefaultTableCreation to add an empty
xdb:defaultTable attribute to each top-level element that has no xdb:defaultTable
attribute.

Chapter 18
Oracle XML Schema Annotations

18-18



Note:

Any top-level XML schema element that is used as the root element of any
instance documents must have a non-empty xdb:defaultTable attribute.

See Also:

Oracle Database PL/SQL Packages and Types Reference, chapter
"DBMS_XMLSCHEMA_ANNOTATE" for information about PL/SQL
procedure disableDefaultTableCreation.

18.2.5.2 Provide Your Own Names for Default Tables
For tuning purposes, you examine execution plan output for your queries. This refers
to the tables that underlie XMLType data stored object-relationally. By default, these
tables have system-generated names. Oracle recommends that you provide your own
table names instead, especially for tables that you are sure to be interested in.

You do that using annotation xdb:defaultTable.

Related Topics

• Default Tables Created during XML Schema Registration
You can create default tables as part of XML schema registration. Default tables
are most useful when documents are inserted using APIs and protocols such as
FTP and HTTP(S), which do not provide any table specification.

18.2.5.3 Turn Off DOM Fidelity If Not Needed
By default, XML schema registration generates tables that maintain DOM fidelity. It
is often the case that for data-centric XML data DOM fidelity is not needed. You can
improve the performance of storage, queries, and data modification by instead using
object-relational tables that do not maintain DOM fidelity.

You use the annotation xdb:maintainDOM = "false" to do that.

Related Topics

• DOM Fidelity
DOM fidelity means that all information in an XML document is preserved except
whitespace that is insignificant. You can use DOM fidelity to ensure the accuracy
and integrity of XML documents stored in Oracle XML DB.

18.2.5.4 Annotate Time-Related Elements with a Timestamp Data Type
If your application needs to work with time-zone indicators, then annotate any XML
schema elements of type xs:time and xs:dateTime with xdb:SQLType = "TIMESTAMP
WITH TIME ZONE". This ensures that values containing time-zone indicators can be
stored, retrieved, and compared.

Chapter 18
Oracle XML Schema Annotations

18-19



18.2.5.5 Add Table and Column Properties
If a table or column underlying object-relational XMLType data needs additional
properties specified, such as partition, tablespace, or compression, use annotation
xdb:tableProps or xdb:columnProps. You can do this to add primary keys or
constraints, for example.

For example, to achieve table compression for online transaction processing (OLTP),
you would add COMPRESS FOR OLTP using a tableProps attribute.

See Also:

Example 17-9 for an example of specifying Advanced Row Compression
when creating XMLType tables and columns manually

18.2.5.6 Store Large Collections Out of Line
If you have large collections then you might need to use annotations
xdb:defaultTable and xdb:SQLInline to specify that collection elements be stored
out of line.

The maximum number of elements and attributes defined by a complexType is 1000.
It is not possible to create a single table that can manage the SQL objects that are
generated when an instance of that type is stored. If you have large collections, then
you might run up against this limit of 1000 columns for a table.

You can use annotations xdb:defaultTable and xdb:SQLInline to specify that such
collection elements be stored out of line. That means that their data is stored in a
separate table — only a reference to a row in that table is stored in the main collection
table. Use xdb:defaultTable to name the out-of -line table. Annotate each element of
a potentially large collection with xdb:SQLInline = "false", to store it out of line.

Note:

For each inheritance hierarchy or substitution group in an XML schema, a
table is created whose columns cover the content models of that hierarchy or
substitution group. This too can cause the 1000-column limit to be reached.

Related Topics

• ORA-01792 and ORA-04031: Issues with Large XML Schemas
Errors ORA-01792 and ORA-04031 can be raised when you work with large or
complex XML schemas. You can encounter them when you register an XML
schema or you create a table that is based on a global element defined by an
XML schema.

Chapter 18
Oracle XML Schema Annotations

18-20



• Setting Annotation Attribute xdb:SQLInline to false for Out-Of-Line Storage
Set XML schema annotation xdb:SQLInline to false to store an XML fragment
out of line. The element is mapped to a SQL object type with an embedded REF
attribute, which points to another XMLType instance that is stored out of line and
that corresponds to the XML fragment.

18.2.6 Querying a Registered XML Schema to Obtain Annotations
You can query database views USER_XML_SCHEMAS and ALL_XML_SCHEMAS to obtain a
registered XML schema with all of its annotations. The registered version of an XML
schema contains a full set of Oracle XML DB annotations. These annotations were
supplied by a user or set by default during XML schema registration.

Example 18-6 illustrates this. It returns the XML schema as an XMLType instance.

As shown in Example 17-3 and Example 17-4, the location of the registered
XML schema depends on whether it is local or global. If you want to project
specific annotation information to relational columns, you can query RESOURCE_VIEW.
Example 18-7 illustrates this. It obtains the set of global complexType definitions
declared by an XML schema for object-relational storage of XMLType data, and the
corresponding SQL object types and DOM fidelity values.

Example 18-6    Querying View USER_XML_SCHEMAS for a Registered XML Schema

SELECT SCHEMA FROM USER_XML_SCHEMAS
  WHERE SCHEMA_URL = 'http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd';

Example 18-7    Querying Metadata from a Registered XML Schema

SELECT ct.xmlschema_type_name, ct.sql_type_name, ct.dom_fidelity
  FROM RESOURCE_VIEW,
       XMLTable(
         XMLNAMESPACES (
           'http://xmlns.oracle.com/xdb/XDBResource.xsd' AS "r",
           'http://xmlns.oracle.com/xdb/documentation/purchaseOrder' AS "po",
           'http://www.w3.org/2001/XMLSchema' AS "xs",
           'http://xmlns.oracle.com/xdb' AS "xdb"),
         '/r:Resource/r:Contents/xs:schema/xs:complexType' PASSING RES
         COLUMNS
           xmlschema_type_name VARCHAR2(30) PATH '@name',
           sql_type_name       VARCHAR2(30) PATH '@xdb:SQLType',
           dom_fidelity        VARCHAR2(6)  PATH '@xdb:maintainDOM') ct
  WHERE
    equals_path(
      RES,
      '/sys/schemas/SCOTT/xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd')
    =1;

XMLSCHEMA_TYPE_NAME        SQL_TYPE_NAME            DOM_FIDELITY
-------------------------  -----------------------  ------------
PurchaseOrderType          PURCHASEORDER_T          true
LineItemsType              LINEITEMS_T              true
LineItemType               LINEITEM_T               true
PartType                   PART_T                   true

Chapter 18
Oracle XML Schema Annotations

18-21



ActionsType                ACTIONS_T                true
RejectionType              REJECTION_T              true
ShippingInstructionsType   SHIPPING_INSTRUCTIONS_T  true

7 rows selected.

• You Can Apply Annotations from One XML Schema to Another
Sometimes you need to apply the annotations from one XML schema to another
XML schema. A typical use case is applying the annotations from an older version
of a schema to a new version. You can get and set annotations using PL/SQL
subprograms getSchemaAnnotations and setSchemaAnnotations, respectively.

18.2.6.1 You Can Apply Annotations from One XML Schema to Another
Sometimes you need to apply the annotations from one XML schema to another
XML schema. A typical use case is applying the annotations from an older version
of a schema to a new version. You can get and set annotations using PL/SQL
subprograms getSchemaAnnotations and setSchemaAnnotations, respectively.

PL/SQL function getSchemaAnnotations returns all of the annotations from an
XML schema. PL/SQL procedure setSchemaAnnotations sets annotations. These
subprograms are in PL/SQL package DBMS_XMLSCHEMA_ANNOTATE.

See Also:

Oracle Database PL/SQL Packages and Types Reference, chapter
"DBMS_XMLSCHEMA_ANNOTATE" for information about PL/SQL
subprograms getSchemaAnnotations and setSchemaAnnotations.

18.3 Use DBMS_XMLSCHEMA to Map XML Schema Data
Types to SQL Data Types

You use PL/SQL package DBMS_XMLSCHEMA to map data types for XML Schema
attributes and elements to SQL data types.

Note:

Do not directly access the SQL data types that are mapped from XML
Schema data types during XML schema registration. These SQL types are
part of the implementation of Oracle XML DB. They are not exposed for
your use. Oracle reserves the right to change the implementation at any
time, including in a product patch. Such a change by Oracle will have no
effect on applications that abide by the XML abstraction, but it might impact
applications that directly access these data types.

• Example of Mapping XML Schema Data Types to SQL
An example illustrates mapping XML Schema data types to SQL data types.

Chapter 18
Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data Types

18-22



• XML Schema Attribute Data Types Mapped to SQL
An XML attribute declaration can specify its XML Schema data type in terms of a
primitive type, a local simpleType, a global simpleType, or a reference to a global
attribute (ref=".."). The SQL data type and its associated information are derived
from the base XML Schema type.

• XML Schema Element Data Types Mapped to SQL
An XML element declaration can specify its XML Schema data type using a
primitive type, a local or global simpleType, a local or global complexType, or a
reference to a global element (ref=".."). The SQL data type and its associated
information are derived from the base XML Schema type.

• How XML Schema simpleType Is Mapped to SQL
XML simpleType is mapped to SQL object types in various ways, depending on
how the simpleType is defined.

• How XML Schema complexType Is Mapped to SQL
XML complexType is mapped to SQL object types in various ways, depending on
how the complexType is defined.

18.3.1 Example of Mapping XML Schema Data Types to SQL
An example illustrates mapping XML Schema data types to SQL data types.

Example 18-8 uses attribute SQLType to specify the data-type mapping. It also uses
attribute SQLName to specify the object attributes to use for various XML elements and
attributes.

Example 18-8    Mapping XML Schema Data Types to SQL Data Types Using Attribute SQLType

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
           xmlns:xdb="http://xmlns.oracle.com/xdb"
           version="1.0">
  <xs:element name="PurchaseOrder" type="PurchaseOrderType" xdb:defaultTable="PURCHASEORDER"/>
  <xs:complexType name="PurchaseOrderType" xdb:SQLType="PURCHASEORDER_T">
    <xs:sequence>
      <xs:element name="Reference" type="ReferenceType" minOccurs="1" xdb:SQLName="REFERENCE"/>
      <xs:element name="Actions" type="ActionsType" xdb:SQLName="ACTIONS"/>
      <xs:element name="Reject" type="RejectionType" minOccurs="0" xdb:SQLName="REJECTION"/>
      <xs:element name="Requestor" type="RequestorType" xdb:SQLName="REQUESTOR"/>
      <xs:element name="User" type="UserType" minOccurs="1" xdb:SQLName="USERID"/>
      <xs:element name="CostCenter" type="CostCenterType" xdb:SQLName="COST_CENTER"/>
      <xs:element name="ShippingInstructions" type="ShippingInstructionsType" 
                  xdb:SQLName="SHIPPING_INSTRUCTIONS"/>
      <xs:element name="SpecialInstructions" type="SpecialInstructionsType" 
                  xdb:SQLName="SPECIAL_INSTRUCTIONS"/>
      <xs:element name="LineItems" type="LineItemsType" xdb:SQLName="LINEITEMS"/>
      <xs:element name="Notes" type="po:NotesType" xdb:SQLType="CLOB"/>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="LineItemsType" xdb:SQLType="LINEITEMS_T">
    <xs:sequence>
      <xs:element name="LineItem" type="LineItemType" maxOccurs="unbounded" 
                  xdb:SQLName="LINEITEM" xdb:SQLCollType="LINEITEM_V"/>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="LineItemType" xdb:SQLType="LINEITEM_T">
    <xs:sequence>
      <xs:element name="Description" type="DescriptionType" 
                  xdb:SQLName="DESCRIPTION"/>
      <xs:element name="Part" type="PartType" xdb:SQLName="PART"/>
    </xs:sequence>
    <xs:attribute name="ItemNumber" type="xs:integer" xdb:SQLName="ITEMNUMBER" 

Chapter 18
Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data Types

18-23



                  xdb:SQLType="NUMBER"/>
  </xs:complexType>
  <xs:complexType name="PartType" xdb:SQLType="PART_T">
    <xs:attribute name="Id" xdb:SQLName="PART_NUMBER" xdb:SQLType="VARCHAR2">
      <xs:simpleType>
        <xs:restriction base="xs:string">
          <xs:minLength value="10"/>
          <xs:maxLength value="14"/>
        </xs:restriction>
      </xs:simpleType>
    </xs:attribute>
    <xs:attribute name="Quantity" type="moneyType" xdb:SQLName="QUANTITY"/>
    <xs:attribute name="UnitPrice" type="quantityType" xdb:SQLName="UNITPRICE"/>
  </xs:complexType>

  ...

  <xs:complexType name="ActionsType" xdb:SQLType="ACTIONS_T">
    <xs:sequence>
      <xs:element name="Action" maxOccurs="4" xdb:SQLName="ACTION" xdb:SQLCollType="ACTION_V">
        <xs:complexType xdb:SQLType="ACTION_T">
          <xs:sequence>
            <xs:element name="User" type="UserType" xdb:SQLName="ACTIONED_BY"/>
            <xs:element name="Date" type="DateType" minOccurs="0" xdb:SQLName="DATE_ACTIONED"/>
          </xs:sequence>
        </xs:complexType>
      </xs:element>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="RejectionType" xdb:SQLType="REJECTION_T">
    <xs:all>
      <xs:element name="User" type="UserType" minOccurs="0" xdb:SQLName="REJECTED_BY"/>
      <xs:element name="Date" type="DateType" minOccurs="0" xdb:SQLName="DATE_REJECTED"/>
      <xs:element name="Comments" type="CommentsType" minOccurs="0" xdb:SQLName="REASON_REJECTED"/>
    </xs:all>
  </xs:complexType>
  <xs:complexType name="ShippingInstructionsType" xdb:SQLType="SHIPPING_INSTRUCTIONS_T">
    <xs:sequence>
      <xs:element name="name" type="NameType" minOccurs="0" xdb:SQLName="SHIP_TO_NAME"/>
      <xs:element name="address" type="AddressType" minOccurs="0" xdb:SQLName="SHIP_TO_ADDRESS"/>
      <xs:element name="telephone" type="TelephoneType" minOccurs="0" xdb:SQLName="SHIP_TO_PHONE"/>
    </xs:sequence>
  </xs:complexType>
  ...
</xs:schema>

18.3.2 XML Schema Attribute Data Types Mapped to SQL
An XML attribute declaration can specify its XML Schema data type in terms of a
primitive type, a local simpleType, a global simpleType, or a reference to a global
attribute (ref=".."). The SQL data type and its associated information are derived
from the base XML Schema type.

An attribute declaration can specify its XML Schema data type in terms of any of the
following:

• Primitive type

• Global simpleType, declared within this XML schema or in an external XML
schema

• Reference to global attribute (ref=".."), declared within this XML schema or in an
external XML schema

• Local simpleType

Chapter 18
Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data Types

18-24



In all cases, the SQL data type, any associated information (length, precision), and the
memory mapping information are derived from the simpleType on which the attribute is
based.

• You Can Override the SQLType Value in an XML Schema When Declaring
Attributes
You can explicitly specify a SQLType value in an XML schema, as an annotation.
The SQL data type that you specify is used for XML schema validation, overriding
the default SQL data types.

18.3.2.1 You Can Override the SQLType Value in an XML Schema When
Declaring Attributes

You can explicitly specify a SQLType value in an XML schema, as an annotation. The
SQL data type that you specify is used for XML schema validation, overriding the
default SQL data types.

Only the following specific forms of such SQL data-type overrides are allowed:

• If the default SQL data type is STRING then you can override it with CHAR, VARCHAR,
or CLOB.

• If the default SQL data type is RAW then you can override it with RAW or BLOB.

18.3.3 XML Schema Element Data Types Mapped to SQL
An XML element declaration can specify its XML Schema data type using a primitive
type, a local or global simpleType, a local or global complexType, or a reference to
a global element (ref=".."). The SQL data type and its associated information are
derived from the base XML Schema type.

An element declaration can specify its XML Schema data type in terms of any of the
following:

• Any of the ways for specifying type for an attribute declaration. See XML Schema
Attribute Data Types Mapped to SQL.

• Global complexType, specified within this XML schema document or in an external
XML schema.

• Reference to a global element (ref="..."), which could itself be within this XML
schema document or in an external XML schema.

• Local complexType.

• Override of the SQLType Value in an XML Schema When Declaring Elements
An element based on a complexType is, by default, mapped to a SQL object
type that contains object attributes corresponding to each of its sub-elements
and attributes. You can override this mapping by explicitly specifying a value for
attribute SQLType in the input XML schema.

18.3.3.1 Override of the SQLType Value in an XML Schema When Declaring
Elements

An element based on a complexType is, by default, mapped to a SQL object type that
contains object attributes corresponding to each of its sub-elements and attributes.

Chapter 18
Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data Types

18-25



You can override this mapping by explicitly specifying a value for attribute SQLType in
the input XML schema.

The following values for SQLType are permitted here:

• VARCHAR2

• RAW

• CLOB

• BLOB

These represent storage of the XML data in a text form in the database.

For example, to override the SQLType from VARCHAR2 to CLOB, declare the
xdb namespace using xmlns:xdb="http://xmlns.oracle.com/xdb", and then use
xdb:SQLType = "CLOB".

The following special cases are handled:

• If a cycle is detected when processing the complexType values that are used
to declare elements and the elements declared within the complexType, the
SQLInline attribute is forced to be false, and the correct SQL mapping is set
to REF XMLType.

• If maxOccurs > 1, a varray type might be created.

– If SQLInline = "true", then a varray type is created whose element type is
the SQL data type previously determined. Cardinality of the varray is based
on the value of attribute maxOccurs. Either you specify the name of the varray
type using attribute SQLCollType, or it is derived from the element name.

– If SQLInline = "false", then the SQL data type is set to
XDB.XDB$XMLTYPE_REF_LIST_T. This is a predefined data type that represents
an array of REF values pointing to XMLType instances.

• If the element is a global element, or if SQLInline = "false", then the system
creates a default table. Either you specify the name of the default table, or it is
derived from the element name.

18.3.4 How XML Schema simpleType Is Mapped to SQL
XML simpleType is mapped to SQL object types in various ways, depending on how
the simpleType is defined.

Figure 18-1 illustrates one such mapping, XML string type to SQL VARCHAR2 or CLOB.

Chapter 18
Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data Types

18-26



Figure 18-1    simpleType Mapping: XML Strings to SQL VARCHAR2 or CLOB

. . .

Employee_tab of type OBJ_T

. . . Resume

CLOB 

. . .

. . . . . . . . .

Entire resume 

value is stored

in the CLOB

<element name = "Resume" type = "string">

.


.


.

.


.


.

Table 18-3 through Table 18-6 present the default mapping of XML Schema
simpleType to SQL, as specified in the XML Schema definition.

For example:

• An XML Schema primitive type is mapped to the closest SQL data type. For
example, DECIMAL, POSITIVEINTEGER, and FLOAT are all mapped to SQL NUMBER.

• An XML Schema enumeration type is mapped to a SQL object type with a single
RAW(n) object attribute. The value of n is determined by the number of possible
values in the enumeration declaration.

• An XML Schema list or a union type is mapped to a SQL string (VARCHAR2 or CLOB)
data type.

Table 18-3    XML Schema String Data Types Mapped to SQL

XML Schema
String Type

Length or
MaxLength
Facet

Default SQL Data Type Compatible SQL Data
Type

string n VARCHAR2(n) if n < 4000, else VARCHAR2(4000) CHAR, CLOB

string - VARCHAR2(4000) if mapUnboundedStringToLob =
"false", CLOB

CHAR, CLOB

Table 18-4    XML Schema Binary Data Types (hexBinary/base64Binary) Mapped to SQL

XML Schema Binary Type Length or
MaxLength
Facet

Default SQL Data Type Compatible
SQL Data
Type

hexBinary, base64Binary n RAW(n) if n < 2000, else RAW(2000) RAW, BLOB

hexBinary, base64Binary - RAW(2000) if mapUnboundedStringToLob =
"false", BLOB

RAW, BLOB

Chapter 18
Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data Types

18-27



Table 18-5    Default Mapping of Numeric XML Schema Primitive Types to SQL

XML Schema Simple
Type

Default SQL Data
Type

totalDigits (m),
fractionDigits(n) Specified

Compatible SQL Data Types

float NUMBER NUMBER(m+n,n) FLOAT, DOUBLE, BINARY_FLOAT

double NUMBER NUMBER(m+n,n) FLOAT, DOUBLE, BINARY_DOUBLE

decimal NUMBER NUMBER(m+n,n) FLOAT, DOUBLE

integer NUMBER NUMBER(m+n,n) NUMBER

nonNegativeInteger NUMBER NUMBER(m+n,n) NUMBER

positiveInteger NUMBER NUMBER(m+n,n) NUMBER

nonPositiveInteger NUMBER NUMBER(m+n,n) NUMBER

negativeInteger NUMBER NUMBER(m+n,n) NUMBER

long NUMBER(20) NUMBER(m+n,n) NUMBER

unsignedLong NUMBER(20) NUMBER(m+n,n) NUMBER

int NUMBER(10) NUMBER(m+n,n) NUMBER

unsignedInt NUMBER(10) NUMBER(m+n,n) NUMBER

short NUMBER(5) NUMBER(m+n,n) NUMBER

unsignedShort NUMBER(5) NUMBER(m+n,n) NUMBER

byte NUMBER(3) NUMBER(m+n,n) NUMBER

unsignedByte NUMBER(3) NUMBER(m+n,n) NUMBER

Table 18-6    XML Schema Date and Time Data Types Mapped to SQL

XML Schema Date or Time Type Default SQL Data Type Compatible SQL Data Types

dateTime TIMESTAMP TIMESTAMP WITH TIME ZONE, DATE

time TIMESTAMP TIMESTAMP WITH TIME ZONE, DATE

date DATE TIMESTAMP WITH TIME ZONE

gDay DATE TIMESTAMP WITH TIME ZONE

gMonth DATE TIMESTAMP WITH TIME ZONE

gYear DATE TIMESTAMP WITH TIME ZONE

gYearMonth DATE TIMESTAMP WITH TIME ZONE

gMonthDay DATE TIMESTAMP WITH TIME ZONE

duration VARCHAR2(4000) none

Table 18-7    Default Mapping of Other XML Schema Primitive and Derived Data Types to SQL

XML Schema Primitive or Derived Type Default SQL Data Type Compatible SQL Data Types

boolean RAW(1) VARCHAR2

language(string) VARCHAR2(4000) CLOB, CHAR

NMTOKEN(string) VARCHAR2(4000) CLOB, CHAR

NMTOKENS(string) VARCHAR2(4000) CLOB, CHAR

Chapter 18
Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data Types

18-28



Table 18-7    (Cont.) Default Mapping of Other XML Schema Primitive and Derived Data Types to
SQL

XML Schema Primitive or Derived Type Default SQL Data Type Compatible SQL Data Types

Name(string) VARCHAR2(4000) CLOB, CHAR

NCName(string) VARCHAR2(4000) CLOB, CHAR

ID VARCHAR2(4000) CLOB, CHAR

IDREF VARCHAR2(4000) CLOB, CHAR

IDREFS VARCHAR2(4000) CLOB, CHAR

ENTITY VARCHAR2(4000) CLOB, CHAR

ENTITIES VARCHAR2(4000) CLOB, CHAR

NOTATION VARCHAR2(4000) CLOB, CHAR

anyURI VARCHAR2(4000) CLOB, CHAR

anyType VARCHAR2(4000) CLOB, CHAR

anySimpleType VARCHAR2(4000) CLOB, CHAR

QName XDB.XDB$QNAME none

normalizedString VARCHAR2(4000) none

token VARCHAR2(4000) none

• NCHAR, NVARCHAR2, and NCLOB SQLType Values Are Not Supported for
SQLType
Oracle XML DB does not support NCHAR, NVARCHAR2, and NCLOB as values for
attribute SQLType: You cannot specify that an XML element or attribute is to be of
type NCHAR, NVARCHAR2, or NCLOB. Also, if you provide your own data type, do not
use any of these data types.

• simpleType: How XML Strings Are Mapped to SQL VARCHAR2 Versus CLOB
If an XML schema specifies a data type as a string with maxLength less than 4000,
it is mapped to a VARCHAR2 object attribute of the specified length. If maxLength is
not specified in the schema then the XML Schema data type can only be mapped
to a LOB.

• How XML Schema Time Zones Are Mapped to SQL
If your application needs to work with time-zone indicators, then use attribute
SQLType to specify the SQL data type as TIMESTAMP WITH TIME ZONE. This
ensures that values containing time-zone indicators can be stored and retrieved
correctly.

18.3.4.1 NCHAR, NVARCHAR2, and NCLOB SQLType Values Are Not
Supported for SQLType

Oracle XML DB does not support NCHAR, NVARCHAR2, and NCLOB as values for attribute
SQLType: You cannot specify that an XML element or attribute is to be of type NCHAR,
NVARCHAR2, or NCLOB. Also, if you provide your own data type, do not use any of these
data types.

Chapter 18
Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data Types

18-29



Related Topics

• Oracle XML DB Restrictions
The restrictions associated with Oracle XML DB are listed here.

18.3.4.2 simpleType: How XML Strings Are Mapped to SQL VARCHAR2
Versus CLOB

If an XML schema specifies a data type as a string with maxLength less than 4000,
it is mapped to a VARCHAR2 object attribute of the specified length. If maxLength is not
specified in the schema then the XML Schema data type can only be mapped to a
LOB.

This is sub-optimal when most of the string values are small and only a small fraction
of them are large enough to need a LOB.

See Also:

Table 18-3

18.3.4.3 How XML Schema Time Zones Are Mapped to SQL
If your application needs to work with time-zone indicators, then use attribute SQLType
to specify the SQL data type as TIMESTAMP WITH TIME ZONE. This ensures that values
containing time-zone indicators can be stored and retrieved correctly.

The following XML Schema data types allow for an optional time-zone indicator as part
of their literal values:

• xsd:dateTime

• xsd:time

• xsd:date

• xsd:gYear

• xsd:gMonth

• xsd:gDay

• xsd:gYearMonth

• xsd:gMonthDay

By default, XML schema registration maps xsd:dateTime and xsd:time to SQL data
type TIMESTAMP, and it maps all other date types to SQL data type DATE.

SQL data types TIMESTAMP and DATE do not permit a time-zone indicator. For this
reason, if your application needs time-zone information then you must use attribute
SQLType to specify SQL data type TIMESTAMP WITH TIME ZONE. For example:

<element name="dob" type="xsd:dateTime"
          xdb:SQLType="TIMESTAMP WITH TIME ZONE"/>

Chapter 18
Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data Types

18-30



<attribute name="endofquarter" type="xsd:gMonthDay"
           xdb:SQLType="TIMESTAMP WITH TIME ZONE"/>

• Use Trailing Z to Indicate UTC Time Zone
You can specify an XML Schema time-zone component as Z, to indicate UTC time
zone. When a value with a trailing Z is stored as SQL TIMESTAMP WITH TIME ZONE,
the time zone is actually stored as +00:00. The retrieved value contains the trailing
+00:00 and not the original Z.

18.3.4.3.1 Use Trailing Z to Indicate UTC Time Zone
You can specify an XML Schema time-zone component as Z, to indicate UTC time
zone. When a value with a trailing Z is stored as SQL TIMESTAMP WITH TIME ZONE, the
time zone is actually stored as +00:00. The retrieved value contains the trailing +00:00
and not the original Z.

For example, if the value in an input XML document is 1973-02-12T13:44:32Z then the
output is 1973-02-12T13:44:32.000000+00:00.

18.3.5 How XML Schema complexType Is Mapped to SQL
XML complexType is mapped to SQL object types in various ways, depending on how
the complexType is defined.

Using XML Schema, a complexType is mapped to a SQL object type as follows:

• XML attributes declared within the complexType are mapped to SQL object
attributes. The simpleType defining an XML attribute determines the SQL data
type of the corresponding object attribute.

• XML elements declared within the complexType are also mapped to SQL object
attributes. The simpleType or complexType defining an XML element determines
the SQL data type of the corresponding object attribute.

If the XML element is declared with attribute maxOccurs > 1 then it is mapped to a
SQL collection (object) attribute. The collection is a varray value that is an ordered
collections table (OCT).

• Attribute Specification in a complexType XML Schema Declaration
When an element is based on a global complexType, attribute SQLType must be
specified for the complexType declaration. You can optionally include the same
SQLType attribute within the element declaration.

18.3.5.1 Attribute Specification in a complexType XML Schema Declaration
When an element is based on a global complexType, attribute SQLType must be
specified for the complexType declaration. You can optionally include the same
SQLType attribute within the element declaration.

If you do not specify attribute SQLType for the global complexType, Oracle XML DB
creates a SQLType attribute with an internally generated name. The elements that

Chapter 18
Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data Types

18-31



reference this global type cannot then have a different value for SQLType. The following
code is acceptable:

  <xs:complexType name="LineItemsType" xdb:SQLType="LINEITEMS_T">
    <xs:sequence>
      <xs:element name="LineItem" type="LineItemType" maxOccurs="unbounded" 
                  xdb:SQLName="LINEITEM" xdb:SQLCollType="LINEITEM_V"/>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="LineItemType" xdb:SQLType="LINEITEM_T">
    <xs:sequence>
      <xs:element name="Description" type="DescriptionType" 
                  xdb:SQLName="DESCRIPTION"/>
      <xs:element name="Part" type="PartType" xdb:SQLName="PART"/>
    </xs:sequence>
    <xs:attribute name="ItemNumber" type="xs:integer" xdb:SQLName="ITEMNUMBER" 
                  xdb:SQLType="NUMBER"/>
  </xs:complexType>
  <xs:complexType name="PartType" xdb:SQLType="PART_T">
    <xs:attribute name="Id" xdb:SQLName="PART_NUMBER" xdb:SQLType="VARCHAR2">
      <xs:simpleType>
        <xs:restriction base="xs:string">
          <xs:minLength value="10"/>
          <xs:maxLength value="14"/>
        </xs:restriction>
      </xs:simpleType>
    </xs:attribute>
    <xs:attribute name="Quantity" type="moneyType" xdb:SQLName="QUANTITY"/>
    <xs:attribute name="UnitPrice" type="quantityType" xdb:SQLName="UNITPRICE"/>
  </xs:complexType>

18.4 complexType Extensions and Restrictions in Oracle
XML DB

In XML Schema, complexType values are declared based on complexContent and
simpleContent. Oracle XML DB defines various extensions and restrictions to
complexType.

• simpleContent is declared as an extension of simpleType.

• complexContent is declared as one of the following:

– Base type

– complexType extension

– complexType restriction

• complexType Declarations in XML Schema: Handling Inheritance
For complexType, Oracle XML DB handles inheritance in an XML schema
differently for types that extend and types that restrict other complex types

• How a complexType Based on simpleContent Is Mapped to an Object Type
A complex type based on a simpleContent declaration is mapped to an
object type with attributes corresponding to the XML attributes and an extra

Chapter 18
complexType Extensions and Restrictions in Oracle XML DB

18-32



SYS_XDBBODY$ attribute, which corresponds to the body value. The data type of
the body attribute is based on a simpleType that defines the body type.

• How any and anyAttribute Declarations Are Mapped to Object Type Attributes
Oracle XML DB maps the element declaration any and the attribute declaration
anyAttribute to VARCHAR2 attributes, or optionally to Large Objects (LOBs), in the
created object type. The object attribute stores the text of the XML fragment that
matches the any declaration.

18.4.1 complexType Declarations in XML Schema: Handling
Inheritance

For complexType, Oracle XML DB handles inheritance in an XML schema differently
for types that extend and types that restrict other complex types

• For complex types declared to extend other complex types, the SQL type
corresponding to the base type is specified as the supertype for the current SQL
type. Only the additional attributes and elements declared in the sub-complextype
are added as attributes to the sub-object-type.

• For complex types declared to restrict other complex types, the SQL type for the
sub-complex type is set to be the same as the SQL type for its base type. This is
because SQL does not support restriction of object types through the inheritance
mechanism. Any constraints are imposed by the restriction in XML schema.

Example 18-9 shows the registration of an XML schema that defines a base
complexType Address and two extensions USAddress and IntlAddress.

Note:

Type intladdr_t is created as a final type because the corresponding
complexType specifies the "final" attribute. By default, all complexTypes
can be extended and restricted by other types, so all SQL object types are
created as types that are not final.

CREATE TYPE addr_t AS OBJECT(SYS_XDBPD$ XDB.XDB$RAW_LIST_T,
                             "street" VARCHAR2(4000),
                             "city" VARCHAR2(4000)) NOT FINAL;
CREATE TYPE usaddr_t UNDER addr_t ("zip" VARCHAR2(4000)) NOT FINAL;
CREATE TYPE intladdr_t UNDER addr_t ("country" VARCHAR2(4000)) FINAL;

Example 18-10 shows the registration of an XML schema that defines a base
complexType Address and a restricted type LocalAddress that prohibits the
specification of country attribute.

Because SQL inheritance does not support a notion of restriction, the SQL data type
corresponding to a restricted complexType is a empty subtype of the parent object
type. For the XML schema of Example 18-10, Oracle XML DB generates the following
SQL types:

CREATE TYPE addr_t AS OBJECT (SYS_XDBPD$ XDB.XDB$RAW_LIST_T,
                              "street"   VARCHAR2(4000),
                              "city"     VARCHAR2(4000),

Chapter 18
complexType Extensions and Restrictions in Oracle XML DB

18-33



                              "zip"      VARCHAR2(4000),
                              "country"  VARCHAR2(4000)) NOT FINAL;
CREATE TYPE usaddr_t UNDER addr_t;

Example 18-9    XML Schema Inheritance: complexContent as an Extension of
complexTypes

DECLARE
  doc VARCHAR2(3000) :=
    '<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
                xmlns:xdb="http://xmlns.oracle.com/xdb">
       <xs:complexType name="Address" xdb:SQLType="ADDR_T">
         <xs:sequence>
           <xs:element name="street" type="xs:string"/>
           <xs:element name="city" type="xs:string"/>
         </xs:sequence>
       </xs:complexType>
       <xs:complexType name="USAddress" xdb:SQLType="USADDR_T">
         <xs:complexContent>
           <xs:extension base="Address">
             <xs:sequence>
               <xs:element name="zip" type="xs:string"/>
             </xs:sequence>
           </xs:extension>
         </xs:complexContent>
       </xs:complexType>
       <xs:complexType name="IntlAddress" final="#all" 
xdb:SQLType="INTLADDR_T">
         <xs:complexContent>
           <xs:extension base="Address">
             <xs:sequence>
               <xs:element name="country" type="xs:string"/>
             </xs:sequence>
           </xs:extension>
         </xs:complexContent>
       </xs:complexType>
     </xs:schema>';
BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://www.oracle.com/PO.xsd',
    SCHAMEDOC => doc);
END;

Example 18-10    Inheritance in XML Schema: Restrictions in complexTypes

DECLARE
  doc varchar2(3000) :=
    '<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
                xmlns:xdb="http://xmlns.oracle.com/xdb">
       <xs:complexType name="Address" xdb:SQLType="ADDR_T">
         <xs:sequence>
           <xs:element name="street" type="xs:string"/>
           <xs:element name="city" type="xs:string"/>
           <xs:element name="zip" type="xs:string"/>

Chapter 18
complexType Extensions and Restrictions in Oracle XML DB

18-34



           <xs:element name="country" type="xs:string" minOccurs="0"
                       maxOccurs="1"/>
         </xs:sequence>
       </xs:complexType>
       <xs:complexType name="LocalAddress" xdb:SQLType="USADDR_T">
         <xs:complexContent>
           <xs:restriction base="Address">
             <xs:sequence>
               <xs:element name="street" type="xs:string"/>
               <xs:element name="city" type="xs:string"/>
               <xs:element name="zip" type="xs:string"/>
               <xs:element name="country" type="xs:string" 
                           minOccurs="0" maxOccurs="0"/>
             </xs:sequence>
           </xs:restriction>
         </xs:complexContent>
       </xs:complexType>
     </xs:schema>';
BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://www.oracle.com/PO.xsd',
    SCHEMADOC => doc);
END;

18.4.2 How a complexType Based on simpleContent Is Mapped to an
Object Type

A complex type based on a simpleContent declaration is mapped to an object
type with attributes corresponding to the XML attributes and an extra SYS_XDBBODY$
attribute, which corresponds to the body value. The data type of the body attribute is
based on a simpleType that defines the body type.

For the XML schema of Example 18-11, Oracle XML DB generates the following type:

CREATE TYPE obj_t AS OBJECT(SYS_XDBPD$ XDB.XDB$RAW_LIST_T, 
                            SYS_XDBBODY$ VARCHAR2(4000));

Example 18-11    XML Schema complexType: Mapping complexType to
simpleContent

DECLARE
  doc VARCHAR2(3000) :=
    '<schema xmlns="http://www.w3.org/2001/XMLSchema"               
             targetNamespace="http://www.oracle.com/emp.xsd"      
             xmlns:emp="http://www.oracle.com/emp.xsd" 
             xmlns:xdb="http://xmlns.oracle.com/xdb"> 
       <complexType name="name" xdb:SQLType="OBJ_T"> 
         <simpleContent> 
           <restriction base="string"> 
           </restriction> 
         </simpleContent> 
       </complexType>
     </schema>';

Chapter 18
complexType Extensions and Restrictions in Oracle XML DB

18-35



BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://www.oracle.com/emp.xsd',
    SCHEMADOC => doc);
END;

18.4.3 How any and anyAttribute Declarations Are Mapped to Object
Type Attributes

Oracle XML DB maps the element declaration any and the attribute declaration
anyAttribute to VARCHAR2 attributes, or optionally to Large Objects (LOBs), in the
created object type. The object attribute stores the text of the XML fragment that
matches the any declaration.

• The namespace attribute can be used to restrict the contents so that they belong to
a specified namespace.

• The processContents attribute within the any element declaration, indicates the
level of validation required for the contents matching the any declaration.

Note:

Starting with Oracle Database 12c Release 2 (12.2.0.1), when an XML
schema is registered for object-relational XMLType storage by the common
user of a multitenant container database (CDB) or by an application common
user, you must annotate the complex type with xdb:SQLType to specify the
corresponding SQL type to use. Otherwise, an error is raised.

The code in Example 18-12 declares an any element and maps it to the column
SYS_XDBANY$, in object type obj_t. It also declares that attribute processContents
does not validate contents that match the any declaration.

For the XML schema of Example 18-12, Oracle XML DB generates the following type:

CREATE TYPE obj_t AS OBJECT(SYS_XDBPD$ XDB.XDB$RAW_LIST_T,
                            Name VARCHAR2(4000), 
                            Age NUMBER, 
                            SYS_XDBANY$ VARCHAR2(4000));

Example 18-12    XML Schema: Mapping complexType to any/anyAttribute

DECLARE
  doc VARCHAR2(3000) :=
    '<schema xmlns="http://www.w3.org/2001/XMLSchema"  
             targetNamespace="http://www.oracle.com/any.xsd" 
             xmlns:emp="http://www.oracle.com/any.xsd" 
             xmlns:xdb="http://xmlns.oracle.com/xdb">
       <complexType name="Employee" xdb:SQLType="OBJ_T">
         <sequence>
           <element name="Name" type="string"/>
           <element name="Age" type="decimal"/>

Chapter 18
complexType Extensions and Restrictions in Oracle XML DB

18-36



           <any namespace="http://www/w3.org/2001/xhtml"
                processContents="skip"/>
         </sequence>
       </complexType>
     </schema>';
BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://www.oracle.com/emp.xsd',
    SCHEMADOC => doc);
END;

18.5 Creating XML Schema-Based XMLType Columns and
Tables

After an XML schema has been registered with Oracle XML DB, you can reference it
when you define XMLType tables or columns.

If you specify no storage model when creating an XMLType table or column for XML
Schema-based data then the storage model used is that specified during registration
of the referenced XML schema. If no storage model was specified for the XML schema
registration, then object-relational storage is used.

Example 18-13 shows how to manually create table purchaseorder, the default table
for PurchaseOrder elements.

The CREATE TABLE statement of Example 18-13 is equivalent to the CREATE TABLE
statement that is generated automatically by Oracle XML DB when you set parameter
GENTABLES to TRUE during XML schema registration.

The XML schema referenced Example 18-13 specifies that table purchaseorder is the
default table for PurchaseOrder elements. When an XML document compliant with the
XML schema is inserted into Oracle XML DB Repository using protocols or PL/SQL,
the content of the document is stored as a row in table purchaseorder.

When an XML schema is registered as a global schema, you must grant the
appropriate access rights on the default table to all other users of the database, before
they can work with instance documents that conform to the globally registered XML
schema.

Each member of the varray that manages the collection of Action elements is
stored in the ordered collection table action_table. Each member of the varray that
manages the collection of LineItem elements is stored as a row in ordered collection
table lineitem_table. The ordered collection tables are heap-based. Because of the
PRIMARY KEY specification, they automatically contain pseudocolumn NESTED_TABLE_ID
and column SYS_NC_ARRAY_INDEX$, which are required to link them back to the parent
column.

XML schema registration automatically generates ordered collection tables (OCTs) for
collections. These OCTs are given system-generated names, which can be difficult
to work with. You can give them more meaningful names using the SQL statement
RENAME TABLE.

The CREATE TABLE statement in Example 18-13 corresponds to a purchase-order
document with a single level of nesting: The varray that manages the collection of
LineItem elements is ordered collection table lineitem_table.

Chapter 18
Creating XML Schema-Based XMLType Columns and Tables

18-37



What if you had a different XML schema that had, say, a collection of Shipment
elements inside a Shipments element that was, in turn, inside a LineItem element? In
that case, you could create the table manually as shown in Example 18-14.

A SQL*Plus DESCRIBE statement can be used to view information about an XMLType
table, as shown in Example 18-15.

The output of the DESCRIBE statement of Example 18-15 shows the following
information about table purchaseorder:

• The table is an XMLType table

• The table is constrained to storing PurchaseOrder documents as defined by the
PurchaseOrder XML schema

• Rows in this table are stored as a set of objects in the database

• SQL type purchaseorder_t is the base object for this table

Example 18-13    Creating an XMLType Table that Conforms to an XML Schema

CREATE TABLE purchaseorder OF XMLType
  XMLSCHEMA "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd"
  ELEMENT "PurchaseOrder"
  VARRAY "XMLDATA"."ACTIONS"."ACTION"
    STORE AS TABLE action_table 
                   ((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$)))
  VARRAY "XMLDATA"."LINEITEMS"."LINEITEM"
    STORE AS TABLE lineitem_table 
                   ((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$)));

Example 18-14    Creating an XMLType Table for Nested Collections

CREATE TABLE purchaseorder OF XMLType
  XMLSCHEMA "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd"
  ELEMENT "PurchaseOrder"
  VARRAY "XMLDATA"."ACTIONS"."ACTION"
    STORE AS TABLE action_table 
                   ((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$)))
                   VARRAY "XMLDATA"."LINEITEMS"."LINEITEM"
    STORE AS TABLE lineitem_table 
                   ((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$))
                    VARRAY "SHIPMENTS"."SHIPMENT"
                      STORE AS TABLE shipments_table
                                     ((PRIMARY KEY (NESTED_TABLE_ID,
                                                    SYS_NC_ARRAY_INDEX$))));

Example 18-15    Using DESCRIBE with an XML Schema-Based XMLType Table

DESCRIBE purchaseorder
Name                                      Null?    Type
----------------------------------------- -------- ----------------------
TABLE of SYS.XMLTYPE(
           XMLSchema
             "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd"
           Element "PurchaseOrder")
  STORAGE Object-relational TYPE "PURCHASEORDER_T"

Chapter 18
Creating XML Schema-Based XMLType Columns and Tables

18-38



Related Topics

• Local and Global XML Schemas
An XML schema can be registered as local (visible only to its owner, by default) or
global (visible to all database users, by default).

18.6 Overview of Partitioning XMLType Tables and Columns
Stored Object-Relationally

When you partition an object-relational XMLType table or a table with an XMLType
column that is stored object-relationally and you use list, range, or hash partitioning,
any ordered collection tables (OCTs) or out-of-line tables within the data are
automatically partitioned accordingly, by default.

This equipartitioning means that the partitioning of an OCT or an out-of-line table
follows the partitioning scheme of its parent (base) table. There is a corresponding
child-table partition for each partition of the base table. A child element is stored in the
child-table partition that corresponds to the base-table partition of its parent element.

Storage attributes for a base table partition are, by default, also used for the
corresponding child-table partitions. You can override these storage attributes for a
given child-table partition.

Similarly, by default, the name of an OCT partition is the same as its base (parent)
table, but you can override this behavior by specifying the name to use. The name
of an out-of-line table partition is always the same as the partition of its parent-table
(which could be a base table or an OCT).

Note:

• Equipartitioning of XMLType data stored object-relationally is not available
in releases prior to Oracle Database 11g Release 1 (11.1).

• Equipartitioning of XMLType data that is stored out of line is not available
in releases prior to Oracle Database 11g Release 2 (11.2.0.2). Starting
with that release, out-of-line tables are not shared: You cannot create
two top-level tables that are based on the same XML schema, if that
schema specifies an out-of-line table.

You can prevent partitioning of OCTs by specifying the keyword GLOBAL in
a CREATE TABLE statement. (Starting with Oracle Database 11g Release
1 (11.1), the default behavior uses keyword LOCAL). For information about
converting a non-partitioned collection table to a partitioned collection table,
see Oracle Database VLDB and Partitioning Guide.

You can prevent partitioning of out-of-line tables, and thus allow out-of-line
sharing, by turning on event 31178 with level 0x200:

ALTER SESSION SET EVENTS '31178 TRACE NAME CONTEXT FOREVER, LEVEL 0x200'

Chapter 18
Overview of Partitioning XMLType Tables and Columns Stored Object-Relationally

18-39



• Examples of Partitioning XMLType Data Stored Object-Relationally
You can specify partitioning information for an object-relational XMLType base table
during either the XML schema registration or the table creation. Examples here
illustrate this.

• Partition Maintenance for XMLType Data Stored Object-Relationally
You need not define or maintain child-table partitions manually. When you perform
partition maintenance on the base (parent) table, corresponding maintenance is
automatically performed on the child tables as well.

See Also:

Oracle Database SQL Language Reference for information about creating
tables with partitions using keywords GLOBAL and LOCAL

18.6.1 Examples of Partitioning XMLType Data Stored Object-
Relationally

You can specify partitioning information for an object-relational XMLType base table
during either the XML schema registration or the table creation. Examples here
illustrate this.

• During XML schema registration, using XML Schema annotation xdb:tableProps

• During table creation using CREATE TABLE

Example 18-16 and Example 18-17 illustrate this. These two examples have exactly
the same effect. They partition the base purchaseorder table using the Reference
element to specify ranges. They equipartition the child table of line items with respect
to the base table.

Example 18-16 shows element PurchaseOrder from the purchase-order XML schema,
annotated to partition the base table and its child table of line items.

Example 18-17 specifies the same partitioning as in Example 18-16, but it does so
during the creation of the base table purchaseorder.

Example 18-16 and Example 18-17 also show how you can specify object storage
options for the individual child-table partitions. In this case, the STORAGE clauses
specify that extents of size 14M are to be allocated initially for each of the child-table
partitions.

See Also:

• Example A-2

• Oracle Database Object-Relational Developer's Guide for more
information about partitioning object-relational data

• Oracle Database VLDB and Partitioning Guide for more information
about partitioning

Chapter 18
Overview of Partitioning XMLType Tables and Columns Stored Object-Relationally

18-40



Example 18-16    Specifying Partitioning Information During XML Schema
Registration

<xs:element name="PurchaseOrder" type="PurchaseOrderType"
            xdb:defaultTable="PURCHASEORDER"
            xdb:tableProps =
              "VARRAY XMLDATA.LINEITEMS.LINEITEM
                 STORE AS TABLE lineitem_table
                   ((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$)))
                   PARTITION BY RANGE (XMLDATA.Reference)
                     (PARTITION p1 VALUES LESS THAN (1000)
                        VARRAY XMLDATA.LINEITEMS.LINEITEM
                          STORE AS TABLE lineitem_p1 (STORAGE (MINEXTENTS 13)),
                      PARTITION p2 VALUES LESS THAN (2000)
                        VARRAY XMLDATA.LINEITEMS.LINEITEM
                          STORE AS TABLE lineitem_p2 (STORAGE (MINEXTENTS 
13)))"/>

Example 18-17    Specifying Partitioning Information During Table Creation

CREATE TABLE purchaseorder OF XMLType
  XMLSCHEMA "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd"
  ELEMENT "PurchaseOrder"
  VARRAY "XMLDATA"."LINEITEMS"."LINEITEM" STORE AS TABLE lineitem_table
    ((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$)))
    PARTITION BY RANGE (XMLDATA.Reference)
      (PARTITION p1 VALUES LESS THAN (1000)
         VARRAY "XMLDATA"."LINEITEMS"."LINEITEM" STORE AS TABLE lineitem_p1
           (STORAGE (MINEXTENTS 13)),
       PARTITION p2 VALUES LESS THAN (2000)
         VARRAY  "XMLDATA"."LINEITEMS"."LINEITEM" STORE AS TABLE lineitem_p2
           (STORAGE (MINEXTENTS 13)));

18.6.2 Partition Maintenance for XMLType Data Stored Object-
Relationally

You need not define or maintain child-table partitions manually. When you perform
partition maintenance on the base (parent) table, corresponding maintenance is
automatically performed on the child tables as well.

There are a few exceptions to the general rule that you perform partition maintenance
only on the base table. In the following cases you perform maintenance on a child
table:

• Modify the default physical storage attributes of a collection partition

• Modify the physical storage attributes of a collection partition

• Move a collection partition to a different segment, possibly in a different tablespace

• Rename a collection partition

For example, if you change the tablespace of a base table, that change is not
cascaded to its child-table partitions. You must manually use ALTER TABLE MOVE
PARTITION on the child-table partitions to change their tablespace.

Other than those exceptional operations, you perform all partition maintenance on the
base table only. This includes operations such as adding, dropping, and splitting a
partition.

Chapter 18
Overview of Partitioning XMLType Tables and Columns Stored Object-Relationally

18-41



Online partition redefinition is also supported for child tables. You can
copy unpartitioned child tables to partitioned child tables during online
redefinition of a base table. You typically specify parameter values
copy_indexes => 0 and copy_constraints => false for PL/SQL procedure
DBMS_REDEFINITION.copy_table_dependents, to protect the indexes and constraints
of the newly defined child tables.

See Also:

• Oracle Database SQL Language Reference for information about SQL
statement ALTER TABLE

• Oracle Database PL/SQL Packages and Types Reference for
information about online partition redefinition using PL/SQL package
DBMS_REDEFINITION

18.7 Specification of Relational Constraints on XMLType
Tables and Columns

For XMLType data stored object-relationally, you can specify typical relational
constraints for elements and attributes that occur only once in an XML document.

Example 18-18 defines uniqueness and foreign-key constraints on XMLType table
purchaseorder in standard database schema OE.

For XMLType data that is stored object-relationally, such as that in table
OE.purchaseorder, constraints must be specified in terms of object attributes of the
SQL data types that are used to manage the XML content.

Example 18-18 is similar to Example 3-8, which defines a uniqueness constraint on a
binary XML table. But in addition, Example 18-18 defines a foreign-key constraint that
requires element User of each OE.purchaseorder document to be the e-mail address
of an employee that is in table employees of standard database schema HR.

Just as for Example 3-8, the uniqueness constraint reference_is_unique of
Example 18-18 ensures the uniqueness of element Reference across all documents
stored in the table. The foreign key constraint user_is_valid ensures that the value of
element User corresponds to a value in column email of table HR.employees.

The text node associated with element Reference in the XML document
DuplicateReference.xml contains the same value as the corresponding node in XML
document PurchaseOrder.xml. Attempting to store both documents in Oracle XML DB
thus violates the constraint reference_is_unique.

The text node associated with element User in XML document InvalidUser.xml
contains the value HACKER. There is no entry in table HR.employees where the value of
column email is HACKER. Attempting to store this document in Oracle XML DB violates
the foreign-key constraint user_is_valid.

Chapter 18
Specification of Relational Constraints on XMLType Tables and Columns

18-42



See Also:

• Enforcing Referential Integrity Using SQL Constraints, and Example 3-8
in particular

• Enforcing XML Data Integrity Using the Database for information about
defining contraints for XMLType data stored as binary XML

Example 18-18    Integrity Constraints and Triggers for an XMLType Table Stored
Object-Relationally

ALTER TABLE purchaseorder
  ADD CONSTRAINT reference_is_unique
  UNIQUE (XMLDATA."REFERENCE");
 
ALTER TABLE purchaseorder
  ADD CONSTRAINT user_is_valid
  FOREIGN KEY (XMLDATA."USERID") REFERENCES hr.employees(email);
 
INSERT INTO purchaseorder
  VALUES (XMLType(bfilename('XMLDIR', 'purchaseOrder.xml'),
                  nls_charset_id('AL32UTF8')));
 
INSERT INTO purchaseorder
  VALUES (XMLType(bfilename('XMLDIR', 'DuplicateReference.xml'),
                  nls_charset_id('AL32UTF8')));

INSERT INTO purchaseorder
*
ERROR at line 1:
ORA-00001: unique constraint (QUINE.REFERENCE_IS_UNIQUE) violated
 
INSERT INTO purchaseorder
  VALUES (XMLType(bfilename('XMLDIR', 'InvalidUser.xml'),
                  nls_charset_id('AL32UTF8')));

INSERT INTO purchaseorder
*
ERROR at line 1:
ORA-02291: integrity constraint (QUINE.USER_IS_VALID) violated - parent 
key not
 found

• Adding Unique Constraints to the Parent Element of an Attribute
To create constraints on elements that can occur more than once, store the varray
as an ordered collection table (OCT). You can then create constraints on the OCT.
You might, for example, want to create a unique key based on an attribute of an
element that repeats itself (a collection).

Chapter 18
Specification of Relational Constraints on XMLType Tables and Columns

18-43



Related Topics

• Adding Unique Constraints to the Parent Element of an Attribute
To create constraints on elements that can occur more than once, store the varray
as an ordered collection table (OCT). You can then create constraints on the OCT.
You might, for example, want to create a unique key based on an attribute of an
element that repeats itself (a collection).

18.7.1 Adding Unique Constraints to the Parent Element of an
Attribute

To create constraints on elements that can occur more than once, store the varray as
an ordered collection table (OCT). You can then create constraints on the OCT. You
might, for example, want to create a unique key based on an attribute of an element
that repeats itself (a collection).

Example 18-19 shows an XML schema that lets attribute No of element <PhoneNumber>
appear more than once. The example shows how you can add a unique constraint
to ensure that the same phone number cannot be repeated within a given instance
document.

The constraint in this example applies to each collection, and not across all instances.
This is achieved by creating a concatenated index with the collection id column. To
apply the constraint across all collections of all instance documents, omit the collection
id column.

Note:

You can create only a functional constraint as a unique or foreign key
constraint on XMLType data stored as binary XML.

Example 18-19    Adding a Unique Constraint to the Parent Element of an
Attribute

BEGIN DBMS_XMLSCHEMA.registerSchema(
  SCHEMAURL => 'emp.xsd',
  SCHEMADOC => '<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
                           xmlns:xdb="http://xmlns.oracle.com/xdb">
                  <xs:element name="Employee" xdb:SQLType="EMP_TYPE">
                    <xs:complexType>
                      <xs:sequence>
                        <xs:element name="EmployeeId"
                                    type="xs:positiveInteger"/>
                        <xs:element name="PhoneNumber" maxOccurs="10"/>
                          <xs:complexType>
                            <xs:attribute name="No" type="xs:integer"/>
                          </xs:complexType>
                        </xs:element>
                      </xs:sequence>
                    </xs:complexType>
                  </xs:element>
                </xs:schema>',

Chapter 18
Specification of Relational Constraints on XMLType Tables and Columns

18-44



   LOCAL     => FALSE, 
   GENTYPES  => FALSE); 
END;/

PL/SQL procedure successfully completed.

CREATE TABLE emp_tab OF XMLType
  XMLSCHEMA "emp.xsd" ELEMENT "Employee"
  VARRAY XMLDATA."PhoneNumber" STORE AS TABLE phone_tab;

Table created.

ALTER TABLE phone_tab ADD UNIQUE (NESTED_TABLE_ID, "No");

Table altered.

INSERT INTO emp_tab 
  VALUES(XMLType('<Employee>
                    <EmployeeId>1234</EmployeeId>
                    <PhoneNumber No="1234"/>
                    <PhoneNumber No="2345"/>
                  </Employee>').createSchemaBasedXML('emp.xsd'));

1 row created.

INSERT INTO emp_tab 
  VALUES(XMLType('<Employee>
                    <EmployeeId>3456</EmployeeId>
                    <PhoneNumber No="4444"/>
                    <PhoneNumber No="4444"/>
                  </Employee>').createSchemaBasedXML('emp.xsd'));

This returns the expected result:

*
ERROR at line 1:
ORA-00001: unique constraint (SCOTT.SYS_C002136) violated

18.8 Out-Of-Line Storage of XMLType Data
By default, when XMLType data is stored object-relationally a child element is mapped
to an embedded SQL object attribute. Sometimes better performance can be obtained
by storing some XMLType data out of line. Use XML schema annotation xdb:SQLInline
to do this.

• Setting Annotation Attribute xdb:SQLInline to false for Out-Of-Line Storage
Set XML schema annotation xdb:SQLInline to false to store an XML fragment
out of line. The element is mapped to a SQL object type with an embedded REF
attribute, which points to another XMLType instance that is stored out of line and
that corresponds to the XML fragment.

Chapter 18
Out-Of-Line Storage of XMLType Data

18-45



• Storing Collections in Out-Of-Line Tables
You can store collection items out of line. Instead of a single REF column,
the parent element contains a varray of REF values that point to the collection
members.

18.8.1 Setting Annotation Attribute xdb:SQLInline to false for Out-Of-
Line Storage

Set XML schema annotation xdb:SQLInline to false to store an XML fragment
out of line. The element is mapped to a SQL object type with an embedded REF
attribute, which points to another XMLType instance that is stored out of line and that
corresponds to the XML fragment.

By default, a child XML element is mapped to an embedded SQL object attribute when
XMLType data is stored object-relationally. However, there are scenarios where out-of-
line storage offers better performance. In such cases, set XML schema annotation
(attribute) xdb:SQLInline to false, so Oracle XML DB generates a SQL object type
with an embedded REF attribute. The REF points to another XMLType instance that is
stored out of line and that corresponds to the XML fragment. Default XMLType tables
are also created, to store the out-of-line fragments.

Figure 18-2 illustrates the mapping of complexType to SQL for out-of-line storage.

Figure 18-2    Mapping complexType to SQL for Out-Of-Line Storage

This XML fragment is

stored out-of-line




Addr_tab of type OBJ_T1

Street City

XMLType table

Name

Employee_tab of type OBJ_T2

Age Addr REF XMLType

REF points

to another

XMLType

instance

<element name = "Addr" xdb : SQLInLine = "false">

.


.


.

.


.


.

Note:

Starting with Oracle Database 11g Release 2 (11.2.0.2), you can create only
one XMLType table that uses an XML schema that results in an out-of-line
table. An error is raised if you try to create a second table that uses the
same XML schema.

In Example 18-20, attribute xdb:SQLInline of element Addr has value false. The
resulting SQL object type, obj_t2, has an XMLType column with an embedded REF

Chapter 18
Out-Of-Line Storage of XMLType Data

18-46



object attribute. The REF attribute points to an XMLType instance of SQL object type
obj_t1 in table addr_tab. Table addr_tab is stored out of line. It has columns street
and city.

When registering this XML schema, Oracle XML DB generates the XMLType tables and
types shown in Example 18-21.

Table emp_tab holds all of the employee information, and it contains an object
reference that points to the address information that is stored out of line, in table
addr_tab.

An advantage of this model is that it lets you query the out-of-line table (addr_tab)
directly, to look up address information. Example 18-22 illustrates querying table
addr_tab directly to obtain the distinct city information for all employees.

The disadvantage of this storage model is that, in order to obtain the entire Employee
element, you must access an additional table for the address.

Example 18-20    Setting SQLInline to False for Out-Of-Line Storage

DECLARE
  doc VARCHAR2(3000) :=
    '<schema xmlns="http://www.w3.org/2001/
XMLSchema"                     
             targetNamespace="http://www.oracle.com/emp.xsd"       
             xmlns:emp="http://www.oracle.com/emp.xsd"       
             xmlns:xdb="http://xmlns.oracle.com/xdb">
       <complexType name="EmpType" xdb:SQLType="EMP_T">
         <sequence>
           <element name="Name" type="string"/>
           <element name="Age" type="decimal"/>
           <element name="Addr" 
                    xdb:SQLInline="false"
                    xdb:defaultTable="ADDR_TAB">
             <complexType xdb:SQLType="ADDR_T">
               <sequence>
                 <element name="Street" type="string"/>
                 <element name="City" type="string"/>
               </sequence>
             </complexType>
           </element>
         </sequence>
       </complexType>
       <element name="Employee" type="emp:EmpType"
                xdb:defaultTable="EMP_TAB"/>
     </schema>';
BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL        => 'emp.xsd',
    SCHEMADOC        => doc,
    ENABLE_HIERARCHY => DBMS_XMLSCHEMA.ENABLE_HIERARCHY_NONE);
END;
/

Chapter 18
Out-Of-Line Storage of XMLType Data

18-47



Example 18-21    Generated XMLType Tables and Types

DESCRIBE emp_tab
 Name                          Null?    Type
 ----------------------------- -------- ----------------------------------------------------------
TABLE of SYS.XMLTYPE(XMLSchema "emp.xsd" Element "Employee") STORAGE Object-relational TYPE "EMP_T"
 
DESCRIBE addr_tab
 Name                          Null?    Type
 ----------------------------- -------- --------------------------------------------------------
TABLE of SYS.XMLTYPE(XMLSchema "emp.xsd" Element "Addr") STORAGE Object-relational TYPE "ADDR_T"

DESCRIBE emp_t
 emp_t is NOT FINAL
 Name                          Null?    Type
 ----------------------------- -------- --------------------
 SYS_XDBPD$                             XDB.XDB$RAW_LIST_T
 Name                                   VARCHAR2(4000 CHAR)
 Age                                    NUMBER
 Addr                                   REF OF XMLTYPE

DESCRIBE addr_t
 Name                          Null?    Type
 ----------------------------- -------- --------------------
 SYS_XDBPD$                             XDB.XDB$RAW_LIST_T
 Street                                 VARCHAR2(4000 CHAR)
 City                                   VARCHAR2(4000 CHAR)
 

Example 18-22    Querying an Out-Of-Line Table

INSERT INTO emp_tab
  VALUES
    (XMLType('<x:Employee
                 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                 xmlns:x="http://www.oracle.com/emp.xsd"
                 xsi:schemaLocation="http://www.oracle.com/emp.xsd 
emp.xsd">
                <Name>Abe Bee</Name>
                <Age>22</Age>
                <Addr>
                  <Street>A Street</Street>
                  <City>San Francisco</City>
                </Addr>
              </x:Employee>'));
 
INSERT INTO emp_tab
  VALUES
    (XMLType('<x:Employee
                 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                 xmlns:x="http://www.oracle.com/emp.xsd"
                 xsi:schemaLocation="http://www.oracle.com/emp.xsd 
emp.xsd">
                <Name>Cecilia Dee</Name>
                <Age>23</Age>
                <Addr>
                  <Street>C Street</Street>
                  <City>Redwood City</City>
                </Addr>

Chapter 18
Out-Of-Line Storage of XMLType Data

18-48



              </x:Employee>'));
. . .

SELECT DISTINCT XMLCast(XMLQuery('/Addr/City' PASSING OBJECT_VALUE AS 
"." 
                                              RETURNING CONTENT)
                       AS VARCHAR2(20))
  FROM addr_tab;

CITY
-------------
Redwood City
San Francisco

18.8.2 Storing Collections in Out-Of-Line Tables
You can store collection items out of line. Instead of a single REF column, the parent
element contains a varray of REF values that point to the collection members.

For example, suppose that there is a list of addresses for each employee and that list
is mapped to out-of-line storage, as shown in Example 18-23.

During registration of this XML schema, Oracle XML DB generates tables emp_tab and
addr_tab and types emp_t and addr_t, just as in Example 18-20. However, this time,
type emp_t contains a varray of REF values that point to addresses, instead of a single
REF attribute, as shown in Example 18-24.

The varray of REF values is stored out of line, in an intermediate table. That is, in
addition to creating the tables and types just mentioned, XML schema registration
also creates the intermediate table that stores the list of REF values. This table has a
system-generated name, but you can rename it. That can be useful, for example, in
order to create an index on it.

Example 18-26 shows a query that selects the names of all San Francisco-based
employees and the streets in which they live. The example queries the address table
on element City, and joins back with the employee table. The explain-plan fragment
shown indicates a join between tables emp_tab_reflist and emp_tab.

To improve performance you can create an index on the REF values in the intermediate
table, emp_tab_reflist. This lets Oracle XML DB query the address table, obtain an
object reference (REF) to the relevant row, join it with the intermediate table storing the
list of REF values, and join that table back with the employee table.

You can create an index on REF values only if the REF is scoped or has a referential
constraint. A scoped REF column stores pointers only to objects in a particular table.
The REF values in table emp_tab_reflist point only to objects in table addr_tab, so
you can create a scope constraint and an index on the REF column, as shown in
Example 18-27.

Example 18-23    Storing a Collection Out of Line

DECLARE
  doc VARCHAR2(3000) :=
    '<schema xmlns="http://www.w3.org/2001/XMLSchema"
             targetNamespace="http://www.oracle.com/emp.xsd"

Chapter 18
Out-Of-Line Storage of XMLType Data

18-49



             xmlns:emp="http://www.oracle.com/emp.xsd"
             xmlns:xdb="http://xmlns.oracle.com/xdb">
       <complexType name="EmpType" xdb:SQLType="EMP_T">
         <sequence>
           <element name="Name" type="string"/>
           <element name="Age" type="decimal"/>
           <element name="Addr" xdb:SQLInline="false"
                    maxOccurs="unbounded" xdb:defaultTable="ADDR_TAB">
             <complexType xdb:SQLType="ADDR_T">
               <sequence>
                 <element name="Street" type="string"/>
                 <element name="City" type="string"/>
               </sequence>
             </complexType>
           </element>
         </sequence>
       </complexType>
       <element name="Employee" type="emp:EmpType"
                xdb:defaultTable="EMP_TAB"/>
     </schema>';
BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL        => 'emp.xsd',
    SCHEMADOC        => doc,
    ENABLE_HIERARCHY => DBMS_XMLSCHEMA.ENABLE_HIERARCHY_NONE);
END;
/

Example 18-24    Generated Out-Of-Line Collection Type

DESCRIBE emp_t
 emp_t is NOT FINAL
 Name                                   Null?    Type
 -------------------------------------- -------- 
--------------------------
 SYS_XDBPD$                                      XDB.XDB$RAW_LIST_T
 Name                                            VARCHAR2(4000 CHAR)
 Age                                             NUMBER
 Addr                                            
XDB.XDB$XMLTYPE_REF_LIST_T

Example 18-25    Renaming an Intermediate Table of REF Values

DECLARE
  gen_name VARCHAR2 (4000);
BEGIN
  SELECT TABLE_NAME INTO gen_name FROM USER_NESTED_TABLES
    WHERE PARENT_TABLE_NAME = 'EMP_TAB';
  EXECUTE IMMEDIATE 'RENAME "' || gen_name || '"TO emp_tab_reflist';
END;
/
 
DESCRIBE emp_tab_reflist
 Name                    Null?    Type

Chapter 18
Out-Of-Line Storage of XMLType Data

18-50



 ----------------------- -------- ----------------
 COLUMN_VALUE                     REF OF XMLTYPE

Example 18-26    XPath Rewrite for an Out-Of-Line Collection

SELECT em.name, ad.street
  FROM emp_tab,
       XMLTable(XMLNAMESPACES ('http://www.oracle.com/emp.xsd' AS "x"),
                '/x:Employee' PASSING OBJECT_VALUE
                COLUMNS name   VARCHAR2(20) PATH 'Name') em,
       XMLTable(XMLNAMESPACES ('http://www.oracle.com/emp.xsd' AS "x"),
                '/x:Employee/Addr' PASSING OBJECT_VALUE
                COLUMNS street VARCHAR2(20) PATH 'Street',
                        city   VARCHAR2(20) PATH 'City') ad
  WHERE ad.city = 'San Francisco';
 
NAME                 STREET
-------------------- --------------------
Abe Bee              A Street
Eve Fong             E Street
George Hu            G Street
Iris Jones           I Street
Karl Luomo           K Street
Marina Namur         M Street
Omar Pinano          O Street
Quincy Roberts       Q Street
 
8 rows selected.

|   4 |    TABLE ACCESS FULL         | EMP_TAB_REFLIST |    32 |   640 |     2   (0)| 00:00:01 |
|   5 |   TABLE ACCESS BY INDEX ROWID| EMP_TAB         |     1 |    29 |     1   (0)| 00:00:01 |
|*  6 |    INDEX UNIQUE SCAN         | SYS_C005567     |     1 |       |     0   (0)| 00:00:01 |

Example 18-27    XPath Rewrite for an Out-Of-Line Collection, with Index on REFs

ALTER TABLE emp_tab_reflist ADD SCOPE FOR (COLUMN_VALUE) IS addr_tab;
CREATE INDEX reflist_idx ON emp_tab_reflist (COLUMN_VALUE);

The explain-plan fragment for the same query as in Example 18-26 shows that index
reflist_idx is picked up.

|   4 |    TABLE ACCESS BY INDEX ROWID| EMP_TAB_REFLIST |     1 |    20 |     1   (0)| 00:00:01 |
|*  5 |     INDEX RANGE SCAN          | REFLIST_IDX     |     1 |       |     0   (0)| 00:00:01 |
|   6 |   TABLE ACCESS BY INDEX ROWID | EMP_TAB         |       |       |            |          |
|*  7 |    INDEX UNIQUE SCAN          | SYS_C005567     |     1 |       |     0   (0)| 00:00:01 |

18.9 Considerations for Working with Complex or Large
XML Schemas

XML schemas can be complex. Examples of complex schemas include those that are
recursive and those that contain circular or cyclical references. Working with complex

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-51



or large XML schemas can be challenging and requires taking certain considerations
into account.

• Circular and Cyclical Dependencies Among XML Schemas
The W3C XML Schema Recommendation lets complexTypes and global elements
contain recursive references. This kind of structure allows for instance documents
where the element in question can appear an infinite number of times in a
recursive hierarchy.

• Support for Recursive Schemas
A REF to a recursive structure in an out-of-line table can make it difficult to rewrite
XPath queries, because it is not known at compile time how deep the structure is.
To enable XPath rewrite, a DOCID column points back to the root document in any
recursive structure.

• XML Fragments Can Be Mapped to Large Objects (LOBs)
You can specify the SQL data type to use for a complex element as
being CLOB or BLOB.

• ORA-01792 and ORA-04031: Issues with Large XML Schemas
Errors ORA-01792 and ORA-04031 can be raised when you work with large or
complex XML schemas. You can encounter them when you register an XML
schema or you create a table that is based on a global element defined by an
XML schema.

• Considerations for Loading and Retrieving Large Documents with Collections
Oracle XML DB configuration file xdbconfig.xml has parameters that control the
amount of memory used by the loading operation: xdbcore-loadableunit-size
and xdbcore-xobmem-bound.

18.9.1 Circular and Cyclical Dependencies Among XML Schemas
The W3C XML Schema Recommendation lets complexTypes and global elements
contain recursive references. This kind of structure allows for instance documents
where the element in question can appear an infinite number of times in a recursive
hierarchy.

For example, a complexType definition can contain an element based on that same
complexType, or a global element can contain a reference to itself. In both cases the
reference can be direct or indirect.

Example 18-28    An XML Schema with Circular Dependency

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
           xmlns:xdb="http://xmlns.oracle.com/xdb" 
           elementFormDefault="qualified" attributeFormDefault="unqualified">
  <xs:element name="person" type="personType" xdb:defaultTable="PERSON_TABLE"/>
  <xs:complexType name="personType" xdb:SQLType="PERSON_T">
    <xs:sequence>
      <xs:element name="descendant" type="personType" minOccurs="0"  
                  maxOccurs="unbounded" xdb:SQLName="DESCENDANT"
                  xdb:defaultTable="DESCENDANT_TABLE"/>
    </xs:sequence>
    <xs:attribute name="personName" use="required" xdb:SQLName="PERSON_NAME"> 
      <xs:simpleType>
        <xs:restriction base="xs:string">

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-52



          <xs:maxLength value="20"/>
        </xs:restriction>
      </xs:simpleType>
    </xs:attribute>
  </xs:complexType>
</xs:schema>

The XML schema in Example 18-28 includes a circular dependency. The complexType
personType consists of a personName attribute and a collection of descendant
elements. The descendant element is defined as being of type personType.

• For Circular XML Schema Dependencies Set Parameter GENTABLES to TRUE
Oracle XML DB supports XML schemas that involve circular schema
dependencies. It does this by detecting the cycles, breaking them, and storing
the recursive elements as rows in a separate XMLType table that is created during
XML schema registration.

• complexType Declarations in XML Schema: Handling Cycles
SQL object types do not allow cycles. Cycles in an XML schema are broken while
generating the object types, by introducing a REF attribute where the cycle would
be completed. Part of the data is stored out of line, but it is retrieved as part of the
parent XML document.

• Cyclical References Among XML Schemas
XML schemas can depend on each other in such a way that they cannot be
registered one after the other in the usual manner.

18.9.1.1 For Circular XML Schema Dependencies Set Parameter GENTABLES
to TRUE

Oracle XML DB supports XML schemas that involve circular schema dependencies. It
does this by detecting the cycles, breaking them, and storing the recursive elements
as rows in a separate XMLType table that is created during XML schema registration.

Consequently, it is important to ensure that parameter GENTABLES is set to TRUE when
registering an XML schema that defines this kind of structure. The name of the table
used to store the recursive elements can be specified by adding an xdb:defaultTable
annotation to the XML schema.

18.9.1.2 complexType Declarations in XML Schema: Handling Cycles
SQL object types do not allow cycles. Cycles in an XML schema are broken while
generating the object types, by introducing a REF attribute where the cycle would be
completed. Part of the data is stored out of line, but it is retrieved as part of the parent
XML document.

Note:

Starting with Oracle Database 11g Release 2 (11.2.0.2), you can create only
one XMLType table that uses an XML schema that results in an out-of-line
table. An error is raised if you try to create a second table that uses the
same XML schema.

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-53



XML schemas permit cycling between definitions of complex types. Figure 18-3 shows
this, where the definition of complex type CT1 can reference another complex type CT2,
whereas the definition of CT2 references the first type CT1.

XML schemas permit cycles among definitions of complex types. Example 18-29
creates a cycle of length two:

SQL types do not allow cycles in type definitions. However, they do support weak
cycles, that is, cycles involving REF (reference) object attributes. Cyclic XML schema
definitions are mapped to SQL object types in such a way that cycles are avoided
by forcing SQLInline = "false" at the appropriate points. This creates a weak SQL
cycle.

For the XML schema of Example 18-29, Oracle XML DB generates the following
types:

CREATE TYPE ct1 AS OBJECT (SYS_XDBPD$  XDB.XDB$RAW_LIST_T,
                           "e1"        VARCHAR2(4000),
                           "e2"        REF XMLType) NOT FINAL;
CREATE TYPE ct2 AS OBJECT (SYS_XDBPD$  XDB.XDB$RAW_LIST_T,
                           "e1"        VARCHAR2(4000),
                           "e2"        CT1) NOT FINAL;

Figure 18-3    Cross Referencing Between Different complexTypes in the Same
XML Schema

<xs:element name=

"e2" type = "CT2"/>

<xs:complexType name=

"CT1"...>

.


.


.

.


.


.

<xs:element name=

"e2" type="CT1"/>

<xs:complexType name=

"CT2"...>

.


.


.

.


.


.

XML schema, emp. xsd

Another example of a cyclic complex type involves the declaration of the complex type
that refers to itself. In Example 18-30, type SectionT does this.

For the XML schema of Example 18-30, Oracle XML DB generates the following
types:

CREATE TYPE body_coll AS VARRAY(32767) OF VARCHAR2(327673);
CREATE TYPE section_t AS OBJECT (SYS_XDBPD$  XDB.XDB$RAW_LIST_T, 
                                 "title"     VARCHAR2(327673),
                                 "body"      BODY_COLL,
                                 "section"   XDB.XDB$REF_LIST_T) NOT 
FINAL;

1 This value of 32767 assumes that the value of initialization parameter MAX_STRING_SIZE is EXTENDED. See 
Oracle Database SQL Language Reference.

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-54



Note:

In Example 18-30, object attribute section is declared as a varray of REF
references to XMLType instances. Because there can be more than one
occurrence of embedded sections, the attribute is a varray. It is a varray
of REF references to XMLType instances, to avoid forming a cycle of SQL
objects.

Figure 18-4 illustrates schematically how a complexType can reference itself.

Figure 18-4    Self-Referencing Complex Type within an XML Schema

<xs:element name="section" type = 

"SectionT"/>

<xs:complexType name=

"SectionT"...>

.


.


.

.


.


.

XML schema, emp. xsd

Example 18-29    XML Schema: Cycling Between complexTypes

DECLARE 
  doc VARCHAR2(3000) :=
    '<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
                xmlns:xdb="http://xmlns.oracle.com/xdb">
       <xs:complexType name="CT1" xdb:SQLType="CT1">
         <xs:sequence>
           <xs:element name="e1" type="xs:string"/>
           <xs:element name="e2" type="CT2"/>
         </xs:sequence>
       </xs:complexType>
       <xs:complexType name="CT2" xdb:SQLType="CT2">
         <xs:sequence>
           <xs:element name="e1" type="xs:string"/>
           <xs:element name="e2" type="CT1"/>
         </xs:sequence>
       </xs:complexType>
     </xs:schema>';
BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://www.oracle.com/emp.xsd',
    SCHEMADOC => doc);
END;

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-55



Example 18-30    XML Schema: Cycling Between complexTypes, Self-Reference

DECLARE 
  doc VARCHAR2(3000) :=
    '<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"        
                xmlns:xdb="http://xmlns.oracle.com/xdb">
       <xs:complexType name="SectionT" xdb:SQLType="SECTION_T">
         <xs:sequence>
           <xs:element name="title" type="xs:string"/>
           <xs:choice maxOccurs="unbounded">
             <xs:element name="body" type="xs:string" 
                         xdb:SQLCollType="BODY_COLL"/>
             <xs:element name="section" type="SectionT"/>
           </xs:choice>
         </xs:sequence>
       </xs:complexType>
     </xs:schema>';
BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://www.oracle.com/section.xsd',
    SCHEMADOC => doc);
END;

Related Topics

• Cyclical References Among XML Schemas
XML schemas can depend on each other in such a way that they cannot be
registered one after the other in the usual manner.

18.9.1.3 Cyclical References Among XML Schemas
XML schemas can depend on each other in such a way that they cannot be registered
one after the other in the usual manner.

This is illustrated in Figure 18-5.

In the top half of the illustration, an example of indirect cyclical references between
three XML schemas is shown.

In the bottom half of the illustration, an example of cyclical dependencies between two
XML schemas is shown. The details of this simpler example are presented first.

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-56



Figure 18-5    Cyclical References Between XML Schemas

OR

ReferencesReferences

References

References

References

S2

S1S3

XML schema 3, S3

XML schema 2, S2XML schema 1, S1

XML schema 2, xm40aXML schema 1, xm40

xm40a xm40

An XML schema that includes another XML schema cannot be created if the
included XML schema does not exist. The registration of XML schema xm40.xsd in
Example 18-31 fails, if xm40a.xsd does not exist.

XML schema xm40.xsd can, however, be created if you specify option FORCE => TRUE,
as in Example 18-32:

However, an attempt to use XML schema xm40.xsd, as in Example 18-33, fails.

If you register xm40a.xsd using the FORCE option, as in Example 18-34, then both XML
schemas can be used, as shown by the CREATE TABLE statements.

Thus, to register these XML schemas, which depend on each other, you must use the
FORCE parameter in DBMS_XMLSCHEMA.registerSchema for each schema, as follows:

1. Register xm40.xsd with FORCE mode set to TRUE:

DBMS_XMLSCHEMA.registerSchema("xm40.xsd", "<schema ...", ..., FORCE => TRUE)

At this point, xm40.xsd cannot be used.

2. Register xm40a.xsd in FORCE mode set to TRUE:

DBMS_XMLSCHEMA.registerSchema("xm40a.xsd", "<schema ...", ..., FORCE => TRUE)

The second operation automatically compiles xm40.xsd and makes both XML
schemas usable.

Example 18-31    An XML Schema that Includes a Non-Existent XML Schema

BEGIN DBMS_XMLSCHEMA.registerSchema(
  SCHEMAURL => 'xm40.xsd',
  SCHEMADOC => '<schema xmlns="http://www.w3.org/2001/XMLSchema"
                        xmlns:my="xm40"  

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-57



                        targetNamespace="xm40">
                  <include schemaLocation="xm40a.xsd"/>
                  <!-- Define a global complextype here -->
                  <complexType name="Company">
                    <sequence>
                      <element name="Name" type="string"/>
                      <element name="Address" type="string"/>
                    </sequence>
                  </complexType>
                  <!-- Define a global element depending on included schema -->
                  <element name="Emp" type="my:Employee"/>
                </schema>',
  LOCAL     => TRUE, 
  GENTYPES  => TRUE, 
  GENTABLES => TRUE); 
END;
/

Example 18-32    Using the FORCE Option to Register XML Schema xm40.xsd

BEGIN DBMS_XMLSCHEMA.registerSchema(
  SCHEMAURL => 'xm40.xsd',
  SCHEMADOC => '<schema xmlns="http://www.w3.org/2001/XMLSchema"
                        xmlns:my="xm40"  
                        targetNamespace="xm40">
                  <include schemaLocation="xm40a.xsd"/>
                  <!-- Define a global complextype here -->
                  <complexType name="Company">
                    <sequence>
                      <element name="Name" type="string"/>
                      <element name="Address" type="string"/>
                    </sequence>
                  </complexType>
                  <!-- Define a global element depending on included schema -->
                  <element name="Emp" type="my:Employee"/>
                </schema>',
  LOCAL     => TRUE, 
  GENTYPES  => TRUE, 
  GENTABLES => TRUE, 
  FORCE     => TRUE); 
END;
/

Example 18-33    Trying to Create a Table Using a Cyclic XML Schema

CREATE TABLE foo OF XMLType XMLSCHEMA "xm40.xsd" ELEMENT "Emp";

Example 18-34    Using the FORCE Option to Register XML Schema xm40a.xsd

BEGIN DBMS_XMLSCHEMA.registerSchema(
  SCHEMAURL => 'xm40a.xsd',
  SCHEMADOC => '<schema xmlns="http://www.w3.org/2001/XMLSchema"
                        xmlns:my="xm40" 
                        targetNamespace="xm40">
                  <include schemaLocation="xm40.xsd"/>
                  <!-- Define a global complextype here -->
                  <complexType name="Employee">
                    <sequence>
                      <element name="Name" type="string"/>
                      <element name="Age" type="positiveInteger"/>
                      <element name="Phone" type="string"/>
                    </sequence>

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-58



                  </complexType>
                  <!-- Define a global element depending on included schema -->
                  <element name="Comp" type="my:Company"/>
                </schema>',
  LOCAL     => TRUE, 
  GENTYPES  => TRUE, 
  GENTABLES => TRUE, 
  FORCE     => TRUE); 
END;
/

CREATE TABLE foo  OF XMLType XMLSCHEMA "xm40.xsd"  ELEMENT "Emp";
CREATE TABLE foo2 OF XMLType XMLSCHEMA "xm40a.xsd" ELEMENT "Comp";
 

18.9.2 Support for Recursive Schemas
A REF to a recursive structure in an out-of-line table can make it difficult to rewrite
XPath queries, because it is not known at compile time how deep the structure is.
To enable XPath rewrite, a DOCID column points back to the root document in any
recursive structure.

This enables some XPath queries to use the out-of-line tables directly and join back
using this column.

A document-correlated recursive query is a query using a SQL function that
accepts an XPath or XQuery expression and an XMLType instance, where that XPath
or XQuery expression contains '//'. A document-correlated recursive query can be
rewritten if it can be determined at query compilation time that both of the following
conditions are met:

• All fragments of the XMLType instance that are targeted by the XPath or XQuery
expression reside in a single out-of-line table.

• No other fragments of the XMLType instance reside in the same out-of-line table.

The rewritten query is a join with the out-of-line table, based on the DOCID column.

Other queries with '//' can also be rewritten. For example, if there are several address
elements, all of the same type, in different sections of a schema, and you often query
all address elements with '//', not caring about their specific location in the document,
rewrite can occur.

During schema registration, an additional DOCID column is generated for out-of-line
XMLType tables This column stores the OID (Object Identifier Values) of the document,
that is, the root element. This column is automatically populated when data is inserted
in the tables. You can export tables containing DOCID columns and import them later.

Example 18-35    Recursive XML Schema

<schema targetNamespace="AbcNS" xmlns="http://www.w3.org/2001/XMLSchema"
          xmlns:abc="AbcNS" xmlnm:xdb="http://xmlns.oracle.com.xdb">
  <element name="AbcCode" xdb:defaultTable="ABCCODETAB">
    <complexType>
      <sequence>
        <element ref="abc:AbcSection"/>
      </sequence>
    </complexType>

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-59



  </element>
 
  <element name="AbcSection">
    <complexType>
      <sequence>
        <element name="ID" type="integer"/>
        <element name="Contents" type="string"/>
        <element ref="abc:AbcSection"/>
      </sequence>
    </complexType>
  </element>
</schema>

• defaultTable Shared Among Common Out-Of-Line Elements
Out-of-line elements of the same qualified name (namespace and local name) and
same type are stored in the same default table. As a special case, you can store
the root element of a cyclic element structure out of line in the same table as the
sub-elements.

• Query Rewrite when DOCID is Present
Before processing // XPath expressions, check to find multiple occurrences of the
same element. If all occurrences under the // share the same defaultTable then
the query can be rewritten against that table, using the DOCID.

• DOCID Column Creation Disabling
You can disable the creation of column DOCID by specifying an OPTIONS parameter
when calling DBMS_XMLSCHEMA.registerSchema. This disables DOCID creation in all
XMLType tables generated during schema registration.

18.9.2.1 defaultTable Shared Among Common Out-Of-Line Elements
Out-of-line elements of the same qualified name (namespace and local name) and
same type are stored in the same default table. As a special case, you can store
the root element of a cyclic element structure out of line in the same table as the
sub-elements.

Both of the elements sharing the default table must be out-of-line elements, that is, the
default table for an out-of-line element cannot be the same as the table for a top-level
element. To do this, specify xdb:SQLInline = "false" for both elements and specify
an explicit xdb:defaultTable attribute having the same value in both elements.

Example 18-36 shows an XML schema with an out-of-line table that is stored in
ABCSECTIONTAB.

Both of the out-of-line AbcSection elements in Example 18-36 share the same default
table, ABCSECTIONTAB.

However, Example 18-37 illustrates invalid default table sharing: recursive elements
(XyZSection) do not share the same out-of-line table.

The following query cannot be rewritten.

SELECT XMLQuery('//XyzSection' PASSING OBJECT_VALUE RETURNING CONTENT)
  FROM xyzcode;

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-60



Example 18-36    Out-of-line Table

<schema targetNamespace="AbcNS" xmlns="http://www.w3.org/2001/XMLSchema"
           xmlns:abc="AbcNS" xmlns:xdb="http://xmlns.oracle.com/xdb">
  <element name="AbcCode" xdb:defaultTable="ABCCODETAB">
    <complexType>
      <sequence>
        <element ref="abc:AbcSection" xdb:SQLInline="false"/>
      </sequence>
    </complexType>
  </element>
 
  <element name="AbcSection" xdb:defaultTable="">
    <complexType>
      <sequence>
        <element name="ID" type="integer"/>
        <element name="Contents" type="string"/>
        <element ref="abc:AbcSection" xdb:SQLInline="false"
                 xdb:defaultTable="ABCSECTIONTAB"/>
      </sequence>
    </complexType>
  </element>
</schema>

Example 18-37    Invalid Default Table Sharing

 <schema targetNamespace="XyzNS" xmlns="http://www.w3.org/2001/
XMLSchema"
         xmlns:xyz="XyzNS" xmlns:xdb="http://xmlns.oracle.com/xdb">
   <element name="XyzCode" xdb:defaultTable="XYZCODETAB">
   <complexType>
   <sequence>
      <element name="CodeNumber" type="integer" minOccurs="0"/>
      <element ref="xyz:XyzChapter" xdb:SQLInline="false"/>
      <element ref="xyz:XyzPara" xdb:SQLInline="false" />
   </sequence>
   </complexType>
   </element>
 
    <element name="XyzChapter" xdb:defaultTable="XYZCHAPTAB">
     <complexType>
     <sequence>
         <element name="Title" type="string"/>
         <element ref="xyz:XyzSection" xdb:SQLInline="false" 
                  xdb:defaultTable="XYZSECTIONTAB"/>
      </sequence>
      </complexType>
    </element>
 
    <element name="XyzPara" xdb:defaultTable="XYZPARATAB">
     <complexType>
     <sequence>
         <element name="Title" type="string"/>
         <element ref="xyz:XyzSection" xdb:SQLInline="false" 

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-61



                  xdb:defaultTable="Other_XYZSECTIONTAB"/>
      </sequence>
      </complexType>
    </element>
   
    <element name="XyzSection">
    <complexType>
    <sequence>
        <element name="ID" type="integer"/>
        <element name="Contents" type="string"/>
        <element ref="xyz:XyzSection" xdb:defaultTable="XYZSECTIONTAB"/>
     </sequence>
     </complexType>
    </element>
 </schema>

18.9.2.2 Query Rewrite when DOCID is Present
Before processing // XPath expressions, check to find multiple occurrences of the
same element. If all occurrences under the // share the same defaultTable then the
query can be rewritten against that table, using the DOCID.

If there are other occurrences of the same element under the root sharing that table,
but not under //, then the query cannot be rewritten.

For example, consider this element structure:

<Book> contains a <Chapter> and a <Part>. <Part> contains a <Chapter>.

Assume that both of the <Chapter> elements are stored out of line and they share
the same default table. The query /Book//Chapter can be rewritten to go against the
default table for the <Chapter> elements because all of the <Chapter> elements under
<Book> share the same default table. Thus, this XPath query is a document-correlated
recursive XPath query.

However, a query such as /Book/Part//Chapter cannot be rewritten, even though all
the <Chapter> elements under <Part> share the same table, because there is another
<Chapter> element under <Book>, which is the document root that also shares that
table.

Consider the case where you are extracting //AbcSection with DOCID present, as in
the XML schema described in Example 18-36:

SELECT XMLQuery('//AbcSection' PASSING OBJECT_VALUE RETURNING CONTENT)
  FROM abccodetab;

Both of the AbcSection elements are stored in the same table, abcsectiontab. The
extraction applies to the underlying table, abcsectiontab.

Consider this query when DOCID is present:

SELECT XMLQuery('/AbcCode/AbcSection//AbcSection'
                PASSING OBJECT_VALUE RETURNING CONTENT)
  FROM abccodetab;

In both this case and the previous case, all reachable AbcSection elements are stored
in the same out-of-line table. However, the first AbcSection element at /AbcCode/

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-62



AbcSection cannot be retrieved by this query. Since the join condition is a DOCID,
which cannot distinguish between different positions in the parent document, the
correct result cannot be achieved by a direct query on table abcsectiontab. In this
case, query rewrite does not occur since it is not a document-correlated recursive
XPath. If this top-level AbcSection were not stored out of line with the rest, then the
query could be rewritten.

18.9.2.3 DOCID Column Creation Disabling
You can disable the creation of column DOCID by specifying an OPTIONS parameter
when calling DBMS_XMLSCHEMA.registerSchema. This disables DOCID creation in all
XMLType tables generated during schema registration.

OPTIONS is an input parameter of data type PLS_INTEGER. Its default value is 0,
meaning that no options are used. To inhibit the generation of column DOCID, set
parameter OPTIONS to DBMS_XMLSCHEMA.REGISTER_NODOCID (which is 1).

See Also:

Oracle Database PL/SQL Packages and Types Reference

18.9.3 XML Fragments Can Be Mapped to Large Objects (LOBs)
You can specify the SQL data type to use for a complex element as
being CLOB or BLOB.

In Figure 18-6, for example, an entire XML fragment is stored in a LOB attribute.

In Example 18-38, the XML schema defines element Addr using the annotation
SQLType = "CLOB":

Figure 18-6    Mapping complexType XML Fragments to CLOB Instances

Name

Employee_tab of type OBJ_T

Age Addr 

CLOB 

Street and 

city are stored 

in the CLOB

<element name = "Addr" xdb : SQLType = "CLOB">

.


.


.

.


.


.

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-63



Example 18-38    Oracle XML DB XML Schema: Mapping complexType XML
Fragments to LOBs

DECLARE
  doc VARCHAR2(3000) :=
    '<schema xmlns="http://www.w3.org/2001/XMLSchema"       
             targetNamespace="http://www.oracle.com/emp.xsd"       
             xmlns:emp="http://www.oracle.com/emp.xsd"       
             xmlns:xdb="http://xmlns.oracle.com/xdb">
       <complexType name="Employee" xdb:SQLType="OBJ_T">
         <sequence>
           <element name="Name" type="string"/>
           <element name="Age" type="decimal"/>
           <element name="Addr" xdb:SQLType="CLOB">
             <complexType >
               <sequence>
                 <element name="Street" type="string"/>
                 <element name="City" type="string"/>
               </sequence>
             </complexType>
           </element>
         </sequence>
       </complexType>
     </schema>';
BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL => 'http://www.oracle.com/PO.xsd',
    SCHEMADOC => doc);
END;

When registering this XML schema, Oracle XML DB generates the following types and
XMLType tables:

CREATE TYPE obj_t AS OBJECT(SYS_XDBPD$ XDB.XDB$RAW_LIST_T, 
                            Name VARCHAR2(4000), 
                            Age NUMBER, 
                            Addr CLOB);

18.9.4 ORA-01792 and ORA-04031: Issues with Large XML Schemas
Errors ORA-01792 and ORA-04031 can be raised when you work with large or complex
XML schemas. You can encounter them when you register an XML schema or you
create a table that is based on a global element defined by an XML schema.

• ORA-01792: maximum number of columns in a table or view is 1000

• ORA-04031: unable to allocate string bytes of shared memory
("string","string","string","string")

These errors are raised when you try to create an XMLType table or column based on
a global element and the global element is defined as a complexType that contains a
very large number of element and attribute definitions.

They are raised only when creating an XMLType table or column that uses object-
relational storage. The table or column is persisted using a SQL type, and each object
attribute defined by the SQL type counts as one column in the underlying table. If
the SQL type contains object attributes that are based on other SQL types, then the
attributes defined by those types also count as columns in the underlying table.

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-64



If the total number of object attributes in all of the SQL types exceeds the Oracle
Database limit of 1000 columns in a table, then the storage table cannot be created.
When the total number of elements and attributes defined by a complexType reaches
1000, it is not possible to create a single table that can manage the SQL objects that
are generated when an instance of that type is stored in the database.

Tip:

You can use the following query to determine the number of columns for a
given XMLType table stored object-relationally:

SELECT count(*) FROM USER_TAB_COLS WHERE TABLE_NAME = '<the 
table>'

where <the table> is the table you want to check.

Error ORA-01792 reports that the 1000-column limit has been exceeded. Error
ORA-04031 reports that memory is insufficient during the processing of a large number
of element and attribute definitions. To resolve this problem of having too many
element and attribute definitions, you must reduce the total number of object attributes
in the SQL types that are used to create the storage tables.

There are two ways to achieve this reduction:

• Use a top-down technique, with multiple XMLType tables that manage the XML
documents. This reduces the number of SQL attributes in the SQL type hierarchy
for a given storage table. As long as none of the tables need to manage more than
1000 object attributes, the problem is resolved.

• Use a bottom-up technique, which reduces the number of SQL attributes in the
SQL type hierarchy, collapsing some elements and attributes defined by the XML
schema so that they are stored as a single CLOB value.

Both techniques rely on annotating the XML schema to define how a particular
complexType is stored in the database.

For the top-down technique, annotations SQLInline = "false" and defaultTable
force some subelements in the XML document to be stored as rows in a separate
XMLType table. Oracle XML DB maintains the relationship between the two tables using
a REF of XMLType. Good candidates for this approach are XML schemas that do either
of the following:

• Define a choice, where each element within the choice is defined as a
complexType

• Define an element based on a complexType that contains a large number of
element and attribute definitions

The bottom-up technique involves reducing the total number of attributes in the SQL
object types by choosing to store some of the lower-level complexType elements as
CLOB values, rather than as objects. This is achieved by annotating the complexType or
the usage of the complexType with SQLType = "CLOB".

Which technique you use depends on the application and the type of queries and
updates to be performed against the data.

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-65



18.9.5 Considerations for Loading and Retrieving Large Documents
with Collections

Oracle XML DB configuration file xdbconfig.xml has parameters that control the
amount of memory used by the loading operation: xdbcore-loadableunit-size and
xdbcore-xobmem-bound.

These let you optimize the loading process, provided the following conditions are met:

• The document is loaded using one of the following:

– Protocols (FTP, HTTP(S), or DAV)

– PL/SQL function DBMS_XDB_REPOS.createResource

– A SQL INSERT statement into an XMLType table (but not an XMLType column)

• The document is XML schema-based and contains large collections (elements
with maxOccurs set to a large number).

• Collections in the document are stored as OCTs. This is the default behavior.

In the following situations, the optimizations are sometimes suboptimal:

• When there are triggers on the base table.

• When the base table is partitioned.

• When collections are stored out of line (applies only to SQL INSERT).

The basic idea behind this optimization is that it lets the collections be swapped into
or out of the memory in bounded sizes. As an illustration of this idea consider the
following example conforming to a purchase-order XML schema:

<PurchaseOrder>
  <LineItem itemID="1">
    ...
  </LineItem>
    .
    .
  <LineItem itemID="10240">
    ...
  </LineItem>
</PurchaseOrder>

The purchase-order document here contains a collection of 10240 LineItem elements.
Creating the entire document in memory and then pushing it out to disk can lead
to excessive memory usage and in some instances a load failure due to inadequate
system memory.

To avoid that, you can create the documents in finite chunks of memory called
loadable units.

In the example case, assume that each line item needs 1 KB of memory and that
you want to use loadable units of 512 KB each. Each loadable unit then contains 512
line items, and there are approximately 20 such units. If you want the entire memory
representation of the document to never exceed 2 MB, then you must ensure that at

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-66



any time no more than 4 loadable units are maintained in the memory. You can use an
LRU mechanism to swap out the loadable units.

By controlling the size of the loadable unit and the bound on the size of the
document you can tune the memory usage and performance of the load or retrieval.
Typically a larger loadable unit size translates into a smaller number of disk
accesses, but it requires more memory. This is controlled by configuration parameter
xdbcore-loadableunit-size, whose default value is 16 KB. You can indicate the
amount of memory to be given to a document by setting parameter xdbcore-xobmem-
bound, which defaults to 1 MB. The values of these parameters are specified in
kilobytes. So, the default value of xdbcore-xobmem-bound is 1024 and that of xdbcore-
loadableunit-size is 16. These are soft limits that provide some guidance to the
system about how to use the memory optimally.

When a document is loaded using FTP, the pattern in which the loadable units (LU) are
created and flushed to the disk is as follows:

No LUs
Create LU1[LineItems(LI):1-512]
LU1[LI:1-512], Create LU2[LI:513-1024]
.
.
LU1[LI:1-512],...,Create LU4[LI:1517:2028]    <-   Total memory size = 
2M
Swap Out LU1[LI:1-512], LU2[LI:513-1024],...,LU4[LI:1517-2028], Create 
LU5[LI:2029-2540]
Swap Out LU2[LI:513-1024], LU3, LU4, LU5, Create LU6[LI:2541-2052]
.
.
.
Swap Out LU16, LU17, LU18, LU10, Create LU20[LI:9729-10240]
Flush LU17,LU18,LU19,LU20

• Guidelines for Configuration Parameters xdbcore-loadableunit-size and xdbcore-
xobmem-bound
Use PGA size and trial and error to determine the best values for configuration
parameters xdbcore-loadableunit-size and xdbcore-xobmem-bound.

18.9.5.1 Guidelines for Configuration Parameters xdbcore-loadableunit-size
and xdbcore-xobmem-bound

Use PGA size and trial and error to determine the best values for configuration
parameters xdbcore-loadableunit-size and xdbcore-xobmem-bound.

Typically, if you have 1 GB of addressable PG then give about 1/10th of PGA to the
document. Set xobcore-xobmem-bound to 1/10 of addressable PGA, which is 100M.
During full document retrievals and loads, the value of xdbcore-loadableunit-size
should be as close as possible to the value of xobcore-xobmem-bound.

Start by setting xdbcore-loadableunit-size to half the value of xdbcore-xobmem-
bound (50 MB). Then try to load the document.

If you run out of memory then reduce the value of xdbcore-xobmem-bound and
set xdbcore-loadableunot-size to half of that value. Continue this way until the
documents load successfully.

Chapter 18
Considerations for Working with Complex or Large XML Schemas

18-67



If the load operation succeeds then try to increase xdbcore-loadableunit-size, to
obtain better performance. If xdbcore-loadableunit-size equals xdbcore-xobmem-
bound, then try to increase both parameter values for further performance
improvements.

18.10 Debugging XML Schema Registration for XML Data
Stored Object-Relationally

For XML data stored object-relationally, you can monitor the object types and tables
created during XML schema registration by setting the event 31098 before invoking
PL/SQL procedure DBMS_XMLSCHEMA.registerSchema.

ALTER SESSION SET EVENTS = '31098 TRACE NAME CONTEXT FOREVER'

Setting this event causes the generation of a log of all of the CREATE TYPE and CREATE
TABLE statements. The log is written to the user session trace file, typically found in
ORACLE_BASE/diag/rdbms/ORACLE_SID/ORACLE_SID/udump. This trace output can be a
useful aid in diagnosing problems during XML schema registration.

Chapter 18
Debugging XML Schema Registration for XML Data Stored Object-Relationally

18-68



19
XPath Rewrite for Object-Relational
Storage

For XMLType data stored object-relationally, queries involving XPath expression
arguments to various SQL functions can often be automatically rewritten to queries
against the underlying SQL tables, which are highly optimized.

• Overview of XPath Rewrite for Object-Relational Storage
Oracle XML DB can often optimize queries that use XPath expressions — for
example, queries involving SQL functions such as XMLQuery, XMLTable, and
XMLExists, which take XPath (XQuery) expressions as arguments. The XPath
expression is, in effect, evaluated against the XML document without ever
constructing the XML document in memory.

• Common XPath Expressions that Are Rewritten
The most common XPath expressions that are rewritten during XPath rewrite are
described.

• XPath Rewrite for Out-Of-Line Tables
XPath expressions that involve elements stored out of line can be automatically
rewritten. The rewritten query involves a join with the out-of-line table.

• Guidelines for Using Execution Plans to Analyze and Optimize XPath Queries
Guidelines are presented for using execution plans to analyze query execution
in order to (a) determine whether XPath rewrite occurs and (b) optimize query
execution by using secondary indexes. These guidelines apply only to XMLType
data that is stored object-relationally.

Related Topics

• Performance Tuning for XQuery
A SQL query that involves XQuery expressions can often be automatically
rewritten (optimized) in one or more ways. This optimization is referred to as XML
query rewrite or optimization. When this happens, the XQuery expression is, in
effect, evaluated directly against the XML document without constructing a DOM in
memory.

19.1 Overview of XPath Rewrite for Object-Relational
Storage

Oracle XML DB can often optimize queries that use XPath expressions — for example,
queries involving SQL functions such as XMLQuery, XMLTable, and XMLExists, which
take XPath (XQuery) expressions as arguments. The XPath expression is, in effect,
evaluated against the XML document without ever constructing the XML document in
memory.

This optimization is called XPath rewrite. It is a proper subset of XML query
optimization, which also involves optimization of XQuery expressions, such as FLWOR

19-1



expressions, that are not XPath expressions. XPath rewrite also enables indexes, if
present on the column, to be used in query evaluation by the Optimizer.

The XPath expressions that can be rewritten by Oracle XML DB are a proper subset of
those that are supported by Oracle XML DB. Whenever you can do so without losing
functionality, use XPath expressions that can be rewritten.

XPath rewrite can occur in these contexts (or combinations thereof):

• When XMLType data is stored in an object-relational column or table or when an
XMLType view is built on relational data.

• When you use an XMLIndex index.

The first case, rewriting queries that use object-relational XML data or XMLType
views, is covered here. The XMLType views can be XML schema-based or not. Object-
relational storage of XMLType data is always XML schema-based. Examples in this
chapter are related to XML schema-based tables.

When XPath rewrite is possible for object-relational XML data, the database optimizer
can derive an execution plan based on conventional relational algebra. This in
turn means that Oracle XML DB can leverage all of the features of the database
and ensure that SQL statements containing XQuery and XPath expressions are
executed in a highly performant and efficient manner. There is little overhead with
this rewriting, so Oracle XML DB executes XQuery-based and XPath-based queries at
near-relational speed.

In certain cases, XPath rewrite is not possible. This typically occurs when there is no
SQL equivalent of the XPath expression. In this situation, Oracle XML DB performs
a functional evaluation of the XPath expressions, which is generally more costly,
especially if the number of documents to be processed is large.

Example 19-1 illustrates XPath rewrite for a simple query that uses an XPath
expression.

Example 19-1    XPath Rewrite

SELECT po.OBJECT_VALUE FROM purchaseorder po
  WHERE XMLCast(XMLQuery('$p/PurchaseOrder/Requestor'
                         PASSING po.OBJECT_VALUE AS "p" RETURNING 
CONTENT)
                AS VARCHAR2(128))
        = 'Sarah J. Bell';

The XMLCast(XMLQuery...)) expression here is rewritten to the underlying relational
column that stores the requestor information for the purchase order. The query is
rewritten to something like the following:1

SELECT OBJECT_VALUE FROM purchaseorder p
 WHERE CAST (p."XMLDATA"."REQUESTOR" AS VARCHAR2(128)) = 'Sarah J. 
Bell';

1 This example uses sample database schema OE and its table purchaseorder. The XML schema for
this table is annotated with attribute SQLName to specify SQL object attribute names such as REQUESTOR
— see Example A-2. Without such annotations, this example would use p."XMLDATA"."Requestor", not
p."XMLDATA".".REQUESTOR".

Chapter 19
Overview of XPath Rewrite for Object-Relational Storage

19-2



Related Topics

• Relational Views over XML Data
Relational database views over XML data provide conventional, relational access
to XML content.

• XMLType Views
You can create XMLType views over relational and object-relational data.

• Indexing XMLType Data Stored Object-Relationally
You can effectively index XMLType data that is stored object-relationally by creating
B-tree indexes on the underlying database columns that correspond to XML
nodes.

• XMLIndex

• XML Schema Annotation Guidelines for Object-Relational Storage
For XMLType data stored object-relationally, careful planning is called for, to
optimize performance. Similar considerations are in order as for relational data:
entity-relationship models, indexing, data types, table partitions, and so on. To
enable XPath rewrite and achieve optimal performance, you implement many such
design choices using XML schema annotations.

19.2 Common XPath Expressions that Are Rewritten
The most common XPath expressions that are rewritten during XPath rewrite are
described.

Table 19-1 presents the descriptions

Table 19-1    Sample of XPath Expressions that Are Rewritten to Underlying SQL Constructs

XPath Expression for Translation Description

Simple XPath expressions (expressions with child and
attribute axes only):

/PurchaseOrder/@Reference

/PurchaseOrder/Requestor

Involves traversals over object type attributes only,
where the attributes are simple scalar or object types
themselves.

Collection traversal expressions:

/PurchaseOrder/LineItems/LineItem/Part/@Id

Involves traversal of collection expressions. The
only axes supported are child and attribute axes.
Collection traversal is not supported if the SQL
function is used during a CREATE INDEX operation.

Predicates:

[Requestor = "Sarah J. Bell"]

Predicates in the XPath are rewritten into SQL
predicates.

List index (positional predicate):

LineItem[1]

Indexes are rewritten to access the nth item in a
collection.

Wildcard traversals:

/PurchaseOrder/*/Part/@Id

If the wildcard can be translated to one or more
simple XPath expressions, then it is rewritten.

Descendant axis (XML schema-based data only), without
recursion:

/PurchaseOrder//Part/@Id

Similar to a wildcard expression. The descendant
axis is rewritten if it can be mapped to one or more
simple XPath expressions.

Chapter 19
Common XPath Expressions that Are Rewritten

19-3



Table 19-1    (Cont.) Sample of XPath Expressions that Are Rewritten to Underlying SQL
Constructs

XPath Expression for Translation Description

Descendant axis (XML schema-based data only), with
recursion:

/PurchaseOrder//Part/@Id

The descendant axis is rewritten if both of these
conditions holds:

• All simple XPath expressions to which this
XPath expression expands map to the same out-
of-line table.

• Any simple XPath expression to which this
XPath expression does not expand does not
map to that out-of-line table.

XPath functions Some XPath functions are rewritten. These functions
include not, floor, ceiling, substring, and
string-length.

See Also:

Performance Tuning for XQuery for information about rewrite of XQuery
expressions

19.3 XPath Rewrite for Out-Of-Line Tables
XPath expressions that involve elements stored out of line can be automatically
rewritten. The rewritten query involves a join with the out-of-line table.

Example 19-2 shows such a query. The XQuery expression is rewritten to a SQL
EXISTS subquery that queries table addr_tab, joining it with table emp_tab using the
object identifier column in addr_tab. The optimizer uses full table scans of tables
emp_tab and addr_tab. If there are many entries in the addr_tab, then you can
try to make this query more efficient by creating an index on the city, as shown
in Example 19-3. An explain-plan fragment for the same query as in Example 19-2
shows that the city index is picked up.

Note:

When gathering statistics for the optimizer on an XMLType table
that is stored object-relationally, Oracle recommends that you
gather statistics on all of the tables defined by the XML
schema, that is, all of the tables in USER_XML_TABLES. You can
use procedure DBMS_STATS.gather_schema_stats to do this, or use
DBMS_STATS.gather_table_stats on each such table. This informs the
optimizer about all of the dependent tables that are used to store the XMLType
data.

Chapter 19
XPath Rewrite for Out-Of-Line Tables

19-4



Example 19-2    XPath Rewrite for an Out-Of-Line Table

SELECT XMLCast(XMLQuery('declare namespace x = "http://www.oracle.com/emp.xsd"; (: :)
                         /x:Employee/Name' PASSING OBJECT_VALUE RETURNING CONTENT)
               AS VARCHAR2(20))
  FROM emp_tab
  WHERE XMLExists('declare namespace x = "http://www.oracle.com/emp.xsd"; (: :)
                   /x:Employee/Addr[City="San Francisco"]' PASSING OBJECT_VALUE);

XMLCAST(XMLQUERY(...
--------------------
Abe Bee
Eve Fong
George Hu
Iris Jones
Karl Luomo
Marina Namur
Omar Pinano
Quincy Roberts
 
8 rows selected.

Example 19-3    Using an Index with an Out-Of-Line Table

CREATE INDEX addr_city_idx
  ON addr_tab (extractValue(OBJECT_VALUE, '/Addr/City'));

|   2 |   TABLE ACCESS BY INDEX ROWID| ADDR_TAB      |     1 |  2012 |     1   (0)| 00:00:01 |
|*  3 |    INDEX RANGE SCAN          | ADDR_CITY_IDX |     1 |       |     1   (0)| 00:00:01 |
|   4 |   TABLE ACCESS FULL          | EMP_TAB       |    16 | 32464 |     2   (0)| 00:00:01 |

19.4 Guidelines for Using Execution Plans to Analyze and
Optimize XPath Queries

Guidelines are presented for using execution plans to analyze query execution in order
to (a) determine whether XPath rewrite occurs and (b) optimize query execution by
using secondary indexes. These guidelines apply only to XMLType data that is stored
object-relationally.

Use these guidelines together, taking all that apply into consideration.

XPath rewrite for object-relational storage means that a query that selects XML
fragments defined by an XPath expression is rewritten to a SQL SELECT statement
on the underlying object-relational tables and columns. These underlying tables can
include out-of-line tables.

You can use PL/SQL procedure DBMS_XMLSTORAGE_MANAGE.XPath2TabColMapping to
find the names of the underlying tables and columns that correspond to a given XPath
expression.

• Guideline: Look for underlying tables versus XML functions in execution plans
The execution plan of a query that is rewritten refers to the names of the object-
relational tables and columns that underlie the queried XMLType data. These

Chapter 19
Guidelines for Using Execution Plans to Analyze and Optimize XPath Queries

19-5



names can be meaningful to you if they are derived from XML element or attribute
names or if XML Schema annotation xdb:defaultTable was used.

• Guideline: Name the object-relational tables, so you recognize them in execution
plans
When designing an XML schema, use annotation xdb:defaultTable to name the
underlying tables that correspond to elements that you select in queries where
performance is important. This lets you easily recognize them in an execution
plan, indicating by their presence or absence whether the query has been
rewritten.

• Guideline: Create an index on a column targeted by a predicate
You can sometimes improve the performance of a query that is rewritten to include
a SQL predicate, by creating an index that applies to the column targeted by the
predicate.

• Guideline: Create indexes on ordered collection tables
If a collection is stored as an ordered collection table (OCT) or as an XMLType
instance, then you can directly access members of the collection. Each member
becomes a table row, so you can access it directly with SQL. You can often
improve performance by indexing such collection members.

• Guideline: Use XMLOptimizationCheck to determine why a query is not rewritten
If a query has not been optimized, you can use system variable
XMLOptimizationCheck to try to determine why.

Related Topics

• XPath Rewrite for Out-Of-Line Tables
XPath expressions that involve elements stored out of line can be automatically
rewritten. The rewritten query involves a join with the out-of-line table.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about procedure XPath2TabColMapping

19.4.1 Guideline: Look for underlying tables versus XML functions in
execution plans

The execution plan of a query that is rewritten refers to the names of the object-
relational tables and columns that underlie the queried XMLType data. These names
can be meaningful to you if they are derived from XML element or attribute names or if
XML Schema annotation xdb:defaultTable was used.

Otherwise, these names are system-generated and have no obvious meaning. In
particular, they do not reflect the corresponding XML element or attribute names.

Also, some system-generated columns are generally hidden. You do not see them if
you use the SQL describe command. They nevertheless show up in execution plans.

The plan of a query that has not been rewritten shows only the base table names,
and it typically refers to user-level XML functions, such as XMLExists. Look for this
difference to determine whether a query has been optimized. The XML function name

Chapter 19
Guidelines for Using Execution Plans to Analyze and Optimize XPath Queries

19-6



shown in an execution plan is actually the internal name (for example, XMLEXISTS2),
which is sometimes slightly different from the user-level name.

Example 19-4 shows the kind of execution plan output that is generated when
Oracle XML DB cannot perform XPath rewrite. The plan here is for a query that
uses SQL/XML function XMLExists. The corresponding internal function XMLExists2
appears in the plan output, indicating that the query is not rewritten.

In this situation, Oracle XML DB constructs a pre-filtered result set based on any
other conditions specified in the query WHERE clause. It then filters the rows in this
potential result set to determine which rows belong in the result set. The filtering is
performed by constructing a DOM on each document and performing a functional
evaluation using the methods defined by the DOM API to determine whether or not
each document is a member of the result set.

Example 19-4    Execution Plan Generated When XPath Rewrite Does Not Occur

Predicate Information (identified by operation id):
---------------------------------------------------
 
   1 - filter(XMLEXISTS2('$p/PurchaseOrder[User="SBELL"]' PASSING BY VALUE
              
SYS_MAKEXML('61687B202644E297E040578C8A175C1D',4215,"PO"."XMLEXTRA","PO"."X
              MLDATA") AS "p")=1)

19.4.2 Guideline: Name the object-relational tables, so you recognize
them in execution plans

When designing an XML schema, use annotation xdb:defaultTable to name the
underlying tables that correspond to elements that you select in queries where
performance is important. This lets you easily recognize them in an execution plan,
indicating by their presence or absence whether the query has been rewritten.

For collection tables, there is no corresponding XML schema annotation. To give user-
friendly names to your collection tables you must first register the XML schema. Then
you can use PL/SQL procedure DBMS_XMLSTORAGE_MANAGE.renameCollectionTable to
rename the tables that were created during registration, which have system-generated
names.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about procedure renameCollectionTable

19.4.3 Guideline: Create an index on a column targeted by a predicate
You can sometimes improve the performance of a query that is rewritten to include
a SQL predicate, by creating an index that applies to the column targeted by the
predicate.

Chapter 19
Guidelines for Using Execution Plans to Analyze and Optimize XPath Queries

19-7



A query resulting from XPath rewrite sometimes includes a SQL predicate (WHERE
clause). This can happen even if the original query does not use an XPath predicate,
and it can happen even if the original query does not have a SQL WHERE clause.

When this happens, you can sometimes improve performance by creating an index on
the column that is targeted by the SQL predicate, or by creating an index on a function
application to that column.

Example 19-1 illustrates XPath rewrite for a query that includes a WHERE clause.
Example 19-5 shows the predicate information from an execution plan for this query.

The predicate information indicates that the expression XMLCast(XMLQuery...)) is
rewritten to an application of SQL function cast to the underlying relational column
that stores the requestor information for the purchase order, SYS_NC0021$. This column
name is system-generated. The execution plan refers to this system-generated name,
in spite of the fact that the governing XML schema uses annotation SQLName to name
this column REQUESTOR.

Because these two names (user-defined and system-generated) refer to the same
column, you can create a B-tree index on this column using either name. Alternatively,
you can use the extractValue shortcut to create the index, by specifying an XPath
expression that targets the purchase-order requestor data.

You can obtain the names of the underlying table and columns
that correspond to a given XPath expression using procedure
DBMS_XMLSTORAGE_MANAGE.XPath2TabColMapping. Example 19-6 illustrates this for
the XPath expression /PurchaseOrder/Requestor used in the WHERE clause of
Example 19-1.

If you provide an XPath expression that contains a wildcard or a descendent
axis then multiple tables and columns might be selected. In that case procedure
XPath2TabColMapping returns multiple <Mapping> elements, one for each table-column
pair.

You can then use the table and column names retrieved this way in a CREATE INDEX
statement to create an index that corresponds to the XPath expression. Example 19-7
shows three equivalent ways to create a B-tree index on the predicate-targeted
column.

However, for this particular query it makes sense to create a function-based
index, using a functional expression that matches the one in the rewritten query.
Example 19-8 illustrates this.

Example 19-9 shows an execution plan that indicates that the index is picked up.

In the particular case of this query, the original functional expression applies XMLCast
to XMLQuery to target a singleton element, Requestor. This is a special case, where
you can as a shortcut use such a functional expression directly in the CREATE INDEX
statement. That statement is rewritten to create an index on the underlying scalar
data. Example 19-10, which targets an XPath expression, thus has the same effect as
Example 19-8, which targets the corresponding object-relational column.

Chapter 19
Guidelines for Using Execution Plans to Analyze and Optimize XPath Queries

19-8



See Also:

• Indexing Non-Repeating Text Nodes or Attribute Values for information
about using the shortcut of XMLCast applied to XMLQuery and the
extractValue shortcut to index singleton data

• Oracle Database PL/SQL Packages and Types Reference for
information about procedure XPath2TabColMapping

Example 19-5    Analyzing an Execution Plan to Determine a Column to Index

Predicate Information (identified by operation id):
---------------------------------------------------
 
   1 - filter(CAST("PURCHASEORDER"."SYS_NC00021$" AS VARCHAR2(128))='Sarah
              J. Bell' AND SYS_CHECKACL("ACLOID","OWNERID",xmltype('<privilege
              xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
              xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
              xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
              http://xmlns.oracle.com/xdb/acl.xsd DAV:http://xmlns.oracle.com/xdb/dav.xsd
              "><read-properties/><read-contents/></privilege>'))=1)

Example 19-6    Using
DBMS_XMLSTORAGE_MANAGE.XPATH2TABCOLMAPPING

SELECT DBMS_XMLSTORAGE_MANAGE.XPath2TabColMapping(USER,
                                                  'PURCHASEORDER',
                                                  '',
                                                  '/PurchaseOrder/Requestor',
                                                  '')
  FROM  DUAL;

DBMS_XMLSTORAGE_MANAGE.XPath2TabColMapping(US
---------------------------------------------
<Result>
  <Mapping TableName="PURCHASEORDER" ColumnName="SYS_NC00021$"/>
</Result>

Example 19-7    Creating an Index on a Column Targeted by a Predicate

CREATE INDEX requestor_index ON purchaseorder ("SYS_NC00021$");

CREATE INDEX requestor_index ON purchaseorder ("XMLDATA"."REQUESTOR");

CREATE INDEX requestor_index ON purchaseorder
  (extractvalue(OBJECT_VALUE, '/PurchaseOrder/Requestor'));

Example 19-8    Creating a Function-Based Index for a Column Targeted by a
Predicate

CREATE INDEX requestor_index ON purchaseorder
  (cast("XMLDATA"."REQUESTOR" AS VARCHAR2(128)));

Example 19-9    Execution Plan Showing that Index Is Picked Up

-----------------------------------------------------------------------------------------------
| Id  | Operation                   | Name            | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------------------------

Chapter 19
Guidelines for Using Execution Plans to Analyze and Optimize XPath Queries

19-9



|   0 | SELECT STATEMENT            |                 |     1 |   524 |     2   (0)| 00:00:01 |
|*  1 |  TABLE ACCESS BY INDEX ROWID| PURCHASEORDER   |     1 |   524 |     2   (0)| 00:00:01 |
|*  2 |   INDEX RANGE SCAN          | REQUESTOR_INDEX |     1 |       |     1   (0)| 00:00:01 |
-----------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   1 - filter(SYS_CHECKACL("ACLOID","OWNERID",xmltype('<privilege
              xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
              xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
              xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
                                  http://xmlns.oracle.com/xdb/acl.xsd
              DAV:http://xmlns.oracle.com/xdb/dav.xsd">
              <read-properties/><read-contents/></privilege>'))=1)
   2 - access(CAST("SYS_NC00021$" AS VARCHAR2(128))='Sarah J. Bell')

Example 19-10    Creating a Function-Based Index for a Column Targeted by a
Predicate

CREATE INDEX requestor_index 
  ON purchaseorder po
     (XMLCast(XMLQuery('$p/PurchaseOrder/Requestor' PASSING po.OBJECT_VALUE AS 
"p"
                                                    RETURNING CONTENT)
              AS VARCHAR2(128)));

19.4.4 Guideline: Create indexes on ordered collection tables
If a collection is stored as an ordered collection table (OCT) or as an XMLType instance,
then you can directly access members of the collection. Each member becomes a
table row, so you can access it directly with SQL. You can often improve performance
by indexing such collection members.

You do this by creating a composite index on (a) the object attribute that corresponds
to the collection XML element or its attribute and (b) pseudocolumn NESTED_TABLE_ID.

Example 19-11 shows the execution plan for a query to find the Reference elements in
documents that contain an order for part number 717951002372 (Part element with an
Id attribute of value 717951002372). The collection of LineItem elements is stored as
rows in the ordered collection table lineitem_table.

Note:

Example 19-11 does not use the purchaseorder table from sample database
schema OE. It uses a purchaseorder table that uses an ordered collection
table (OCT) named lineitem_table for the collection element LineItem.

The execution plan shows a full scan of ordered collection table lineitem_table. This
could be acceptable if there were only a few hundred documents in the purchaseorder
table, but it would be unacceptable if there were thousands or millions of documents in
the table.

To improve the performance of such a query, you can create an index that provides
direct access to pseudocolumn NESTED_TABLE_ID, given the value of attribute Id.

Chapter 19
Guidelines for Using Execution Plans to Analyze and Optimize XPath Queries

19-10



Unfortunately, Oracle XML DB does not allow indexes on collections to be created
using XPath expressions directly. To create the index, you must understand the
structure of the SQL object that is used to manage the LineItem elements. Given
this information, you can create the required index using conventional object-relational
SQL.

In this case, element LineItem is stored as an instance of object type lineitem_t.
Element Part is stored as an instance of SQL data type part_t. XML attribute Id
is mapped to object attribute part_number. Given this information, you can create a
composite index on attribute part_number and pseudocolumn NESTED_TABLE_ID, as
shown in Example 19-12. This index provides direct access to those purchase-order
documents that have LineItem elements that reference the required part.

Example 19-11    Execution Plan for a Selection of Collection Elements

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference'
                        PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(4000)) "Reference"
  FROM purchaseorder
  WHERE XMLExists('$p/PurchaseOrder/LineItems/LineItem/Part[@Id="717951002372"]'
                  PASSING OBJECT_VALUE AS "p");

-------------------------------------------------------------------------------------------------------
| Id  | Operation                    | Name                   | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT             |                        |    21 |  2352 |    20  (10)| 00:00:01 |
|*  1 |  HASH JOIN RIGHT SEMI        |                        |    21 |  2352 |    20  (10)| 00:00:01 |
|   2 |   JOIN FILTER CREATE         | :BF0000                |    22 |   880 |    14   (8)| 00:00:01 |
|*  3 |    TABLE ACCESS FULL         | LINEITEM_TABLE         |    22 |   880 |    14   (8)| 00:00:01 |
|   4 |   JOIN FILTER USE            | :BF0000                |   132 |  9504 |     5   (0)| 00:00:01 |
|*  5 |    TABLE ACCESS FULL         | PURCHASEORDER          |   132 |  9504 |     5   (0)| 00:00:01 |
-------------------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
   1 - access("NESTED_TABLE_ID"="PURCHASEORDER"."SYS_NC0003400035$")
   3 - filter("SYS_NC00011$"='717951002372')
   5 - filter(SYS_OP_BLOOM_FILTER(:BF0000,"PURCHASEORDER","SYS_NC0003400035$"))

Example 19-12    Creating an Index for Direct Access to an Ordered Collection Table

CREATE INDEX lineitem_part_index ON lineitem_table l (l.part.part_number,
                                                      l.NESTED_TABLE_ID);

19.4.5 Guideline: Use XMLOptimizationCheck to determine why a
query is not rewritten

If a query has not been optimized, you can use system variable
XMLOptimizationCheck to try to determine why.

Related Topics

• Diagnosis of XQuery Optimization: XMLOptimizationCheck
You can examine an execution plan for your SQL code to determine whether
XQuery optimization occurs or the plan is instead suboptimal.

Chapter 19
Guidelines for Using Execution Plans to Analyze and Optimize XPath Queries

19-11



20
XML Schema Evolution

You can use XML schema evolution to update your XML schema after you have
registered it with Oracle XML DB.

Oracle XML DB supports the W3C XML Schema recommendation. XML instance
documents that conform to an XML schema can be stored and retrieved using SQL
and protocols such as FTP, HTTP(S), and WebDAV. In addition to specifying the
structure of XML documents, XML schemas determine the mapping between XML and
object-relational storage.

• Overview of XML Schema Evolution
A major challenge for developers using an XML schema with Oracle XML DB is
how to deal with changes in the content or structure of XML documents. In some
environments, the need for changes may be frequent or extensive, arising from
new regulations, internal needs, or external opportunities.

• Copy-Based Schema Evolution
You perform copy-based XML schema evolution using PL/SQL procedure
DBMS_XMLSCHEMA.copyEvolve. This backs up existing instance documents to
temporary XMLType tables, drops the old version of the XML schema (which also
deletes the associated instance documents), registers the new version, and copies
the backed-up instance documents to new XMLType tables.

• In-Place XML Schema Evolution
In-place XML schema evolution makes changes to an XML schema without
requiring that existing data be copied, deleted, and reinserted. In-place evolution is
thus much faster than copy-based evolution. However, in-place evolution also has
several restrictions that do not apply to copy-based evolution.

Related Topics

• XML Schema Storage and Query: Basic
XML Schema is a standard for describing the content and structure of XML
documents. You can register, update, and delete an XML schema used with
Oracle XML DB. You can define storage structures to use for your XML schema-
based data and map XML Schema data types to SQL data types.

20.1 Overview of XML Schema Evolution
A major challenge for developers using an XML schema with Oracle XML DB is
how to deal with changes in the content or structure of XML documents. In some
environments, the need for changes may be frequent or extensive, arising from new
regulations, internal needs, or external opportunities.

For example, you might need to add new elements or attributes to an XML schema
definition, modify a data type, or relax or tighten certain minimum and maximum
occurrence requirements.

20-1



In such cases, you need to "evolve" the XML schema so that new requirements are
accommodated, while any existing instance documents (the data) remain valid (or can
be made valid), and existing applications can continue to run.

If you do not care about any existing documents, you can of course simply drop the
XMLType tables that are dependent on the XML schema, delete the old XML schema,
and register the new XML schema at the same URL. In most cases, however, you
need to keep the existing documents, possibly transforming them to accommodate the
new XML schema.

Oracle XML DB supports two kinds of schema evolution:

• Copy-based schema evolution, in which all instance documents that conform to
the schema are copied to a temporary location in the database, the old schema
is deleted, the modified schema is registered, and the instance documents are
inserted into their new locations from the temporary area

• In-place schema evolution, which does not require copying, deleting, and
inserting existing data and thus is much faster than copy-based evolution, but
which has restrictions that do not apply to copy-based evolution

In general, in-place evolution is permitted if you are not changing the storage
model and if the changes do not invalidate existing documents (that is, if existing
documents are conformant with the new schema or can be made conformant
with it). A more detailed explanation of restrictions and guidelines is presented in
In-Place XML Schema Evolution.

Each approach has its own PL/SQL procedure: DBMS_XMLSCHEMA.copyEvolve for copy-
based evolution, DBMS_XMLSCHEMA.inPlaceEvolve for in-place evolution. This chapter
explains the use of each procedure and presents guidelines for using its associated
approach to schema evolution.

20.2 Copy-Based Schema Evolution
You perform copy-based XML schema evolution using PL/SQL procedure
DBMS_XMLSCHEMA.copyEvolve. This backs up existing instance documents to temporary
XMLType tables, drops the old version of the XML schema (which also deletes the
associated instance documents), registers the new version, and copies the backed-up
instance documents to new XMLType tables.

In case of a problem, the backup copies are restored — see Rollback When Procedure
DBMS_XMLSCHEMA.COPYEVOLVE Raises an Error.

Using procedure copyEvolve, you can evolve your registered XML schema in such a
way that existing XML instance documents continue to be valid.

• Scenario for Copy-Based Evolution
An evolved version of a purchase-order XML schema is shown. It is used in
examples that illustrate the use of copy-based XML schema evolution.

• COPYEVOLVE Parameters and Errors
The parameters of PL/SQL procedure DBMS_XMLSCHEMA.copyEvolve are described,
as are the errors associated with this procedure.

• Limitations of Procedure COPYEVOLVE
The use of PL/SQL procedure DBMS_XMLSCHEMA.copyEvolve involves certain
limitations.

Chapter 20
Copy-Based Schema Evolution

20-2



• Guidelines for Using Procedure COPYEVOLVE
General guidelines for using PL/SQL procedure DBMS_XMLSCHEMA.copyEvolveare
presented, as well as guidelines that are specific to particular contexts.

• Update of Existing XML Instance Documents Using an XSLT Stylesheet
After you modify a registered XML schema, you must update any existing XML
instance documents that use the schema. You do this by applying an XSLT
stylesheet to each of the instance documents. The stylesheet represents the
difference between the old and new XML schemas.

• Examples of Using Procedure COPYEVOLVE
Several examples are presented of using PL/SQL
procedureDBMS_XMLSCHEMA.copyEvolve to update an XML schema. (Be sure to
back up all registered XML schemas and XML documents that reference them,
before using the procedure.)

20.2.1 Scenario for Copy-Based Evolution
An evolved version of a purchase-order XML schema is shown. It is used in examples
that illustrate the use of copy-based XML schema evolution.

Example 20-1 shows a partial listing of a revised version of the purchase-order XML
schema of Example A-2. See Example A-3 for the complete revised schema listing.
Text that is in bold here is new or different from that in the original schema.

Example 20-1    Revised Purchase-Order XML Schema

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
           xmlns:xdb="http://xmlns.oracle.com/xdb"
           version="1.0">
  <xs:element
    name="PurchaseOrder" type="PurchaseOrderType"
    xdb:defaultTable="PURCHASEORDER"
    xdb:columnProps=
      "CONSTRAINT purchaseorder_pkey PRIMARY KEY (XMLDATA.reference),
       CONSTRAINT valid_email_address FOREIGN KEY (XMLDATA.userid)
         REFERENCES hr.employees (EMAIL)"
    xdb:tableProps=
      "VARRAY XMLDATA.ACTIONS.ACTION STORE AS TABLE ACTION_TABLE
        ((CONSTRAINT action_pkey PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$)))
       VARRAY XMLDATA.LINEITEMS.LINEITEM STORE AS TABLE LINEITEM_TABLE
        ((constraint LINEITEM_PKEY primary key (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$)))
       lob (XMLDATA.NOTES) STORE AS (ENABLE STORAGE IN ROW STORAGE(INITIAL 4K NEXT 32K))"/>
  <xs:complexType name="PurchaseOrderType" xdb:SQLType="PURCHASEORDER_T">
    <xs:sequence>
      <xs:element name="Actions" type="ActionsType" xdb:SQLName="ACTIONS"/>
      <xs:element name="Reject" type="RejectionType" minOccurs="0" xdb:SQLName="REJECTION"/>
      <xs:element name="Requestor" type="RequestorType" xdb:SQLName="REQUESTOR"/>
      <xs:element name="User" type="UserType" xdb:SQLName="USERID"/>
      <xs:element name="CostCenter" type="CostCenterType" xdb:SQLName="COST_CENTER"/> 
      <xs:element name="BillingAddress" type="AddressType" minOccurs="0"
                  xdb:SQLName="BILLING_ADDRESS"/> 
      <xs:element name="ShippingInstructions" type="ShippingInstructionsType"
                  xdb:SQLName="SHIPPING_INSTRUCTIONS"/> 
      <xs:element name="SpecialInstructions" type="SpecialInstructionsType"
                  xdb:SQLName="SPECIAL_INSTRUCTIONS"/> 
      <xs:element name="LineItems" type="LineItemsType" xdb:SQLName="LINEITEMS"/>
      <xs:element name="Notes" type="NotesType" minOccurs="0" xdb:SQLType="CLOB"
                  xdb:SQLName="NOTES"/> 
    </xs:sequence>
    <xs:attribute name="Reference" type="ReferenceType" use="required" xdb:SQLName="REFERENCE"/>
    <xs:attribute name="DateCreated" type="xs:dateTime" use="required"
                  xdb:SQLType="TIMESTAMP WITH TIME ZONE"/>
  </xs:complexType>

Chapter 20
Copy-Based Schema Evolution

20-3



  <xs:complexType name="LineItemsType" xdb:SQLType="LINEITEMS_T">
    <xs:sequence>
      <xs:element name="LineItem" type="LineItemType" maxOccurs="unbounded" xdb:SQLName="LINEITEM"
                  xdb:SQLCollType="LINEITEM_V"/>  
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="LineItemType" xdb:SQLType="LINEITEM_T">
    <xs:sequence>
      <xs:element name="Part" type="PartType" xdb:SQLName="PART"/>
      <xs:element name="Quantity" type="quantityType"/>
    </xs:sequence>
    <xs:attribute name="ItemNumber" type="xs:integer" xdb:SQLName="ITEMNUMBER"
                  xdb:SQLType="NUMBER"/> 
  </xs:complexType>
  <xs:complexType name="PartType" xdb:SQLType="PART_T">
    <xs:simpleContent>
      <xs:extension base="UPCCodeType">
        <xs:attribute name="Description" type="DescriptionType" use="required"
                      xdb:SQLName="DESCRIPTION"/> 
        <xs:attribute name="UnitCost" type="moneyType" use="required"/>
      </xs:extension>
    </xs:simpleContent>
  </xs:complexType>
  <xs:simpleType name="ReferenceType">
    <xs:restriction base="xs:string">
      <xs:minLength value="18"/>
      <xs:maxLength value="30"/>
    </xs:restriction>
  </xs:simpleType>

. . .

  <xs:complexType name="RejectionType" xdb:SQLType="REJECTION_T">
    <xs:all>
      <xs:element name="User" type="UserType" minOccurs="0" xdb:SQLName="REJECTED_BY"/>
      <xs:element name="Date" type="DateType" minOccurs="0" xdb:SQLName="DATE_REJECTED"/>
      <xs:element name="Comments" type="CommentsType" minOccurs="0" xdb:SQLName="REASON_REJECTED"/>
    </xs:all>
  </xs:complexType>
  <xs:complexType name="ShippingInstructionsType" xdb:SQLType="SHIPPING_INSTRUCTIONS_T">
    <xs:sequence>
      <xs:element name="name" type="NameType" minOccurs="0" xdb:SQLName="SHIP_TO_NAME"/>
      <xs:choice>
        <xs:element name="address" type="AddressType" minOccurs="0"/>
        <xs:element name="fullAddress" type="FullAddressType" minOccurs="0"
                    xdb:SQLName="SHIP_TO_ADDRESS"/> 
      </xs:choice>
      <xs:element name="telephone" type="TelephoneType" minOccurs="0" xdb:SQLName="SHIP_TO_PHONE"/>
    </xs:sequence>
  </xs:complexType>

. . .

  <xs:simpleType name="NameType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="20"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="FullAddressType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="256"/>
    </xs:restriction>
  </xs:simpleType>

. . .

Chapter 20
Copy-Based Schema Evolution

20-4



  <xs:simpleType name="DescriptionType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="256"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:complexType name="AddressType" xdb:SQLType="ADDRESS_T">
    <xs:sequence>
      <xs:element name="StreetLine1" type="StreetType"/>
      <xs:element name="StreetLine2" type="StreetType" minOccurs="0"/>
      <xs:element name="City" type="CityType"/>
      <xs:choice>
        <xs:sequence>
          <xs:element name="State" type="StateType"/>
          <xs:element name="ZipCode" type="ZipCodeType"/>
        </xs:sequence>
        <xs:sequence>
          <xs:element name="Province" type="ProvinceType"/>
          <xs:element name="PostCode" type="PostCodeType"/>
        </xs:sequence>
        <xs:sequence>
          <xs:element name="County" type="CountyType"/>
          <xs:element name="Postcode" type="PostCodeType"/>
        </xs:sequence>
      </xs:choice>
      <xs:element name="Country" type="CountryType"/>
    </xs:sequence>
  </xs:complexType>
  <xs:simpleType name="StreetType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="128"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="CityType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="64"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="StateType">
    <xs:restriction base="xs:string">
      <xs:minLength value="2"/>
      <xs:maxLength value="2"/>
      <xs:enumeration value="AK"/>
      <xs:enumeration value="AL"/>
      <xs:enumeration value="AR"/>

 . . . -- A value for each US state abbreviation

      <xs:enumeration value="WY"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="ZipCodeType">
    <xs:restriction base="xs:string">
      <xs:pattern value="\d{5}"/>
      <xs:pattern value="\d{5}-\d{4}"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="CountryType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="64"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="CountyType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="32"/>

Chapter 20
Copy-Based Schema Evolution

20-5



    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="PostCodeType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="12"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="ProvinceType">
    <xs:restriction base="xs:string">
      <xs:minLength value="2"/>
      <xs:maxLength value="2"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="NotesType">
    <xs:restriction base="xs:string">
      <xs:maxLength value="32767"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="UPCCodeType">
    <xs:restriction base="xs:string">
      <xs:minLength value="11"/>
      <xs:maxLength value="14"/>
      <xs:pattern value="\d{11}"/>
      <xs:pattern value="\d{12}"/>
      <xs:pattern value="\d{13}"/>
      <xs:pattern value="\d{14}"/>
    </xs:restriction>
  </xs:simpleType>
</xs:schema>

20.2.2 COPYEVOLVE Parameters and Errors
The parameters of PL/SQL procedure DBMS_XMLSCHEMA.copyEvolve are described, as
are the errors associated with this procedure.

This is the signature of procedure DBMS_XMLSCHEMA.copyEvolve:

procedure copyEvolve(schemaURLs       IN XDB$STRING_LIST_T,
                     newSchemas       IN XMLSequenceType,
                     transforms       IN XMLSequenceType := NULL,
                     preserveOldDocs  IN BOOLEAN := FALSE,
                     mapTabName       IN VARCHAR2 := NULL,
                     generateTables   IN BOOLEAN := TRUE,
                     force            IN BOOLEAN := FALSE,
                     schemaOwners     IN XDB$STRING_LIST_T := NULL
                     parallelDegree   IN PLS_INTEGER := 0,
                     options          IN PLS_INTEGER := 0);

Table 20-1 describes the individual parameters. Table 20-2 describes the errors
associated with the procedure.

Table 20-1    Parameters of Procedure DBMS_XMLSCHEMA.COPYEVOLVE

Parameter Description

schemaURLs Varray of URLs of XML schemas to be evolved (varray of
VARCHAR2(4000). This should include the dependent schemas
as well. Unless the force parameter is TRUE, the URLs should be
in the dependency order, that is, if URL A comes before URL B in
the varray, then schema A should not be dependent on schema B
but schema B may be dependent on schema A.

Chapter 20
Copy-Based Schema Evolution

20-6



Table 20-1    (Cont.) Parameters of Procedure
DBMS_XMLSCHEMA.COPYEVOLVE

Parameter Description

newSchemas Varray of new XML schema documents (XMLType instances).
Specify this in exactly the same order as the corresponding
URLs. If no change is necessary in an XML schema, provide the
unchanged schema.

transforms Varray of XSL documents (XMLType instances) that are applied
to XML schema based documents to make them conform to
the new schemas. Specify these in exactly the same order as
the corresponding URLs. If no transformations are required, this
parameter need not be specified.

preserveOldDocs If this is TRUE, then the temporary tables holding old data are not
dropped at the end of schema evolution. See also Guidelines for
Using Procedure COPYEVOLVE.

mapTabName Specifies the name of table that maps old XMLType table or
column names to names of corresponding temporary tables.

generateTables By default this parameter is TRUE. If FALSE then XMLType
tables or columns are not generated after registering new XML
schemas. If FALSE, preserveOldDocs must be TRUE and
mapTabName must not be NULL.

force If this is TRUE, then errors during the registration of new schemas
are ignored. If there are circular dependencies among the
schemas, set this flag to TRUE to ensure that each schema is
stored even though there may be errors in registration.

schemaOwners Varray of names of schema owners. Specify these in exactly the
same order as the corresponding URLs.

parallelDegree Specifies the degree of parallelism to be used in a PARALLEL
hint during the data-copy stage. If this is 0 (default value), a
PARALLEL hint is absent from the data-copy statements.

options Miscellaneous options. The only option is
COPYEVOLVE_BINARY_XML, which means to register the new
XML schemas for binary XML data and create the new tables
or columns with binary XML as the storage model.

Table 20-2    Errors Associated with Procedure
DBMS_XMLSCHEMA.COPYEVOLVE

Error Number and
Message

Cause Action

30942 XML Schema
Evolution error for schema
'<schema_url>' table
"<owner_name>.<table_n
ame>" column
'<column_name>'

The given XMLType table or
column that conforms to the
given XML schema had errors
during evolution. In the case of a
table, the column name is empty.
See also the more specific error
that follows this.

Based on the schema, table, and
column information in this error
and the more specific error that
follows, take corrective action.

Chapter 20
Copy-Based Schema Evolution

20-7



Table 20-2    (Cont.) Errors Associated with Procedure
DBMS_XMLSCHEMA.COPYEVOLVE

Error Number and
Message

Cause Action

30943 XML Schema
'<schema_url>' is
dependent on XML
schema '<schema_url>'

Not all dependent XML
schemas were specified or the
schemas were not specified in
dependency order, that is, if
schema S1 is dependent on
schema S, S must appear before
S1.

Include the previously
unspecified schema in the list
of schemas or correct the
order in which the schemas
are specified. Then retry the
operation.

30944 Error during
rollback for XML schema
'<schema_url>' table
"<owner_name>.<table_n
ame>" column
'<column_name>'

The given XMLType table or
column that conforms to the
given XML schema had errors
during a rollback of XML schema
evolution. For a table, the
column name is empty. See
also the more specific error that
follows this.

Based on the schema, table, and
column information in this error
and the more specific error that
follows, take corrective action.

30945 Could not
create mapping table
'<table_name>'

A mapping table could not be
created during XML schema
evolution. See also the more
specific error that follows this.

Ensure that a table with the
given name does not exist and
retry the operation.

30946 XML Schema
Evolution warning:
temporary tables not
cleaned up

An error occurred after the
schema was evolved while
cleaning up temporary tables.
The schema evolution was
successful.

If you need to remove the
temporary tables, use the
mapping table to get the
temporary table names and drop
them.

20.2.3 Limitations of Procedure COPYEVOLVE
The use of PL/SQL procedure DBMS_XMLSCHEMA.copyEvolve involves certain
limitations.

• Indexes, triggers, constraints, row-level security (RLS) policies, and other
metadata related to the XMLType tables that are dependent on the schemas are
not preserved. These must be re-created after evolution.

• If top-level element names are changed, additional steps are required after
copyEvolve finishes executing. See Top-Level Element Name Changes.

• Copy-based evolution cannot be used if there is a table with an object-type column
that has an XMLType attribute that is dependent on any of the schemas to be
evolved. For example, consider this table:

CREATE TYPE t1 AS OBJECT (n NUMBER, x XMLType);
CREATE TABLE tab1 (e NUMBER, o t1) XMLType 
 COLUMN o.x XMLSchema "s1.xsd" ELEMENT "Employee";

This assumes that an XML schema with a top-level element Employee has been
registered under URL s1.xsd. It is not possible to evolve this XML schema,
because table tab1 with column o with XMLType attribute x is dependent on the

Chapter 20
Copy-Based Schema Evolution

20-8



XML schema. Although copyEvolve does not handle XMLType object attributes, it
does raise an error in such cases.

20.2.4 Guidelines for Using Procedure COPYEVOLVE
General guidelines for using PL/SQL procedure DBMS_XMLSCHEMA.copyEvolveare
presented, as well as guidelines that are specific to particular contexts.

The following general guideline applies to using copyEvolve. The rest of this section
describes specific guidelines that can also be appropriate in particular contexts.

1. Turn off the recycle bin, to prevent dropped tables from being copied to it:

ALTER SESSION SET RECYCLEBIN=off;

2. Identify the XML schemas that are dependent on the XML schema that is to be
evolved. You can acquire the URLs of the dependent XML schemas using the
following query, where schema_to_be_evolved is the schema to be evolved, and
owner_of_schema_to_be_evolved is its owner (database user).

SELECT dxs.SCHEMA_URL, dxs.OWNER
    FROM DBA_DEPENDENCIES dd, DBA_XML_SCHEMAS dxs
    WHERE dd.REFERENCED_NAME = (SELECT INT_OBJNAME
                                  FROM DBA_XML_SCHEMAS
                                  WHERE SCHEMA_URL = schema_to_be_evolved
                                    AND OWNER = 
owner_of_schema_to_be_evolved)
      AND dxs.INT_OBJNAME = dd.NAME;

In many cases, no changes are needed in the dependent XML schemas. But if the
dependent XML schemas need to be changed, then you must also prepare new
versions of those XML schemas.

3. If the existing instance documents do not conform to the new XML schema, then
you must provide an XSL stylesheet that, when applied to an instance document,
transforms it to conform to the new schema. You must do this for each XML
schema identified in Step 2. The transformation must handle documents that
conform to all top-level elements in the new XML schema.

4. Call procedure DBMS_XMLSCHEMA.copyEvolve, specifying the XML schema URLs,
new schemas, and transformation stylesheet.

• Top-Level Element Name Changes
PL/SQL procedure DBMS_XMLSCHEMA.copyEvolve assumes that top-level elements
have not been dropped in new schemas and that their names have not
been changed. If there are such changes then call procedure copyEvolve with
parameter generateTables set to FALSE and parameter preserveOldDocs set to
TRUE, so that backup document copies are available.

• User-Created Virtual Columns of Tables Other Than Default Tables
For tables that are not default tables, any virtual columns that you create are
not re-created during copy-based evolution. If such columns are needed then set
copyEvolve parameter preserveOldDocs to TRUE, create the tables, and copy the
old documents after procedure copyEvolve has finished.

Chapter 20
Copy-Based Schema Evolution

20-9



• Ensure That the XML Schema and Dependents Are Not Used by Concurrent
Sessions
Ensure that the XML schema to be evolved, as well as its dependents, are not
used by any concurrent session during the XML schema evolution process.

• Rollback When Procedure DBMS_XMLSCHEMA.COPYEVOLVE Raises an Error
Procedure DBMS_XMLSCHEMA.copyEvolve either completely succeeds or it raises an
error. If it raises an error then it tries to roll back as much of the operation as
possible.

• Failed Rollback From Insufficient Privileges
In certain cases you cannot roll back a copy-based evolution operation. For
example, if table creation fails due to reasons not related to the new XML schema,
then there is no way to roll back.

• Privileges Needed for XML Schema Evolution
There are several database privileges that you might need, in order to perform
copy-based XML schema evolution.

20.2.4.1 Top-Level Element Name Changes
PL/SQL procedure DBMS_XMLSCHEMA.copyEvolve assumes that top-level elements
have not been dropped in new schemas and that their names have not been
changed. If there are such changes then call procedure copyEvolve with parameter
generateTables set to FALSE and parameter preserveOldDocs set to TRUE, so that
backup document copies are available.

With those parameter values, new tables are not generated, and the temporary
tables holding the old documents (backup copies) are not dropped at the end of the
procedure. You can then store the old documents in whatever form is appropriate and
drop the temporary tables. See COPYEVOLVE Parameters and Errors for more details
on using these parameters.

20.2.4.2 User-Created Virtual Columns of Tables Other Than Default Tables
For tables that are not default tables, any virtual columns that you create are not re-
created during copy-based evolution. If such columns are needed then set copyEvolve
parameter preserveOldDocs to TRUE, create the tables, and copy the old documents
after procedure copyEvolve has finished.

20.2.4.3 Ensure That the XML Schema and Dependents Are Not Used by
Concurrent Sessions

Ensure that the XML schema to be evolved, as well as its dependents, are not used by
any concurrent session during the XML schema evolution process.

If other, concurrent sessions have shared locks on this schema at the beginning of
the evolution process, then procedure DBMS_XMLSCHEMA.copyEvolve waits for these
sessions to release the locks so that it can acquire an exclusive lock. However, this
lock is released immediately to allow the rest of the process to continue.

Chapter 20
Copy-Based Schema Evolution

20-10



20.2.4.4 Rollback When Procedure DBMS_XMLSCHEMA.COPYEVOLVE
Raises an Error

Procedure DBMS_XMLSCHEMA.copyEvolve either completely succeeds or it raises an
error. If it raises an error then it tries to roll back as much of the operation as possible.

Evolving an XML schema involves many database DDL statements. When an error
occurs, compensating DDL statements are executed to undo the effect of all steps
executed to that point. If the old tables or schemas have been dropped, they are
re-created, but any table, column, and storage properties and any auxiliary structures
(such as indexes, triggers, constraints, and RLS policies) associated with the tables
and columns are lost.

20.2.4.5 Failed Rollback From Insufficient Privileges
In certain cases you cannot roll back a copy-based evolution operation. For example,
if table creation fails due to reasons not related to the new XML schema, then there is
no way to roll back.

An example is failure due to insufficient privileges. The temporary tables are not
deleted even if preserveOldDocs is FALSE, so the data can be recovered. If the
mapTabName parameter is null, the mapping table name is XDB$MAPTAB followed by a
sequence number. The exact table name can be found using a query such as the
following:

SELECT TABLE_NAME FROM USER_TABLES WHERE TABLE_NAME LIKE 'XDB$MAPTAB%';

20.2.4.6 Privileges Needed for XML Schema Evolution
There are several database privileges that you might need, in order to perform copy-
based XML schema evolution.

Copy-based XML schema evolution can involve dropping or creating SQL data types,
so you need type-related privileges such as DROP TYPE, CREATE TYPE, and ALTER TYPE.
You need privileges to delete and register the XML schemas involved in the evolution.
You need all privileges on XMLType tables that conform to the schemas being evolved.
For XMLType columns, the ALTER TABLE privilege is needed on corresponding tables. If
there are schema-based XMLType tables or columns in other database schemas, you
need privileges such as the following:

• CREATE ANY TABLE

• CREATE ANY INDEX

• SELECT ANY TABLE

• READ ANY TABLE

• UPDATE ANY TABLE

• INSERT ANY TABLE

• DELETE ANY TABLE

• DROP ANY TABLE

• ALTER ANY TABLE

Chapter 20
Copy-Based Schema Evolution

20-11



• DROP ANY INDEX

To avoid needing to grant all these privileges to the database- schema owner, Oracle
recommends that a database administrator perform the evolution if there are XML
schema-based XMLType table or columns belonging to other database schemas.

20.2.5 Update of Existing XML Instance Documents Using an XSLT
Stylesheet

After you modify a registered XML schema, you must update any existing XML
instance documents that use the schema. You do this by applying an XSLT stylesheet
to each of the instance documents. The stylesheet represents the difference between
the old and new XML schemas.

Example 20-2 shows an XSLT stylesheet, in file evolvePurchaseOrder.xsl, that
transforms existing purchase-order documents that use the old XML schema, so they
use the new XML schema instead.

Example 20-2    evolvePurchaseOrder.xsl: XSLT Stylesheet to Update Instance Documents

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet 
  version="1.0" 
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <xsl:output method="xml" encoding="UTF-8"/>
  <xsl:template match="/PurchaseOrder">
    <PurchaseOrder>
      <xsl:attribute name="xsi:noNamespaceSchemaLocation">
        http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd
      </xsl:attribute>
      <xsl:for-each select="Reference">
        <xsl:attribute name="Reference">
          <xsl:value-of select="."/>
        </xsl:attribute>
      </xsl:for-each>
      <xsl:variable name="V264_394" select="'2004-01-01T12:00:00.000000-08:00'"/>
      <xsl:attribute name="DateCreated">
        <xsl:value-of select="$V264_394"/>
      </xsl:attribute>
      <xsl:for-each select="Actions">
        <Actions>
          <xsl:for-each select="Action">
            <Action>
              <xsl:for-each select="User">
                <User>
                  <xsl:value-of select="."/>
                </User>
              </xsl:for-each>
              <xsl:for-each select="Date">
                <Date>
                  <xsl:value-of select="."/>
                </Date>
              </xsl:for-each>
            </Action>
          </xsl:for-each>
        </Actions>
      </xsl:for-each>
      <xsl:for-each select="Reject">
        <Reject>
          <xsl:for-each select="User">
            <User>
              <xsl:value-of select="."/>

Chapter 20
Copy-Based Schema Evolution

20-12



            </User>
          </xsl:for-each>
          <xsl:for-each select="Date">
            <Date>
              <xsl:value-of select="."/>
            </Date>
          </xsl:for-each>
          <xsl:for-each select="Comments">
            <Comments>
              <xsl:value-of select="."/>
            </Comments>
          </xsl:for-each>
        </Reject>
      </xsl:for-each>
      <xsl:for-each select="Requestor">
        <Requestor>
          <xsl:value-of select="."/>
        </Requestor>
      </xsl:for-each>
      <xsl:for-each select="User">
        <User>
          <xsl:value-of select="."/>
        </User>
      </xsl:for-each>
      <xsl:for-each select="CostCenter">
        <CostCenter>
          <xsl:value-of select="."/>
        </CostCenter>
      </xsl:for-each>
      <ShippingInstructions>
        <xsl:for-each select="ShippingInstructions">
          <xsl:for-each select="name">
            <name>
              <xsl:value-of select="."/>
            </name>
          </xsl:for-each>
        </xsl:for-each>
        <xsl:for-each select="ShippingInstructions">
          <xsl:for-each select="address">
            <fullAddress>
              <xsl:value-of select="."/>
            </fullAddress>
          </xsl:for-each>
        </xsl:for-each>
        <xsl:for-each select="ShippingInstructions">
          <xsl:for-each select="telephone">
            <telephone>
              <xsl:value-of select="."/>
            </telephone>
          </xsl:for-each>
        </xsl:for-each>
      </ShippingInstructions>
      <xsl:for-each select="SpecialInstructions">
        <SpecialInstructions>
          <xsl:value-of select="."/>
        </SpecialInstructions>
      </xsl:for-each>
      <xsl:for-each select="LineItems">
        <LineItems>
          <xsl:for-each select="LineItem">
            <xsl:variable name="V22" select="."/>
            <LineItem>
              <xsl:for-each select="@ItemNumber">
                <xsl:attribute name="ItemNumber">
                  <xsl:value-of select="."/>
                </xsl:attribute>
              </xsl:for-each>
              <xsl:for-each select="$V22/Part">
                <xsl:variable name="V24" select="."/>

Chapter 20
Copy-Based Schema Evolution

20-13



                <xsl:for-each select="@Id">
                  <Part>
                    <xsl:for-each select="$V22/Description">
                      <xsl:attribute name="Description">
                        <xsl:value-of select="."/>
                      </xsl:attribute>
                    </xsl:for-each>
                    <xsl:for-each select="$V24/@UnitPrice">
                      <xsl:attribute name="UnitCost">
                        <xsl:value-of select="."/>
                      </xsl:attribute>
                    </xsl:for-each>
                    <xsl:value-of select="."/>
                  </Part>
                </xsl:for-each>
              </xsl:for-each>
              <xsl:for-each select="$V22/Part">
                <xsl:for-each select="@Quantity">
                  <Quantity>
                    <xsl:value-of select="."/>
                  </Quantity>
                </xsl:for-each>
              </xsl:for-each>
            </LineItem>
          </xsl:for-each>
        </LineItems>
      </xsl:for-each>
    </PurchaseOrder>
  </xsl:template>
</xsl:stylesheet>

20.2.6 Examples of Using Procedure COPYEVOLVE
Several examples are presented of using PL/SQL
procedureDBMS_XMLSCHEMA.copyEvolve to update an XML schema. (Be sure to back
up all registered XML schemas and XML documents that reference them, before using
the procedure.)

Example 20-3 loads a revised XML schema and evolution XSL stylesheet into Oracle
XML DB Repository.

Example 20-4 shows how to use procedure DBMS_XMLSCHEMA.copyEvolve to evolve
the XML schema purchaseOrder.xsd to revisedPurchaseOrder.xsd using the XSLT
stylesheet evolvePurchaseOrder.xsl.

Procedure DBMS_XMLSCHEMA.copyEvolve evolves registered XML schemas in such a
way that existing instance documents continue to remain valid.

Caution:

Before executing procedure DBMS_XMLSCHEMA.copyEvolve, always back up
all registered XML schemas and all XML documents that conform to them.
Procedure copyEvolve deletes all documents that conform to registered XML
schemas.

First, procedure copyEvolve copies the data in XML schema-based XMLType tables
and columns to temporary tables. It then drops the original tables and columns,
and deletes the old XML schemas. After registering the new XML schemas, it

Chapter 20
Copy-Based Schema Evolution

20-14



creates XMLType tables and columns and populates them with data (unless parameter
GENTABLES is FALSE) but it does not create any auxiliary structures such as indexes,
constraints, triggers, and row-level security (RLS) policies. Procedure copyEvolve
creates the tables and columns as follows:

• It creates default tables while registering the new schemas.

• It creates tables that are not default tables using a statement of the following form:

CREATE TABLE table_name OF XMLType OID 'oid'
   XMLSCHEMA schema_url ELEMENT element_name

where OID is the original OID of the table, before it was dropped.

• It adds XMLType columns using a statement of the following form:

ALTER TABLE table_name ADD (column_name XMLType) XMLType COLUMN
 column_name XMLSCHEMA schema_url ELEMENT element_name

When a new XML schema is registered, types are generated if the registration of the
corresponding old schema had generated types. If an XML schema was global before
the evolution, then it is also global after the evolution. Similarly, if an XML schema
was local before the evolution, then it is also local (owned by the same user) after the
evolution. You have the option to preserve the temporary tables that contain the old
documents, by setting parameter preserveOldDocs to TRUE. All temporary tables are
created in the database schema of the current user. For XMLType tables, the temporary
table has the columns shown in Table 20-3.

Table 20-3    XML Schema Evolution: XMLType Table Temporary Table Columns

Name Type Comment

Data CLOB XML document from the old table, in CLOB
format.

OID RAW(16) OID of the corresponding row in the old table.

ACLOID RAW(16) This column is present only if the old table is
hierarchy-enabled. ACLOID of corresponding row
in old table.

OWNERID RAW(16) This column is present only if old table is
hierarchy-enabled. OWNERID of corresponding
row in old table.

For XMLType columns, the temporary table has the columns shown in Table 20-4.

Table 20-4    XML Schema Evolution: XMLType Column Temporary Table
Columns

Name Type Comment

Data CLOB XML document from the old column, in CLOB
format.

RID ROWID ROWID of the corresponding row in the table
containing this column.

Procedure copyEvolve stores information about the mapping from the old table or
column name to the corresponding temporary table name in a separate table specified
by parameter mapTabName. If preserveOldDocs is TRUE, then the mapTabName parameter

Chapter 20
Copy-Based Schema Evolution

20-15



must not be NULL, and it must not be the name of any existing table in the current
database schema. Each row in the mapping table has information about one of the old
tables/columns. Table 20-5 shows the mapping table columns.

Table 20-5    Procedure COPYEVOLVE Mapping Table

Column Name Column Type Comment

SCHEMA_URL VARCHAR2(700) URL of the schema to which this table or
column conforms.

SCHEMA_OWNER VARCHAR2(30) Owner of the schema.

ELEMENT_NAME VARCHAR2(256) Element to which this table or column
conforms.

TABLE_NAME VARCHAR2(65) Qualified name of the table
(<owner_name>.<table_name>).

TABLE_OID RAW(16) OID of table.

COLUMN_NAME VARCHAR2(4000) Name of the column (NULL for XMLType
tables).

TEMP_TABNAME VARCHAR2(30) Name of temporary table that holds the
data for this table or column.

You can avoid generating any tables or columns after registering the new XML
schema by setting parameter GENTABLES to FALSE. If GENTABLES is FALSE, parameter
PRESERVEOLDDOCS must be TRUE and parameter MAPTABNAME must not be NULL. This
ensures that the data in the old tables is not lost. This is useful if you do not want
the tables to be created by the procedure, as described in section COPYEVOLVE
Parameters and Errors.

By default, it is assumed that all XML schemas are owned by the current user. If this
is not true, then you must specify the owner of each XML schema in the schemaOwners
parameter.

See Also:

Oracle Database SQL Language Reference for the complete description of
ALTER TABLE

Example 20-3    Loading Revised XML Schema and XSLT Stylesheet

DECLARE
  res BOOLEAN;
BEGIN
  res := DBMS_XDB_REPOS.createResource(         -- Load revised XML schema
           '/source/schemas/poSource/revisedPurchaseOrder.xsd',
           bfilename('XMLDIR', 'revisedPurchaseOrder.xsd'),
           nls_charset_id('AL32UTF8'));
  res := DBMS_XDB_REPOS.createResource(         -- Load revised XSL stylesheet
           '/source/schemas/poSource/evolvePurchaseOrder.xsl',
           bfilename('XMLDIR', 'evolvePurchaseOrder.xsl'),
           nls_charset_id('AL32UTF8'));
END;/

Chapter 20
Copy-Based Schema Evolution

20-16



Example 20-4    Updating an XML Schema Using DBMS_XMLSCHEMA.COPYEVOLVE

BEGIN
  DBMS_XMLSCHEMA.copyEvolve(
    xdb$string_list_t('http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd'),
    XMLSequenceType(XDBURIType('/source/schemas/poSource/revisedPurchaseOrder.xsd').getXML()),
    XMLSequenceType(XDBURIType('/source/schemas/poSource/evolvePurchaseOrder.xsl').getXML()));
END;

SELECT XMLQuery('$p/PurchaseOrder/LineItems/LineItem[1]'
                PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT) line_item
  FROM purchaseorder po
  WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2003030912333601PDT"]'
                  PASSING po.OBJECT_VALUE AS "p");
 
LINE_ITEM
------------------------------------------------------------------------------
<LineItem ItemNumber="1">
  <Part Description="A Night to Remember" UnitCost="39.95">715515009058</Part>
  <Quantity>2</Quantity>
</LineItem>

The same query would have produced the following result before the schema
evolution:

LINE_ITEM
----------------------------------------------------------
<LineItem ItemNumber="1">
  <Description>A Night to Remember</Description>
  <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</LineItem>

20.3 In-Place XML Schema Evolution
In-place XML schema evolution makes changes to an XML schema without requiring
that existing data be copied, deleted, and reinserted. In-place evolution is thus
much faster than copy-based evolution. However, in-place evolution also has several
restrictions that do not apply to copy-based evolution.

You use procedure DBMS_XMLSCHEMA.inPlaceEvolve to perform in-place evolution.
Using this procedure, you identify the changes to be made to an existing XML schema
by specifying an XML schema-differences document, and you optionally specify flags
to be applied to the evolution process.

In-place evolution constructs a new version of an XML schema by applying changes
specified in a diffXML document, validates that new XML schema (against the XML
schema for XML schemas), constructs DDL statements to evolve the disk structures
used to store the XML instance documents associated with the XML schema,
executes these DDL statements, and replaces the old version of the XML schema with
the new, in that order. If the new version of the XML schema is not a valid schema,
then in-place evolution fails.

• Restrictions for In-Place XML Schema Evolution
Because in-place XML schema evolution avoids copying data, it does not permit
arbitrary changes to an XML schema. The primary restriction on using in-place
evolution can be stated generally as a requirement that a given XML schema can
be evolved in place in only a backward-compatible way.

Chapter 20
In-Place XML Schema Evolution

20-17



• Supported Operations for In-Place XML Schema Evolution
Some of the operations that are supported for in-place schema evolution are
described. Some of these are not permitted in specific contexts, which are
specified.

• Guidelines for Using In-Place XML Schema Evolution
Guidelines that apply to in-place XML-schema evolution are presented. (Be sure to
back up your data before performing in-place schema evolution.)

• inPlaceEvolve Parameters
The parameters of PL/SQL procedure DBMS_XMLSCHEMA.inPlaceEvolve are
described, as are the errors associated with this procedure.

• The diffXML Parameter Document
The value of parameter diffXML of procedure DBMS_XMLSCHEMA.inPlaceEvolve
is an XMLType instance that specifies the changes to be applied to an XML
schema for in-place evolution. This diffXML document contains a sequence of
operations that describe the changes between the old XML schema and the new
(the intended evolution result).

20.3.1 Restrictions for In-Place XML Schema Evolution
Because in-place XML schema evolution avoids copying data, it does not permit
arbitrary changes to an XML schema. The primary restriction on using in-place
evolution can be stated generally as a requirement that a given XML schema can
be evolved in place in only a backward-compatible way.

For the complete list of changes supported by in-place evolution, see Supported
Operations for In-Place XML Schema Evolution.

Backward-compatible here means that any possible instance document that would
validate against a given XML schema must also validate against a later (evolved)
version of that XML schema. This applies to all possible conforming instance
documents, not only to existing instance documents For XML data that is stored as
binary XML, backward compatibility also means that any XML schema annotations
that affect binary XML treatment must not change during evolution.

In addition to this general backward-compatibility restriction, there are some other
restrictions for in-place evolution.

• Backward-Compatibility Restrictions
Restrictions on in-place XML schema evolution are described that ensure
backward compatibility of an evolved schema, so that any possible instance
documents that satisfy the old XML schema also satisfy the new one.

• Other Restrictions on In-Place Evolution
Some restrictions on in-place XML schema evolution are necessary for reasons
other than backward compatibility of the evolved XML schema.

20.3.1.1 Backward-Compatibility Restrictions
Restrictions on in-place XML schema evolution are described that ensure backward
compatibility of an evolved schema, so that any possible instance documents that
satisfy the old XML schema also satisfy the new one.

• Changes in Data Layout on Disk
Certain changes to an XML schema alter the layout of the associated instance
documents on disk, and are therefore not permitted. This situation is more

Chapter 20
In-Place XML Schema Evolution

20-18



common when the storage layer is tightly integrated with information derived from
the XML schema, as is the case for object-relational storage.

• Reorder of XML Schema Constructs
You cannot use in-place evolution to reorder XML schema elements in a way that
affects the DOM fidelity of XML instance documents. For example, you cannot
change the order of elements within a <sequence> element in a complex type
definition.

• Changes from a Collection to a Non-Collection
You cannot use in-place evolution to change a collection to a non-collection. An
example would be changing from maxOccurs greater than one to maxOccurs equal
to one. In-place evolution thus cannot delete an element from a complex type if the
deletion requires that a collection be evolved to a non-collection.

• Model Changes within a complexType Element
A model is a group, choice, sequence, or all element. Within a complexType
element you cannot use in-place evolution to either add a new model or replace
an existing model with a model of another type (for example, replace a choice
element with a sequence element).

20.3.1.1.1 Changes in Data Layout on Disk
Certain changes to an XML schema alter the layout of the associated instance
documents on disk, and are therefore not permitted. This situation is more common
when the storage layer is tightly integrated with information derived from the XML
schema, as is the case for object-relational storage.

One such example is an XML schema, registered for object-relational storage
mapping, that is evolved by splitting a complex type into two complex types. In
Example 20-5, complex type ShippingInstructionsType is split into two complex
types, Person-Name and Contact-Info, and the ShippingInstructionsType complex
type is deleted.

Even if this XML schema has no associated instance documents, and therefore
no data copy is required, a change in the layout of existing tables is required to
accommodate future instance documents.

Example 20-5    Splitting a Complex Type into Two Complex Types

These code excerpts show the definitions of the original ShippingInstructionsType
type and the new Person-Name and Contact-Info types.

<complexType name="ShippingInstructionsType"> 
    <sequence> 
        <element name="name"   type="NameType" minOccurs="0"/> 
        <element name="address" type="AddressType" minOccurs="0"/> 
        <element name="telephone" type="TelephoneType" minOccurs="0"/> 
    </sequence> 
</complexType> 
 
<complexType name="Person-Name"> 
    <sequence> 
        <element name="name" type="NameType" minOccurs="0"/> 
    </sequence>
</complexType>
 

Chapter 20
In-Place XML Schema Evolution

20-19



<complexType name="Contact-Info">
    <sequence>
        <element name="address" type="AddressType" minOccurs="0"/> 
        <element name="telephone" type="TelephoneType" minOccurs="0"/> 
    </sequence> 
</complexType>

20.3.1.1.2 Reorder of XML Schema Constructs
You cannot use in-place evolution to reorder XML schema elements in a way that
affects the DOM fidelity of XML instance documents. For example, you cannot change
the order of elements within a <sequence> element in a complex type definition.

As an example, if a complex type named ShippingInstructionsType requires that its
child elements name, address, and telephone be in that order, you cannot use in-place
evolution to change the order to name, telephone, and address.

20.3.1.1.3 Changes from a Collection to a Non-Collection
You cannot use in-place evolution to change a collection to a non-collection. An
example would be changing from maxOccurs greater than one to maxOccurs equal
to one. In-place evolution thus cannot delete an element from a complex type if the
deletion requires that a collection be evolved to a non-collection.

20.3.1.1.4 Model Changes within a complexType Element
A model is a group, choice, sequence, or all element. Within a complexType element
you cannot use in-place evolution to either add a new model or replace an existing
model with a model of another type (for example, replace a choice element with a
sequence element).

You can, however, add a global group element, that is, add a group element outside of
a complexType element.

20.3.1.2 Other Restrictions on In-Place Evolution
Some restrictions on in-place XML schema evolution are necessary for reasons other
than backward compatibility of the evolved XML schema.

• Changes to Attributes in Namespace xdb
Except for attribute xdb:defaultTable, you cannot use in-place evolution to
modify any attributes in namespace http://xmlns.oracle.com/xdb (which has
the predefined prefix xdb).

• Changes from a Non-Collection to a Collection
For object-relational XMLType data, you cannot use in-place evolution to change a
non-collection object type to a collection object type. An example would be adding
an element to a complex type if the element is already present in the type (or in a
type related through inheritance).

20.3.1.2.1 Changes to Attributes in Namespace xdb
Except for attribute xdb:defaultTable, you cannot use in-place evolution to
modify any attributes in namespace http://xmlns.oracle.com/xdb (which has the
predefined prefix xdb).

Chapter 20
In-Place XML Schema Evolution

20-20



20.3.1.2.2 Changes from a Non-Collection to a Collection
For object-relational XMLType data, you cannot use in-place evolution to change a
non-collection object type to a collection object type. An example would be adding an
element to a complex type if the element is already present in the type (or in a type
related through inheritance).

20.3.2 Supported Operations for In-Place XML Schema Evolution
Some of the operations that are supported for in-place schema evolution are
described. Some of these are not permitted in specific contexts, which are specified.

• Add an optional element to a complex type or group: Always permitted. An
example is the addition of the optional element shipmethod in the following
complex type definition:

<xs:complexType name="ShippingInstructionsType">
    <xs:sequence>
        <xs:element name="name" type="NameType" minOccurs="0"/>
        <xs:element name="address" type="AddressType" 
minOccurs="0"/>
        <xs:element name="telephone"
                    type="TelephoneType"
                    minOccurs="0"/>
        <xs:element name = "shipmethod"
                    type = "xs:string"
                    minOccurs = "0"/>
    </xs:sequence>
</xs:complexType>

• Add an optional attribute to a complex type or attribute group: Always permitted.
An example is the addition of the optional attribute shipbydate in the following
complex type definition:

<xs:complexType name="ShippingInstructionsType">
    <xs:sequence>
        <xs:element name="name" type="NameType" minOccurs="0"/>
        <xs:element name="address" type="AddressType" 
minOccurs="0"/>
        <xs:element name="telephone"
                    type="TelephoneType"
                    minOccurs="0"/>
    </xs:sequence>
    <xs:attribute name="shipbydate" type="DateType" use="optional"/>
</xs:complexType>

• Convert an element from simple type to complex type with simple content:
Supported only if the storage model is binary XML.

• Modify the value attribute of an existing maxLength element: Always permitted.
The value can only be increased, not decreased.

• Add an enumeration value: You can add a new enumeration value only to the end
of an enumeration list.

Chapter 20
In-Place XML Schema Evolution

20-21



• Add a global element: Always permitted. An example is the addition of the global
element PurchaseOrderComment in the following schema definition:

<xs:schema ...> 
... 
    <xs:element name="PurchaseOrderComment"
                type="string"
                xdb:defaultTable=""/>
.. 
</xs:schema>

• Add a global attribute: Always permitted.

• Add or delete a global complex type: Always permitted. An example is the addition
of the global complex type ComplexAddressType in the following schema definition:

<xs:schema ...> 
.... 
    <xs:complexType name="ComplexAddressType"> 
        <xs:sequence> 
            <xs:element name="street" type="string"/> 
            <xs:element name="city" type="string"/> 
            <xs:element ref="zip" type="positiveInteger"/> 
            <xs:element name="country"  type="string"/> 
        </xs:sequence> 
     </xs:complexType> 
... 
</xs:schema>

• Add or delete a global simple type: Always permitted.

• Change the minOccurs attribute value: The value of minOccurs can only be
decreased.

• Change the maxOccurs attribute value: The value of maxOccurs can only be
increased, and this is only possible for data stored as binary XML. That is,
you cannot make any change to the maxOccurs attribute for data stored object-
relationally.

• Add or delete a global group or attributeGroup: Always permitted. An example is
the addition of an Instructions group in the following type definition:

<xsd:schema ...> 
... 
  <xsd:group name="Instructions"> 
    <xsd:sequence> 
     <xsd:element name="ShippingInstructions"
                  type="ShippingInstructionsType"/>
     <xsd:element name="SpecialInstructions"
                  type=" SpecialInstructionsType"/>
    </xsd:sequence> 
  </xsd:group> 
... 
</xsd:schema>

Chapter 20
In-Place XML Schema Evolution

20-22



• Change the xdb:defaultTable attribute value: Always permitted. Changes are not
permitted to any other attributes in the xdb namespace.

• Add, modify, or delete a comment or processing instruction: Always permitted.

20.3.3 Guidelines for Using In-Place XML Schema Evolution
Guidelines that apply to in-place XML-schema evolution are presented. (Be sure to
back up your data before performing in-place schema evolution.)

• Before you perform an in-place XML-schema evolution:

– Back up all existing data (instance documents) for the XML schema to be
evolved.

Caution:

Make sure that you back up your data before performing in-place
XML schema evolution, in case the result is not what you intended.
There is no rollback possible after an in-place evolution. If any errors
occur during evolution, or if you make a major mistake and need to
redo the entire operation, you must be able to go back to the backup
copy of your original data.

– Perform a dry run using trace only, that is, without actually evolving the XML
schema or updating any instance documents, produce a trace of the update
operations that would be performed during evolution. To do this, set the flag
parameter value to only INPLACE_TRACE. Do not also use INPLACE_EVOLVE.

After performing the dry run, examine the trace file, verifying that the listed
DDL operations are in fact those that you intend.

• After you perform an in-place XML-schema evolution:

If you are accessing the database using a client that caches data, or if you are not
sure whether this is the case, then restart your client. Otherwise, the pre-evolution
version of the XML schema might continue to be used locally, with unpredictable
results.

See Also:

Oracle Database Administrator’s Guide for information about using trace files

20.3.4 inPlaceEvolve Parameters
The parameters of PL/SQL procedure DBMS_XMLSCHEMA.inPlaceEvolve are described,
as are the errors associated with this procedure.

This is the signature of procedure DBMS_XMLSCHEMA.inPlaceEvolve:

procedure inPlaceEvolve(schemaURL IN VARCHAR2,
                        diffXML   IN XMLType, 
                        flags     IN NUMBER);

Chapter 20
In-Place XML Schema Evolution

20-23



Table 20-6 describes the individual parameters.

Table 20-6    Parameters of Procedure DBMS_XMLSCHEMA.INPLACEEVOLVE

Parameter Description

schemaURL URL of the XML schema to be evolved (VARCHAR2).

diffXML XML document (XMLType instance) that conforms to the xdiff XML schema,
and that specifies the changes to apply and the locations in the XML schema
where the changes are to be applied. For information about how to create the
document for this parameter, see The diffXML Parameter Document.

flags A bit mask that controls the behavior of the procedure. You can set the following
bit values in this mask independently, summing them to define the overall effect.
The default flags value is 1 (bit 1 on, bit 2 off), meaning that in-place evolution
is performed and no trace is written.

• INPLACE_EVOLVE (value 1, meaning that bit 1 is on) – Perform in-place
XML schema evolution. Construct a new XML schema and validate
it (against the XML schema for XML schemas). Construct the DDL
statements needed to evolve the instance-document disk structures.
Execute the DDL statements. Replace the old XML schema with the new.

• INPLACE_TRACE (value 2, meaning that bit 2 is on) – Perform all steps
necessary for in-place evolution, except executing the DDL statements and
overwriting the old XML schema with the new, then write both the DDL
statements and the new XML schema to a trace file.

That is, each of the bits constructs the new XML schema, validates it, and
determines the steps needed to evolve the disk structures underlying the
instance documents. In addition:

• Bit INPLACE_EVOLVE carries out those evolution steps and replaces the old
XML schema with the new.

• Bit INPLACE_TRACE saves the evolution steps and the new XML schema in
a trace file (it does not carry out the evolution steps).

Procedure DBMS_XMLSCHEMA.inPlaceEvolve raises an error in the following cases:

• An XPath expression is invalid, or is syntactically correct but does not target a
node in the XML schema.

• The diffXML document does not conform to the xdiff XML schema.

• The change makes the XML schema invalid or not well formed.

• A generated DDL statement (CREATE TYPE, ALTER TYPE, and so on) causes a
problem when it is executed.

• An index object associated with an XMLType table is in an unsafe state, which
could be caused by partition management operations.

20.3.5 The diffXML Parameter Document
The value of parameter diffXML of procedure DBMS_XMLSCHEMA.inPlaceEvolve is an
XMLType instance that specifies the changes to be applied to an XML schema for
in-place evolution. This diffXML document contains a sequence of operations that
describe the changes between the old XML schema and the new (the intended
evolution result).

The changes specified by the diffXML document are applied in order.

Chapter 20
In-Place XML Schema Evolution

20-24



You must create the XML document to be used for the diffXML parameter You can do
this in any of the following ways:

• The XMLDiff JavaBean (oracle.xml.differ.XMLDiff)

• The xmldiff command-line utility

• SQL function XMLDiff

The diffXML parameter document must conform to the xdiff XML schema.

The rest of this section presents examples of some operations in a document that
conforms to the xdiff XML schema.

• diffXML Operations and Examples
Operations that can be specified in the diffXML document supplied to procedure
DBMS_XMLSCHEMA.inPlaceEvolve are described. An example XML document that
conforms to the xdiff XML schema is shown.

Related Topics

• xdiff.xsd: XML Schema for Comparing Schemas for In-Place Evolution
A full listing is presented of xdiff.xsd, the Oracle XML DB-supplied XML
schema to which the document specified as the diffXML parameter to procedure
DBMS_XMLSCHEMA.inPlaceEvolve must conform.

See Also:

• Oracle XML Developer's Kit Programmer's Guide for information on
using the XMLDiff JavaBean

• Oracle XML Developer's Kit Programmer's Guide for information on
command-line utility xmldiff

• Oracle Database SQL Language Reference for information on SQL
function XMLDiff

20.3.5.1 diffXML Operations and Examples
Operations that can be specified in the diffXML document supplied to procedure
DBMS_XMLSCHEMA.inPlaceEvolve are described. An example XML document that
conforms to the xdiff XML schema is shown.

The <append-node> element is used for most of the supported changes, such as
adding a new attribute to a complex type or appending a new element to a group.

The <insert-node-before> element specifies that a node of the given type should
be inserted before the specified node. The xpath attribute specifies the location of
the specified node and the node-type attribute specifies the type of node to be
inserted. The node to be inserted is specified by the <content> child element. The
<insert-node-before> element is mainly used for inserting comments and processing
instructions, and for changing and adding add annotation elements.

The <delete-node> element specifies that the node with the given XPath (specified
by the xpath attribute) should be deleted along with all its children. For example, you
can use this element to delete comments and annotation elements. You can also use

Chapter 20
In-Place XML Schema Evolution

20-25



this element, in conjunction with <append-node> or <insert-node-before>, to make
changes to an existing node.

Example 20-6 shows an XML document for the diffXML parameter that specifies the
following changes:

• Delete complex type PartType.

• Add complex type PartType with a maximum length of 28.

• Add a comment before element ShippingInstructions.

• Add a required element shipmethod to element ShippingInstructions.

Example 20-6    diffXML Parameter Document

<xd:xdiff  xmlns="http://www.w3c.org/2001/XMLSchema" 
           xmlns:xd="http://xmlns.oracle.com/xdb/xdiff.xsd" 
           xmlns:xsi="http://www.w3c.org/2001/XMLSchema-Instance" 
           xsi:schemaLocation="http://xmlns.oracle.com/xdb/xdiff.xsd
           http://xmlns.oracle.com/xdb/xdiff.xsd"> 
 <xd:delete-node xpath="/schema/complexType[@name=&quote;PartType&quote;]//
maxLength/> 
 <xd:append-node
  parent-xpath = "/schema/complexType[@name=&quote;PartType&quote;]//restriction"
  node-type = "element"> 
  <xd:content> 
    <xs:maxLength value = "28"/>
  </xd:content> 
 </xd:append-node> 
 <xd:insert-node-before 
  xpath="/schema/complexType[@name =&quote;ShippingInstructionsType&quote;]/sequence" 
  node-type="comment"> 
  <xd:content> 
    <!-- A type representing instructions for shipping --> 
  </xd:content> 
 </xd:insert-node-before> 
 <xd:append-node 
  parent-xpath="/schema/complexType[@name=&quote;ShippingInstructionsType&quote;]/
sequence" 
  node-type="element"> 
  <xd:content> 
   <xs:element name = "shipmethod" type = "xs:string" minOccurs = "1"/> 
  </xd:content> 
 </xd:append-node> 
</xd:xdiff>

Chapter 20
In-Place XML Schema Evolution

20-26



Part VI
Oracle XML DB Repository

Oracle XML DB Repository lets you version your data, implement and manage
security, and use APIs to access and manipulate repository resources.

• Access to Oracle XML DB Repository Data
There are several ways to access and manipulate data in Oracle XML DB
Repository, including using standard protocols such as FTP and HTTP(S)/
WebDAV; Oracle XML DB resource Application Program Interfaces (APIs); and
the repository views RESOURCE_VIEW and PATH_VIEW.

• Configuration of Oracle XML DB Repository
Overall configuration of Oracle XML DB Repository applies to all repository
resources. It does not include configuring parameters for handling events or
managing XLink and XInclude processing. You use resource configuration files
to configure resources.

• Use of XLink and XInclude with Oracle XML DB
You can use XLink and XInclude with resources in Oracle XML DB Repository. But
the use of XLink is deprecated.

• Repository Access Using RESOURCE_VIEW and PATH_VIEW
Predefined public views RESOURCE_VIEW and PATH_VIEW provide access to Oracle
XML DB repository data. You can use Oracle SQL functions under_path and
equals_path to query resources based on their path names, and functions path
and depth to return resource path names and depths.

• Resource Versions
Oracle XML DB Repository resources can be versioned. A record is kept of all
changes to a resource that is under version control.

• PL/SQL Access to Oracle XML DB Repository
PL/SQL packages DBMS_XDB_CONFIG and DBMS_XDB_REPOS together provide the
Oracle XML DB resource application program interface (API) for PL/SQL. You use
the former to configure Oracle XML DB and its repository. You use the latter to
perform other, non-configuration operations on the repository.

• Repository Access Control
Oracle Database provides classic database security such as row-level and
column-level secure access by database users. It also provides fine-grained
access control for resources in Oracle XML DB Repository. You can create, set,
and modify access control lists (ACLs).

• Repository Access Using Protocols
You can access Oracle XML DB Repository data using protocols FTP and
HTTP(S)/WebDAV.

• User-Defined Repository Metadata
You can create your own metadata to associate with XML data stored in Oracle
XML DB Repository.

• Oracle XML DB Repository Events
You can use Oracle XML DB Repository to store and access data of any
kind, in the form of repository resources. You can access repository data from



any application. Sometimes your application needs to perform certain actions
whenever a particular repository operation occurs. You can do this using repository
events.

• Guidelines for Oracle XML DB Applications in Java
Design guidelines are presented for writing Oracle XML DB applications in Java.
This includes guidelines for writing and configuring Java servlets for Oracle
XML DB.

• Data Access Using URIs
You can generate and store URIs in the database and use them to retrieve the
database data they target. There are three kinds of URIs you can use this way:
DBUris, XDBUris, and HTTPUris.

• Native Oracle XML DB Web Services
Your applications can access Oracle Database using native Oracle XML DB Web
services.



21
Access to Oracle XML DB Repository Data

There are several ways to access and manipulate data in Oracle XML DB Repository,
including using standard protocols such as FTP and HTTP(S)/WebDAV; Oracle
XML DB resource Application Program Interfaces (APIs); and the repository views
RESOURCE_VIEW and PATH_VIEW.

• Overview of Oracle XML DB Repository
Using Oracle XML DB Repository you can store content in the database in
hierarchical structures, as opposed to traditional relational database structures.
Although the repository can manage any kind of content, it provides specialized
capabilities and optimizations related to managing resources with XML content.

• Repository Terminology and Supplied Resources
Oracle XML DB Repository can be thought of as a file system of database objects
rather than files. It is a hierarchical set of database objects, across all XML and
database schemas, that are mapped to path names.

• Oracle XML DB Repository Resources
Oracle XML DB Repository resources conform to the Oracle XML DB XML
schema XDBResource.xsd. The elements in a resource include those needed to
persistently store WebDAV-defined properties, such as creation date, modification
date, WebDAV locks, owner, ACL, language, and character set.

• Navigational or Path Access to Repository Resources
Oracle XML DB Repository folders support the same protocol standards used
by many operating systems. This lets a repository folder act like a native folder
(directory) in supported operating-system environments.

• Query-Based Access to Repository Resources
PL/SQL package DBMS_XDB_REPOS provides subprograms that act on Oracle
XML DB Repository resources. This API is based on the public views
RESOURCE_VIEW and PATH_VIEW, which enable SQL access to repository data
through protocols such as FTP and HTTP(S)/WebDAV.

• Servlet Access to Repository Resources
Oracle XML DB implements Java Servlet API, version 2.2.

• Operations on Repository Resources
You can operate on data stored in Oracle XML DB Repository resources
using Java, PL/SQL, and Internet protocols. The most common operations are
described, along with the required database permissions to use them.

• Accessing the Content of Repository Resources Using SQL
In SQL you can access the content of a document in Oracle XML DB
Repository using PL/SQL constructor XDBURIType or using RESOURCE_VIEW and the
corresponding resource document.

• Access to the Content of XML Schema-Based Documents
You can access the content of an XML Schema-based document in the same way
as for a non-schema-based document: use the corresponding resource document.
Or you can access it as a row in the default table that was defined when the XML
schema was registered with Oracle XML DB.

21-1



• Update of the Content of Repository Documents
You can update the content of documents stored in Oracle XML DB Repository
using Internet protocols or SQL.

• Querying Resources in RESOURCE_VIEW and PATH_VIEW
Examples here illustrate folder-restricted queries of the repository using
RESOURCE_VIEW and PATH_VIEW together with Oracle SQL functions equals_path
and under_path.

• Oracle XML DB Hierarchical Repository Index
Oracle XML DB uses a hierarchical index for Oracle XML DB Repository, to
optimize the performance of path-based and folder-restricted queries of the
repository. It is implemented as an Oracle domain index.

21.1 Overview of Oracle XML DB Repository
Using Oracle XML DB Repository you can store content in the database in hierarchical
structures, as opposed to traditional relational database structures. Although the
repository can manage any kind of content, it provides specialized capabilities and
optimizations related to managing resources with XML content.

Relational databases are traditionally poor at managing hierarchical structures and
traversing a path or a URL. Oracle XML DB Repository provides you with a
hierarchical organization of XML content in the database. You can query and manage
it as if it were organized using files and folders.

The relational table-row-column metaphor is an effective model for managing highly
structured data. It can be less effective for managing semi-structured and unstructured
data, such as document-oriented XML data.

For example, a book is not easily represented as a set of rows in a table. It might
be more natural to represent a book as a hierarchy, book — chapter — section —
paragraph, and to represent the hierarchy as a set of folders and subfolders.

A hierarchical repository index speeds up folder and path traversals. Oracle XML DB
includes a patented hierarchical index that speeds up folder and path traversals
in Oracle XML DB Repository. The hierarchical repository index is transparent to
end users, and lets Oracle XML DB perform folder and path traversals at speeds
comparable to or faster than conventional file systems.

Figure 21-1 is an example of a hierarchical structure that shows a typical tree of
folders and files in Oracle XML DB Repository. The top of the tree shows /, the root
folder.

Chapter 21
Overview of Oracle XML DB Repository

21-2



Figure 21-1    A Folder Tree, Showing Hierarchical Structures in the Repository

/ Root Node

/acls
/schemas

/home /sys

/log
/QUINE /XDB

11_28_01.txt

/PUBLIC

all_all_acl.xml
all_owner_acl.xml

/acls /schemas

/po
/graphics/general

/acls
/schemas /xmlns.oracle.com

/xdb

XDBSchema.xsd

banner.png
logo.gif
architecture.jpg

into.doc
maincode.jav
chapter1.xml

whatsnew.fm
readme.txt

Binary

files stored

as BLOBs

Graphics

or

binary.files

stored in 

BLOBs

XML files

typically stored

object-relationally

can also store 

in LOBS

Oracle 

XML DB 

folders

(containers)

po_Jan03.xml
po_Jan02.xml
po_101.xml

XML files

stored in your

XMLType 

tables / views

Directories

(containers)

Files or Documents

(non-containers)

ACL files

are stored

in xdb.xdb$ACL

table

Oracle XML DB System Folders

Do not store your data in /sys

Caution:

Folder /sys is used by Oracle XML DB to maintain system-defined XML
schemas, access control lists (ACLs), and so on. Do not add or modify any
data in folder /sys.

Your applications can access content in Oracle XML DB Repository using standard
connect-access protocols such as FTP, HTTP(S), and WebDAV, in addition to
languages SQL, PL/SQL, Java, and C. Oracle XML DB adds native support to Oracle
Database for these protocols, which were designed for document-centric operations.
By providing support for these protocols, Oracle XML DB lets Microsoft Windows
Explorer, Microsoft Office, and products from vendors such as Altova and Adobe work
directly with XML content stored in the repository.

The repository gives you direct access to XML content stored in Oracle Database, as if
it were stored in a file system. You can set access control privileges on repository files
and folders.

Chapter 21
Overview of Oracle XML DB Repository

21-3



These features are available because the repository is modeled on WebDAV, an IETF
standard that defines a set of extensions to the HTTP protocol. WebDAV lets an HTTP
server act as a file server for a DAV-enabled client. For example, a WebDAV-enabled
editor can interact with an HTTP/WebDAV server as if it were a file system.

The WebDAV standard uses the term resource to describe a file or a folder. Each
resource managed by a WebDAV server is identified by a URL. A resource has not
only content but also associated metadata.

The following topics cover how to access data in Oracle XML DB Repository folders
using the standard protocols. They discuss APIs that you can use to access the
repository object hierarchy using Java, SQL, and PL/SQL.

• Oracle XML DB Provides Name-Level Locking
One key advantage of Oracle XML DB Repository is the ability to use SQL
for repository operations in the context of a logical transaction. Applications
can create long-running transactions that include updates to multiple folders. To
provide high levels of concurrency, the repository uses name-level locking rather
than folder-level locking

• Two Ways to Access Oracle XML DB Repository Resources
You can access and manipulate Oracle XML DB Repository resources using SQL
with special views or by navigating paths using a hierarchical index.

• Database Schema (User Account) XDB and Oracle XML DB Repository
Database schema (user account) XDB owns XMLType table XDB$RESOURCE, which
contains all of the resources (files and folders) in Oracle XML DB Repository. It
also contains all of the metadata for managing the repository.

Related Topics

• Repository Access Using RESOURCE_VIEW and PATH_VIEW
Predefined public views RESOURCE_VIEW and PATH_VIEW provide access to Oracle
XML DB repository data. You can use Oracle SQL functions under_path and
equals_path to query resources based on their path names, and functions path
and depth to return resource path names and depths.

• PL/SQL Access to Oracle XML DB Repository
PL/SQL packages DBMS_XDB_CONFIG and DBMS_XDB_REPOS together provide the
Oracle XML DB resource application program interface (API) for PL/SQL. You use
the former to configure Oracle XML DB and its repository. You use the latter to
perform other, non-configuration operations on the repository.

• Repository Access Control
Oracle Database provides classic database security such as row-level and
column-level secure access by database users. It also provides fine-grained
access control for resources in Oracle XML DB Repository. You can create, set,
and modify access control lists (ACLs).

• Repository Access Using Protocols
You can access Oracle XML DB Repository data using protocols FTP and
HTTP(S)/WebDAV.

21.1.1 Oracle XML DB Provides Name-Level Locking
One key advantage of Oracle XML DB Repository is the ability to use SQL for
repository operations in the context of a logical transaction. Applications can create
long-running transactions that include updates to multiple folders. To provide high

Chapter 21
Overview of Oracle XML DB Repository

21-4



levels of concurrency, the repository uses name-level locking rather than folder-level
locking

When using a relational database to maintain hierarchical folder structures, ensuring
a high degree of concurrency when adding and removing items in a folder is a
challenge. In conventional file systems there is no concept of a transaction. Each
operation (add a file, create a subfolder, rename a file, delete a file, and so on) is
treated as an atomic transaction. Once the operation has completed the change is
immediately available to all other users of the file system.

In this situation, a conventional locking strategy that takes an exclusive lock on
each updated folder or directory tree would quickly result in significant concurrency
problems. Oracle XML DB solves this by providing for name-level locking rather than
folder-level locking. Repository operations such as creating, renaming, moving, or
deleting a sub-folder or file do not require that your operation be granted an exclusive
write lock on the target folder. The repository manages concurrent folder operations
by locking the name within the folder rather than the folder itself. The name and the
modification type are put on a queue.

Only when the transaction is committed is the folder locked and its contents modified.
Hence Oracle XML DB lets multiple applications perform concurrent updates on
the contents of a folder. The queue is also used to manage folder concurrency by
preventing two applications from creating objects with the same name.

Queuing folder modifications until commit time also minimizes I/O when a number of
changes are made to a single folder in the same transaction. This is useful when
several applications generate files quickly in the same directory, for example when
generating trace or log files, or when maintaining a spool directory for printing or e-mail
delivery.

Note:

As a consequence of transactional semantics enforced by the database,
folders created using SQL statements are not visible to other database users
until the transaction is committed. Concurrent access to Oracle XML DB
Repository is controlled by the same mechanism used to control concurrency
in Oracle Database. The integration of the repository with Oracle Database
provides strong management options for XML content.

21.1.2 Two Ways to Access Oracle XML DB Repository Resources
You can access and manipulate Oracle XML DB Repository resources using SQL with
special views or by navigating paths using a hierarchical index.

• SQL access. This is done using special views that expose resource properties
and path names, and map hierarchical access operators onto the Oracle XML DB
schema. See Query-Based Access to Repository Resources.

• Navigational or path-based access. This uses a hierarchical index of resources.
Each resource has one or more unique path names that reflect its location in the
hierarchy. You can navigate, using XPath expressions, to any repository resource.

A repository resource can be created as a reference to an existing XMLType object
in the database. You can navigate to any such database object using XPath. See
Navigational or Path Access to Repository Resources.

Chapter 21
Overview of Oracle XML DB Repository

21-5



See Also:

• Oracle XML DB Repository Access for guidance on selecting an access
method

• Table 21-3 for a summary comparison of the access methods

A Uniform Resource Locator (URL) is used to access an Oracle XML DB resource. A
URL includes the host name, protocol information, path name, and resource name of
the object.

21.1.3 Database Schema (User Account) XDB and Oracle XML DB
Repository

Database schema (user account) XDB owns XMLType table XDB$RESOURCE, which
contains all of the resources (files and folders) in Oracle XML DB Repository. It also
contains all of the metadata for managing the repository.

Database schema XDB is created during Oracle XML DB installation. The primary
table in this schema is an XMLType table called XDB$RESOURCE, which contains one
row for each resource (file or folder) in Oracle XML DB Repository. Documents in
this table are referred to as resource documents. The XML schema that defines the
structure of an Oracle XML DB resource document is registered under URL "http://
xmlns.oracle.com/xdb/XDBResource.xsd.

The tables owned by database schema (user) XDB are internal. Oracle recommends
the following:

• Create a dedicated tablespace for use only by user XDB, which means also for
Oracle XML DB Repository. Ensure that the tablespace is not read-only.

• Do not directly manipulate any tables or data owned by user XDB. For example, do
not compress or uncompress them.

Use only the PL/SQL subprograms and database views provided by Oracle
XML DB to carry out operations on any tables or data owned by user XDB.

• Never unlock user XDB, under any circumstance.

See Also:

• Package DBMS_XDB_ADMIN, for information about creating a
dedicated tablespace for user XDB and the repository

• Oracle Database Security Guide

Chapter 21
Overview of Oracle XML DB Repository

21-6



21.2 Repository Terminology and Supplied Resources
Oracle XML DB Repository can be thought of as a file system of database objects
rather than files. It is a hierarchical set of database objects, across all XML and
database schemas, that are mapped to path names.

The repository is a connected, directed, acyclic1 graph of resources, with a single root
node (/). Each resource in the graph has one or more associated path names: the
repository supports multiple links to a given resource.

• Repository Terminology
Some terms that apply to Oracle XML DB Repository include resource, resource
name, resource content, folder or directory, path name, path components, link
name, access control list (ACL), and XDBBinary element. Some of these terms
have common synonyms in other contexts.

• Predefined Repository Files and Folders
Certain files and folders are predefined for Oracle XML DB Repository. You can
create additional ones for your own use.

21.2.1 Repository Terminology
Some terms that apply to Oracle XML DB Repository include resource, resource
name, resource content, folder or directory, path name, path components, link name,
access control list (ACL), and XDBBinary element. Some of these terms have common
synonyms in other contexts.

• resource – Any object or node in the repository hierarchy. A resource is identified
by a Uniform Resource Locator (URL), which includes the path name and
resource name of the object.

See Also:

– Oracle XML DB Repository: Overview

– Oracle XML DB Repository Resources

• folder – A resource that can contain other resources. Sometimes called a
directory.

• path name – A hierarchical name representing an absolute path to a resource.
It is composed of a slash (/) representing the repository root, followed by zero
or more path components separated by slashes. A path component cannot
be only . or .., but a period (.) can otherwise be used in a path component.
A path component is composed of any characters in the database character
set except slash (/), backslash (\), and those characters specified in the
Oracle XML DB configuration file, xdbconfig.xml, by configuration parameter /
xdbconfig/sysconfig/invalid-pathname-chars.

1 The graph is established by the hard links that define the repository structure, and cycles are not permitted using
hard links. You can, however, introduce cycles using weak links. See Hard Links and Weak Links.

Chapter 21
Repository Terminology and Supplied Resources

21-7



• resource name (or link name) – The name of a resource within its parent folder.
This is the rightmost path component of a path name. Resource names must be
unique within their immediately containing folder, and they are case-sensitive.

• resource content – The body, or data, of a resource. This is what you get when
you treat the resource as a file and ask for its content. This is always of type
XMLType.

• access control list (ACL) – An ordered list of rules that specify access privileges
for principals (users or roles) to one or more repository resources.

See Also:

Repository Access Control

• XDBBinary element – An XML element that contains binary data. It is defined by
the Oracle XML DB XML schema. XDBBinary elements are stored in the repository
whenever unstructured binary data is uploaded into Oracle XML DB.

Many terms used by Oracle XML DB have common synonyms in other contexts, as
shown in Table 21-1.

Table 21-1    Synonyms for Oracle XML DB Repository Terms

Synonym Repository Term Usage

collection folder WebDAV

directory folder operating systems

privilege privilege permission

right privilege various

WebDAV folder folder Web folder

role group access control

revision version RCS, CVS

file system repository operating systems

hierarchy repository various

file resource operating systems

binding link WebDAV

21.2.2 Predefined Repository Files and Folders
Certain files and folders are predefined for Oracle XML DB Repository. You can create
additional ones for your own use.

These are the predefined Oracle XML DB Repository files and folders:

/dbfs2

/public
/sys
/sys/acls

2 Repository folder /dbfs gives you protocol access to your DBFS content. See Oracle Database SecureFiles and 
Large Objects Developer's Guide for information about DBFS. 

Chapter 21
Repository Terminology and Supplied Resources

21-8



/sys/acls/all_all_acl.xml
/sys/acls/all_owner_acl.xml
/sys/acls/bootstrap_acl.xml
/sys/acls/ro_all_acl.xml
/sys/apps
/sys/asm
/sys/log
/sys/schemas
/sys/schemas/PUBLIC
/sys/schemas/PUBLIC/www.w3.org
/sys/schemas/PUBLIC/www.w3.org/2001
/sys/schemas/PUBLIC/www.w3.org/2001/xml.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBResource.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBSchema.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBStandard.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/acl.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/dav.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/log
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/stats.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/xdbconfig.xsd
/xdbconfig.xml

21.3 Oracle XML DB Repository Resources
Oracle XML DB Repository resources conform to the Oracle XML DB XML schema
XDBResource.xsd. The elements in a resource include those needed to persistently
store WebDAV-defined properties, such as creation date, modification date, WebDAV
locks, owner, ACL, language, and character set.

A resource index has a special element called Contents that contains the contents of
the resource.

The XML schema for a resource also defines an any element, with maxOccurs attribute
unbounded. An any element can contain any element outside of the Oracle XML DB
XML namespace. Arbitrary instance-defined properties can be associated with the
resource.

• Where Is Repository Data Stored?
Oracle XML DB stores Oracle XML DB Repository data in a set of tables and
indexes to which you have access.

• How Documents are Stored in Oracle XML DB Repository
When an XML document that is based on a registered XML schema is loaded into
the repository, the document is parsed and decomposed according to the schema
into a set of SQL objects; and a corresponding resource document is created to
provide repository access for the source XML document.

• Repository Data Access Control
You can control access to the resources in Oracle XML DB Repository by using
access control lists (ACLs), which are composed of access control entries (ACEs).
An ACE grants or denies a set of privileges to a specific principal.

• Repository Path-Name Resolution
The data relating a folder to its contents is managed by the Oracle XML DB
hierarchical repository index. This provides a fast mechanism for evaluating path
names which is similar to the directory mechanisms that are used by operating-
system file systems. You need certain privileges to resolve a path name.

Chapter 21
Oracle XML DB Repository Resources

21-9



• Link Types
Links in Oracle XML DB can be repository links or document links. Repository links
can be hard links or weak links. Document links can also be hard links or weak
links, when their targets are repository resources.

Related Topics

• XDBResource.xsd: XML Schema for Oracle XML DB Resources
A full listing is presented of the Oracle XML DB-supplied XML schema
XDBResource.xsd, which is used to represent Oracle XML DB resources.

21.3.1 Where Is Repository Data Stored?
Oracle XML DB stores Oracle XML DB Repository data in a set of tables and indexes
to which you have access.

If you register an XML schema and request that the tables be generated by Oracle
XML DB, then the tables are created in your database schema. You are then able
to see or modify them. Other users cannot see your tables unless you grant them
permission to do so.

• Names of Generated Tables
The names of generated tables are assigned by Oracle XML DB. They can be
obtained by finding the xdb:defaultTable attribute in your XML schema document
(or in the default XML schema document).

• How Object-Relational Storage Is Defined for Repository Resources
You can define object-relational storage for repository resources by subclassing or
by storing data that conforms to a registered XML schema.

• Oracle ASM Virtual Folder
The contents of the Oracle Automatic Storage Management (Oracle ASM) virtual
folder, /sys/asm are Oracle ASM files and folders that are managed automatically
by Oracle ASM.

21.3.1.1 Names of Generated Tables
The names of generated tables are assigned by Oracle XML DB. They can be
obtained by finding the xdb:defaultTable attribute in your XML schema document
(or in the default XML schema document).

When you register an XML schema, you can alternatively provide your own table
name, instead of using the default name supplied by Oracle XML DB. If the table
specifies binary XML storage, then a document is encoded in binary XML format
before storing it in the table.

Related Topics

• Default Tables Created during XML Schema Registration
You can create default tables as part of XML schema registration. Default tables
are most useful when documents are inserted using APIs and protocols such as
FTP and HTTP(S), which do not provide any table specification.

21.3.1.2 How Object-Relational Storage Is Defined for Repository Resources
You can define object-relational storage for repository resources by subclassing or by
storing data that conforms to a registered XML schema.

Chapter 21
Oracle XML DB Repository Resources

21-10



Applications that need to define object-relational storage for repository resources can
do so in either of these ways:

• Subclass the Oracle XML DB resource type. Subclassing Oracle XML DB
resources requires privileges on the table XDB$RESOURCE.

• Store data that conforms to a visible, registered XML schema.

Related Topics

• XML Schema Storage and Query: Basic
XML Schema is a standard for describing the content and structure of XML
documents. You can register, update, and delete an XML schema used with
Oracle XML DB. You can define storage structures to use for your XML schema-
based data and map XML Schema data types to SQL data types.

21.3.1.3 Oracle ASM Virtual Folder
The contents of the Oracle Automatic Storage Management (Oracle ASM) virtual
folder, /sys/asm are Oracle ASM files and folders that are managed automatically by
Oracle ASM.

Related Topics

• Access to Oracle ASM Files Using Protocols and Resource APIs – For DBAs
Oracle Automatic Storage Management (Oracle ASM) organizes database
files into disk groups for simplified management, database mirroring, and I/O
balancing. Repository access extends to Oracle ASM files, in the virtual repository
folder /sys/asm. This access is reserved for database administrators (DBAs). It is
not intended for developers.

See Also:

Oracle Automatic Storage Management Administrator's Guide

21.3.2 How Documents are Stored in Oracle XML DB Repository
When an XML document that is based on a registered XML schema is loaded into
the repository, the document is parsed and decomposed according to the schema into
a set of SQL objects; and a corresponding resource document is created to provide
repository access for the source XML document.

Oracle XML DB provides special handling for XML documents. The rules for storing
the contents of an XML Schema-based XML document are defined by its XML
schema. The content of the document is stored in the default table associated with
the global element definition.

Oracle XML DB Repository also stores files that do not contain XML data, such as
JPEG images or Word documents. The XML schema for each resource defines which
elements are allowed, and specifies whether the content of these files is to be stored
as BLOB or CLOB instances. The content of a non-schema-based XML document is
stored as a CLOB instance in the repository.

Chapter 21
Oracle XML DB Repository Resources

21-11



There is one resource and one link-properties document for each file or folder in the
repository. If there are multiple access paths to a given document then there is a
link-properties document for each possible link. Both the resource document and the
link-properties are stored as XML documents. All these documents are stored in tables
in the repository.

When an XML file is loaded into the repository, the following sequence of events takes
place:

1. Oracle XML DB examines the root element of the XML document to see
if it is associated with a known (registered) XML schema. This involves
looking to see if the document includes a namespace declaration for the
XMLSchema-instance namespace, and then looking for a schemaLocation or
noNamespaceSchemaLocation attribute that identifies which XML schema the
document is associated with.

2. If the document is based on a known XML schema, then the metadata for the XML
schema is loaded from the XML schema cache.

3. The XML document is parsed and decomposed into a set of SQL objects derived
from the XML schema.

4. The SQL objects created from the XML file are stored in the default table defined
when the XML schema was registered with the database.

5. A resource document is created for each document processed. This lets the
content of the document be accessed using the repository. The resource
document for an XML Schema-based XMLType instance includes an XMLRef
element. This element contains a REF of XMLType that can be used to locate the
row in the default table containing the content associated with the resource.

21.3.3 Repository Data Access Control
You can control access to the resources in Oracle XML DB Repository by using
access control lists (ACLs), which are composed of access control entries (ACEs). An
ACE grants or denies a set of privileges to a specific principal.

A principal can be a database user, a database role, an LDAP user, an LDAP
group or the special principal DAV::owner, which refers to the owner of the resource.
Each resource in the repository is protected by an ACL. The ACL determines which
privileges, such as read-properties and update, a user has on the resource. Each
repository operation includes a check of the ACL to determine if the current user is
allowed to perform the operation.

By default, a new resource inherits the ACL of its parent folder. But you can set the
ACL of a resource using PL/SQL procedure DBMS_XDB_REPOS.setACL. For more details
on Oracle XML DB resource security, see Repository Access Control.

In the following example, the current user is QUINE. The query gives the number of
resources in the folder /public. Assume that there are only two resources in this
folder: f1 and f2. Also assume that the ACL on f1 grants the read-properties
privilege to QUINE while the ACL on f2 does not grant QUINE any privileges. A user
needs the read-properties privilege on a resource for it to be visible to the user. The
result of the query is 1, because only f1 is visible to QUINE.

SELECT count(*) FROM RESOURCE_VIEW r WHERE under_path(r.res, '/public') = 1;
 
COUNT(*)

Chapter 21
Oracle XML DB Repository Resources

21-12



--------
       1

21.3.4 Repository Path-Name Resolution
The data relating a folder to its contents is managed by the Oracle XML DB
hierarchical repository index. This provides a fast mechanism for evaluating path
names which is similar to the directory mechanisms that are used by operating-system
file systems. You need certain privileges to resolve a path name.

Resources that are folders have the Container attribute of element Resource set to
true.

To resolve a resource name in a folder, the current user must have the following
privileges:

• resolve privilege on the folder

• read-properties on the resource in that folder

If the user does not have these privileges, then the user receives an access denied
error. Folder listings and other queries do not return a row when the read-properties
privilege is denied on its resource.

Caution:

Error handling in path-name resolution differentiates between invalid
resource names and resources that are not folders, for compatibility with
file systems. Because Oracle XML DB resources are accessible from outside
Oracle XML DB Repository (using SQL), denying read access on a folder
that contains a resource does not prevent read access to that resource.

See Also:

XDBResource.xsd: XML Schema for Oracle XML DB Resources for the
definition of element Resource and its attribute Container

21.3.5 Link Types
Links in Oracle XML DB can be repository links or document links. Repository links
can be hard links or weak links. Document links can also be hard links or weak links,
when their targets are repository resources.

• Repository Links and Document Links
In addition to containing resources, a folder resource can contain links to
other resources (files or folders). These repository links represent hierarchical
repository relationships. By contrast, document links are arbitrary links among
XML documents that are not necessarily repository resources.

Chapter 21
Oracle XML DB Repository Resources

21-13



• Hard Links and Weak Links
Links that target repository resources can be hard or weak. Hard and weak links
have different dependencies with respect to the resources that they target. Hard
links cannot target ancestor folders; weak links can. You can query the repository
path view, PATH_VIEW, to determine the type of a repository link.

• Creating a Weak Link with No Knowledge of Folder Hierarchy
Weak links represent a mapping on top of the repository structure, which is
determined by hard links. You can create a weak link to a resource using its OID
rather than its path. You can use weak links to access a resource without having
access to the folders containing it.

• How and When to Prevent Multiple Hard Links
You can restrict the creation of hard links, disallowing multiple hard links to folders
or files (or both). Allowing multiple hard links to file resources, but disallowing
multiple hard links to folder resources, provides behavior that is similar to that for
some file systems, including UNIX and Linux.

21.3.5.1 Repository Links and Document Links
In addition to containing resources, a folder resource can contain links to other
resources (files or folders). These repository links represent hierarchical repository
relationships. By contrast, document links are arbitrary links among XML documents
that are not necessarily repository resources.

Repository links are sometimes called folder links. They are not to be confused
with document links, which correspond to the links provided by the XLink and
XInclude standards, and which are also supported by Oracle XML DB (but XLink
support is deprecated). Repository links are navigational, folder–child links among
repository resources. Document links are arbitrary links among documents that are not
necessarily repository resources.

Repository links represent repository hierarchical relationships. Document links
represent arbitrary relationships whose semantics derives from the applications that
use them. Because they represent repository hierarchical relationships, repository
links can be navigated using file system-related protocols. This is not true of document
links. Because document links can represent arbitrary relationships, they can also
represent repository relationships. When document links thus target resources, they
can also be hard or weak.

See Also:

Use of XLink and XInclude with Oracle XML DB for information about
document links

21.3.5.2 Hard Links and Weak Links
Links that target repository resources can be hard or weak. Hard and weak links
have different dependencies with respect to the resources that they target. Hard links
cannot target ancestor folders; weak links can. You can query the repository path view,
PATH_VIEW, to determine the type of a repository link.

Chapter 21
Oracle XML DB Repository Resources

21-14



Both hard links and weak links are references, or pointers, to physical data —
(internal) repository resource identifiers. They do not point to symbolic names or paths
to other links. Their targets are resolved at the time of link creation. Because they
point directly to resource identifiers, hard and weak links cannot dangle: they remain
valid even when their targets are renamed or moved. You need the same privileges to
create or delete hard and weak links.

The difference between hard and weak links lies in their relationship to target resource
deletion. A target resource is dependent on its hard links, in the sense that it cannot
be deleted as long as it remains the target of a hard link. Deletion of a hard link also
deletes the resource targeted by the link, if the following are both true:

• The resource is not versioned.

• The hard link that was deleted was the last (that is, the only) hard link to the
resource.

A weak link has no such hold on a resource: you can delete a resource, even if it is
the target of a weak link (as long as it is not the target of a hard link). Because of
this, weak links can be used as shortcuts to frequently accessed resources, without
impacting deletion of those resources.

There is a dependency in the other direction, however: If you delete a resource that
is the target of one or more weak links, then those links are automatically deleted, as
well. In this sense, too, weak links cannot dangle. Both hard and weak links provide
referential integrity: if a link exists, then so does its target.

Another difference between hard and weak links is this: Hard links to ancestor folders
are not permitted, because they introduce cycles. There is no such restriction for weak
links: a weak link can target any folder, possibly creating a cycle. It is the set of
hard links that define the (acyclic) structure of Oracle XML DB Repository. Weak links
represent an additional mapping on top of that basic structure.

You can query the repository path view, PATH_VIEW, to determine the type of a
repository link: the link information contains the link type. XMLType column LINK of
PATH_VIEW contains this information in element LinkType, which is a child of the root
element, LINK. Example 21-1 illustrates this. You can also determine the type of a
repository link by using the getLink() callback function on an event handler (LinkIn,
LinkTo, UnlinkIn, or UnlinkFrom).

See Also:

Oracle Database PL/SQL Packages and Types Reference for information on
PL/SQL function getLink

Example 21-1    Querying PATH_VIEW to Determine Link Type

SELECT RESID,
       XMLCast(XMLQuery('/LINK/LinkType'
                        PASSING LINK RETURNING CONTENT)
               AS VARCHAR2(24)) link_type
  FROM PATH_VIEW
  WHERE equals_path(RES, '/home/QUINE/purchaseOrder.xml') = 1;

RESID                              LINK_TYPE

Chapter 21
Oracle XML DB Repository Resources

21-15



--------------------------------   ---------
DF9856CF2FE0829EE030578CCE0639C5   Weak

Related Topics

• Deleting Repository Resources: Examples
Examples here illustrate how to delete Oracle XML DB Repository resources and
paths.

• Query-Based Access to Repository Resources
PL/SQL package DBMS_XDB_REPOS provides subprograms that act on Oracle
XML DB Repository resources. This API is based on the public views
RESOURCE_VIEW and PATH_VIEW, which enable SQL access to repository data
through protocols such as FTP and HTTP(S)/WebDAV.

21.3.5.3 Creating a Weak Link with No Knowledge of Folder Hierarchy
Weak links represent a mapping on top of the repository structure, which is determined
by hard links. You can create a weak link to a resource using its OID rather than
its path. You can use weak links to access a resource without having access to the
folders containing it.

Suppose that you want to read a file resource that belongs to one of your colleagues.
You cannot create a hard link to that resource, to make it accessible for your use,
unless you have the privilege <xdb:resolve> on all of the ancestor folders of that
file. Having that privilege would mean that you could see all of your colleague's folder
names and the structure of the hierarchy down to the target resource.

However, because weak links essentially represent a mapping on top of the real
repository structure, which structure is determined by the set of hard links, you can
create a weak link to a resource using just its OID rather than its full, named path
(URL). Your colleague can determine the OID path to the file, send you that instead of
the named path, and you can create a weak link to the document using that OID path.
Example 21-2 and Example 21-3 illustrate this.

Example 21-2 prints the OID path for the file resource /home/QUINE/
purchaseOrder.xml. User quine can use this to obtain the OID path to the resource,
and then send that path to user curry, who can create a weak link to the resource
(Example 21-3).

In Example 21-3, user curry creates a weak link named quinePurchaseOrder.xml
in folder /home/CURRY. The target of the link is the OID path that corresponds to
the URL /home/QUINE/purchaseOrder.xml. User curry need not be aware of the
repository structure that is visible to user quine.

Example 21-2    Obtaining the OID Path of a Resource

DECLARE
  resoid  RAW(16);
  oidpath VARCHAR2(100);
BEGIN
  SELECT RESID INTO resoid FROM RESOURCE_VIEW
    WHERE equals_path(RES, '/home/QUINE/purchaseOrder.xml') = 1;
    oidpath := DBMS_XDB_REPOS.createOIDPath(resoid);
  DBMS_OUTPUT.put_line(oidpath);
END;

Chapter 21
Oracle XML DB Repository Resources

21-16



Example 21-3    Creating a Weak Link Using an OID Path

CALL DBMS_XDB_REPOS.link(/sys/oid/1BDCB46477B59C20E040578CCE0623D3
                         '/home/CURRY', 'quinePurchaseOrder.xml',
                         DBMS_XDB_REPOS.LINK_TYPE_WEAK);

21.3.5.4 How and When to Prevent Multiple Hard Links
You can restrict the creation of hard links, disallowing multiple hard links to folders or
files (or both). Allowing multiple hard links to file resources, but disallowing multiple
hard links to folder resources, provides behavior that is similar to that for some file
systems, including UNIX and Linux.

This can simplify application design, by, in effect, ensuring that each file resource has
a unique, canonical hard-link path to it. In addition, preventing multiple hard links to a
resource can lead to query performance improvements.

You can configure the prevention of multiple hard links using the following Boolean
parameters in configuration file xdbconfig.xml. The default value of each parameter is
true, meaning that multiple hard links can be created.

• folder-hard-links – Prevent the creation of multiple hard links to a folder
resource, if false.

• non-folder-hard-links – Prevent the creation of multiple hard links to a file
resource, if false.

Related Topics

• Configuration of Oracle XML DB Using xdbconfig.xml
Oracle XML DB is managed internally through a configuration file, xdbconfig.xml,
which is stored as a resource in Oracle XML DB Repository. As an alternative to
using Oracle Enterprise Manager to configure Oracle XML DB, you can configure
it directly using the Oracle XML DB configuration file.

21.4 Navigational or Path Access to Repository Resources
Oracle XML DB Repository folders support the same protocol standards used by many
operating systems. This lets a repository folder act like a native folder (directory) in
supported operating-system environments.

For example:

• You can use Windows Explorer to open and access repository files and folders
(resources) the same way you access other files and folders in the file system, as
shown in Figure 21-2.

• You can access repository data using HTTP(S)/WebDAV from a Web browser, as
shown in Figure 21-3 and Figure 21-4.

Figure 21-3 shows a browser visiting URL http://xdbdemo:8080/. The server it is
connected to is xdbdemo, and its HTTP port number is 8080.

Figure 21-4 shows a browser using HTTP to visit an XML document (an XSL
stylesheet) stored in the database. The URL is http://localhost:8080/home/
SCOTT/poSource/xsl/purchaseOrder.xsl.

Chapter 21
Navigational or Path Access to Repository Resources

21-17



Figure 21-2    Oracle XML DB Folders in Windows Explorer

Figure 21-3    Accessing Repository Data Using HTTP(S)/WebDAV and a Web
Browser

Chapter 21
Navigational or Path Access to Repository Resources

21-18



Figure 21-4    Path-Based Access Using HTTP and a URL

• Access to Oracle XML DB Resources Using Internet Protocols
Oracle Net Services provides one way of accessing database resources. Oracle
XML DB support for Internet protocols provides another way of accessing
database resources.

• Access to Oracle ASM Files Using Protocols and Resource APIs – For DBAs
Oracle Automatic Storage Management (Oracle ASM) organizes database
files into disk groups for simplified management, database mirroring, and I/O
balancing. Repository access extends to Oracle ASM files, in the virtual repository
folder /sys/asm. This access is reserved for database administrators (DBAs). It is
not intended for developers.

21.4.1 Access to Oracle XML DB Resources Using Internet Protocols
Oracle Net Services provides one way of accessing database resources. Oracle
XML DB support for Internet protocols provides another way of accessing database
resources.

• Where You Can Use Oracle XML DB Protocol Access
Oracle Net Services is optimized for record-oriented data. Internet protocols are
designed for stream-oriented data, such as binary files or XML text documents.
Oracle XML DB protocol access is a valuable alternative to Net Services in certain
scenarios.

• Overview of Protocol Access to Oracle XML DB
Protocol access to Oracle XML DB involves connecting, authenticating a user,
parsing the request, and perhaps invoking a Java servlet.

Chapter 21
Navigational or Path Access to Repository Resources

21-19



• Retrieval of Oracle XML DB Resources
When a protocol indicates that a resource is to be retrieved, the path name to the
resource is resolved and the resource is fetched, by streaming it as either XML
data or in RAW form.

• Storage of Oracle XML DB Resources
When a protocol indicates that a resource that is an XML document is to be
stored, its associated XML schema, if any, is consulted to determine the default
table in which to store the document.

• Internet Protocols and XMLType: XMLType Direct Stream Write
Oracle XML DB supports Internet protocols at the XMLType level by using Java
XMLType method writeToStream(). This method is implemented natively and
writes XMLType data directly to the protocol request stream.

21.4.1.1 Where You Can Use Oracle XML DB Protocol Access
Oracle Net Services is optimized for record-oriented data. Internet protocols are
designed for stream-oriented data, such as binary files or XML text documents. Oracle
XML DB protocol access is a valuable alternative to Net Services in certain scenarios.

• Direct database access from file-oriented applications using the database like a
file system

• Heterogeneous application server environments that require a uniform data
access method (such as XML over HTTP, which is supported by most data
servers, including MS SQL Server, Exchange, Notes, many XML databases, stock
quote services and news feeds)

• Application server environments that require data in the form of XML text

• Web applications that use client-side XSL to format datagrams that do not need
much application processing

• Web applications that use Java servlets that run inside the database

• Web access to XML-oriented stored procedures

21.4.1.2 Overview of Protocol Access to Oracle XML DB
Protocol access to Oracle XML DB involves connecting, authenticating a user, parsing
the request, and perhaps invoking a Java servlet.

Accessing Oracle XML DB using a protocol proceeds as follows:

1. A connection object is established, and the protocol might read part of the request.

2. The protocol decides whether the user is already authenticated and wants to reuse
an existing session or the connection must be re-authenticated (the latter is more
common).

3. An existing session is pulled from the session pool, or else a new one is created.

4. If authentication has not been provided, and the request is HTTP get or head,
then the session is run as the ANONYMOUS user. If the session has already been
authenticated as the ANONYMOUS user, then there is no cost to reuse the existing
session. If authentication has been provided, then the database re-authentication
routines are used to authenticate the connection.

5. The request is parsed.

Chapter 21
Navigational or Path Access to Repository Resources

21-20



6. (HTTP only) If the requested path name maps to a servlet, then the servlet is
invoked using Java Virtual Machine (JVM). The servlet code writes the response
to a response stream or asks XMLType instances to do so.

21.4.1.3 Retrieval of Oracle XML DB Resources
When a protocol indicates that a resource is to be retrieved, the path name to the
resource is resolved and the resource is fetched, by streaming it as either XML data or
in RAW form.

Resources being fetched are streamed as XML data, except for those containing
element XDBBinary, which is the XML binary data type, which have their contents
streamed out in RAW form.

21.4.1.4 Storage of Oracle XML DB Resources
When a protocol indicates that a resource that is an XML document is to be stored, its
associated XML schema, if any, is consulted to determine the default table in which to
store the document.

Oracle XML DB checks the document file name extension for .xml, .xsl, .xsd, and
so on. If the document is XML then a pre-parse step is done, whereby enough of the
resource is read to determine the XML schemaLocation and namespace of the root
element in the document. If a registered schema is located at the schemaLocation
URL, and it has a definition for the root element of the current document, then the
default table specified for that root element is used to store the contents of the
resource.

21.4.1.5 Internet Protocols and XMLType: XMLType Direct Stream Write
Oracle XML DB supports Internet protocols at the XMLType level by using Java XMLType
method writeToStream(). This method is implemented natively and writes XMLType
data directly to the protocol request stream.

This avoids Java VM execution costs and the overhead of converting database data
through Java data types and creating Java objects, resulting in significantly higher
performance. Performance is further enhanced if the Java code deals only with XML
element trees that are close to the root, and does not traverse too many of the leaf
elements, so that relatively few Java objects are created.

Related Topics

• Repository Access Using Protocols
You can access Oracle XML DB Repository data using protocols FTP and
HTTP(S)/WebDAV.

21.4.2 Access to Oracle ASM Files Using Protocols and Resource
APIs – For DBAs

Oracle Automatic Storage Management (Oracle ASM) organizes database files into
disk groups for simplified management, database mirroring, and I/O balancing.
Repository access extends to Oracle ASM files, in the virtual repository folder /sys/
asm. This access is reserved for database administrators (DBAs). It is not intended for
developers.

Chapter 21
Navigational or Path Access to Repository Resources

21-21



A typical use of such access is to copy Oracle ASM files from one database instance
to another. For example, a DBA can view folder /sys/asm in a graphical user interface
using the WebDAV protocol, and then drag-and-drop a copy of a data-pump dump set
from an Oracle ASM disk group to an operating-system file system.

Virtual folder /sys/asm is created by default during Oracle XML DB installation. If the
database is not configured to use Oracle ASM, the folder is empty and no operations
are permitted on it.

Folder /sys/asm contains folders and subfolders that follow the hierarchy defined by
the structure of an Oracle ASM fully qualified filename:

• It contains a subfolder for each mounted disk group.

• A disk-group folder contains a subfolder for each database that uses that disk
group. In addition, a disk-group folder may contain files and folders corresponding
to Oracle ASM aliases created by the administrator.

• A database folder contains file-type folders.

• A file-type folder contains Oracle ASM files, which are binary.

This hierarchy is shown in Figure 21-5, which omits directories created for aliases, for
simplicity.

Figure 21-5    Oracle ASM Virtual Folder Hierarchy

DATAFILE TEMPFILE CONTROLFILE ONLINELOG CONTROLFILE ONLINELOG ARCHIVELOG

File�
Types

Databases

Disk Groups

HR MFG HR MFG

DATA RECOVERY

/sys/asm

The following usage restrictions apply to virtual folder /sys/asm. You cannot:

• query /sys/asm using SQL

• put regular files under /sys/asm (you can put only Oracle ASM files there)

Chapter 21
Navigational or Path Access to Repository Resources

21-22



• move (rename) an Oracle ASM file to a different Oracle ASM disk group or to a
folder outside Oracle ASM

• create hard links to existing Oracle ASM files or directories

In addition:

• You must have the privileges of role DBA to view folder /sys/asm.

• To access /sys/asm using Oracle XML DB protocols, you must log in as a user
other than SYS.

Again, Oracle ASM virtual-folder operations are intended only for database
administrators, not developers.

See Also:

• Using FTP with Oracle ASM Files for an example of using protocol FTP
with /sys/asm

• Oracle Automatic Storage Management Administrator's Guide for
information about the syntax of a fully qualified Oracle ASM filename
and details on the virtual folder structure

21.5 Query-Based Access to Repository Resources
PL/SQL package DBMS_XDB_REPOS provides subprograms that act on Oracle XML DB
Repository resources. This API is based on the public views RESOURCE_VIEW and
PATH_VIEW, which enable SQL access to repository data through protocols such as
FTP and HTTP(S)/WebDAV.

• PATH_VIEW – Has one row for each unique repository path

• RESOURCE_VIEW – Has one row for each resource

Through these views, you can access and update both the metadata and the content
of documents stored in the repository. Operations on the views use underlying
repository tables such as XDB$RESOURCE.

Each view contains virtual column RES. You use column RES to access and update
resource documents using SQL statements that accept a repository path notation.

View RESOURCE_VIEW contains column ANY_PATH. Column ANY_PATH contains a valid
URL that the current user can pass to PL/SQL constructor XDBURIType to access
the resource content. If this content is not binary data, then the resource itself also
contains the content.

Table 21-2 summarizes the differences between the views.

Table 21-2    Differences Between PATH_VIEW and RESOURCE_VIEW

PATH_VIEW RESOURCE_VIEW

Contains link properties No link properties

Has one row for each unique path in repository Has one row for each resource in repository

Chapter 21
Query-Based Access to Repository Resources

21-23



Rows in these views are of data type XMLType. In the RESOURCE_VIEW, the single path
associated with a resource is arbitrarily chosen from among the possible paths that
refer to the resource. Oracle XML DB provides SQL functions, such as under_path,
that let applications search for the resources contained within a particular folder
(recursively), obtain the resource depth, and so on.

DML code can be used on the repository views to insert, rename, delete, and
update resource properties and contents. Programmatic APIs must be used for other
operations, such as creating links to existing resources.

Oracle XML DB supports the concept of linking. Linking makes it possible to define
multiple paths to a given document. A separate XML document, called the link-
properties document, maintains metadata properties that are specific to the path,
rather than to the resource. Whenever a resource is created, an initial link is also
created.

PATH_VIEW exposes the link-properties documents. There is one entry in PATH_VIEW for
each possible path to a document. Column RES of PATH_VIEW contains the resource
document pointed to by this link. Column PATH contains the path that the link lets
you use to access the resource. Column LINK contains the link-properties document
(metadata) for this PATH.

Related Topics

• Link Types
Links in Oracle XML DB can be repository links or document links. Repository links
can be hard links or weak links. Document links can also be hard links or weak
links, when their targets are repository resources.

• Repository Access Using RESOURCE_VIEW and PATH_VIEW
Predefined public views RESOURCE_VIEW and PATH_VIEW provide access to Oracle
XML DB repository data. You can use Oracle SQL functions under_path and
equals_path to query resources based on their path names, and functions path
and depth to return resource path names and depths.

See Also:

• Repository Access Control

• Oracle Database Reference for more information about view PATH_VIEW

• Oracle Database Reference for more information about view
RESOURCE_VIEW

21.6 Servlet Access to Repository Resources
Oracle XML DB implements Java Servlet API, version 2.2.

Support is limited by these restrictions:

• All servlets must be distributable. They must expect to run in different virtual
machines.

• WAR and web.xml files are not supported. Oracle XML DB supports a subset
of the XML configurations in this file. An XSLT stylesheet can be applied to the

Chapter 21
Servlet Access to Repository Resources

21-24



web.xml to generate servlet definitions. An external tool must be used to create
database roles for those defined in the web.xml file.

• JSP (Java Server Pages) support can be installed as a servlet and configured
manually.

• HTTPSession and related classes are not supported.

• Only one servlet context (that is, one Web application) is supported.

Related Topics

• Guidelines for Oracle XML DB Applications in Java
Design guidelines are presented for writing Oracle XML DB applications in Java.
This includes guidelines for writing and configuring Java servlets for Oracle
XML DB.

21.7 Operations on Repository Resources
You can operate on data stored in Oracle XML DB Repository resources using Java,
PL/SQL, and Internet protocols. The most common operations are described, along
with the required database permissions to use them.

You can access repository data in any of these ways:

• Oracle XML DB resource APIs for Java

• A combination of Oracle XML DB resource views API and Oracle XML DB
resource API for PL/SQL

• Internet protocols (HTTP(S)/WebDAV and FTP) and Oracle XML DB protocol
server

These access methods can be used equivalently. It does not matter how you add
content to the repository or retrieve it from there. For example, you can add content to
the repository using SQL or PL/SQL and then retrieve it using an Internet protocol, or
the other way around.

Table 21-3 lists common Oracle XML DB Repository operations, and describes how
these operations can be accomplished using each of several access methods. The
table shows functionality common to the different methods, but not all of the methods
are equally suited to any particular task. Unless mentioned otherwise, "resource" in
this table can be either a file resource or a folder resource.

Table 21-3 also shows the resource privileges that are required for each operation.

Chapter 21
Operations on Repository Resources

21-25



Table 21-3    Accessing Oracle XML DB Repository: API Options

Data
Access

SQL and PL/SQL Protocols Resource
Privileges
Required

Create
resource DBMS_XDB_REPOS.createResource(

  '/public/T1/testcase.txt',
  'ORIGINAL text');
INSERT INTO RESOURCE_VIEW (ANY_PATH, RES)
SELECT '/public/T1/copy1.txt', RES
  FROM RESOURCE_VIEW
  WHERE equals_path(RES, 
                    '/public/T1/testcase.txt')
        = 1;

HTTP:PUT;

FTP: PUT

DAV::bind
on parent
folder

Update
resource
contents

UPDATE RESOURCE_VIEW
SET RES =
XMLQuery(
  'declare default element namespace
   "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
   copy $i := $p1 modify
     (for $j in $i/Resource/Contents/text
      return replace value of node $j with $p2)
   return $i'
  PASSING RES AS "p1", 'NEW text' AS "p2"
  RETURNING CONTENT)
WHERE equals_path(RES, '/public/T1/copy1.txt') = 1

HTTP: PUT;

FTP: PUT

xdb:write-
content on
resource

Update
resource
properties

UPDATE RESOURCE_VIEW
SET RES =
XMLQuery(
  'declare default element namespace
   "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
   copy $i := $p1 modify
     (for $j in $i/Resource/DisplayName
      return replace value of node $j with $p2)
   return $i'
  PASSING RES AS "p1", 'NewName1.txt' AS "p2" RETURNING 
CONTENT)
WHERE equals_path(RES, '/public/T1/copy1.txt') = 1;

WebDAV:

PROPPATCH;

DAV::write-
properties
on resource

Update
resource
ACL

EXEC DBMS_XDB_REPOS.setACL(
  '/public/T1/copy1.txt',
  '/sys/acls/all_owner_acl.xml');

not
applicable

DAV::write-
acl on
resource

Chapter 21
Operations on Repository Resources

21-26



Table 21-3    (Cont.) Accessing Oracle XML DB Repository: API Options

Data
Access

SQL and PL/SQL Protocols Resource
Privileges
Required

Unlink
resource
(delete if
last link)

EXEC DBMS_XDB_REPOS.deleteResource()

or

DELETE FROM RESOURCE_VIEW
  WHERE equals_path(RES, path) > 0

HTTP:

DELETE;

FTP:
delete

DAV::unbind
on parent
folder

xdb:unlink-
from on
resource

Forcibly
remove all
links to
resource

DBMS_XDB_REPOS.deleteResource()

or

DELETE FROM PATH_VIEW
WHERE
XMLCast(
  XMLQuery(
    'declare namespace n1=
     "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
     //n1:DisplayName'
    PASSING RES RETURNING CONTENT)
  AS VARCHAR2(256))
= 'My resource'

FTP:

quote

rm_rf

resource

DAV::unbind
on all parent
folders

xdb:unlink-
from on
resource

Move
resource UPDATE PATH_VIEW

  SET path = '/public/T1/copy2.txt'
  WHERE equals_path(RES,
                    '/public/T1/copy1.txt')
        = 1;

WebDAV:

MOVE;

FTP:
rename

DAV::unbind
on source
parent folder

DAV::bind
on target
parent folder

xdb:unlink-
from and
xdb:link-to
on resource

Chapter 21
Operations on Repository Resources

21-27



Table 21-3    (Cont.) Accessing Oracle XML DB Repository: API Options

Data
Access

SQL and PL/SQL Protocols Resource
Privileges
Required

Copy
resource INSERT INTO PATH_VIEW (path, RES, link)

  SELECT '/public/T1/copy3.txt', RES, link
    FROM PATH_VIEW
    WHERE equals_path(RES, '/public/T1/copy2.txt')
          = 1;

WebDAV:

COPY;

Copy to new:

DAV::bind
on target
parent folder

DAV::read
on resource

Copy to
existing
(replacement
):

DAV::read
on resource

DAV::write-
properties
and
DAV::write-
content on
existing
target
resource

Create
hard link
to existing
resource

EXEC DBMS_XDB_REPOS.link('/public/T1/copy3.txt', 
                         '/public/T1',
                         'myhardlink');

not
applicable

DAV::bind
on parent
folder

xdb:link-to
on resource

Create
weak link
to existing
resource

EXEC DBMS_XDB_REPOS.link(
  '/public/T1/copy3.txt', 
  '/public/T1',
  'myweaklink',
  DBMS_XDB_REPOS.LINK_TYPE_WEAK);

not
applicable

DAV::bind
on parent
folder

xdb:link-to
on resource

Change
owner of
resource

UPDATE RESOURCE_VIEW
SET RES =
XMLQuery(
  'copy $i := $p1 modify
     (for $j in $i/Resource/Owner
      return replace value of node $j with $p2)
   return $i'
  PASSING RES AS "p1", 'U2' AS "p2" RETURNING CONTENT)
WHERE equals_path(RES, '/public/T1/copy3.txt') = 1;

not
applicable

DAV::take-
ownership
on resource

Chapter 21
Operations on Repository Resources

21-28



Table 21-3    (Cont.) Accessing Oracle XML DB Repository: API Options

Data
Access

SQL and PL/SQL Protocols Resource
Privileges
Required

Get binary
or text
representa
tion of
resource
contents

SELECT XDBURIType(path).getBLOB() FROM DUAL;

SELECT
  XMLQuery(
    'declare default element namespace
     "http://xmlns.oracle.com/xdb/XDBResource.xsd";(: :)
     $r/Resource/Contents'
    PASSING RES AS "r" RETURNING CONTENT)
  FROM RESOURCE_VIEW
  WHERE equals_path(RES, '/public/T1/copy2.text') = 1;

HTTP: GET;

FTP: get

xdb:read-
contents on
resource

Get
XMLType
representa
tion of
resource
contents

SELECT XDBURIType('/public/T1/res.xml').getXML
  FROM DUAL;

SELECT 
  XMLQuery(
    'declare default element namespace
     "http://xmlns.oracle.com/xdb/XDBResource.xsd";(: :)
     $r/Resource/Contents/*'
    PASSING RES AS "r" RETURNING CONTENT)
  FROM RESOURCE_VIEW 
  WHERE equals_path(RES, '/public/T1/res.xml') = 1;

not
applicable

xdb:read-
contents on
resource

Get
resource
properties

SELECT
  XMLCast(
    XMLQuery(
      'declare default element namespace
       "http://xmlns.oracle.com/xdb/XDBResource.xsd";(: :)
       $r/Resource/LastModifier'
      PASSING RES AS "r" RETURNING CONTENT)
    AS VARCHAR2(128))FROM RESOURCE_VIEW
  WHERE equals_path(RES, '/public/T1/res.xml') = 1;

WebDAV:

PROPFIND

(depth =
0);

xdb:read-
properties
on resource

List
resources
in folder

SELECT PATH FROM PATH_VIEW
  WHERE under_path(res, '/public/T1') = 1;

WebDAV:

PROPFIND

(depth =
0);

xdb:read-
contents on
folder

Create
folder Call DBMS_XDB_REPOS.createFolder('/public/T2');

WebDAV:

MKCOL;

FTP: mkdir

DAV::bind
on parent
folder

Chapter 21
Operations on Repository Resources

21-29



Table 21-3    (Cont.) Accessing Oracle XML DB Repository: API Options

Data
Access

SQL and PL/SQL Protocols Resource
Privileges
Required

Unlink
empty
folder

DBMS_XDB_REPOS.deleteResource('/public/T2')
HTTP:

DELETE;

FTP: rmdir

DAV::unbind
on parent
folder

xdb:unlink-
from on
resource

Forcibly
delete
folder and
all links to
it

DBMS_XDB_REPOS.deleteResource(
  '/public/T2',
  DBMS_XDB.DELETE_RECURSIVE_FORCE);

not
applicable

DAV::unbind
on all parent
folders

xdb:unlink-
from on
folder
resource

Get
resource
with a row
lock

SELECT ... 
  FROM RESOURCE_VIEW
  FOR UPDATE ...;

not
applicable

xdb:read-
properties
and
xdb:read-
contents on
resource

Add
WebDAV
lock on
resource

EXEC DBMS_XDB_REPOS.LockResource(
  '/public/T1/res.xml',
  TRUE,
  TRUE);

WebDAV:

LOCK;

FTP:

quote lock

DAV::write-
properties
on resource

Remove
WebDAV
lock

DECLARE...

BEGIN 
  DBMS_XDB_REPOS.GetLockToken('/public/T1/res.xml', 
                              locktoken); 
  DBMS_XDB_REPOS.UnlockResource(
    '/public/T1/res.xml',
    locktoken);
END; 

WebDAV:
UNLOCK;

FTP:

quote
unlock

DAV::write-
properties
and
DAV::unlock
on resource

Check out
file
resource

EXEC DBMS_XDB_VERSION.checkOut(
  '/public/T1/res.xml');

not
applicable

DAV::write-
properties
on resource

Check in
file
resource

EXEC DBMS_XDB_VERSION.checkIn(
  '/public/T1/res.xml');

not
applicable

DAV::write-
properties
on resource

Uncheck
out file
resource

EXEC DBMS_XDB_VERSION.unCheckOut(
  '/public/T1/res.xml');

not
applicable

DAV::write-
properties
on resource

Chapter 21
Operations on Repository Resources

21-30



Table 21-3    (Cont.) Accessing Oracle XML DB Repository: API Options

Data
Access

SQL and PL/SQL Protocols Resource
Privileges
Required

Make file
resource
versioned

EXEC DBMS_XDB_VERSION.makeVersioned(
  '/public/T1/res.xml');

not
applicable

DAV::write-
properties
on resource

Remove
an event
handler

DBMS_XEVENT.remove not
applicable

xdb:write-
config on
resource or
parent folder
(depending
on the
context)

Commit
changes COMMIT;

Automatic
commit
after each
request

not
applicable

Rollback
changes ROLLBACK;

not
applicable

not
applicable

In addition to the privileges listed in Table 21-3, privilege xdb:read-properties is
required on each resource affected by an operation. Operations that affect the parent
folder of a resource, in addition to the resource targeted by the operation, also
require privilege xdb:read-properties on that parent folder. For example, deleting a
resource affects both the resource to delete and its parent folder, so you need privilege
xdb:read-properties on both the resource and its parent folder.

Related Topics

• Repository Access Using RESOURCE_VIEW and PATH_VIEW
Predefined public views RESOURCE_VIEW and PATH_VIEW provide access to Oracle
XML DB repository data. You can use Oracle SQL functions under_path and
equals_path to query resources based on their path names, and functions path
and depth to return resource path names and depths.

• PL/SQL Access to Oracle XML DB Repository
PL/SQL packages DBMS_XDB_CONFIG and DBMS_XDB_REPOS together provide the
Oracle XML DB resource application program interface (API) for PL/SQL. You use
the former to configure Oracle XML DB and its repository. You use the latter to
perform other, non-configuration operations on the repository.

• Repository Access Using Protocols
You can access Oracle XML DB Repository data using protocols FTP and
HTTP(S)/WebDAV.

Chapter 21
Operations on Repository Resources

21-31



See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about PL/SQL package DBMS_XDB_REPOS

• Oracle Database PL/SQL Packages and Types Reference for
information about PL/SQL package DBMS_XDB_VERSION

• Oracle Database PL/SQL Packages and Types Reference for
information about PL/SQL package DBMS_XEVENT

21.8 Accessing the Content of Repository Resources Using
SQL

In SQL you can access the content of a document in Oracle XML DB Repository
using PL/SQL constructor XDBURIType or using RESOURCE_VIEW and the corresponding
resource document.

The easiest way is to use XDBURIType. You pass a URL to this constructor to specify
which resource to access. The URL is assumed to start at the root of the repository.
Object type XDBURIType provides methods getBLOB(), getCLOB(), and getXML(), to
access the different kinds of content that can be associated with a resource.

Example 21-4 uses constructor XDBURIType to access the content of a text document.

The content of a document can also be accessed using RESOURCE_VIEW and the
corresponding resource document. Example 21-5 does this to access the content of a
text document.

The content of XML documents (XML Schema-based or non-schema-based) can also
be accessed this way. Example 21-6 uses an XPath expression that includes nodes
from an XML document and nodes from the corresponding resource document to
access the contents of a PurchaseOrder document.

In Example 21-6, the namespace prefix, r identifies which nodes in the XPath
expression are members of the resource namespace. Namespace prefix r is defined
using the XMLNAMESPACES clause of SQL/XML function XMLTable. The namespace
declaration is needed here because the purchase-order XML schema does not define
a namespace, and it is not possible to apply a namespace prefix to nodes in the
PurchaseOrder document.

See Also:

XQuery and Oracle XML DB for more information about the XMLNAMESPACES
clause of XMLTable

Chapter 21
Accessing the Content of Repository Resources Using SQL

21-32



Example 21-4    Accessing a Text Document in the Repository Using
XDBURITYPE

SELECT XDBURIType('/home/QUINE/NurseryRhyme.txt').getCLOB() FROM DUAL;
 
XDBURITYPE('/HOME/QUINE/NURSERYRHYME.TXT').GETCLOB()
----------------------------------------------------
Mary had a little lamb
Its fleece was white as snow
and everywhere that Mary went
that lamb was sure to go
 
1 row selected.

Example 21-5    Accessing Resource Content Using RESOURCE_VIEW

SELECT CONTENT
  FROM RESOURCE_VIEW,
       XMLTable(XMLNAMESPACES (default 'http://xmlns.oracle.com/xdb/XDBResource.xsd'),
                '/Resource/Contents' PASSING RES
                COLUMNS content CLOB PATH 'text')
  WHERE equals_path(RES, '/home/QUINE/NurseryRhyme.txt') = 1;
 
CONTENT
-------
Mary had a little lamb
Its fleece was white as snow
and everywhere that Mary went
that lamb was sure to go
 
1 row selected.

Example 21-6    Accessing XML Documents Using Resource and Namespace Prefixes

SELECT des.description
  FROM RESOURCE_VIEW rv,
       XMLTable(XMLNAMESPACES ('http://xmlns.oracle.com/xdb/XDBResource.xsd' AS "r"),
                '/r:Resource/r:Contents/PurchaseOrder/LineItems/LineItem'
                PASSING rv.RES
                COLUMNS description VARCHAR2(256) PATH 'Description') des
  WHERE 
    equals_path(rv.RES, '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml') = 1;

DES.DESCRIPTION
---------------------------------
A Night to Remember
The Unbearable Lightness Of Being
The Wizard of Oz
 
3 rows selected.

21.9 Access to the Content of XML Schema-Based
Documents

You can access the content of an XML Schema-based document in the same way as
for a non-schema-based document: use the corresponding resource document. Or you
can access it as a row in the default table that was defined when the XML schema was
registered with Oracle XML DB.

Chapter 21
Access to the Content of XML Schema-Based Documents

21-33



In the first case, you can use RESOURCE_VIEW to query different types of XML Schema-
based documents with a single SQL statement.

• Accessing Resource Content Using Element XMLRef in Joins
Element XMLRef in a resource document provides the join key required when a
SQL statement needs to access or update metadata and content as part of a
single operation.

21.9.1 Accessing Resource Content Using Element XMLRef in Joins
Element XMLRef in a resource document provides the join key required when a SQL
statement needs to access or update metadata and content as part of a single
operation.

Examples here show queries that access resource content using joins based on the
value of element XMLRef.

Example 21-7 locates a row in the defaultTable based on a path in Oracle XML DB
Repository. SQL function ref locates the target row in the default table, based on the
value of the XMLRef element in the resource document, RES.

Example 21-8 shows how to select fragments from XML documents based on
metadata, path, and content. The query returns the value of element Reference for
documents under /home/QUINE/PurchaseOrders/2002/Mar that contain orders for part
number 715515009058.

In general, when accessing the content of schema-based XML documents, joining
RESOURCE_VIEW or PATH_VIEW with the default table is more efficient than using
RESOURCE_VIEW or PATH_VIEW on its own. An explicit join between the resource
document and the default table tells Oracle XML DB that the SQL statement works
on only one type of XML document. XPath rewrite can thus be used to optimize
operations on the default table and the resource.

Example 21-7    Querying Repository Resource Data Using SQL Function REF and Element
XMLRef

SELECT des.description
  FROM RESOURCE_VIEW rv,
       purchaseorder p,
       XMLTable('$p/PurchaseOrder/LineItems/LineItem' PASSING p.OBJECT_VALUE AS "p"
                COLUMNS description VARCHAR2(256) PATH 'Description') des
  WHERE
    equals_path(rv.RES,
                '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml')
    = 1
    AND ref(p) = XMLCast(XMLQuery('declare default element namespace
                                   "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                                   fn:data(/Resource/XMLRef)'
                                  PASSING rv.RES RETURNING CONTENT)
                         AS REF XMLType);
 
DES.DESCRIPTION
---------------------------------
A Night to Remember
The Unbearable Lightness Of Being
The Wizard of Oz
 
3 rows selected.

Chapter 21
Access to the Content of XML Schema-Based Documents

21-34



Example 21-8    Selecting XML Document Fragments Based on Metadata, Path, and Content

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference'
                        PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(30))
  FROM RESOURCE_VIEW rv, purchaseorder po
  WHERE under_path(rv.RES, '/home/QUINE/PurchaseOrders/2002/Mar') = 1
    AND ref(po) =
          XMLCast(
            XMLQuery('declare default element namespace
                      "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                      fn:data(/Resource/XMLRef)'
                     PASSING rv.RES RETURNING CONTENT)
            AS REF XMLType)
    AND XMLExists(
          '$p/PurchaseOrder/LineItems/LineItem/Part[@Id="715515009058"]'
          PASSING po.OBJECT_VALUE AS "p");

XMLCAST(XMLQUERY('$P/PURCHASEO
------------------------------
CJOHNSON-20021009123335851PDT
LSMITH-2002100912333661PDT
SBELL-2002100912333601PDT
 
3 rows selected.

21.10 Update of the Content of Repository Documents
You can update the content of documents stored in Oracle XML DB Repository using
Internet protocols or SQL.

• Update of Repository Content Using Internet Protocols
The most popular content authoring tools support HTTP, FTP, and WebDAV
protocols. Given appropriate access permissions, a simple URL targeting a
document to update is all you need, to access and edit content stored in Oracle
XML DB Repository.

• Update of Repository Content Using SQL
You can use XQuery Update to update the content of any document stored in
Oracle XML DB Repository. The content of the document can be modified by
updating the resource document or by updating the default table that holds the
content of the document.

21.10.1 Update of Repository Content Using Internet Protocols
The most popular content authoring tools support HTTP, FTP, and WebDAV protocols.
Given appropriate access permissions, a simple URL targeting a document to update
is all you need, to access and edit content stored in Oracle XML DB Repository.

Popular content authoring tools can use HTTP verb get to access the content of a
document, given a URL to it, and they can use HTTP verb put to save the updated
content.

Figure 21-6 shows how, with the WebDAV support included in Microsoft Word, you
can use Microsoft Word to update and edit a document stored in Oracle XML DB
Repository.

Chapter 21
Update of the Content of Repository Documents

21-35



Figure 21-6    Updating and Editing Content Stored in Oracle XML DB Using Microsoft Word

When an editing application such as Microsoft Word updates an XML document that
is stored in Oracle XML DB, the database receives an input stream containing the
new content of the document. Unfortunately, applications such as Word do not provide
Oracle XML DB with any way of identifying which changes have taken place in the
document. Partial updates are thus impossible. It is necessary to parse the entire
document again, replacing all of the objects derived from the original document with
objects derived from the new content.

21.10.2 Update of Repository Content Using SQL
You can use XQuery Update to update the content of any document stored in Oracle
XML DB Repository. The content of the document can be modified by updating the
resource document or by updating the default table that holds the content of the
document.

• Updating a Document in the Repository by Updating Its Resource Document
You can update the content of a document using a SQL UPDATE statement and
SQL function XMLQuery with XQuery Update. An XQuery expression is passed to
XMLQuery as the target of the update operation.

Chapter 21
Update of the Content of Repository Documents

21-36



• Updating an XML Schema-Based Document in the Repository by Updating the
Default Table
You can update XML Schema-based documents by performing an update
operation directly on the default table that is used to manage the content of the
document.

21.10.2.1 Updating a Document in the Repository by Updating Its Resource
Document

You can update the content of a document using a SQL UPDATE statement and SQL
function XMLQuery with XQuery Update. An XQuery expression is passed to XMLQuery
as the target of the update operation.

Example 21-9 updates the content of a simple text document. The XQuery expression
passed to XMLQuery as the target of the update operation identifies the text node as
belonging to element /Resource/Contents/text.

This technique for updating the content of a document by updating the associated
resource has the advantage that it can be used to update any kind of document stored
in Oracle XML DB Repository.

Example 21-10 updates a node in an XML document by performing a SQL UPDATE
operation on the corresponding resource document. Here, XQuery Update is used to
change the value of the text node associated with element User.

Example 21-9    Updating a Text Document Using UPDATE and XQuery Update
on the Resource

DECLARE
  file         BFILE;
  contents     CLOB;
  dest_offset  NUMBER := 1;
  src_offset   NUMBER := 1;
  lang_context NUMBER := 0;
  conv_warning NUMBER := 0;
BEGIN
  file := bfilename('XMLDIR', 'tdadxdb-03-02.txt');
  DBMS_LOB.createTemporary(contents, true, DBMS_LOB.SESSION);
  DBMS_LOB.fileopen(file, DBMS_LOB.file_readonly);
  DBMS_LOB.loadClobfromFile(contents,
                            file,
                            DBMS_LOB.getLength(file),
                            dest_offset,
                            src_offset,
                            nls_charset_id('AL32UTF8'),
                            lang_context,
                            conv_warning);
  DBMS_LOB.fileclose(file);
  UPDATE RESOURCE_VIEW
    SET RES =
      XMLQuery('declare default element namespace 
                  "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                copy $i := $p1 modify
                  (for $j in $i/Resource/Contents/text
                   return replace value of node $j with $p2)

Chapter 21
Update of the Content of Repository Documents

21-37



                return $i'
               PASSING RES AS "p1", contents AS "p2" RETURNING CONTENT)
    WHERE equals_path(res, '/home/QUINE/NurseryRhyme.txt') = 1;
  DBMS_LOB.freeTemporary(contents);
END;
/

Example 21-10    Updating an XML Node Using UPDATE and XQuery Update on the Resource

UPDATE RESOURCE_VIEW
  SET RES =
    XMLQuery('declare namespace r="http://xmlns.oracle.com/xdb/XDBResource.xsd";
              copy $i := $p1 modify
                (for $j in $i/r:Resource/r:Contents/PurchaseOrder/User
                 return replace value of node $j with $p2)
              return $i'
             PASSING RES AS "p1", 'SKING' AS "p2" RETURNING CONTENT)
    WHERE equals_path(res, '/home/QUINE/PurchaseOrders/2002/Mar/
SBELL-2002100912333601PDT.xml')
          = 1;
 
1 row updated.

SELECT XMLCast(XMLQuery(
                 'declare namespace ns="http://xmlns.oracle.com/xdb/XDBResource.xsd"; 
(: :)
                  $r/ns:Resource/ns:Contents/PurchaseOrder/User/text()'
                 PASSING RES AS "r" RETURNING CONTENT)
               AS VARCHAR2(32))
  FROM RESOURCE_VIEW
  WHERE equals_path(RES,
                    '/home/QUINE/PurchaseOrders/2002/Mar/
SBELL-2002100912333601PDT.xml')
        = 1;

XMLCAST(XMLQUERY('DECLARENAMESPA
--------------------------------
SKING

1 row selected.

21.10.2.2 Updating an XML Schema-Based Document in the Repository by
Updating the Default Table

You can update XML Schema-based documents by performing an update operation
directly on the default table that is used to manage the content of the document.

If the document must be located by a WHERE clause that includes a path or conditions
based on metadata, then the SQL UPDATE statement must use a join between the
resource and the default table.

In general, when updating the content of XML Schema-based documents, joining
the RESOURCE_VIEW or PATH_VIEW with the default table is more efficient than using
the RESOURCE_VIEW or PATH_VIEW on its own. The explicit join between the resource

Chapter 21
Update of the Content of Repository Documents

21-38



document and the default table tells Oracle XML DB that the SQL statement works on
only one type of XML document. This lets a partial update be used on the default table
and resource.

In Example 21-11, XQuery Update is used on the default table, with the target row
identified by a path. The row to be updated is identified by a REF. The REF is identified
by a repository path using Oracle SQL function equals_path. This limits the update to
the row corresponding to the resource identified by the specified path.

Example 21-11    Updating XML Schema-Based Documents in the Repository

UPDATE purchaseorder p
  SET p.OBJECT_VALUE =
    XMLQuery('copy $i := $p1 modify
                (for $j in $i/PurchaseOrder/User
                 return replace value of node $j with $p2)
              return $i'
             PASSING p.OBJECT_VALUE AS "p1", 'SBELL' AS "p2" RETURNING CONTENT)
    WHERE ref(p) =
      (SELECT XMLCast(XMLQuery('declare default element namespace
                                  "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                                fn:data(/Resource/XMLRef)'
                               PASSING rv.RES RETURNING CONTENT) AS REF XMLType)
         FROM RESOURCE_VIEW rv
         WHERE
           equals_path(
             rv.RES,
             '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml')
           = 1);

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/User/text()'
                        PASSING p.OBJECT_VALUE AS "p" RETURNING CONTENT)
               AS VARCHAR2(32))
  FROM purchaseorder p, RESOURCE_VIEW rv
  WHERE ref(p) = XMLCast(XMLQuery('declare default element namespace
                                "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                                fn:data(/Resource/XMLRef)'
                               PASSING rv.RES RETURNING CONTENT)
                      AS REF XMLType)
    AND equals_path(
          rv.RES,
          '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml')
        = 1;

XMLCAST(XMLQUERY('$P/PURCHASEO
------------------------------
SBELL

21.11 Querying Resources in RESOURCE_VIEW and
PATH_VIEW

Examples here illustrate folder-restricted queries of the repository using
RESOURCE_VIEW and PATH_VIEW together with Oracle SQL functions equals_path and
under_path.

Oracle XML DB provides two Oracle SQL functions, equals_path and under_path,
that you can use to perform folder-restricted queries. Such queries limit SQL
statements that operate on the RESOURCE_VIEW or PATH_VIEW to documents that are
at a particular location in Oracle XML DB folder hierarchy.

Chapter 21
Querying Resources in RESOURCE_VIEW and PATH_VIEW

21-39



Function equals_path restricts the statement to a single document identified by the
specified path. Function under_path restricts the statement to those documents that
exist beneath a certain point in the hierarchy.

Examples here demonstrate simple folder-restricted queries against resource
documents stored in RESOURCE_VIEW and PATH_VIEW.

The query in Example 21-12 uses SQL function equals_path and RESOURCE_VIEW
to access a resource. The resource queried is that which results from the update
operation of Example 21-9: the original resource text shown in Example 21-4 and
Example 21-5 has been replaced by a different nursery rhyme, "Hickory Dickory
Dock..."

As Example 21-12 shows, a resource document is an XML document that captures
the set of metadata defined by the DAV standard. The metadata includes information
such as CreationDate, Creator, Owner, ModificationDate, and DisplayName. The
content of the resource document can be queried and updated just like any other XML
document, using SQL/XML access and query functions.

The query in Example 21-13 finds a path to each of the XSL stylesheets stored in
Oracle XML DB Repository. It performs a search based on the DisplayName ending
in .xsl.

The query in Example 21-14 counts the number of resources (files and folders) under
the path /home/QUINE/PurchaseOrders. Using RESOURCE_VIEW rather than PATH_VIEW
ensures that any resources that are the target of multiple links are only counted once.
SQL function under_path restricts the result set to documents that can be accessed
using a path that starts from /home/QUINE/PurchaseOrders.

The query in Example 21-15 lists the contents of the folder identified by path /home/
QUINE/PurchaseOrders/2002/Apr. This is effectively a directory listing of the folder.

The query in Example 21-16 lists the set of links contained in the folder identified by
the path /home/QUINE/PurchaseOrders/2002/Apr where the DisplayName element in
the associated resource starts with S.

The query in Example 21-17 finds a path to each resource in Oracle XML DB
Repository that contains a PurchaseOrder document. The documents are identified
based on the metadata property SchemaElement that identifies the XML schema URL
and global element for schema-based XML data stored in the repository.

Example 21-12    Accessing Resources Using EQUALS_PATH and RESOURCE_VIEW

SELECT XMLSerialize(DOCUMENT r.res AS CLOB)
  FROM RESOURCE_VIEW r
  WHERE equals_path(res, '/home/QUINE/NurseryRhyme.txt') = 1;
 
XMLSERIALIZE(DOCUMENTR.RESASCLOB)
---------------------------------
<Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd" 
          Hidden="false" 
          Invalid="false" 
          Container="false" 
          CustomRslv="false" 
          VersionHistory="false" 
          StickyRef="true">
  <CreationDate>2005-06-13T13:19:20.566623</CreationDate>
  <ModificationDate>2005-06-13T13:19:22.997831</ModificationDate>
  <DisplayName>NurseryRhyme.txt</DisplayName>
  <Language>en-US</Language>
  <CharacterSet>UTF-8</CharacterSet>

Chapter 21
Querying Resources in RESOURCE_VIEW and PATH_VIEW

21-40



  <ContentType>text/plain</ContentType>
  <RefCount>1</RefCount>
  <ACL>
    <acl description=
         "Private:All privileges to OWNER only and not accessible to others"
         xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
         xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
         http://xmlns.oracle.com/xdb/acl.xsd"
         shared="true">
      <ace>
        <grant>true</grant>
        <principal>dav:owner</principal>
        <privilege>
          <all/>
        </privilege>
      </ace>
    </acl>
  </ACL>
  <Owner>QUINE</Owner>
  <Creator>QUINE</Creator>
  <LastModifier>QUINE</LastModifier>
  <SchemaElement>http://xmlns.oracle.com/xdb/XDBSchema.xsd#text</SchemaElement>
  <Contents>
    <text>Hickory Dickory Dock
The Mouse ran up the clock
The clock struck one
The Mouse ran down
Hickory Dickory Dock
    </text>
  </Contents>
</Resource>
 
1 row selected.

Example 21-13    Determining the Path to XSLT Stylesheets Stored in the Repository

SELECT ANY_PATH FROM RESOURCE_VIEW
  WHERE XMLCast(
          XMLQuery(
            'declare namespace ns="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
             $r/ns:Resource/ns:DisplayName'
            PASSING RES AS "r" RETURNING CONTENT)
          AS VARCHAR2(100))
        LIKE '%.xsl';
 
ANY_PATH
-------------------------------------------
/home/MDSYS/epsg/sdoepsggrid2nadcon.xsl
/home/MDSYS/epsg/sdoepsggrid2ntv2/xsl
/source/schemas/poSource/xsl/empdept.xsl
/source/schemas/poSource/xsl/purchaseOrder.xsl
 
4 rows selected.

Example 21-14    Counting Resources Under a Path

SELECT count(*)
   FROM RESOURCE_VIEW
   WHERE under_path(RES, '/home/QUINE/PurchaseOrders') = 1;
 
  COUNT(*)
----------
       145

Chapter 21
Querying Resources in RESOURCE_VIEW and PATH_VIEW

21-41



1 row selected.

Example 21-15    Listing the Folder Contents in a Path

SELECT PATH
  FROM PATH_VIEW
  WHERE under_path(RES, '/home/QUINE/PurchaseOrders/2002/Apr') = 1;
 
PATH
----------------------------------------------------------------------
/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336171PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336271PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/EABEL-20021009123336251PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/PTUCKER-20021009123336191PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/PTUCKER-20021009123336291PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336231PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336331PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SKING-20021009123336321PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336151PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336341PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/VJONES-20021009123336301PDT.xml
 
11 rows selected.

Example 21-16    Listing the Links Contained in a Folder

SELECT PATH
  FROM PATH_VIEW
  WHERE XMLCast(XMLQuery(
                  'declare namespace ns="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                   $r/ns:Resource/ns:DisplayName'
                  PASSING RES AS "r" RETURNING CONTENT)
                AS VARCHAR2(100))
        LIKE 'S%'
    AND under_path(RES, '/home/QUINE/PurchaseOrders/2002/Apr') = 1;
 
PATH
--------------------------------------------------------------------
/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336231PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336331PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SKING-20021009123336321PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336151PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336341PDT.xml
 
5 rows selected.

Example 21-17    Finding Paths to Resources that Contain Purchase-Order XML Documents

SELECT ANY_PATH
  FROM RESOURCE_VIEW
 WHERE XMLExists(
         'declare namespace ns="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
          $r/ns:Resource[ns:SchemaElement=
          "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd#PurchaseOrder"]'
         PASSING RES AS "r");

Chapter 21
Querying Resources in RESOURCE_VIEW and PATH_VIEW

21-42



The query returns the following paths, each of which contains a PurchaseOrder
document:

ANY_PATH
-----------------------------------------------------------------------
/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336171PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336271PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/EABEL-20021009123336251PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/PTUCKER-20021009123336191PDT.xml

...

132 rows selected.

21.12 Oracle XML DB Hierarchical Repository Index
Oracle XML DB uses a hierarchical index for Oracle XML DB Repository, to optimize
the performance of path-based and folder-restricted queries of the repository. It is
implemented as an Oracle domain index.

In a conventional relational database, path-based access and folder-restricted queries
are implemented using CONNECT BY operations. Such queries are expensive, so path-
based access and folder-restricted queries can become inefficient as the number of
documents and depth of the folder hierarchy increases.

To address this issue, Oracle XML DB introduces a new index type, the hierarchical
repository index. This lets the database resolve folder-restricted queries without
relying on a CONNECT BY operation. Because of this, Oracle XML DB can execute
path-based and folder-restricted queries efficiently. The hierarchical repository index
is implemented as an Oracle domain index. This is the same technique used to add
Oracle Text indexing support and many other advanced index types to the database.

Example 21-18 shows the execution plan output generated for a folder-restricted
query. As shown, the hierarchical repository index XDBHI_IDX is used to resolve the
query.

Example 21-18    Execution Plan Output for a Folder-Restricted Query

SELECT PATH
  FROM PATH_VIEW
  WHERE XMLCast(
          XMLQuery(
            'declare namespace ns="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
             $r/ns:Resource/ns:DisplayName'
            PASSING RES AS "r" RETURNING CONTENT)
          AS VARCHAR2(100))
        LIKE 'S%'
    AND under_path(RES, '/home/QUINE/PurchaseOrders/2002/Apr') = 1;

 
PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------------------------------
Plan hash value: 2568289845
 
------------------------------------------------------------------------------------------------------
| Id  | Operation                            | Name          | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------------------

Chapter 21
Oracle XML DB Hierarchical Repository Index

21-43



|   0 | SELECT STATEMENT                     |               |    17 |  3111 |    34   (6)| 00:00:01 |
|   1 |  NESTED LOOPS                        |               |    17 |  3111 |    34   (6)| 00:00:01 |
|   2 |   NESTED LOOPS                       |               |    17 |  2822 |    34   (6)| 00:00:01 |
|   3 |    NESTED LOOPS                      |               |   466 | 63842 |    34   (6)| 00:00:01 |
|*  4 |     TABLE ACCESS BY INDEX ROWID      | XDB$RESOURCE  |     1 |   135 |     3   (0)| 00:00:01 |
|*  5 |      DOMAIN INDEX                    | XDBHI_IDX     |       |       |            |          |
|   6 |     COLLECTION ITERATOR PICKLER FETCH|               |       |       |            |          |
|*  7 |    INDEX UNIQUE SCAN                 | XDB_PK_H_LINK |     1 |    28 |     0   (0)| 00:00:01 |
|*  8 |   INDEX UNIQUE SCAN                  | SYS_C003900   |     1 |    17 |     0   (0)| 00:00:01 |
------------------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   4 - filter(CAST("P"."SYS_NC00011$" AS VARCHAR2(100)) LIKE 'S%')
   5 - access("XDB"."UNDER_PATH"(SYS_MAKEXML('8758D485E6004793E034080020B242C6',734,"XMLEXTRA"
              ,"XMLDATA"),'/home/QUINE/PurchaseOrders/2002/Apr',9999)=1)
   7 - access("H"."PARENT_OID"=SYS_OP_ATG(VALUE(KOKBF$),3,4,2) AND
              "H"."NAME"=SYS_OP_ATG(VALUE(KOKBF$),2,3,2))
   8 - access("R2"."SYS_NC_OID$"=SYS_OP_ATG(VALUE(KOKBF$),3,4,2))
 
25 rows selected.

Chapter 21
Oracle XML DB Hierarchical Repository Index

21-44



22
Configuration of Oracle XML DB
Repository

Overall configuration of Oracle XML DB Repository applies to all repository resources.
It does not include configuring parameters for handling events or managing XLink and
XInclude processing. You use resource configuration files to configure resources.

• Resource Configuration Files
You configure an Oracle XML DB Repository resource for any purpose by
associating it with a resource configuration file, which defines configurable
parameters for the resource. A resource configuration file is itself a resource in
Oracle XML DB Repository.

• Configuring a Resource
Configuring an Oracle XML DB Repository resource involves creating a
configuration file, adding that file to the repository as a configuration resource,
and mapping the configuration resource to the resources it configures or to the
entire repository.

• Common Configuration Parameters
Commonly used configuration parameters are described, that is, elements in a
configuration file.

Related Topics

• Oracle XML DB Protocol Server Configuration Management
Oracle XML DB protocol server uses configuration parameters stored in
file xdbconfig.xml to initialize its startup state and manage session level
configuration. The session pool size and timeout parameters cannot be changed
dynamically, that is, you must restart the database in order for these changes to
take effect.

• Configuration of Repository Events
In a resource configuration file, you use element event-listeners, child of
element ResConfig, to configure Oracle XML DB Repository event handling.

• Configuration of Repository Resources for XLink and XInclude
The resource configuration file that you use as a resource to configure XLink
(deprecated) and XInclude processing for other resources is described.

• XDBResource.xsd: XML Schema for Oracle XML DB Resources
A full listing is presented of the Oracle XML DB-supplied XML schema
XDBResource.xsd, which is used to represent Oracle XML DB resources.

• XDBResConfig.xsd: XML Schema for Resource Configuration
A full listing is presented of the Oracle XML DB-supplied XML schema used to
configure repository resources. It is accessible in Oracle XML DB Repository at
path /sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBResConfig.xsd.

22-1



See Also:

Package DBMS_XDB_ADMIN, for information about using a dedicated
tablespace for the repository

22.1 Resource Configuration Files
You configure an Oracle XML DB Repository resource for any purpose by associating
it with a resource configuration file, which defines configurable parameters for
the resource. A resource configuration file is itself a resource in Oracle XML DB
Repository.

A resource configuration file is an XML file that conforms to the XML schema
XDBResConfig.xsd, which is accessible in Oracle XML DB Repository at path /sys/
schemas/PUBLIC/xmlns.oracle.com/xdb/XDBResConfig.xsd. This XML schema is
defined by Oracle XML DB, and you cannot alter it.

You use PL/SQL procedure DBMS_RESCONFIG.addResConfig to map a resource to
the file that configures it. A single resource configuration file can alternatively
apply to all resources in the repository. In that case, you use PL/SQL procedure
DBMS_RESCONFIG.addRepositoryResConfig to map it to the repository as a whole.

The same resource configuration file can be used to configure more than one
resource, if appropriate. Oracle recommends that you have resources share a
configuration file this way whenever the same configuration makes sense. This can
improve run-time performance. It also simplifies repository management by letting you
update a configuration in a single place and have the change affect multiple resources.

Avoid creating multiple, equivalent resource configuration files, because that can
impact performance negatively. If Oracle XML DB detects duplicate resource
configuration files, it raises an error.

Typically, you configure a resource for use with a particular application. In order for
a resource to be shared by multiple applications, it must be possible for different
applications to configure it differently. You do this by creating multiple resource
configuration files and mapping them to the same resource. Each resource is thus
associated with a list of configurations, a resource configuration list. Configurations
in a configuration list are processed in the list order.

The repository itself has a list of resource configuration files, for repository-wide
configuration, which really means configuration of all resources in the repository. The
same configuration file must not be used for both the repository itself and a specific
resource. Otherwise, an error is raised. An error is also raised if the same resource
configuration file appears more than once in any given resource configuration list.

Note:

An error is raised if you try to create more than 125 resource configuration
files for repository-wide configuration.

Chapter 22
Resource Configuration Files

22-2



The resource configuration list of a new resource is based on the information in
the configuration elements of all resource configuration files for the parent folder
of the new resource. If there is no such information (no configuration file or no
defaultChildConfig elements in the files), then the configuration elements of the
repository resource configuration list are used. If that information is also missing, then
the new resource has an empty resource configuration list.

You can view the configuration list for a particular resource by extracting
element /Resource/RCList from column RES of view RESOURCE_VIEW, or by
using PL/SQL procedure DBMS_RESCONFIG.getResConfigPath. You can view the
configuration list for the repository as a whole by using PL/SQL procedure
DBMS_RESCONFIG.getRepositoryResConfigPath. To modify the repository-wide
configuration list, you must be granted role XDBADMIN.

Related Topics

• Configuration Elements defaultChildConfig and configuration
Configuration element defaultChildConfig applies to only folders. It holds
configuration information to be applied to all child resources in the folder. Element
defaultChildConfig has one or more configuration child elements, each of
which defines a possible configuration for resources in the folder.

22.2 Configuring a Resource
Configuring an Oracle XML DB Repository resource involves creating a configuration
file, adding that file to the repository as a configuration resource, and mapping the
configuration resource to the resources it configures or to the entire repository.

Follow these steps to configure an individual resource or the repository as a whole (all
resources):

1. Create a resource configuration file that defines the configuration. This XML file
must conform to XML schema XDBResConfig.xsd.

2. Add the resource configuration file to the repository as a resource in
its own right: a configuration resource. You can use PL/SQL function
DBMS_XDB_REPOS.createResource to do this.

3. Map this configuration resource to the resources that it configures, or
to the repository if it applies to all resources. Use PL/SQL procedure
DBMS_RESCONFIG.addResConfig or DBMS_RESCONFIG.appendResConfig to map an
individual resource. Use DBMS_RESCONFIG.addRepositoryResConfig to map the
repository as a whole.

4. Commit.

Note:

Before performing any operation that uses a resource configuration file, you
must perform a COMMIT operation. Until you do that, an ORA-22881 "dangling
REF" error is raised whenever you use the configuration file.

Chapter 22
Configuring a Resource

22-3



PL/SQL package DBMS_RESCONFIG provides additional procedures to delete a
configuration from a configuration list, obtain a list of paths to configurations in a
configuration list, and more.

Note:

If you delete a resource configuration file that is referenced by another
resource, a dangling REF error is raised whenever an attempt is made to
access the configured resource.

Related Topics

• XDBResConfig.xsd: XML Schema for Resource Configuration
A full listing is presented of the Oracle XML DB-supplied XML schema used to
configure repository resources. It is accessible in Oracle XML DB Repository at
path /sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBResConfig.xsd.

See Also:

• Example 22-1 for an example of a simple resource configuration file

• Configuration of Repository Events for complete examples of configuring
resources

• Oracle Database PL/SQL Packages and Types Reference for
information about package DBMS_RESCONFIG

22.3 Common Configuration Parameters
Commonly used configuration parameters are described, that is, elements in a
configuration file.

Parameters specific to particular types of configuration are described elsewhere.

• Configuration Element ResConfig
The top-level element of a resource configuration file is ResConfig. You can use it
to disable or enable the resource configuration file.

• Configuration Elements defaultChildConfig and configuration
Configuration element defaultChildConfig applies to only folders. It holds
configuration information to be applied to all child resources in the folder. Element
defaultChildConfig has one or more configuration child elements, each of
which defines a possible configuration for resources in the folder.

• Configuration Element applicationData
Element applicationData stores application-specific data. An application typically
passes this data to an event handler when the handler is run. You can use any
XML content you want inside element applicationData.

Chapter 22
Common Configuration Parameters

22-4



22.3.1 Configuration Element ResConfig
The top-level element of a resource configuration file is ResConfig. You can use it to
disable or enable the resource configuration file.

Besides attributes namespace and schemaLocation, element ResConfig can contain
an optional enable attribute. Set the value of attribute enable to false to disable the
resource configuration file, so that it has no effect on the resources mapped to it. This
can be useful for debugging or disabling an application. The default value of enable,
used if the attribute is not present, is true.

22.3.2 Configuration Elements defaultChildConfig and configuration
Configuration element defaultChildConfig applies to only folders. It holds
configuration information to be applied to all child resources in the folder. Element
defaultChildConfig has one or more configuration child elements, each of which
defines a possible configuration for resources in the folder.

A configuration element has the following child elements:

• pre-condition (optional) – This element specifies a condition that must be met
before the resource configuration identified by the path element (see next) can be
used as the default configuration. If element pre-condition is absent, then the
resource configuration file targeted by path applies to all resources in the folder.
That is, the precondition is treated as true.

A pre-condition element has an optional existsNode child element. An
existsNode element has a required XPath child element and an optional
namespace child element, both strings. These define an XPath 1.0 expression
and a namespace, respectively, that are used to check the existence of a
resource. If that resource exists, then the precondition is satisfied, so the resource
configuration file identified by path is used as a default resource configuration file
for all child resources in the folder. The first component of the XPath element must
be Resource.

Note:

A complex XPath expression for element XPath can impact performance
negatively.

If multiple configuration elements have true preconditions, then each of the
resource configuration files identified by their associated path elements applies to
all of the resources in the folder.

• path (required) – This element specifies an absolute repository path to a resource
configuration file that is to be used as the default configuration for a new resource
whenever the precondition specified by element pre-condition is satisfied.

Typically, the value of the path element is a path to the current resource configuration
file, that is, the file that contains the path element. Example 22-1 illustrates this,
assuming that the resource configuration file is located at path /cm/app_rc.xml in the
repository. In this example, the precondition is that there be a Resource node whose

Chapter 22
Common Configuration Parameters

22-5



content is of type xml. When that precondition is met, the resource configuration file
in Example 22-1 applies to all resources in same folder as the configuration file (/cm/
app_rc.xml).

Example 22-1    Resource Configuration File

<ResConfig xmlns="http://xmlns.oracle.com/xdb/XDBResConfig.xsd"
           xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
           xsi:schemaLocation="http://xmlns.oracle.com/xdb/
XDBResConfig.xsd
                               http://xmlns.oracle.com/xdb/
XDBResConfig.xsd">
  <defaultChildConfig>
    <configuration>
      <pre-condition>
        <existsNode>
          <XPath>/Resource[ContentType="xml"]</XPath>
        </existsNode>
      </pre-condition>
      <path>/cm/app_rc.xml<path>
    </configuration>
  </defaultChildConfig>
</ResConfig>

22.3.3 Configuration Element applicationData
Element applicationData stores application-specific data. An application typically
passes this data to an event handler when the handler is run. You can use any XML
content you want inside element applicationData.

An event handler uses PL/SQL function DBMS_XEVENT.getApplicationData or
Java function oracle.xdb.XMLType.getApplicationData to access the data in the
applicationData of the resource configuration file for the event listener.

Example 22-2 shows an applicationData element for use with an Oracle Spatial and
Graph application.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about PL/SQL function DBMS_XEVENT.getApplicationData

• Oracle Database XML Java API Reference, class
XDBRepositoryEvent for information about Java function
oracle.xdb.XMLType.getApplicationData

• Example 30-1 for an example of a resource configuration file for event
listeners

Example 22-2    applicationData Element

<applicationData>
  <spatial:data xmlns:spatial="http://oracle/cartridge/spatial.xsd">

Chapter 22
Common Configuration Parameters

22-6



    <spatial:xpos>5</spatial:xpos>
    <spatial:ypos>10</spatial:ypos>
  </spatial:data>
</applicationData>

Chapter 22
Common Configuration Parameters

22-7



23
Use of XLink and XInclude with Oracle
XML DB

You can use XLink and XInclude with resources in Oracle XML DB Repository. But the
use of XLink is deprecated.

• Overview of XLink and XInclude
A document-oriented, or content-management, application often tracks
relationships, between documents, and those relationships are often represented
and manipulated as links of various kinds. Such links can affect application
behavior in various ways, including affecting the document content and the
response to user operations such as mouse clicks.

• Link Types for XLink and XInclude
XLink and XInclude link types are described, as well as the relation between these
and Oracle XML DB Repository links. XLink links (deprecated) are more general
than repository links. XLink links can be simple or extended. Oracle XML DB
supports only simple, not extended, XLink links.

• XInclude: Compound Documents
XInclude is the W3C recommendation for the syntax and processing model for
merging the infosets of multiple XML documents into a single infoset. Element
xi:include is used to include another document, specifying its URI as the value of
an href attribute.

• Oracle XML DB Support for XLink
You can configure Oracle XML DB Repository resources so that XLink links are
ignored, or so that they are mapped to Oracle XML DB document links. However,
the use of XLink with Oracle XML DB Repository is deprecated.

• Oracle XML DB Support for XInclude
Oracle XML DB supports XInclude 1.0 as the standard mechanism for managing
compound documents. It does not support attribute xpointer and the inclusion of
document fragments, however. Only complete documents can be included (using
attribute href).

• Use View DOCUMENT_LINKS to Examine XLink and XInclude Links
You can query the read-only public view DOCUMENT_LINKS to obtain system
information about document links derived from both XLink (deprecated) and
XInclude links. The information in this view includes the following columns, for
each link:

• Configuration of Repository Resources for XLink and XInclude
The resource configuration file that you use as a resource to configure XLink
(deprecated) and XInclude processing for other resources is described.

• Manage XLink and XInclude Links Using DBMS_XDB_REPOS.processLinks
You can use PL/SQL procedure DBMS_XDB_REPOS.processLinks to manually
process all XLink (deprecated) and XInclude links in a single document or in all
documents of a folder.

23-1



23.1 Overview of XLink and XInclude
A document-oriented, or content-management, application often tracks relationships,
between documents, and those relationships are often represented and manipulated
as links of various kinds. Such links can affect application behavior in various ways,
including affecting the document content and the response to user operations such as
mouse clicks.

W3C has two recommendations that are pertinent in this context, for documents that
are managed in XML repositories:

• XLink – Defines various types of links between resources. These links can model
arbitrary relationships between documents. Those documents can reside inside or
outside the repository.

• XInclude – Defines ways to include the content of multiple XML documents or
fragments in a single infoset. This provides for compound documents, which
model inclusion relationships. Compound documents are documents that contain
other documents. More precisely, they are file resources that include documents
or document fragments. The included objects can be file resources in the same
repository or documents or fragments outside the repository.

Each of these standards is very general, and it is not limited to modeling relationships
between XML documents. There is no requirement that the documents linked using
XLink or included in an XML document using XInclude be XML documents.

Using XLink and XInclude to represent document relationships provides flexibility
for applications, facilitates reuse of component documents, and enables their fine-
grained manipulation (access control, versioning, metadata, and so on). Whereas
using XML data structure (an ancestor–descendents hierarchy) to model relationships
requires those relationships to be relatively fixed, using XLink and XInclude to model
relationships can easily allow for change in those relationships.

Note:

For XML schema-based documents to be able to use XLink and XInclude
attributes, the XML schema must either explicitly declare those attributes or
allow any attributes.

Note:

The use of XLink with Oracle XML DB Repository is deprecated, starting with
Oracle Database 12c Release 2 (12.2.0.1).

Chapter 23
Overview of XLink and XInclude

23-2



See Also:

• XML Linking Language (XLink) Version 1.0

• XML Inclusions (XInclude) Version 1.0 (Second Edition)

23.2 Link Types for XLink and XInclude
XLink and XInclude link types are described, as well as the relation between these
and Oracle XML DB Repository links. XLink links (deprecated) are more general than
repository links. XLink links can be simple or extended. Oracle XML DB supports only
simple, not extended, XLink links.

• XLink and XInclude Links Model Document Relationships
XLink (deprecated) and XInclude links model arbitrary relationships among
documents. The meaning and behavior of a relationship are determined by the
applications that use the link. They are not inherent in the link itself. XLink and
XInclude links can be mapped to Oracle XML DB document links.

• XLink Link Types and XInclude Link Types
XLink (deprecated) and XInclude can provide links to other documents. In the case
of XInclude, attributes href and xpointer are used to specify the target document.

23.2.1 XLink and XInclude Links Model Document Relationships
XLink (deprecated) and XInclude links model arbitrary relationships among
documents. The meaning and behavior of a relationship are determined by the
applications that use the link. They are not inherent in the link itself. XLink and
XInclude links can be mapped to Oracle XML DB document links.

When document links target Oracle XML DB Repository resources, they can
(according to a configuration option) be hard or weak links. In this, they are similar
to repository links in that context. Repository links can be navigated using file system-
related protocols such as FTP and HTTP. Document links cannot, but they can be
navigated using the XPath 2.0 function fn:doc.

Related Topics

• Hard Links and Weak Links
Links that target repository resources can be hard or weak. Hard and weak links
have different dependencies with respect to the resources that they target. Hard
links cannot target ancestor folders; weak links can. You can query the repository
path view, PATH_VIEW, to determine the type of a repository link.

23.2.2 XLink Link Types and XInclude Link Types
XLink (deprecated) and XInclude can provide links to other documents. In the case of
XInclude, attributes href and xpointer are used to specify the target document.

Xlink links can be simple or extended. Simple links are unidirectional, from a source
to a target. Extended links (sometimes called complex) can model relationships
between multiple documents, with different directionalities. Both simple and extended
links can include link metadata. XLink links are represented in XML data using

Chapter 23
Link Types for XLink and XInclude

23-3



various attributes of the namespace http://www.w3.org/1999/xlink, which has the
predefined prefix xlink. Simple links are represented in XML data using attribute
type with value simple, that is, xlink:type = "simple". Extended Xlink links are
represented using xlink:type = "extended".

Third-party extended Xlink links are not contained in any of the documents whose
relationships they model. Third-party links can thus be used to relate documents, such
as binary files, that, themselves, have no way of representing a link.

The source end of a simple Xlink link (that is, the document containing the link) must
be an XML document. The target end of a simple link can be any document. There are
no such restrictions for extended links. Example 23-3 shows examples of simple links.
The link targets are represented using attribute xlink:href.

Note:

The use of XLink with Oracle XML DB Repository is deprecated, starting with
Oracle Database 12c Release 2 (12.2.0.1).

23.3 XInclude: Compound Documents
XInclude is the W3C recommendation for the syntax and processing model for
merging the infosets of multiple XML documents into a single infoset. Element
xi:include is used to include another document, specifying its URI as the value of
an href attribute.

Element xi:include can be nested, so that an included document can itself include
other documents.

(However, an inclusion cycle raises an error in Oracle XML DB. The resources are
created, but an error is raised when the inclusions are expanded.)

XInclude thus provides for compound documents: repository file resources that include
other XML documents or fragments. The included objects can be file resources in the
same repository or documents or fragments outside the repository.

A book might be an example of a typical compound document, as managed by a
content-management system. Each book includes chapter documents, which can each
be managed as separate objects, with their own URLs. A chapter document can have
its own metadata and access control, and it can be versioned. A book can include
(reference) a specific version of a chapter document. The same chapter document
can be included in multiple book documents, for reuse. Because inclusion is modeled
using XInclude, content management is simplified. It is easy, for example, to replace
one chapter in a book by another.

Example 23-1 illustrates an XML Book element that includes four documents. One
of those documents, part1.xml, is also shown. Document part1.xml includes other
documents, representing chapters.

These are some additional features of XInclude:

• Inclusion of plain text – You can include unparsed, non-XML text using attribute
parse with a value of text: parse = "text".

Chapter 23
XInclude: Compound Documents

23-4



• Inclusion of XML fragments – You can use an xpointer attribute in an xi:include
element to specify an XML fragment to include, instead of an entire document.

• Fallback processing – In case of error, such as inability to access the URI of an
included document, an xi:include syntax error, or an xpointer reference that
returns null, XInclude performs the treatment specified by element xi:fallback.
This generally specifies an alternative element to be included. The alternative
element can itself use xi:include to include other documents.

Example 23-1    XInclude Used in a Book Document to Include Parts and
Chapters

The top-level document representing a book contains element Book.

<Book xmlns:xi="http://www.w3.org/2001/XInclude">
  <xi:include href=toc.xml"/>
  <xi:include href=part1.xml"/>
  <xi:include href=part2.xml"/>
  <xi:include href=index.xml"/>
</Book>

A major book part, file (resource) part2.xml, contains a Part element, which includes
multiple chapter documents.

<?xml version="1.0"?>
<Part xmlns:xi="http://www.w3.org/2001/XInclude">
  <xi:include href="chapter5.xml"/>
  <xi:include href="chapter6.xml"/>
  <xi:include href="chapter8.xml"/>
  <xi:include href="chapter9.xml"/>
</Part>

23.4 Oracle XML DB Support for XLink
You can configure Oracle XML DB Repository resources so that XLink links are
ignored, or so that they are mapped to Oracle XML DB document links. However,
the use of XLink with Oracle XML DB Repository is deprecated.

Oracle XML DB supports only simple XLink links, not extended XLink links.

When an XML document containing XLink attributes is added to Oracle XML DB
Repository, either as resource content or as user-defined resource metadata, special
processing can occur, depending on how the repository or individual repository
resources are configured. Element XLinkConfig of the resource configuration
document, XDBResConfig.xsd, determines this behavior.

If you configure resources so that XLink links are mapped to Oracle XML DB
document links, you can specify that the document links are to be hard or weak. Hard
and weak document links have the same properties as hard and weak repository links.

The privileges needed to create or update document links are the same as those
needed to create or update repository links. Even partially updating a document
requires the same privileges needed to delete the entire document and reinsert it.
In particular, even if you update just one document link you must have delete and
insert privileges for each of the documents linked by the document containing the link.

Chapter 23
Oracle XML DB Support for XLink

23-5



If configuration maps XLink links to document links, then, whenever a document
containing XLink links is added to the repository, the XLink information is extracted and
stored in a system link table. Link target (destination) locations are replaced by direct
paths that are based on the resource OIDs. Configuration can also specify whether
OID paths are to be replaced by named paths (URLs) upon document retrieval. Using
OID paths instead of named paths generally offers a performance advantage when
links are processed, including when resource contents are retrieved.

You can use XLink within resource content, but not within resource metadata.

Note:

The use of XLink with Oracle XML DB Repository is deprecated, starting with
Oracle Database 12c Release 2 (12.2.0.1).

Related Topics

• Use View DOCUMENT_LINKS to Examine XLink and XInclude Links
You can query the read-only public view DOCUMENT_LINKS to obtain system
information about document links derived from both XLink (deprecated) and
XInclude links. The information in this view includes the following columns, for
each link:

• User-Defined Repository Metadata
You can create your own metadata to associate with XML data stored in Oracle
XML DB Repository.

• Hard Links and Weak Links
Links that target repository resources can be hard or weak. Hard and weak links
have different dependencies with respect to the resources that they target. Hard
links cannot target ancestor folders; weak links can. You can query the repository
path view, PATH_VIEW, to determine the type of a repository link.

• Configuration of Repository Resources for XLink and XInclude
The resource configuration file that you use as a resource to configure XLink
(deprecated) and XInclude processing for other resources is described.

• XDBResConfig.xsd: XML Schema for Resource Configuration
A full listing is presented of the Oracle XML DB-supplied XML schema used to
configure repository resources. It is accessible in Oracle XML DB Repository at
path /sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBResConfig.xsd.

23.5 Oracle XML DB Support for XInclude
Oracle XML DB supports XInclude 1.0 as the standard mechanism for managing
compound documents. It does not support attribute xpointer and the inclusion of
document fragments, however. Only complete documents can be included (using
attribute href).

You can use XInclude to create XML documents that include existing content. You
can also configure the implicit decomposition of non-schema-based XML documents,
creating a set of repository resources that contain XInclude inclusion references.

Chapter 23
Oracle XML DB Support for XInclude

23-6



The content of included documents must be XML data or plain text (with attribute
parse = "text"). You cannot include binary content directly using XInclude, but you
can use XLink to link to binary content.

You can use XInclude within resource content, but not within resource metadata.

• Expanding Compound-Document Inclusions
You can optionally expand xi:include elements with their targets when you
retrieve a compound document from Oracle XML DB Repository.

• Validation of Compound Documents
You validate a compound document the way you would any XML document.
However, you can choose to validate it in either form: with xi:include elements
as is or after replacing them with their targets.

• Update of a Compound Document
You can update a compound document just as you would update any resource.
This replaces the resource with a new value.

• Compound Document Versioning, Locking, and Access Control
The components of a compound document are separate resources. They are
versioned and locked independently, and their access is controlled independently.

Related Topics

• Use View DOCUMENT_LINKS to Examine XLink and XInclude Links
You can query the read-only public view DOCUMENT_LINKS to obtain system
information about document links derived from both XLink (deprecated) and
XInclude links. The information in this view includes the following columns, for
each link:

23.5.1 Expanding Compound-Document Inclusions
You can optionally expand xi:include elements with their targets when you retrieve a
compound document from Oracle XML DB Repository.

When you retrieve a compound document you have a choice:

• Retrieve it as is, with the xi:include elements remaining as such. This is the
default behavior.

• Retrieve it after replacing the xi:include elements with their targets, recursively,
that is, after expansion of all inclusions. An error is raised if any xi:include
element cannot be resolved.

To retrieve the document in expanded form, use PL/SQL constructor XDBURIType,
passing a value of '1' or '3' as the second argument (flags). Example 23-2
illustrates this. These are the possible values for the second argument of constructor
XDBURIType:

• 1 – Expand all XInclude inclusions before returning the result. If any such inclusion
cannot be resolved according to the XInclude standard fallback semantics, then
raise an error.

• 2 – Suppress all errors that might occur during document retrieval. This includes
dangling href pointers.

• 3 – Same as 1 and 2 together.

Chapter 23
Oracle XML DB Support for XInclude

23-7



Example 23-2 retrieves all documents that are under repository folder public/
bookdir, expanding each inclusion:

(The result shown here corresponds to the resource bookfile.xml shown in
Example 23-8, together with its included resources, chap1.xml and chap2.xml.)

See Also:

• Compound Document Versioning, Locking, and Access Control for
information about access control during expansion

• Oracle Database PL/SQL Packages and Types Reference for more
information about XDBURIType

Example 23-2    Expanding Document Inclusions Using XDBURIType

SELECT XDBURIType(ANY_PATH, '1').getXML() FROM RESOURCE_VIEW
  WHERE under_path(RES, '/public/bookdir') = 1;

XDBURITYPE(ANY_PATH,'1').GETXML()
---------------------------------
<Book>
  <Title>A book</Title>
  <Chapter id="1">
    <Title>Introduction</Title>
    <Body>
      <Para>blah blah</Para>
      <Para>foo bar</Para>
    </Body>
  </Chapter>
  <Chapter id="2">
    <Title>Conclusion</Title>
    <Body>
      <Para>xyz xyz</Para>
      <Para>abc abc</Para>
    </Body>
  </Chapter>
</Book>
 
<Chapter id="1">
  <Title>Introduction</Title>
  <Body>
    <Para>blah blah</Para>
    <Para>foo bar</Para>
  </Body>
</Chapter>
 
<Chapter id="2">
  <Title>Conclusion</Title>
  <Body>
    <Para>xyz xyz</Para>
    <Para>abc abc</Para>
  </Body>
</Chapter>
 
3 rows selected.

Chapter 23
Oracle XML DB Support for XInclude

23-8



23.5.2 Validation of Compound Documents
You validate a compound document the way you would any XML document. However,
you can choose to validate it in either form: with xi:include elements as is or after
replacing them with their targets.

You can also choose to use one XML schema to validate the unexpanded form, and
another to validate the expanded form. For example, you might use one XML schema
to validate without first expanding, in order to set up storage structures, and then use
another XML schema to validate the expanded document after it is stored.

23.5.3 Update of a Compound Document
You can update a compound document just as you would update any resource. This
replaces the resource with a new value.

It thus corresponds to a resource deletion followed by a resource insertion. This
means, in particular, that any xi:include elements in the original resource are
deleted. Any xi:include elements in the replacement (inserted) document are
processed as usual, according to the configuration defined at the time of insertion.

23.5.4 Compound Document Versioning, Locking, and Access Control
The components of a compound document are separate resources. They are
versioned and locked independently, and their access is controlled independently.

• Document links to version-controlled resources (VCRs) always resolve to the
latest version of the target resource, or the selected version within the current
workspace. You can, however, explicitly refer to any specific version, by identifying
the target resource by its OID-based path.

• Locking a document that contains xi:include elements does not also lock the
included documents. Locking an included document does not also lock documents
that include it.

• The access control list (ACL) on each referenced document is checked whenever
you retrieve a compound document with expansion. This is done using the
privileges of the current user (invoker's rights). If privileges are insufficient for any
of the included documents, the expansion is canceled and an error is raised.

Related Topics

• Expanding Compound-Document Inclusions
You can optionally expand xi:include elements with their targets when you
retrieve a compound document from Oracle XML DB Repository.

• Resource Versions
Oracle XML DB Repository resources can be versioned. A record is kept of all
changes to a resource that is under version control.

• Repository Access Control
Oracle Database provides classic database security such as row-level and
column-level secure access by database users. It also provides fine-grained
access control for resources in Oracle XML DB Repository. You can create, set,
and modify access control lists (ACLs).

Chapter 23
Oracle XML DB Support for XInclude

23-9



23.6 Use View DOCUMENT_LINKS to Examine XLink and
XInclude Links

You can query the read-only public view DOCUMENT_LINKS to obtain system information
about document links derived from both XLink (deprecated) and XInclude links. The
information in this view includes the following columns, for each link:

• SOURCE_ID – The source resource OID. RAW(16).

• TARGET_ID – The target resource OID. RAW(16).

• TARGET_PATH – Always NULL. Reserved for future use. VARCHAR2(4000).

• LINK_TYPE – The document link type: Hard or Weak. VARCHAR2(8).

• LINK_FORM – Whether the original link was of form XLink or XInclude.
VARCHAR2(8).

• SOURCE_TYPE – Always Resource Content. VARCHAR2(17).

You can obtain information about a resource from this view only if one of the following
conditions holds:

• The resource is a link source, and you have the privilege read-contents or read-
properties on it.

• The resource is a link target, and you have the privilege read-properties on it.

• Querying DOCUMENT_LINKS for XLink Information
If the folder containing a given resource has been configured to map XLink links
to document hard links then you can query public view DOCUMENT_LINKS to obtain
system information about the document links.

• Querying DOCUMENT_LINKS for XInclude Information
You can query view DOCUMENT_LINKS to show the document links that are mapped
from XInclude links.

See Also:

Oracle Database Reference for more information on public view
DOCUMENT_LINKS

Chapter 23
Use View DOCUMENT_LINKS to Examine XLink and XInclude Links

23-10



23.6.1 Querying DOCUMENT_LINKS for XLink Information
If the folder containing a given resource has been configured to map XLink links to
document hard links then you can query public view DOCUMENT_LINKS to obtain system
information about the document links.

Note:

The use of XLink with Oracle XML DB Repository is deprecated, starting with
Oracle Database 12c Release 2 (12.2.0.1).

Example 23-3 shows how XLink links are treated when resources are created, and
how to obtain system information about document links from view DOCUMENT_LINKS. It
assumes that the folder containing the resource has been configured to map XLink
links to document hard links.

See Also:

Example 23-5 for an example of configuring a folder to map XLink links to
hard links

Example 23-3    Querying Document Links Mapped From XLink Links

DECLARE
  b BOOLEAN;
BEGIN
  b := DBMS_XDB_REPOS.createResource(
         '/public/hardlinkdir/po101.xml', 
         '<PurchaseOrder id="101" xmlns:xlink="http://www.w3.org/1999/xlink">
            <Company xlink:type="simple" 
                     xlink:href="/public/hardlinkdir/oracle.xml">Oracle Corporation</
Company>
            <Approver xlink:type="simple"
                      xlink:href="/public/hardlinkdir/quine.xml">Willard Quine</Approver>
          </PurchaseOrder>');
 
  b := DBMS_XDB_REPOS.createResource(
         '/public/hardlinkdir/po102.xml', 
         '<PurchaseOrder id="102" xmlns:xlink="http://www.w3.org/1999/xlink">
            <Company xlink:type="simple" 
                     xlink:href="/public/hardlinkdir/oracle.xml">Oracle Corporation</
Company>
            <Approver xlink:type="simple" 
                      xlink:href="/public/hardlinkdir/curry.xml">Haskell Curry</Approver>
            <ReferencePO xlink:type="simple"
                         xlink:href="/public/hardlinkdir/po101.xml"/>
          </PurchaseOrder>');
END;
/

SELECT r1.ANY_PATH source, r2.ANY_PATH target, dl.LINK_TYPE, 

Chapter 23
Use View DOCUMENT_LINKS to Examine XLink and XInclude Links

23-11



dl.LINK_FORM
  FROM DOCUMENT_LINKS dl, RESOURCE_VIEW r1, RESOURCE_VIEW r2 
  WHERE dl.SOURCE_ID = r1.RESID and dl.TARGET_ID = r2.RESID;

SOURCE                        TARGET                         LINK_TYPE LINK_FORM
----------------------------- ------------------------------ --------- ---------
/public/hardlinkdir/po101.xml /public/hardlinkdir/oracle.xml Hard      XLink
/public/hardlinkdir/po101.xml /public/hardlinkdir/quine.xml  Hard      XLink
/public/hardlinkdir/po102.xml /public/hardlinkdir/oracle.xml Hard      XLink
/public/hardlinkdir/po102.xml /public/hardlinkdir/curry.xml  Hard      XLink
/public/hardlinkdir/po102.xml /public/hardlinkdir/po101.xml  Hard      XLink

23.6.2 Querying DOCUMENT_LINKS for XInclude Information
You can query view DOCUMENT_LINKS to show the document links that are mapped from
XInclude links.

Example 23-4 queries view DOCUMENT_LINKS to show all document links.

Example 23-4    Querying Document Links Mapped From XInclude Links

DECLARE
  ret BOOLEAN;
BEGIN
  ret := DBMS_XDB_REPOS.createResource(
           '/public/hardlinkdir/book.xml',
           '<Book xmlns:xi="http://www.w3.org/2001/XInclude">
              <xi:include href="/public/hardlinkdir/toc.xml"/>
              <xi:include href="/public/hardlinkdir/part1.xml"/>
              <xi:include href="/public/hardlinkdir/part2.xml"/>
              <xi:include href="/public/hardlinkdir/index.xml"/>
            </Book>');
END;

SELECT r1.ANY_PATH source, r2.ANY_PATH target, dl.LINK_TYPE, dl.LINK_FORM
  FROM DOCUMENT_LINKS dl, RESOURCE_VIEW r1, RESOURCE_VIEW r2
  WHERE dl.SOURCE_ID = r1.RESID and dl.TARGET_ID = r2.RESID;

SOURCE                       TARGET                        LINK_TYPE LINK_FORM
------                       ------                        --------- ---------
/public/hardlinkdir/book.xml /public/hardlinkdir/toc.xml   Hard      XInclude
/public/hardlinkdir/book.xml /public/hardlinkdir/part1.xml Hard      XInclude
/public/hardlinkdir/book.xml /public/hardlinkdir/part2.xml Hard      XInclude
/public/hardlinkdir/book.xml /public/hardlinkdir/index.xml Hard      XInclude

23.7 Configuration of Repository Resources for XLink and
XInclude

The resource configuration file that you use as a resource to configure XLink
(deprecated) and XInclude processing for other resources is described.

You configure XLink and XInclude treatment for Oracle XML DB Repository resources
as you would configure any other treatment of repository resources: using a resource
configuration file. See Configuring a Resource for an example.

Chapter 23
Configuration of Repository Resources for XLink and XInclude

23-12



A resource configuration file is an XML file that conforms to the XML schema
XDBResConfig.xsd, which is accessible in Oracle XML DB Repository at path /sys/
schemas/PUBLIC/xmlns.oracle.com/xdb/XDBResConfig.xsd.

You use elements XLinkConfig and XIncludeConfig, children of element ResConfig,
to configure XLink and XInclude treatment, respectively. If one of these elements is
absent, then there is no treatment of the corresponding type of links.

Both XLinkConfig and XIncludeConfig can have attribute UnresolvedLink and child
elements LinkType and PathFormat. Element XIncludeConfig can also have child
element ConflictRule. If the LinkType element content is None, however, then there
must be no PathFormat or ConflictRule element.

You cannot define any preconditions for XLinkConfig or XIncludeConfig. During
repository resource creation, the ResConfig element of the parent folder determines
the treatment of XLink and XInclude links for the new resource. If the parent folder has
no ResConfig element, then the repository-wide configuration applies.

Any change to the resource configuration file applies only to documents that are
created or updated after the configuration-file change. To process links in existing
documents, use PL/SQL procedure DBMS_XDB_REPOS.processLinks, after specifying
the appropriate resource configuration parameters.

Note:

The use of XLink with Oracle XML DB Repository is deprecated, starting with
Oracle Database 12c Release 2 (12.2.0.1).

• Configure the Treatment of Unresolved Links: Attribute UnresolvedLink
A LinkConfig element can have an UnresolvedLink attribute with a value of Error
(default value) or Skip. This determines what happens if an XLink (deprecated)
or XInclude link cannot be resolved at the time of document insertion into the
repository (resource creation).

• Configure the Type of Document Links to Create: Element LinkType
You use the LinkType element of a resource configuration file to specify the type
of document link to be created whenever an XLink (deprecated) or XInclude link
is encountered when a document is stored in Oracle XML DB Repository. The
LinkType element has these possible values (element content):

• Configure the Path Format for Retrieval: Element PathFormat
You use the PathFormat element of a resource configuration file to specify
the path format to be used when retrieving documents with xlink:href or
xi:include:href attributes.

• Configure Conflict-Resolution for XInclude: Element ConflictRule
You use the ConflictRule element of a resource configuration file to specify the
conflict-resolution rules to use if the path computed for a component document
is already present in Oracle XML DB Repository. The ConflictRule element has
these possible values (element content):

Chapter 23
Configuration of Repository Resources for XLink and XInclude

23-13



• Configure the Decomposition of Documents Using XInclude: Element
SectionConfig
You use element SectionConfig of a resource configuration file to specify how
non-schema-based XML documents are to be decomposed when they are added
to Oracle XML DB Repository to create a set of resources that contain XInclude
inclusion references.

• XLink and XInclude Configuration Examples
Examples show how XLink (deprecated) and XInclude are to be related to Oracle
XML DB Repository resources and links.

Related Topics

• Manage XLink and XInclude Links Using DBMS_XDB_REPOS.processLinks
You can use PL/SQL procedure DBMS_XDB_REPOS.processLinks to manually
process all XLink (deprecated) and XInclude links in a single document or in all
documents of a folder.

• Configuration of Oracle XML DB Repository
Overall configuration of Oracle XML DB Repository applies to all repository
resources. It does not include configuring parameters for handling events or
managing XLink and XInclude processing. You use resource configuration files
to configure resources.

23.7.1 Configure the Treatment of Unresolved Links: Attribute
UnresolvedLink

A LinkConfig element can have an UnresolvedLink attribute with a value of Error
(default value) or Skip. This determines what happens if an XLink (deprecated) or
XInclude link cannot be resolved at the time of document insertion into the repository
(resource creation).

Error means raise an error and roll back the current operation. Skip means skip
any treatment of the XLink or XInclude link. Skipping treatment creates the resource
with no corresponding document links, and sets the resource's HasUnresolvedLinks
attribute to true, to indicate that the resource has unresolved links.

Using Skip as the value of attribute UnresolvedLink can be especially useful when
you create a resource that contains a cycle of weak links, which would otherwise
lead to unresolved-link errors during resource creation. After the resource and
all of its linked resources have been created, you can use PL/SQL procedure
DBMS_XDB_REPOS.processLinks to process the skipped links. If all XLink and XInclude
links have been resolved by this procedure, then attribute HasUnresolvedLinks is set
to false.

Resource attribute HasUnresolvedLinks is also set to true for a resource that has a
weak link to a resource that has been deleted. Deleting a resource thus effectively
also deletes any weak links pointing to that resource. In particular, whenever the last
hard link to a resource is deleted, the resource is itself deleted, and all resources that
point to the deleted resource with a weak link have attribute HasUnresolvedLinks set
to true.

Chapter 23
Configuration of Repository Resources for XLink and XInclude

23-14



Note:

The use of XLink with Oracle XML DB Repository is deprecated, starting with
Oracle Database 12c Release 2 (12.2.0.1).

Related Topics

• Hard Links and Weak Links
Links that target repository resources can be hard or weak. Hard and weak links
have different dependencies with respect to the resources that they target. Hard
links cannot target ancestor folders; weak links can. You can query the repository
path view, PATH_VIEW, to determine the type of a repository link.

• Manage XLink and XInclude Links Using DBMS_XDB_REPOS.processLinks
You can use PL/SQL procedure DBMS_XDB_REPOS.processLinks to manually
process all XLink (deprecated) and XInclude links in a single document or in all
documents of a folder.

23.7.2 Configure the Type of Document Links to Create: Element
LinkType

You use the LinkType element of a resource configuration file to specify the type
of document link to be created whenever an XLink (deprecated) or XInclude link is
encountered when a document is stored in Oracle XML DB Repository. The LinkType
element has these possible values (element content):

• None (default) – Ignore XLink or XInclude links: create no corresponding document
links.

• Hard – Map XLink or XInclude links to hard document links in repository
documents.

• Weak – Map XLink or XInclude links to weak document links in repository
documents.

Note:

The use of XLink with Oracle XML DB Repository is deprecated, starting with
Oracle Database 12c Release 2 (12.2.0.1).

See Also:

• Example 23-5

• Example 23-6

Chapter 23
Configuration of Repository Resources for XLink and XInclude

23-15



23.7.3 Configure the Path Format for Retrieval: Element PathFormat
You use the PathFormat element of a resource configuration file to specify the path
format to be used when retrieving documents with xlink:href or xi:include:href
attributes.

The PathFormat element has these possible values (element content) for hard and
weak document links:

• OID (default) – Map XLink or XInclude href paths to OID-based paths in repository
documents — that is, use OIDs directly.

• Named – Map XLink or XInclude href paths to named paths (URLs) in repository
documents. The path is computed from the internal OID when the document is
retrieved, so retrieval can be slower than in the case of using OID paths directly.

Note:

The use of XLink with Oracle XML DB Repository is deprecated, starting with
Oracle Database 12c Release 2 (12.2.0.1).

See Also:

• Example 23-5

• Example 23-6

23.7.4 Configure Conflict-Resolution for XInclude: Element
ConflictRule

You use the ConflictRule element of a resource configuration file to specify the
conflict-resolution rules to use if the path computed for a component document is
already present in Oracle XML DB Repository. The ConflictRule element has these
possible values (element content):

• Error (default) – Raise an error.

• Overwrite – Update the document targeted by the existing repository path,
replacing it with the document to be included. If the existing document is a
version-controlled resource, then it must already be checked out, unless it is
autoversioned. Otherwise, an error is raised.

• Syspath – Change the path to the included document to a new, system-defined
path.

Chapter 23
Configuration of Repository Resources for XLink and XInclude

23-16



Related Topics

• Resource Versions
Oracle XML DB Repository resources can be versioned. A record is kept of all
changes to a resource that is under version control.

23.7.5 Configure the Decomposition of Documents Using XInclude:
Element SectionConfig

You use element SectionConfig of a resource configuration file to specify how non-
schema-based XML documents are to be decomposed when they are added to Oracle
XML DB Repository to create a set of resources that contain XInclude inclusion
references.

You use simple XPath expressions in the resource configuration file to identify which
parts of a document to map to separate resources, and which resources to map them
to.

Element SectionConfig contains one or more Section elements, each of which
contains the following child elements:

• sectionPath – Simple XPath 1.0 expression that identifies a section root. This
must use only child and descendant axes, and it must not use wildcards.

• documentPath (optional) – Simple XPath 1.0 expression that is evaluated to
identify the resources to be created from decomposing the document according
to sectionPath. The XPath expression must use only child, descendant, and
attribute axes.

• namespace (optional) – Namespace in effect for sectionPath and documentPath.

Element Section also has a type attribute that specifies the type of section to be
created. Value Document means create a document. The default value, None, means
do not create anything. Using None is equivalent to removing the SectionConfig
element. You can thus set the type attribute to None to disable a SectionConfig
element temporarily, without removing it, and then set it back to Document to enable it
again.

If an element in the document being added to the repository matches more than one
sectionPath value, only the first such expression (in document order) is used.

If no documentPath element is present, then the resource created has a system-
defined name, and is put into the folder specified for the original document.

See Also:

• Example 23-7

• Example 23-8

Chapter 23
Configuration of Repository Resources for XLink and XInclude

23-17



23.7.6 XLink and XInclude Configuration Examples
Examples show how XLink (deprecated) and XInclude are to be related to Oracle
XML DB Repository resources and links.

Example 23-5 shows a configuration-file section that configures XInclude treatment,
mapping XInclude attributes to Oracle XML DB Repository hard document links.
Repository paths in retrieved resources are configured to be based on resource OIDs.

Example 23-6 shows an XLinkConfig section that maps XLink links to weak document
links in the repository. In this case, retrieval of a document uses named paths (URLs).

Example 23-7 shows a SectionConfig section that specifies that each Chapter
element in an input document is to become a separate repository file, when the input
document is added to Oracle XML DB Repository. The repository path for the resulting
file is specified using configuration element documentPath, and this path is relative to
the location of the resource configuration file of Example 23-6.

The XPath expression here uses XPath function concat to concatenate the following
strings to produce the resulting repository path to use:

• chap – (prefix) chap.

• The value of attribute id of element Chapter in the input document.

• .xml as a file extension.

For example, a repository path of chap27.xml would result from an input document
with a Chapter element that has an id attribute with value 27:

<Chapter id="27"> ... </Chapter>

If the configuration document of Example 23-6 and the book document that contains
the XInclude elements are in repository folder /public/bookdir, then the individual
chapter files generated from XInclude decomposition are in files /public/bookdir/
chapN.xml, where the values of N are the values of the id attributes of Chapter
elements.

The book document that is added to the repository is derived from the input
book document. The embedded Chapter elements in the input book document are
replaced by xi:include elements that reference the generated chapter documents —
Example 23-8 illustrates this.

Note:

The use of XLink with Oracle XML DB Repository is deprecated, starting with
Oracle Database 12c Release 2 (12.2.0.1).

Example 23-5    Mapping XInclude Links to Hard Document Links, with OID
Retrieval

<ResConfig>
  . . .

Chapter 23
Configuration of Repository Resources for XLink and XInclude

23-18



  <XIncludeConfig UnresolvedLink="Skip">
    <LinkType>Hard</LinkType>
    <PathFormat>OID</PathFormat>
  </XIncludeConfig>
  . . .
</ResConfig>

Example 23-6    Mapping XLInk Links to Weak Links, with Named-Path Retrieval

<ResConfig>
  . . .
  <XLinkConfig UnresolvedLink="Skip">
    <LinkType>Weak</LinkType>
    <PathFormat>Named</PathFormat>
  </XLinkConfig>
  . . .
</ResConfig>

Example 23-7    Configuring XInclude Document Decomposition

<ResConfig>
  . . .
  <SectionConfig>
    <Section type = "Document">
      <sectionPath>//Chapter</sectionPath>
      <documentPath>concat("chap", @id, ".xml")</documentPath>
    </Section>
  </SectionConfig>
  . . .
</ResConfig>

Example 23-8    Repository Document, Showing Generated xi:include Elements

SELECT XDBURIType('/public/bookdir/bookfile.xml').getclob() FROM DUAL;
 
XDBURITYPE('/PUBLIC/BOOKDIR/BOOKFILE.XML').GETCLOB()
--------------------------------------------------------------------------------
<Book>
  <Title>A book</Title>
  <xi:include xmlns:xi="http://www.w3.org/2001/XInclude" href="/public/bookdir/
chap1.xml"/>
  <xi:include xmlns:xi="http://www.w3.org/2001/XInclude" href="/public/bookdir/
chap2.xml"/>
</Book>

Related Topics

• Configuration of Oracle XML DB Repository
Overall configuration of Oracle XML DB Repository applies to all repository
resources. It does not include configuring parameters for handling events or
managing XLink and XInclude processing. You use resource configuration files
to configure resources.

Chapter 23
Configuration of Repository Resources for XLink and XInclude

23-19



• XDBResConfig.xsd: XML Schema for Resource Configuration
A full listing is presented of the Oracle XML DB-supplied XML schema used to
configure repository resources. It is accessible in Oracle XML DB Repository at
path /sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBResConfig.xsd.

• Configure the Decomposition of Documents Using XInclude: Element
SectionConfig
You use element SectionConfig of a resource configuration file to specify how
non-schema-based XML documents are to be decomposed when they are added
to Oracle XML DB Repository to create a set of resources that contain XInclude
inclusion references.

23.8 Manage XLink and XInclude Links Using
DBMS_XDB_REPOS.processLinks

You can use PL/SQL procedure DBMS_XDB_REPOS.processLinks to manually process
all XLink (deprecated) and XInclude links in a single document or in all documents of a
folder.

Pass RECURSIVE as the mode argument to this procedure, if you want to process
all hard-linked subfolders recursively. All XLink and XInclude links are processed
according to the corresponding configuration parameters. If any of the links within
a resource cannot be resolved, the resource's HasUnresolvedLinks attribute is set to
true, to indicate that the resource has unresolved links. The default value of attribute
HasUnresolvedLinks is false.

Related Topics

• Configure the Treatment of Unresolved Links: Attribute UnresolvedLink
A LinkConfig element can have an UnresolvedLink attribute with a value of Error
(default value) or Skip. This determines what happens if an XLink (deprecated)
or XInclude link cannot be resolved at the time of document insertion into the
repository (resource creation).

Chapter 23
Manage XLink and XInclude Links Using DBMS_XDB_REPOS.processLinks

23-20



24
Repository Access Using
RESOURCE_VIEW and PATH_VIEW

Predefined public views RESOURCE_VIEW and PATH_VIEW provide access to Oracle
XML DB repository data. You can use Oracle SQL functions under_path and
equals_path to query resources based on their path names, and functions path and
depth to return resource path names and depths.

• Overview of Oracle XML DB RESOURCE_VIEW and PATH_VIEW
Public views RESOURCE_VIEW and PATH_VIEW provide a mechanism for using SQL
to access data stored in Oracle XML DB Repository. You can use these views
to access data stored in the repository using Internet protocols such as FTP and
WebDAV or using application program interfaces (APIs).

• Oracle SQL Functions That Use RESOURCE_VIEW and PATH_VIEW
Oracle SQL functions used with public views RESOURCE_VIEW and PATH_VIEW
include under_path, equals_path, path, and depth.

• Accessing Repository Data Paths, Resources and Links: Examples
Examples here illustrate how to access Oracle XML DB Repository paths,
resources, and link properties.

• Deleting Repository Resources: Examples
Examples here illustrate how to delete Oracle XML DB Repository resources and
paths.

• Updating Repository Resources: Examples
Examples here illustrate how to update Oracle XML DB Repository resources and
paths.

• Working with Multiple Oracle XML DB Resources
To perform an operation on multiple Oracle XML DB resources, or to find one or
more Oracle XML DB resources that meet a certain set of criteria, use SQL with
RESOURCE_VIEW and PATH_VIEW.

• Performance Guidelines for Oracle XML DB Repository Operations
Guidelines are presented for improving the performance of repository operations
such as resource creation and querying.

• Searching for Resources Using Oracle Text
Table XDB$RESOURCE in database schema XDB stores the metadata and content of
repository resources. You can search for resources that contain a specific keyword
by using Oracle SQL function contains with RESOURCE_VIEW or PATH_VIEW.

24-1



See Also:

• Oracle Database Reference for more information about view PATH_VIEW

• Oracle Database Reference for more information about view
RESOURCE_VIEW

24.1 Overview of Oracle XML DB RESOURCE_VIEW and
PATH_VIEW

Public views RESOURCE_VIEW and PATH_VIEW provide a mechanism for using SQL to
access data stored in Oracle XML DB Repository. You can use these views to access
data stored in the repository using Internet protocols such as FTP and WebDAV or
using application program interfaces (APIs).

Figure 24-1 illustrates this.

RESOURCE_VIEW consists of a resource, itself an XMLType instance, that contains the
name of the resource, its ACLs, and its properties, static or extensible.

• If the content of a resource is XML data stored somewhere in an XMLType table or
view then the RESOURCE_VIEW points to the XMLType row that stores the content.

• If the content of a resource is not XML data then the RESOURCE_VIEW stores the
content as a LOB.

Note:

As of Oracle Database Release 11.2.0.1.0, repository content stored in line
as a LOB uses SecureFiles LOB storage. Prior to that, it used BasicFiles
LOB storage.

Parent-child relationships between folders are maintained and traversed efficiently
using the hierarchical repository index. Text indexes are available to search the
properties of a resource, and internal B-tree indexes over names and ACLs speed
up access to these attributes of the resource XMLType data.

RESOURCE_VIEW and PATH_VIEW, along with PL/SQL package DBMS_XDB_REPOS, provide
all query-based access to Oracle XML DB and DML functionality that is available
through the API.

The base table for RESOURCE_VIEW is XDB.XDB$RESOURCE. Access this table only using
RESOURCE_VIEW or PL/SQL package DBMS_XDB_REPOS.

Chapter 24
Overview of Oracle XML DB RESOURCE_VIEW and PATH_VIEW

24-2



Figure 24-1    Accessing Repository Resources Using RESOURCE_VIEW and
PATH_VIEW

Oracle XML DB 
Resource Table

Content Properties

Repository

Access through:
• WebDav
• FTP
• DBMS_XDB_REPOS

Oracle XML DB

RESOURCE_VIEW PATH_VIEW

SQL
Queries

SQL
Queries

Path-based
access

Query-based
access

Figure 24-2 illustrates the structure of RESOURCE_VIEW and PATH_VIEW.

Figure 24-2    RESOURCE_VIEW and PATH_VIEW Structure

RESOURCE_VIEW Columns

Resource as 

an XMLType

Path




PATH_VIEW Columns

Path Resource as

an XMLType

 Link as 


XMLType




Resource�
OID




Resource�
OID

Note:

Neither RESOURCE_VIEW nor PATH_VIEW contains the root folder (/) resource.
All other repository resources are included.

A path in the RESOURCE_VIEW is an arbitrary one of the paths that can be used
to access the given resource. Oracle SQL function under_path lets applications
search for resources that are contained (recursively) within a particular folder, get the
resource depth, and so on. Each row in the PATH_VIEW and RESOURCE_VIEW columns is
of data type XMLType. DML on repository views can be used to insert, rename, delete,
and update resource properties and contents. Programmatic APIs must be used for
some operations, such as creating links to existing resources.

Chapter 24
Overview of Oracle XML DB RESOURCE_VIEW and PATH_VIEW

24-3



Paths in the ANY_PATH column of the RESOURCE_VIEW and the PATH column in the
PATH_VIEW are absolute paths: they start at the root.

Note:

Test resource paths for equality using Oracle SQL function equals_path:
equals_path('/my/path') = 1. Do not test ANY_PATH for equality against an
absolute path: ANY_PATH = '/my/path'.

Paths returned by the path function are relative paths under the path name specified
by function under_path. For example, if there are two resources referenced by path
names /a/b/c and /a/d, respectively, then a path expression that retrieves paths
under folder /a returns relative paths b/c and d.

When there are multiple hard links to the same resource, only paths under the path
name specified by function under_path are returned. If /a/b/c, /a/b/d, and /a/e are
all links to the same resource, then a query on PATH_VIEW that retrieves all of the paths
under /a/b returns only /a/b/c and /a/b/d, not /a/e.

• RESOURCE_VIEW Definition and Structure
Public view RESOURCE_VIEW contains one row for each resource in Oracle XML DB
Repository (except for the root folder resource).

• PATH_VIEW Definition and Structure
Public view PATH_VIEW contains one row for each unique path that accesses a
resource in Oracle XML DB Repository (except for the root folder resource). Each
resource can have multiple paths, also called links.

• The Difference Between RESOURCE_VIEW and PATH_VIEW
PATH_VIEW includes all the path names to a particular resource. RESOURCE_VIEW
includes one of the possible path names to the resource. PATH_VIEW also includes
the link properties. For better performance, use RESOURCE_VIEW, not PATH_VIEW,
whenever possible.

• Operations You Can Perform Using UNDER_PATH and EQUALS_PATH
You can use Oracle SQL functions under_path and equals_path to get a resource
or its OID; create, delete, or update a resource; or list a directory that corresponds
to a path name.

Related Topics

• Overview of How To Use Oracle XML DB
An overview of the various ways of using Oracle XML DB is presented.

24.1.1 RESOURCE_VIEW Definition and Structure
Public view RESOURCE_VIEW contains one row for each resource in Oracle XML DB
Repository (except for the root folder resource).

Table 24-1 describes the structure of RESOURCE_VIEW.

Chapter 24
Overview of Oracle XML DB RESOURCE_VIEW and PATH_VIEW

24-4



Table 24-1    Structure of RESOURCE_VIEW

Column Data Type Description

RES XMLType A resource in the repository (except for the root folder resource)

ANY_PATH VARCHAR2 An (absolute) path to the resource

RESID RAW Resource OID, which is a unique handle to the resource

24.1.2 PATH_VIEW Definition and Structure
Public view PATH_VIEW contains one row for each unique path that accesses a
resource in Oracle XML DB Repository (except for the root folder resource). Each
resource can have multiple paths, also called links.

Table 24-2 describes the structure of PATH_VIEW.

Table 24-2    Structure of PATH_VIEW

Column Data Type Description

PATH VARCHAR2 An (absolute) path to repository resource RES

RES XMLType The resource referred to by column PATH

LINK XMLType Link property

RESID RAW Resource OID

24.1.3 The Difference Between RESOURCE_VIEW and PATH_VIEW
PATH_VIEW includes all the path names to a particular resource. RESOURCE_VIEW
includes one of the possible path names to the resource. PATH_VIEW also includes the
link properties. For better performance, use RESOURCE_VIEW, not PATH_VIEW, whenever
possible.

Figure 24-3 illustrates this difference.

Because many Internet applications need only one URL to access a resource,
RESOURCE_VIEW is widely applicable.

PATH_VIEW contains both link properties and resource properties, whereas the
RESOURCE_VIEW contains only resource properties.

Because it handles the information for multiple paths, PATH_VIEW access can be
slower. If you use RESOURCE_VIEWthen the database can take advantage of the fact
that only one path is needed; the index can do less work to determine all the possible
paths.

Chapter 24
Overview of Oracle XML DB RESOURCE_VIEW and PATH_VIEW

24-5



Note:

When using RESOURCE_VIEW, if you specify a path using function under_path
or equals_path, the function finds the resource regardless of whether or not
the specified path is the arbitrary one chosen to normally appear with that
resource using RESOURCE_VIEW.

Figure 24-3    RESOURCE_VIEW and PATH_VIEW Explained






po_westcoast po_eastcoast





/role/corp

With PATH_VIEW, to access the target 

resource node;You can create a link.

This provides two access paths        or   

to the target node, for faster access.

R1 R2

In a typical tree the 

RESOURCE_VIEW has only 


one path

/home

R1

R2

Target Resource

RESOURCE_VIEW Example:

select path(1) from RESOURCE_VIEW where under_path(res, '/sys',1);

displays one path to the resource:

/home/corp/po_westcoast



PATH_VIEW Example:

select path from PATH_VIEW;

displays all pathnames to the resource:

/home/corp/po_westcoast

/home/role/po_eastcoast






24.1.4 Operations You Can Perform Using UNDER_PATH and
EQUALS_PATH

You can use Oracle SQL functions under_path and equals_path to get a resource or
its OID; create, delete, or update a resource; or list a directory that corresponds to a
path name.

• Given a path name, you can:

– Get a resource or its OID

– List the directory given by the path name

– Create a resource

– Delete a resource

– Update a resource

• Given a condition that uses under_path or other SQL functions, you can:

– Update resources

– Delete resources

Chapter 24
Overview of Oracle XML DB RESOURCE_VIEW and PATH_VIEW

24-6



– Get resources or their OID

24.2 Oracle SQL Functions That Use RESOURCE_VIEW
and PATH_VIEW

Oracle SQL functions used with public views RESOURCE_VIEW and PATH_VIEW include
under_path, equals_path, path, and depth.

• UNDER_PATH SQL Function
Oracle SQL function under_path uses the hierarchical index of Oracle XML DB
Repository to return the paths to all hard links under a particular path. This index is
designed to speed access when traversing a path (the most common usage).

• EQUALS_PATH SQL Function
You use Oracle SQL function equals_path to find a resource that has a given path
name. It is functionally equivalent to under_path with a depth restriction of zero.

• PATH SQL Function
Oracle SQL function path returns the relative path name of the resource under a
given pathname argument to function under_path or equal_path.

• DEPTH SQL Function
Oracle SQL function depth returns the folder depth of the resource under the
specified starting path.

24.2.1 UNDER_PATH SQL Function
Oracle SQL function under_path uses the hierarchical index of Oracle XML DB
Repository to return the paths to all hard links under a particular path. This index
is designed to speed access when traversing a path (the most common usage).

If the other parts of a query predicate are very selective, however, then a functional
implementation of under_path can be chosen that walks back up the repository. This
can be more efficient, because fewer links must be traversed. Figure 24-4 shows the
under_path syntax.

Figure 24-4    UNDER_PATH Syntax

UNDER_PATH ( column

, levels

, path_string

, correlation_integer

)

Table 24-3 details the signature of Oracle SQL function under_path.

Chapter 24
Oracle SQL Functions That Use RESOURCE_VIEW and PATH_VIEW

24-7



Table 24-3     UNDER_PATH SQL Function Signature

Syntax Description

under_path(resource_column,
 pathname); 

Determines whether a resource is under a specified path.

Parameters:

• resource_column –The column name or column
alias of the RESOURCE column in the PATH_VIEW or
RESOURCE_VIEW.

• pathname – The path name to resolve.

under_path(resource_column,
 depth, pathname);

Determines whether a resource is under a specified path,
with a depth argument to restrict the number of levels to
search.

Parameters:

• resource_column – The column name or column
alias of the RESOURCE column in the PATH_VIEW or
RESOURCE_VIEW.

• depth – The maximum depth to search. A nonnegative
integer.

• pathname – The path name to resolve.

under_path(resource_column,
 pathname, correlation);

Determines if a resource is under a specified path, with a
correlation argument for related SQL functions.

Parameters:

• resource_column – The column name or column
alias of the RESOURCE column in the PATH_VIEW or
RESOURCE_VIEW.

• pathname – The path name to resolve.
• correlation – An integer that can be used to correlate

under_path with related SQL functions (path and
depth).

under_path(resource_column,
 depth, pathname, 
correlation);

Determines if a resource is under a specified path with a
depth argument to restrict the number of levels to search, and
with a correlation argument for related SQL functions.

Parameters:

• resource_column – The column name or column
alias of the RESOURCE column in the PATH_VIEW or
RESOURCE_VIEW.

• depth – The maximum depth to search. A nonnegative
integer.

• pathname – The path name to resolve.
• correlation – An integer that can be used to correlate

under_path with related SQL functions (path and
depth).

For a resource to be returned, only one of the accessible
paths to the resource must be under the pathname
argument. If no such path is under argument pathname then
a NULL value is returned.

Chapter 24
Oracle SQL Functions That Use RESOURCE_VIEW and PATH_VIEW

24-8



Note:

Function under_path does not follow weak links, because such traversal
could lead to cycles. A weak-link argument to under_path is resolved
correctly, but weak links are not followed when traversing resources under
that path.

24.2.2 EQUALS_PATH SQL Function
You use Oracle SQL function equals_path to find a resource that has a given path
name. It is functionally equivalent to under_path with a depth restriction of zero.

equals_path(resource_column, pathname);

where:

• resource_column is the column name or column alias of the RESOURCE column in
PATH_VIEW or RESOURCE_VIEW.

• pathname is the (absolute) path name to resolve. This can contain components
that are hard or weak resource links.

Figure 24-5 illustrates the complete equals_path syntax.

Figure 24-5    EQUALS_PATH Syntax

EQUALS_PATH ( column , path_string

, correlation_integer

)

Note:

• Test resource paths for equality using Oracle SQL function equals_path:
equals_path('/my/path') = 1. Do not test ANY_PATH for equality
against an absolute path: ANY_PATH = '/my/path'.

• Use bind variables, instead of hard-coded strings, with equals_path.

24.2.3 PATH SQL Function
Oracle SQL function path returns the relative path name of the resource under a given
pathname argument to function under_path or equal_path.

The path column in the RESOURCE_VIEW always contains the absolute path of the
resource. The syntax of function path is:

path(correlation);

Chapter 24
Oracle SQL Functions That Use RESOURCE_VIEW and PATH_VIEW

24-9



where:

• correlation is an integer that can be used to correlate path with under_path or
equals_path.

Figure 24-6 illustrates the syntax for function path.

Figure 24-6    PATH Syntax

PATH ( correlation_integer )

24.2.4 DEPTH SQL Function
Oracle SQL function depth returns the folder depth of the resource under the specified
starting path.

depth(correlation);

where:

correlation is an integer that can be used to correlate depth with path with
under_path or equals_path.

24.3 Accessing Repository Data Paths, Resources and
Links: Examples

Examples here illustrate how to access Oracle XML DB Repository paths, resources,
and link properties.

The first few examples use resources specified by the following paths:

/a/b/c
/a/b/c/d
/a/e/c
/a/e/c/d

Example 24-1 uses Oracle SQL function path to retrieve the relative paths under
path /a/b.

Example 24-2 uses ANY_PATH to retrieve the absolute paths under path /a/b.

Example 24-3 is the same as Example 24-2, except that the test is not-equals (!=)
instead of equals (=). The query in Example 24-3 finds all paths in the repository that
are not under path /a/b.

Example 24-4 shows the relative paths that are under repository folders a/b and /a/e,
respectively. The expression path(1) represents the paths that are under folder a/b,
since it uses the same correlation number, 1, as the expression under_path(RES,
'/a/b', 1), which specifies folder a/b. Similarly for path(2) and folder /a/e.
Expression ANY_PATH returns the corresponding absolute paths.

Chapter 24
Accessing Repository Data Paths, Resources and Links: Examples

24-10



Example 24-1    Determining Paths Under a Path: Relative

SELECT path(1) FROM RESOURCE_VIEW WHERE under_path(RES, '/a/b', 1) = 1;

PATH(1)
-------
c
c/d

2 rows selected.

Example 24-2    Determining Paths Under a Path: Absolute

SELECT ANY_PATH FROM RESOURCE_VIEW WHERE under_path(RES, '/a/b') = 1;

ANY_PATH
--------
/a/b/c
/a/b/c/d

2 rows selected.

Example 24-3    Determining Paths Not Under a Path

SELECT ANY_PATH FROM RESOURCE_VIEW WHERE under_path(RES, '/a/b') != 1

ANY_PATH
--------
/a
/a/b
/a/e
/a/e/c
/a/e/c/d
/home
/home/OE
/home/OE/PurchaseOrders
/home/OE/PurchaseOrders/2002
/home/OE/PurchaseOrders/2002/Apr
/home/OE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336171PDT.xml
/home/OE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336271PDT.xml
/home/OE/PurchaseOrders/2002/Apr/EABEL-20021009123336251PDT.xml
. . .
/public
/sys
/sys/acls
/sys/acls/all_all_acl.xml
/sys/acls/all_owner_acl.xml
/sys/acls/bootstrap_acl.xml
/sys/acls/ro_all_acl.xml
/sys/apps
/sys/apps/plsql
/sys/apps/plsql/xs
/sys/apps/plsql/xs/netaclrc.xml
/sys/apps/plsql/xs/netaclsc.xml

Chapter 24
Accessing Repository Data Paths, Resources and Links: Examples

24-11



/sys/databaseSummary.xml
/sys/log
/sys/schemas
/sys/schemas/OE
/sys/schemas/OE/localhost:8080
. . .

326 rows selected.

Example 24-4    Determining Paths Using Multiple Correlations

SELECT ANY_PATH, path(1), path(2) 
  FROM RESOURCE_VIEW
  WHERE under_path(RES, '/a/b', 1) = 1 OR under_path(RES, '/a/e', 2) = 
1;

ANY_PATH   PATH(1)  PATH(2)
---------- -------- --------
/a/b/c     c
/a/b/c/d   c/d
/a/e/c              c
/a/e/c/d            c/d
 
4 rows selected.

Example 24-5    Relative Path Names for Three Levels of Resources

SELECT path(1) FROM RESOURCE_VIEW WHERE under_path(RES, 3, '/sys', 1) = 
1;

This produces a result similar to the following.

PATH(1)
-------
acls
acls/all_all_acl.xml
acls/all_owner_acl.xml
acls/bootstrap_acl.xml
acls/ro_all_acl.xml
apps
apps/plsql
apps/plsql/xs
databaseSummary.xml
log
schemas
schemas/OE
schemas/OE/localhost:8080
schemas/PUBLIC
schemas/PUBLIC/www.w3.org
schemas/PUBLIC/xmlns.oracle.com
 
93 rows selected.

Chapter 24
Accessing Repository Data Paths, Resources and Links: Examples

24-12



Example 24-6    Extracting Resource Metadata Using UNDER_PATH

SELECT ANY_PATH,
       XMLQuery('declare namespace ns = "http://xmlns.oracle.com/xdb/XDBResource.xsd"; 
(: :)
                 $r/ns:Resource' PASSING RES AS "r" RETURNING CONTENT)
  FROM RESOURCE_VIEW WHERE under_path(RES, '/sys') = 1;
 

This produces a result similar to the following:

ANY_PATH
--------
XMLQUERY('DECLARENAMESPACENS="HTTP://XMLNS.ORACLE.COM/XDB/
XDBRESOURCE.XSD";
------------------------------------------------------------------------
---
/sys/acls
<Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd">
  <CreationDate>2008-06-25T13:17:45.164662</CreationDate>
  <ModificationDate>2008-06-25T13:17:47.865163</ModificationDate>
  <DisplayName>acls</DisplayName>
  <Language>en-US</Language>
  <CharacterSet>UTF-8</CharacterSet>
  <ContentType>application/octet-stream</ContentType>
  <RefCount>1</RefCount>
</Resource>
 
/sys/acls/all_all_acl.xml
<Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd">
  <CreationDate>2008-06-25T13:17:47.759806</CreationDate>
  <ModificationDate>2008-06-25T13:17:47.759806</ModificationDate>
  <DisplayName>all_all_acl.xml</DisplayName>
  <Language>en-US</Language>
  <CharacterSet>UTF-8</CharacterSet>
  <ContentType>text/xml</ContentType>
  <RefCount>1</RefCount>
</Resource>
. . .
41 rows selected.

Example 24-7    Using Functions PATH and DEPTH with PATH_VIEW

SELECT path(1) path, depth(1) depth FROM PATH_VIEW 
  WHERE under_path(RES, 3, '/sys', 1) = 1;
 

This produces a result similar to the following:

PATH                                      DEPTH
----                                      -----
acls                                      1
acls/all_all_acl.xml                      2
acls/all_owner_acl.xml                    2

Chapter 24
Accessing Repository Data Paths, Resources and Links: Examples

24-13



acls/bootstrap_acl.xml                    2
acls/ro_all_acl.xml                       2
apps                                      1
apps/plsql                                2
apps/plsql/xs                             3
databaseSummary.xml                       1
log                                       1
schemas                                   1
schemas/OE                                2
schemas/OE/localhost:8080                 3
schemas/PUBLIC                            2
schemas/PUBLIC/www.w3.org                 3
schemas/PUBLIC/xmlns.oracle.com           3
. . .

Example 24-8    Extracting Link and Resource Information from PATH_VIEW

SELECT PATH, 
       XMLCast(XMLQuery(
                 'declare namespace ns =
                           "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                  $l/ns:LINK/ns:Name' PASSING LINK AS "l" RETURNING CONTENT)
               AS VARCHAR2(256)),
       XMLCast(XMLQuery(
                 'declare namespace ns =
                           "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                  $l/ns:LINK/ns:ParentName' PASSING LINK AS "l" RETURNING CONTENT)
               AS VARCHAR2(256)),
       XMLCast(XMLQuery(
                 'declare namespace ns =
                           "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                  $l/ns:LINK/ns:ChildName' PASSING LINK AS "l" RETURNING CONTENT)
               AS VARCHAR2(256)),
       XMLCast(XMLQuery(
                 'declare namespace ns =
                           "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                  $r/ns:Resource/ns:DisplayName' 
                    PASSING RES AS "r" RETURNING CONTENT)
               AS VARCHAR2(128))
  FROM PATH_VIEW WHERE PATH LIKE '/sys%';

This produces a result similar to the following:

/sys/schemas/PUBLIC/www.w3.org/1999/xlink.xsd
xlink.xsd
 
/sys/schemas/PUBLIC/www.w3.org/1999/xlink
xlink
 
/sys/schemas/PUBLIC/www.w3.org/1999/csx.xlink.xsd
csx.xlink.xsd

. . .

118 rows selected.

Chapter 24
Accessing Repository Data Paths, Resources and Links: Examples

24-14



Example 24-9    All Repository Paths to a Certain Depth Under a Path

SELECT path(1) FROM PATH_VIEW WHERE under_path(RES, 3, '/sys', 1) > 0;

This produces a result similar to the following:

PATH(1)
-------
acls
acls/all_all_acl.xml
acls/all_owner_acl.xml
acls/bootstrap_acl.xml
acls/ro_all_acl.xml
apps
apps/plsql
apps/plsql/xs
databaseSummary.xml
log
principals
principals/groups
principals/users
schemas
schemas/PUBLIC
schemas/PUBLIC/www.opengis.net
schemas/PUBLIC/www.w3.org
schemas/PUBLIC/xmlns.oracle.com
workspaces
. . .
 
43 rows selected.

Example 24-10    Locating a Repository Path Using EQUALS_PATH

SELECT ANY_PATH FROM RESOURCE_VIEW WHERE equals_path(RES, '/sys') > 0;

ANY_PATH
--------
/sys
 
1 row selected.

Example 24-11    Retrieve RESID of a Given Resource

SELECT RESID FROM RESOURCE_VIEW
  WHERE XMLCast(XMLQuery(
                  'declare namespace ns = 
                     "http://xmlns.oracle.com/xdb/XDBResource.xsd"; 
(: :)
                   $r/ns:Resource/ns:DisplayName'
                  PASSING RES AS "r" RETURNING CONTENT)

Chapter 24
Accessing Repository Data Paths, Resources and Links: Examples

24-15



                AS VARCHAR2(128))
        = 'example';

This produces a result similar to the following:

RESID
--------------------------------
F301A10152470252E030578CB00B432B
 
1 row selected.

Example 24-12    Obtaining the Path Name of a Resource from its RESID

DECLARE
  resid_example RAW(16);
  path          VARCHAR2(4000);
BEGIN
  SELECT RESID INTO resid_example FROM RESOURCE_VIEW
    WHERE XMLCast(XMLQuery(
                    'declare namespace ns =
                       "http://xmlns.oracle.com/xdb/XDBResource.xsd"; 
(: :)
                     $r/ns:Resource/ns:DisplayName'
                    PASSING RES AS "r" RETURNING CONTENT)
                  AS VARCHAR2(128))
 
          = 'example';
  SELECT ANY_PATH INTO path FROM RESOURCE_VIEW WHERE RESID = 
resid_example;
  DBMS_OUTPUT.put_line('The path is: ' || path);
END;
/
The path is: /public/example
 
PL/SQL procedure successfully completed.

Example 24-13    Folders Under a Given Path

SELECT ANY_PATH FROM RESOURCE_VIEW
  WHERE under_path(RES, 1, '/sys') = 1
    AND XMLExists('declare namespace ns = 
                     "http://xmlns.oracle.com/xdb/XDBResource.xsd"; 
(: :)
                   $r/ns:Resource[@Container = xs:boolean("true")]'
                  PASSING RES AS "r");

This produces a result like the following:

ANY_PATH
--------
/sys/acls
/sys/apps

Chapter 24
Accessing Repository Data Paths, Resources and Links: Examples

24-16



/sys/log
/sys/schemas
 
4 rows selected.

Example 24-14    Joining RESOURCE_VIEW with an XMLType Table

SELECT ANY_PATH, XMLQuery('$p/PurchaseOrder/LineItems'
                          PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
  FROM purchaseorder po, RESOURCE_VIEW rv
  WHERE ref(po)
        = XMLCast(XMLQuery('declare default element namespace
                            "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                            fn:data(/Resource/XMLRef)'
                           PASSING rv.RES RETURNING CONTENT)
                  AS REF XMLType)
    AND ROWNUM < 2;
 
ANY_PATH
--------
XMLQUERY('$P/PURCHASEORDER/LINEITEMS'PASSINGPO.OBJECT_VALUEAS"P"RET
-------------------------------------------------------------------
/home/OE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336171PDT.xml
<LineItems>
  <LineItem ItemNumber="1">
    <Description>Salesman</Description>
    <Part Id="37429158920" UnitPrice="39.95" Quantity="2"/>
  </LineItem>
  <LineItem ItemNumber="2">
    <Description>Big Deal on Madonna Street</Description>
    <Part Id="37429155424" UnitPrice="29.95" Quantity="1"/>
  </LineItem>
  <LineItem ItemNumber="3">
    <Description>Hearts and Minds</Description>
    <Part Id="37429166321" UnitPrice="39.95" Quantity="1"/>
  </LineItem>

. . .

  <LineItem ItemNumber="23">
    <Description>Great Expectations</Description>
    <Part Id="37429128022" UnitPrice="39.95" Quantity="4"/>
  </LineItem>
</LineItems>
 
1 row selected.

24.4 Deleting Repository Resources: Examples
Examples here illustrate how to delete Oracle XML DB Repository resources and
paths.

If you delete only leaf resources, then you can use DELETE FROM RESOURCE_VIEW, as in
Example 24-15.

For multiple links to the same resource, deleting from RESOURCE_VIEW deletes the
resource together with all of its links. Deleting from PATH_VIEW deletes only the link with
the specified path.

Example 24-16 illustrates this.

Chapter 24
Deleting Repository Resources: Examples

24-17



Example 24-15    Deleting Resources

DELETE FROM RESOURCE_VIEW WHERE equals_path(RES, '/public/myfile') = 1';

Example 24-16    Deleting Links to Resources

Suppose that '/home/myfile1' is a link to '/public/myfile':

CALL DBMS_XDB_REPOS.link('/public/myfile', '/home', 'myfile1');

The following SQL DML statement deletes everything in Oracle XML DB Repository
that is found at path /home/myfile1 – both the link and the resource:

DELETE FROM RESOURCE_VIEW WHERE equals_path(RES, '/home/myfile1') = 1;

The following DML statement deletes only the link with path /home/file1:

DELETE FROM PATH_VIEW WHERE equals_path(RES, '/home/file1') = 1;

• Deleting Nonempty Folder Resources
The DELETE DML operator is not allowed on a nonempty folder. If you try to delete
a nonempty folder, you must first delete its contents and then delete the resulting
empty folder. This rule must be applied recursively to any folders contained in the
target folder.

24.4.1 Deleting Nonempty Folder Resources
The DELETE DML operator is not allowed on a nonempty folder. If you try to delete a
nonempty folder, you must first delete its contents and then delete the resulting empty
folder. This rule must be applied recursively to any folders contained in the target
folder.

However, the order of the paths returned from a WHERE clause is not guaranteed,
and the DELETE operator does not allow an ORDER BY clause in its table-expression
subclause. You cannot do the following:

DELETE FROM (SELECT 1 FROM RESOURCE_VIEW
               WHERE under_path(RES, '/public', 1) = 1
               ORDER BY depth(1) DESCENDING);

Example 24-17 illustrates how to delete a nonempty folder: folder example is deleted,
along with its subfolder example1.

Note:

As always, take care to avoid deadlocks with concurrent transactions when
operating on multiple rows.

Chapter 24
Deleting Repository Resources: Examples

24-18



Example 24-17    Deleting a Nonempty Folder

SELECT PATH FROM PATH_VIEW WHERE under_path(RES, '/home/US1') = 1;
 
PATH
--------------------------
/home/US1/example
/home/US1/example/example1
 
2 rows selected.

DECLARE
  CURSOR c1 IS
    SELECT ANY_PATH p FROM RESOURCE_VIEW
      WHERE under_path(RES, '/home/US1', 1) = 1
        AND XMLExists('declare namespace ns =
                       "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                       $r/ns:Resource[ns:Owner="US1"]'
                      PASSING RES AS "r")
      ORDER BY depth(1) DESC;
  del_stmt VARCHAR2(500) :=
    'DELETE FROM RESOURCE_VIEW WHERE equals_path(RES, :1)=1';
BEGIN
  FOR r1 IN c1 LOOP
    EXECUTE IMMEDIATE del_stmt USING r1.p;
  END LOOP;
END;
/
 
PL/SQL procedure successfully completed.
 
SELECT PATH FROM PATH_VIEW WHERE under_path(RES, '/home/US1') = 1;
 
no rows selected

24.5 Updating Repository Resources: Examples
Examples here illustrate how to update Oracle XML DB Repository resources and
paths.

Example 24-18 changes the resource at path /test/HR/example/paper.

See Also:

User-Defined Repository Metadata for additional examples of updating
resource metadata

By default, the DisplayName element content, paper, was the same text as the last
location step of the resource path, /test/HR/example/paper. This is only the default
value, however. The DisplayName is independent of the resource path, so updating it
does not change the path.

Chapter 24
Updating Repository Resources: Examples

24-19



Element DisplayName is defined by the WebDAV standard, and it is recognized by
WebDAV applications. Applications, such as an FTP client, that are not WebDAV-
based do not recognize the DisplayName of a resource. An FTP client lists the
resource as paper (using FTP command ls, for example) even after the UPDATE
operation.

Example 24-19 changes the path for the resource from /test/HR/example/paper to /
test/myexample. It is analogous to using the UNIX or Linux command mv /test/HR/
example/paper /test/myexample.

See Also:

Table 21-3 for additional examples that use SQL functions that apply to
RESOURCE_VIEW and PATH_VIEW

Example 24-18    Updating a Resource

This is the complete resource before the update operation:

SELECT XMLSerialize(DOCUMENT r.RES AS CLOB)
  FROM RESOURCE_VIEW r WHERE equals_path(r.RES, '/test/HR/example/paper') = 1;
 
XMLSERIALIZE(DOCUMENTR.RESASCLOB)
--------------------------------------------------------------------------------
<Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd" Hidden="false" Inv
alid="false" Container="false" CustomRslv="false" VersionHistory="false" StickyR
ef="true">
  <CreationDate>2005-04-29T16:30:01.588835</CreationDate>
  <ModificationDate>2005-04-29T16:30:01.588835</ModificationDate>
  <DisplayName>paper</DisplayName>
  <Language>en-US</Language>
  <CharacterSet>UTF-8</CharacterSet>
  <ContentType>application/octet-stream</ContentType>
  <RefCount>1</RefCount>
  <ACL>
    <acl description="Public:All privileges to PUBLIC" xmlns="http://xmlns.oracl
e.com/xdb/acl.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:sch
emaLocation="http://xmlns.oracle.com/xdb/acl.xsd                           http:
//xmlns.oracle.com/xdb/acl.xsd">
      <ace>
        <principal>PUBLIC</principal>
        <grant>true</grant>
        <privilege>
          <all/>
        </privilege>
      </ace>
    </acl>
  </ACL>
  <Owner>TESTUSER1</Owner>
  <Creator>TESTUSER1</Creator>
  <LastModifier>TESTUSER1</LastModifier>
  <SchemaElement>http://xmlns.oracle.com/xdb/XDBSchema.xsd#binary</SchemaElement>
  <Contents>
    <binary>4F7261636C65206F7220554E4958</binary>
  </Contents>
</Resource>
 
1 row selected.

All of the XML elements shown here are resource metadata elements, with the
exception of Contents, which contains the resource content.

This UPDATE statement updates (only) the DisplayName metadata element.

UPDATE RESOURCE_VIEW r
  SET r.RES =
    XMLQuery('copy $i := $p1 modify
                (for $j in $i/Resource/DisplayName
                 return replace value of node $j with $p2)

Chapter 24
Updating Repository Resources: Examples

24-20



              return $i'
             PASSING r.RES AS "p1", 'My New Paper' AS "p2"
             RETURNING CONTENT)
    WHERE equals_path(r.RES, '/test/HR/example/paper') = 1;
 
1 row updated.

SELECT XMLSerialize(DOCUMENT r.RES AS CLOB)
  FROM RESOURCE_VIEW r WHERE equals_path(r.RES, '/test/HR/example/paper') = 1;
 
XMLSERIALIZE(DOCUMENTR.RESASCLOB)
--------------------------------------------------------------------------------
<Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd" Hidden="false" Inv
alid="false" Container="false" CustomRslv="false" VersionHistory="false" StickyR
ef="true">
  <CreationDate>2005-04-29T16:30:01.588835</CreationDate>
  <ModificationDate>2005-04-29T16:30:01.883838</ModificationDate>
  <DisplayName>My New Paper</DisplayName>
  <Language>en-US</Language>

  . . .

  <Contents>
    <binary>4F7261636C65206F7220554E4958</binary>
  </Contents>
</Resource>
 
1 row selected.

Example 24-19    Updating a Path in the PATH_VIEW

SELECT ANY_PATH FROM RESOURCE_VIEW WHERE under_path(RES, '/test') = 1;
 
ANY_PATH
--------
/test/HR
/test/HR/example
/test/HR/example/paper
 
3 rows selected.

UPDATE PATH_VIEW 
  SET PATH = '/test/myexample' WHERE PATH = '/test/HR/example/paper';

ANY_PATH
--------
/test/HR
/test/HR/example
/test/myexample
 
3 rows selected.

24.6 Working with Multiple Oracle XML DB Resources
To perform an operation on multiple Oracle XML DB resources, or to find one or
more Oracle XML DB resources that meet a certain set of criteria, use SQL with
RESOURCE_VIEW and PATH_VIEW.

For example, you can perform the following operations:

Chapter 24
Working with Multiple Oracle XML DB Resources

24-21



• Update resources based on attributes – see Example 24-20

• Finding resources inside a folder – see Example 24-21

• Copy a set of Oracle XML DB resources – see Example 24-22

The SQL DML statement in Example 24-22 copies all of the resources in folder public
to folder newlocation. It is analogous to the UNIX or Linux command cp /public/* /
newlocation. Target folder newlocation must exist before the copy.

Example 24-20    Updating Resources Based on Attributes

UPDATE RESOURCE_VIEW
  SET RES =
    XMLQuery('copy $i := $p1 modify
                (for $j in $i/Resource/DisplayName
                 return replace value of node $j with $p2)
               return $i'
              PASSING RES AS "p1", 'My New Paper' AS "p2"
              RETURNING CONTENT)
  WHERE XMLCast(XMLQuery('declare namespace ns =
                          "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)    
                          $r/ns:Resource/ns:DisplayName'
                         PASSING RES AS "r" RETURNING CONTENT)
                AS VARCHAR2(128))
        = 'My Paper';
 
1 row updated.
 
SELECT ANY_PATH FROM RESOURCE_VIEW
  WHERE XMLCast(XMLQuery('declare namespace ns =
                            "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                          $r/ns:Resource/ns:DisplayName'
                         PASSING RES AS "r" RETURNING CONTENT)
                AS VARCHAR2(128))
          = 'My New Paper';
 
ANY_PATH
---------------
/test/myexample
 
1 row selected.

Example 24-21    Finding Resources Inside a Folder

SELECT ANY_PATH FROM RESOURCE_VIEW
  WHERE under_path(resource, '/sys/schemas/PUBLIC/xmlns.oracle.com/xdb') = 1;

ANY_PATH
--------------------------------------------------------------
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBResource.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBSchema.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBStandard.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/acl.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/dav.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/log

Chapter 24
Working with Multiple Oracle XML DB Resources

24-22



/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/log/xdblog.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/stats.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/xdbconfig.xsd
 
12 rows selected.

Example 24-22    Copying Resources

SELECT PATH FROM PATH_VIEW WHERE under_path(RES, '/test') = 1;
 
PATH
-----------------
/test/HR
/test/HR/example
/test/myexample
 
3 rows selected.
 
INSERT INTO PATH_VIEW
  SELECT '/newlocation/' || path(1), RES, LINK, NULL FROM PATH_VIEW
    WHERE under_path(RES, '/test', 1) = 1
    ORDER BY depth(1);
 
3 rows created.
 
SELECT PATH FROM PATH_VIEW WHERE under_path(RES, '/newlocation') = 1;
 
PATH
------------------------
/newlocation/HR
/newlocation/HR/example
/newlocation/myexample
 
3 rows selected.

24.7 Performance Guidelines for Oracle XML DB Repository
Operations

Guidelines are presented for improving the performance of repository operations such
as resource creation and querying.

Folders that contain a large number of resources can negatively affect concurrency,
particularly when many resources are created or deleted. As a rule of thumb, do not
have folders that contain more than 10,000 resources. This empirical limit is based on
the database block size and the average filename length.

If you create resources in bulk, perform a COMMIT operation at least every 1,000
resources. Performance can be negatively impacted if you commit very often or you
commit less often than every 1,000 resource creations.

When creating a file resource that is an XML Schema-based document for which the
XML schema is known, specify the XML schema URL as a parameter to PL/SQL

Chapter 24
Performance Guidelines for Oracle XML DB Repository Operations

24-23



function DBMS_XDB_REPOS.createResource. This saves preparsing the document to
determine the XML schema.

Oracle XML DB uses configuration file xdbconfig.xml for configuring the system and
protocol environment. This file includes an element parameter, resource-view-cache-
size, that defines the size in dynamic memory of the RESOURCE_VIEW cache. The
default value is 1048576.

The performance of some queries on RESOURCE_VIEW and PATH_VIEW can be improved
by tuning resource-view-cache-size. In general, the bigger the cache size, the faster
the query. The default resource-view-cache-size is appropriate for most cases, but
you may want to enlarge your resource-view-cache-size element when querying a
sizable RESOURCE_VIEW.

The default limits for the following elements are soft limits. The system automatically
adapts when these limits are exceeded.

• xdbcore-loadableunit-size – This element indicates the maximum size to which
a loadable unit (partition) can grow in Kilobytes. When a partition is read into
memory or a partition is built while consuming a new document, the partition is
built until it reaches the maximum size. The default value is 16 KB.

• xdbcore-xobmem-bound – This element indicates the maximum memory in
kilobytes that a document is allowed to occupy. The default value is 1024 KB.
Once the document exceeds this number, some loadable units (partitions) are
swapped out.

Related Topics

• Administration of Oracle XML DB
Administration of Oracle XML DB includes installing, upgrading, and configuring it.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about PL/SQL function DBMS_XDB_REPOS.createResource

24.8 Searching for Resources Using Oracle Text
Table XDB$RESOURCE in database schema XDB stores the metadata and content of
repository resources. You can search for resources that contain a specific keyword by
using Oracle SQL function contains with RESOURCE_VIEW or PATH_VIEW.

To evaluate such queries, you must first create a context index on the XDB$RESOURCE
table. Depending on the type of documents stored in Oracle XML DB, choose one of
the following options for creating your context index:

• If Oracle XML DB contains only XML documents, that is, no binary data, then a
regular Context Index can be created on the XDB$RESOURCE table. This is the case
for Example 24-24.

CREATE INDEX xdb$resource_ctx_i ON XDB.XDB$RESOURCE(OBJECT_VALUE)
  INDEXTYPE IS CTXSYS.CONTEXT;

Chapter 24
Searching for Resources Using Oracle Text

24-24



Example 24-23    Find All Resources Containing "Paper"

SELECT PATH FROM PATH_VIEW WHERE contains(RES, 'Paper') > 0;

PATH
-----------------------
/newlocation/myexample
/test/myexample
 
2 rows selected.

Example 24-24    Find All Resources Containing "Paper" that are Under a
Specified Path

SELECT ANY_PATH FROM RESOURCE_VIEW
   WHERE contains(RES, 'Paper') > 0 AND under_path(RES, '/test') > 0;

ANY_PATH
----------------
/test/myexample
 
1 row selected.

Related Topics

• Query and Update of XML Data
There are many ways for applications to query and update XML data that is in
Oracle Database, both XML schema-based and non-schema-based.

• PL/SQL APIs for XMLType: References
The PL/SQL Application Programming Interfaces (APIs) for XMLType are
described.

Chapter 24
Searching for Resources Using Oracle Text

24-25



25
Resource Versions

Oracle XML DB Repository resources can be versioned. A record is kept of all
changes to a resource that is under version control.

• Overview of Oracle XML DB Repository Resource Versioning
You can create and manage different versions of a repository resource. A record is
kept of all changes to a resource that is under version control. When you update
a version-controlled resource, the pre-update contents are stored as a separate
resource version – a snapshot for the historical record.

• Overview of PL/SQL Package DBMS_XDB_VERSION
You use PL/SQL package DBMS_XDB_VERSION to work with Oracle XML DB
Repository resource versions.

• Resource Versions and Resource IDs
A resource object ID, or resource ID, is a unique, constant, system-generated
identifier for a resource. Each resource has a resource ID. This includes version
resources, which are system-generated resources that do not have any path
names. A resource ID is sometimes called a RESID.

• Resource Versions and ACLs
A version resource is immutable. It is a snapshot of resource content and
metadata, plus a resource ID, and both snapshot and ID are static. Likewise, the
access control list (ACL) of a version resource cannot be changed.

• Resource Versioning Examples
Examples here create a version-controlled resource; retrieve the content of a
resource using its resource ID; check out a version-controlled resource (for all
users); update the content of a resource; check in a resource; retrieve the content
and metadata of different versions of a resource; and cancel a resource check-out.

25.1 Overview of Oracle XML DB Repository Resource
Versioning

You can create and manage different versions of a repository resource. A record is
kept of all changes to a resource that is under version control. When you update
a version-controlled resource, the pre-update contents are stored as a separate
resource version – a snapshot for the historical record.

Versioning features include the following:

• Version control for a resource.

You can turn version control on or off for an Oracle XML DB Repository resource.

• Updating a version-controlled resource.

When Oracle XML DB updates a version-controlled resource, it creates a new
version of the resource. This new version is not deleted from the database when
you delete the version-controlled resource.

• Accessing a version-controlled resource.

25-1



You can access a version-controlled resource the same way you access any other
resource.

• Accessing a resource version.

To access a particular version of a resource, you use the resource ID of that
version. The resource ID can be obtained from the resource version history or
from the version-controlled resource itself. See Resource Versions and Resource
IDs.

Table 25-1 lists some terms used in this chapter.

Table 25-1    Oracle XML DB Versioning Terms

Term Description

Versionable resource A resource that can be put under version control. All Oracle XML DB resources
except folders and ACLs are versionable.

Version-controlled
resource

A resource that is under version control.

Version resource A particular version of a version-controlled resource. A version resource is itself a
resource. It is system-generated, and it has no associated path name. It is read-only
(it cannot be updated or deleted).

checkOut, checkIn,
unCheckOut

Operations for managing version-controlled resources. You must use checkOut
before you can modify a version-controlled resource. Use checkIn to make your
changes permanent. Use unCheckOut to cancel your changes. (Use COMMIT after
each of these operations.)

Note:

Oracle XML DB supports version control only for Oracle XML DB resources.
It does not support version control for user-defined tables or data in Oracle
Database.

Oracle does not guarantee preservation of the resource ID of a version
across check-in and check-out. Everything except the resource ID of the
latest version is preserved.

Oracle XML DB supports versioning of XML resources that are not XML
schema-based. It also supports versioning of XML schema-based resources
and resources that contain XML schema-based metadata, but only if the
underlying tables have no associated triggers or constraints.

If hierarchy is enabled for a table, then the table has a trigger. This includes
tables that are created as part of XML schema registration, for which the
default behavior is to enable hierarchy.

Be aware also that if you query one of the tables underlying a resource, the
query can return data from multiple versions of the resource. This is because
the data for the different resource versions is stored in the same underlying
table, using different rows.

Chapter 25
Overview of Oracle XML DB Repository Resource Versioning

25-2



25.2 Overview of PL/SQL Package DBMS_XDB_VERSION
You use PL/SQL package DBMS_XDB_VERSION to work with Oracle XML DB Repository
resource versions.

Table 25-2 summarizes the main DBMS_XDB_VERSION subprograms.

Table 25-2    PL/SQL Functions and Procedures in Package DBMS_XDB_VERSION

Function or Procedure Description

makeVersioned(pathname
VARCHAR2) RETURN
DBMS_XDB_VERSION.RESID_T
YPE;

Turn a resource with the given path name into a version controlled resource.

If two or more path names refer to the same resource, then the resource is copied,
and argument path name is bound with the copy. The new resource is put under
version control. All other path names continue to refer to the original resource.

The argument is the path name of the resource to be put under version control.

Returns the resource ID of the first version resource of the version-controlled
resource.

This is not an auto-commit SQL operation. An error is raised of you call
makeVersioned for a folder, version resource, or ACL, or if the target resource
does not exist. Note: No error or warning is raised if you call makeVersioned for a
version-controlled resource.

checkOut(pathname
VARCHAR2);

Check out a version-controlled resource. You cannot update or delete a version-
controlled resource until you check it out. Check-out is for all users: any user can
modify a resource that has been checked out.

The argument is the path name of the version-controlled resource to be checked
out. This is not an auto-commit SQL operation. If two users check out the same
version-controlled resource at the same time, then one user must roll back. As a
precaution, commit after checking out and before updating a resource. An error
is raised if the target resource is not under version control, does not exist, or is
already checked out.

checkIn (pathname
VARCHAR2) RETURN
DBMS_XDB_VERSION.RESID_T
YPE;

Check in a version-controlled resource that has been checked out.

pathname - Path name of the checked-out resource.

Returns the resource id of the newly created version.

This is not an auto-commit SQL operation. You need not use the same path name
that was used for check-out. However, the check-in path name and the check-out
path name must reference the same resource, or else results are unpredictable.

If the resource has been renamed, then the new name must be used when
checking it in. An error is raised if the path name refers to no resource.

unCheckOut(pathname
VARCHAR2) RETURN
DBMS_XDB_VERSION.RESID_T
YPE;

Check in a checked-out resource.

The argument is the path name of the checked-out resource.

Returns the resource id of the version before the resource was checked out. This
is not an auto-commit SQL operation. You need not use the same path name that
was used for check-out. However, the unCheckOut path name and the check-out
path name must reference the same resource, or else results are unpredictable.

If the resource has been renamed, then the new name must be used for
unCheckOut. An error is raised if the path name refers to no resource.

Chapter 25
Overview of PL/SQL Package DBMS_XDB_VERSION

25-3



Table 25-2    (Cont.) PL/SQL Functions and Procedures in Package DBMS_XDB_VERSION

Function or Procedure Description

getPredecessors(pathname
VARCHAR2) RETURN
RESID_LIST_TYPE;

getPredsByRESID(resid
DBMS_XDB_VERSION.RESID_T
YPE) RETURN
RESID_LIST_TYPE;

Given a path name that references a version resource or a version-controlled
resource, return the predecessors of the resource.

Retrieving predecessors by resource ID, using function getPredsByRESID is
more efficient than by path name, using function getPredecessors.

The list of predecessors returned has only one element (the parent): Oracle
XML DB does not support version branching.

getSuccessors(pathname
VARCHAR2) RETURN
RESID_LIST_TYPE;

getSuccsByRESID(resid
DBMS_XDB_VERSION.RESID_T
YPE) RETURN
RESID_LIST_TYPE;

Given a version resource or a version-controlled resource, return the successors
of the resource.

Retrieving successors by resource ID, using function getSuccsByRESID is more
efficient than by path name, using function getSuccessors.

The list of successors returned has only one element (the parent): Oracle XML DB
does not support version branching.

getResourceByRESID(resid
DBMS_XDB_VERSION.RESID_T
YPE) RETURN XMLType;

Given a resource ID, return the resource as an XMLType instance.

25.3 Resource Versions and Resource IDs
A resource object ID, or resource ID, is a unique, constant, system-generated
identifier for a resource. Each resource has a resource ID. This includes version
resources, which are system-generated resources that do not have any path names. A
resource ID is sometimes called a RESID.

You use PL/SQL package DBMS_XDB_VERSION to put a resource under version-control
and manage different versions of it. Some of the DBMS_XDB_VERSION routines accept
the path name of a version-controlled resource as argument and return the resource
ID of the relevant version resource.

For example, you use function DBMS_XDB_VERSION.makeVersioned to put a resource
under version control, that is, to turn it into a version-controlled resource. It accepts as
argument a repository path to the resource.

You need not use the same path name for a given version-controlled resource when
you perform various versioning operations on it, but the path names you use must all
refer to the same resource.

Whenever a path name is passed as an argument representing a version-controlled
resource, it is the latest (that is, the current) version of the resource that is used.
A path name always stands for the latest version. The only way you can refer to a
version other than the current version is to use its resource ID.

The resource ID of a given version is constant. Remember that a version is itself a
resource, and the resource ID of a resource never changes.

Each time you check in a version-controlled resource, Oracle XML DB creates a new
version resource. A version resource is a snapshot of a resource (its content and
metadata) together with a resource ID. The collection of version resources for a given

Chapter 25
Resource Versions and Resource IDs

25-4



version-controlled resource constitutes a historical sequence of previous versions, the
version series or history of the resource.

When you check in a version-controlled resource that has resource ID R, Oracle
XML DB creates a new resource ID, P, which refers to a snapshot of the resource
(both content and metadata), as it was before it was last checked out. The snapshot
was made before check-out, but the associated version resource (and its resource ID
P) are created at check-in time. Together, the new resource ID P and the snapshot
it refers to thus represent the previous, not the current, version of the resource.
Resource ID R continues to refer to the current version.

Put another way, when you check in a version-controlled resource, a version resource
is created that represents the previous state of the version-controlled resource. Like
any new resource, this new version resource is allocated a new resource ID (P).

You can think about making a version resource (check-in) the way you think about
making a backup copy of a file: Just as you give a new name to the backup file, so
the previous-version snapshot of a resource is given a new resource ID. The current
resource retains the original resource ID, just as your working file keeps its original
name.

What this means is that when you check in a resource, in order to "create a new
version", what's really new is the version resource (resource ID P and the snapshot it
references) that represents the old (previous) version. The newest, or latest, version of
the resource (R) is really just the current version. Remember: new version resource =
old (previous) version of the resource content and metadata.

Resource ID R refers to the current version of the version-controlled resource
throughout its lifetime, from the moment it was put under version control until it is
deleted. You can always access the latest version of a resource using its original
resource ID.

When you need to refer to a previous version of a resource, you must use its
resource ID to reference it. You cannot use a path name. You can use function
DBMS_XDB_VERSION.getPredsByRESID to obtain the resource ID of the previous version
of a given resource.

Note:

If you delete a resource, then any subsequent reference to it, whether by
resource ID or path name, raises an error (typically ORA-31001: Invalid
resource handle or path name). You cannot access any version of a
version-controlled resource that has been deleted.

25.4 Resource Versions and ACLs
A version resource is immutable. It is a snapshot of resource content and metadata,
plus a resource ID, and both snapshot and ID are static. Likewise, the access control
list (ACL) of a version resource cannot be changed.

You can modify the ACL of a version-controlled resource that you have checked
out. When you check it in, the modified ACL continues to be associated with the
current (latest) version of the resource, and the previous version, that is, the newly
created version resource, is associated with the ACL before it was modified. That is,

Chapter 25
Resource Versions and ACLs

25-5



the previous version is associated with the previous ACL, and the current version is
associated with the updated ACL.

What is important to keep in mind is this:

• Different versions of a resource can have different ACLs associated with them.

• You can modify the ACL associated with the current version after you check out
the resource.

• Check-in associates the ACL as it was before check-out with the newly created
version resource, that is, with the previous version of the resource.

• The ACL associated with a given version remains the same.

25.5 Resource Versioning Examples
Examples here create a version-controlled resource; retrieve the content of a resource
using its resource ID; check out a version-controlled resource (for all users); update
the content of a resource; check in a resource; retrieve the content and metadata of
different versions of a resource; and cancel a resource check-out.

• Putting a resource under version control – Example 25-2

• Retrieving the content of the resource using its resource ID – Example 25-3

• Checking out a version-controlled resource (for all users) – Example 25-4

• Updating the content of a resource – Example 25-5

• Checking in a resource – Example 25-6

• Retrieving the content and metadata of different versions of a resource –
Example 25-7, Example 25-8, Example 25-9

• Canceling a resource check-out – Example 25-10

Example 25-3 creates an Oracle XML DB Repository resource at repository path /
public/t1.txt. The resource has as content the text Mary had a little lamb. The
example uses SQL*Plus command VARIABLE to declare bind variables targetPath,
current_RESID, and previous_RESID, which are used in other examples in this
section.

The new resource is not version-controlled. Example 25-2 uses PL/SQL function
DBMS_XDB_VERSION.makeVersioned to put it under version control. This function returns
the resource ID of the first version resource for the version-controlled resource. The
function does not auto-commit. You must explicitly use COMMIT.

Example 25-2 also copies the resource ID of the new version resource to bind variable
current_RESID. Example 25-3 shows how to use PL/SQL constructor XDBUritype
together with PL/SQL function createOIDPath to retrieve the resource content by
referencing the resource ID.

Example 25-4 checks out the version-controlled resource (and commits), so that it can
be modified. Any user can modify a resource that has been checked out.

Example 25-5 updates the content of the checked-out resource. Before the (LOB)
content can be updated, you must lock the resource. The example uses a dummy
update of the resource display name (a scalar attribute) to do this.

Chapter 25
Resource Versioning Examples

25-6



Example 25-5 retrieves the LOB content using the LOB locator, which is element /
ns:Resource/ns:XMLLob. It empties the existing content and adds new content using
PL/SQL procedures trim and append in package DBMS_LOB. It commits the content
change.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for
information about updating a LOB

At this point, the content has been modified, but this change has not been recorded in
the version series. Example 25-6 checks in the resource and commits the check-in.

PL/SQL function checkIn returns the resource ID of the current version, which is
the same as current_RESID. Example 25-6 passes this value to PL/SQL function
getPredsByRESID. This function returns the list of resource IDs for the (immediate)
predecessors of its argument resource.1 Example 25-6 assigns the first (and only)
element of this list to bind variable previous_RESID.

At this point, the value of current_RESID is the resource ID of the current version, and
the value of previous_RESID is the resource ID of the previous version.

You can retrieve the content or metadata of a resource using any of the following
methods:

• PL/SQL constructor XDBURIType, together with PL/SQL function
DBMS_XDB_REPOS.createOIDPath – Retrieve content. See Example 25-3 and
Example 25-7.

• PL/SQL function DBMS_XDB_VERSION.getContentsCLOBByRESID – Retrieve content.
See Example 25-8.

• PL/SQL function DBMS_XDB_VERSION.getResourceByRESID – Retrieve metadata.
See Example 25-9.

You can use constructor XDBURIType with function createOIDPath to access resource
content using protocols. For example, you could have Oracle XML DB serve up
various versions of a graphic image file resource for a Web page, setting the HREF
for the HTML IMAGE tag to a value returned by createOIDPath.

Example 25-7 through Example 25-9 use these different methods to retrieve the
two versions of the resource addressed by bind variables current_RESID and
previous_RESID after check-in.

You can cancel a check-out using PL/SQL function DBMS_XDB_VERSION.unCheckOut.
Example 25-10 illustrates this.

Example 25-1    Creating a Repository Resource

VARIABLE targetPath      VARCHAR2(700)
VARIABLE current_RESID   VARCHAR2(32)
VARIABLE previous_RESID  VARCHAR2(32)

DECLARE

1 In Oracle XML DB, a version resource always has a single predecessor, that is, a single version that immediately
precedes it. The WebDAV standard provides for the possibility of multiple predecessors.

Chapter 25
Resource Versioning Examples

25-7



  res BOOLEAN;
BEGIN
  :targetPath  := '/public/t1.txt';
  IF (DBMS_XDB_REPOS.existsResource(:targetPath))
     THEN DBMS_XDB_REPOS.deleteResource(:targetPath);
  END IF;
  res := DBMS_XDB_REPOS.createResource(:targetPath, 'Mary had a little lamb');
END;
/

Example 25-2    Creating a Version-Controlled Resource

DECLARE
  resid DBMS_XDB_VERSION.RESID_TYPE;
BEGIN
  resid := DBMS_XDB_VERSION.makeVersioned(:targetPath);
  :current_RESID := resid;
  COMMIT;
END;
/

Example 25-3    Retrieving Resource Content by Referencing the Resource ID

SELECT XDBURIType(DBMS_XDB_REPOS.createOIDPath(:current_RESID)).getClob()
  FROM DUAL;

XDBURITYPE(DBMS_XDB_REPOS.CREATEOIDPATH(:CURRENT_RESID)).GETCLOB()
------------------------------------------------------------------
Mary had a little lamb
 
1 row selected.

Example 25-4    Checking Out a Version-Controlled Resource

BEGIN
  DBMS_XDB_VERSION.checkOut(:targetPath);
  COMMIT;
END;
/

Example 25-5    Updating Resource Content

DECLARE
  content        BLOB;
  newContentBlob BLOB;
  newContentClob CLOB;
  source_offset  INTEGER := 1;
  target_offset  INTEGER := 1;
  warning        INTEGER;
  lang_context   INTEGER := 0;
BEGIN
  -- Lock the resource using a dummy update.
UPDATE RESOURCE_VIEW
  SET RES =
    XMLQuery('copy $i := $p1 modify
                (for $j in $i/Resource/DisplayName
                 return replace value of node $j with $p2)
                return $i'
               PASSING
                 RES AS "p1",
                 XMLCast(XMLQuery('declare namespace ns =
                                     "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)

Chapter 25
Resource Versioning Examples

25-8



                                   $r/ns:Resource/ns:DisplayName/text()'
                                  PASSING RES AS "r" RETURNING CONTENT)
                         AS VARCHAR2(128)) AS "p2"
               RETURNING CONTENT)
    WHERE equals_path(res, :targetPath) = 1;
  -- Get the LOB locator.
  SELECT XMLCast(XMLQuery('declare namespace ns =
                           "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                           $r/ns:Resource/ns:XMLLob'
                          PASSING RES AS "r" RETURNING CONTENT)
                 AS BLOB)
    INTO content FROM RESOURCE_VIEW
    WHERE equals_path(RES, :targetPath) = 1;
  -- Update the LOB.
  newContentClob := 'Hickory dickory dock, the mouse ran up the clock';
  DBMS_LOB.createTemporary(newContentBlob, false, DBMS_LOB.CALL);
  DBMS_LOB.convertToBlob(newContentBlob, newContentClob,
                         DBMS_LOB.getLength(newContentClob),
                         source_offset, target_offset,
                         nls_charset_id('AL32UTF8'), lang_context, warning);
  DBMS_LOB.open(content, DBMS_LOB.lob_readwrite);
  DBMS_LOB.trim(content, 0);
  DBMS_LOB.append(content, newContentBlob);
  DBMS_LOB.close(content);
  DBMS_LOB.freeTemporary(newContentBlob);
  DBMS_LOB.freeTemporary(newContentClob);
  COMMIT;
END;
/

Example 25-6    Checking In a Version-Controlled Resource

DECLARE
  resid DBMS_XDB_VERSION.RESID_TYPE;
BEGIN
  resid := DBMS_XDB_VERSION.checkIn(:targetPath);
  :previous_RESID := DBMS_XDB_VERSION.getPredsByRESID(resid)(1);
  COMMIT;
END;
/

Example 25-7    Retrieving Resource Version Content Using XDBURITYPE and
CREATEOIDPATH

SELECT XDBURIType(DBMS_XDB_REPOS.createOIDPath(:current_RESID)).getClob()
  FROM DUAL;
 
XDBURITYPE(DBMS_XDB_REPOS.CREATEOIDPATH(:CURRENT_RESID)).GETCLOB()
------------------------------------------------------------------
Mary had a little lamb
 
1 row selected.
 
SELECT XDBURIType(DBMS_XDB_REPOS.createOIDPath(:previous_RESID)).getClob()
  FROM DUAL;
 
XDBURITYPE(DBMS_XDB_REPOS.CREATEOIDPATH(:PREVIOUS_RESID)).GETCLOB()
-------------------------------------------------------------------
Hickory dickory dock, the mouse ran up the clock
 
1 row selected.

Chapter 25
Resource Versioning Examples

25-9



Example 25-8    Retrieving Resource Version Content Using
GETCONTENTSCLOBBYRESID

SELECT DBMS_XDB_VERSION.getContentsCLOBByRESID(:current_RESID) FROM DUAL;

DBMS_XDB_VERSION.GETCONTENTSCLOBBYRESID(:CURRENT_RESID)
-------------------------------------------------------
Mary had a little lamb
 
1 row selected.
 
SELECT DBMS_XDB_VERSION.getContentsCLOBByRESID(:previous_RESID) FROM DUAL;
 
DBMS_XDB_VERSION.GETCONTENTSCLOBBYRESID(:PREVIOUS_RESID)
--------------------------------------------------------
Hickory dickory dock, the mouse ran up the clock
 
1 row selected.

Example 25-9    Retrieving Resource Version Metadata Using
GETRESOURCEBYRESID

SELECT XMLSerialize(DOCUMENT DBMS_XDB_VERSION.getResourceByRESID(:current_RESID)
                    AS CLOB INDENT SIZE = 2)
  FROM DUAL;
<Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd" Hidden="false"
          Invalid="false" VersionID="2" ActivityID="0" Container="false"
          CustomRslv="false" VersionHistory="false" StickyRef="true">
  <CreationDate>2009-05-06T12:33:34.012133</CreationDate>
  <ModificationDate>2009-05-06T12:33:34.280199</ModificationDate>
  <DisplayName>t1.txt</DisplayName>
  <Language>en-US</Language>
  <CharacterSet>UTF-8</CharacterSet>
  <ContentType>text/plain</ContentType>
  <RefCount>1</RefCount>
  <ACL>
    <acl description="Public:All privileges to PUBLIC"
         xmlns="http://xmlns.oracle.com/xdb/acl.xsd" 
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd 
                             http://xmlns.oracle.com/xdb/acl.xsd"
         shared="true">
      <ace>
        <grant>true</grant>
        <principal>PUBLIC</principal>
        <privilege>
          <all/>
        </privilege>
      </ace>
    </acl>
  </ACL>
  <Owner>HR</Owner>
  <Creator>HR</Creator>
  <LastModifier>HR</LastModifier>
  <SchemaElement>http://xmlns.oracle.com/xdb/XDBSchema.xsd#text</SchemaElement>
  <Contents>
    <text>Mary had a little lamb</text>
  </Contents>
  <VCRUID>69454F2EF12E3375E040578C8A1764B5</VCRUID>
  <Parents>69454F2EF12F3375E040578C8A1764B5</Parents>
</Resource>

Chapter 25
Resource Versioning Examples

25-10



 
1 row selected.
 
SELECT XMLSerialize(DOCUMENT DBMS_XDB_VERSION.getResourceByRESID(:previous_RESID)
                    AS CLOB INDENT SIZE = 2)
  FROM DUAL;
<Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd" Hidden="false"
          Invalid="false" VersionID="1" Container="false" CustomRslv="false" 
          VersionHistory="false" StickyRef="true">
  <CreationDate>2009-05-06T12:33:34.012133</CreationDate>
  <ModificationDate>2009-05-06T12:33:34.012133</ModificationDate>
  <DisplayName>t1.txt</DisplayName>
  <Language>en-US</Language>
  <CharacterSet>UTF-8</CharacterSet>
  <ContentType>text/plain</ContentType>
  <RefCount>0</RefCount>
  <ACL>
    <acl description="Public:All privileges to PUBLIC"
         xmlns="http://xmlns.oracle.com/xdb/acl.xsd" 
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
                             http://xmlns.oracle.com/xdb/acl.xsd"
         shared="true">
      <ace>
        <grant>true</grant>
        <principal>PUBLIC</principal>
        <privilege>
          <all/>
        </privilege>
      </ace>
    </acl>
  </ACL>
  <Owner>HR</Owner>
  <Creator>HR</Creator>
  <LastModifier>HR</LastModifier>
  <SchemaElement>http://xmlns.oracle.com/xdb/XDBSchema.xsd#text</SchemaElement>
  <Contents>
    <text>Hickory dickory dock, the mouse ran up the clock</text>
  </Contents>
  <VCRUID>69454F2EF12E3375E040578C8A1764B5</VCRUID>
</Resource>
 
1 row selected.

Example 25-10     Canceling a Check-Out Using UNCHECKOUT

DECLARE
  resid DBMS_XDB_VERSION.RESID_TYPE;
BEGIN
  resid := DBMS_XDB_VERSION.unCheckOut(:targetPath);
END;
/

Chapter 25
Resource Versioning Examples

25-11



26
PL/SQL Access to Oracle XML DB
Repository

PL/SQL packages DBMS_XDB_CONFIG and DBMS_XDB_REPOS together provide the Oracle
XML DB resource application program interface (API) for PL/SQL. You use the former
to configure Oracle XML DB and its repository. You use the latter to perform other,
non-configuration operations on the repository.

• DBMS_XDB_REPOS: Access and Manage Repository Resources
You use PL/SQL package DBMS_XDB_REPOS to access and manage resources in
Oracle XML DB Repository. It includes methods for managing resource security
based on access control lists (ACLs). An ACL is a list of access control entries
(ACEs) that determines which principals (users and roles) have access to which
resources.

• DBMS_XDB_REPOS: ACL-Based Security Management
PL/SQL package DBMS_XDB_REPOS provides Oracle XML DB ACL-based security
management functions and procedures.

• DBMS_XDB_CONFIG: Configuration Management
PL/SQL package DBMS_XDB_CONFIG provides Oracle XML DB configuration
management functions and procedures.

Related Topics

• PL/SQL APIs for XMLType: References
The PL/SQL Application Programming Interfaces (APIs) for XMLType are
described.

• Package DBMS_XDB_ADMIN
PL/SQL package DBMS_XDB_ADMIN has subprograms for managing and configuring
Oracle XML DB and Oracle XML DB Repository.

26.1 DBMS_XDB_REPOS: Access and Manage Repository
Resources

You use PL/SQL package DBMS_XDB_REPOS to access and manage resources in Oracle
XML DB Repository. It includes methods for managing resource security based on
access control lists (ACLs). An ACL is a list of access control entries (ACEs) that
determines which principals (users and roles) have access to which resources.

See Also:

Oracle Database PL/SQL Packages and Types Reference

Table 26-1 describes the functions and procedures in package DBMS_XDB_REPOS.

26-1



Table 26-1    DBMS_XDB_REPOS Resource Access and Management Subprograms

Function/Procedure Description

addResource Insert a new file resource into the repository hierarchy, with the given string as
its contents.

appendResourceMetadata Add user-defined metadata to a resource.

createFolder Create a new folder resource.

createOIDPath Create a virtual path to a resource, based on its object identifier (OID).

createResource Create a new file resource.

deleteResource Delete a resource from the repository.

deleteResourceMetadata Delete specific user-defined metadata from a resource.

existsResource Indicate whether or not a resource exists, given its absolute path.

getContentBLOB Return the contents of a resource as a BLOB instance.

getContentVARCHAR2 Return the contents of a resource as a VARCHAR2 value.

getContentXMLRef Return the contents of a resource as a reference to an XMLType instance.

getContentXMLType Return the contents of a resource as an XMLType instance.

getLockToken Return a resource lock token for the current user, given a path to the resource.

getResOID Return the object identifier (OID) of a resource, given its absolute path.

getResource Return the instance of class DBMS_XDBRESOURCE.XDBResource that is located
at a given path in the repository.

getXDB_tablespace Return the current tablespace of database schema (user account) XDB.

hasBLOBContent Return TRUE if a given resource has BLOB content.

hasCharContent Return TRUE if a given resource has character content.

hasXMLContent Return TRUE if a given resource has XMLType content.

hasXMLReference Return TRUE if a given resource has a reference to XMLType content.

isFolder Return TRUE if a given resource is a folder.

link Create a link to an existing resource.

lockResource Obtain a WebDAV-style lock on a resource, given a path to the resource.

processLinks Process all XLink (deprecated) and XInclude links in a document or folder.

purgeResourceMetadata Delete all user-defined metadata from a given resource.

refreshContentSize Recompute the content size of a given resource.

renameResource Rename a given resource.

touchResource Change the last-modified time to the current time.

unlockResource Unlock a resource, given its lock token and path.

updateResourceMetadata Modify user-defined resource metadata.

Example 26-1 uses package DBMS_XDB_REPOS to manage repository resources. It
creates the following:

• A folder, mydocs, under folder /public

• Two file resources, emp_selby.xml and emp_david.xml

• Two links to the file resources person_selby.xml and person_david.xml

Chapter 26
DBMS_XDB_REPOS: Access and Manage Repository Resources

26-2



It then deletes each of the newly created resources and links. The folder contents are
deleted before the folder itself.

See Also:

User-Defined Repository Metadata for examples using
appendResourceMetadata and deleteResourceMetadata

Example 26-1    Managing Resources Using DBMS_XDB_REPOS

DECLARE
  retb BOOLEAN;
BEGIN
  retb := DBMS_XDB_REPOS.createfolder('/public/mydocs');
  retb := DBMS_XDB_REPOS.createresource('/public/mydocs/emp_selby.xml',
                                        '<emp_name>selby</emp_name>');
  retb := DBMS_XDB_REPOS.createresource('/public/mydocs/emp_david.xml',
                                        '<emp_name>david</emp_name>');
END;
/
PL/SQL procedure successfully completed.
 
CALL DBMS_XDB_REPOS.link('/public/mydocs/emp_selby.xml',
                         '/public/mydocs',
                         'person_selby.xml');
Call completed.
 
CALL DBMS_XDB_REPOS.link('/public/mydocs/emp_david.xml',
                         '/public/mydocs',
                         'person_david.xml');
Call completed.
 
CALL DBMS_XDB_REPOS.deleteresource('/public/mydocs/emp_selby.xml');
Call completed.
 
CALL DBMS_XDB_REPOS.deleteresource('/public/mydocs/person_selby.xml');
Call completed.
 
CALL DBMS_XDB_REPOS.deleteresource('/public/mydocs/emp_david.xml');
Call completed.
 
CALL DBMS_XDB_REPOS.deleteresource('/public/mydocs/person_david.xml');
Call completed.
 
CALL DBMS_XDB_REPOS.deleteresource('/public/mydocs');
Call completed.

26.2 DBMS_XDB_REPOS: ACL-Based Security
Management

PL/SQL package DBMS_XDB_REPOS provides Oracle XML DB ACL-based security
management functions and procedures.

Chapter 26
DBMS_XDB_REPOS: ACL-Based Security Management

26-3



Table 26-2    DBMS_XDB_REPOS: Security Management Subprograms

Function/Procedure Description

ACLCheckPrivileges Check the access privileges granted to the current user by an ACL.

changeOwner Change the owner of a given resource to a given user.

changePrivileges Add an ACE to a resource ACL.

checkPrivileges Check the access privileges granted to the current user for a
resource.

getACLDocument Return the ACL document that protects a resource, given the path
name of the resource.

getPrivileges Return all privileges granted to the current user for a resource.

setACL Set the ACL for a resource.

See Also:

Oracle Database PL/SQL Packages and Types Reference

In Example 26-2, database user HR creates two resources: a folder, /public/mydocs,
with a file in it, emp_selby.xml. Procedure getACLDocument is called on the file
resource, showing that the <principal> user for the document is PUBLIC.

In Example 26-3, the system manager connects and uses procedure setACL to
give the owner (database schema HR) all privileges on the file resource created in
Example 26-2. Procedure getACLDocument then shows that the <principal> user is
dav:owner, the owner (HR).

In Example 26-4, user HR connects and uses function changePrivileges to add a
new access control entry (ACE) to the ACL, which gives all privileges on resource
emp_selby.xml to user oe. Procedure getACLDocument shows that the new ACE was
added to the ACL.

In Example 26-5, user oe connects and calls DBMS_XDB_REPOS.getPrivileges, which
shows all of the privileges granted to user oe on resource emp_selby.xml.

Example 26-2    Using DBMS_XDB_REPOS.GETACLDOCUMENT

CONNECT hr
Enter password: password

Connected.

DECLARE
  retb BOOLEAN;
BEGIN
  retb := DBMS_XDB_REPOS.createFolder('/public/mydocs');
  retb := DBMS_XDB_REPOS.createResource('/public/mydocs/emp_selby.xml',
                                        '<emp_name>selby</emp_name>');
END;
/
PL/SQL procedure successfully completed.
 
SELECT XMLSerialize(DOCUMENT

Chapter 26
DBMS_XDB_REPOS: ACL-Based Security Management

26-4



                    DBMS_XDB_REPOS.getACLDocument('/public/mydocs/emp_selby.xml')
                    AS CLOB)
  FROM DUAL;
 
XMLSERIALIZE(DOCUMENTDBMS_XDB_REPOS.GETACLDOCUMENT('/PUBLIC/MYDOCS/EMP_SELBY.XML
--------------------------------------------------------------------------------
<acl description="Public:All privileges to PUBLIC" xmlns="http://xmlns.oracle.co
m/xdb/acl.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaL
ocation="http://xmlns.oracle.com/xdb/acl.xsd                           http://xm
lns.oracle.com/xdb/acl.xsd" shared="true">
  <ace>
    <grant>true</grant>
    <principal>PUBLIC</principal>
    <privilege>
      <all/>
    </privilege>
  </ace>
</acl>
 
1 row selected.

Example 26-3    Using DBMS_XDB_REPOS.SETACL

CONNECT SYSTEM
Enter password: password

Connected.
 
-- Give all privileges to owner, HR.
CALL DBMS_XDB_REPOS.setACL('/public/mydocs/emp_selby.xml',
                           '/sys/acls/all_owner_acl.xml');
Call completed.
COMMIT;
Commit complete.

SELECT XMLSerialize(DOCUMENT
                    DBMS_XDB_REPOS.getACLDocument('/public/mydocs/emp_selby.xml')
                    AS CLOB)
  FROM DUAL;

XMLSERIALIZE(DOCUMENTDBMS_XDB_REPOS.GETACLDOCUMENT('/PUBLIC/MYDOCS/EMP_SELBY.XML
--------------------------------------------------------------------------------
<acl description="Private:All privileges to OWNER only and not accessible to oth
ers" xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:" xmlns:xsi="htt
p://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.
com/xdb/acl.xsd http://xmlns.oracle.com/xdb/acl.xsd" shared="true">
  <ace>
    <grant>true</grant>
    <principal>dav:owner</principal>
    <privilege>
      <all/>
    </privilege>
  </ace>
</acl>
 
1 row selected.

Example 26-4    Using DBMS_XDB_REPOS.CHANGEPRIVILEGES

CONNECT hr
Enter password: password

Connected.

SET SERVEROUTPUT ON

Chapter 26
DBMS_XDB_REPOS: ACL-Based Security Management

26-5



-- Add an ACE giving privileges to user OE
DECLARE
  r        PLS_INTEGER;
  ace      XMLType;
  ace_data VARCHAR2(2000);
BEGIN
  ace_data := '<ace xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
                    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                    xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
                                        http://xmlns.oracle.com/xdb/acl.xsd
                                        DAV:http://xmlns.oracle.com/xdb/dav.xsd">
                 <principal>OE</principal>
                 <grant>true</grant>
                 <privilege><all/></privilege>
               </ace>';
  ace := XMLType.createXML(ace_data);
  r := DBMS_XDB_REPOS.changePrivileges('/public/mydocs/emp_selby.xml', ace);
END;
/
 
PL/SQL procedure successfully completed.

COMMIT;

SELECT XMLSerialize(DOCUMENT
                    DBMS_XDB_REPOS.getACLDocument('/public/mydocs/emp_selby.xml')
                    AS CLOB)
  FROM DUAL;
 
XMLSERIALIZE(DOCUMENTDBMS_XDB_REPOS.GETACLDOCUMENT('/PUBLIC/MYDOCS/EMP_SELBY.XML
--------------------------------------------------------------------------------
<acl description="Private:All privileges to OWNER only and not accessible to oth
ers" xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:" xmlns:xsi="htt
p://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.
com/xdb/acl.xsd                           http://xmlns.oracle.com/xdb/acl.xsd" s
hared="false">
  <ace>
    <grant>true</grant>
    <principal>dav:owner</principal>
    <privilege>
      <all/>
    </privilege>
  </ace>
  <ace>
    <grant>true</grant>
    <principal>OE</principal>
    <privilege>
      <all/>
    </privilege>
  </ace>
</acl>
 
1 row selected.

Example 26-5    Using DBMS_XDB_REPOS.GETPRIVILEGES

CONNECT oe
Enter password: password

Connected.

SELECT XMLSerialize(DOCUMENT
                    DBMS_XDB_REPOS.getPrivileges('/public/mydocs/emp_selby.xml')
                    AS CLOB)
  FROM DUAL;
 
XMLSERIALIZE(DOCUMENTDBMS_XDB_REPOS.GETPRIVILEGES('/PUBLIC/MYDOCS/EMP_SELBY.XML'
--------------------------------------------------------------------------------

Chapter 26
DBMS_XDB_REPOS: ACL-Based Security Management

26-6



<privilege xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:xsi="http://www.w3.
org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl
.xsd http://xmlns.oracle.com/xdb/acl.xsd DAV: http://xmlns.oracle.com/xdb/dav.xs
d" xmlns:xdbacl="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:">
  <read-properties/>
  <read-contents/>
  <write-config/>
  <link/>
  <unlink/>
  <read-acl/>
  <write-acl-ref/>
  <update-acl/>
  <resolve/>
  <link-to/>
  <unlink-from/>
  <dav:lock/>
  <dav:unlock/>
  <dav:write-properties/>
  <dav:write-content/>
  <dav:execute/>
  <dav:take-ownership/>
  <dav:read-current-user-privilege-set/>
</privilege>
 
1 row selected.

26.3 DBMS_XDB_CONFIG: Configuration Management
PL/SQL package DBMS_XDB_CONFIG provides Oracle XML DB configuration
management functions and procedures.

Note:

Oracle recommends that you use the subprograms of PL/SQL package
DBMS_XDB_CONFIG to set or change FTP or HTTP port numbers. Do not set
ports by directly editing configuration file xdbconfig.xml

Table 26-3    DBMS_XDB_CONFIG: Configuration Management Subprograms

Subprogram Description

addHTTPExpireMapping Add a mapping of a URL pattern to an expiration date to table XDB$CONFIG.
The mapping controls the Expire headers for URLs that match the pattern.

addMIMEMapping Add a MIME mapping to table XDB$CONFIG.

addSchemaLocMapping Add a schema-location mapping to table XDB$CONFIG.

addServlet Add a servlet to table XDB$CONFIG.

addServletMapping Add a servlet mapping to table XDB$CONFIG.

addServletSecRole Add a security role reference to a servlet.

addXMLExtension Add an XML extension to table XDB$CONFIG.

cfg_get Return the configuration information for the current session.

cfg_refresh Refresh the session configuration information using the current Oracle
XML DB configuration file, xdbconfig.xml.

Chapter 26
DBMS_XDB_CONFIG: Configuration Management

26-7



Table 26-3    (Cont.) DBMS_XDB_CONFIG: Configuration Management Subprograms

Subprogram Description

cfg_update Update the Oracle XML DB configuration information. This writes the
configuration file, xdbconfig.xml.

deleteHTTPExpireMapping Delete all mappings of a given URL pattern to an expiration date from table
XDB$CONFIG.

deleteMIMEMapping Delete a MIME mapping from table XDB$CONFIG.

deleteSchemaLocMapping Delete a schema-location mapping from table XDB$CONFIG.

deleteServlet Delete a servlet from table XDB$CONFIG.

deleteServletMapping Delete a servlet mapping from table XDB$CONFIG.

deleteServletSecRole Delete a security role reference from a servlet.

deleteXMLExtension Delete an XML extension from table XDB$CONFIG.

enableDigestAuthentication Enable digest authentication.

getFTPPort Return the current FTP port number.

getHTTPConfigRealm Return the HTTP configuration realm.

getHTTPPort, getHTTPSPort Return the current HTTP(S) port number.

getListenerEndPoint Return the parameters of a listener end point for the HTTP server.

GetRemoteHTTPPort,
GetRemoteHTTPSPort

Return the number of the current remote HTTP(S) port.

setFTPPort Set the Oracle XML DB FTP port to the specified port number.

setHTTPConfigRealm Set the HTTP configuration realm.

setHTTPPort, setHTTPSPort Set the Oracle XML DB HTTP(S) port to the specified port number.

setListenerEndPoint Set the parameters of a listener end point for the HTTP server.

setListenerLocalAccess Either (a) restrict all listener end points to listen on only the localhost
interface or (b) allow all listener end points to listen on both localhost and
non-localhost interfaces.

SetRemoteHTTPPort,
SetRemoteHTTPSPort

Define the port number of a remote HTTP or HTTPS port, respectively. A
remote port number is stored similarly to a non-remote HTTP(S) port, except
they it is not specified in the configuration file, xdbconfig.xml file or in the
configuration XML schema, xdbconfig.xsd.

usedPort Return the ports used by other pluggable databases (PDBs) in the same
multitenant container database (CDB). The return value is an XMLType
instance that lists each PDB by id number and its associated ports by type
and number.

See Also:

Oracle Database PL/SQL Packages and Types Reference, Chapter
"DBMS_XDB_CONFIG"

Example 26-6 uses function cfg_get to retrieve the Oracle XML DB configuration file,
xdbconfig.xml.

Chapter 26
DBMS_XDB_CONFIG: Configuration Management

26-8



Example 26-7 illustrates the use of procedure cfg_update. The current configuration is
retrieved as an XMLType instance and modified. It is then rewritten using cfg_update.

Example 26-6    Using DBMS_XDB_CONFIG.CFG_GET

CONNECT SYSTEM
Enter password: password

Connected.

SELECT DBMS_XDB_CONFIG.cfg_get() FROM DUAL;
 
DBMS_XDB_CONFIG.CFG_GET()
--------------------------------------------------------------------------------
<xdbconfig xmlns="http://xmlns.oracle.com/xdb/xdbconfig.xsd" xmlns:xsi="http://w
ww.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/x
db/xdbconfig.xsd                                     http://xmlns.oracle.com/xdb
/xdbconfig.xsd">
  <sysconfig>
    <acl-max-age>19</acl-max-age>
    <acl-cache-size>32</acl-cache-size>
    <invalid-pathname-chars/>
    <case-sensitive>true</case-sensitive>
    <call-timeout>6000</call-timeout>
    <max-link-queue>65536</max-link-queue>
    <max-session-use>100</max-session-use>
    <persistent-sessions>false</persistent-sessions>
    <default-lock-timeout>3600</default-lock-timeout>
    <xdbcore-logfile-path>/sys/log/xdblog.xml</xdbcore-logfile-path>
    <xdbcore-log-level>0</xdbcore-log-level>
    <resource-view-cache-size>1048576</resource-view-cache-size>
    <protocolconfig>
      <common>
        . . .
      </common>
      <ftpconfig>
        . . .
      </ftpconfig>
      <httpconfig>
        <http-port>0</http-port>
        <http-listener>local_listener</http-listener>
        <http-protocol>tcp</http-protocol>
        <max-http-headers>64</max-http-headers>
        <max-header-size>16384</max-header-size>
        <max-request-body>2000000000</max-request-body>
        <session-timeout>6000</session-timeout>
        <server-name>XDB HTTP Server</server-name>
        <logfile-path>/sys/log/httplog.xml</logfile-path>
        <log-level>0</log-level>
        <servlet-realm>Basic realm=&quot;XDB&quot;</servlet-realm>
        <webappconfig>
        . . .
        </webappconfig>
        <authentication>
        . . .
        </authentication>
    </protocolconfig>
    <xdbcore-xobmem-bound>1024</xdbcore-xobmem-bound>
    <xdbcore-loadableunit-size>16</xdbcore-loadableunit-size>
    <acl-evaluation-method>ace-order</acl-evaluation-method>
  </sysconfig>

Chapter 26
DBMS_XDB_CONFIG: Configuration Management

26-9



</xdbconfig>
 
1 row selected.

Example 26-7    Using DBMS_XDB_CONFIG.CFG_UPDATE

DECLARE
  configxml    SYS.XMLType;
  configxml2   SYS.XMLType;
BEGIN
  -- Get the current configuration
  configxml := DBMS_XDB_CONFIG.cfg_get();
 
  -- Modify the configuration
SELECT XMLQuery(
  'declare default element namespace
   "http://xmlns.oracle.com/xdb/xdbconfig.xsd"; (: :)
   copy $i := $p1 modify
     (for $j in $i/xdbconfig/sysconfig/protocolconfig/httpconfig/http-port
      return replace value of node $j with $p2)
     return $i'
    PASSING CONFIGXML AS "p1", '8000' AS "p2" RETURNING CONTENT)
  INTO configxml2 FROM DUAL;
 
  -- Update the configuration to use the modified version
  DBMS_XDB_CONFIG.cfg_update(configxml2);
END;
/
 
PL/SQL procedure successfully completed.

SELECT DBMS_XDB_CONFIG.cfg_get() FROM DUAL;
 
DBMS_XDB_CONFIG.CFG_GET()
--------------------------------------------------------------------------------
<xdbconfig xmlns="http://xmlns.oracle.com/xdb/xdbconfig.xsd" xmlns:xsi="http://w
ww.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/x
db/xdbconfig.xsd http://xmlns.oracle.com/xdb/xdbconfig.xsd">
  <sysconfig>
    <acl-max-age>15</acl-max-age>
    <acl-cache-size>32</acl-cache-size>
    <invalid-pathname-chars/>
    <case-sensitive>true</case-sensitive>
    <call-timeout>6000</call-timeout>
    <max-link-queue>65536</max-link-queue>
    <max-session-use>100</max-session-use>
    <persistent-sessions>false</persistent-sessions>
    <default-lock-timeout>3600</default-lock-timeout>
    <xdbcore-logfile-path>/sys/log/xdblog.xml</xdbcore-logfile-path>
    <resource-view-cache-size>1048576</resource-view-cache-size>
    <protocolconfig>
      <common>
      . . .
      </common>
      <ftpconfig>
      . . .
      </ftpconfig>
      <httpconfig>
        <http-port>8000</http-port>
        . . .
      </httpconfig>

Chapter 26
DBMS_XDB_CONFIG: Configuration Management

26-10



    </protocolconfig>
    <xdbcore-xobmem-bound>1024</xdbcore-xobmem-bound>
    <xdbcore-loadableunit-size>16</xdbcore-loadableunit-size>
    <acl-evaluation-method>ace-order</acl-evaluation-method>
</xdbconfig>
 
1 row selected.

Chapter 26
DBMS_XDB_CONFIG: Configuration Management

26-11



27
Repository Access Control

Oracle Database provides classic database security such as row-level and column-
level secure access by database users. It also provides fine-grained access control
for resources in Oracle XML DB Repository. You can create, set, and modify access
control lists (ACLs).

• Access Control Concepts
Access control terms and concepts are explained. Each of the access-control
entity — user, role, principal, privilege, access control list (ACL), and access
control entry (ACE) — is implemented declaratively as an XML document or
fragment.

• Database Privileges for Repository Operations
The database privileges needed for common operations on resources in Oracle
XML DB Repository are described.

• Privileges
The privileges provided with Oracle Database include the standard WebDAV
privileges as well as Oracle-specific privileges.

• ACLs and ACEs
ACLs are used to protect resources, which in the case of Oracle Database are
resources (files and folders) in Oracle XML DB Repository. ACLs are composed of
ACEs.

• Overview of Working with Access Control Lists (ACLs)
Oracle Database access control lists (ACLs) are themselves (file) resources
in Oracle XML DB Repository, so all of the access methods that operate on
repository resources also apply to ACLs. In addition, there are several APIs
specific to ACLs in PL/SQL package DBMS_XDB_REPOS.

• ACL Caching
Since ACLs are checked for each access to the data they protect, the performance
of the ACL check operation is critical to the performance of such data,
including Oracle XML DB Repository resources. In Oracle XML DB, the required
performance for this repository operation is achieved by employing several
caches.

• Repository Resources and Database Table Security
A uniform security mechanism for accessing REF-based repository resources is
provided by enabling hierarchy on the tables used to store them. When ACL-
based security is not needed for particular resources, you can optimize their
access by using PL/SQL procedure DBMS_XDBZ.disable_hierarchy to turn off ACL
checking.

• Integration Of Oracle XML DB with LDAP
You can allow Lightweight Directory Access Protocol (LDAP) users to use the
features of Oracle XML DB, including ACLs.

27-1



See Also:

• Repository Access Using Protocols for more information about WebDAV

• Administration of Oracle XML DB for information about configuring and
administering resource security

• PL/SQL APIs for XMLType: References for information about the PL/SQL
APIs you can use to manage resource security

27.1 Access Control Concepts
Access control terms and concepts are explained. Each of the access-control entity —
user, role, principal, privilege, access control list (ACL), and access control entry (ACE)
— is implemented declaratively as an XML document or fragment.

Secure authorization requires defining which users, applications, or functions can have
access to which data, to perform which kinds of operations. There are thus three
dimensions: (1) which users can (2) perform which operations (3) on which data. We
speak of (1) principals, (2) privileges, and (3) objects, corresponding to these three
dimensions, respectively. Principals are users or roles.

Principals and privileges (dimensions 1 and 2) are related in a declarative way by
defining access control lists. These are then related to the third dimension, data,
in various ways, either declaratively or procedurally. For example, you can protect
an Oracle XML DB Repository resource or table data by using PL/SQL procedure
DBMS_XDB_REPOS.setACL to set its controlling ACL.

• Authentication and Authorization
The term authentication refers to verifying the identity of something (for example,
a user, device, or application). The term authorization refers to verifying whether
something that has been authenticated is allowed to access something else (for
example, a database table or WebDAV resource).

• Principal: A User or Role
In the context of fine-grained database access control, a principal is ultimately a
set of one or more people or applications that access information in the database.
A principal can be a database user or role, or an LDAP user or group.

• Privilege: A Permission
A privilege is a particular right or permission that can be granted or denied to a
principal. A privilege is aggregate or atomic. An aggregate privilege includes other
privileges; an atomic privilege does not.

• Access Control Entry (ACE)
An access control entry (ACE) is an XML element (ace) that is an entry in
an access control list (ACL). An ACE either grants or denies access to some
repository resource or other database data by a particular principal.

• Access Control List (ACL)
An access control list (ACL) is a list of access control entries (ACEs). By default,
order in the list is relevant.

Chapter 27
Access Control Concepts

27-2



27.1.1 Authentication and Authorization
The term authentication refers to verifying the identity of something (for example,
a user, device, or application). The term authorization refers to verifying whether
something that has been authenticated is allowed to access something else (for
example, a database table or WebDAV resource).

Principals of various kinds can be authorized to access Oracle XML DB Repository
resources. Application-specific principals can be authenticated.

Related Topics

• Principal: A User or Role
In the context of fine-grained database access control, a principal is ultimately a
set of one or more people or applications that access information in the database.
A principal can be a database user or role, or an LDAP user or group.

27.1.2 Principal: A User or Role
In the context of fine-grained database access control, a principal is ultimately a set of
one or more people or applications that access information in the database. A principal
can be a database user or role, or an LDAP user or group.

A principal is a user or a role. A user can be any person or application that accesses
information in the database. A role is composed of users and possibly other roles,
but this recursion cannot be circular. Ultimately, each role, and thus each principal,
corresponds to a set of users.

A user is represented for access control purposes by an XML fragment with element
user. A role is represented by a fragment with element role.

Oracle Database supports the following as principals:

• Database users and database roles. A database user is also sometimes referred
to as a database schema or a user account. When a person or application logs
onto the database, it uses a database user (schema) and password. A database
role corresponds to a set of database privileges that can be granted to database
users, applications, or other database roles.

• LDAP users and groups of LDAP users. For details about using LDAP principals
see Integration Of Oracle XML DB with LDAP.

When a term such as "user" or "role" is used here without qualification, it applies
to all types of user or role. When it is important to distinguish the type, the qualifier
"database" or "LDAP" is used.

• Database Roles and ACLs Map Privileges to Users
A database role maps privileges to users. In the context of fine-grained access
control, an ACL maps privileges to users, and a role is just a set of users.

• Principal DAV::owner
You can use principal DAV::owner to refer to the owner of a given repository
resource. The owner of a resource is one of the properties of the resource. You
can use principal DAV::owner to facilitate ACL sharing among principals, because
the owner of a resource often has special rights.

Chapter 27
Access Control Concepts

27-3



27.1.2.1 Database Roles and ACLs Map Privileges to Users
A database role maps privileges to users. In the context of fine-grained access control,
an ACL maps privileges to users, and a role is just a set of users.

A database role is granted privileges, just as a database user can be granted
privileges. A database role serves as an intermediary for mapping database privileges
to database users (and applications): a role is granted privileges, and the role is then
granted to users (giving them the privileges).

The line between a group of users and a group of privileges that are granted to those
users is blurred a bit in the concept of database role: the role can serve to group the
privileges that are mapped to the users and to group the users to which the privileges
are mapped. The mapping is done by defining the role and granting it to users, and
traditional database terminology considers the role to be the same thing as the set of
privileges that are granted to it.

In the context of fine-grained access control, a different mechanism, an access control
list (ACL), is used as the intermediary that maps privileges to users. A role is simply
a set of users. In this context, the act of associating privileges with users and with
roles is not a database grant. It is a declarative ACL entry, together with a run-time
evaluation of ACLs and resolution of ACL conflicts.

Please keep this terminology difference in mind, to avoid confusion. As a means of
mapping privileges to users, a database role combines some of the functionality that
in an access-control context is divided into (1) principals, (2) privileges, and (3) ACLs.
In access control terminology, roles are classified with users as principals. In traditional
database terminology, roles are instead classified as sets of privileges.

27.1.2.2 Principal DAV::owner
You can use principal DAV::owner to refer to the owner of a given repository resource.
The owner of a resource is one of the properties of the resource. You can use
principal DAV::owner to facilitate ACL sharing among principals, because the owner
of a resource often has special rights.

27.1.3 Privilege: A Permission
A privilege is a particular right or permission that can be granted or denied to a
principal. A privilege is aggregate or atomic. An aggregate privilege includes other
privileges; an atomic privilege does not.

• Aggregate privilege – A privilege that includes other privileges.

• Atomic privilege – A privilege that does not include other privileges. It cannot be
subdivided.

Aggregate privileges simplify usability when the number of privileges becomes large,
and they promote interoperability between ACL clients.

Aggregate privileges retain their identity: they are not decomposed into the
corresponding atomic (leaf) privileges. In WebDAV terms, Oracle Database aggregate
privileges are not abstract. This implies that an aggregate privilege acts as a set of
pointers to its component privileges, rather than a copy of those components. Thus,
an aggregate privilege is always up to date, even if the definition of a component
changes.

Chapter 27
Access Control Concepts

27-4



The set of privileges granted to a principal controls whether that principal can perform
a given operation on the data that it protects. For example, if the principal (database
user) HR wants to perform the read operation on a given resource, then read privileges
must be granted to principal HR prior to the read operation.

Related Topics

• Privileges
The privileges provided with Oracle Database include the standard WebDAV
privileges as well as Oracle-specific privileges.

27.1.4 Access Control Entry (ACE)
An access control entry (ACE) is an XML element (ace) that is an entry in an access
control list (ACL). An ACE either grants or denies access to some repository resource
or other database data by a particular principal.

The ACE does not, itself, specify which data to protect. That is done outside the
ACE and the ACL, by associating the ACL with target data. One way to make that
association is by using PL/SQL procedure DBMS_XDB_REPOS.setACL.

An Oracle XML DB ACE either grants or denies privileges for a principal. An ace
element has the following:

• Operation grant: either true (to grant) or false (to deny) access.

• Either a valid principal (element principal) or a completed list of principals
(element invert).

• Privileges: A set of privileges to be granted or denied for a particular principal
(element privilege).

• Principal format (optional): The format of the principal. An LDAP distinguished
name (DN), a short name (database user/role or LDAP nickname), or an LDAP
globally unique identifier (GUID). The default value is short name. If the principal
name matches both a database user and an LDAP nickname, it is assumed to
refer to the LDAP nickname.

• Collection (optional): A BOOLEAN attribute that specifies whether the principal is a
collection of users (LDAP group or database role) or a single user (LDAP user or
database user).

Example 27-1 shows a simple ACE that grants privilege DAV::all to principal
DAV::owner. It thus grants all privileges to the owner of the resource to which its ACL
applies.

Example 27-1    Simple Access Control Entry (ACE) that Grants a Privilege

<ace>
  <grant>true</grant>
  <principal>DAV::owner</principal>
  <privilege>
    <DAV::all/>
  </privilege>
</ace>

Chapter 27
Access Control Concepts

27-5



Related Topics

• ACL and ACE Evaluation
Privileges are checked before a principal is allowed to access a repository
resource that is protected by ACLs. This check is done by evaluating the
protecting ACLs for that principal, in order. For each such ACL, the ACEs in it
that apply to the principal are examined, in order.

27.1.5 Access Control List (ACL)
An access control list (ACL) is a list of access control entries (ACEs). By default,
order in the list is relevant.

Example 27-2 shows a simple ACL that contains only the ACE of Example 27-1.

Example 27-2    Simple Access Control List (ACL) that Grants a Privilege

<acl description="myacl"
     xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
     xmlns:dav="DAV:"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
                         http://xmlns.oracle.com/xdb/acl.xsd">
  <ace>
    <grant>true</grant>
    <principal>dav:owner</principal>
    <privilege>
      <dav:all/>
    </privilege>
  </ace>
</acl>

Related Topics

• ACL and ACE Evaluation
Privileges are checked before a principal is allowed to access a repository
resource that is protected by ACLs. This check is done by evaluating the
protecting ACLs for that principal, in order. For each such ACL, the ACEs in it
that apply to the principal are examined, in order.

27.2 Database Privileges for Repository Operations
The database privileges needed for common operations on resources in Oracle
XML DB Repository are described.

Table 27-1 shows the database privileges required for some common operations on
resources in Oracle XML DB Repository. In addition to the privileges listed in column
Privileges Required you must have the resolve privilege for the folder containing the
resource and for all of its parent folders, up to the root folder.

Chapter 27
Database Privileges for Repository Operations

27-6



Table 27-1    Database Privileges Needed for Operations on Oracle XML DB Resources

Operation Description Privileges Required

CREATE Create a new resource in folder F update and link on folder F

DELETE Delete resource R from folder F update and unlink-from on R, update and
unlink on folder F

UPDATE Update the contents or properties of resources
R

update on R

GET An FTP or HTTP(S) retrieval of resource R read-properties, read-contents on R

SET_ACL Set the ACL of a resource R DAV::write-acl on R

LIST List the resources in folder F read-properties on folder F, read-
properties on resources in folder F. Only
those resources on which the user has read-
properties privilege are listed.

See Also:

Upgrade or Downgrade of an Existing Oracle XML DB Installation for
information about treatment of database access privileges when upgrading

27.3 Privileges
The privileges provided with Oracle Database include the standard WebDAV privileges
as well as Oracle-specific privileges.

The standard WebDAV privileges use the WebDAV namespace DAV:1. The
Oracle-specific privileges use the Oracle XML DB ACL namespace, http://
xmlns.oracle.com/xdb/acl.xsd, which has the predefined prefix xdb.

• Atomic Privileges
An atomic privilege does not include other privileges. The available atomic
privileges for repository operations are described, and their database counterparts
are listed.

• Aggregate Privileges
An Aggregate privilege contains other privileges, atomic or aggregate. The
available aggregate privileges for repository operations are listed together with
their component atomic privileges.

1 Note the colon (:) as part of the namespace name. DAV: is the namespace itself, not a prefix. A prefix commonly
used for namespace DAV: is dav, but this is only conventional. dav is not a predefined prefix for Oracle XML DB.

Chapter 27
Privileges

27-7



See Also:

RFC 3744: "Web Distributed Authoring and Versioning (WebDAV) Access
Control Protocol", IETF Network Working Group Request For Comments
#3744, May 2004

27.3.1 Atomic Privileges
An atomic privilege does not include other privileges. The available atomic privileges
for repository operations are described, and their database counterparts are listed.

Table 27-2    Atomic Privileges

Atomic Privilege Description Database
Counterpart

DAV::lock Lock a resource using WebDAV locks. UPDATE

DAV::read-current-user-
privilege-set

Access the DAV::current-user-privilege-set
property of a resource.

N/A

DAV::take-ownership Take ownership of a resource. N/A

DAV::unlock Unlock a resource locked using a WebDAV lock. UPDATE

DAV::write-content Modify the content of a resource. UPDATE

DAV::write-properties Modify the properties of a resource. Lock or
unlock a resource. Modifiable properties include
Author, DisplayName, Language, CharacterSet,
ContentType, SBResExtra, Owner, OwnerID,
CreationDate, Modification Date, ACL, ACLOID,
Lock, and Locktoken.

UPDATE

xdb:link Allow creation of links from a resource. INSERT

xdb:link-to Allow creation of links to a resource. N/A

xdb:read-acl Read the ACL of a resource. SELECT

xdb:read-contents Read the contents of a resource. SELECT

xdb:read-properties Read the properties of a resource. SELECT

xdb:resolve Traverse a folder (for folders only). SELECT

xdb:unlink Allow deletion of links from a resource. DELETE

xdb:unlink-from Allow deletion of links to a resource. N/A

xdb:update-acl Change the contents of the resource ACL. UPDATE

xdb:write-acl-ref Change the ACLOID of a resource. UPDATE

27.3.2 Aggregate Privileges
An Aggregate privilege contains other privileges, atomic or aggregate. The available
aggregate privileges for repository operations are listed together with their component
atomic privileges.

Chapter 27
Privileges

27-8



Table 27-3    Aggregate Privileges

Aggregate Privilege Component Atomic Privileges

DAV::all All atomic DAV privileges.

xdb:all All atomic DAV privileges plus xdb:link-to.

DAV::bind xdb:link

DAV::unbind xdb:unlink

DAV::read xdb:read-properties, xdb:read-contents, xdb:resolve

DAV::read-acl xdb:read-acl

DAV::write DAV::write-content, DAV::write-properties, xdb:link,
xdb:unlink, xdb:unlink-from

DAV::write-acl xdb:write-acl-ref, xdb:update-acl

DAV::update DAV::write-content, DAV::write-properties

xdb:update DAV::write-properties, DAV::write-content

27.4 ACLs and ACEs
ACLs are used to protect resources, which in the case of Oracle Database are
resources (files and folders) in Oracle XML DB Repository. ACLs are composed of
ACEs.

An access control list (ACL) is a standard security mechanism that is used in some
languages, such as Java, and some operating systems, such as Microsoft Windows.
ACLs are also a part of the WebDAV standard.

Repository resources can be accessed using WebDAV, and their protecting ACLs act
as WebDAV ACLs. Each repository resource is protected by some ACL. ACLs that
protect a resource are enforced no matter how the resource is accessed, whether by
WebDAV, SQL, or any other way.

When a new resource is created in Oracle XML DB Repository, by default the ACL on
its parent folder is used to protect the resource. After the resource is created, a new
ACL can be set on it.

ACLs in Oracle Database are XML documents that are validated against the Oracle
Database ACL XML schema, which is located in Oracle XML DB Repository at /sys/
schemas/PUBLIC/xmlns.oracle.com/xdb/acl.xsd. ACLs are themselves stored and
managed as resources in the repository.

Before a principal performs an operation on ACL-protected data, the user privileges
for the protected data are checked. The set of privileges checked depends on the
operation to be performed.

Aggregate privileges are composed of other privileges. When an ACL is stored, the
aggregate privileges it refers to act as sets of pointers to their component privileges.

All ACLs are stored in table XDB$ACL, which is owned by database schema (user
account) XDB. This is an XML schema-based XMLType table. Each row in this table
(and therefore each ACL) has a system-generated object identifier (OID) that can be
accessed as a column named OBJECT_ID.

Chapter 27
ACLs and ACEs

27-9



Each Oracle XML DB Repository resource has a property named ACLOID. The ACLOID
stores the OID of the ACL that protects the resource. An ACL is itself a resource, and
the XMLRef property of an ACL, for example, /sys/acls/all_all_acl.xml, is a REF to
the row in table XDB$ACL that contains the content of the ACL. These two properties
form the link between table XDB$RESOURCE, which stores Oracle XML DB resources,
and table XDB$ACL.

See Also:

• acl.xsd: XML Schema for ACLs for the ACL XML schema

• Oracle Database Security Guide

• System ACLs
The system ACLs, which are predefined and supplied with Oracle Database, are
described.

• ACL and ACE Evaluation
Privileges are checked before a principal is allowed to access a repository
resource that is protected by ACLs. This check is done by evaluating the
protecting ACLs for that principal, in order. For each such ACL, the ACEs in it
that apply to the principal are examined, in order.

• ACL Validation
When an ACL is created, it is validated against the XML schema for ACLs, and
some correctness tests are run, such as ensuring that start and end dates for
ACEs are in chronological order. There is no complete check at ACL creation time
of relations among ACLs.

• Element invert: Complement the Principals in an ACE
It is sometimes more convenient to define a set of principals by complementing
another set of principals — that is the purpose of ACE element invert. Instead of
listing each of the principals that you want to include, wrap the list of principals that
you want to exclude with element invert.

27.4.1 System ACLs
The system ACLs, which are predefined and supplied with Oracle Database, are
described.

Some ACLs are predefined and supplied with Oracle Database. They are referred to
as system ACLs.

There is only one ACL that is self-protected, that is, protected by its own contents. It
is the bootstrap ACL, a system ACL that is located in Oracle XML DB Repository
at /sys/acls/bootstrap_acl.xml. The bootstrap ACL grants READ privilege to all
users. It also grants FULL ACCESS to database roles XDBADMIN (the Oracle XML DB
administrator) and DBA. Database role XDBADMIN is particularly useful for users who
must register global XML schemas.

Other system ACLs include the following. Each is protected by the bootstrap ACL.

• all_all_acl.xml – Grants all privileges to all users.

Chapter 27
ACLs and ACEs

27-10



• all_owner_acl.xml – Grants all privileges to the owner of the resource.

• ro_all_acl.xml – Grants read privileges to all users.

System ACLs use the file-naming convention <privilege>_<users>_acl.xml, where
<privilege> represents the privilege granted, and <users> represents the users that
are granted access to the resource. When you define your own ACLs, you can use
any names you like.

Related Topics

• Local and Global XML Schemas
An XML schema can be registered as local (visible only to its owner, by default) or
global (visible to all database users, by default).

27.4.2 ACL and ACE Evaluation
Privileges are checked before a principal is allowed to access a repository resource
that is protected by ACLs. This check is done by evaluating the protecting ACLs for
that principal, in order. For each such ACL, the ACEs in it that apply to the principal
are examined, in order.

If one ACE grants a certain privilege to the current user and another ACE denies that
privilege to the user, then a conflict arises. There are two possible ways to manage
conflicts among ACEs for the same principal.

• The default behavior, termed ace-order, is to use only the first ACE that occurs
for a given principal. Additional ACEs for that principal have no effect. In this case,
ACE order is relevant.

• You can, however, configure the database to use an alternate behavior, deny-
trumps-grant. In this case, any ACE with child deny for a given principal denies
permission to that principal, whether or not there are other ACEs for that principal
that have a grant child. In this case, deny always takes precedence over grant,
and ACE order is irrelevant.

You can configure ACL evaluation behavior by setting configuration parameter acl-
evaluation-method, in configuration file xdbconfig.xml, to either ace-order or deny-
trumps-grant. The default configuration file specifies ace-method, but the default
value for element acl-evaluation-method, used when no method is given, is deny-
trumps-grant.

Note:

In releases prior to Oracle Database 11g Release 1, only one ACL evaluation
behavior was available: deny-trumps-grant (though it was not specified in
the configuration file).

The change to use ace-order as the default behavior has important
consequences for upgrading and downgrading between database versions.
See Upgrade or Downgrade of an Existing Oracle XML DB Installation.

Chapter 27
ACLs and ACEs

27-11



27.4.3 ACL Validation
When an ACL is created, it is validated against the XML schema for ACLs, and some
correctness tests are run, such as ensuring that start and end dates for ACEs are
in chronological order. There is no complete check at ACL creation time of relations
among ACLs.

Such a complete check of ACL correctness is called ACL validity checking, but it is
not to be confused with its XML schema validity. For an ACL to be valid (as an ACL), it
must also be XML schema-valid, but the converse does not hold.

A full ACL validity check is made at run time, whenever an ACL is evaluated to check
whether a principal has the proper privileges for some operation. If this check finds
that the ACL is invalid, then all privileges that the ACL would grant are denied to the
specified principals.

27.4.4 Element invert: Complement the Principals in an ACE
It is sometimes more convenient to define a set of principals by complementing
another set of principals — that is the purpose of ACE element invert. Instead of
listing each of the principals that you want to include, wrap the list of principals that
you want to exclude with element invert.

In Example 27-3, the first ACE denies privilege privilege1 to all principals except
IntranetUsers. Because (by default) ACEs are considered in the order they appear,
all subsequent ACEs are overridden by the first ACE, so principal NonIntraNetUser is
denied privilege privilege1 in spite of the explicit grant.

Example 27-3    Complementing a Set of Principals with Element invert

<acl description="invert ACL" 
     xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
     xmlns:dav="DAV:" 
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
     xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd 
                         http://xmlns.oracle.com/xdb/acl.xsd">
  <extends-from type="simple" href="/sys/acls/parent_acl.xml"/>
  <ace>
    <grant>false</grant>
    <invert><principal>dav:owner</principal></invert>
    <privilege><read-contents/></privilege>
  </ace>
  <ace>
    <grant>true</grant>
    <principal>GERONIMO</principal>
    <privilege><read-contents/></privilege>
  </ace>
</acl>

27.5 Overview of Working with Access Control Lists (ACLs)
Oracle Database access control lists (ACLs) are themselves (file) resources in Oracle
XML DB Repository, so all of the access methods that operate on repository resources

Chapter 27
Overview of Working with Access Control Lists (ACLs)

27-12



also apply to ACLs. In addition, there are several APIs specific to ACLs in PL/SQL
package DBMS_XDB_REPOS.

Those ACL procedures and functions let you use PL/SQL to access Oracle XML DB
security mechanisms, check user privileges based on a particular ACL, and list the set
of privileges the current user has for a particular ACL and resource.

• Creating an ACL Using DBMS_XDB_REPOS.CREATERESOURCE
An example illustrates using DBMS_XDB_REPOS.createResource to create an ACL.

• Retrieving an ACL Document, Given its Repository Path
An example shows how to retrieve an ACL document, given its location in Oracle
XML DB Repository.

• Setting the ACL of a Resource
An example uses PL/SQL procedure DBMS_XDB_REPOS.setACL to set the ACL of a
resource.

• Deleting an ACL
An example uses PL/SQL procedure DBMS_XDB_REPOS.deleteResource to delete
an ACL.

• Updating an ACL
You can update an ACL using any of the standard ways of updating resources.
In particular, since an ACL is an XML document, you can use Oracle SQL/XML
function XMLQuery with XQuery Update to manipulate ACLs. You must COMMIT after
making any ACL changes.

• Retrieving the ACL Document that Protects a Given Resource
An example illustrates how to use PL/SQL function
DBMS_XDB_REPOS.getACLDocument to retrieve the ACL document that protects a
given resource.

• Retrieving Privileges Granted to the Current User for a Particular Resource
An example illustrates how to use PL/SQL function
DBMS_XDB_REPOS.getPrivileges to retrieve privileges granted to the current user.

• Checking Whether the Current User Has Privileges on a Resource
An example illustrates how to use PL/SQL function
DBMS_XDB_REPOS.checkPrivileges to check whether the current user has a given
set of privileges on a resource. The function returns a nonzero value if the user
has the privileges.

• Checking Whether a User Has Privileges Using the ACL and Resource Owner
Function DBMS_XDB_REPOS.ACLCheckPrivileges is typically used by applications
that must perform ACL evaluation on their own, before allowing a user to perform
an operation.

• Retrieving the Path of the ACL that Protects a Given Resource
An example uses a RESOURCE_VIEW query to retrieve the path of the ACL that
protects a given resource. The query uses the fact that the XMLRef and ACLOID
elements of a resource form the link between an ACL and a resource.

• Retrieving the Paths of All Resources Protected by a Given ACL
An example retrieves the paths of all resources protected by a given ACL.

Related Topics

• Administration of Oracle XML DB
Administration of Oracle XML DB includes installing, upgrading, and configuring it.

Chapter 27
Overview of Working with Access Control Lists (ACLs)

27-13



27.5.1 Creating an ACL Using
DBMS_XDB_REPOS.CREATERESOURCE

An example illustrates using DBMS_XDB_REPOS.createResource to create an ACL.

Example 27-4 creates an ACL as file resource /TESTUSER/acl1.xml. If applied to a
resource, this ACL grants all privileges to the owner of the resource.

Note:

Before performing any operation that uses an ACL file resource that was
created during the current transaction, you must perform a COMMIT operation.
Until you do that, an ORA-22881 "dangling REF" error is raised whenever
you use the ACL file.

Example 27-4    Creating an ACL Using CREATERESOURCE

DECLARE
  b BOOLEAN;
BEGIN
  b := DBMS_XDB_REPOS.createFolder('/TESTUSER');
  b := DBMS_XDB_REPOS.createResource(
         '/TESTUSER/acl1.xml', 
         '<acl description="myacl"
               xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
               xmlns:dav="DAV:"
               xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
               xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
                                   http://xmlns.oracle.com/xdb/acl.xsd">
            <ace>
              <grant>true</grant>
              <principal>dav:owner</principal>
              <privilege>
                <dav:all/>
              </privilege>
            </ace>
          </acl>',
         'http://xmlns.oracle.com/xdb/acl.xsd',
         'acl');
END;

27.5.2 Retrieving an ACL Document, Given its Repository Path
An example shows how to retrieve an ACL document, given its location in Oracle
XML DB Repository.

Chapter 27
Overview of Working with Access Control Lists (ACLs)

27-14



Example 27-5    Retrieving an ACL Document, Given its Repository Path

SELECT a.OBJECT_VALUE FROM RESOURCE_VIEW rv, XDB.XDB$ACL a
  WHERE ref(a)
        = XMLCast(XMLQuery('declare default element namespace
                            "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                            fn:data(/Resource/XMLRef)'
                           PASSING rv.RES RETURNING CONTENT)
                  AS REF XMLType)
    AND equals_path(rv.RES, '/TESTUSER/acl1.xml') = 1;

OBJECT_VALUE
--------------------------------------------------------------------------------
<acl description="myacl" xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="
DAV:" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="
http://xmlns.oracle.com/xdb/acl.xsd                                    http://xm
lns.oracle.com/xdb/acl.xsd" shared="true">
  <ace>
    <grant>true</grant>
    <principal>dav:owner</principal>
    <privilege>
      <dav:all/>
    </privilege>
  </ace>
</acl>

27.5.3 Setting the ACL of a Resource
An example uses PL/SQL procedure DBMS_XDB_REPOS.setACL to set the ACL of a
resource.

Example 27-6 creates resource /TESTUSER/po1.xml and sets its ACL to /TESTUSER/
acl1.xml using PL/SQL procedure DBMS_XDB_REPOS.setACL.

Example 27-6    Setting the ACL of a Resource

DECLARE
  b BOOLEAN;
BEGIN
  b := DBMS_XDB_REPOS_REPOS.createResource('/TESTUSER/po1.xml', 
'Hello');
END;
/
 
CALL DBMS_XDB_REPOS_REPOS.setACL('/TESTUSER/po1.xml',
                                 '/TESTUSER/acl1.xml');

27.5.4 Deleting an ACL
An example uses PL/SQL procedure DBMS_XDB_REPOS.deleteResource to delete an
ACL.

Example 27-7 deletes the ACL created in Example 27-4.

If a resource is being protected by an ACL that you want to delete, change the ACL of
that resource before deleting the ACL.

Chapter 27
Overview of Working with Access Control Lists (ACLs)

27-15



Example 27-7    Deleting an ACL

CALL DBMS_XDB_REPOS_REPOS.deleteResource('/TESTUSER/acl1.xml');

27.5.5 Updating an ACL
You can update an ACL using any of the standard ways of updating resources. In
particular, since an ACL is an XML document, you can use Oracle SQL/XML function
XMLQuery with XQuery Update to manipulate ACLs. You must COMMIT after making any
ACL changes.

Oracle XML DB ACLs are cached, for fast evaluation. When a transaction that updates
an ACL is committed, the modified ACL is picked up by existing database sessions,
after the timeout specified in the Oracle XML DB configuration file, xdbconfig.xml.
The XPath location for this timeout parameter is /xdbconfig/sysconfig/acl-max-age.
The value is expressed in seconds. Sessions initiated after the ACL is modified use
the new ACL without any delay.

If an ACL resource is updated with non-ACL content, the same rules apply as for
deletion. Thus, if any resource is being protected by an ACL that is being updated, you
must first change the ACL.

See Also:

Updating XML Data for information about the Oracle SQL functions used
here to update XML data

You can use FTP or WebDAV to update an ACL. For more details on how to use
these protocols, see Repository Access Using Protocols. You can update an ACL or
an access control entry (ACE) using RESOURCE_VIEW.

Example 27-8 uses SQL/XML function XMLQuery together with XQuery Update to
update the ACL /TESTUSER/acl1.xml by replacing it entirely. The effect is to replace
the principal value DAV::owner by TESTUSER, because the rest of the replacement ACL
is the same as it was before.

Example 27-9 uses XQuery Update to append an ACE to an existing ACL. The ACE
gives privileges read-properties and read-contents to user HR.

Example 27-10 uses XQuery Update to delete an ACE from an ACL. The first ACE is
deleted.

Example 27-8    Updating (Replacing) an Access Control List

UPDATE RESOURCE_VIEW r
 SET r.RES =
   XMLQuery(
     'declare namespace r="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
      declare namespace a="http://xmlns.oracle.com/xdb/acl.xsd"; (: :)
      copy $i := $p1 modify
        (for $j in $i/r:Resource/r:Contents/a:acl
         return replace node $j with $p2)
      return $i'
     PASSING r.RES AS "p1",

Chapter 27
Overview of Working with Access Control Lists (ACLs)

27-16



             '<acl description="myacl"
                   xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
                   xmlns:dav="DAV:"
                   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                   xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
                                       http://xmlns.oracle.com/xdb/acl.xsd">
                <ace>
                  <grant>true</grant>
                  <principal>TESTUSER</principal>
                  <privilege><dav:all/></privilege>
                </ace>
              </acl>' AS "p2"
     RETURNING CONTENT)
  WHERE equals_path(r.RES, '/TESTUSER/acl1.xml') = 1;

Example 27-9    Appending ACEs to an Access Control List

UPDATE RESOURCE_VIEW r
  SET r.RES =
    XMLQuery('declare namespace r="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
              declare namespace a="http://xmlns.oracle.com/xdb/acl.xsd"; (: :)
              copy $i := $p1 modify
                (for $j in $i/r:Resource/r:Contents/a:acl
                 return insert nodes $p2 as last into $j)
              return $i'
             PASSING r.RES AS "p1",
                     XMLType('<ace xmlns="http://xmlns.oracle.com/xdb/acl.xsd">
                                 <grant>true</grant>
                                 <principal>HR</principal>
                                 <privilege>
                                   <read-properties/>
                                   <read-contents/>
                                 </privilege>
                              </ace>') as "p2"
             RETURNING CONTENT)
  WHERE equals_path(r.RES, '/TESTUSER/acl1.xml') = 1;

Example 27-10    Deleting an ACE from an Access Control List

UPDATE RESOURCE_VIEW r
  SET r.RES =
    XMLQuery('declare namespace r="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
              declare namespace a="http://xmlns.oracle.com/xdb/acl.xsd"; (: :)
              copy $i := $p modify delete nodes $i/r:Resource/r:Contents/a:acl/a:ace[1]
              return $i'
             PASSING r.RES AS "p" RETURNING CONTENT)
  WHERE equals_path(r.RES, '/TESTUSER/acl1.xml') = 1;

27.5.6 Retrieving the ACL Document that Protects a Given Resource
An example illustrates how to use PL/SQL function DBMS_XDB_REPOS.getACLDocument
to retrieve the ACL document that protects a given resource.

See Also:

Example 26-2

Chapter 27
Overview of Working with Access Control Lists (ACLs)

27-17



Example 27-11    Retrieving the ACL Document for a Resource

SELECT XMLSerialize(DOCUMENT DBMS_XDB_REPOS.getACLDocument('/TESTUSER/po1.xml')
                    AS CLOB)
  FROM DUAL;
 
XMLSERIALIZE(DOCUMENTDBMS_XDB_REPOS.GETACLDOCUMENT('/TESTUSER/PO1.XML')ASCLOB)
--------------------------------------------------------------------------------
<acl description="myacl" xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="
DAV:" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="
http://xmlns.oracle.com/xdb/acl.xsd                                     http://x
mlns.oracle.com/xdb/acl.xsd">
  <ace>
    <grant>true</grant>
    <principal>TESTUSER</principal>
    <privilege>
      <dav:all/>
    </privilege>
  </ace>
  <ace xmlns="http://xmlns.oracle.com/xdb/acl.xsd">
    <grant>true</grant>
    <principal>HR</principal>
    <privilege>
      <read-properties/>
      <read-contents/>
    </privilege>
  </ace>
</acl>
 
1 row selected.

27.5.7 Retrieving Privileges Granted to the Current User for a
Particular Resource

An example illustrates how to use PL/SQL function DBMS_XDB_REPOS.getPrivileges to
retrieve privileges granted to the current user.

Example 27-12    Retrieving Privileges Granted to the Current User for a Particular Resource

SELECT XMLSerialize(DOCUMENT DBMS_XDB_REPOS.getPrivileges('/TESTUSER/po1.xml')
                    AS CLOB)
  FROM DUAL;
 
XMLSERIALIZE(DOCUMENTDBMS_XDB_REPOS.GETPRIVILEGES('/TESTUSER/PO1.XML')ASCLOB)
--------------------------------------------------------------------------------
<privilege xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:xsi="http://www.w3.
org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl
.xsd http://xmlns.oracle.com/xdb/acl.xsd DAV: http://xmlns.oracle.com/xdb/dav.xs
d" xmlns:xdbacl="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:">
  <read-acl/>
  <dav:execute/>
  <read-contents/>
  <update-acl/>
  <dav:write-content/>
  <dav:read-current-user-privilege-set/>
  <link-to/>
  <resolve/>
  <dav:lock/>
  <unlink-from/>
  <write-config/>
  <dav:write-properties/>
  <dav:unlock/>
  <link/>

Chapter 27
Overview of Working with Access Control Lists (ACLs)

27-18



  <write-acl-ref/>
  <read-properties/>
  <dav:take-ownership/>
  <unlink/>
</privilege>

1 row selected.

27.5.8 Checking Whether the Current User Has Privileges on a
Resource

An example illustrates how to use PL/SQL function DBMS_XDB_REPOS.checkPrivileges
to check whether the current user has a given set of privileges on a resource. The
function returns a nonzero value if the user has the privileges.

Example 27-13 checks to see if the access privileges read-contents and read-
properties have been granted to the current user on resource /TESTUSER/po1.xml.
The positive-integer return value shows that they have.

Example 27-13    Checking If a User Has a Certain Privileges on a Resource

SELECT DBMS_XDB_REPOS.checkPrivileges(
         '/TESTUSER/po1.xml',
         XMLType('<privilege
                      xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
                      xmlns:dav="DAV:"
                      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                      xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
                                          http://xmlns.oracle.com/xdb/acl.xsd">
                    <read-contents/>
                    <read-properties/>
                  </privilege>'))
  FROM DUAL;
 
DBMS_XDB_REPOS.CHECKPRIVILEGES('/TESTUSER/PO1.XML',
---------------------------------------------------
                                                  1
 
1 row selected.

27.5.9 Checking Whether a User Has Privileges Using the ACL and
Resource Owner

Function DBMS_XDB_REPOS.ACLCheckPrivileges is typically used by applications that
must perform ACL evaluation on their own, before allowing a user to perform an
operation.

Example 27-14 checks whether the ACL /TESTUSER/acl1.xml grants the privileges
read-contents and read-properties to the current user, sh. The second argument,
TESTUSER, is the user that is substituted for DAV::owner in the ACL when checking.
Since user sh does not match any of the users granted the specified privileges, the
return value is zero.

Example 27-14    Checking User Privileges Using ACLCheckPrivileges

CONNECT sh
Enter password: <password>

Chapter 27
Overview of Working with Access Control Lists (ACLs)

27-19



Connected.

SELECT DBMS_XDB_REPOS.ACLCheckPrivileges(
         '/TESTUSER/acl1.xml',
         'TESTUSER',
         XMLType('<privilege
                      xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
                      xmlns:dav="DAV:"
                      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                      xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
                                          http://xmlns.oracle.com/xdb/acl.xsd">
                    <read-contents/>
                    <read-properties/>
                  </privilege>'))
  FROM DUAL;
 
DBMS_XDB_REPOS.ACLCHECKPRIVILEGES('/TESTUSER/ACL1.XML','TESTUSER',
------------------------------------------------------------------
                                                                 0
 
1 row selected.

27.5.10 Retrieving the Path of the ACL that Protects a Given Resource
An example uses a RESOURCE_VIEW query to retrieve the path of the ACL that protects
a given resource. The query uses the fact that the XMLRef and ACLOID elements of a
resource form the link between an ACL and a resource.

Example 27-15 retrieves the path to an ACL, given a resource protected by the ACL.
The ACLOID of a protected resource (r) stores the OID of the ACL resource (a) that
protects it. The REF of the ACL resource is the same as that of the object identified by
the protected-resource ACLOID.

The REF of the resource ACLOID can be obtained using Oracle SQL function make_ref,
which returns a REF to an object-table row with a given OID.

In Example 27-15, make_ref returns a REF to the row of table XDB$ACL whose OID is
the /Resource/ACLOID for the resource /TESTUSER/po1.xml. The inner query returns
the ACLOID of the resource. The outer query returns the path to the corresponding
ACL.

Example 27-15    Retrieving the Path of the ACL that Protects a Given Resource

SELECT rv1.ANY_PATH
  FROM RESOURCE_VIEW rv1
  WHERE
    XMLCast(XMLQuery('declare default element namespace
                      "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                      fn:data(/Resource/XMLRef)'
                     PASSING rv1.RES RETURNING CONTENT)
            AS REF XMLType)
    = make_ref(XDB.XDB$ACL,
               (SELECT XMLCast(XMLQuery('declare default element namespace
                                         "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                                         fn:data(/Resource/ACLOID)'
                                        PASSING rv2.RES RETURNING CONTENT)
                               AS REF XMLType)
                  FROM RESOURCE_VIEW rv2
                  WHERE equals_path(rv2.RES, '/TESTUSER/po1.xml') = 1));

ANY_PATH
------------------
/TESTUSER/acl1.xml

Chapter 27
Overview of Working with Access Control Lists (ACLs)

27-20



27.5.11 Retrieving the Paths of All Resources Protected by a Given
ACL

An example retrieves the paths of all resources protected by a given ACL.

Example 27-16 retrieves the paths to the resources whose ACLOID REF matches the
REF of the ACL resource whose path is /TESTUSER/acl1.xml. Function make_ref
returns the resource ACLOID REF.

The inner query retrieves the REF of the specified ACL. The outer query selects the
paths of the resources whose ACLOID REF matches the REF of the specified ACL.

Example 27-16    Retrieving the Paths of All Resources Protected by a Given ACL

SELECT rv1.ANY_PATH
  FROM RESOURCE_VIEW rv1
  WHERE make_ref(XDB.XDB$ACL, 
                 XMLCast(XMLQuery('declare default element namespace
                                   "http://xmlns.oracle.com/xdb/XDBResource.xsd"; 
(: :)
                                   fn:data(/Resource/ACLOID)'
                                  PASSING rv1.RES RETURNING CONTENT)
                         AS REF XMLType))
        = (SELECT XMLCast(XMLQuery('declare default element namespace
                                    "http://xmlns.oracle.com/xdb/XDBResource.xsd"; 
(: :)
                                    fn:data(/Resource/XMLRef)'
                                   PASSING rv2.RES RETURNING CONTENT)
                          AS REF XMLType)
             FROM RESOURCE_VIEW rv2
             WHERE equals_path(rv2.RES, '/TESTUSER/acl1.xml') = 1);

ANY_PATH
-----------------
/TESTUSER/po1.xml
 
1 row selected.

27.6 ACL Caching
Since ACLs are checked for each access to the data they protect, the performance of
the ACL check operation is critical to the performance of such data, including Oracle
XML DB Repository resources. In Oracle XML DB, the required performance for this
repository operation is achieved by employing several caches.

ACLs are saved in a cache that is shared by all sessions in the database instance.
When an ACL is updated, its entry in the cache is invalidated, together with all objects
dependent on it. The next time the ACL is used, a new copy of it is brought into
the cache. Oracle recommends that you share ACLs among resources as much as
possible.

There is a session-specific cache of privileges granted to a given user by a given ACL.
The entries in this cache have a time out (in seconds) specified by the element <acl-

Chapter 27
ACL Caching

27-21



max-age> in the Oracle XML DB configuration file (xdbconfig.xml). For maximum
performance, set this timeout as large as possible. But there is a trade-off here: the
greater the timeout, the longer it takes for current sessions to pick up an updated ACL.

Oracle XML DB also maintains caches to improve performance when using ACLs
that have LDAP principals (LDAP groups or users). The goal of these caches is to
minimize network communication with the LDAP server. One is a shared cache that
maps LDAP GUIDs to the corresponding LDAP nicknames and Distinguished Names
(DNs). This is used when an ACL document is being displayed (or converted to CLOB
or VARCHAR2 values from an XMLType instance). To purge this cache, use procedure
DBMS_XDBZ.purgeLDAPCache. The other cache is session-specific and maps LDAP
groups to their members (nested membership). Whenever Oracle XML DB encounters
an LDAP group for the first time (in a session) it gets the nested membership of that
group from the LDAP server. Hence it is best to use groups with as few members and
levels of nesting as possible.

27.7 Repository Resources and Database Table Security
A uniform security mechanism for accessing REF-based repository resources is
provided by enabling hierarchy on the tables used to store them. When ACL-based
security is not needed for particular resources, you can optimize their access by using
PL/SQL procedure DBMS_XDBZ.disable_hierarchy to turn off ACL checking.

Resources in Oracle XML DB Repository are of two types:

• LOB-based (the content is stored in a LOB which is part of the resource). Access
is determined only by the ACL that protects the resource.

• REF-based (the content is XML data and is stored in a database table). Users
must have the appropriate privilege for the underlying table or view where the XML
content is stored in addition to ACL permissions for the resource.

Since the content of a REF-based resource can be stored in a table, it is possible to
access this data directly using SQL queries on the table. A uniform access control
mechanism is one where the privileges needed for access are independent of the
method of access (for example, FTP, HTTP, or SQL). To provide a uniform security
mechanism using ACLs, the underlying table must first be hierarchy-enabled, before
resources that reference the rows in the table are inserted into Oracle XML DB.

The default tables produced by XML schema registration are hierarchy-enabled.
Enabling hierarchy is the default behavior when you register an XML schema with
Oracle XML DB. You can also enable hierarchy after registration, using procedure
DBMS_XDBZ.enable_hierarchy.

Enabling hierarchy on a resource table does the following:

• Adds two hidden columns to store the ACLOID and the OWNER of the resources that
reference the rows in the table.

• Adds a row-level security (RLS) policy to the table, which checks the ACL
whenever a SELECT, UPDATE, or DELETE operation is executed on the table.

• Creates a database trigger, called the path-index trigger, that ensures that the
last-modified information for a resource is updated whenever the corresponding
row is updated in the XMLType table where the content is stored.

Chapter 27
Repository Resources and Database Table Security

27-22



See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about procedure DBMS_XMLSCHEMA.registerSchema

• Oracle Database PL/SQL Packages and Types Reference for
information about procedure DBMS_XDBZ.enable_hierarchy

In any given table, it is possible that only some of the objects are mapped to Oracle
XML DB resources. Only those objects that are mapped undergo ACL checking, but all
of the objects have table-level security.

Note:

You cannot hide data in XMLType tables from other users if out-of-line storage
of is used. Out-of-line data is not protected by ACL security.

• Optimization: Do not enforce ACL-based security if you do not need it
ACL-based security provides control of access to XML content document-by-
document, rather than just table-by-table. When you call PL/SQL procedure
DBMS_XMLSCHEMA.register_chema, the tables it creates have ACL-based security
enabled, by default.

27.7.1 Optimization: Do not enforce ACL-based security if you do not
need it

ACL-based security provides control of access to XML content document-by-
document, rather than just table-by-table. When you call PL/SQL procedure
DBMS_XMLSCHEMA.register_chema, the tables it creates have ACL-based security
enabled, by default.

One effect of this is that when the XML content of such a table is accessed using
a SQL statement, a call to sys_checkACL is automatically added to the query WHERE
clause, to ensure that the ACL security that was defined is enforced at the SQL level.

Enforcing ACL-based security adds overhead to the SQL query, however. If ACL-
based security is not required, then use procedure DBMS_XDBZ.disable_hierarchy to
turn off ACL checking.

When ACL-based security is enabled for an XMLType table, the execution plan output
for a query of that table contains a filter similar to the following:

3 - filter(SYS_CHECKACL("ACLOID","OWNERID",xmltype(''<privilege
              xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
              xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
              xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
              http://xmlns.oracle.com/xdb/acl.xsd
              DAV:http://xmlns.oracle.com/xdb/dav.xsd">
                        <read-properties/><read-contents/></privilege>''))=1)

Chapter 27
Repository Resources and Database Table Security

27-23



In this example, the filter checks that the user performing the SQL query has read-
contents privilege on each of the documents to be accessed.

After calling DBMS_XDBZ.disable_hierarchy, an execution plan of the same query
does not show SYS_CHECKACL in the filter.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about procedure DBMS_XDBZ.disable_hierarchy

27.8 Integration Of Oracle XML DB with LDAP
You can allow Lightweight Directory Access Protocol (LDAP) users to use the features
of Oracle XML DB, including ACLs.

The typical scenario is a single, shared database schema (user), to which multiple
LDAP users are mapped. This mapping is maintained in the Oracle Internet Directory.
End users can log into the database using their LDAP user name and password. They
are then automatically mapped to the corresponding shared database schema. (Users
can log in using SQL or any of the supported Oracle XML DB protocols.) The implicit
ACL resolution is based on the current LDAP user and the corresponding LDAP group
membership information.

Before you can use LDAP users and groups (also known as LDAP roles) as principals
in Oracle XML DB ACLs, the following prerequisites must be satisfied:

• An Oracle Internet Directory must be set up, and the database must be registered
with it.

• SSL authentication must be set up between the database and the Oracle Internet
Directory.

• A database user must be created that corresponds to the shared database
schema.

• The LDAP users must be created and mapped in the Oracle Internet Directory to
the shared database schema.

• The LDAP groups must be created and their members must be specified.

• ACLs must be defined for the LDAP groups and users, and they must be used to
protect the repository resources to be accessed by the LDAP users.

See Also:

• Oracle Database Security Guide for information about setting up SSL
authentication

• Oracle Database Enterprise User Security Administrator's Guide for
information about using shared database schemas for enterprise (LDAP)
users

Chapter 27
Integration Of Oracle XML DB with LDAP

27-24



Example 27-17 shows an ACL for an LDAP user. Element <principal>
contains the full distinguished name of the LDAP user – in this case,
cn=user1,ou=Americas,o=oracle,l=redwoodshores,st=CA,c=US.

Example 27-18 shows an ACL for an LDAP group. Element <principal> contains the
full distinguished name of the LDAP group.

Example 27-17    ACL Referencing an LDAP User

<acl description="/public/txmlacl1/acl1.xml"
     xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
     xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd 
                         http://xmlns.oracle.com/xdb/acl.xsd">
  <ace principalFormat="DistinguishedName"> 
    <grant>true</grant>
    <principal>cn=user1,ou=Americas,o=oracle,l=redwoodshores,st=CA,c=US
    </principal>
    <privilege>
      <dav:all/>
    </privilege>
  </ace> 
</acl>

Example 27-18    ACL Referencing an LDAP Group

<acl xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
     xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd 
                         http://xmlns.oracle.com/xdb/acl.xsd">
  <ace principalFormat="DistinguishedName"> 
    <grant>true</grant>
    <principal>cn=grp1,ou=Americas,o=oracle,l=redwoodshores,st=CA,c=US
    </principal>
    <privilege>
      <dav:read/>
    </privilege>
  </ace> 
</acl>

Chapter 27
Integration Of Oracle XML DB with LDAP

27-25



28
Repository Access Using Protocols

You can access Oracle XML DB Repository data using protocols FTP and HTTP(S)/
WebDAV.

• Overview of Oracle XML DB Protocol Server
Oracle XML DB also provides the Oracle XML DB protocol server. This supports
standard Internet protocols, FTP, WebDAV, and HTTP(S), for accessing its
hierarchical repository or file system. HTTPS provides secure access to Oracle
XML DB Repository.

• Oracle XML DB Protocol Server Configuration Management
Oracle XML DB protocol server uses configuration parameters stored in
file xdbconfig.xml to initialize its startup state and manage session level
configuration. The session pool size and timeout parameters cannot be changed
dynamically, that is, you must restart the database in order for these changes to
take effect.

• FTP and the Oracle XML DB Protocol Server
File Transfer Protocol (FTP), specified in RFC959, is one of the oldest and most
popular protocols. It provides access to heterogeneous file systems in a uniform
manner. You can use FTP to access and update data stored in Oracle XML DB
Repository.

• HTTP(S) and Oracle XML DB Protocol Server
Oracle XML DB implements HyperText Transfer Protocol (HTTP), HTTP 1.1 as
defined in the RFC2616 specification.

• WebDAV and Oracle XML DB
Web Distributed Authoring and Versioning (WebDAV) is an IETF standard protocol
that Oracle XML DB uses to provide users with a file-system interface to Oracle
XML Repository over the Internet. The most popular way of accessing a WebDAV
server folder is through WebFolders using Microsoft Windows.

28.1 Overview of Oracle XML DB Protocol Server
Oracle XML DB also provides the Oracle XML DB protocol server. This supports
standard Internet protocols, FTP, WebDAV, and HTTP(S), for accessing its hierarchical
repository or file system. HTTPS provides secure access to Oracle XML DB
Repository.

These protocols can provide direct access to Oracle XML DB for many users without
having to install additional software. The user names and passwords to be used
with the protocols are the same as those for SQL*Plus. Enterprise users are also
supported. Database administrators can use these protocols and resource APIs such
as DBMS_XDB_REPOS to access Oracle Automatic Storage Management (Oracle ASM)
files and folders in the repository virtual folder /sys/asm.

As described in Getting Started with Oracle XML DB and Access to Oracle XML DB
Repository Data, Oracle XML DB Repository provides a hierarchical data repository
in the database, designed for XML. Oracle XML DB Repository maps path names (or

28-1



URLs) onto database objects of XMLType and provides management facilities for these
objects.

See Also:

Access to Oracle XML DB Repository Data for more information about
accessing repository information, and restrictions on that access

Note:

• When accessing virtual folder /sys/asm using Oracle XML DB protocols,
you must log in with the privileges of role DBA but as a user other than
SYS.

• Oracle XML DB protocols are not supported on EBCDIC platforms.

• Session Pooling
Oracle XML DB protocol server maintains a shared pool of sessions. Each
protocol connection is associated with one session from this pool. After a
connection is closed the session is put back into the shared pool and can be
used to serve later connections.

28.1.1 Session Pooling
Oracle XML DB protocol server maintains a shared pool of sessions. Each protocol
connection is associated with one session from this pool. After a connection is
closed the session is put back into the shared pool and can be used to serve later
connections.

Session pooling improves performance of HTTP(S) by avoiding the cost of re-creating
session states, especially when using HTTP 1.0, which creates new connections for
each request. For example, a couple of small files can be retrieved by an existing
HTTP/1.1 connection in the time necessary to create a database session. You can
tune the number of sessions in the pool by setting session-pool-size in the Oracle
XML DB configuration file, xdbconfig.xml, or disable it by setting pool size to zero.

Session pooling can affect users writing Java servlets, because other users can see
session state initialized by another request for a different user. Hence, servlet writers
should only use session memory, such as Java static variables, to hold data for the
entire application rather than for a particular user. State for each user must be stored
in the database or in a lookup table, rather than assuming that a session only exists for
a single user.

Figure 28-1 illustrates the Oracle XML DB protocol server components and how they
are used to access files in Oracle XML DB Repository and other data. Only the
relevant components of the repository are shown

Chapter 28
Overview of Oracle XML DB Protocol Server

28-2



Figure 28-1    Oracle XML DB Architecture: Protocol Server

HTTP

WebDAV


Client

FTP

Client

Network Protocol

Server

HTTP /

WebDAV

Server

FTP

Server Foldering

Configuration

Management

ACL

Security

Oracle XML DB Repository

Related Topics

• Guidelines for Oracle XML DB Applications in Java
Design guidelines are presented for writing Oracle XML DB applications in Java.
This includes guidelines for writing and configuring Java servlets for Oracle
XML DB.

28.2 Oracle XML DB Protocol Server Configuration
Management

Oracle XML DB protocol server uses configuration parameters stored in file
xdbconfig.xml to initialize its startup state and manage session level configuration.
The session pool size and timeout parameters cannot be changed dynamically, that is,
you must restart the database in order for these changes to take effect.

• Protocol Server Configuration Parameters
The Oracle XML DB protocol configuration parameters are described. They
include those common to all protocols, those specific to FTP, and those specific to
HTTP(S)/WebDAV.

• Configuring Secure HTTP (HTTPS)
To enable the repository to use secure HTTP connections (HTTPS), a
database administrator (DBA) must configure the database accordingly: configure
parameters http2-port and http2-protocol, enable the HTTP Listener to use
SSL, and enable launching of the TCPS Dispatcher. The DBA must then stop and
restart the database and the listener.

• Using Listener Status to Check Port Configuration
You can use the TNS Listener command, lsnrctl status, to verify that HTTP(S)
and FTP support has been enabled. An example illustrates this.

• Configuring Protocol Port Parameters after Database Consolidation
In a multitenant container database (CDB), protocol server port numbers
distinguish the plugged-in pluggable databases (PDBs): each such database must

Chapter 28
Oracle XML DB Protocol Server Configuration Management

28-3



have unique port numbers. A database administrator (DBA) must ensure that each
port number used by a PDB is unique.

• Configuration and Management of Authentication Mechanisms for HTTP
You configure the authentication mechanisms to allow for HTTP access to Oracle
XML DB Repository by setting element authentication, a child of element
httpconfig, in configuration file xdbconfig.xml.

• Oracle XML DB Repository and File-System Resources
IETF protocol specifications, RFC 959 (FTP), RFC 2616 (HTTP), and RFC 2518
(WebDAV) implicitly assume an abstract, hierarchical file system on the server
side. This is mapped to Oracle XML DB Repository. The repository provides name
resolution, ACL-based security, and an ability to store and retrieve any content.

• Protocol Server Handles XML Schema-Based or Non-Schema-Based XML
Documents
Oracle XML DB protocol server always checks whether a document being inserted
is based on an XML schema that is registered with Oracle XML DB Repository. If it
is, then the XMLType storage model to use is determined by that XML schema. If it
is not, then the document is stored as a BLOB.

• Event-Based Logging
You can log the requests received and responses sent by a protocol server by
setting event number 31098 to level 2.

• Auditing of HTTP and FTP Protocols
You can use SQL statement CREATE AUDIT POLICY to audit Oracle XML DB HTTP
and FTP protocol messages.

Related Topics

• Configuration of Oracle XML DB Using xdbconfig.xml
Oracle XML DB is managed internally through a configuration file, xdbconfig.xml,
which is stored as a resource in Oracle XML DB Repository. As an alternative to
using Oracle Enterprise Manager to configure Oracle XML DB, you can configure
it directly using the Oracle XML DB configuration file.

28.2.1 Protocol Server Configuration Parameters
The Oracle XML DB protocol configuration parameters are described. They include
those common to all protocols, those specific to FTP, and those specific to HTTP(S)/
WebDAV.

Table 28-1 shows the parameters common to all protocols. All of their parameter
names, except those starting with /xdbconfig, are relative to the following XPath in
the Oracle XML DB configuration schema:

/xdbconfig/sysconfig/protocolconfig/common

• FTP-specific parameters – Table 28-2 shows the FTP-specific parameters. These
are relative to the following XPath in the Oracle XML DB configuration schema:

/xdbconfig/sysconfig/protocolconfig/ftpconfig

• HTTP(S)/WebDAV specific parameters, except servlet-related parameters –
Table 28-3 shows the HTTP(S)/WebDAV-specific parameters. These parameters
are relative to the following XPath in the Oracle XML DB configuration schema:

/xdbconfig/sysconfig/protocolconfig/httpconfig

Chapter 28
Oracle XML DB Protocol Server Configuration Management

28-4



For examples of the usage of these parameters, see the configuration file,
xdbconfig.xml.

Table 28-1    Common Protocol Configuration Parameters

Parameter Description

extension-mappings/mime-mappings Specifies the mapping of file
extensions to mime types. When a
resource is stored in Oracle XML DB
Repository, and its mime type is not
specified, this list of mappings is
used to set its mime type.

extension-mappings/lang-mappings Specifies the mapping of file
extensions to languages. When a
resource is stored in Oracle XML DB
Repository, and its language is not
specified, this list of mappings is
used to set its language.

extension-mappings/encoding-mappings Specifies the mapping of file
extensions to encodings. When a
resource is stored in Oracle XML DB
Repository, and its encoding is not
specified, this list of mappings is
used to set its encoding.

xml-extensions Specifies the list of filename
extensions that are treated as XML
content by Oracle XML DB.

session-pool-size Maximum number of sessions that
are kept in the protocol server
session pool

/xdbconfig/sysconfig/call-timeout If a connection is idle for this
time (in hundredths of a second),
then the shared server serving the
connection is freed up to serve other
connections.

session-timeout Time (in hundredths of a second)
after which a session (and
consequently the corresponding
connection) is terminated by the
protocol server if the connection
has been idle for that time. This
parameter is used only if the specific
protocol session timeout is not
present in the configuration

schemaLocation-mappings Specifies the default schema
location for a given namespace.
This is used if the instance
XML document does not contain
an explicit xsi:schemaLocation
attribute.

/xdbconfig/sysconfig/default-lock-timeout Time period after which a WebDAV
lock on a resource becomes invalid.
This could be overridden by a
timeout specified by the client that
locks the resource.

Chapter 28
Oracle XML DB Protocol Server Configuration Management

28-5



Table 28-2    Configuration Parameters Specific to FTP

Parameter Description

buffer-size Size of the buffer, in bytes, used to read data from
the network during an FTP put operation. Set buffer-
size to larger values for higher put performance.
There is a trade-off between put performance and
memory usage. The value can be from 1024 to
1048496, inclusive. The default value is 8192.

ftp-port Port on which FTP server listens. By default, this is
0, which means that FTP is disabled. FTP is disabled
by default because the FTP specification requires that
passwords be transmitted in clear text, which can
present a security hazard. To enable FTP, set this
parameter to the FTP port to use, such as 2100.

ftp-protocol Protocol over which the FTP server runs. By default,
this is tcp.

ftp-welcome-message A user-defined welcome message that is displayed
whenever an FTP client connects to the server. If
this parameter is empty or missing, then the following
default welcome message is displayed: "Unauthorized
use of this FTP server is prohibited and may be subject
to civil and criminal prosecution."

host-name Name used to access the host system. The value can
be an IP address or a name that is mapped to an IP
address using host naming (e.g., in file /etc/hosts on
Linux) — see Oracle Database Net Services Reference.
By default, the IP address returned by the operating
system is used.

session-timeout Time (in hundredths of a second) after which an FTP
connection is terminated by the protocol server if the
connection has been idle for that time.

Table 28-3    Configuration Parameters Specific to HTTP(S)/WebDAV (Except
Servlet)

Parameter Description

http-port Port on which the HTTP(S)/WebDAV server
listens, using protocol http-protocol. By
default, this is 0, which means that HTTP is
disabled. If this parameter is empty (<http-
port/>), then the default value of 0 applies. An
empty parameter is not recommended.

This parameter must be present, whether
or not it is empty. Otherwise, validation
of xdbconfig.xml against XML schema
xdbconfig.xsd fails. The value must be
different from the value of http2-port.
Otherwise, an error is raised.

Chapter 28
Oracle XML DB Protocol Server Configuration Management

28-6



Table 28-3    (Cont.) Configuration Parameters Specific to HTTP(S)/WebDAV
(Except Servlet)

Parameter Description

http2-port Port on which the HTTP(S)/WebDAV server
listens, using protocol http2-protocol.

This parameter is optional, but, if present,
then http2-protocol must also be present.
Otherwise, an error is raised. The value
must be different from the value of http-
port. Otherwise, an error is raised. An empty
parameter (<http2-port/>) also raises an
error.

http-protocol Protocol over which the HTTP(S)/WebDAV
server runs on port http-port. Must be either
TCP or TCPS.

This parameter must be present. Otherwise,
validation of xdbconfig.xml against XML
schema xdbconfig.xsd fails. An empty
parameter (<http-protocol/>) also raises an
error.

http2-protocol Protocol over which the HTTP(S)/WebDAV
server runs on port http2-port. Must be
either TCP or TCPS. If this parameter is empty
(<http2-protocol/>), then the default value
of TCP applies. (An empty parameter is not
recommended.)

This parameter is optional, but, if present, then
http2-port must also be present. Otherwise,
an error is raised.

session-timeout Time (in hundredths of a second) after which
an HTTP(S) session (and consequently the
corresponding connection) is terminated by the
protocol server if the connection has been idle
for that time.

max-header-size Maximum size (in bytes) of an HTTP(S) header

max-request-body Maximum size (in bytes) of an HTTP(S) request
body

webappconfig/welcome-file-list List of filenames that are considered welcome
files. When an HTTP(S) get request for a
container is received, the server first checks if
there is a resource in the container with any of
these names. If so, then the contents of that file
are sent, instead of a list of resources in the
container.

default-url-charset The character set in which an HTTP(S) protocol
server assumes incoming URL is encoded when
it is not encoded in UTF-8 or the Content-Type
field Charset parameter of the request.

Chapter 28
Oracle XML DB Protocol Server Configuration Management

28-7



Table 28-3    (Cont.) Configuration Parameters Specific to HTTP(S)/WebDAV
(Except Servlet)

Parameter Description

allow-repository-anonymous-access Indication of whether or not anonymous HTTP
access to Oracle XML DB Repository data is
allowed using an unlocked ANONYMOUS user
account. The default value is false, meaning
that unauthenticated access to repository data
is blocked. See Anonymous Access to Oracle
XML DB Repository Using HTTP.

authentication The HTTP authentication mechanisms allowed.
See Configuration and Management of
Authentication Mechanisms for HTTP

expire HTTP header that specifies the expiration date
and time for a URL. See Control of URL
Expiration Time.

Note:

Oracle recommends that you use the subprograms of PL/SQL package
DBMS_XDB_CONFIG to set or change FTP or HTTP port numbers. Do not set
ports by directly editing configuration file xdbconfig.xml

Related Topics

• xdbconfig.xsd: XML Schema for Configuring Oracle XML DB
A full listing is presented of file xdbconfig.xsd, which contains the XML schema
used to configure Oracle XML DB.

See Also:

• Administration of Oracle XML DB for more information about the
configuration file xdbconfig.xml

• Configuration of Mappings from Default Namespace to Schema Location
for more information about the schemaLocation-mappings parameter

• Configuration of XML File Extensions for more information about the
xml-extensions parameter

28.2.2 Configuring Secure HTTP (HTTPS)
To enable the repository to use secure HTTP connections (HTTPS), a database
administrator (DBA) must configure the database accordingly: configure parameters
http2-port and http2-protocol, enable the HTTP Listener to use SSL, and enable

Chapter 28
Oracle XML DB Protocol Server Configuration Management

28-8



launching of the TCPS Dispatcher. The DBA must then stop and restart the database
and the listener.

• Enabling the HTTP Listener to Use SSL
To configure the HTTP Listener for SSL, a database administrator (DBA) must
create a wallet for the server and import a certificate; specify the wallet location
to the server; disable client authentication; add an SSL_DH_anon cipher suite to
SSL_CIPHER_SUITES; and create a listening end point that uses TCP/IP with SSL.

• Enabling TCPS Dispatcher
To enable launching of a TCPS dispatcher during database startup, a database
administrator (DBA) must edit the database pfile.

Related Topics

• Configuration of Oracle XML DB Using xdbconfig.xml
Oracle XML DB is managed internally through a configuration file, xdbconfig.xml,
which is stored as a resource in Oracle XML DB Repository. As an alternative to
using Oracle Enterprise Manager to configure Oracle XML DB, you can configure
it directly using the Oracle XML DB configuration file.

28.2.2.1 Enabling the HTTP Listener to Use SSL
To configure the HTTP Listener for SSL, a database administrator (DBA) must create
a wallet for the server and import a certificate; specify the wallet location to the server;
disable client authentication; add an SSL_DH_anon cipher suite to SSL_CIPHER_SUITES;
and create a listening end point that uses TCP/IP with SSL.

More precisely, a DBA must carry out the following steps to configure the HTTP
Listener for SSL.

1. Create a wallet for the server and import a certificate – Use Oracle Wallet Manager
to do the following:

a. Create a wallet for the server.

b. If a valid certificate with distinguished name (DN) of the server is not available,
create a certificate request and submit it to a certificate authority. Obtain a
valid certificate from the authority.

c. Import a valid certificate with the distinguished name (DN) of the server into
the server.

d. Save the new wallet in obfuscated form, so that it can be opened without a
password.

See Also:

Oracle Database Enterprise User Security Administrator's Guide for
information about how to create a wallet

2. Specify the wallet location to the server – Use Oracle Net Manager to do this.
Ensure that the configuration is saved to disk. This step updates files sqlnet.ora
and listener.ora.

3. Disable client authentication at the server, since most Web clients do not have
certificates. Use Oracle Net Manager to do this. This step updates file sqlnet.ora.

Chapter 28
Oracle XML DB Protocol Server Configuration Management

28-9



4. Add an SSL_DH_anon cipher suite to SSL_CIPHER_SUITES – Use any of these:

• SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

• SSL_DH_anon_WITH_RC4_128_MD5

• SSL_DH_anon_WITH_DES_CBC_SHA

This step updates file sqlnet.ora.

5. Create a listening end point that uses TCP/IP with SSL – Use Oracle Net Manager
to do this. This step updates file listener.ora.

See Also:

Oracle Database Security Guide for detailed information regarding steps 1
through 5

28.2.2.2 Enabling TCPS Dispatcher
To enable launching of a TCPS dispatcher during database startup, a database
administrator (DBA) must edit the database pfile.

The following line must be added to the pfile, where SID is the SID of the database:

dispatchers=(protocol=tcps)(service=SIDxdb)

The database pfile location depends on your operating system, as follows:

• MS Windows – PARENT/admin/orcl/pfile, where PARENT is the parent folder of
folder ORACLE_HOME

• UNIX, Linux – $ORACLE_HOME/admin/$ORACLE_SID/pfile

28.2.3 Using Listener Status to Check Port Configuration
You can use the TNS Listener command, lsnrctl status, to verify that HTTP(S) and
FTP support has been enabled. An example illustrates this.

Example 28-1    Listener Status with FTP and HTTP(S) Protocol Support Enabled

LSNRCTL for 32-bit Windows: Version 11.1.0.5.0 - Production on 20-AUG-2007 16:02:34
 
Copyright (c) 1991, 2007, Oracle.  All rights reserved.
 
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC1521))) STATUS of the LISTENER
--------------------------------------------------------------------------------------------
Alias                          LISTENER
Version                        TNSLSNR for 32-bit Windows: Version 11.1.0.5.0 - Beta
Start Date                     20-JUN-2007 15:35:40
Uptime                         0 days 16 hr. 47 min. 42 sec
Trace Level                    off
Security                       ON: Local OS Authentication
SNMP                           OFF
Listener Parameter File        C:\oracle\product\11.1.0\db_1\network\admin\listener.ora

Chapter 28
Oracle XML DB Protocol Server Configuration Management

28-10



Listener Log File              c:\oracle\diag\tnslsnr\quine-pc\listener\alert\log.xml
 
Listening Endpoints Summary... 
(DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(PIPENAME=\\.\pipe\EXTPROC1521ipc)))
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=quine-pc.example.com)(PORT=1521)))
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=quine-pc.example.com)
             (PORT=21))(Presentation=FTP)(Session=RAW))
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=quine-pc.example.com)
             (PORT=443))(Presentation=HTTP)(Session=RAW))
Services Summary...
Service "orcl.example.com" has 1 instance(s).
  Instance "orcl", status READY, has 1 handler(s) for this service...
Service "orclXDB.example.com" has 1 instance(s).
  Instance "orcl", status READY, has 1 handler(s) for this service...
Service "orcl_XPT.example.com" has 1 instance(s).
  Instance "orcl", status READY, has 1 handler(s) for this service...
The command completed successfully

28.2.4 Configuring Protocol Port Parameters after Database
Consolidation

In a multitenant container database (CDB), protocol server port numbers distinguish
the plugged-in pluggable databases (PDBs): each such database must have unique
port numbers. A database administrator (DBA) must ensure that each port number
used by a PDB is unique.

To avoid port conflicts and to resolve any port conflicts that might result from
consolidation, a database administrator must proceed as follows:

1. Use PL/SQL function DBMS_XDB_CONFIG.usedPort to obtain the port numbers used
by the other PDBs in the same CDB.

2. Use PL/SQL subprogram DBMS_XDB_CONFIG.setFTPPort or
DBMS_XDB_CONFIG.setHTTPPort, as needed, to change each port number that
conflicts so that it is unique.

Note:

After a PDB plug-in or clone operation, and until Oracle XML DB has
been fully initialized, the port parameter settings in the configuration file,
xdbconfig.xml, might be undefined. Oracle recommends that you use
DBMS_XDB_CONFIG subprogram getFTPPort, getHTTPPort, getHTTPSPort,
setFTPPort, setHTTPPort, or setHTTPSPort to obtain or modify a port value.

28.2.5 Configuration and Management of Authentication Mechanisms
for HTTP

You configure the authentication mechanisms to allow for HTTP access to Oracle
XML DB Repository by setting element authentication, a child of element
httpconfig, in configuration file xdbconfig.xml.

Starting with 12c Release 1 (12.1.0.1), Oracle Database supports not only basic
authentication but also digest access authentication.

Chapter 28
Oracle XML DB Protocol Server Configuration Management

28-11



User credentials are case-sensitive. In particular, to be authenticated, a user name
must exactly match the name as it was created (which by default is all uppercase).

Digest access authentication, also known as digest authentication provides
encryption of user credentials (name, password, etc.) without the overhead of
complete data encryption.

Note:

By default, when a user is created digest authentication is not enabled for the
new user. To enable digest authentication when creating a user, use clause
DIGEST ENABLE with SQL statement CREATE USER, specifying the password
for the user.

You can also enable digest authentication for an existing user. To do that,
use DIGEST ENABLE with SQL statement ALTER USER. This initializes the user
password for digest authentication, but it does not directly enable digest
authentication. Digest authentication is enabled for the user when the user
next logs in with the password.

You can configure the authentication mechanism to use by setting element
authentication, a child of element httpconfig, in configuration file xdbconfig.xml.
Element authentication is optional. If absent then only basic authentication is used.

Element authentication has two possible child elements:

• Element allow-mechanism specifies an allowed mechanism: basic, digest, or
custom. Use a separate allow-mechanism element to specify each mechanism you
want to allow.

• Element digest-auth is optional. It specifies information for a digest mechanism.
Its child element nonce-timeout specifies the number of seconds that a given
nonce remains valid. The default value is 300 seconds.

The default value is used if there is an allow-mechanism that specifies digest but
there is no digest-auth element. A digest-auth element is ignored if there is no
allow-mechanism that specifies digest.

HTTP requests are accepted for each allow-mechanism specified. Authentication
challenges are presented in the order of the specified allow-mechanism types. For
example, if both digest and basic are present, in that order, then a digest challenge
is presented before a basic challenge. Oracle recommends that you always put a
stronger authentication before a weaker one. (Digest authentication is stronger than
basic authentication.)

• Nonces for Digest Authentication
With digest authentication, the server generates a nonce whenever it issues an
unauthorized response. Clients include the nonce in requests to the server. The
server checks nonces received from the client to see if it needs to refuse the client
authentication. A client can authenticate the server the same way.

Chapter 28
Oracle XML DB Protocol Server Configuration Management

28-12



See Also:

• Upgrade or Downgrade of an Existing Oracle XML DB Installation for
installation, upgrade, and downgrade considerations

• HTTP Authentication: Basic and Digest Access Authentication, IETF
RFC2617

• Oracle Database SQL Language Referencexxx for information about
SQL statement CREATE USER

• Oracle Database SQL Language Referencexxx for information about
SQL statement ALTER USER

28.2.5.1 Nonces for Digest Authentication
With digest authentication, the server generates a nonce whenever it issues an
unauthorized response. Clients include the nonce in requests to the server. The
server checks nonces received from the client to see if it needs to refuse the client
authentication. A client can authenticate the server the same way.

A nonce is a unique string that the server generates each time it issues an HTTP
401 (unauthorized) response. Clients include the nonce in subsequent requests that
they issue to the server. The server checks the nonce it receives from the client.
If incorrect or if the nonce-timeout period has expired, the server can immediately
refuse to authenticate.

(A client can use the same mechanism to authenticate the server: it can generate its
own nonce. Both client and server can use this client nonce to help prevent particular
plain-text attacks.)

A new nonce is created each time the server sends a digest challenge to a client. A
nonce is based on a nonce key. The initial nonce key is generated randomly when
you install or upgrade the database.

If you use digest authentication then Oracle also recommends that you create a new
nonce key periodically, to ensure the integrity of the key. You use PL/SQL procedure
DBMS_XDB_ADMIN.createNonceKey to do this.

28.2.6 Oracle XML DB Repository and File-System Resources
IETF protocol specifications, RFC 959 (FTP), RFC 2616 (HTTP), and RFC 2518
(WebDAV) implicitly assume an abstract, hierarchical file system on the server
side. This is mapped to Oracle XML DB Repository. The repository provides name
resolution, ACL-based security, and an ability to store and retrieve any content.

The repository can store binary data input through FTP and XML schema-based
documents.

Chapter 28
Oracle XML DB Protocol Server Configuration Management

28-13



See Also:

• FTP Protocol Specification, IETF RFC959

• HTTP Protocol Specification, IETF RFC2616

• WebDAV Protocol Specification, RFC2518

28.2.7 Protocol Server Handles XML Schema-Based or Non-Schema-
Based XML Documents

Oracle XML DB protocol server always checks whether a document being inserted is
based on an XML schema that is registered with Oracle XML DB Repository. If it is,
then the XMLType storage model to use is determined by that XML schema. If it is not,
then the document is stored as a BLOB.

28.2.8 Event-Based Logging
You can log the requests received and responses sent by a protocol server by setting
event number 31098 to level 2.

To set this event, add the following line to your init.ora file and restart the database:

event="31098 trace name context forever, level 2"

28.2.9 Auditing of HTTP and FTP Protocols
You can use SQL statement CREATE AUDIT POLICY to audit Oracle XML DB HTTP and
FTP protocol messages.

You can audit all or failed HTTP messages, 401 AUTH HTTP return-code messages,
and all or failed FTP messages. Columns with name prefix PROTOCOL_ of data
dictionary view UNIFIED_AUDIT_TRAIL capture the audit result.

Be aware that a unified audit policy for HTTP and FTP protocols can affect
performance.

See Also:

Oracle Database Security Guide

28.3 FTP and the Oracle XML DB Protocol Server
File Transfer Protocol (FTP), specified in RFC959, is one of the oldest and most
popular protocols. It provides access to heterogeneous file systems in a uniform
manner. You can use FTP to access and update data stored in Oracle XML DB
Repository.

Chapter 28
FTP and the Oracle XML DB Protocol Server

28-14



• Oracle XML DB Protocol Server: FTP Features
File Transfer Protocol (FTP) is implemented by dedicated clients at the operating
system level, file-system explorer clients, and browsers. FTP is typically session-
oriented: a user session is created through an explicit logon, a number of files or
directories are downloaded and browsed, and then the connection is closed.

28.3.1 Oracle XML DB Protocol Server: FTP Features
File Transfer Protocol (FTP) is implemented by dedicated clients at the operating
system level, file-system explorer clients, and browsers. FTP is typically session-
oriented: a user session is created through an explicit logon, a number of files or
directories are downloaded and browsed, and then the connection is closed.

The transfer of command messages and the return of status happens on a single
connection. However, a new connection is opened between the client and the server
for data transfer. With HTTP(S), by contrast, commands and data are transferred using
a single connection.

Note:

For security reasons, FTP is disabled, by default, for Oracle Database. This
is because the IETF FTP protocol specification requires that passwords be
transmitted in clear text. Disabling is done by configuring the FTP server port
as zero (0). To enable FTP, set the ftp-port parameter to the FTP port to
use, such as 2100.

• FTP Features That Are Not Supported
FTP features that are not supported by Oracle XML DB include record-oriented
files and operations append, allocate, account, and abort.

• Supported FTP Client Methods
Oracle XML DB supports several FTP client methods for access to Oracle
XML DB Repository.

• FTP Quote Methods
Oracle Database supports several FTP quote methods, which provide information
directly to Oracle XML DB.

• Uploading Content to Oracle XML DB Repository Using FTP
An example shows the commands issued and the output generated when
a standard command line FTP tool loads documents into Oracle XML DB
Repository:

• Using FTP with Oracle ASM Files
Oracle Automatic Storage Management (Oracle ASM) organizes database files
into disk groups for simplified management and added benefits such as database
mirroring and I/O balancing. You can use protocols and resource APIs to access
Oracle ASM files in repository virtual folder /sys/asm. All files in /sys/asm are
binary.

• Using FTP on the Standard Port Instead of the Oracle XML DB Default Port
You can use the Oracle XML DB configuration file, xdbconfig.xml, to configure
FTP to listen on any port. By default, FTP listens on a non-standard, unprotected
port.

Chapter 28
FTP and the Oracle XML DB Protocol Server

28-15



• Using IPv6 IP Addresses with FTP
Starting with 11g Release 2 (11.2), Oracle Database supports the use of Internet
Protocol Version 6, IPv6 (in addition to Internet Protocol Version 4).

• FTP Server Session Management
Oracle XML DB protocol server provides session management for FTP. After a
short wait for a new command, FTP returns to the protocol layer and the shared
server is freed up to serve other connections.

• Handling Error 421. Modifying the Default Timeout Value of an FTP Session
If you are frequently disconnected from the server and you must reconnect and
traverse the entire directory before performing the next operation, then you might
need to modify the default timeout value for FTP sessions. If the session is idle for
more than this period, it is disconnected.

• FTP Client Failure in Passive Mode
Do not use FTP in passive mode to connect remotely to a server that has
HOSTNAME configured in listener.ora as localhost or 127.0.0.1.

Related Topics

• Configuration of Oracle XML DB Using xdbconfig.xml
Oracle XML DB is managed internally through a configuration file, xdbconfig.xml,
which is stored as a resource in Oracle XML DB Repository. As an alternative to
using Oracle Enterprise Manager to configure Oracle XML DB, you can configure
it directly using the Oracle XML DB configuration file.

See Also:

FTP Protocol Specification, IETF RFC 959

28.3.1.1 FTP Features That Are Not Supported
FTP features that are not supported by Oracle XML DB include record-oriented files
and operations append, allocate, account, and abort.

Oracle XML DB implements FTP, as defined by RFC 959, with the exception of the
following optional features:

• Record-oriented files, for example, only the FILE structure of the STRU method is
supported. This is the most widely used structure for transfer of files. It is also the
default specified by the specification. Structure mount is not supported.

• Append.

• Allocate. This pre-allocates space before file transfer.

• Account. This uses the insecure Telnet protocol.

• Abort.

28.3.1.2 Supported FTP Client Methods
Oracle XML DB supports several FTP client methods for access to Oracle XML DB
Repository.

• cdup – change working directory to parent directory

Chapter 28
FTP and the Oracle XML DB Protocol Server

28-16



• cwd – change working directory

• dele – delete file (not directory)

• list, nlst – list files in working directory

• mkd – create directory

• noop – do nothing (but timeout counter on connection is reset)

• pasv, port – establish a TCP data connection

• pwd – get working directory

• quit – close connection and quit FTP session

• retr – retrieve data using an established connection

• rmd – remove directory

• rnfr, rnto – rename file (two-step process: from file, to file)

• stor – store data using an established connection

• syst – get system version

• type – change data type: ascii or image binary types only

• user, pass – user login

See Also:

• FTP Quote Methods for supported FTP quote methods

• Using FTP with Oracle ASM Files for an example of using FTP method
proxy

28.3.1.3 FTP Quote Methods
Oracle Database supports several FTP quote methods, which provide information
directly to Oracle XML DB.

• rm_r – Remove file or folder <resource_name>. If a folder, recursively remove all
files and folders contained in <resource_name>.

quote rm_r <resource_name>

• rm_f – Forcibly remove a resource.

quote rm_f <resource_name>

• rm_rf – Combines rm_r and rm_f: Forcibly and recursively removes files and
folders.

quote rm_rf <resource_name>

Chapter 28
FTP and the Oracle XML DB Protocol Server

28-17



• set_nls_locale – Specify the character-set encoding (<charset_name>) to be
used for file and directory names in FTP methods (including names in method
responses).

quote set_nls_locale {<charset_name> | NULL} 

Only IANA character-set names can be specified for <charset_name>. If
nls_locale is set to NULL or is not set, then the database character set is used.

• set_charset – Specify the character set of the data to be sent to the server.

quote set_charset  {<charset_name> | NULL}

The set_charset method applies to only text files, not binary files, as determined
by the file-extension mapping to MIME types that is defined in configuration file
xdbconfig.xml.

If the parameter provided to set_charset is <charset_name> (not NULL), then it
specifies the character set of the data.

If the parameter provided to set_charset is NULL, or if no set_charset command
is given, then the MIME type of the data determines the character set for the data.

– If the MIME type is not text/xml), then the data is not assumed to be XML.
The database character set is used.

– If the MIME type is text/xml, then the data represents an XML document.

If a byte order mark1 (BOM) is present in the XML document, then it
determines the character set of the data.

If there is no BOM, then:

* If there is an encoding declaration in the XML document, then it
determines the character set of the data.

* If there is no encoding declaration, then the UTF-8 character set is used.

28.3.1.4 Uploading Content to Oracle XML DB Repository Using FTP
An example shows the commands issued and the output generated when a standard
command line FTP tool loads documents into Oracle XML DB Repository:

The key point demonstrated by Figure 28-3 and Example 28-2 is that neither Windows
Explorer nor an FTP tool is aware that it is working with Oracle XML DB. Since such
tools and Oracle XML DB both support open Internet protocols they work with each
other out of the box.

Any tool that understands the WebDAV or FTP protocol can be used to create content
managed by Oracle XML DB Repository. No additional software needs to be installed
on the client or the mid-tier.

When the contents of folders are viewed using a tool such as Windows Explorer or
FTP, the lengths of any XML Schema-based documents contained in the folder are
shown as zero (0) bytes. This was designed as such for two reasons:

1 BOM is a Unicode-standard signature that indicates the order of the stream of bytes that follows it.

Chapter 28
FTP and the Oracle XML DB Protocol Server

28-18



• It is not clear what the size of a document should be. Is it the size of the CLOB
instance generated by printing the document, or the number of bytes required to
store the objects used to persist the document inside the database?

• Regardless of which definition is chosen, calculating and maintaining this
information is costly.

Example 28-2    Uploading Content to the Repository Using FTP

$ ftp mdrake-sun 2100
Connected to mdrake-sun.
220 mdrake-sun FTP Server (Oracle XML DB/Oracle Database 10g Enterprise 
Edition
Release 10.1.0.1.0 - Beta) ready.
Name (mdrake-sun:oracle10): QUINE
331 Password required for QUINE
Password: password
230 QUINE logged in
ftp> cd /source/schemas
250 CWD Command successful
ftp> mkdir PurchaseOrders
257 MKD Command successful
ftp> cd PurchaseOrders
250 CWD Command successful
ftp> mkdir 2002
257 MKD Command successful
ftp> cd 2002
250 CWD Command successful
ftp> mkdir "Apr"
257 MKD Command successful
ftp> put "Apr/AMCEWEN-20021009123336171PDT.xml"
"Apr/AMCEWEN-20021009123336171PDT.xml"
200 PORT Command successful
150 ASCII Data Connection
226 ASCII Transfer Complete
local: Apr/AMCEWEN-20021009123336171PDT.xml remote:
Apr/AMCEWEN-20021009123336171PDT.xml
4718 bytes sent in 0.0017 seconds (2683.41 Kbytes/s)
ftp> put "Apr/AMCEWEN-20021009123336271PDT.xml"
"Apr/AMCEWEN-20021009123336271PDT.xml"
200 PORT Command successful
150 ASCII Data Connection
226 ASCII Transfer Complete
local: Apr/AMCEWEN-20021009123336271PDT.xml remote:
Apr/AMCEWEN-20021009123336271PDT.xml
4800 bytes sent in 0.0014 seconds (3357.81 Kbytes/s)
.....
ftp> cd "Apr"
250 CWD Command successful
ftp> ls -l
200 PORT Command successful
150 ASCII Data Connection
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 AMCEWEN-20021009123336171PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 AMCEWEN-20021009123336271PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 EABEL-20021009123336251PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 PTUCKER-20021009123336191PDT.xml

Chapter 28
FTP and the Oracle XML DB Protocol Server

28-19



-rw-r--r1 QUINE oracle 0 JUN 24 15:41 PTUCKER-20021009123336291PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 SBELL-20021009123336231PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 SBELL-20021009123336331PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 SKING-20021009123336321PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 SMCCAIN-20021009123336151PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 SMCCAIN-20021009123336341PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 VJONES-20021009123336301PDT.xml
226 ASCII Transfer Complete
remote: -l
959 bytes received in 0.0027 seconds (349.45 Kbytes/s)
ftp> cd ".."
250 CWD Command successful
....
ftp> quit
221 QUIT Goodbye.
$

28.3.1.5 Using FTP with Oracle ASM Files
Oracle Automatic Storage Management (Oracle ASM) organizes database files into
disk groups for simplified management and added benefits such as database mirroring
and I/O balancing. You can use protocols and resource APIs to access Oracle ASM
files in repository virtual folder /sys/asm. All files in /sys/asm are binary.

Typical uses are listing, copying, moving, creating, and deleting Oracle ASM files and
folders. Example 28-3 is an example of navigating the Oracle ASM virtual folder and
listing the files in a subfolder.

The structure of the Oracle ASM virtual folder, /sys/asm, is described in Access to
Oracle XML DB Repository Data. In Example 28-3, the disk groups are DATA and
RECOVERY; the database name is MFG; and the directories created for aliases are dbs
and tmp. This example navigates to a subfolder, lists its files, and copies a file to the
local file system.

In Example 28-3, after connecting to and logging onto database myhost (first four
lines), FTP methods cd and ls are used to navigate and list folders, respectively.
When in folder /sys/asm/DATA/dbs, FTP command get is used to copy files t_db1.f
and t_ax1.f to the current folder of the local file system. Then, FTP command put is
used to copy file my_db2.f from the local file system to folder /sys/asm/DATA/dbs.

Database administrators can copy Oracle Automatic Storage Management (Oracle
ASM) files from one database server to another or between the database and a local
file system. Example 28-4 shows copying between two databases. For this, the proxy
FTP client method can be used, if available. The proxy method provides a direct
connection to two different remote FTP servers.

Example 28-4 copies an Oracle ASM file from one database to another. Terms with
the suffix 1 correspond to database server1. Terms with the suffix 2 correspond to
database server2. Depending on your FTP client, the passwords you type might be
echoed on your screen. Take the necessary precautions so that others do not see
these passwords.

In Example 28-4:

• Line 1 opens an FTP control connection to the Oracle XML DB FTP server,
server1.

Chapter 28
FTP and the Oracle XML DB Protocol Server

28-20



• Lines 2–4 log the database administrator onto server1 as USERNAME1.

• Line 5 navigates to /sys/asm/DATAFILE/MFG/DATAFILE on server1.

• Line 6 opens an FTP control connection to the second database server, server2.
At this point, the FTP command proxy ? could be issued to see the available FTP
commands on the secondary connection. (This is not shown.)

• Lines 7–9 log the database administrator onto server2 as USERNAME2.

• Line 10 navigates to /sys/asm/DATAFILE/MFG/DATAFILE on server2.

• Line 11 copies Oracle ASM file dbs2.f from server2 to Oracle ASM file tmp1.f on
server1.

• Line 12 copies Oracle ASM file dbs1.f from server1 to Oracle ASM file tmp2.f on
server2.

Example 28-3    Navigating Oracle ASM Folders

ftp> open myhost 7777
ftp> user system
Password required for SYSTEM
Password: password
ftp> cd /sys/asm
ftp> ls
DATA
RECOVERY
ftp> cd DATA
ftp> ls
dbs
MFG
ftp> cd dbs
ftp> ls
t_dbl.f
t_axl.f
ftp> binary
ftp> get t_dbl.f, t_axl.f
ftp> put my_db2.f

Example 28-4    Transferring Oracle ASM Files Between Databases with FTP
proxy Method

 1 ftp> open server1 port1
 2 ftp> user username1
 3 Password required for USERNAME1
 4 Password: password-for-username1
 5 ftp> cd /sys/asm/DATAFILE/MFG/DATAFILE
 6 ftp> proxy open server2 port2
 7 ftp> proxy user username2
 8 Password required for USERNAME2
 9 Password: password-for-username2
10 ftp> proxy cd /sys/asm/DATAFILE/MFG/DATAFILE
11 ftp> proxy put dbs2.f tmp1.f
12 ftp> proxy get dbs1.f tmp2.f

Chapter 28
FTP and the Oracle XML DB Protocol Server

28-21



28.3.1.6 Using FTP on the Standard Port Instead of the Oracle XML DB Default
Port

You can use the Oracle XML DB configuration file, xdbconfig.xml, to configure FTP to
listen on any port. By default, FTP listens on a non-standard, unprotected port.

To use FTP on the standard port, 21, your database administrator must do the
following:

1. (UNIX only) Use this shell command to ensure that the owner and group of
executable file tnslsnr are root:

% chown root:root $ORACLE_HOME/bin/tnslsnr

2. (UNIX only) Add the following entry to the listener file, listener.ora, where
hostname is your host name:

(DESCRIPTION =
  (ADDRESS = (PROTOCOL = TCP) (HOST = hostname) (PORT = 21))
  (PROTOCOL_STACK = (PRESENTATION = FTP) (SESSION = RAW)))

3. (UNIX only) Use shell command id to determine the user_id and group_id that
were used to install Oracle Database. oracle_installation_user is the name of
the user who installed the database.

% id oracle_installation_user
uid=user_id(oracle_installation_user) gid=group_id(dba)

4. (UNIX only) Stop, then restart the listener, using the following shell commands,
where user_id and group_id are the UNIX user and group identifiers obtained in
step 3.

% lsnrctl stop
% tnslsnr LISTENER -user user_id -group group_id &

Use the ampersand (&), to execute the second command in the background. Do
not use lsnrctl start to start the listener.

5. Use PL/SQL procedure DBMS_XDB_CONFIG.setFTPPort with SYS as SYSDBA to
set the FTP port number to 21 in the Oracle XML DB configuration file,
xdbconfig.xml.

SQL> exec DBMS_XDB_CONFIG.setFTPPort(21);

6. Force the database to reregister with the listener, using this SQL statement:

SQL> ALTER SYSTEM REGISTER;

7. Check that the listener is correctly configured, using this shell command:

% lsnrctl status

Chapter 28
FTP and the Oracle XML DB Protocol Server

28-22



See Also:

• Oracle Database Net Services Reference for information about listener
parameters and file listener.ora

• Oracle Database Net Services Reference, section "Port Number
Limitations" for information about running on privileged ports

28.3.1.7 Using IPv6 IP Addresses with FTP
Starting with 11g Release 2 (11.2), Oracle Database supports the use of Internet
Protocol Version 6, IPv6 (in addition to Internet Protocol Version 4).

Example 28-5 shows how to make an FTP connection with the IPv6 address
2001::0db8:ffff:ffff:ffff.

See Also:

Oracle Database Net Services Reference for information about IPv6

Example 28-5    FTP Connection Using IPv6

ftp> open 2001::0db8:ffff:ffff:ffff 1521
Connected to 2001::0db8:ffff:ffff:ffff.
220- xmlhost.example.com
Unauthorized use of this FTP server is prohibited and may be subject to civil
and criminal prosecution.
220- xmlhost.example.com FTP server (Oracle XML DB/Oracle Database) ready.
User (2001::0db8:ffff:ffff:ffff:(none)): username
331 pass required for USERNAME
Password: password-for-username
230 USERNAME logged in
ftp>

28.3.1.8 FTP Server Session Management
Oracle XML DB protocol server provides session management for FTP. After a short
wait for a new command, FTP returns to the protocol layer and the shared server is
freed up to serve other connections.

The duration of this short wait is configurable by changing parameter call-timeout
in the Oracle XML DB configuration file. For high traffic sites, call-timeout should
be shorter, so that more connections can be served. When new data arrives on the
connection, the FTP server is re-invoked with fresh data. So, the long running nature
of FTP does not affect the number of connections which can be made to the protocol
server.

Related Topics

• Configuration of Oracle XML DB Using xdbconfig.xml
Oracle XML DB is managed internally through a configuration file, xdbconfig.xml,
which is stored as a resource in Oracle XML DB Repository. As an alternative to

Chapter 28
FTP and the Oracle XML DB Protocol Server

28-23



using Oracle Enterprise Manager to configure Oracle XML DB, you can configure
it directly using the Oracle XML DB configuration file.

28.3.1.9 Handling Error 421. Modifying the Default Timeout Value of an FTP
Session

If you are frequently disconnected from the server and you must reconnect and
traverse the entire directory before performing the next operation, then you might need
to modify the default timeout value for FTP sessions. If the session is idle for more
than this period, it is disconnected.

You can increase the timeout value (default = 6000 centiseconds) by modifying the
configuration document as follows and then restarting the database:

Example 28-6    Modifying the Default Timeout Value of an FTP Session

DECLARE
  newconfig XMLType;
BEGIN
SELECT XMLQuery('copy $i := $p1 modify
                   (for $j in $i/xdbconfig/sysconfig/protocolconfig/ftpconfig/session-timeout
                    return replace value of node $j with $p2)
                 return $i'
                PASSING DBMS_XDB_CONFIG.cfg_get() AS "p1", 123456789 AS "p2" RETURNING CONTENT)
  INTO newconfig FROM DUAL;
  DBMS_XDB_CONFIG.cfg_update(newconfig);
END;/
COMMIT;

28.3.1.10 FTP Client Failure in Passive Mode
Do not use FTP in passive mode to connect remotely to a server that has HOSTNAME
configured in listener.ora as localhost or 127.0.0.1.

If the HOSTNAME specified in server file listener.ora is localhost or 127.0.0.1, then
the server is configured for local use only. If you try to connect remotely to the server
using FTP in passive mode, the FTP client fails. This is because the server passes IP
address 127.0.0.1 (derived from HOSTNAME) to the client, which makes the client try to
connect to itself, not to the server.

28.4 HTTP(S) and Oracle XML DB Protocol Server
Oracle XML DB implements HyperText Transfer Protocol (HTTP), HTTP 1.1 as defined
in the RFC2616 specification.

• Oracle XML DB Protocol Server: HTTP(S) Features
The Oracle XML DB HTTP(S) component of the Oracle XML DB protocol server
implements the IETF RFC2616 specification with the exception of a few optional
features.

28.4.1 Oracle XML DB Protocol Server: HTTP(S) Features
The Oracle XML DB HTTP(S) component of the Oracle XML DB protocol server
implements the IETF RFC2616 specification with the exception of a few optional
features.

Chapter 28
HTTP(S) and Oracle XML DB Protocol Server

28-24



These are the optional HTTP(S) features that are not supported:

• gzip and compress transfer encodings

• byte-range headers

• The TRACE method (used for proxy error debugging)

• Cache-control directives (these require you to specify expiration dates for content,
and are not generally used)

• TE, Trailer, Vary & Warning headers

• Weak entity tags

• Web common log format

• Multi-homed Web server

• Supported HTTP(S) Client Methods
Oracle XML DB supports several HTTP(S) client methods for access to Oracle
XML DB Repository.

• Using HTTP(S) on a Standard Port Instead of an Oracle XML DB Default Port
You can use the Oracle XML DB configuration file, xdbconfig.xml, to configure
HTTP(S) to listen on any port. By default, HTTP(S) listens on a non-standard,
unprotected port.

• Use of IPv6 IP Addresses with HTTP(S)
Starting with 11g Release 2 (11.2), Oracle Database supports the use of Internet
Protocol Version 6, IPv6 (in addition to Internet Protocol Version 4). IPv6
addresses in URLs are enclosed in brackets ([]).

• HTTPS: Support for Secure HTTP
If properly configured, you can access Oracle XML DB Repository in a secure
fashion, using HTTPS.

• Control of URL Expiration Time
Optional configuration parameter expire specifies an HTTP Expires header. This
header acts as a directive to the HTTP client, to specify the expiration date and
time for a URL.

• Anonymous Access to Oracle XML DB Repository Using HTTP
Optional configuration parameter allow-repository-anonymous-access controls
whether or not anonymous HTTP access to Oracle XML DB Repository data is
allowed using an unlocked ANONYMOUS user account. The default value is false,
meaning that unauthenticated access to repository data is blocked.

• Use of Java Servlets with HTTP(S)
Oracle XML DB supports the use of Java servlets. Each must each be registered
with a unique name in the Oracle XML DB configuration file, along with parameters
to customize its action. It should be compiled and loaded into the database. The
servlet name must be associated with a pattern.

• Embedded PL/SQL Gateway
You can use the embedded PL/SQL gateway to implement a Web application
entirely in PL/SQL. It runs in the Oracle XML DB HTTP listener.

• Transmission of Multibyte Data From a Client
When a client sends multibyte data in a URL, RFC 2718 specifies that the client
should use the %HH format, where HH is the hexadecimal notation of the byte value
in UTF-8 encoding.

Chapter 28
HTTP(S) and Oracle XML DB Protocol Server

28-25



• Characters That Are Not ASCII in URLs
Convert non-ASCII characters that appear in URLs passed to an HTTP server
to UTF-8 and escape them using the %HH format, where HH is the hexadecimal
notation of the byte value.

• Character Sets for HTTP(S)
You can control the character sets used for data that is transferred using HTTP(S).

See Also:

HTTP 1.1 Protocol Specification, IETF RFC 2616

28.4.1.1 Supported HTTP(S) Client Methods
Oracle XML DB supports several HTTP(S) client methods for access to Oracle
XML DB Repository.

• OPTIONS – get information about available communication options

• GET – get document/data (including headers)

• HEAD – get headers only, without document body

• PUT – store data in resource

• DELETE – delete resource

The semantics of these HTTP(S) methods are in accordance with WebDAV. Servlets
and Web services may support additional HTTP(S) methods, such as POST.

See Also:

WebDAV Client Methods Supported by Oracle XML DB for supported
HTTP(S) client methods involving WebDAV

28.4.1.2 Using HTTP(S) on a Standard Port Instead of an Oracle XML DB
Default Port

You can use the Oracle XML DB configuration file, xdbconfig.xml, to configure
HTTP(S) to listen on any port. By default, HTTP(S) listens on a non-standard,
unprotected port.

To use HTTP or HTTPS on a standard port (80 for HTTP, 443 for HTTPS), your
database administrator must do the following:

1. (UNIX only) Use this shell command to ensure that the owner and group of
executable file tnslsnr are root:

% chown root:root $ORACLE_HOME/bin/tnslsnr

2. (UNIX only) Add the following entry to the listener file, listener.ora, where
hostname is your host name, and port_number is 80 for HTTP or 443 for HTTPS:

Chapter 28
HTTP(S) and Oracle XML DB Protocol Server

28-26



(DESCRIPTION =
  (ADDRESS = (PROTOCOL = TCP) (HOST = hostname) (PORT = port_number))
  (PROTOCOL_STACK = (PRESENTATION = HTTP) (SESSION = RAW)))

3. (UNIX only) Use shell command id to determine the user_id and group_id that
were used to install Oracle Database. oracle_installation_user is the name of
the user who installed the database.

% id oracle_installation_user
uid=user_id(oracle_installation_user) gid=group_id(dba)

4. (UNIX only) Stop, then restart the listener, using the following shell commands,
where user_id and group_id are the UNIX user and group identifiers obtained in
step 3.

% lsnrctl stop
% tnslsnr LISTENER -user user_id -group group_id &

Use the ampersand (&), to execute the second command in the background. Do
not use lsnrctl start to start the listener.

5. Use PL/SQL procedure DBMS_XDB_CONFIG.setHTTPPort with SYS as SYSDBA to set
the HTTP(S) port number to port_number in the Oracle XML DB configuration file
xdbconfig.xml, where port_number is 80 for HTTP or 443 for HTTPS:

SQL> exec DBMS_XDB_CONFIG.setHTTPPort(port_number);

6. Force the database to reregister with the listener, using this SQL statement:

SQL> ALTER SYSTEM REGISTER;

7. Check that the listener is correctly configured:

% lsnrctl status

See Also:

• Oracle Database Net Services Reference for information about listener
parameters and file listener.ora

• Oracle Database Net Services Reference, section "Port Number
Limitations" for information about running on privileged ports

28.4.1.3 Use of IPv6 IP Addresses with HTTP(S)
Starting with 11g Release 2 (11.2), Oracle Database supports the use of Internet
Protocol Version 6, IPv6 (in addition to Internet Protocol Version 4). IPv6 addresses in
URLs are enclosed in brackets ([]).

Here is an example:

http://[2001::0db8:ffff:ffff:ffff]:8080/

Chapter 28
HTTP(S) and Oracle XML DB Protocol Server

28-27



See Also:

Oracle Database Net Services Administrator's Guide for information about
IPv6

28.4.1.4 HTTPS: Support for Secure HTTP
If properly configured, you can access Oracle XML DB Repository in a secure fashion,
using HTTPS.

See Configuring Secure HTTP (HTTPS) for configuration information.

Note:

Oracle recommends that you use digest authentication for WebDAV access
to Oracle XML DB Repository. Digest authentication is supported starting
with Oracle Database 12c Release 1 (12.1.0.1). If your database is installed
on Microsoft Windows and you cannot use digest authentication then see
WebDAV and Microsoft Windows for information about configuring basic
authentication.

28.4.1.5 Control of URL Expiration Time
Optional configuration parameter expire specifies an HTTP Expires header. This
header acts as a directive to the HTTP client, to specify the expiration date and time
for a URL.

If cached, the document targeted by a URL can be fetched from the client cache rather
than from the server, until this expiration time has passed. After that time, the cache
copy is out-of-date and a new copy must be obtained from the source (server).

The Oracle XML DB syntax for the Expires header, which is used in the expire
configuration element, is a subset of the so-called alternate syntax defined for the
ExpiresDefault directive of the Apache module mod_expires.

These are the Oracle XML DB restrictions to the ExpiresDefault syntax:

• You cannot use access as the <base>. Only now and modification are allowed.

• The <type> values must appear in order of decreasing time period. For example,
year must appear before, not after, month, since a year is a longer time period
than a month.

• You can use at most one occurrence of each of the different <type> values. For
example, you cannot have multiple year entries or multiple day entries.

Chapter 28
HTTP(S) and Oracle XML DB Protocol Server

28-28



See Also:

Alternate Interval Syntax for the alternate syntax for mod_expires directive
ExpiresDefault

28.4.1.6 Anonymous Access to Oracle XML DB Repository Using HTTP
Optional configuration parameter allow-repository-anonymous-access controls
whether or not anonymous HTTP access to Oracle XML DB Repository data is
allowed using an unlocked ANONYMOUS user account. The default value is false,
meaning that unauthenticated access to repository data is blocked.

To allow anonymous HTTP access to the repository, you must set this parameter to
true, and unlock the ANONYMOUS user account.

Caution:

There is an inherent security risk associated with allowing anonymous
access to the repository.

Parameter allow-repository-anonymous-access does not control anonymous access
to the repository using servlets. Each servlet has its own security-role-ref
parameter value to control its access.

Note:

If user account ANONYMOUS is locked for a multitenant container database
(CDB) then locking or unlocking ANONYMOUS for a pluggable database (PDB)
plugged into that CDB has no effect on access by ANONYMOUS to the PDB.

See Also:

• Table 28-3 for information about parameter allow-repository-
anonymous-access

• Configuration of Oracle XML DB Using xdbconfig.xml for information
about configuring Oracle XML DB parameters

• Configuration of Oracle XML DB Servlets for information about
parameter security-role-ref

Chapter 28
HTTP(S) and Oracle XML DB Protocol Server

28-29



28.4.1.7 Use of Java Servlets with HTTP(S)
Oracle XML DB supports the use of Java servlets. Each must each be registered
with a unique name in the Oracle XML DB configuration file, along with parameters to
customize its action. It should be compiled and loaded into the database. The servlet
name must be associated with a pattern.

The pattern can be an extension such as *.jsp or a path name such as /a/b/c
or /sys/*, as described in Java servlet application program interface (API) version 2.2.

While processing an HTTP(S) request, the path name for the request is matched
against the registered patterns. If there is a match then the protocol server invokes the
corresponding servlet with the appropriate initialization parameters. The Java Virtual
Machine (JVM) is started, and it invokes a Java method to initialize the servlet, create
response and request objects, pass these on to the servlet, and run the servlet.

Related Topics

• Guidelines for Oracle XML DB Applications in Java
Design guidelines are presented for writing Oracle XML DB applications in Java.
This includes guidelines for writing and configuring Java servlets for Oracle
XML DB.

28.4.1.8 Embedded PL/SQL Gateway
You can use the embedded PL/SQL gateway to implement a Web application entirely
in PL/SQL. It runs in the Oracle XML DB HTTP listener.

With the embedded PL/SQL gateway, a Web browser sends an HTTP(S) request in
the form of a URL that identifies a stored procedure and provides it with parameter
values. The gateway translates the URL, calls the stored procedure with the parameter
values, and returns output (typically HTML) to the Web-browser client.

Using the embedded PL/SQL gateway simplifies installation, configuration, and
administration of PL/SQL based Web applications. The embedded gateway uses the
Oracle XML DB protocol server, not Oracle HTTP Server. Its configuration is defined
by the Oracle XML DB configuration file, xdbconfig.xml. However, the recommended
way to configure the embedded gateway is to use the procedures in PL/SQL package
DBMS_EPG, not to edit file xdbconfig.xml.

Note:

If you are currently using mod_plsql, which is a plug-in of Oracle HTTP
Server that lets you invoke PL/SQL stored procedures using HTTP(S),
Oracle recommends that you migrate to using the embedded PL/SQL
gateway instead.

Chapter 28
HTTP(S) and Oracle XML DB Protocol Server

28-30



See Also:

• Oracle Database Development Guide for information about configuring
and using the embedded PL/SQL gateway

• Administration of Oracle XML DB for information on the configuration
definition of the embedded gateway in xdbconfig.xml

28.4.1.9 Transmission of Multibyte Data From a Client
When a client sends multibyte data in a URL, RFC 2718 specifies that the client
should use the %HH format, where HH is the hexadecimal notation of the byte value in
UTF-8 encoding.

The following are URL examples that can be sent to Oracle XML DB in an HTTP(S) or
WebDAV context:

http://urltest/xyz%E3%81%82%E3%82%A2 
http://%E3%81%82%E3%82%A2 
http://%E3%81%82%E3%82%A2/abc%E3%81%86%E3%83%8F.xml

Oracle XML DB processes the requested URL, any URLs within an IF header, any
URLs within the DESTINATION header, and any URLs in the REFERRED header that
contains multibyte data.

The default-url-charset configuration parameter can be used to accept requests
from some clients that use other, nonconforming, forms of URL, with characters that
are not ASCII. If a request with such characters fails, try setting this value to the native
character set of the client environment. The character set used in such URL fields
must be specified with an IANA charset name.

default-url-charset controls the encoding for nonconforming URLs. It is not
required to be set unless a nonconforming client that does not send the Content-Type
charset is used.

Related Topics

• Configuration of Oracle XML DB Using xdbconfig.xml
Oracle XML DB is managed internally through a configuration file, xdbconfig.xml,
which is stored as a resource in Oracle XML DB Repository. As an alternative to
using Oracle Enterprise Manager to configure Oracle XML DB, you can configure
it directly using the Oracle XML DB configuration file.

See Also:

RFC 2616, HTTP 1.1 Protocol Specification, HTTP Protocol Specification,
IETF RFC2616

Chapter 28
HTTP(S) and Oracle XML DB Protocol Server

28-31



28.4.1.10 Characters That Are Not ASCII in URLs
Convert non-ASCII characters that appear in URLs passed to an HTTP server to
UTF-8 and escape them using the %HH format, where HH is the hexadecimal notation of
the byte value.

For flexibility, the Oracle XML DB protocol server interprets the incoming URLs by
testing whether it is encoded in one of the following character sets, in the order
presented here:

• UTF-8

• Charset parameter of the Content-Type field of the request, if specified

• Character set, if specified, in the default-url-charset configuration parameter

• Character set of the database

Related Topics

• Configuration of Oracle XML DB Using xdbconfig.xml
Oracle XML DB is managed internally through a configuration file, xdbconfig.xml,
which is stored as a resource in Oracle XML DB Repository. As an alternative to
using Oracle Enterprise Manager to configure Oracle XML DB, you can configure
it directly using the Oracle XML DB configuration file.

28.4.1.11 Character Sets for HTTP(S)
You can control the character sets used for data that is transferred using HTTP(S).

• HTTP(S) Request Character Set
The character set of an HTTP(S) request body is determined using a
straightforward but somewhat complex algorithm.

• HTTP(S) Response Character Set
The response generated by the Oracle XML DB HTTP server is in a character set
specified in the Accept-Charset field of the request.

28.4.1.11.1 HTTP(S) Request Character Set
The character set of an HTTP(S) request body is determined using a straightforward
but somewhat complex algorithm.

1. The Content-Type header is evaluated. If the Content-Type header specifies a
charset value, the specified charset is used.

2. The MIME type of the document is evaluated as follows:

a. If the MIME type is "*/xml" then the character set is determined as follows:

i. If neither a BOM nor an encoding declaration is present then UTF-8 is
used.

ii. If a BOM is present then UTF-16 is used.

iii. If an encoding declaration is present then the specified encoding is used.

b. If the MIME type is text then ISO8859-1 is used.

Chapter 28
HTTP(S) and Oracle XML DB Protocol Server

28-32



c. If the MIME type is neither "*/xml" nor text then the database character set is
used.

There is a difference between HTTP(S) and SQL or FTP. For text documents, the
default is ISO8859-1, as specified by the IETF.org RFC 2616: HTTP 1.1 Protocol
Specification.

28.4.1.11.2 HTTP(S) Response Character Set
The response generated by the Oracle XML DB HTTP server is in a character set
specified in the Accept-Charset field of the request.

Accept-Charset can specify a list of character sets. Based on the q-value, Oracle
XML DB chooses one of them that does not require conversion. This might not
necessarily be the character set with the highest q-value. If Oracle XML DB cannot
find one that does not require conversion, then the conversion used is based on the
highest q-value.

28.5 WebDAV and Oracle XML DB
Web Distributed Authoring and Versioning (WebDAV) is an IETF standard protocol
that Oracle XML DB uses to provide users with a file-system interface to Oracle XML
Repository over the Internet. The most popular way of accessing a WebDAV server
folder is through WebFolders using Microsoft Windows.

WebDAV is an extension to the HTTP 1.1 protocol that lets an HTTP server act as a
file server. It lets clients perform remote Web content authoring through a coherent set
of methods, headers, request body formats and response body formats. For example,
a DAV-enabled editor can interact with an HTTP/WebDAV server as if it were a file
system. WebDAV provides operations to store and retrieve resources, create and list
contents of resource collections, lock resources for concurrent access in a coordinated
manner, and to set and retrieve resource properties.

• Oracle XML DB WebDAV Features
Oracle XML DB supports the foldering and access-control features of WebDAV.
Foldering is specified by RFC2518.

• WebDAV and Microsoft Windows
For Microsoft Windows (XP with Service Pack 2 SP2 or later Windows system),
use digest authentication for WebDAV access to Oracle XML DB Repository, if
possible. If not, you must make appropriate modifications to the Windows XP
Registry in order to use basic authentication.

• Creating a WebFolder in Microsoft Windows For Use With Oracle XML DB
Repository
Create a WebFolder in Windows 2000 and use it with Oracle XML DB Repository.

28.5.1 Oracle XML DB WebDAV Features
Oracle XML DB supports the foldering and access-control features of WebDAV.
Foldering is specified by RFC2518.

WebDAV is a set of extensions to the HTTP(S) protocol that allow you to share, edit,
and manage your files on remote Web servers.

Chapter 28
WebDAV and Oracle XML DB

28-33



• WebDAV Features That Are Not Supported by Oracle XML DB
Oracle XML DB supports specification RFC2518, with the exception of a few
features. For methods COPY, MOVE and DELETE it also supports the binding of
resources as described in specification RFC5842.

• WebDAV Client Methods Supported by Oracle XML DB
Oracle XML DB supports several HTTP(S)/WebDAV client methods for access to
Oracle XML DB Repository.

See Also:

RFC 2518: WebDAV Protocol Specification, WebDAV Protocol Specification,
IETF RFC2518

28.5.1.1 WebDAV Features That Are Not Supported by Oracle XML DB
Oracle XML DB supports specification RFC2518, with the exception of a few features.
For methods COPY, MOVE and DELETE it also supports the binding of resources as
described in specification RFC5842.

These are the WebDAV features from RFC2518 that Oracle XML DB does not support:

• Using the name of a write-locked null resource (a lock-null resource) as a folder
name is not supported, because it is represented as a zero-length resource in the
file system. This is an optional feature.

• For method LOCK, you cannot specify infinity for the depth, to simultaneously lock
a resource and all of its descendents. This feature is not optional, but it is not
supported by Oracle XML DB.

In addition, for methods COPY, MOVE and DELETE Oracle XML DB supports the binding
of resources as described in section 2 of RFC5842, “Binding Extensions to Web
Distributed Authoring and Versioning (WebDAV)”. A binding is a mapping of a URI to a
resource, for a given folder.

See Also:

• WebDAV Protocol Specification, IETF RFC2518, Section 7.4 for
information about lock-null resources

• WebDAV Protocol Specification, IETF RFC2518, Section 9.2 for
information about depth-infinity locks

• Binding Extensions to Web Distributed Authoring and Versioning
(WebDAV), IETF RFC5842, Section 2 for information about resource
bindings

Chapter 28
WebDAV and Oracle XML DB

28-34



28.5.1.2 WebDAV Client Methods Supported by Oracle XML DB
Oracle XML DB supports several HTTP(S)/WebDAV client methods for access to
Oracle XML DB Repository.

• PROPFIND (WebDAV-specific) – get properties for a resource

• PROPPATCH (WebDAV-specific) – set or remove resource properties

• LOCK (WebDAV-specific) – lock a resource (create or refresh a lock)

• UNLOCK (WebDAV-specific) – unlock a resource (remove a lock)

• COPY (WebDAV-specific) – copy a resource

• MOVE (WebDAV-specific) – move a resource

• MKCOL (WebDAV-specific) – create a folder resource (collection)

Related Topics

• Privileges
The privileges provided with Oracle Database include the standard WebDAV
privileges as well as Oracle-specific privileges.

• Adding Metadata Using WebDAV PROPPATCH
An alternative to using procedure DBMS_XDB_REPOS.appendResourceMetadata to
add resource metadata is to use WebDAV method PROPPATCH.

See Also:

Supported HTTP(S) Client Methods for additional supported HTTP(S) client
methods

28.5.2 WebDAV and Microsoft Windows
For Microsoft Windows (XP with Service Pack 2 SP2 or later Windows system), use
digest authentication for WebDAV access to Oracle XML DB Repository, if possible. If
not, you must make appropriate modifications to the Windows XP Registry in order to
use basic authentication.

Oracle Database supports digest authentication, starting with Oracle Database 12c
Release 1 (12.1.0.1).

If you must use basic authentication then set Windows Registry key BasicAuthLevel
to the value 1 or 2. Value 1 means use Secure Sockets Layer (SSL), which Oracle
recommends. Value 2 means do not use SSL.

Related Topics

• Configuring Secure HTTP (HTTPS)
To enable the repository to use secure HTTP connections (HTTPS), a
database administrator (DBA) must configure the database accordingly: configure
parameters http2-port and http2-protocol, enable the HTTP Listener to use

Chapter 28
WebDAV and Oracle XML DB

28-35



SSL, and enable launching of the TCPS Dispatcher. The DBA must then stop and
restart the database and the listener.

See Also:

WebDAV Redirector Registry Settings

28.5.3 Creating a WebFolder in Microsoft Windows For Use With
Oracle XML DB Repository

Create a WebFolder in Windows 2000 and use it with Oracle XML DB Repository.

Create a WebFolder in Windows 2000:

1. Start > My Network Places.

2. Double-click Add Network Place.

3. Click Next.

4. Type the location of the folder, for example:

http://Oracle_server_name:HTTP_port_number

See Figure 28-2.

5. Click Next.

6. Enter any name to identify this WebFolder

7. Click Finish.

You can access Oracle XML DB Repository the same way you access any Windows
folder.

Chapter 28
WebDAV and Oracle XML DB

28-36



Figure 28-2    Creating a WebFolder in Microsoft Windows

• Use of WebDAV with Windows Explorer to Copy Files into Oracle XML DB
Repository
You can use Windows Explorer to insert a folder from a local hard drive into Oracle
Database.

28.5.3.1 Use of WebDAV with Windows Explorer to Copy Files into Oracle
XML DB Repository

You can use Windows Explorer to insert a folder from a local hard drive into Oracle
Database.

Figure 28-3 illustrates this.

Windows Explorer includes support for the WebDAV protocol. WebDAV extends the
HTTP standard, adding additional verbs that allow an HTTP server to act as a file
server.

When a Windows Explorer copy operation or FTP input command is used to transfer
a number of documents into Oracle XML DB Repository, each put or post command
is treated as a separate atomic operation. This ensures that the client does not get
confused if one of the file transfers fails. It also means that changes made to a
document through a protocol are visible to other users as soon as the request has
been processed.

Chapter 28
WebDAV and Oracle XML DB

28-37



Figure 28-3    Copying Files into Oracle XML DB Repository

Chapter 28
WebDAV and Oracle XML DB

28-38



29
User-Defined Repository Metadata

You can create your own metadata to associate with XML data stored in Oracle
XML DB Repository.

• Overview of Metadata and XML
Data that you use is often associated with additional information that is not part of
the content. To process it in different ways, you can use such metadata to group
or classify data.

• Using XML Schemas to Define Resource Metadata
Before you can add user metadata to photo resources, you must define the
structure of such metadata using XML Schema. An XML schema is created and
registered for each kind (technique, category) of photo resource metadata.

• Addition, Modification, and Deletion of Resource Metadata
You can add, update, and delete user-defined resource metadata using PL/SQL
procedures in package DBMS_XDB_REPOS, SQL DML statements INSERT, UPDATE,
and DELETE, or WebDAV protocol method PROPPATCH.

• Querying XML Schema-Based Resource Metadata
You can use metadata column RESID when querying resource metadata, to join the
metadata with the associated data.

• XML Image Metadata from Binary Image Metadata
Digital cameras include image metadata as part of the image files they produce.

• Adding Non-Schema-Based Resource Metadata
You store user-defined resource metadata that is not XML Schema-based as a
CLOB instance under the Resource element of the associated resource.

• PL/SQL Procedures Affecting Resource Metadata
You can use PL/SQL procedures DBMS_XMLSCHEMA.registerSchema,
DBMS_XDBZ.enable_hierarchy, DBMS_XDBZ.disable_hierarchy,
DBMS_XDBZ.is_hierarchy_enabled, DBMS_XDB_REPOS.appendResourceMetadata,
DBMS_XDB_REPOS.deleteResourceMetadata,
DBMS_XDB_REPOS.purgeResourceMetadata, and
DBMS_XDB_REPOS.updateResourceMetadata to perform resource metadata
operations.

29.1 Overview of Metadata and XML
Data that you use is often associated with additional information that is not part of
the content. To process it in different ways, you can use such metadata to group or
classify data.

For example, you might have a collection of digital photographs, and you might
associate metadata with each picture, such as information about the photographic
characteristics (color composition, focal length) or context (location, kind of subject:
landscape, people).

29-1



An Oracle XML DB repository resource is an XML document that contains both
metadata and data. The data is the contents of element Contents. All other elements
in the resource contain metadata. The data of a resource can be XML, but it need not
be.

You can associate resources in the Oracle XML DB repository with metadata that
you define. In addition to such user-defined metadata, each repository resource
also has associated metadata that Oracle XML DB creates automatically and uses
(transparently) to manage the resource. Such system-defined metadata includes
properties such as the owner and creation date of each resource.

Except for system-defined metadata, you decide which resource information should
be treated as data and which should be treated as metadata. For a photo resource,
supplemental information about the photo is normally not considered to be part of
the photo data, which is a binary image. For text, however, you sometimes have a
choice of whether to include particular information in the resource contents (data) or
keep it separate and associate it with the contents as metadata — that choice is often
influenced by the applications that use or produce the data.

• Kinds of Metadata – Uses of the Term
The term "metadata" is used in the context of XML in various ways, including
XML Schema definitions, XML tags, and Oracle XML DB Repository resource
information that supplements the resource content.

• User-Defined Resource Metadata
User-defined resource metadata is itself represented as XML: it is XML data that is
associated with other XML data, describing it or providing supplementary, related
information.

• Scenario: Metadata for a Photo Collection
A scenario used to illustrate the use of schema-based resource metadata uses
metadata associated with photographic image files that are stored in repository
resources. You can create any number of different kinds of metadata to be
associated with the same resource.

29.1.1 Kinds of Metadata – Uses of the Term
The term "metadata" is used in the context of XML in various ways, including XML
Schema definitions, XML tags, and Oracle XML DB Repository resource information
that supplements the resource content.

In addition to resource metadata (system-defined and user-defined), the term
"metadata" is sometimes used to refer to the following:

• An XML schema is metadata that describes a class of XML documents.

• An XML tag (element or attribute name) is metadata that is used to label and
organize the element content or attribute value.

You can associate metadata with an XML document that is the content of a repository
resource in any of these ways:

• You can add additional XML elements containing the metadata information to the
resource contents. For example, you could wrap digital image data in an XML
document that also includes elements describing the photo. In this case, the data
and its metadata are associated by being in the contents of the same resource. It
is up to applications to separate the two and relate them correctly.

Chapter 29
Overview of Metadata and XML

29-2



• You can add metadata information for a particular resource to the repository as the
contents of a separate resource. In this case, it is up to applications to treat this
resource as metadata and associate it with the data.

• You can add metadata information for a resource as repository resource metadata.
In this case, Oracle XML DB recognizes the metadata as such. Applications can
discover this metadata by querying the repository for it. They need not be informed
separately of its existence and its association with the data.

Related Topics

• Oracle XML DB Repository Resources
Oracle XML DB Repository resources conform to the Oracle XML DB XML
schema XDBResource.xsd. The elements in a resource include those needed to
persistently store WebDAV-defined properties, such as creation date, modification
date, WebDAV locks, owner, ACL, language, and character set.

29.1.2 User-Defined Resource Metadata
User-defined resource metadata is itself represented as XML: it is XML data that
is associated with other XML data, describing it or providing supplementary, related
information.

User-defined metadata for resources can be either XML schema-based or not:

• Resource metadata that is schema-based is stored in separate (out-of-line) tables.
These are related to the resource table by the resource OID, which is stored in the
hidden object column RESID of the metadata tables.

• Resource metadata that is not schema-based is stored as part of the resource
document in the resource table, XDB.XDB$RESOURCE.

You can take advantage of schema-based metadata, in particular, to perform efficient
queries and DML operations on resources. In this chapter, you learn how to perform
the following tasks involving schema-based resource metadata:

• Create and register an XML schema that defines the metadata for a particular kind
of resource.

• Add metadata to a repository resource, and update (modify) such metadata.

• Query resource metadata to find associated content.

• Delete specific metadata associated with a resource and purge all metadata
associated with a resource.

In addition, you learn how to add non-schema-based metadata to a resource.

You can generally use user-defined resource metadata just as you would use resource
data. In particular, versioning and access control management apply.

Typical uses of resource metadata include workflow applications, enforcing user rights
management, tracking resource ownership, and controlling resource validity dates.

29.1.3 Scenario: Metadata for a Photo Collection
A scenario used to illustrate the use of schema-based resource metadata uses
metadata associated with photographic image files that are stored in repository
resources. You can create any number of different kinds of metadata to be associated
with the same resource.

Chapter 29
Overview of Metadata and XML

29-3



For image files, examples create metadata for information about both 1) the technical
aspects of a photo and 2) the photo subject or the uses to which a photo might be put.
These two kinds of associated metadata are used to query photo resources.

29.2 Using XML Schemas to Define Resource Metadata
Before you can add user metadata to photo resources, you must define the structure
of such metadata using XML Schema. An XML schema is created and registered for
each kind (technique, category) of photo resource metadata.

See Also:

Scenario: Metadata for a Photo Collection for general information about the
example user-defined metadata scenario

The XML schema in Example 29-1 defines metadata used to describe
the technical aspects of a photo image file. It uses PL/SQL procedure
DBMS_XMLSCHEMA.registerSchema to register the XML schema. To identify this schema
as defining repository resource metadata, it uses ENABLE_HIERARCHY_RESMETADATA as
the value for parameter enableHierarchy. Resource contents (data) are defined by
using value ENABLE_HIERARCHY_CONTENTS (the default value), instead.

The properties defined in Example 29-1 are the image height, width, color depth, title,
and brief description.

The XML schema in Example 29-2 defines metadata used to categorize a photo image
file: to describe its content or possible uses. This simple example defines a single,
general property for classification, named Category.

Notice that there is nothing in the XML schema definitions of metadata that restrict
that information to being associated with any particular kind of data. You are free
to associate any type of metadata with any type of resource. And multiple types of
metadata can be associated with the same resource.

Notice, too, that the XML schema does not, by itself, define its associated data
as being metadata — it is the schema registration that makes this characterization,
through enableHierarchy value ENABLE_HIERARCHY_RESMETADATA. If the same schema
were registered instead with enableHierarchy value ENABLE_HIERARCHY_CONTENTS (the
default value), then it would define not metadata for resources, but resource contents
with the same information. The same XML schema cannot be registered more than
once under the same name.

Note:

By default, user metadata is stored object-relationally if it is XML schema-
based and as a CLOB instance if non XML schema-based. You can store
either as binary XML instead, by setting the OPTIONS parameter for XML
schema registration to REGISTER_BINARYXML.

Chapter 29
Using XML Schemas to Define Resource Metadata

29-4



Example 29-1    Registering an XML Schema for Technical Photo Information

BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL       => 'imagetechnique.xsd',
    SCHEMADOC       => '<xsd:schema targetNamespace="inamespace"
                                    xmlns:xsd="http://www.w3.org/2001/XMLSchema"
                                    xmlns:xdb="http://xmlns.oracle.com/xdb"
                                    xmlns="inamespace">
                          <xsd:element name="ImgTechMetadata"
                                       xdb:defaultTable="IMGTECHMETADATATABLE">
                            <xsd:complexType>
                              <xsd:sequence>
                                <xsd:element name="Height"      type="xsd:float"/>
                                <xsd:element name="Width"       type="xsd:float"/>
                                <xsd:element name="ColorDepth"  type="xsd:integer"/>
                                <xsd:element name="Title"       type="xsd:string"/>
                                <xsd:element name="Description" type="xsd:string"/>
                              </xsd:sequence>
                            </xsd:complexType>
                          </xsd:element>
                        </xsd:schema>',
    enableHierarchy => DBMS_XMLSCHEMA.ENABLE_HIERARCHY_RESMETADATA);
END;
/

Example 29-2    Registering an XML Schema for Photo Categorization

BEGIN
  DBMS_XMLSCHEMA.registerSchema(
    SCHEMAURL       => 'imagecategories.xsd',
    SCHEMADOC       => '<xsd:schema targetNamespace="cnamespace"
                                    xmlns:xsd="http://www.w3.org/2001/XMLSchema"
                                    xmlns:xdb="http://xmlns.oracle.com/xdb"
                                    xmlns="cnamespace">
                          <xsd:element name="ImgCatMetadata"
                                       xdb:defaultTable="IMGCATMETADATATABLE">
                            <xsd:complexType>
                              <xsd:sequence>
                                <xsd:element name="Categories" 
                                             type="CategoriesType"/>
                              </xsd:sequence>
                            </xsd:complexType>
                          </xsd:element>
                          <xsd:complexType name="CategoriesType">
                            <xsd:sequence>
                              <xsd:element name="Category" type="xsd:string"
                                           maxOccurs="unbounded"/>
                            </xsd:sequence>
                          </xsd:complexType>
                        </xsd:schema>',
    enableHierarchy => DBMS_XMLSCHEMA.ENABLE_HIERARCHY_RESMETADATA);
END;
/

Chapter 29
Using XML Schemas to Define Resource Metadata

29-5



29.3 Addition, Modification, and Deletion of Resource
Metadata

You can add, update, and delete user-defined resource metadata using PL/SQL
procedures in package DBMS_XDB_REPOS, SQL DML statements INSERT, UPDATE, and
DELETE, or WebDAV protocol method PROPPATCH.

You can add, update, and delete user-defined resource metadata in any of the
following ways:

• Use PL/SQL procedures in package DBMS_XDB_REPOS:

– appendResourceMetadata – add metadata to a resource

– updateResourceMetadata – modify resource metadata

– deleteResourceMetadata – delete specific metadata from a resource

– purgeResourceMetadata – delete all metadata from a resource

• Use SQL DML statements INSERT, UPDATE, and DELETE to update the resource
directly

• Use WebDAV protocol method PROPPATCH

You use SQL DM statements and WebDAV method PROPPATCH to update or delete
metadata in the same way as you add metadata. If you supply a complete Resource
element for one of these operations, then keep in mind that each resource metadata
property must be a child (not just a descendant) of element Resource — if you want
multiple metadata elements of the same kind, you must collect them as children
of a single parent metadata element. The order among such top-level user-defined
resource metadata properties is unimportant and is not necessarily maintained by
Oracle XML DB.

The separate PL/SQL procedures in package DBMS_XDB_REPOS are similar in their use.
Each can be used with either XML schema-based or non-schema-based metadata.
Some forms (signatures) of some of the procedures apply only to schema-based
metadata. Procedures appendResourceMetadata and deleteResourceMetadata are
illustrated here with examples.

• Adding Metadata Using APPENDRESOURCEMETADATA
You can use procedure DBMS_XDB_REPOS.appendResourceMetadata to add user-
defined metadata to resources.

• Deleting Metadata Using DELETERESOURCEMETADATA
You can use procedure DBMS_XDB_REPOS.deleteResourceMetadata to delete
specific metadata associated with a resource. To delete all of
the metadata associated with a resource, you can use procedure
DBMS_XDB_REPOS.purgeResourceMetadata.

• Adding Metadata Using SQL DML
An alternative to using procedure DBMS_XDB_REPOS.appendResourceMetadata to
add, update, or delete resource metadata is to update the RESOURCE_VIEW directly
using DML statements INSERT and UPDATE.

Chapter 29
Addition, Modification, and Deletion of Resource Metadata

29-6



• Adding Metadata Using WebDAV PROPPATCH
An alternative to using procedure DBMS_XDB_REPOS.appendResourceMetadata to
add resource metadata is to use WebDAV method PROPPATCH.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the procedures in PL/SQL package DBMS_XDB_REPOS

29.3.1 Adding Metadata Using APPENDRESOURCEMETADATA
You can use procedure DBMS_XDB_REPOS.appendResourceMetadata to add user-
defined metadata to resources.

Example 29-3 creates a photo resource and adds XML schema-based metadata of
type ImgTechMetadata to it, recording the technical information about the photo.

Example 29-4 adds metadata of type ImgTechMetadata to the same resource as
Example 29-3, placing the photo in several user-defined content categories.

Example 29-3    Add Metadata to a Resource – Technical Photo Information

DECLARE
  returnbool BOOLEAN;
BEGIN
  returnbool := DBMS_XDB_REPOS.createResource(
                  '/public/horse_with_pig.jpg',
                  bfilename('MYDIR', 'horse_with_pig.jpg'));
  DBMS_XDB_REPOS.appendResourceMetadata(
    '/public/horse_with_pig.jpg',
    XMLType('<i:ImgTechMetadata
                 xmlns:i="inamespace"
                 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                 xsi:schemaLocation="inamespace imagetechnique.xsd">
               <Height>1024</Height>
               <Width>768</Width>
               <ColorDepth>24</ColorDepth>
               <Title>Pig Riding Horse</Title>
               <Description>Picture of a pig riding a horse on the beach,
taken outside hotel window.</Description>
             </i:ImgTechMetadata>'));
END;
/

Example 29-4    Add Metadata to a Resource – Photo Content Categories

BEGIN
  DBMS_XDB_REPOS.appendResourceMetadata(
    '/public/horse_with_pig.jpg',
    XMLType('<c:ImgCatMetadata
                 xmlns:c="cnamespace"
                 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                 xsi:schemaLocation="cnamespace imagecategories.xsd">
               <Categories>
                 <Category>Vacation</Category>
                 <Category>Animals</Category>
                 <Category>Humor</Category>

Chapter 29
Addition, Modification, and Deletion of Resource Metadata

29-7



                 <Category>2005</Category>
               </Categories>
             </c:ImgCatMetadata>'));
END;
/

PL/SQL procedure successfully completed.
 
SELECT * FROM imgcatmetadatatable;
 
SYS_NC_ROWINFO$
--------------------------------------------------------------------------------
<c:ImgCatMetadata xmlns:c="cnamespace" xmlns:xsi="http://www.w3.org/2001/XMLSche
ma-instance" xsi:schemaLocation="cnamespace imagecategories.xsd">
  <Categories>
    <Category>Vacation</Category>
    <Category>Animals</Category>
    <Category>Humor</Category>
    <Category>2005</Category>
  </Categories>
</c:ImgCatMetadata>
 
1 row selected.

29.3.2 Deleting Metadata Using DELETERESOURCEMETADATA
You can use procedure DBMS_XDB_REPOS.deleteResourceMetadata to delete specific
metadata associated with a resource. To delete all of the metadata associated with a
resource, you can use procedure DBMS_XDB_REPOS.purgeResourceMetadata.

Example 29-5 deletes the category metadata that was added to the photo resource
in Example 29-4. By default, both the resource link (REF) to the metadata and the
metadata table identified by that link are deleted. An optional parameter can be used
to specify that only the link is to be deleted. The metadata table is then left as is but
becomes unrelated to the resource. In this example, the default behavior is used.

Example 29-5    Delete Specific Metadata from a Resource

BEGIN
  DBMS_XDB_REPOS.deleteResourceMetadata('/public/horse_with_pig.jpg',
                                        'cnamespace',
                                        'ImgCatMetadata');
END;
/

PL/SQL procedure successfully completed.
 
SELECT * FROM imgcatmetadatatable;
 
no rows selected

Chapter 29
Addition, Modification, and Deletion of Resource Metadata

29-8



29.3.3 Adding Metadata Using SQL DML
An alternative to using procedure DBMS_XDB_REPOS.appendResourceMetadata to add,
update, or delete resource metadata is to update the RESOURCE_VIEW directly using
DML statements INSERT and UPDATE.

Adding resource metadata in this way is illustrated by Example 29-6. It shows how
to accomplish the same thing as Example 29-3 by inserting the metadata directly into
RESOURCE_VIEW using SQL statement UPDATE. Other SQL DML statements may be
used similarly.

Example 29-6    Adding Metadata to a Resource Using DML with RESOURCE_VIEW

UPDATE RESOURCE_VIEW
  SET RES =
    XMLQuery('declare namespace r = "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
              declare namespace c = "cnamespace"; (: :)
              copy $tmp := . modify insert node
               <c:ImgCatMetadata
                   xmlns:c="cnamespace"
                   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                   xsi:schemaLocation="cnamespace imagecategories.xsd">
                 <Categories>
                   <Category>Vacation</Category>
                   <Category>Animals</Category>
                   <Category>Humor</Category>
                   <Category>2005</Category>
                 </Categories>
               </c:ImgCatMetadata>
              into $tmp/r:Resource
              return $tmp'
             PASSING RES
             RETURNING CONTENT)
    WHERE equals_path(RES, '/public/horse_with_pig.jpg') = 1;
/

SELECT * FROM imgcatmetadatatable;
 
SYS_NC_ROWINFO$
--------------------------------------------------------------------------------
<c:ImgCatMetadata xmlns:c="cnamespace" xmlns:xsi="http://www.w3.org/2001/XMLSche
ma-instance" xsi:schemaLocation="cnamespace imagecategories.xsd">
  <Categories>
    <Category>Vacation</Category>
    <Category>Animals</Category>
    <Category>Humor</Category>
    <Category>2005</Category>
  </Categories>
</c:ImgCatMetadata>
 
1 row selected.

The following query extracts the inserted metadata using RESOURCE_VIEW, rather than
directly using metadata table imgcatmetadatatable. (The result is shown here pretty-
printed, for clarity.)

SELECT XMLQuery('declare namespace r
                   = "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
                 declare namespace c
                   = "cnamespace"; (: :)
                 /r:Resource/c:ImgCatMetadata'
                PASSING RES RETURNING CONTENT)

Chapter 29
Addition, Modification, and Deletion of Resource Metadata

29-9



  FROM RESOURCE_VIEW
  WHERE equals_path(RES, '/public/horse_with_pig.jpg') = 1;
 
XMLQUERY('DECLARENAMESPACER="HTTP://XMLNS.ORACLE.COM/XDB/XDBRESOURCE.XSD";(::)DE
--------------------------------------------------------------------------------
<c:ImgCatMetadata xmlns:c="cnamespace" 
                  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                  xsi:schemaLocation="cnamespace imagecategories.xsd">
  <Categories>
    <Category>Vacation</Category>
    <Category>Animals</Category>
    <Category>Humor</Category>
    <Category>2005</Category>
  </Categories>
</c:ImgCatMetadata>
 
1 row selected.

29.3.4 Adding Metadata Using WebDAV PROPPATCH
An alternative to using procedure DBMS_XDB_REPOS.appendResourceMetadata to add
resource metadata is to use WebDAV method PROPPATCH.

This is illustrated in Example 29-7. You can update and delete metadata similarly.

Example 29-7 shows how to accomplish the same thing as Example 29-4 by
inserting the metadata using WebDAV method PROPPATCH. Using appropriate tools,
your application creates such a PROPPATCH WebDAV request and sends it to the
WebDAV server for processing.

To update user-defined metadata, you proceed in the same way. To delete user-
defined metadata, the WebDAV request is similar, but it has D:remove in place of
D:set.

Example 29-7    Adding Metadata Using WebDAV PROPPATCH

PROPPATCH /public/horse_with_pig.jpg HTTP/1.1
Host: www.example.com
Content-Type: text/xml; charset="utf-8"
Content-Length: 609
Authorization: Basic dGRhZHhkYl9tZXRhOnRkYWR4ZGJfbWV0YQ==
Connection: close
 
<?xml version="1.0" encoding="utf-8" ?>
<D:propertyupdate xmlns:D="DAV:" xmlns:Z="http://www.w3.com/standards/z39.50/">
  <D:set>
    <D:prop>
      <c:ImgCatMetadata
          xmlns:c="cnamespace"
          xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
          xsi:schemaLocation="cnamespace imagecategories.xsd">
        <Categories>
          <Category>Vacation</Category>
          <Category>Animals</Category>
          <Category>Humor</Category>
          <Category>2005</Category>
        </Categories>
      </c:ImgCatMetadata>

Chapter 29
Addition, Modification, and Deletion of Resource Metadata

29-10



    </D:prop>
  </D:set>
</D:propertyupdate>

29.4 Querying XML Schema-Based Resource Metadata
You can use metadata column RESID when querying resource metadata, to join the
metadata with the associated data.

When you register an XML schema using the enableHierarchy value
ENABLE_HIERARCHY_RESMETADATA, an additional column, RESID, is added automatically
to the XMLType tables used to store the metadata. This column stores the object
identifier (OID) of the resource associated with the metadata. You can use column
RESID when querying metadata, to join the metadata with the associated data.

You can query metadata in these ways:

• Query RESOURCE_VIEW for the metadata. For example:

SELECT count(*) FROM RESOURCE_VIEW
  WHERE
    XMLExists(
      'declare namespace r
         = "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
       declare namespace c
         = "cnamespace"; (: :)
       /r:Resource/c:ImgCatMetadata/Categories/Category[text()="Vacation"]'
      PASSING RES);

  COUNT(*)
----------
         1
 
1 row selected.

• Query the XML schema-based table for the user-defined metadata directly, and
join this metadata back to the resource table, identifying which resource to select.
Use column RESID of the metadata table to do this. For example:

SELECT COUNT(*) FROM RESOURCE_VIEW rs, imgcatmetadatatable ct
  WHERE
    XMLExists(
      'declare namespace r
         = "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
       declare namespace c
         = "cnamespace"; (: :)
       /r:Resource/c:ImgCatMetadata/Categories/Category'
      PASSING RES)
    AND rs.RESID = ct.RESID;

  COUNT(*)
----------
         1
 
1 row selected.

Chapter 29
Querying XML Schema-Based Resource Metadata

29-11



Oracle recommends querying for user-defined metadata directly, for performance
reasons. Direct queries of the RESOURCE_VIEW alone cannot be optimized using XPath
rewrite, because there is no way to determine whether or not target elements like
Category are stored in the CLOB value or in an out-of-line table.

To improve performance further, create an index on each metadata column you intend
to query.

Example 29-8 queries both kinds of photo resource metadata, retrieving the paths to
the resources that are categorized as vacation photos and have the title "Pig Riding
Horse".

Example 29-8    Query XML Schema-Based Resource Metadata

SELECT ANY_PATH
  FROM RESOURCE_VIEW rs, imgcatmetadatatable ct, imgtechmetadatatable tt
  WHERE XMLExists(
          'declare namespace r
             = "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
           declare namespace c
             = "cnamespace"; (: :)
           /r:Resource/c:ImgCatMetadata/Categories/Category[text()="Vacation"]'
          PASSING RES)
    AND XMLExists(
          'declare namespace r
             = "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
           declare namespace i
             = "inamespace"; (: :)
           /r:Resource/i:ImgTechMetadata/Title[text()="Pig Riding Horse"]'
          PASSING RES)
    AND rs.RESID = ct.RESID
    AND rs.RESID = tt.RESID;

ANY_PATH
--------------------------
/public/horse_with_pig.jpg
 
1 row selected.

29.5 XML Image Metadata from Binary Image Metadata
Digital cameras include image metadata as part of the image files they produce.

• EXIF – Exchangeable Image File Format

• IPTC-NAA IIM – International Press Telecommunications Council-Newspaper
Association of America Information Interchange Model

• XMP – Extensible Metadata Platform

EXIF is the metadata standard for digital still cameras. EXIF metadata is stored in
TIFF and JPEG image files. IPTC and XMP metadata is commonly embedded in
image files by desktop image-processing software.

Chapter 29
XML Image Metadata from Binary Image Metadata

29-12



29.6 Adding Non-Schema-Based Resource Metadata
You store user-defined resource metadata that is not XML Schema-based as a CLOB
instance under the Resource element of the associated resource.

The default XML schema for a resource has a top-level element any (declared with
maxOccurs= "unbounded"), which admits any valid XML data as part of the resource
document in the resource table, XDB.XDB$RESOURCE.

The following skeleton shows the structure and position of non-schema-based
resource metadata:

<Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd"
       <Owner>DESELBY</Owner>
       ... <!-- other system-defined metadata -->
       <!-- contents of the resource>
       <Contents>
         ...
       </Contents>
       <!-- User-defined metadata (appearing within different namespace) -->
       <MyOwnMetadata xmlns="http://www.example.com/custommetadata">
         <MyElement1>value1</MyElement1>
         <MyElement2>value2</MyElement2>
       </MyOwnMetadata>
     </Resource>

You can set and access non-schema-based resource metadata belonging to
namespaces other than XDBResource.xsd by using any of the means described
previously for accessing XML schema-based resource metadata.

Example 29-9 illustrates this for the case of SQL DML operations, adding user-defined
metadata directly to the <RESOURCE> document. It shows how to add non-schema-
based metadata to a resource using SQL DML.

Example 29-9    Add Non-Schema-Based Metadata to a Resource

DECLARE
  res BOOLEAN;
BEGIN
  res := DBMS_XDB_REPOS.createResource(
           '/public/NurseryRhyme.txt',
           bfilename('MYDIR', 'tdadxdb-xdb_repos_meta-011.txt'),
           nls_charset_id('AL32UTF8'));
  UPDATE RESOURCE_VIEW SET RES = 
   XMLQuery('declare namespace r = "http://xmlns.oracle.com/xdb/XDBResource.xsd"; 
(: :)
             declare namespace n = "nurserynamespace"; (: :)
             copy $tmp := . modify insert node
              <n:NurseryMetadata>
                <Author>Mother Goose</Author>
              </n:NurseryMetadata>
             into $tmp/r:Resource
             return $tmp'
            PASSING RES

Chapter 29
Adding Non-Schema-Based Resource Metadata

29-13



            RETURNING CONTENT)
   WHERE equals_path(RES, '/public/NurseryRhyme.txt') = 1;
END;
/

PL/SQL procedure successfully completed.
 

SELECT XMLSerialize(DOCUMENT rs.RES AS CLOB) FROM RESOURCE_VIEW rs
  WHERE equals_path(RES, '/public/NurseryRhyme.txt') = 1;
 
XMLSERIALIZE(DOCUMENTRS.RESASCLOB)
----------------------------------
<Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd" Hidden="false" Inv
alid="false" Container="false" CustomRslv="false" VersionHistory="false" StickyR
ef="true">
  <CreationDate>2005-05-24T13:51:48.043234</CreationDate>
  <ModificationDate>2005-05-24T13:51:48.290144</ModificationDate>
  <DisplayName>NurseryRhyme.txt</DisplayName>
  <Language>en-US</Language>
  <CharacterSet>UTF-8</CharacterSet>
  <ContentType>text/plain</ContentType>
  <RefCount>1</RefCount>
  <ACL>
    <acl description="Public:All privileges to PUBLIC" xmlns="http://xmlns.oracl
e.com/xdb/acl.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:sch
emaLocation="http://xmlns.oracle.com/xdb/acl.xsd                           http:
//xmlns.oracle.com/xdb/acl.xsd" shared="true">
      <ace>
        <principal>PUBLIC</principal>
        <grant>true</grant>
        <privilege>
          <all/>
        </privilege>
      </ace>
    </acl>
  </ACL>
  <Owner>TDADXDB_META</Owner>
  <Creator>TDADXDB_META</Creator>
  <LastModifier>TDADXDB_META</LastModifier>
  <SchemaElement>http://xmlns.oracle.com/xdb/XDBSchema.xsd#text</SchemaElement>
  <Contents>
    <text>Mary had a little lamb
Its fleece was white as snow
and everywhere that Mary went
that lamb was sure to go
</text>
  </Contents>
  <n:NurseryMetadata xmlns:n="nurserynamespace">
    <Author xmlns="">Mother Goose</Author>
  </n:NurseryMetadata>
</Resource>
 
1 row selected.

Chapter 29
Adding Non-Schema-Based Resource Metadata

29-14



29.7 PL/SQL Procedures Affecting Resource Metadata
You can use PL/SQL procedures DBMS_XMLSCHEMA.registerSchema,
DBMS_XDBZ.enable_hierarchy, DBMS_XDBZ.disable_hierarchy,
DBMS_XDBZ.is_hierarchy_enabled, DBMS_XDB_REPOS.appendResourceMetadata,
DBMS_XDB_REPOS.deleteResourceMetadata,
DBMS_XDB_REPOS.purgeResourceMetadata, and
DBMS_XDB_REPOS.updateResourceMetadata to perform resource metadata operations.

• DBMS_XMLSCHEMA.registerSchema – Register an XML schema. Parameter
ENABLEHIERARCHY affects resource metadata.

• DBMS_XDBZ.enable_hierarchy – Enable repository support for an XMLType
table or view. Use parameter HIERARCHY_TYPE with a value of
DBMS_XDBZ.ENABLE_HIERARCHY_RESMETADATA to enable resource metadata. This
adds column RESID to track the resource associated with the metadata.

• DBMS_XDBZ.disable_hierarchy – Disable all repository support for an XMLType
table or view.

• DBMS_XDBZ.is_hierarchy_enabled – Tests, using parameter HIERARCHY_TYPE,
whether the specified type of hierarchy is currently enabled for the
specified XMLType table or view. Value DBMS_XDBZ.IS_ENABLED_RESMETADATA for
HIERARCHY_TYPE tests whether resource metadata is enabled.

• DBMS_XDB_REPOS.appendResourceMetadata – Add metadata to a resource.

• DBMS_XDB_REPOS.deleteResourceMetadata – Delete specified metadata from a
resource.

• DBMS_XDB_REPOS.purgeResourceMetadata – Delete all user-defined metadata from
a resource. For schema-based resources, optional parameter DELETE_OPTION can
be used to specify whether or not to delete the metadata information, in addition to
unlinking it.

• DBMS_XDB_REPOS.updateResourceMetadata – Update the metadata for a resource.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about these PL/SQL procedures

Chapter 29
PL/SQL Procedures Affecting Resource Metadata

29-15



30
Oracle XML DB Repository Events

You can use Oracle XML DB Repository to store and access data of any kind, in the
form of repository resources. You can access repository data from any application.
Sometimes your application needs to perform certain actions whenever a particular
repository operation occurs. You can do this using repository events.

• Overview of Repository Events
Your application can perform specific actions when events associated with
repository operations occur. For example, you might want to perform a move-to-
wastebasket or another backup action whenever a resource is deleted.

• Possible Repository Events
Repository operations are associated with predefined events. Except for a
rendering operation, events come in pre and post pairs.

• Repository Operations and Events
The same repository event can occur with different Oracle XML DB Repository
operations, and a given repository operation can produce more than one
repository event.

• Repository Event Handler Considerations
Some considerations are listed for defining handlers for Oracle XML DB
Repository events.

• Configuration of Repository Events
In a resource configuration file, you use element event-listeners, child of
element ResConfig, to configure Oracle XML DB Repository event handling.

Related Topics

• Configuration of Oracle XML DB Repository
Overall configuration of Oracle XML DB Repository applies to all repository
resources. It does not include configuring parameters for handling events or
managing XLink and XInclude processing. You use resource configuration files
to configure resources.

30.1 Overview of Repository Events
Your application can perform specific actions when events associated with repository
operations occur. For example, you might want to perform a move-to-wastebasket or
another backup action whenever a resource is deleted.

Repository resource operations include creating, deleting, locking, unlocking,
rendering, linking, unlinking, placing under version control, checking in, checking out,
unchecking out (reverting a checked out version), opening, and updating.

• Repository Events: Use Cases
Examples of cases where you can use repository events include moving a
resource to a wastebasket and categorizing a resource based on its MIME type.

30-1



• Repository Events and Database Triggers
You cannot use a database trigger to let your application react to repository
operations. A given repository operation can consist of multiple database
operations on multiple underlying, internal tables. Because these underlying tables
are internal to Oracle XML DB, you cannot easily map them to specific repository
operations.

• Repository Event Listeners and Event Handlers
Each repository operation is associated with events. Your application can
configure event listeners for particular resources or the entire repository. A listener
can be restricted by a node-existence precondition. A listener is a set of PL/SQL or
Java handlers, each of which processes a single event.

• Repository Event Configuration
Repository event configuration involves defining resource configuration files and
defining the order in which they are processed. The files define event listeners.
Such configuration applies to events on individual resources and events for the
repository as a whole.

30.1.1 Repository Events: Use Cases
Examples of cases where you can use repository events include moving a resource to
a wastebasket and categorizing a resource based on its MIME type.

• Wastebasket – You can use an UnLink pre-event handler to effectively move a
resource to a wastebasket instead of deleting it. Create a link in a wastebasket
folder before removing the original link. The link in the wastebasket ensures that
the resource is not removed. When you subsequently undelete a resource from
the waste basket, the original link can be created again and the wastebasket
link removed. The wastebasket link name can be different from the name of
the link being removed because a resource at a certain path could be unlinked
more than once from that path. The wastebasket would then have multiple links
corresponding to that path, with different link properties and possibly pointing to
different resources.

• Categorization – An application might categorize the resources it manages based
on MIME type or other properties. It might keep track of GIF, text, and XML files by
maintaining links to them from repository folders /my-app/gif, /my-app/txt, and /
my-app/xml. Three post-event handlers could be used here: LinkIn, UnlinkIn,
and Update. The LinkIn post-event handler would examine the resource and
create a link in the appropriate category folder, if not already present. The
UnlinkIn post-event handler would remove the link from the category folder. The
Update post-event handler would effectively move the resource from one category
folder to another if its category changes.

30.1.2 Repository Events and Database Triggers
You cannot use a database trigger to let your application react to repository
operations. A given repository operation can consist of multiple database operations
on multiple underlying, internal tables. Because these underlying tables are internal to
Oracle XML DB, you cannot easily map them to specific repository operations.

For example, internal table XDB$H_INDEX might be updated by either a database
update operation, if an ACL is changed, or a link operation. Even in cases where
you might be able to accomplish the same thing using database triggers, you would

Chapter 30
Overview of Repository Events

30-2



not want to do that: A repository event is a higher-level abstraction than would be a set
of database triggers on the underlying tables.

When a repository event occurs, information associated with the operation, such as
the resource path used, can be passed to the corresponding event handler. Such
information is not readily available using database triggers.

Repository events and database triggers can both be applied to XML data. You can
use triggers on XMLType tables, for instance. However, if an XMLType table is also a
repository table (hierarchy-enabled), then do not duplicate in an event handler any
trigger code that applies to the table. Otherwise, that code is executed twice.

30.1.3 Repository Event Listeners and Event Handlers
Each repository operation is associated with events. Your application can configure
event listeners for particular resources or the entire repository. A listener can be
restricted by a node-existence precondition. A listener is a set of PL/SQL or Java
handlers, each of which processes a single event.

A repository event listener is a Java class or a PL/SQL package or object type. It
comprises a set of PL/SQL procedures or Java methods, each of which is called an
event handler.

You associate a repository event listener with a resource by mapping a resource
configuration file to the resource. You use PL/SQL package DBMS_RESCONFIG to
manipulate resource configuration files, including associating them with the resources
they configure. In particular, PL/SQL function DBMS_RESCONFIG.getListeners lists all
event listeners for a given resource.

30.1.4 Repository Event Configuration
Repository event configuration involves defining resource configuration files and
defining the order in which they are processed. The files define event listeners. Such
configuration applies to events on individual resources and events for the repository as
a whole.

A given resource can be configured by multiple resource configuration files. These
are stored in a resource configuration list, and they are processed in list order.
Events for the repository as a whole can also be configured by multiple resource
configuration files. Similarly, the repository also has a resource configuration list. Event
handling that is configured for the repository as a whole takes effect before any
resource-specific event handling. All applicable repository-wide events are processed
before any resource-specific events.

A given resource configuration file can define multiple event listeners for the resources
it configures, and each event listener can define multiple event handlers.

Related Topics

• Configuration of Repository Events
In a resource configuration file, you use element event-listeners, child of
element ResConfig, to configure Oracle XML DB Repository event handling.

Chapter 30
Overview of Repository Events

30-3



See Also:

Resource Configuration Files for general information about resource
configuration and resource configuration lists

30.2 Possible Repository Events
Repository operations are associated with predefined events. Except for a rendering
operation, events come in pre and post pairs.

A rendering operation is associated with a single repository event. Except for
rendering, all repository operations are associated with one or more pairs of events.

For example, a resource creation is associated with three pairs of events, with the
events occurring in this order:

1. Pre-creation event

2. Post-creation event

3. Pre-link-in event

4. Pre-link-to event

5. Post-link-to event

6. Post-link-in event

Table 30-1 lists the events associated with each repository operation. Their order is
indicated in the handler columns.

Table 30-1    Predefined Repository Events

Repository Event
Type

Description Pre Handler Execution Post Handler
Execution

Render A Render event occurs only for file
resources, never for folder resources.

Occurs when resource contents are
accessed using any of the following:

• Protocols
• XDBURIType methods getCLOB(),

getBLOB(), and getXML()
Does not occur when resource contents
are accessed using any of the following:

• SELECT ... FROM
RESOURCE_VIEW

• XDBURIType method
getResource()

Only one handler for a Render event
can set the rendered output. The first
handler to call setRenderStream or
setRenderPath controls the rendering.

N/A N/A

Chapter 30
Possible Repository Events

30-4



Table 30-1    (Cont.) Predefined Repository Events

Repository Event
Type

Description Pre Handler Execution Post Handler
Execution

Create Occurs when a resource is created.
The pre and post handlers executed are
those defined on the folder of the new
resource.

After pre-parsing, after
validating the parent
resource ACL and
locks, and before
assigning default values
to undefined properties.

After inserting the
resource into the
system resource table.

Delete Occurs when the resource and its
contents are removed from disk, that is,
when the resource REF count is zero
(0).

After validating the
resource ACL and locks
and before removing the
resource from disk.

After removing the
resource and its
contents from disk
and after touching the
parent folder to update
its last modifier and
modification time.

Update Occurs when a resource is updated on
disk.

After validating the
resource ACL and locks
and before updating
the last modifier and
modification time.

After writing the
resource to disk.

Lock Occurs during a lock-resource
operation.

After validating the
resource ACL and locks
and before creating
the new lock on the
resource.

After creating the new
lock.

Unlock Occurs during an unlock-resource
operation.

After validating the
resource ACL and delete
token.

After removing the
lock.

LinkIn Occurs before a LinkTo event during
a link operation. The event target is
the folder in which the link is created.
Always accompanied by a LinkTo
event.

After validating the
resource ACL and locks
and before creating the
link.

After executing
LinkTo post handler.

LinkTo Occurs after a LinkIn event during a
link operation. The event target is the
resource that is the link destination.

After executing LinkIn
pre handler and before
creating the link.

After creating the link
and after updating
the last modifier and
modification time of
the parent folder.

UnLinkIn Occurs before an UnlinkFrom event
during an unlink operation. Always
accompanied by an UnlinkFrom event.

After validating the
resource ACL and locks
and before removing the
link.

After executing the
UnlinkFrom post
handler.

UnlinkFrom Occurs after an UnlinkIn event during
an unlink operation.

After executing the
UnlinkIn pre handler.

After removing the link.

CheckIn Occurs during check-in of a resource. After validating the
resource ACL and locks
and after verifying that
the resource is version-
controlled and has been
checked out.

After checking in the
resource.

Chapter 30
Possible Repository Events

30-5



Table 30-1    (Cont.) Predefined Repository Events

Repository Event
Type

Description Pre Handler Execution Post Handler
Execution

CheckOut Occurs during check-out of a resource. After validating the
resource ACL and locks
and after verifying that
the resource is version-
controlled and is not
already checked out.

After checking out the
resource.

UncheckOut Occurs during uncheck-out of a
resource.

Before removing the
record that the resource
is checked out.

After unchecking out
the resource.

VersionControl Occurs when a version history is
created for a resource.

Note: You can call
DBMS_XDB_VERSION.MakeVersioned(
) multiple times, but the version history
is created only at the first call.
Subsequent calls have no effect, so no
VersionControl event occurs.

Before creating the
version history for the
resource.

After creating the
first version of the
resource.

For simplicity, the documentation generally treats both members of a repository event
pair together, referring, for example, to the LinkIn event type as shorthand for the pre-
link-in and post-link-in event types. For the same reason, the event-type names used
here are derived from the Java interface XDBRepositoryEventListener by dropping
the prefixes handlePre and handlePost.

See Also:

Oracle Database PL/SQL Packages and Types Reference for the PL/SQL
repository event types

30.3 Repository Operations and Events
The same repository event can occur with different Oracle XML DB Repository
operations, and a given repository operation can produce more than one repository
event.

Table 30-2 lists the events that are associated with each repository operation. See
Table 30-1 for the event order when multiple repository events occur for the same
operations.

Table 30-2    Oracle XML DB Repository Operations and Events

Operation Repository Events Occurring

Get binary representation of resource contents by path name Render

Get XML representation of resource contents by path name Render

Chapter 30
Repository Operations and Events

30-6



Table 30-2    (Cont.) Oracle XML DB Repository Operations and Events

Operation Repository Events Occurring

Create or update a resource If the resource already exists: Create, LinkIn,
LinkTo

If resource doe not yet exist (HTTP and FTP only):
Update

Create a folder Create, LinkIn, LinkTo

Create a link to an existing resource LinkIn on the folder containing the link target,
LinkTo on the target resource to be linked

Unlink a file resource or an empty folder resource.
(Decrement RefCount, and if it becomes zero then delete the
resource from disk.)

UnlinkIn, UnlinkFrom, and, if RefCount is zero,
Delete

Forcibly delete a folder and its contents Recursively produce events for unlinking a
resource. Folder child resources are deleted
recursively, then the folder is deleted.

Forcibly remove all links to a resource Produce unlinking events for each link removed.

Update the contents, properties, or ACL of a resource by path
name

Update

Put a depth-zero WebDAV lock on a resource Lock

Remove a depth-zero WebDAV lock from a resource Lock

Rename (move) a resource LinkIn and LinkTo on the new location,
UnlinkIn and UnlinkFrom on the old location

Copy a resource Create, LinkIn, and LinkTo on the new location

Check out a resource CheckOut

Check in a resource CheckIn

Place a resource under version control VersionControl

Uncheck out a resource UncheckOut

All operations listed in Table 30-2 are atomic, except for these:

• Forced deletion of a folder and its contents

• Update of resource properties by path name using HTTP (only)

• Copy of a folder using HTTP (only)

See Also:

Table 21-3 for information on accessing resources using APIs and protocols

30.4 Repository Event Handler Considerations
Some considerations are listed for defining handlers for Oracle XML DB Repository
events.

Chapter 30
Repository Event Handler Considerations

30-7



• In any handler: Do not use COMMIT, ROLLBACK, or data definition language (DDL)
statements in a handler. Do not call PL/SQL functions or procedures, such as
DBMS_XMLSCHEMA.registerSchema, that behave similarly to DDL statements. In a
Render handler: Do not use data manipulation language (DML) statements.

To work around these restrictions, a handler can use such statements inside an
autonomous transaction, but it must ensure that lock conflicts cannot arise.

• In a Render handler, do not close an output stream. (You can append to a stream.)

• Do not use modifier methods from class XDBResource in a handler, unless it is a
Pre-Create or Pre-Update handler. Do not use method XDBResource.save() in
any handler.

• Oracle recommends that you develop only safe repository event handlers. In
particular:

– Write only resource properties that are in namespaces owned by your
application, never in the xdb namespace.

– Do not delete a resource while it is being created.

• A repository event handler is passed an XDBRepositoryEvent object, which exists
only during the current SQL statement or protocol operation. You can use PL/SQL
procedures and Java methods on this object to obtain information about the
resource, the event, and the associated event handlers.

• When an event handler performs operations that cause other repository events to
occur, those cascading events occur immediately. They are not queued to occur
after the handlers for the current event are finished. Each event thus occurs in the
context of its corresponding operation.

• Repository event handlers are called synchronously. They are executed in
the process, session, and transaction context of the corresponding operation.
However, handlers can use Oracle Database Advanced Queuing (AQ) to queue
repository events that are then handled asynchronously by some other process.

• Because a repository event handler is executed in the transaction context of
its corresponding operation, any locks acquired by that operation, or by other
operations run previously in the transaction, are still active. An event handler
must not start a separate session or transaction that tries to acquire such a lock.
Otherwise, the handler hangs.

• Repository event handlers are called in the order that they appear in a resource
configuration file. If preconditions are defined for a resource configuration, then
only those handlers are called for which the precondition is satisfied.

• Although handlers are called in the order they are defined in a configuration file,
avoid letting your code depend upon this. If the user who is current when a handler
is invoked has privilege write-config, then the handler invocation order could be
changed inside an executing handler.

• The entire list of handlers applicable to a given repository event occurrence is
determined before any of the handlers is invoked. This means, in particular, that
the precondition for each handler is evaluated before any handlers are invoked.

• The following considerations apply to error handling for repository events:

– A pre-operation event handler is never invoked if access checks for the
operation fail.

Chapter 30
Repository Event Handler Considerations

30-8



– All handlers for a given event are checked before any of them are called. If
any of them is not usable (for example, no longer exists), then none of them
are called.

– If an error is raised during event handling, then other, subsequent event
handlers are not invoked for the same SQL statement or protocol operation.
The current statement or operation is canceled and all of its changes are rolled
back.

• The following considerations apply to resource security for repository events:

– An event handler can have invoker's rights or definer rights. You specify the
execution rights of a PL/SQL package when you create the package. You
specify the execution rights of Java classes when you load them into the
database using the loadjava utility. If you specify invoker's rights, but a given
handler is not configured for invoker's rights, then an insufficient-privilege error
is raised.

– Within an event handler, the current user privileges, whether obtained by
invoker or definer rights, are determined in detail for a given resource by its
ACL. These privileges determine what the handler can do with the resource.
For example, if the current user has privileges read-properties and read-
contents for a particular resource, then an event handler can read that
resource.

• The following considerations apply to repository events for linking and unlinking:

– After creating a link to a resource, if you want any resource configuration files
of the parent folder to also apply to the linked resource, then use procedure
DBMS_RESCONFIG.appendResConfig to add the configuration files to the linked
resource. You can invoke this procedure from a Post-LinkTo event handler for
the linked resource.

– After unlinking a resource, if you want to remove any such
resource configuration files added when linking, then use procedure
DBMS_RESCONFIG.deleteResConfig to remove them from the unlinked
resource. You can invoke this procedure from a Post-UnlinkFrom event
handler for the unlinked resource.

• Do not define handlers for events on folder /sys/schemas or on resources under
this folder. Events do not occur for any such resources, so such event handlers
are ignored. This implies that XML schema operations that affect the repository
(registration, deletion, and so on) do not produce events.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about PL/SQL functions and procedures for manipulating
repository events

• Oracle Database XML Java API Reference, classes
XDBRepositoryEvent and XDBEvent for information about Java methods
for manipulating repository events

• Configuration of Repository Events for information about defining
repository event handlers with invoker's rights

Chapter 30
Repository Event Handler Considerations

30-9



30.5 Configuration of Repository Events
In a resource configuration file, you use element event-listeners, child of element
ResConfig, to configure Oracle XML DB Repository event handling.

You configure event treatment for Oracle XML DB Repository resources as you would
configure any other treatment of repository resources — see "Configuring a Resource".

By default, repository events are enabled, but you can disable them by setting
parameter XML_DB_EVENTS to DISABLE. To disable repository events at the session
level, use the following SQL*Plus command. You must have role XDBADMIN to do this.

ALTER SESSION SET XML_DB_EVENTS = DISABLE;

To disable repository events at the system level, use the following SQL*Plus
command, and then restart your database. Repository events are disabled for
subsequent sessions. You must have privilege ALTER SYSTEM to do this.

ALTER SYSTEM SET XML_DB_EVENTS = DISABLE;

To enable repository events again, set the value of XML_DB_EVENTS to ENABLE.

A resource configuration file is an XML file that conforms to the XML schema
XDBResConfig.xsd, which is accessible in Oracle XML DB Repository at path /sys/
schemas/PUBLIC/xmlns.oracle.com/xdb/XDBResConfig.xsd. You use element event-
listeners, child of element ResConfig, to configure repository event handling.

• Configuration Element event-listeners
Each resource configuration file can have one event-listeners element, as a
child of element ResConfig. This configures all event handling for the target
resource. If the resource configuration file applies to the entire repository, not
to a particular resource, then it defines event handling for all resources in the
repository.

• Configuration Element listener
Element listener is a child of element event-listeners, and it configures an
individual repository event listener.

• Repository Events Configuration Examples
Examples of configuring repository events are presented. Resource configuration
files define Java and PL/SQL event listeners, with and without preconditions,
respectively. An example categorizes resources according to MIME type. It
includes PL/SQL code to create the resource configuration file. Examples
implement listeners in Java and PL/SQL.

See Also:

Configuration of Oracle XML DB Repository for general information about
configuring repository resources

Chapter 30
Configuration of Repository Events

30-10



30.5.1 Configuration Element event-listeners
Each resource configuration file can have one event-listeners element, as a child
of element ResConfig. This configures all event handling for the target resource. If the
resource configuration file applies to the entire repository, not to a particular resource,
then it defines event handling for all resources in the repository.

Element event-listeners has the following optional attributes:

• set-invoker – Set this to true to if the resource configuration defines one or more
repository event handlers to have invoker's rights. The default value is false,
meaning that definer rights are used.

To define an invoker-rights repository event handler, you must have database
role XDB_SET_INVOKER. This role is granted to DBA, but not to XDBADMIN. Role
XDB_SET_INVOKER is checked only when a resource configuration file is created or
updated. Only attribute set-invoker, not role XDB_SET_INVOKER, is checked at run
time to ensure sufficient privilege.

See Also:

Repository Event Handler Considerations for information about
insufficient-privilege errors

• default-schema – The default schema value, used for listeners for which no
schema element is defined.

• default-language –The default language value, used for listeners for which no
language element is defined.

Element event-listeners has a sequence of listener elements as children. These
configure individual repository event listeners. The listeners are processed at run time
in the order of the listener elements.

30.5.2 Configuration Element listener
Element listener is a child of element event-listeners, and it configures an
individual repository event listener.

Each listener element has the following child elements. All of these are optional
except source, and they can appear in any order (their order is irrelevant).

• description – Description of the listener.

• schema – Database schema for the Java or PL/SQL implementation of the
repository event handlers. If neither this nor default-schema is defined, then an
error is raised.

• source (required) – Name of the Java class, PL/SQL package, or object type that
provides the handler methods. Java class names must be qualified with a package
name. Use an empty source element to indicate that the repository event handlers
are standalone PL/SQL stored procedures.

• language – Implementation language of the listener class (Java) or package (PL/
SQL). If neither this nor default-language is defined, then an error is raised.

Chapter 30
Configuration of Repository Events

30-11



• pre-condition – Precondition to be met for any repository event handlers in this
listener to be executed. This is identical to the pre-condition child of general
resource configuration element configuration – see Configuration Elements
defaultChildConfig and configuration.

• events – Sequence of unique repository event type names: Render, Pre-Create,
and so on. Only handlers for repository events of these types are enabled for the
listener. See Possible Repository Events for the list of possible repository event
types. If element events is not present, then handlers of repository events of all
types are enabled for the listener, which can be wasteful. Provide element events
to eliminate handler invocations for insignificant repository events.

30.5.3 Repository Events Configuration Examples
Examples of configuring repository events are presented. Resource configuration files
define Java and PL/SQL event listeners, with and without preconditions, respectively.
An example categorizes resources according to MIME type. It includes PL/SQL code
to create the resource configuration file. Examples implement listeners in Java and
PL/SQL.

Example 30-1 shows the content of a resource configuration file that defines two event
listeners. Each listener defines handlers for repository events of types Post-LinkIn,
Post-UnlinkIn, and Post-Update. It defines preconditions, the default language
(Java), and the default database schema.

The implementation of the handlers of the first listener is in Java class
oracle.cm.quota defined in database schema CM. These handlers are invoked only
for events on resources of ContentType image/gif.

The implementation of the handlers of the second listener is in Java class
oracle.ifs.quota defined in database schema IFS (the default schema for this
resource configuration file). These handlers are invoked only for events on resources
of type ifs-file in namespace http://foo.xsd.

See Also:

Configuration Elements defaultChildConfig and configuration for a
description of elements defaultChildConfig and applicationData

As a simple end-to-end illustration, suppose that an application needs to categorize
the resources in folder /public/res-app according to their MIME types. It creates links
to resources in folders /public/app/XML-TXT, /public/app/IMG, and /public/app/
FOLDER, depending on whether the resource MIME type is text/xml, image/gif,
or application/octet-stream, respectively. This is illustrated in Example 30-2,
Example 30-3, and Example 30-5.

Example 30-2 shows the PL/SQL code to create the configuration file for this
categorization illustration. It defines a single listener that handles events of types Pre-
UnlinkIn and Post-LinkIn. It explicitly defines the language (PL/SQL) and database
schema. No preconditions are defined.

Example 30-3 shows the PL/SQL code that implements the event handlers that are
configured in Example 30-2. The Post-LinkIn event handler creates a link to the

Chapter 30
Configuration of Repository Events

30-12



eventObject resource in one of the folders /public/app/XML-TXT, /public/app/IMG,
and /public/app/FOLDER, depending on the resource MIME type. The Pre-UnlinkIn
event handler deletes the links that are created by the Post-LinkIn event handler.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about PL/SQL package DBMS_XDBRESOURCE

• Oracle Database PL/SQL Packages and Types Reference for
information about PL/SQL package DBMS_XEVENT

• Oracle Database PL/SQL Packages and Types Reference for
information about PL/SQL package DBMS_XDB_REPOS

A Java example would be configured the same as in Example 30-2, with the exception
of these two lines, which would replace the elements with the same names in
Example 30-2:

                <source>category</source>
                <language>Java</language>

Example 30-4 shows the Java code that implements the event handlers. The logic is
identical to that in Example 30-3.

Example 30-5 demonstrates the invocation of the event handlers that are implemented
in Example 30-3 or Example 30-4.

Example 30-1    Resource Configuration File for Java Event Listeners with
Preconditions

<ResConfig xmlns="http://xmlns.oracle.com/xdb/XDBResConfig.xsd"
           xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
           xsi:schemaLocation="http://xmlns.oracle.com/xdb/XDBResConfig.xsd
                               http://xmlns.oracle.com/xdb/XDBResConfig.xsd">
  <event-listeners default-language="Java" default-schema="IFS">
    <listener>
      <description>Category application</description>
      <schema>CM</schema>
      <source>oracle.cm.category</source>
      <events>
        <Post-LinkIn/>
        <Post-UnlinkIn/>
        <Post-Update/>
      </events>
      <pre-condition>
        <existsNode>
          <XPath>/Resource[ContentType="image/gif"]</XPath>
        </existsNode>
      </pre-condition>
    </listener>
    <listener>
      <description>Check quota</description>
      <source>oracle.ifs.quota</source>
      <events>
        <Post-LinkIn/>
        <Post-UnlinkIn/>

Chapter 30
Configuration of Repository Events

30-13



        <Post-Update/>
      </events>
      <pre-condition>
        <existsNode>
          <XPath>r:/Resource/[ns:type="ifs-file"]</XPath>
          <namespace>xmlns:r="http://xmlns.oracle.com/xdb/XDBResource.xsd"
                     xmlns:ns="http://foo.xsd"
          </namespace>
        </existsNode>
      </pre-condition>
    </listener>
  </event-listeners>
  <defaultChildConfig>
    <configuration>
      <path>/sys/xdb/resconfig/user_rc.xml</path>
    </configuration>
  </defaultChildConfig>
  <applicationData>
    <foo:data xmlns:foo="http://foo.xsd">
      <foo:item1>1234</foo:item1>
    </foo:data>
  </applicationData>
</ResConfig>

Example 30-2    Resource Configuration File for PL/SQL Event Listeners with No Preconditions

DECLARE
  b BOOLEAN := FALSE;
BEGIN
  b := DBMS_XDB_REPOS.createFolder('/public/resconfig');
  b := DBMS_XDB_REPOS.createResource(
         '/public/resconfig/appcatg-rc1.xml',
         '<ResConfig xmlns="http://xmlns.oracle.com/xdb/XDBResConfig.xsd"
                     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                     xsi:schemaLocation="http://xmlns.oracle.com/xdb/XDBResConfig.xsd
                                         http://xmlns.oracle.com/xdb/XDBResConfig.xsd">
            <event-listeners>
              <listener>
                <description>Category application</description>
                <schema>APPCATGUSER1</schema>
                <source>APPCATG_EVT_PKG1</source>
                <language>PL/SQL</language>
                <events>
                  <Pre-UnlinkIn/>
                  <Post-LinkIn/>
                </events>
              </listener>
            </event-listeners>
            <defaultChildConfig>
              <configuration>
                <path>/public/resconfig/appcatg-rc1.xml</path>
              </configuration>
            </defaultChildConfig>
          </ResConfig>',
         'http://xmlns.oracle.com/xdb/XDBResConfig.xsd',
         'ResConfig');
END;
/
BEGIN
  DBMS_RESCONFIG.appendResConfig('/public/res-app', 
                                 '/public/resconfig/appcatg-rc1.xml',

Chapter 30
Configuration of Repository Events

30-14



                                 DBMS_RESCONFIG.APPEND_RECURSIVE);
END;
/
 

Example 30-3    PL/SQL Code Implementing Event Listeners

CREATE OR REPLACE PACKAGE appcatg_evt_pkg1 AS
 
  PROCEDURE handlePreUnlinkIn (eventObject DBMS_XEVENT.XDBRepositoryEvent);
  PROCEDURE handlePostLinkIn (eventObject DBMS_XEVENT.XDBRepositoryEvent);
 
END;
/
CREATE OR REPLACE PACKAGE BODY appcatg_evt_pkg1 AS
 
  PROCEDURE handlePreUnlinkIn (eventObject DBMS_XEVENT.XDBRepositoryEvent) AS
      XDBResourceObj DBMS_XDBRESOURCE.XDBResource;
      ResDisplayName VARCHAR2(100);
      ResPath        VARCHAR2(1000);
      ResOwner       VARCHAR2(1000);
      ResDeletedBy   VARCHAR2(1000);
      XDBPathobj     DBMS_XEVENT.XDBPath;
      XDBEventobj    DBMS_XEVENT.XDBEvent;
      SeqChar        VARCHAR2(1000);
      LinkName       VARCHAR2(10000);
      ResType        VARCHAR2(100);
      LinkFolder     VARCHAR2(100);
    BEGIN
      XDBResourceObj := DBMS_XEVENT.getResource(eventObject);
      ResDisplayName := DBMS_XDBRESOURCE.getDisplayName(XDBResourceObj);
      ResOwner       := DBMS_XDBRESOURCE.getOwner(XDBResourceObj);
      XDBPathobj     := DBMS_XEVENT.getPath(eventObject);
      ResPath        := DBMS_XEVENT.getName(XDBPathObj);
      XDBEventobj    := DBMS_XEVENT.getXDBEvent(eventObject);
      ResDeletedBy   := DBMS_XEVENT.getCurrentUser(XDBEventobj);
      BEGIN
        SELECT XMLCast(
                 XMLQuery(
                   'declare namespace ns = "http://xmlns.oracle.com/xdb/XDBResource.xsd";
                    /ns:Resource/ns:ContentType'
                   PASSING r.RES RETURNING CONTENT) AS VARCHAR2(100))
          INTO ResType
          FROM PATH_VIEW r WHERE r.PATH=ResPath;
          EXCEPTION WHEN OTHERS THEN NULL;
      END;
      IF ResType = 'text/xml' THEN LinkFolder := '/public/app/XML-TXT/';
      END IF;
      IF ResType = 'image/gif' THEN LinkFolder := '/public/app/IMG/';
      END IF;
      IF ResType = 'application/octet-stream' THEN LinkFolder := '/public/app/FOLDER/';
      END IF;
      DBMS_XDB_REPOS.deleteResource(LinkFolder || ResDisplayName);
  END;
 
  PROCEDURE handlePostLinkIn (eventObject DBMS_XEVENT.XDBRepositoryEvent) AS
      XDBResourceObj DBMS_XDBRESOURCE.XDBResource;
      ResDisplayName VARCHAR2(100);
      ResPath        VARCHAR2(1000);
      ResOwner       VARCHAR2(1000);
      ResDeletedBy   VARCHAR2(1000);

Chapter 30
Configuration of Repository Events

30-15



      XDBPathobj     DBMS_XEVENT.XDBPath;
      XDBEventobj    DBMS_XEVENT.XDBEvent;
      SeqChar        VARCHAR2(1000);
      LinkName       VARCHAR2(10000);
      ResType        VARCHAR2(100);
      LinkFolder     VARCHAR2(100);
    BEGIN
      XDBResourceObj := DBMS_XEVENT.getResource(eventObject);
      ResDisplayName := DBMS_XDBRESOURCE.getDisplayName(XDBResourceObj);
      ResOwner       := DBMS_XDBRESOURCE.getOwner(XDBResourceObj);
      XDBPathobj     := DBMS_XEVENT.getPath(eventObject);
      ResPath        := DBMS_XEVENT.getName(XDBPathObj);
      XDBEventobj    := DBMS_XEVENT.getXDBEvent(eventObject);
      ResDeletedBy   := DBMS_XEVENT.getCurrentUser(XDBEventobj);
      SELECT XMLCast(
               XMLQuery(
                 'declare namespace ns = "http://xmlns.oracle.com/xdb/XDBResource.xsd";
                  /ns:Resource/ns:ContentType'
                 PASSING r.RES RETURNING CONTENT) AS VARCHAR2(100))
        INTO ResType
        FROM PATH_VIEW r WHERE r.PATH=ResPath;
      IF ResType = 'text/xml' THEN LinkFolder := '/public/app/XML-TXT';
      END IF;
      IF ResType = 'image/gif' THEN LinkFolder := '/public/app/IMG';
      END IF;
      IF ResType = 'application/octet-stream' THEN LinkFolder := '/public/app/FOLDER';
      END IF;
      DBMS_XDB_REPOS.link(ResPath, LinkFolder, ResDisplayName);
    END;
 END;
 /

Example 30-4    Java Code Implementing Event Listeners

import oracle.xdb.event.*;
import oracle.xdb.spi.*;
import java.sql.*;
import java.io.*;
import java.net.*;
import oracle.jdbc.*;
import oracle.sql.*;
import oracle.xdb.XMLType;
import oracle.xdb.dom.*;
 
public class category
extends oracle.xdb.event.XDBBasicEventListener
{
  public Connection connectToDB() throws java.sql.SQLException
  {
    try
    {
      String strUrl="jdbc:oracle:kprb:";
      String strUname="appcatguser1";
      String strPwd="appcatguser1 ";
      Connection conn=null;
      OraclePreparedStatement stmt=null;
      DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
      conn = DriverManager.getConnection(strUrl, strUname, strPwd);
      return conn;
    }
    catch(Exception e1)

Chapter 30
Configuration of Repository Events

30-16



    {
      System.out.println("Exception in connectToDB java function");
      System.out.println("e1:" + e1.toString());
      return null;
    }
  }
  public void handlePostLinkIn (XDBRepositoryEvent eventObject)
  {
    XDBPath objXDBPath = null;
    String strPathName="";
    objXDBPath = eventObject.getPath();
    strPathName = objXDBPath.getName();
    XDBResource objXDBResource1;
    objXDBResource1 = eventObject.getResource();
    String textResDisplayName = objXDBResource1.getDisplayName();
    String resType = objXDBResource1.getContentType();
    String linkFolder="";
    System.out.println("resType" + resType+"sumit");
    System.out.println("strPathName:" + strPathName);
    System.out.println("textResDisplayName:" + textResDisplayName);
    if (resType.equals("text/xml")) linkFolder = "/public/app/XML-TXT/";
    else if (resType.equals("image/gif")) linkFolder = "/public/app/IMG/";
    else if (resType.equals("application/octet-stream"))
            linkFolder = "/public/app/FOLDER/";
    System.out.println("linkFolder:" + linkFolder);
    try
    {
      Connection con1 = connectToDB();
      OraclePreparedStatement stmt=null;
      stmt = (OraclePreparedStatement)con1.prepareStatement(
               "CALL DBMS_XDB_REPOS.link(?,?,?)");
      stmt.setString(1,strPathName);
      stmt.setString(2,linkFolder);
      stmt.setString(3,textResDisplayName);
      stmt.execute();
      stmt.close();
      con1.close();
    }
    catch(java.sql.SQLException ej1)
    {
      System.out.println("ej1:" + ej1.toString());
    }
 
  /* Make sure the link is not in the category folders.
     Then check the target resource's mime type and create a link
     in the appropriate category folder. */
  }
  public void handlePreUnlinkIn (XDBRepositoryEvent eventObject)
  {
    XDBPath objXDBPath = null;
    String strPathName="";
    objXDBPath = eventObject.getPath();
    strPathName = objXDBPath.getName();
    XDBResource objXDBResource1;
    objXDBResource1 = eventObject.getResource();
    String textResDisplayName = objXDBResource1.getDisplayName();
    String resType = objXDBResource1.getContentType();
    String linkFolder="";
    if (resType.equals("text/xml")) linkFolder = "/public/app/XML-TXT/";
    else if (resType.equals("image/gif")) linkFolder = "/public/app/IMG/";
    else if (resType.equals("application/octet-stream"))

Chapter 30
Configuration of Repository Events

30-17



            linkFolder = "/public/app/FOLDER/";
    try
    {
      Connection con1 = connectToDB();
      OraclePreparedStatement stmt=null;
      stmt = (OraclePreparedStatement)con1.prepareStatement(
               "CALL DBMS_XDB_REPOS.deleteResource(?)");
      stmt.setString(1,linkFolder+textResDisplayName);
      stmt.execute();
      stmt.close();
      con1.close();
    }
    catch(java.sql.SQLException ej1)
    {
      System.out.println("ej1:" + ej1.toString());
    }
  }
}

Example 30-5    Invoking Event Handlers

DECLARE
  ret BOOLEAN;
BEGIN
  ret := DBMS_XDB_REPOS.createResource('/public/res-app/res1.xml',
                                       '<name>TestForEventType-1</name>');
END;
/
DECLARE
  b BOOLEAN := FALSE;
  dummy_data CLOB := 'AAA';
BEGIN
  b := DBMS_XDB_REPOS.createResource('/public/res-app/res2.gif', dummy_data);
END;
/
DECLARE
  b BOOLEAN := FALSE;
  dummy_data CLOB := 'AAA';
BEGIN
  b := DBMS_XDB_REPOS.createFolder('/public/res-app/res-appfolder1');
END;
 
SELECT PATH FROM PATH_VIEW WHERE PATH LIKE '/public/app/%' ORDER BY PATH;
 
PATH
---------------------------------
/public/app/FOLDER
/public/app/FOLDER/res-appfolder1
/public/app/IMG
/public/app/IMG/res2.gif
/public/app/XML-TXT
/public/app/XML-TXT/res1.xml
 
6 rows selected.
 
-- Delete the /res-app resources. The /app resources are deleted also.
EXEC DBMS_XDB_REPOS.deleteResource('/public/res-app/res2.gif');
EXEC DBMS_XDB_REPOS.deleteResource('/public/res-app/res1.xml');
EXEC DBMS_XDB_REPOS.deleteResource('/public/res-app/res-appfolder1');
 
SELECT PATH FROM PATH_VIEW WHERE PATH LIKE '/public/app/%' ORDER BY PATH;

Chapter 30
Configuration of Repository Events

30-18



 
PATH
-------------------
/public/app/FOLDER
/public/app/IMG
/public/app/XML-TXT
 
3 rows selected.

Chapter 30
Configuration of Repository Events

30-19



31
Guidelines for Oracle XML DB Applications
in Java

Design guidelines are presented for writing Oracle XML DB applications in Java. This
includes guidelines for writing and configuring Java servlets for Oracle XML DB.

• Overview of Oracle XML DB Java Applications
You can use Java code either in a client or an application server, using the OCI
driver for JDBC, or in the Java Virtual Machine (JVM).

• HTTP(S): Access Java Servlets or Directly Access XMLType Resources
If a downstream client needs to work with XML in its textual representation then
using HTTP(S) to either access Java servlets or directly access XMLType resources
performs the best, especially if the XML node tree is not being manipulated much
by the Java program.

• Use JDBC XMLType Support to Access Many XMLType Object Elements
If a downstream client is an application that programmatically accesses many or
most of the elements of an XMLType instance using Java, then use JDBC XMLType
support for best performance. It is often easier to debug Java programs outside of
the database server, as well.

• Use Servlets to Manipulate and Write Out Data Quickly as XML
Oracle XML DB servlets are best used for applications that want to get into the
database, manipulate the data, and write it out quickly as XML, not to format
HTML pages for end-users.

• Oracle XML DB Java Servlet Support Restrictions
The Oracle XML DB protocol server supports FTP, HTTP 1.1, WebDAV, and Java
Servlets. It supports Java Servlet version 2.2, with a few exceptions.

• Configuration of Oracle XML DB Servlets
Oracle XML DB servlets are configured using file xdbconfig.xml in Oracle
XML DB Repository. Many of the XML elements in this file are the same as those
defined by the Java Servlet 2.2 specification portion of Java 2 Enterprise Edition
(J2EE), and they have the same semantics.

• HTTP Request Processing for Oracle XML DB Servlets
Oracle XML DB processing of an HTTP request is described.

• Session Pool and Oracle XML DB Servlets
Oracle Database uses one Java virtual machine (VM) for each database session.
A session that is reused from the session pool retains any state that is left over in
the Java VM (Java static variables) from the last time that session was used.

• Native XML Stream Support
Java node class DOM has Oracle-specific method write(), which provides native
XML stream support.

• Oracle XML DB Servlet APIs
The APIs supported by Oracle XML DB servlets are described. They are defined
by the Java Servlet 2.2 specification.

31-1



• Oracle XML DB Servlet Example
Examples show the definition of a simple Oracle XML DB servlet that prints the
content of a file resource, and how to register and map that servlet.

31.1 Overview of Oracle XML DB Java Applications
You can use Java code either in a client or an application server, using the OCI driver
for JDBC, or in the Java Virtual Machine (JVM).

Because Java runs in the database in the context of the database server process, the
ways you can deploy and run Java code are restricted to the following:

• You can run Java code as a stored procedure invoked from SQL or PL/SQL.

• You can run a Java servlet.

Stored procedures are easier to integrate with SQL and PL/SQL code. They require
Oracle Net Services as the protocol to access Oracle Database.

Servlets work better as the top-level entry point into Oracle Database, and require
using HTTP(S) as the protocol to access Oracle Database.

All Oracle XML DB application program interfaces (APIs) for Java are available to
applications running both in the server and outside the database.

These APIs include:

• JDBC support for XMLType

• XMLType class

• Java DOM implementation

31.2 HTTP(S): Access Java Servlets or Directly Access
XMLType Resources

If a downstream client needs to work with XML in its textual representation then using
HTTP(S) to either access Java servlets or directly access XMLType resources performs
the best, especially if the XML node tree is not being manipulated much by the Java
program.

The Java implementation in the server can natively move data from the database
to the network without converting character data through UCS-2 Unicode (which is
required by Java strings). In many cases data is copied directly from the database
buffer cache to the HTTP(S) connection. There is no need to convert data from the
buffer cache into the SQL serialization format used by Oracle Net Services, then move
it to the JDBC client, and then convert to XML. Loading on demand and the LRU
cache for XMLType are most effective inside the database server.

31.3 Use JDBC XMLType Support to Access Many
XMLType Object Elements

If a downstream client is an application that programmatically accesses many or
most of the elements of an XMLType instance using Java, then use JDBC XMLType

Chapter 31
Overview of Oracle XML DB Java Applications

31-2



support for best performance. It is often easier to debug Java programs outside of the
database server, as well.

31.4 Use Servlets to Manipulate and Write Out Data Quickly
as XML

Oracle XML DB servlets are best used for applications that want to get into the
database, manipulate the data, and write it out quickly as XML, not to format HTML
pages for end-users.

Servlets are intended for writing HTTP stored procedures in Java that can be
accessed using HTTP(S). If you need to develop an entire Internet application then
deploy your application servlet in Oracle Fusion Middleware and have the servlet
access data in the database using either JDBC or APIs such as java.net.*.

31.5 Oracle XML DB Java Servlet Support Restrictions
The Oracle XML DB protocol server supports FTP, HTTP 1.1, WebDAV, and Java
Servlets. It supports Java Servlet version 2.2, with a few exceptions.

Support for Java Servlet version 2.2. has these restrictions:

• The servlet WAR file (web.xml) is not supported in its entirety. Some web.xml
configuration parameters must be handled manually. For example, creating roles
must be done using the SQL CREATE ROLE command.

• RequestDispatcher and associated methods are not supported.

• Method HTTPServletRequest.getCookies() is not supported.

• Only one ServletContext (and one web-app) is currently supported.

• Stateful servlets (and thus the HttpSession class methods) are not supported.
Servlets must maintain state in the database itself.

31.6 Configuration of Oracle XML DB Servlets
Oracle XML DB servlets are configured using file xdbconfig.xml in Oracle XML DB
Repository. Many of the XML elements in this file are the same as those defined by
the Java Servlet 2.2 specification portion of Java 2 Enterprise Edition (J2EE), and they
have the same semantics.

Table 31-1 lists the XML elements defined for the servlet deployment descriptor by
the Java Servlet specification, along with extension elements supported by Oracle
XML DB.

Table 31-1    XML Elements Defined for Servlet Deployment Descriptors

XML Element Name Defined By Supported? Description Comment

auth-method Java no Specifies an HTTP authentication
method required for access

N/A

charset Oracle yes Specifies an IANA character set
name

For example:
ISO8859, UTF-8

Chapter 31
Use Servlets to Manipulate and Write Out Data Quickly as XML

31-3



Table 31-1    (Cont.) XML Elements Defined for Servlet Deployment Descriptors

XML Element Name Defined By Supported? Description Comment

charset-mapping Oracle yes Specifies a mapping between a
filename extension and a charset

N/A

context-param Java no Specifies a parameter for a Web
application

Not yet supported

description Java yes A string for describing a servlet or
Web application

Supported for servlets

display-name Java yes A string to display with a servlet or
Web application

Supported for servlets

distributable Java no Indicates whether or not this servlet
can function if all instances are not
running in the same Java virtual
machine

All servlets running in
Oracle Database must
be distributable.

errnum Oracle yes Oracle error number See Oracle Database
Error Messages
Reference

error-code Java yes HTTP(S) error code Defined by RFC 2616

error-page Java yes Defines a URL to redirect to if an
error is encountered.

Can be specified
through an HTTP(S)
error, an uncaught
Java exception, or
through an uncaught
Oracle error message

exception-type Java yes Classname of a Java exception
mapped to an error page

N/A

extension Java yes A filename extension used to
associate with MIME types,
character sets, and so on.

N/A

facility Oracle yes Oracle facility code for mapping
error pages

For example: ORA,
PLS, and so on.

form-error-page Java no Error page for form login attempts Not yet supported

form-login-config Java no Config spec for form-based login Not yet supported

form-login-page Java no URL for the form-based login page Not yet supported

icon Java Yes URL of icon to associate with a
servlet

Supported for servlets

init-param Java Yes Initialization parameter for a servlet N/A

jsp-file Java No Java Server Page file to use for a
servlet

Not supported

lang Oracle Yes IANA language name For example: en-US

lang-mapping Oracle Yes Specifies a mapping between a
filename extension and language
content

N/A

large-icon Java Yes Large sized icon for icon display N/A

load-on-startup Java Yes Specifies if a servlet is to be loaded
on startup

N/A

Chapter 31
Configuration of Oracle XML DB Servlets

31-4



Table 31-1    (Cont.) XML Elements Defined for Servlet Deployment Descriptors

XML Element Name Defined By Supported? Description Comment

location Java Yes Specifies the URL for an error page Can be a local path
name or HTTP(S)
URL

login-config Java No Specifies a method for
authentication

Not supported

mime-mapping Java Yes Specifies a mapping between
filename extension and the MIME
type of the content

N/A

mime-type Java Yes MIME type name for resource
content

For example: text/xml
or application/octet-
stream

OracleError Oracle Yes Specifies an Oracle error to
associate with an error page

N/A

param-name Java Yes Name of a parameter for a Servlet
or ServletContext

Supported for servlets

param-value Java Yes Value of a parameter N/A

realm-name Java No HTTP(S) realm used for
authentication

Not supported

role-link Java Yes Specifies a role a particular user
must have for accessing a servlet

Refers to a database
role name. Make sure
to capitalize by default!

role-name Java Yes A servlet name for a role Just another name to
call the database role.
Used by the Servlet
APIs

security-role Java No Defines a role for a servlet to use Not supported. You
must manually create
roles using the SQL
CREATE ROLE

security-role-ref Java Yes A reference between a servlet and
a role

N/A

servlet Java Yes Configuration information for a
servlet

N/A

servlet-class Java Yes Specifies the classname for the
Java servlet

N/A

servlet-language Oracle Yes Specifies the programming
language in which the servlet is
written.

Either Java, C, or PL/
SQL. Currently, only
Java is supported
for customer-defined
servlets.

servlet-mapping Java Yes Specifies a filename pattern with
which to associate the servlet

All of the mappings
defined by Java are
supported

servlet-name Java Yes String name for a servlet Used by servlet APIs

Chapter 31
Configuration of Oracle XML DB Servlets

31-5



Table 31-1    (Cont.) XML Elements Defined for Servlet Deployment Descriptors

XML Element Name Defined By Supported? Description Comment

servlet-schema Oracle Yes The Oracle Schema in which
the Java class is loaded. If not
specified, then the schema is
searched using the default resolver
specification.

If this is not specified,
then the servlet must
be loaded into the SYS
schema to ensure that
everyone can access
it, or the default Java
class resolver must be
altered. The servlet
schema is capitalized
unless the value is
enclosed in double
quotation marks.

session-config Java No Configuration information for an
HTTPSession

HTTPSession is not
supported

session-timeout Java No Timeout for an HTTP(S) session HTTPSession is not
supported

small-icon Java Yes Small icon to associate with a
servlet

N/A

taglib Java No JSP tag library JSPs currently not
supported

taglib-uri Java No URI for JSP tag library description
file relative to file web.xml

JSPs currently not
supported

taglib-location Java No Path name relative to the root of
the Web application where the tag
library is stored

JSPs currently not
supported

url-pattern Java Yes URL pattern to associate with a
servlet

See Section 10 of
Java Servlet 2.2 spec

web-app Java No Configuration for a Web application Only one Web
application is currently
supported

welcome-file Java Yes Specifies a welcome-file name N/A

welcome-file-list Java Yes Defines a list of files to display
when a folder is referenced through
an HTTP GET request

Example:
index.html

Chapter 31
Configuration of Oracle XML DB Servlets

31-6



Note:

• The following parameters defined for the web.xml file by Java are
usable only by J2EE-compliant Enterprise Java Bean containers, and
are not required for Java Servlet containers that do not support a full
J2EE environment: env-entry, env-entry-name, env-entry-value, env-
entry-type, ejb-ref, ejb-ref-type, home, remote, ejb-link, resource-
ref, res-ref-name, res-type, res-auth.

• The following elements are used to define access control for resources:
security-constraint, web-resource-collection, web-resource-name,
http-method, user-data-constraint, transport-guarantee, auth-
constrain. Oracle XML DB provides this functionality through access
control lists (ACLs). An ACL is a list of access control entries (ACEs)
that determines which principals have access to a given resource or
resources. A future release will support using a web.xml file to generate
ACLs.

Related Topics

• Configuration of Oracle XML DB Using xdbconfig.xml
Oracle XML DB is managed internally through a configuration file, xdbconfig.xml,
which is stored as a resource in Oracle XML DB Repository. As an alternative to
using Oracle Enterprise Manager to configure Oracle XML DB, you can configure
it directly using the Oracle XML DB configuration file.

31.7 HTTP Request Processing for Oracle XML DB Servlets
Oracle XML DB processing of an HTTP request is described.

HTTP request handling proceeds as follows:

1. If a connection has not yet been established, then Oracle Listener hands the
connection to a shared server dispatcher.

2. When a new HTTP request arrives, the dispatcher wakes up a shared server.

3. The HTTP headers are parsed into appropriate structures.

4. The shared server attempts to allocate a database session from the Oracle
XML DB session pool, if available, but otherwise creates a new session.

5. A new database call and a new database transaction are started.

6. If HTTP(S) has included authentication headers, then the session is authenticated
as that database user (just as if the user logged into SQL*Plus). If no
authentication information is included, and the request is GET or HEAD, then Oracle
XML DB attempts to authenticate the session as the ANONYMOUS user. If that
database user account is locked, then no unauthenticated access is allowed.

7. The URL in the HTTP request is matched against the servlets in the
xdbconfig.xml file, as specified by the Java Servlet 2.2 specification.

8. The Oracle XML DB Servlet container is invoked in the Java VM inside Oracle. If
the specified servlet has not been initialized yet, then the servlet is initialized.

Chapter 31
HTTP Request Processing for Oracle XML DB Servlets

31-7



9. The Servlet reads input from the ServletInputStream, and writes output to the
ServletOutputStream, and returns from method service().

10. If no uncaught Oracle error occurred, then the session is put back into the session
pool.

Related Topics

• Repository Access Using Protocols
You can access Oracle XML DB Repository data using protocols FTP and
HTTP(S)/WebDAV.

31.8 Session Pool and Oracle XML DB Servlets
Oracle Database uses one Java virtual machine (VM) for each database session. A
session that is reused from the session pool retains any state that is left over in the
Java VM (Java static variables) from the last time that session was used.

This can be useful in caching Java state that is not user-specific, such as metadata,
but do not store secure user data in Java static memory. This could turn into a security
hole inadvertently introduced by your application if you are not careful.

31.9 Native XML Stream Support
Java node class DOM has Oracle-specific method write(), which provides native XML
stream support.

Java method write() takes the following arguments and returns void:

• java.io.OutputStream stream: A Java stream for writing the XML text.

• String charEncoding: The character encoding for writing the XML text. If NULL, then
the database character set is used.

• Short indent The number of characters to indent nested XML elements.

Method write() has a shortcut implementation if the stream is the
ServletOutputStream provided inside the database. The contents of the Node are
written as XML data in native code directly to the output socket. This bypasses any
conversions into and out of Java objects or Unicode (required for Java strings), and
provides very high performance.

31.10 Oracle XML DB Servlet APIs
The APIs supported by Oracle XML DB servlets are described. They are defined by
the Java Servlet 2.2 specification.

The Javadoc for this is available at http://download.oracle.com/javaee/1.2.1/api/
index.html.

Table 31-2 lists Java Servlet 2.2 methods that are not implemented. They result in
run-time exceptions.

Chapter 31
Session Pool and Oracle XML DB Servlets

31-8

http://download.oracle.com/javaee/1.2.1/api/index.html
http://download.oracle.com/javaee/1.2.1/api/index.html


Table 31-2    Java Servlet 2.2 Methods that Are Not Implemented

Interface Methods Not Implemented

HttpServletRequest getSession(), isRequestedSessionIdValid()

HttpSession
all

HttpSessionBindingListener
all

31.11 Oracle XML DB Servlet Example
Examples show the definition of a simple Oracle XML DB servlet that prints the
content of a file resource, and how to register and map that servlet.

The servlet shown in Example 31-1 prints the content of file resource /public/test/
foo1.text.

To install the servlet, you compile it, then load it into Oracle Database:

% loadjava –grant public –u quine/curry –r test.class

Finally, register and map the servlet, associating it with a URL, as shown in
Example 31-2.

Example 31-1    An Oracle XML DB Servlet

import javax.servlet.http.*;
import javax.servlet.*;
import java.util.*;
import java.io.*;
import java.util.*;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.Reader;
import java.io.Writer;
import java.sql.DriverManager;
import java.sql.SQLException;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleDriver;
import oracle.jdbc.OraclePreparedStatement;
import oracle.jdbc.OracleResultSet;
import oracle.sql.CLOB;
import oracle.xdb.XMLType;
import oracle.xdb.spi.XDBResource;
 
public class test extends HttpServlet {
  public void doGet(HttpServletRequest request, HttpServletResponse response)
    throws ServletException,
           IOException {
      try {
        try {
          // Get the database connection for the current HTTP session
          DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
          OracleDriver ora = new OracleDriver();
          OracleConnection databaseConnection =
            (OracleConnection) ora.defaultConnection();

Chapter 31
Oracle XML DB Servlet Example

31-9



          String statementText =
            "SELECT XDBURIType('/public/test/foo1.txt').getClob() FROM DUAL";
          OraclePreparedStatement statement =
            (OraclePreparedStatement)
            databaseConnection.prepareStatement(statementText);
          OracleResultSet resultSet = null;
          CLOB content = null;
          // Execute the statement
          resultSet = (OracleResultSet) statement.executeQuery();
          while (resultSet.next())
            {// The statement returns a CLOB.
             // Copy content of CLOB to server's output stream.
             content = resultSet.getCLOB(1);
             Reader reader = content.getCharacterStream();
             Writer writer =
               new OutputStreamWriter(response.getOutputStream());
             int bytesSent = 0;
             int n;
             char[] buffer = new char[CLOB.MAX_CHUNK_SIZE];
             while (-1 != (n = reader.read(buffer)))
               { bytesSent = bytesSent + n;
                 writer.write(buffer, 0, n); }
             writer.flush();
             if (content.isOpen()) { content.close(); }}
          resultSet.close();
          statement.close();
          databaseConnection.close();
          response.getOutputStream().write('\n'); }
        catch (SQLException sql)
          { throw new ServletException(sql); }}
      catch (ServletException se )
        { se.printStackTrace(); }
      finally
        { System.out.flush(); }}}

Example 31-2    Registering and Mapping an Oracle XML DB Servlet

EXEC DBMS_XDB_CONFIG.addServlet('TestServletFoo', 'Java', 'TestServletFoo',
                                NULL, NULL, 'test', NULL, NULL, 'XDB');

EXEC DBMS_XDB_CONFIG.addServletMapping('/public/test/foo1.txt', 'TestServletFoo');

COMMIT;

Chapter 31
Oracle XML DB Servlet Example

31-10



32
Data Access Using URIs

You can generate and store URIs in the database and use them to retrieve the
database data they target. There are three kinds of URIs you can use this way:
DBUris, XDBUris, and HTTPUris.

• Overview of Oracle XML DB URI Features
You can use a URI as an indirection mechanism to access database data, and you
can use a URI that targets database data to produce XML documents.

• URIs and URLs
In developing Web-based XML applications, you often refer to data located on
a network using Uniform Resource Identifiers, or URIs. A URL, or Uniform
Resource Locator, is a URI that accesses an object using an Internet protocol.

• URIType and its Subtypes
You can represent paths of various kinds as database objects. These provide
unified access to data stored inside and outside the server, and they can be used
to map URIs in XML documents to database columns, letting documents reference
data stored in relational columns and expose it externally.

• Accessing Data Using URIType Instances
To use instances of URIType subtypes for indirection, you store such instances in
the database and then query to retrieve the targeted data with a PL/SQL method
such as getCLOB().

• XDBUris: Pointers to Repository Resources
XDBURIType is a subtype of URIType that exposes resources in Oracle XML DB
Repository using URIs. Instances of object type XDBURIType are called XDBUris.

• DBUris: Pointers to Database Data
A DBUri is a URI that targets database data. As for all instances of URIType
subtypes, a DBUri provides indirect access to data. DBURIType also lets you
address database data using XPath and construct XML documents containing
database data that is targeted by a DBUri that reflects the database structure.

• Create New Subtypes of URIType Using Package URIFACTORY
You can define your own subtypes of URIType that correspond to particular
protocols. You can use PL/SQL package URIFACTORY to obtain the URI of a
URIType instance, escape characters in a URI string or remove such escaping,
and register or unregister a type name for handling a given URL.

• SYS_DBURIGEN SQL Function
You can create a DBUri by providing an XPath expression to constructor
DBURIType or to appropriate URIFACTORY PL/SQL methods. With Oracle SQL
function sys_DburiGen, you can alternatively create a DBUri using an XPath that is
composed from database columns and their values.

• DBUriServlet
You can retrieve repository resources using the Oracle XML DB HTTP server.
Oracle Database also includes a servlet, DBUriServlet, that makes any kind of
database data available through HTTP(S) URLs. The data can be returned as
plain text, HTML, or XML.

32-1



32.1 Overview of Oracle XML DB URI Features
You can use a URI as an indirection mechanism to access database data, and you can
use a URI that targets database data to produce XML documents.

• Using paths as an indirection mechanism – You can store a path in the database
and then access its target indirectly by referring to the path. The paths in question
are various kinds of Uniform Resource Identifier (URI).

• Using paths that target database data to produce XML documents – One kind of
URI that you can use for indirection in particular, a DBUri, provides a convenient
XPath notation for addressing database data. You can use a DBUri to construct
an XML document that contains database data and whose structure reflects the
database structure.

32.2 URIs and URLs
In developing Web-based XML applications, you often refer to data located on a
network using Uniform Resource Identifiers, or URIs. A URL, or Uniform Resource
Locator, is a URI that accesses an object using an Internet protocol.

A URI has two parts, separated by a number sign (#):

• A URL part, that identifies a document.

• A fragment part, that identifies a fragment within the document. The notation
for the fragment depends on the document type. For HTML documents, it is an
anchor name. For XML documents, it is an XPath expression.

These are typical URIs:

• For HTML – http://www.example.com/document1#some_anchor, where
some_anchor is a named anchor in the HTML document.

• For XML – http://www.example.com/xml_doc#/po/cust/custname, where:

– http://www.example.com/xml_doc identifies the location of the XML
document.

– /po/cust/custname identifies a fragment within the document. This portion is
defined by the W3C XPointer recommendation.

See Also:

• Web Services Activity Statement for an explanation of HTTP(S) URL
notation

• XML Path Language (XPath)

• XML Pointer Language (XPointer)

• XML and MIME Media-Types

Chapter 32
Overview of Oracle XML DB URI Features

32-2

https://www.w3.org/TR/xpath20


32.3 URIType and its Subtypes
You can represent paths of various kinds as database objects. These provide unified
access to data stored inside and outside the server, and they can be used to map
URIs in XML documents to database columns, letting documents reference data
stored in relational columns and expose it externally.

The available path object types are HTTPURIType, DBURIType, and XDBURIType, all of
which are derived from abstract object type URIType.

• HTTPURIType – An object of this type is called an HTTPUri and represents a URL
that begins with http://. With HTTPURIType, you can create objects that represent
links to remote Web pages (or files) and retrieve those Web pages by calling
object methods. Applications using HTTPUriType must have the proper access
privileges. HTTPUriType implements the Hyper Text Transfer Protocol (HTTP(S))
for accessing remote Web pages. HTTPURIType uses package UTL_HTTP to fetch
data, so session settings and access control for this package can also be used to
influence HTTP fetches.

See Also:

Oracle Database Security Guide for information about managing fine-
grained access to external network services

• DBURIType – An object of this type is called a DBUri and represents a URI that
targets database data – a table, one or more rows, or a single column. With
DBURIType, you can create objects that represent links to database data, and
retrieve such data as XML by calling object methods. A DBUri uses a simple
form of XPath expression as its URI syntax – for example, the following XPath
expression is a DBUri reference to the row of table HR.employees where column
first_name has value Jack:

/HR/EMPLOYEES/ROW[FIRST_NAME="Jack"] 

• XDBURIType – An object of this type is called an XDBUri, and represents
a URI that targets a resource in Oracle XML DB Repository. With PL/SQL
constructor XDBURIType you can create objects that represent links to repository
resources. You can then retrieve all or part of any resource by calling methods
on those objects. The URI syntax for an XDBUri is a repository resource address,
optionally followed by an XPath expression. For example, /public/hr/doc1.xml#/
purchaseOrder/lineItem is an XDBUri reference to the lineItem child element of
the root element purchaseOrder in repository file doc1.xml in folder /public/hr.

Each of these object types is derived from an abstract object type, URIType. As an
abstract type, it has no instances (objects). Only its subtypes have instances.

Type URIType provides the following features:

• Unified access to data stored inside and outside the server. Because you can use
URIType values to store pointers to HTTP(S) and DBUris, you can create queries
and indexes without worrying about where the data resides.

Chapter 32
URIType and its Subtypes

32-3



• Mapping of URIs in XML Documents to Database Columns. When an XML
document is broken up and stored in object-relational tables and columns,
any URIs contained in the document are mapped to database columns of the
appropriate URIType subtype.

You can reference data stored in relational columns and expose it to the external world
using URIs. Oracle Database provides a standard servlet, DBUriServlet, that interprets
DBUris. It also provides PL/SQL package UTL_HTTP and Java class java.net.URL,
which you can use to fetch URL references.

URIType columns can be indexed natively in Oracle Database using Oracle Text – no
special data store is needed.

• Overview of DBUris and XDBUris
Important uses of DBUris and XDBUris include referencing XSLT stylesheets from
Web pages, referencing data in database tables or in repository folders without
using SQL, and improving performance by bypassing the Web server.

• URIType PL/SQL Methods
Abstract object type URIType includes PL/SQL methods that can be used with
each of its subtypes. Each of these methods can be overridden by any of the
subtypes.

Related Topics

• HTTPURIType PL/SQL Method GETCONTENTTYPE()
HTTPURIType PL/SQL method getContentType() returns the MIME information for
its targeted document. You can use this information to decide whether to retrieve
the document as a BLOB instance or a CLOB instance.

• DBUris: Pointers to Database Data
A DBUri is a URI that targets database data. As for all instances of URIType
subtypes, a DBUri provides indirect access to data. DBURIType also lets you
address database data using XPath and construct XML documents containing
database data that is targeted by a DBUri that reflects the database structure.

• XDBUris: Pointers to Repository Resources
XDBURIType is a subtype of URIType that exposes resources in Oracle XML DB
Repository using URIs. Instances of object type XDBURIType are called XDBUris.

• Indexes for XMLType Data
You can create indexes on your XML data, to focus on particular parts of it that you
query often and thus improve performance. There are various ways that you can
index XMLType data, whether it is XML schema-based or non-schema-based, and
regardless of the XMLType storage model you use.

See Also:

Create New Subtypes of URIType Using Package URIFACTORY for
information about defining new URIType subtypes

Chapter 32
URIType and its Subtypes

32-4



32.3.1 Overview of DBUris and XDBUris
Important uses of DBUris and XDBUris include referencing XSLT stylesheets from
Web pages, referencing data in database tables or in repository folders without using
SQL, and improving performance by bypassing the Web server.

• You can reference XSLT stylesheets from within database-generated Web pages.
PL/SQL package DBMS_METADATA uses DBUris to reference XSLT stylesheets. An
XDBUri can be used to reference XSLT stylesheets stored in Oracle XML DB
Repository.

• You can reference HTML text, images and other data stored in the database.
URLs can be used to point to data stored in database tables or in repository
folders.

• You can improve performance by bypassing the Web server. Replace a global
URL in your XML document with a reference to the database, and use a servlet, a
DBUri, or an XDBUri to retrieve the targeted content. Using a DBUri or an XDBUri
generally provides better performance than using a servlet, because you interact
directly with the database rather than through a Web server.

• With a DBUri, you can access an XML document in the database without using
SQL.

• Whenever a repository resource is stored in a database table to which you have
access, you can use either an XDBUri or a DBUri to access its content.

See Also:

Oracle Database PL/SQL Packages and Types Reference,
"DBMS_METADATA package"

32.3.2 URIType PL/SQL Methods
Abstract object type URIType includes PL/SQL methods that can be used with each of
its subtypes. Each of these methods can be overridden by any of the subtypes.

Table 32-1 lists the URIType PL/SQL methods. In addition, each of the subtypes has a
constructor with the same name as the subtype.

Table 32-1    URIType PL/SQL Methods

URIType Method Description

getURL() Returns the URL of the URIType instance.

Use this method instead of referencing a URL directly. URIType
subtypes override this method to provide the correct URL. For example,
HTTPURIType stores a URL without prefix http://. Method getURL()
then prepends the prefix and returns the entire URL.

getExternalURL() Similar to getURL(), but getExternalURL() escapes characters in the
URL, to conform with the URL specification. For example, spaces are
converted to the escaped value %20.

Chapter 32
URIType and its Subtypes

32-5



Table 32-1    (Cont.) URIType PL/SQL Methods

URIType Method Description

getContentType()
Returns the MIME content type for the URI.

HTTPUri: To return the content type, the URL is followed and the MIME
header examined.

DBUri: The returned content type is either text/plain (for a scalar value)
or text/xml (otherwise).

XDBUri: The value of the ContentType metadata property of the
repository resource is returned.

getCLOB() Returns the target of the URI as a CLOB instance. The database character
set is used for encoding the data.

DBUri: XML data is returned (unless node-test text() is used, in which
case the targeted data is returned as is). When a BLOB column is targeted,
the binary data in the column is translated as hexadecimal character data.

getBLOB() Returns the target of the URI as a BLOB value. No character conversion
is performed, and the character encoding is that of the URI target. This
method can also be used to fetch binary data.

DBUri: When applied to a DBUri that targets a BLOB column, getBLOB()
returns the binary data translated as hexadecimal character data. When
applied to a DBUri that targets non-binary data, the data is returned in the
database character set.

getXML() Returns the target of the URI as an XMLType instance. Using this,
an application that performs operations other than getCLOB() and
getBLOB() can use XMLType methods to do those operations. This
throws an exception if the URI does not target a well-formed XML
document.

createURI() Constructs an instance of one of the URIType subtypes.

• HTTPURIType PL/SQL Method GETCONTENTTYPE()
HTTPURIType PL/SQL method getContentType() returns the MIME information for
its targeted document. You can use this information to decide whether to retrieve
the document as a BLOB instance or a CLOB instance.

• DBURIType PL/SQL Method GETCONTENTTYPE()
PL/SQL method getContentType() returns the MIME information for a URL. If a
DBUri targets a scalar value, then the MIME content type returned is text/plain.
Otherwise, the type returned is text/xml.

• DBURIType PL/SQL Method GETCLOB()
When PL/SQL method getCLOB() is applied to a DBUri, the targeted data is
returned as XML data, using the targeted column or table name as an XML
element name. If the target XPath uses node-test text() then the data is returned
as text without an enclosing XML tag.

• DBURIType PL/SQL Method GETBLOB()
When applied to a DBUri that targets a BLOB column, PL/SQL method getBLOB()
returns the binary data translated as hexadecimal character data. When applied
to a DBUri that targets non-binary data, method getBLOB() returns the data (as a
BLOB value) in the database character set.

Chapter 32
URIType and its Subtypes

32-6



See Also:

Oracle Database PL/SQL Packages and Types Reference

32.3.2.1 HTTPURIType PL/SQL Method GETCONTENTTYPE()
HTTPURIType PL/SQL method getContentType() returns the MIME information for its
targeted document. You can use this information to decide whether to retrieve the
document as a BLOB instance or a CLOB instance.

For example, you might treat a Web page with a MIME type of x/jpeg as a BLOB
instance, and one with a MIME type of text/plain or text/html as a CLOB instance.

Example 32-1 tests the HTTP content type to determine whether to retrieve data as a
CLOB or BLOB instance. The content-type data is the HTTP header, for HTTPURIType, or
the metadata of the database column, for DBURIType.

Example 32-1    Using HTTPURIType PL/SQL Method GETCONTENTTYPE()

DECLARE
  httpuri HTTPURIType;
  y CLOB;
  x BLOB;
BEGIN
  httpuri := HTTPURIType('http://www.oracle.com/index.html');
  DBMS_OUTPUT.put_line(httpuri.getContentType());
  IF httpuri.getContentType() = 'text/html'
  THEN
     y := httpuri.getCLOB();
  END IF;
  IF httpuri.getContentType() = 'application-x/bin'
  THEN
     x := httpuri.getBLOB();
  END IF;
END;
/
text/html

32.3.2.2 DBURIType PL/SQL Method GETCONTENTTYPE()
PL/SQL method getContentType() returns the MIME information for a URL. If a DBUri
targets a scalar value, then the MIME content type returned is text/plain. Otherwise,
the type returned is text/xml.

CREATE TABLE dbtab (a VARCHAR2(20), b BLOB);

DBUris corresponding to the following XPath expressions have content type text/xml,
because each targets a complete column of XML data.

• /HR/DBTAB/ROW/A

• /HR/DBTAB/ROW/B

Chapter 32
URIType and its Subtypes

32-7



DBUris corresponding to the following XPath expressions have content type text/
plain, because each targets a scalar value.

• /HR/DBTAB/ROW/A/text()

• /HR/DBTAB/ROW/B/text()

32.3.2.3 DBURIType PL/SQL Method GETCLOB()
When PL/SQL method getCLOB() is applied to a DBUri, the targeted data is returned
as XML data, using the targeted column or table name as an XML element name. If
the target XPath uses node-test text() then the data is returned as text without an
enclosing XML tag.

In both cases, the returned data is in the database character set.

For example: If applied to a DBUri with XPath /HR/DBTAB/ROW/A/text(), where A is
a non-binary column, the data in column A is returned as is. Without XPath node-test
text(), the result is the data wrapped in XML:

<HR><DBTAB><ROW><A>...data_in_column_A...</A></ROW></DBTAB></HR>

When applied to a DBUri that targets a binary (BLOB) column, the binary data in the
column is translated as hexadecimal character data.

For example: If applied to a DBUri with XPath /HR/DBTAB/ROW/B/text(), where B is a
BLOB column, the targeted binary data is translated to hexadecimal character data and
returned. Without XPath node-test text(), the result is the translated data wrapped in
XML:

<HR><DBTAB><ROW><B>...data_translated_to_hex...</B></ROW></DBTAB></HR>

32.3.2.4 DBURIType PL/SQL Method GETBLOB()
When applied to a DBUri that targets a BLOB column, PL/SQL method getBLOB()
returns the binary data translated as hexadecimal character data. When applied to
a DBUri that targets non-binary data, method getBLOB() returns the data (as a BLOB
value) in the database character set.

For example, consider table dbtab:

CREATE TABLE dbtab (a VARCHAR2(20), b BLOB);

When getBLOB() is applied to a DBUri corresponding to XPath expression /HR/
DBTAB/ROW/B, it returns a BLOB value containing an XML document with root element B
whose content is the hexadecimal-character translation of the binary data of column B.

When getBLOB() is applied to a DBUri corresponding to XPath expression /HR/
DBTAB/ROW/B/text(), it returns a BLOB value containing only the hexadecimal-
character translation of the binary data of column B.

When getBLOB() is applied to a DBUri corresponding to XPath expression /HR/
DBTAB/ROW/A/text(), which targets non-binary data, it returns a BLOB value containing
the data of column A, in the database character set.

Chapter 32
URIType and its Subtypes

32-8



32.4 Accessing Data Using URIType Instances
To use instances of URIType subtypes for indirection, you store such instances in the
database and then query to retrieve the targeted data with a PL/SQL method such as
getCLOB().

You can create database columns using URIType or any of its subtypes, or you can
store just the text of each URI as a string and then create the needed URIType
instances on demand, when the URIs are accessed. You can store objects of different
URIType subtypes in the same URIType database column.

You can also define your own object types that inherit from the URIType subtypes.
Deriving new types lets you use custom techniques to retrieve, transform, or filter data.

Example 32-2 stores an HTTPUri and a DBUri (instances of URIType subtypes
HTTPURIType and DBURIType) in the same database column of type URIType. A query
retrieves the data addressed by each of the URIs. The first URI is a Web-page URL.
The second URI references data in table employees of standard database schema HR.
(For brevity, only the beginning of the Web page is shown.)

To use URIType PL/SQL method createURI(), you must know the particular URIType
subtype to use. PL/SQL method getURI() of package URIFACTORY lets you instead use
the flexibility of late binding, determining the particular type information at run time.

PL/SQL factory method URIFACTORY.getURI() takes as argument a URI string. It
returns a URIType instance of the appropriate subtype (HTTPURIType, DBURIType, or
XDBURIType), based on the form of the URI string:

• If the URI starts with http://, then getURI() creates and returns an HTTPUri.

• If the URI starts with either /oradb/ or /dburi/, then getURI() creates and returns
a DBUri.

• Otherwise, getURI() creates and returns an XDBUri.

Example 32-3 is similar to Example 32-2, but it uses two different ways to obtain
documents targeted by URIs:

• PL/SQL method SYS.URIFACTORY.getURI() with absolute URIs:

– an HTTPUri that targets HTTP address http://www.oracle.com

– a DBUri that targets database address /oradb/HR/EMPLOYEES/
ROW[EMPLOYEE_ID=200]

• Constructor SYS.HTTPURIType() with a relative URL (no http://). The same
HTTPUri is used as for the absolute URI: the Oracle home page.

In Example 32-3, the URI strings passed to getURI() are hard-coded, but they could
just as easily be string values that are obtained by an application at run time.

Example 32-2    Creating and Querying a URI Column

CREATE TABLE uri_tab (url URIType);
Table created.
 
INSERT INTO uri_tab VALUES (HTTPURIType.createURI('http://www.oracle.com'));
1 row created.
 
INSERT INTO uri_tab VALUES (DBURIType.createURI(

Chapter 32
Accessing Data Using URIType Instances

32-9



                              '/HR/EMPLOYEES/ROW[FIRST_NAME="Jack"]'));
1 row created.
 
SELECT e.url.getCLOB() FROM uri_tab e;
 
E.URL.GETCLOB()
-------------------------------------------------------------------
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
. . .
 
<?xml version="1.0"?>
 <ROW>
  <EMPLOYEE_ID>177</EMPLOYEE_ID>
  <FIRST_NAME>Jack</FIRST_NAME>
  <LAST_NAME>Livingston</LAST_NAME>
  <EMAIL>JLIVINGS</EMAIL>
  <PHONE_NUMBER>011.44.1644.429264</PHONE_NUMBER>
  <HIRE_DATE>23-APR-06</HIRE_DATE>
  <JOB_ID>SA_REP</JOB_ID>
  <SALARY>8400</SALARY>
  <COMMISSION_PCT>.2</COMMISSION_PCT>
  <MANAGER_ID>149</MANAGER_ID>
  <DEPARTMENT_ID>80</DEPARTMENT_ID>
 </ROW>
 
2 rows selected.

Example 32-3    Using Different Kinds of URI, Created in Different Ways

CREATE TABLE uri_tab (docUrl SYS.URIType, docName VARCHAR2(200));
Table created.
 
-- Insert an HTTPUri with absolute URL into SYS.URIType using URIFACTORY.
-- The target is Oracle home page.
INSERT INTO uri_tab VALUES
  (SYS.URIFACTORY.getURI('http://www.oracle.com'), 'AbsURL');
1 row created.
 
-- Insert an HTTPUri with relative URL using constructor SYS.HTTPURIType.
-- Note the absence of prefix http://. The target is the same.
INSERT INTO uri_tab VALUES (SYS.HTTPURIType('www.oracle.com'), 'RelURL');
1 row created.

-- Insert a DBUri that targets employee data from table HR.employees.
INSERT INTO uri_tab VALUES
  (SYS.URIFACTORY.getURI('/oradb/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]'), 'Emp200');
1 row created.

-- Extract all of the documents.
SELECT e.docUrl.getCLOB(), docName FROM uri_tab e;
 
E.DOCURL.GETCLOB()
-----------------
DOCNAME
------------------------------------
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
. . .
AbsURL
 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
. . .
RelURL

Chapter 32
Accessing Data Using URIType Instances

32-10



<?xml version="1.0"?>
 <ROW>
  <EMPLOYEE_ID>200</EMPLOYEE_ID>
  <FIRST_NAME>Jennifer</FIRST_NAME>
  <LAST_NAME>Whalen</LAST_NAME>
  <EMAIL>JWHALEN</EMAIL>
  <PHONE_NUMBER>515.123.4444</PHONE_NUMBER>
  <HIRE_DATE>17-SEP-03</HIRE_DATE>
  <JOB_ID>AD_ASST</JOB_ID>
  <SALARY>4400</SALARY>
  <MANAGER_ID>101</MANAGER_ID>
  <DEPARTMENT_ID>10</DEPARTMENT_ID>
 </ROW>
Emp200

3 rows selected.
 
-- In PL/SQL
CREATE OR REPLACE FUNCTION returnclob
  RETURN CLOB
  IS a SYS.URIType;
BEGIN
  SELECT docUrl INTO a FROM uri_Tab WHERE docName LIKE 'Emp200%';
  RETURN a.getCLOB;
END;
/
Function created.
 
SELECT returnclob() FROM DUAL;
 
RETURNCLOB()
---------------------------------------------------------------
<?xml version="1.0"?>
 <ROW>
  <EMPLOYEE_ID>200</EMPLOYEE_ID>
  <FIRST_NAME>Jennifer</FIRST_NAME>
  <LAST_NAME>Whalen</LAST_NAME>
  <EMAIL>JWHALEN</EMAIL>
  <PHONE_NUMBER>515.123.4444</PHONE_NUMBER>
  <HIRE_DATE>17-SEP-03</HIRE_DATE>
  <JOB_ID>AD_ASST</JOB_ID>
  <SALARY>4400</SALARY>
  <MANAGER_ID>101</MANAGER_ID>
  <DEPARTMENT_ID>10</DEPARTMENT_ID>
 </ROW>
 
1 row selected.

Related Topics

• Create New Subtypes of URIType Using Package URIFACTORY
You can define your own subtypes of URIType that correspond to particular
protocols. You can use PL/SQL package URIFACTORY to obtain the URI of a
URIType instance, escape characters in a URI string or remove such escaping,
and register or unregister a type name for handling a given URL.

• XSL Transformation and Oracle XML DB
You can apply XSL transformations to XML Schema-based documents using the
built-in Oracle XML DB XSLT processor. In-database XML-specific optimizations
can significantly reduce the memory required, eliminate the overhead associated
with parsing, and reduce network traffic.

Chapter 32
Accessing Data Using URIType Instances

32-11



32.5 XDBUris: Pointers to Repository Resources
XDBURIType is a subtype of URIType that exposes resources in Oracle XML DB
Repository using URIs. Instances of object type XDBURIType are called XDBUris.

• XDBUri URI Syntax
The URL portion of an XDBUri URI is the hierarchical address of the targeted
repository resource – it is a repository path (not an XPath expression). An optional
fragment portion of the URI, after the number-sign (#), uses XPath syntax to target
parts of an XML document.

• Using XDBUri: Examples
XDBUri examples here use URIs in a table to access a repository resource and,
together with PL/SQL method getXML, to query and retrieve XML documents.

32.5.1 XDBUri URI Syntax
The URL portion of an XDBUri URI is the hierarchical address of the targeted
repository resource – it is a repository path (not an XPath expression). An optional
fragment portion of the URI, after the number-sign (#), uses XPath syntax to target
parts of an XML document.

The optional fragment portion of the URI is appropriate only if the targeted resource
is an XML document, in which case the fragment portion targets one or more its
parts. If the targeted resource is not an XML document, then omit the fragment and
number-sign.

The following are examples of XDBUri URIs:

• /public/hr/image27.jpg

• /public/hr/doc1.xml#/PurchaseOrder/LineItem

Based on the form of these URIs:

• /public/hr is a folder resource in Oracle XML DB Repository.

• image27.jpg and doc1.xml are resources in folder /public/hr.

• Resource doc1.xml is a file resource, and it contains an XML document.

• The XPath expression /PurchaseOrder/LineItem refers to the LineItem child
element in element PurchaseOrder of XML document doc1.xml.

You can create an XDBUri using PL/SQL method getURI() of package URIFACTORY.

XDBURIType is the default URIType used when generating instances using URIFACTORY
PL/SQL method getURI(), unless the URI has one of the recognized prefixes
http://, /dburi, or /oradb.

For example, if resource doc1.xml is present in repository folder /public/hr, then the
following query returns an XDBUri that targets that resource.

SELECT SYS.URIFACTORY.getURI('/public/hr/doc1.xml') FROM DUAL;

It is the lack of a special prefix that determines that the object type is XDBURIType,
not any particular resource file extension or the presence of # followed by an XPath

Chapter 32
XDBUris: Pointers to Repository Resources

32-12



expression. Even if the resource were named foo.bar instead of doc1.xml, the
returned URIType instance would still be an XDBUri.

32.5.2 Using XDBUri: Examples
XDBUri examples here use URIs in a table to access a repository resource and,
together with PL/SQL method getXML, to query and retrieve XML documents.

Example 32-4 creates an XDBUri, inserts values into a purchase-order table, and then
selects all of the purchase orders. Because there is no special prefix used in the URI
passed to URIFACTORY.getURI(), the created URIType instance is an XDBUri.

Because PL/SQL method getXML() returns an XMLType instance, you can use it with
SQL/XML functions such as XMLQuery. The query in Example 32-5 illustrates this. The
query retrieves all purchase orders numbered 999.

Example 32-4    Access a Repository Resource by URI Using an XDBUri

DECLARE
res BOOLEAN;
postring VARCHAR2(100):= '<?xml version="1.0"?>
<ROW>
<PO>999</PO>
</ROW>';
BEGIN
res:=DBMS_XDB_REPOS.createFolder('/public/orders/');
res:=DBMS_XDB_REPOS.createResource('/public/orders/po1.xml', postring);
END;
/
PL/SQL procedure successfully completed.
 
CREATE TABLE uri_tab (poUrl SYS.URIType, poName VARCHAR2(1000));
Table created.
 
-- Create an abstract type column so any type of URI can be used
-- Insert an absolute URL into poUrl.
-- The factory will create an XDBURIType because there is no prefix.
-- Here, po1.xml is an XML file that is stored in /public/orders/
-- of the XML repository.
INSERT INTO uri_tab VALUES
  (URIFACTORY.getURI('/public/orders/po1.xml'), 'SomePurchaseOrder');
1 row created.
 
-- Get all the purchase orders
SELECT e.poUrl.getCLOB(), poName FROM uri_tab e;
 
E.POURL.GETCLOB()
-----------------
PONAME
------
<?xml version="1.0"?>
<ROW>
<PO>999</PO>
</ROW>
SomePurchaseOrder

Chapter 32
XDBUris: Pointers to Repository Resources

32-13



 
1 row selected.
 
-- Using PL/SQL, you can access table uri_tab as follows:
CREATE OR REPLACE FUNCTION returnclob
  RETURN CLOB
  IS a URIType;
BEGIN
  -- Get absolute URL for purchase order named like 'Some%'
   SELECT poUrl INTO a FROM uri_tab WHERE poName LIKE 'Some%';
   RETURN a.getCLOB();
END;
/ 
Function created.
 
SELECT returnclob() FROM DUAL;
 
RETURNCLOB()
---------------------
<?xml version="1.0"?>
<ROW>
<PO>999</PO>
</ROW>
 
1 row selected.

Example 32-5    Using PL/SQL Method GETXML with XMLCAST and XMLQUERY

SELECT e.poUrl.getCLOB() FROM uri_tab e
  WHERE XMLCast(XMLQuery('$po/ROW/PO'
                         PASSING e.poUrl.getXML() AS "po"
                         RETURNING CONTENT)
                AS VARCHAR2(24))
        = '999';

E.POURL.GETCLOB()
---------------------
<?xml version="1.0"?>
<ROW>
<PO>999</PO>
</ROW>
 
1 row selected.

32.6 DBUris: Pointers to Database Data
A DBUri is a URI that targets database data. As for all instances of URIType subtypes,
a DBUri provides indirect access to data. DBURIType also lets you address database
data using XPath and construct XML documents containing database data that is
targeted by a DBUri that reflects the database structure.

• Address database data using XPath notation. This, in effect, lets you visualize and
access the database as if it were XML data.

Chapter 32
DBUris: Pointers to Database Data

32-14



For example, a DBUri can use an expression such as /HR/EMPLOYEES/
ROW[FIRST_NAME="Jack"] to target the row of table HR.employees where column
first_name has value Jack.

• Construct an XML document that contains database data targeted by a DBUri and
whose structure reflects the database structure.

For example: A DBUri with XPath /HR/DBTAB/ROW/A can be used to construct an
XML document that wraps the data of column A in XML elements that reflect the
database structure and are named accordingly:

<HR><DBTAB><ROW><A>...data_in_column_A...</A></ROW></DBTAB></HR>

A DBUri does not reference a global location as does an HTTPUri. You can, however,
also access objects addressed by a DBUri in a global manner, by appending the DBUri
to an HTTPUri that identifies a servlet that handles DBUris – see DBUriServlet .

• View the Database as XML Data
Using DBURIType, you can have what amounts to XML views of the portions of the
database to which you have access, presented in the form of XML data. When
visualized this way, the database data is effectively wrapped in XML elements,
resulting in one or more XML documents.

• DBUri URI Syntax
An XPath expression is a path into XML data that addresses one or more nodes.
A DBUri exploits virtual XML visualization of the database to use a simple form of
XPath expression as a URI to address database data. This is so, whether or not
the data is XML.

• DBUris are Scoped to a Database and Session
A DBUri is scoped to a given database session, so the same DBUri can give
different results in the same query, depending on the session context (which user
is connected and what privileges the user has).

• Using DBUris —Examples
A DBUri can identify a table, a row, a column in a row, or an attribute of an object
column. Examples here show how to target different object types.

32.6.1 View the Database as XML Data
Using DBURIType, you can have what amounts to XML views of the portions of the
database to which you have access, presented in the form of XML data. When
visualized this way, the database data is effectively wrapped in XML elements,
resulting in one or more XML documents.

You can access only those database schemas to which you have been granted access
privileges. This portion of the database is, in effect, your own view of the database.
This applies to all kinds database data, not just data that is stored as XML.

Such "XML views" are not database views, in the technical sense of the term.
"View" here means only an abstract perspective that can be useful for understanding
DBURIType. You can think of DBURIType as providing a way to visualize and access the
database as if it were XML data.

However, DBURIType does not just provide an exercise in visualization and an
additional means to access database data. Each "XML view" can be realized as an
XML document – that is, you can use DBURIType to generate XML documents using
database data.

Chapter 32
DBUris: Pointers to Database Data

32-15



All of this is another way of saying that DBURIType lets you use XPath notation to 1)
address and access any database data to which you have access and 2) construct
XML representations of that data.

Figure 32-1 illustrates the relation between a relational table, HR.employees, a
corresponding XML view of a portion of that table, and the corresponding DBUri URI (a
simple XPath expression). In this case, the portion of the data exposed as XML is the
row where employee_id is 200. The URI can be used to access the data and construct
an XML document that reflects the "XML view".

Figure 32-1    A DBUri Corresponds to an XML Visualization of Relational Data

DBUri: /oradb/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/LAST_NAME

XML Document

Relational Data

Database

hr.employees

employee_id last_name

Whalen


Livingston

200�

177



<HR>�

  <EMPLOYEES>


    <ROW>


      <EMPLOYEE_ID>�

        200


      </EMPLOYEE_ID>�

      <LAST_NAME>  


       Whalen


      </LAST_NAME>


    </ROW>


  </EMPLOYEES>�

</HR>

XML

Visualization

The XML elements in the "XML view" and the steps in the URI XPath expression both
reflect the database table and column names. Note the use of ROW to indicate a row in
the database table – both in the "XML view" and in the URI XPath expression.

Note also that the XPath expression contains a root-element step, oradb. This is
used to indicate that the URI corresponds to a DBUri, not an HTTPUri or an XDBUri.
Whenever this correspondence is understood from context, this XPath step can be
skipped. For example, if it is known that the path in question is a path to database
data, the following URIs are equivalent:

• /oradb/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/LAST_NAME

• /HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/LAST_NAME

Whenever the URI context is not clear, however, you must use the prefix /oradb to
distinguish a URI as corresponding to a DBUri. In particular, you must supply the prefix
to URIFACTORY PL/SQL methods and to DBUriServlet.

Related Topics

• Create New Subtypes of URIType Using Package URIFACTORY
You can define your own subtypes of URIType that correspond to particular
protocols. You can use PL/SQL package URIFACTORY to obtain the URI of a
URIType instance, escape characters in a URI string or remove such escaping,
and register or unregister a type name for handling a given URL.

Chapter 32
DBUris: Pointers to Database Data

32-16



• DBUriServlet
You can retrieve repository resources using the Oracle XML DB HTTP server.
Oracle Database also includes a servlet, DBUriServlet, that makes any kind of
database data available through HTTP(S) URLs. The data can be returned as
plain text, HTML, or XML.

See Also:

Generation of XML Data from Relational Data for other ways to generate
XML from database data

32.6.2 DBUri URI Syntax
An XPath expression is a path into XML data that addresses one or more nodes. A
DBUri exploits virtual XML visualization of the database to use a simple form of XPath
expression as a URI to address database data. This is so, whether or not the data is
XML.

Thus, for DBURIType, Oracle Database supports only a subset of the full XPath or
XPointer syntax. There are no syntax restrictions for XDBUri XPath expressions.
There is also an exception in the DBUri case: data in XMLType tables. For an XMLType
table, the simple XPath form is used to address the table itself within the database.
Then, to address particular XML data in the table, the remainder of the XPath
expression can use the full XPath syntax. This exception applies only to XMLType
tables, not to XMLType columns.

In any case, unlike an XDBUri, a DBUri URI does not use a number-sign (#) to
separate the URL portion of a URI from a fragment (XPath) portion. DBURIType
does not use URI fragments. Instead, the entire URI is treated as a (simple) XPath
expression.

You can create DBUris to any database data to which you have access. XPath
expressions such as the following are allowed:

• /database_schema/table

• /database_schema/table/ROW[predicate_expression]/column

• /database_schema/table/ROW[predicate_expression]/object_column/
attribute

• /database_schema/XMLType_table/ROW/XPath_expression

In the last case, XMLType_table is an XMLType table, and XPath_expression is any
XPath expression. For tables that are not XMLType, a DBUri XPath expression must
end at a column (it cannot address specific data inside a column). This restriction
includes XMLType columns, LOB columns, and VARCHAR2 columns that contain XML
data.

A DBUri XPath expression can do any of the following:

• Target an entire table.

For example, /HR/EMPLOYEES targets table employees of database schema HR.

Chapter 32
DBUris: Pointers to Database Data

32-17



• Include XPath predicates at any step in the path, except the database schema and
table steps.

For example, /HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/EMAIL targets column email
of table HR.employees, where employee_id is 200.

• Use the text() XPath node test on data with scalar content. This is the only node
test that can be used, and it cannot be used with the table or row step.

The following can be used in DBUri (XPath) predicate expressions:

• Boolean operators and, or, and not

• Relational operators <, >, <=, !=, >=, =, mod, div, * (multiply)

A DBUri XPath expression must do all of the following:

• Use only the child XPath axis – other axes, such as parent, are not allowed.

• Either specify a database schema or specify PUBLIC to resolve the table name
without a specific schema.

• Specify a database view or table name.

• Include a ROW step, if a database column is targeted.

• Identify a single data value, which can be an object-type instance or a collection.

• Result in well-formed XML when it is used to generate XML data using database
data.

An example of a DBUri that does not result in well-formed XML is /HR/
EMPLOYEES/ROW/LAST_NAME. It returns more than one <LAST_NAME> element
fragment, with no single root element.

• Use none of the following:

– * (wildcard)

– . (self)

– .. (parent)

– // (descendant or self)

– XPath functions, such as count

A DBUri XPath expression can optionally be prefixed by /oradb or /dburi (the two
are equivalent) to distinguish it. This prefix is case-insensitive. However, the rest of the
DBUri XPath expression is case-sensitive, as are XPath expressions generally. Thus,
for example, to specify table HR.employees as a DBUri XPath expression, you must
use HR/EMPLOYEES, not hr/employees (or a mixed-case combination), because table
and column names are uppercase, by default.

See Also:

XML Path Language (XPath) on XPath notation

Chapter 32
DBUris: Pointers to Database Data

32-18

https://www.w3.org/TR/xpath20


32.6.3 DBUris are Scoped to a Database and Session
A DBUri is scoped to a given database session, so the same DBUri can give different
results in the same query, depending on the session context (which user is connected
and what privileges the user has).

The content of the XML “views” you have of the database, and hence of the XML
documents that you can construct, reflects the permissions you have for accessing
particular database data at a given time.

To complicate things a bit, there is also an XML element PUBLIC, under which
database data is accessible without any database-schema qualification. This is a
convenience feature, but it can also lead to some confusion if you forget that the XML
views of the database for a given user depend on the specific access the user has to
the database at a given time.

XML element PUBLIC corresponds to the use of a public synonym. For example, when
queried by user quine, the following query tries to match table foo under database
schema quine, but if no such table exists, it tries to match a public synonym named
foo.

SELECT * FROM foo;

In the same way, XML element PUBLIC contains all of the database data visible to
a given user and all of the data visible to that user through public synonyms. So,
the same DBUri URI /PUBLIC/FOO can resolve to quine.foo when user quine is
connected, and resolve to curry.foo when user curry is connected.

32.6.4 Using DBUris —Examples
A DBUri can identify a table, a row, a column in a row, or an attribute of an object
column. Examples here show how to target different object types.

• Targeting a Table Using a DBUri
An example uses a DBUri that targets a complete table. An XML document is
returned that corresponds to the table contents. The top-level XML element is
named for the table. The values of each row are enclosed in a ROW element.

• Targeting a Row in a Table Using a DBUri
An example uses a DBUri that targets a single table row. The XPath predicate
expression identifies the single table row that corresponds to employee number
200. The result is an XML document with ROW as the top-level element.

• Targeting a Column Using a DBUri
You can target a given column, a given attribute of an object column, or an object
column whose attributes have given values. Examples illustrate these possibilities.

• Retrieving the Text Value of a Column Using a DBUri
In many cases, it can be useful to retrieve only the text values of a column and not
the enclosing tags. For example, if XSLT stylesheets are stored in a CLOB column,
you can retrieve the document text without having any enclosing column-name
tags. An example illustrates this.

Chapter 32
DBUris: Pointers to Database Data

32-19



• Targeting a Collection Using a DBUri
You can target a database collection, such as an ordered collection table (OCT).
You must, however, target the entire collection – you cannot target individual
members.

32.6.4.1 Targeting a Table Using a DBUri
An example uses a DBUri that targets a complete table. An XML document is returned
that corresponds to the table contents. The top-level XML element is named for the
table. The values of each row are enclosed in a ROW element.

This is shown in Example 32-6. You target a complete database table using this
syntax:

/database_schema/table

Example 32-6    Targeting a Complete Table Using a DBUri

CREATE TABLE uri_tab (url URIType);
Table created.
 
INSERT INTO uri_tab VALUES
       (DBURIType.createURI('/HR/EMPLOYEES'));
1 row created.
 
SELECT e.url.getCLOB() FROM uri_tab e;

E.URL.GETCLOB()
---------------
<?xml version="1.0"?>
<EMPLOYEES>
 <ROW>
  <EMPLOYEE_ID>100</EMPLOYEE_ID>
  <FIRST_NAME>Steven</FIRST_NAME>
  <LAST_NAME>King</LAST_NAME>
  <EMAIL>SKING</EMAIL>
  <PHONE_NUMBER>515.123.4567</PHONE_NUMBER>
  <HIRE_DATE>17-JUN-03</HIRE_DATE>
  <JOB_ID>AD_PRES</JOB_ID>
  <SALARY>24000</SALARY>
  <DEPARTMENT_ID>90</DEPARTMENT_ID>
 </ROW>
 <ROW>
  <EMPLOYEE_ID>101</EMPLOYEE_ID>
  <FIRST_NAME>Neena</FIRST_NAME>
  <LAST_NAME>Kochhar</LAST_NAME>
  <EMAIL>NKOCHHAR</EMAIL>
  <PHONE_NUMBER>515.123.4568</PHONE_NUMBER>
  <HIRE_DATE>21-SEP-05</HIRE_DATE>
  <JOB_ID>AD_VP</JOB_ID>
  <SALARY>17000</SALARY>
  <MANAGER_ID>100</MANAGER_ID>
  <DEPARTMENT_ID>90</DEPARTMENT_ID>
 </ROW>

Chapter 32
DBUris: Pointers to Database Data

32-20



 . . .
 
1 row selected.

32.6.4.2 Targeting a Row in a Table Using a DBUri
An example uses a DBUri that targets a single table row. The XPath predicate
expression identifies the single table row that corresponds to employee number 200.
The result is an XML document with ROW as the top-level element.

This is shown in Example 32-7. You target one or more specific rows of a table using
this syntax:

/database_schema/table/ROW[predicate_expression]

Example 32-7    Targeting a Particular Row in a Table Using a DBUri

CREATE TABLE uri_tab (url URIType);
Table created.
 
INSERT INTO uri_tab VALUES
       (DBURIType.createURI('/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]'));
1 row created.
 
SELECT e.url.getCLOB() FROM uri_tab e;
 
E.URL.GETCLOB()
-------------------------------------------------------
<?xml version="1.0"?>
 <ROW>
  <EMPLOYEE_ID>200</EMPLOYEE_ID>
  <FIRST_NAME>Jennifer</FIRST_NAME>
  <LAST_NAME>Whalen</LAST_NAME>
  <EMAIL>JWHALEN</EMAIL>
  <PHONE_NUMBER>515.123.4444</PHONE_NUMBER>
  <HIRE_DATE>17-SEP-03</HIRE_DATE>
  <JOB_ID>AD_ASST</JOB_ID>
  <SALARY>4400</SALARY>
  <MANAGER_ID>101</MANAGER_ID>
  <DEPARTMENT_ID>10</DEPARTMENT_ID>
 </ROW>
 
1 row selected.

32.6.4.3 Targeting a Column Using a DBUri
You can target a given column, a given attribute of an object column, or an object
column whose attributes have given values. Examples illustrate these possibilities.

You can target a specific column, using this syntax:

/database_schema/table/ROW[predicate_expression]/column

Chapter 32
DBUris: Pointers to Database Data

32-21



You can target a specific attribute of an object column, using this syntax:

/database_schema/table/ROW[predicate_expression]/object_column/attribute

You can target a specific object column whose attributes have specific values, using
this syntax:

/database_schema/table/ROW[predicate_expression_with_attributes]/
object_column

Example 32-8 uses a DBUri that targets column last_name for the same employee as
in Example 32-7. The top-level XML element is named for the targeted column.

Example 32-9 uses a DBUri that targets a CUST_ADDRESS object column containing city
and postal code attributes with certain values. The top-level XML element is named for
the column, and it contains child elements for each of the object attributes.

Example 32-8    Targeting a Specific Column Using a DBUri

CREATE TABLE uri_tab (url URIType);
Table created.
 
INSERT INTO uri_tab VALUES
       (DBURIType.createURI('/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/
LAST_NAME'));
1 row created.
 
SELECT e.url.getCLOB() FROM uri_tab e;
 
E.URL.GETCLOB()
------------------------------
<?xml version="1.0"?>
 <LAST_NAME>Whalen</LAST_NAME>
 
1 row selected.

Example 32-9    Targeting an Object Column with Specific Attribute Values Using
a DBUri

CREATE TABLE uri_tab (url URIType);
Table created.
 
INSERT INTO uri_tab VALUES
  (DBURIType.createURI(
     '/OE/CUSTOMERS/ROW[CUST_ADDRESS/CITY="Poughkeepsie" and
                        CUST_ADDRESS/POSTAL_CODE=12601]/CUST_ADDRESS'));
1 row created.
 
SELECT e.url.getCLOB() FROM uri_tab e;
 
E.URL.GETCLOB()
---------------
<?xml version="1.0"?>

Chapter 32
DBUris: Pointers to Database Data

32-22



 <CUST_ADDRESS>
  <STREET_ADDRESS>33 Fulton St</STREET_ADDRESS>
  <POSTAL_CODE>12601</POSTAL_CODE>
  <CITY>Poughkeepsie</CITY>
  <STATE_PROVINCE>NY</STATE_PROVINCE>
  <COUNTRY_ID>US</COUNTRY_ID>
 </CUST_ADDRESS>
 
1 row selected.

The DBUri here identifies the object that has a CITY attribute with Poughkeepsie as
value and a POSTAL_CODE attribute with 12601 as value.

32.6.4.4 Retrieving the Text Value of a Column Using a DBUri
In many cases, it can be useful to retrieve only the text values of a column and not
the enclosing tags. For example, if XSLT stylesheets are stored in a CLOB column, you
can retrieve the document text without having any enclosing column-name tags. An
example illustrates this.

You can use the text() XPath node test for this. It specifies that you want only the text
value of the node. Use the following syntax:

/oradb/database_schema/table/ROW[predicate_expression]/column/text()

Example 32-10 retrieves the text value of the employee last_name column for
employee number 200, without the XML tags.

Example 32-10    Retrieve Only the Text Value of a Node Using a DBUri

CREATE TABLE uri_tab (url URIType);
Table created.

INSERT INTO uri_tab VALUES
       (DBURIType.createURI(
          '/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/LAST_NAME/text()'));

1 row created.

SELECT e.url.getCLOB() FROM uri_tab e;

E.URL.GETCLOB()
---------------
Whalen
 
1 row selected.

Chapter 32
DBUris: Pointers to Database Data

32-23



32.6.4.5 Targeting a Collection Using a DBUri
You can target a database collection, such as an ordered collection table (OCT). You
must, however, target the entire collection – you cannot target individual members.

When a collection is targeted, the XML document produced by the DBUri contains
each collection member as an XML element, with all such elements enclosed in a
element named for the type of the collection.

Example 32-11 uses a DBUri that targets a collection of numbers. The top-level XML
element is named for the collection, and its children are named for the collection type
(NUMBER).

Example 32-11    Targeting a Collection Using a DBUri

CREATE TYPE num_collection AS VARRAY(10) OF NUMBER;
/
Type created.
 
CREATE TABLE orders (item VARCHAR2(10), quantities num_collection);
Table created.
 
INSERT INTO orders VALUES ('boxes', num_collection(3, 7, 4, 9));
1 row created.
 
SELECT * FROM orders;
 
ITEM
----
QUANTITIES
----------
boxes
NUM_COLLECTION(3, 7, 4, 9)
 
1 row selected.
 
SELECT DBURIType('/HR/ORDERS/ROW[ITEM="boxes"]/QUANTITIES').getCLOB() 
FROM DUAL;
 
DBURITYPE('/HR/ORDERS/ROW[ITEM="BOXES"]/QUANTITIES').GETCLOB()
--------------------------------------------------------------
<?xml version="1.0"?>
 <QUANTITIES>
  <NUMBER>3</NUMBER>
  <NUMBER>7</NUMBER>
  <NUMBER>4</NUMBER>
  <NUMBER>9</NUMBER>
 </QUANTITIES>
 
1 row selected.

Chapter 32
DBUris: Pointers to Database Data

32-24



32.7 Create New Subtypes of URIType Using Package
URIFACTORY

You can define your own subtypes of URIType that correspond to particular protocols.
You can use PL/SQL package URIFACTORY to obtain the URI of a URIType instance,
escape characters in a URI string or remove such escaping, and register or unregister
a type name for handling a given URL.

Additional PL/SQL methods are listed in Table 32-2.

Table 32-2    URIFACTORY PL/SQL Methods

PL/SQL Method Description

getURI() Returns the URI of the URIType instance.

escapeURI() Escapes the URI string by replacing characters that are not permitted in URIs by
their equivalent escape sequence.

unescapeURI() Removes escaping from a given URI.

registerURLHandler() Registers a particular type name for handling a particular URL. This is called by
getURI() to generate an instance of the type.

A Boolean argument can be used to indicate that the prefix must be stripped off
before calling the appropriate type constructor.

unregisterURLHandler() Unregisters a URL handler.

Of particular note is that you can use package URIFACTORY to define new subtypes
of type URIType. You can then use those subtypes to provide specialized processing
of URIs. In particular, you can define URIType subtypes that correspond to particular
protocols – URIFACTORY then recognizes and processes instances of those subtypes
accordingly.

Defining new types and creating database columns specific to the new types has
these advantages:

• It provides an implicit constraint on the columns to contain only instances of
those types. This can be useful for implementing specialized indexes on a column
for specific protocols. For a DBUri, for instance, you can implement specialized
indexes that fetch data directly from disk blocks, rather than executing SQL
queries.

• You can have different constraints on different columns, based on the type. For a
HTTPUri, for instance, you can define proxy and firewall constraints on a column,
so that any access through the HTTP uses the proxy server.

• Registering New URIType Subtypes with Package URIFACTORY
To provide specialized processing of URIs, you define and register a new URIType
subtype.

Chapter 32
Create New Subtypes of URIType Using Package URIFACTORY

32-25



32.7.1 Registering New URIType Subtypes with Package
URIFACTORY

To provide specialized processing of URIs, you define and register a new URIType
subtype.

1. Create the new type using SQL statement CREATE TYPE. The type must implement
PL/SQL method createURI().

2. Optionally override the default methods, to perform specialized processing when
retrieving data or to transform the XML data before displaying it.

3. Choose a new URI prefix, to identify URIs that use this specialized processing.

4. Register the new prefix using PL/SQL method registerURLHandler(), so that
package URIFACTORY can create an instance of your new subtype when it receives
a URI starting with the new prefix you defined.

After the new subtype is defined, a URI with the new prefix is recognized by
URIFACTORY methods, and you can create and use instances of the new type.

For example, suppose that you define a new protocol prefix, ecom://, and define a
subtype of URIType to handle it. Perhaps the new subtype implements some special
logic for PL/SQL method getCLOB(), or perhaps it makes some changes to XML tags
or data in method getXML(). After you register prefix ecom:// with URIFACTORY, a call
to getURI() generates an instance of the new URIType subtype for a URI with that
prefix.

Example 32-12 creates a new type, ECOMURIType, to handle a new protocol, ecom://.
The example stores three different kinds of URIs in a single table: an HTTPUri, a
DBUri, and an instance of the new type, ECOMURIType. To run this example, you would
need to define each of the ECOMURIType member functions.

Example 32-12    URIFACTORY: Registering the ECOM Protocol

CREATE TABLE url_tab (urlcol varchar2(80));
Table created.
 
-- Insert an HTTP URL reference
INSERT INTO url_tab VALUES ('http://www.oracle.com/');
1 row created.
 
-- Insert a DBUri
INSERT INTO url_tab VALUES ('/oradb/HR/EMPLOYEES/
ROW[FIRST_NAME="Jack"]');
1 row created.
 
-- Create a new type to handle a new protocol called ecom://
-- This is just an example template. For this to run, the 
implementations
-- of these functions must be specified.
CREATE OR REPLACE TYPE ECOMURIType UNDER SYS.URIType (
  OVERRIDING MEMBER FUNCTION getCLOB RETURN CLOB,
  OVERRIDING MEMBER FUNCTION getBLOB RETURN BLOB,
  OVERRIDING MEMBER FUNCTION getExternalURL RETURN VARCHAR2,
  OVERRIDING MEMBER FUNCTION getURI RETURN VARCHAR2,

Chapter 32
Create New Subtypes of URIType Using Package URIFACTORY

32-26



  -- Must have this for registering with the URL handler
  STATIC FUNCTION createURI(url IN VARCHAR2) RETURN ECOMURIType);
/
-- Register a new handler for the ecom:// prefixes
BEGIN
  -- The handler type name is ECOMURIType; schema is HR
  -- Ignore the prefix case, so that URIFACTORY creates the same subtype
  -- for URIs beginning with ECOM://, ecom://, eCom://, and so on.
  -- Strip the prefix before calling PL/SQL method createURI(),
  -- so that the string 'ecom://' is not stored inside the
  -- ECOMURIType object. It is added back automatically when
  -- you call ECOMURIType.getURI().
  URIFACTORY.registerURLHandler (prefix => 'ecom://',
                                 schemaname => 'HR',
                                 typename => 'ECOMURITYPE',
                                 ignoreprefixcase => TRUE,
                                 stripprefix => TRUE);
END;
/
PL/SQL procedure successfully completed.
 
-- Insert this new type of URI into the table
INSERT INTO url_tab VALUES ('ECOM://company1/company2=22/comp');
1 row created.
 
-- Use the factory to generate an instance of the appropriate
-- subtype for each URI in the table.

-- You would need to define the member functions for this to work:
SELECT urifactory.getURI(urlcol) FROM url_tab;

-- This would generate:
HTTPURIType('www.oracle.com'); -- an HTTPUri
DBURIType('/oradb/HR/EMPLOYEES/ROW[FIRST_NAME="Jack"]', null); -- a 
DBUri
ECOMURIType('company1/company2=22/comp'); -- an ECOMURIType instance

32.8 SYS_DBURIGEN SQL Function
You can create a DBUri by providing an XPath expression to constructor DBURIType or
to appropriate URIFACTORY PL/SQL methods. With Oracle SQL function sys_DburiGen,
you can alternatively create a DBUri using an XPath that is composed from database
columns and their values.

Oracle SQL function sys_DburiGen takes as its argument one or more database
columns or attributes, and optionally a rowid, and generates a DBUri that targets a
particular column or row object. Function sys_DburiGen takes an additional parameter
that indicates whether the text value of the node is needed. See Figure 32-2.

Chapter 32
SYS_DBURIGEN SQL Function

32-27



Figure 32-2    SYS_DBURIGEN Syntax

SYS_DBURIGEN (
column

attribute

rowid

,

, ’ text ( ) ’

)

All columns or attributes referenced must reside in the same table. They must each
reference a unique value. If you specify multiple columns, then the initial columns
identify the row, and the last column identifies the column within that row. If you do not
specify a database schema, then the table name is interpreted as a public synonym.

See Also:

Oracle Database SQL Language Reference

Example 32-13 uses Oracle SQL function sys_DburiGen to generate a DBUri that
targets column email of table HR.employees where employee_id is 206:

Example 32-13    SYS_DBURIGEN: Generating a DBUri that Targets a Column

SELECT sys_DburiGen(employee_id, email)
  FROM employees
  WHERE employee_id = 206;

SYS_DBURIGEN(EMPLOYEE_ID,EMAIL)(URL, SPARE)
-------------------------------------------------------------------
DBURITYPE('/PUBLIC/EMPLOYEES/ROW[EMPLOYEE_ID = "206"]/EMAIL', NULL)

1 row selected.

• Rules for Passing Columns or Object Attributes to SYS_DBURIGEN
A column or attribute passed to Oracle SQL function sys_DburiGen must obey
certain rules.

• Using SQL Function SYS_DBURIGEN: Examples
Examples are presented that use SQL function sys_DburiGen to insert database
references, return partial results from a large column, and return URLs to inserted
objects.

32.8.1 Rules for Passing Columns or Object Attributes to
SYS_DBURIGEN

A column or attribute passed to Oracle SQL function sys_DburiGen must obey certain
rules.

• Same table: All columns referenced in function sys_DburiGen must come from the
same table or view.

• Unique mapping: The column or object attribute must be uniquely mappable back
to the table or view from which it came. The only virtual columns allowed are those
produced with value or ref. The column can come from a subquery with a SQL

Chapter 32
SYS_DBURIGEN SQL Function

32-28



TABLE collection expression, that is, TABLE(...), or from an inline view (as long as
the inline view does not rename the columns).

See Oracle Database SQL Language Reference for information about the SQL
TABLE collection expression.

• Key columns: Either the rowid or a set of key columns must be specified. The list
of key columns is not required to be declared as a unique or primary key, as long
as the columns uniquely identify a particular row in the result.

• PUBLIC element: If the table or view targeted by the rowid or key columns does not
specify a database schema, then the PUBLIC keyword is used. When a DBUri is
accessed, the table name resolves to the same table, synonym, or database view
that was visible by that name when the DBUri was created.

• Optional text() argument: By default, DBURIType constructs an XML document.
Use text() as the third argument to sys_DburiGen to create a DBUri that targets a
text node (no XML elements). For example:

SELECT sys_DburiGen(employee_id, last_name, 'text()') FROM hr.employees,
  WHERE employee_id=200;

This constructs a DBUri with the following URI:

/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/LAST_NAME/text()

• Single-column argument: If there is a single-column argument, then the column is
used as both the key column to identify the row and the referenced column.

The query in Example 32-14 uses employee_id as both the key column and the
referenced column. It generates a DBUri that targets the row with employee_id 200.

Example 32-14    Passing Columns with Single Arguments to SYS_DBURIGEN

SELECT sys_DburiGen(employee_id) FROM employees
  WHERE employee_id=200;
 
SYS_DBURIGEN(EMPLOYEE_ID)(URL, SPARE)
-------------------------------------
DBURITYPE('/PUBLIC/EMPLOYEES/ROW[EMPLOYEE_ID=''200'']/EMPLOYEE_ID', NULL)
 
1 row selected.

32.8.2 Using SQL Function SYS_DBURIGEN: Examples
Examples are presented that use SQL function sys_DburiGen to insert database
references, return partial results from a large column, and return URLs to inserted
objects.

• Inserting Database References Using SYS__DBURIGEN
You can use SQL function sys_DburiGen to insert DBUris that reference specific
database data. An example illustrates this.

• Returning Partial Results Using SYS__DBURIGEN
When selecting data from a large column, you might sometimes want to retrieve
only a portion of the result, and create a URL that provides access to the full
column.

• Returning URLs to Inserted Objects Using SYS_DBURIGEN
You can use Oracle SQL function sys_DburiGen in the RETURNING clause of DML
statements to retrieve the URL of an object as it is inserted.

Chapter 32
SYS_DBURIGEN SQL Function

32-29



32.8.2.1 Inserting Database References Using SYS__DBURIGEN
You can use SQL function sys_DburiGen to insert DBUris that reference specific
database data. An example illustrates this.

Example 32-15    Inserting Database References Using SYS_DBURIGEN

CREATE TABLE doc_list_tab (docno NUMBER PRIMARY KEY, doc_ref SYS.DBURIType);
Table created.

-- Insert a DBUri that targets the row with employee_id=177
INSERT INTO doc_list_tab VALUES(1001, (SELECT sys_DburiGen(rowid, employee_id)
                                         FROM employees WHERE employee_id=177));
1 row created.
 
-- Insert a DBUri that targets the last_name column of table employees
INSERT INTO doc_list_tab VALUES(1002,
                                (SELECT sys_DburiGen(employee_id, last_name)
                                   FROM employees WHERE employee_id=177));
1 row created.
 
SELECT * FROM doc_list_tab;
 
     DOCNO
----------
DOC_REF(URL, SPARE)
-----------------------------------------------------
      1001
DBURITYPE('/PUBLIC/EMPLOYEES/ROW[ROWID=''AAAQCcAAFAAAABSABN'']/EMPLOYEE_ID', NULL)
 
      1002
DBURITYPE('/PUBLIC/EMPLOYEES/ROW[EMPLOYEE_ID=''177'']/LAST_NAME', NULL)
 
2 rows selected.

32.8.2.2 Returning Partial Results Using SYS__DBURIGEN
When selecting data from a large column, you might sometimes want to retrieve only a
portion of the result, and create a URL that provides access to the full column.

For example, consider the case of a travel story website. If travel stories are stored
in a table and users search for a set of relevant stories, you do not want to list
each entire story in the search-result page. Instead, you might show just the first 20
characters of each story, to represent the gist, and then return a URL to the full story.
This can be done as follows:

Example 32-16 creates the travel story table.

Example 32-17 creates a function that returns only the first 20 characters from the
story.

Example 32-18 creates a view that selects only the first twenty characters from the
travel story, and returns a DBUri to the story column.

Example 32-16    Creating the Travel Story Table

CREATE TABLE travel_story (story_name VARCHAR2(100), story CLOB);
Table created.

INSERT INTO travel_story

Chapter 32
SYS_DBURIGEN SQL Function

32-30



  VALUES ('Egypt', 'This is the story of my time in Egypt....');
1 row created.

Example 32-17    A Function that Returns the First 20 Characters

CREATE OR REPLACE FUNCTION charfunc(clobval IN CLOB) RETURN VARCHAR2 IS
  res VARCHAR2(20);
  amount NUMBER := 20;
BEGIN
  DBMS_LOB.read(clobval, amount, 1, res);
  RETURN res;
END;
/
Function created.

Example 32-18    Creating a Travel View for Use with SYS_DBURIGEN

CREATE OR REPLACE VIEW travel_view AS
  SELECT story_name, charfunc(story) short_story,
         sys_DburiGen(story_name, story, 'text()') story_link
  FROM travel_story;
View created.

SELECT * FROM travel_view;
 
STORY_NAME
----------
SHORT_STORY
-----------
STORY_LINK(URL, SPARE)
----------------------
Egypt
This is the story of
DBURITYPE('/PUBLIC/TRAVEL_STORY/ROW[STORY_NAME=''Egypt'']/STORY/text()', NULL)
 
1 row selected.

32.8.2.3 Returning URLs to Inserted Objects Using SYS_DBURIGEN
You can use Oracle SQL function sys_DburiGen in the RETURNING clause of DML
statements to retrieve the URL of an object as it is inserted.

In Example 32-19, whenever a document is inserted into table clob_tab, its URL is
inserted into table uri_tab. This is done using Oracle SQL function sys_DburiGen in
the RETURNING clause of the INSERT statement.

Example 32-19    Retrieving a URL Using SYS_DBURIGEN in RETURNING Clause

CREATE TABLE clob_tab (docid NUMBER, doc CLOB);
Table created.

CREATE TABLE uri_tab (docs SYS.DBURIType);
Table created.

Chapter 32
SYS_DBURIGEN SQL Function

32-31



In PL/SQL, specify the storage of the URL of the inserted document as part of the
insertion operation, using the RETURNING clause and EXECUTE IMMEDIATE:

DECLARE
  ret SYS.DBURIType;
BEGIN
  -- execute the insert operation and get the URL
  EXECUTE IMMEDIATE 
    'INSERT INTO clob_tab VALUES (1, ''TEMP CLOB TEST'') 
       RETURNING sys_DburiGen(docid, doc, ''text()'') INTO :1'
    RETURNING INTO ret;
  -- Insert the URL into uri_tab
  INSERT INTO uri_tab VALUES (ret);
END;
/

SELECT e.docs.getURL() FROM hr.uri_tab e;
E.DOCS.GETURL()
------------------------------------------------
/ORADB/PUBLIC/CLOB_TAB/ROW[DOCID='1']/DOC/text()
 
1 row selected.

32.9 DBUriServlet
You can retrieve repository resources using the Oracle XML DB HTTP server. Oracle
Database also includes a servlet, DBUriServlet, that makes any kind of database data
available through HTTP(S) URLs. The data can be returned as plain text, HTML, or
XML.

A Web client or application can access such data without using SQL or a specialized
database API. You can retrieve the data by linking to it on a Web page or by
requesting it through HTTP-aware APIs of Java, PL/SQL, and Perl. You can display
or process the data using an application such as a Web browser or an XML-aware
spreadsheet. DBUriServlet can generate content that is XML data or not, and it can
transform the result using XSLT stylesheets.

You make database data Web-accessible by using a URI that is composed of a servlet
address (URL) plus a DBUri URI that specifies which database data to retrieve. This
is the syntax, where http://server:port is the URL of the servlet (server and port),
and /oradb/database_schema/table is the DBUri URI (any DBUri URI can be used):

http://server:port/oradb/database_schema/table

When using XPath notation in a URL for the servlet, you might need to escape certain
characters. You can use URIType PL/SQL method getExternalURL() to do this.

You can either use DBUriServlet, which is pre-installed as part of Oracle XML DB, or
write your own servlet that runs on a servlet engine. The servlet reads the URI portion
of the invoking URL, creates a DBUri using that URI, calls URIType PL/SQL methods
to retrieve the data, and returns the values in a form such as a Web page, an XML
document, or a plain-text document.

The MIME type to use is specified to the servlet through the URI:

Chapter 32
DBUriServlet

32-32



• By default, the servlet produces MIME types text/xml and text/plain. If the
DBUri path ends in text(), then text/plain is used. Otherwise, an XML
document is generated with MIME type text/xml.

• You can override the default MIME type, setting it to binary/x-jpeg or some other
value, by using the contenttype argument to the servlet.

See Also:

Guidelines for Oracle XML DB Applications in Java, for information about
Oracle XML DB servlets

Table 32-3 describes each of the optional URL parameters you can pass to
DBUriServlet to customize its output.

Table 32-3    DBUriServlet: Optional Arguments

Argument Description

rowsettag
Changes the default root tag name for the XML document. For example:

http://server:8080/oradb/HR/EMPLOYEES?rowsettag=OracleEmployees

contenttyp
e

Specifies the MIME type of the generated document. For example:

http://server:8080/oradb/HR/EMPLOYEES?contenttype=text/plain

transform Passes a URL to URIFACTORY, which retrieves the XSLT stylesheet at that
location. This stylesheet is then applied to the XML document being returned by
the servlet. For example:

http://server:8080/oradb/HR/EMPLOYEES?transform=
/oradb/QUINE/XSLS/DOC/text()&contenttype=text/html1

1 This URL is split across two lines for the purpose of documentation.

• Overriding the MIME Type Using a URL
You can override MIME content type by using a URL that passes a different MIME
type to the servlet as the contenttype parameter.

• Customizing DBUriServlet
To customize DBUriServlet you modify the Oracle XML DB configuration file,
xdbconfig.xml.

• Using Roles for DBUriServlet Security
Servlet security is handled by Oracle Database using roles. When users log in to
the servlet, they use their database user name and password. The servlet checks
to ensure that the user logging has one of the roles specified in the configuration
file using parameter security-role-ref).

• Configuring Package URIFACTORY to Handle DBUris
To improve efficiency, you can teach URIFACTORY that a URI of a given form
represents database access and so should be realized as a DBUri, not an
HTTPUri. You do this by registering a handler for the URI as a prefix, specifying
DBURIType as the type of instance to generate.

Chapter 32
DBUriServlet

32-33



• Table or View Access from a Web Browser Using DBUri Servlet
Oracle XML DB includes the DBUri servlet, which lets you access the content of
any table or view directly from a web browser. It uses DBURIType to generate a
simple XML document from the table contents. The servlet is C language-based
and installed in the Oracle XML DB HTTP server.

32.9.1 Overriding the MIME Type Using a URL
You can override MIME content type by using a URL that passes a different MIME type
to the servlet as the contenttype parameter.

To retrieve column employee_id of table employee, you can use a URL such as one
of the following, where computer server.oracle.com is running Oracle Database with
a Web service listening to requests on port 8080. Step oradb is the virtual path that
maps to the servlet.

• http://server.oracle.com:8080/oradb/QUINE/A/ROW[B=200]/C/text()

Produces a content type of text/plain

• http://server.oracle.com:8080/oradb/QUINE/A/ROW[B=200]/C

Produces a content type of text/xml

To override the content type, you can use a URL that passes text/html to the servlet
as the contenttype parameter:

• http://server.oracle.com:8080/oradb/QUINE/A/ROW[B=200]/C?
contenttype=text/html

Produces a content type of text/html

32.9.2 Customizing DBUriServlet
To customize DBUriServlet you modify the Oracle XML DB configuration file,
xdbconfig.xml.

You can edit the Oracle XML DB configuration file, xdbconfig.xml, using database
schema (user account) XDB with WebDAV, FTP, Oracle Enterprise Manager, or PL/
SQL. To update the file using FTP or WebDAV, download the document, edit it,
and save it back into the database. PL/SQL package DBMS_XDB_CONFIG provides
a particularly convenient way to access the file, and it provides subprograms
that perform specific configuration modifications. For example, you can use
DBMS_XDB_CONFIG.deleteservletmapping to remove a servlet mapping.

DBUriServlet is installed at /oradb/*, which is the address specified in the servlet-
pattern tag of xdbconfig.xml. The asterisk (*) is necessary to indicate that any path
following oradb is to be mapped to the same servlet. oradb is published as the virtual
path. You can change the path that is used to access the servlet.

In Example 32-20, the configuration file is modified to install DBUriServlet under /
dburi/*. (The long XPath expression has been split here for documentation purposes.
It actually needs to be on a single line.)

Chapter 32
DBUriServlet

32-34



Security parameters, the servlet display-name, and the description can also be
customized in configuration file xdbconfig.xml. The servlet can be removed by
deleting its servlet-pattern. This can also be done using XQuery Update to update
the servlet-mapping element to NULL.

See Also:

Oracle Database Security Guide

Example 32-20    Changing the Installation Location of DBUriServlet

DECLARE
  doc XMLType;
  doc2 XMLType;
BEGIN
  doc := DBMS_XDB_CONFIG.cfg_get();
  SELECT XMLQuery('declare default element namespace 
                   "http://xmlns.oracle.com/xdb/xdbconfig.xsd";
                   copy $i := $doc modify
                   for $j in
$i/xdbconfig/sysconfig/protocolconfig/httpconfig/webappconfig/servletconfig/servlet-mappings1

/servlet-mapping[servlet-name="DBUriServlet"]/servlet-pattern
                   return replace value of node $j with $i/dburi/*
                   return $i'
                  PASSING DBMS_XDB_CONFIG.cfg_get() AS "doc"
                  RETURNING CONTENT) INTO doc2 FROM DUAL;
  DBMS_XDB_CONFIG.cfg_update(doc2);
  COMMIT;
END;
/

Related Topics

• Guidelines for Oracle XML DB Applications in Java
Design guidelines are presented for writing Oracle XML DB applications in Java.
This includes guidelines for writing and configuring Java servlets for Oracle
XML DB.

• Administration of Oracle XML DB
Administration of Oracle XML DB includes installing, upgrading, and configuring it.

• Oracle XML DB Configuration API
You can access the Oracle XML DB configuration file, xdbconfig.xml, the same
way you access any other XML schema-based resource. You can use FTP,
HTTP(S), WebDAV, Oracle Enterprise Manager, or any of the resource and
Document Object Model (DOM) APIs for Java, PL/SQL, or C (OCI).

32.9.3 Using Roles for DBUriServlet Security
Servlet security is handled by Oracle Database using roles. When users log in to
the servlet, they use their database user name and password. The servlet checks to

1 This XQuery expression is split across two lines only for the purpose of documentation.

Chapter 32
DBUriServlet

32-35



ensure that the user logging has one of the roles specified in the configuration file
using parameter security-role-ref).

By default, the servlet is available to role authenticatedUser, and any user who logs
into the servlet with a valid database password has this role.

The role parameter can be changed to restrict access to any specific database roles.
To change from the default authenticatedUser role to a role that you have created,
you modify the Oracle XML DB configuration file.

Example 32-21 changes the default role authenticatedUser to role servlet-users
(which you must have created).

Example 32-21    Restricting Servlet Access to a Database Role

(The URLs in this XQuery expression are split across multiple lines only for the
purpose of documentation.)

DECLARE
  doc  XMLType;
  doc2 XMLType;
  doc3 XMLType;
BEGIN
  doc := DBMS_XDB_CONFIG.cfg_get();
  SELECT
    XMLQuery('copy $i := $p1 modify
               (for $j in $i/xdbconfig/sysconfig/protocolconfig/httpconfig/webappconfig/servletconfig/servlet-list/
servlet[servlet-name="DBUriServlet"]/security-role-ref/role-name
                return replace value of node $j with $p2)
              return $i'
             PASSING DOC AS "p1", 'servlet-users' AS "p2" RETURNING CONTENT)
    INTO doc2 FROM DUAL;
  SELECT XMLQuery('copy $i := $p1 modify
                    (for $j in $i/xdbconfig/sysconfig/protocolconfig/httpconfig/webappconfig/servletconfig/
servlet-list/servlet[servlet-name="DBUriServlet"]/security-role-ref/role-link
                     return replace value of node $j with $p2)
                   return $i'
                  PASSING DOC2 AS "p1", 'servlet-users' AS "p2" RETURNING CONTENT)
    INTO doc3 FROM DUAL;
  DBMS_XDB_CONFIG.cfg_update(doc3);
  COMMIT;
END;
/

32.9.4 Configuring Package URIFACTORY to Handle DBUris
To improve efficiency, you can teach URIFACTORY that a URI of a given form represents
database access and so should be realized as a DBUri, not an HTTPUri. You do this
by registering a handler for the URI as a prefix, specifying DBURIType as the type of
instance to generate.

A URL such as http://server/servlets/oradb is handled by DBUriServlet (or by
a custom servlet). When a URL such as this is stored as a URIType instance, it is
generally desirable to use subtype DBURIType, since this URI targets database data.

However, if a URIType instance is created using the methods of PL/SQL package
URIFACTORY then, by default, the subtype used is HTTPURIType, not DBURIType. This
is because URIFACTORY looks only at the URI prefix, sees http://, and assumes that
the URI targets a Web page. This results in unnecessary layers of communication and
perhaps extra character conversions.

To teach URIFACTORY that URIs of the given form represent database accesses and so
should be realized as DBUris, not HTTPUris, you register a handler for the URIs as a
prefix, specifying DBURIType as the type of instance to generate.

Chapter 32
DBUriServlet

32-36



Example 32-22 effectively tells URIFACTORY that any URI string starting with http://
server/servlets/oradb corresponds to a database access.

After you execute this code, all getURI() calls in the same session automatically
create DBUris for any URI strings with prefix http://server/servlets/oradb.

See Also:

Oracle Database PL/SQL Packages and Types Referencefor information
about URIFACTORY functions

Example 32-22    Registering a Handler for a DBUri Prefix

BEGIN
  URIFACTORY.registerURLHandler('http://server/servlets/oradb',
                             'SYS', 'DBURIType', true, true);
END;
/

32.9.5 Table or View Access from a Web Browser Using DBUri Servlet
Oracle XML DB includes the DBUri servlet, which lets you access the content of any
table or view directly from a web browser. It uses DBURIType to generate a simple XML
document from the table contents. The servlet is C language-based and installed in
the Oracle XML DB HTTP server.

By default, the servlet is installed under the virtual directory /oradb.

The URL passed to the DBUri Servlet is an extension of the URL passed to the
DBURIType. The URL is extended with the address and port number of the Oracle
XML DB HTTP server and the virtual root that directs HTTP(S) requests to the DBUri
servlet. The default configuration for this is /oradb.

The URL http://localhost:8080/oradb/HR/DEPARTMENTS would thus return an XML
document containing the contents of the DEPARTMENTS table in the HR database
schema. This assumes that the Oracle XML DB HTTP server is running on port 8080,
the virtual root for the DBUri servlet is /oradb, and that the user making the request
has access to the HR database schema.

DBUri servlet accepts parameters that allow you to specify the name of the ROW tag
and MIME-type of the document that is returned to the client.

Content in XMLType table or view can also be accessed through the DBUri servlet.
When the URL passed to the DBUri servlet references an XMLType table or XMLType
view the URL can be extended with an XPath expression that can determine which
documents in the table or row are returned. The XPath expression appended to the
URL can reference any node in the document.

XML generated by DBUri servlet can be transformed using the XSLT processor built
into Oracle XML DB. This lets XML that is generated by DBUri servlet be presented in
a more legible format such as HTML.

XSLT stylesheet processing is initiated by specifying a transform parameter as part
of the URL passed to DBUri servlet. The stylesheet is specified using a URI that
references the location of the stylesheet within database. The URI can either be a

Chapter 32
DBUriServlet

32-37



DBURIType value that identifies a XMLType column in a table or view, or a path to a
document stored in Oracle XML DB Repository. The stylesheet is applied directly to
the generated XML before it is returned to the client. When using DBUri servlet for
XSLT processing, it is good practice to use the contenttype parameter to explicitly
specify the MIME type of the generated output.

If the XML document being transformed is stored as an XML schema-based XMLType
instance, then Oracle XML DB can reduce the overhead associated with XSL
transformation by leveraging the capabilities of the lazily loaded virtual DOM.

The root of the URL is /oradb, so the URL is passed to the DBUri servlet that
accesses the purchaseorder table in the SCOTT database schema, rather than as a
resource in Oracle XML DB Repository. The URL includes an XPath expression that
restricts the result set to those documents where node /PurchaseOrder/Reference/
text() contains the value specified in the predicate. The contenttype parameter sets
the MIME type of the generated document to text/xml.

Related Topics

• DBUriServlet
You can retrieve repository resources using the Oracle XML DB HTTP server.
Oracle Database also includes a servlet, DBUriServlet, that makes any kind of
database data available through HTTP(S) URLs. The data can be returned as
plain text, HTML, or XML.

Chapter 32
DBUriServlet

32-38



33
Native Oracle XML DB Web Services

Your applications can access Oracle Database using native Oracle XML DB Web
services.

• Overview of Native Oracle XML DB Web Services
Web services provide a standard way for applications to exchange information
over the Internet and access services that implement business logic. Your
applications can access Oracle Database using native Oracle XML DB Web
services.

• Configuring and Enabling Web Services for Oracle XML DB
To make Web services available, you must have the Oracle XML DB HTTP server
up and running, and you must explicitly add Web service configuration. Then, to
allow specific users to use Web services, you must grant them appropriate roles.

• Query Oracle XML DB Using a Web Service
The Oracle XML DB Web service for database queries is located at URL http://
host:port/orawsv, where host and port are the database host and HTTP(S) port.
It has an associated WSDL that specifies the formats of the incoming and outgoing
documents using XML Schema. This WSDL is located at URL http://host:port/
orawsv?wsdl.

• Access to PL/SQL Stored Procedures Using a Web Service
The Oracle XML DB Web service for accessing PL/SQL stored functions
and procedures is located at URL http://host:port/orawsv/dbschema/package/
fn_or_proc or, for a function or procedure that is standalone (not in a package ),
http://host:port/orawsv/dbschema/fn_or_proc.

33.1 Overview of Native Oracle XML DB Web Services
Web services provide a standard way for applications to exchange information over
the Internet and access services that implement business logic. Your applications can
access Oracle Database using native Oracle XML DB Web services.

One available service lets you issue SQL and XQuery queries and receive results
as XML data. Another service provides access to all PL/SQL stored functions and
procedures.

You can customize the input and output document formats when you use the latter
service. If you do that then the WSDL is automatically generated by the native
database Web services engine.

SOAP 1.1 is the version supported by Oracle XML DB. Applications use HTTP
method POST to submit SOAP requests to native Oracle XML DB Web services. You
can configure the locations of all native Oracle XML DB Web services and WSDL
documents using the Oracle XML DB configuration file, xdbconfig.xml. You can also
configure security settings for the Web services using the same configuration file.

You can use the Accept-Charsets field of the input HTTP header to specify the
character set of Web-service responses. If this header field is omitted, then responses

33-1



are in the database character set. The language of the input document and any error
responses is the locale language of the database.

Error handling for native Oracle XML DB Web services uses the SOAP framework for
faults.

Related Topics

• Configuration of Oracle XML DB Using xdbconfig.xml
Oracle XML DB is managed internally through a configuration file, xdbconfig.xml,
which is stored as a resource in Oracle XML DB Repository. As an alternative to
using Oracle Enterprise Manager to configure Oracle XML DB, you can configure
it directly using the Oracle XML DB configuration file.

See Also:

• Web Services Activity for more information about Web services

• Simple Object Access Protocol (SOAP) 1.1

• Web Services Description Language (WSDL) 1.1 for information about
the Web Services Description Language (WSDL)

• Fault Scenarios for information about SOAP fault handling

33.2 Configuring and Enabling Web Services for Oracle
XML DB

To make Web services available, you must have the Oracle XML DB HTTP server up
and running, and you must explicitly add Web service configuration. Then, to allow
specific users to use Web services, you must grant them appropriate roles.

1. Configure Web services – see "Configuring Web Services for Oracle XML DB".

2. Enable Web services for specific users, by granting them appropriate roles –
Enabling Web Services for a Specific User.

For security reasons, Oracle XML DB is not preconfigured with native Web services
enabled.

• Configuring Web Services for Oracle XML DB
To make Web services available for Oracle XML DB, configure the servlet by
logging on as user SYS and adding the servlet configuration to your Oracle
XML DB configuration file, xdbconfig.xml. Then use procedures in PL/SQL
package DBMS_XDB_CONFIG to add the servlet that is named by the servlet
configuration.

• Enabling Web Services for a Specific User
To enable Web services for a specific user, log on as user SYS and grant role
XDB_WEBSERVICES to the user. This role enables Web services over HTTPS. This
role is required to be able to use Web services.

Chapter 33
Configuring and Enabling Web Services for Oracle XML DB

33-2



Related Topics

• HTTP(S) and Oracle XML DB Protocol Server
Oracle XML DB implements HyperText Transfer Protocol (HTTP), HTTP 1.1 as
defined in the RFC2616 specification.

33.2.1 Configuring Web Services for Oracle XML DB
To make Web services available for Oracle XML DB, configure the servlet by
logging on as user SYS and adding the servlet configuration to your Oracle
XML DB configuration file, xdbconfig.xml. Then use procedures in PL/SQL package
DBMS_XDB_CONFIG to add the servlet that is named by the servlet configuration.

The servlet configuration to add is shown as the query output of Example 33-2.

Example 33-1 shows how to use procedures in PL/SQL package DBMS_XDB_CONFIG
to add the servlet. Example 33-2 shows how to verify that the servlet was added
correctly.

Example 33-1    Adding a Web Services Configuration Servlet

DECLARE
  SERVLET_NAME VARCHAR2(32) := 'orawsv';
BEGIN
  DBMS_XDB_CONFIG.deleteServletMapping(SERVLET_NAME);
  DBMS_XDB_CONFIG.deleteServlet(SERVLET_NAME);
  DBMS_XDB_CONFIG.addServlet(
    NAME     => SERVLET_NAME,
    LANGUAGE => 'C',
    DISPNAME => 'Oracle Query Web Service',
    DESCRIPT => 'Servlet for issuing queries as a Web Service',
    SCHEMA   => 'XDB');
  DBMS_XDB_CONFIG.addServletSecRole(SERVNAME => SERVLET_NAME,
                                    ROLENAME => 'XDB_WEBSERVICES',
                                    ROLELINK => 'XDB_WEBSERVICES');
  DBMS_XDB_CONFIG.addServletMapping(PATTERN => '/orawsv/*',
                                    NAME    => SERVLET_NAME);
END;
/

Example 33-2    Verifying Addition of Web Services Configuration Servlet

XQUERY declare default element namespace "http://xmlns.oracle.com/xdb/xdbconfig.xsd"; (: :)
       (: This path is split over two lines for documentation purposes only.
          The path should actually be a single long line. :)
       for $doc in fn:doc("/xdbconfig.xml")/xdbconfig/sysconfig/protocolconfig/httpconfig/
        webappconfig/servletconfig/servlet-list/servlet[servlet-name='orawsv']
       return $doc
/
 
Result Sequence
-------------------------------------------------------------------------
<servlet xmlns="http://xmlns.oracle.com/xdb/xdbconfig.xsd">
  <servlet-name>orawsv</servlet-name>
  <servlet-language>C</servlet-language>
  <display-name>Oracle Query Web Service</display-name>
  <description>Servlet for issuing queries as a Web Service</description>
  <servlet-schema>XDB</servlet-schema>
  <security-role-ref>
    <description/>

Chapter 33
Configuring and Enabling Web Services for Oracle XML DB

33-3



    <role-name>XDB_WEBSERVICES</role-name>
    <role-link>XDB_WEBSERVICES</role-link>
  </security-role-ref>
</servlet>
 
1 item(s) selected.

Related Topics

• Configuration of Oracle XML DB Using xdbconfig.xml
Oracle XML DB is managed internally through a configuration file, xdbconfig.xml,
which is stored as a resource in Oracle XML DB Repository. As an alternative to
using Oracle Enterprise Manager to configure Oracle XML DB, you can configure
it directly using the Oracle XML DB configuration file.

33.2.2 Enabling Web Services for a Specific User
To enable Web services for a specific user, log on as user SYS and grant role
XDB_WEBSERVICES to the user. This role enables Web services over HTTPS. This role is
required to be able to use Web services.

User SYS can, in addition, grant one or both of the following roles to the user:

• XDB_WEBSERVICES_OVER_HTTP – Enable use of Web services over HTTP (not just
HTTPS).

• XDB_WEBSERVICES_WITH_PUBLIC – Enable access, using Web services, to database
objects that are accessible to PUBLIC.

If a user is not granted XDB_WEBSERVICES_WITH_PUBLIC, then the user has access,
using Web services, to all database objects (regardless of owner) that would normally
be available to the user, except for PUBLIC objects. To make PUBLIC objects accessible
to a user through Web services, SYS must grant role XDB_WEBSERVICES_WITH_PUBLIC to
the user. With this role, a user can access any PUBLIC objects that would normally be
available to the user if logged on to the database.

33.3 Query Oracle XML DB Using a Web Service
The Oracle XML DB Web service for database queries is located at URL http://
host:port/orawsv, where host and port are the database host and HTTP(S) port.
It has an associated WSDL that specifies the formats of the incoming and outgoing
documents using XML Schema. This WSDL is located at URL http://host:port/
orawsv?wsdl.

Your application sends database queries to the Web service as XML documents that
conform to the XML schema listed in Example 33-3.

This XML schema is contained in the WSDL document. The important parts of
incoming query documents are as follows:

• query_text – The text of your query. Attribute type specifies the type of your
query: either SQL or XQUERY.

• bind – A scalar bind-variable value. Attribute name names the variable.

• bindXML – An XMLType bind-variable value.

• null_handling – How NULL values returned by the query are to be treated:

Chapter 33
Query Oracle XML DB Using a Web Service

33-4



– DROP_NULLS – Put nothing in the output (no element). This is the default
behavior.

– NULL_ATTR – Use an empty element for NULL-value output. Use attribute
xsi:nil = "true" in the element.

– EMPTY_TAG – Use an empty element for NULL-value output, without a nil
attribute.

• max_rows – The maximum number of rows to output for the query. By default, all
rows are returned.

• skip_rows – The number of query output rows to skip, before including rows in the
data returned in the SOAP message. You can use this in connection with max_rows
to provide paginated output. The default value is zero (0).

• pretty_print – Whether the output document should be formatted for pretty-
printing. The default value is true, meaning that the document is pretty-printed.
When the value is false, no pretty-printing is done, and output rows are not
broken with newline characters.

• indentation_width – The number of characters to indent nested elements that
start a new line. The default value is one (1).

• rowset_tag – Name of the root element of the output document.

• row_tag – Name of the element whose value is a single row of query output.

• item_tags_for_coll – Whether to generate collection elements with name
collection_name_item, where collection_name is the name of the collection.

These elements have the same meanings as corresponding parameters of procedures
in PL/SQL package DBMS_XMLGEN.

Example 33-4 and Example 33-5 show the input and output of a simple SQL query.

In Example 33-4, the query text is enclosed in <![CDATA[...]]>. Although not strictly
necessary in this example, it is appropriate to do this generally, because queries often
contain characters such as < and >. Element bind is used to bind a value (8300) to the
bind variable named e. Element pretty_print turns off pretty-printing of the output.

Example 33-3    XML Schema for Database Queries To Be Processed by Web Service

<schema xmlns="http://www.w3.org/2001/XMLSchema"
        xmlns:xdb="http://xmlns.oracle.com/xdb"
        targetNamespace="http://xmlns.oracle.com/orawsv">
  <element name="query">
    <complexType>
      <sequence>
        <element name="query_text">
          <complexType>
            <simpleContent>
              <extension base="string">
                <attribute name="type">
                  <simpleType>
                    <restriction base="NMTOKEN">
                      <enumeration value="SQL"/>
                      <enumeration value="XQUERY"/>
                    </restriction>
                  </simpleType>
                </attribute>
              </extension>
            </simpleContent>
          </complexType>
        </element>

Chapter 33
Query Oracle XML DB Using a Web Service

33-5



        <choice maxOccurs="unbounded">
          <element name="bind">
            <complexType>
              <simpleContent>
                <extension base="string">
                  <attribute name="name" type="string"/>
                </extension>
              </simpleContent>
            </complexType>
          </element>
          <element name="bindXML" type="any"/>
        </choice>
        <element name="null_handling" minOccurs="0">
          <simpleType>
            <restriction base="NMTOKEN">
              <enumeration value="DROP_NULLS"/>
              <enumeration value="NULL_ATTR"/>
              <enumeration value="EMPTY_TAG"/>
            </restriction>
          </simpleType>
        </element>
        <element name="max_rows" type="positiveInteger" minOccurs="0"/>
        <element name="skip_rows" type="positiveInteger" minOccurs="0"/>
        <element name="pretty_print" type="boolean" minOccurs="0"/>
        <element name="indentation_width" type="positiveInteger" minOccurs="0"/>
        <element name="rowset_tag" type="string" minOccurs="0"/>
        <element name="row_tag" type="string" minOccurs="0"/>
        <element name="item_tags_for_coll" type="boolean" minOccurs="0"/>
      </sequence>
    </complexType>
  </element>
</schema>

Example 33-4    Input XML Document for SQL Query Using Query Web Service

<?xml version="1.0" ?>
<env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope ">
  <env:Body>
    <query xmlns="http://xmlns.oracle.com/orawsv">
      <query_text type="SQL">
        <![CDATA[SELECT * FROM employees WHERE salary = :e]]>
      </query_text>
      <bind name="e">8300</bind>
      <pretty_print>false</pretty_print>
    </query>
  </env:Body>
</env:Envelope>

Example 33-5    Output XML Document for SQL Query Using Query Web Service

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2002/06/soap-envelope">
<soap:Body>
<ROWSET><ROW><EMPLOYEE_ID>206</EMPLOYEE_ID><FIRST_NAME>William</FIRST_NAME><LAST_NAME>G
ietz</LAST_NAME><EMAIL>WGIETZ</EMAIL><PHONE_NUMBER>515.123.8181</PHONE_NUMBER><HIRE_DATE>07-JUN-
94</HIRE_DATE><JOB_ID>AC_ACCOUNT</JOB_ID><SALARY>8300</SALARY><MANAGER_ID>205</MANAGER_ID
><DEPARTMENT_ID>110</DEPARTMENT_ID></ROW></ROWSET>
</soap:Body>
</soap:Envelope>

Chapter 33
Query Oracle XML DB Using a Web Service

33-6



33.4 Access to PL/SQL Stored Procedures Using a Web
Service

The Oracle XML DB Web service for accessing PL/SQL stored functions
and procedures is located at URL http://host:port/orawsv/dbschema/package/
fn_or_proc or, for a function or procedure that is standalone (not in a package ),
http://host:port/orawsv/dbschema/fn_or_proc.

Here, host and port are the database host and HTTP(S) port, fn_or_proc is the
stored function or procedure name, package is its package, and dbschema is the
database schema owning that package.

The input XML document must contain the inputs needed by the function or procedure.
The output XML document contains the return value and the values of all OUT
variables.

The names of the XML elements in the input and output documents correspond to the
variable names of the function or procedure. The generated WSDL document shows
you the exact XML element names. This is the naming convention used:

• The XML element introducing the input to a PL/SQL function is named function-
nameInput, where function-name is the name of the function (uppercase).

• The XML elements introducing input parameters for the function are named
param-name-param-type-io-mode, where param-name is the name of the
parameter (uppercase), param-type is its SQL data type, and io-mode is its input-
output mode, as follows:

– IN – IN mode

– OUT – OUT mode

– INOUT – IN OUT mode

• The XML element introducing the output from a PL/SQL function is named
Sreturn-type-function-nameOutput, where return-type is the SQL data type
of the return value (uppercase), and function-name is the name of the function
(uppercase).

• The XML elements introducing output parameters for the function are named the
same as the output parameters themselves (uppercase). The element introducing
the return value is named RETURN.

The return value of a function is in the RETURN element of the output document, which
is always the first element in the document. This return-value position disambiguates it
from any OUT parameter that might be named "RETURN".

Each stored function or procedure is associated with a separate, dynamic Web
service that has its own, generated WSDL document. This WSDL document
is located at URL http://host:port/orawsv/dbschema/package/fn_or_proc?wsdl
or http://host:port/orawsv/dbschema/fn_or_proc?wsdl. In addition, you can
optionally generate a single WSDL document to be used for all stored functions
and procedures in a given package. The URL for that WSDL document is http://
host:port/orawsv/dbschema/package?wsdl.

Chapter 33
Access to PL/SQL Stored Procedures Using a Web Service

33-7



Data types in the incoming and outgoing XML documents are mapped to SQL data
types for use by the stored function or procedure, according to Table 33-1. These are
the only data types that are supported.

Table 33-1    Web Service Mapping Between XML and Oracle Database Data Types

Oracle Database Data Type XML Schema Data
Type

CHAR, VARCHAR2, VARCHAR xsd:string

DATE – Dates must be in the database format. xsd:date

TIMESTAMP, TIMESTAMP WITH TIMEZONE, TIMESTAMP WITH LOCAL TIMEZONE xsd:dateTime

INTERVAL YEAR TO MONTH, INTERVAL DAY TO SECOND xsd:duration

NUMBER, BINARY_DOUBLE, BINARY_FLOAT xsd:double

INT, INTEGER, SMALLINT, PLS_INTEGER, BINARY_INTEGER xsd:integer

RAW, BLOB, REF xsd:hexBinary

PL/SQL BOOLEAN xsd:boolean

Object types complexType

XMLType empty complexType

An object type is represented in XML as a complex-type element named the same as
the object type. The object attributes are represented as children of this element.

• Using a PL/SQL Function with a Web Service: Example
Examples present a PL/SQL function and its access using a Web service. The
function takes as input a department ID and name. It returns the salary total for
the department. It also returns, as in-out and output parameters, respectively, the
department name and the number of employees in the department.

33.4.1 Using a PL/SQL Function with a Web Service: Example
Examples present a PL/SQL function and its access using a Web service. The function
takes as input a department ID and name. It returns the salary total for the department.
It also returns, as in-out and output parameters, respectively, the department name
and the number of employees in the department.

The default value of the department ID is 20. In this simple example, the input value
of the in-out parameter dept_name is not actually used. It is ignored, and the correct
name is returned.

Example 33-6 shows the function definition. Example 33-7 shows the WSDL document
that is created automatically from this function definition. Example 33-8 shows an input
document that invokes the stored function. Example 33-9 shows the resulting output
document.

Example 33-6    Definition of PL/SQL Function Used for Web-Service Access

CREATE OR REPLACE PACKAGE salary_calculator AUTHID CURRENT_USER AS
  FUNCTION TotalDepartmentSalary (dept_id    IN     NUMBER DEFAULT 20,
                                  dept_name  IN OUT VARCHAR2,
                                  nummembers OUT    NUMBER)
    RETURN NUMBER;
END salary_calculator;

Chapter 33
Access to PL/SQL Stored Procedures Using a Web Service

33-8



/
CREATE OR REPLACE PACKAGE BODY salary_calculator AS
  FUNCTION TotalDepartmentSalary (dept_id    IN     NUMBER DEFAULT 20,
                                  dept_name  IN OUT VARCHAR2,
                                  nummembers OUT    NUMBER)
    RETURN NUMBER IS
      sum_sal NUMBER;
      BEGIN
        SELECT SUM(salary) INTO sum_sal FROM employees
          WHERE department_id = dept_id;
        SELECT department_name INTO dept_name FROM departments
          WHERE department_name = dept_name;
        SELECT count(*) INTO nummembers FROM employees
          WHERE department_id = dept_id;
    RETURN sum_sal;
  END;
END;         
/

Example 33-7    WSDL Document Corresponding to a Stored PL/SQL Function

<definitions name="SALARY_CALCULATOR"
             targetNamespace="http://xmlns.oracle.com/orawsv/HR/SALARY_CALCULATOR"
             xmlns="http://schemas.xmlsoap.org/wsdl/"
             xmlns:tns="http://xmlns.oracle.com/orawsv/HR/SALARY_CALCULATOR"
             xmlns:xsd="http://www.w3.org/2001/XMLSchema"
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
  <types>
    <xsd:schema targetNamespace="http://xmlns.oracle.com/orawsv/HR/SALARY_CALCULATOR"
                elementFormDefault="qualified">
      <xsd:element name="SNUMBER-TOTALDEPARTMENTSALARYInput">
        <xsd:complexType>
          <xsd:sequence>
            <xsd:element name="NUMMEMBERS-NUMBER-OUT">
              <xsd:complexType/>
            </xsd:element>
            <xsd:element name="DEPT_NAME-VARCHAR2-INOUT" type="xsd:string"/>
            <xsd:element name="DEPT_ID-NUMBER-IN" type="xsd:double"/>
          </xsd:sequence>
        </xsd:complexType>
      </xsd:element>
      <xsd:element name="TOTALDEPARTMENTSALARYOutput">
        <xsd:complexType>
          <xsd:sequence>
            <xsd:element name="RETURN" type="xsd:double"/>
            <xsd:element name="NUMMEMBERS" type="xsd:double"/>
            <xsd:element name="DEPT_NAME" type="xsd:string"/>
          </xsd:sequence>
        </xsd:complexType>
      </xsd:element>
    </xsd:schema>
  </types>
  <message name="TOTALDEPARTMENTSALARYInputMessage">
    <part name="parameters" element="tns:SNUMBER-TOTALDEPARTMENTSALARYInput"/>

Chapter 33
Access to PL/SQL Stored Procedures Using a Web Service

33-9



  </message>
  <message name="TOTALDEPARTMENTSALARYOutputMessage">
    <part name="parameters" element="tns:TOTALDEPARTMENTSALARYOutput"/>
  </message>
  <portType name="SALARY_CALCULATORPortType">
    <operation name="TOTALDEPARTMENTSALARY">
      <input message="tns:TOTALDEPARTMENTSALARYInputMessage"/>
      <output message="tns:TOTALDEPARTMENTSALARYOutputMessage"/>
    </operation>
  </portType>
 <binding name="SALARY_CALCULATORBinding" type="tns:SALARY_CALCULATORPortType">
    <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
    <operation name="TOTALDEPARTMENTSALARY">
      <soap:operation soapAction="TOTALDEPARTMENTSALARY"/>
      <input>
        <soap:body parts="parameters" use="literal"/>
      </input>
      <output>
        <soap:body parts="parameters" use="literal"/>
      </output>
    </operation>
  </binding>
  <service name="SALARY_CALCULATORService">
    <documentation>Oracle Web Service</documentation>
    <port name="SALARY_CALCULATORPort" binding="tns:SALARY_CALCULATORBinding">
      <soap:address location="https://example:8088/orawsv/HR/SALARY_CALCULATOR"/>
     </port>
  </service>
</definitions>

Example 33-8    Input XML Document for PL/SQL Query Using Web Service

<?xml version="1.0" ?><soap:Envelope 
xmlns:soap="http://www.w3.org/2002/06/soap-
envelope"><soap:Body><SNUMBER-
TOTALDEPARTMENTSALARYinput 
xmlns="http://xmlns.oracle.com/orawsv/HR/SALARY_CALCULATOR/
TOTALDEPARTMENTSALARY">
<DEPT_ID-NUMBER-IN>30</DEPT_ID-NUMBER-IN><DEPT_NAME-VARCHAR2-
INOUT>Purchasing
</DEPT_NAME-VARCHAR2-INOUT><NUMMEMBERS-NUMBER-OUT/></SNUMBER-
TOTALDEPARTMENTSALARYinput></soap:Body></soap:Envelope>

Example 33-9    Output XML Document for PL/SQL Query Using Web Service

<?xml version="1.0" ?>
<soap:Envelope xmlns:soap="http://www.w3.org/2002/06/soap-envelope">
  <soap:Body>
    <TOTALDEPARTMENTSALARYOutput 
       xmlns="http://xmlns.oracle.com/orawsv/HR/SALARY_CALCULATOR/
TOTALDEPARTMENTSALARY">
      <RETURN>24900</RETURN>
      <NUMMEMBERS>6</NUMMEMBERS>
      <DEPT_NAME>Purchasing</DEPT_NAME>

Chapter 33
Access to PL/SQL Stored Procedures Using a Web Service

33-10



    </TOTALDEPARTMENTSALARYOutput>
  </soap:Body>
</soap:Envelope>

Chapter 33
Access to PL/SQL Stored Procedures Using a Web Service

33-11



Part VII
Oracle Tools that Support Oracle XML DB

You can use various Oracle tools with Oracle XML DB. These include tools for
managing Oracle XML DB, loading XML data, and exchanging XML data.

• Administration of Oracle XML DB
Administration of Oracle XML DB includes installing, upgrading, and configuring it.

• How to Load XML Data
The main way to load XML data into Oracle XML DB is to use SQL*Loader.

• Export and Import of Oracle XML DB Data
You can use Oracle Data Pump to export and import XMLType tables for use with
Oracle XML DB.

• XML Data Exchange Using Oracle Database Advanced Queuing
You can exchange XML data using Oracle Database Advanced Queuing (AQ),
which provides database-integrated message-queuing. AQ enables and manages
asynchronous communication between applications, using messages. It supports
point-to-point and publish/subscribe communication models.



34
Administration of Oracle XML DB

Administration of Oracle XML DB includes installing, upgrading, and configuring it.

• Upgrade or Downgrade of an Existing Oracle XML DB Installation
Various considerations apply to all upgrades of Oracle Database from a release
prior to Oracle Database 12c Release 1 (12.1.0.1).

• Administration of Oracle XML DB Using Oracle Enterprise Manager
You can use Oracle Enterprise Manager to easily perform Oracle XML DB
administration tasks. This includes configuring Oracle XML DB; creating,
searching, editing, and deleting XML schemas, XMLType tables and views, and
Oracle XML DB Repository resources and their access control lists (ACLs);
registering XML schemas; and creating function-based indexes.

• Configuration of Oracle XML DB Using xdbconfig.xml
Oracle XML DB is managed internally through a configuration file, xdbconfig.xml,
which is stored as a resource in Oracle XML DB Repository. As an alternative to
using Oracle Enterprise Manager to configure Oracle XML DB, you can configure
it directly using the Oracle XML DB configuration file.

• Oracle XML DB and Database Consolidation
Each pluggable database has its own Oracle XML DB Repository, and its own
Oracle XML DB configuration file, xdbconfig.xml.

• Package DBMS_XDB_ADMIN
PL/SQL package DBMS_XDB_ADMIN has subprograms for managing and configuring
Oracle XML DB and Oracle XML DB Repository.

Related Topics

• Configuration of Repository Resources for XLink and XInclude
The resource configuration file that you use as a resource to configure XLink
(deprecated) and XInclude processing for other resources is described.

34.1 Upgrade or Downgrade of an Existing Oracle XML DB
Installation

Various considerations apply to all upgrades of Oracle Database from a release prior
to Oracle Database 12c Release 1 (12.1.0.1).

• Run script catproc.sql, as always.

• Replication of hierarchy-enabled tables is not supported for any replication
method, including rolling upgrade.

• If supplemental logging is turned on then these operations are not supported:

– Use of the APPEND hint for INSERT

– SQL*Loader direct-path insertion of XMLType data

34-1



• If you use rolling upgrade and any of the following operations are invoked on the
primary database, then an unsupported operation error is raised on the standby
database:

– DBMS_XDB_ADMIN — all operations

– DBMS_XMLSCHEMA.copyEvolve

– DBMS_XMLSCHEMA.compileSchema

– DBMS_XMLINDEX.dropparameter

– DBMS_XMLINDEX.modifyparameter

– DBMS_XMLINDEX.registerparameter

• ACL security: In releases prior to Oracle Database 11g Release 1, conflicts among
ACEs for the same principal and same privilege were resolved by giving priority
to any ACE that had child deny, whether or not preceding ACEs had child grant.
That is, ACE order did not matter. In Oracle Database 11g and later this deny-
trumps-grant behavior is still available, but it is not the default behavior.

• Prior to Oracle Database 12c Release 1 (12.1.0.1), basic access authentication
was the only available HTTP authentication mechanism. Starting with 12c Release
1, digest access authentication is available.

• Authentication Considerations for Database Installation, Upgrade and Downgrade
Various authentication considerations apply to database installation, upgrades and
downgrades.

• Automatic Installation of Oracle XML DB
Oracle XML DB is automatically installed during an upgrade. Ensure that the
compatibility level is at least 12.1.0.1 if you intend to use Oracle XML DB.

• Validation of ACL Documents and Configuration File
During upgrade, existing ACL documents and the Oracle XML DB configuration
file are validated against their XML schemas. If validation fails then you need to
take certain measures.

See Also:

• Oracle Data Guard Concepts and Administration for information about
performing a rolling upgrade

• ACL and ACE Evaluation for information about conflicts among ACEs

34.1.1 Authentication Considerations for Database Installation,
Upgrade and Downgrade

Various authentication considerations apply to database installation, upgrades and
downgrades.

Chapter 34
Upgrade or Downgrade of an Existing Oracle XML DB Installation

34-2



• Authentication Considerations for a Database Installation
In a default database installation, digest authentication is enabled, and basic
authentication is disallowed. Digest verifiers are automatically generated for all
users.

• Authentication Considerations for a Database Upgrade
After an upgrade from a release prior to Oracle Database 12c Release 1
(12.1.0.1), digest authentication is appended to the list of allowed authentication
mechanisms. But basic authentication remains the current authentication method if
it was enabled before the upgrade. This is for backward compatibility only.

• Authentication Considerations for a Database Downgrade
If you downgrade to a release where digest authentication was not supported,
digest authentication is disabled and made unavailable as an authentication
choice.

Related Topics

• Configuration and Management of Authentication Mechanisms for HTTP
You configure the authentication mechanisms to allow for HTTP access to Oracle
XML DB Repository by setting element authentication, a child of element
httpconfig, in configuration file xdbconfig.xml.

34.1.1.1 Authentication Considerations for a Database Installation
In a default database installation, digest authentication is enabled, and basic
authentication is disallowed. Digest verifiers are automatically generated for all users.

34.1.1.2 Authentication Considerations for a Database Upgrade
After an upgrade from a release prior to Oracle Database 12c Release 1 (12.1.0.1),
digest authentication is appended to the list of allowed authentication mechanisms.
But basic authentication remains the current authentication method if it was enabled
before the upgrade. This is for backward compatibility only.

Oracle recommends that your database administrator disable basic authentication as
soon as possible after upgrading. The reason that basic authentication remains in
effect after such an upgrade is to allow users to change their passwords using a Web
browser that does not support digest authentication.

For such an upgrade, digest verifiers are computed for all new users and for all
previously existing users whose passwords changed during the upgrade. Other users
do not have digest verifiers.

After an upgrade, a DBA can use database view DBA_DIGEST_VERIFIERS to check
which users have digest verifiers and take appropriate action, as follows:

1. Configure basic authentication as the first allowed authentication mechanism in
the Oracle XML DB configuration file, xdbconfig.xml. This ensures that basic
authentication can be used for HTTP access.

2. Expire all passwords for those users who do not have digest verifiers. This query
returns those users:

SELECT USERNAME FROM DBA_DIGEST_VERIFIERS
  WHERE HAS_DIGEST_VERIFIERS = 'NO' AND DIGEST_TYPE is NULL;

Chapter 34
Upgrade or Downgrade of an Existing Oracle XML DB Installation

34-3



3. After the passwords for all such users have been changed, configure
xdbconfig.xml to re-enable digest as the first or (preferably) the only allowed
authentication mechanism.

34.1.1.3 Authentication Considerations for a Database Downgrade
If you downgrade to a release where digest authentication was not supported, digest
authentication is disabled and made unavailable as an authentication choice.

All digest verifiers are erased during a downgrade. This means, in particular, that if
a downgrade is followed by an upgrade then users who were able to authenticate
prior to the downgrade are denied digest authentication after the downgrade and the
subsequent upgrade.

34.1.2 Automatic Installation of Oracle XML DB
Oracle XML DB is automatically installed during an upgrade. Ensure that the
compatibility level is at least 12.1.0.1 if you intend to use Oracle XML DB.

If Oracle XML DB is not already installed in your database prior to an upgrade to
Oracle Database 12c Release 1 (12.1.0.1) or later, then it is automatically installed in
tablespace SYSAUX during the upgrade.

If Oracle XML DB has thus been automatically installed, and if you want to use Oracle
XML DB, then, after the upgrade operation, you must set the database compatibility to
at least 12.1.0.1. If the compatibility is less than 12.1.0.1 then an error is raised when
you try to use Oracle XML DB.

If Oracle XML DB was automatically installed during an upgrade and the current
compatibility level is less than 12.1.0.1, then Oracle DB is automatically uninstalled
during any downgrade to a prior release.

34.1.3 Validation of ACL Documents and Configuration File
During upgrade, existing ACL documents and the Oracle XML DB configuration file are
validated against their XML schemas. If validation fails then you need to take certain
measures.

Access control list (ACL) documents are stored in table XDB$ACL. The Oracle
XML DB configuration file, xdbconfig.xml, is stored in table XDB$CONFIG. Starting
with Oracle Database 12c Release 1 (12.1.0.1), these tables use the post-parse
(binary XML) storage model. This implies that ACL documents and the configuration
file are fully validated against their respective XML schemas. Validation takes place
during upgrade, using your existing ACL documents and configuration file and the
corresponding existing XML schemas.

If an ACL document fails to validate during upgrade, then the document is moved to
table XDB$INVALID_ACL.

If validation of configuration file xdbconfig.xml fails during upgrade, then the file is
saved in table XDB$INVALID_CONFIG, the default configuration file replaces it in table
XDB$CONFIG, and the XDB component of the database is marked invalid. You must then
start the database in normal mode and fix the XDB component, before trying to use the
database.

Chapter 34
Upgrade or Downgrade of an Existing Oracle XML DB Installation

34-4



To fix the XDB component, you can fix the invalid files to make them valid, and then call
PL/SQL procedure RecoverUpgrade. After validating, this procedure moves the fixed
files to tables XDB$ACL and XDB$CONFIG, and marks the XDB component valid.

As an option, you can call procedure RecoverUpgrade with parameter use_default set
to TRUE, to abandon any invalid files. In this case, any valid files are moved to tables
XDB$ACL and XDB$CONFIG, and any remaining invalid files are deleted. Default files are
used in place of any invalid files. For ACLs, the default ACL document is used. For the
configuration file, the default xdbconfig.xml is used (in which ACE order matters).

Caution:

Use a TRUE value for parameter use_default only if you are certain that you
no longer need the old ACL files or configuration file that are invalid. These
files are deleted.

34.2 Administration of Oracle XML DB Using Oracle
Enterprise Manager

You can use Oracle Enterprise Manager to easily perform Oracle XML DB
administration tasks. This includes configuring Oracle XML DB; creating, searching,
editing, and deleting XML schemas, XMLType tables and views, and Oracle XML DB
Repository resources and their access control lists (ACLs); registering XML schemas;
and creating function-based indexes.

See the online help available with Oracle Enterprise Manager for information about
using Enterprise Manager to perform the following tasks:

• Configure Oracle XML DB. View or edit parameters for the Oracle XML DB
configuration file, xdbconfig.xml.

• Search, create, edit, undelete Oracle XML DB Repository resources and their
associated access control lists (ACLs).

• Search, create, edit, and delete XMLType tables and views.

• Search, create, register, and delete XML schemas.

See Also:

• Configuration of Oracle XML DB Using xdbconfig.xml for information
about configuring Oracle XML DB without using Oracle Enterprise
Manager

• Oracle XML DB Repository for information about creating and managing
resources without using Oracle Enterprise Manager

• XML Schema Storage and Query: Basic for information about
manipulating XML schemas without using Oracle Enterprise Manager

Chapter 34
Administration of Oracle XML DB Using Oracle Enterprise Manager

34-5



34.3 Configuration of Oracle XML DB Using xdbconfig.xml
Oracle XML DB is managed internally through a configuration file, xdbconfig.xml,
which is stored as a resource in Oracle XML DB Repository. As an alternative to using
Oracle Enterprise Manager to configure Oracle XML DB, you can configure it directly
using the Oracle XML DB configuration file.

The configuration file can be modified at run time. Updating the configuration file
creates a new version of this repository resource. At the start of each session, the
current version of the configuration file is bound to that session. The session uses this
configuration-file version for its duration, unless you make an explicit call to refresh the
session to the latest version.

• Oracle XML DB Configuration File, xdbconfig.xml
The configuration of Oracle XML DB is defined and stored in an Oracle XML DB
Repository resource, xdbconfig.xml, which conforms to the Oracle XML DB
configuration XML schema, http://xmlns.oracle.com/xdb/xdbconfig.xsd. To
configure or reconfigure Oracle XML DB, update the configuration file,
xdbconfig.xml. You need administrator privileges to access file xdbconfig.xml.

34.3.1 Oracle XML DB Configuration File, xdbconfig.xml
The configuration of Oracle XML DB is defined and stored in an Oracle
XML DB Repository resource, xdbconfig.xml, which conforms to the Oracle
XML DB configuration XML schema, http://xmlns.oracle.com/xdb/xdbconfig.xsd.
To configure or reconfigure Oracle XML DB, update the configuration file,
xdbconfig.xml. You need administrator privileges to access file xdbconfig.xml.

The structure of the configuration file is described in the following sections.

• Element xdbconfig (Top-Level)
Element xdbconfig is the top-level element of the Oracle XML DB configuration
file.

• Element sysconfig (Child of xdbconfig)
Element sysconfig is a child of xdbconfig.

• Element userconfig (Child of xdbconfig)
Element userconfig is a child of xdbconfig. It contains any parameters that you
may want to add.

• Element protocolconfig (Child of sysconfig)
Element protocolconfig is a child of sysconfig.

• Element httpconfig (Child of protocolconfig)
Element httpconfig, which is a child of protocolconfig, is described.

• Element servlet (Descendant of httpconfig)
Element servlet is a descendent of element httpconfig. It is used to configure
servlets, including Java servlets and embedded PL/SQL gateway servlets.

• Oracle XML DB Configuration File Example
A sample Oracle XML DB configuration file is presented.

• Oracle XML DB Configuration API
You can access the Oracle XML DB configuration file, xdbconfig.xml, the same
way you access any other XML schema-based resource. You can use FTP,

Chapter 34
Configuration of Oracle XML DB Using xdbconfig.xml

34-6



HTTP(S), WebDAV, Oracle Enterprise Manager, or any of the resource and
Document Object Model (DOM) APIs for Java, PL/SQL, or C (OCI).

• Configuration of Mappings from Default Namespace to Schema Location
Oracle XML DB provides a mechanism to configure default XML schema location
mappings.

• Configuration of XML File Extensions
Oracle XML DB Repository treats certain files as XML documents, based on their
file extensions. When such files are inserted into the repository, Oracle XML DB
pre-parses them to identify the XML schema location (or uses the default mapping
if present) and inserts the document into the appropriate default table.

See Also:

xdbconfig.xsd: XML Schema for Configuring Oracle XML DB for a complete
listing of the Oracle XML DB configuration XML schema

34.3.1.1 Element xdbconfig (Top-Level)
Element xdbconfig is the top-level element of the Oracle XML DB configuration file.

Its structure is as follows:

<xdbconfig> 
    <sysconfig> ... </sysconfig> 
    <userconfig> ... </userconfig> 
</xdbconfig>

Element sysconfig defines system-specific, built-in parameters. Element userconfig
lets you store new custom parameters.

34.3.1.2 Element sysconfig (Child of xdbconfig)
Element sysconfig is a child of xdbconfig.

Its structure is as follows:

<sysconfig> 
    general parameters
    <protocolconfig> ... </protocolconfig> 
</sysconfig> 

Element sysconfig includes as content several general parameters that apply to all
of Oracle XML DB, such as the maximum age of an access control list (ACL). Child
element protocolconfig contains protocol-specific parameters.

Chapter 34
Configuration of Oracle XML DB Using xdbconfig.xml

34-7



Note:

Element case-sensitive, child of element sysconfig, has no effect on
the case-sensitivity of XQuery or full-text search. Otherwise, it affects the
behavior of all of Oracle XML DB.

34.3.1.3 Element userconfig (Child of xdbconfig)
Element userconfig is a child of xdbconfig. It contains any parameters that you may
want to add.

34.3.1.4 Element protocolconfig (Child of sysconfig)
Element protocolconfig is a child of sysconfig.

Its structure is as follows:

<protocolconfig> 
  <common> ... </common> 
  <ftpconfig> ... </ftpconfig> 
  <httpconfig> ... </httpconfig> </protocolconfig> 

Under element common, Oracle Database stores parameters that apply to all protocols,
such as MIME-type information. Parameters that are specific to protocols FTP and
HTTP(S) are in elements ftpconfig and httpconfig, respectively.

Related Topics

• Repository Access Using Protocols
You can access Oracle XML DB Repository data using protocols FTP and
HTTP(S)/WebDAV.

See Also:

Table 28-1, Table 28-2, and Table 28-3, for a list of protocol configuration
parameters

34.3.1.5 Element httpconfig (Child of protocolconfig)
Element httpconfig, which is a child of protocolconfig, is described.

This is the structure of httpconfig:

<httpconfig>
  ...
  <webappconfig>
    ...
    <servletconfig>
      ...
      <servlet-list>

Chapter 34
Configuration of Oracle XML DB Using xdbconfig.xml

34-8



        <servlet> ... </servlet>
        ...
      </servlet-list>
    </servletconfig>
  </webappconfig>
  ...
  <plsql> ... </plsql>
</httpconfig>

Element httpconfig has the following child elements, in addition to others:

• webappconfig – used to configure Web-based applications. This includes Web
application-specific parameters, such as icon name, display name for the
application, and a list of servlets.

Element servletconfig is a child of webappconfig that is used to define servlets.
It has child element servlet-list, which has child element servlet (see Element
servlet (Descendant of httpconfig)).

• plsql – used to define global configuration parameters when configuring the
embedded PL/SQL gateway. Each global parameter is defined with a child
element of plsql. The element name is the same as the global parameter name.
The element content is the same as the parameter value.

The recommended way to configure the embedded PL/SQL gateway is to use the
procedures in PL/SQL package DBMS_EPG, not to edit file xdbconfig.xml.

Related Topics

• Repository Access Using Protocols
You can access Oracle XML DB Repository data using protocols FTP and
HTTP(S)/WebDAV.

See Also:

• Table 28-1, Table 28-2, and Table 28-3, for a list of protocol configuration
parameters

• Oracle Database Development Guide, for complete information about
configuring and using the embedded PL/SQL gateway

• Oracle Database PL/SQL Packages and Types Reference, for
information about package DBMS_EPG

34.3.1.6 Element servlet (Descendant of httpconfig)
Element servlet is a descendent of element httpconfig. It is used to configure
servlets, including Java servlets and embedded PL/SQL gateway servlets.

See Element httpconfig (Child of protocolconfig).

1 There are two different plsql elements that are used to configure the embedded PL/SQL gateway. One, a child
of httpconfig, defines global parameters. The other, a child of servlet, defines DAD attributes.

Chapter 34
Configuration of Oracle XML DB Using xdbconfig.xml

34-9



Note:

The following servlets are preconfigured in file xdbconfig.xml. Do not delete
them.

• ORSServlet

• EMExpressServlet

An optional element plsql, child of servlet1, configures the embedded PL/SQL
gateway servlet. However, the recommended way to configure the embedded gateway
is to use the procedures in PL/SQL package DBMS_EPG, not to edit file xdbconfig.xml.

Element plsql has a child element for each embedded PL/SQL DAD attribute2 that
is needed to configure the embedded gateway. All such children are optional. The
element name is the same as the DAD attribute name. The element content is the
same as the DAD-attribute value.

See Also:

• Guidelines for Oracle XML DB Applications in Java for information about
configuring Java servlets

• Oracle Database Development Guide, for complete information about
configuring and using the embedded PL/SQL gateway

• Oracle Application Express App Builder User’s Guide, for information
about Oracle Application Express

• Oracle Database PL/SQL Packages and Types Reference, for
information about package DBMS_EPG

34.3.1.7 Oracle XML DB Configuration File Example
A sample Oracle XML DB configuration file is presented.

Example 34-1    Oracle XML DB Configuration File

<xdbconfig xmlns="http://xmlns.oracle.com/xdb/xdbconfig.xsd" 
                 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
                 xsi:schemaLocation="http://xmlns.oracle.com/xdb/xdbconfig.xsd 
                                    http://xmlns.oracle.com/xdb/xdbconfig.xsd">
   <sysconfig>
      <acl-max-age>900</acl-max-age>
      <acl-cache-size>32</acl-cache-size> 
      <invalid-pathname-chars>,</invalid-pathname-chars>
      <case-sensitive>true</case-sensitive>       
      <call-timeout>300</call-timeout>
      <max-link-queue>65536</max-link-queue> 
      <max-session-use>100</max-session-use>
      <persistent-sessions>false</persistent-sessions> 

2 DAD is an abbreviation for Database Access Descriptor. DAD attributes are parameters that define such a
descriptor.

Chapter 34
Configuration of Oracle XML DB Using xdbconfig.xml

34-10



      <default-lock-timeout>3600</default-lock-timeout>
      <xdbcore-logfile-path>/sys/log/xdblog.xml</xdbcore-logfile-path>
      <xdbcore-log-level>0</xdbcore-log-level>
      <resource-view-cache-size>1048576</resource-view-cache-size> 
    
      <protocolconfig> 
          <common>
             <extension-mappings>
                <mime-mappings>
                  <mime-mapping>
                    <extension>au</extension>
                    <mime-type>audio/basic</mime-type>
                  </mime-mapping>
                  <mime-mapping>
                    <extension>avi</extension>
                    <mime-type>video/x-msvideo</mime-type>
                  </mime-mapping>
                  <mime-mapping>
                    <extension>bin</extension>
                    <mime-type>application/octet-stream</mime-type>
                  </mime-mapping>
                </mime-mappings> 

                <lang-mappings>
                  <lang-mapping>
                    <extension>en</extension>
                    <lang>english</lang>
                  </lang-mapping>
                </lang-mappings>

                <charset-mappings>
                </charset-mappings>

                <encoding-mappings>
                  <encoding-mapping>
                    <extension>gzip</extension>
                    <encoding>zip file</encoding>      
                  </encoding-mapping>
                  <encoding-mapping>
                    <extension>tar</extension>
                    <encoding>tar file</encoding>        
                  </encoding-mapping>
                </encoding-mappings>
             </extension-mappings>

             <session-pool-size>50</session-pool-size>
             <session-timeout>6000</session-timeout>
          </common>

          <ftpconfig>
            <ftp-port>2100</ftp-port>
            <ftp-listener>local_listener</ftp-listener>
            <ftp-protocol>tcp</ftp-protocol>
            <logfile-path>/sys/log/ftplog.xml</logfile-path>
            <log-level>0</log-level>
            <session-timeout>6000</session-timeout>
            <buffer-size>8192</buffer-size> 
          </ftpconfig>

          <httpconfig>
            <http-port>8080</http-port>
            <http-listener>local_listener</http-listener>
            <http-protocol>tcp</http-protocol>
            <max-http-headers>64</max-http-headers> 
            <session-timeout>6000</session-timeout>
            <server-name>XDB HTTP Server</server-name>
            <max-header-size>16384</max-header-size>
            <max-request-body>2000000000</max-request-body>
            <logfile-path>/sys/log/httplog.xml</logfile-path>

Chapter 34
Configuration of Oracle XML DB Using xdbconfig.xml

34-11



            <log-level>0</log-level>    
            <servlet-realm>Basic realm="XDB"</servlet-realm>
            <webappconfig>
              <welcome-file-list>
                <welcome-file>index.html</welcome-file>
                <welcome-file>index.htm</welcome-file>
              </welcome-file-list>
              <error-pages>
              </error-pages>
              <servletconfig> 
                <servlet-mappings>
                  <servlet-mapping>
                    <servlet-pattern>/oradb/*</servlet-pattern>
                    <servlet-name>DBURIServlet</servlet-name>
                  </servlet-mapping>
                </servlet-mappings>
                               
                <servlet-list>
                  <servlet>
                    <servlet-name>DBURIServlet</servlet-name>
                    <display-name>DBURI</display-name>
                    <servlet-language>C</servlet-language>
                    <description>Servlet for accessing DBURIs</description>
                    <security-role-ref>
                      <role-name>authenticatedUser</role-name>
                      <role-link>authenticatedUser</role-link>
                    </security-role-ref>
                  </servlet>
                </servlet-list>
              </servletconfig>
            </webappconfig>
          </httpconfig> 
      </protocolconfig>
    <xdbcore-xobmem-bound>1024</xdbcore-xobmem-bound> 
    <xdbcore-loadableunit-size>16</xdbcore-loadableunit-size> 
   </sysconfig>
</xdbconfig>

34.3.1.8 Oracle XML DB Configuration API
You can access the Oracle XML DB configuration file, xdbconfig.xml, the same way
you access any other XML schema-based resource. You can use FTP, HTTP(S),
WebDAV, Oracle Enterprise Manager, or any of the resource and Document Object
Model (DOM) APIs for Java, PL/SQL, or C (OCI).

For convenience, you can use PL/SQL package DBMS_XDB_CONFIG package for
configuration access. It exposes the following functions and procedures:

• cfg_get – Returns the configuration information for the current session.

• cfg_refresh – Refreshes the session configuration information using the current
configuration file. Typical uses of cfg_refresh include the following:

– You have modified the configuration and now want the session to pick up the
latest version of the configuration information.

– It has been a long running session, the configuration has been modified by
a concurrent session, and you want the current session to pick up the latest
version of the configuration information.

• cfg_update – Updates the configuration information, writing the configuration file.
A COMMIT is performed.

Example 34-2 updates parameters ftp-port and http-port in the configuration file.

Chapter 34
Configuration of Oracle XML DB Using xdbconfig.xml

34-12



If you have many parameters to update, then it can be easier to use FTP, HTTP(S), or
Oracle Enterprise Manager to update the configuration.

See Also:

Oracle Database PL/SQL Packages and Types Reference

Example 34-2    Updating the Configuration File Using CFG_UPDATE and CFG_GET

DECLARE
  v_cfg XMLType;
BEGIN
  SELECT XMLQuery('declare default element namespace
                   "http://xmlns.oracle.com/xdb/xdbconfig.xsd";
                   copy $i := $cfg 
                   modify for $j in $i/xdbconfig
                   return (replace value of node $j/descendant::ftp-port with
                             "2121",
                           replace value of node $j/descendant::http-port with
                             "19090")
                   return $i'
                  PASSING DBMS_XDB_CONFIG.cfg_get() AS "cfg"
                  RETURNING CONTENT)
    INTO v_cfg FROM DUAL; 
  DBMS_XDB_CONFIG.cfg_update(v_cfg);
END;
/ 

Related Topics

• DBMS_XDB_CONFIG: Configuration Management
PL/SQL package DBMS_XDB_CONFIG provides Oracle XML DB configuration
management functions and procedures.

34.3.1.9 Configuration of Mappings from Default Namespace to Schema
Location

Oracle XML DB provides a mechanism to configure default XML schema location
mappings.

Oracle XML DB identifies XML Schema-based XMLType instances by pre-
parsing input XML documents. If the appropriate xsi:schemaLocation or
xsi:noNamespaceSchemaLocation attribute is found, then the specified schema
location URL is used to consult the registered schema.

If the appropriate xsi: attribute is not found, the XML document is considered to
be non-schema-based. Oracle XML DB provides a mechanism to configure default
schema location mappings. If the appropriate xsi: attribute is not specified in the XML
document, the default schema location mappings is used.

Element schemaLocation-mappings of the Oracle XML DB configuration XML schema,
xdbconfig.xsd, can be used to specify the mapping between (namespace, element)
pairs and the default schema location. If the element value is empty, the mapping
applies to all global elements in the specified namespace. If the namespace value is
empty, it corresponds to the null namespace.

Chapter 34
Configuration of Oracle XML DB Using xdbconfig.xml

34-13



The definition of the schemaLocation-mappings element is as follows:

 <element name="schemaLocation-mappings"
          type="xdbc:schemaLocation-mapping-type" minOccurs="0"/> 
 <complexType name="schemaLocation-mapping-type"><sequence>
      <element name="schemaLocation-mapping"
               minOccurs="0" maxOccurs="unbounded">
      <complexType><sequence>
        <element name="namespace" type="string"/>
        <element name="element" type="string"/>
        <element name="schemaURL" type="string"/>
      </sequence></complexType>
      </element></sequence> 
 </complexType> 

The schema location used depends on mappings in the Oracle XML DB configuration
file for the namespace used and the root document element. For example, assume
that the document does not have the appropriate xsi: attribute to indicate the schema
location. Consider a document root element R in namespace N. The algorithm for
identifying the default schema location is as follows:

1. If the Oracle XML DB configuration file has a mapping for N and R, the
corresponding schema location is used.

2. If the configuration file has a mapping for N, but not R, the schema location for N is
used.

3. If the document root R does not have any namespace, the schema location for R
is used.

For example, suppose that your Oracle XML DB configuration file includes the
following mapping:

      <schemaLocation-mappings>
         <schemaLocation-mapping>
            <namespace>http://www.oracle.com/example</namespace>
            <element>root</element>
            <schemaURL>http://www.oracle.com/example/sch.xsd</schemaURL>
         </schemaLocation-mapping>
         <schemaLocation-mapping>
            <namespace>http://www.oracle.com/example2</namespace>
            <element></element>
            <schemaURL>http://www.oracle.com/example2/sch.xsd</
schemaURL>
         </schemaLocation-mapping>
         <schemaLocation-mapping>
           <namespace></namespace>
           <element>specialRoot</element>
           <schemaURL>http://www.oracle.com/example3/sch.xsd</schemaURL>
         </schemaLocation-mapping>
      </schemaLocation-mappings>
 

The following schema locations are used:

• Root element = root

Chapter 34
Configuration of Oracle XML DB Using xdbconfig.xml

34-14



– Namespace = http://www.oracle.com/example

– Schema URL = http://www.oracle.com/example/sch.xsd

This mapping is used when the instance document specifies:

<root xmlns="http://www.oracle.com/example">

• Root element = null (any global element in the namespace)

– Namespace = http://www.oracle.com/example2

– Schema URL = http://www.oracle.com/example2/sch.xsd

This mapping is used when the instance document specifies:

<root xmlns="http://www.oracle.example2">

• Root element = specialRoot

– Namespace = null (i.e null namespace)

– Schema URL = http://www.oracle.com/example3/sch.xsd

This mapping is used when the instance document specifies:

<specialRoot>

Note:

This functionality is available only on the server side, that is, when XML is
parsed on the server. If XML is parsed on the client side, the appropriate
xsi: attribute is still required.

34.3.1.10 Configuration of XML File Extensions
Oracle XML DB Repository treats certain files as XML documents, based on their
file extensions. When such files are inserted into the repository, Oracle XML DB
pre-parses them to identify the XML schema location (or uses the default mapping if
present) and inserts the document into the appropriate default table.

By default, the following extensions are considered as XML file extensions: xml,
xsd, xsl, xlt. In addition, Oracle XML DB provides a mechanism for applications to
specify other file extensions as XML file extensions. The xml-extensions element is
defined in the configuration schema, http://xmlns.oracle.com/xdb/xdbconfig.xsd,
as follows:

 <element name="xml-extensions"
          type="xdbc:xml-extension-type" minOccurs="0"/>
 
 <complexType name="xml-extension-type"><sequence>
      <element name="extension" type="xdbc:exttype"
               minOccurs="0" maxOccurs="unbounded">
      </element></sequence> 
  </complexType> 

Chapter 34
Configuration of Oracle XML DB Using xdbconfig.xml

34-15



For example, the following fragment from the Oracle XML DB configuration file,
xdbconfig.xml, specifies that files with extensions vsd, vml, and svgl should be
treated as XML files:

 <xml-extensions>
   <extension>vsd</extension>
   <extension>vml</extension>
   <extension>svgl</extension>
 </xml-extensions>

34.4 Oracle XML DB and Database Consolidation
Each pluggable database has its own Oracle XML DB Repository, and its own Oracle
XML DB configuration file, xdbconfig.xml.

A multitenant container database (CDB) consists of zero or more pluggable databases
(PDBs), a root, and a seed PDB (a template for creating PDBs). A given PDB can be
associated with only one CDB at a time. A PDB appears to users and applications
as a separate database. Your applications always interact with a single PDB at a
time. Queries and dictionary views are local to a PDB. Each PDB has its own Oracle
XML DB Repository, and its own Oracle XML DB configuration file, xdbconfig.xml.

The root of a CDB (CDB$ROOT) contains no user data. It does, however, have its own
configuration file, xdbconfig.xml.

The root configuration file for a CDB has only certain parameters, and those
parameters are used only from the root configuration file. If any of those parameters
are also present in a configuration file of a PDB that is part of a CDB, they are ignored
in favor of the corresponding parameters in the root configuration file.

These are the configuration parameters that are used from the root (and ignored from
any PDBs):

• acl-cache-size

• acl-max-age

• resource-view-cache-size

• xdbcore-loadableunit-size

• xdbcore-xobmem-bound

Parameters xdbcore-loadableunit-size and xdbcore-xobmem-bound are process-
specific. The others are SGA configuration parameters.

Database schema (user account) XDB is a common user, which means that it can
connect to, and perform operations within, both the root and any PDBs.

Note:

Oracle recommends that you never unlock database schema XDB, under
any circumstances.

Chapter 34
Oracle XML DB and Database Consolidation

34-16



See Also:

• Oracle Multitenant Administrator's Guide and Oracle Multitenant
Administrator's Guide for information about database consolidation and
PDBs

• Performance Guidelines for Oracle XML DB Repository Operations for
information about configuration parameters resource-view-cache-size,
xdbcore-loadableunit-size, and xdbcore-xobmem-bound

• Considerations for Loading and Retrieving Large Documents with
Collections for information about configuration parameters xdbcore-
loadableunit-size and xdbcore-xobmem-bound

• ACL Caching for information about configuration parameter acl-max-age

34.5 Package DBMS_XDB_ADMIN
PL/SQL package DBMS_XDB_ADMIN has subprograms for managing and configuring
Oracle XML DB and Oracle XML DB Repository.

Table 34-1 describes these subprograms.

Table 34-1    DBMS_XDB_ADMIN Management Procedures

Function/Procedure Description

moveXDB_tablespace Move database schema (user account) XDB to the specified tablespace.

rebuildHierarchicalIndex Rebuild the hierarchical repository index. This can be needed from time to time,
in particular after invoking moveXDB_tablespace.

Note:

Prior to Oracle Database 11g Release 2 (11.2.0.3), these procedures
belonged to PL/SQL package DBMS_XDB. These two procedures in package
DBMS_XDB are deprecated as of release 11.2.0.3.

Chapter 34
Package DBMS_XDB_ADMIN

34-17



Note:

The tablespace containing Oracle XML DB Repository must not be read-only,
because that would adversely affect XML operations.

By default, Oracle XML DB Repository resides in tablespace SYSAUX, which
is used for other things as well. Oracle recommends instead that you create
a dedicated tablespace for use only by the repository.

Use procedure DBMS_XDB_ADMIN.moveXDB_tablespace to move database
schema XDB to that tablespace dedicated to the repository. Ensure that the
tablespace is not read-only.

See Also:

Oracle Database PL/SQL Packages and Types Reference

Chapter 34
Package DBMS_XDB_ADMIN

34-18



35
How to Load XML Data

The main way to load XML data into Oracle XML DB is to use SQL*Loader.

• Overview of Loading XMLType Data Into Oracle Database
You can load XMLType data with SQL*Loader, using either the conventional method
or the direct-path method, regardless of how it is stored (object-relational or binary
XML storage).

• Load XMLType Data Using SQL*Loader
SQL*Loader treats XMLType columns and tables like object-relational columns
and tables. All methods for loading LOB data from the primary datafile or from
a LOBFILE value apply also to loading XMLType columns and tables when the
XMLType data is stored as a LOB.

Related Topics

• Overview of How To Use Oracle XML DB
An overview of the various ways of using Oracle XML DB is presented.

35.1 Overview of Loading XMLType Data Into Oracle
Database

You can load XMLType data with SQL*Loader, using either the conventional method or
the direct-path method, regardless of how it is stored (object-relational or binary XML
storage).

Starting with Oracle9i release 1 (9.0.1), the Export-Import utility and SQL*Loader
support XMLType as a column type. Starting with Oracle Database 10g, SQL*Loader
also supports loading XMLType tables.

Note:

For object-relational storage of XML data, if the data involves inheritance
(extension or restriction) of XML Schema types, then SQL*Loader does not
support direct-path loading.

That is, if an XML schema contains a complexType element that extends or
restricts another complexType element (the base type), then this results in
some SQL types being defined in terms of other SQL types. In this case,
direct-path loading is not supported for object-relational storage.

Oracle XML DB Repository information is not exported when user data is exported.
Neither the resources nor any information are exported.

35-1



Related Topics

• Export and Import of Oracle XML DB Data
You can use Oracle Data Pump to export and import XMLType tables for use with
Oracle XML DB.

See Also:

Oracle Database Utilities

• Export and Import of Oracle XML DB Data

• Oracle Database Utilities

35.2 Load XMLType Data Using SQL*Loader
SQL*Loader treats XMLType columns and tables like object-relational columns and
tables. All methods for loading LOB data from the primary datafile or from a LOBFILE
value apply also to loading XMLType columns and tables when the XMLType data is
stored as a LOB.

See Also:

Oracle Database Utilities

Note:

You cannot specify a SQL string for LOB fields. This is true even if you
specify LOBFILE_spec.

XMLType data can be present in a control file or in a LOB file. In the former case, the
LOB file name is present in the control file.

Because XMLType data can be quite large, SQL*Loader can load LOB data from either
a primary datafile (in line with the rest of the data) or from LOB files, independent
of how the data is stored (the underlying storage can, for example, still be object-
relational).

• Load XMLType LOB Data Using SQL*Loader
To load internal LOBs, Binary Large Objects (BLOBs), Character Large Objects
(CLOBs), and National Character Large Object (NCLOBs), or XMLType columns
and tables from a primary datafile, use standard SQL*Loader formats.

• Load XMLType Data Directly from a Control File Using SQL*Loader
You can load XMLType data directly from a control file. SQL*Loader treats XMLType
data like any scalar type.

Chapter 35
Load XMLType Data Using SQL*Loader

35-2



• Loading Large XML Documents Using SQL*Loader
You can use SQL*Loader to load large amounts of XML data into Oracle
Database.

35.2.1 Load XMLType LOB Data Using SQL*Loader
To load internal LOBs, Binary Large Objects (BLOBs), Character Large Objects
(CLOBs), and National Character Large Object (NCLOBs), or XMLType columns and
tables from a primary datafile, use standard SQL*Loader formats.

• Predetermined size fields

• Delimited fields

• Length-value pair fields

These formats are described in the following sections and in more detail in Oracle
Database Utilities

• Load LOB Data Using Predetermined Size Fields
Predetermined size fields constitute a very fast and conceptually simple
SQL*Loader format for loading LOBs.

• Load LOB Data Using Delimited Fields
The delimited fields format handles LOBs of different sizes within the same column
(datafile field). However, this added flexibility can affect performance, because
SQL*Loader must scan through the data, looking for the delimiter string.

• Load XML Columns Containing LOB Data from LOBFILEs
LOB data can be lengthy enough that it makes sense to load it from a LOBFILE
instead of from a primary datafile.

• Specify LOBFILEs
You can specify LOBFILEs either statically (you specify the name of the file) or
dynamically (you use a FILLER field as the source of the filename).

35.2.1.1 Load LOB Data Using Predetermined Size Fields
Predetermined size fields constitute a very fast and conceptually simple SQL*Loader
format for loading LOBs.

Note:

Because the LOBs you are loading might not be of equal size, you can use
whitespace to pad the LOB data to make the LOBs all of equal length within
a particular data field.

35.2.1.2 Load LOB Data Using Delimited Fields
The delimited fields format handles LOBs of different sizes within the same column
(datafile field). However, this added flexibility can affect performance, because
SQL*Loader must scan through the data, looking for the delimiter string.

As with single-character delimiters, when you specify string delimiters, you should
consider the character set of the datafile. When the character set of the datafile is

Chapter 35
Load XMLType Data Using SQL*Loader

35-3



different than that of the control file, you can specify the delimiters in hexadecimal (that
is, hexadecimal string). If the delimiters are specified in hexadecimal notation, then
the specification must consist of characters that are valid in the character set of the
input datafile. In contrast, if hexadecimal specification is not used, then the delimiter
specification is considered to be in the client (that is, the control file) character set. In
this case, the delimiter is converted into the datafile character set before SQL*Loader
searches for the delimiter in the datafile.

35.2.1.3 Load XML Columns Containing LOB Data from LOBFILEs
LOB data can be lengthy enough that it makes sense to load it from a LOBFILE
instead of from a primary datafile.

In LOBFILEs, LOB data instances are still considered to be in fields (predetermined
size, delimited, length-value), but these fields are not organized into records (the
concept of a record does not exist within LOBFILEs). Therefore, the processing
overhead of dealing with records is avoided. This type of organization of data is ideal
for LOB loading.

There is no requirement that a LOB from a LOBFILE fit in memory. SQL*Loader reads
LOBFILEs in 64 KB chunks.

In LOBFILEs the data can be in any of the following types of fields, any of which can
be used to load XML columns:

• A single LOB field into which the entire contents of a file can be read

• Predetermined size fields (fixed-length fields)

• Delimited fields (that is, TERMINATED BY or ENCLOSED BY)

The clause PRESERVE BLANKS is not applicable to fields read from a LOBFILE.

• Length-value pair fields (variable-length fields) .

To load data from this type of field, use the  VARRAY, VARCHAR, or VARCHAR2
SQL*Loader data types.

35.2.1.4 Specify LOBFILEs
You can specify LOBFILEs either statically (you specify the name of the file) or
dynamically (you use a FILLER field as the source of the filename).

In either case, when the EOF of a LOBFILE is reached, the file is closed and additional
attempts to read data from that file produce results equivalent to reading data from an
empty field.

You should not specify the same LOBFILE as the source of two different fields. If you
do so, then typically, the two fields read the data independently.

35.2.2 Load XMLType Data Directly from a Control File Using
SQL*Loader

You can load XMLType data directly from a control file. SQL*Loader treats XMLType data
like any scalar type.

Chapter 35
Load XMLType Data Using SQL*Loader

35-4



For example, consider a table containing a NUMBER column followed by an XMLType
column that is stored object-relationally. The control file used for this table can contain
the value of the NUMBER column followed by the value of the XMLType instance.

SQL*Loader accommodates XMLType instances that are very large. You also have the
option to load such data from a LOB file.

35.2.3 Loading Large XML Documents Using SQL*Loader
You can use SQL*Loader to load large amounts of XML data into Oracle Database.

1. List in a data file, say filelist.dat, the locations of the XML documents to be
loaded.

2. Create a control file, say load_data.ctl, with commands that process the files
listed in the data file.

3. Invoke the SQL*Loader shell command, sqlldr, passing it the name of the control
file.

This is illustrated in Example 35-1, Example 35-2, and Example 35-3. File
filelist.dat lists XML files that contain purchase orders for the year 2002.

If your application uses indexes or constraints then processing of these can impact
loading performance. You can temporarily disable this processing using PL/SQL
subprograms disableIndexesAndConstraints and enableIndexesAndConstraints in
package DBMS_XMLSTORAGE_MANAGE.

See Also:

• Oracle Database Utilities for information about shell command sqlldr

• Oracle Database PL/SQL Packages and Types Reference
for information about DBMS_XMLSTORAGE_MANAGE subprograms
disableIndexesAndConstraints and enableIndexesAndConstraints

Example 35-1    Data File filelist.dat: List of XML Files to Load

2002/Jan/AMCEWEN-20021009123335370PDT.xm
2002/Jan/AWALSH-2002100912333570PDT.xml 
2002/Jan/CJOHNSON-20021009123335170PDT.xml
2002/Jan/LSMITH-20021009123335500PDT.xml
2002/Jan/PTUCKER-20021009123335430PDT.xml
2002/Jan/SBELL-20021009123335280PDT.xml 
2002/Jan/SKING-20021009123335560PDT.xml 
2002/Jan/SMCCAIN-20021009123335470PDT.xml
2002/Jan/TFOX-20021009123335520PDT.xml  
2002/Jan/VJONES-20021009123335350PDT.xml
2002/Jan/WSMITH-20021009123335450PDT.xml
2002/Feb/AMCEWEN-20021009123335600PDT.xml
2002/Feb/AMCEWEN-20021009123335701PDT.xml
2002/Feb/DAUSTIN-20021009123335811PDT.xml
2002/Feb/EABEL-20021009123335791PDT.xml 
2002/Feb/PTUCKER-20021009123335721PDT.xml
2002/Feb/PTUCKER-20021009123335821PDT.xml
2002/Feb/SBELL-20021009123335771PDT.xml 

Chapter 35
Load XMLType Data Using SQL*Loader

35-5



2002/Feb/SMCCAIN-20021009123335681PDT.xml
2002/Feb/WSMITH-20021009123335650PDT.xml
2002/Feb/WSMITH-20021009123335741PDT.xml
2002/Feb/WSMITH-20021009123335751PDT.xml
...

Example 35-2    Control File load_datra.ctl, for Loading Purchase-Order XML
Documents

load data
infile 'filelist.dat'
append
into table PURCHASEORDER
xmltype(XMLDATA) 
(
 filename filler char(120),
 XMLDATA  lobfile(filename) terminated by eof
)

Example 35-3    Loading XML Data Using Shell Command sqlldr

sqlldr load_data.ctl

For direct-path loading, use this instead:

sqlldr load_data.ctl direct=y

Related Topics

• Overview of How To Use Oracle XML DB
An overview of the various ways of using Oracle XML DB is presented.

• Loading Large XML Files Using SQL*Loader
You can use SQL*Loader to load large amounts of XML data into Oracle
Database.

Chapter 35
Load XMLType Data Using SQL*Loader

35-6



36
Export and Import of Oracle XML DB Data

You can use Oracle Data Pump to export and import XMLType tables for use with
Oracle XML DB.

Note:

You can use the older export and import utilities exp and imp to migrate data
to database releases that are prior to Oracle Database 11g. However, these
older utilities do not support using XMLType data that is stored as binary XML.

• Overview of Exporting and Importing XMLType Tables
Oracle XML DB supports export and import of XMLType tables and columns that
store XML data, whether it is XML schema-based or not.

• Export/Import Limitations for Oracle XML DB Repository
When you export or import tables that store data for Oracle XML DB Repository
resources that are based on a registered XML schema, only that XML data is
exported. The repository structure is lost during export, so that when these tables
are imported they are not hierarchy-enabled.

• Export/Import Syntax and Examples
Guidelines and examples are presented for using commands expdp and impdp
with XMLType data.

36.1 Overview of Exporting and Importing XMLType Tables
Oracle XML DB supports export and import of XMLType tables and columns that store
XML data, whether it is XML schema-based or not.

Oracle Data Pump enables high-speed movement of data and metadata from one
database to another. There are two modes for using Oracle Data Pump: transportable
tablespaces mode and non-transportable tablespaces mode.

For the transportable tablespaces mode there is this restriction regarding XMLType
data: you cannot change the XMLType storage model.

As with other database objects, XML data is exported in the character set of the
exporting server. During import, the data is converted to the character set of the
importing server.

Oracle Data Pump has two command-line clients, expdp and impdp, that invoke Data
Pump Export utility and Data Pump Import utility, respectively. The expdp and impdp
clients use procedures provided in PL/SQL package DBMS_DATAPUMP to execute export
and import commands, passing the parameters entered at the command-line. These
parameters enable the exporting and importing of data and metadata for a complete
database or subsets of a database.

36-1



The Data Pump Export and Import utilities (invoked with commands expdp and impdp,
respectively) have a similar look and feel to the original Export (exp) and Import (imp)
utilities, but they are completely separate.

Data Pump Export utility (invoked with expdp) unloads data and metadata into a set of
operating system files called a dump file set. The dump file set can be imported only
by the Data Pump Import utility (invoked using impdp).

Oracle XML DB supports export and import of XMLType tables and columns that store
XML data, whether it is XML schema-based or not. If a table is XML schema-based,
then it depends on the XML schema used to define its data. This XML schema can
also have dependencies on SQL object types that are used to store the data, in the
case of object-relational storage.

Therefore, exporting a user who has XML schema-based XMLType tables also exports
the following:

• SQL objects types (if object-relational storage was used)

• XML schemas

• XML tables

You can export and import this data regardless of the XMLType storage format (object-
relational or binary XML). However, Oracle Data Pump exports and imports XML
data as text or binary XML data only. The underlying tables and columns used for
object-relational storage of XMLType are thus not exported. Instead, they are converted
to binary form and then exported as self-describing binary XML data.

Note:

Oracle Data Pump for Oracle Database 11g Release 1 (11.1) does not
support the export of XML schemas, XML schema-based XMLType columns,
or binary XML data to database releases prior to 11.1.

Regardless of the XMLType storage model, the format of the dump file is either text
or self-describing binary XML with a token map preamble. By default, self-describing
binary XML is used.

Since XMLType data is exported and imported as XML data, the source and target
databases can use different XMLType storage models for that data. You can export data
from a database that stores XMLType data one way and import it into a database that
stores XMLType data a different way.

Note:

Do not use option table_exists_action=append to import more than once
from the same dump file into an XMLType table, regardless of the XMLType
storage model used. Doing so raises a unique-constraint violation error
because rows in XMLType tables are always exported and imported using
a unique object identifier.

See Oracle Database Utilities for information about table_exists_action.

Chapter 36
Overview of Exporting and Importing XMLType Tables

36-2



36.2 Export/Import Limitations for Oracle XML DB
Repository

When you export or import tables that store data for Oracle XML DB Repository
resources that are based on a registered XML schema, only that XML data is
exported. The repository structure is lost during export, so that when these tables
are imported they are not hierarchy-enabled.

You can export and import the XMLType tables that store the XML data for Oracle
XML DB Repository resources that are based on a registered XML schema.

However, only the XML data is exported. The repository structure is lost during
export. Relationships in the folder hierarchy, row-level security (RLS) policies, and
path-index triggers are not exported for hierarchy-enabled tables. When these tables
are imported, they are not hierarchy-enabled.

36.3 Export/Import Syntax and Examples
Guidelines and examples are presented for using commands expdp and impdp with
XMLType data.

The examples presented here use the command-line commands expdp and impdp.
After submitting such a command with a user name and command parameters, you
are prompted for a password. The examples here do not show this prompting.

Export and import using Oracle Data Pump is described fully in Oracle Database
Utilities.

• Performing a Table-Mode Export /Import
Examples are presented of performing a table-mode export and a table-mode
import, to and from a dump file, respectively.

• Performing a Schema-Mode Export/Import
Examples here perform schema-mode exporting and importing. When performing
a Schema mode export, if you have role EXP_FULL_DATABASE, then you can export
a database schema, the database schema definition, and the system grants and
privileges of that database schema.

36.3.1 Performing a Table-Mode Export /Import
Examples are presented of performing a table-mode export and a table-mode import,
to and from a dump file, respectively.

An XMLType table has a dependency on the XML schema that was used to define
it. Similarly, that XML schema has dependencies on the SQL object types that were
created or specified for it. Importing an XMLType table requires the existence of the
corresponding XML schema and SQL object types.

When a TABLE mode export is used, only the table related metadata and data are
exported. To be able to import this data successfully, you must ensure that the relevant
XML schema and object types have been created.

The examples here assume that you are using a database with the following features:

Chapter 36
Export/Import Limitations for Oracle XML DB Repository

36-3



• A database with schema user23

• A table user23.tab41 with an XMLType column stored as binary XML

• A directory object dpump_dir, for which READ and WRITE privileges have been
granted to the user running expdp or impdp

Example 36-1 shows a table-mode export, specified using the TABLES parameter. It
exports table tab41 to dump file tab41.dmp.

Note:

In table mode, if you do not specify a schema prefix in the expdp command
then the schema of the exporter is used by default.

Example 36-2 shows a table-mode import. It imports table tab41 from dump file
tab41.dmp.

If a table named tab41 already exists at the time of the import then specifying
table_exists_action = append causes rows to be appended to that table. Whenever
you use parameter value append the data is loaded into new space; existing space is
never reused. For this reason you might need to compress your data after the load
operation.

See Also:

Oracle Database Utilities, for more information about Oracle Data Pump and
its command-line clients, expdp and impdp

Example 36-1    Exporting XMLType Data in TABLE Mode

expdp system directory=dpump_dir dumpfile=tab41.dmp tables=user23.tab41 

Example 36-2    Importing XMLType Data in TABLE Mode

impdp system tables=user23.tab41 directory=dpump_dir dumpfile=tab41.dmp 
table_exists_action=append

36.3.2 Performing a Schema-Mode Export/Import
Examples here perform schema-mode exporting and importing. When performing
a Schema mode export, if you have role EXP_FULL_DATABASE, then you can export
a database schema, the database schema definition, and the system grants and
privileges of that database schema.

The examples here assume that you are using a database with the following features:

• User x4a has created a table po2.

Chapter 36
Export/Import Syntax and Examples

36-4



• User x4a has a registered XML schema, ipo, which created two ordered collection
tables item_oct2 and sitem_nt2.

User x4a creates table po2 as shown in Example 36-3.

Table po2 is then populated and exported, as shown in Example 36-4.

Example 36-4 exports all of the following:

• All data types that were generated during registration of XML schema ipo.

• XML schema ipo.

• Table po2 and the ordered collection tables item_oct2 and sitem_nt2, which were
generated during registration of XML schema ipo.

• All data in all of those tables.

Example 36-5 imports all of the data in x4a.dmp to another database, in which the user
x4a already exists.

Example 36-6 does the same thing as Example 36-5, but it also remaps the database
schema from user x4a to user quine.

Example 36-6 imports all of the data in x4a.dmp (exported from the database schema
of user x4a) into database schema quine. To remap the database schema, user x4a
must have been granted role IMP_FULL_DATABASE on the local database and role
EXP_FULL_DATABASE on the source database. REMAP_SCHEMA loads all of the objects
from the source schema into the target schema.

Note:

If you import an XML schema into the same database that it was exported
from, and if that XML schema is still registered with Oracle XML DB at the
time of importing, do not use remap_schema unless you also specify impdp
parameter transform=oid:n. See Oracle Database Utilities for information
about parameter transform.

Example 36-3    Creating Table po2

CREATE TABLE po2 (po XMLType)
  XMLTYPE COLUMN po
  XMLSCHEMA "ipo.xsd"
  ELEMENT "purchaseOrder"
  VARRAY po.XMLDATA."items"."item"
    STORE AS TABLE item_oct2 ((PRIMARY KEY(NESTED_TABLE_ID, 
SYS_NC_ARRAY_INDEX$)))
      NESTED TABLE po.XMLDATA."shippedItems"."item" STORE AS sitem_nt2;

Example 36-4    Exporting XMLType Data in SCHEMA Mode

expdp x4a directory=tkxm_xmldir dumpfile=x4a.dmp

Example 36-5    Importing XMLType Data in SCHEMA Mode

impdp x4a directory=tkxm_xmldir dumpfile=x4a.dmp

Chapter 36
Export/Import Syntax and Examples

36-5



Example 36-6    Importing XMLType Data in SCHEMA Mode, Remapping Schema

impdp x4a directory=tkxm_xmldir dumpfile=x4a.dmp remap_schema=x4a:quine

Chapter 36
Export/Import Syntax and Examples

36-6



37
XML Data Exchange Using Oracle
Database Advanced Queuing

You can exchange XML data using Oracle Database Advanced Queuing (AQ),
which provides database-integrated message-queuing. AQ enables and manages
asynchronous communication between applications, using messages. It supports
point-to-point and publish/subscribe communication models.

Integration of message queuing with Oracle Database brings the integrity, reliability,
recoverability, scalability, performance, and security features of Oracle Database to
message queuing. It also facilitates the extraction of intelligence from message flows.

• XML and Oracle Database Advanced Queuing
Oracle Database Advanced Queuing (AQ) supports native XML messages.
AQ operations can be defined using the XML-based Internet-Data-Access-
Presentation (iDAP) format. iDAP is an extensible message invocation protocol. It
is built on Internet standards, using HTTP(S) and e-mail protocols as the transport
mechanism. XML is the data representation language for iDAP.

• Oracle Database Advanced Queuing
Oracle Database Advanced Queuing (AQ) lets you share data and events in a
queue. It can propagate information within a database or from one database to
another, routing information to specified destinations. It provides functionality and
flexibility for capturing and managing events, and for sharing events with other
databases and applications.

• XMLType Attributes in Object Types
You can create queues that use Oracle object types containing XMLType attributes.
These queues can be used to transmit and store messages that are XML
documents.

• Internet Data Access Presentation (iDAP): SOAP for AQ
You can access Oracle Database Advanced Queuing (AQ) over the Internet using
Simple Object Access Protocol (SOAP). Internet Data Access Presentation (iDAP)
is the SOAP specification for AQ operations. iDAP defines XML message structure
for a SOAP request body.

• iDAP Architecture
Oracle Database Advanced Queuing (AQ) operations that use HTTP(S) require an
iDAP HTTP client, a Web server, and an Oracle server.

• Guidelines for Using XML and Oracle Database Advanced Queuing
Guidelines are presented for using XML data with Oracle Database Advanced
Queuing.

37.1 XML and Oracle Database Advanced Queuing
Oracle Database Advanced Queuing (AQ) supports native XML messages. AQ
operations can be defined using the XML-based Internet-Data-Access-Presentation
(iDAP) format. iDAP is an extensible message invocation protocol. It is built on Internet

37-1



standards, using HTTP(S) and e-mail protocols as the transport mechanism. XML is
the data representation language for iDAP.

• Oracle Database Advanced Queuing and XML Message Payloads
XML messages can be passed asynchronously among applications using Oracle
Database Advanced Queuing (AQ).

• Advantages of Using Oracle Database Advanced Queuing
Oracle Database Advanced Queuing (AQ) provides flexibility in configuring
communication between applications. It makes an integrated solution easy to
manage, easy to configure, and easy to modify, to meet changing business needs.
It enables applications to cooperate, coordinate, and synchronize, to carry out
complex business transactions.

37.1.1 Oracle Database Advanced Queuing and XML Message
Payloads

XML messages can be passed asynchronously among applications using Oracle
Database Advanced Queuing (AQ).

Figure 37-1 shows an Oracle database using AQ to communicate with three
applications. The message payload is XML data. The general tasks performed by AQ
in this scenario are:

• Message flow using subscription rules

• Message management

• Extraction of business intelligence from messages

• Message transformation

Use cases of passing XML messages asynchronously among applications using AQ:

• Intra-business. Typical examples include sales order fulfillment and supply-chain
management.

• Inter-business. Multiple integration hubs can communicate over the Internet.
Examples include travel reservations, coordination between manufacturers and
suppliers, transfer of funds between banks, and insurance claims settlements.

Oracle uses this approach in its enterprise application integration products. XML
messages are sent from applications to an Oracle AQ hub. The hub serves as
a message server for any application that wants the message. Through this hub-
and-spoke architecture, XML messages can be communicated asynchronously to
multiple loosely coupled applications.

Figure 37-1 shows XML payload messages transported using AQ in the following
ways:

• A Web-based application uses an AQ operation over an HTTP(S) connection
using iDAP

• An application uses AQ to propagate an XML message over a Net* connection

• An application uses AQ to propagate an Internet or XML message directly to the
database using HTTP(S) or SMTP

Figure 37-1 also shows that AQ clients can access data using OCI, Java, or PL/SQL.

Chapter 37
XML and Oracle Database Advanced Queuing

37-2



Figure 37-1    Oracle Database Advanced Queuing and XML Message Payloads

Internet Users

Advanced

queues

Internet Access

XML-Based Internet

Transport


(HTTP(s), SMTP)

Internet

Propagation

Internet

Propagation


(Oracle

Net)

OCI, PL/SQL,

Java clients




Global Agents,

Global Subscriptions,


Global Events

MQ Series

Rules and

Transformations

Advanced

queues

Rules and

Transformations

Advanced

queues

Rules and

Transformations

Oracle

37.1.2 Advantages of Using Oracle Database Advanced Queuing
Oracle Database Advanced Queuing (AQ) provides flexibility in configuring
communication between applications. It makes an integrated solution easy to manage,
easy to configure, and easy to modify, to meet changing business needs. It enables
applications to cooperate, coordinate, and synchronize, to carry out complex business
transactions.

Message management provided by AQ manages the flow of messages between
different applications. AQ can also retain messages for auditing and tracking purposes,
and for extracting business intelligence.

AQ provides SQL views to access messages. You can use these views to analyze
trends.

37.2 Oracle Database Advanced Queuing
Oracle Database Advanced Queuing (AQ) lets you share data and events in a queue.
It can propagate information within a database or from one database to another,
routing information to specified destinations. It provides functionality and flexibility for
capturing and managing events, and for sharing events with other databases and
applications.

AQ lets you break the cycle of trading off one solution for another. You can build
and operate distributed enterprises and applications, data warehouses, and high
availability solutions.

You can use AQ to do all of the following:

Chapter 37
Oracle Database Advanced Queuing

37-3



• Capture changes at a database. You can configure a background capture process
to capture changes made to tables, database schemas, or the entire database. A
capture process captures changes from the redo log and formats each captured
change into a logical change record (LCR). The database where changes are
generated in the redo log is called the source database.

• Enqueue events into a queue. Two types of events may be staged in a queue:
LCRs and user messages. A capture process enqueues LCR events into a queue
that you specify. The queue can then share the LCR events within the same
database or with other databases. You can also enqueue user events explicitly
with a user application. These explicitly enqueued events can be LCRs or user
messages.

• Propagate events from one queue to another. These queues may be in the same
database or in different databases.

• Dequeue events. A background apply process can dequeue events. You can also
dequeue events explicitly with a user application.

• Apply events at a database. You can configure an apply process to apply all of the
events in a queue or only the events that you specify. You can also configure an
apply process to call your own PL/SQL subprograms to process events.

The database where LCR events are applied and other types of events are
processed is called the destination database. In some configurations, the source
database and the destination database may be the same.

• Message Queuing
Oracle Database Advanced Queuing (AQ) lets your applications enqueue,
propagate, and dequeue messages.

37.2.1 Message Queuing
Oracle Database Advanced Queuing (AQ) lets your applications enqueue, propagate,
and dequeue messages.

AQ stages messages of type SYS.AnyData. Messages of almost any type can be
wrapped in a SYS.AnyData wrapper and staged in SYS.AnyData queues. AQ supports
all of the standard features of message queuing systems, including multi-consumer
queues, publishing and subscribing, content-based routing, internet propagation,
transformations, and gateways to other messaging subsystems.

37.3 XMLType Attributes in Object Types
You can create queues that use Oracle object types containing XMLType attributes.
These queues can be used to transmit and store messages that are XML documents.

Using XMLType, you can do the following:

• Store any type of message in a queue

• Store documents internally as CLOB instances

• Store more than one type of payload in a queue

• Query XMLType columns using SQL/XML functions such as XMLExists

• Specify the operators in subscriber rules or dequeue selectors

Chapter 37
XMLType Attributes in Object Types

37-4



37.4 Internet Data Access Presentation (iDAP): SOAP for
AQ

You can access Oracle Database Advanced Queuing (AQ) over the Internet using
Simple Object Access Protocol (SOAP). Internet Data Access Presentation (iDAP) is
the SOAP specification for AQ operations. iDAP defines XML message structure for a
SOAP request body.

An iDAP-structured message is transmitted over the Internet using transport protocols
such as HTTP(S) and SMTP.

iDAP uses the text/xml content type to specify the body of the SOAP request. XML
provides the presentation for iDAP request and response messages, as follows:

• All request and response tags are scoped in the SOAP namespace.

• AQ operations are scoped in the iDAP namespace.

• The sender includes namespaces in iDAP elements and attributes in the SOAP
body.

• The receiver processes iDAP messages that have correct namespaces. For the
requests with incorrect namespaces, the receiver returns an invalid request error.

• The SOAP namespace has this value: http://schemas.xmlsoap.org/soap/
envelope/

• The iDAP namespace has this value: http://ns.oracle.com/AQ/schemas/access

See Also:

Oracle Database Advanced Queuing User's Guide

37.5 iDAP Architecture
Oracle Database Advanced Queuing (AQ) operations that use HTTP(S) require an
iDAP HTTP client, a Web server, and an Oracle server.

Figure 37-2 shows the relationships among these components.

• A client program sends XML messages that conform to iDAP format, to the AQ
Servlet. This can be any HTTP client, such as a Web browser.

• The Web server or ServletRunner hosts the AQ servlet that can interpret the
incoming XML messages, for example, Apache/Jserv or Tomcat.

• Oracle AQ servlet connects to Oracle Database to perform queue operations.

Chapter 37
Internet Data Access Presentation (iDAP): SOAP for AQ

37-5



Figure 37-2    iDAP Architecture for Performing AQ Operations Using HTTP(S)

AQ Client

Oracle Database�

Server

AQ Queue

Web Server

AQ


Servlet

XML

Messages

over HTTP

• XMLType Queue Payloads
You can create queues with payloads that contain XMLType attributes. These can
be used for transmitting and storing messages that contain XML documents.

37.5.1 XMLType Queue Payloads
You can create queues with payloads that contain XMLType attributes. These can be
used for transmitting and storing messages that contain XML documents.

By defining Oracle objects with XMLType attributes, you can do the following:

• Store more than one type of XML document in the same queue. The documents
are stored internally as CLOB instances.

• Selectively dequeue messages with XMLType attributes using SQL/XML functions
such as XMLExists and XMLQuery.

• Define transformations to convert Oracle objects to XMLType.

• Define rule-based subscribers that query message content using SQL/XML
functions such as XMLExists and XMLQuery.

In the application sketched in the examples here, assume that an overseas shipping
site represents an order using SYS.XMLType. An order-entry site represents an order as
an Oracle object, ORDER_TYP.

Example 37-1 creates the queue table and queue for overseas shipping.

Because the representation of orders at the overseas shipping site is different
from the representation of orders at the order-entry site, messages need to be
transformed before sending them from the order-entry site to the overseas shipping
site. Example 37-2 creates the transformation, and Example 37-3 applies it.

For more information about defining transformations that convert the type used by the
order entry application to the type used by overseas shipping, see Oracle Database
Advanced Queuing User's Guide.

Example 37-4 shows how an application that processes orders for customers in
another country, in this case Canada, can dequeue messages.

Example 37-1    Creating a Queue Table and Queue

BEGIN
   DBMS_AQADM.create_queue_table(
     queue_table        => 'OS_orders_pr_mqtab',
     comment            => 'Overseas Shipping MultiConsumer Orders queue table',
     multiple_consumers => TRUE,

Chapter 37
iDAP Architecture

37-6



     queue_payload_type => 'SYS.XMLtype',
     compatible         => '8.1');
END;
/
 
BEGIN
   DBMS_AQADM.create_queue(queue_name   => 'OS_bookedorders_que',
                           queue_table  => 'OS_orders_pr_mqtab');
END;
/

Example 37-2    Creating a Transformation to Convert Message Data to XML

CREATE OR REPLACE FUNCTION convert_to_order_xml(input_order ORDER_TYP)
  RETURN XMLType AS
    new_order XMLType;
BEGIN
  SELECT XMLElement("Row", input_order) INTO new_order FROM DUAL;
  RETURN new_order;
END convert_to_order_xml;
/
 
BEGIN
  SYS.DBMS_TRANSFORM.create_transformation(
    schema =>         'OE',
    name   =>         'OE2XML',
    from_schema =>    'OE',
    from_type =>      'ORDER_TYP',
    to_schema =>      'SYS',
    to_type =>        'XMLTYPE',
    transformation => 'convert_to_order_xml(source.user_data)');
END;
/

Example 37-3    Applying a Transformation before Sending Messages Overseas

-- Add a rule-based subscriber for overseas shipping to the booked-orders
-- queues with transformation.
DECLARE
   subscriber SYS.AQ$_AGENT;
BEGIN
   subscriber := SYS.AQ$_AGENT('Overseas_Shipping',
                               'OS.OS_bookedorders_que',
                               NULL);
   DBMS_AQADM.add_subscriber(
     queue_name     => 'OS_bookedorders_que',
     subscriber     => subscriber,
     rule           => 'XMLSerialize(CONTENT XMLQuery(''//orderregion''' ||
                       'PASSING tab.user_data RETURNING CONTENT)' ||
                       ' AS VARCHAR2(1000)) = ''INTERNATIONAL''',
     transformation => 'OE.OE2XML');
END;
/

Example 37-4    XMLType and AQ: Dequeuing Messages

-- Create procedure to enqueue into single-consumer queues.
CREATE OR REPLACE PROCEDURE get_canada_orders AS
   deq_msgid             RAW(16);
   dopt                  DBMS_AQ.dequeue_options_t;
   mprop                 DBMS_AQ.message_properties_t;
   deq_order_data        SYS.XMLType;

Chapter 37
iDAP Architecture

37-7



   deq_order_data_text   CLOB;
   no_messages           EXCEPTION;
   PRAGMA EXCEPTION_INIT (no_messages, -25228);
   new_orders            BOOLEAN := TRUE;
BEGIN
   dopt.wait := 1;
   -- Specify dequeue condition to select orders for Canada.
   dopt.deq_condition := 'XMLSerialize(CONTENT ' ||
                         'XMLQuery(''/ORDER_TYP/CUSTOMER/COUNTRY/text()''' ||
                         ' PASSING tab.user_data RETURNING CONTENT)' ||
                         ' AS VARCHAR2(1000))=''CANADA''';
   dopt.consumer_name := 'Overseas_Shipping';
   WHILE (new_orders) LOOP
     BEGIN
       DBMS_AQ.dequeue(queue_name         => 'OS.OS_bookedorders_que',
                       dequeue_options    => dopt,
                       message_properties => mprop,
                       payload            => deq_order_data,
                       msgid              => deq_msgid);
       COMMIT;
       SELECT XMLSerialize(DOCUMENT deq_order_data AS CLOB)
         INTO deq_order_data_text FROM DUAL;
       DBMS_OUTPUT.put_line('Order for Canada - Order: ' || deq_order_data_text);
     EXCEPTION
       WHEN no_messages THEN
         DBMS_OUTPUT.put_line (' ---- NO MORE ORDERS  ---- ');
         new_orders := FALSE;
     END;
   END LOOP;
END;
/

37.6 Guidelines for Using XML and Oracle Database
Advanced Queuing

Guidelines are presented for using XML data with Oracle Database Advanced
Queuing.

• Store AQ XML Messages with Many PDFs as One Record
You can exchange XML documents between businesses using Oracle Database
Advanced Queuing (AQ), where each message includes an XML header, an XML
attachment (XML data stream), DTDs, and PDF files. The data can be stored in a
database table, such as a queue table.

• Add New Recipients After Messages Are Enqueued
You can use a queue table to support message assignments.

• Enqueue and Dequeue XML Messages
Oracle Database Advanced Queuing (AQ) supports enqueuing and dequeuing
objects. The objects can have an attribute of type XMLType that contains an XML
document, in addition to having metadata attributes.

• Parse Messages with XML Content from AQ Queues
You can parse messages with XML content from an Oracle Database Advanced
Queuing (AQ) queue and then update tables and fields in an Operational Data
Store (ODS).

Chapter 37
Guidelines for Using XML and Oracle Database Advanced Queuing

37-8



• Prevent the Listener from Stopping Until an XML Document Is Processed
After receiving a message, you can submit a job using PL/SQL package DBMS_JOB.
The job is invoked asynchronously in a different database session. This can
prevent messages accumulating in the queue because the listener must wait until
a received XML message is processed.

• HTTPS with AQ
You can use Oracle Database Advanced Queuing (AQ) Internet access to send
XML messages to suppliers using HTTPS and receive a response. You can
enqueue and dequeue XML messages over HTTP(S) securely and transactionally.

• Store XML in Oracle AQ Message Payloads
You can store XML data in Oracle Database Advanced Queuing (AQ) message
payloads natively other than having an ADT as the payload with SYS.XMLType as
part of the ADT. You can create queues with payloads and attributes as XMLType.

• iDAP and SOAP
iDAP is the SOAP specification for Oracle Database Advanced Queuing (AQ)
operations. SOAP defines a generic mechanism to invoke a service. iDAP defines
these mechanisms to perform AQ operations.

37.6.1 Store AQ XML Messages with Many PDFs as One Record
You can exchange XML documents between businesses using Oracle Database
Advanced Queuing (AQ), where each message includes an XML header, an XML
attachment (XML data stream), DTDs, and PDF files. The data can be stored in a
database table, such as a queue table.

You can enqueue the messages into Oracle queue tables as one record or piece. Or
you can enqueue the messages as multiple records, for example, one record for XML
data streams as CLOB type, one record for PDF files as RAW type, and so on. You can
also then dequeue the messages.

You can achieve this in the following ways:

• By defining an object type with (CLOB, RAW,...) attributes, and storing it as a single
message.

• By using the AQ message grouping feature and storing it in multiple messages.
Here the message properties are associated with a group. To use the message
grouping feature, all messages must be the same payload type.

To specify the payload, first create an object type, for example:

CREATE TYPE mypayload_type as OBJECT (xmlDataStream CLOB, dtd CLOB, pdf 
BLOB);

Then store it as a single message.

37.6.2 Add New Recipients After Messages Are Enqueued
You can use a queue table to support message assignments.

For example, when other businesses send messages to a specific company, they
do not know who should be assigned to process the messages, but they know the
messages are for department Human Resources (HR). Hence all messages go to the
HR supervisor. At this point, the message is enqueued in the queue table. The HR

Chapter 37
Guidelines for Using XML and Oracle Database Advanced Queuing

37-9



supervisor is the only recipient of this message, and the entire HR staff have been
predefined as subscribers for this queue.

You cannot change the recipient list after a message is enqueued. If you do not
specify a recipient list then subscribers can subscribe to the queue and dequeue the
message. Here, new recipients must be subscribers to the queue. Otherwise, you
must dequeue the message and enqueue it again with new recipients.

37.6.3 Enqueue and Dequeue XML Messages
Oracle Database Advanced Queuing (AQ) supports enqueuing and dequeuing objects.
The objects can have an attribute of type XMLType that contains an XML document, in
addition to having metadata attributes.

Refer to Oracle Database Advanced Queuing User's Guide for specific details and
more examples.

37.6.4 Parse Messages with XML Content from AQ Queues
You can parse messages with XML content from an Oracle Database Advanced
Queuing (AQ) queue and then update tables and fields in an Operational Data Store
(ODS).

You can use Oracle XML Parser for Java and Java Stored Procedures together with
AQ to obtain metadata such as AQ enqueue or dequeue times and JMS header
information, based on queries that target certain XML data. You can combine this with
using Oracle Text XML search.

37.6.5 Prevent the Listener from Stopping Until an XML Document Is
Processed

After receiving a message, you can submit a job using PL/SQL package DBMS_JOB.
The job is invoked asynchronously in a different database session. This can prevent
messages accumulating in the queue because the listener must wait until a received
XML message is processed.

When receiving XML messages from clients you might need to process them as soon
as they arrive. But each XML document might take several seconds to process. For
PL/SQL, one procedure starts the listener, dequeues the message, and calls another
procedure to process the XML document. The listener could be held up until the XML
document is processed, and messages would accumulate in the queue.

After receiving a message, you can instead submit a job using PL/SQL package
DBMS_JOB. The job is invoked asynchronously in a different database session.

You can register a PL/SQL callback, which is invoked asynchronously when a
message shows up in a queue. PL/SQL callbacks are part of the Oracle Database
Advanced Queuing notification framework.

37.6.6 HTTPS with AQ
You can use Oracle Database Advanced Queuing (AQ) Internet access to send XML
messages to suppliers using HTTPS and receive a response. You can enqueue and
dequeue XML messages over HTTP(S) securely and transactionally.

Chapter 37
Guidelines for Using XML and Oracle Database Advanced Queuing

37-10



See Also:

Oracle Database Advanced Queuing User's Guide

37.6.7 Store XML in Oracle AQ Message Payloads
You can store XML data in Oracle Database Advanced Queuing (AQ) message
payloads natively other than having an ADT as the payload with SYS.XMLType as part
of the ADT. You can create queues with payloads and attributes as XMLType.

37.6.8 iDAP and SOAP
iDAP is the SOAP specification for Oracle Database Advanced Queuing (AQ)
operations. SOAP defines a generic mechanism to invoke a service. iDAP defines
these mechanisms to perform AQ operations.

iDAP has the following key properties not defined by SOAP:

• Transactional behavior. You can perform AQ operations in a transactional manner.
A transaction can span multiple iDAP requests.

• Security. iDAP operations can be carried out only by authorized and authenticated
users.

Chapter 37
Guidelines for Using XML and Oracle Database Advanced Queuing

37-11



Part VIII
Appendixes

Appendixes here provide background material for Oracle XML DB.

• Oracle-Supplied XML Schemas and Examples
Full listings are provided here for the Oracle XML DB-supplied XML schemas,
purchase-order XML schemas and an XSLT stylesheet used in various examples,
and C-language (OCI) examples for loading XML content into Oracle XML DB and
initializing and terminating an XML context.

• Oracle XML DB Restrictions
The restrictions associated with Oracle XML DB are listed here.



A
Oracle-Supplied XML Schemas and
Examples

Full listings are provided here for the Oracle XML DB-supplied XML schemas,
purchase-order XML schemas and an XSLT stylesheet used in various examples,
and C-language (OCI) examples for loading XML content into Oracle XML DB and
initializing and terminating an XML context.

• XDBResource.xsd: XML Schema for Oracle XML DB Resources
A full listing is presented of the Oracle XML DB-supplied XML schema
XDBResource.xsd, which is used to represent Oracle XML DB resources.

• XDBResConfig.xsd: XML Schema for Resource Configuration
A full listing is presented of the Oracle XML DB-supplied XML schema used to
configure repository resources. It is accessible in Oracle XML DB Repository at
path /sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBResConfig.xsd.

• acl.xsd: XML Schema for ACLs
The Oracle Database-supplied XML schema used to represent access control lists
(ACLs) is presented.

• xdbconfig.xsd: XML Schema for Configuring Oracle XML DB
A full listing is presented of file xdbconfig.xsd, which contains the XML schema
used to configure Oracle XML DB.

• xdiff.xsd: XML Schema for Comparing Schemas for In-Place Evolution
A full listing is presented of xdiff.xsd, the Oracle XML DB-supplied XML
schema to which the document specified as the diffXML parameter to procedure
DBMS_XMLSCHEMA.inPlaceEvolve must conform.

• Purchase-Order XML Schemas
The full listings of purchase-order XML schemas that are used in various
examples are presented.

• XSLT Stylesheet Example, PurchaseOrder.xsl
The full listing is presented of XSLT stylesheet PurchaseOrder.xsl, which is used
in various examples.

• Loading XML Data Using C (OCI)
A full listing of a C program that inserts XML data into an XMLType table is
presented.

• Initializing and Terminating an XML Context (OCI)
An example shows how to use OCI functions OCIXmlDbInitXmlCtx() and
OCIXmlDbFreeXmlCtx() to initialize and terminate an XML context. It constructs
an XML document using the C DOM API and saves it to the database.

A-1



A.1 XDBResource.xsd: XML Schema for Oracle XML DB
Resources

A full listing is presented of the Oracle XML DB-supplied XML schema
XDBResource.xsd, which is used to represent Oracle XML DB resources.

XDBResource.xsd

<schema xdb:schemaURL="http://xmlns.oracle.com/xdb/XDBResource.xsd"
        targetNamespace="http://xmlns.oracle.com/xdb/XDBResource.xsd" version="1.0"
        xdb:numProps="73" elementFormDefault="qualified" xdb:flags="23"
        xdb:mapStringToNCHAR="false" xdb:mapUnboundedStringToLob="false"
        xdb:storeVarrayAsTable="false" xdb:schemaOwner="XDB"
        xmlns="http://www.w3.org/2001/XMLSchema" xmlns:xdb="http://xmlns.oracle.com/
xdb"
        xmlns:xdbres="http://xmlns.oracle.com/xdb/XDBResource.xsd">
  <simpleType name="OracleUserName">
    <restriction base="string">
      <minLength value="1" fixed="false"/>
      <maxLength value="4000" fixed="false"/>
    </restriction>
  </simpleType>
  <simpleType name="ResMetaStr">
    <restriction base="string">
      <minLength value="1" fixed="false"/>
      <maxLength value="128" fixed="false"/>
    </restriction>
  </simpleType>
  <simpleType name="SchElemType">
    <restriction base="string">
      <minLength value="1" fixed="false"/>
      <maxLength value="4000" fixed="false"/>
    </restriction>
  </simpleType>
  <simpleType name="GUID">
    <restriction base="hexBinary">
      <minLength value="8" fixed="false"/>
      <maxLength value="32" fixed="false"/>
    </restriction>
  </simpleType>
  <simpleType name="LocksRaw">
    <restriction base="hexBinary">
      <minLength value="0" fixed="false"/>
      <maxLength value="2000" fixed="false"/>
    </restriction>
  </simpleType>
  <simpleType name="lockModeType">
    <restriction base="string">
      <enumeration value="exclusive" fixed="false"/>
      <enumeration value="shared" fixed="false"/>
    </restriction>

Appendix A
XDBResource.xsd: XML Schema for Oracle XML DB Resources

A-2



  </simpleType>
  <simpleType name="lockTypeType">
    <restriction base="string">
      <enumeration value="read-write" fixed="false"/>
      <enumeration value="write" fixed="false"/>
      <enumeration value="read" fixed="false"/>
    </restriction>
  </simpleType>
  <simpleType name="lockDepthType">
    <restriction base="string">
      <enumeration value="0" fixed="false"/>
      <enumeration value="infinity" fixed="false"/>
    </restriction>
  </simpleType>
  <complexType name="lockType" abstract="false" mixed="false">
    <sequence minOccurs="1" maxOccurs="1">
      <element xdb:propNumber="768" name="LockOwner" type="string" xdb:memType="1"
               xdb:system="false" xdb:mutable="true" xdb:JavaType="String"
               xdb:global="false" nillable="false" abstract="false" 
xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="true" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="1" 
maxOccurs="1"/>
      <element xdb:propNumber="769" name="Mode" type="xdb:lockModeType" 
xdb:memType="1"
               xdb:system="false" xdb:mutable="true" xdb:JavaType="String"
               xdb:global="false" nillable="false" abstract="false" 
xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="true" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="1" 
maxOccurs="1"/>
      <element xdb:propNumber="770" name="Type" type="xdb:lockTypeType" 
xdb:memType="1"
               xdb:system="false" xdb:mutable="true" xdb:JavaType="String"
               xdb:global="false" nillable="false" abstract="false" 
xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="true" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="1" 
maxOccurs="1"/>
      <element xdb:propNumber="771" name="Depth" type="xdb:lockDepthType" 
xdb:memType="1"
               xdb:system="false" xdb:mutable="true" xdb:JavaType="String"
               xdb:global="false" nillable="false" abstract="false" 
xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="true" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="1" 
maxOccurs="1"/>
      <element xdb:propNumber="772" name="Expiry" type="dateTime" xdb:memType="180"
               xdb:system="false" xdb:mutable="true" xdb:JavaType="TimeStamp"
               xdb:global="false" nillable="false" abstract="false" 
xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="true" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="0" 
maxOccurs="1"/>
      <choice minOccurs="0" maxOccurs="unbounded">

Appendix A
XDBResource.xsd: XML Schema for Oracle XML DB Resources

A-3



       <element xdb:propNumber="773" name="Token" type="string" xdb:memType="1"
                xdb:system="false" xdb:mutable="true" xdb:JavaType="String"
                xdb:global="false" nillable="false" abstract="false" 
xdb:SQLInline="true"
                xdb:JavaInline="false" xdb:MemInline="true" xdb:maintainDOM="false"
                xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="0" 
maxOccurs="1"/>
       <element xdb:propNumber="774" name="NodeId" type="string" xdb:memType="1"
                xdb:system="false" xdb:mutable="true" xdb:JavaType="String"
                xdb:global="false" nillable="false" abstract="false" 
xdb:SQLInline="true"
                xdb:JavaInline="false" xdb:MemInline="true" xdb:maintainDOM="false"
                xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="0" 
maxOccurs="1"/>
      </choice>
    </sequence>
  </complexType>
  <complexType name="locksType" abstract="false" mixed="false">
    <sequence minOccurs="1" maxOccurs="1">
      <element xdb:propNumber="767" name="Lock" type="xdb:lockType" xdb:memType="258"
               xdb:system="false" xdb:mutable="true" xdb:JavaType="XMLType"
               xdb:global="false" nillable="false" abstract="false" 
xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="true" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" minOccurs="0" maxOccurs="2147483647"/>
    </sequence>
  </complexType>
  <complexType name="ResContentsType" abstract="false" mixed="false">
    <sequence minOccurs="1" maxOccurs="1">
      <any xdb:propNumber="736" name="ContentsAny" xdb:memType="258" 
xdb:system="false"
           xdb:mutable="false" xdb:JavaType="XMLType" minOccurs="0" maxOccurs="1"/>
    </sequence>
  </complexType>
  <complexType name="ResAclType" abstract="false" mixed="false">
    <sequence minOccurs="1" maxOccurs="1">
      <any xdb:propNumber="737" name="ACLAny" xdb:memType="258" xdb:system="false"
           xdb:mutable="false" xdb:JavaType="XMLType" minOccurs="0" maxOccurs="1"/>
    </sequence>
  </complexType>
  <complexType name="AttrCopyType" abstract="false" mixed="false">
    <sequence minOccurs="1" maxOccurs="1">
      <any xdb:propNumber="748" name="AttrCopyAny" xdb:memType="258" 
xdb:system="false"
           xdb:mutable="false" xdb:JavaType="XMLType" minOccurs="0" 
maxOccurs="65535"/>
    </sequence>
  </complexType>
  <complexType name="RCListType" abstract="false" mixed="false">
    <sequence minOccurs="1" maxOccurs="1">
      <element xdb:propNumber="755" name="OID" type="hexBinary" xdb:memByteLength="22"
               xdb:memType="23" xdb:system="false" xdb:mutable="false" 
xdb:SQLName="OID"
               xdb:SQLType="RAW" xdb:JavaType="byteArray" xdb:global="false"
               xdb:SQLCollType="XDB$OID_LIST_T" xdb:SQLCollSchema="XDB" 

Appendix A
XDBResource.xsd: XML Schema for Oracle XML DB Resources

A-4



xdb:hidden="false"
               nillable="false" abstract="false" xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="true" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="1"
               maxOccurs="65535"/>
    </sequence>
  </complexType>
  <complexType name="ResourceType" abstract="false" mixed="false">
    <sequence minOccurs="1" maxOccurs="1">
      <element xdb:propNumber="709" name="CreationDate" type="dateTime" 
xdb:memType="180"
               xdb:system="false" xdb:mutable="false" xdb:SQLName="CREATIONDATE"
               xdb:SQLType="TIMESTAMP" xdb:JavaType="TimeStamp" xdb:global="false"
               nillable="false" abstract="false" xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="true" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="1" 
maxOccurs="1"/>
      <element xdb:propNumber="710" name="ModificationDate" type="dateTime"
               xdb:memType="180" xdb:system="false" xdb:mutable="false"
               xdb:SQLName="MODIFICATIONDATE" xdb:SQLType="TIMESTAMP"
               xdb:JavaType="TimeStamp" xdb:global="false" nillable="false"
               abstract="false" xdb:SQLInline="true" xdb:JavaInline="false"
               xdb:MemInline="true" xdb:maintainDOM="false" 
xdb:defaultTableSchema="XDB"
               xdb:numCols="1" minOccurs="1" maxOccurs="1"/>
      <element xdb:propNumber="711" name="Author" type="xdb:ResMetaStr" 
xdb:memType="1"
               xdb:system="false" xdb:mutable="false" xdb:SQLName="AUTHOR"
               xdb:SQLType="VARCHAR2" xdb:JavaType="String" xdb:global="false"
               nillable="false" abstract="false" xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="false" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="0" 
maxOccurs="1"/>
      <element xdb:propNumber="712" name="DisplayName" type="xdb:ResMetaStr"
               xdb:memType="1" xdb:system="false" xdb:mutable="false"
               xdb:SQLName="DISPNAME" xdb:SQLType="VARCHAR2" xdb:JavaType="String"
               xdb:global="false" nillable="false" abstract="false" 
xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="false" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="1" 
maxOccurs="1"/>
      <element xdb:propNumber="713" name="Comment" type="xdb:ResMetaStr" 
xdb:memType="1"
               xdb:system="false" xdb:mutable="false" xdb:SQLName="RESCOMMENT"
               xdb:SQLType="VARCHAR2" xdb:JavaType="String" xdb:global="false"
               nillable="false" abstract="false" xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="false" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="1" 
maxOccurs="1"/>
      <element xdb:propNumber="714" name="Language" type="xdb:ResMetaStr" 
xdb:memType="1"
               xdb:system="false" xdb:mutable="false" xdb:SQLName="LANGUAGE"
               xdb:SQLType="VARCHAR2" xdb:JavaType="String" default="en"
               xdb:global="false" nillable="false" abstract="false" 
xdb:SQLInline="true"

Appendix A
XDBResource.xsd: XML Schema for Oracle XML DB Resources

A-5



               xdb:JavaInline="false" xdb:MemInline="false" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="1" 
maxOccurs="1"/>
      <element xdb:propNumber="715" name="CharacterSet" type="xdb:ResMetaStr"
               xdb:memType="1" xdb:system="false" xdb:mutable="false"
               xdb:SQLName="CHARSET" xdb:SQLType="VARCHAR2" xdb:JavaType="String"
               xdb:global="false" nillable="false" abstract="false" 
xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="false" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="0" 
maxOccurs="1"/>
      <element xdb:propNumber="716" name="ContentType" type="xdb:ResMetaStr"
               xdb:memType="1" xdb:system="false" xdb:mutable="false"
               xdb:SQLName="CONTYPE" xdb:SQLType="VARCHAR2" xdb:JavaType="String"
               xdb:global="false" nillable="false" abstract="false" 
xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="false" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="0" 
maxOccurs="1"/>
      <element xdb:propNumber="717" name="RefCount" type="nonNegativeInteger"
               xdb:memByteLength="4" xdb:memType="68" xdb:system="false"
               xdb:mutable="true" xdb:SQLName="REFCOUNT" xdb:SQLType="RAW"
               xdb:JavaType="long" xdb:global="false" nillable="false" 
abstract="false"
               xdb:SQLInline="true" xdb:JavaInline="false" xdb:MemInline="true"
               xdb:maintainDOM="false" xdb:defaultTableSchema="XDB" xdb:numCols="1"
               minOccurs="1" maxOccurs="1"/>
      <element xdb:propNumber="718" name="LockBuf" type="xdb:LocksRaw" 
xdb:memType="23"
               xdb:system="false" xdb:mutable="true" xdb:SQLName="LOCKS" 
xdb:SQLType="RAW"
               xdb:JavaType="byteArray" xdb:global="false" nillable="false"
               abstract="false" xdb:SQLInline="true" xdb:JavaInline="false"
               xdb:MemInline="false" xdb:maintainDOM="false" 
xdb:defaultTableSchema="XDB"
               xdb:numCols="1" minOccurs="0" maxOccurs="1"/>
      <element xdb:propNumber="732" name="ACL" type="xdb:ResAclType" xdb:memType="258"
               xdb:system="false" xdb:mutable="false" xdb:JavaType="XMLType"
               xdb:global="false" xdb:hidden="false" xdb:transient="generated"
               xdb:baseProp="false" nillable="false" abstract="false" 
xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="false" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" 
xdb:JavaClassname="oracle.xdb.ResAclTypeBean"
               xdb:beanClassname="oracle.xdb.ResAclTypeBean" xdb:numCols="0" 
minOccurs="0"
               maxOccurs="1"/>
      <element xdb:propNumber="719" name="ACLOID" type="hexBinary" xdb:memType="23"
               xdb:system="false" xdb:mutable="false" xdb:SQLName="ACLOID"
               xdb:SQLType="RAW" xdb:JavaType="byteArray" xdb:global="false"
               xdb:hidden="true" xdb:baseProp="true" nillable="false" abstract="false"
               xdb:SQLInline="true" xdb:JavaInline="false" xdb:MemInline="true"
               xdb:maintainDOM="false" xdb:defaultTableSchema="XDB" xdb:numCols="1"
               minOccurs="1" maxOccurs="1"/>
      <element xdb:propNumber="720" name="Owner" type="xdb:OracleUserName" 

Appendix A
XDBResource.xsd: XML Schema for Oracle XML DB Resources

A-6



xdb:memType="1"
               xdb:system="false" xdb:mutable="false" xdb:JavaType="String"
               xdb:global="false" xdb:hidden="false" xdb:transient="generated"
               xdb:baseProp="false" nillable="false" abstract="false" 
xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="false" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="0" minOccurs="0" 
maxOccurs="1"/>
      <element xdb:propNumber="721" name="OwnerID" type="xdb:GUID" xdb:memType="23"
               xdb:system="false" xdb:mutable="false" xdb:SQLName="OWNERID"
               xdb:SQLType="RAW" xdb:JavaType="byteArray" xdb:global="false"
               xdb:hidden="true" xdb:baseProp="true" nillable="false" abstract="false"
               xdb:SQLInline="true" xdb:JavaInline="false" xdb:MemInline="true"
               xdb:maintainDOM="false" xdb:defaultTableSchema="XDB" xdb:numCols="1"
               minOccurs="1" maxOccurs="1"/>
      <element xdb:propNumber="722" name="Creator" type="xdb:OracleUserName"
               xdb:memType="1" xdb:system="false" xdb:mutable="false"
               xdb:JavaType="String" xdb:global="false" xdb:hidden="false"
               xdb:transient="generated" xdb:baseProp="false" nillable="false"
               abstract="false" xdb:SQLInline="true" xdb:JavaInline="false"
               xdb:MemInline="false" xdb:maintainDOM="false" 
xdb:defaultTableSchema="XDB"
               xdb:numCols="0" minOccurs="0" maxOccurs="1"/>
      <element xdb:propNumber="723" name="CreatorID" type="xdb:GUID" xdb:memType="23"
               xdb:system="false" xdb:mutable="false" xdb:SQLName="CREATORID"
               xdb:SQLType="RAW" xdb:JavaType="byteArray" xdb:global="false"
               xdb:hidden="true" xdb:baseProp="true" nillable="false" abstract="false"
               xdb:SQLInline="true" xdb:JavaInline="false" xdb:MemInline="true"
               xdb:maintainDOM="false" xdb:defaultTableSchema="XDB" xdb:numCols="1"
               minOccurs="1" maxOccurs="1"/>
      <element xdb:propNumber="724" name="LastModifier" type="xdb:OracleUserName"
               xdb:memType="1" xdb:system="false" xdb:mutable="false"
               xdb:JavaType="String" xdb:global="false" xdb:hidden="false"
               xdb:transient="generated" xdb:baseProp="false" nillable="false"
               abstract="false" xdb:SQLInline="true" xdb:JavaInline="false"
               xdb:MemInline="false" xdb:maintainDOM="false" 
xdb:defaultTableSchema="XDB"
               xdb:numCols="0" minOccurs="0" maxOccurs="1"/>
      <element xdb:propNumber="725" name="LastModifierID" type="xdb:GUID" 
xdb:memType="23"
               xdb:system="false" xdb:mutable="false" xdb:SQLName="LASTMODIFIERID"
               xdb:SQLType="RAW" xdb:JavaType="byteArray" xdb:global="false"
               xdb:hidden="true" xdb:baseProp="true" nillable="false" abstract="false"
               xdb:SQLInline="true" xdb:JavaInline="false" xdb:MemInline="true"
               xdb:maintainDOM="false" xdb:defaultTableSchema="XDB" xdb:numCols="1"
               minOccurs="1" maxOccurs="1"/>
      <element xdb:propNumber="726" name="SchemaElement" type="xdb:SchElemType"
               xdb:memType="1" xdb:system="false" xdb:mutable="false"
               xdb:JavaType="String" xdb:global="false" xdb:hidden="false"
               xdb:transient="generated" xdb:baseProp="false" nillable="false"
               abstract="false" xdb:SQLInline="true" xdb:JavaInline="false"
               xdb:MemInline="false" xdb:maintainDOM="false" 
xdb:defaultTableSchema="XDB"
               xdb:numCols="0" minOccurs="0" maxOccurs="1"/>
      <element xdb:propNumber="727" name="ElNum" type="nonNegativeInteger"

Appendix A
XDBResource.xsd: XML Schema for Oracle XML DB Resources

A-7



               xdb:memByteLength="4" xdb:memType="3" xdb:system="false"
               xdb:mutable="false" xdb:SQLName="ELNUM" xdb:SQLType="INTEGER"
               xdb:JavaType="long" xdb:global="false" xdb:hidden="true"
               xdb:baseProp="true" nillable="false" abstract="false" 
xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="true" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="1" 
maxOccurs="1"/>
      <element xdb:propNumber="728" name="SchOID" type="hexBinary" xdb:memType="23"
               xdb:system="false" xdb:mutable="false" xdb:SQLName="SCHOID"
               xdb:SQLType="RAW" xdb:JavaType="byteArray" xdb:global="false"
               xdb:hidden="true" xdb:baseProp="true" nillable="false" abstract="false"
               xdb:SQLInline="true" xdb:JavaInline="false" xdb:MemInline="true"
               xdb:maintainDOM="false" xdb:defaultTableSchema="XDB" xdb:numCols="1"
               minOccurs="1" maxOccurs="1"/>
      <element xdb:propNumber="733" name="Contents" type="xdb:ResContentsType"
               xdb:memType="258" xdb:system="false" xdb:mutable="false"
               xdb:JavaType="XMLType" xdb:global="false" xdb:hidden="false"
               xdb:transient="manifested" xdb:baseProp="false" nillable="false"
               abstract="false" xdb:SQLInline="true" xdb:JavaInline="false"
               xdb:MemInline="false" xdb:maintainDOM="false" 
xdb:defaultTableSchema="XDB"
               xdb:JavaClassname="oracle.xdb.ResContentsTypeBean"
               xdb:beanClassname="oracle.xdb.ResContentsTypeBean" xdb:numCols="0"
               minOccurs="0" maxOccurs="1"/>
      <element xdb:propNumber="729" name="XMLRef" type="REF" xdb:memType="110"
               xdb:system="false" xdb:mutable="true" xdb:SQLName="XMLREF"
               xdb:SQLType="REF" xdb:JavaType="Reference" xdb:global="false"
               xdb:hidden="true" xdb:baseProp="false" nillable="false" 
abstract="false"
               xdb:SQLInline="true" xdb:JavaInline="false" xdb:MemInline="false"
               xdb:maintainDOM="false" xdb:defaultTableSchema="XDB" xdb:numCols="0"
               minOccurs="0" maxOccurs="1"/>
      <element xdb:propNumber="730" name="XMLLob" type="hexBinary" xdb:memType="113"
               xdb:system="false" xdb:mutable="true" xdb:SQLName="XMLLOB"
               xdb:SQLType="BLOB" xdb:JavaType="String" xdb:global="false"
               xdb:hidden="true" xdb:baseProp="false" nillable="false" 
abstract="false"
               xdb:SQLInline="true" xdb:JavaInline="false" xdb:MemInline="false"
               xdb:maintainDOM="false" xdb:defaultTableSchema="XDB" xdb:numCols="0"
               minOccurs="0" maxOccurs="1"/>
      <element xdb:propNumber="731" name="Flags" type="nonNegativeInteger"
               xdb:memByteLength="4" xdb:memType="3" xdb:system="false" 
xdb:mutable="true"
               xdb:SQLName="FLAGS" xdb:SQLType="RAW" xdb:JavaType="long"
               xdb:global="false" xdb:hidden="true" xdb:baseProp="true" 
nillable="false"
               abstract="false" xdb:SQLInline="true" xdb:JavaInline="false"
               xdb:MemInline="true" xdb:maintainDOM="false" 
xdb:defaultTableSchema="XDB"
               xdb:numCols="0" minOccurs="1" maxOccurs="1"/>
      <element xdb:propNumber="740" name="VCRUID" type="xdb:GUID" xdb:memType="23"
               xdb:system="false" xdb:mutable="false" xdb:SQLName="VCRUID"
               xdb:SQLType="RAW" xdb:JavaType="byteArray" xdb:global="false"
               nillable="false" abstract="false" xdb:SQLInline="true"

Appendix A
XDBResource.xsd: XML Schema for Oracle XML DB Resources

A-8



               xdb:JavaInline="false" xdb:MemInline="false" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="1" 
maxOccurs="1"/>
      <element xdb:propNumber="741" name="Parents" type="hexBinary" xdb:memType="23"
               xdb:system="false" xdb:mutable="false" xdb:SQLName="PARENTS"
               xdb:SQLType="RAW" xdb:JavaType="Reference" xdb:global="false"
               xdb:SQLCollType="XDB$PREDECESSOR_LIST_T" xdb:SQLCollSchema="XDB"
               nillable="false" abstract="false" xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="false" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="0" minOccurs="0"
               maxOccurs="1000"/>
      <element xdb:propNumber="745" name="SBResExtra" type="REF" xdb:memType="110"
               xdb:system="false" xdb:mutable="true" xdb:SQLName="SBRESEXTRA"
               xdb:SQLType="REF" xdb:JavaType="Reference" xdb:global="false"
               xdb:SQLCollType="XDB$XMLTYPE_REF_LIST_T" xdb:SQLCollSchema="XDB"
               xdb:hidden="true" xdb:baseProp="false" nillable="false" 
abstract="false"
               xdb:SQLInline="true" xdb:JavaInline="false" xdb:MemInline="false"
               xdb:maintainDOM="false" xdb:defaultTableSchema="XDB" xdb:numCols="0"
               minOccurs="0" maxOccurs="2147483647"/>
      <element xdb:propNumber="746" name="Snapshot" type="hexBinary" xdb:memType="23"
               xdb:system="false" xdb:mutable="true" xdb:SQLName="SNAPSHOT"
               xdb:SQLType="RAW" xdb:JavaType="byteArray" xdb:global="false"
               xdb:hidden="true" xdb:baseProp="true" nillable="false" abstract="false"
               xdb:SQLInline="true" xdb:JavaInline="false" xdb:MemInline="true"
               xdb:maintainDOM="false" xdb:defaultTableSchema="XDB" xdb:numCols="0"
               minOccurs="1" maxOccurs="1"/>
      <element xdb:propNumber="747" name="AttrCopy" type="xdb:AttrCopyType"
               xdb:memType="258" xdb:system="false" xdb:mutable="true"
               xdb:SQLName="ATTRCOPY" xdb:SQLType="BLOB" xdb:JavaType="XMLType"
               xdb:global="false" xdb:hidden="true" xdb:baseProp="true" 
nillable="false"
               abstract="false" xdb:SQLInline="true" xdb:JavaInline="false"
               xdb:MemInline="false" xdb:maintainDOM="false" 
xdb:defaultTableSchema="XDB"
               xdb:numCols="0" minOccurs="0" maxOccurs="1"/>
      <element xdb:propNumber="749" name="CtsCopy" type="hexBinary" xdb:memType="113"
               xdb:system="false" xdb:mutable="true" xdb:SQLName="CTSCOPY"
               xdb:SQLType="BLOB" xdb:JavaType="String" xdb:global="false"
               xdb:hidden="true" xdb:baseProp="false" nillable="false" 
abstract="false"
               xdb:SQLInline="true" xdb:JavaInline="false" xdb:MemInline="false"
               xdb:maintainDOM="false" xdb:defaultTableSchema="XDB" xdb:numCols="1"
               minOccurs="0" maxOccurs="1"/>
      <element xdb:propNumber="750" name="NodeNum" type="hexBinary" xdb:memType="23"
               xdb:system="false" xdb:mutable="true" xdb:SQLName="NODENUM"
               xdb:SQLType="RAW" xdb:JavaType="byteArray" xdb:global="false"
               xdb:hidden="true" xdb:baseProp="true" nillable="false" abstract="false"
               xdb:SQLInline="true" xdb:JavaInline="false" xdb:MemInline="true"
               xdb:maintainDOM="false" xdb:defaultTableSchema="XDB" xdb:numCols="0"
               minOccurs="1" maxOccurs="1"/>
      <element xdb:propNumber="751" name="ContentSize" type="integer"
               xdb:memByteLength="8" xdb:memType="3" xdb:system="false"
               xdb:mutable="false" xdb:JavaType="long" xdb:global="false"
               xdb:hidden="true" xdb:transient="generated" xdb:baseProp="false"

Appendix A
XDBResource.xsd: XML Schema for Oracle XML DB Resources

A-9



               nillable="false" abstract="false" xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="true" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="0" minOccurs="0" 
maxOccurs="1"/>
      <element xdb:propNumber="752" name="SizeOnDisk" type="nonNegativeInteger"
               xdb:memByteLength="8" xdb:memType="3" xdb:system="false"
               xdb:mutable="false" xdb:SQLName="SIZEONDISK" xdb:SQLType="INTEGER"
               xdb:JavaType="long" xdb:global="false" xdb:hidden="true"
               xdb:baseProp="true" nillable="false" abstract="false" 
xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="true" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="0" minOccurs="0" 
maxOccurs="1"/>
      <element xdb:propNumber="754" name="RCList" type="xdb:RCListType" 
xdb:memType="258"
               xdb:system="false" xdb:mutable="false" xdb:SQLName="RCLIST"
               xdb:SQLType="XDB$RCLIST_T" xdb:SQLSchema="XDB" xdb:JavaType="XMLType"
               xdb:global="true" xdb:hidden="true" xdb:baseProp="true" 
nillable="false"
               abstract="false" xdb:SQLInline="true" xdb:JavaInline="false"
               xdb:MemInline="false" xdb:maintainDOM="false" xdb:defaultTable="00"
               xdb:defaultTableSchema="XDB" xdb:JavaClassname="oracle.xdb.RCListBean"
               xdb:beanClassname="oracle.xdb.RCListBean" xdb:numCols="1" minOccurs="0"
               maxOccurs="1"/>
      <element xdb:propNumber="762" name="Branch" type="string" xdb:memType="1"
               xdb:system="false" xdb:mutable="false" xdb:SQLName="BRANCH"
               xdb:SQLType="VARCHAR2" xdb:JavaType="String" xdb:global="false"
               xdb:hidden="false" xdb:transient="generated" xdb:baseProp="false"
               nillable="false" abstract="false" xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="false" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="0" 
maxOccurs="1"/>
      <element xdb:propNumber="763" name="CheckedOutBy" type="xdb:OracleUserName"
               xdb:memType="1" xdb:system="false" xdb:mutable="false"
               xdb:JavaType="String" xdb:global="false" xdb:hidden="false"
               xdb:transient="generated" xdb:baseProp="false" nillable="false"
               abstract="false" xdb:SQLInline="true" xdb:JavaInline="false"
               xdb:MemInline="false" xdb:maintainDOM="false" 
xdb:defaultTableSchema="XDB"
               xdb:numCols="0" minOccurs="0" maxOccurs="1"/>
      <element xdb:propNumber="764" name="CheckedOutByID" type="xdb:GUID" 
xdb:memType="23"
               xdb:system="false" xdb:mutable="false" xdb:SQLName="CHECKEDOUTBYID"
               xdb:SQLType="RAW" xdb:JavaType="byteArray" xdb:global="false"
               xdb:hidden="true" xdb:baseProp="true" nillable="false" abstract="false"
               xdb:SQLInline="true" xdb:JavaInline="false" xdb:MemInline="true"
               xdb:maintainDOM="false" xdb:defaultTableSchema="XDB" xdb:numCols="1"
               minOccurs="0" maxOccurs="1"/>
      <element xdb:propNumber="765" name="BaseVersion" type="hexBinary" 
xdb:memType="23"
               xdb:system="false" xdb:mutable="false" xdb:SQLName="BASEVERSION"
               xdb:SQLType="RAW" xdb:JavaType="byteArray" xdb:global="false"
               xdb:hidden="false" xdb:baseProp="false" nillable="false" 
abstract="false"
               xdb:SQLInline="true" xdb:JavaInline="false" xdb:MemInline="true"

Appendix A
XDBResource.xsd: XML Schema for Oracle XML DB Resources

A-10



               xdb:maintainDOM="false" xdb:defaultTableSchema="XDB" xdb:numCols="1"
               minOccurs="0" maxOccurs="1"/>
      <element xdb:propNumber="766" name="Locks" type="xdb:locksType" 
xdb:memType="258"
               xdb:system="false" xdb:mutable="true" xdb:JavaType="XMLType"
               xdb:global="false" xdb:hidden="true" xdb:transient="generated"
               nillable="false" abstract="false" xdb:SQLInline="true"
               xdb:JavaInline="false" xdb:MemInline="false" xdb:maintainDOM="false"
               xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="0" 
maxOccurs="1"/>
      <any xdb:propNumber="735" name="ResExtra" xdb:memType="258" xdb:system="false"
           xdb:mutable="false" xdb:SQLName="RESEXTRA" xdb:SQLType="CLOB"
           xdb:JavaType="XMLType" namespace="##other" minOccurs="0" 
maxOccurs="65535"/>
    </sequence>
    <attribute xdb:propNumber="705" name="Hidden" type="boolean" xdb:memByteLength="1"
               xdb:memType="252" xdb:system="false" xdb:mutable="false"
               xdb:JavaType="boolean" default="false" xdb:hidden="false"
               xdb:transient="generated" xdb:baseProp="false"/>
    <attribute xdb:propNumber="706" name="Invalid" type="boolean" 
xdb:memByteLength="1"
               xdb:memType="252" xdb:system="false" xdb:mutable="false"
               xdb:JavaType="boolean" default="false" xdb:hidden="false"
               xdb:transient="generated" xdb:baseProp="false"/>
    <attribute xdb:propNumber="707" name="VersionID" type="integer" 
xdb:memByteLength="4"
               xdb:memType="3" xdb:system="false" xdb:mutable="false"
               xdb:SQLName="VERSIONID" xdb:SQLType="INTEGER" xdb:JavaType="long"/>
    <attribute xdb:propNumber="708" name="ActivityID" type="integer" 
xdb:memByteLength="4"
               xdb:memType="3" xdb:system="false" xdb:mutable="false"
               xdb:SQLName="ACTIVITYID" xdb:SQLType="INTEGER" xdb:JavaType="long"/>
    <attribute xdb:propNumber="738" name="Container" type="boolean" 
xdb:memByteLength="1"
               xdb:memType="252" xdb:system="false" xdb:mutable="true"
               xdb:JavaType="boolean" default="false" xdb:hidden="false"
               xdb:transient="generated" xdb:baseProp="false"/>
    <attribute xdb:propNumber="739" name="CustomRslv" type="boolean" 
xdb:memByteLength="1"
               xdb:memType="252" xdb:system="false" xdb:mutable="false"
               xdb:JavaType="boolean" default="false" xdb:hidden="false"
               xdb:transient="generated" xdb:baseProp="false"/>
    <attribute xdb:propNumber="742" name="VersionHistory" type="boolean"
               xdb:memByteLength="1" xdb:memType="252" xdb:system="false"
               xdb:mutable="false" xdb:JavaType="boolean" default="false"
               xdb:hidden="false" xdb:transient="generated" xdb:baseProp="false"/>
    <attribute xdb:propNumber="743" name="StickyRef" type="boolean" 
xdb:memByteLength="1"
               xdb:memType="252" xdb:system="false" xdb:mutable="false"
               xdb:JavaType="boolean" default="false" xdb:hidden="false"
               xdb:transient="generated" xdb:baseProp="false"/>
    <attribute xdb:propNumber="744" name="HierSchmResource" type="boolean"
               xdb:memByteLength="1" xdb:memType="252" xdb:system="false"
               xdb:mutable="false" xdb:JavaType="boolean" default="false"
               xdb:hidden="true" xdb:transient="generated" xdb:baseProp="false"/>

Appendix A
XDBResource.xsd: XML Schema for Oracle XML DB Resources

A-11



    <attribute xdb:propNumber="753" name="SizeAccurate" type="boolean"
               xdb:memByteLength="1" xdb:memType="252" xdb:system="false"
               xdb:mutable="false" xdb:JavaType="boolean" default="false"
               xdb:hidden="true" xdb:transient="generated" xdb:baseProp="false"/>
    <attribute xdb:propNumber="756" name="IsVersionable" type="boolean"
               xdb:memByteLength="1" xdb:memType="252" xdb:system="false"
               xdb:mutable="false" xdb:JavaType="boolean" default="false"
               xdb:hidden="true" xdb:transient="generated" xdb:baseProp="false"/>
    <attribute xdb:propNumber="757" name="IsCheckedOut" type="boolean"
               xdb:memByteLength="1" xdb:memType="252" xdb:system="false"
               xdb:mutable="false" xdb:JavaType="boolean" default="false"
               xdb:hidden="true" xdb:transient="generated" xdb:baseProp="false"/>
    <attribute xdb:propNumber="758" name="IsVersion" type="boolean" 
xdb:memByteLength="1"
               xdb:memType="252" xdb:system="false" xdb:mutable="false"
               xdb:JavaType="boolean" default="false" xdb:hidden="true"
               xdb:transient="generated" xdb:baseProp="false"/>
    <attribute xdb:propNumber="759" name="IsVCR" type="boolean" xdb:memByteLength="1"
               xdb:memType="252" xdb:system="false" xdb:mutable="false"
               xdb:JavaType="boolean" default="false" xdb:hidden="true"
               xdb:transient="generated" xdb:baseProp="false"/>
    <attribute xdb:propNumber="760" name="IsVersionHistory" type="boolean"
               xdb:memByteLength="1" xdb:memType="252" xdb:system="false"
               xdb:mutable="false" xdb:JavaType="boolean" default="false"
               xdb:hidden="true" xdb:transient="generated" xdb:baseProp="false"/>
    <attribute xdb:propNumber="761" name="IsWorkspace" type="boolean"
               xdb:memByteLength="1" xdb:memType="252" xdb:system="false"
               xdb:mutable="false" xdb:JavaType="boolean" default="false"
               xdb:hidden="true" xdb:transient="generated" xdb:baseProp="false"/>
    <attribute xdb:propNumber="776" name="HasUnresolvedLinks" type="boolean"
               xdb:memByteLength="1" xdb:memType="252" xdb:system="false"
               xdb:mutable="false" xdb:JavaType="boolean" default="false"
               xdb:hidden="false" xdb:transient="generated" xdb:baseProp="false"/>
    <attribute xdb:propNumber="777" name="IsXMLIndexed" type="boolean"
               xdb:memByteLength="1" xdb:memType="252" xdb:system="false"
               xdb:mutable="true" xdb:JavaType="boolean" default="false" 
xdb:hidden="true"
               xdb:transient="generated" xdb:baseProp="false"/>
  </complexType>
  <element xdb:propNumber="734" name="Resource" type="xdb:ResourceType" 
xdb:memType="258"
           xdb:system="false" xdb:mutable="false" xdb:SQLName="RESOURCE"
           xdb:SQLType="XDB$RESOURCE_T" xdb:SQLSchema="XDB" xdb:JavaType="XMLType"
           xdb:global="true" nillable="false" abstract="false" xdb:SQLInline="false"
           xdb:JavaInline="false" xdb:MemInline="false" xdb:maintainDOM="false"
           xdb:defaultTable="XDB$RESOURCE" xdb:defaultTableSchema="XDB"
           xdb:JavaClassname="oracle.xdb.ResourceBean"
           xdb:beanClassname="oracle.xdb.ResourceBean" xdb:numCols="33" minOccurs="1"
           maxOccurs="1"/>
  <element xdb:propNumber="775" name="Locks" type="xdb:locksType" xdb:memType="258"
           xdb:system="false" xdb:mutable="true" xdb:JavaType="XMLType" 
xdb:global="false"
           xdb:hidden="false" nillable="false" abstract="false" xdb:SQLInline="true"
           xdb:JavaInline="false" xdb:MemInline="false" xdb:maintainDOM="false"

Appendix A
XDBResource.xsd: XML Schema for Oracle XML DB Resources

A-12



           xdb:defaultTableSchema="XDB" xdb:numCols="1" minOccurs="0" maxOccurs="1"/>
</schema>

A.2 XDBResConfig.xsd: XML Schema for Resource
Configuration

A full listing is presented of the Oracle XML DB-supplied XML schema used to
configure repository resources. It is accessible in Oracle XML DB Repository at
path /sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBResConfig.xsd.

XDBResConfig.xsd

<schema xmlns="http://www.w3.org/2001/XMLSchema"
        targetNamespace="http://xmlns.oracle.com/xdb/XDBResConfig.xsd"
        xmlns:xdb="http://xmlns.oracle.com/xdb"
        xmlns:rescfg="http://xmlns.oracle.com/xdb/XDBResConfig.xsd"
        elementFormDefault="qualified" xdb:schemaOwner="XDB" version="1.0">
  <annotation>
    <documentation>
      This XML schema declares the schema of an XDB resource configuration,
      which includes default ACL, event listeners and user configuration.
      It lists all XDB repository events that will be supported.
 
      Future extension can be added to support user-defined events and
      XML events.
    </documentation>
  </annotation>
  <simpleType name="language">
    <restriction base="string">
      <enumeration value="Java"/>
      <enumeration value="C"/>
      <enumeration value="PL/SQL"/>
    </restriction>
  </simpleType>
  <complexType name="existsNode">
    <all>
      <element name="XPath" type="string" minOccurs="1" maxOccurs="1"/>
      <element name="namespace" type="string" minOccurs="0" maxOccurs="1"/>
    </all>
  </complexType>
  <!-- listener pre-condition element  -->
  <complexType name="condition">
    <all>
      <element name="existsNode" type="rescfg:existsNode" minOccurs="0" 
maxOccurs="1"/>
    </all>
  </complexType>
  <complexType name="events">
    <all>
      <element name="Render" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Pre-Create" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Post-Create" type="string" minOccurs="0" maxOccurs="1"/>

Appendix A
XDBResConfig.xsd: XML Schema for Resource Configuration

A-13



      <element name="Pre-Delete" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Post-Delete" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Pre-Update" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Post-Update" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Pre-Lock" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Post-Lock" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Pre-Unlock" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Post-Unlock" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Pre-LinkIn" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Post-LinkIn" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Pre-LinkTo" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Post-LinkTo" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Pre-UnlinkIn" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Post-UnlinkIn" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Pre-UnlinkFrom" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Post-UnlinkFrom" type="string" minOccurs="0"/ maxOccurs="1">
      <element name="Pre-CheckIn" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Post-CheckIn" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Pre-CheckOut" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Post-CheckOut" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Pre-UncheckOut" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Post-UncheckOut" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Pre-VersionControl" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Post-VersionControl" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Pre-Open" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Post-Open" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="Pre-InconsistentUpdate" type="string" minOccurs="0" 
maxOccurs="1"/>
      <element name="Post-InconsistentUpdate" type="string" minOccurs="0" 
maxOccurs="1"/>
    </all>
  </complexType>
  <!-- event listener element  -->
  <complexType name="event-listener">
    <all>
      <element name="description" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="schema" type="string" minOccurs="0" maxOccurs="1"/>
      <element name="source" type="string"  minOccurs="1" maxOccurs="1"/>
      <element name="language" type="rescfg:language" minOccurs="0" maxOccurs="1"/>
      <element name="pre-condition" type="rescfg:condition" minOccurs="0" 
maxOccurs="1"/>
      <element name="events" type="rescfg:events" minOccurs="0" maxOccurs="1"/>
    </all>
  </complexType>
  <complexType name="event-listeners">
    <sequence>
      <element name="listener" type="rescfg:event-listener" minOccurs="1" 
maxOccurs="unbounded"/>
    </sequence>
    <attribute name="default-schema" type="string" xdb:baseProp="true" 
use="optional"/>
    <attribute name="default-language" type="rescfg:language" xdb:baseProp="true" 
use="optional"/>
    <attribute name="set-invoker" type="boolean" xdb:baseProp="true" default="false"/>
  </complexType>

Appendix A
XDBResConfig.xsd: XML Schema for Resource Configuration

A-14



  <complexType name="defaultPath">
    <all>
      <element name="pre-condition" type="rescfg:condition" minOccurs="0" 
maxOccurs="1"/>
      <element name="path" type="string" minOccurs="0" maxOccurs="1" 
xdb:transient="generated"/>
      <element name="resolvedpath" type="string" minOccurs="1" maxOccurs="1"
               xdb:baseProp="true" xdb:hidden="true"/>
      <element name="oid" type="hexBinary"minOccurs="1" maxOccurs="1"
               xdb:baseProp="true" xdb:hidden="true"/>
    </all>
  </complexType>
  <complexType name="defaultACL">
    <sequence>
      <element name="ACL" type="rescfg:defaultPath" minOccurs="1" 
maxOccurs="unbounded"/>
    </sequence>
  </complexType>
  <complexType name="defaultConfig">
    <sequence>
      <element name="configuration" type="rescfg:defaultPath"
               minOccurs="1" maxOccurs="unbounded"/>
    </sequence>
  </complexType>
  <simpleType name="link-type">
    <restriction base="string">
      <enumeration value="None"/>
      <enumeration value="Hard"/>
      <enumeration value="Weak"/>
      <enumeration value="Symbolic"/>
    </restriction>
  </simpleType>
  <simpleType name="path-format">
    <restriction base="string">
      <enumeration value="OID"/>
      <enumeration value="Named"/>
    </restriction>
  </simpleType>
  <simpleType name="link-metadata">
    <restriction base="string">
      <enumeration value="None"/>
      <enumeration value="Attributes"/>
      <enumeration value="All"/>
    </restriction>
  </simpleType>
  <simpleType name="unresolved-link">
    <restriction base="string">
      <enumeration value="Error"/>
      <enumeration value="SymLink"/>
      <enumeration value="Skip"/>
    </restriction>
  </simpleType>
  <simpleType name="conflict-rule">
    <restriction base="string">
      <enumeration value="Error"/>

Appendix A
XDBResConfig.xsd: XML Schema for Resource Configuration

A-15



      <enumeration value="Overwrite"/>
      <enumeration value="Syspath"/>
    </restriction>
  </simpleType>
  <simpleType name="section-type">
    <restriction base="string">
      <enumeration value="None"/>
      <enumeration value="Fragment"/>
      <enumeration value="Document"/>
    </restriction>
  </simpleType>
  <!-- XLinkConfig complex type -->
  <complexType name="xlink-config">
    <sequence>
      <element name="LinkType" type="rescfg:link-type"/>
      <element name="PathFormat" type="rescfg:path-format" minOccurs="0" 
default="OID"/>
      <element name="LinkMetadata" type="rescfg:link-metadata" minOccurs="0" 
default="None"/>
      <element name="pre-condition" type="rescfg:condition" minOccurs="0 
"maxOccurs="1"/>
    </sequence>
    <attribute name="UnresolvedLink" type="rescfg:unresolved-link" default="Error"/>
  </complexType>
  <!-- XIncludeConfig element -->
  <complexType name="xinclude-config">
    <sequence>
      <element name="LinkType" type="rescfg:link-type"/>
      <element name="PathFormat" type="rescfg:path-format" minOccurs="0" 
default="OID"/>
      <element name="ConflictRule" type="rescfg:conflict-rule" minOccurs="0" 
default="Error"/>
    </sequence>
    <attribute name="UnresolvedLink" type="rescfg:unresolved-link" default="Error"/>
  </complexType>
  <!-- SectionConfig element -->
  <complexType name="section-config">
    <sequence>
      <element name="Section" maxOccurs="unbounded">
        <complexType>
          <sequence>
            <element name="sectionPath" type="string"/>
            <element name="documentPath" type="string" minOccurs="0"/>
            <element name="namespace" type="string" minOccurs="0"/>
          </sequence>
          <attribute name="type" type="rescfg:section-type" default="None"/>
        </complexType>
      </element>
    </sequence>
  </complexType>
  <!-- ContentFormat element -->
  <simpleType name="content-format">
    <restriction base="string">
      <enumeration value="text"/>
      <enumeration value="binary"/>

Appendix A
XDBResConfig.xsd: XML Schema for Resource Configuration

A-16



    </restriction>
  </simpleType>
  <!-- resource configuration element  -->
  <complexType name="ResConfig">
    <all>
      <element name="defaultChildConfig" type="rescfg:defaultConfig" minOccurs="0" 
maxOccurs="1"/>
      <element name="defaultChildACL" type="rescfg:defaultACL" minOccurs="0" 
maxOccurs="1"/>
      <element name="event-listeners" type="rescfg:event-listeners" minOccurs="0" 
maxOccurs="1"/>
      <element name="XLinkConfig" type="rescfg:xlink-config" minOccurs="0" 
maxOccurs="1"/>
      <element name="XIncludeConfig" type="rescfg:xinclude-config" minOccurs="0" 
maxOccurs="1"/>
      <element name="SectionConfig" type="rescfg:section-config" minOccurs="0" 
maxOccurs="1"/>
      <element name="ContentFormat" type="rescfg:content-format" minOccurs="0" 
maxOccurs="1"/>
      <!-- application data -->
      <element name="applicationData" minOccurs="0" maxOccurs="1">
        <complexType>
          <sequence>
            <any namespace="##other" maxOccurs="unbounded" processContents="lax"/>
          </sequence>
        </complexType>
      </element>
    </all>
    <attribute name="enable" type="boolean" xdb:baseProp="true" default="true"/>
    <attribute name="copy-on-inconsistent-update" type="boolean" use="optional"/>
  </complexType>
  <element name="ResConfig" type="rescfg:ResConfig" xdb:defaultTable="XDB$RESCONFIG"/>
</schema>

A.3 acl.xsd: XML Schema for ACLs
The Oracle Database-supplied XML schema used to represent access control lists
(ACLs) is presented.

acl.xsd

<schema xmlns="http://www.w3.org/2001/XMLSchema" 
        targetNamespace="http://xmlns.oracle.com/xdb/acl.xsd" 
version="1.0"
        xmlns:xdb="http://xmlns.oracle.com/xdb"
        xmlns:xdbacl="http://xmlns.oracle.com/xdb/acl.xsd"
        elementFormDefault="qualified">
  <annotation>
    <documentation>
       This XML schema describes the structure of XDB ACL documents.
 
       Note : The "systemPrivileges" element below lists all supported 
         system privileges and their aggregations.
         See dav.xsd for description of DAV privileges

Appendix A
acl.xsd: XML Schema for ACLs

A-17



       Note : The elements and attributes marked "hidden" are for
         internal use only.
    </documentation>
    <appinfo>
      <xdb:systemPrivileges>
        <xdbacl:all>
          <xdbacl:read-properties/>
          <xdbacl:read-contents/>
          <xdbacl:read-acl/>
          <xdbacl:update/>
          <xdbacl:link/>
          <xdbacl:unlink/>
          <xdbacl:unlink-from/>
          <xdbacl:write-acl-ref/>
          <xdbacl:update-acl/>
          <xdbacl:link-to/>
          <xdbacl:resolve/>
          <xdbacl:write-config/>
        </xdbacl:all>
      </xdb:systemPrivileges>
    </appinfo>
  </annotation>
  <!-- privilegeNameType (this is an emptycontent type) -->
  <complexType name = "privilegeNameType"/>
  <!-- privilegeName element 
       All system and user privileges are in the substitutionGroup 
       of this element. 
    -->
  <element name = "privilegeName" type="xdbacl:privilegeNameType"
           xdb:defaultTable=""/>
  <!-- all system privileges in the XDB ACL namespace -->
  <element name = "read-properties" type="xdbacl:privilegeNameType"
           substitutionGroup="xdbacl:privilegeName" 
xdb:defaultTable=""/>
  <element name = "read-contents" type="xdbacl:privilegeNameType"
           substitutionGroup="xdbacl:privilegeName" 
xdb:defaultTable=""/>
  <element name = "read-acl" type="xdbacl:privilegeNameType"
           substitutionGroup="xdbacl:privilegeName" 
xdb:defaultTable=""/>
  <element name = "update" type="xdbacl:privilegeNameType"
           substitutionGroup="xdbacl:privilegeName" 
xdb:defaultTable=""/>
  <element name = "link" type="xdbacl:privilegeNameType"
           substitutionGroup="xdbacl:privilegeName" 
xdb:defaultTable=""/>
  <element name = "unlink" type="xdbacl:privilegeNameType"
           substitutionGroup="xdbacl:privilegeName" 
xdb:defaultTable=""/>
  <element name = "unlink-from" type="xdbacl:privilegeNameType"
           substitutionGroup="xdbacl:privilegeName" 
xdb:defaultTable=""/>
  <element name = "write-acl-ref" type="xdbacl:privilegeNameType"
           substitutionGroup="xdbacl:privilegeName" 
xdb:defaultTable=""/>

Appendix A
acl.xsd: XML Schema for ACLs

A-18



  <element name = "update-acl" type="xdbacl:privilegeNameType"
           substitutionGroup="xdbacl:privilegeName" 
xdb:defaultTable=""/>
  <element name = "link-to" type="xdbacl:privilegeNameType"
           substitutionGroup="xdbacl:privilegeName" 
xdb:defaultTable=""/>
  <element name = "resolve" type="xdbacl:privilegeNameType"
           substitutionGroup="xdbacl:privilegeName" 
xdb:defaultTable=""/>
  <element name = "all" type="xdbacl:privilegeNameType"
           substitutionGroup="xdbacl:privilegeName" 
xdb:defaultTable=""/>
  <!-- privilege element -->
  <element name = "privilege" xdb:defaultTable="">
    <complexType> 
      <sequence>
        <any maxOccurs="unbounded" processContents="lax"/>
      </sequence>
    </complexType>
  </element>
  <!-- ace element -->
  <element name = "ace" xdb:defaultTable="">
    <complexType> 
      <sequence>
        <element name = "grant" type = "boolean"/>
        <choice>
          <element name="invert" xdb:transient="generated">
            <complexType>
              <sequence>
                <element name="principal" type="string"
                         xdb:transient="generated" />
              </sequence>
            </complexType>
          </element>
          <element name="principal" type="string" 
xdb:transient="generated"/>
        </choice>
        <element ref="xdbacl:privilege" minOccurs="1"/>
        <!-- "any" contain all app info for an ACE e.g.reason for 
creation -->
        <any minOccurs="0" maxOccurs="unbounded" namespace="##other"
             processContents="lax"/>
        <!-- HIDDEN ELEMENTS -->
        <choice minOccurs="0">
          <element name = "principalID" type = "hexBinary"
                   xdb:baseProp="true" xdb:hidden="true"/>
          <element name = "principalString" type = "string"
                   xdb:baseProp="true" xdb:hidden="true"/>
        </choice>
        <element name = "flags" type = "unsignedInt" minOccurs="0" 
                 xdb:baseProp="true" xdb:hidden="true"/>
      </sequence> 
      <attribute name = "collection" type = "boolean" 
                 xdb:transient="generated" use="optional"/>
      <attribute name = "principalFormat" 

Appendix A
acl.xsd: XML Schema for ACLs

A-19



                 xdb:transient="generated" use="optional">
        <simpleType>
          <restriction base="string">
            <enumeration value="ShortName"/>
            <enumeration value="DistinguishedName"/>
            <enumeration value="GUID"/>
            <enumeration value="XSName"/>
            <enumeration value="ApplicationName"/>
          </restriction>    
        </simpleType>
      </attribute>
      <attribute name = "start_date" type = "dateTime" use = 
"optional"/>
      <attribute name = "end_date" type = "dateTime" use = 
"optional"/>     
    </complexType>
  </element>
  <!-- acl element -->
  <complexType name="inheritanceType">
    <attribute name="type" type="string" use="required"/>
    <attribute name="href" type="string" use="required"/>
  </complexType>
  <complexType name="aclType"> 
    <sequence>
      <element name = "schemaURL" type = "string" minOccurs="0"
               xdb:transient="generated"/>
      <element name = "elementName" type = "string" minOccurs="0" 
               xdb:transient="generated"/>
      <element name = "security-class" type = "QName" minOccurs="0"/>
      <choice minOccurs="0">
        <element name="extends-from" type="xdbacl:inheritanceType"/>
        <element name="constrained-with" type="xdbacl:inheritanceType"/>
      </choice>
      <element ref = "xdbacl:ace" minOccurs="0" maxOccurs = 
"unbounded"/>
      <!-- this "any" contains all application specific info for an 
ACL, 
           e.g., reason for creation  -->
      <any minOccurs="0" maxOccurs="unbounded" namespace="##other" 
           processContents="lax"/>
      <!-- HIDDEN ELEMENTS -->
      <element name = "schemaOID" type = "hexBinary" minOccurs="0"
               xdb:baseProp="true" xdb:hidden="true"/>
      <element name = "elementNum" type = "unsignedInt" minOccurs="0"
               xdb:baseProp="true" xdb:hidden="true"/>
    </sequence>
    <attribute name = "shared" type = "boolean" default="true"/>
    <attribute name = "description" type = "string"/>
  </complexType>
  <complexType name="rule-based-acl">
    <complexContent>
      <extension base="xdbacl:aclType">
        <sequence>
          <element name = "param" minOccurs="0" maxOccurs="unbounded">
            <complexType> 

Appendix A
acl.xsd: XML Schema for ACLs

A-20



              <simpleContent>
                <extension base="string">
                  <attribute name = "name" type = "string" use = 
"required"/>
                </extension>
              </simpleContent>
            </complexType>
          </element>
        </sequence>
      </extension>
    </complexContent>
  </complexType>
  <element name = "acl" type="xdbacl:aclType" xdb:defaultTable = 
"XDB$ACL"/>
  <element name = "write-config" type="xdbacl:privilegeNameType"
           substitutionGroup="xdbacl:privilegeName" 
xdb:defaultTable=""/>
 </schema>

A.4 xdbconfig.xsd: XML Schema for Configuring Oracle
XML DB

A full listing is presented of file xdbconfig.xsd, which contains the XML schema used
to configure Oracle XML DB.

Note:

The value of attribute value of element pattern has been split here
for documentation purposes. In reality, the value is not split (no newline
characters), but is one long string.

xdbconfig.xsd

<schema targetNamespace="http://xmlns.oracle.com/xdb/xdbconfig.xsd"
        xmlns="http://www.w3.org/2001/XMLSchema"
        xmlns:xdbc="http://xmlns.oracle.com/xdb/xdbconfig.xsd"
        xmlns:xdb="http://xmlns.oracle.com/xdb"
        version="1.0" elementFormDefault="qualified">
  <element name="xdbconfig" xdb:defaultTable="XDB$CONFIG">
    <complexType>
      <sequence>
 
        <!-- predefined XDB properties - these should NOT be changed -->
        <element name="sysconfig">
          <complexType>
            <sequence>
 
              <!-- generic XDB properties -->
              <element name="acl-max-age" type="unsignedInt" default="15"/>
              <element name="acl-cache-size" type="unsignedInt" default="32"/>

Appendix A
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB

A-21



              <element name="invalid-pathname-chars" type="string" default=""/>
              <element name="case-sensitive" type="boolean" default="true"/>
              <element name="call-timeout"   type="unsignedInt" default="300"/>
              <element name="max-link-queue" type="unsignedInt" default="65536"/>
              <element name="max-session-use" type="unsignedInt" default="100"/>
              <element name="persistent-sessions" type="boolean" default="false"/>
              <element name="default-lock-timeout" type="unsignedInt"
                       default="3600"/>
              <element name="xdbcore-logfile-path" type="string"
                       default="/sys/log/xdblog.xml"/>
              <element name="xdbcore-log-level" type="unsignedInt"
                       default="0"/>
              <element name="resource-view-cache-size" type="unsignedInt"
                       default="1048576"/>
              <element name="case-sensitive-index-clause" type="string"
                       minOccurs="0"/>
 
              <!-- protocol specific properties -->
              <element name="protocolconfig">
                <complexType>
                  <sequence>
 
                    <!-- these apply to all protocols -->
                    <element name="common">
                      <complexType>
                        <sequence>
                          <element name="extension-mappings">
                            <complexType>
                              <sequence>
                                <element name="mime-mappings"
                                         type="xdbc:mime-mapping-type"/>
                                <element name="lang-mappings"
                                         type="xdbc:lang-mapping-type"/>
                                <element name="charset-mappings"
                                         type="xdbc:charset-mapping-type"/>
                                <element name="encoding-mappings"
                                         type="xdbc:encoding-mapping-type"/>
                                <element name="xml-extensions"
                                         type="xdbc:xml-extension-type"
                                         minOccurs="0"/>
                              </sequence>
                            </complexType>
                          </element>
                          <element name="session-pool-size" type="unsignedInt"
                                   default="50"/>
                          <element name="session-timeout" type="unsignedInt"
                                   default="6000"/>
                        </sequence>
                      </complexType>
                    </element>
 
                    <!-- FTP specific -->
                    <element name="ftpconfig">
                      <complexType>
                        <sequence>

Appendix A
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB

A-22



                          <element name="ftp-port" type="unsignedShort"
                                   default="2100"/>
                          <element name="ftp-listener" type="string"/>
                          <element name="ftp-protocol" type="string"/>
                          <element name="logfile-path" type="string"
                                   default="/sys/log/ftplog.xml"/>
                          <element name="log-level" type="unsignedInt"
                                   default="0"/>
                          <element name="session-timeout"  type="unsignedInt"
                                   default="6000"/>
                          <element name="buffer-size" default="8192">
                            <simpleType>
                              <restriction base="unsignedInt">
                                <minInclusive value="1024"/>       <!-- 1KB -->
                                <maxInclusive value="1048496"/>    <!-- 1MB -->
                              </restriction>
                            </simpleType>
                          </element>
                          <element name="ftp-welcome-message" type="string"
                                   minOccurs="0" maxOccurs="1"/>
                          <element name="host-name" type="string" 
                                   minOccurs="0" maxOccurs="1"/>
                        </sequence>
                      </complexType>
                    </element>
 
                    <!-- HTTP specific -->
                    <element name="httpconfig">
                      <complexType>
                        <sequence>
                          <element name="http-port" type="unsignedShort"
                                   default="8080"/>
                          <element name="http-listener" type="string"/>
                          <element name="http-protocol" type="string"/>
                          <element name="max-http-headers" type="unsignedInt"
                                   default="64"/>
                          <element name="max-header-size" type="unsignedInt"
                                   default="4096"/>
                          <element name="max-request-body" type="unsignedInt"
                                   default="2000000000" minOccurs="1"/>
                          <element name="session-timeout"  type="unsignedInt"
                                   default="6000"/>
                          <element name="server-name" type="string"/>
                          <element name="logfile-path" type="string"
                                   default="/sys/log/httplog.xml"/>
                          <element name="log-level" type="unsignedInt"
                                   default="0"/>
                          <element name="servlet-realm" type="string"
                                   minOccurs="0"/>
                          <element name="webappconfig">
                            <complexType>
                              <sequence>
                                <element name="welcome-file-list"
                                         type="xdbc:welcome-file-type"/>
                                <element name="error-pages"

Appendix A
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB

A-23



                                         type="xdbc:error-page-type"/>
                                <element name="servletconfig"
                                         type="xdbc:servlet-config-type"/>
                              </sequence>
                            </complexType>
                          </element>
                          <element name="default-url-charset" type="string"
                                   minOccurs="0"/>
                          <element name="http2-port" type="unsignedShort"
                                   minOccurs="0"/>
                          <element name="http2-protocol" type="string"
                                   default="tcp" minOccurs="0"/>
                          <element name="plsql" minOccurs="0">
                            <complexType>
                              <sequence>
                                <element name="log-level"
                                         type="unsignedInt" minOccurs="0"/>
                                <element name="max-parameters"
                                         type="unsignedInt" minOccurs="0"/>
                              </sequence>
                            </complexType>
                          </element>
                          <element name="allow-repository-anonymous-access"
                                   minOccurs="0" default="false" type="boolean"/>
                          <element name="authentication" minOccurs="0"
                                   maxOccurs="1">
                            <complexType>
                              <sequence>
                                <element name="allow-mechanism" minOccurs="1"
                                         maxOccurs="unbounded">
                                  <simpleType>
                                    <restriction base="string">
                                      <enumeration value="digest"/>
                                      <enumeration value="basic" />
                                      <enumeration value="custom"/>
                                    </restriction>
                                  </simpleType>
                                </element>
                                <element name="digest-auth" minOccurs="0"
                                         maxOccurs="1">
                                  <complexType>
                                    <sequence>
                                      <element name="nonce-timeout"
                                               type="unsignedInt"
                                               minOccurs="1" maxOccurs="1"
                                               default="300"/>
                                    </sequence>
                                  </complexType>
                                </element>
                              </sequence>
                            </complexType>
                          </element>
                          <element name="http-host" type="string" minOccurs="0"/>
                          <element name="http2-host" type="string" minOccurs="0"/>
                          <element name="custom-authentication"

Appendix A
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB

A-24



                                   type="xdbc:custom-authentication-type"
                                   minOccurs="0"/>
                          <element name="realm" type="string" minOccurs="0"/>
                          <element name="respond-with-server-info" type="boolean"
                                   default="true" minOccurs="0"/>
                          <element name="expire" type="xdbc:expire-type"
                                   minOccurs="0"/>
                          <element name="white-list" minOccurs="0">
                            <complexType>
                              <sequence>
                                <element name="white-list-pattern" minOccurs="0" 
                                         maxOccurs="unbounded">
                                  <simpleType>
                                    <restriction base="string">
                                      <pattern value="(/[^\*/]+)*(/\*)?"/>
                                    </restriction>
                                  </simpleType>
                                </element>
                              </sequence>
                            </complexType>
                          </element>
                        </sequence>
                      </complexType>
                    </element>
                    <element name="nfsconfig" minOccurs="0">
                      <complexType>
                        <sequence>
                          <element name="nfs-port" type="unsignedShort"
                                   default="2049"/>
                          <element name="nfs-listener" type="string"/>
                          <element name="nfs-protocol" type="string"/>
                          <element name="logfile-path" type="string"
                                   default="/sys/log/nfslog.xml"/>
                          <element name="log-level" type="unsignedInt"
                                   default="0"/>
                          <element name="nfs-exports"
                                   type="xdbc:nfs-exports-type"/>
                        </sequence>
                      </complexType>
                    </element>
                  </sequence>
                </complexType>
              </element>
              <element name="schemaLocation-mappings"
                       type="xdbc:schemaLocation-mapping-type" minOccurs="0"/>
              <element name="xdbcore-xobmem-bound" type="unsignedInt"
                       default="1024" minOccurs="0"/>
              <element name="xdbcore-loadableunit-size" type="unsignedInt"
                       default="16" minOccurs="0"/>
              <element name="folder-hard-links" type="boolean" default="false"
                       minOccurs="0"/>
              <element name="non-folder-hard-links" type="boolean" default="true"
                       minOccurs="0"/>
              <element name="copy-on-inconsistent-update" type="boolean"
                       default="false" minOccurs="0"/>

Appendix A
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB

A-25



              <element name="rollback-on-sync-error" type="boolean"
                       default="false" minOccurs="0"/>
              <element name="acl-evaluation-method" default="deny-trumps-grant"
                       minOccurs="0">
                <simpleType>
                  <restriction base="string">
                    <enumeration value="deny-trumps-grant"/>
                    <enumeration value="ace-order"/>
                  </restriction>
                </simpleType>
              </element>
              <element name="default-workspace" type="string" minOccurs="0"/>
              <element name="num_job_queue_processes" type="unsignedInt"
                       minOccurs="0"/>
              <element name="allow-authentication-trust" type="boolean"
                       default="false" minOccurs="0"/>
              <element name="custom-authentication-trust"
                       type="xdbc:custom-authentication-trust-type"
                       minOccurs="0"/>
              <element name="default-type-mappings" minOccurs="0">
                <simpleType>
                  <restriction base="string">
                    <enumeration value="pre-11.2"/>
                    <enumeration value="post-11.2"/>
                  </restriction>
                </simpleType>
              </element>
              <element name="localApplicationGroupStore" type="boolean"
                       default="true" minOccurs="0"/>
            </sequence>
          </complexType>
        </element>
 
        <!-- users can add any properties they want here -->
        <element name="userconfig" minOccurs="0">
          <complexType>
            <sequence>
              <any maxOccurs="unbounded" namespace="##other"/>
            </sequence>
          </complexType>
        </element>
      </sequence>
    </complexType>
  </element>
  <complexType name="welcome-file-type">
    <sequence>
      <element name="welcome-file" minOccurs="0" maxOccurs="unbounded">
        <simpleType>
          <restriction base="string">
            <pattern value="[^/]*"/>
          </restriction>
        </simpleType>
      </element>
    </sequence>
  </complexType>

Appendix A
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB

A-26



 
  <!-- customized error pages -->
  <complexType name="error-page-type">
    <sequence>
      <element name="error-page" minOccurs="0" maxOccurs="unbounded">
        <complexType>
          <sequence>
            <choice>
              <element name="error-code">
                <simpleType>
                  <restriction base="positiveInteger">
                    <minInclusive value="100"/>
                    <maxInclusive value="999"/>
                  </restriction>
                </simpleType>
              </element>
 
              <!-- Fully qualified classname of a Java exception type -->
              <element name="exception-type" type="string"/>
              <element name="OracleError">
                <complexType>
                  <sequence>
                     <element name="facility" type="string" default="ORA"/>
                     <element name="errnum" type="unsignedInt"/>
                  </sequence>
                </complexType>
              </element>
            </choice>
            <element name="location" type="anyURI"/>
          </sequence>
        </complexType>
      </element>
    </sequence>
  </complexType>
 
  <!-- parameter for a servlet: name, value pair and a description  -->
  <complexType name="param">
    <sequence>
      <element name="param-name" type="string"/>
      <element name="param-value" type="string"/>
      <element name="description" type="string"/>
    </sequence>
  </complexType>
  <complexType name="servlet-config-type">
    <sequence>
      <element name="servlet-mappings">
        <complexType>
          <sequence>
            <element name="servlet-mapping" minOccurs="0"
                     maxOccurs="unbounded">
              <complexType>
                <sequence>
                  <element name="servlet-pattern" type="string"/>
                  <element name="servlet-name" type="string"/>
                </sequence>

Appendix A
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB

A-27



              </complexType>
            </element>
          </sequence>
        </complexType>
      </element>
      <element name="servlet-list">
        <complexType>
          <sequence>
            <element name="servlet" minOccurs="0" maxOccurs="unbounded">
              <complexType>
                <sequence>
                  <element name="servlet-name" type="string"/>
                  <element name="servlet-language">
                    <simpleType>
                      <restriction base="string">
                        <enumeration value="C"/>
                        <enumeration value="Java"/>
                        <enumeration value="PL/SQL"/>
                      </restriction>
                    </simpleType>
                  </element>
                  <element name="icon" type="string" minOccurs="0"/>
                  <element name="display-name" type="string"/>
                  <element name="description" type="string" minOccurs="0"/>
                  <choice>
                    <element name="servlet-class" type="string" minOccurs="0"/>
                    <element name="jsp-file" type="string" minOccurs="0"/>
                    <element name="plsql" type="xdbc:plsql-servlet-config"
                             minOccurs="0"/>
                  </choice>
                  <element name="servlet-schema" type="string" minOccurs="0"/>
                  <element name="init-param" minOccurs="0"
                           maxOccurs="unbounded" type="xdbc:param"/>
                  <element name="load-on-startup" type="string" minOccurs="0"/>
                  <element name="security-role-ref" minOccurs="0"
                           maxOccurs="unbounded">
                    <complexType>
                      <sequence>
                        <element name="description" type="string" minOccurs="0"/>
                        <element name="role-name" type="string"/>
                        <element name="role-link" type="string"/>
                      </sequence>
                    </complexType>
                  </element>
                  <!-- session-state-cache-param captures all the parameters
                       of the session state cache. expiration-timeout is
                       specified in centi-seconds. -->
                  <element name="session-state-cache-param" minOccurs="0">
                    <complexType>
                      <sequence>
                        <element name="cache-size" type="unsignedInt"/>
                        <element name="expiration-timeout" type="unsignedInt"/>
                      </sequence>
                    </complexType>
                  </element>

Appendix A
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB

A-28



                </sequence>
              </complexType>
            </element>
          </sequence>
        </complexType>
      </element>
    </sequence>
  </complexType>
  <complexType name="lang-mapping-type">
    <sequence>
      <element name="lang-mapping" minOccurs="0" maxOccurs="unbounded">
        <complexType>
          <sequence>
            <element name="extension" type="xdbc:exttype"/>
            <element name="lang" type="string"/>
          </sequence>
        </complexType>
      </element>
    </sequence>
  </complexType>
  <complexType name="charset-mapping-type">
    <sequence>
      <element name="charset-mapping" minOccurs="0" maxOccurs="unbounded">
        <complexType>
          <sequence>
            <element name="extension" type="xdbc:exttype"/>
            <element name="charset" type="string"/>
          </sequence>
        </complexType>
      </element>
    </sequence>
  </complexType>
  <complexType name="encoding-mapping-type">
    <sequence>
      <element name="encoding-mapping" minOccurs="0" maxOccurs="unbounded">
        <complexType>
          <sequence>
            <element name="extension" type="xdbc:exttype"/>
            <element name="encoding" type="string"/>
          </sequence>
        </complexType>
      </element>
    </sequence>
  </complexType>
  <complexType name="mime-mapping-type">
    <sequence>
      <element name="mime-mapping" minOccurs="0" maxOccurs="unbounded">
        <complexType>
          <sequence>
            <element name="extension" type="xdbc:exttype"/>
            <element name="mime-type" type="string"/>
          </sequence>
        </complexType>
      </element>
    </sequence>

Appendix A
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB

A-29



  </complexType>
  <complexType name="xml-extension-type">
    <sequence>
      <element name="extension" type="xdbc:exttype"
               minOccurs="0" maxOccurs="unbounded">
      </element>
    </sequence>
  </complexType>
  <complexType name="schemaLocation-mapping-type">
    <sequence>
      <element name="schemaLocation-mapping"
               minOccurs="0" maxOccurs="unbounded">
        <complexType>
          <sequence>
            <element name="namespace" type="string"/>
            <element name="element" type="string"/>
            <element name="schemaURL" type="string"/>
          </sequence>
        </complexType>
      </element>
    </sequence>
  </complexType>
  <complexType name="plsql-servlet-config">
    <sequence>
      <element name="database-username" type="string" minOccurs="0"/>
      <element name="authentication-mode" minOccurs="0">
        <simpleType>
          <restriction base="string">
            <enumeration value="Basic"/>
            <enumeration value="SingleSignOn"/>
            <enumeration value="GlobalOwa"/>
            <enumeration value="CustomOwa"/>
            <enumeration value="PerPackageOwa"/>
          </restriction>
        </simpleType>
      </element>
      <element name="session-cookie-name" type="string" minOccurs="0"/>
      <element name="session-state-management" minOccurs="0">
        <simpleType>
          <restriction base="string">
            <enumeration value="StatelessWithResetPackageState"/>
            <enumeration value="StatelessWithFastResetPackageState"/>
            <enumeration value="StatelessWithPreservePackageState"/>
          </restriction>
        </simpleType>
      </element>
      <element name="max-requests-per-session" type="unsignedInt" minOccurs="0"/>
      <element name="default-page" type="string" minOccurs="0"/>
      <element name="document-table-name" type="string" minOccurs="0"/>
      <element name="document-path" type="string" minOccurs="0"/>
      <element name="document-procedure" type="string" minOccurs="0"/>
      <element name="upload-as-long-raw" type="string" minOccurs="0"
               maxOccurs="unbounded"/>
      <element name="path-alias" type="string" minOccurs="0"/>
      <element name="path-alias-procedure" type="string" minOccurs="0"/>

Appendix A
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB

A-30



      <element name="exclusion-list" type="string" minOccurs="0"
               maxOccurs="unbounded"/>
      <element name="cgi-environment-list" type="string" minOccurs="0"
               maxOccurs="unbounded"/>
      <element name="compatibility-mode" type="unsignedInt" minOccurs="0"/>
      <element name="nls-language" type="string" minOccurs="0"/>
      <element name="fetch-buffer-size" type="unsignedInt" minOccurs="0"/>
      <element name="error-style" minOccurs="0">
        <simpleType>
          <restriction base="string">
            <enumeration value="ApacheStyle"/>
            <enumeration value="ModplsqlStyle"/>
            <enumeration value="DebugStyle"/>
          </restriction>
        </simpleType>
      </element>
      <element name="transfer-mode" minOccurs="0">
        <simpleType>
          <restriction base="string">
            <enumeration value="Char"/>
            <enumeration value="Raw"/>
          </restriction>
        </simpleType>
      </element>
      <element name="before-procedure" type="string" minOccurs="0"/>
      <element name="after-procedure" type="string" minOccurs="0"/>
      <element name="bind-bucket-lengths" type="unsignedInt" minOccurs="0"
               maxOccurs="unbounded"/>
      <element name="bind-bucket-widths" type="unsignedInt" minOccurs="0"
               maxOccurs="unbounded"/>
      <element name="always-describe-procedure" minOccurs="0">
        <simpleType>
          <restriction base="string">
            <enumeration value="On"/>
            <enumeration value="Off"/>
          </restriction>
        </simpleType>
      </element>
      <element name="info-logging" minOccurs="0">
        <simpleType>
          <restriction base="string">
            <enumeration value="InfoDebug"/>
          </restriction>
        </simpleType>
      </element>
      <element name="owa-debug-enable" minOccurs="0">
        <simpleType>
          <restriction base="string">
            <enumeration value="On"/>
            <enumeration value="Off"/>
          </restriction>
        </simpleType>
      </element>
      <element name="request-validation-function" type="string" minOccurs="0"/>
      <element name="input-filter-enable" minOccurs="0">

Appendix A
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB

A-31



        <simpleType>
          <restriction base="string">
            <enumeration value="On"/>
            <enumeration value="Off"/>
            <enumeration value="SecurityOn"/>
            <enumeration value="SecurityOff"/>
          </restriction>
        </simpleType>
      </element>
      <element name="database-edition" type="string" minOccurs="0"/>
    </sequence>
  </complexType>
  <simpleType name="exttype">
    <restriction base="string">
      <pattern value="[^\*\./]*"/>
    </restriction>
  </simpleType>
  <simpleType name="ipaddress">
    <restriction base="string">
      <maxLength value="40" />
    </restriction>
  </simpleType>
  <complexType name="nfs-exports-type">
    <sequence>
      <element name="nfs-export" minOccurs="1" maxOccurs="unbounded">
        <complexType>
          <sequence>
            <element name="nfs-clientgroup">
              <complexType>
                <sequence>
                  <element name="nfs-client" minOccurs="1" maxOccurs="unbounded">
                    <complexType>
                      <sequence>
                        <choice>
                          <element name="nfs-client-subnet"
                                   type="xdbc:ipaddress"/>
                          <element name="nfs-client-dnsname" type="string"/>
                          <element name="nfs-client-address"
                                   type="xdbc:ipaddress"/>
                        </choice>
                        <element name="nfs-client-netmask"
                                 type="xdbc:ipaddress"/>
                      </sequence>
                    </complexType>
                  </element>
                </sequence>
              </complexType>
            </element>
            <element name="nfs-export-paths">
              <complexType>
                <sequence>
                  <element name="nfs-export-path" minOccurs="1"
                           maxOccurs="unbounded">
                    <complexType>
                      <sequence>

Appendix A
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB

A-32



                        <element name="path" type="string"/>
                        <element name="mode">
                          <simpleType>
                            <restriction base="string">
                              <enumeration value="read-write"/>
                              <enumeration value="read-only"/>
                            </restriction>
                          </simpleType>
                        </element>
                      </sequence>
                    </complexType>
                  </element>
                </sequence>
              </complexType>
            </element>
          </sequence>
        </complexType>
      </element>
    </sequence>
  </complexType>
  <complexType name="custom-authentication-type">
    <sequence>
      <element name="custom-authentication-mappings">
        <complexType>
          <sequence>
            <element name="custom-authentication-mapping" minOccurs="0"
                     maxOccurs="unbounded">
              <complexType>
                <sequence>
                  <element name="authentication-pattern" type="string"/>
                  <element name="authentication-name" type="string"/>
                  <element name="authentication-trust-name" type="string"
                           minOccurs="0"/>
                  <element name="user-prefix" type="string" minOccurs="0"/>
                  <element name="on-deny" minOccurs="0">
                    <simpleType><restriction base="string">
                      <enumeration value="next-custom"/>
                      <enumeration value="basic"/>
                    </restriction></simpleType>
                  </element>
                </sequence>
              </complexType>
            </element>
          </sequence>
        </complexType>
      </element>
      <element name="custom-authentication-list">
        <complexType>
          <sequence>
            <element name="authentication" minOccurs="0" maxOccurs="unbounded">
              <complexType>
                <sequence>
                  <element name="authentication-name" type="string"/>
                  <element name="authentication-description" type="string"
                           minOccurs="0"/>

Appendix A
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB

A-33



                  <element name="authentication-implement-schema" type="string"/>
                  <element name="authentication-implement-method" type="string"/>
                  <element name="authentication-implement-language">
                    <simpleType>
                      <restriction base="string">
                        <enumeration value="PL/SQL"/>
                      </restriction>
                    </simpleType>
                  </element>
                </sequence>
              </complexType>
            </element>
          </sequence>
        </complexType>
      </element>
      <element name="custom-authentication-trust"
               type="xdbc:custom-authentication-trust-type" minOccurs="0"/>
    </sequence>
  </complexType>
  <complexType name="custom-authentication-trust-type">
    <sequence>
      <element name="trust-scheme"  minOccurs="0" maxOccurs="unbounded">
        <complexType>
          <sequence>
            <element name="trust-scheme-name" type="string"/>
            <element name="requireParsingSchema" type="boolean" default="true"
                     minOccurs="0"/>
            <element name="allowRegistration" type="boolean" default="true"
                     minOccurs="0"/>
            <element name="trust-scheme-description" type="string" minOccurs="0"/>
            <element name="trusted-session-user" type="string"  minOccurs="1"
                     maxOccurs="unbounded"/>
            <element name="trusted-parsing-schema" type="string" minOccurs="0"
                     maxOccurs="unbounded"/>
          </sequence>
       </complexType>
      </element>
    </sequence>
  </complexType>
  <complexType name="expire-type">
    <sequence>
      <element name="expire-mapping" minOccurs="0" maxOccurs="unbounded">
        <complexType>
          <sequence>
            <element name="expire-pattern" type="string"/>
            <element name="expire-default">
              <simpleType>
                <restriction base="string">
                  <pattern value=
"(now|modification)(\s(plus))?(\s(([1]\s(year))|
([0-9]*\s(years))))?(\s(([1]\s(month))|([0-9]*\s(months))))?(\s(([1]\s(week))|
([0-9]*\s(weeks))))?(\s(([1]\s(day))|([0-9]*\s(days))))?(\s(([1]\s(hour))|
([0-9]*\s(hours))))?(\s(([1]\s(minute))|
([0-9]*\s(minutes))))?(\s(([1]\s(second))|([0-9]*\s(seconds))))?"/>1

                </restriction>

Appendix A
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB

A-34



              </simpleType>
            </element>
          </sequence>
        </complexType>
      </element>
    </sequence>
  </complexType>
</schema>

A.5 xdiff.xsd: XML Schema for Comparing Schemas for
In-Place Evolution

A full listing is presented of xdiff.xsd, the Oracle XML DB-supplied XML
schema to which the document specified as the diffXML parameter to procedure
DBMS_XMLSCHEMA.inPlaceEvolve must conform.

xdiff.xsd

<schema targetNamespace="http://xmlns.oracle.com/xdb/xdiff.xsd" 
    xmlns="http://www.w3.org/2001/XMLSchema" 
    xmlns:xd="http://xmlns.oracle.com/xdb/xdiff.xsd" 
    version="1.0" elementFormDefault="qualified"
    attributeFormDefault="qualified"> 
    <annotation> 
        <documentation xml:lang="en"> 
         Defines the structure of XML documents that capture the 
difference 
         between two XML documents. Changes that are not supported by 
Oracle 
         XmlDiff may not be expressible in this schema. 
           
        'oracle-xmldiff' PI:
 
        We use 'oracle-xmldiff' PI to describe certain aspects of the 
diff.
        This should be the first element of top level xdiff element.
       
        operations-in-docorder: 
        Can be either 'true' or 'false'.
        If true, the operations in the diff document refer to the
        elements of the input doc in the same order as document order. 
Output of
        global algorithm meets this requirement while local does not.
        
        output-model: output models for representing the diff. Can be 
either
        'Snapshot' or 'Current'.
       
        Snapshot model:

1 The value of attribute value has been split here for documentation purposes. In reality, the value is one long 
string, with no line breaks.

Appendix A
xdiff.xsd: XML Schema for Comparing Schemas for In-Place Evolution

A-35



        Each operation uses Xpaths as if no operations
        have been applied to the input document. (like UNIX diff)
        Default and works for both Xmldiff and XmlPatch. 
        For XmlPatch to handle this model, "operations-in-docorder" 
must be 
        true and the Xpaths must be simple. (see XmlDif C API 
documentation).
       
        Current model :
        Each operation uses Xpaths as if all operations till the 
previous one
        have been applied to the input document. Not implemented for 
Xmldiff.
        Works with XmlPatch.
       
        <!-- Example:
            <?oracle-xmldiff operations-in-docorder="true" output-model=
            "snapshot" diff-algorithm="global"?>
        -->
        </documentation> 
    </annotation> 
    <!-- Enumerate the supported node types --> 
    <simpleType name="xdiff-nodetype"> 
        <restriction base="string"> 
            <enumeration value="element"/> 
            <enumeration value="attribute"/> 
            <enumeration value="text"/> 
            <enumeration value="cdata"/> 
            <enumeration value="entity-reference"/>
            <enumeration value="entity"/>
            <enumeration value="processing-instruction"/>
            <enumeration value="notation"/>
            <enumeration value="comment"/>            
         </restriction> 
    </simpleType>
 
    <element name="xdiff"> 
        <complexType> 
            <choice minOccurs="0" maxOccurs="unbounded"> 
                <element name="append-node"> 
                    <complexType> 
                        <sequence> 
                            <element name="content" type="anyType"/> 
                        </sequence> 
                        <attribute name="node-type" type="xd:xdiff-
nodetype"/> 
                        <attribute name="xpath" type="string"/> 
                        <attribute name="parent-xpath" type="string"/> 
                        <attribute name="attr-local" type="string"/>
                        <attribute name="attr-uri" type="string"/>
                    </complexType> 
                </element>
 
                <element name="insert-node-before"> 
                    <complexType> 

Appendix A
xdiff.xsd: XML Schema for Comparing Schemas for In-Place Evolution

A-36



                        <sequence> 
                            <element name="content" type="anyType"/> 
                        </sequence> 
                        <attribute name="xpath" type="string"/> 
                        <attribute name="node-type" type="xd:xdiff-
nodetype"/>
 
                    </complexType> 
                </element>
 
                <element name="delete-node"> 
                    <complexType> 
                        <attribute name="node-type" type="xd:xdiff-
nodetype"/>
                        <attribute name="xpath" type="string"/> 
                        <attribute name="parent-xpath" type="string"/> 
                        <attribute name="attr-local" type="string"/>
                        <attribute name="attr-uri" type="string"/>
                    </complexType> 
                </element>
                 <element name="update-node"> 
                    <complexType> 
                        <sequence> 
                            <element name="content" type="anyType"/> 
                        </sequence> 
                        <attribute name="node-type" type="xd:xdiff-
nodetype"/> 
                        <attribute name="parent-xpath" type="string"/> 
                        <attribute name="xpath" type="string"/> 
                        <attribute name="attr-local" type="string"/>
                        <attribute name="attr-uri" type="string"/>
                    </complexType> 
                </element>
                <element name="rename-node"> 
                    <complexType> 
                        <sequence> 
                            <element name="content" type="anyType"/> 
                        </sequence> 
                        <attribute name="xpath" type="string"/> 
                        <attribute name="node-type" type="xd:xdiff-
nodetype"/> 
                    </complexType> 
                </element>
            </choice> 
         <attribute name="xdiff-version" type="string"/> 
        </complexType> 
    </element> 
</schema>

Appendix A
xdiff.xsd: XML Schema for Comparing Schemas for In-Place Evolution

A-37



A.6 Purchase-Order XML Schemas
The full listings of purchase-order XML schemas that are used in various examples are
presented.

Example A-1 shows an unannotated purchase-order XML schema.

Example A-1    Unannotated Purchase-Order XML Schema

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
  <xs:element name="PurchaseOrder" type="PurchaseOrderType"/>
  <xs:complexType name="PurchaseOrderType">
    <xs:sequence>
      <xs:element name="Reference" type="ReferenceType"/>
      <xs:element name="Actions" type="ActionsType"/>
      <xs:element name="Reject" type="RejectionType" minOccurs="0"/>
      <xs:element name="Requestor" type="RequestorType"/>
      <xs:element name="User" type="UserType"/>
      <xs:element name="CostCenter" type="CostCenterType"/>
      <xs:element name="ShippingInstructions" type="ShippingInstructionsType"/>
      <xs:element name="SpecialInstructions" type="SpecialInstructionsType"/>
      <xs:element name="LineItems" type="LineItemsType"/>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="LineItemsType">
    <xs:sequence>
      <xs:element name="LineItem" type="LineItemType" maxOccurs="unbounded"/>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="LineItemType">
    <xs:sequence>
      <xs:element name="Description" type="DescriptionType"/>
      <xs:element name="Part" type="PartType"/>
    </xs:sequence>
    <xs:attribute name="ItemNumber" type="xs:integer"/>
  </xs:complexType>
  <xs:complexType name="PartType">
    <xs:attribute name="Id">
      <xs:simpleType>
        <xs:restriction base="xs:string">
          <xs:minLength value="10"/>
          <xs:maxLength value="14"/>
        </xs:restriction>
      </xs:simpleType>
    </xs:attribute>
    <xs:attribute name="Quantity" type="moneyType"/>
    <xs:attribute name="UnitPrice" type="quantityType"/>
  </xs:complexType>
  <xs:simpleType name="ReferenceType">
    <xs:restriction base="xs:string">
      <xs:minLength value="18"/>
      <xs:maxLength value="30"/>
    </xs:restriction>
  </xs:simpleType>

Appendix A
Purchase-Order XML Schemas

A-38



  <xs:complexType name="ActionsType">
    <xs:sequence>
      <xs:element name="Action" maxOccurs="4">
        <xs:complexType>
          <xs:sequence>
            <xs:element name="User" type="UserType"/>
            <xs:element name="Date" type="DateType" minOccurs="0"/>
          </xs:sequence>
        </xs:complexType>
      </xs:element>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="RejectionType">
    <xs:all>
      <xs:element name="User" type="UserType" minOccurs="0"/>
      <xs:element name="Date" type="DateType" minOccurs="0"/>
      <xs:element name="Comments" type="CommentsType" minOccurs="0"/>
    </xs:all>
  </xs:complexType>
  <xs:complexType name="ShippingInstructionsType">
    <xs:sequence>
      <xs:element name="name" type="NameType" minOccurs="0"/>
      <xs:element name="address" type="AddressType" minOccurs="0"/>
      <xs:element name="telephone" type="TelephoneType" minOccurs="0"/>
    </xs:sequence>
  </xs:complexType>
  <xs:simpleType name="moneyType">
    <xs:restriction base="xs:decimal">
      <xs:fractionDigits value="2"/>
      <xs:totalDigits value="12"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="quantityType">
    <xs:restriction base="xs:decimal">
      <xs:fractionDigits value="4"/>
      <xs:totalDigits value="8"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="UserType">
    <xs:restriction base="xs:string">
      <xs:minLength value="0"/>
      <xs:maxLength value="10"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="RequestorType">
    <xs:restriction base="xs:string">
      <xs:minLength value="0"/>
      <xs:maxLength value="128"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="CostCenterType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="4"/>
    </xs:restriction>

Appendix A
Purchase-Order XML Schemas

A-39



  </xs:simpleType>
  <xs:simpleType name="VendorType">
    <xs:restriction base="xs:string">
      <xs:minLength value="0"/>
      <xs:maxLength value="20"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="PurchaseOrderNumberType">
    <xs:restriction base="xs:integer"/>
  </xs:simpleType>
  <xs:simpleType name="SpecialInstructionsType">
    <xs:restriction base="xs:string">
      <xs:minLength value="0"/>
      <xs:maxLength value="2048"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="NameType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="20"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="AddressType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="256"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="TelephoneType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="24"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="DateType">
    <xs:restriction base="xs:date"/>
  </xs:simpleType>
  <xs:simpleType name="CommentsType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="2048"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="DescriptionType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="256"/>
    </xs:restriction>
  </xs:simpleType>
</xs:schema> 

Example A-3 represents a modified version of Example A-2. The modification is used
in XML Schema Evolution to illustrate XML schema evolution. Example A-2 is the
complete listing of the annotated XML schema used in examples of XML Schema
Storage and Query: Basic.

Appendix A
Purchase-Order XML Schemas

A-40



Example A-2    Annotated Purchase-Order XML Schema

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
           xmlns:xdb="http://xmlns.oracle.com/xdb"
           version="1.0">
  <xs:element name="PurchaseOrder" type="PurchaseOrderType" xdb:defaultTable="PURCHASEORDER"/>
  <xs:complexType name="PurchaseOrderType" xdb:SQLType="PURCHASEORDER_T">
    <xs:sequence>
      <xs:element name="Reference" type="ReferenceType" minOccurs="1" xdb:SQLName="REFERENCE"/>
      <xs:element name="Actions" type="ActionsType" xdb:SQLName="ACTIONS"/>
      <xs:element name="Reject" type="RejectionType" minOccurs="0" xdb:SQLName="REJECTION"/>
      <xs:element name="Requestor" type="RequestorType" xdb:SQLName="REQUESTOR"/>
      <xs:element name="User" type="UserType" minOccurs="1" xdb:SQLName="USERID"/>
      <xs:element name="CostCenter" type="CostCenterType" xdb:SQLName="COST_CENTER"/>
      <xs:element name="ShippingInstructions" type="ShippingInstructionsType" 
                  xdb:SQLName="SHIPPING_INSTRUCTIONS"/>
      <xs:element name="SpecialInstructions" type="SpecialInstructionsType" 
                  xdb:SQLName="SPECIAL_INSTRUCTIONS"/>
      <xs:element name="LineItems" type="LineItemsType" xdb:SQLName="LINEITEMS"/>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="LineItemsType" xdb:SQLType="LINEITEMS_T">
    <xs:sequence>
      <xs:element name="LineItem" type="LineItemType" maxOccurs="unbounded" 
                  xdb:SQLName="LINEITEM" xdb:SQLCollType="LINEITEM_V"/>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="LineItemType" xdb:SQLType="LINEITEM_T">
    <xs:sequence>
      <xs:element name="Description" type="DescriptionType" 
                  xdb:SQLName="DESCRIPTION"/>
      <xs:element name="Part" type="PartType" xdb:SQLName="PART"/>
    </xs:sequence>
    <xs:attribute name="ItemNumber" type="xs:integer" xdb:SQLName="ITEMNUMBER" 
                  xdb:SQLType="NUMBER"/>
  </xs:complexType>
  <xs:complexType name="PartType" xdb:SQLType="PART_T">
    <xs:attribute name="Id" xdb:SQLName="PART_NUMBER" xdb:SQLType="VARCHAR2">
      <xs:simpleType>
        <xs:restriction base="xs:string">
          <xs:minLength value="10"/>
          <xs:maxLength value="14"/>
        </xs:restriction>
      </xs:simpleType>
    </xs:attribute>
    <xs:attribute name="Quantity" type="moneyType" xdb:SQLName="QUANTITY"/>
    <xs:attribute name="UnitPrice" type="quantityType" xdb:SQLName="UNITPRICE"/>
  </xs:complexType>
  <xs:simpleType name="ReferenceType">
    <xs:restriction base="xs:string">
      <xs:minLength value="18"/>
      <xs:maxLength value="30"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:complexType name="ActionsType" xdb:SQLType="ACTIONS_T">
    <xs:sequence>
      <xs:element name="Action" maxOccurs="4" xdb:SQLName="ACTION" xdb:SQLCollType="ACTION_V">
        <xs:complexType xdb:SQLType="actioN_t">
          <xs:sequence>
            <xs:element name="User" type="UserType" xdb:SQLName="ACTIONED_BY"/>
            <xs:element name="Date" type="DateType" minOccurs="0" xdb:SQLName="DATE_ACTIONED"/>
          </xs:sequence>
        </xs:complexType>
      </xs:element>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="RejectionType" xdb:SQLType="REJECTION_T">
    <xs:all>

Appendix A
Purchase-Order XML Schemas

A-41



      <xs:element name="User" type="UserType" minOccurs="0" xdb:SQLName="REJECTED_BY"/>
      <xs:element name="Date" type="DateType" minOccurs="0" xdb:SQLName="DATE_REJECTED"/>
      <xs:element name="Comments" type="CommentsType" minOccurs="0" xdb:SQLName="REASON_REJECTED"/>
    </xs:all>
  </xs:complexType>
  <xs:complexType name="ShippingInstructionsType" xdb:SQLType="SHIPPING_INSTRUCTIONS_T">
    <xs:sequence>
      <xs:element name="name" type="NameType" minOccurs="0" xdb:SQLName="SHIP_TO_NAME"/>
      <xs:element name="address" type="AddressType" minOccurs="0" xdb:SQLName="SHIP_TO_ADDRESS"/>
      <xs:element name="telephone" type="TelephoneType" minOccurs="0" xdb:SQLName="SHIP_TO_PHONE"/>
    </xs:sequence>
  </xs:complexType>
  <xs:simpleType name="moneyType">
    <xs:restriction base="xs:decimal">
      <xs:fractionDigits value="2"/>
      <xs:totalDigits value="12"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="quantityType">
    <xs:restriction base="xs:decimal">
      <xs:fractionDigits value="4"/>
      <xs:totalDigits value="8"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="UserType">
    <xs:restriction base="xs:string">
      <xs:minLength value="0"/>
      <xs:maxLength value="10"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="RequestorType">
    <xs:restriction base="xs:string">
      <xs:minLength value="0"/>
      <xs:maxLength value="128"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="CostCenterType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="4"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="VendorType">
    <xs:restriction base="xs:string">
      <xs:minLength value="0"/>
      <xs:maxLength value="20"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="PurchaseOrderNumberType">
    <xs:restriction base="xs:integer"/>
  </xs:simpleType>
  <xs:simpleType name="SpecialInstructionsType">
    <xs:restriction base="xs:string">
      <xs:minLength value="0"/>
      <xs:maxLength value="2048"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="NameType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="20"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="AddressType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="256"/>
    </xs:restriction>
  </xs:simpleType>

Appendix A
Purchase-Order XML Schemas

A-42



  <xs:simpleType name="TelephoneType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="24"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="DateType">
    <xs:restriction base="xs:date"/>
  </xs:simpleType>
  <xs:simpleType name="CommentsType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="2048"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="DescriptionType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="256"/>
    </xs:restriction>
  </xs:simpleType>
</xs:schema>

Example A-3 is the complete listing of the revised annotated XML schema presented
in Example 20-1. Text that is in bold face is additional or significantly different from
that in the schema of Example A-2.

Example A-3    Revised Annotated Purchase-Order XML Schema

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
           xmlns:xdb="http://xmlns.oracle.com/xdb"
           version="1.0">
  <xs:element
    name="PurchaseOrder" type="PurchaseOrderType"
    xdb:defaultTable="PURCHASEORDER"
    xdb:columnProps=
      "CONSTRAINT purchaseorder_pkey PRIMARY KEY (XMLDATA.reference),
       CONSTRAINT valid_email_address FOREIGN KEY (XMLDATA.userid)
         REFERENCES hr.employees (EMAIL)"
    xdb:tableProps=
      "VARRAY XMLDATA.ACTIONS.ACTION STORE AS TABLE ACTION_TABLE
        ((CONSTRAINT action_pkey PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$)))
       VARRAY XMLDATA.LINEITEMS.LINEITEM STORE AS TABLE LINEITEM_TABLE
        ((constraint LINEITEM_PKEY primary key (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$)))
       lob (XMLDATA.NOTES) STORE AS (ENABLE STORAGE IN ROW STORAGE(INITIAL 4K NEXT 32K))"/>
  <xs:complexType name="PurchaseOrderType" xdb:SQLType="PURCHASEORDER_T">
    <xs:sequence>
      <xs:element name="Actions" type="ActionsType" xdb:SQLName="ACTIONS"/>
      <xs:element name="Reject" type="RejectionType" minOccurs="0" xdb:SQLName="REJECTION"/>
      <xs:element name="Requestor" type="RequestorType" xdb:SQLName="REQUESTOR"/>
      <xs:element name="User" type="UserType" xdb:SQLName="USERID"/>
      <xs:element name="CostCenter" type="CostCenterType" xdb:SQLName="COST_CENTER"/> 
      <xs:element name="BillingAddress" type="AddressType" minOccurs="0"
                  xdb:SQLName="BILLING_ADDRESS"/> 
      <xs:element name="ShippingInstructions" type="ShippingInstructionsType"
                  xdb:SQLName="SHIPPING_INSTRUCTIONS"/> 
      <xs:element name="SpecialInstructions" type="SpecialInstructionsType"
                  xdb:SQLName="SPECIAL_INSTRUCTIONS"/> 
      <xs:element name="LineItems" type="LineItemsType" xdb:SQLName="LINEITEMS"/>
      <xs:element name="Notes" type="NotesType" minOccurs="0" xdb:SQLType="CLOB"
                  xdb:SQLName="NOTES"/> 
    </xs:sequence>
    <xs:attribute name="Reference" type="ReferenceType" use="required" xdb:SQLName="REFERENCE"/>
    <xs:attribute name="DateCreated" type="xs:dateTime" use="required"
                  xdb:SQLType="TIMESTAMP WITH TIME ZONE"/>
  </xs:complexType>
  <xs:complexType name="LineItemsType" xdb:SQLType="LINEITEMS_T">

Appendix A
Purchase-Order XML Schemas

A-43



    <xs:sequence>
      <xs:element name="LineItem" type="LineItemType" maxOccurs="unbounded" xdb:SQLName="LINEITEM"
                  xdb:SQLCollType="LINEITEM_V"/>  
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="LineItemType" xdb:SQLType="LINEITEM_T">
    <xs:sequence>
      <xs:element name="Part" type="PartType" xdb:SQLName="PART"/>
      <xs:element name="Quantity" type="quantityType"/>
    </xs:sequence>
    <xs:attribute name="ItemNumber" type="xs:integer" xdb:SQLName="ITEMNUMBER"
                  xdb:SQLType="NUMBER"/> 
  </xs:complexType>
  <xs:complexType name="PartType" xdb:SQLType="PART_T">
    <xs:simpleContent>
      <xs:extension base="UPCCodeType">
        <xs:attribute name="Description" type="DescriptionType" use="required"
                      xdb:SQLName="DESCRIPTION"/> 
        <xs:attribute name="UnitCost" type="moneyType" use="required"/>
      </xs:extension>
    </xs:simpleContent>
  </xs:complexType>
  <xs:simpleType name="ReferenceType">
    <xs:restriction base="xs:string">
      <xs:minLength value="18"/>
      <xs:maxLength value="30"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:complexType name="ActionsType" xdb:SQLType="ACTIONS_T">
    <xs:sequence>
      <xs:element name="Action" maxOccurs="4" xdb:SQLName="ACTION" xdb:SQLCollType="ACTION_V">
        <xs:complexType xdb:SQLType="ACTION_T">
          <xs:sequence>
            <xs:element name="User" type="UserType" xdb:SQLName="ACTIONED_BY"/>
            <xs:element name="Date" type="DateType" minOccurs="0" xdb:SQLName="DATE_ACTIONED"/>
          </xs:sequence>
        </xs:complexType>
      </xs:element>
    </xs:sequence>
  </xs:complexType>
  <xs:complexType name="RejectionType" xdb:SQLType="REJECTION_T">
    <xs:all>
      <xs:element name="User" type="UserType" minOccurs="0" xdb:SQLName="REJECTED_BY"/>
      <xs:element name="Date" type="DateType" minOccurs="0" xdb:SQLName="DATE_REJECTED"/>
      <xs:element name="Comments" type="CommentsType" minOccurs="0" xdb:SQLName="REASON_REJECTED"/>
    </xs:all>
  </xs:complexType>
  <xs:complexType name="ShippingInstructionsType" xdb:SQLType="SHIPPING_INSTRUCTIONS_T">
    <xs:sequence>
      <xs:element name="name" type="NameType" minOccurs="0" xdb:SQLName="SHIP_TO_NAME"/>
      <xs:choice>
        <xs:element name="address" type="AddressType" minOccurs="0"/>
        <xs:element name="fullAddress" type="FullAddressType" minOccurs="0"
                    xdb:SQLName="SHIP_TO_ADDRESS"/> 
      </xs:choice>
      <xs:element name="telephone" type="TelephoneType" minOccurs="0" xdb:SQLName="SHIP_TO_PHONE"/>
    </xs:sequence>
  </xs:complexType>
  <xs:simpleType name="moneyType">
    <xs:restriction base="xs:decimal">
      <xs:fractionDigits value="2"/>
      <xs:totalDigits value="12"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="quantityType">
    <xs:restriction base="xs:decimal">
      <xs:fractionDigits value="4"/>
      <xs:totalDigits value="8"/>
    </xs:restriction>

Appendix A
Purchase-Order XML Schemas

A-44



  </xs:simpleType>
  <xs:simpleType name="UserType">
    <xs:restriction base="xs:string">
      <xs:minLength value="0"/>
      <xs:maxLength value="10"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="RequestorType">
    <xs:restriction base="xs:string">
      <xs:minLength value="0"/>
      <xs:maxLength value="128"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="CostCenterType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="4"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="VendorType">
    <xs:restriction base="xs:string">
      <xs:minLength value="0"/>
      <xs:maxLength value="20"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="PurchaseOrderNumberType">
    <xs:restriction base="xs:integer"/>
  </xs:simpleType>
  <xs:simpleType name="SpecialInstructionsType">
    <xs:restriction base="xs:string">
      <xs:minLength value="0"/>
      <xs:maxLength value="2048"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="NameType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="20"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="FullAddressType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="256"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="TelephoneType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="24"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="DateType">
          <xs:restriction base="xs:date"/>
  </xs:simpleType>
  <xs:simpleType name="CommentsType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="2048"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="DescriptionType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="256"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:complexType name="AddressType" xdb:SQLType="ADDRESS_T">
    <xs:sequence>

Appendix A
Purchase-Order XML Schemas

A-45



      <xs:element name="StreetLine1" type="StreetType"/>
      <xs:element name="StreetLine2" type="StreetType" minOccurs="0"/>
      <xs:element name="City" type="CityType"/>
      <xs:choice>
        <xs:sequence>
          <xs:element name="State" type="StateType"/>
          <xs:element name="ZipCode" type="ZipCodeType"/>
        </xs:sequence>
        <xs:sequence>
          <xs:element name="Province" type="ProvinceType"/>
          <xs:element name="PostCode" type="PostCodeType"/>
        </xs:sequence>
        <xs:sequence>
          <xs:element name="County" type="CountyType"/>
          <xs:element name="Postcode" type="PostCodeType"/>
        </xs:sequence>
      </xs:choice>
      <xs:element name="Country" type="CountryType"/>
    </xs:sequence>
  </xs:complexType>
  <xs:simpleType name="StreetType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="128"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="CityType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="64"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="StateType">
    <xs:restriction base="xs:string">
      <xs:minLength value="2"/>
      <xs:maxLength value="2"/>
      <xs:enumeration value="AK"/>
      <xs:enumeration value="AL"/>
      <xs:enumeration value="AR"/>
      <xs:enumeration value="AS"/>
      <xs:enumeration value="AZ"/>
      <xs:enumeration value="CA"/>
      <xs:enumeration value="CO"/>
      <xs:enumeration value="CT"/>
      <xs:enumeration value="DC"/>
      <xs:enumeration value="DE"/>
      <xs:enumeration value="FL"/>
      <xs:enumeration value="FM"/>
      <xs:enumeration value="GA"/>
      <xs:enumeration value="GU"/>
      <xs:enumeration value="HI"/>
      <xs:enumeration value="IA"/>
      <xs:enumeration value="ID"/>
      <xs:enumeration value="IL"/>
      <xs:enumeration value="IN"/>
      <xs:enumeration value="KS"/>
      <xs:enumeration value="KY"/>
      <xs:enumeration value="LA"/>
      <xs:enumeration value="MA"/>
      <xs:enumeration value="MD"/>
      <xs:enumeration value="ME"/>
      <xs:enumeration value="MH"/>
      <xs:enumeration value="MI"/>
      <xs:enumeration value="MN"/>
      <xs:enumeration value="MO"/>
      <xs:enumeration value="MP"/>
      <xs:enumeration value="MQ"/>
      <xs:enumeration value="MS"/>
      <xs:enumeration value="MT"/>

Appendix A
Purchase-Order XML Schemas

A-46



      <xs:enumeration value="NC"/>
      <xs:enumeration value="ND"/>
      <xs:enumeration value="NE"/>
      <xs:enumeration value="NH"/>
      <xs:enumeration value="NJ"/>
      <xs:enumeration value="NM"/>
      <xs:enumeration value="NV"/>
      <xs:enumeration value="NY"/>
      <xs:enumeration value="OH"/>
      <xs:enumeration value="OK"/>
      <xs:enumeration value="OR"/>
      <xs:enumeration value="PA"/>
      <xs:enumeration value="PR"/>
      <xs:enumeration value="PW"/>
      <xs:enumeration value="RI"/>
      <xs:enumeration value="SC"/>
      <xs:enumeration value="SD"/>
      <xs:enumeration value="TN"/>
      <xs:enumeration value="TX"/>
      <xs:enumeration value="UM"/>
      <xs:enumeration value="UT"/>
      <xs:enumeration value="VA"/>
      <xs:enumeration value="VI"/>
      <xs:enumeration value="VT"/>
      <xs:enumeration value="WA"/>
      <xs:enumeration value="WI"/>
      <xs:enumeration value="WV"/>
      <xs:enumeration value="WY"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="ZipCodeType">
    <xs:restriction base="xs:string">
      <xs:pattern value="\d{5}"/>
      <xs:pattern value="\d{5}-\d{4}"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="CountryType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="64"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="CountyType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="32"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="PostCodeType">
    <xs:restriction base="xs:string">
      <xs:minLength value="1"/>
      <xs:maxLength value="12"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="ProvinceType">
    <xs:restriction base="xs:string">
      <xs:minLength value="2"/>
      <xs:maxLength value="2"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="NotesType">
    <xs:restriction base="xs:string">
      <xs:maxLength value="32767"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="UPCCodeType">
    <xs:restriction base="xs:string">
      <xs:minLength value="11"/>
      <xs:maxLength value="14"/>

Appendix A
Purchase-Order XML Schemas

A-47



      <xs:pattern value="\d{11}"/>
      <xs:pattern value="\d{12}"/>
      <xs:pattern value="\d{13}"/>
      <xs:pattern value="\d{14}"/>
    </xs:restriction>
  </xs:simpleType>
</xs:schema>

A.7 XSLT Stylesheet Example, PurchaseOrder.xsl
The full listing is presented of XSLT stylesheet PurchaseOrder.xsl, which is used in
various examples.

Example A-4    PurchaseOrder.xsl XSLT Stylesheet

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"  
                xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
                xmlns:xdb="http://xmlns.oracle.com/xdb" 
                xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <xsl:template match="/">
    <html>
      <head/>
      <body bgcolor="#003333" text="#FFFFCC" link="#FFCC00"             
            vlink="#66CC99" alink="#669999">
        <FONT FACE="Arial, Helvetica, sans-serif">
          <xsl:for-each select="PurchaseOrder"/>
          <xsl:for-each select="PurchaseOrder">
            <center>
              <span style="font-family:Arial; font-weight:bold">
                <FONT COLOR="#FF0000">
                  <B>Purchase Order </B>
                </FONT>
              </span>
            </center>
            <br/>
            <center>
              <xsl:for-each select="Reference">
                <span style="font-family:Arial; font-weight:bold">
                  <xsl:apply-templates/>
                </span>
              </xsl:for-each>
            </center>
          </xsl:for-each>
          <P>
            <xsl:for-each select="PurchaseOrder">
              <br/>
            </xsl:for-each>
            <P/>
            <P>
              <xsl:for-each select="PurchaseOrder">
                <br/>
              </xsl:for-each>
            </P>
          </P>

Appendix A
XSLT Stylesheet Example, PurchaseOrder.xsl

A-48



          <xsl:for-each select="PurchaseOrder"/>
          <xsl:for-each select="PurchaseOrder">
            <table border="0" width="100%" BGCOLOR="#000000">
              <tbody>
                <tr>
                  <td WIDTH="296">
                    <P>
                      <B>
                        <FONT SIZE="+1" COLOR="#FF0000" 
                         FACE="Arial, Helvetica, sans-serif">Internal
                        </FONT>
                      </B>
                    </P>
                    <table border="0" width="98%" BGCOLOR="#000099">
                      <tbody>
                        <tr>
                          <td WIDTH="49%">
                            <B>
                              <FONT COLOR="#FFFF00">Actions</FONT>
                            </B>
                          </td>
                          <td WIDTH="51%">
                            <xsl:for-each select="Actions">
                              <xsl:for-each select="Action">
                                <table border="1" WIDTH="143">
                                  <xsl:if test="position()=1">
                                    <thead>
                                      <tr>
                                        <td HEIGHT="21">
                                          <FONT  
                                           COLOR="#FFFF00">User</FONT>
                                        </td>
                                        <td HEIGHT="21">
                                          <FONT
                                           COLOR="#FFFF00">Date</FONT>
                                        </td>
                                      </tr>
                                    </thead>
                                  </xsl:if>
                                  <tbody>
                                    <tr>
                                      <td>
                                        <xsl:for-each select="User">
                                          <xsl:apply-templates/>
                                        </xsl:for-each>
                                      </td>
                                      <td>
                                        <xsl:for-each select="Date">
                                          <xsl:apply-templates/>
                                        </xsl:for-each>
                                      </td>
                                    </tr>
                                  </tbody>
                                </table>
                              </xsl:for-each>

Appendix A
XSLT Stylesheet Example, PurchaseOrder.xsl

A-49



                            </xsl:for-each>
                          </td>
                        </tr>
                        <tr>
                          <td WIDTH="49%">
                            <B>
                              <FONT COLOR="#FFFF00">Requestor</FONT>
                            </B>
                          </td>
                          <td WIDTH="51%">
                            <xsl:for-each select="Requestor">
                              <xsl:apply-templates/>
                            </xsl:for-each>
                          </td>
                        </tr>
                        <tr>
                          <td WIDTH="49%">
                            <B>
                              <FONT COLOR="#FFFF00">User</FONT>
                            </B>
                          </td>
                          <td WIDTH="51%">
                            <xsl:for-each select="User">
                              <xsl:apply-templates/>
                            </xsl:for-each>
                          </td>
                        </tr>
                        <tr>
                          <td WIDTH="49%">
                            <B>
                              <FONT COLOR="#FFFF00">Cost Center</FONT>
                            </B>
                          </td>
                          <td WIDTH="51%">
                            <xsl:for-each select="CostCenter">
                              <xsl:apply-templates/>
                            </xsl:for-each>
                          </td>
                        </tr>
                      </tbody>
                    </table>
                  </td>
                  <td width="93"/>
                  <td valign="top" WIDTH="340">
                    <B>
                      <FONT COLOR="#FF0000">
                        <FONT SIZE="+1">Ship To</FONT>
                      </FONT>
                    </B>
                    <xsl:for-each select="ShippingInstructions">
                      <xsl:if test="position()=1"/>
                    </xsl:for-each>
                    <xsl:for-each select="ShippingInstructions">
                      <xsl:if test="position()=1">
                        <table border="0" BGCOLOR="#999900">

Appendix A
XSLT Stylesheet Example, PurchaseOrder.xsl

A-50



                          <tbody>
                            <tr>
                              <td WIDTH="126" HEIGHT="24">
                                <B>Name</B>
                              </td>
                              <xsl:for-each
                                   select="../ShippingInstructions">
                                <td WIDTH="218" HEIGHT="24">
                                  <xsl:for-each select="name">
                                    <xsl:apply-templates/>
                                  </xsl:for-each>
                                </td>
                              </xsl:for-each>
                            </tr>
                            <tr>
                              <td WIDTH="126" HEIGHT="34">
                                <B>Address</B>
                              </td>
                              <xsl:for-each 
                                   select="../ShippingInstructions">
                                <td WIDTH="218" HEIGHT="34">
                                  <xsl:for-each select="address">
                                    <span style="white-space:pre">
                                      <xsl:apply-templates/>
                                    </span>
                                  </xsl:for-each>
                                </td>
                              </xsl:for-each>
                            </tr>
                            <tr>
                              <td WIDTH="126" HEIGHT="32">
                                <B>Telephone</B>
                              </td>
                              <xsl:for-each  
                                   select="../ShippingInstructions">
                                <td WIDTH="218" HEIGHT="32">
                                  <xsl:for-each select="telephone">
                                    <xsl:apply-templates/>
                                  </xsl:for-each>
                                </td>
                              </xsl:for-each>
                            </tr>
                          </tbody>
                        </table>
                      </xsl:if>
                    </xsl:for-each>
                  </td>
                </tr>
              </tbody>
            </table>
            <br/>
            <B>
              <FONT COLOR="#FF0000" SIZE="+1">Items:</FONT>
            </B>
            <br/>

Appendix A
XSLT Stylesheet Example, PurchaseOrder.xsl

A-51



            <br/>
            <table border="0">
              <xsl:for-each select="LineItems">
                <xsl:for-each select="LineItem">
                  <xsl:if test="position()=1">
                    <thead>
                      <tr bgcolor="#C0C0C0">
                        <td>
                          <FONT COLOR="#FF0000">
                            <B>ItemNumber</B>
                          </FONT>
                        </td>
                        <td>
                          <FONT COLOR="#FF0000">
                            <B>Description</B>
                          </FONT>
                        </td>
                        <td>
                          <FONT COLOR="#FF0000">
                            <B>PartId</B>
                          </FONT>
                        </td>
                        <td>
                          <FONT COLOR="#FF0000">
                            <B>Quantity</B>
                          </FONT>
                        </td>
                        <td>
                          <FONT COLOR="#FF0000">
                            <B>Unit Price</B>
                          </FONT>
                        </td>
                        <td>
                          <FONT COLOR="#FF0000">
                            <B>Total Price</B>
                          </FONT>
                        </td>
                      </tr>
                    </thead>
                  </xsl:if>
                  <tbody>
                    <tr bgcolor="#DADADA">
                      <td>
                        <FONT COLOR="#000000">
                          <xsl:for-each select="@ItemNumber">
                            <xsl:value-of select="."/>
                          </xsl:for-each>
                        </FONT>
                      </td>
                      <td>
                        <FONT COLOR="#000000">
                          <xsl:for-each select="Description">
                            <xsl:apply-templates/>
                          </xsl:for-each>
                        </FONT>

Appendix A
XSLT Stylesheet Example, PurchaseOrder.xsl

A-52



                      </td>
                      <td>
                        <FONT COLOR="#000000">
                          <xsl:for-each select="Part">
                            <xsl:for-each select="@Id">
                              <xsl:value-of select="."/>
                            </xsl:for-each>
                          </xsl:for-each>
                        </FONT>
                      </td>
                      <td>
                        <FONT COLOR="#000000">
                          <xsl:for-each select="Part">
                            <xsl:for-each select="@Quantity">
                              <xsl:value-of select="."/>
                            </xsl:for-each>
                          </xsl:for-each>
                        </FONT>
                      </td>
                      <td>
                        <FONT COLOR="#000000">
                          <xsl:for-each select="Part">
                            <xsl:for-each select="@UnitPrice">
                              <xsl:value-of select="."/>
                            </xsl:for-each>
                          </xsl:for-each>
                        </FONT>
                      </td>
                      <td>
                        <FONT FACE="Arial, Helvetica, sans-serif" 
                              COLOR="#000000">
                          <xsl:for-each select="Part">
                            <xsl:value-of 
select="@Quantity*@UnitPrice"/>
                          </xsl:for-each>
                        </FONT>
                      </td>
                    </tr>
                  </tbody>
                </xsl:for-each>
              </xsl:for-each>
            </table>
          </xsl:for-each>
        </FONT>
      </body>
    </html>
  </xsl:template>
</xsl:stylesheet>

Appendix A
XSLT Stylesheet Example, PurchaseOrder.xsl

A-53



A.8 Loading XML Data Using C (OCI)
A full listing of a C program that inserts XML data into an XMLType table is presented.

The same program is partially listed in Loading XML Content Using C.

Example A-5    Inserting XML Data into an XMLType Table Using C

#include "stdio.h"
#include <xml.h>
#include <stdlib.h>
#include <string.h>
#include <ocixmldb.h>
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIServer *srvhp;
OCIDuration dur;
OCISession *sesshp;
oratext *username = "QUINE";
oratext *password = "************";      /* Replace with real password */
oratext *filename = "AMCEWEN-20021009123336171PDT.xml";
oratext *schemaloc = "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd";
 
/* Execute a SQL statement that binds XML data */
sword exec_bind_xml(OCISvcCtx *svchp, OCIError *errhp, OCIStmt *stmthp,
                    void *xml,        OCIType *xmltdo, OraText *sqlstmt)
{
  OCIBind *bndhp1 = (OCIBind *) 0;
  sword  status = 0;
  OCIInd ind = OCI_IND_NOTNULL;
  OCIInd *indp = &ind;
  if(status = OCIStmtPrepare(stmthp, errhp, (OraText *)sqlstmt,
                             (ub4)strlen((const char *)sqlstmt),
                             (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
    return OCI_ERROR;
  if(status = OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 1, (dvoid *) 0,
                           (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0,
                           (ub2 *)0, (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
    return OCI_ERROR;
  if(status = OCIBindObject(bndhp1, errhp, (CONST OCIType *) xmltdo,
                            (dvoid **) &xml, (ub4 *) 0,
                            (dvoid **) &indp, (ub4 *) 0))
    return OCI_ERROR;
  if(status = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
                             (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
                             (ub4) OCI_DEFAULT))
    return OCI_ERROR;
  return OCI_SUCCESS;
}
 
/* Initialize OCI handles, and connect  */
sword init_oci_connect()
{
  sword status;
  if (OCIEnvCreate((OCIEnv **) &(envhp), (ub4) OCI_OBJECT,
                   (dvoid *) 0, (dvoid * (*)(dvoid *,size_t)) 0,
                   (dvoid * (*)(dvoid *, dvoid *, size_t)) 0,
                   (void (*)(dvoid *, dvoid *)) 0, (size_t) 0, (dvoid **) 0))
    {
      printf("FAILED: OCIEnvCreate()\n");
      return OCI_ERROR;
    }
  /* Allocate error handle */

Appendix A
Loading XML Data Using C (OCI)

A-54



  if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &(errhp),
                     (ub4) OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0))
    {
      printf("FAILED: OCIHandleAlloc() on errhp\n");
      return OCI_ERROR;
    }
  /* Allocate server handle */
  if (status = OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp,
                              (ub4) OCI_HTYPE_SERVER, (size_t) 0, (dvoid **) 0))
    {
      printf("FAILED: OCIHandleAlloc() on srvhp\n");
      return OCI_ERROR;
    }
  /* Allocate service context handle */
  if (status = OCIHandleAlloc((dvoid *) envhp,
                              (dvoid **) &(svchp), (ub4) OCI_HTYPE_SVCCTX,
                              (size_t) 0, (dvoid **) 0))
    {
      printf("FAILED: OCIHandleAlloc() on svchp\n");
      return OCI_ERROR;
    }
  /* Allocate session handle */
  if (status = OCIHandleAlloc((dvoid *) envhp, (dvoid **) &sesshp ,
                              (ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0))
    {
      printf("FAILED: OCIHandleAlloc() on sesshp\n");
      return OCI_ERROR;
    }
  /* Allocate statement handle */
  if (OCIHandleAlloc((dvoid *)envhp, (dvoid **) &stmthp,
                     (ub4)OCI_HTYPE_STMT, (CONST size_t) 0, (dvoid **) 0))
    {
      printf("FAILED: OCIHandleAlloc() on stmthp\n");
      return status;
    }
  if (status = OCIServerAttach((OCIServer *) srvhp, (OCIError *) errhp,
                               (CONST oratext *)"", 0, (ub4) OCI_DEFAULT))
    {
      printf("FAILED: OCIServerAttach() on srvhp\n");
      return OCI_ERROR;
    }
  /* Set server attribute to service context */
  if (status = OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
                          (dvoid *) srvhp, (ub4) 0, (ub4) OCI_ATTR_SERVER,
                          (OCIError *) errhp))
    {
      printf("FAILED: OCIAttrSet() on svchp\n");
      return OCI_ERROR;
    }
  /* Set user attribute to session */
  if (status = OCIAttrSet((dvoid *)sesshp, (ub4) OCI_HTYPE_SESSION,
                          (dvoid *)username,
                          (ub4) strlen((const char *)username),
                          (ub4) OCI_ATTR_USERNAME, (OCIError *) errhp))
    {
      printf("FAILED: OCIAttrSet() on authp for user\n");
      return OCI_ERROR;
    }
  /* Set password attribute to session */
  if (status = OCIAttrSet((dvoid *) sesshp, (ub4) OCI_HTYPE_SESSION,
                          (dvoid *)password,
                          (ub4) strlen((const char *)password),
                          (ub4) OCI_ATTR_PASSWORD, (OCIError *) errhp))
    {
      printf("FAILED: OCIAttrSet() on authp for password\n");
      return OCI_ERROR;
    }
  /* Begin a session  */
  if (status = OCISessionBegin((OCISvcCtx *) svchp,

Appendix A
Loading XML Data Using C (OCI)

A-55



                               (OCIError *) errhp,
                               (OCISession *) sesshp, (ub4) OCI_CRED_RDBMS,
                               (ub4) OCI_STMT_CACHE))
    {
      printf("FAILED: OCISessionBegin(). Make sure database is up and the username/password is valid. \n");
      return OCI_ERROR;
    }
  /* Set session attribute to service context */
  if (status = OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
                          (dvoid *)sesshp, (ub4) 0, (ub4) OCI_ATTR_SESSION,
                          (OCIError *) errhp))
    {
      printf("FAILED: OCIAttrSet() on svchp\n");
      return OCI_ERROR;
    }
}

/* Free OCI handles, and disconnect                       */
void free_oci()
{
  sword  status = 0;
 
  /* End the session */
  if (status = OCISessionEnd((OCISvcCtx *)svchp, (OCIError *)errhp,
                             (OCISession *)sesshp, (ub4) OCI_DEFAULT))
    {
      if (envhp)
        OCIHandleFree((dvoid *)envhp, OCI_HTYPE_ENV);
      return;
    }
  /* Detach from the server */
  if (status = OCIServerDetach((OCIServer *)srvhp, (OCIError *)errhp,
                               (ub4)OCI_DEFAULT))
    {
      if (envhp)
        OCIHandleFree((dvoid *)envhp, OCI_HTYPE_ENV);
      return;
    }
  /* Free the handles */
  if (stmthp) OCIHandleFree((dvoid *)stmthp, (ub4) OCI_HTYPE_STMT);
  if (sesshp) OCIHandleFree((dvoid *)sesshp, (ub4) OCI_HTYPE_SESSION);
  if (svchp) OCIHandleFree((dvoid *)svchp, (ub4) OCI_HTYPE_SVCCTX);
  if (srvhp) OCIHandleFree((dvoid *)srvhp, (ub4) OCI_HTYPE_SERVER);
  if (errhp) OCIHandleFree((dvoid *)errhp, (ub4) OCI_HTYPE_ERROR);
  if (envhp) OCIHandleFree((dvoid *)envhp, (ub4) OCI_HTYPE_ENV);
  return;
}
 
void main()
{
  OCIType *xmltdo;
  xmldocnode  *doc;
  ocixmldbparam params[1];
  xmlerr       err;
  xmlctx  *xctx;
  oratext *ins_stmt;
  sword    status;
  xmlnode *root;
  oratext buf[10000];
 
  /* Initialize envhp, svchp, errhp, dur, stmthp */
  init_oci_connect();
 
  /* Get an XML context */
  params[0].name_ocixmldbparam = XCTXINIT_OCIDUR;
  params[0].value_ocixmldbparam = &dur;
  xctx = OCIXmlDbInitXmlCtx(envhp, svchp, errhp, params, 1);
  if (!(doc = XmlLoadDom(xctx, &err, "file", filename,
                         "schema_location", schemaloc, NULL)))

Appendix A
Loading XML Data Using C (OCI)

A-56



    {
      printf("Parse failed.\n");
      return;
    }
  else
    printf("Parse succeeded.\n");
  root = XmlDomGetDocElem(xctx, doc);
  printf("The xml document is :\n");
  XmlSaveDom(xctx, &err, (xmlnode *)doc, "buffer", buf, "buffer_length", 10000, NULL);
  printf("%s\n", buf);
 
  /* Insert the document into my_table */
  ins_stmt = (oratext *)"insert into purchaseorder values (:1)";
  status = OCITypeByName(envhp, errhp, svchp, (const text *) "SYS",
                         (ub4) strlen((const char *)"SYS"), (const text *) "XMLTYPE",
                         (ub4) strlen((const char *)"XMLTYPE"), (CONST text *) 0,
                         (ub4) 0, OCI_DURATION_SESSION, OCI_TYPEGET_HEADER,
                         (OCIType **) &xmltdo);
  if (status == OCI_SUCCESS)
    {
      status = exec_bind_xml(svchp, errhp, stmthp, (void *)doc,
                             xmltdo, ins_stmt);
    }
  if (status == OCI_SUCCESS)
    printf ("Insert successful\n");
  else
    printf ("Insert failed\n");
 
  /* Free XML instances */
  if (doc) XmlFreeDocument((xmlctx *)xctx, (xmldocnode *)doc);

  /* Free XML CTX */
  OCIXmlDbFreeXmlCtx(xctx);
  free_oci();
}

A.9 Initializing and Terminating an XML Context (OCI)
An example shows how to use OCI functions OCIXmlDbInitXmlCtx() and
OCIXmlDbFreeXmlCtx() to initialize and terminate an XML context. It constructs an
XML document using the C DOM API and saves it to the database.

Example A-6 is partially listed in C DOM API for XMLType and Initializing and
Terminating an XML Context. It assumes that the following SQL code has first been
executed to create table my_table in database schema CAPIUSER:

CONNECT CAPIUSER
Enter password: <password>

Connected.

CREATE TABLE my_table OF XMLType;

Example A-6    Using OCIXmlDbInitXmlCtx() and OCIXmlDbFreeXmlCtx()

#ifndef S_ORACLE
#endif
#ifndef ORATYPES_ORACLE
#include <oratypes.h>
#endif
#ifndef XML_ORACLE
#include <xml.h>

Appendix A
Initializing and Terminating an XML Context (OCI)

A-57



#endif
#ifndef OCIXML_ORACLE
#include <ocixml.h>
#endif
#ifndef OCI_ORACLE
#include <oci.h>
#endif
#include <string.h>
 
typedef struct test_ctx {
        OCIEnv *envhp;
        OCIError *errhp;
        OCISvcCtx *svchp;
        OCIStmt *stmthp;
        OCIServer *srvhp;
        OCIDuration dur;
        OCISession *sesshp;
        oratext *username;
        oratext *password;
} test_ctx;
 
/* Helper function 1: execute a sql statement which binds xml data */
static sword exec_bind_xml(OCISvcCtx *svchp,
                           OCIError *errhp,
                           OCIStmt *stmthp,
                           void *xml,
                           OCIType *xmltdo,
                           OraText *sqlstmt);
 
/* Helper function 2: Initialize OCI handles and connect */
static sword init_oci_handles(test_ctx *ctx);
 
/* Helper function 3: Free OCI handles and disconnect */
static sword free_oci_handles(test_ctx *ctx);
 
void main()
{
  test_ctx temp_ctx;
  test_ctx *ctx = &temp_ctx;
  OCIType *xmltdo = (OCIType *) 0;
  xmldocnode *doc = (xmldocnode *)0;
  ocixmldbparam params[1];
  xmlnode *quux, *foo, *foo_data, *top;
  xmlerr err;
  sword status = 0;
  xmlctx *xctx;
 
  oratext ins_stmt[] = "insert into my_table values (:1)"; 
  oratext tlpxml_test_sch[] = "<TOP/>";
  ctx->username = (oratext *)"CAPIUSER";
  ctx->password = (oratext *)"************";   /* Replace with real password */
 
  /* Initialize envhp, svchp, errhp, dur, stmthp */
  init_oci_handles(ctx);
 
  /* Get an xml context */
  params[0].name_ocixmldbparam = XCTXINIT_OCIDUR;
  params[0].value_ocixmldbparam = &ctx->dur;
  xctx = OCIXmlDbInitXmlCtx(ctx->envhp, ctx->svchp, ctx->errhp, params, 1);
 
  /* Start processing - first, check that this DOM supports XML 1.0 */
  printf("\n\nSupports XML 1.0? : %s\n",
         XmlHasFeature(xctx, (oratext *) "xml", (oratext *) "1.0") ?
         "YES" : "NO");
 
  /* Parse a document */
  if (!(doc = XmlLoadDom(xctx, &err, "buffer", tlpxml_test_sch,
                         "buffer_length", sizeof(tlpxml_test_sch)-1,
                         "validate", TRUE, NULL)))

Appendix A
Initializing and Terminating an XML Context (OCI)

A-58



  {
    printf("Parse failed, code %d\n", err);
  }
  else
  {
    /* Get the document element */
    top = (xmlnode *)XmlDomGetDocElem(xctx, doc);
 
    /* Print out the top element */
    printf("\n\nOriginal top element is :\n");   
    XmlSaveDom(xctx, &err, top, "stdio", stdout, NULL);
 
    /* Print out the document.  The changes are reflected here */
    printf("\n\nOriginal document is :\n");
    XmlSaveDom(xctx, &err, (xmlnode *)doc, "stdio", stdout, NULL);
 
    /* Create some elements and add them to the document */
    quux = (xmlnode *) XmlDomCreateElem(xctx ,doc, (oratext *) "QUUX");
    foo = (xmlnode *) XmlDomCreateElem(xctx, doc, (oratext *) "FOO");
    foo_data = (xmlnode *) XmlDomCreateText(xctx, doc, (oratext *) "data");
    foo_data = XmlDomAppendChild(xctx, (xmlnode *) foo, (xmlnode *) foo_data);
    foo = XmlDomAppendChild(xctx, quux, foo);
    quux = XmlDomAppendChild(xctx, top, quux);
 
    /* Print out the top element */
    printf("\n\nNow the top element is :\n");   
    XmlSaveDom(xctx, &err, top, "stdio", stdout, NULL);
 
    /* Print out the document. The changes are reflected here */
    printf("\n\nNow the document is :\n");
    XmlSaveDom(xctx, &err, (xmlnode *)doc, "stdio", stdout, NULL);
 
    /* Insert the document into my_table */
    status = OCITypeByName(ctx->envhp, ctx->errhp, ctx->svchp, 
                           (const text *) "SYS", (ub4) strlen((char *)"SYS"), 
                           (const text *) "XMLTYPE",
                           (ub4) strlen((char *)"XMLTYPE"), (CONST text *) 0,
                           (ub4) 0, OCI_DURATION_SESSION, OCI_TYPEGET_HEADER,
                           (OCIType **) &xmltdo);
    if (status == OCI_SUCCESS)
    {
      exec_bind_xml(ctx->svchp, ctx->errhp, ctx->stmthp, (void *)doc, xmltdo, 
                    ins_stmt);
    }
  }
  /* Free xml ctx */
  OCIXmlDbFreeXmlCtx(xctx);
 
  /* Free envhp, svchp, errhp, stmthp */
  free_oci_handles(ctx);
}

/* Helper function 1: execute a SQL statement that binds xml data */
static sword exec_bind_xml(OCISvcCtx *svchp,
                           OCIError *errhp,
                           OCIStmt *stmthp,
                           void *xml,
                           OCIType *xmltdo,
                           OraText *sqlstmt)
{
  OCIBind *bndhp1 = (OCIBind *) 0;
  sword status = 0;
  OCIInd ind = OCI_IND_NOTNULL;
  OCIInd *indp = &ind;
  if(status = OCIStmtPrepare(stmthp, errhp, (OraText *)sqlstmt,
                             (ub4)strlen((char *)sqlstmt),
                             (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT)) {
    printf("Failed OCIStmtPrepare\n");
    return OCI_ERROR;

Appendix A
Initializing and Terminating an XML Context (OCI)

A-59



  }
  if(status = OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 1, (dvoid *) 0,
                           (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0,
                           (ub2 *)0, (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)) {
    printf("Failed OCIBindByPos\n");
    return OCI_ERROR;
  }
  if(status = OCIBindObject(bndhp1, errhp, (CONST OCIType *) xmltdo, (dvoid **)
                            &xml,
                            (ub4 *) 0, (dvoid **) &indp, (ub4 *) 0)) {
    printf("Failed OCIBindObject\n");
    return OCI_ERROR;
  }
  if(status = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
                             (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
                             (ub4) OCI_DEFAULT)) {
    printf("Failed OCIStmtExecute\n");
    return OCI_ERROR;
  }
  return OCI_SUCCESS;
}

/* Helper function 2: Initialize OCI handles and connect */
static sword init_oci_handles(test_ctx *ctx)
{
  sword status;
  ctx->dur = OCI_DURATION_SESSION;
  if (OCIEnvCreate((OCIEnv **) &(ctx->envhp), (ub4) OCI_OBJECT,
                   (dvoid *) 0, (dvoid * (*)(dvoid *,size_t)) 0,
                   (dvoid * (*)(dvoid *, dvoid *, size_t)) 0,
                   (void (*)(dvoid *, dvoid *)) 0, (size_t) 0, (dvoid **) 0))
  {
    printf("FAILED: OCIEnvCreate()\n");
    return OCI_ERROR;
  }
  /* Allocate error handle */
  if (OCIHandleAlloc((dvoid *) ctx->envhp, (dvoid **) &(ctx->errhp),
                     (ub4) OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0))
  {
    printf("FAILED: OCIHandleAlloc() on errhp\n");
    return OCI_ERROR;
  }
  /* Allocate server handle */
  if (status = OCIHandleAlloc((dvoid *) ctx->envhp, (dvoid **) &ctx->srvhp,
                           (ub4) OCI_HTYPE_SERVER, (size_t) 0, (dvoid **) 0))
  {
    printf("FAILED: OCIHandleAlloc() on srvhp\n");
    return OCI_ERROR;
  }
  /* Allocate service context handle */
  if (status = OCIHandleAlloc((dvoid *) ctx->envhp,
                              (dvoid **) &(ctx->svchp), (ub4) OCI_HTYPE_SVCCTX,
                              (size_t) 0, (dvoid **) 0))
  {
    printf("FAILED: OCIHandleAlloc() on svchp\n");
    return OCI_ERROR;
  }
  /* Allocate session handle */
  if (status = OCIHandleAlloc((dvoid *) ctx->envhp, (dvoid **) &ctx->sesshp ,
                           (ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0))
  {
    printf("FAILED: OCIHandleAlloc() on sesshp\n");
    return OCI_ERROR;
  }
  /* Allocate statement handle */
  if (OCIHandleAlloc((dvoid *)ctx->envhp, (dvoid **) &ctx->stmthp,
                     (ub4)OCI_HTYPE_STMT, (CONST size_t) 0, (dvoid **) 0))
  {
    printf("FAILED: OCIHandleAlloc() on stmthp\n");

Appendix A
Initializing and Terminating an XML Context (OCI)

A-60



    return status;
  }
  if (status = OCIServerAttach((OCIServer *) ctx->srvhp, (OCIError *) ctx->errhp,
                               (CONST oratext *)"", 0, (ub4) OCI_DEFAULT))
  {
    printf("FAILED: OCIServerAttach() on srvhp\n");
    return OCI_ERROR;
  }
  /* Set server attribute to service context */
  if (status = OCIAttrSet((dvoid *) ctx->svchp, (ub4) OCI_HTYPE_SVCCTX,
                          (dvoid *) ctx->srvhp, (ub4) 0, (ub4) OCI_ATTR_SERVER,
                          (OCIError *) ctx->errhp))
  {
    printf("FAILED: OCIAttrSet() on svchp\n");
    return OCI_ERROR;
  }
  /* Set user attribute to session */
  if (status = OCIAttrSet((dvoid *)ctx->sesshp, (ub4) OCI_HTYPE_SESSION,
                          (dvoid *)ctx->username,
                          (ub4) strlen((char *)ctx->username),
                          (ub4) OCI_ATTR_USERNAME, (OCIError *) ctx->errhp))
  {
    printf("FAILED: OCIAttrSet() on authp for user\n");
    return OCI_ERROR;
  }
  /* Set password attribute to session */
  if (status = OCIAttrSet((dvoid *) ctx->sesshp, (ub4) OCI_HTYPE_SESSION,
                          (dvoid *)ctx->password,
                          (ub4) strlen((char *)ctx->password),
                          (ub4) OCI_ATTR_PASSWORD, (OCIError *) ctx->errhp))
  {
    printf("FAILED: OCIAttrSet() on authp for password\n");
    return OCI_ERROR;
  }
  /* Begin a session  */
  if (status = OCISessionBegin((OCISvcCtx *) ctx->svchp,
                               (OCIError *) ctx->errhp,
                               (OCISession *) ctx->sesshp, (ub4) OCI_CRED_RDBMS,
                               (ub4) OCI_STMT_CACHE))
  {
    printf("FAILED: OCISessionBegin(). Make sure database is up and the \
            username/password is valid. \n");
    return OCI_ERROR;
  }
  /* Set session attribute to service context */
  if (status = OCIAttrSet((dvoid *) ctx->svchp, (ub4) OCI_HTYPE_SVCCTX,
                          (dvoid *)ctx->sesshp, (ub4) 0, (ub4) OCI_ATTR_SESSION,
                          (OCIError *) ctx->errhp))
  {
    printf("FAILED: OCIAttrSet() on svchp\n");
    return OCI_ERROR;
  }
  return status;
}

/* Helper function 3: Free OCI handles and disconnect */
static sword free_oci_handles(test_ctx *ctx)
{
  sword  status = 0;
  /* End the session */
  if (status = OCISessionEnd((OCISvcCtx *)ctx->svchp, (OCIError *)ctx->errhp,
                             (OCISession *)ctx->sesshp, (ub4) OCI_DEFAULT))
  {
    if (ctx->envhp)
      OCIHandleFree((dvoid *)ctx->envhp, OCI_HTYPE_ENV);
    return status;
  }
  /* Detach from the server */
  if (status = OCIServerDetach((OCIServer *)ctx->srvhp, (OCIError *)ctx->errhp,

Appendix A
Initializing and Terminating an XML Context (OCI)

A-61



      (ub4)OCI_DEFAULT))
  {
    if (ctx->envhp)
      OCIHandleFree((dvoid *)ctx->envhp, OCI_HTYPE_ENV);
    return status;
  }
  /* Free the handles */
  if (ctx->stmthp) OCIHandleFree((dvoid *)ctx->stmthp, (ub4) OCI_HTYPE_STMT);
  if (ctx->sesshp) OCIHandleFree((dvoid *)ctx->sesshp, (ub4) OCI_HTYPE_SESSION);
  if (ctx->svchp)  OCIHandleFree((dvoid *)ctx->svchp,  (ub4) OCI_HTYPE_SVCCTX);
  if (ctx->srvhp)  OCIHandleFree((dvoid *)ctx->srvhp,  (ub4) OCI_HTYPE_SERVER);
  if (ctx->errhp)  OCIHandleFree((dvoid *)ctx->errhp,  (ub4) OCI_HTYPE_ERROR);
  if (ctx->envhp)  OCIHandleFree((dvoid *)ctx->envhp,  (ub4) OCI_HTYPE_ENV);
  return status;
}

Appendix A
Initializing and Terminating an XML Context (OCI)

A-62



B
Oracle XML DB Restrictions

The restrictions associated with Oracle XML DB are listed here.

• Thin JDBC Driver Not Supported by Some XMLType Functions – XMLType method
transform() works only with the OCI driver. Not all oracle.xdb.XMLType functions
are supported by the thin JDBC driver. If you do not use oracle.xdb.XMLType
classes and the OCI driver, you can lose performance benefits.

• NCHAR, NVARCHAR2, and NCLOB Not Supported – Oracle XML DB does not
support the use of SQL data types NCHAR, NVARCHAR2, and NCLOB for any of the
following:

– Mapping XML elements or attributes to these data types using the SQLType
annotation in an XML schema

– Generating XML data from these data types using SQL/XML functions
XMLElement, XMLAttributes, and XMLForest

– Within SQL/XML functions XMLQuery and XMLTable, using XQuery functions
ora:view (desupported), fn:doc, and fn:collection on tables that contain
columns with these data types

To handle, store, or generate XML data that contains multibyte characters, Oracle
strongly recommends that you use AL32UTF8 as the database character set.

• XML Identifier Length Limit – Oracle XML DB supports only XML identifiers
that are a maximum of 32767 bytes or 4000 bytes, depending on the value of
initialization parameter MAX_STRING_SIZE. See Oracle Database SQL Language
Reference.

• Repository File Size Limit – The maximum size of a file in Oracle XML DB
Repository is 4 gigabytes. This implies the following limits for different kinds of
file data:

– 4 gigabytes for any LOB, which means 2 gigacharacters for a CLOB stored in
the database character set AL32UTF8.

– 4 gigabytes for binary XML encoded data, which typically means more than 4
gigabytes of external XML data before encoding.

– Indeterminate for XML data stored object-relationally.

• Repository-Wide Resource Configuration File Limit – You cannot create more than
125 resource configuration files for repository-wide configuration.

• Recursive Folder Deletion – You cannot delete more than 50 levels of nested
folders using the option for recursive deletion.

• No Column-Level Encryption for XMLType – Column-level encryption is not
supported for XMLType. Tablespace-level encryption is supported for all XMLType
storage models.

• No Composite Partitioning for XMLType – Composite partitioning is not supported
for XMLType tables or columns (regardless of the XMLType storage model).

B-1



• No Partitioning for Hierarchically Enabled Tables – You cannot partition a
hierarchy-enabled table. (See Repository Resources and Database Table Security
for information about hierarchy-enabled tables.)

• No Oracle Real Application Testing (RAT) for XMLType– Oracle Real Application
Testing (RAT) is not supported for XMLType.

• No XMLType Access over Database Links – Access to remote XMLType tables or
columns is not supported.

• Oracle JVM Needed for Some Features – In general, the behavior of Oracle
XML DB does not depend on whether or not you have Oracle JVM (Java Virtual
Machine) installed. However, if you use Java servlets then you must install Oracle
JVM.

• Editioning Views Not Compatible with XMLType – Editioning views are not
compatible with XMLType data that is stored object-relationally. They cannot be
enabled in database schemas that contain persisted object types.

• Transportable tablespaces and database consolidation – If your Oracle XML DB
Repository in Oracle Database 11g Release 2 (11.2) has existing data then
you cannot use transportable tablespaces to plug that database directly into a
container database (CDB). Instead, upgrade the 11.2 database to 12.1, unplug it,
and then plug it in.

• No XMLType virtual columns for object-relational storage of XMLType – You cannot
add a virtual XMLType column to an object-relational XMLType table or to a table that
has an object-relational XMLType column.

• No sharding for XMLType or repository – Sharding is not supported for XMLType
data or for Oracle XML DB Repository.

• XML schema URL uniqueness ignores protocol part – Attribute schemaurl for a
registered XML schema must be unique apart from the protocol part. The protocol
part (for example, http or https) is ignored in the test for uniqueness.

Related Topics

• Oracle XML DB Support for XQuery
Oracle XML DB support for the XQuery language includes SQL support and
support for XQuery functions and operators.

Appendix B

B-2



Index

A
access control entry (ACE)

definition, 27-5
access control list (ACL)

definition, 27-6
overview, 1-18
system, 27-10

account XDB, 2-1
ACE

See access control entry
ACL

See access control list
administering Oracle XML DB, 34-1
Advanced Queuing (AQ)

IDAP, 37-5
messaging scenarios, 37-2
point-to-point support, 37-1
publish/subscribe support, 37-1
XMLType queue payloads, 37-6

aggregate privilege
definition, 27-4

annotations
XML schema, 17-6, 18-8

querying to obtain, 18-21
atomic privilege

definition, 27-4
attribute XML Schema data types

mapping to SQL, 18-24
attributes, 1-13

xdb:columnProps, 18-15
xdb:defaultTable, 18-15
xdb:maintainDOM, 18-15
xdb:SQLCollType, 18-15
xdb:SQLInline, 18-15
xdb:SQLName, 18-15
xdb:SQLType, 18-15
xdb:tableProps, 18-15

auditing of HTTP and FTP protocols, 28-14
authentication

definition, 27-3
authorization

definition, 27-3

B
backward-compatible XML schema evolution

definition, 20-18
binary XML

definition, 1-12
bootstrap ACL

definition, 27-10

C
C API for XML, 14-1
Cascading Style Sheets (CSS), 11-8
chaining XMLTable calls, 4-16
circular dependencies

XML schemas, 18-52
collection

in out-of-line tables, 18-49
loading and retrieving large documents,

18-66
XML

definition, 17-27
collection attribute (SQL), 18-31
column pattern, XMLTable SQL function

definition, 4-14
columnProps attribute, 18-15
complex XLink link, 23-3

definition, 23-3
See also extended XLink link

complexType
handling cycles, 18-53
handling inheritance, 18-33
mapping

fragments to LOBs, 18-63
XML Schema data types to SQL, 18-31

Oracle XML DB restrictions and extensions,
18-32

component of a resource path name
definition, 21-7

compound XML document, 23-4
definition, 23-2

compression
for online transaction processing (OLTP)

using CREATE TABLE, 17-27
XMLType support, B-1

Index-1



configuring Oracle XML DB
protocol server, 28-4
repository, 22-1
servlets, 31-3
using DBMS_XDB API, 34-12
using Oracle Enterprise Manager, 34-5
xdbconfig.xml configuration file, 34-6

constraints on XMLType data, 3-7, 18-42
repetitive XML elements, 18-44

content of a resource
definition, 21-7

content-management application
definition, 23-2

copy-based XML schema evolution, 20-2
copy-namespace mode, XQuery, 4-30
copyEvolve PL/SQL procedure, 20-1
COST_XML_QUERY_REWRITE optimizer hint,

5-46
cost-based XML query rewrite

definition, 5-46
CREATE TABLE statement

encoding options for binary XML, 17-25
storage options, 17-24

creating an XMLType table
for nested collections, 18-37
storage options, 17-24
XML schema-based, 17-21, 18-37

CTXAPP role, 6-65
cyclical dependencies

XML schemas, 18-52

D
database role

definition, 27-3
database user

definition, 27-3
date and time XML Schema data types

mapping to SQL, 18-26
DBMS_XDB_CONFIG PL/SQL package, 26-7
DBMS_XDB_REPOS PL/SQL package, 26-1
DBMS_XMLDOM PL/SQL package, 11-5

examples, 11-17
DBMS_XMLGEN PL/SQL package, 8-24
DBMS_XMLINDEX PL/SQL package

modifyParameter procedure, 6-54
registerParameter procedure, 6-54
syncIndex procedure, 6-48

DBMS_XMLPARSER PL/SQL package, 11-27
DBMS_XMLSCHEMA PL/SQL package

copyEvolve procedure, 20-1
inPlaceEvolve procedure, 20-1
registerSchema procedure, 17-11

DBMS_XMLSCHEMA_ANNOTATE PL/SQL
package, 18-14

DBMS_XMLSTORAGE_MANAGE PL/SQL
package

disableIndexesAndConstraints procedure,
35-5

enableIndexesAndConstraints procedure,
35-5

exchangePostProc procedure, 6-15
exchangePreProc procedure, 6-15
refPartitionExchangeIn procedure, 6-15
refPartitionExchangeOut procedure, 6-15
renameCollectionTable procedure, 19-7
XPath2TabColMapping procedure, 19-5, 19-7

DBMS_XMLSTORE PL/SQL package, 12-1
DBMS_XSLPROCESSOR PL/SQL package,

11-29
DBUri

definition, 32-3
generating using sys_DburiGen SQL

function, 32-27
identifying a row, 32-21
identifying a target column, 32-21
retrieving column text value, 32-23
retrieving the whole table, 32-19
security, 32-35
servlet, installation, 32-34

DBUri-refs, 32-14
HTTP access, 32-32

DBUriServlet
definition, 32-32

debugging
XML schema registration, 18-68

default tables
creating during XML schema registration,

18-5
defaultTable attribute, 18-15
deleting

resource, 24-17
XML schema using DBMS_XMLSCHEMA,

17-18
depth SQL function, 24-10
derived XML Schema data types

mapping to SQL, 18-26
digest access authentication, 28-11
digest access authentication, configuring, 28-11
digest authentication, 28-11
digest authentication, configuring, 28-11
directory

See folder
document (DOM)

definition, 11-13
document link

definition, 21-14, 23-3
document location hint

definition, 17-9
Document Object Model

Index

Index-2



See DOM
Document Type Definition

See DTD
document-correlated recursive query

definition, 18-59
DOM, 11-7

definition, 11-1
difference from SAX, 11-8
document

definition, 11-13
fidelity, 17-8

for XML schema mapping, 11-12
Java API for XMLType, 13-2
NamedNodeMap object, 11-16
NodeList object, 11-16
overview, 11-7
PL/SQL API for XMLType, 11-5

DOM fidelity
definition, 17-8

DTD,
definition, 1-15
support in Oracle XML DB, 1-15
use with Oracle XML DB, 1-15

dynamic type-checking
XQuery language, 4-27

E
effective text value of a node

definition, 6-21
element XML Schema data types

mapping to SQL, 18-25
Enterprise Manager

administering Oracle XML DB, 34-5
entities, XML

using a DTD with binary XML storage, 1-15
equipartitioning of XMLType tables

definition, 18-39
error

ORA-08181, 6-50
ORA-18177, 6-67

event
repository, 30-1

configuring, 30-10
predefined, 30-4

event handler, repository
definition, 30-3

event listener, repository
definition, 30-3

evolution, XML schema, 20-1
extended XLink link, 23-3

definition, 23-3
extracting data from XML, 5-20

F
fidelity

DOM, 17-8
for XML schema mapping, 11-12

FLWOR XQuery expression, 4-8
fn:available XQuery function

support, 4-31
fn:collection XQuery function

support, 4-31
fn:doc XQuery function

support, 4-31
fn:id XQuery function

support, 4-31
fn:idref XQuery function

support, 4-31
fn:replace XQuery function, 4-23
folder, 21-7

definition, 21-7
folder link

definition, 21-14
folder-restricted query

definition, 21-39
foldering, 21-2
fragment, XML

definition, 3-25
SQL operations on, 3-25

fragments, XML
mapping to LOBs, 18-63

FROM list order
XMLTable PASSING clause, 5-11

FTP
configuration parameters, 28-4
creating default tables, 18-5
protocol server, features, 28-14

FTP protocol auditing, 28-14
full-text indexing, 6-64
full-text search

XML data, 4-6, 4-32
fully qualified XML schema URLs, 17-18
functional evaluation

definition, 19-6
functions

SQL
depth, 24-10
sys_DburiGen, 32-27
sys_XMLAgg, 8-49
under_path, 24-7, 24-10
updating XML data, 5-30
XMLAgg, 8-14
XMLAttributes, 8-3
XMLCast, 4-20
XMLCDATA, 8-23
XMLColAttVal, 8-21
XMLComment, 8-18

Index

Index-3



functions (continued)
SQL (continued)
XMLConcat, 8-13
XMLElement, 8-3
XMLExists, 4-18
XMLForest, 8-11
XMLIsValid, 7-15
XMLParse, 8-20
XMLPI, 8-17
XMLQuery, 4-11, 4-12
XMLSerialize, 8-19
XMLTable, 4-11, 4-14
XMLtransform, 7-4

G
generating XML, 8-1

DBMS_XMLGEN PL/SQL package, 8-24
SQL functions, 8-1
sys_XMLAgg SQL function, 8-49
XMLAgg SQL function, 8-14
XMLAttributes SQL function, 8-3
XMLCDATA SQL function, 8-23
XMLColAttVal SQL function, 8-21
XMLComment SQL function, 8-18
XMLConcat SQL function, 8-13
XMLElement SQL function, 8-3
XMLForest SQL function, 8-11
XMLParse SQL function, 8-20
XMLPI SQL function, 8-17
XMLSerialize SQL function, 8-19

getCLOB() XMLType method, 13-10
getSchemaURL() XMLType method, 17-9
global XML schema

using fully qualified URL to override, 17-18
group in an XMLIndex structured component

definition, 6-28

H
hard link

definition, 21-14
hierarchical repository index, 21-43
hierarchy-enabled table

definition, 27-22
HTTP

access for DBUri-refs, 32-32
accessing Java servlet or XMLType, 31-2
accessing repository resources, 21-20
configuration parameters, WebDAV, 28-4
creating default tables, 18-5
improved performance, 28-2
Oracle XML DB servlets, 31-7
protocol server, features, 28-24
requests, 31-7

HTTP (continued)
servlets, 31-3
URIFACTORY, 32-36
using UriRefs to store pointers, 32-3

HTTP protocol auditing, 28-14
httpconfig element, xdbconfig.xml, 34-8
HTTPUri

definition, 32-3
hybrid columnar compression, B-1

I
IDAP

architecture, 37-5
transmitted over Internet, 37-5

in-place XML schema evolution, 20-17
index

hierarchical repository, 21-43
indexing

full-text, 6-64
XMLType, 6-4

choosing, 16-1
inheritance

XML schema, restrictions in complexTypes,
18-33

inPlaceEvolve PL/SQL procedure, 20-1
instance document

definition, 1-13, 17-3
specifying root element namespace, 17-3

Internet Data Access Presentation (IDAP)
SOAP specification for AQ, 37-5

Internet Protocol Version 6
FTP, 28-23
HTTP(S), 28-27

IPv6
FTP, 28-23
HTTP(S), 28-27

isSchemaBased() XMLType method, 17-9
isSchemaValidated() XMLType method, 17-9

J
Java

DOM API for XMLType, 13-2
Oracle XML DB applications, 31-2

Java Specification Request
225, 5-26

JDBC
accessing XML documents, 13-3
drivers, OCI and thin, 13-5
loading large XML documents, 13-10
manipulating XML documents, 13-5

JSR-225, 5-26

Index

Index-4



L
large node handling, 11-19
lazy XML loading (lazy manifestation), 11-2
LDAP principal

definition, 27-3
link

document
definition, 21-14

folder
definition, 21-14

hard
definition, 21-14

repository
definition, 21-14

weak
definition, 21-14

link name
definition, 21-7

link-properties document
definition, 21-23

linking, repository
definition, 21-23

loading
large documents with collections, 18-66

loading large XML documents using JDBC, 13-10
loading of XML data, lazy, 11-2
LOB locator, 25-6
LOBs

mapping XML fragments to, 18-63
local XML schema

definition, 17-16
using fully qualified URL to specify, 17-18

M
maintainDOM attribute, 18-15
manifestation, lazy, 11-2
mapping

complexType to SQL
out-of-line storage, 18-46, 19-4

overriding using SQLType attribute, 18-25
simpleContent to object types, 18-35

mapping XML Schema complexType data types
to SQL, 18-31

mapping XML Schema data types to SQL data
types, 18-22

metadata
definition, 29-1
system-defined

definition, 1-18
user-defined

definition, 1-18

methods
XMLType

getCLOB(), 13-10
getSchemaURL(), 17-9
isSchemaBased(), 17-9
isSchemaValid(), 17-9
isSchemaValidated(), 17-9
schemaValidate(), 17-9
setSchemaValidated(), 17-9
XML schema, 17-9

MIME
overriding with DBUri servlet, 32-34

model, XML Schema
definition, 20-20

modifyParameter PL/SQL procedure, 6-54

N
NamedNodeMap object (DOM), 11-16
namespace

XQuery, 4-10, 5-18
naming SQL objects, 18-8
navigational access to repository resources,

21-17
nested XML

generating using DBMS_XMLGEN, 8-32
generating with XMLElement, 8-7

NESTED_TABLE_ID pseudocolumn, 18-37
NodeList object (DOM), 11-16
nodes, large (DBMS_XMLDOM), 11-19
non-schema-based view

definition, 10-1
nonce

definition, 28-13
nonce key

definition, 28-13
numeric XML Schema data types

mapping to SQL, 18-26

O
object attributes

for collection (SQL), 18-31
sys_DburiGen SQL function

passing to, 32-28
XMLType, in AQ, 37-6

object identifier, 27-9
definition, 27-9

object-based persistence of XML data
definition, 1-12

object-relational storage of XML data
definition, 1-12

occurrence indicator
definition, 4-6

OCI API for XML, 14-1

Index

Index-5



OCT
definition, 18-3

ODP.NET, 15-1
OID

See object identifier
optimizer hints

COST_XML_QUERY_REWRITE, 5-46
ORA-08181 error, 6-50
ORA-18177 error, 6-67
ora:defaultTable Oracle XQuery pragma, 5-53
ora:no_schema Oracle XQuery pragma, 6-67
ora:no_xmlquery_rewrite Oracle XQuery pragma,

6-41
ora:sqrt Oracle XQuery function, 4-24
ora:tokenize Oracle XQuery function, 4-24
ora:use_xmltext_idx Oracle XQuery pragma,

6-68
Oracle ASM files

accessing, 21-21
using FTP, 28-20

Oracle ASM virtual folder, 21-11
Oracle Data Provider for .NET, 15-1
Oracle Enterprise Manager

administering Oracle XML DB, 34-5
Oracle Internet Directory, 27-24
Oracle Net Services, 1-9
Oracle Text

searching for resources, 24-24
Oracle XML DB

access models, 2-6
architecture, 1-9
features, 1-10
Java applications, 31-2
overview, 1-1
Repository

See repository, 21-7
upgrading, 34-1
versioning, 25-1
when to use, 2-1

order index of XMLIndex
definition, 6-17

ordered collection
definition, 18-3

ordered collection table (OCT)
definition, 18-3

ordered collections in tables (OCTs)
default storage of varray, 18-31

out-of-line storage, 18-46, 19-4
collections, 18-49
XPath rewrite, 19-4

P
partial validation of XML data

definition, 7-14

partitioning XMLType tables
binary XML storage, 3-4

exchange partitioning, 6-15
object-relational storage, 18-39

examples, 18-40
with an XMLIndex index, 6-47

PASSING clause of XMLTable
FROM list order, 5-11

path component of a resource path name
definition, 21-7

path index of XMLIndex
definition, 6-17

path name
definition, 21-7
resolution, 21-13

path table of XMLIndex, 6-17
PATH_VIEW, 24-1
path-based access to repository resources,

21-17
path-index trigger

definition, 27-22
PD (positional descriptor), 18-6
persistence models for XML data, 1-12
PL/SQL functions

See functions, PL/SQL
PL/SQL packages

DBMS_XDB_CONFIG, 26-7
DBMS_XDB_REPOS, 26-1
DBMS_XMLDOM, 11-5
DBMS_XMLGEN, 8-24
DBMS_XMLPARSER, 11-27
DBMS_XMLSCHEMA_ANNOTATE, 18-14
DBMS_XMLSTORE, 12-1
DBMS_XSLPROCESSOR, 11-29
for XMLType, 11-1

PL/SQL procedures
See procedures, PL/SQL

point-to-point
support in AQ, 37-1

port, FTP, 28-4
port, HTTP, 28-4
ports

configuring
FTP, 28-4
HTTP, 28-4
HTTPS, 28-8

positional descriptor (PD), 18-6
post-parse persistence of XML data

definition, 1-12
pragmas, XQuery

See XQuery pragmas, Oracle
predefined ACLs, 27-10
pretty-printing, 8-19

in book examples, xlvii
not done by SQL/XML functions, 3-31

Index

Index-6



pretty-printing (continued)
Web service output, 33-4

primitive XML Schema data types
mapping to SQL, 18-26

principal
definition, 27-3
LDAP

definition, 27-3
private (local) XML schema, definition, 17-15
privilege

definition, 27-4
procedures

PL/SQL
copyEvolve, 20-1
disableIndexesAndConstraints, 35-5
enableIndexesAndConstraints, 35-5
exchangePostProc, 6-15
exchangePreProc, 6-15
inPlaceEvolve, 20-1
modifyParameter, 6-54
refPartitionExchangeIn, 6-15
refPartitionExchangeOut, 6-15
registerParameter, 6-54
registerSchema, 17-11
renameCollectionTable, 19-7
syncIndex, 6-48
XPath2TabColMapping, 19-5, 19-7

protocol auditing, HTTP and FTP, 28-14
protocol server, 28-1

architecture, 28-2
configuration parameters, 28-4
event-based logging, 28-14
FTP, 28-14

configuration parameters, 28-4
HTTP, 28-24

configuration parameters, 28-4
WebDAV

configuration parameters, 28-4
protocolconfig element, xdbconfig.xml, 34-8
protocols, access to repository resources, 21-19
public (global) XML schema, definition, 17-15
publish/subscribe

support in AQ, 37-1
purchase-order XML schema, A-38

annotated, A-38
revised, 20-3, A-38

Q
qualified XML schema URLs, 17-18
query-based access to resources

using RESOURCE_VIEW and PATH_VIEW,
24-2

using SQL, 21-23

querying XMLType data
choices, 5-20
transient data, 5-20

R
recursive schema support, 18-59
registered XML schemas, list of, 17-20
registering an XML schema

debugging, 18-68
default tables, creating, 18-5
SQL object types, creating, 18-4

registerParameter PL/SQL procedure, 6-54
registerSchema PL/SQL procedure, 17-11
renaming an XMLIndex index, 6-23
replace XQuery function, 4-23
repository, 21-7

data storage, 21-10
event, 30-1

configuring, 30-10
predefined, 30-4

event handler
definition, 30-3

event listener
definition, 30-3

hierarchical index, 21-43
use with XQuery, 5-4

repository link
definition, 21-14

RESID
definition, 25-4

resource
access, 21-5

using protocols, 28-13
definition, 1-18, 29-1
deleting, 21-15

nonempty container, 24-18
using DELETE, 24-17

management using DBMS_XDB_REPOS,
26-1

managing with DBMS_XDB, 34-17
required privileges for operations, 27-6
searching for, using Oracle Text, 24-24
setting property in ACLs, 27-12
simultaneous operations, 24-21
updating, 24-19

resource configuration file
definition, 22-2

resource configuration list
definition, 22-2

resource content
definition, 21-7

resource document
definition, 21-6

Index

Index-7



resource ID
definition, 25-4

resource name
definition, 21-7

resource version
definition, 25-1

RESOURCE_VIEW
explained, 24-1

resource-view-cache-size configuration
parameter, 24-23

retrieving large documents with collections, 18-66
RETURNING SEQUENCE BY REF clause of

XMLTable, 5-11
revalidation mode, XQuery Update, 4-30
rewrite

XPath (XPath), 19-1
XQuery, 5-45

role
CTXAPP, 6-65
database

definition, 27-3
root configuration, 34-16
root folder, repository, 21-2
root XML Schema

definition, 17-4
row pattern, XMLTable SQL function

definition, 4-14
rule-based XML query rewrite

definition, 5-46

S
schema evolution

See XML schema evolution
schema for schemas (XML Schema)

definition, 1-13
schema location hint

definition, 17-9
schemaValidate() XMLType method, 17-9
security

DBUri, 32-35
servlet element, xdbconfig.xml, 34-9
servlets

accessing repository data, 21-24
APIs, 31-8
configuring, 31-3
session pooling, 31-8
writing, 31-9

in Java, 31-3
XML manipulation, 31-3

session pooling, 31-8
protocol server, 28-2

simple XLink link
definition, 23-3

simpleContent
mapping to object types, 18-35

SOAP, 33-1
IDAP, 37-5

SQL functions
See functions, SQL

SQL object types
creating during XML schema registration,

18-4
SQL*Loader, 35-2
SQL*Plus

XQUERY command, 5-25
SQL/XML generation functions

definition, 1-17, 8-2
SQL/XML publishing functions

definition, 1-17, 8-2
SQL/XML query and update functions

definition, 1-17
SQL/XML standard

generating XML data, 8-2
querying XML data

XMLQuery and XMLTable, 4-11
SQLCollType attribute, 18-15
SQLInline attribute, 18-15
SQLJ, 13-13
SQLName attribute, 18-15
SQLType attribute, 18-15
sqrt XQuery function (Oracle), 4-24
static type-checking

XQuery language, 4-27
storage

out of line, 18-46, 19-4
collections, 18-49

storage models for XMLType, 1-12
choosing, 16-1

string XML Schema data types
mapping to SQL, 18-26
mapping to VARCHAR2 vs CLOB, 18-30

structured storage of XMLType data
definition, 1-12, 16-2

structured XMLIndex component
definition, 6-9

style sheet, CSS, 11-8
stylesheet for updating XML instance documents,

20-12
syncIndex PL/SQL procedure, 6-48
sys_DburiGen SQL function, 32-27

inserting database references, 32-29
SYS_NC_ARRAY_INDEX$ column, 18-37
sys_XMLAgg SQL function, 8-49
sysconfig element, xdbconfig.xml, 34-7
system ACL

definition, 27-10
system ACLs, 27-10

Index

Index-8



system-defined metadata
definition, 1-18

T
tableProps attribute, 18-15
text value of a node, effective

definition, 6-21
third-party XLink link

definition, 23-3
time zone support, implicit, 4-30
trigger, path-index

definition, 27-22
type-checking, static and dynamic

XQuery language, 4-27

U
UDT

generating an element from, 8-7
under_path SQL function, 24-7

different correlations for different folders,
24-10

uniform access control mechanism
definition, 27-22

unique constraint on parent element of an
attribute, 18-44

unresolved XLink and XInclude links, 23-14
unstructured XMLIndex component

definition, 6-9
updating repository resource, 24-19
updating XML data

using SQL functions, 5-30
upgrading Oracle XML DB, 34-1
Uri-reference

database and session, 32-19
DBUri-ref, 32-14
HTTP access for DBUri-ref, 32-32
URIFACTORY PL/SQL package, 32-25
URIType examples, 32-9

URIFACTORY PL/SQL package
configuring to handle DBURI-ref, 32-36
creating subtypes of URIType, 32-25

URIType
examples, 32-9

user
definition, 27-3

user XDB, 2-1
user-defined metadata

definition, 1-18
userconfig element, xdbconfig.xml, 34-8

V
validating

examples, 7-16
XMLIsValid SQL function

use as CHECK constraint, 7-15
validation of XML data, partial

definition, 7-14
value index of XMLIndex

definition, 6-17
varray in a LOB

definition, 18-3
varray in a table

definition, 18-3
VCR

See version-controlled resource
version resource

definition, 25-1
version series of a resource

definition, 25-4
version-controlled resource, 25-1

definition, 25-1
versionable resource

definition, 25-1
versioning, 1-18, 25-1
views

RESOURCE and PATH, 24-1

W
weak link

definition, 21-14
deletion, 23-14

Web service, 33-1
pretty-printing output, 33-4

WebDAV
definition, 21-2

WebFolder
creating in Windows 2000, 28-36

well-formed XML document
definition, 3-6

WSDL
Web service for accessing stored PL/SQL,

33-7
Web service for database queries, 33-4

X
XDB database schema (user account), 2-1, 21-6
xdb namespace, 27-7
xdb:columnProps attribute, 18-15
xdb:defaultTable attribute, 18-15
xdb:maintainDOM attribute, 18-15
xdb:SQLCollType attribute, 18-15
xdb:SQLInline attribute, 18-15

Index

Index-9



xdb:SQLName attribute, 18-15
xdb:SQLType attribute, 18-15
xdb:tableProps attribute, 18-15
XDBBinary element

definition, 21-7
xdbconfig element, xdbconfig.xml, 34-7
xdbconfig.xml configuration file, 34-6
xdbcore-loadableunit-size configuration

parameter, 18-66, 18-67
xdbcore-xobmem-bound configuration

parameter, 18-67
XDBSchema.xsd

definition, 17-4
XDBUri, 32-5

definition, 32-3, 32-12
XInclude, 23-1

definition, 23-2
unresolved link, 23-14

XLink
complex link

definition, 23-3
definition, 23-2
third-party link

definition, 23-3
XLink (deprecated), 23-1

extended link
definition, 23-3

link types, 23-3
simple link

definition, 23-3
unresolved link, 23-14

XML attributes
See attributes

XML diagnosability mode, 5-51
XML entities

using a DTD with binary XML storage, 1-15
XML fragment

definition, 3-25
mapping to LOBs, 18-63
SQL operations on, 3-25

XML instance document
definition, 1-13, 17-3

XML query rewrite
definition, 5-45

cost-based, 5-46
rule-based, 5-46

XML schema
annotations, 17-6, 18-8

querying to obtain, 18-21
circular dependencies, 18-52
complexType declarations, 18-33, 18-53
cyclical dependencies, 18-52
definition, 1-13, 17-2
deletion, 17-18

XML schema (continued)
evolution, 20-1

backward-compatible, definition, 20-18
for XML schemas that can be registered,

17-4
inheritance in, complexType restrictions,

18-33
local and global, 17-15
mapping to SQL object types, 11-11
updating after registering, 20-1
URLs, 17-18
W3C Recommendation, 17-1, 17-2
XMLType methods, 17-9

XML Schema
definition, xlv

XML Schema data types
mapping to SQL data types, 18-22

XML schema definition
definition, 1-13

XML schema evolution, 20-1
copy-based, 20-2
in-place, 20-17

XML schema-based tables and columns,
creating, 17-21

XML schema-based view
definition, 10-1

XML search index
definition, 6-64

XML_ENABLE path section group attribute, 6-65
XMLAgg SQL function, 8-14
XMLAttributes SQL function, 8-3
XMLCast SQL function, 4-20
XMLCDATA SQL function, 8-23
XMLColAttVal SQL function, 8-21
XMLComment SQL function, 8-18
XMLConcat SQL function, 8-13
XMLElement SQL function, 8-3
XMLExists SQL function, 4-18
XMLForest SQL function, 8-11
XMLIndex

creating index, 6-23
dropping index, 6-23
order index

definition, 6-17
partitioning and parallelism, 6-47
path index

definition, 6-17
path table, 6-17
renaming index, 6-23
structured component

definition, 6-9
synchronizing if ORA-08181, 6-50
unstructured component

definition, 6-9

Index

Index-10



XMLIndex (continued)
value index

definition, 6-17
XMLIsValid SQL function, 7-15
XMLNAMESPACES clause, 4-14
XMLParse SQL function, 8-20
XMLPI SQL function, 8-17
XMLQuery SQL function, 4-11, 4-12
XMLSerialize SQL function, 8-19
XMLTable SQL function, 4-11, 4-14

breaking up an XML fragment, 3-25
column pattern

definition, 4-14
PASSING clause and FROM list order, 5-11
RETURNING SEQUENCE BY REF clause,

5-11
reverse node references in COLUMNS

clause, 5-11
row pattern

definition, 4-14
XMLtransform SQL function, 7-4
XMLType

as abstract data type, 1-12
constructors, 3-11
DBMS_XMLDOM PL/SQL API, 11-5
DBMS_XMLPARSER PL/SQL API, 11-27
DBMS_XSLPROCESSOR PL/SQL API,

11-29
extracting data, 5-20
indexing columns, 6-4
instances, PL/SQL APIs, 11-1
loading data, 35-1
loading with SQL*Loader, 35-2
methods

getCLOB(), 13-10
getSchemaURL(), 17-9
isSchemaBased(), 17-9
isSchemaValid(), 17-9
setSchemaValidated(), 17-9
XML schema, 17-9

PL/SQL packages, 11-1
querying, 5-20
querying transient data, 5-20
querying XMLType columns, 5-20
queue payloads, 37-6
storage models, 1-12
tables, views, columns, 17-21
views, access with PL/SQL DOM APIs, 11-13

XPath language, 19-1
syntax, 4-2

See also XQuery language
XPath rewrite, 19-1

definition, 5-45
indexes on singleton elements and attributes,

6-72

XPath rewrite (continued)
out-of-line storage, 19-4

XQJ, 5-26
XQuery

copy-namespace mode, 4-30
extension expressions

See XQuery pragmas, Oracle, 4-24
pending update list, 4-4
pragmas, Oracle

ora:defaultTable, 5-53
ora:no_schema, 6-67
ora:no_xmlquery_rewrite, 6-41
ora:use_xmltext_idx, 6-68

revalidation mode, 4-30
simple expression, 4-6
static typing feature, 4-30
time zone support, implicit, 4-30
XDM instance, 4-3

XQuery API for Java (XQJ), 5-26
XQUERY command, SQL*Plus, 5-25
XQuery Data Model (XDM), 4-3
XQuery functions and operators

support, 4-31
XQuery language, 4-1, 19-1

expressions, 4-6
FLWOR, 4-8
rewrite, 5-45

functions
fn:replace, 4-23
ora:sqrt (Oracle), 4-24
ora:tokenize (Oracle), 4-24

item
definition, 4-4

namespaces, 4-10, 5-18
optimization, 5-45
optimization over relational data, 5-47
Oracle extension functions, 4-23
Oracle XML DB support, 4-29
performance, 5-45
predefined namespaces and prefixes, 4-10
referential transparency

definition, 4-4
sequence

definition, 4-4
SQL*Plus XQUERY command, 5-25
tuning, 5-45
type-checking, static and dynamic, 4-27
unordered mode

definition, 4-4
update snapshot, 4-5
use with Oracle XML DB Repository, 5-4
use with XMLType relational data, 5-11

optimization, 5-48

Index

Index-11



XQuery language (continued)
XMLQuery and XMLTable SQL functions,

4-11
examples, 5-2

XQuery Update Facility, 4-1
XSD

definition, 1-13
XSL stylesheet

definition, 11-29

XSLT
stylesheets

for updating XML instance documents,
20-12

use with DBUri servlet, 7-10, 32-37
use with Oracle XML DB, 7-1
use with package

DBMS_XSLPROCESSOR,
11-30

Index

Index-12


	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Code Examples
	Standard Database Schemas
	Pretty Printing of XML Data
	Execution Plans
	Reminder About Case Sensitivity

	Syntax Descriptions

	Part I Oracle XML DB Basics
	1 Introduction to Oracle XML DB
	1.1 Overview of Oracle XML DB
	1.2 Oracle XML DB Benefits
	1.2.1 Data and Content Unified
	1.2.1.1 Database Capabilities for Working with XML
	1.2.1.2 Advantages of Storing Data as XML in the Database

	1.2.2 Data Duality: XML and Relational
	1.2.2.1 Use XMLType Views If Your Data Is Not XML

	1.2.3 Efficient Storage and Retrieval of Complex XML Documents

	1.3 Oracle XML DB Architecture
	1.4 Oracle XML DB Features
	1.4.1 XMLType Data Type
	1.4.2 XMLType Storage Models
	1.4.3 XML Schema Support in Oracle XML DB
	1.4.4 DTD Support in Oracle XML DB
	1.4.5 Static Data Dictionary Views Related to XML
	1.4.6 SQL/XML Standard Functions
	1.4.7 Programmatic Access to Oracle XML DB (Java, PL/SQL, and C)
	1.4.8 Oracle XML DB Repository: Overview

	1.5 Standards Supported by Oracle XML DB
	1.6 Oracle XML DB Technical Support
	1.7 Oracle XML DB Examples
	1.8 Oracle XML DB Case Studies and Demonstrations on OTN

	2 Getting Started with Oracle XML DB
	2.1 Oracle XML DB Installation
	2.2 Oracle XML DB Use Cases
	2.3 Application Design Considerations for Oracle XML DB
	2.3.1 XML Data Storage
	2.3.2 The Structure of Your XML Data
	2.3.3 Languages Used to Implement Your Application
	2.3.4 XML Processing Options
	2.3.5 Oracle XML DB Repository Access
	2.3.6 Oracle XML DB Cooperates with Other Database Options and Features


	3 Overview of How To Use Oracle XML DB
	3.1 Creating XMLType Tables and Columns
	3.2 Creating Virtual Columns on XMLType Data Stored as Binary XML
	3.3 Partitioning Tables That Contain XMLType Data Stored as Binary XML
	3.4 Enforcing XML Data Integrity Using the Database
	3.4.1 Enforcing Referential Integrity Using SQL Constraints

	3.5 Loading XML Content into Oracle XML DB
	3.5.1 Loading XML Content Using SQL or PL/SQL
	3.5.2 Loading XML Content Using Java
	3.5.3 Loading XML Content Using C
	3.5.4 Loading Large XML Files that Contain Small XML Documents
	3.5.5 Loading Large XML Files Using SQL*Loader
	3.5.6 Loading XML Documents into the Repository Using DBMS_XDB_REPOS
	3.5.7 Loading Documents into the Repository Using Protocols

	3.6 Querying XML Content Stored in Oracle XML DB
	3.6.1 PurchaseOrder XML Document Used in Examples
	3.6.2 Retrieving the Content of an XML Document Using Pseudocolumn OBJECT_VALUE
	3.6.3 Accessing Fragments or Nodes of an XML Document Using XMLQUERY
	3.6.4 Accessing Text Nodes and Attribute Values Using XMLCAST and XMLQUERY
	3.6.5 Searching an XML Document Using XMLEXISTS, XMLCAST, and XMLQUERY
	3.6.6 Performing SQL Operations on XMLType Fragments Using XMLTABLE

	3.7 Updating XML Content Stored in Oracle XML DB
	3.8 Generating XML Data from Relational Data
	3.8.1 Generating XML Data from Relational Data Using SQL/XML Functions
	3.8.2 Generating XML Data from Relational Data Using DBURITYPE

	3.9 Character Sets of XML Documents
	3.9.1 XML Encoding Declaration
	3.9.2 Character-Set Determination When Loading XML Documents into the Database
	3.9.3 Character-Set Determination When Retrieving XML Documents from the Database



	Part II Manipulation of XML Data in Oracle XML DB
	4 XQuery and Oracle XML DB
	4.1 Overview of the XQuery Language
	4.1.1 XPath Expressions Are XQuery Expressions
	4.1.2 XQuery: A Functional Language Based on Sequences
	4.1.2.1 XQuery Is About Sequences
	4.1.2.2 XQuery Is Referentially Transparent
	4.1.2.3 XQuery Update Has Side Effects on Your Data
	4.1.2.4 XQuery Update Snapshots
	4.1.2.5 XQuery Full Text Provides Full-Text Search

	4.1.3 XQuery Expressions
	4.1.4 FLWOR Expressions

	4.2 Overview of XQuery in Oracle XML DB
	4.2.1 When To Use XQuery
	4.2.2 Predefined XQuery Namespaces and Prefixes

	4.3 SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast
	4.3.1 XMLQUERY SQL/XML Function in Oracle XML DB
	4.3.2 XMLTABLE SQL/XML Function in Oracle XML DB
	4.3.2.1 Chaining Calls to SQL/XML Function XMLTABLE

	4.3.3 XMLEXISTS SQL/XML Function in Oracle XML DB
	4.3.4 Using XMLExists to Find a Node
	4.3.5 XMLCAST SQL/XML Function in Oracle XML DB
	4.3.6 Using XMLCAST to Extract the Scalar Value of an XML Fragment

	4.4 URI Scheme oradb: Querying Table or View Data with XQuery
	4.5 Oracle XQuery Extension Functions
	4.5.1 ora:sqrt XQuery Function
	4.5.2 ora:tokenize XQuery Function

	4.6 Oracle XQuery Extension-Expression Pragmas
	4.7 XQuery Static Type-Checking in Oracle XML DB
	4.8 Oracle XML DB Support for XQuery
	4.8.1 Support for XQuery and SQL
	4.8.1.1 Implementation Choices Specified in the XQuery Standards
	4.8.1.2 XQuery Features Not Supported by Oracle XML DB
	4.8.1.3 XQuery Optional Features

	4.8.2 Support for XQuery Functions and Operators
	4.8.2.1 XQuery Functions fn:doc, fn:collection, and fn:doc-available

	4.8.3 Support for XQuery Full Text
	4.8.3.1 XQuery Full Text, XML Schema-Based Data, and Pragma ora:no_schema
	4.8.3.2 Restrictions on Using XQuery Full Text with XMLExists
	4.8.3.3 Supported XQuery Full Text FTSelection Operators
	4.8.3.4 Supported XQuery Full Text Match Options
	4.8.3.5 Unsupported XQuery Full Text Features
	4.8.3.6 XQuery Full Text Errors



	5 Query and Update of XML Data
	5.1 Using XQuery with Oracle XML DB
	5.1.1 XQuery Sequences Can Contain Data of Any XQuery Type
	5.1.2 Querying XML Data in Oracle XML DB Repository Using XQuery
	5.1.3 Querying Relational Data Using XQuery and URI Scheme oradb
	5.1.4 Querying XMLType Data Using XQuery
	5.1.5 Using Namespaces with XQuery

	5.2 Querying XML Data Using SQL and PL/SQL
	5.3 Using the SQL*Plus XQUERY Command
	5.4 Using XQuery with XQJ to Access Database Data
	5.5 Using XQuery with PL/SQL, JDBC, and ODP.NET to Access Database Data
	5.6 Updating XML Data
	5.6.1 Updating an Entire XML Document
	5.6.2 Replacing XML Nodes
	5.6.2.1 Updating XML Data to NULL Values

	5.6.3 Inserting Child XML Nodes
	5.6.4 Deleting XML Nodes
	5.6.5 Creating XML Views of Modified XML Data

	5.7 Performance Tuning for XQuery
	5.7.1 Rule-Based and Cost-Based XQuery Optimization
	5.7.2 XQuery Optimization over Relational Data
	5.7.3 XQuery Optimization over XML Schema-Based XMLType Data
	5.7.4 Diagnosis of XQuery Optimization: XMLOptimizationCheck
	5.7.5 Performance Improvement for fn:doc and fn:collection on Repository Data
	5.7.5.1 Use EQUALS_PATH and UNDER_PATH Instead of fn:doc and fn:collection
	5.7.5.2 Using Oracle XQuery Pragma ora:defaultTable



	6 Indexes for XMLType Data
	6.1 Oracle XML DB Tasks Involving Indexes
	6.2 Overview of Indexing XMLType Data
	6.2.1 XMLIndex Addresses the Fine-Grained Structure of XML Data
	6.2.2 Oracle Text Indexes for XML Data
	6.2.3 Optimization Chooses the Right Indexes to Use
	6.2.4 Function-Based Indexes Are Deprecated for XMLType

	6.3 XMLIndex
	6.3.1 Advantages of XMLIndex
	6.3.2 Structured and Unstructured XMLIndex Components
	6.3.3 XMLIndex Structured Component
	6.3.3.1 Ignore the Index Content Tables; They Are Transparent
	6.3.3.2 Data Type Considerations for XMLIndex Structured Component
	6.3.3.3 Exchange Partitioning and XMLIndex

	6.3.4 XMLIndex Unstructured Component
	6.3.4.1 Ignore the Path Table – It Is Transparent
	6.3.4.2 Column VALUE of an XMLIndex Path Table
	6.3.4.3 Secondary Indexes on Column VALUE
	6.3.4.4 XPath Expressions That Are Not Indexed by an XMLIndex Unstructured Component

	6.3.5 Creating, Dropping, Altering, and Examining an XMLIndex Index
	6.3.6 Using XMLIndex with an Unstructured Component
	6.3.6.1 Creating Additional Secondary Indexes on an XMLIndex Path Table

	6.3.7 Use of XMLIndex with a Structured Component
	6.3.7.1 Using Namespaces and Storage Clauses with an XMLIndex Structured Component
	6.3.7.2 Adding a Structured Component to an XMLIndex Index
	6.3.7.3 Using Non-Blocking ALTER INDEX with an XMLIndex Structured Component
	6.3.7.4 Modifying the Data Type of a Structured XMLIndex Component
	6.3.7.5 Dropping an XMLIndex Structured Component
	6.3.7.6 Indexing the Relational Tables of a Structured XMLIndex Component

	6.3.8 How to Tell Whether XMLIndex is Used
	6.3.9 Turning Off Use of XMLIndex
	6.3.10 XMLIndex Path Subsetting: Specifying the Paths You Want to Index
	6.3.10.1 Examples of XMLIndex Path Subsetting
	6.3.10.2 XMLIndex Path-Subsetting Rules

	6.3.11 Guidelines for Using XMLIndex with an Unstructured Component
	6.3.12 Guidelines for Using XMLIndex with a Structured Component
	6.3.13 XMLIndex Partitioning and Parallelism
	6.3.14 Asynchronous (Deferred) Maintenance of XMLIndex Indexes
	6.3.14.1 Syncing an XMLIndex Index in Case of Error ORA-08181

	6.3.15 Collecting Statistics on XMLIndex Objects for the Cost-Based Optimizer
	6.3.16 Data Dictionary Static Public Views Related to XMLIndex
	6.3.17 PARAMETERS Clause for CREATE INDEX and ALTER INDEX
	6.3.17.1 Using a Registered PARAMETERS Clause for XMLIndex
	6.3.17.2 PARAMETERS Clause Syntax for CREATE INDEX and ALTER INDEX
	6.3.17.3 Usage of XMLIndex_parameters_clause
	6.3.17.4 Usage of XMLIndex_parameters
	6.3.17.5 Usage of PATHS Clause
	6.3.17.6 Usage of create_index_paths_clause and alter_index_paths_clause
	6.3.17.7 Usage of pikey_clause, path_id_clause, and order_key_clause
	6.3.17.8 Usage of value_clause
	6.3.17.9 Usage of async_clause
	6.3.17.10 Usage of groups_clause and alter_index_group_clause
	6.3.17.11 Usage of XMLIndex_xmltable_clause
	6.3.17.12 Usage of column_clause


	6.4 Indexing XML Data for Full-Text Queries
	6.4.1 Creating and Using an XML Search Index
	6.4.2 What To Do If an XML Search Index Is Not Picked Up
	6.4.3 Pragma ora:no_schema: Using XML Schema-Based Data with XQuery Full Text
	6.4.4 Pragma ora:use_xmltext_idx: Forcing the Use of an XML Search Index
	6.4.5 Migrating from Using Oracle Text Index to XML Search Index

	6.5 Indexing XMLType Data Stored Object-Relationally
	6.5.1 Indexing Non-Repeating Text Nodes or Attribute Values
	6.5.2 Indexing Repeating (Collection) Elements


	7 Transformation and Validation of XMLType Data
	7.1 XSL Transformation and Oracle XML DB
	7.1.1 SQL Function XMLTRANSFORM and XMLType Method TRANSFORM()
	7.1.1.1 XMLTRANSFORM and XMLType.transform(): Examples

	7.1.2 XSL Transformation Using DBUri Servlet

	7.2 Validation of XMLType Instances
	7.2.1 Partial and Full XML Schema Validation
	7.2.1.1 Partial Validation
	7.2.1.2 Full Validation
	7.2.1.2.1 Full XML Schema Validation Costs Processing Time and Memory Usage


	7.2.2 Validating XML Data Stored as XMLType: Examples



	Part III Relational Data To and From XML Data
	8 Generation of XML Data from Relational Data
	8.1 Overview of Generating XML Data
	8.2 Generation of XML Data Using SQL Functions
	8.2.1 XMLELEMENT and XMLATTRIBUTES SQL/XML Functions
	8.2.1.1 Escape of Characters in Generated XML Data
	8.2.1.2 Formatting of XML Dates and Timestamps
	8.2.1.3 XMLElement Examples

	8.2.2 XMLFOREST SQL/XML Function
	8.2.3 XMLCONCAT SQL/XML Function
	8.2.4 XMLAGG SQL/XML Function
	8.2.5 XMLPI SQL/XML Function
	8.2.6 XMLCOMMENT SQL/XML Function
	8.2.7 XMLSERIALIZE SQL/XML Function
	8.2.8 XMLPARSE SQL/XML Function
	8.2.9 XMLCOLATTVAL Oracle SQL Function
	8.2.10 XMLCDATA Oracle SQL Function

	8.3 Generation of XML Data Using DBMS_XMLGEN
	8.3.1 Using PL/SQL Package DBMS_XMLGEN
	8.3.2 Functions and Procedures of Package DBMS_XMLGEN
	8.3.3 DBMS_XMLGEN Examples

	8.4 SYS_XMLAGG Oracle SQL Function
	8.5 Ordering Query Results Before Aggregating, Using XMLAGG ORDER BY Clause
	8.6 Returning a Rowset Using XMLTABLE

	9 Relational Views over XML Data
	9.1 Introduction to Creating and Using Relational Views over XML Data
	9.2 Creating a Relational View over XML: One Row for Each XML Document
	9.3 Creating a Relational View over XML: Mapping XML Nodes to Columns
	9.4 Indexing Binary XML Data Exposed Using a Relational View
	9.5 Querying XML Content As Relational Data

	10 XMLType Views
	10.1 What Are XMLType Views?
	10.2 CREATE VIEW for XMLType Views: Syntax
	10.3 Creating Non-Schema-Based XMLType Views
	10.4 Creating XML Schema-Based XMLType Views
	10.4.1 Creating XML Schema-Based XMLType Views Using SQL/XML Publishing Functions
	10.4.1.1 Using Namespaces with SQL/XML Publishing Functions

	10.4.2 Creating XML Schema-Based XMLType Views Using Object Types or Object Views
	10.4.2.1 Creating XMLType Employee View, with Nested Department Information
	10.4.2.1.1 Step 1. Create Object Types for XMLType Employee View
	10.4.2.1.2 Step 2. Create and Register XML Schema emp_complex.xsd
	10.4.2.1.3 Step 3a. Create XMLType View emp_xml Using Object Type emp_t
	10.4.2.1.4 Step 3b. Create XMLType View emp_xml Using Object View emp_v

	10.4.2.2 Creating XMLType Department View, with Nested Employee Information
	10.4.2.2.1 Step 1. Create Object Types for XMLType Department View
	10.4.2.2.2 Step 2. Register XML Schema dept_complex.xsd
	10.4.2.2.3 Step 3a. Create XMLType View dept_xml Using Object Type dept_t
	10.4.2.2.4 Step 3b. Create XMLType View dept_xml Using Relational Data Directly



	10.5 Creating XMLType Views from XMLType Tables
	10.6 Referencing XMLType View Objects Using SQL Function REF
	10.7 Using DML (Data Manipulation Language) on XMLType Views


	Part IV XMLType APIs
	11 PL/SQL APIs for XMLType
	11.1 Overview of PL/SQL APIs for XMLType
	11.1.1 PL/SQL APIs for XMLType: Features
	11.1.1.1 Lazy Load of XML Data (Lazy Manifestation)
	11.1.1.2 XMLType Data Type Supports XML Schema
	11.1.1.3 XMLType Supports Data in Different Character Sets

	11.1.2 PL/SQL APIs for XMLType: References

	11.2 PL/SQL DOM API for XMLType (DBMS_XMLDOM)
	11.2.1 Overview of the W3C Document Object Model (DOM) Recommendation
	11.2.1.1 Oracle XML Developer's Kit Extensions to the W3C DOM Standard
	11.2.1.2 Supported W3C DOM Recommendations
	11.2.1.3 Difference Between DOM and SAX

	11.2.2 PL/SQL DOM API for XMLType (DBMS_XMLDOM): Features
	11.2.2.1 PL/SQL DOM API Support for XML Schema
	11.2.2.2 Enhanced DOM Performance

	11.2.3 Application Design Using Oracle XML Developer's Kit and Oracle XML DB
	11.2.4 Preparing XML Data to Use the PL/SQL DOM API for XMLType
	11.2.5 XML Schema Types Are Mapped to SQL Object Types
	11.2.5.1 DOM Fidelity for XML Schema Mapping

	11.2.6 Wrap Existing Data as XML with XMLType Views
	11.2.7 DBMS_XMLDOM Methods Supported by Oracle XML DB
	11.2.8 PL/SQL DOM API for XMLType: Node Types
	11.2.9 PL/SQL Function NEWDOMDOCUMENT and DOMDOCUMENT Nodes
	11.2.10 DOM NodeList and NamedNodeMap Objects
	11.2.11 Overview of Using the PL/SQL DOM API for XMLType (DBMS_XMLDOM)
	11.2.12 PL/SQL DOM API for XMLType – Examples
	11.2.13 Large Node Handling Using DBMS_XMLDOM
	11.2.14 Get-Push Model for Large Node Handling
	11.2.15 Get-Pull Model for Large Node Handling
	11.2.16 Set-Pull Model for Large Node Handling
	11.2.17 Set-Push Model for Large Node Handling
	11.2.18 Determining Binary Stream or Character Stream for Large Node Handling

	11.3 PL/SQL Parser API for XMLType (DBMS_XMLPARSER)
	11.4 PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
	11.4.1 PL/SQL XSLT Processor for XMLType: Features
	11.4.2 Using the PL/SQL XSLT Processor API for XMLType (DBMS_XSLPROCESSOR)


	12 PL/SQL Package DBMS_XMLSTORE
	12.1 Using Package DBMS_XMLSTORE
	12.2 Inserting an XML Document Using DBMS_XMLSTORE
	12.3 Updating XML Data Using DBMS_XMLSTORE
	12.4 Deleting XML Data Using DBMS_XMLSTORE

	13 Java DOM API for XMLType
	13.1 Overview of Java DOM API for XMLType
	13.2 Access to XMLType Data Using JDBC
	13.2.1 Using JDBC to Access XML Documents in Oracle XML DB

	13.3 Manipulating XML Database Documents Using JDBC
	13.4 Loading a Large XML Document into the Database Using JDBC
	13.5 MS Windows Java Security Manager Permissions for Java DOM API with a Thick Connection
	13.6 Creating XML Schema-Based Documents
	13.7 XMLType Instance Representation in Java (JDBC or SQLJ)
	13.8 Classes of Java DOM API for XMLType
	13.9 Using the Java DOM API for XMLType
	13.10 Large XML Node Handling with Java
	13.10.1 Stream Extensions to Java DOM
	13.10.1.1 Get-Pull Model
	13.10.1.2 Get-Push Model
	13.10.1.3 Set-Pull Model
	13.10.1.4 Set-Push Model


	13.11 Using the Java DOM API and JDBC with Binary XML

	14 C DOM API for XMLType
	14.1 Overview of the C DOM API for XMLType
	14.2 Access to XMLType Data Stored in the Database Using OCI
	14.3 Creating XMLType Instances on the Client
	14.4 XML Context Parameter for C DOM API Functions
	14.4.1 OCIXmlDbInitXmlCtx() Syntax
	14.4.2 OCIXmlDbFreeXmlCtx() Syntax

	14.5 Initializing and Terminating an XML Context
	14.6 Using the C API for XML with Binary XML
	14.7 Using the Oracle XML Developer's Kit Pull Parser with Oracle XML DB
	14.8 Common XMLType Operations in C

	15 Oracle XML DB and Oracle Data Provider for .NET
	15.1 Oracle XML DB and ODP.NET XML
	15.2 Using XMLType Data with ODP.NET


	Part V XML Schema and Object-Relational XMLType
	16 Choice of XMLType Storage and Indexing
	16.1 Introduction to Choosing an XMLType Storage Model and Indexing Approaches
	16.2 XMLType Use Case Spectrum: Data-Centric to Document-Centric
	16.3 Common Use Cases for XML Data Stored as XMLType
	16.3.1 XMLType Use Case: No XML Fragment Updating or Querying
	16.3.2 XMLType Use Case: Data Integration from Diverse Sources with Different XML Schemas
	16.3.3 XMLType Use Case: Staged XML Data for ETL
	16.3.4 XMLType Use Case: Semi-Structured XML Data
	16.3.5 XMLType Use Case: Business Intelligence Queries
	16.3.6 XMLType Use Case: XML Queries Involving Full-Text Search

	16.4 XMLType Storage Model Considerations
	16.5 XMLType Indexing Considerations
	16.6 XMLType Storage Options: Relative Advantages

	17 XML Schema Storage and Query: Basic
	17.1 Overview of XML Schema
	17.1.1 XML Schema for Schemas
	17.1.2 XML Schema Features
	17.1.3 XML Instance Documents
	17.1.4 XML Namespaces and XML Schemas
	17.1.5 Overview of Editing XML Schemas

	17.2 Overview of Using XML Schema with Oracle XML DB
	17.2.1 Why Use XML Schema with Oracle XML DB?
	17.2.2 Overview of Annotating an XML Schema to Control Naming, Mapping, and Storage
	17.2.3 DOM Fidelity
	17.2.4 XMLType Methods Related to XML Schema

	17.3 XML Schema Registration with Oracle XML DB
	17.3.1 XML Schema Registration Actions
	17.3.2 Registering an XML Schema with Oracle XML DB
	17.3.3 SQL Types and Tables Created During XML Schema Registration
	17.3.4 Default Tables for Global Elements
	17.3.5 Database Objects That Depend on Registered XML Schemas
	17.3.6 Local and Global XML Schemas
	17.3.6.1 Local XML Schema
	17.3.6.2 Global XML Schema

	17.3.7 Fully Qualified XML Schema URLs
	17.3.8 Deletion of an XML Schema
	17.3.9 Listing All Registered XML Schemas

	17.4 Creation of XMLType Tables and Columns Based on XML Schemas
	17.4.1 Specification of XMLType Storage Options for XML Schema-Based Data
	17.4.1.1 Binary XML Storage of XML Schema-Based Data
	17.4.1.2 Object-Relational Storage of XML Schema-Based Data


	17.5 Ways to Identify XML Schema Instance Documents
	17.5.1 Attributes noNamespaceSchemaLocation and schemaLocation
	17.5.2 XML Schema and Multiple Namespaces

	17.6 XML Schema Data Types Are Mapped to Oracle XML DB Storage

	18 XML Schema Storage and Query: Object-Relational Storage
	18.1 Object-Relational Storage of XML Documents
	18.1.1 How Collections Are Stored for Object-Relational XMLType Storage
	18.1.2 SQL Types Created during XML Schema Registration for Object-Relational Storage
	18.1.3 Default Tables Created during XML Schema Registration
	18.1.4 Do Not Use Internal Constructs Generated during XML Schema Registration
	18.1.5 Generated Names are Case Sensitive
	18.1.6 SYS_XDBPD⁠$ and DOM Fidelity for Object-Relational Storage

	18.2 Oracle XML Schema Annotations
	18.2.1 Common Uses of XML Schema Annotations
	18.2.2 XML Schema Annotation Example
	18.2.3 Annotating an XML Schema Using DBMS_XMLSCHEMA_ANNOTATE
	18.2.4 Available Oracle XML DB XML Schema Annotations
	18.2.5 XML Schema Annotation Guidelines for Object-Relational Storage
	18.2.5.1 Avoid Creation of Unnecessary Tables for Unused Top-Level Elements
	18.2.5.2 Provide Your Own Names for Default Tables
	18.2.5.3 Turn Off DOM Fidelity If Not Needed
	18.2.5.4 Annotate Time-Related Elements with a Timestamp Data Type
	18.2.5.5 Add Table and Column Properties
	18.2.5.6 Store Large Collections Out of Line

	18.2.6 Querying a Registered XML Schema to Obtain Annotations
	18.2.6.1 You Can Apply Annotations from One XML Schema to Another


	18.3 Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data Types
	18.3.1 Example of Mapping XML Schema Data Types to SQL
	18.3.2 XML Schema Attribute Data Types Mapped to SQL
	18.3.2.1 You Can Override the SQLType Value in an XML Schema When Declaring Attributes

	18.3.3 XML Schema Element Data Types Mapped to SQL
	18.3.3.1 Override of the SQLType Value in an XML Schema When Declaring Elements

	18.3.4 How XML Schema simpleType Is Mapped to SQL
	18.3.4.1 NCHAR, NVARCHAR2, and NCLOB SQLType Values Are Not Supported for SQLType
	18.3.4.2 simpleType: How XML Strings Are Mapped to SQL VARCHAR2 Versus CLOB
	18.3.4.3 How XML Schema Time Zones Are Mapped to SQL
	18.3.4.3.1 Use Trailing Z to Indicate UTC Time Zone


	18.3.5 How XML Schema complexType Is Mapped to SQL
	18.3.5.1 Attribute Specification in a complexType XML Schema Declaration


	18.4 complexType Extensions and Restrictions in Oracle XML DB
	18.4.1 complexType Declarations in XML Schema: Handling Inheritance
	18.4.2 How a complexType Based on simpleContent Is Mapped to an Object Type
	18.4.3 How any and anyAttribute Declarations Are Mapped to Object Type Attributes

	18.5 Creating XML Schema-Based XMLType Columns and Tables
	18.6 Overview of Partitioning XMLType Tables and Columns Stored Object-Relationally
	18.6.1 Examples of Partitioning XMLType Data Stored Object-Relationally
	18.6.2 Partition Maintenance for XMLType Data Stored Object-Relationally

	18.7 Specification of Relational Constraints on XMLType Tables and Columns
	18.7.1 Adding Unique Constraints to the Parent Element of an Attribute

	18.8 Out-Of-Line Storage of XMLType Data
	18.8.1 Setting Annotation Attribute xdb:SQLInline to false for Out-Of-Line Storage
	18.8.2 Storing Collections in Out-Of-Line Tables

	18.9 Considerations for Working with Complex or Large XML Schemas
	18.9.1 Circular and Cyclical Dependencies Among XML Schemas
	18.9.1.1 For Circular XML Schema Dependencies Set Parameter GENTABLES to TRUE
	18.9.1.2 complexType Declarations in XML Schema: Handling Cycles
	18.9.1.3 Cyclical References Among XML Schemas

	18.9.2 Support for Recursive Schemas
	18.9.2.1 defaultTable Shared Among Common Out-Of-Line Elements
	18.9.2.2 Query Rewrite when DOCID is Present
	18.9.2.3 DOCID Column Creation Disabling

	18.9.3 XML Fragments Can Be Mapped to Large Objects (LOBs)
	18.9.4 ORA-01792 and ORA-04031: Issues with Large XML Schemas
	18.9.5 Considerations for Loading and Retrieving Large Documents with Collections
	18.9.5.1 Guidelines for Configuration Parameters xdbcore-loadableunit-size and xdbcore-xobmem-bound


	18.10 Debugging XML Schema Registration for XML Data Stored Object-Relationally

	19 XPath Rewrite for Object-Relational Storage
	19.1 Overview of XPath Rewrite for Object-Relational Storage
	19.2 Common XPath Expressions that Are Rewritten
	19.3 XPath Rewrite for Out-Of-Line Tables
	19.4 Guidelines for Using Execution Plans to Analyze and Optimize XPath Queries
	19.4.1 Guideline: Look for underlying tables versus XML functions in execution plans
	19.4.2 Guideline: Name the object-relational tables, so you recognize them in execution plans
	19.4.3 Guideline: Create an index on a column targeted by a predicate
	19.4.4 Guideline: Create indexes on ordered collection tables
	19.4.5 Guideline: Use XMLOptimizationCheck to determine why a query is not rewritten


	20 XML Schema Evolution
	20.1 Overview of XML Schema Evolution
	20.2 Copy-Based Schema Evolution
	20.2.1 Scenario for Copy-Based Evolution
	20.2.2 COPYEVOLVE Parameters and Errors
	20.2.3 Limitations of Procedure COPYEVOLVE
	20.2.4 Guidelines for Using Procedure COPYEVOLVE
	20.2.4.1 Top-Level Element Name Changes
	20.2.4.2 User-Created Virtual Columns of Tables Other Than Default Tables
	20.2.4.3 Ensure That the XML Schema and Dependents Are Not Used by Concurrent Sessions
	20.2.4.4 Rollback When Procedure DBMS_XMLSCHEMA.COPYEVOLVE Raises an Error
	20.2.4.5 Failed Rollback From Insufficient Privileges
	20.2.4.6 Privileges Needed for XML Schema Evolution

	20.2.5 Update of Existing XML Instance Documents Using an XSLT Stylesheet
	20.2.6 Examples of Using Procedure COPYEVOLVE

	20.3 In-Place XML Schema Evolution
	20.3.1 Restrictions for In-Place XML Schema Evolution
	20.3.1.1 Backward-Compatibility Restrictions
	20.3.1.1.1 Changes in Data Layout on Disk
	20.3.1.1.2 Reorder of XML Schema Constructs
	20.3.1.1.3 Changes from a Collection to a Non-Collection
	20.3.1.1.4 Model Changes within a complexType Element

	20.3.1.2 Other Restrictions on In-Place Evolution
	20.3.1.2.1 Changes to Attributes in Namespace xdb
	20.3.1.2.2 Changes from a Non-Collection to a Collection


	20.3.2 Supported Operations for In-Place XML Schema Evolution
	20.3.3 Guidelines for Using In-Place XML Schema Evolution
	20.3.4 inPlaceEvolve Parameters
	20.3.5 The diffXML Parameter Document
	20.3.5.1 diffXML Operations and Examples




	Part VI Oracle XML DB Repository
	21 Access to Oracle XML DB Repository Data
	21.1 Overview of Oracle XML DB Repository
	21.1.1 Oracle XML DB Provides Name-Level Locking
	21.1.2 Two Ways to Access Oracle XML DB Repository Resources
	21.1.3 Database Schema (User Account) XDB and Oracle XML DB Repository

	21.2 Repository Terminology and Supplied Resources
	21.2.1 Repository Terminology
	21.2.2 Predefined Repository Files and Folders

	21.3 Oracle XML DB Repository Resources
	21.3.1 Where Is Repository Data Stored?
	21.3.1.1 Names of Generated Tables
	21.3.1.2 How Object-Relational Storage Is Defined for Repository Resources
	21.3.1.3 Oracle ASM Virtual Folder

	21.3.2 How Documents are Stored in Oracle XML DB Repository
	21.3.3 Repository Data Access Control
	21.3.4 Repository Path-Name Resolution
	21.3.5 Link Types
	21.3.5.1 Repository Links and Document Links
	21.3.5.2 Hard Links and Weak Links
	21.3.5.3 Creating a Weak Link with No Knowledge of Folder Hierarchy
	21.3.5.4 How and When to Prevent Multiple Hard Links


	21.4 Navigational or Path Access to Repository Resources
	21.4.1 Access to Oracle XML DB Resources Using Internet Protocols
	21.4.1.1 Where You Can Use Oracle XML DB Protocol Access
	21.4.1.2 Overview of Protocol Access to Oracle XML DB
	21.4.1.3 Retrieval of Oracle XML DB Resources
	21.4.1.4 Storage of Oracle XML DB Resources
	21.4.1.5 Internet Protocols and XMLType: XMLType Direct Stream Write

	21.4.2 Access to Oracle ASM Files Using Protocols and Resource APIs – For DBAs

	21.5 Query-Based Access to Repository Resources
	21.6 Servlet Access to Repository Resources
	21.7 Operations on Repository Resources
	21.8 Accessing the Content of Repository Resources Using SQL
	21.9 Access to the Content of XML Schema-Based Documents
	21.9.1 Accessing Resource Content Using Element XMLRef in Joins

	21.10 Update of the Content of Repository Documents
	21.10.1 Update of Repository Content Using Internet Protocols
	21.10.2 Update of Repository Content Using SQL
	21.10.2.1 Updating a Document in the Repository by Updating Its Resource Document
	21.10.2.2 Updating an XML Schema-Based Document in the Repository by Updating the Default Table


	21.11 Querying Resources in RESOURCE_VIEW and PATH_VIEW
	21.12 Oracle XML DB Hierarchical Repository Index

	22 Configuration of Oracle XML DB Repository
	22.1 Resource Configuration Files
	22.2 Configuring a Resource
	22.3 Common Configuration Parameters
	22.3.1 Configuration Element ResConfig
	22.3.2 Configuration Elements defaultChildConfig and configuration
	22.3.3 Configuration Element applicationData


	23 Use of XLink and XInclude with Oracle XML DB
	23.1 Overview of XLink and XInclude
	23.2 Link Types for XLink and XInclude
	23.2.1 XLink and XInclude Links Model Document Relationships
	23.2.2 XLink Link Types and XInclude Link Types

	23.3 XInclude: Compound Documents
	23.4 Oracle XML DB Support for XLink
	23.5 Oracle XML DB Support for XInclude
	23.5.1 Expanding Compound-Document Inclusions
	23.5.2 Validation of Compound Documents
	23.5.3 Update of a Compound Document
	23.5.4 Compound Document Versioning, Locking, and Access Control

	23.6 Use View DOCUMENT_LINKS to Examine XLink and XInclude Links
	23.6.1 Querying DOCUMENT_LINKS for XLink Information
	23.6.2 Querying DOCUMENT_LINKS for XInclude Information

	23.7 Configuration of Repository Resources for XLink and XInclude
	23.7.1 Configure the Treatment of Unresolved Links: Attribute UnresolvedLink
	23.7.2 Configure the Type of Document Links to Create: Element LinkType
	23.7.3 Configure the Path Format for Retrieval: Element PathFormat
	23.7.4 Configure Conflict-Resolution for XInclude: Element ConflictRule
	23.7.5 Configure the Decomposition of Documents Using XInclude: Element SectionConfig
	23.7.6 XLink and XInclude Configuration Examples

	23.8 Manage XLink and XInclude Links Using DBMS_XDB_REPOS.processLinks

	24 Repository Access Using RESOURCE_VIEW and PATH_VIEW
	24.1 Overview of Oracle XML DB RESOURCE_VIEW and PATH_VIEW
	24.1.1 RESOURCE_VIEW Definition and Structure
	24.1.2 PATH_VIEW Definition and Structure
	24.1.3 The Difference Between RESOURCE_VIEW and PATH_VIEW
	24.1.4 Operations You Can Perform Using UNDER_PATH and EQUALS_PATH

	24.2 Oracle SQL Functions That Use RESOURCE_VIEW and PATH_VIEW
	24.2.1 UNDER_PATH SQL Function
	24.2.2 EQUALS_PATH SQL Function
	24.2.3 PATH SQL Function
	24.2.4 DEPTH SQL Function

	24.3 Accessing Repository Data Paths, Resources and Links: Examples
	24.4 Deleting Repository Resources: Examples
	24.4.1 Deleting Nonempty Folder Resources

	24.5 Updating Repository Resources: Examples
	24.6 Working with Multiple Oracle XML DB Resources
	24.7 Performance Guidelines for Oracle XML DB Repository Operations
	24.8 Searching for Resources Using Oracle Text

	25 Resource Versions
	25.1 Overview of Oracle XML DB Repository Resource Versioning
	25.2 Overview of PL/SQL Package DBMS_XDB_VERSION
	25.3 Resource Versions and Resource IDs
	25.4 Resource Versions and ACLs
	25.5 Resource Versioning Examples

	26 PL/SQL Access to Oracle XML DB Repository
	26.1 DBMS_XDB_REPOS: Access and Manage Repository Resources
	26.2 DBMS_XDB_REPOS: ACL-Based Security Management
	26.3 DBMS_XDB_CONFIG: Configuration Management

	27 Repository Access Control
	27.1 Access Control Concepts
	27.1.1 Authentication and Authorization
	27.1.2 Principal: A User or Role
	27.1.2.1 Database Roles and ACLs Map Privileges to Users
	27.1.2.2 Principal DAV::owner

	27.1.3 Privilege: A Permission
	27.1.4 Access Control Entry (ACE)
	27.1.5 Access Control List (ACL)

	27.2 Database Privileges for Repository Operations
	27.3 Privileges
	27.3.1 Atomic Privileges
	27.3.2 Aggregate Privileges

	27.4 ACLs and ACEs
	27.4.1 System ACLs
	27.4.2 ACL and ACE Evaluation
	27.4.3 ACL Validation
	27.4.4 Element invert: Complement the Principals in an ACE

	27.5 Overview of Working with Access Control Lists (ACLs)
	27.5.1 Creating an ACL Using DBMS_XDB_REPOS.CREATERESOURCE
	27.5.2 Retrieving an ACL Document, Given its Repository Path
	27.5.3 Setting the ACL of a Resource
	27.5.4 Deleting an ACL
	27.5.5 Updating an ACL
	27.5.6 Retrieving the ACL Document that Protects a Given Resource
	27.5.7 Retrieving Privileges Granted to the Current User for a Particular Resource
	27.5.8 Checking Whether the Current User Has Privileges on a Resource
	27.5.9 Checking Whether a User Has Privileges Using the ACL and Resource Owner
	27.5.10 Retrieving the Path of the ACL that Protects a Given Resource
	27.5.11 Retrieving the Paths of All Resources Protected by a Given ACL

	27.6 ACL Caching
	27.7 Repository Resources and Database Table Security
	27.7.1 Optimization: Do not enforce ACL-based security if you do not need it

	27.8 Integration Of Oracle XML DB with LDAP

	28 Repository Access Using Protocols
	28.1 Overview of Oracle XML DB Protocol Server
	28.1.1 Session Pooling

	28.2 Oracle XML DB Protocol Server Configuration Management
	28.2.1 Protocol Server Configuration Parameters
	28.2.2 Configuring Secure HTTP (HTTPS)
	28.2.2.1 Enabling the HTTP Listener to Use SSL
	28.2.2.2 Enabling TCPS Dispatcher

	28.2.3 Using Listener Status to Check Port Configuration
	28.2.4 Configuring Protocol Port Parameters after Database Consolidation
	28.2.5 Configuration and Management of Authentication Mechanisms for HTTP
	28.2.5.1 Nonces for Digest Authentication

	28.2.6 Oracle XML DB Repository and File-System Resources
	28.2.7 Protocol Server Handles XML Schema-Based or Non-Schema-Based XML Documents
	28.2.8 Event-Based Logging
	28.2.9 Auditing of HTTP and FTP Protocols

	28.3 FTP and the Oracle XML DB Protocol Server
	28.3.1 Oracle XML DB Protocol Server: FTP Features
	28.3.1.1 FTP Features That Are Not Supported
	28.3.1.2 Supported FTP Client Methods
	28.3.1.3 FTP Quote Methods
	28.3.1.4 Uploading Content to Oracle XML DB Repository Using FTP
	28.3.1.5 Using FTP with Oracle ASM Files
	28.3.1.6 Using FTP on the Standard Port Instead of the Oracle XML DB Default Port
	28.3.1.7 Using IPv6 IP Addresses with FTP
	28.3.1.8 FTP Server Session Management
	28.3.1.9 Handling Error 421. Modifying the Default Timeout Value of an FTP Session
	28.3.1.10 FTP Client Failure in Passive Mode


	28.4 HTTP(S) and Oracle XML DB Protocol Server
	28.4.1 Oracle XML DB Protocol Server: HTTP(S) Features
	28.4.1.1 Supported HTTP(S) Client Methods
	28.4.1.2 Using HTTP(S) on a Standard Port Instead of an Oracle XML DB Default Port
	28.4.1.3 Use of IPv6 IP Addresses with HTTP(S)
	28.4.1.4 HTTPS: Support for Secure HTTP
	28.4.1.5 Control of URL Expiration Time
	28.4.1.6 Anonymous Access to Oracle XML DB Repository Using HTTP
	28.4.1.7 Use of Java Servlets with HTTP(S)
	28.4.1.8 Embedded PL/SQL Gateway
	28.4.1.9 Transmission of Multibyte Data From a Client
	28.4.1.10 Characters That Are Not ASCII in URLs
	28.4.1.11 Character Sets for HTTP(S)
	28.4.1.11.1 HTTP(S) Request Character Set
	28.4.1.11.2 HTTP(S) Response Character Set



	28.5 WebDAV and Oracle XML DB
	28.5.1 Oracle XML DB WebDAV Features
	28.5.1.1 WebDAV Features That Are Not Supported by Oracle XML DB
	28.5.1.2 WebDAV Client Methods Supported by Oracle XML DB

	28.5.2 WebDAV and Microsoft Windows
	28.5.3 Creating a WebFolder in Microsoft Windows For Use With Oracle XML DB Repository
	28.5.3.1 Use of WebDAV with Windows Explorer to Copy Files into Oracle XML DB Repository



	29 User-Defined Repository Metadata
	29.1 Overview of Metadata and XML
	29.1.1 Kinds of Metadata – Uses of the Term
	29.1.2 User-Defined Resource Metadata
	29.1.3 Scenario: Metadata for a Photo Collection

	29.2 Using XML Schemas to Define Resource Metadata
	29.3 Addition, Modification, and Deletion of Resource Metadata
	29.3.1 Adding Metadata Using APPENDRESOURCEMETADATA
	29.3.2 Deleting Metadata Using DELETERESOURCEMETADATA
	29.3.3 Adding Metadata Using SQL DML
	29.3.4 Adding Metadata Using WebDAV PROPPATCH

	29.4 Querying XML Schema-Based Resource Metadata
	29.5 XML Image Metadata from Binary Image Metadata
	29.6 Adding Non-Schema-Based Resource Metadata
	29.7 PL/SQL Procedures Affecting Resource Metadata

	30 Oracle XML DB Repository Events
	30.1 Overview of Repository Events
	30.1.1 Repository Events: Use Cases
	30.1.2 Repository Events and Database Triggers
	30.1.3 Repository Event Listeners and Event Handlers
	30.1.4 Repository Event Configuration

	30.2 Possible Repository Events
	30.3 Repository Operations and Events
	30.4 Repository Event Handler Considerations
	30.5 Configuration of Repository Events
	30.5.1 Configuration Element event-listeners
	30.5.2 Configuration Element listener
	30.5.3 Repository Events Configuration Examples


	31 Guidelines for Oracle XML DB Applications in Java
	31.1 Overview of Oracle XML DB Java Applications
	31.2 HTTP(S): Access Java Servlets or Directly Access XMLType Resources
	31.3 Use JDBC XMLType Support to Access Many XMLType Object Elements
	31.4 Use Servlets to Manipulate and Write Out Data Quickly as XML
	31.5 Oracle XML DB Java Servlet Support Restrictions
	31.6 Configuration of Oracle XML DB Servlets
	31.7 HTTP Request Processing for Oracle XML DB Servlets
	31.8 Session Pool and Oracle XML DB Servlets
	31.9 Native XML Stream Support
	31.10 Oracle XML DB Servlet APIs
	31.11 Oracle XML DB Servlet Example

	32 Data Access Using URIs
	32.1 Overview of Oracle XML DB URI Features
	32.2 URIs and URLs
	32.3 URIType and its Subtypes
	32.3.1 Overview of DBUris and XDBUris
	32.3.2 URIType PL/SQL Methods
	32.3.2.1 HTTPURIType PL/SQL Method GETCONTENTTYPE()
	32.3.2.2 DBURIType PL/SQL Method GETCONTENTTYPE()
	32.3.2.3 DBURIType PL/SQL Method GETCLOB()
	32.3.2.4 DBURIType PL/SQL Method GETBLOB()


	32.4 Accessing Data Using URIType Instances
	32.5 XDBUris: Pointers to Repository Resources
	32.5.1 XDBUri URI Syntax
	32.5.2 Using XDBUri: Examples

	32.6 DBUris: Pointers to Database Data
	32.6.1 View the Database as XML Data
	32.6.2 DBUri URI Syntax
	32.6.3 DBUris are Scoped to a Database and Session
	32.6.4 Using DBUris —Examples
	32.6.4.1 Targeting a Table Using a DBUri
	32.6.4.2 Targeting a Row in a Table Using a DBUri
	32.6.4.3 Targeting a Column Using a DBUri
	32.6.4.4 Retrieving the Text Value of a Column Using a DBUri
	32.6.4.5 Targeting a Collection Using a DBUri


	32.7 Create New Subtypes of URIType Using Package URIFACTORY
	32.7.1 Registering New URIType Subtypes with Package URIFACTORY

	32.8 SYS_DBURIGEN SQL Function
	32.8.1 Rules for Passing Columns or Object Attributes to SYS_DBURIGEN
	32.8.2 Using SQL Function SYS_DBURIGEN: Examples
	32.8.2.1 Inserting Database References Using SYS__DBURIGEN
	32.8.2.2 Returning Partial Results Using SYS__DBURIGEN
	32.8.2.3 Returning URLs to Inserted Objects Using SYS_DBURIGEN


	32.9 DBUriServlet
	32.9.1 Overriding the MIME Type Using a URL
	32.9.2 Customizing DBUriServlet
	32.9.3 Using Roles for DBUriServlet Security
	32.9.4 Configuring Package URIFACTORY to Handle DBUris
	32.9.5 Table or View Access from a Web Browser Using DBUri Servlet


	33 Native Oracle XML DB Web Services
	33.1 Overview of Native Oracle XML DB Web Services
	33.2 Configuring and Enabling Web Services for Oracle XML DB
	33.2.1 Configuring Web Services for Oracle XML DB
	33.2.2 Enabling Web Services for a Specific User

	33.3 Query Oracle XML DB Using a Web Service
	33.4 Access to PL/SQL Stored Procedures Using a Web Service
	33.4.1 Using a PL/SQL Function with a Web Service: Example



	Part VII Oracle Tools that Support Oracle XML DB
	34 Administration of Oracle XML DB
	34.1 Upgrade or Downgrade of an Existing Oracle XML DB Installation
	34.1.1 Authentication Considerations for Database Installation, Upgrade and Downgrade
	34.1.1.1 Authentication Considerations for a Database Installation
	34.1.1.2 Authentication Considerations for a Database Upgrade
	34.1.1.3 Authentication Considerations for a Database Downgrade

	34.1.2 Automatic Installation of Oracle XML DB
	34.1.3 Validation of ACL Documents and Configuration File

	34.2 Administration of Oracle XML DB Using Oracle Enterprise Manager
	34.3 Configuration of Oracle XML DB Using xdbconfig.xml
	34.3.1 Oracle XML DB Configuration File, xdbconfig.xml
	34.3.1.1 Element xdbconfig (Top-Level)
	34.3.1.2 Element sysconfig (Child of xdbconfig)
	34.3.1.3 Element userconfig (Child of xdbconfig)
	34.3.1.4 Element protocolconfig (Child of sysconfig)
	34.3.1.5 Element httpconfig (Child of protocolconfig)
	34.3.1.6 Element servlet (Descendant of httpconfig)
	34.3.1.7 Oracle XML DB Configuration File Example
	34.3.1.8 Oracle XML DB Configuration API
	34.3.1.9 Configuration of Mappings from Default Namespace to Schema Location
	34.3.1.10 Configuration of XML File Extensions


	34.4 Oracle XML DB and Database Consolidation
	34.5 Package DBMS_XDB_ADMIN

	35 How to Load XML Data
	35.1 Overview of Loading XMLType Data Into Oracle Database
	35.2 Load XMLType Data Using SQL*Loader
	35.2.1 Load XMLType LOB Data Using SQL*Loader
	35.2.1.1 Load LOB Data Using Predetermined Size Fields
	35.2.1.2 Load LOB Data Using Delimited Fields
	35.2.1.3 Load XML Columns Containing LOB Data from LOBFILEs
	35.2.1.4 Specify LOBFILEs

	35.2.2 Load XMLType Data Directly from a Control File Using SQL*Loader
	35.2.3 Loading Large XML Documents Using SQL*Loader


	36 Export and Import of Oracle XML DB Data
	36.1 Overview of Exporting and Importing XMLType Tables
	36.2 Export/Import Limitations for Oracle XML DB Repository
	36.3 Export/Import Syntax and Examples
	36.3.1 Performing a Table-Mode Export /Import
	36.3.2 Performing a Schema-Mode Export/Import


	37 XML Data Exchange Using Oracle Database Advanced Queuing
	37.1 XML and Oracle Database Advanced Queuing
	37.1.1 Oracle Database Advanced Queuing and XML Message Payloads
	37.1.2 Advantages of Using Oracle Database Advanced Queuing

	37.2 Oracle Database Advanced Queuing
	37.2.1 Message Queuing

	37.3 XMLType Attributes in Object Types
	37.4 Internet Data Access Presentation (iDAP): SOAP for AQ
	37.5 iDAP Architecture
	37.5.1 XMLType Queue Payloads

	37.6 Guidelines for Using XML and Oracle Database Advanced Queuing
	37.6.1 Store AQ XML Messages with Many PDFs as One Record
	37.6.2 Add New Recipients After Messages Are Enqueued
	37.6.3 Enqueue and Dequeue XML Messages
	37.6.4 Parse Messages with XML Content from AQ Queues
	37.6.5 Prevent the Listener from Stopping Until an XML Document Is Processed
	37.6.6 HTTPS with AQ
	37.6.7 Store XML in Oracle AQ Message Payloads
	37.6.8 iDAP and SOAP



	Part VIII Appendixes
	A Oracle-Supplied XML Schemas and Examples
	A.1 XDBResource.xsd: XML Schema for Oracle XML DB Resources
	A.2 XDBResConfig.xsd: XML Schema for Resource Configuration
	A.3 acl.xsd: XML Schema for ACLs
	A.4 xdbconfig.xsd: XML Schema for Configuring Oracle XML DB
	A.5 xdiff.xsd: XML Schema for Comparing Schemas for In-Place Evolution
	A.6 Purchase-Order XML Schemas
	A.7 XSLT Stylesheet Example, PurchaseOrder.xsl
	A.8 Loading XML Data Using C (OCI)
	A.9 Initializing and Terminating an XML Context (OCI)

	B Oracle XML DB Restrictions

	Index

