
Oracle® Database
High Availability Overview and Best Practices

F23691-39
June 2025

Oracle Database High Availability Overview and Best Practices,

F23691-39

Copyright © 2005, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xix

Documentation Accessibility xix

Related Documents xx

Conventions xx

Part I Oracle Database High Availability Overview

1 Overview of High Availability

What Is High Availability? 1-1

Importance of Availability 1-2

Cost of Downtime 1-2

Causes of Downtime 1-3

Chaos Engineering 1-7

Roadmap to Implementing the Maximum Availability Architecture 1-8

2 High Availability and Data Protection – Getting From Requirements to
Architecture

High Availability Requirements 2-1

A Methodology for Documenting High Availability Requirements 2-2

Business Impact Analysis 2-2

Cost of Downtime 2-3

Recovery Time Objective 2-3

Recovery Point Objective 2-4

Manageability Goal 2-4

Total Cost of Ownership and Return on Investment 2-5

Mapping Requirements to Architectures 2-5

Oracle MAA Reference Architectures 2-5

Bronze Reference Architecture 2-6

Silver Reference Architecture 2-7

Gold Reference Architecture 2-7

iii

Platinum Reference Architecture 2-7

High Availability and Data Protection Attributes by Tier 2-7

3 Features for Maximizing Availability

Oracle Data Guard 3-1

Oracle Active Data Guard 3-4

Oracle Data Guard Advantages Over Traditional Solutions 3-6

Data Guard and Planned Maintenance 3-7

Data Guard Redo Apply and Standby-First Patching 3-7

Data Guard Transient Logical Rolling Upgrades 3-8

Rolling Upgrade Using Oracle Active Data Guard 3-9

Oracle GoldenGate 3-10

Best Practice: Oracle Active Data Guard and Oracle GoldenGate 3-11

When to Use Oracle Active Data Guard 3-12

When to Use Oracle GoldenGate 3-12

When to Use Oracle Active Data Guard and Oracle GoldenGate Together 3-13

Recovery Manager 3-13

Oracle Real Application Clusters and Oracle Clusterware 3-15

Benefits of Using Oracle Clusterware 3-16

Benefits of Using Oracle Real Application Clusters and Oracle Clusterware 3-17

Oracle RAC Advantages Over Traditional Cold Cluster Solutions 3-18

Oracle RAC One Node 3-20

Oracle Automatic Storage Management 3-20

Fast Recovery Area 3-22

Corruption Prevention, Detection, and Repair 3-22

Data Recovery Advisor 3-25

Oracle Flashback Technology 3-26

Oracle Flashback Query 3-27

Oracle Flashback Version Query 3-28

Oracle Flashback Transaction 3-28

Oracle Flashback Transaction Query 3-28

Oracle Flashback Table 3-29

Oracle Flashback Drop 3-29

Restore Points 3-29

Oracle Flashback Database 3-29

Flashback Pluggable Database 3-30

Block Media Recovery Using Flashback Logs or Physical Standby Database 3-30

Flashback Data Archive 3-31

Oracle Data Pump and Data Transport 3-31

Oracle Replication Technologies for Non-Database Files 3-31

Oracle ASM Cluster File System 3-32

iv

Oracle Database File System 3-33

Oracle Solaris ZFS Storage Appliance Replication 3-34

Oracle Multitenant 3-35

Oracle Sharding 3-37

Oracle Restart 3-37

Online Reorganization and Redefinition 3-38

Zero Data Loss Recovery Appliance 3-38

Fleet Patching and Provisioning 3-39

Edition-Based Redefinition 3-39

4 Oracle Database High Availability Solutions for Unplanned Downtime

Outage Types and Oracle High Availability Solutions for Unplanned Downtime 4-1

Managing Unplanned Outages for MAA Reference Architectures and Multitenant
Architectures 4-6

5 Oracle Database High Availability Solutions for Planned Downtime

Oracle High Availability Solutions for Planned Maintenance 5-1

High Availability Solutions for Migration 5-3

6 Enabling Continuous Service for Applications

7 Operational Prerequisites to Maximizing Availability

Understand High Availability and Performance Service-Level Agreements 7-1

Implement and Validate a High Availability Architecture That Meets Your SLAs 7-1

Establish Test Practices and Environment 7-1

Configuring Test and QA Environments 7-2

Performing Preproduction Validation Steps 7-3

Set Up and Use Security Best Practices 7-5

Establish Change Control Procedures 7-5

Apply Recommended Software Updates and Security Updates Periodically 7-5

Establish Disaster Recovery Environment 7-6

Establish and Validate Disaster Recovery Practices 7-7

Establish Escalation Management Procedures 7-7

Configure Monitoring and Service Request Infrastructure for High Availability 7-8

Run Database Health Checks Periodically 7-8

Configure Monitoring 7-9

Configure Automatic Service Request Infrastructure 7-10

Exercise Capacity Planning 7-10

v

Check the Latest MAA Best Practices 7-11

Part II Oracle Database High Availability Best Practices

8 Overview of Oracle Database High Availability Best Practices

9 Oracle Database Configuration Best Practices

Use a Server Parameter File (SPFILE) 9-1

Enable Archive Log Mode and Forced Logging 9-1

Configure an Alternate Local Archiving Destination 9-1

Use a Fast Recovery Area 9-2

Enable Flashback Database 9-3

Set FAST_START_MTTR_TARGET Initialization Parameter 9-4

Protect Against Data Corruption 9-4

Set the LOG_BUFFER Initialization Parameter to 128MB or Higher 9-5

Set USE_LARGE_PAGES=ONLY 9-5

Use Bigfile Tablespace 9-5

Use Automatic Shared Memory Management and Avoid Memory Paging 9-7

Use Oracle Clusterware 9-8

10

Oracle Flashback Best Practices

Oracle Flashback Performance Observations 10-1

Oracle Flashback Configuration Best Practices 10-2

Oracle Flashback Operational Best Practices 10-4

Oracle Flashback Performance Tuning for Specific Application Use Cases 10-4

11

Oracle Global Data Services Best Practices

Introduction to Global Data Services 11-1

Global Data Services Concepts 11-2

Key Capabilities of Global Data Services 11-3

Benefits of Global Data Services 11-4

Application Workload Suitability for Global Data Services 11-5

Global Data Services in Oracle Maximum Availability Architecture 11-5

Partial or Full Site Outage with Global Data Services 11-6

Global Data Services Configuration 11-7

High-Level Deployment Steps 11-7

Configuration Example 11-7

Configuration Best Practices 11-12

vi

Using FAN ONS with Global Data Services 11-12

Application-Level Configuration 11-14

Configuring FAN for OCI Clients 11-15

Controlling Logon Storms 11-16

Graceful Application Switchover 11-16

Using Oracle Active Data Guard with Global Data Services 11-17

Using Oracle GoldenGate with Global Data Services 11-19

Global Data Services Failover Across Regions Flow 11-22

Global Data Services Limitations and Requirements 11-23

Part III Oracle RAC and Clusterware Best Practices

12

Overview of Oracle RAC and Clusterware Best Practices

Part IV Oracle Data Guard Best Practices

13

Overview of MAA Best Practices for Oracle Data Guard

14

Plan an Oracle Data Guard Deployment

Oracle Data Guard Architectures 14-1

Application Considerations for Oracle Data Guard Deployments 14-1

Deciding Between Full Site Failover or Seamless Connection Failover 14-1

Full Site Failover Best Practices 14-2

Configuring Seamless Connection Failover 14-5

Assessing and Optimizing Network Performance 14-5

Gather Topology Information 14-7

Understanding Network Usage of Data Guard 14-7

Understanding Targets and Goals for Instantiation 14-7

Understanding Throughput Requirements and Average Redo Write Size for Redo
Transport 14-7

Verify Average Redo Write Size 14-8

Understand Current Network Throughput 14-9

Optimizing Redo Transport with One and Many Processes 14-12

Using This Data 14-17

Determining Oracle Data Guard Protection Mode 14-17

Offloading Queries to a Read-Only Standby Database 14-18

vii

15

Configure and Deploy Oracle Data Guard

Oracle Data Guard Configuration Best Practices 15-1

Apply Oracle Database Configuration Best Practices First 15-1

Use Recovery Manager to Create Standby Databases 15-1

Use Oracle Data Guard Broker with Oracle Data Guard 15-1

Example Broker Installation and Configuration 15-2

Configure Redo Transport Mode 15-3

Validate the Broker Configuration 15-3

Configure Fast Start Failover 15-5

Fast Start Failover with Multiple Standby Databases 15-7

Set Log Buffer Optimally 15-8

Set Send and Receive Buffer Sizes 15-8

Set SDU Size to 65535 for Synchronous Transport Only 15-8

Configure Online Redo Logs Appropriately 15-9

Sizing Redo Logs 15-9

Use Standby Redo Log Groups 15-10

Protect Against Data Corruption 15-11

Use Flashback Database for Reinstatement After Failover 15-12

Use Force Logging Mode 15-12

Configure Fast Start Failover to Bound RTO and RPO (MAA Gold Requirement) 15-12

Configure Standby AWR 15-15

Configuring Multiple Standby Databases 15-16

Managing Oracle Data Guard Configurations with Multiple Standby Databases 15-16

Multiple Standby Databases and Redo Routes 15-16

Using the RedoRoutes Property for Remote Alternate Destinations 15-17

Fast Start Failover with Multiple Standby Databases 15-19

Setting FastStartFailoverTarget 15-19

Switchover with FastStartFailoverTarget Set 15-19

Fast-Start Failover Outage Handling 15-20

Oracle Active Data Guard Far Sync Solution 15-20

About Far Sync 15-21

Offloading to a Far Sync Instance 15-21

Far Sync Deployment Topologies 15-21

Case 1: Zero Data Loss Protection Following Role Transitions 15-22

Case 2: Reader Farm Support 15-23

Case 3: Cloud Deployment With Far Sync Hub 15-23

Far Sync High Availability Topologies 15-24

Choosing a Far Sync Deployment Topology 15-25

Far Sync Configuration Best Practices 15-26

Configuring the Active Data Guard Far Sync Architecture 15-27

Configuring the Far Sync Instances 15-27

viii

Setting Up HA Far Sync Instances 15-29

Configuring Far Sync Instances with Oracle RAC or Oracle Clusterware 15-30

Encrypting a Database Using Data Guard and Fast Offline Encryption 15-30

16

Tune and Troubleshoot Oracle Data Guard

Overview of Oracle Data Guard Tuning and Troubleshooting 16-1

Redo Transport Troubleshooting and Tuning 16-1

Gather Topology Information 16-2

Verify Transport Lag and Understand Redo Transport Configuration 16-2

Gather Information to Troubleshoot Transport Lag 16-3

Compare Redo Generation Rate History on the Primary 16-4

Evaluate the Transport Network and Tune 16-4

Gather and Monitor System Resources 16-5

Tune to Meet Data Guard Resource Requirements 16-5

Advanced Troubleshooting: Determining Network Time with Asynchronous Redo
Transport 16-6

Tuning and Troubleshooting Synchronous Redo Transport 16-8

Understanding How Synchronous Transport Ensures Data Integrity 16-9

Assessing Performance in a Synchronous Redo Transport Environment 16-9

Why the Log File Sync Wait Event is Misleading 16-10

Understanding What Causes Outliers 16-11

Effects of Synchronous Redo Transport Remote Writes 16-12

Example of Synchronous Redo Transport Performance Troubleshooting 16-12

Redo Apply Troubleshooting and Tuning 16-13

Understanding Redo Apply and Redo Apply Performance Expectations 16-14

Verify Apply Lag 16-15

Gather Information 16-16

Compare Redo Generation Rate History on the Primary 16-19

Tune Single Instance Redo Apply 16-19

Evaluate System Resource Bottlenecks 16-19

Tune Redo Apply by Evaluating Database Wait Events 16-20

Enable Multi-Instance Redo Apply if Required 16-24

Addressing a Very Large Redo Apply Gap 16-26

Improving Redo Apply Rates by Sacrificing Data Protection 16-27

Role Transition, Assessment, and Tuning 16-27

Prerequisite Data Guard Health Check Before Role Transition 16-28

Every Quarter 16-28

One Month Before Switchover 16-28

Days Before Switchover 16-31

Data Guard Role Transition 16-31

Monitor Data Guard Role Transitions 16-32

ix

Key Switchover Operations and Alert Log Tags 16-32

Key Failover Operations and Alert Log Tags 16-33

Post Role Transition Validation 16-34

Troubleshooting Problems During a Switchover Operation 16-34

Sources of Diagnostic Information 16-34

Retry Switchover After Correcting the Initial Problem 16-35

Rolling Back After Unsuccessful Switchover to Maximize Uptime 16-35

Data Guard Performance Observations 16-35

Data Guard Role Transition Duration 16-35

Application Throughput and Response Time Impact with Data Guard 16-38

17

Monitor an Oracle Data Guard Configuration

Monitoring Oracle Data Guard Configuration Health Using the Broker 17-1

Detecting Transport or Apply Lag Using the Oracle Data Guard Broker 17-3

Monitoring Oracle Data Guard Configuration Health Using SQL 17-5

Oracle Data Guard Broker Diagnostic Information 17-7

Detecting and Monitoring Data Corruption 17-7

18

Optimizing Automatic Failover in Common Scenarios to Minimize
Downtime

Automatic Database Failover for Primary Database Outages 18-1

Automatic Data Integrity and Avoidance of Split Brain 18-2

Automatic Reconnect Following Any Outage That Results in Network Timeout 18-3

Automatic Reconnect Following Resolution of Standby Outage 18-3

Data Guard Broker Properties That Affect Outage Repair Times 18-3

Data Guard Standby Database Outage Repair 18-5

Oracle Active Data Guard Far Sync – Examples and Outage Scenarios 18-8

Primary Database Outage Repair 18-13

Part V MAA Platinum and Oracle GoldenGate Best Practices

19

MAA Platinum Reference Architecture Overview

20

Overview of Oracle GoldenGate Best Practices

x

21

Cloud Within Region: Configuring Oracle GoldenGate Hub for MAA
Platinum

Overview of MAA GoldenGate Hub 21-1

Planning GGHub Placement in the Platinum MAA Architecture 21-2

Where to Place the MAA Primary GGHub and Standby GGHub 21-2

MAA GGHubs Placed in the Same OCI Region 21-3

Task 1: Configure the Source and Target Databases for Oracle GoldenGate 21-7

Step 1.1 - Configure the Databases 21-8

Step 1.2 - Create a GoldenGate Database Administrator User 21-9

Step 1.3 - Create the Database Services 21-10

Task 2: Deploy Oracle GoldenGate Maximum Availability Hub on Oracle Cloud Marketplace 21-11

Task 3: Configure the Oracle GoldenGate Environment 21-12

Step 3.1 - Create Database Credentials 21-12

Step 3.2 - Create an Oracle Net TNS Alias for Oracle GoldenGate Database
Connections 21-13

Step 3.3 - Set Up Schema Supplemental Logging 21-15

Step 3.4 - Create the Autostart Profile 21-15

Step 3.5 - Configure Oracle GoldenGate Processes 21-16

22

Cloud Across Regions: Configuring Oracle GoldenGate Hub for MAA
Platinum

Overview of MAA GoldenGate Hub 22-1

Planning GGHub Placement in the Platinum MAA Architecture 22-2

Where to Place the MAA Primary GGHub and Standby GGHub 22-2

MAA GGHubs Placed in Different OCI Regions 22-3

Task 1: Configure the Source and Target Databases for Oracle GoldenGate 22-7

Step 1.1 - Configure the Databases 22-8

Step 1.2 - Create a GoldenGate Database Administrator User 22-9

Step 1.3 - Create the Database Services 22-10

Task 2: Prepare a Primary and Standby Base System for GGHub 22-11

Step 2.1 - Deploy an Oracle RAC 2-Node Cluster System 22-11

Step 2.2 - Remove the Standard Database and Rearrange the Disk Group Layout 22-12

Step 2.3 - Download the Required Software 22-13

Step 2.4 - Configure Oracle Linux To Use the Oracle Public YUM Repository 22-14

Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub 22-14

Step 3.1 - Install Oracle GoldenGate Software 22-14

Step 3.2 - Configure the Cloud Network 22-18

Step 3.3 - Configure ACFS File System Replication Between GGHubs in the Same
Region 22-22

Step 3.4 - Create the Oracle GoldenGate Deployment 22-39

Step 3.5 - Configure Oracle Grid Infrastructure Agent (XAG) 22-41

xi

Step 3.6 - Configure NGINX Reverse Proxy 22-46

Step 3.7 - Securing Oracle GoldenGate Microservices to Restrict Non-Secure Direct
Access 22-53

Step 3.8 - Create a Clusterware Resource to Manage NGINX 22-55

Step 3.9 - Create an Oracle Net TNS Alias for Oracle GoldenGate Database
Connections 22-56

Task 4: Configure the Oracle GoldenGate Environment 22-58

Step 4.1 - Create Database Credentials 22-58

Step 4.2 - Set Up Schema Supplemental Logging 22-59

Step 4.3 - Create the Autostart Profile 22-59

Step 4.4 - Configure Oracle GoldenGate Processes 22-59

23

Cloud: Oracle GoldenGate Microservices Architecture on Oracle Exadata
Database Service Configuration Best Practices

Overview of Oracle GoldenGate Microservices Architecture Configuration on Oracle Exadata
Database Service 23-1

Task 1 - Before You Begin 23-2

Task 2 - Configure the Oracle Database for GoldenGate 23-4

Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment 23-7

Task 4 - Install Oracle GoldenGate 23-16

Task 5 - Create the Oracle GoldenGate Deployment 23-20

Task 6 - Configure the Network 23-22

Task 7 - Configure Oracle Grid Infrastructure Agent 23-25

Task 8 - Configure NGINX Reverse Proxy 23-30

Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections 23-39

Task 10 - Create a New Profile 23-40

Task 11 - Configure Oracle GoldenGate Processes 23-41

24

Cloud MAA Platinum: Oracle GoldenGate Microservices Architecture
Integrated with Active Data Guard

Overview 24-1

Task 1 - Before You Begin 24-2

Task 2 - Configure the Oracle Database for GoldenGate 24-3

Task 3 - Configure Oracle Database File System 24-4

Task 4 - Install Oracle GoldenGate 24-8

Task 5 - Create Oracle GoldenGate Deployment Directories 24-8

Task 6 - Network Configuration 24-9

Task 7 - Configure Standby NGINX Reverse Proxy 24-9

Task 8 - Configure Oracle Grid Infrastructure Agent 24-13

Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections 24-15

Task 10 - Configure Oracle GoldenGate Processes 24-16

xii

Example Distribution Path Target Change Script 24-22

25

On-Premises: Configuring Oracle GoldenGate Hub

Overview of MAA GoldenGate Hub 25-1

Planning GGHub Placement in the Platinum MAA Architecture 25-2

Where to Place the MAA Primary GGHub and Standby GGHub 25-2

MAA GGHubs Placed in the Same Data Center 25-3

MAA GGHubs Placed in Different Data Centers 25-7

Task 1: Configure the Source and Target Databases for Oracle GoldenGate 25-11

Task 2: Prepare a Primary and Standby Base System for GGHub 25-14

Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub 25-16

Task 4: Configure the Oracle GoldenGate Environment 25-55

26

On-Premises: Oracle GoldenGate Microservices Architecture with Oracle
Real Application Clusters Configuration Best Practices

Summary of Recommendations when Deploying Oracle GoldenGate on Oracle RAC 26-1

Task 1: Configure the Oracle Database for Oracle GoldenGate 26-2

Task 2: Create the Database Replication Administrator User 26-2

Task 3: Create the Database Services 26-3

Task 4: Set Up a File System on Oracle RAC 26-3

Task 5: Install Oracle GoldenGate 26-8

Task 6: Create the Oracle GoldenGate Deployment 26-8

Task 7: Oracle Clusterware Configuration 26-10

Task 8: Configure NGINX Reverse Proxy 26-15

Task 9: Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections 26-16

Task 10: Configure Oracle GoldenGate Processes 26-17

Task 11: Configure Autostart of Extract and Replicat Processes 26-22

27

On-Premises MAA Platinum: Oracle GoldenGate Microservices
Architecture Integrated with Active Data Guard

Prerequisites 27-1

Task 1: Configure the Standby Database for Oracle GoldenGate 27-2

Task 2: Modify the Primary Database Service 27-3

Task 3: Create the Standby Database Service 27-3

Task 4: Configure DBFS on the Standby Cluster Nodes 27-3

Task 5: Install Oracle GoldenGate Software 27-4

Task 6: Create Oracle GoldenGate Deployment Directories 27-5

Task 7: Configure the Standby NGINX Reverse Proxy 27-5

Task 8: Configure Oracle Clusterware 27-8

xiii

Task 9: Create Oracle Net TNS Aliases for Oracle GoldenGate Database Connections 27-10

Task 10: Configure Oracle GoldenGate Processes 27-10

Example Distribution Path Target Change Script 27-15

28

Managing Outages for Oracle GoldenGate Hub

Managing Planned Outages 28-1

Managing Unplanned Outages 28-3

29

Oracle GoldenGate Active-Active Guidance for Developers and
Administrators

Preparing for Conflict Resolution 29-1

Best Practices for Active-Active Oracle GoldenGate Architecture 29-2

30

Troubleshooting Oracle GoldenGate

Troubleshooting MAA GoldenGate Hub 30-1

Oracle GoldenGate Extract Failure or Error Conditions Considerations 30-1

Troubleshooting ACFS Replication 30-3

Troubleshooting Oracle GoldenGate 30-4

Troubleshooting Oracle GoldenGate on Oracle RAC 30-8

Example Configuration Problems 30-11

Part VI Oracle Database Cloud Best Practices

31

Overview of Oracle Database Cloud Best Practices

32

Oracle Maximum Availability Architecture and Oracle Autonomous
Database

Oracle MAA for Oracle Autonomous Database on Dedicated Exadata Infrastructure 32-1

Autonomous Database Dedicated with Default High Availability Option (MAA Silver) 32-1

Autonomous Database Dedicated with Autonomous Data Guard Option (MAA Gold) 32-3

Updating Autonomous Data Guard Settings 32-6

Autonomous Data Guard Life Cycle Management 32-7

MAA Autonomous Data Guard RTO and RPO Observations 32-7

Autonomous Database with Autonomous Data Guard Option and Oracle GoldenGate
(MAA Platinum) 32-8

Implementing the MAA Platinum Solution 32-9

xiv

Preparing Application for Seamless Application Failover 32-10

Oracle MAA for Oracle Autonomous Database Serverless 32-10

Autonomous Database Serverless with Default High Availability Option (MAA Silver) 32-10

Autonomous Database Serverless with Autonomous Data Guard Option (MAA Gold) 32-12

Adding an Autonomous Standby Database 32-13

Monitoring Apply Lag 32-15

Autonomous Data Guard Role Transitions 32-17

Manual Failover Operations and Determining Data Loss 32-18

Notifications for Automatic Failover 32-19

MAA Autonomous Data Guard RTO and RPO Observations 32-22

Preparing an Application for Seamless Application Failover 32-23

33

Oracle Maximum Availability Architecture in Oracle Exadata Cloud
Systems

Oracle Maximum Availability Architecture Benefits 33-1

Expected Impact with Unplanned Outages 33-3

Expected Impact with Planned Maintenance 33-4

Achieving Continuous Availability For Your Applications 33-11

Oracle Maximum Availability Architecture Reference Architectures in Oracle Exadata Cloud 33-15

34

Oracle Maximum Availability Architecture for Multicloud

MAA Evaluations on Multicloud Solutions 34-1

Oracle Database Multicloud Evaluations by Oracle MAA 34-1

Network Evaluation 34-2

MAA Silver Architecture and Evaluation 34-5

MAA Gold Architecture and Evaluation 34-6

Oracle Maximum Availability Architecture Benefits 34-6

Expected Impact During Unplanned Outages 34-7

Expected Impact During Planned Maintenance 34-8

Achieving Continuous Availability For Your Applications 34-13

Oracle Maximum Availability Architecture for Oracle Database@Azure 34-16

Network Results 34-17

MAA Silver Network Topology and Evaluation 34-19

Application Network Layer on Azure 34-20

Backup and Restore Observations 34-20

MAA Gold Network Topology and Evaluation 34-20

Network Layer 34-21

Setting Up Networking Across Availability Zones 34-23

Setting Up Networking Across Regions 34-26

Oracle Maximum Availability Architecture for Oracle Database@Google Cloud 34-27

xv

Network Results 34-27

MAA Silver Network Topology and Evaluation 34-29

Application Network Layer on Google Cloud 34-30

Backup and Restore Observations 34-31

MAA Gold Network Topology and Evaluation 34-31

Oracle Active Data Guard Principles for ExaDB-D on Google Cloud Configuration 34-33

Networking Between Primary and Standby Clusters 34-34

35

Oracle Data Guard Hybrid Cloud Configuration

Benefits Of Hybrid Data Guard in the Oracle Cloud 35-1

MAA Recommendations for Using Exadata Cloud for Disaster Recovery 35-2

Security Requirements and Considerations 35-2

Platform, Database, and Network Prerequisites 35-3

Cloud Network Prerequisites 35-4

On-Premises Prerequisites 35-5

Evaluate Network Using oratcptest 35-5

Configuration 35-5

Implement MAA Best Practice Parameter Settings on the Primary Database 35-6

Validating Connectivity between On-Premises and Exadata Cloud Hosts 35-6

Prepare the Primary Database Environment 35-7

Create an ACFS Mount Point 35-7

Configure Transparent Data Encryption on the Source Database 35-7

Check the TDE Master Key Before Instantiation 35-9

Configure Online Redo Logs 35-9

Size Redo Logs 35-10

Enable Flashback Database 35-11

Investigate Log for Errors (TFA) 35-11

Instantiate the Standby Using Oracle DBaaS Tools 35-12

Task 1: Install DBaaSCA in the On-Premises Environment 35-12

Task 2: Prepare the Cloud Environment for Instantiation of the Standby Database 35-12

Task 3: Instantiate the Standby Database 35-13

Configure ACFS 35-14

Run dbaasca Operation prepareForStandby in the On-Premises Environment 35-14

Run dbaascli Operation configureStandby in the Cloud Environment 35-16

Task 4: Validate the Standby Database 35-19

Task 5: Implement Recommended MAA Best Practices 35-20

Data Guard Life Cycle Operations 35-22

Health Check and Monitoring 35-22

xvi

Part VII Continuous Availability for Applications

36

Configuring Continuous Availability for Applications

About Application High Availability Levels 36-1

Configuring Level 1: Basic Application High Availability 36-4

Step 1: Configure High Availability Database Services 36-4

Configure High Availability Services 36-5

Configure High Availability Services for Oracle Active Data Guard or Standby Roles 36-6

Considerations for Oracle Cloud Database Services 36-6

Step 2: Configure the Connection String for High Availability 36-7

Step 3: Ensure That FAN Is Used and ONS port 6200 is Open 36-9

Step 4: Developer Determines if the Application Should Implement Reconnection Logic 36-10

Configuring Level 2: Prepare Applications for Planned Maintenance 36-11

Recommended Option: Use an Oracle Connection Pool 36-11

Alternate Options 36-12

Alternate Option 1: Use Request Boundaries 36-12

Alternate Option 2: Use Connection Validation or Tests 36-13

Server-Side Operations for Planned Maintenance 36-14

Configuring Level 3: Mask Unplanned and Planned Failovers from Applications 36-15

Configure Services for AC and TAC 36-16

Return Connections to the Connection Pool 36-17

Side Effect 36-17

Restore Original Function Values During Replay 36-17

JDBC Configuration 36-18

Monitoring 36-18

Reference 36-19

Connection Time Estimates During Data Guard Switchover or Failover 36-19

Oracle Net TNS String Parameters 36-19

Connection Retry Logic Examples 36-21

Server-Side Planned Maintenance Command Examples 36-23

Part VIII Oracle Multitenant Best Practices

37

Overview of Oracle Multitenant Best Practices

xvii

38

PDB Switchover and Failover in a Multitenant Configuration

PDB Switchover Use Case 38-2

Prerequisites 38-2

Configuring PDB Switchover 38-3

PDB Failover Use Case 38-8

Prerequisites 38-9

Additional Considerations 38-9

Configuring PDB Failover 38-9

Resolving Errors 38-15

Reference 38-16

Full Example Commands with Output 38-16

Keyword Definitions 38-20

Messages 38-21

Sample Oracle Database Net Services Connect Aliases 38-23

Part IX Full Site Switch in Oracle Cloud or On-Premises

39

Full Site Switch in Oracle Cloud or On-Premise

Performing Role Transitions Between Regions 39-2

Best Practices for Full Site Switchover 39-4

More Information About Full Site Switchover 39-5

xviii

Preface

This book introduces you to Oracle best practices for deploying a highly available database
environment, and provides best practices for configuring the Oracle MAA reference
architectures.

Part 1 provides an overview of high availability and helps you to determine your high
availability requirements. It describes the Oracle Database products and features that are
designed to support high availability and describes the primary database architectures that can
help your business achieve high availability.

Part 2 describes the best practices for configuring a highly available Oracle database, using
features provided with Oracle Database, which lets you achieve MAA Bronze reference
architecture service levels

Part 3 describes the best practices for configuring a highly available Oracle database using
Oracle Data Guard for replication and data protection, which lets you achieve MAA Gold
reference architecture service levels.

This preface contains these topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This book is intended for chief technology officers, information technology architects, database
administrators, system administrators, network administrators, and application administrators
who perform the following tasks:

• Plan data centers

• Implement data center policies

• Maintain high availability systems

• Plan and build high availability solutions

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

xix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Related Documents
Knowledge of Oracle Database, Oracle RAC, and Data Guard concepts and terminology is
required to understand the configuration and implementation details described in this book. For
more information, see the Oracle Database documentation set. These books may be of
particular interest:

• Oracle Database Administrator’s Guide

• Oracle Clusterware Administration and Deployment Guide

• Oracle Real Application Clusters Administration and Deployment Guide

• Oracle Automatic Storage Management Administrator's Guide

• Oracle Data Guard Concepts and Administration

• Oracle Database Backup and Recovery User's Guide

Many books in the documentation set use the sample schemas of the seed database, which is
installed by default when you install Oracle Database. See Oracle Database Sample Schemas
for information about using these schemas.

Also, you can download the Oracle MAA best practice technical briefs at http://
www.oracle.com/goto/maa.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xx

http://www.oracle.com/goto/maa
http://www.oracle.com/goto/maa

Part I
Oracle Database High Availability Overview

• Overview of High Availability

• High Availability and Data Protection – Getting From Requirements to Architecture

• Features for Maximizing Availability

• Oracle Database High Availability Solutions for Unplanned Downtime

• Oracle Database High Availability Solutions for Planned Downtime

• Enabling Continuous Service for Applications

• Operational Prerequisites to Maximizing Availability

1
Overview of High Availability

See the following topics to learn what high availability and why it is important. Then follow the
roadmap to implementing a Maximum Availability Architecture.

What Is High Availability?
Availability is the degree to which an application and database service is available.

Availability is measured by the perception of an application's user. Users experience frustration
when their data is unavailable or the computing system is not performing as expected, and
they do not understand or care to differentiate between the complex components of an overall
solution. Performance failures due to higher than expected usage create the same disruption
as the failure of critical components in the architecture. If a user cannot access the application
or database service, it is said to be unavailable. Generally, the term downtime is used to refer
to periods when a system is unavailable.

Users who want their systems to be always ready to serve them need high availability. A
system that is highly available is designed to provide uninterrupted computing services during
essential time periods, during most hours of the day, and most days of the week throughout the
year; this measurement is often shown as 24x365. Such systems may also need a high
availability solution for planned maintenance operations such as upgrading a system's
hardware or software.

Reliability, recoverability, timely error detection, and continuous operations are primary
characteristics of a highly available solution:

• Reliability: Reliable hardware is one component of a high availability solution. Reliable
software—including the database, web servers, and applications—is just as critical to
implementing a highly available solution. A related characteristic is resilience. For example,
low-cost commodity hardware, combined with software such as Oracle Real Application
Clusters (Oracle RAC), can be used to implement a very reliable system. The resilience of
an Oracle RAC database allows processing to continue even though individual servers
may fail. For example, the Oracle RAC database allows processing to continue even
though individual servers may fail.

• Recoverability: Even though there may be many ways to recover from a failure, it is
important to determine what types of failures may occur in your high availability
environment and how to recover from those failures quickly in order to meet your business
requirements. For example, if a critical table is accidentally deleted from the database,
what action should you take to recover it? Does your architecture provide the ability to
recover in the time specified in a service-level agreement (SLA)?

• Timely error detection: If a component in your architecture fails, then fast detection is
essential to recover from the unexpected failure. Although you may be able to recover
quickly from an outage, if it takes an additional 90 minutes to discover the problem, then
you may not meet your SLA. Monitoring the health of your environment requires reliable
software to view it quickly and the ability to notify the database administrator of a problem.

• Continuous operation: Providing continuous access to your data is essential when very
little or no downtime is acceptable to perform maintenance activities. Activities, such as
moving a table to another location in the database or even adding CPUs to your hardware,
should be transparent to the user in a high availability architecture.

1-1

More specifically, a high availability architecture should have the following traits:

• Tolerate failures such that processing continues with minimal or no interruption

• Be transparent to—or tolerant of—system, data, or application changes

• Provide built-in preventive measures

• Provide active monitoring and fast detection of failures

• Provide fast recoverability

• Automate detection and recovery operations

• Protect the data to minimize or prevent data loss and corruptions

• Implement the operational best practices to manage your environment

• Achieve the goals set in SLAs (for example, recovery time objectives (RTOs) and recovery
point objectives (RPOs)) for the lowest possible total cost of ownership

Importance of Availability
The importance of high availability varies among applications. Databases and the internet have
enabled worldwide collaboration and information sharing by extending the reach of database
applications throughout organizations and communities.

This reach emphasizes the importance of high availability in data management solutions. Both
small businesses and global enterprises have users all over the world who require access to
data 24 hours a day. Without this data access, operations can stop, and revenue is lost. Users
now demand service-level agreements from their information technology (IT) departments and
solution providers, reflecting the increasing dependence on these solutions. Increasingly,
availability is measured in dollars, euros, and yen, not just in time and convenience.

Enterprises have used their IT infrastructure to provide a competitive advantage, increase
productivity, and empower users to make faster and more informed decisions. However, with
these benefits has come an increasing dependence on that infrastructure. If a critical
application becomes unavailable, then the business can be in jeopardy. The business might
lose revenue, incur penalties, and receive bad publicity that has a lasting effect on customers
and on the company's stock price.

It is important to examine the factors that determine how your data is protected and maximize
availability to your users.

Cost of Downtime
The need to deliver increasing levels of availability continues to accelerate as enterprises
reengineer their solutions to gain competitive advantage. Most often, these new solutions rely
on immediate access to critical business data.

When data is not available, the operation can cease to function. Downtime can lead to lost
productivity, lost revenue, damaged customer relationships, bad publicity, and lawsuits.

It is not always easy to place a direct cost on downtime. Angry customers, idle employees, and
bad publicity are all costly, but not directly measured in currency. On the other hand, lost
revenue and legal penalties incurred because SLA objectives are not met can easily be
quantified. The cost of downtime can quickly grow in industries that are dependent on their
solutions to provide service.

Other factors to consider in the cost of downtime are:

Chapter 1
Importance of Availability

1-2

• The maximum tolerable length of a single unplanned outage

If the event lasts less than 30 seconds, then it may cause very little impact and may be
barely perceptible to users. As the length of the outage grows, the effect may grow
exponentially and negatively affect the business.

• The maximum frequency of allowable incidents

Frequent outages, even if short in duration, may similarly disrupt business operations.

When designing a solution, it is important to recognize the true cost of downtime to understand
how the business can benefit from availability improvements.

Oracle provides a range of high availability solutions to fit every organization regardless of
size. Small workgroups and global enterprises alike are able to extend the reach of their critical
business applications. With Oracle and the Internet, applications and data are reliably
accessible everywhere, at any time.

Causes of Downtime
One of the challenges in designing a high availability solution is examining and addressing all
of the possible causes of downtime.

It is important to consider causes of both unplanned and planned downtime when designing a
fault-tolerant and resilient IT infrastructure. Planned downtime can be just as disruptive to
operations as unplanned downtime, especially in global enterprises that support users in
multiple time zones.

The following table describes unplanned outage types and provides examples of each type.

Table 1-1 Causes of Unplanned Downtime

Type Description Examples

Site failure A site failure may affect all processing at a data center,
or a subset of applications supported by a data center.

The definition of site varies given the contexts of on-
premises and cloud.

• Site failure - entire regional failure
• Data center - entire data center location
• Availability domain - isolated data center within a

region with possibly many other availability
domains

• Fault domain - isolated set of system resources
within an Availability Domain or data center

Typically, each site, data center, availability domain,
and fault domain has its own set of isolated hardware,
DB compute, network, storage, and power.

• Extended site-wide power
failure

• Site-wide network failure
• Natural disaster makes a

data center inoperable
• Terrorist or malicious attack

on operations or the site

Chapter 1
Causes of Downtime

1-3

Table 1-1 (Cont.) Causes of Unplanned Downtime

Type Description Examples

Cluster-wide
failure

The whole cluster hosting an Oracle RAC database is
unavailable or fails. This includes:

• Failures of nodes in the cluster
• Failure of any other components that result in the

cluster being unavailable and the Oracle database
and instances on the site being unavailable

• The last surviving node on
the Oracle RAC cluster fails
and the node or database
cannot be restarted

• Both redundant cluster
interconnections fail or
Clusterware failure

• Database corruption so
severe that continuity is not
possible on the current
database server

• Clusterware and hardware-
software defects preventing
availability or stability.

Computer
failure

A computer failure outage occurs when the system
running the database becomes unavailable because it
has failed or is no longer available. When the database
uses Oracle RAC then a computer failure represents a
subset of the system (while retaining full access to the
data).

• Database system hardware
failure

• Operating system failure
• Oracle instance failure

Network
failure

A network failure outage occurs when a network
device stops or reduces network traffic and
communication from your application to database,
database to storage, or any system to system that is
critical to your application service processing.

• Network switch failure
• Network interface failure
• Network cable failures

Storage
failure

A storage failure outage occurs when the storage
holding some or all of the database contents becomes
unavailable because it has shut down or is no longer
available.

• Disk or flash drive failure
• Disk controller failure
• Storage array failure

Chapter 1
Causes of Downtime

1-4

Table 1-1 (Cont.) Causes of Unplanned Downtime

Type Description Examples

Data
corruption

A corrupt block is a block that was changed so that it
differs from what Oracle Database expects to find.
Block corruptions can be categorized as physical or
logical:

• In a physical block corruption, which is also called
a media corruption, the database does not
recognize the block at all; the checksum is invalid
or the block contains all zeros. An example of a
more sophisticated block corruption is when the
block header and footer do not match.

• In a logical block corruption, the contents of the
block are physically sound and pass the physical
block checks; however, the block can be logically
inconsistent. Examples of logical block corruption
include incorrect block type, incorrect data or redo
block sequence number, corruption of a row piece
or index entry, or data dictionary corruptions.

Block corruptions can also be divided into interblock
corruption and intrablock corruption:

• In an intrablock corruption, the corruption occurs
in the block itself and can be either a physical or a
logical block corruption.

• In an interblock corruption, the corruption occurs
between blocks and can only be a logical block
corruption.

A data corruption outage occurs when a hardware,
software, or network component causes corrupt data
to be read or written. The service-level impact of a
data corruption outage may vary, from a small portion
of the application or database (down to a single
database block) to a large portion of the application or
database (making it essentially unusable).

• Operating system or
storage device driver failure

• Faulty host bus adapter
• Disk controller failure
• Volume manager error

causing a bad disk read or
write

• Software or hardware
defects

Human error A human error outage occurs when unintentional or
other actions are committed that cause data in the
database to become incorrect or unusable. The
service-level impact of a human error outage can vary
significantly, depending on the amount and critical
nature of the affected data.

• File deletion (at the file
system level)

• Dropped database object
• Inadvertent data changes
• Malicious data changes

Chapter 1
Causes of Downtime

1-5

Table 1-1 (Cont.) Causes of Unplanned Downtime

Type Description Examples

Lost or stray
writes

A lost or stray write is another form of data corruption,
but it is much more difficult to detect and repair quickly.
A data block stray or lost write occurs when:

• For a lost write, an I/O subsystem acknowledges
the completion of the block write even though the
write I/O did not occur in the persistent storage.
On a subsequent block read on the primary
database, the I/O subsystem returns the stale
version of the data block, which might be used to
update other blocks of the database, thereby
corrupting it.

• For a stray write, the write I/O completed but it
was written somewhere else, and a subsequent
read operation returns the stale value.

• For an Oracle RAC system, a read I/O from one
cluster node returns stale data after a write I/O is
completed from another node (lost write). For
example, this occurs if a network file system
(NFS) is mounted in Oracle RAC without disabling
attribute caching (for example, without using the
noac option). In this case, the write I/O from one
node is not immediately visible to another node
because it is cached.

Block corruptions caused by stray writes or lost writes
can cause havoc to your database availability. The
data block may be physically or logically correct but
subsequent disk reads will show blocks that are stale
or with an incorrect Oracle Database block address.

• Operating system or
storage device driver failure

• Faulty host bus adapter
• Disk controller failure
• Volume manager error
• Other application software
• Lack of network file

systems (NFS) write
visibility across a cluster

• Software or hardware
defects

Delay,
slowdown, or
hangs

A delay or slowdown occurs when the database or the
application cannot process transactions because of a
resource or lock contention. A perceived delay can be
caused by lack of system resources.

• Database or application
deadlocks

• Runaway processes that
consume system resources

• Logon storms or system
faults

• Combination of application
peaks with lack of system
or database resources.
This can occur with one
application or many
applications in a
consolidated database
environment without proper
resource management.

• Archived redo log
destination or fast recovery
area destination becomes
full

• Oversubscribed or heavily
consolidated database
system

The following table describes planned outage types and provides examples of each type.

Chapter 1
Causes of Downtime

1-6

Table 1-2 Causes of Planned Downtime

Type Description Examples

Software
changes

• Planned periodic software changes
to apply minor fixes for stability and
security

• Planned annual or bi-annual major
upgrades to adopt new features and
capabilities

• Software updates, including security
updates to operating system, clusterware.
or database

• Major upgrade of operating system,
clusterware, or database

• Updating or upgrading application software

System
and
database
changes

• Planned system changes to replace
defected hardware

• Planned system changes to expand
or reduce system resources

• Planned database changes to adopt
parameter changes

• Planned change to migrate to new
hardware or architecture

• Adding or removing processors or memory
to a server

• Adding or removing nodes to or from a
cluster

• Adding or removing disks drives or storage
arrays

• Replacing any Field Replaceable Unit
(FRU)

• Changing configuration parameters
• System platform migration
• Migrating to cluster architecture
• Migrating to new storage

Data
changes

Planned data changes to the logical
structure or physical organization of
Oracle Database objects. The primary
objective of these changes is to improve
performance or manageability.

• Table definition changes
• Adding table partitioning
• Creating and rebuilding indexes

Application
changes

Planned application changes can include
data changes and schema and
programmatic changes. The primary
objective of these changes is to improve
performance, manageability, and
functionality.

Application upgrades

Oracle offers high availability solutions to help avoid both unplanned and planned downtime,
and recover from failures. Oracle Database High Availability Solutions for Unplanned
Downtime and Oracle Database High Availability Solutions for Planned Downtime discuss each
of these high availability solutions in detail.

Chaos Engineering
Maximum Availability Architecture leverages Chaos Engineering throughout its testing and
development life cycles to ensure that end-to-end application and database availability is
preserved or at its optimal levels for any fault or maintenance event.

Chaos Engineering is the discipline of experimenting on a system in order to build confidence
in the system’s capability to withstand turbulent conditions in production. Specifically, MAA
injects various faults and planned maintenance events to evaluate application and database
impact throughout our development, stress, and testing cycles. With that experimentation, best
practices, defects, and lessons learned are derived, and that knowledge is put back in practice
to evolve and improve our MAA solutions.

Chapter 1
Chaos Engineering

1-7

Roadmap to Implementing the Maximum Availability Architecture
Oracle high availability solutions and sound operational practices are the key to successful
implementation of an IT infrastructure. However, technology alone is not enough.

Choosing and implementing an architecture that best fits your availability requirements can be
a daunting task. Oracle Maximum Availability Architecture (MAA) simplifies the process of
choosing and implementing a high availability architecture to fit your business requirements
with the following considerations:

• Encompasses redundancy across all components

• Provides protection and tolerance from computer failures, storage failures, human errors,
data corruption, lost writes, system delays or slowdowns, and site disasters

• Recovers from outages as quickly and transparently as possible

• Provides solutions to eliminate or reduce planned downtime

• Provides consistent high performance and robust security

• Provides Oracle Engineered System and cloud options to simplify deployment and
management and achieve the highest scalability, performance, and availability

• Achieves SLAs at the lowest possible total cost of ownership

• Applies to On-Premise, Oracle Public Cloud, and hybrid architectures consisting of parts
on-premise and part in the cloud

• Provides special consideration to Container or Oracle Multitenant, Oracle Database In-
Memory, and Oracle Sharding architectures

To build, implement, and maintain this type of architecture, you need to:

1. Analyze your specific high availability requirements, including both the technical and
operational aspects of your IT systems and business processes, as described in High
Availability and Data Protection – Getting From Requirements to Architecture.

2. Evaluate the various high availability architectures and their benefits and options, as
described in Oracle MAA Reference Architectures.

3. Understand the availability impact for each MAA reference architecture, or various high
availability features, on businesses and applications, as described in Oracle Database
High Availability Solutions for Unplanned Downtime, and Oracle Database High Availability
Solutions for Planned Downtime.

4. Familiarize yourself with Oracle high availability features, as described in Features for
Maximizing Availability.

5. Use operational best practices to provide a successful MAA implementation, as described
in Operational Prerequisites to Maximizing Availability .

6. Implement a high availability architecture using Oracle MAA resources, which provide
technical details about the various Oracle MAA high availability technologies, along with
best practice recommendations for configuring and using such technologies, such as
Oracle MAA best practices technical briefs, customer papers with proof of concepts,
customer case studies, recorded web casts, demonstrations, and presentations.

Additional Oracle MAA resources are available at http://www.oracle.com/goto/maa.

Chapter 1
Roadmap to Implementing the Maximum Availability Architecture

1-8

https://docs.oracle.com/en/database/oracle/oracle-database/19/haiad/index.html
http://www.oracle.com/goto/maa

2
High Availability and Data Protection – Getting
From Requirements to Architecture

See the following topics to learn how Oracle Maximum Availability Architecture provides a
framework to effectively evaluate the high availability requirements of an enterprise.

High Availability Requirements
Any effort to design and implement a high availability strategy for Oracle Database begins by
performing a thorough business impact analysis to identify the consequences to the enterprise
of downtime and data loss, whether caused by unplanned or planned outages.

The term "business impact" is intended to be agnostic of whether the enterprise is a
commercial venture, government agency, or not-for-profit institution. In all cases, data loss and
downtime can seriously impact the ability of any enterprise to perform its functions.
Implementing high availability may involve critical tasks such as:

• Retiring legacy systems

• Investing in more capable and robust systems and facilities

• Redesigning the overall IT architecture and operations to adapt to this high availability
model

• Modifying existing applications to take full advantage of high availability infrastructures

• Redesigning business processes

• Hiring and training personnel

• Moving parts or an entire application or database into the Oracle Public Cloud

• Balancing the right level of consolidation, flexibility, and isolation

• Understanding the capabilities and limitations of your existing system and network
infrastructure

By combining your business analysis with an understanding of the level of investment required
to implement different high availability solutions, you can develop a high availability
architecture that achieves both business and technical objectives.

2-1

Figure 2-1 Planning and Implementing a Highly Available Enterprise

A Methodology for Documenting High Availability Requirements
The elements of this analysis framework are:

• Business Impact Analysis

• Cost of Downtime

• Recovery Time Objective

• Recovery Point Objective

• Manageability Goal

• Total Cost of Ownership and Return on Investment

Business Impact Analysis
The business impact analysis categorizes the business processes based on the severity of the
impact of IT-related outages.

A rigorous business impact analysis:

• Identifies the critical business processes in an organization

• Calculates the quantifiable loss risk for unplanned and planned IT outages affecting each
of these business processes

• Outlines the effects of these outages

• Considers essential business functions, people and system resources, government
regulations, and internal and external business dependencies

Chapter 2
A Methodology for Documenting High Availability Requirements

2-2

• Is based on objective and subjective data gathered from interviews with knowledgeable
and experienced personnel

• Reviews business practice histories, financial reports, IT systems logs, and so on

For example, consider a semiconductor manufacturer with chip fabrication plants located
worldwide. Semiconductor manufacturing is an intensely competitive business requiring a huge
financial investment that is amortized over high production volumes. The human resource
applications used by plant administration are unlikely to be considered as mission-critical as
the applications that control the manufacturing process in the plant. Failure of the applications
that support manufacturing affects production levels and have a direct impact on the financial
results of the company.

As another example, an internal knowledge management system is likely to be considered
mission-critical for a management consulting firm, because the business of a client-focused
company is based on internal research accessibility for its consultants and knowledge workers.
The cost of downtime of such a system is extremely high for this business.

Similarly, an e-commerce company is highly dependent on customer traffic to its website to
generate revenue. Any disruption in service and loss of availability can dampen customer
experience and drive away customers to the competition. Thus, the company needs to ensure
that the existing infrastructure can scale and handle spikes in customer traffic. Sometimes, this
is not possible using on-premise hardware and by moving the cloud the company can ensure
their systems always remain operational.

Cost of Downtime
A complete business impact analysis provides the insight needed to quantify the cost of
unplanned and planned downtime.

Understanding this cost is essential because it helps prioritize your high availability investment
and directly influences the high availability technologies that you choose to minimize the
downtime risk.

Various reports have been published, documenting the costs of downtime in different
industries. Examples include costs that range from millions of dollars for each hour of
brokerage operations and credit card sales, to tens of thousands of dollars for each hour of
package shipping services.

These numbers are staggering. The Internet and Cloud can connect the business directly to
millions of customers. Application downtime can disrupt this connection, cutting off a business
from its customers. In addition to lost revenue, downtime can negatively affect customer
relationships, competitive advantages, legal obligations, industry reputation, and shareholder
confidence.

Recovery Time Objective
The business impact analysis determines your tolerance to downtime, also known as the
recovery time objective (RTO).

An RTO is defined as the maximum amount of time that an IT-based business process can be
down before the organization starts suffering unacceptable consequences (financial losses,
customer dissatisfaction, reputation, and so on). RTO indicates the downtime tolerance of a
business process or an organization in general.

RTO requirements are driven by the mission-critical nature of the business. Therefore, for a
system running a stock exchange, the RTO is zero or near to zero.

Chapter 2
A Methodology for Documenting High Availability Requirements

2-3

An organization is likely to have varying RTO requirements across its various business
processes. A high volume e-commerce website, for which there is an expectation of rapid
response times, and for which customer switching costs are very low, the web-based customer
interaction system that drives e-commerce sales is likely to have an RTO of zero or close to
zero. However, the RTO of the systems that support back-end operations, such as shipping
and billing, can be higher. If these back-end systems are down, then the business may resort
to manual operations temporarily without a significant visible impact.

Some organizations have varying RTOs based on the probability of failures. One simple class
separation is local failures (such as single database compute, disk/flash, network failure) as
opposed to disasters (such as a complete cluster, database, data corruptions, or a site failure).
Typically, business-critical customers have an RTO of less than 1 minute for local failures, and
may have a higher RTO of less than 1 hour for disasters. For mission-critical applications the
RTOs may indeed be the same for all unplanned outages.

Recovery Point Objective
The business impact analysis also determines your tolerance to data loss, also known as a
recovery point objective (RPO).

The RPO is the maximum amount of data that an IT-based business process can lose without
harm to the organization. RPO measures the data-loss tolerance of a business process or an
organization in general. This data loss is often measured in terms of time, for example, zero,
seconds, hours, or days of data loss.

A stock exchange where millions of dollars worth of transactions occur every minute cannot
afford to lose any data. Therefore, its RPO must be zero. The web-based sales system in the
e-commerce example does not require an RPO of zero, although a low RPO is essential for
customer satisfaction. However, its back-end merchandising and inventory update system can
have a higher RPO because lost data can be reentered.

An RPO of zero can be challenging for disasters, but I can be accomplished with various
Oracle technologies protecting your database, especially Zero Data Loss Recovery Appliance.

Manageability Goal
A manageability goal is more subjective than either the RPO or the RTO. You must make an
objective evaluation of the skill sets, management resources, and tools available in an
organization, and the degree to which the organization can successfully manage all elements
of a high availability architecture.

Just as RPO and RTO measure an organization's tolerance for downtime and data loss, your
manageability goal measures the organization's tolerance for complexity in the IT environment.
When less complexity is a requirement, simpler methods of achieving high availability are
preferred over methods that may be more complex to manage, even if the latter could attain
more aggressive RTO and RPO objectives. Understanding manageability goals helps
organizations differentiate between what is possible and what is practical to implement.

Moving Oracle databases to Oracle Cloud can reduce manageability cost and complexity
significantly, because Oracle Cloud lets you to choose between various Maximum Availability
Architecture architectures with built-in configuration and life cycle operations. With
Autonomous Database Cloud, database life cycle operations, such as backup and restore,
software updates, and key repair operations are automatic.

Chapter 2
A Methodology for Documenting High Availability Requirements

2-4

Total Cost of Ownership and Return on Investment
Understanding the total cost of ownership (TCO) and objectives for return on investment (ROI)
are essential to selecting a high availability architecture that also achieves the business goals
of your organization.

TCO includes all costs (such as acquisition, implementation, systems, networks, facilities, staff,
training, and support) over the useful life of your chosen high availability solution. Likewise, the
ROI calculation captures all of the financial benefits that accrue for a given high availability
architecture.

For example, consider a high availability architecture in which IT systems and storage at a
remote standby site remain idle, with no other business use that can be served by the standby
systems. The only return on investment for the standby site is the costs related to downtime
avoided by its use in a failover scenario. Contrast this with a different high availability
architecture that enables IT systems and storage at the standby site to be used productively
while in the standby role (for example, for reports or for off-loading the overhead of user
queries or distributing read-write workload from the primary system). The return on investment
of such an architecture includes both the cost of downtime avoided and the financial benefits
that accrue to its productive use, while also providing high availability and data protection.

Enterprises can also reduce TCO for growing infrastructure needs by moving workloads to the
cloud rather than making an upfront capital investment in building a new data center. The
major economic appeal is to convert capital expenditures into operational expenditures, and
generate a higher ROI.

Mapping Requirements to Architectures
The business impact analysis will help you document what is already known. The outcome of
the business impact analysis provides the insight you need to group databases having similar
RTO and RPO objectives together.

Different applications, and the databases that support them, represent varying degrees of
importance to the enterprise. A high level of investment in high availability infrastructure may
not make sense for an application that if down, would not have an immediate impact on the
enterprise. So where do you start?

Groups of databases by similar RTO and RPO can be mapped to a controlled set of high
availability reference architectures that most closely address the required service levels. Note
that in the case where there are dependencies between databases, they are grouped with the
database having the most stringent high availability requirement.

Oracle MAA Reference Architectures
Oracle MAA best practices define high availability reference architectures that address the
complete range of availability and data protection required by enterprises of all sizes and lines
of business.

The Platinum, Gold, Silver, and Bronze MAA reference architectures, or tiers, are applicable to
on-premises, private and public cloud configurations, and hybrid cloud. They deliver the
service levels described in the following figure.

Chapter 2
Mapping Requirements to Architectures

2-5

Figure 2-2 Oracle MAA Reference Architectures

Each tier uses a different MAA reference architecture to deploy the optimal set of Oracle high
availability capabilities that reliably achieve a given service level at the lowest cost and
complexity. The tiers explicitly address all types of unplanned outages, including data
corruption, component failure, and system and site outages, as well as planned outages due to
maintenance, migrations, or other purposes.

Container databases (CDBs) using Oracle Multitenant can exist in any tier, Bronze through
Platinum, providing higher consolidation density and higher TCO. Typically, the consolidation
density is higher with Bronze and Silver tiers, and there is less or zero consolidation when
deploying a Platinum tier.

Oracle Database In-Memory can also be leveraged in any of the MAA tiers. Because the In-
Memory column store is seamlessly integrated into Oracle Database, all of the high availability
benefits that come from the MAA tiers are inherited when implementing Oracle Database In-
Memory.

Oracle Engineered Systems can also exist in any of the tiers. Integrating Zero Data Loss
Recovery Appliance (Recovery Appliance) as the Oracle Database backup and recovery
solution for your entire data center reduces RPO and RTO when restoring from backups.
Leveraging Oracle Exadata Database Machine as your database platform in the MAA
reference architectures provides the best database platform solution with the lowest RTO and
brownout, along with additional Exadata MAA quality of service.

See Also:

High Availability Reference Architectures

Oracle Exadata Database Machine: Maximum Availability Architecture and MAA Best
Practices for Oracle Exadata Database Machine

http://www.oracle.com/goto/maa for MAA technical brief “Oracle Database In-Memory
High Availability Best Practices”

Bronze Reference Architecture
The Bronze tier is appropriate for databases where simple restart of a failed component (e.g.
listener, database instance, or database) or restore from backup is "HA and DR enough."

The Bronze reference architecture is based on a single instance Oracle Database using MAA
best practices that implement the many capabilities for data protection and high availability

Chapter 2
Mapping Requirements to Architectures

2-6

https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html
https://www.oracle.com/a/tech/docs/exadata-maa.pdf
https://www.oracle.com/a/tech/docs/exadata-maa-wp.pdf
https://www.oracle.com/a/tech/docs/exadata-maa-wp.pdf
http://www.oracle.com/goto/maa

included with every Oracle Enterprise Edition license. Oracle-optimized backups using Oracle
Recovery Manager (RMAN) provide data protection, and are used to restore availability should
an outage prevent the database from restarting. The Bronze architecture then uses a
redundant system infrastructure enhanced by Oracle's technologies, such as Oracle Restart,
Recovery Manager (RMAN), Zero Data Loss Recovery Appliance, Flashback technologies,
Online Redefinition, Online Patching, Automatic Storage Management (ASM), Oracle
Multitenant, and more.

Silver Reference Architecture
The Silver tier provides an additional level of high availability for databases that require
minimal or zero downtime in the event of database instance or server failure, as well as most
common planned maintenance events, such as hardware and software updates.

The Silver reference architecture adds a rich set of enterprise capabilities and benefits,
including clustering technology using either Oracle RAC or Oracle RAC One Node. Also,
Application Continuity provides a reliable replay of in-flight transactions, which masks outages
from users and simplifies application failover.

Gold Reference Architecture
The Gold tier raises the stakes substantially for business-critical applications that cannot
tolerate high RTO and RPO for any disasters such as database, cluster, corruptions, or site
failures. Additionally, major database upgrades or site migrations can be done in seconds.

The Gold tier also reduces costs while improving your return on investment by actively using all
of the replicas at all times.

The Gold reference architecture adds database-aware replication technologies, Oracle Data
Guard and Oracle Active Data Guard, which synchronize one or more replicas of the
production database to provide real time data protection and availability. Database-aware
replication substantially enhances high availability and data protection (corruption protection)
beyond what is possible with storage replication technologies. Oracle Active Data Guard Far
Sync is used for zero data loss protection at any distance.

See also, Oracle Data Guard Advantages Over Traditional Solutions.

Platinum Reference Architecture
The Platinum tier introduces several new Oracle Database capabilities, including Oracle
GoldenGate for zero-downtime upgrades and migrations.

Edition Based Redefinition lets application developers design for zero-downtime application
upgrades. You can alternativly design applications for Oracle Sharding, which provides
extreme availability by distributing subsets of a database into highly available shards, while the
application can access the entire database as one single logical database.

Each of these technologies requires additional effort to implement, but they deliver substantial
value for the most critical applications where downtime is not an option.

High Availability and Data Protection Attributes by Tier
Each MAA reference architecture delivers known and tested levels of downtime and data
protection.

The following table summarizes the high availability and data protection attributes inherent to
each architecture. Each architecture includes all of the capabilities of the previous architecture,

Chapter 2
Mapping Requirements to Architectures

2-7

and builds upon it to handle an expanded set of outages. The various components included
and the service levels achieved by each architecture are described in other topics.

Table 2-1 High Availability and Data Protection Attributes By MAA Reference
Architecture

MAA
Reference
Architecture

Unplanned
Outages
(Local Site)

Planned
Maintenance

Data
Protection

Unrecoverable Local Outages and
Disaster Recovery

Bronze Single
Instance, auto-
restart for
recoverable
instance and
server failures.
Redundancy
for system
infrastructure
so that single
component
failures such
as disk, flash,
and network
should not
result in
downtime.

Some online,
most off-line

Basic runtime
validation
combined with
manual checks

Restore from backup, potential to lose
data generated since the last backup.
Using Zero Data Loss Recovery
Appliance reduces the potential to lose
data to zero or near zero.

Silver HA with
automatic
failover for
instance and
server failures

Most rolling,
some online,
few offline

Basic runtime
validation
combined with
manual checks

Restore from backup, potential to lose
data generated since the last backup.
Using Zero Data Loss Recovery
Appliance reduces the potential to lose
data to zero or near zero. In-flight
transactions are preserved with
Application Continuity.

Gold Comprehensiv
e high
availability and
disaster
recovery

All rolling or
online

Comprehensiv
e runtime
validation
combined with
manual checks

Real-time failover, zero or near-zero
data loss

Platinum Zero
application
outage for
Platinum
ready
applications

Zero
application
outage

Comprehensiv
e runtime
validation
combined with
manual checks

Zero application outage for Platinum-
ready applications, with zero data loss.
Oracle RAC, Oracle Active Data Guard,
and Oracle GoldenGate complement
each other, providing a wide array of
solutions to achieve zero database
service downtime for unplanned
outages. Alternatively, use Oracle
Sharding for site failure protection,
because impact on the application is
only on shards in failed site rather than
the entire database. Each shard can be
configured with real-time failover, zero
or near-zero data loss, or zero
application outage for Platinum-ready
applications. In-flight transactions are
preserved, with zero data loss.

Chapter 2
Mapping Requirements to Architectures

2-8

See Also:

http://www.oracle.com/goto/maa

Chapter 2
Mapping Requirements to Architectures

2-9

http://www.oracle.com/goto/maa

3
Features for Maximizing Availability

Familiarize yourself with the following Oracle Database high availability features used in MAA
solutions.

Oracle Data Guard
Oracle Data Guard ensures high availability, data protection, and disaster recovery for
enterprise data.

Data Guard provides a comprehensive set of services that create, maintain, manage, and
monitor one or more standby databases to enable Oracle databases to survive outages of any
kind, including natural disasters and data corruptions. A Data Guard standby database is an
exact replica of the production database and thus can be transparently utilized in combination
with traditional backup, restoration, flashback, and cluster techniques to provide the highest
possible level of data protection, data availability and disaster recovery. Data Guard is included
in Oracle Enterprise Edition.

A Data Guard configuration consists of one primary database and one or more standby
databases. A primary database can be either a single-instance Oracle database or an Oracle
RAC database. Similar to a primary database, a standby database can be either a single-
instance Oracle database or an Oracle RAC database. Using a backup copy of the primary
database, you can create up to 30 standby databases that receive redo directly from the
primary database. Optionally you can use a cascaded standby to create Data Guard
configurations where the primary transmits redo to a single remote destination, and that
destination forwards redo to multiple standby databases. This enables a primary database to
efficiently synchronize many more than 30 standby databases if desired.

Note:

Oracle Active Data Guard is an extension of basic Data Guard providing advanced features
that off-load various types of processing from a production database, extend zero data loss
protection over any distance, and that enhance high availability. Oracle Active Data Guard is
licensed separately from Oracle Database Enterprise Edition.

There are several types of standby databases. Data Guard physical standby database is the
MAA best practice for data protection and disaster recovery and is the most common type of
standby database used. A physical standby database uses Redo Apply (an extension of
Oracle media recovery) to maintain an exact, physical replica of the production database.
When configured using MAA best practices, Redo Apply uses multiple Oracle-aware validation
checks to prevent corruptions that can impact a primary database from impacting the standby.
Other types of Data Guard standby databases include: snapshot standby (a standby open
read/write for test or other purposes) and logical standby (used to reduce planned downtime).

Benefits of Using Data Guard

• Continuous Oracle-aware validation of all changes using multiple checks for physical and
logical consistency of structures within an Oracle data block and redo, before updates are
applied to a standby database. This isolates the standby database and prevents it from
being impacted by data corruptions that can occur on the primary system.

• Transparent operation: There are no restrictions on the use of Data Guard physical
standby for data protection. Redo Apply supports all data and storage types, all DDL

3-1

operations, and all applications (custom and packaged applications), and guarantees data
consistency across primary and standby databases.

• Highest performance: Fast redo transport for best recovery point objective, fast apply
performance for best recovery time objective. Multi-instance redo apply provides Oracle
RAC scalability for redo apply, eliminating bottlenecks of a single database server. Redo
apply can essentially scale up to available CPU, I/O, and network across your Oracle RAC
cluster. An observed redo apply rate of 3500 MB per second (12 TB/hour) on 8 node RAC
Exadata.

• Fast failover to a standby database to maintain availability should the primary database fail
for any reason. Failover is either a manual or automatic operation depending on how Data
Guard is configured.

• Integrated client notification framework to enable application clients to connect to a new
primary database after a failover occurs.

• Automatic or automated (depending upon configuration) resynchronization of a failed
primary database, quickly converting it to a synchronized standby database after a failover
occurs.

• Choice of flexible data protection levels to support all network configurations, availability
and performance SLAs, and business requirements.

• Management of a primary and all of its standby databases as a single configuration to
simplify management and monitoring using either the Data Guard Broker command-line
interface or Oracle Enterprise Manager Cloud Control.

• Data Guard Broker greatly improves manageability with additional features for
comprehensive configuration health checks, resumable switchover operations, streamlined
role transitions, support for cascaded standby configurations, and user-configurable
thresholds for transport and apply lag to automatically monitor the ability of the
configuration to support SLAs for recovery point and recovery time objectives at any
instant in time.

• Efficient transport to multiple remote destinations using a single redo stream originating
from the primary production database and forwarded by a cascading standby database.

• Snapshot Standby enables a physical standby database to be open read/write for testing
or any activity that requires a read/write replica of production data. A snapshot standby
continues to receive but does not apply updates generated by the primary. When testing is
complete, a snapshot standby is converted back into a synchronized physical standby
database by first discarding the changes made during the open read/write, and then
applying the redo received from the primary database. Primary data is always protected.
Snapshot standby is particularly useful when used in conjunction with Oracle Real
Application Testing (workload is captured at the production database for replay and
subsequent performance analysis at the standby database-an exact replica of production).

• Reduction of planned downtime by using a standby database to perform maintenance in a
rolling manner. The only downtime is the time required to perform a Data Guard
switchover; applications remain available while the maintenance is being performed.

• Increased flexibility for Data Guard configurations where the primary and standby systems
may have different CPU architectures or operating systems subject to limitations defined in
My Oracle Support note 413484.1.

• Efficient disaster recovery for a container database (CDB). Data Guard failover and
switchover completes using a single command at a CDB level regardless of how many
pluggable databases (PDBs) are consolidated within the CDB.

• Enables a specific administration privilege, SYSDG, to handle standard administration
duties for Data Guard. This new privilege is based on the least privilege principle, in which

Chapter 3
Oracle Data Guard

3-2

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=413484.1

a user is granted only the necessary privileges required to perform a specific function and
no more. The SYSDBA privilege continues to work as in previous releases.

• The Oracle Database In-Memory column store is supported on standby databases in an
Active Data Guard environment.

• Further improves performance and availability of Data Warehouses in a Data Guard
configuration by tracking information from NOLOGGING operations so they can be repaired
with the new RMAN command RECOVER DATABASE NOLOGGING.

• Improves the impact multiple SYNC transport destinations have on the primary database
through the use of a new parameter DATA_GUARD_SYNC_LATENCY. This parameter defines
the maximum amount of time (in seconds) that the Primary database must wait before
disconnecting subsequent destinations after at least one synchronous standby has
acknowledged receipt of the redo.

• Data Guard Broker improves manageability by supporting destinations of different
Endianess than the primary in addition to enhancing management of alternate
destinations.

• Data Guard improves protection and Return To Operations (RTO) and Recovery Point
Objectives (RPO) through multiple features including:

– Multi-Instance Redo Apply (MIRA) provides scalable redo apply performance across
Oracle RAC instances reducing RTO for even higher production OLTP or batch
workloads

– Compare primary and standby database blocks using the new DBMS_DBCOMP package
to help identify lost writes so they can be resolved efficiently.

– Fast Start Failover (FSFO) has the robustness of highly available zero data loss
configurations with support for Maximum Protection mode while giving the flexibility of
multiple observers and multiple failover targets for high availability in any configuration.
FSFO can also be configured to automatically fail over to the standby with the
detection of a lost write on the primary .

– RPO is improved with no data loss failovers after a storage failure in ASYNC
configurations and Data Guard Broker support for Application Continuity, improving the
user experience during Data Guard role transitions.

• Oracle Data Guard Broker further improves the management of databases by supporting
destinations of different endianness than the primary in addition to enhancing management
of alternate archive destinations when the primary destination is unavailable.

• Oracle Data Guard Database Compare tool compares data blocks stored in an Oracle
Data Guard primary database and its physical standby databases. Use this tool to find disk
errors (such as lost write) that cannot be detected by other tools like the DBVERIFY utility.
(new in Oracle Database 12c Release 2)

• Oracle Data Guard Broker supports multiple automatic failover targets in a fast-start
failover configuration. Designating multiple failover targets significantly improves the
likelihood that there is always a standby suitable for automatic failover when needed. (new
in Oracle Database 12c Release 2)

• Dynamically change Oracle Data Guard Broker Fast-Start Failover target. The fast-start
failover target standby database can be changed dynamically, to another standby
database in the target list, without disabling fast-start failover. (new in Oracle Database
19c)

• Propagate restore points from primary to standby Site. Restore points created on the
primary database are propagated to the standby sites, so that they are available even after
a failover operation. (new in Oracle Database 19c)

Chapter 3
Oracle Data Guard

3-3

• Oracle Data Guard automatic outage resolution can be tuned to fit your specific needs.
Oracle Data Guard has an internal mechanism to detect hung processes and terminate
them, allowing the normal outage resolution to occur. (new in Oracle Database 19c)

• Active Data Guard DML redirection helps load balancing between the primary and standby
databases. Incidental Data Manipulation Language (DML) operations can be run on Active
Data Guard standby databases. This allows more applications to benefit from using an
Active Data Guard standby database when some writes are required. When incidental
DML is issued on an Active Data Guard standby database, the update is passed to the
primary database where it is processed. The resulting redo of the transaction updates the
standby database after which control is returned to the application. (new in Oracle
Database 19c)

Oracle Active Data Guard
Oracle Active Data Guard is Oracle's strategic solution for real time data protection and
disaster recovery for the Oracle database using a physical replication process.

Oracle Active Data Guard also provides high return on investment in disaster recovery systems
by enabling a standby database to be open read-only while it applies changes received from
the primary database. Oracle Active Data Guard is a separately licensed product that provides
advanced features that greatly expand Data Guard capabilities included with Oracle Enterprise
Edition.

Figure 3-1 Oracle Active Data Guard Architecture

Oracle Active Data Guard enables administrators to improve performance by offloading
processing from the primary database to a physical standby database that is open read-only
while it applies updates received from the primary database. Offload capabilities of Oracle
Active Data Guard include read-only reporting and ad-hoc queries (including DML to global
temporary tables and unique global or session sequences), data extracts, fast incremental
backups, redo transport compression, efficient servicing of multiple remote destinations, and
the ability to extend zero data loss protection to a remote standby database without impacting
primary database performance. Oracle Active Data Guard also increases high availability by
performing automatic block repair and enabling High Availability Upgrades automation.

Note:

Oracle Active Data Guard is licensed separately as a database option license for Oracle
Database Enterprise Edition. All Oracle Active Data Guard capabilities are also included in an

Chapter 3
Oracle Data Guard

3-4

Oracle Golden Gate license for Oracle Enterprise Edition. This provides customers with the
choice of a standalone license for Oracle Active Data Guard, or licensing Oracle GoldenGate
to acquire access to all advanced Oracle replication capabilities.

Benefits of Oracle Active Data Guard

Oracle Active Data Guard inherits all of the benefits previously listed for Data Guard, plus the
following:

• Improves primary database performance: Production-offload to an Oracle Active Data
Guard standby database of read-only applications, reporting, and ad hoc queries. Any
application compatible with a read-only database can run on an Oracle Active Data Guard
standby. Oracle also provides integration that enables the offloading of many Oracle E-
Business Suite Reports, PeopleTools reporting, Oracle Business Intelligence Enterprise
Edition (OBIEE), and Oracle TopLink applications to an Oracle Active Data Guard standby
database.

• DML global temporary tables and the use of sequences at the standby database
significantly expands the number of read-only applications that can be off-loaded from
production databases to an Oracle Active Data Guard standby database.

• The unique ability to easily scale read performance using multiple Oracle Active Data
Guard standby databases, also referred to as a Reader Farm.

• Production-offload of data extracts using Oracle Data Pump or other methods that read
directly from the source database.

• Production-offload of the performance impact from network latency in a synchronous, zero
data loss configuration where primary and standby databases are separated by hundreds
or thousands of miles. Far sync uses a lightweight instance (control file and archive log
files, but no recovery and no data files), deployed on a system independent of the primary
database. The far sync instance is ideally located at the maximum distance from the
primary system that an application can tolerate the performance impact of synchronous
transport to provide optimal protection. Data Guard transmits redo synchronously to the far
sync instance and far sync forwards the redo asynchronously to a remote standby
database that is the ultimate failover target. If the primary database fails, the same failover
command used for any Data Guard configuration, or mouse click using Oracle Enterprise
Manager Cloud Control, or automatic failover using Data Guard Fast-Start Failover initiates
a zero data loss failover to the remote destination. This transparently extends zero data
loss protection to a remote standby database just as if it were receiving redo directly from
the primary database, while avoiding the performance impact to the primary database of
WAN network latency in a synchronous configuration.

• Production-offload of the overhead of servicing multiple remote standby destinations using
far sync. In a far sync configuration, the primary database ships a single stream of redo to
a far sync instance using synchronous or asynchronous transport. The far sync instance is
able to forward redo asynchronously to as many as 29 remote destinations with zero
incremental overhead on the source database.

• Data Guard maximum availability supports the use of the

NOAFFIRM

redo transport attribute. A standby database returns receipt acknowledgment to its primary
database as soon as redo is received in memory. The standby database does not wait for
the Remote File Server (RFS) to write to a standby redo log file.

This feature provides increased primary database performance in Data Guard
configurations using maximum availability and SYNC redo transport. Fast Sync isolates the
primary database in a maximum availability configuration from any performance impact

Chapter 3
Oracle Data Guard

3-5

due to slow I/O at a standby database. This new FAST SYNC feature can work with a
physical standby target or within a far sync configuration.

• Production-offload of CPU cycles required to perform redo transport compression. Redo
transport compression can be performed by the far sync instance if the Data Guard
configuration is licensed for Oracle Advanced Compression. This conserves bandwidth
with zero incremental overhead on the primary database.

• Production-offload and increased backup performance by moving fast incremental backups
off of the primary database and to the standby database by utilizing Oracle Active Data
Guard support for RMAN block change tracking.

• Increased high availability using Oracle Active Data Guard automatic block repair to repair
block corruptions, including file header corruptions, detected at either the primary or
standby, transparent to applications and users.

• Increased high availability by reducing planned downtime for upgrading to new Oracle
Database patch sets and database releases using the additional automation provided by
high availability Upgrade.

• Connection preservation on an Active Data Guard standby through a role change
facilitates improved reporting and improves the user experience. The connections pause
while the database role changes to a primary database and resume, improving the user
experience.

• The Oracle Enterprise Manager Diagnostic tool can be used with Active Data Guard to
capture and send performance data to the Automatic Workload Repository, while the SQL
Tuning Advisor allows primary database SQL statement tuning to be offloaded to a standby
database.

• Active Data Guard support for the Oracle Database In-Memory option enables reporting to
be offloaded to the standby database while reaping the benefits the In-Memory option
provides, including tailored column stores for the standby database workload.

Oracle Data Guard Advantages Over Traditional Solutions
Oracle Data Guard provides a number of advantages over traditional solutions.

• Fast, automatic or automated database failover for data corruptions, lost writes, and
database and site failures, with recovery times of potentially seconds with Data Guard as
opposed to hours with traditional solutions

• Zero data loss over wide area network using Oracle Active Data Guard Far Sync

• Offload processing for redo transport compression and redo transmission to up to 29
remote destinations using Oracle Active Data Guard Far Sync

• Automatic corruption repair automatically replaces a physical block corruption on the
primary or physical standby by copying a good block from a physical standby or primary
database

• Most comprehensive protection against data corruptions and lost writes on the primary
database

• Reduced downtime for storage, Oracle ASM, Oracle RAC, system migrations and some
platform migrations, and changes using Data Guard switchover

• Reduced downtime for database upgrades with Data Guard rolling upgrade capabilities

• Ability to off-load primary database activities—such as backups, queries, or reporting—
without sacrificing the RTO and RPO ability to use the standby database as a read-only
resource using the real-time query apply lag capability, including Database In-Memory
column support

Chapter 3
Oracle Data Guard

3-6

• Ability to integrate non-database files using Oracle Database File System (DBFS) or
Oracle Automatic Storage Management Cluster File System (Oracle ACFS) as part of the
full site failover operations

• No need for instance restart, storage remastering, or application reconnection after site
failures

• Transparency to applications

• Transparent and integrated support (application continuity and transaction guard) for
application failover

• Effective network utilization

• Database In-Memory support

• Integrated service and client failover that reduces overall application RTO

• Enhanced and integrated Data Guard awareness with existing Oracle technologies such
as Oracle RAC, RMAN, Oracle GoldenGate, Enterprise Manager, health check (orachk),
DBCA, and Fleet Patch and Provisioning

For data resident in Oracle databases, Data Guard, with its built-in zero-data-loss capability, is
more efficient, less expensive, and better optimized for data protection and disaster recovery
than traditional remote mirroring solutions. Data Guard provides a compelling set of technical
and business reasons that justify its adoption as the disaster recovery and data protection
technology of choice, over traditional remote mirroring solutions.

Data Guard and Planned Maintenance
Data Guard standby databases can be used to reduce planned downtime by performing
maintenance in a rolling fashion. Changes are implemented first at the standby database. The
configuration is allowed to run with the primary at the old version and standby at the new
version until there is confidence that the new version is ready for production. A Data Guard
switchover can be performed, transitioning production to the new version or same changes can
be applied to production in a rolling fashion. The only possible database downtime is the time
required to perform the switchover.

There are several approaches to performing maintenance in a rolling fashion using a Data
Guard standby. Customer requirements and preferences determine which approach is used.

Data Guard Redo Apply and Standby-First Patching
Beginning with Oracle Database 10g, there has been increased flexibility in cross-platform
support using Data Guard Redo Apply.

In certain Data Guard configurations, primary and standby databases are able to run on
systems having different operating systems (for example, Windows and Linux), word size
(32bit/64bit), different storage, different Exadata hardware and software versions, or different
hardware architectures. Redo Apply can also be used to migrate to Oracle Automatic Storage
Management (ASM), to move from single instance Oracle databases to Oracle RAC, to
perform technology refresh, or to move from one data center to the next.

Beginning with Oracle Database 11g Release 2 (11.2), Standby-First Patch Apply (physical
standby using Redo Apply) can support different database software patch levels between a
primary database and its physical standby database for the purpose of applying and validating
Oracle patches in a rolling fashion. Patches eligible for Standby-First patching include:

• Database Release Updates (RUs) or Release Update Revisions (RURs)

• Database Patch Set Update (PSU)

Chapter 3
Oracle Data Guard

3-7

• Database Critical Patch Update (CPU)

• Database bundled patch

Standby-First Patch Apply is supported for certified database software patches for Oracle
Database Enterprise Edition 11g Release 2 (11.2) and later.

In each of the types of planned maintenance previously described, the configuration begins
with a primary and physical standby database (in the case of migration to a new platform, or to
ASM or Oracle RAC, the standby is created on the new platform). After all changes are
implemented at the physical standby database, Redo Apply (physical replication) is used to
synchronize the standby with the primary. A Data Guard switchover is used to transfer
production to the standby (the new environment).

See Also:

My Oracle Support Note 413484.1 for information about mixed platform combinations
supported in a Data Guard configuration.

My Oracle Support Note 1265700.1 for more information about Standby First Patch
Apply and the README for each patch to determine if a target patch is certified as
being a Standby-First Patch.

Data Guard Transient Logical Rolling Upgrades
There are numerous types of maintenance tasks that are unable to use Redo Apply (physical
replication) to synchronize the original version of a database with the changed or upgraded
version. These tasks include:

• Database patches or upgrades that are not Standby-First Patch Apply-eligible. This
includes database patch-sets (11.2.0.2 to 11.2.0.4) and upgrade to new Oracle Database
releases (18c to 19c).

• Maintenance must be performed that modifies the physical structure of a database that
would require downtime (for example, adding partitioning to non-partitioned tables,
changing Basicfile LOBs to Securefile LOBs, changing XML-CLOB to Binary XML, or
altering a table to be OLTP-compressed).

All of the previous types of maintenance can be performed in a rolling fashion using a Data
Guard standby database by using Data Guard SQL Apply (logical replication) to synchronize
the old and new versions of the database. Prior to Oracle Database 11g this required creating
a logical standby database, performing the maintenance on the logical standby,
resynchronizing the standby with the primary, and then switching over. Additionally if a physical
standby was being used for disaster recovery, then a new physical standby database would
have to be created from a backup of the production database at the new version. This
represented a number of logistical and cost challenges when upgrading a multi-terabyte
database.

Beginning with Oracle Database 11g, database rolling upgrades can use a new procedure
called Transient Logical that begins and ends with a physical standby database. SQL Apply is
only used during the phase when Data Guard is synchronizing across old and new versions. A
new logical standby database does not need to be created if there is already a physical
standby in place. A new physical standby database does not need to be created from a backup
of the production database at the new version after the maintenance is complete. Similar to the
traditional process of upgrading a Data Guard configuration having an in-place physical
standby, the original primary is upgraded or changed using redo from the new primary

Chapter 3
Oracle Data Guard

3-8

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=413484.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1265700.1

database and Redo Apply (a single catalog upgrade migrates both primary and standby
databases to the new Oracle release).

Transient Logical upgrades require that the primary database be at Oracle Database 11g
release 1 (11.1) or later and that the database meet the prerequisites of SQL Apply.

Oracle provides a Bourne shell script that automates a number of the manual steps required by
the Transient Logical rolling upgrade process.

Databases that use Oracle Database Vault can be upgraded to new Oracle Database releases
and patch sets by using Oracle Data Guard database rolling upgrades (transient logical
standby only).

See Also:

http://www.oracle.com/goto/maa for Oracle MAA technical brief “Oracle Database
Rolling Upgrades: Using a Data Guard Physical Standby Database”

Rolling Upgrade Using Oracle Active Data Guard
Rolling database upgrade using Oracle Active Data Guard provides a simpler, automated, and
easily repeatable method for reducing planned downtime than represented by the manual
Transient Logical rolling upgrade procedure.

Rolling upgrade using Oracle Active Data Guard transforms the 42 or more steps required by
the manual procedure into several easy-to-use DBMS_ROLLING PL/SQL packages. Rolling
upgrades performed using the DBMS_ROLLING PL/SQL package are supported on a
multitenant container database (CDB).

A rolling upgrade using Oracle Active Data Guard:

• Generates an upgrade plan with a configuration-specific set of instructions to guide you
through the upgrade process.

• Modifies parameters of the rolling upgrade.

• Configures primary and standby databases participating in the upgrade.

• Performs switchover of the production database to the new version. Switchover is the only
downtime required.

• Completes the upgrade of the old primary and any additional standby databases in the
Data Guard configuration and resynchronizes with the new primary.

Rolling upgrade using Oracle Active Data Guard has the following additional benefits:

• Provides a simple specify-compile-run protocol

– Catches configuration errors at the compilation step

– Runtime errors are detected during processing

• The state is kept in the database

– Enables a reliable, repeatable process

• Runtime steps are constant regardless of how many databases are involved

• Handles failure at the original primary database

• Enables data protection for the upgraded primary at all times

Chapter 3
Oracle Data Guard

3-9

http://www.oracle.com/goto/maa

See Also:

http://www.oracle.com/goto/maa for Oracle MAA technical brief “Oracle Database
Rolling Upgrades: Using a Data Guard Physical Standby Database”

Oracle Data Guard Concepts and Administration

Oracle GoldenGate
Oracle GoldenGate is Oracle's strategic logical replication solution for data distribution and
data integration.

Oracle GoldenGate offers a real-time, log-based change data capture and replication software
platform. The software provides capture, routing, transformation, and delivery of transactional
data across heterogeneous databases in real time.

Unlike replication solutions from other vendors, Oracle GoldenGate is more closely integrated
with Oracle Database while also providing an open, modular architecture ideal for replication
across heterogeneous database management systems. This combination of attributes
eliminates compromise, making Oracle GoldenGate the preferred logical replication solution for
addressing requirements that span Oracle Database and non-Oracle Database environments.

A typical environment includes a capture, pump, and delivery process. Each of these
processes can run on most of the popular operating systems and databases, including Oracle
Database. All or a portion of the data can be replicated, and the data within any of these
processes can be manipulated for not only heterogeneous environments but also different
database schemas, table names, or table structures. Oracle GoldenGate also supports
bidirectional replication with preconfigured conflict detection and resolution handlers to aid in
resolving data conflicts.

Oracle GoldenGate logical replication enables all databases in an Oracle GoldenGate
configuration, both source and target databases, to be open read-write. This makes it a key
component of MAA for addressing a broad range of high availability challenges for zero
downtime maintenance, cross platform migration, and continuous data availability, specifically:

• Zero or near zero downtime maintenance. In this architecture, Oracle GoldenGate
provides greater flexibility than the capabilities provided by Data Guard. Oracle
GoldenGate source and target databases can have a different physical and logical
structure, can reside on different hardware and operating system architectures, can span
wide differences in Oracle Database releases (for example, 12.2 to 19c), or be a mix of
Oracle and non-Oracle systems. This allows for the modernization of 24x7 servers and
allows new Oracle features to be implemented without impacting the availability of the
databases. Maintenance is first performed on a target database while production runs on
the source. After the maintenance is complete, production can be moved to the source all
at once, similar to a Data Guard switchover. Optionally, bidirectional replication can be
used to gradually move users over to the new system to create the perception of zero
downtime. In either case, Oracle GoldenGate replication can be enabled in the reverse
direction to keep the original source database synchronized during a transition period,
making it simple to effect a planned fall-back to the previous version if needed, with
minimal downtime and no data loss.

• Zero or near-zero downtime migrations when a Data Guard solution is not
applicable. Platform or database migrations can be carried out using Oracle GoldenGate
as the data synchronization method between the old and new systems. Once the database
has been instantiated on another host, Oracle GoldenGate is configured to replicate

Chapter 3
Oracle GoldenGate

3-10

http://www.oracle.com/goto/maa

changes from the production database. A guaranteed restore point can be created on the
migrated database so that after user testing the database can be flashed back, and Oracle
GoldenGate can apply any outstanding data changes from the production database before
moving the application users to the new database, similar to a snapshot standby database.
If desired, bi-directional replication can also be configured from the migrated database
back to the production database for use as a fallback solution.

• Zero or near-zero downtime application upgrades. Application upgrades that modify
back-end database objects typically result in significant planned downtime while
maintenance is being performed. Oracle GoldenGate replication enables data
transformations that map database objects used by a previous version of an application to
objects modified by the new version of an application. This enables database maintenance
to be performed on a separate copy of the production database without impacting the
availability of the application. After the maintenance is complete and Oracle GoldenGate
has finished synchronizing old and new versions, users can be switched to the new version
of the application.

• Read-write access to a replica database while it is being synchronized with its
source database. This is most often used to offload reporting to a copy of a production
database when the reporting application requires a read-write connection to database in
order to function. This is also relevant to disaster recovery environments where the nature
of the technology used for the application tier requires an active read-write connection to
the DR database at all times in order to meet recovery time objectives.

• Active-Active replication. Oracle GoldenGate supports an active-active multi-directional
configuration, where there are two or more systems with identical sets of data that can be
changed by application users on either system. Oracle GoldenGate replicates transactional
data changes from each database to the others to keep all sets of data current.

• Seamless moves between Oracle Real Application Clusters (RAC) nodes in the event of
database instance failure or during applicable maintenance operations. This ability
provides high availability with Oracle GoldenGate and it is possible to patch and upgrade
the Oracle GoldenGate software on one or more nodes in the cluster without affecting the
node where Oracle GoldenGate is currently running. Then at a predetermined time, Oracle
GoldenGate can be switched to one of the upgraded nodes. The switch is done without
reconfiguring Oracle GoldenGate because configuration information is shared across the
Oracle RAC cluster.

See Also:

Oracle GoldenGate Documentation

http://www.oracle.com/goto/maa for Oracle MAA Oracle GoldenGate technical briefs

Best Practice: Oracle Active Data Guard and Oracle GoldenGate
While Oracle Active Data Guard and Oracle GoldenGate are each capable of maintaining a
synchronized copy of an Oracle database, each has unique characteristics that result in high
availability architectures that can use one technology or the other, or both at the same time,
depending upon requirements.

Examples of MAA Best Practice guidelines are as follows:

Chapter 3
Best Practice: Oracle Active Data Guard and Oracle GoldenGate

3-11

https://docs.oracle.com/en/middleware/goldengate/index.html
https://www.oracle.com/goto/maa

When to Use Oracle Active Data Guard
Use Oracle Active Data Guard when the emphasis is on simplicity, data protection, and
availability.

• Simplest, fastest, one-way replication of a complete Oracle database.

• No restrictions: Data Guard Redo Apply supports all data and storage types and Oracle
features; transparent replication of DDL

• Features optimized for data protection: Detects silent corruptions that can occur on source
or target; automatically repairs corrupt blocks

• Synchronized standby open read-only provides simple read-only offloading for maximum
ROI

• Transparency of backups: A Data Guard primary and standby are physically exact copies
of each other; RMAN backups are completely interchangeable

• Zero data loss protection at any distance, without impacting database performance

• Minimizing planned downtime and risk using standby first patching, database rolling
upgrades, and select platform migrations

• Reduce risk of introducing change by dual purposing a DR system for testing using Data
Guard Snapshot Standby

• Integrated automatic database and client failover

• Integrated management of a complete configuration: Data Guard Broker command line
interface or Oracle Enterprise Manager Cloud Control

When to Use Oracle GoldenGate
Use Oracle GoldenGate when the emphasis is on advanced replication requirements not
addressed by Oracle Active Data Guard.

• Any requirement where the replica database must be open read/write while synchronizing
with the primary database

• Any data replication requirements such as multimaster and bidirectional replication, subset
replication, many-to-one replication, and data transformations.

• When data replication is required between endian format platforms or across-database
major versions.

• Maintenance and migrations where zero downtime or near zero downtime is required.
Oracle GoldenGate can be used to migrate between application versions, for example,
from Application 1.0 to Application 2.0 without downtime.

• Database rolling upgrades where it is desired to replicate from new version down to the old
version for the purpose of fast fall-back if something is wrong with the upgrade.

• Zero downtime planned maintenance where bidirectional replication is used to gradually
migrate users to the new version, creating the perception of zero downtime. Note that
bidirectional replication requires avoiding or resolving update conflicts that can occur on
disparate databases.

Chapter 3
Best Practice: Oracle Active Data Guard and Oracle GoldenGate

3-12

When to Use Oracle Active Data Guard and Oracle GoldenGate Together
Oracle Active Data Guard and Oracle GoldenGate are not mutually exclusive. The following
are use cases of high availability architectures that include the simultaneous use of Oracle
Active Data Guard and Oracle GoldenGate.

• An Oracle Active Data Guard standby is utilized for disaster protection and database rolling
upgrades for a mission critical OLTP database. At the same time, Oracle GoldenGate is
used to replicate data from the Data Guard primary database (or from the standby
database using Oracle GoldenGate ALO mode) for ETL update of an enterprise data
warehouse.

• Oracle GoldenGate subset replication is used to create an operational data store (ODS)
that extracts, transforms, and aggregates data from numerous data sources. The ODS
supports mission critical application systems that generate significant revenue for the
company. An Oracle Active Data Guard standby database is used to protect the ODS,
providing optimal data protection and availability.

• Oracle GoldenGate bidirectional replication is utilized to synchronize two databases
separated by thousands of miles. User workload is distributed across each database
based upon geography, workload, and service level using Global Data Services (GDS).
Each Oracle GoldenGate copy has its own local synchronous Data Guard standby
database that enables zero data loss failover if an outage occurs. Oracle GoldenGate
capture and apply processes are easily restarted on the new primary database following a
failover because the primary and standby are an exact, up-to-date replica of each other.

• An Oracle Active Data Guard standby database used for disaster protection is temporarily
converted into an Oracle GoldenGate target for the purpose of performing planned
maintenance not supported by Data Guard. For example, a Siebel application upgrade
requiring modification of back-end database objects which require comprehensive testing
before switching users over to the new system.

• Oracle Active Data Guard is used to protect a production environment when a major
database version upgrade is required offering zero or near-zero downtime (for example,
Oracle 18c to 19c.) A second primary/standby environment is created using the new
database version, and Oracle GoldenGate is used to replicate data from the production
environment to the copy with one-way or bidirectional replication. When Oracle
GoldenGate has completed synchronizing the old and new environments, production is
switched to the new environment and the old environment is decommissioned. This
provides zero or minimal downtime depending upon configuration, eliminates risk by
providing complete isolation between the old and new environment, and avoids any impact
to data protection and availability SLAs if problems are encountered during the upgrade
process.

See Also:

http://www.oracle.com/goto/maa for Oracle MAA Best Practices technical brief
““Transparent Role Transitions With Oracle Data Guard and Oracle GoldenGate"

Recovery Manager
Recovery Manager (RMAN) provides a comprehensive foundation for efficiently backing up
and recovering the database. RMAN eliminates operational complexity while providing superior
performance and availability of the database.

Chapter 3
Recovery Manager

3-13

http://www.oracle.com/goto/maa

RMAN determines the most efficient method of running the requested backup, restoration, or
recovery operation and then submits these operations to the Oracle Database server for
processing. RMAN and the server automatically identify modifications to the structure of the
database and dynamically adjust the required operation to adapt to the changes.

RMAN is the standard interface to backup and restore from Recovery Appliance, local disk
(ZFS storage), tape, and cloud object store.

RMAN provides the following benefits:

• Support for Oracle Sharding - RMAN support for every independent database (shard)

• Enhancement for Sparse Databases - allows backup and restore to operate on

SPARSE

backup sets and or image copies

• Over the Network Standby Database repair of

NONLOGGED

operation - new syntax for validation and repair on Standby -

VALIDATE/RECOVER .. NONLOGGED BLOCK;

• RMAN DUPLICATE

feature enhanced to support creation of Far Sync from Primary and backup

• RMAN DUPLICATE

Using Encrypted Backups - RMAN enhanced support non Auto-login wallet based
encrypted backups with a new

SET

command - enables interrupt-free cloning

• Support for cross-platform backup and restore over the network

• Network-enabled restoration allows the

RESTORE

operations to copy data files directly from one database to another over the network

• Simplified table restoration with the

RECOVER TABLE

command

• Support for Oracle Multitenant, including backup and recovery of individual pluggable
databases

Chapter 3
Recovery Manager

3-14

• Support for cross-platform Oracle Multitenant, including backup and recovery of individual
PDBs

• Automatic channel failover on backup and restore operations

• Automatic failover to a previous backup when the restore operation discovers a missing or
corrupt backup

• Automatic creation of new database files and temporary files during recovery

• Automatic recovery through a previous point-in-time recovery—recovery through reset logs

• Block media recovery, which enables the data file to remain online while fixing the block
corruption

• Fast incremental backups using block change tracking

• Fast backup and restore operations with intrafile and interfile parallelism

• Enhanced security with a virtual private recovery catalog

• Merger of incremental backups into image copies, providing up-to-date recoverability

• Optimized backup and restoration of required files only

• Retention policy to ensure that relevant backups are retained

• Ability to resume backup and restore operations in case of failure

• Automatic backup of the control file and the server parameter file, ensuring that backup
metadata is available in times of database structural changes and media failure and
disasters

• Easily reinstantiate a new database from an existing backup or directly from the production
database (thus eliminating staging areas) using the

DUPLICATE

command.

See Also:

Oracle Database Backup and Recovery User’s Guide

Oracle Real Application Clusters and Oracle Clusterware
Oracle RAC and Oracle Clusterware enable Oracle Database to run any packaged or custom
application across a set of clustered servers.

This capability provides the highest levels of availability and the most flexible scalability. If a
clustered server fails, then Oracle Database continues running on the surviving servers. When
more processing power is needed, you can add another server without interrupting access to
data.

Oracle RAC enables multiple instances that are linked by an interconnect to share access to
an Oracle database. In an Oracle RAC environment, Oracle Database runs on two or more
systems in a cluster while concurrently accessing a single shared database. The result is a
single database system that spans multiple hardware systems, enabling Oracle RAC to
provide high availability and redundancy during failures in the cluster. Oracle RAC

Chapter 3
Oracle Real Application Clusters and Oracle Clusterware

3-15

accommodates all system types, from read-only data warehouse systems to update-intensive
online transaction processing (OLTP) systems.

Oracle Clusterware is software that, when installed on servers running the same operating
system, enables the servers to be bound together to operate as if they are one server, and
manages the availability of user applications and Oracle databases. Oracle Clusterware also
provides all of the features required for cluster management, including node membership,
group services, global resource management, and high availability functions:

• For high availability, you can place Oracle databases (single-instance or Oracle RAC
databases), and user applications (Oracle and non-Oracle) under the management and
protection of Oracle Clusterware so that the databases and applications restart when a
process fails or so that a failover to another node occurs after a node failure.

• For cluster management, Oracle Clusterware presents multiple independent servers as if
they are a single-system image or one virtual server. This single virtual server is preserved
across the cluster for all management operations, enabling administrators to perform
installations, configurations, backups, upgrades, and monitoring functions. Then, Oracle
Clusterware automatically distributes the processing of these management functions to the
appropriate nodes in the cluster.

Oracle Clusterware is a requirement for using Oracle RAC. Oracle Clusterware is the only
clusterware that you need for most platforms on which Oracle RAC operates. Although Oracle
Database continues to support third-party clusterware products on specified platforms, using
Oracle Clusterware provides these main benefits:

• Dispenses with proprietary vendor clusterware

• Uses an integrated software stack from Oracle that provides disk management with local
or remote Oracle Automatic Storage Management (Oracle Flex ASM) to data management
with Oracle Database and Oracle RAC

• Can be configured in large clusters, called an Oracle Flex Cluster.

In addition, Oracle Database features, such as Oracle services, use the underlying Oracle
Clusterware mechanisms to provide their capabilities.

Oracle Clusterware requires two clusterware components: a voting disk to record node
membership information and the Oracle Cluster Registry (OCR) to record cluster configuration
information. The voting disk and the OCR must reside on shared storage. Oracle Clusterware
requires that each node be connected to a private network over a private interconnect.

Benefits of Using Oracle Clusterware
Oracle Clusterware provides the following benefits.

• Tolerates and quickly recovers from computer and instance failures.

• Simplifies management and support by means of using Oracle Clusterware together with
Oracle Database. By using fewer vendors and an all Oracle stack you gain better
integration compared to using third-party clusterware.

• Performs rolling upgrades for system and hardware changes. For example, you can apply
Oracle Clusterware upgrades, patch sets, and interim patches in a rolling fashion.

When you upgrade to Oracle Database 12c, Oracle Clusterware and Oracle ASM binaries
are installed as a single binary called the Oracle Grid Infrastructure. You can upgrade
Oracle Clusterware in a rolling manner from Oracle Clusterware 10g and Oracle
Clusterware 11g; however, you can only upgrade Oracle ASM in a rolling manner from
Oracle Database 11g release 1 (11.1).

• Automatically restarts failed Oracle processes.

Chapter 3
Oracle Real Application Clusters and Oracle Clusterware

3-16

• Automatically manages the virtual IP (VIP) address. When a node fails, the node's VIP
address fails over to another node on which the VIP address can accept connections.

• Automatically restarts resources from failed nodes on surviving nodes.

• Controls Oracle processes as follows:

– For Oracle RAC databases, Oracle Clusterware controls all Oracle processes by
default.

– For Oracle single-instance databases, Oracle Clusterware enables you to configure
the Oracle processes into a resource group that is under the control of Oracle
Clusterware.

• Provides an application programming interface (API) for Oracle and non-Oracle
applications that enables you to control other Oracle processes with Oracle Clusterware,
such as restart or react to failures and certain rules.

• Manages node membership and prevents split-brain syndrome in which two or more
instances attempt to control the database.

• Using server weight-based node eviction allows for aligning the choice of which node gets
evicted in case of certain failures in the cluster with business requirements, ensuring that
the most important workload is kept alive for as long as possible, assuming an equal
choice between servers.

• Provides the ability to perform rolling release upgrades of Oracle Clusterware, with no
downtime for applications.

Benefits of Using Oracle Real Application Clusters and Oracle Clusterware
Together, Oracle RAC and Oracle Clusterware provide all of the Oracle Clusterware benefits
plus the following benefits.

• Provides better integration and support of Oracle Database by using an all Oracle software
stack compared to using third-party clusterware.

• Relocate Oracle Service automatically. Plus, when you perform additional fast application
notification (FAN) and client configuration, distribute FAN events so that applications can
react immediately to achieve fast, automatic, and intelligent connection and failover.

• Detect connection failures fast and automatically, and remove terminated connections for
any Java application using Oracle Universal Connection Pool (Oracle UCP) Fast
Connection Failover and FAN events.

• Balance work requests using Oracle UCP runtime connection load balancing.

• Use runtime connection load balancing with Oracle UCP, Oracle Call Interface (OCI), and
Oracle Data Provider for .NET (ODP.NET).

• Distribute work across all available instances using load balancing advisory.

• You can configure a database so that Oracle Clusterware is aware of the CPU
requirements and limits for the given database. Oracle Clusterware uses this information to
place the database resource only on servers that have a sufficient number of CPUs,
amount of memory, or both.

• Allow the flexibility to increase processing capacity using commodity hardware without
downtime or changes to the application.

• Provide comprehensive manageability integrating database and cluster features.

• Provide scalability across database instances.

• Implement Fast Connection Failover for nonpooled connections.

Chapter 3
Oracle Real Application Clusters and Oracle Clusterware

3-17

Oracle RAC Advantages Over Traditional Cold Cluster Solutions
Oracle RAC provides many advantages over traditional cold cluster solutions, including the
following.

• Scalability across database instances

• Flexibility to increase processing capacity using commodity hardware without downtime or
changes to the application

• Ability to tolerate and quickly recover from computer and instance failures (measured in
seconds)

• Application brownout can be zero or seconds compared to minutes and hours with cold
cluster solutions

• Optimized communication in the cluster over redundant network interfaces, without using
bonding or other technologies

Oracle Grid Infrastructure and Oracle RAC make use of Redundant Interconnect Usage
that distributes network traffic and ensures optimal communication in the cluster. This
functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). In
previous releases, technologies like bonding or trunking were used to make use of
redundant networks for the interconnect.

• Rolling upgrades for system and hardware changes

• Rolling patch upgrades for some interim patches, security patches, CPUs, and cluster
software

• Fast, automatic, and intelligent connection and service relocation and failover

• Comprehensive manageability integrating database and cluster features with Grid Plug
and Play and policy-based cluster and capacity management

• Load balancing advisory and run-time connection load balancing help redirect and balance
work across the appropriate resources

• Oracle Quality of Service (QoS) Management for policy-based run-time management of
resource allocation to database workloads to ensure service levels are met in order of
business need under dynamic conditions. This is accomplished by assigning a service to a
server pool where the database is running. Resources from the pool are used to make
sure the required capacity is available.

• Oracle Enterprise Management support for Oracle ASM and Oracle ACFS, Grid Plug and
Play, Cluster Resource Management, Oracle Clusterware and Oracle RAC Provisioning
and patching.

• SCAN (Single Client Access Name) support as a single name to the clients connecting to
Oracle RAC that does not change throughout the life of the cluster, even if you add or
remove nodes from the cluster.

The following figure shows Oracle Database with Oracle RAC architecture. This figure shows
Oracle Database with Oracle RAC architecture for a partitioned three-node database. An
Oracle RAC database is connected to three instances on different nodes. Each instance is
associated with a service: HR, Sales, and Call Center. The instances monitor each other by
checking "heartbeats." Oracle Net Services provide client access to the Application/web server
tier at the top of the figure.

Chapter 3
Oracle Real Application Clusters and Oracle Clusterware

3-18

Figure 3-2 Oracle Database with Oracle RAC Architecture

Note:

After Oracle release 11.2, Oracle RAC One Node or Oracle RAC is the preferred
solution over Oracle Clusterware (Cold Cluster Failover) because it is a more
complete and feature-rich solution.

See Also:

Oracle RAC Administration and Deployment Guide

Oracle Clusterware Administration and Deployment Guide

Chapter 3
Oracle Real Application Clusters and Oracle Clusterware

3-19

Oracle RAC One Node
Oracle Real Application Clusters One Node (Oracle RAC One Node) is a single instance of an
Oracle RAC database that runs on one node in a cluster.

This feature enables you to consolidate many databases into one cluster with minimal
overhead, protecting them from both planned and unplanned downtime. The consolidated
databases reap the high availability benefits of failover protection, online rolling patch
application, and rolling upgrades for the operating system and Oracle Clusterware.

Oracle RAC One Node enables better availability than cold failover for single-instance
databases because of the Oracle technology called online database relocation, which
intelligently migrates database instances and connections to other cluster nodes for high
availability and load balancing. Online database relocation is performed using the Server
Control Utility (SRVCTL).

Oracle RAC One Node provides the following:

• Always available single-instance database services

• Built-in cluster failover for high availability

• Live migration of instances across servers

• Online rolling patches and rolling upgrades for single-instance databases

• Online upgrade from single-instance to multiple-instance Oracle RAC

• Better consolidation for database servers

• Enhanced server virtualization

• Lower cost development and test platform for full Oracle RAC

• Relocation of Oracle RAC primary and standby databases configured with Data Guard.
This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Oracle RAC One Node also facilitates the consolidation of database storage, standardizes
your database environment, and, when necessary, enables you to transition to a full, multiple-
instance Oracle RAC database without downtime or disruption.

Oracle Automatic Storage Management
Oracle ASM provides a vertically integrated file system and volume manager directly in the
Oracle Database kernel.

This design provides several benefits, resulting in:

• Significantly less work to provision database storage

• Higher level of availability

• Elimination of the expense, installation, and maintenance of specialized storage products

• Unique capabilities for database applications

For optimal performance, Oracle ASM spreads files across all available storage. To protect
against data loss, Oracle ASM extends the concept of SAME (stripe and mirror everything) and
adds more flexibility because it can mirror at the database file level rather than at the entire
disk level.

Chapter 3
Oracle RAC One Node

3-20

More important, Oracle ASM simplifies the processes of setting up mirroring, adding disks, and
removing disks. Instead of managing hundreds or possibly thousands of files (as in a large
data warehouse), database administrators using Oracle ASM create and administer a larger-
grained object called a disk group. The disk group identifies the set of disks that are managed
as a logical unit. Automation of file naming and placement of the underlying database files
save administrators time and ensure adherence to standard best practices.

The Oracle ASM native mirroring mechanism (two-way or three-way) protects against storage
failures. With Oracle ASM mirroring, you can provide an additional level of data protection with
the use of failure groups. A failure group is a set of disks sharing a common resource (disk
controller or an entire disk array) whose failure can be tolerated. After it is defined, an Oracle
ASM failure group intelligently places redundant copies of the data in separate failure groups.
This ensures that the data is available and transparently protected against the failure of any
component in the storage subsystem.

By using Oracle ASM, you can:

• Mirror and stripe across drives and storage arrays.

• Automatically remirror from a failed drive to remaining drives.

• Automatically rebalance stored data when disks are added or removed while the database
remains online.

• Support Oracle database files and non-database files using Oracle Automatic Storage
Management Cluster File System (Oracle ACFS).

• Allow for operational simplicity in managing database storage.

• Manage the Oracle Cluster Registry (OCR) and voting disks.

• Provide preferred read capability on disks that are local to the instance, which gives better
performance for an extended cluster.

• Support very large databases.

• Support Oracle ASM rolling upgrades.

• Improve availability and reliability using the Oracle ASM disk scrubbing process to find and
repair logical data corruptions using mirror disks.

• Support finer granularity in tuning and security.

• Provide fast repair after a temporary disk failure through Oracle ASM Fast Mirror Resync
and automatic repair of block corruptions if a good copy exists in one of the mirrors.

• Provide disaster recovery capability for the file system by enabling replication of Oracle
ACFS across the network to a remote site.

• Patch the Oracle ASM instance without impacting the clients that are being serviced using
Oracle Flex ASM. A database instance can be directed to access Oracle ASM metadata
from another location while the current Oracle ASM instance it is connected to is taken
offline for planned maintenance.

• Monitor and manage the speed and status of Oracle ASM Disk Resync and Rebalance
operations.

• Bring online multiple disks simultaneously and manage performance better by controlling
resync parallelism using the Oracle ASM Resync Power Limit. Recover faster after a cell or
disk failure, and the instance doing the resync is failing; this is made possible by using a
Disk Resync Checkpoint which enables a resync to resume from where it was interrupted
or stopped instead of starting from the beginning.

Chapter 3
Oracle Automatic Storage Management

3-21

• Automatically connect database instances to another Oracle ASM instance using Oracle
Flex ASM. The local database instance can still access the required metadata and data if
an Oracle ASM instance fails due to an unplanned outage.

• Use flex diskgroups to prioritize high availability benefits across multiple databases all
using the same diskgroup. Some of the key HA benefits are file extent redundancy,
rebalance power limit, and rebalance priority. With flex diskgroups, you can set different
values for the above features for different databases, resulting in prioritization across
multiple databases within one diskgroup.

• Use flex diskgroups to implement quoto_groups across multiple databases sharing one
diskgroup which helps in space management and protection.

• Use flex diskgroups to create point-in-time database clones using the ASM split mirror
feature.

• Use preferred reads with stretch clusters to improve performance by affinitizing reads to a
site.

See Also:

Oracle Automatic Storage Management Administrator's Guide

Fast Recovery Area
The fast recovery area is a unified storage location for all recovery-related files and activities in
Oracle Database.

After this feature is enabled, all RMAN backups, archived redo log files, control file
autobackups, flashback logs, and data file copies are automatically written to a specified file
system or Oracle ASM disk group, and the management of this disk space is handled by
RMAN and the database server.

Performing a backup to disk is faster because using the fast recovery area eliminates the
bottleneck of writing to tape. More important, if database media recovery is required, then data
file backups are readily available. Restoration and recovery time is reduced because you do
not need to find a tape and a free tape device to restore the needed data files and archived
redo log files.

The fast recovery area provides the following benefits:

• Unified storage location of related recovery files

• Management of the disk space allocated for recovery files, which simplifies database
administration tasks

• Fast, reliable, disk-based backup and restoration

See Also:

Oracle Database Backup and Recovery User’s Guide

Corruption Prevention, Detection, and Repair

Chapter 3
Fast Recovery Area

3-22

Data block corruptions can be very disruptive and challenging to repair. Corruptions can cause
serious application and database downtime and data loss when encountered and worse yet it
can go undetected for hours, days and even weeks leading to even longer application
downtime once detected.Unfortunately, there is not one way to comprehensively prevent,
detect, and repair data corruptions within the database because the source and cause of
corruptions can be anywhere in memory, hardware, firmware, storage, operating system,
software, or user error. Worse yet, third-party solutions that do not understand Oracle data
block semantics and how Oracle changes data blocks do not prevent and detect data block
corruptions well. Third party remote mirroring technologies can propagate data corruptions to
the database replica (standby) leading to a double failure, data loss, and much longer
downtime. Third party backup and restore solutions cannot detect corrupted backups or bad
sectors until a restore or validate operation is issued, resulting in longer restore times and once
again potential data loss.

Oracle MAA has a comprehensive plan to prevent, detect, and repair all forms of data block
corruptions including physical block corruptions, logical block corruptions, stray writes, and lost
writes. These additional safeguards provide the most comprehensive Oracle data block
corruption prevention, detection, and repair solution. Details of this plan are described in the
My Oracle Support note "Best Practices for Corruption Detection, Prevention, and Automatic
Repair - in a Data Guard Configuration (Doc ID 1302539.1)."

The following outlines block corruption checks for various manual operational checks and
runtime and background corruption checks. Database administrators and the operations team
can incorporate manual checks such as running Oracle Recovery Manager (RMAN) backups,
RMAN "check logical" validations, or running the ANALYZE VALIDATE STRUCTURE command on
important objects. Manual checks are especially important to validate data that are rarely
updated or queried.

Runtime checks are far superior in that they catch corruptions almost immediately or during
runtime for actively queried and updated data. Runtime checks can prevent corruptions or
automatically fix corruptions resulting in better data protection and higher application
availability. A new background check has been introduced in Exadata to automatically scan
and scrub disks intelligently with no application overhead and to automatically fix physically
corrupted blocks.

Table 3-1 Summary of Block Corruption Checks

Checks Capabilities Physical Block
Corruption

Logical Block
Corruption

Manual checks Dbverify, Analyze Physical block checks Logical intra-block and
inter-object consistency
checks

Manual checks RMAN Physical block checks
during backup and
restore operations

Intra-block logical checks

Manual checks ASM Scrub Physical block checks Some logical intra-block
checks

Chapter 3
Corruption Prevention, Detection, and Repair

3-23

Table 3-1 (Cont.) Summary of Block Corruption Checks

Checks Capabilities Physical Block
Corruption

Logical Block
Corruption

Runtime checks Oracle Active Data
Guard

1. Continuous physical
block checking at
standby during
transport and apply

2. Strong database
isolation eliminates
single point database
failure

3. Automatic repair of
block corruptions,
including file block
headers in Oracle
Database 12c Release
2

4. Automatic database
failover

1. With
DB_LOST_WRITE_PROTEC
T enabled, detection of
lost writes (11.2 and
higher). With 11.2.0.4
and Data Guard broker,
ability to shutdown the
primary when lost writes
are detected on the
primary database.

2. With
DB_BLOCK_CHECKING
enabled on the standby,
additional intra-block
logical checks

Runtime checks Database With
DB_BLOCK_CHECKSUM,
in-memory data block
and redo checksum
validation

With
DB_BLOCK_CHECKING,
in-memory intra-block
check validation

Starting in Oracle
Database 18c, and with
Shadow Lost Write
Protection enabled,
Oracle tracks system
change numbers (SCNs)
for tracked data files and
enables early lost write
detection. When lost
writes are detected, an
error is returned
immediately.

See Shadow Lost Write
Protection description
following this table.

Runtime checks ASM and ASM software
mirroring

(inherent in Exadata,
Supercluster, and Zero
Data Loss Recovery
Appliance)

Implicit data corruption
detection for reads and
writes and automatic
repair if good ASM
extent block pair is
available during writes

.

Runtime checks DIX + T10 DIF Checksum validation
from operating system
to HBA controller to
disk (firmware).
Validation for reads and
writes for certified
Linux, HBA and disks.

.

Runtime checks Hardware and Storage Limited checks due to
lack of Oracle
integration. Checksum
is most common.

Limited checks due to
lack of Oracle integration.
Checksum is most
common

Chapter 3
Corruption Prevention, Detection, and Repair

3-24

Table 3-1 (Cont.) Summary of Block Corruption Checks

Checks Capabilities Physical Block
Corruption

Logical Block
Corruption

Runtime checks Exadata Comprehensive HARD
checks on writes

HARD checks on writes

Background checks Exadata Automatic HARD disk
scrub and repair.
Detects and fixes bad
sectors.

.

Shadow Lost Write Protection

New in Oracle Database 18c, shadow lost write protection detects a lost write before it can
result in a major data corruption. You can enable shadow lost write protection for a database, a
tablespace, or a data file without requiring an Oracle Data Guard standby database. Shadow
lost write protection provides fast detection and immediate response to a lost write, thus
minimizing the data loss that can occur in a database due to data corruption.

See Also:

Oracle Database Reference for more information about the views and initialization
parameters

My Oracle Support Note 1302539.1

Data Recovery Advisor
Data Recovery Advisor automatically diagnoses persistent (on-disk) data failures, presents
appropriate repair options, and runs repair operations at your request.

You can use Data Recovery Advisor to troubleshoot primary databases, logical standby
databases, physical standby databases, and snapshot standby databases.

Data Recovery Advisor includes the following functionality:

• Failure diagnosis

The first symptoms of database failure are usually error messages, alarms, trace files and
dumps, and failed health checks. Assessing these symptoms can be complicated, error-
prone, and time-consuming. Data Recovery Advisor automatically diagnoses data failures
and informs you about them.

• Failure impact assessment

After a failure is diagnosed, you must understand its extent and assess its impact on
applications before devising a repair strategy. Data Recovery Advisor automatically
assesses the impact of a failure and displays it in an easily understood format.

• Repair generation

Even if a failure was diagnosed correctly, selecting the correct repair strategy can be error-
prone and stressful. Moreover, there is often a high penalty for making poor decisions in
terms of increased downtime and loss of data. Data Recovery Advisor automatically
determines the best repair for a set of failures and presents it to you.

Chapter 3
Data Recovery Advisor

3-25

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1302539.1

• Repair feasibility checks

Before presenting repair options, Data Recovery Advisor validates them with respect to the
specific environment and availability of media components required to complete the
proposed repair, including restoring files directly from the primary or standby database to
complete the proposed repair.

• Repair automation

If you accept the suggested repair option, Data Recovery Advisor automatically performs
the repair, verifies that the repair was successful, and closes the appropriate failures.

• Validation of data consistency and database recoverability

Data Recovery Advisor can validate the consistency of your data, and backups and redo
stream, whenever you choose.

• Early detection of corruption

Through Health Monitor, you can schedule periodic runs of Data Recovery Advisor
diagnostic checks to detect data failures before a database process running a transaction
discovers the corruption and signals an error. Early warnings can limit the damage caused
by corruption.

• Integration of data validation and repair

Data Recovery Advisor is a single tool for data validation and repair.

Note:

Data Recovery Advisor only supports single-instance databases. Oracle RAC
databases are not supported.

See Also:

Oracle Database Backup and Recovery User’s Guide for information about Data
Recovery Advisor supported database configurations.

Oracle Flashback Technology
Oracle Flashback technology is a group of Oracle Database features that let you view past
states of database, database objects, transactions or rows or to rewind the database, database
objects, transactions or rows to a previous state without using point-in-time media recovery.

With flashback features, you can:

• Perform queries to show data as it looked at a previous point in time

• Perform queries that return metadata that shows a detailed history of changes to the
database

• Recover tables or rows to a previous point in time

• Automatically track and archive transactional data changes

• Roll back a transaction and its dependent transactions while the database remains online

• Undrop a table

Chapter 3
Oracle Flashback Technology

3-26

• Recover a database to a point-in-time without a restore operation

Other than the flashback database feature, most Oracle Flashback features use the Automatic
Undo Management (AUM) system to obtain metadata and historical data for transactions. They
rely on undo data, which are records of the effects of individual transactions. For example, if a
user runs an UPDATE statement to change a salary from 1000 to 1100, then Oracle Database
stores the value 1000 in the undo data.

Undo data is persistent and survives a database shutdown. By using flashback features, you
can use undo data to query past data or recover from logical damage. Besides using it in
flashback features, Oracle Database uses undo data to perform these actions:

• Roll back active transactions

• Recover terminated transactions by using database or process recovery

• Provide read consistency for SQL queries

Oracle Flashback can address and rewind data that is compromised due to various human or
operator errors that inadvertently or maliciously change data, cause bad installations and
upgrades, and result in logical errors in applications. These problems use features such as
flashback transaction, flashback drop, flashback table, and flashback database.

See Also:

Oracle Database Development Guide

Performing Flashback and Database Point-in-Time Recovery, Using Flashback
Database and Restore Points, and Performing Block Media Recovery in the Oracle
Database Backup and Recovery User’s Guide

Oracle Database PL/SQL Packages and Types Reference

Oracle Database Backup and Recovery Reference

Oracle Flashback Query
Oracle Flashback Query (Flashback Query) provides the ability to view data as it existed in the
past by using the Automatic Undo Management system to obtain metadata and historical data
for transactions.

Undo data is persistent and survives a database malfunction or shutdown. The unique features
of Flashback Query not only provide the ability to query previous versions of tables, they also
provide a powerful mechanism to recover from erroneous operations.

Uses of Flashback Query include:

• Recovering lost data or undoing incorrect, committed changes. For example, rows that
were deleted or updated can be immediately repaired even after they were committed.

• Comparing current data with the corresponding data at some time in the past. For
example, by using a daily report that shows the changes in data from yesterday, it is
possible to compare individual rows of table data, or find intersections or unions of sets of
rows.

• Checking the state of transactional data at a particular time, such as verifying the account
balance on a certain day.

Chapter 3
Oracle Flashback Technology

3-27

• Simplifying application design by removing the need to store certain types of temporal
data. By using Flashback Query, it is possible to retrieve past data directly from the
database.

• Applying packaged applications, such as report generation tools, to past data.

• Providing self-service error correction for an application, enabling users to undo and
correct their errors.

Oracle Flashback Version Query
Oracle Flashback Version Query is an extension to SQL that you can use to retrieve the
versions of rows in a given table that existed at a specific time interval.

Oracle Flashback Version Query returns a row for each version of the row that existed in the
specified time interval. For any given table, a new row version is created each time the COMMIT
statement is issued.

Oracle Flashback Version Query is a powerful tool that database administrators (database
administrators) can use to run analysis to determine the source of problems. Additionally,
application developers can use Oracle Flashback Version Query to build customized
applications for auditing purposes.

Oracle Flashback Transaction
Oracle Flashback Transaction backs out a transaction and its dependent transactions.

The

DBMS_FLASHBACK.TRANSACTION_BACKOUT()

procedure rolls back a transaction and its dependent transactions while the database remains
online. This recovery operation uses undo data to create and run the compensating
transactions that return the affected data to its original state. You can query the

DBA_FLASHBACK_TRANSACTION_STATE

view to see whether the transaction was backed out using dependency rules or forced out by
either:

• Backing out nonconflicting rows

• Applying undo SQL

Oracle Flashback Transaction increases availability during logical recovery by quickly backing
out a specific transaction or set of transactions and their dependent transactions. You use one
command to back out transactions while the database remains online.

Oracle Flashback Transaction Query
Oracle Flashback Transaction Query provides a mechanism to view all of the changes made to
the database at the transaction level.

When used in conjunction with Oracle Flashback Version Query, it offers a fast and efficient
means to recover from a human or application error. Oracle Flashback Transaction Query
increases the ability to perform online diagnosis of problems in the database by returning the
database user that changed the row, and performs analysis and audits on transactions.

Chapter 3
Oracle Flashback Technology

3-28

Oracle Flashback Table
Oracle Flashback Table recovers a table to a previous point in time.

It provides a fast, online solution for recovering a table or set of tables that were changed by a
human or application error. In most cases, Oracle Flashback Table alleviates the need for
administrators to perform more complicated point-in-time recovery operations. The data in the
original table is not lost when you use Oracle Flashback Table because you can return the
table to its original state.

Oracle Flashback Drop
Although there is no easy way to recover dropped tables, indexes, constraints, or triggers,
Oracle Flashback Drop provides a safety net when you are dropping objects.

When you drop a table, it is automatically placed into the Recycle Bin. The Recycle Bin is a
virtual container where all dropped objects reside. You can continue to query data in a dropped
table.

Restore Points
When an Oracle Flashback recovery operation is performed on the database, you must
determine the point in time—identified by the system change number (SCN) or time stamp—to
which you can later flash back the data.

Oracle Flashback restore points are labels that you can define to substitute for the SCN or
transaction time used in Flashback Database, Flashback Table, and Oracle Recovery Manager
(RMAN) operations. Furthermore, a database can be flashed back through a previous
database recovery and opened with an

OPEN RESETLOGS

command by using guaranteed restore points. Guaranteed restore points allow major database
changes—such as database batch jobs, upgrades, or patches—to be quickly undone by
ensuring that the undo required to rewind the database is retained.

Using the restore points feature provides the following benefits:

• The ability to quickly restore to a consistent state, to a time before a planned operation that
has gone awry (for example, a failed batch job, an Oracle software upgrade, or an
application upgrade)

• The ability to resynchronize a snapshot standby database with the primary database

• A quick mechanism to restore a test or cloned database to its original state

Oracle Flashback Database
Oracle Flashback Database is the equivalent of a fast rewind button, quickly returning a
database to a previous point in time without requiring a time consuming restore and roll
forward using a backup and archived logs.

The larger the size of the database, the greater the advantage of using Oracle Flashback
Database for fast point in time recovery.

Enabling Oracle Flashback Database provides the following benefits:

Chapter 3
Oracle Flashback Technology

3-29

• Fast point in time recovery to repair logical corruptions, such as those caused by
administrative error.

• Useful for iterative testing when used with Oracle restore points. A restore point can be set,
database changes implemented, and test workload run to assess impact. Oracle
Flashback Database can then be used to discard the changes and return the database to
the original starting point, different modifications can be made, and the same test workload
run a second time to have a true basis for comparing the impact of the different
configuration changes.

• Data Guard uses Oracle Flashback Database to quickly reinstantiate a failed primary
database as a new standby (after a failover has occurred), without requiring the failed
primary to be restored from a backup.

• Flashback database operates at the CDB level or the PDB level.

Flashback Pluggable Database
You can rewind a PDB to a previous SCN. The FLASHBACK PLUGGABLE DATABASE command,
which is available through SQL or Recovery Manager, is analogous to FLASHBACK DATABASE in
a non-CDB.

Flashback PDB protects an individual PDB against data corruption, widespread user errors,
and redo corruption. The operation does not rewind data in other PDBs in the CDB.

You can use

CREATE RESTORE POINT ... FOR PLUGGABLE
 DATABASE

to create a PDB restore point, which is only usable within a specified PDB. As with CDB
restore points, PDB restore points can be normal or guaranteed. A guaranteed restore point
never ages out of the control file and must be explicitly dropped. If you connect to the root, and
if you do not specify the

FOR PLUGGABLE
 DATABASE

clause, then you create a CDB restore point, which is usable by all PDBs.

A special type of PDB restore point is a clean restore point, which you can only create when a
PDB is closed. For PDBs with shared undo, rewinding the PDB to a clean restore point is
faster than other options because it does not require restoring backups or creating a temporary
database instance.

Block Media Recovery Using Flashback Logs or Physical Standby Database
After attempting to automatically repair corrupted blocks, block media recovery can optionally
retrieve a more recent copy of a data block from the flashback logs to reduce recovery time.

Automatic block repair allows corrupt blocks on the primary database to be automatically
repaired as soon as they are detected, by using good blocks from a physical standby
database.

Chapter 3
Oracle Flashback Technology

3-30

Furthermore, a corrupted block encountered during instance recovery does not result in
instance recovery failure. The block is automatically marked as corrupt and added to the
RMAN corruption list in the

V$DATABASE_BLOCK_CORRUPTION

table. You can subsequently issue the RMAN

RECOVER BLOCK

command to fix the associated block. In addition, the RMAN

RECOVER BLOCK

command restores blocks from a physical standby database, if it is available.

Flashback Data Archive
The Flashback Data Archive is stored in a tablespace and contains transactional changes to
every record in a table for the duration of the record's lifetime.

The archived data can be retained for a much longer duration than the retention period offered
by an undo tablespace, and used to retrieve very old data for analysis and repair.

Oracle Data Pump and Data Transport
Oracle Data Pump technology enables very high-speed movement of data and metadata from
one database to another. Data Pump is used to perform the following planned maintenance
activities:

• Database migration to a different platform

• Database migration to pluggable databases

• Database upgrade

The Data Pump features that enable the planned maintenance activities listed above are the
following:

• Full transportable export/import to move an entire database to a different database
instance

• Transportable tablespaces to move a set of tablespaces between databases

See Also:

Transporting Data

Oracle Replication Technologies for Non-Database Files
Oracle ASM Cluster File System, Oracle Database File System, and Oracle Solaris ZFS
Storage Appliance Replication are the Oracle replication technologies for non-database files.

Chapter 3
Oracle Data Pump and Data Transport

3-31

Table 3-2 Oracle Replication Technologies for Non-Database Files

Technology Recommended Usage Comments

Oracle ASM Cluster File
System

Recommended to provide a
single-node and cluster-
wide file system solution
integrated with Oracle ASM,
Oracle Clusterware, and
Oracle Enterprise Manager
technologies. Provides a
loosely coupled full stack
replication solution when
combined with Data Guard
or Oracle GoldenGate.

Oracle ACFS establishes and maintains
communication with the Oracle ASM instance
to participate in Oracle ASM state transitions
including Oracle ASM instance and disk
group status updates and disk group
rebalancing.

Supports many database and application
files, including executables, database trace
files, database alert logs, application reports,
BFILEs, and configuration files. Other
supported files are video, audio, text, images,
engineering drawings, and other general-
purpose application file data.

Can provide near-time consistency between
database changes and file system changes
when point-in-time recovery happens

Can be exported and accessed by remote
clients using standard NAS File Access
Protocols such as NFS and CIFS.

Oracle Database File
System

Recommended for
providing stronger
synchronization between
database and non-database
systems.

Can be integrated with the database to
maintain complete consistency between the
database changes and the file system
changes

All data stored in the database and can be
used with Oracle Active Data Guard to
provide both disaster recovery and read-only
access

Can take advantage all of the Oracle
database features

Oracle Solaris ZFS Storage
Appliance Replication

Recommended for disaster
recovery protection for non-
database files, and
specifically for Oracle
Fusion Middleware critical
files stored outside of the
database.

Replicates all non-database objects,
including Oracle Fusion Middleware binaries
configuration

Can provide near time consistency between
database changes and file system changes
when point-in-time recovery happens

Oracle ASM Cluster File System
Oracle ASM Cluster File System (ACFS) is a multiplatform, scalable file system, and storage
management technology that extends Oracle Automatic Storage Management (Oracle ASM)
functionality to support customer files maintained outside of Oracle Database.

Oracle ACFS supports many database and application files, including executables, database
trace files, database alert logs, application reports, BFILEs, and configuration files. Other
supported files are video, audio, text, images, engineering drawings, and other general-
purpose application file data.

Oracle ACFS takes advantage of the following Oracle ASM functionality:

• Oracle ACFS dynamic file system resizing

• Maximized performance through direct access to Oracle ASM disk group storage

Chapter 3
Oracle Replication Technologies for Non-Database Files

3-32

• Balanced distribution of Oracle ACFS across Oracle ASM disk group storage for increased
I/O parallelism

• Data reliability through Oracle ASM mirroring protection mechanisms

Oracle ACFS Replication, similar to Data Guard for the database, enables replication of Oracle
ACFS file systems across the network to a remote site, providing disaster recovery capability
for the file system. Oracle ACFS replication captures file system changes written to disk for a
primary file system and records the changes in files called replication logs. These logs are
transported to the site hosting the associated standby file system where background processes
read the logs and apply the changes recorded in the logs to the standby file system. After the
changes recorded in a replication log are successfully applied to the standby file system, the
replication log is deleted from the sites hosting the primary and standby file systems.

An additional feature of Oracle ACFS is that it offers snapshot-based replication for generic
and application files, providing an HA solution for disaster recovery and Test/Development
environments. Oracle Databases stored in ACFS can leverage Oracle Multiltenant and ACFS
snapshot technologies to create quick and efficient snapshot clones of pluggable databases.

Oracle Data Guard and Oracle ACFS can be combined to provide a full stack high availability
solution with Data Guard protecting the database with a standby database and Oracle ACFS
replicating the file system changes to the standby host. For planned outages the file system
and the database remain consistent to a point in time with zero data loss.

See Also:

Oracle ACFS ASM Cluster File System: What is it and How to use it

http://www.oracle.com/goto/maa for Oracle MAA technical brief “Full Stack Role
Transition - Oracle ACFS and Oracle Data Guard”

Oracle Database File System
Oracle Database File System (DBFS) takes advantage of the features of the database to store
files, and the strengths of the database in efficiently managing relational data, to implement a
standard file system interface for files stored in the database.

With this interface, storing files in the database is no longer limited to programs specifically
written to use BLOB and CLOB programmatic interfaces. Files in the database can now be
transparently accessed using any operating system (OS) program that acts on files. For
example, extract, transform, and load (ETL) tools can transparently store staging files in the
database.

Oracle DBFS provides the following benefits:

• Full stack integration recovery and failover: By storing file system files in a database
structure, it is possible to easily perform point-in-time recovery of both database objects
and file system data.

• Disaster Recovery System Return on Investment (ROI): All changes to files contained in
DBFS are also logged through the Oracle database redo log stream and thus can be
passed to a Data Guard physical standby database. Using Oracle Active Data Guard
technology, the DBFS file system can be mounted read-only using the physical standby
database as the source. Changes made on the primary are propagated to the standby
database and are visible once applied to the standby.

Chapter 3
Oracle Replication Technologies for Non-Database Files

3-33

https://www.oracle.com/technetwork/database/database-technologies/cloud-storage/acfs/learnmore/oracle-acfs-19c-5302856.html
http://www.oracle.com/goto/maa

• File system backups: Because DBFS is stored in the database as database objects,
standard RMAN backup and recovery functionality can be applied to file system data. Any
backup, restore, or recovery operation that can be performed on a database or object
within a database can also be performed against the DBFS file system.

See Also:

Database File System (DBFS)

Oracle Solaris ZFS Storage Appliance Replication
The Oracle Solaris ZFS Storage Appliance series supports snapshot-based replication of
projects and shares from a source appliance to any number of target appliances manually, on a
schedule, or continuously.

The Oracle Solaris ZFS Storage Appliance series supports the following use cases:

• Disaster recovery: Replication can be used to mirror an appliance for disaster recovery. In
the event of a disaster that impacts the service of the primary appliance (or even an entire
data center), administrators activate the service at the disaster recovery site, which takes
over using the most recently replicated data. When the primary site is restored, data
changed while the disaster recovery site was in service can be migrated back to the
primary site, and normal service is restored. Such scenarios are fully testable before a
disaster occurs.

• Data distribution: Replication can be used to distribute data (such as virtual machine
images or media) to remote systems across the world in situations where clients of the
target appliance would not ordinarily be able to reach the source appliance directly, or such
a setup would have prohibitively high latency. One example uses this scheme for local
caching to improve latency of read-only data (such as documents).

• Disk-to-disk backup: Replication can be used as a backup solution for environments in
which tape backups are not feasible. Tape backup might not be feasible, for example,
because the available bandwidth is insufficient or because the latency for recovery is too
high.

• Data migration: Replication can be used to migrate data and configuration between Oracle
Solaris ZFS Storage appliances when upgrading hardware or rebalancing storage.
Shadow migration can also be used for this purpose.

The architecture of Oracle Solaris ZFS Storage Appliance also makes it an ideal platform to
complement Data Guard for disaster recovery of Oracle Fusion Middleware. Oracle Fusion
Middleware has a number of critical files that are stored outside of the database. These
binaries, configuration data, metadata, logs and so on also require data protection to ensure
availability of the Oracle Fusion Middleware. For these, the built-in replication feature of the
ZFS Storage Appliance is used to move this data to a remote disaster recovery site.

Benefits of the Oracle Solaris ZFS Storage Appliance when used with Oracle Fusion
Middleware include:

• Leverages remote replication for Oracle Fusion Middleware

• Provides ability to quickly create clones and snapshots of databases to increase ROI of DR
sites

Chapter 3
Oracle Replication Technologies for Non-Database Files

3-34

See Also:

Oracle ZFS Storage Appliance Software

Oracle Multitenant
Oracle Multitenant is the optimal database consolidation method. The multitenant architecture
combines the best attributes of each of the previous consolidation methods without their
accompanying tradeoffs.

Oracle Multitenant helps reduce IT costs by simplifying consolidation, provisioning, upgrades
and more. This new architecture allows a container database (CDB) to hold many pluggable
databases (PDBs). To applications, these PDBs appear as a standalone database, and no
changes are required to the application in order to access the PDB. By consolidating multiple
databases as PDBs into a single CDB, you are provided with the ability to manage "many as
one". The flexibility remains to operate on PDBs in isolation should your business require it.

Oracle Multitenant is fully compliant with and takes direct advantage of high availability
features such as Oracle Real Application Clusters, Oracle Data Guard, and Oracle
GoldenGate, just like any non-container database (non-CDB), meaning it can be used in any of
the Oracle MAA reference architectures. Grouping multiple PDBs with the same high
availability requirements into the same CDB ensures that all of those PDBs and their
applications are managed and protected with the same technologies and configurations.

Benefits of Using Oracle Multitenant

• High consolidation density - Many PDBs can be stored in a single CDB. These PDBs share
background processes and memory structures letting you run more PDBs than you would
non-CDBs, because the overhead for each non-CDB is removed or reduced. You can store
up to 4095 PDBs in a CDB. Each PDB can also have a different characterset from other
PDBs within the same CDB, as long as the CDB root character set is a superset of all of
the PDBs’ character sets. Logical standby databases also support this mix of character
sets to allow rolling upgrades with a transient logical standby database.

• Online provisioning operations, including clones, refreshable clones, and PDB relocation -
A PDB can be unplugged from one CDB and plugged into another. A PDB can also be
cloned either into the same CDB or into a different CDB. Cloning can be used to create a
"gold image" or seed database for DBaaS or SaaS environments. This PDB can then be
rapidly cloned to easily set up database environments for new customers.

– Near Zero Downtime PDB Relocation – This feature significantly reduces the
downtime of relocating a PDB from one CDB to another by using clone functionality.
The source PDB remains open and functional while the relocation takes place. The
application outage is reduced to a very short window while the source PDB is brought
to a consistent state, and the destination PDB is synchronized and brought online. This
functionality also takes advantage of another new feature, Listener Redirects, which
allows you to keep the same connect descriptor for applications and connect to the
destination PDB even after it has been relocated.

– Online provisioning and cloning – Clones of PDBs can be created without requiring the
source PDB to be placed in read only-mode. The source PDB can be left in read-write
mode and accessible to applications for the duration of the clone operation.

– Refreshable Clone PDB – Clones of PDBs can be created in such a way as to be
refreshed with changes with changes made to the source PDB applied either
automatically at set intervals or manually. For a clone to be refreshable it must remain
in read-only mode. The clone can be converted into an ordinary PDB by opening it

Chapter 3
Oracle Multitenant

3-35

https://www.oracle.com/storage/nas/zfs-appliance-software/

read-write. Refreshable clones are well suited to be used as test masters for Exadata
storage snapshots.

• New patching and upgrade options -When you upgrade or patch a CBD, all of the PDBs in
that container are also upgraded or patched. If you need isolation, you can unplug a PDB
and plug it into a CDB at a later version.

• Database backup and recovery - By consolidating multiple databases as PDBs, operations
such as backup and disaster recovery are performed at the container level. Oracle
Multitenant also provides the flexibility to backup and restore individual PDBs with no
impact to other running PDBs in the same CDB.

• Operation with Oracle Data Guard - Data Guard configurations are maintained at the CDB
level. When a Data Guard role transition (either failover or switchover) is performed, all
PDBs are transitioned to the new primary database. There is no need to create or manage
multiple Data Guard configurations for each PDB as would be required for single
databases. Existing tools such as Data Guard Standby First Patching and Data Guard
Transient Logical Rolling Upgrade can still be used to reduce downtime and are performed
at the container level, so all PDBs will be maintained in a single operation.

– PDB Migration with Data Guard Broker – The Data Guard broker has been enhanced
to provide automation for migrating PDBs from one CDB, either the primary database
or the standby database, to another CDB. This can be used for straight migration of a
PDB from one CDB to another running at either at the same version or a CDB running
at a higher version to start the upgrade process. This automation can also be used to
affect a single PDB failover by using the PDBs files at a standby database to plug into
a different CDB at the same version.

– Subset Standby - A subset standby enables users of Oracle Multitenant to designate a
subset of the PDBs in a CDB for replication to a standby database. This provides a
finer granularity of designating which standby databases will contain which PDBs.

• Operation with Oracle GoldenGate - All of functionality provided by Oracle GoldenGate
also exists for Oracle Multitenant. GoldenGate also provides the flexibility to operate at the
PDB level, allowing replication to occur for a subset of the PDBs in a CDB. GoldenGate
can be used for minimal to zero downtime upgrades either at the CDB level or at an
individual PDB level.

• Resource management - Just as Oracle Resource Manager can control resource utilization
between single databases, it can also control resource utilization of individual PDBs in a
container. This can ensure that a single PDB does not access more than its assigned
share of system resources. You can specify guaranteed minimums and maximums for
SGA, buffer cache, shared pool, and PGA memory at the PDB limit.

• Operation with Oracle Flashback Database - If fast point-in-time recovery is required, the
initial release of Oracle Multitenant enables using Flashback Database at the CDB level.
Oracle Multitenant enables Flashback Database to be used on an individual PDB without
impacting the availability of other PDBs. Flashback Database can performed at the CDB
level which will flashback all of the PDBs in the container. Individual PDBs can be flashed
back using the Flashback Pluggable Database feature. When flashing back an individual
PDB all other PDBs remain unaffected.

• Data Guard Broker PDB Migration or Failover - In multitenant broker configurations, you
may need to move a Production PDB from one container database to another container
database that resides on the same system. You may also need to failover a PDB from a
Data Guard Standby database to a new production container database when the
production PDB has failed but the container database and all other PDBs function
normally. Using the new Data Guard Broker command, MIGRATE PLUGGABLE DATABASE, you
can easily move a single PDB from one container database to another, or failover a single

Chapter 3
Oracle Multitenant

3-36

PDB from a Data Guard standby to a new production container database. (new in Oracle
Database 12c Release 2)

See Also:

• Oracle Multitenant Administrator's Guide

• Oracle MAA technical brief "Best Practices for Database Consolidation" at https://
www.oracle.com/database/technologies/high-availability/oracle-database-maa-
best-practices.html

Oracle Sharding
Oracle Sharding is a scalability and availability feature for applications explicitly designed to
run on a sharded database.

Oracle sharding enables distribution and replication of data across a pool of Oracle databases
that share no hardware or software. The pool of databases is presented to the application as a
single logical database. Applications elastically scale (data, transactions, and users) to any
level, on any platform, simply by adding additional databases (shards) to the pool. Scaling up
to 1000 shards is supported.

Oracle Sharding provides superior run-time performance and simpler life-cycle management
compared to home-grown deployments that use a similar approach to scalability. It also
provides the advantages of an enterprise DBMS, including relational schema, SQL, and other
programmatic interfaces, support for complex data types, online schema changes, multi-core
scalability, advanced security, compression, high-availability, ACID properties, consistent
reads, developer agility with JSON, and much more.

See Also:

Using Oracle Sharding

Oracle Restart
Oracle Restart enhances the availability of a single-instance (nonclustered) Oracle database
and its components.

Oracle Restart is used in single-instance environments only. For Oracle Real Application
Clusters (Oracle RAC) environments, the functionality to automatically restart components is
provided by Oracle Clusterware.

If you install Oracle Restart, it automatically restarts the database, the listener, and other
Oracle components after a hardware or software failure or whenever the database's host
computer restarts. It also ensures that the Oracle components are restarted in the proper
order, in accordance with component dependencies.

Oracle Restart periodically monitors the health of components—such as SQL*Plus, the
Listener Control utility (LSNRCTL), ASMCMD, and Oracle Data Guard—that are integrated
with Oracle Restart. If the health check fails for a component, Oracle Restart shuts down and
restarts the component.

Chapter 3
Oracle Sharding

3-37

https://www.oracle.com/database/technologies/high-availability/oracle-database-maa-best-practices.html
https://www.oracle.com/database/technologies/high-availability/oracle-database-maa-best-practices.html
https://www.oracle.com/database/technologies/high-availability/oracle-database-maa-best-practices.html

Oracle Restart runs out of the Oracle Grid Infrastructure home, which you install separately
from Oracle Database homes.

Integrated client failover applications depend on role based services and Fast Application
Notification events, managed by Oracle clusterware, to alert the application to failures. Single
instance databases must have Oracle Restart to achieve integrated client failover.

See Also:

Oracle Database Administrator’s Guide for information about installing and
configuring the Oracle Restart feature

Online Reorganization and Redefinition
One way to enhance availability and manageability is to allow user access to the database
during a data reorganization operation.

The Online Reorganization and Redefinition feature in Oracle Database offers administrators
significant flexibility to modify the physical attributes of a table and transform both data and
table structure while allowing user access to the database. This capability improves data
availability, query performance, response time, and disk space usage. All of these are
important in a mission-critical environment and make the application upgrade process easier,
safer, and faster.

Use Oracle Database online maintenance features to significantly reduce (or eliminate) the
application downtime required to make changes to an application's database objects

See Also:

Redefining Tables Online in Oracle Database Administrator’s Guide

Zero Data Loss Recovery Appliance
The cloud-scale Zero Data Loss Recovery Appliance, commonly known as Recovery
Appliance, is an engineered system designed to dramatically reduce data loss and backup
overhead for all Oracle databases in the enterprise.

Integrated with Recovery Manager (RMAN), the Recovery Appliance enables a centralized,
incremental-forever backup strategy for large numbers of databases, using cloud-scale, fault-
tolerant hardware and storage. The Recovery Appliance continuously validates backups for
recoverability.

Recovery Appliance is the MAA-preferred backup and recovery appliance because:

• Elimination of data loss when restoring from Recovery Appliance

• Minimal backup overhead

• Improved end-to-end data protection visibility

• Cloud-scale protection

• Integrates very well with all MAA reference architectures including Oracle Sharding tier

Chapter 3
Online Reorganization and Redefinition

3-38

See Also:

Zero Data Loss Recovery Appliance Documentation

Fleet Patching and Provisioning
Fleet Patching and Provisioning maintains a space-efficient repository of software, more
precisely "gold images," which are standardized software homes that can be provisioned to
any number of target machines.

Any number of homes can be provisioned from a given gold image, and Fleet Patching and
Provisioning maintains lineage information so that the provenance of deployed software is
always known. Gold images can be organized into series, allowing you to create groupings that
track the evolution of a release, with different series for different tailored solutions such as
Oracle Database patch bundles for specific applications. A notification system informs
interested parties when a new image is available in a given series. Fleet Patching and
Provisioning is a feature of Oracle Grid Infrastructure. The components that form the Fleet
Patching and Provisioning Server are managed automatically by Oracle Grid Infrastructure.

Fleet Patching and Provisioning can provision databases, clusterware, middleware, and
custom software. Fleet Patching and Provisioning offers additional features for creating,
configuring, patching and upgrading Oracle Grid Infrastructure and Oracle Database
deployments. These capabilities simplify maintenance, reducing its risk and impact, and
provide a roll-back option if changes need to be backed out. Additional capabilities include
provisioning clusters and databases onto base machines, and simple capacity on demand by
growing and shrinking clusters and Oracle RAC databases. All of these operations are
performed with single commands which replace the numerous manual steps otherwise
required. All commands and their outcomes are recorded in an audit log. All workflows allow
customization to support the unique requirements of any environment.

The key benefits of Fleet Patching and Provisioning are:

• Enables and enforces standardization

• Simplifies provisioning, patching and upgrading

• Minimizes the impact and risk of maintenance

• Increases automation and reduces touch points

• Supports large scale deployments

See Also:

Fleet Patching and Provisioning and Maintenance in Oracle Clusterware Administration and
Deployment Guide

Oracle Fleet Patching and Provisioning (FPP) Introduction and Technical Overview

Edition-Based Redefinition
Planned application changes may include changes to data, schemas, and programs. The
primary objective of these changes is to improve performance, manageability, and functionality.
An example is an application upgrade.

Edition-based redefinition (EBR) lets you upgrade the database component of an application
while it is in use, thereby minimizing or eliminating downtime. To upgrade an application while it
is in use, you must copy the database objects that comprise the database component of the

Chapter 3
Fleet Patching and Provisioning

3-39

https://docs.oracle.com/en/engineered-systems/zero-data-loss-recovery-appliance/19.2/index.html
https://www.oracle.com/technetwork/database/database-technologies/cloud-storage/acfs/learnmore/oraclefpp-19c-wp-5486894.html

application and redefine the copied objects in isolation. Your changes do not affect users of the
application; they can continue to run the unchanged application. When you are sure that your
changes are correct, you make the upgraded application available to all users.

See Also:

Using Edition-Based Redefinition in Oracle Database Development Guide

Chapter 3
Edition-Based Redefinition

3-40

4
Oracle Database High Availability Solutions for
Unplanned Downtime

Oracle Database offers an integrated suite of high availability solutions that increase
availability.

These solutions also eliminate or minimize both planned and unplanned downtime, and help
enterprises maintain business continuity 24 hours a day, 7 days a week. However, Oracle's
high availability solutions not only go beyond reducing downtime, but also help to improve
overall performance, scalability, and manageability.

Outage Types and Oracle High Availability Solutions for
Unplanned Downtime

Various Oracle MAA high availability solutions for unplanned downtime are described here in
an easy to navigate matrix.

The following table shows how the features discussed in the referenced (hyperlinked) sections
can be used to address various causes of unplanned downtime. Where several Oracle
solutions are listed, the MAA recommended solution is indicated in the Oracle MAA Solution
column.

Table 4-1 Outage Types and Oracle High Availability Solutions for Unplanned
Downtime

Outage Scope Oracle MAA Solution Benefits

Site failures Oracle Data Guard
and Enabling
Continuous Service for
Applications (MAA
recommended)

• Integrated client and application failover
• Fastest and simplest database replication
• Supports all data types
• Zero data loss by eliminating propagation delay
• Oracle Active Data Guard

– Supports read-only services and DML on global
temporary tables and sequences to off-load more
work from the primary

– Allows small updates to be redirected to the primary
enabling read-mostly reports to be offloaded to
standby

• Database In-Memory support

Oracle GoldenGate • Flexible logical replication solution (target is open read/
write)

• Active-active high availability (with conflict resolution)
• Heterogeneous platform and heterogeneous database

support
• Potential zero downtime with custom application failover

4-1

Table 4-1 (Cont.) Outage Types and Oracle High Availability Solutions for Unplanned
Downtime

Outage Scope Oracle MAA Solution Benefits

Recovery Manager,
Zero Data Loss
Recovery Appliance
and Oracle Secure
Backup

• Fully managed database recovery and integration with
Oracle Secure Backup

• Recovery Appliance

– provides end-to-end data protection for backups
– reduces data loss for database restores
– Non-real-time recovery

Instance or
computer
failures

Oracle Real
Application Clusters
and Oracle
Clusterware and
Enabling Continuous
Service for
Applications (MAA
recommended)

• Integrated client and application failover
• Automatic recovery of failed nodes and instances
• Lowest application brownout with Oracle Real

Application Clusters

Oracle RAC One Node
and Enabling
Continuous Service for
Applications

• Integrated client and application failover
• Online database relocation migrates connections and

instances to another node
• Better database availability than traditional cold failover

solutions

Oracle Data Guard
and Enabling
Continuous Service for
Applications

• Integrated client and application failover
• Fastest and simplest database replication
• Supports all data types
• Zero data loss by eliminating propagation delay
• Oracle Active Data Guard

– Supports read-only services and DML on global
temporary tables and sequences to off-load more
work from the primary

– Allows small updates to be redirected to the primary
enabling read-mostly reports to be offloaded to
standby

• Database In-Memory support

Oracle GoldenGate • Flexible logical replication solution (target is open read/
write)

• Active-Active high availability (with conflict resolution)
• Heterogeneous platform and heterogeneous database

support
• Potential zero downtime with custom application failover

Storage failures Oracle Automatic
Storage Management
(MAA recommended)

Mirroring and online automatic rebalancing places redundant
copies of the data in separate failure groups.

Oracle Data Guard
(MAA recommended)

• Integrated client and application failover
• Fastest and simplest database replication
• Supports all data types
• Zero data loss by eliminating propagation delay
• Oracle Active Data Guard supports read-only services

and DML on global temporary tables and sequences to
off-load more work from the primary

• Database In-Memory support

Chapter 4
Outage Types and Oracle High Availability Solutions for Unplanned Downtime

4-2

Table 4-1 (Cont.) Outage Types and Oracle High Availability Solutions for Unplanned
Downtime

Outage Scope Oracle MAA Solution Benefits

Recovery Manager
with Fast Recovery
Area, and Zero Data
Loss Recovery
Appliance (MAA
recommended)

Fully managed database recovery and managed disk and
tape backups

Oracle GoldenGate • Flexible logical replication solution (target is open read/
write)

• Active-active high availability (with conflict resolution)
• Heterogeneous platform and heterogeneous database

support
• Potential zero downtime with custom application failover

Data corruption Corruption Prevention,
Detection, and Repair
(MAA recommended)

Database initialization
settings such as
DB_BLOCK_CHECKING,
DB_BLOCK_CHECKSUM,
and
DB_LOST_WRITE_PRO
TECT

Different levels of data and redo block corruption prevention
and detection at the database level

Chapter 4
Outage Types and Oracle High Availability Solutions for Unplanned Downtime

4-3

Table 4-1 (Cont.) Outage Types and Oracle High Availability Solutions for Unplanned
Downtime

Outage Scope Oracle MAA Solution Benefits

Data corruption Oracle Data Guard
(MAA recommended)

Oracle Active Data
Guard Automatic Block
Repair

DB_LOST_WRITE_PRO
TECT initialization
parameter

• In a Data Guard configuration with an Oracle Active
Data Guard standby

– Physical block corruptions detected by Oracle at a
primary database are automatically repaired using a
good copy of the block retrieved from the standby,
and vice versa

– The repair is transparent to the user and application,
and data corruptions can definitely be isolated

• With MAA recommended initialization settings,
Oracle Active Data Guard and Oracle Exadata Database
Machine, achieve most comprehensive full stack
corruption protection.

• With DB_LOST_WRITE_PROTECT enabled

– A lost write that occurred on the primary database is
detected either by the physical standby database or
during media recovery of the primary database,
recovery is stopped to preserve the consistency of
the database

– Failing over to the standby database using Data
Guard will result in some data loss

– Data Guard Broker's PrimaryLostWrite property
supports SHUTDOWN and CONTINUE, plus
FAILOVER and FORCEFAILOVER options, when
lost writes are detected on the primary database.
See Oracle Data Guard Broker

– DB_LOST_WRITE_PROTECT initialization parameter
provides lost write detection

• Shadow lost write protection detects a lost write
before it can result in major data corruption. You can
enable shadow lost write protection for a database, a
tablespace, or a data file without requiring an Oracle
Data Guard standby database. Note the impact on your
workload may vary.

Chapter 4
Outage Types and Oracle High Availability Solutions for Unplanned Downtime

4-4

Table 4-1 (Cont.) Outage Types and Oracle High Availability Solutions for Unplanned
Downtime

Outage Scope Oracle MAA Solution Benefits

Dbverify, Analyze,
Data Recovery
Advisor and Recovery
Manager, Zero Data
Loss Recovery
Appliance, and ASM
Scrub with Fast
Recovery Area (MAA
recommended)

These tools allow the administrator to run manual checks to
help detect and potentially repair from various data
corruptions.

• Dbverify and Analyze conduct physical block and logical
intra-block checks. Analyze can conduct inter-object
consistency checks.

• Data Recovery Advisor automatically detects data
corruptions and recommends the best recovery plan.

• RMAN operations can

– Conduct both physical and inter-block logical checks
– Run online block-media recovery using flashback

logs, backups, or the standby database to help
recover from physical block corruptions

• Recovery Appliance
– Does periodic backup validation that helps ensure

that your backups are valid
– Allows you to input your recovery window

requirements, and alerts you when those SLAs
cannot be met with your existing backups managed
by Recovery Appliance

• ASM Scrub detects and attempts to repair physical and
logical data corruptions with the ASM pair in normal and
high redundancy disks groups.

Data corruption Oracle Exadata
Database Machine
and Oracle Automatic
Storage Management
(MAA recommended)

DIX + T10 DIF
Extensions (MAA
recommended where
applicable)

• If Oracle ASM detects a corruption and has a good
mirror, ASM returns the good block and repairs the
corruption during a subsequent write I/O.

• Exadata provides implicit HARD enabled checks to
prevent data corruptions caused by bad or misdirected
storage I/O.

• Exadata provides automatic HARD disk scrub and repair.
Detects and fixes bad sectors.

• DIX +T10 DIF Extensions provides end to end data
integrity for reads and writes through a checksum
validation from a vendor's host adapter to the storage
device

Oracle GoldenGate • Flexible logical replication solution (target is open read/
write). Logical replica can be used as a failover target if
partner replica is corrupted.

• Active-active high availability (with conflict resolution)
• Heterogeneous platform and heterogeneous database

support

Human errors Oracle security
features (MAA
recommended)

Restrict access to prevent human errors

Oracle Flashback
Technology (MAA
recommended)

• Fine-grained error investigation of incorrect results
• Fine-grained and database-wide or pluggable database

rewind and recovery capabilities

Chapter 4
Outage Types and Oracle High Availability Solutions for Unplanned Downtime

4-5

Table 4-1 (Cont.) Outage Types and Oracle High Availability Solutions for Unplanned
Downtime

Outage Scope Oracle MAA Solution Benefits

Delays or slow
downs

Oracle Database and
Oracle Enterprise
Manager

Oracle Data Guard
(MAA recommended)
and Enabling
Continuous Service for
Applications

• Oracle Database automatically monitors for instance
and database delays or cluster slow downs and attempts
to remove blocking processes or instances to prevent
prolonged delays or unnecessary node evictions.

• Oracle Enterprise Manager or a customized application
heartbeat can be configured to detect application or
response time slowdown and react to these SLA
breaches. For example, you can configure the Enterprise
Manager Beacon to monitor and detect application
response times. Then, after a certain threshold expires,
Enterprise Manager can call the Data Guard

DBMS_DG.INITIATE_FS_FAILOVER

PL/SQL procedure to initiate a failover. See the section
about "Managing Fast-Start Failover" in Oracle Data
Guard Broker.

• Database In-Memory support

File system data Oracle Replication
Technologies for Non-
Database Files

Enables full stack failover that includes non-database files

Managing Unplanned Outages for MAA Reference Architectures
and Multitenant Architectures

High availability solutions in each of the MAA service-level tiers for the MAA reference
architectures and multitenant architectures are described in an easy to navigate matrix.

If you are managing many databases in DBaaS, we recommend using the MAA tiers and
Oracle Multitenant as described in Oracle MAA Reference Architectures.

The following table identifies various unplanned outages that can impact a database in a
multitenant architecture. It also identifies the Oracle high availability solution to address that
outage that is available in each of the MAA reference architectures.

Table 4-2 Unplanned Outage Matrix for MAA Reference Architectures and Multitenant
Architectures

Event Solutions by MAA
Architecture

Recovery Window
(RTO)

Data Loss (RPO)

Instance Failure BRONZE: Oracle
Restart

Minutes if instance can
restart

Zero

Chapter 4
Managing Unplanned Outages for MAA Reference Architectures and Multitenant Architectures

4-6

Table 4-2 (Cont.) Unplanned Outage Matrix for MAA Reference Architectures and
Multitenant Architectures

Event Solutions by MAA
Architecture

Recovery Window
(RTO)

Data Loss (RPO)

SILVER: Oracle RAC
(see Oracle Real
Application Clusters
and Oracle
Clusterware) or
Oracle RAC One
Node, and Enabling
Continuous Service
for Applications

Seconds with Oracle
RAC, minutes with
Oracle RAC One Node

Zero

GOLD: Oracle RAC
(see Oracle Real
Application Clusters
and Oracle
Clusterware and
Enabling Continuous
Service for
Applications

Seconds Zero

PLATINUM: Oracle
RAC (see Oracle
Real Application
Clusters and Oracle
Clusterware) and
Enabling Continuous
Service for
Applications

Zero Application Outage Zero

Permanent Node Failure
(but storage available)

BRONZE: Restore
and recover

Hours to Day Zero

SILVER: Oracle RAC
(see Oracle Real
Application Clusters
and Oracle
Clusterware) and
Enabling Continuous
Service for
Applications

Seconds Zero

SILVER: Oracle RAC
One Node and
Enabling Continuous
Service for
Applications

Minutes Zero

GOLD: Oracle RAC
(see Oracle Real
Application Clusters
and Oracle
Clusterware) and
Enabling Continuous
Service for
Applications

Seconds Zero

Chapter 4
Managing Unplanned Outages for MAA Reference Architectures and Multitenant Architectures

4-7

Table 4-2 (Cont.) Unplanned Outage Matrix for MAA Reference Architectures and
Multitenant Architectures

Event Solutions by MAA
Architecture

Recovery Window
(RTO)

Data Loss (RPO)

PLATINUM: Oracle
RAC (see Oracle
Real Application
Clusters and Oracle
Clusterware) and
Enabling Continuous
Service for
Applications

Seconds Zero

Storage Failure ALL: Oracle
Automatic Storage
Management

Zero downtime Zero

Data corruptions BRONZE/SILVER:
Basic protection

Some corruptions
require recover
restore and recovery
of pluggable
database (PDB),
entire multitenant
container database
(CDB) or non-
container database
(non-CDB)

Hour to Days • Since last backup if
unrecoverable

• Zero or Near Zero with
Recovery Appliance

GOLD:
Comprehensive
corruption protection
and Auto Block
Repair with Oracle
Active Data Guard

• Zero with auto block
repair

• Seconds to minutes
if corruption due to
lost writes and
using Data Guard
Fast Start failover.

Zero unless corruption due
to lost writes

PLATINUM:
Comprehensive
corruption protection
and Auto Block
Repair with Oracle
Active Data Guard

Oracle GoldenGate
replica with custom
application failover

• Zero with auto block
repair

• Zero with Oracle
GoldenGate replica

Zero when using Active
Data Guard Fast-Start
Failover and Oracle
GoldenGate

Human error ALL: Logical failures
resolved by flashback
drop, flashback table,
flashback transaction,
flashback query
flashback pluggable
database, and undo.

Dependent on detection
time but isolated to PDB
and applications using
those objects.

Dependent on logical failure

Chapter 4
Managing Unplanned Outages for MAA Reference Architectures and Multitenant Architectures

4-8

Table 4-2 (Cont.) Unplanned Outage Matrix for MAA Reference Architectures and
Multitenant Architectures

Event Solutions by MAA
Architecture

Recovery Window
(RTO)

Data Loss (RPO)

All: Comprehensive
logical failures
impacting an entire
database and PDB
that requires RMAN
point in time recovery
(PDB) or flashback
pluggable database

Dependent on detection
time

Dependent on logical failure

Database unusable,
system, site or storage
failures, wide spread
corruptions or disasters

BRONZE/SILVER:
Restore and recover

Hours to Days • Since last database
and archive backup

• Zero or near zero with
Recovery Appliance

GOLD: Active Data
Guard Fast-Start
Failover and Enabling
Continuous Service
for Applications

Seconds Zero to Near Zero

PLATINUM: Oracle
GoldenGate replica
with custom
application failover

Zero Zero when using Active
Data Guard Fast-Start
Failover and Oracle
GoldenGate

Performance
Degradation

ALL: Oracle
Enterprise Manager
for monitoring and
detection, Database
Resource
Management for
Resource Limits and
ongoing Performance
Tuning

No downtime but
degraded service

Zero

Chapter 4
Managing Unplanned Outages for MAA Reference Architectures and Multitenant Architectures

4-9

5
Oracle Database High Availability Solutions for
Planned Downtime

Planned downtime can be just as disruptive to operations as unplanned downtime. This is
especially true for global enterprises that must support users in multiple time zones, or for
those that must provide Internet access to customers 24 hours a day, 7 days a week.

See the following topics to learn about keeping your database highly available during planned
downtime.

Oracle High Availability Solutions for Planned Maintenance
Oracle provides high availability solutions for all planned maintenance.

The following table describes the various Oracle high availability solutions and their projected
downtime for various maintenance activities.

Table 5-1 Oracle High Availability Solutions for Planned Maintenance

Maintenance Event High Availability Solutions with Target Outage Time

Dynamic and Online Resource Provisioning, or

Online reorganization and redefinition

Zero application and database downtime for

• Changing initialization parameters dynamically
• Renaming and relocating datafiles online
• Automatic memory management tuning
• Online reorganization and redefinition (managing tables

and managing indexes)
See the Oracle Database Administrator Guide, Oracle
Database Reference (to evaluate which parameters to use on
dynamic), and Online Data Reorganization and Redefinition

Operating system software or hardware updates and patches Zero database downtime with Oracle RAC and Oracle RAC
One Node Rolling

Seconds to minutes database downtime with Standby-
First Patch Apply and subsequent Data Guard Switchover

Oracle Database or Grid Infrastructure interim or diagnostic
patches

Zero downtime with Database Online Patching or Zero-
Downtime Oracle Grid Infrastructure Patching

Zero database downtime with Oracle RAC and Oracle RAC
One Node Rolling

Zero application downtime with Application Checklist for
Continuous Service for MAA Solutions

Seconds to minutes database downtime with Standby-
First Patch Apply and subsequent Data Guard Switchover

5-1

https://www.oracle.com/database/technologies/high-availability/online-ops.html
https://support.oracle.com/rs?type=doc&id=1265700.1
https://support.oracle.com/rs?type=doc&id=1265700.1
https://support.oracle.com/rs?type=doc&id=761111.1
https://support.oracle.com/rs?type=doc&id=2635015.1
https://support.oracle.com/rs?type=doc&id=2635015.1
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://support.oracle.com/rs?type=doc&id=1265700.1
https://support.oracle.com/rs?type=doc&id=1265700.1

Table 5-1 (Cont.) Oracle High Availability Solutions for Planned Maintenance

Maintenance Event High Availability Solutions with Target Outage Time

Oracle Database or Grid Infrastructure quarterly updates
under the Critical Patch Update (CPU) program, or Oracle
Grid Infrastructure release upgrades

Zero database downtime with Oracle RAC and Oracle RAC
One Node Rolling.

Zero application downtime with Application Checklist for
Continuous Service for MAA Solutions

Seconds to minutes downtime with Standby-First Patch
Apply and subsequent Data Guard Switchover

Special consideration is required during rolling database
quarterly updates for applications that use database OJVM.
See My Oracle Support RAC Rolling Install Process for the
"Oracle JavaVM Component Database PSU/RU" (OJVM
PSU/RU) Patches (Doc ID 2217053.1) for details.

Oracle Database Release Upgrade (for example, Oracle
Database 11g to 12.2 or 12.2 to 19c)

Seconds to minutes downtime with Data Guard transient
logical or DBMS_ROLLING solution

Zero downtime with Oracle GoldenGate

See Automated Database Upgrades using Oracle Active
Data Guard and DBMS_ROLLING for 12.2 and higher
database releases or Database Rolling Upgrade using Data
Guard for older releases.

Exadata database server software updates Zero database downtime with Oracle RAC Rolling

Zero application downtime with Application Checklist for
Continuous Service for MAA Solutions

Seconds to minutes downtime with Standby-First Patch
Apply and subsequent Data Guard Switchover

See Updating Exadata Software

Exadata storage server or Exadata switch software updates Zero downtime using Exadata patchmgr
See Updating Exadata Software

Database Server or Oracle RAC cluster changes (add node,
drop node, adjust CPU or memory size of the database
server)

Some hardware changes like adjusting CPU can be done
online without restarting the database server. Refer to the
hardware specific documentation.

If the change is not online, then

Zero database downtime with Oracle RAC and Oracle RAC
One Node Rolling.

Zero application downtime with Application Checklist for
Continuous Service for MAA Solutions

Seconds to minutes downtime with Standby-First Patch
Apply and subsequent Data Guard Switchover

Application upgrades Zero downtime with Edition Based Redefinition

Zero downtime with Oracle GoldenGate

See Edition Based Redefinition and Oracle GoldenGate
documentation

Chapter 5
Oracle High Availability Solutions for Planned Maintenance

5-2

https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://support.oracle.com/rs?type=doc&id=1265700.1
https://support.oracle.com/rs?type=doc&id=1265700.1
https://support.oracle.com/rs?type=doc&id=2217053.1
https://support.oracle.com/rs?type=doc&id=2217053.1
https://support.oracle.com/rs?type=doc&id=2217053.1
https://www.oracle.com/technetwork/database/availability/database-upgrade-dbms-rolling-4126957.pdf
https://www.oracle.com/technetwork/database/availability/database-upgrade-dbms-rolling-4126957.pdf
https://www.oracle.com/technetwork/database/availability/database-rolling-upgrade-3206539.pdf
https://www.oracle.com/technetwork/database/availability/database-rolling-upgrade-3206539.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://support.oracle.com/rs?type=doc&id=1265700.1
https://support.oracle.com/rs?type=doc&id=1265700.1
https://docs.oracle.com/en/engineered-systems/exadata-database-machine/dbmmn/updating-exadata-software.html#GUID-60051AF9-3514-4760-8D58-364943E58A08
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://docs.oracle.com/en/middleware/goldengate/core/index.html
https://docs.oracle.com/en/middleware/goldengate/core/index.html

Table 5-1 (Cont.) Oracle High Availability Solutions for Planned Maintenance

Maintenance Event High Availability Solutions with Target Outage Time

Fleet-wide software maintenance events

• Oracle Database or Grid Infrastructure interim or
diagnostic patches

• Oracle Database or Grid Infrastructure quarterly updates
under the Critical Patch Update (CPU) program, or
Oracle Grid Infrastructure release upgrades

• Exadata database server software updates
• Exadata storage server or Exadata switch software

updates

Use Fleet Patching and Provisioning, which leverages the
following high availability solutions to achieve the target
outage times for fleet-wide software maintenance events:

Zero database downtime with Oracle RAC and Oracle RAC
One Node Rolling

Zero application downtime with Application Checklist for
Continuous Service for MAA Solutions for

• Oracle Database or Grid Infrastructure interim or
diagnostic patches

• Oracle Database or Grid Infrastructure quarterly updates
under the Critical Patch Update (CPU) program, or
Oracle Grid Infrastructure release upgrades

• Exadata database server software updates
Zero downtime using Exadata patchmgr for Exadata
storage server or Exadata switch software updates

High Availability Solutions for Migration
Oracle MAA recommends several solutions for reducing downtime due to database migration.

The following table describes the high availability solutions for migration at a high level.

Table 5-2 High Availability Solutions for Migration

Maintenance Event High Availability Solutions with Target Outage Time

Migrate to an on-premises Oracle Exadata Database
Machine or any Oracle Database cloud service, including
Oracle Exadata Database Service on Cloud@Customer

See Zero Downtime Migration for a complete list of
supported services and platforms

Use the Zero Downtime Migration tool, which provides

• Physical migration with RMAN backup and restore, with
an optional low downtime option using Oracle Data
Guard. This is the simplest turnkey migration solution,
which is ideal when the source and target system
platform (for example, Linux to Linux) and database
versions (Oracle Database 19c to 19c) are the same.

• Logical migration with Oracle Data Pump, with an
optional low downtime option using Oracle GoldenGate.
This is the only option for migrating a database when the
source and target system platform (For example, AIX to
Linux) or major database versions (Oracle Database 12c
to 19c) are different.

To migrate to Oracle Autonomous Database, use the Oracle
Cloud Infrastructure Database Migration service (or the Zero
Downtime Migration tool), which provide

• Offline migration with Data Pump
• Online migration with Data Pump and Oracle

GoldenGate

Chapter 5
High Availability Solutions for Migration

5-3

https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/database/technologies/rac/zdm.html
https://www.oracle.com/database/technologies/rac/zdm.html
https://docs.oracle.com/en/cloud/paas/database-migration/
https://docs.oracle.com/en/cloud/paas/database-migration/

Table 5-2 (Cont.) High Availability Solutions for Migration

Maintenance Event High Availability Solutions with Target Outage Time

Migrate the database to a different server or platform Seconds to minutes downtime with Oracle Data Guard for
certain platform combinations

Zero downtime with Oracle GoldenGate

Data Guard always supports primary and standby
combinations on the same platform. For heterogeneous
platforms, Refer to Data Guard Support for Heterogeneous
Primary and Physical Standbys in Same Data Guard
Configuration (Doc ID 413484.1)

Migrate database to an incompatible character set Zero downtime with Oracle GoldenGate

See Character Set Migration

Migrate to pluggable databases to another container
database

Seconds to minutes downtime with Pluggable Database
Relocate (PDB Relocate)

See Relocating a PDB

Migrate to new storage Zero Downtime with Oracle Automatic Storage Management
if storage is compatible

with Oracle Data Guard for certain platform combinations

Zero Downtime with Oracle GoldenGate

Migrate database from a single-instance system to an Oracle
RAC cluster

Zero Downtime with Oracle RAC when applicable. See
Adding Oracle RAC to Nodes with Oracle Clusterware
Installed

Seconds to minutes downtime with Oracle Data Guard for
certain platform combinations

Zero Downtime with Oracle GoldenGate

Chapter 5
High Availability Solutions for Migration

5-4

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=413484.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=413484.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=413484.1

6
Enabling Continuous Service for Applications

Applications achieve continuous service easily when the underlying network, systems, and
databases are always available.

To achieve continuous service in the face of unplanned outages and planned maintenance
activities can be challenging. An MAA database architecture and its configuration and
operational best practices is built upon redundancy and its ability to tolerate, prevent, and at
times auto-repair failures.

However, applications can incur downtime whenever a failure hits a database instance, a
database node, or the entire cluster or data center. Similarly, some planned maintenance
activities may require restarting a database instance, a database node, or an entire database
server to be restarted.

In all cases, following a simple checklist, your applications can incur zero or very little
downtime whenever the database service that the application is connected to can be moved to
another Oracle RAC instance or to another database.

See Configuring Continuous Availability for Applications for various levels and options to
achieve continuous service for your application.

Drain Timeouts for Planned Maintenance Events

For planned maintenance events, some applications require time to complete their in-flight
transactions.

The amount of time (DRAIN_TIMEOUT) for any workload to gracefully complete its in-flight
transactions and move its sessions vary based on the workload characteristics. For short OLTP
transactions, a DRAIN_TIMEOUT of 1 minute may be sufficient, while batch jobs might require 30
minutes. In some cases it might be best to suspend these long transactions to times outside
the planned maintenance window.

The trade-off for configuring a longer DRAIN_TIMEOUT is that the planned maintenance window
would be extended.

The following table outlines planned maintenance events that will incur Oracle RAC instance
rolling restart and the relevant service drain timeout variables that may impact your application.

6-1

Table 6-1 Drain Timeout Variables for Planned Maintenance Events

Planned Maintenance Event Application Drain Timeout Variables

Exadata Database Host (Dom0) software changes Exadata Host handles operating system (OS)
shutdown with maximum timeout of 10 minutes.

OS shutdown calls an rhphelper, which has the
following drain timeout settings:

• DRAIN_TIMEOUT: value used for services that
do not have a drain_timeout defined.
Default 180

• MAX_DRAIN_TIMEOUT: overrides any higher
drain_timeout value defined for a given
service. Default 300

Each Clusterware-managed service is also
controlled by a drain_timeout attribute that can
be lower than the above values.

See also: Using RHPhelper to Minimize Downtime
During Planned Maintenance on Exadata (Doc ID
2385790.1)

Exadata Database Guest (DomU) software
changes

Exadata patchmgr and dbnodeupdate software
programs call rhphelper, which has the following
drain timeout settings:

DRAIN_TIMEOUT: value used for services that do
not have a drain_timeout defined. Default 180

MAX_DRAIN_TIMEOUT: overrides any higher
drain_timeout value defined for a given service.
Default 300

Each Clusterware-managed service is also
controlled by a drain_timeout attribute that can
be lower than the above values.

See also: Using RHPhelper to Minimize Downtime
During Planned Maintenance on Exadata (Doc ID
2385790.1)

Oracle Grid Infrastructure (GI) software changes or
upgrade

The recommend steps are described in Graceful
Application Switchover in RAC with No Application
Interruption (Doc ID 1593712.1).

Example:

srvctl stop instance -o immediate -
drain_timeout 600 -failover -force
Each Clusterware-managed service is also
controlled by a drain_timeout attribute that can
be lower than the above values.

Oracle Database Software changes The recommend steps are described in Graceful
Application Switchover in RAC with No Application
Interruption (Doc ID 1593712.1).

Example:

srvctl stop instance -o immediate -
drain_timeout 600 -failover -force
Each Clusterware-managed service is also
controlled by a drain_timeout attribute that can
be lower than the above values.

Chapter 6

6-2

https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=1593712.1
https://support.oracle.com/rs?type=doc&id=1593712.1
https://support.oracle.com/rs?type=doc&id=1593712.1
https://support.oracle.com/rs?type=doc&id=1593712.1
https://support.oracle.com/rs?type=doc&id=1593712.1
https://support.oracle.com/rs?type=doc&id=1593712.1

See also:

Configuring Continuous Availability for Applications

Chapter 6

6-3

7
Operational Prerequisites to Maximizing
Availability

Use the following operational best practices to provide a successful MAA implementation.

Understand High Availability and Performance Service-Level
Agreements

Understand and document your high availability (HA) and performance service-level
agreements (SLAs):

• Understand the attributes of High Availability and various causes of downtime as described
in Overview of High Availability.

• Establish high availability and performance SLAs from lines of business, upper
management, and technical teams as described in High Availability Requirements, and A
Methodology for Documenting High Availability Requirements.

Implement and Validate a High Availability Architecture That
Meets Your SLAs

When you have agreement on your high availability and performance service level
requirements:

• Map the requirements to one of the Oracle MAA standard and validated MAA reference
architectures, as described in High Availability and Data Protection – Getting From
Requirements to Architecture

• Evaluate the outage and planned maintenance matrices relevant to your reference
architecture in Oracle Database High Availability Solutions for Unplanned Downtime and
Oracle Database High Availability Solutions for Planned Downtime

• Learn about the database features required to implement your MAA architecture in High
Availability Architectures

Establish Test Practices and Environment
You must validate or automate the following to ensure that your high availability SLAs are
met:

• All software update and upgrade maintenance events

• All repair operations, including those for various types of unplanned outages

• Backup, restore, and recovery operations

If you use Oracle Data Guard for disaster recovery and data protection, Oracle recommends
that you:

7-1

https://docs.oracle.com/en/database/oracle/oracle-database/21/haiad/
https://docs.oracle.com/en/database/oracle/oracle-database/21/haiad/

• Perform periodic switchover operations, or conduct full application and database failover
tests

• Validate end-to-end role transition procedures by performing application and Data Guard
switchovers periodically

A good test environment and proper test practices are essential prerequisites to achieving the
highest stability and availability in your production environment. By validating every change in
your test environment thoroughly, you can proactively detect, prevent, and avoid problems
before applying the same change on your production systems.

These practices involve the following:

Configuring Test and QA Environments
The test environment should be a replica of the production MAA environment (for example,
using the MAA Gold reference architecture.) There will be trade offs if the test system is not
identical to the MAA service-level driven standard reference architecture that you plan to
implement. It is recommended that you perform functional, performance, and availability tests
with a workload that mimics production. Evaluate if availability and performance SLAs are
maintained after each change, and ensure that clear fallback or repair procedures are in place
if things go awry, while applying the change on the production environment.

With a properly configured test system, many problems can be avoided, because changes are
validated with an equivalent production and standby database configuration containing a full
data set and using a workload framework to mimic production (for example, using Oracle Real
Application Testing.)

Do not try to reduce costs by eliminating the test system, because that decision ultimately
affects the stability and the availability of your production applications. Using only a subset of
system resources for testing and QA has the tradeoffs shown in the following table, which is an
example of the MAA Gold reference architecture.

Table 7-1 Tradeoffs for Different Test and QA Environments

Test Environment Benefits and Tradeoffs

Full Replica of Production and
Standby Systems

Validate:
• All software updates and upgrades
• All functional tests
• Full performance at production scale
• Full high availability and disaster recovery testing

Full Replica of Production
Systems

Validate:
• All software updates and upgrades
• All functional tests
• Full performance at production scale
• Full high availability minus the standby system
Cannot Validate:
• Disaster recovery testing
• Any standby redo apply or read only workload performance testing
• Redo transport performance and impact on production system

resources due to redo transport
• Any use case using the standby database such as Database

Rolling Upgrade, Snapshot Standby, and so on.

Chapter 7
Establish Test Practices and Environment

7-2

Table 7-1 (Cont.) Tradeoffs for Different Test and QA Environments

Test Environment Benefits and Tradeoffs

Standby System Validate:
• Most software update changes
• All read-only functional tests
• Full performance--if using Data Guard Snapshot Standby, but this

can extend recovery time if a failover is required
• Resource management and scheduling--required if standby and

test databases exist on the same system
Cannot Validate:
• Role transition and disaster recovery testing
• Any use case using the standby database such as Database

Rolling Upgrade, Snapshot Standby, and so on.

Shared System Resource Validate:
• Most software update changes
• All functional tests
Cannot Validate:
This environment may be suitable for performance testing if enough
system resources can be allocated to mimic production. Typically,
however, the environment includes a subset of production system
resources, compromising performance validation. Resource
management and scheduling is required. Standby or disaster recovery
testing may not be possible or limited.

Smaller or Subset of the
system resources

Validate:
• All software update changes
• All functional tests
• Limited full-scale high availability evaluations
Cannot Validate:
• Performance testing at production scale
• Standby or disaster recovery testing may not be possible or

limited.

Different hardware or platform
system resources but same
operating system

Validate:
• Some software update changes
• Limited firmware patching test
• All functional tests unless limited by new hardware features
• Limited production scale performance tests
• Limited full-scale high availability evaluations
• Standby or disaster recovery testing may not be possible or

limited.

See Also:

Oracle Database Testing Guide

Performing Preproduction Validation Steps
Pre-production validation and testing of hardware, software, database, application or any
changes is an important way to maintain stability. The high-level pre-production validation
steps are:

Chapter 7
Establish Test Practices and Environment

7-3

1. Review the patch or upgrade documentation or any document relevant to that change.
Evaluate the possibility of performing a rolling upgrade if your SLAs require zero or minimal
downtime. Evaluate any rolling upgrade opportunities to minimize or eliminate planned
downtime. Evaluate whether the patch or the change qualifies for Standby-First Patching.

Note:

Standby-First Patch enables you to apply a patch initially to a physical standby database
while the primary database remains at the previous software release (this applies to certain
types of software updates and does not apply to major release upgrades; use the Data
Guard transient logical standby and DBMS_ROLLING method for patch sets and major
releases). Once you are satisfied with the change, then perform a switchover to the
standby database. The fallback is to switchback if required. Alternatively, you can proceed
to the following step and apply the change to your production environment. For more
information, see "Oracle Patch Assurance - Data Guard Standby-First Patch Apply" in My
Oracle Support Note 1265700.1 at https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&id=1265700.1

2. Validate the application in a test environment and ensure the change meets or exceeds
your functionality, performance, and availability requirements. Automate the procedure and
be sure to also document and test a fallback procedure. This requires comparing metrics
captured before and after patch application on the test and against metrics captured on the
production system. Real Application Testing may be used to capture the workload on the
production system and replay it on the test system. AWR and SQL Performance Analyzer
may be used to assess performance improvement or regression resulting from the patch.

Validate the new software on a test system that mimics your production environment, and
ensure the change meets or exceeds your functionality, performance, and availability
requirements. Automate the patch or upgrade procedure and ensure fallback. Being
thorough during this step eliminates most critical issues during and after the patch or
upgrade.

3. Use Oracle Real Application Testing and test data management features to
comprehensively validate your application while also complying with any security
restrictions your line of business may have. Oracle Real Application Testing (a separate
database option) enables you to perform real-world testing of Oracle Database. By
capturing production workloads and assessing the impact of system changes on these
workloads before production deployment, Oracle Real Application Testing minimizes the
risk of instabilities associated with system changes. SQL Performance Analyzer and
Database Replay are key components of Oracle Real Application Testing. Depending on
the nature and impact of the system change being tested, and on the type of system on
which the test will be performed, you can use either or both components to perform your
testing.

When performing real-world testing there is a risk of exposing sensitive data to non-
production users in a test environment. The test data management features of Oracle
Database help to minimize this risk by enabling you to perform data masking and data
subsetting on the test data.

4. If applicable, perform final pre-production validation of all changes on a Data Guard
standby database before applying them to production. Apply the change in a Data Guard
environment, if applicable.

5. Apply the change in your production environment.

Chapter 7
Establish Test Practices and Environment

7-4

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1265700.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1265700.1

See Also:

Data Guard Redo Apply and Standby-First Patching and Data Guard Transient
Logical Rolling Upgrades

Converting a Physical Standby Database into a Snapshot Standby Database and
Performing a Rolling Upgrade With an Existing Physical Standby Database in Oracle
Data Guard Concepts and Administration

Oracle Database Rolling Upgrades: Using a Data Guard Physical Standby Database
on http://www.oracle.com/goto/maa

Oracle Patch Assurance - Data Guard Standby-First Patch Apply (Doc ID 1265700.1)

Set Up and Use Security Best Practices
Corporate data can be at grave risk if placed on a system or database that does not have
proper security measures in place. A well-defined security policy can help protect your systems
from unwanted access and protect sensitive corporate information from sabotage. Proper data
protection reduces the chance of outages due to security breaches.

See Also:

Oracle Database Security Guide.

Establish Change Control Procedures
Institute procedures that manage and control changes as a way to maintain the stability of the
system and to ensure that no changes are incorporated in the primary database unless they
have been rigorously evaluated on your test systems, or any one of the base architectures in
the MAA service-level tiers.

Review the changes and get feedback and approval from your change management team.

Apply Recommended Software Updates and Security Updates
Periodically

Maintaining software at current or recent versions provides many benefits, such as better
software security, improved resource utilization and stability, continued compatibility with newer
related software, better support and faster resolution of issues, and the ability to receive fixes
for newly discovered issues.

Update all software on a regular basis. Oracle recommends following these practices:

• Learn the release and support timelines for all software that your MAA environment
depends upon in order to develop a plan for upgrade to a new major software release and
a plan for installing proactive updates for current releases.

For example, Oracle Database release and support timelines is available in My Oracle
Support Note 742060.1 “Release Schedule of Current Database Releases”.

Chapter 7
Set Up and Use Security Best Practices

7-5

http://www.oracle.com/pls/topic/lookup?ctx=db19&id=GUID-63245504-B67C-4DF2-B8E5-752C0A67FEE7
http://www.oracle.com/pls/topic/lookup?ctx=db19&id=GUID-C5DF6148-C1E9-4ADF-A975-AC95FC64E0C4
https://www.oracle.com/technetwork/database/availability/database-upgrade-dbms-rolling-4126957.pdf
http://www.oracle.com/goto/maa
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1265700.1

• Upgrade to a later major software release before proactive software updates for your
current release cease.

• Install proactive software updates for your current release as they become available,
typically on a monthly or quarterly basis.

However, business requirements may dictate that the adoption of certain proactive updates
is delayed or skipped. In such cases Oracle recommends that the currently running
software never lags the most recently released proactive update by more than 12 months.

• Install reactive software patches (also known as interim or one-off patches) for critical
issues published in My Oracle Support Alerts as soon as feasible.

• Validate the software update process and perform soak testing on a test system before
updating software on production systems.

• Use Oracle health check tools, Orachk and Exachk, to provide Oracle software upgrade
and proactive update advice, critical issue software update recommendations, patching
and upgrading pre-checks, database and system health checks, and MAA
recommendations.

Orachk supports non-engineered systems and Oracle Database Appliance. Exachk
supports engineered systems Oracle Exadata Database Machine and Oracle Zero Data
Loss Recovery Appliance.

See also:

For Oracle Database and Grid Infrastructure:

• “Release Schedule of Current Database Releases” in My Oracle Support Note 742060.1

• "Primary Note for Database Proactive Patch Program" in My Oracle Support Note 888.1

• "Oracle Database 19c Important Recommended One-off Patches" in My Oracle Support
Note 555.1

For engineered systems (Exadata Database Machine and Zero Data Loss Recovery
Appliance):

• "Exadata Database Machine and Exadata Storage Server Supported Versions" in My
Oracle Support Note 888828.1

• “Exadata Critical Issues” in My Oracle Support Note 1270094.1

• "Oracle Exadata: Exadata and Linux Important Recommended Fixes" in My Oracle
Support Note 556.1

• "Oracle Exadata Database Machine Exachk" in My Oracle Support Note 1070954.1

For non-engineered systems:

• "Autonomous Health Framework (AHF) - Including TFA and Orachk/Exachk" in My Oracle
Support Note 2550798.1

Establish Disaster Recovery Environment
To achieve the same performance and HA characteristics as the source or primary database,
the disaster recovery environment or target should be symmetric or similarly configured to the
production system.

If the disaster recovery target is a standby database or Oracle GoldenGate replica, symmetric
or similar database compute CPU, memory, and throughput is required to match the same
performance. Similarly, the storage should be able to handle the same IOPS, throughput, and
response time.

Chapter 7
Establish Disaster Recovery Environment

7-6

https://support.oracle.com/rs?type=doc&id=742060.1
https://support.oracle.com/rs?type=doc&id=888.1
https://support.oracle.com/rs?type=doc&id=555.1
https://support.oracle.com/rs?type=doc&id=888828.1
https://support.oracle.com/rs?type=doc&id=1270094.1
https://support.oracle.com/rs?type=doc&id=556.1
https://support.oracle.com/rs?type=doc&id=1070954.1
https://support.oracle.com/rs?type=doc&id=2550798.1

When the disaster recovery target is used by other applications or databases for database
consolidation and cost efficiency, additional resources will be required to ensure acceptable
performance with other concurrent workloads.

Establish and Validate Disaster Recovery Practices
Disaster recovery validation is required to ensure that you meet your disaster recovery service
level requirements such as RTO and RPO.

Whether you have a standby database, Oracle GoldenGate replica, or leverage database
backups from Zero Data Loss Recovery Appliance (Recovery Appliance), ZFS Storage, or
another third party, it is important to ensure that the operations and database administration
teams are well prepared to failover or restore the database and application any time the
primary database is down or underperforming. The concerned teams should be able to detect
and decide to failover or restore as required. Such efficient preparation before disasters will
significantly reduce overall downtime.

If you use Data Guard or Oracle GoldenGate for high availability, disaster recovery, and data
protection, Oracle recommends that you perform regular application and database switchover
operations every three to six months, or conduct full application and database failover tests.

Periodic RMAN cross checks, RMAN backup validations, and complete database restore and
recovery are required to validate your disaster recovery solution through backups. Inherent
backup checks and validations are done automatically with the Recovery Appliance, but
periodic restore and recovery tests are still recommended.

See also: Role Transition, Assessment, and Tuning

Establish Escalation Management Procedures
Establish escalation management procedures so repair is not hindered. Most repair solutions,
when conducted properly are automatic and transparent with the MAA solution. The challenges
occur when the primary database or system is not meeting availability or performance SLAs
and failover procedures are not automatic as in the case with some Data Guard failover
scenarios. Downtime can be prolonged if proper escalation policies are not followed and
decisions are not made quickly.

If availability is the top priority, perform failover and repair operations first and then
proceed with gathering logs and information for Root Cause Analysis (RCA) after the
application service has been reestablished. For simple data gathering, use the Trace File
Analyzer Collector (TFA).

See Also:

MAA web page at http://www.oracle.com/goto/maa
My Oracle Support note 1513912.2 “TFA Collector - Tool for Enhanced Diagnostic
Gathering” at 1513912.2

Chapter 7
Establish and Validate Disaster Recovery Practices

7-7

http://www.oracle.com/goto/maa
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1513912.2

Configure Monitoring and Service Request Infrastructure for High
Availability

To maintain your High Availability environment, you should configure the monitoring
infrastructure that can detect and react to performance and high availability related thresholds
before any downtime has occurred.

Also, where available, Oracle can detect failures, dispatch field engineers, and replace failed
hardware components such as disks, flash cards, fans, or power supplies without customer
involvement.

Run Database Health Checks Periodically
Oracle Database health checks are designed to evaluate your hardware and software
configuration and MAA compliance to best practices.

All of the Oracle health check tools will evaluate Oracle Grid Infrastructure, Oracle Database,
and provide an automated MAA scorecard or review that highlights when key architectural and
configuration settings are not enabled for tolerance of failures or fast recovery. For Oracle's
engineered systems such as Exadata Database Machine, there may be hundreds of additional
software, fault and configuration checks.

Oracle recommends periodically (for example, monthly for Exadata Database Machine)
downloading the latest database health check, running the health check, and addressing the
key FAILURES, WARNINGS, and INFO messages. Use Exachk for Engineered Systems such
as Oracle Exadata Database Machine and Oracle Zero Data Loss Recovery Appliance, and
use Orachk for non-engineered systems and Oracle Database Appliance.

Furthermore, it is recommended that you run the health check prior to and after any planned
maintenance activity.

You must evaluate:

• Existing or new critical health check alerts prior to planned maintenance window

• Existing software or critical software recommendations

• Adding any new recommendations to the planned maintenance window after testing

See Also:

My Oracle Support Note 1268927.2 "ORAchk - Health Checks for the Oracle Stack"
at https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&id=1268927.2
My Oracle Support Note 1070954.1 "Oracle Exadata Database Machine exachk or
HealthCheck" at https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&id=1070954.1

Chapter 7
Configure Monitoring and Service Request Infrastructure for High Availability

7-8

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1268927.2
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1268927.2
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1070954.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1070954.1

Configure Monitoring
When deciding on the best route for monitoring your Exadata fleet, you need to consider how
the fleet you are monitoring is deployed (On-Premises, Cloud@Customer, Oracle Cloud
Infrastructure) and where your monitoring is or can be deployed.

• On-Premises

For fleets including on-premises Exadata, Enterprise Manager includes necessary
monitoring for responsibilities spanning all three deployment types and is the MAA Best
Practice.

• Cloud

For fleets only in Cloud@Customer and/or OCI, who do not currently have Enterprise
Manager or On-Premises monitoring deployment options, the OCI Observability &
Management services provide various options for basic and advanced monitoring and
manageability.

Configure Oracle Enterprise Manager Monitoring

If your Exadata fleet includes On-Premises deployment, you should configure and use
Enterprise Manager and the monitoring infrastructure that detects and reacts to performance
and high availability related thresholds to avoid potential downtime.

The monitoring infrastructure assists you with monitoring for High Availability and enables you
to do the following:

• Monitor system, network, application, database and storage statistics

• Monitor performance and service statistics

• Create performance and high availability thresholds as early warning indicators of system
or application problems

• Provide performance and availability advice

• Established alerts and tools and database performance

• Receive alerts for engineered systems hardware faults

Enterprise Manager provides monitoring and management for Exadata and Databases
deployed on-premises, on Cloud@Customer, and OCI.

• For on-premises Exadata deployments, see Oracle Exadata Database Machine Getting
Started Guide.

• For Cloud@Customer and OCI Exadata deployments, see Oracle Enterprise Manager
Cloud Control for Oracle Exadata Cloud

Configure Enterprise Manager for high availability to ensure that the manageability solution is
as highly available as the systems that you're monitoring.

For configuration details for HA see Oracle Enterprise Manager Cloud Control Advanced
Installation and Configuration Guide. For additional MAA Best Practices for Enterprise
Manager see http://www.oracle.com/goto/maa.

Oracle Observability and Management Services can be used in conjunction with Enterprise
Manager to provide additional Exadata manageability features. For details, see the following:

• Operations Insights Exadata Insights

• Harvest Entity Model Data from Enterprise Manager Cloud Control Collect Logs

Chapter 7
Configure Monitoring and Service Request Infrastructure for High Availability

7-9

https://docs.oracle.com/en/enterprise-manager/cloud-control/enterprise-manager-cloud-control/13.5/emxig/oracle-exadata-database-machine-administration.html#GUID-045490C8-F951-4673-AE3A-DC84596CDDA4
https://docs.oracle.com/en/enterprise-manager/cloud-control/enterprise-manager-cloud-control/13.5/emxig/oracle-exadata-database-machine-administration.html#GUID-045490C8-F951-4673-AE3A-DC84596CDDA4
https://docs.oracle.com/en/enterprise-manager/cloud-control/enterprise-manager-cloud-control/13.5/emxcs/introduction-monitoring-exadata-cloud-service.html#GUID-1D4FF933-7ECC-4650-99A4-FC16FCEB97DF
https://docs.oracle.com/en/enterprise-manager/cloud-control/enterprise-manager-cloud-control/13.5/emxcs/introduction-monitoring-exadata-cloud-service.html#GUID-1D4FF933-7ECC-4650-99A4-FC16FCEB97DF
https://docs.oracle.com/en/enterprise-manager/cloud-control/enterprise-manager-cloud-control/13.5/emadv/high-availability-solutions.html#GUID-5AEB4464-DCAA-4C3D-9A02-D5D51FD262B1
https://docs.oracle.com/en/enterprise-manager/cloud-control/enterprise-manager-cloud-control/13.5/emadv/high-availability-solutions.html#GUID-5AEB4464-DCAA-4C3D-9A02-D5D51FD262B1
http://www.oracle.com/goto/maa
https://docs.oracle.com/iaas/operations-insights/doc/exadata-insights.html
https://docs.oracle.com/iaas/logging-analytics/doc/harvest-entity-model-data-enterprise-manager-cloud-control-and-collect-logs.html

Configure OCI Observability and Management Services Monitoring

If your Exadata fleet includes only Cloud@Customer and/or OCI deployment, and you do not
currently have Enterprise Manager or on-premises monitoring deployment options, you should
configure and use the OCI Observability and Management platform of services that work
together to provide monitoring and management of Oracle Cloud targets.

Basic default metrics and events for performance, high availability, and health are available in
the OCI console. For details see the following documentation:

• Exadata Database Service on Dedicated Infrastructure

– Metrics for VM Clusters and Exadata Database Service on Dedicated Infrastructure
available in the Monitoring Service

– Events

• Exadata Database Service on Cloud@Customer

– Metrics for VM Clusters and Exadata Database Service on Cloud@Customer available
in the Monitoring Service

– Events

Advanced metrics and management features are available in the Database Management
service:

• Exadata Database Service on Dedicated Infrastructure

– Metrics available in the Database Management Service

– Diagnose and Troubleshoot Problems with Pluggable Databases

Advanced analytics features are available in the Operations Insights Service:

• Exadata Database Service on Dedicated Infrastructure

– Operations Insights for Oracle Databases

See also: Oracle Cloud Observability and Management Platform

Configure Automatic Service Request Infrastructure
In addition to monitoring infrastructure with Enterprise Manager, Oracle can detect failures,
dispatch field engineers, and replace failing hardware without customer involvement.

For example, Oracle Automatic Service Request (ASR) is a secure, scalable, customer-
installable software solution available as a feature. The software resolves problems faster by
using auto-case generation for Oracle's server and storage systems when specific hardware
faults occur.

See also: Oracle Automatic Service Request (Doc ID 1185493.1)

Exercise Capacity Planning
Periodically perform capacity planning exercises to ensure that your current hardware
resources can accommodate existing workload and projected growth.

With database consolidation, this exercise should be done before migrating or adding a new
database to the existing system.

Note that concurrent workloads can interfere with each other and can cause unpredictable
behavior at times, so performance and HA testing may be required.

Chapter 7
Exercise Capacity Planning

7-10

https://docs.oracle.com/iaas/exadatacloud/exacs/monitor-metrics-for-vmcluster-resources.html
https://docs.oracle.com/iaas/exadatacloud/exacs/metrics-for-exadata-database-service-on-dedicated-infrastructure-in-the-monitoring-service.html#GUID-B82F2A9D-56C4-459A-9EEE-A3330741F31F
https://docs.oracle.com/iaas/exadatacloud/exacs/ecs-events.html#GUID-2D522773-82F2-49B3-8DDF-6B2928AC5DB9
https://docs.oracle.com/iaas/exadata/doc/monitor-metrics-for-vm-cluster-resources.html
https://docs.oracle.com/en/engineered-systems/exadata-cloud-at-customer/ecccm/metrics-for-exacc-in-the-monitoring-service.html#GUID-07C62351-92DB-45B6-A661-315A88B5F049
https://docs.oracle.com/iaas/exadata/doc/ecc-customer-events.html
https://docs.oracle.com/iaas/database-management/doc/database-management-oracle-databases.html
https://docs.oracle.com/iaas/exadatacloud/exacs/monitor-metrics-to-diagnose-and-troubleshoot-problems-with-pdbs.html
https://docs.oracle.com/iaas/exadatacloud/exacs/ecs-operational-insights.html
https://www.oracle.com/manageability/
https://support.oracle.com/rs?type=doc&id=1185493.1

Using Database multitenant container databases, database resource management, or Exadata
consolidation practices can help optimize existing system resources and constrain workload
usage to meet expectations.

Check the Latest MAA Best Practices
The MAA solution encompasses the full stack of Oracle technologies, so you can find MAA
best practices for Oracle Database, Oracle Cloud, Oracle Exadata, Zero Data Loss Recovery
Appliance, Oracle Fusion Middleware, Oracle Applications Unlimited, and Oracle Enterprise
Manager on the MAA pages.

MAA solutions and best practices continue to be developed and published on http://
www.oracle.com/goto/maa.

Chapter 7
Check the Latest MAA Best Practices

7-11

http://www.oracle.com/goto/maa
http://www.oracle.com/goto/maa

Part II
Oracle Database High Availability Best
Practices

• Overview of Oracle Database High Availability Best Practices

• Oracle Database Configuration Best Practices

• Oracle Flashback Best Practices

• Oracle Global Data Services Best Practices

8
Overview of Oracle Database High Availability
Best Practices

By adopting the Oracle MAA best practices for Oracle Database, you can achieve the service
levels of the Oracle MAA Bronze reference architecture.

The Bronze architecture achieves the highest availability for a single-instance database
configuration, whether it is a standalone database or part of a consolidated multitenant
database, by using the high availability capabilities included in Oracle Database Enterprise
Edition.

The Bronze architecture is the base configuration for the other MAA reference architectures.
The Oracle Database best practices should also be implemented in the Silver, Gold, and
Platinum references architectures, unless specifically noted in the best practices for that
architecture.

For information about the components, service levels, and benefits of the Bronze reference
architecture, as well as the MAA architectures that build on the Bronze base, see the "High
Availability Reference Architectures" interactive diagram at https://www.oracle.com/webfolder/
technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-
reference-architectures.html.

8-1

https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html
https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html
https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html

9
Oracle Database Configuration Best Practices

Adopt the Oracle MAA best practices for configuring all Oracle single-instance databases to
reduce or avoid outages, reduce the risk of corruption, and improve recovery performance.

Note that the following Oracle Database best practices are used to configure the Oracle MAA
Bronze reference architecture, and they are also the base database base practices for the
other MAA reference architectures: Silver (Oracle RAC), Gold (Oracle Data Guard), and
Platinum (Oracle GoldenGate).

Use a Server Parameter File (SPFILE)
The server parameter file (SPFILE) enables a single, central parameter file to hold all database
initialization parameters associated with all instances of a database. This provides a simple,
persistent, and robust environment for managing database parameters. SPFILE is
recommended to be placed in the DATA ASM disk group.

Enable Archive Log Mode and Forced Logging
Running the database in ARCHIVELOG mode and using database FORCE LOGGING mode are
prerequisites for database recovery operations.

The ARCHIVELOG mode enables online database backup and is necessary to recover the
database to a point in time later than what has been restored. Features such as Oracle Data
Guard and Flashback Database require that the production database run in ARCHIVELOG mode.

If you can isolate data that never needs to be recovered within specific tablespaces, then you
can use tablespace level FORCE LOGGING attributes instead of the database FORCE LOGGING
mode.

Configure an Alternate Local Archiving Destination
The local archive destination, usually LOG_ARCHIVE_DEST_1, should have an alternate local
destination on a different ASM disk group. This configuration prevents database hanging due
to lack of archive log space if DB_RECOVERY_FILE_DEST fills up or is unavailable for any reason.

9-1

Table 9-1 Alternate Local Archiving Configuration Parameters

Database Parameter LOG_ARCHIVE_DEST_n parameter settings for
local archive destinations

LOG_ARCHIVE_DEST_n LOCATION=USE_DB_FILE_RECOVERY_DEST
VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
MAX_FAILURE=1
REOPEN=5
DB_UNIQUE_NAME=db_unique_name of the
database

ALTERNATE=some other log archive destination.
Must be log_archive_dest_[1-10]

LOG_ARCHIVE_DEST_y LOCATION=A disk group other than the disk group
used for DB_RECOVERY_FILE_DEST. Usually the
DATA disk group.
VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
MAX_FAILURE=1
REOPEN=5
ALTERNATE= the primary local archive log
destination: usually LOG_ARCHIVE_DEST_1

DB_RECOVERY_FILE_DEST Archive destination, for example, a RECO disk
group

LOG_ARCHIVE_DEST_STATE_n ENABLE
LOG_ARCHIVE_DEST_STATE_y ALTERNATE

Sample parameter settings:

• LOG_ARCHIVE_DEST_1='LOCATION=USE_DB_FILE_RECOVERY_DEST
VALID_FOR=(ALL_LOGFILES,ALL_ROLES) MAX_FAILURE=1 REOPEN=5
DB_UNIQUE_NAME=db_unique_name of the database ALTERNATE=LOG_ARCHIVE_DEST_10'

• LOG_ARCHIVE_DEST_10='LOCATION=+DATA VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
MAX_FAILURE=1 REOPEN=5 DB_UNIQUE_NAME=db_unique_name of the database
ALTERNATE=LOG_ARCHIVE_DEST_1'

• LOG_ARCHIVE_DEST_STATE_1 =enable
• LOG_ARCHIVE_DEST_STATE_10=alternate
• DB_RECOVERY_FILE_DEST=typically the RECO disk group

Use a Fast Recovery Area
The Fast Recovery Area is Oracle-managed disk space that provides a centralized disk
location for backup and recovery files.

The Fast Recovery Area is defined by setting the following database initialization parameters:

• DB_RECOVERY_FILE_DEST specifies the default location for the fast recovery area. Set this
parameter to the RECO disk group.

• DB_RECOVERY_FILE_DEST_SIZE specifies (in bytes) the hard limit on the total space to be
used by database recovery files created in the recovery area location.

Chapter 9
Use a Fast Recovery Area

9-2

Set this parameter to a value large enough to store archived logs, flashback logs and any
local database backup files locally. Having the files locally can reduce your recovery time
after restoring a backup. RMAN will automatically manage these files according to your
RMAN backup and data retention policies. Typically customers store 24 hours of data in
the destination

When your system hosts many databases sharing the same
DB_RECOVERY_FILE_DEST_SIZE, space needs to manage and monitored holistically.
Recommended to alert when RECO disk group for example is 90% full.

Enable Flashback Database
Flashback Database provides an efficient alternative to point-in-time recovery for reversing
unwanted database changes.

Flashback Database lets you rewind an entire database backward in time, reversing the effects
of database changes within a time window. The effects are similar to database point-in-time
recovery. You can flash back a database by running a single RMAN command or a SQL*Plus
statement instead of using a complex procedure.

To enable Flashback Database, configure a fast recovery area and set a flashback retention
target using the best practices listed below. This retention target specifies how far back you
can rewind a database with Flashback Database.

• Know your application performance baseline before you enable flashback database to help
determine the overhead and to assess the application workload implications of enabling
flashback database.

• Ensure that the fast recovery area space is sufficient to hold the flashback database
flashback logs. A general rule of thumb is that the volume of flashback log generation is
approximately the same order of magnitude as redo log generation. For example, if you
intend to set DB_FLASHBACK_RETENTION_TARGET to 24 hours, and if the database generates
20 GB of redo in a day, then allow 20 GB to 30 GB disk space for the flashback logs.

– An additional method to determine fast recovery area sizing is to enable flashback
database and allow the database to run for a short period of time (2-3 hours). Query
V$FLASHBACK_DATABASE_STAT.ESTIMATED_FLASHBACK_SIZE to retrieve the estimated
amount of space required for the fast recovery area.

– Note that the DB_FLASHBACK_RETENTION_TARGET is a target and there is no guarantee
that you can flashback the database that far. In some cases if there is space pressure
in the fast recovery area where the flashback logs are stored, then the oldest flashback
logs may be deleted. To guarantee a flashback point-in-time you must use guaranteed
restore points.

• Ensure that there is sufficient I/O bandwidth to the fast recovery area. Insufficient I/O
bandwidth with flashback database on is usually indicated by a high occurrence of the
FLASHBACK BUF FREE BY RVWR wait event.

• To monitor the progress of a flashback database operation you can query the
V$SESSION_LONGOPS view. An example query to monitor progress is

SELECT sofar, totalwork, units FROM v$session_longops WHERE opname =
'Flashback Database';

• For repetitive tests where you must flashback to the same point, use flashback database
guaranteed restore points instead of enabling flashback database. This will minimize space
usage.

Chapter 9
Enable Flashback Database

9-3

• Flashback PDB can rewind a pluggable database without affecting other PDBs in the CDB.
You can also create PDB restore points.

Set FAST_START_MTTR_TARGET Initialization Parameter
With Fast-Start Fault Recovery, the FAST_START_MTTR_TARGET initialization parameter simplifies
the configuration of recovery time from instance or system failure.

The FAST_START_MTTR_TARGET parameter specifies a target for the expected recovery time
objective (RTO), which is the time, in seconds, that it should take to start the instance and
perform cache recovery. When you set this parameter, the database manages incremental
checkpoint writes in an attempt to meet the target. If you have chosen a practical value for this
parameter, then you can expect your database to recover, on average, in approximately the
number of seconds you have chosen.

Initially, set the FAST_START_MTTR_TARGET initialization parameter to 300 (seconds), or to the
value required for your expected recovery time objective (RTO). As you set or lower this value,
database writer (DBWR) will become more active to meet your recovery targets.

Make sure that you have sufficient IO bandwidth to handle potential higher load. See the
Database Performance Tuning Guide for information about monitoring and tuning
FAST_START_MTTR_TARGET.

Outage testing for cases such as node or instance failures during peak loads is recommended.

Protect Against Data Corruption
Oracle Database corruption prevention, detection, and repair capabilities are built on internal
knowledge of the data and transactions it protects, and on the intelligent integration of its
comprehensive high availability solutions.

A data block is corrupted when it is not in a recognized Oracle Database format, or its contents
are not internally consistent. Data block corruption can damage internal Oracle control
information or application and user data, leading to crippling loss of critical data and services.

When Oracle Database detects corruption, it offers block media recovery and data file media
recovery to recover the data. You can undo database-wide logical corruptions caused by
human or application errors with Oracle Flashback Technologies. Tools are also available for
proactive validation of logical data structures. For example, the SQL*Plus ANALYZE TABLE
statement detects inter-block corruptions.

The following are best practices for protecting your database against corruption.

• Use Oracle Automatic Storage Management (Oracle ASM) to provide disk mirroring to
protect against disk failures.

• Use the HIGH redundancy disk type for optimal corruption repair with Oracle ASM.

Using Oracle ASM redundancy for disk groups provides mirrored extents that can be used
by the database if an I/O error or corruption is encountered. For continued protection,
Oracle ASM redundancy lets you move an extent to a different area on a disk if an I/O
error occurs. The Oracle ASM redundancy mechanism is useful if you have bad sectors
returning media errors.

• Enable Flashback technologies for fast point-in-time recovery from logical corruptions that
are most often caused by human error, and for fast reinstatement of a primary database
following failover.

Chapter 9
Set FAST_START_MTTR_TARGET Initialization Parameter

9-4

• Implement a backup and recovery strategy with Recovery Manager (RMAN) and
periodically use the RMAN BACKUP VALIDATE CHECK LOGICAL scan to detect corruptions.

Use RMAN and Oracle Secure Backup for additional block checks during backup and
restore operations. Use Zero Data Loss Recovery Appliance for backup and recovery
validation including corruption checks and repairs, central backup validation, reduced
production database impact, and Enterprise Cloud backup and recovery solutions.

• Set database initialization parameter DB_BLOCK_CHECKSUM=TYPICAL or FULL.

• Evaluate setting DB_BLOCK_CHECKING=MEDIUM or FULL, but only after a full performance
evaluation with the application.

Set the LOG_BUFFER Initialization Parameter to 128MB or
Higher

Set the LOG_BUFFER initialization parameter to a minimum of 128 MB for databases with
flashback enabled.

Set USE_LARGE_PAGES=ONLY
On Linux, the database’s SGA should leverage large pages for consistent performance and
stability.

There are two ways to ensure this happens with the USE_LARGE_PAGES parameter:

• USE_LARGE_PAGES=ONLY - Hugepages must be preallocated before instance startup.

• USE_LARGE_PAGES=AUTO_ONLY - Hugepages are dynamically acquired at instance startup
time, but this dynamic acquisition can fail if memory is fragmented or if another instance is
starting up and dynamically acquiring hugepages at the same time.

The MAA best practice is USE_LARGE_PAGES=ONLY. This recommendation is applicable for Cloud
and non-Cloud environments, and all Cloud and Exadata automation tools ensure this
configuration is in place.

Note:

Oracle RDBMS 19c default for USE_LARGE_PAGES on Exadata is AUTO_ONLY, but this
value will be deprecated in the future.

Use Bigfile Tablespace
As databases grow larger more data files are added to smallfile tablespaces, which requires
additional administration, monitoring, and maintenance, while negatively impacting database
open time and role transition time in Oracle Data Guard environments.

Bigfile tablespaces allow a single large data file per tablespace, up to 32TB for 8k blocksize
and 128TB for 32k blocksize. The single data file reduces the number of files in the database
thus improving database checkpoint, database open, and role transition time, while improving
administration costs.

Recommendations include:

Chapter 9
Set the LOG_BUFFER Initialization Parameter to 128MB or Higher

9-5

• For new database design and deployment, use bigfile tablespaces and partitioning to
minimize the number of data files. Partitioning of large tables prevents having an enormous
bigfile. A reasonable bigfile should still be 16TB or less.

– For very large tables that have different retention policies, or have different access
requirements, use Oracle Partitioning as part of your database and object design.
Oracle Partitioning can also work around any potential bigfile size limitation.

– For very large tablespaces, use bigfile tablespaces instead of many smallfile data files.
Bigfile tablespaces are only supported for locally managed tablespaces with automatic
segment space management.

– There are no negative trade-offs for using bigfile tablespaces, other than
understanding the maximum limits for your DB_BLOCK_SIZE. To continue to ensure good
database backup and restore performance, you should also use the RMAN SECTION
SIZE parameter to parallelize backup and restore operations when there are bigfile
tablespaces.

• For existing databases with a lot of data files, focus on tablespaces that have the most
data files and evaluate if you can use the ALTER TABLE MOVE or online redefinition to
migrate tables or partitions to bigfile tablespaces.

The following tables show a recent Data Guard performance test which demonstrates that
reducing the number of data files in the database from 9000 data files to ~100 data files
improved failover times by 10x and switchover times by 4 times.

Unplanned Outage/DR
(Failover)

Initial Configuration Tuned MAA Configuration

Close to Mount (C2M) 21 secs 1 sec

Terminal Recovery (TR) 154 secs 2 secs

Convert to Primary (C2P) 114 secs 5 secs

Open new Primary (OnP) 98 secs 28 secs

Open PDB and Start Service
(OPDB)

146 secs 16 secs

Total App Downtime 533 secs or 8min 53 secs 52 secs (90% drop)

Planned DR Switch
(Switchover)

Initial Configuration Tuned MAA Configuration

Convert Primary to Standby 26 secs 21 sec

Convert Standby to Primary
(C2P)

47 secs 7 secs

Open new Primary (OnP) 152 secs 14 secs

Open PDB and Start Service
(OPDB)

130 secs 39 secs

Total App Downtime 355 secs or 5 minutes 55 secs 81 secs (78% drop)

For existing databases with a lot of data files, the following table compares the use of ALTER
TABLE MOVE or DBMS_REDEFINITION to migrate tables or partitions to bigfile tablespaces.

Areas of Interest or Use Cases DBMS_REDEFINITION ALTER TABLE MOVE ONLINE

Application Impact • No DDL changes allowed during
move

• Application blackout of seconds
during activation

• No DDL changes allowed during
move

• Application blackout during final
switch unknown

Chapter 9
Use Bigfile Tablespace

9-6

Areas of Interest or Use Cases DBMS_REDEFINITION ALTER TABLE MOVE ONLINE

Application Functionality Supported • DML supported
• PDML supported
• No DDL changes allowed during

move

• DML supported
• PDML not supported
• No DDL changes allowed during

move

Impact of indexes • Available during move
• Indexes maintained

• Available during move
• Indexes maintained after move

(with UPDATE INDEXES clause)

• Indexes moved separately
(REBUILD ONLINE)

Space Requirements Double space required (tables+indexes) Double space required (tables+indexes)

Table Partition Functionality Move entire partitioned table with one
execution

Move partition by partition in order to
maintain all indexes

Statistics Management New statistics can be created before
activation

New statistics created after activation

Monitoring Progress You can query the V$ONLINE_REDEF
view to monitor the progress of an
online table redefinition operation.

Query V$SESSION_LONGOPS?

Resume on failure Restart-able Unknown

Rollback Yes N/A

Restrictions • Tables with LONG columns can be
redefined online, but those columns
must be converted to CLOBS. Also,
LONG RAW columns must be
converted to BLOBS. Tables with
LOB columns are acceptable.

• Index-organized table can be
moved

• Domain indexes can be moved
• Parallel DML and direct path

INSERT operations are allowed

Many 'corner case' restrictions with
DBMS_REDEFINITION. See Restrictions
for Online Redefinition of Tables in
Oracle Database Administrator’s Guide

• Cannot move a table with a LONG or
RAW column

• Cannot move partitioned index-
organized table.

• Cannot move if a domain index is
defined on the table like spatial,
XML, or a Text index.

• Parallel DML and direct path
INSERT operations are not possible
during a table move.

• Cannot move index-organized
tables that contain any LOB,
VARRAY, Oracle-supplied type, or
user-defined object type columns.

Documentation and References See DBMS_REDEFINITION in Oracle
Database PL/SQL Packages and Types
Reference

See ALTER TABLE in Oracle Database
SQL Language Reference

Use Automatic Shared Memory Management and Avoid Memory
Paging

Enable Automatic Shared Memory Management by setting the SGA_TARGET parameter, and set
the USE_LARGE_PAGES database initialization parameter to AUTO_ONLY or ONLY and the
USE_LARGE_PAGES ASM initialization parameter to TRUE.

Use the following guidelines in addition to setting SGA_TARGET to enable Automatic Shared
Memory Management.

Chapter 9
Use Automatic Shared Memory Management and Avoid Memory Paging

9-7

• The sum of SGA and PGA memory allocations on the database server should always be
less than your system's physical memory while still accommodating memory required for
processes, PGA, and other applications running on the same database server.

• To get an accurate understanding of memory use, monitor PGA memory and host-based
memory use by querying V$PGASTAT for operating systems statistics.

• Avoid memory paging by adjusting the number of databases and applications, or reducing
the allocated memory settings.

Set PGA_AGGREGATE_LIMIT to specify a hard limit on PGA memory usage. If the
PGA_AGGREGATE_LIMIT value is exceeded, Oracle Database first terminates session calls
that are consuming the most untunable PGA memory. Then, if the total PGA memory
usage is still over the limit, the sessions that are using the most untunable memory will be
terminated.

Set the database initialization parameter USE_LARGE_PAGES=AUTO_ONLY or ONLY, and set the
ASM initialization parameter USE_LARGE_PAGES=TRUE.

• Make sure that the entire SGA of a database instance is stored in HugePages by setting
the init.ora parameter USE_LARGE_PAGES=ONLY, or set to AUTO_ONLY on Exadata systems.

Setting USE_LARGE_PAGES=ONLY is recommended for database instances, because this
parameter ensures that an instance will only start when it can get all of its memory for SGA
from HugePages.

• For ASM instances leave the parameter USE_LARGE_PAGES=ONLY (the default value). This
setting still ensures that HugePages are used when available, but also ensures that ASM
as part of Grid Infrastructure starts when HugePages are not configured, or insufficiently
configured.

• Use Automatic Shared Memory Management, because HugePages are not compatible
with Automatic Memory Management.

Use Oracle Clusterware
Oracle Clusterware lets servers communicate with each other, so that they appear to function
as a collective unit. Oracle Clusterware has high availability options for all Oracle databases
including for single instance Oracle databases. Oracle Clusterware is one of minimum
requirements in making applications highly available.

Oracle Clusterware provides the infrastructure necessary to run Oracle Real Application
Clusters (Oracle RAC), Oracle RAC One Node, and Oracle Restart. Oracle Grid Infrastructure
is the software that provides the infrastructure for an enterprise grid architecture. In a cluster,
this software includes Oracle Clusterware and Oracle ASM.

For a standalone server, the Grid Infrastructure includes Oracle Restart and Oracle ASM.
Oracle Restart provides managed startup and restart of a single-instance (non-clustered)
Oracle database, Oracle ASM instance, service, listener, and any other process running on the
server. If an interruption of a service occurs after a hardware or software failure, Oracle Restart
automatically restarts the component.

Oracle Clusterware manages resources and resource groups to increase their availability,
based on how you configure them. You can configure your resources and resource groups so
that Oracle Clusterware:

• Starts resources and resource groups during cluster or server start

• Restarts resources and resource groups when failures occur

• Relocates resources and resource groups to other servers, if the servers are available

Chapter 9
Use Oracle Clusterware

9-8

For more information, see Oracle Clusterware Administration and Deployment Guide topics,
High Availability Options for Oracle Database and Making Applications Highly Available Using
Oracle Clusterware.

Chapter 9
Use Oracle Clusterware

9-9

10
Oracle Flashback Best Practices

Oracle Database Flashback Technologies is a unique and rich set of data recovery solutions
that let the database reverse human errors by selectively and efficiently undoing the effects of
a mistake.

Before Flashback was introduced to Oracle Database, it might have taken minutes to damage
a database but hours to recover it. With Flashback, correcting an error takes about as long as
it took to make it. In addition, the time required to recover from this error is not dependent on
the database size, which is a capability unique to Oracle Database.

Flashback supports database recovery at all levels, including the row, transaction, table, and
the entire database. Flashback provides an ever-growing set of features to view and rewind
data back and forth in time, and address several critical high availability and disaster recovery
use cases. The list of features and use cases, as well as some key examples, can be found in
Oracle Flashback Technology.

The Flashback features give you the capability to query historical data, perform change
analysis, and perform the self-service repair to recover from logical corruptions while the
database is online. With Oracle Flashback Technology, you can indeed undo the past.

Oracle Flashback Performance Observations
After adopting the configuration and operational best practices and applying recommended
patches, Oracle has observed the following performance observations when Flashback
Database is enabled on the primary or standby databases.

• Flashing back a database or a PDB to the previous hour usually takes seconds and
minutes, even with a very high workload. It finishes in a fraction of the time it takes to apply
a given amount of redo. Here are some observations:

– Flashing back a large batch workload consisting of 400 GB of changes completed in
less than 5 minutes.

– Flashing back of a heavy OLTP of 8GB of changes completed in less than 2 minutes.

– Due to many variables, there is no rule-of-thumb or calculation to estimate the time to
complete a flashback. The tests which produced these observations were done on
Exadata to remove system bottlenecks such as storage I/O bandwidth.

• The impact on OLTP workload on the primary database is usually less than 5 percent.

• The impact of a large insert (batch inserts, for example) or direct load operations is usually
less than 5 percent if Flashback block new optimization is in effect; otherwise, the impact
can vary dramatically (2-40% impact), so testing is required.

Refer to the Flashback use cases that mention block new optimization descriptions and
exceptions in Oracle Flashback Performance Tuning for Specific Application Use Cases.

• Enabling Flashback database can reduce peak redo apply performance rates on a physical
standby database if the standby system cannot handle the additional I/O throughput
requirements in the Fast Recovery Area. However, even with Flashback database enabled
on the standby, the achievable redo apply rates with Flashback enabled are still very high
and can outperform application redo generation rates.

10-1

The following lists describe the critical flashback milestones and key performance
improvements across different Oracle Database software releases:

Oracle Database 12c Release 2 (12.2)

• Flashback Pluggable Database enables the flashback of individual PDBs without affecting
other PDBs.

• PDB Restore Points enable an ease of use method to set an alias to an SCN. This alias
can then be used for flashback PDB or Point-In-Time Recovery.

Oracle Database 19c

• Creating a Restore Point on a primary database automatically propagates to a standby
database, and creates a corresponding Restore Point on the standby database.

• When Flashback Database is enabled on both the primary and standby databases in an
Oracle Data Guard configuration, flashing back the primary database causes the standby
database to automatically flash back as well.

Oracle Database 21c

• Migrate Flashback Data Archive-enabled tables between different database releases

• Flashback Database support for data file resizing operations

• PDBs can be recovered to an orphan PDB incarnation within the same CDB incarnation or
an ancestor incarnation

Oracle Flashback Configuration Best Practices
The following are Oracle MAA best practices for configuring Flashback technologies in Oracle
Database.

Setting DB_FLASHBACK_RETENTION_TARGET

Set the DB_FLASHBACK_RETENTION_TARGET initialization parameter to the largest value
prescribed by any of the following conditions that apply:

• To leverage Flashback database to reinstate your failed primary database after Oracle
Data Guard failover, set DB_FLASHBACK_RETENTION_TARGET to a minimum of 60 (minutes) to
enable reinstatement of a failed primary. When enabling Flashback database, a couple of
hours are required to generate sufficient flashback data into the flashback logs before
reinstatement is possible. You can query V$FLASHBACK_DATABASE_LOG to find the oldest
flashback time.

• Consider cases where there are multiple outages (for example, a network outage, followed
later by a primary database outage) that may result in a transport lag between the primary
and standby databases at failover time. For such cases, set
DB_FLASHBACK_RETENTION_TARGET to a value equal to the sum of 60 (mins) plus the
maximum transport lag that you wish to accommodate. This ensures that the failed primary
database can be flashed back to an SCN that precedes the SCN at which the standby
became primary. This is a requirement for primary reinstatement.

• If you are using Flashback Database for fast point-in-time recovery from user error or
logical corruptions, set DB_FLASHBACK_RETENTION_TARGET to a value equal to the farthest
time in the past that you wish to be able to recover from.

• In most cases, DB_FLASHBACK_RETENTION_TARGET should be set to the same value on the
primary and standby.

Sizing the Fast Recovery Area

Chapter 10
Oracle Flashback Configuration Best Practices

10-2

Flashback Database uses its own logging mechanism, creating flashback logs and storing
them in the Fast Recovery Area (FRA). Ensure that the FRA has allocated sufficient space to
accommodate the flashback logs for the target retention size and for peak batch rates. Sizing
the FRA is described in detail in the Oracle Backup and Recovery documentation, but
generally the volume of flashback log generation is similar in magnitude to redo log generation.
Use the following conservative formula and approach:

Target FRA = Current FRA + DB_FLASHBACK_RETENTION_TARGET x 60 x Peak Redo Rate (MB/
sec)

Example:

• Current FRA or DB_RECOVERY_FILE_DEST_SIZE=1000GB

• Target DB_FLASHBACK_RETENTION_TARGET=360 (360 minutes)

• From AWR:

– The peak redo rate for OLTP workload is 3 MB/sec for the database

– The peak redo rate for the batch workload is 30 MB/sec for the database, and the
longest duration is 4 hours

– The worst-case redo generation size for a 6 hour window is (240 minutes x 30 MB/sec
x 60 secs/min) + (120 minutes x 3 MB/sec x 60 secs/min) = 453,600 MB, or
approximately 443 GB

• Proposed FRA or DB_RECOVERY_FILE_DEST_SIZE= 443 GB +1000 GB = 1443 GB

An additional method to determine FRA sizing is to enable Flashback Database and allow the
database applications to run for a short period (2-3 hours), and then query
V$FLASHBACK_DATABASE_STAT.ESTIMATED_FLASHBACK_SIZE.

Note that the DB_FLASHBACK_RETENTION_TARGET is a target, and there is no guarantee that you
can flash back the database that far. The oldest flashback logs may be deleted if there is space
pressure in the FRA where the flashback logs are stored. See Maintaining the Fast Recovery
Area in Oracle Database Backup and Recovery User’s Guide for a detailed explanation of the
FRA deletion rules. You must use guaranteed restore points (GRP) to guarantee a flashback
point-in-time. The required flashback logs will never be recycled or purged with GRP until GRP
is dropped. The database can stop responding if there is a GRP but there is insufficient space,
so you must allocate more space in the FRA depending on the intended duration of the GRP.

Configuring sufficient I/O bandwidth for Fast Recovery Area

Insufficient I/O bandwidth with Flashback Database on is usually indicated by a high
occurrence of the "FLASHBACK BUF FREE BY RVWR" wait event in an Automatic Workload
Repository (AWR) report for OLTP workloads and "FLASHBACK LOG FILE WRITE" latency >
30 ms for large insert operations.

In general, flashback I/Os are 1 MB in size. The overall write throughput would be similar to the
redo generation rate if database force logging were enabled, or identical to your load rate for
direct load operations. For simplicity, configure one large shared storage GRID and configure
DATA on the outer portion of the disks or LUNS and RECO (FRA) on the inner amount of the
disks or LUNS. This is done automatically for Exadata systems.

Setting LOG_BUFFER

To give Flashback Database more buffer space in memory, set the initialization parameter
LOG_BUFFER=256MB or higher, depending on operating system limits.

Chapter 10
Oracle Flashback Configuration Best Practices

10-3

Oracle Flashback Operational Best Practices
The following are Oracle MAA recommended operational best practices for Flashback
Database.

• Gather database statistics using Automatic Workload Repository (AWR) or Oracle
Enterprise Manager before and after enabling Flashback Database, so you can measure
the impact of enabling Flashback Database.

• Using Oracle Enterprise Manager, set the Enterprise Manager monitoring metric,"Recovery
Area Free Space (%)" for proactive alerts of space issues with the fast recovery area
(FRA).

• To monitor the progress of a Flashback Database operation, you can query the
V$SESSION_LONGOPS view. For example,

select * from v$session_longops where opname like 'Flashback%';
If more detail is required on the Flashback Database operation, generate a detailed trace
of the Flashback Database operation in the DIAGNOSTIC_DEST trace directory for the
database by setting database parameter _FLASHBACK_VERBOSE_INFO=TRUE.

• When using Flashback Database to perform repeated tests on a test database, it is
recommended that you use Guaranteed Restore Points (GRP) only, without explicitly
turning on Flashback Database. To minimize space usage and flashback performance
overhead, follow this recommended approach:

Create Guaranteed Restore Point (GRP)
Execute test
loop
 Flashback database to GRP
 Open resetlogs
 Create new GRP
 Drop old GRP
 Execute
testEnd loop

• Follow the Oracle Data Guard redo apply best practices described in Redo Apply
Troubleshooting and Tuning.

Oracle Flashback Performance Tuning for Specific Application
Use Cases

Performance Tuning for OLTP Workloads

The "flashback buf free by RVWR" wait event only occurs when Flashback Database is
enabled. A session waits for the recovery writer (RVWR) to write flashback data to the
flashback logs on disk because the buffers are full. The session may need to wait until RVWR
can free up the buffers.

Suppose this event becomes one of the top wait events for the database. In that case, it is
typically because the file system or storage system for the Fast Recovery Area (FRA) has
insufficient I/O bandwidth to accommodate additional I/O from the Flashback writes. Refer to
the Flashback Database section in the Oracle Database Backup and Recovery User’s Guide
for tuning considerations and evaluate the corresponding I/O and storage statistics.

Chapter 10
Oracle Flashback Operational Best Practices

10-4

Table 10-1 Top 5 Timed Foreground Events

Event Waits Times Average wait (ms) % database time Wait class

write complete
waits

1,842 23,938 12995 33.68 Configuration

flashback buf free
by RVWR

53,916 20,350 377 28.63 Configuration

cell single block
physical read

3,029,626 16,348 5 23.00 User I/O

buffer busy waits 6,248 5,513 882 7.76 Concurrency

DB CPU 1,757 2.47

Performance Tuning for Direct Path Operations

Look at the "flashback log write bytes" and "physical write bytes" system statistics found in
v$sysstat, in your AWR reports, or Oracle Enterprise Manager.

• "flashback log write bytes" = The total size in bytes of Flashback Database data written by
RVWR to Flashback Database logs

• "physical write bytes" = The total size in bytes of all disk writes from the database
application activity (and not other kinds of instance activity).

If (flashback log write bytes) / (physical write bytes) < 5%, then Flashback is not impacting your
performance.

Otherwise, evaluate any operational changes or bug fixes that will allow you to use the
Flashback block new optimization feature (refer to performance observation section above).
Furthermore, ignore the "flashback log file sync" wait event, even if it's one of the top wait
events.

Example of block new optimization in effect

In this example:

• flashback log write bytes = 1,223,442,432

• physical write bytes = 184,412,282,880

The result of (flashback log write bytes) / (physical write bytes) = 0.0066 < 5%, implies that
there’s only a fraction of flashback data compared to the physical writes within this interval
where there are direct load operations. Even in this case, the "flashback log file sync" wait
event was the 2nd highest wait event in the database, as shown in the following table.

Table 10-2 Top 5 Timed Foreground Events

Event Waits Times Average wait (ms) % database time Wait class

direct path write 136,553 7,875 58 39.12 User I/O

flashback log file
sync

91,566 5,887 64 29.25 User I/O

DB CPU 3,092 15.36

log buffer space 20,545 1,737 85 8.63 Configuration

gc buffer busy
release

1,277 487 382 2.42 Cluster

Example of block new optimization not in effect

Chapter 10
Oracle Flashback Performance Tuning for Specific Application Use Cases

10-5

In this example:

• flashback log write bytes= 184,438,194,176

• physical write bytes =184,405,925,888

The result of (flashback log write bytes) / (physical write bytes) = 100% > 5%, implies that in
this case all direct writes also result in flashback log writes. Listed here are the top wait events
for this case.

Table 10-3 Top 5 Timed Foreground Events

Event Waits Times Average wait (ms) % database time Wait class

flashback log file
sync

170,088 22,385 132 52.04 User I/O

direct path write 278,185 8,284 30 19.26 User I/O

flashback buf free
by RVWR

38,396 5,048 131 11.74 Configuration

direct path read 220,618 4,242 19 9.86 User I/O

DB CPU 2,788 6.48

Performance Tuning for Conventional Load Operations

The following examples illustrate two conventional loads, one that uses block new optimization
and one that does not.

Example of block new optimization not in effect

The example below does not use the block new optimization because of a truncate just before
loading the table. The wait events for a conventional load without block new optimization show
a fairly large amount of total wait time spent in "flashback log file sync". This is because of time
needed to read them before the image of the block into the buffer cache and well as writing the
block to the flashback log.

Table 10-4 Top 5 Timed Foreground Events

Event Waits Times Average wait (ms) % database time Wait class

flashback log file
sync

235,187 13,728 58 30.82 User I/O

direct path write 558,037 10,818 19 24.29 User I/O

direct path read 459,076 8,419 18 18.90 User I/O

DB CPU 6,171 13.85

flashback buf free
by RVWR

79,463 4,268 54 9.58 Configuration

Looking at the instance statistics below you can see very little increase in the statistics that
track block new optimizations.

Statistic Total Per second Per transaction

flashback cache read
optimizations for block new

62 0.06 1.13

flashback direct read
optimizations for block new

8 0.01 0.15

flashback log write bytes 177,533,280,256 177,245,433.67 3,227,877,822.84

Chapter 10
Oracle Flashback Performance Tuning for Specific Application Use Cases

10-6

Statistic Total Per second Per transaction

flashback log writes 18,917 18.89 343.95

If the "flashback cache read optimizations for block new" is much smaller than "flashback log
writes" then the block new optimization does not have an effect.

The best tuning recommendation for the above load operation would be to increase I/O
bandwidth or, perhaps better, change the manner in which the load is performed so that it can
take advantage of block new optimizations. You can also wait until you are outside the
flashback retention target, or remove the object from recycle bin if it was dropped.

Example of block new optimization not effect

The wait events for a conventional load with block new optimization show a relatively small
amount of total time spent in "flashback log file sync" compared to other database waits, as
shown here.

Table 10-5 Top 5 Timed Foreground Events

Event Waits Times Average wait (ms) % database time Wait class

direct path write 284,115 8,977 32 34.20 User I/O

DB CPU 6,284 23.94

log buffer space 128,879 5,081 39 19.36 Configuration

flashback log file
sync

139,546 3,178 23 12.11 User I/O

latch: redo
allocation

95,887 1,511 16 5.76 Other

Looking at the instance statistics you can see that the statistics that track block new operations
have significantly increased during the load.

Statistic Total Per second Per transaction

flashback cache read
optimizations for block new

329 0.53 9.68

flashback direct read
optimizations for block new

698,410 1,116.43 20,541.47

flashback log write bytes 1,197,514,752 1,914,271.66 35,221,022.12

flashback log writes 18,951 30.29 557.38

Chapter 10
Oracle Flashback Performance Tuning for Specific Application Use Cases

10-7

11
Oracle Global Data Services Best Practices

Oracle Database Global Data Services (GDS) is a holistic automated workload management
feature of Oracle Database.

GDS provides workload routing, load balancing, inter-database service failover, replication lag-
based routing, role-based global services, and centralized workload management for a set of
replicated databases that are globally distributed or located within the same data center.

You can use GDS to achieve these benefits without the need to integrate with multiple-point
solutions or homegrown products. GDS provides optimized hardware and software utilization,
better performance, scalability, and availability for application workloads running on replicated
databases.

Introduction to Global Data Services
Numerous organizations have multiple copies of their production or standby databases either
locally or in different geographical locations. This redundancy fulfills various business needs,
such as ensuring uninterrupted availability, preparing for disaster recovery, localizing content
and caching, scaling operations, optimizing performance for local users, and complying with
local regulations. Oracle Active Data Guard and Oracle GoldenGate, which synchronize these
copies, are Oracle's strategic disaster recovery and replication technologies that provide the
lowest Recovery Time Objective (RTO) and Recovery Point Objectives (RPO).

Achieving high performance and high availability by distributing workload across multiple
database replicas presents challenges that extend beyond the capabilities of the replication
technology. The workload must be load-balanced to use resources effectively and achieve the
best performance. Outages must be handled intelligently so that applications remain available
and deliver the best possible quality of service should a replica go offline. In an ideal world,
load balancing and high availability using a pool of replicated databases occurs seamlessly
and optimally using real-time information available from the Oracle Database. This ideal is
achievable using Oracle Global Data Services (GDS).

GDS extends the concept of database services, a mechanism used for workload management
in Oracle Real Application Clusters (RAC), to a globally replicated configuration that includes
any combination of Oracle RAC, single instance database, Oracle Active Data Guard, and
Oracle GoldenGate. GDS allows services to be deployed anywhere within this globally
replicated configuration, supporting load balancing, high availability, regional affinity, and so on.
GDS is built on time-tested technological building blocks such as services (Dynamic Workload
Management), Oracle Active Data Guard and GoldenGate replication, and Oracle Net Listener.

Even though the feature is called Global Data Services, the databases that constitute the GDS
configuration can be globally distributed or located within the same data center. Clients can
securely connect by specifying a service name without needing to know where the physical
data center assets providing that service are located, enabling a highly flexible deployment for
an enterprise data cloud. With GDS, replicated databases appear to the applications as a
single data source.

A GDS configuration contains multiple global service managers per region. The global service
managers are “global listeners,” which understand real-time load characteristics and the user-
defined service placement policies on the replicated databases. These global service

11-1

managers are instrumental in performing inter-database service failovers and load balancing of
GDS. GDS is a shared infrastructure that can govern multiple sets of replicated databases.
This documentation describes the configuration and operational practices for GDS. It is
intended for enterprise architects, database architects, database administrators, technology
managers, solution architects, application architects, and those who are influential in the
overall database architecture design.

Global Data Services Concepts

Database services are logical abstractions for managing workloads in an Oracle database.
Each service represents a workload with common attributes, service-level thresholds, and
priorities. The grouping can be based on work characteristics, including the application
function. For example, the Oracle E-Business Suite defines a service for each application
module, such as general ledger, accounts receivable, and order entry. Services are built into
Oracle Database, providing a single system image for workloads. Services enable
administrators to configure a workload, administer it, enable and disable it, and measure the
workload as a single entity. Clients connect using a database service name.

In Oracle RAC, a service can span one or more instances and facilitate workload balancing
based on real-time transaction performance. This provides high availability, rolling changes by
workload, and complete location transparency. For replicated environments, GDS introduces
the concept of a "global service". Global services are provided across a set of databases
containing replicated data that belongs to a particular administrative domain known as a GDS
pool. Examples of a GDS pool are a SALES pool or an HR pool. A set of databases in a GDS
configuration and the database clients are said to be in the same GDS region if they share the
network proximity. Examples of GDS regions are the Asian region, European region, and so
on.

All of the characteristics of traditional database services are supported by global services.
Global services extends traditional database services with additional attributes such as global
service placement, replication lag (Oracle Active Data Guard and Oracle GoldenGate from 19c
onwards), and region affinity.

Global service placement: When a global service is created, GDS allows the preferred and
available databases for that service to be specified. The available databases support a global
service if the preferred database fails. In addition, GDS allows you to configure a service to run
on all the replicas of a given GDS pool.

Replication lag: Clients can be routed to the Oracle Active Data Guard standbys that are not
lagging by the tolerance limit established with the lag attribute of a global service.

Region affinity: A global service allows you to set preferences to which region (for example
Asia or Europe) your given applications should connect.

Chapter 11
Introduction to Global Data Services

11-2

Figure 11-1 Workload Balancing with Global Data Services

Key Capabilities of Global Data Services

Global Data Services (GDS) technology provides the following principal capabilities:

• Region-based workload routing: With GDS, you can choose to configure client connections
to be routed among a set of replicated databases in a local region. This capability allows
you to maximize application performance (avoiding the network latency overhead of
accessing databases in remote areas).

• Connect-time load balancing: Global service managers use the load statistics from all
databases in the GDS pool, inter-region network latency, and the configured connect-time
load balancing goal to route the incoming connections to the best database in a GDS pool.

• Runtime load balancing: GDS enables runtime load balancing across replicated databases
by publishing a real-time load balancing advisory for connection pool-based clients (for
example, OCI, JDBC, ODP.NET, WebLogic, and so on.). The connection pool-based
clients subscribe to this load-balancing advisory and route database requests in real time
across already-established connections.

With GDS's runtime connection load balancing feature, application client work requests are
dynamically routed to the database that offers the best performance. In addition, GDS also
supports the ability to dynamically re-distribute connections when the database
performance changes.

• Inter-database service failover: If a database global service crash occurs, GDS,
considering the service placement attributes, automatically performs an inter-database
service failover to another available database in the pool. GDS sends Fast Application
Notification (FAN) events so that the client connection pools can reconnect to the new
database where the global service has been started.

• Replication lag-based workload routing: With Oracle Active Data Guard, standbys may lag
behind the primary database. A global service allows you to choose the acceptable lag
tolerance for a given application. GDS routes requests to a standby database whose lag is
below the limit. If the lag exceeds the lag limit, the service is relocated to another available
standby database that lags below the threshold. New requests are routed to a standby
database that satisfies the lag limit. The global service is shut down if there is no available

Chapter 11
Introduction to Global Data Services

11-3

database. When the lag is resolved or comes within the limit, GDS automatically brings up
the service.

With Oracle GoldenGate replication, when the lag exceeds the lag threshold defined for a
service (lag defined by SELECT MAX(INCOMING_LAG FROM GGADMIN.GG_LAG), that service is
stopped on that database. The service defines the effect of that; it may or may not
terminate all the sessions based on the configuration. The service is restarted if the lag
comes back within the threshold. After the service has been stopped, the global service
manager automatically performs failover processing. Any new connections to this service
are directed elsewhere than the lagged database. So, if there are two databases in the
pool, and the service is preferred_all with lag=10 initially, the service runs on both
databases, and the connections are load-balanced. If the second database goes past the
lag threshold, the service is stopped there, and any new connections are directed only to
the first database. If the lag comes back within the threshold, the service is restarted, load
balancing continues, and new connections can use the second database.

• Role-based global services: When a database role transition is performed with Oracle Data
Guard Broker, GDS can automatically relocate the global service to the new primary
database and the new standby if the role assigned to the service matches the role of the
database.

• Centralized workload management for replicas: GDS allows more straightforward
configuration and management of the replicated databases' resources located anywhere
with a single unified framework.

Benefits of Global Data Services

Global Data Services (GDS) allows fault-tolerant database services to be deployed and
centrally managed across a set of replicated databases. The GDS framework provides
workload balancing across these databases. More specifically, GDS is an Oracle-integrated
solution that renders the following benefits:

• Higher availability and global scalability support seamless inter-database service failover
among replicated databases in any data center, yielding higher application availability.

• GDS provides application scalability on demand by allowing dynamic addition of
databases. It enables replicated databases to be added to the GDS infrastructure
dynamically and transparently to obtain additional resource capability to scale application
workloads. GDS allows this with no change to the application configuration or client
connectivity.

Better Performance and Elasticity

With integrated load balancing across multiple databases, GDS addresses inter-region
resource fragmentation. Under-utilized resources in one region can be put to work on the
workload of another region's over-utilized resources, achieving optimal resource utilization.
GDS sends work requests to less powerful databases in a GDS pool containing replicated
databases running on database servers of different processor generations and various
resources (CPU, memory, I/O). When more powerful databases are overloaded, the goal
should be to equalize the response time.

Improved Manageability

The GDSCTL command-line interface or the Oracle Enterprise Manager Cloud Control
graphical user interface can administer a GDS configuration. With centralized administration of
global resources, geographically dispersed replicated databases, whether regional or global,
can be effectively utilized within the unified framework of GDS.

Chapter 11
Introduction to Global Data Services

11-4

Centralized workload management of replicated databases, inter-database service failover,
and runtime load balancing are unique features of GDS. GDS enables a truly elastic and agile
enterprise and extends the benefits of a private data cloud.

Application Workload Suitability for Global Data Services
Global Data Services (GDS) is best for replication-aware application workloads; it is designed
to work in replicated environments. Applications that are suitable for GDS adoption possess
any of the following characteristics:

• The application can separate its work into read-only, read-mostly, and read-write services
to use Oracle Active Data Guard or Oracle GoldenGate replicas. GDS does not distinguish
between read-only, read-write, and read-mostly transactions. The application connectivity
has to be updated to separate read-only or read-mostly services from read-write services,
and the GDS administrator can configure the global services on appropriate databases.
For example, a reporting application can function directly with a read-only service at an
Oracle Active Data Guard standby database.

• Administrators should be aware of and avoid or resolve multi-master update conflicts to
take advantage of Oracle GoldenGate replicas. For example, an internet directory
application with built-in conflict resolution enables the read-write workload to be distributed
across multiple databases, each open read-write and synchronized using Oracle
GoldenGate multi-master replication.

• Ideally, the application is tolerant of replication lag. For example, a web-based package
tracking application that allows customers to track the status of their shipments using a
read-only replica, where the replica does not lag the source transactional system by more
than 10 seconds.

Global Data Services in Oracle Maximum Availability Architecture
The Oracle Maximum Availability Architecture (MAA) is Oracle’s best practices blueprint for the
integrated suite of Oracle’s advanced High Availability (HA) technologies. Enterprises that
leverage MAA in their IT infrastructure find they can quickly and efficiently deploy applications
that meet their business requirements for high availability.

Without Oracle Global Data Services, administrators were required to deploy 3rd party load
balancers or have opted for custom-written connection managers. The 3rd party solutions
come with significant integration costs, and the DIY homegrown solutions require high initial
cost and time to value as well as an overhead of maintenance and support effort.

Using Global Data Services, you can unify replicated database resources within a single
framework, avoiding the need to produce homegrown or 3rd party integration for load
balancing. You can minimize the vendor integration touch points in their high availability and
disaster recovery stack.

Chapter 11
Application Workload Suitability for Global Data Services

11-5

Figure 11-2 Oracle Global Data Services in Maximum Availability Architecture

Global Data Services is a strategic MAA component available within the Oracle Database.
GDS is well integrated with the Oracle ecosystem, providing workload routing, load balancing,
and service failover across replicated databases located within and across data centers.
Simply put, GDS is a database load balancer for replicated databases and provides high
availability through the inter-database service failover capability.

Global Data Services lets administrators manage client workloads automatically and
transparently across replicated databases that offer common services. A database service is a
named representation of one or more database instances. Services let you group database
workloads and route a particular work request to an appropriate instance. A global service is
provided by multiple databases synchronized through data replication.

Global Data Services provides dynamic load balancing, failover, and centralized service
management for replicated databases that offer common services. The set of databases can
include Oracle RAC and non-cluster Oracle databases interrelated through Oracle Data Guard,
databases consolidated under Oracle Multitenant, Oracle GoldenGate, or any other replication
technology.

For detailed information about GDS, see the Global Data Services technical brief at http://
oracle.com/goto/gds.

Partial or Full Site Outage with Global Data Services
Complete-site failure results in both the application and database tiers being unavailable. To
maintain availability, users must be redirected to a secondary site that hosts a redundant
application tier and a synchronized copy of the production database. MAA's best practice is to
maintain a running application tier at the standby site to avoid startup time and use Oracle
Data Guard to manage the synchronized copy of the production database. Upon site failure, a
WAN traffic manager performs a DNS failover (manually or automatically) to redirect all users
to the application tier at the standby site. In contrast, a failover transitions the standby
database to the primary production role.

A partial-site failure is when the application or database stack encounters an outage.
Connecting clients to the disaster recovery site application stack can mitigate application stack
failure. However, when the primary database becomes unavailable, the application tier
connected to the primary database remains intact. All that is required to maintain availability is
to redirect the application tier to the new primary database after a Data Guard failover has
been completed. In this use case, the standby database is located within a distance from the
surviving application tier such that it can deliver acceptable performance using a remote
connection after a database failover has occurred.

Chapter 11
Partial or Full Site Outage with Global Data Services

11-6

http://oracle.com/goto/gds
http://oracle.com/goto/gds

Global Data Services (GDS) enables service management and load balancing between
replicated databases withina region. However, the application tier still functions when GDS
global service managers can route connections to the best available replica based on load
balancing policies and service availability. By contrast, an out-of-region failover requires users
to be directed to a remote application tier local to the new production database (serviced by a
different set of in-region global service managers. This document focuses on GDS
configuration for failover within a region.

Global Data Services Configuration

High-Level Deployment Steps
The following are the basic steps you would take to implement Global Data Services.

1. Install Global Data Services (GDS) global service manager software on global service
manager servers.

• Minimum of 1 global service manager for each region

• Recommended 3 global service managers for each region

2. Pre-create the GDS catalog database.

3. Set up GDS Administrator accounts and privileges.

4. Configure GDS.

• Create the GDS catalog and standby databases.

• Add global service managers, regions, pools, databases, and global services.

5. Set up client connectivity.

Configuration Example
The following steps describe how to implement Global Data Services.

This example configuration of Global Data Services (GDS) uses an Administrator-managed
Oracle RAC database. Administrator-managed deployment means that you configure database
services to run on specific instances belonging to a particular database using a preferred and
available designation.

Policy-managed deployment is based on server pools, where database services run within a
server pool as singletons or uniformly across all of the servers in the server pool. Databases
are deployed in one or more server pools, and the size of the server pools determines the
number of database instances in the deployment. For detailed information about GDS, see
Global Data Services Concepts and Administration Guide

1. Create and prepare a GDS catalog database.

GDS uses a catalog database to store meta-data relating to the layout and status of the
GDS configuration. For maximum availability, Oracle recommends that the GDS catalog
database be deployed independently and that Oracle's high-availability features, such as
Oracle Real Application Clusters (Oracle RAC) and Oracle Data Guard, be used to protect
the catalog database against outages.

2. Create the GSM_ADMIN user and assign that user the GSMADMIN_ROLE.

Chapter 11
Global Data Services Configuration

11-7

Note that by default, the password for both GSM_ADMIN, GSMUSER, and GSMCATUSER expires
after 180 days.

SQL> create user gsm_admin identified by password;

User created.

SQL> grant gsmadmin_role to gsm_admin;

Grant succeeded.

SQL> exit

3. Copy the Oracle Net alias that can be used to access the catalog database and place it in
the tnsnames.ora file in the global service manager home.

GDSCAT =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = <hostmane>)(PORT = 1521))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = gdscat)
))

4. With the environment configured for the global service manager home, use GDSCTL to
connect to and create the GDS catalog with Auto VNCR disabled (Auto VNCR can cause
problems with Oracle RAC deployments).

GDSCTL>create catalog -database gdscat -user gsm_admin -autovncr OFF

"gsm_admin" password:

Catalog is created

5. Connect to the catalog database, unlock the GSMCATUSER user, and set the password.

SQL> alter user gsmcatuser account unlock;

User altered.

SQL> alter user gsmcatuser identified by password;

User altered.

6. With the environment configured for the global service manager home, use GDSCTL to
connect to, create, and start the global service manager listeners.

As a best practice, global service manager listeners should reside on hardware separate
from that hosting the Oracle Databases in the GDS configuration. The resource
requirements for hardware needed to run global service manager listeners are lightweight
and can easily be accommodated using virtual machines.

GDSCTL>add gsm -gsm gsm1 -listener 1522 -catalog gdscat

"gsmcatuser" password:

Chapter 11
Global Data Services Configuration

11-8

Create credential oracle.security.client.connect_string1

GSM successfully added

GDSCTL>start gsm -gsm gsm1

GSM is started successfully

GDSCTL>status

Alias GSM1
Version 19.17.0.3.0
Start Date 13-APR-2023 09:40:59
Trace Level off
Listener Log File
 /u01/app/oracle/diag/gsm/hostname/gsm1/alert/log.xml
Listener Trace File
 /u01/app/oracle/diag/gsm/hostname/gsm1/trace/ora_64863_139739749930432.trc
Endpoint summary
(ADDRESS=(HOST=hostname.example.com)(PORT=1522)(PROTOCOL=tcp))
GSMOCI Version 0.6.11
Mastership Y
Connected to GDS catalog Y
Process Id 64883
Number of reconnections 0
Pending tasks. Total 0
Tasks in process. Total 0
Regional Mastership TRUE
Total messages published 0
Time Zone -04:00
Orphaned Buddy Regions: None
GDS region regionora

7. With the environment configured for the global service manager home, use GDSCTL to
create a default GDS pool and default region.

GDSCTL>add gdspool -gdspool sales

GDSCTL>add region -region slc

GDSCTL>add region -region sca

8. With Auto VNCR disabled during GDS catalog creation to avoid issues, use GDSCTL to
add hosts using the add invitednode command, using the host name or IP address
appropriately.

GDSCTL>add invitednode 192.0.2.1

GDSCTL>add invitednode host1.example.com

9. Unlock the GSMUSER account.

Chapter 11
Global Data Services Configuration

11-9

Before adding a database to a pool, the database administrator should unlock the GSMUSER
account and give the password to the GDS pool administrator, as shown in the following
example.

SQL> alter user gsmuser account unlock;

User altered.

SQL> alter user gsmuser identified by password;

User altered.

10. Add databases to the GDS pool.

To be part of a GDS pool, a database must use a server parameter file (SPFILE). An
Oracle RAC database should also have SCAN set up.

To add a database, connect to the GDS catalog using the GDS pool or GDS administrator
credentials. For example, without Data Guard, the following add database command can
be used.

GDSCTL>add database -connect mts -region sca -gdspool sales

Catalog connection is established

"gsmuser" password:

DB Unique Name: mts

Note:

When using Oracle Active Data Guard with GDS, use add brokerconfig instead
of add database, and then use modify database to configure the standby
database (see add brokerconfig). The syntax for these commands would be like
the following.

GDSCTL>add brokerconfig -connect <primary_db> -gdspool <dbpool> -
region <dc> -pwd <gsmuser_pwd>

GDSCTL>modify database -database <standby_db> -connect <dc> -
gdspool <dbpool> -region <dc> -pwd <gsmuser_pwd>

Database instance registration with a global service manager succeeds only when the
request originates from a valid node. If a host on which a database resides contains
multiple network interfaces, the auto-configuration could register the wrong set of IP
addresses, leading to the database registration being rejected.

11. Correct any rejected registration and properly discover all database instances.

Chapter 11
Global Data Services Configuration

11-10

If a firewall exists between the global service managers, and the databases and the ports
are not opened, the registration fails. From the global service manageralert log, you will
see entries similar to the following.

Listener(VNCR option 1) rejected Registration request from destination

192.0.2.2

Listener(VNCR option 1) rejected Registration request from destination

192.0.2.3

You will find that the database object exists in the GDS catalog, but some or all instances
associated with specific hosts are missing.

GDSCTL>databases

Database: "mts" Registered: Y State: Ok ONS: Y. Role: PRIMARY

Instances: 1 Region: slc

Registered instances:

sales%1

To correct the rejected registration and properly discover all database instances, run add
invitednode using the rejected IP address listed in the global service manager alert log.

12. If there is a firewall between the global service managers and the database, then once the
ports have been opened and verified using tnsping, issue the add invitenode command
as shown here.

GDSCTL>add invitednode 192.0.2.3

GDSCTL>databases

Database: "mts" Registered: Y State: Ok ONS: Y. Role: PRIMARY

Instances: 2 Region: slc

Registered instances:

sales%1

sales%2

13. Create a service on the GDS pool databases.

The GDSCTL add service command creates a service on the GDS pool databases.

GDSCTL>add service -service sales_sb -preferred_all -gdspool sales -
notification TRUE

Chapter 11
Global Data Services Configuration

11-11

If this is an Oracle RAC database being added with multiple instances, then you must
modify the service to add the database instances.

GDSCTL>modify service -gdspool sales -service sales_sb -database mts -
add_instances -preferred mts1,mts2

GDSCTL>modify service -gdspool sales -service sales_sb -database stm -
add_instances -preferred stm1,stm2

GDSCTL>start service -service sales_sb -gdspool sales

14. Verify that the global service is running.

GDSCTL>services

Service "sales_sb.sales.oradbcloud" has 2 instance(s). Affinity: ANYWHERE

Instance "sales%1", name: "mts1", db: "mts", region: "slc", status: ready.

Instance "sales%2", name: "mts2", db: "mts", region: "slc", status: ready.

Configuration Best Practices
Oracle MAA recommends the following best practices for implementing Global Data Services:

• Each client communicates using an Oracle-integrated connection pool such as UCP, OCI,
or ODP.NET. The connection pools will be notified about any service failovers and load
balancing advisory notifications using Fast Application Notification Events.

• Run three global service managers in each region. Create three global service
managers in each region so that if one global service manager goes down, you have two
remaining global service managers to provide redundancy. Each global service manager
should reside on separate hardware. Global service managers enable connection routing
among replicated databases. A global service manager is a stateless, lightweight, and
intelligent listener that can repopulate its metadata from the GDS catalog.

• Protect the GDS catalog database with Oracle Data Guard.The GDS catalog is a small
(< 100 GBs) repository that hosts the metadata of the GDS configuration, regions, global
service managers, global services, databases, and so on. MAA recommends that you set
up a local Data Guard standby database configured with Maximum Availability database
protection mode, Data Guard Fast-Start failover, and a remote physical standby database.
All GDS catalog standby databases should use Oracle Active Data Guard for the best data
protection and reside on separate hardware and storage.

Using FAN ONS with Global Data Services
Fast Application Notification (FAN) uses the Oracle Notification Service (ONS) for event
propagation to all Oracle Database clients, including JDBC, Tuxedo, and listener clients.

ONS is installed as part of Oracle Global Data Services, Oracle Grid Infrastructure on a cluster,
in an Oracle Data Guard installation, and when Oracle WebLogic is installed.

ONS propagates FAN events to all other ONS daemons it is registered with. No steps are
needed to configure or enable FAN on the database server side, with one exception: OCI FAN
and ODP FAN require that notification be set to TRUE for the service by GDSCTL. With FAN

Chapter 11
Global Data Services Configuration

11-12

auto-configuration at the client, ONS jar files must be on the CLASSPATH or in the
ORACLE_HOME, depending on your client.

General Best Practices for Configuring FCF Clients

Follow these best practices before progressing to driver-specific instructions.

• Use a dynamic database service. Using FAN requires that the application connects to the
database using a dynamic global database service. This is a service created using
GDSCTL.

• Do not connect using the database service or PDB service. These services are for
administration only and are not supported for FAN. The TNSnames entry or URL must use
the service name syntax and follow best practices by specifying a dynamic database
service name. Refer to the examples later in this document.

• Use the Oracle Notification Service when you use FAN with JDBC thin, Oracle Database
OCI, or ODP.Net clients. FAN is received over ONS. Accordingly, in the Oracle Database,
ONS FAN auto-configuration is introduced so that FCF clients can discover the server-side
ONS networks and self-configure. FAN is automatically enabled when ONS libraries or jars
are present.

• Enabling FAN on most FCF clients is still necessary in the Oracle Database. FAN auto-
configuration removes the need to list the global service managers an FCF client needs.

• Listing server hosts is incompatible with location transparency and causes issues with
updating clients when the server configuration changes. Clients already use a TNS
address string or URL to locate the global service manager listeners.

• FAN auto-configuration uses the TNS addresses to locate the global service manager
listeners and then asks each server database for the ONS server-side addresses. When
there is more than one global service manager FAN auto-configuration contacts each and
obtains an ONS configuration for each one.

• The ONS network is discovered from the URL when using the Oracle Database. An ONS
node group is automatically obtained for each address list when LOAD_BALANCE is off across
the address lists.

• By default, the FCF client maintains three hosts for redundancy in each node group in the
ONS configuration.

• Each node group corresponds to each GDS data center. For example, if there is a primary
database and several Oracle Data Guard standbys, there are by default three ONS
connections maintained at each node group. The node groups are discovered when using
FAN auto-configuration.

With node_groups defined by FAN auto-configuration, and load_balance=false (the
default), more ONS endpoints are not required. If you want to increase the number of
endpoints, you can do this by increasing max connections. This applies to each node
group. Increasing to 4 in this example maintains four ONS connections at each node.
Increasing this value consumes more sockets.

oracle.ons.maxconnections=4 ONS
• If the client is to connect to multiple clusters and receive FAN events from them, for

example in Oracle RAC with a Data Guard event, then multiple ONS node groups are
needed. FAN auto-configuration creates these node groups using the URL or TNS name. If
automatic configuration of ONS (Auto-ONS) is not used, specify the node groups in the
Oracle Grid Infrastructure or oraaccess.xml configuration files.

Client Side Configuration

Chapter 11
Global Data Services Configuration

11-13

As a best practice, multiple global service managers should be highly available. Clients should
be configured for multiple connection endpoints where these endpoints are global service
managers rather than local, remote, or single client access name (SCAN) listeners. For OCI /
ODP .Net clients use the following TNS name structure.

(DESCRIPTION=(CONNECT_TIMEOUT=90)(RETRY_COUNT=30)(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=3)
 (ADDRESS_LIST =
 (LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=GSM1)(PORT=1522))
 (ADDRESS=(PROTOCOL=TCP)(HOST=GSM2)(PORT=1522))
 (ADDRESS=(PROTOCOL=TCP)(HOST=GSM3)(PORT=1522)))
 (ADDRESS_LIST=
 (LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=GSM2)(PORT=1522)))
 (CONNECT_DATA=(SERVICE_NAME=sales)))

Always use dynamic global database services created by GDSCTL to connect to the database.
Do not use the database service or PDB service, which are for administration only not for
application usage and they do not provide FAN and many other features because they are only
available at mount.

Use the latest client driver aligned with the latest or older RDBMS for JDBC. Use one
DESCRIPTION in the TNS names entry or URL Using more causes long delays connecting when
RETRY_COUNT and RETRY_DELAY are used. Set CONNECT_TIMEOUT=90 or higher to prevent logon
storms for OCI and ODP clients.

Application-Level Configuration

Configuring FAN for Java Clients Using Universal Connection Pool

The best way to take advantage of FCF with the Oracle Database JDBC thin driver is to use
the Universal Connection Pool (UCP) or WebLogic Server Active GridLink.

Setting the pool property FastConnectionFailoverEnabled on the Universal Connection Pool
enables Fast Connection Failover (FCF). Active GridLink always has FCF enabled by default.
Third-party application servers, including IBM WebSphere and Apache Tomcat, support UCP
as a connection pool replacement.

For more information about embedding UCP with other web servers, see the following
technical briefs.

• Design and deploy WebSphere applications for planned or unplanned database downtimes
and runtime load balancing with UCP (https://www.oracle.com/docs/tech/database/
planned-unplanned-rlb-ucp-websphere.pdf)

• Design and deploy Tomcat applications for planned or unplanned database downtimes and
Runtime Load Balancing with UCP (https://www.oracle.com/docs/tech/database/planned-
unplanned-rlb-ucp-tomcat.pdf)

Follow these configuration steps to enable Fast Connection Failover.

1. The connection URL must use the service name syntax and follow best practices by
specifying a dynamic database service name and the JDBC URL structure (above and
below).

All other URL formats are not highly available. The URL may use JDBC thin or JDBC OCI.

Chapter 11
Global Data Services Configuration

11-14

https://www.oracle.com/docs/tech/database/planned-unplanned-rlb-ucp-websphere.pdf
https://www.oracle.com/docs/tech/database/planned-unplanned-rlb-ucp-websphere.pdf
https://www.oracle.com/docs/tech/database/planned-unplanned-rlb-ucp-tomcat.pdf
https://www.oracle.com/docs/tech/database/planned-unplanned-rlb-ucp-tomcat.pdf

2. If wallet authentication has not been established, remote ONS configuration is needed.

Set the pool property setONSConfiguration in a property file as shown in the following
example. The property file specified must contain an ons.nodes property and, optionally,
properties for oracle.ons.walletfile and oracle.ons.walletpassword. An example of
an ons.properties file is shown here.

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
pds.setConnectionPoolName("FCFSamplePool");
pds.setFastConnectionFailoverEnabled(true);
 pds.setONSConfiguration("propertiesfile=/usr/ons/ons.properties");
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin@((CONNECT_TIMEOUT=4)(RETRY_COUNT=30)
(RETRY_DELAY=3) "+ "
 (ADDRESS_LIST = "+ " (LOAD_BALANCE=on) "+ " (ADDRESS =
 (PROTOCOL = TCP)(HOST=GSM1)(PORT=1522))) "+ " (ADDRESS_LIST = "+
" (LOAD_BALANCE=on)
 "+ "(ADDRESS = (PROTOCOL = TCP)(HOST=GSM2)(PORT=1522)))"+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

3. Ensure the pool property setFastConnectionFailoverEnabled=true is set.

4. The CLASSPATH must contain ons.jar, ucp.jar, and the JDBC driver jar file.

For example, ojdbc8.jar.

5. If you are using JDBC thin with Oracle Database, Application Continuity can be configured
to failover the connections after FAN is received.

6. If the database needs different ONS endpoints than those autoconfigured, the ONS
endpoints can be enabled.

In a situation where multiple clusters exist with auto-ons enabled, auto-ons would generate
node lists with the following guidelines:

For EVERY active nodelist oracle.ons.maxconnections is set to 3 by default, so there is
no need to set this explicitly. This example will result in the ONS client trying to maintain six
total connections.

Configuring FAN for OCI Clients
OCI clients use ONS for FAN transport.

OCI clients embed FAN at the driver level so that all clients can use it regardless of the pooling
solution. Ideally, both the server and the client would use release 19c or later.

Configuration for SQL*Plus and PHP

1. Set notification for the service.

2. For PHP clients only, add oci8.events=On to php.ini.

Important: If xml is present with events=-false or events are not specified, this disables
the usage of FAN. To maintain FAN with SQL*Plus and PHP when oraccess.xml is in use,
set events=-true.

3. On the client side, using a client and Oracle Database, enable FAN in xml.

Configuration for OCI Clients

1. Tell OCI where to find ONS Listeners Starting.

Chapter 11
Global Data Services Configuration

11-15

The client installation comes with ONS linked into the client library. Using auto-config, the
ONS endpoints are discovered from the TNS address. This automatic method is the
recommended approach. Like ODP.Net, manual ONS configuration is also supported using
oraaccess.xml.

2. Enable FAN high availability events for the OCI connections.

To enable FAN you edit the OCI file xml to specify the global parameter events. This file is
located in $ORACLE_HOME/network/admin. See Step 3: Ensure That FAN Is Used and
ONS port 6200 is Open for more information.

3. Tell OCI where to find ONS Listeners.

The client installation comes with ONS linked into the client library. Using auto-config, the
ONS endpoints are discovered from the TNS address. This automatic method is the
recommended approach. Like ODP.Net, manual ONS configuration is also supported using
oraaccess.xml.

4. Enable FAN on the server for all OCI clients.

It is still necessary to enable FAN on the database server for all OCI clients (including
SQL*Plus).

Controlling Logon Storms
Small connection pools are strongly recommended, but controlling logon storms can be done
with tuning when you have many connections.

Oracle MAA recommends the following tuning on servers that host Global Service Managers.

1. Increase the Listen backlog at the OS level.

To have the new value take effect without rebooting the server, perform the following as
root.

echo 8000 > /proc/sys/net/core/somaxconn

2. To persist the value across reboots, add this setting to /etc/sysctl.conf.

net.core.somaxconn=6000

3. Increase queuesize for the global service manager listener.

Update ora in Oracle home that the listeners are running from to increase the queuesize
parameter:

TCP.QUEUESIZE=6000

Graceful Application Switchover
Database services are used to manage workloads during the planned outage properly.
Services must be properly created, and the application must obtain connections from a service.

These recommendations assume using a FAN-aware connection pool, such as Oracle
Universal Connection Pool (UCP) to gracefully drain connections without application
interruption from a service that is stopped. Your applications can use other connection types
that don't support FAN-aware connection pools or have long-running transactions. Ideally,
these applications will be disconnected before the maintenance window.

Chapter 11
Global Data Services Configuration

11-16

The recommendations below describe how to disconnect some sessions when their
transaction ends in a timely manner or, ultimately, when the instance is shut down for
maintenance.

The recommended and validated approach to understanding and optimizing your application's
connection configuration is provided in the following sections; certain applications may have
specific guidelines to follow.

Understanding Your Application's Use of Connections

Understanding how your application obtains and releases its connections is critical to
determining whether it can gracefully switch to other instances in the cluster.

Find the following information about your application:

• What was the workload during the planned outage (OLTP/short or batch/long
transactions)?

– Short transactions using a connection pool such as UCP or ODP.NET can be quiesced
rapidly.

– Long transactions need additional time to quiesce or must have batch jobs stopped or
queued at an appropriate time in advance.

• What type of connection was obtained: Java, OCI, ODP with C#, or ODP with OCI)?

– UCP, ICC, ODP.NET, and OCI session pools use Fast Application Notification (FAN) to
drain the pool quickly; other connections require waiting until the connection is closed
(or termination if the application allows)

• What is the amount of time to wait for the connection pool to quiesce before stopping the
service?

– Useful to know the proper amount of time is given before disconnection is performed

• Can the application handle disconnection after the transaction completes (applies to batch
workloads)?

– If the application can't handle being disconnected gracefully, it must be stopped before
the planned maintenance, or Application Continuity might be an option to avoid
interruption.

Services and Application Configuration Best Practices

You must have properly configured services and application attributes to perform a graceful
switchover successfully. See My Oracle Support Doc ID 1617163.1 for a matrix of validated
drivers and applications clients.

Note:

You must test your configuration to ensure that it is set up and performs switchover
properly before relying on it for a production system.

Using Oracle Active Data Guard with Global Data Services
Configure sessions to move in a rolling manner for Oracle Active Data Guard reader farm.

Prerequisites

You must have the following in place for this procedure to work correctly.

Chapter 11
Global Data Services Configuration

11-17

https://support.oracle.com/rs?type=doc&id=1617163.1

• Oracle Active Data Guard configuration using Oracle Database (release 19c or later
recommended).

• Global Data Services (GDS) configuration using global service manager (release 19c or
later recommended).

• A GDS service has been created to run on all Active Data Guard databases in the
configuration.

For example:

GDSCTL>add service -service sales_sb -preferred_all -gdspool sales
 –role physical_standby -notification TRUE
GDSCTL>modify service -gdspool sales -service sales_sb -database mts -
add_instances
 -preferred mts1,mts2
GDSCTL>modify service -gdspool sales -service sales_sb -database stm -
add_instances
 -preferred stm1,stm2
GDSCTL>start service -service sales_sb -gdspool sales

1. Check the current status of the services and related instances to ensure that services can
be moved successfully.

Note that the service should only be available on the source standby database at this
point.

GDSCTL>services
Service "sales_sb.sales.oradbcloud" has 2 instance(s). Affinity: ANYWHERE
 Instance "sales%1", name: "mts1", db: "mts", region: "slc", status:
ready.
 Instance "sales%2", name: "mts2", db: "mts", region: "slc", status:
ready.

2. Stop services typically (not using the FORCE option) on the source database where
connections are to be removed.

• This step will quiesce the FAN-aware connection pools using FAN.

• New connections are directed to other instances offering that service, and idle
sessions are disconnected from the pool using the services.

• Existing connections can continue until their work is complete and they are returned to
the connection pool.

GDSCTL>stop service -service sales_sb -database mts -gdspool sales

Allow an agreed upon time for the sessions to disconnect and relocate, then continue with
the next steps.

Note:

If you are performing a rolling upgrade of an Active Data Guard reader farm and
the services are not running on other Active Data Guard reader nodes, you can
complete the service stop on this database before performing the GDSCTL stop
service described in this step.

Chapter 11
Global Data Services Configuration

11-18

3. Disconnect long-running sessions after the current query is completed.

Preferably, long-running queries have been scheduled to stop or are queued before the
window when connections are to be moved. This step handles long-running sessions that
are still running and now need to be stopped (killed) abruptly.

4. Log on to the instance that you intend to shut down.

5. Check V$SESSION to see if any sessions are still connected to the service.

SQL> SELECT service_name, count(1) FROM v$session
 GROUP BY service_name ORDER BY 2;

6. Run the DBMS_SERVICE.DISCONNECT_SESSION package for the service you stopped earlier.

For example:

SQL> exec

dbms_service.disconnect_session('oltp_work',DBMS_SERVICE.POST_TRANSACTION);

7. Check V$SESSION again to ensure that sessions have logged off from the service.

SQL> SELECT service_name, count(1) FROM v$session
 GROUP BY service_name ORDER BY 2;

8. Start the GDS service on the target database and allow sessions to connect.

GDSCTL>start service -service sales_sb -database stm -gdspool sales

9. Log on to the target database and check V$SESSION to see sessions connected to the
service.

SQL> SELECT service_name, count(1) FROM v$session
 GROUP BY service_name ORDER BY 2;

Using Oracle GoldenGate with Global Data Services

The following Oracle GoldenGate role transition example topology consists of two databases:
GG replica1 and GG replica2. Oracle GoldenGate is set up with uni-directional replication, with
Extract running initially on GG replica1 and Replicat running initially on GG replica2. The
generic steps still apply for bi-directional GoldenGate replicas or downstream mining
GoldenGate replicas.

Prerequisites

You must have the following in place for this procedure to work correctly.

• Oracle GoldenGate configuration that uses Oracle Database (19c or higher recommended)

• GoldenGate processes should not connect to the source or target database using the GDS
service name, but a dedicated TNS alias. Using the GDS service will cause the database
connections to terminate prematurely, causing possible data loss.

• A heartbeat table has been implemented in the GoldenGate source and target databases
to track replication latency and ensure the Replicat applied SCN synchronization. The
GoldenGate automatic heartbeat table feature should be enabled. Refer to the Oracle

Chapter 11
Global Data Services Configuration

11-19

GoldenGate Administration Guide for details on the automatic heartbeat table: https://
docs.oracle.com/en/middleware/goldengate/core/19.1/gclir/add-heartbeattable.html.

• Global Data Services (GDS) configuration using global service manager (19c or higher
recommended)

• GDS service has been created so that it can be run on all databases in the GoldenGate
configuration.

For example:

GDSCTL>add service -service sales_sb -preferred_all -gdspool sales
GDSCTL>modify service -gdspool sales -service sales_sb -database mts
 -add_instances -preferred mts1,mts2
GDSCTL>modify service -gdspool sales -service sales_sb -database stm
 -add_instances -preferred stm1,stm2
GDSCTL>start service -service sales_sb -gdspool sales

Note:

If you are using the lag tolerance option, specify the lag limit for the global service in
seconds. Options for add service or modify service are -lag {lag_value | ANY}.

1. Check the current status of the services and related instances to ensure that they can be
moved successfully.

At this point, the service should only be available on the source database.

GDSCTL>services
Service "sales_sb.sales.oradbcloud" has 2 instance(s). Affinity: ANYWHERE
 Instance "sales%1", name: "mts1", db: "mts", region: "slc", status:
ready.
 Instance "sales%2", name: "mts2", db: "mts", region: "slc", status:
ready.

2. Stop services (not using the FORCE option) on the source database where connections
are to be removed.

• This step will quiesce the FAN-aware connection pools using FAN.

• New connections are directed to other instances offering that service, and idle
sessions are disconnected from the pool using the services.

• Existing connections can continue until their work is complete and they are returned to
the connection pool.

GDSCTL>stop service -service sales_sb -database mts -gdspool sales -force

Allow an agreed upon time for the sessions to disconnect and relocate, then continue with
the next steps. The time to allow for sessions to drain depends on the workload and user
transactions for your application.

3. Disconnect long-running sessions after the current transaction is completed.

Preferably, long-running batch jobs are scheduled to be stopped or queued before the
maintenance window. This step handles long-running sessions that are still running and
must be stopped abruptly (e.g., killed). Check with the application developers if these long-

Chapter 11
Global Data Services Configuration

11-20

https://docs.oracle.com/en/middleware/goldengate/core/19.1/gclir/add-heartbeattable.html
https://docs.oracle.com/en/middleware/goldengate/core/19.1/gclir/add-heartbeattable.html

running batch jobs are idempotent and recoverable before disconnecting long-running
sessions.

4. Log on to the instance that you intend to shut down, and check V$SESSION to see if any
sessions are still connected to the service.

SQL> SELECT service_name, count(1) FROM v$session
 GROUP BY service_name ORDER BY 2;

5. Run the DBMS_SERVICE.DISCONNECT_SESSION package for the service you stopped earlier.

For example:

SQL> exec

dbms_service.disconnect_session('oltp_work',DBMS_SERVICE.POST_TRANSACTION);

6. Check V$SESSION again to ensure sessions have logged off from the service.

SQL> SELECT service_name, count(1) FROM v$session
 GROUP BY service_name ORDER BY 2;

7. When all sessions associated with the GDS service have been disconnected, verify that all
data from the GoldenGate source databases have been replicated to the target database.

• Record the current database SCN from the GoldenGate SOURCE database.

SQL> SELECT current_scn FROM v$database;

• On the GoldenGate TARGET database, continue to monitor the Replicat applied SCN
using the following query.

SQL> SELECT lwm_position FROM v$gg_apply_coordinator;

• When the target LWM_POSITION SCN is greater than the CURRENT_SCN recorded in the
first step, it is safe to assume that all transactions have been replicated from the
source to the target database. The users can now be switched over to the GoldenGate
target database.

The above steps allow for a graceful switchover. However, if this is a failover event where the
source database is unavailable, you can estimate the data loss using the steps below.

1. When using the automatic heartbeat table, use the following query to determine the
replication latency.

SQL> col Lag(secs) format 999.9
SQL> col "Seconds since heartbeat" format 999.9
SQL> col "GG Path" format a32
SQL> col TARGET format a12
SQL> col SOURCE format a12
SQL> set lines 140
SQL> select remote_database "SOURCE", local_database "TARGET",
incoming_path "GG Path",
 incoming_lag "Lag(secs)", incoming_heartbeat_age "Seconds since
heartbeat" from gg_lag;

SOURCE TARGET GG Path

Chapter 11
Global Data Services Configuration

11-21

Lag(secs) Seconds since heartbeat
------------ ------------ --------------------------------
--------- -----------------------
 MTS GDST EXT_1A ==> DPUMP_1A ==> REP_1A
 7.3 9.0

The above example shows a possible 7.3 seconds of data loss between the source and
target databases.

2. Start the GDS service on the target database and allow sessions to connect.

Note that if the application workload can accept a certain level of data lag, it is possible to
perform this step much earlier than step two listed above.

GDSCTL>start service -service sales_sb -database stm -gdspool sales

3. Log on to the target database and check V$SESSION to see sessions connected to the
service.

SQL> SELECT service_name, count(1) FROM v$session
 GROUP BY service_name ORDER BY 2;

Global Data Services Failover Across Regions Flow
1. The administrator has failed over or switched the production database to the secondary

site. This is automatic if you are using Data Guard fast-start failover.

2. The administrator starts the middle-tier application servers on the secondary site if they are
not already running.

3. The wide-area traffic manager selection of the secondary site can be automatic in the case
of an entire site failure. The wide-area traffic manager at the secondary site returns the
virtual IP address of a load balancer at the secondary site, and clients are directed
automatically on the subsequent reconnect. In this scenario, the site failover is
accomplished by an automatic domain name system (DNS) failover.

4. Alternatively, a DNS administrator can manually change the wide-area traffic manager
selection to the secondary site for the entire site or specific applications.
The following is an example of a manual DNS failover:

• Change the DNS to point to the secondary site load balancer: The primary (primary)
DNS server is updated with the new zone information, and the change is announced
with DNS NOTIFY.

• The secondary DNS servers are notified of the zone update with a DNS NOTIFY
announcement, and the secondary DNS servers pull the new zone information.

• Clear affected records from caching DNS servers.
A caching DNS server is used primarily for performance and fast response. The
caching server obtains information from an authoritative DNS server in response to a
host query and then saves (caches) the data locally. On a second or subsequent
request for the same data, the caching DNS server responds with its locally stored
data (the cache) until the response's time-to-live (TTL) value expires. At this time, the
server refreshes the data from the zone master. If the DNS record is changed on the
primary DNS server, then the caching DNS server does not pick up the change for
cached records until TTL expires. Flushing the cache forces the caching DNS server to
go to an authoritative DNS server again for the updated DNS information.

Chapter 11
Global Data Services Failover Across Regions Flow

11-22

• Flush the cache if the DNS server being used supports such a capability. The following
is the flush capability of standard DNS BIND versions:

– BIND 9.3.0: The command rndc flushname name flushes individual entries from
the cache.

– BIND 9.2.0 and 9.2.1: The cache can be flushed with the command rndc flush.

– BIND 8 and BIND 9 up to 9.1.3: Restarting the named server clears the cache.

5. Refresh local DNS service caching.
Some operating systems might cache DNS information locally in the local name service
cache. If so, this cache must also be cleared to recognize DNS updates quickly.

6. The secondary site load balancer directs traffic to the secondary site middle-tier application
server.

Global Data Services Limitations and Requirements

A Single GDS Manages GDS Databases

• 5,000 GDS Pools

• 10 GDS Regions

• 5 global service managers per Region

• 10,000 Database instances

• 10,000 Global Services

• 1,000 Mid-tier connection pools

• Can be a Single Instance or RAC

• Can be CDB or Non-CDB

• Can run on commodity or Engineered
systems (Oracle Exadata, ODA)

• Are managed with GDSCTL CLI or
Enterprise Manager DB Plug-in

• Must be licensed for Oracle Active Data
Guard or Oracle GoldenGate

Requirement Network Load Balancer Oracle GDS

Locality-based routing Yes Yes

Connect-time database load
balancing

Yes Yes

Publish routing and failover
intelligence to clients

No Yes

Replication lag-based database
workload routing

No Yes

Inter-database global service
failover

No Yes

Automatic role-based global
services

No Yes

Centralized management of
database services across
replicas

No Yes

Native integration for Oracle
Active Data Guard

No Yes

Cost effectiveness Additional expenditure required Included with Oracle Active Data
Guard or Oracle GoldenGate
license

Chapter 11
Global Data Services Limitations and Requirements

11-23

Part III
Oracle RAC and Clusterware Best Practices

• Overview of Oracle RAC and Clusterware Best Practices

12
Overview of Oracle RAC and Clusterware Best
Practices

Oracle Clusterware and Oracle Real Application Clusters (RAC) are Oracle's strategic high
availability and resource management database framework in a cluster environment, and an
integral part of the Oracle MAA Silver reference architecture.

Adding Oracle RAC to a Bronze MAA reference architecture elevates it to a Silver MAA
reference architecture. The Silver MAA reference architecture is designed for databases that
can’t afford to wait for a cold restart or a restore from backup, should there be an
unrecoverable database instance or server failure.

The Silver reference architecture has the potential to provide zero downtime for node or
instance failures, and zero downtime for most database and system software updates, that are
not achievable with the Bronze architecture. To learn more about the Silver MAA reference
architecture, see High Availability Reference Architectures.

Oracle Clusterware and Oracle RAC provide the following benefits:

• High availability framework and cluster management solution

– Manages resources, such as Virtual Internet Protocol (VIP) addresses, databases,
listeners, and services

– Provides HA framework for Oracle database resources and non-Oracle database
resources, such as third party agents

• Active-active clustering for scalability and availability

– High Availability If a server or database instance fails, connections to surviving
instances are not affected; connections to the failed instance quickly failover to
surviving instances that are already running and open on other servers in the Oracle
RAC cluster

– Scalability and Performance Oracle RAC is ideal for high-volume applications or
consolidated environments where scalability and the ability to dynamically add or re-
prioritize capacity across more than a single server are required. An individual
database may have instances running on one or more nodes of a cluster. Similarly, a
database service may be available on one or more database instances. Additional
nodes, database instances, and database services can be provisioned online. The
ability to easily distribute workload across the cluster makes Oracle RAC the ideal
complement for Oracle Multitenant when consolidating many databases.

The following table highlights various Oracle Clusterware and Real Application Cluster
configuration best practices.

12-1

https://docs.oracle.com/en/database/oracle/oracle-database/19/haiad/index.html

Table 12-1 Oracle RAC HA Use Cases and Best Practices

Use Case Best Practices

Certified and validated Clusterware software stack Use Oracle Clusterware and avoid third-party Clusterware.

See Oracle Database Clusterware Administration and
Deployment Guide

Clusterware is built-in to all Oracle Exadata Systems.

Certified and validated storage architecture Use Oracle Automatic Storage Management (Oracle ASM)
and Oracle ASM Cluster File System (Oracle ACFS) instead
of third party volume managers and cluster file systems for
the following MAA benefits:

• Eliminate hot spots by distributing work across all disks
• Scale and adjust storage capacity by adding and

dropping disks and storage online
• Reduce complexity by providing a simplified and uniform

method (ASMCMD, ASMCA, ExaCLI, or oeadacli) to
manage database storage

• Inherent data corruption detection and repair when using
ASM diskgroups

• Simple management, patching and maintenance with an
integrated Oracle Grid Infrastructure (Clusterware
+ASM) without any additional drivers

When using ASM with external redundancy, ensure that the
underlying storage and network is highly available with no
single point of failure.

When using ASM native redundancy, high redundancy
diskgroups are recommended to provide maximum protection
for unplanned outages and during storage software updates.
By default Exadata deployments use high redundancy for all
diskgroups (both for data and recovery destinations).

Oracle Automatic Storage Management Cluster File System
(Oracle ACFS) is a multi-platform, scalable file system and
storage management technology that extends Oracle
Automatic Storage Management (Oracle ASM) functionality
to support all customer files and can be leveraged for non-
database files.

These best practices are built-in to all Oracle Exadata
Systems.

See Introducing Oracle Automatic Storage Management

Chapter 12

12-2

Table 12-1 (Cont.) Oracle RAC HA Use Cases and Best Practices

Use Case Best Practices

Certified and validated network architecture Ensure that the entire database and storage network
topology has multiple network paths with no single point of
failure.

When connecting to the database service, use built-in Virtual
Internet Protocol (VIP) addresses, Single Client Access
Name (SCAN), and multiple local SCAN listeners configured
over a bonded client network.

Use a separate high bandwidth, bonded network for backup
or Data Guard traffic.

For the private network used as the cluster interconnect,
Oracle recommends that non-Exadata customers use Oracle
HAIP for network redundancy instead of using bonded
networks. Bonding configurations have various attributes that
behave differently with different network cards and switch
settings. This recommendation does not apply to the private
cluster interconnect in Exadata environments, because the
bond setup has been properly configured and validated.
Further, Exadata uses the CLUSTER_INTERCONNECT
parameter over the highly available bonded network. Generic
systems should NOT use the CLUSTER_INTERCONNECT and
bonding but rather use Oracle HAIP.

Cluster configuration checks Use Cluster Verification Utility (CVU) at monthly intervals to
validate a range of cluster and Oracle RAC components such
as shared storage devices, networking configurations,
system requirements, and Oracle Clusterware. See Cluster
Verification Utility Reference

To perform a holistic, proactive health check and to evaluate
if Oracle RAC or Exadata best practices are being followed,
use exachk for Exadata RAC systems, or use orachk for
non-Exadata RAC systems, at monthly intervals and before
and after any software update.

See ORAchk - Health Checks for the Oracle Stack (Doc ID
1268927.2)and Oracle Exadata Database Machine exachk or
HealthCheck (Doc ID 1070954.1).

Note that both exachk and orachk include CVU checks.
Exachk covers software and configuration best practices and
critical alerts for Storage, Network, Clusterware, ASM, and
Database.

Incorporate configuration recommendations from CVU,
exachk, or orachk.

Reduce downtime for database node or instance failures Typically, the default settings are sufficient for most use
cases. If node detection and instance recovery need to be
expedited, evaluate lower values for
FAST_START_MTTR_TARGET
Reducing FAST_START_MTTR_TARGET can increase
database writer activity significantly, so additional I/O
bandwidth is required.

For Exadata systems, Instant Failure Detection capabilities
use remote direct memory access (RDMA) to quickly confirm
server failures in less than 2 seconds compared to typical 30
seconds detection found in most Oracle RAC clusters.

Chapter 12

12-3

https://support.oracle.com/rs?type=doc&id=1268927.2
https://support.oracle.com/rs?type=doc&id=1268927.2
https://support.oracle.com/rs?type=doc&id=1070954.1
https://support.oracle.com/rs?type=doc&id=1070954.1

Table 12-1 (Cont.) Oracle RAC HA Use Cases and Best Practices

Use Case Best Practices

Eliminate downtime for software updates Use Oracle RAC rolling updates for Clusterware or database
software updates (for example, Release Updates) to avoid
downtime.

Use out-of-place software updates when possible, so rollback
and fallback use cases are simplified.

Use software gold images to eliminate the complexity of
running database opatch utility.

For a fleet of databases on a single Oracle RAC cluster or
multiple clusters, use Oracle Fleet Patching and Provisioning

Make application and processes highly available on the
cluster

When an application, process, or server fails in a cluster, you
want the disruption to be as short as possible and
transparent to users. For example, when an application fails
on a server, that application can be restarted on another
server in the cluster, minimizing or negating any disruption in
the use of that application. Similarly, if a server in a cluster
fails, then all of the applications and processes running on
that server must failover to another server to continue
providing service to the users. Using the built-in
generic_application resource type, Oracle Clusterware
can manage all of these entities to ensure high availability,
resource types or customizable scripts and application agent
programs, and resource attributes that you assign to
applications and processes.

Use Oracle Clusterware to manage third-party resources and
agents that reside on the cluster.

See Making Applications Highly Available Using Oracle
Clusterware

Reduce application downtime for planned and unplanned
outages

Leverage Clusterware-managed services and application
best practices to achieve zero application downtime.

Use SRVCTL to manage services for your PDB. Never use
default service for application connectivity. Always have at
least one preferred Oracle RAC instance and at least one
additional available Oracle RAC instance for High Availability.

Applications should subscribe to HA Fast Application
Notifications (FAN) and be configured to respond and failover
if required.

See Enabling Continuous Service for Applications and
Continuous Availability - Application Checklist for Continuous
Service for MAA Solutions

Capacity planning Capacity planning and sizing should be done before
deployment, and periodically afterward, to ensure that there
are sufficient system resources to meet application
performance requirements.

Capacity planning needs to accommodate growth or
consolidation of databases, additional application workloads,
additional processes, or anything that strains existing system
resources.

Evaluating if performance requirements are still met during
an unplanned outage or planned maintenance events is also
crucial.

Chapter 12

12-4

https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf

Part IV
Oracle Data Guard Best Practices

• Overview of MAA Best Practices for Oracle Data Guard

• Plan an Oracle Data Guard Deployment

• Configure and Deploy Oracle Data Guard

• Tune and Troubleshoot Oracle Data Guard

• Monitor an Oracle Data Guard Configuration

• Optimizing Automatic Failover in Common Scenarios to Minimize Downtime

13
Overview of MAA Best Practices for Oracle
Data Guard

By adding a physical standby database with Oracle Active Data Guard, a Silver MAA reference
architecture is elevated to a Gold MAA reference architecture. Implement Oracle Data Guard
best practices to achieve minimal downtime and potentially zero data loss for all unplanned
outages.

Oracle Active Data Guard plays an important role in delivering the high availability and
comprehensive data protection that you expect of the Gold MAA reference architecture. The
Gold reference architecture, consisting of an Oracle RAC primary database and Oracle RAC
standby systems with Oracle Active Data Guard, plus MAA configuration and life cycle
operations, provides a comprehensive set of services that create, maintain, manage, and
monitor one or more standby databases. Oracle Active Data Guard protects your data during
all types of planned maintenance activities, such as software updates and major database
upgrades, and unplanned outages, including database failures, site outages, natural disasters,
and data corruptions.

The goal of Oracle Data Guard best practices is to help you implement tested and proven MAA
best practices to ensure a successful and stable Data Guard deployment. The following steps
connect you to the Oracle MAA best practices for planning, implementing, and maintaining this
type of architecture.

1. Plan your Oracle Data Guard architecture, and take into account various considerations for
the application, network, and so on.

2. Configure and Deploy Data Guard using Oracle MAA best practices.

3. Tune and Troubleshoot your Data Guard deployment.

To learn more about the Gold MAA reference architecture, see High Availability Reference
Architectures.

13-1

https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html
https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html

14
Plan an Oracle Data Guard Deployment

Analyze your specific requirements, including both the technical and operational aspects of
your IT systems and business processes, understand the availability impact for the Oracle
Data Guard architecture options, and consider the impact of your application and network.

Oracle Data Guard Architectures
The Gold MAA reference architecture provides you with four architecture patterns, using
Oracle Active Data Guard to eliminate single point of failure. The patterns vary from a single
remote active standby with Fast Start Failover and HA Obeserver, to including far sync
instances, multiple standbys, and reader farms.

When planning your Gold MAA Reference Architecture, see High Availability Reference
Architectures for an overview of each Gold architecture pattern, and choose the elements to
incorporate based on your requirements.

Application Considerations for Oracle Data Guard Deployments
As part of planning your Oracle Data Guard deployment, consider the resources required and
application availability requirements in a fail over scenario.

Deciding Between Full Site Failover or Seamless Connection Failover
The first step is to evaluate which failover option best meets your business and application
requirements when your primary database or primary site is inaccessible or lost due to a
disaster.

The following table describes various conditions for each outage type and recommends a
failover option in each scenario.

Table 14-1 Recommended Failover Options for Different Outage Scenarios

Outage Type Condition Recommended Failover Option

Primary Site Failure (including all
application servers)

Primary site contains all existing
application servers (or mid-tier
servers) that were connected to
the failed primary database.

Full site failover is required

14-1

https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html
https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html

Table 14-1 (Cont.) Recommended Failover Options for Different Outage Scenarios

Outage Type Condition Recommended Failover Option

Primary Site Failure (with some
application servers surviving)

Some or all application servers
are not impacted and the
surviving application servers can
reconnect to new primary
database in a secondary disaster
recovery site.

Application performance and
throughput is still acceptable with
different network latency between
application servers and new
primary database in a secondary
disaster recovery site.

Typically analytical or reporting
applications can tolerate higher
network latency between client
and database without any
noticeable performance impact,
while OLTP applications
performance may suffer more
significantly if there is an increase
in network latency between the
application server and database.

Seamless connection failover is
recommended to minimize
downtime and enable automatic
application and database failover.

Complete Primary Database or
Primary Server Failure

Application servers are not
impacted and users can
reconnect to new primary
database in a secondary disaster
recovery site.

Application performance and
throughput is still acceptable with
different network latency between
application servers and new
primary database in a secondary
disaster recovery site.

Typically analytical or reporting
applications can tolerate higher
network latency between client
and database without any
noticeable performance impact,
while OLTP applications
performance may suffer more
significantly if there is an increase
in network latency between the
application server and database.

If performance is acceptable,
seamless connection failover is
recommended to minimize
downtime and enable automatic
application and database failover.

Otherwise, full site failover is
required.

Full Site Failover Best Practices
A full site failover means that the complete site fails over to another site with a new set of
application tiers and a new primary database.

Complete site failure results in both the application and database tiers becoming unavailable.
To maintain availability, application users must be redirected to a secondary site that hosts a
redundant application tier and a synchronized copy of the production database.

Chapter 14
Application Considerations for Oracle Data Guard Deployments

14-2

Consider the two figures below. The first figure shows the network routes before failover. Client
or application requests enter the Primary site at the client tier, and are routed to the application
server and database server tiers on the primary site.

Figure 14-1 Network Routes Before Site Failover

Heartbeat hb

Firewall

hb

WAN
Traffic�

Manager

Router Router

Primary Site

Primary

Client

Tier 1 - Client

Tier 2 - Application Server

Firewall Firewall hb

WAN
Traffic�

Manager

Router Router

Secondary Site

Secondary

Firewall Firewall

Hardware-
based load�

balancer

Switches

IMAP
Servers

Application/�
Web Servers

Application/�
Web Servers

LDAP�
Servers

Standby

Hardware-
based load�
balancer

hb

hb hb

Firewall Firewall

Switches

Hardware-
based load�

balancer

Switches

IMAP
Servers

LDAP�
Servers

Standby

Hardware-
based load�
balancer

Active

hbFirewall Firewall

Switches

Firewall

Tier 3 - Database Server

Switches

RAC
Instance

RAC
Instance

RouterSwitches SwitchesRouter Switches

hb

hb RAC
Database

RAC
Database

RAC
Instance

RAC
Instance

hb

hb

Internet Standby Components

Active

The second figure, below, illustrates the network routes after a complete site failover. Client or
application requests enter the Secondary site at the client tier and follow the same path on the
secondary site that they followed on the primary site.

Chapter 14
Application Considerations for Oracle Data Guard Deployments

14-3

Figure 14-2 Network Routes After Site Failover

Heartbeat hb

Firewall

hb

WAN
Traffic�

Manager

Router Router

Primary Site

Primary

Client

Tier 1 - Client

Tier 2 - Application Server

Firewall Firewall hb

WAN
Traffic�

Manager

Router Router

Secondary Site

Secondary

Firewall Firewall

Hardware-
based load�

balancer

Switches

IMAP
Servers

Application/�
Web Servers

Application/�
Web Servers

LDAP�
Servers

Standby

Hardware-
based load�
balancer

hb

hb hb

Firewall Firewall

Switches

Hardware-
based load�

balancer

Switches

IMAP
Servers

LDAP�
Servers

Standby

Hardware-
based load�
balancer

hbFirewall Firewall

Switches

Firewall

Tier 3 - Database Server

Switches

RAC
Instance

RAC
Instance

RouterSwitches SwitchesRouter Switches

hb

hb RAC
Database

RAC
Database

RAC
Instance

RAC
Instance

hb

hb

Internet Standby Components

Active Active

MAA best practice is to maintain a running application tier at the standby site to avoid incurring
start-up time, and to use Oracle Data Guard to maintain a synchronized copy of the production
database. Upon site failure, a WAN traffic manager is used to perform a DNS failover (either
manually or automatically) to redirect all users to the application tier at standby site while a
Data Guard failover transitions the standby database to the primary production role.

Use Oracle Active Data Guard Fast-Start Failover to automate the database failover.
Application server and non-database failovers can be automated and coordinated by using
Oracle Site Guard. Oracle Site Guard orchestrates and automates any operations, such as
starting up application servers on the secondary site, resynchronizing non-database meta data
as Data Guard fails over automatically.

For more information about Oracle Site Guard, see the Oracle Site Guard Administrator's
Guide.

Chapter 14
Application Considerations for Oracle Data Guard Deployments

14-4

Configuring Seamless Connection Failover
Automating seamless client failover in an Oracle Data Guard configuration includes relocating
database services to the new primary database as part of a Data Guard failover, notifying
clients that a failure has occurred to break them out of TCP timeout, and redirecting clients to
the new primary database.

In the following figure, a database request is interrupted by an outage or timeout (1), so the
session reconnects to the Oracle RAC cluster (2) (or standby) (2), the database request
replays automatically on the alternate node (3), and the result from the database request is
returned to the user (4).

Figure 14-3 Seamless Connection Failover

To achieve seamless connection failover, refer to Configuring Continuous Availability for
Applications.

Assessing and Optimizing Network Performance
Oracle Data Guard relies on the underlying network to send redo from the primary database to
standby databases. Ensuring that the network is healthy and capable of supporting peak redo
generation rates helps avoid future transport lags.

A transport lag forms when the primary database cannot ship redo to the standby faster than
primary instance's redo generation rate. A transport lag can lead to potential data loss if a
primary database failure occurs.

Network assessment consists of evaluating

• Network reliability

• Network bandwidth to accommodate peak redo generation rates

Chapter 14
Assessing and Optimizing Network Performance

14-5

Note:

Each instance of the primary database instance generates its own redo and ships
redo to the standby database in a single network stream. Therefore, maximizing
single process network throughput for each node is critical for redo transport.

Historically there are areas that can reduce network and redo transport throughput resulting in
potential transport lags:

1. Network firewalls or network encryption

Network firewalls and network (not Oracle Net) encryption can reduce overall throughput
significantly. Verify throughput with the oratcp tool (described below), with and without
encryption, and tune accordingly.

At times reducing the encryption level can increase throughput significantly. A balance is
required to meet security needs with your performance and data loss requirements.

2. Redo transport compression

When database initialization parameter has LOG_ARCHIVE_DEST_N attribute
COMPRESSION=ENABLE, Oracle background processes have to compress the redo before
sending network message, and uncompress the redo before processing the redo. This
reduces the overall redo and network throughput. Compression is only recommended if
network bandwidth is insufficient between the primary and standby destinations.

3. Oracle Net encryption

Depending on the Oracle Net encryption level, this will have varying redo throughput
impact, because Oracle Net messages containing redo have to be encrypted before
sending and then unencrypted before redo processing.

Note that if database encryption is already enabled with Transparent Data Encryption
(TDE), redo is already encrypted, although Oracle Net encryption can also encrypt the
message headers.

4. Untuned network for redo transport

• Increasing maximum operating system socket buffer size can increase single process
throughput by 2-8 times. Test with different socket buffer sizes to see what value yields
positive results, and ensure throughput is greater than the peak redo throughput.

• Compare performance with various MTU settings.

If average redo write size is less than 1500 bytes, then try various MTU settings
including MTU=9000 (for example, Jumbo Frames) for network interface that sends or
receives redo on your system. This may reduce some unnecessary network round trips
which will increase overall throughput.

Also note that for SYNC transport, Oracle's average redo write size (for example,
Oracle message send) increases significantly as determined by v$sysstats or AWR
statistics "redo size / redo writes".

When sending redo across geographical regions, experiments have shown that using
MTU=9000 can also benefit in some network topologies. Conduct performance tests
with oratcp and compare the results with default MTU and MTU=9000 settings.

Chapter 14
Assessing and Optimizing Network Performance

14-6

Gather Topology Information
Understanding the topology of the Oracle Data Guard configuration, and its relevance to Data
Guard performance, helps eliminate infrastructure weaknesses that are often incorrectly
attributed to the Data Guard architecture.

Oracle recommends that you outline the following high-level architecture information.

• Describe the primary and standby database system (number of nodes in Oracle RAC
cluster, CPUs and memory per database node, storage I/O system)

• Describe network topology connecting the primary and standby systems

– Network switches and firewalls in between primary and standby

– Network bandwidth and latency

For standby databases with symmetric hardware and configuration, and with a well tuned
network configuration that can support peak redo generation rates, the transport lag should be
less than 1 second.

Understanding Network Usage of Data Guard
The phases of the Data Guard life cycle which use the network most heavily are:

• Instantiation - During this phase of standby database creation, files can be copied using
parallelism from any host. Determining the degree of parallelism which maximizes
throughput between nodes helps to optimize the standby instantiation process.

• Redo Transport (Steady State)- Under normal Data Guard operation the primary database
ships redo to the standby which is then applied. Each RAC instance of a primary database
ships redo in a single stream from the host on which it is running. Understanding the
requirements of each primary database instance and ensuring a single process can
achieve the throughput requirements is critical to a standby database staying current with
the primary database.

Understanding Targets and Goals for Instantiation
Instantiation for large databases can take hours, or in extreme cases days. To allow for
planning of an instantiation and also maximize throughput between the primary and standby
system to complete the instantiation is as timely a manner as possible, first determine the goal
for instantiation time. Then follow the process defined below to maximize per process
throughput and identify the optimal degree of parallelism between the primary and standby
nodes.

Understanding Throughput Requirements and Average Redo Write
Size for Redo Transport

Required network bandwidth of a given Data Guard configuration is determined by the redo
generate rate of the primary database.

Chapter 14
Assessing and Optimizing Network Performance

14-7

Note:

In cases where the primary database is pre-existing, a baseline for the required
network bandwidth can be established. If there is no existing primary database, skip
this step and future references to the data further in the process.

While the Automatic Workload Repository (AWR) tool can be used to determine the redo
generation rate, the snapshots are often 30 or 60 minutes apart which can dilute the peak rate.
Since peak rates often occur for shorter periods of time, it is more accurate to use the following
query which calculates the redo generation rate for each log when run on an existing database.
(change the timestamps as appropriate)

SQL> SELECT THREAD#, SEQUENCE#, BLOCKS*BLOCK_SIZE/1024/1024 MB,
(NEXT_TIME-FIRST_TIME)*86400 SEC,
 (BLOCKS*BLOCK_SIZE/1024/1024)/((NEXT_TIME-FIRST_TIME)*86400) "MB/S"
FROM V$ARCHIVED_LOG
WHERE ((NEXT_TIME-FIRST_TIME)*86400<>0)
AND FIRST_TIME BETWEEN TO_DATE('2022/01/15 08:00:00','YYYY/MM/DD HH24:MI:SS')
 AND TO_DATE('2022/01/15 11:00:00','YYYY/MM/DD HH24:MI:SS')
AND DEST_ID=1 ORDER BY FIRST_TIME;

Example output:

THREAD# SEQUENCE# MB SEC MB/s
------- --------- ---------- ---------- ----------
 2 2291 29366.1963 831 35.338383
 1 2565 29365.6553 781 37.6000708
 2 2292 29359.3403 537 54.672887
 1 2566 29407.8296 813 36.1719921
 2 2293 29389.7012 678 43.3476418
 2 2294 29325.2217 1236 23.7259075
 1 2567 11407.3379 2658 4.29169973
 2 2295 24682.4648 477 51.7452093
 2 2296 29359.4458 954 30.7751004
 2 2297 29311.3638 586 50.0193921
 1 2568 3867.44092 5510 .701894903

Note:

To find the peak redo rate, choose times during the highest level of processing, such
as peak OLTP periods, End of Quarter batch processing or End of Year batch
processing.

In this short example the highest rate was about 52MB/s. Ideally the network will support the
maximum rate plus 30% or 68MB/s for this application.

Verify Average Redo Write Size
Using v$sysstats or looking at your AWR reports for various workload and peak intervals,
record the average redo write size based on

Chapter 14
Assessing and Optimizing Network Performance

14-8

Average Redo Write Size = "REDO SIZE" / "REDO WRITES"

Use this average redo write size in your oratcp experiments. If the average redo write size >
1500 bytes, experiment with various MTU settings.

Understand Current Network Throughput
The Oracle utility oratcptest is a general-purpose tool for measuring network bandwidth and
latency similar to iperf/qperf which can be run by any OS user.

The oratcptest utility provides options for controlling the network load such as:

• Network message size

• Delay time between messages

• Parallel streams

• Whether or not the oratcptest server should write messages on disk.

• Simulating Data Guard SYNC transport by waiting for acknowledgment (ACK) of a packet
or ASYNC transport by not waiting for the ACK.

Note:

This tool, like any Oracle network streaming transport, can simulate efficient network
packet transfers from the source host to target host similar to Data Guard transport.
Throughput can saturate the available network bandwidth between source and target
servers. Therefore, Oracle recommends that short duration tests are performed and
that consideration is given for any other critical applications sharing the same
network.

Measure the Existing Throughput of One and Many Processes

Do the following tasks to measure the existing throughput.

Task 1: Install oratcptest

1. Download the oratcptest.jar file from MOS note 2064368.1

2. Copy the JAR file onto both client (primary) and server (standby)

Note:

oratcptest requires JRE 6 or later

3. Verify that the host has JRE 6 or later

4. On all primary and standby hosts, verify that the JVM can run the JAR file by displaying the
help

java -jar oratcptest.jar -help

Task 2: Determine the Existing Throughput for a Single Process

Data Guard asynchronous redo transport (ASYNC) uses a streaming protocol which does not
wait for packet acknowledgment and therefore achieves higher rates than SYNC transport.

Chapter 14
Assessing and Optimizing Network Performance

14-9

1. Start the test server on the receiving (standby) side.

java -jar oratcptest.jar -server [IP of standby host or VIP in RAC
 configurations] -port=<any available port number>

2. Run the test client. (Change the server address and port number to match that of your
server started in step 4.)

$ java -jar oratcptest.jar [IP of standby host or VIP in RAC
configurations]
 -port=<port number> -mode=async -duration=120 -interval=20s

[Requesting a test]
 Message payload = 1 Mbyte
 Payload content type = RANDOM
 Delay between messages = NO
 Number of connections = 1
 Socket send buffer = (system default)
 Transport mode = ASYNC
 Disk write = NO
 Statistics interval = 20 seconds
 Test duration = 2 minutes
 Test frequency = NO
 Network Timeout = NO
 (1 Mbyte = 1024x1024 bytes)

(17:54:44) The server is ready.
 Throughput
(17:55:04) 20.919 Mbytes/s
(17:55:24) 12.883 Mbytes/s
(17:55:44) 10.457 Mbytes/s
(17:56:04) 10.408 Mbytes/s
(17:56:24) 12.423 Mbytes/s
(17:56:44) 13.701 Mbytes/s
(17:56:44) Test finished.
 Socket send buffer = 2 Mbytes
 Avg. throughput = 13.466 Mbytes/s

In this example the average throughput between these two nodes was about 13 MB/s which
does not meet the requirements of 68 MB/s from the query.

Note:

This process can be scheduled to run at a given frequency using the -freq option to
determine if the bandwidth varies at different times of the day. For instance setting -
freq=1h/24h will repeat the test every hour for 24 hours.

Task 3: Determine Existing Throughput for Multiple Processes

1. Repeat the previous test with two (2) connections (using num_conn parameter).

$ java -jar oratcptest.jar <target IP address> -port=<port number>
 -duration=60s -interval=10s -mode=async [-output=<results file>] -
num_conn=2

Chapter 14
Assessing and Optimizing Network Performance

14-10

[Requesting a test]
 Message payload = 1 Mbyte
 Payload content type = RANDOM
 Delay between messages = NO
 Number of connections = 2
 Socket send buffer = (system default)
 Transport mode = ASYNC
 Disk write = NO
 Statistics interval = 20 seconds
 Test duration = 2 minutes
 Test frequency = NO
 Network Timeout = NO
 (1 Mbyte = 1024x1024 bytes)

(18:08:02) The server is ready.
 Throughput
(18:08:22) 44.894 Mbytes/s
(18:08:42) 23.949 Mbytes/s
(18:09:02) 25.206 Mbytes/s
(18:09:22) 23.051 Mbytes/s
(18:09:42) 24.978 Mbytes/s
(18:10:02) 22.647 Mbytes/s
(18:10:02) Test finished.
 Avg. socket send buffer = 2097152
 Avg. aggregate throughput = 27.454 Mbytes/s

2. Re-run step 1 Iteratively and increase the value of num_conn by two each time until the
aggregate throughput does not increase for three consecutive values. For example if the
aggregate throughput is approximately the same for 10, 12 and 14 connections, stop.

Note:

RMAN can utilize all nodes in the cluster for instantiation. To find the total
aggregate throughput, see My Oracle Support Creating a Physical Standby
database using RMAN restore database from service (Doc ID 2283978.1).

3. Run the same test with all nodes in all clusters to find the current total aggregate
throughput. Node 1 of primary to node 1 of standby, node 2 to node 2, etc. Sum the
throughput found for all nodes.

4. Reverse the roles and repeat the tests.

5. Note the number of connections which achieved the best aggregate throughput.

Use the total size of the database and total aggregate throughput to estimate the amount of
time it will take to complete the copy of the database. A full instantiation also needs to apply
the redo generated during the copy. Some additional percentage (0%-50%) should be added to
this estimated time based on how active the database is.

If the estimated time meets the goal, no additional tuning is required for instantiation.

Chapter 14
Assessing and Optimizing Network Performance

14-11

https://support.oracle.com/rs?type=doc&id=2283978.1
https://support.oracle.com/rs?type=doc&id=2283978.1

Optimizing Redo Transport with One and Many Processes
If throughput from the prior single and multiple process tests meet the targets, no additional
tuning is required. If higher throughput is required, setting the maximum TCP socket buffers
size to a larger value is the primary method to potentially increase throughput.

Setting TCP Socket Buffer Size

The TCP socket buffers are system memory buffers which temporarily store incoming and
outgoing data. Outgoing data is stored on the write buffers while incoming data is stored on the
read buffers. Read and write socket buffers are allocated separately. When a buffer, generally
the read buffer, fills up (often do to the application not pulling data out of the buffer fast
enough), a message is sent to the sender to slow down or stop sending data. Allocating a
larger buffer often improves redo transport by giving the application time to pull data off the
wire without stopping the sender.

Tuning TCP socket buffer size is the primary approach to improving ASYNC transport and can
improve SYNC transport as well in some cases.

Note:

With larger socket buffer sizes, TCP selective acknowledgment (SACK) is strongly
recommended. Often times this is enabled by default but refer to your operating
system documentation for details on confirming or enabling TCP selective
acknowledgment.

To set TCP Socket Buffer Size do the following tasks.

Task 1: Determine Optimal Maximum Socket Buffer Size

Find the optimal maximum socket buffer size for a single process on the target network link by
running a series of tests.

Note:

Bandwidth Delay Product is the product of the network link capacity of a channel and
the round time, or latency. The minimum recommended value for socket buffer sizes
is 3*BDP, especially for a high-latency, high-bandwidth network. Use oratcptest to
tune the socket buffer sizes.

Task 2: Set Maximum Socket Buffer Size Temporarily

On the primary and standby systems follow these steps to set the maximum socket buffer size
for requests. This will be done in memory and will not persist if the server is restarted for any
reason.

Do the following steps as root.

1. First find the current size of the kernel parameters net.ipv4.tcp_rmem and
net.ipv4.tcp_wmem. The values returned are the minimum, default and maximum size for
socket buffers which TCP dynamically allocates. If a process requires more than the

Chapter 14
Assessing and Optimizing Network Performance

14-12

default given when a socket is created, more buffers will be dynamically allocated up to the
maximum value.

cat /proc/sys/net/ipv4/tcp_rmem
4096 87380 6291456

cat /proc/sys/net/ipv4/tcp_wmem
4096 16384 4194304

2. Change the values to 16MB or whatever 3*BDP was calculated to be

sysctl -w net.ipv4.tcp_rmem='4096 87380 16777216';

sysctl -w net.ipv4.tcp_wmem='4096 16384 16777216';

Note:

Increasing these values can increase system memory usage of any network socket
on the system.

Note:

Changes made with sysctl are not permanent. Update the /etc/sysctl.conf file to
persist these changes through machine restarts. There will be a step to change the
configuration file at the end of this process once the proper setting is determined.

Task 3: Test Throughput of a Single Process

Re-run the previous tests allowing the socket buffers to dynamically grow to the new maximum
set in the previous step

(as oracle)

Server (standby):

$ java -jar oratcptest.jar -server [IP of standby host or VIP in RAC
configurations]
 -port=<port number>

Client (primary):

$ java -jar oratcptest.jar <IP of standby host or VIP in RAC configurations>
 -port=<port number> -mode=async -duration=120s -interval=20s

Note:

Do not use the oratcptest sockbuf parameter because the kernel parameters which
govern explicit requests for socket buffer size are different than those set for this test.

Chapter 14
Assessing and Optimizing Network Performance

14-13

After the test completes the results from the client and server show the value for socket buffers
during that test. At the time of this writing, that value is half of the actual socket buffer size and
should be doubled to find the actual size used.

Client

[Requesting a test]
 Message payload = 1 Mbyte
 Payload content type = RANDOM
 Delay between messages = NO
 Number of connections = 1
 Socket send buffer = 2 Mbytes
 Transport mode = ASYNC
 Disk write = NO
 Statistics interval = 20 seconds
 Test duration = 2 minutes
 Test frequency = NO
 Network Timeout = NO
 (1 Mbyte = 1024x1024 bytes)
(11:39:16) The server is ready.
 Throughput
(11:39:36) 71.322 Mbytes/s
(11:39:56) 71.376 Mbytes/s
(11:40:16) 72.104 Mbytes/s
(11:40:36) 79.332 Mbytes/s
(11:40:56) 76.426 Mbytes/s
(11:41:16) 68.713 Mbytes/s
(11:41:16) Test finished.

 Socket send buffer = 8388608
 Avg. throughput = 73.209 Mbytes/s

Server

The test terminated. The socket receive buffer was 8 Mbytes.

Note:

oratcptest is reporting half of the buffers allocated to the socket. Double the number
reported for the actual socket buffer size used during the test.

Task 4: Test Throughput of Multiple Processes

Now repeat the test using the num_conn value determined in the first tests. for example,. if the
peak aggregate throughput was reached with 10 processes set num_conn=10.

Client

$ java -jar oratcptest.jar <IP of standby host or VIP in RAC configurations>
 -port=<port number> -mode=async -duration=120s -interval=20s -num_conn=10

[Requesting a test]
 Message payload = 1 Mbyte
 Payload content type = RANDOM

Chapter 14
Assessing and Optimizing Network Performance

14-14

 Delay between messages = NO
 Number of connections = 10
 Socket send buffer = (system default)
 Transport mode = ASYNC
 Disk write = NO
 Statistics interval = 20 seconds
 Test duration = 2 minutes
 Test frequency = NO
 Network Timeout = NO
 (1 Mbyte = 1024x1024 bytes)

(19:01:38) The server is ready.
 Throughput
(19:01:58) 266.077 Mbytes/s
(19:02:18) 242.035 Mbytes/s
(19:02:38) 179.574 Mbytes/s
(19:02:58) 189.578 Mbytes/s
(19:03:18) 218.856 Mbytes/s
(19:03:38) 209.130 Mbytes/s
(19:03:38) Test finished.
 Avg. socket send buffer = 8 Mbytes
 Avg. aggregate throughput = 217.537 Mbytes/s

Note:

oratcptest is reporting half of the buffers allocated to the socket. Double the number
reported for the actual socket buffer size used during the test.

Server (Each connection will have the receive buffer printed. Double the socket buffer size in
each instance)

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

Use the total size of the database and total aggregate throughput to estimate the amount of
time it will take to complete the copy of the database. A full instantiation also needs to apply

Chapter 14
Assessing and Optimizing Network Performance

14-15

the redo generated during the copy. Some additional percentage (0%-50%) should be added to
this estimated time based on how active the database is.

Task 5: Repeat the Tests

Repeat the previous two tests with higher values for tcp_rmem and tcp_wmem if more
throughput is needed. Understand that these higher values are available for other sockets as
well but will be dynamically allocated only if needed. The table shows sample data tracking the
different throughput results for different socket buffer sizes.

tcp_rmem
maximum

tcp_wmem
maximum

Single Process
Throughput

Single Node
Multi-Process
Maximum
Aggregate
Throughput

Single Node
Multi-Process
Parallelism

6291456 4194304 13.5 MB/s 203 MB/s 16

8388608 8388608 48 MB/s 523 MB/s 14

16777216 16777216 73 MB/s 700 MB/s 14

33554432 33554432 132 MB/s 823 MB/s 14

Task 6: Set Parameters Permanently

Changes using sysctl modify the values in memory which do not persist through a reboot of the
host. Once the optimal size for socket buffers is determined, set the kernel parameters so they
persist through server restarts by editing the /etc/sysctl.conf file.

This must be done on all nodes of the primary and standby systems.

To make these changes persistent, edit the /etc/sysctl.conf either modifying the existing values
or adding these values to the file if they are absent.

net.ipv4.tcp_rmem='4096 87380 16777216'

net.ipv4.tcp_wmem='4096 16384 16777216'

Task 7: Evaluate Larger MTU

Determine the network interfaces that are used by the Data Guard transport.

If Average Redo Write Size > current MTU setting (for example, typically the default 1500),
evaluate if jumbo frames (for example, MTU=9000) can reduce the network RTT for these
large network packets and improve overall redo throughput.

Shown here is an example of changing the MTU for Data Guard transport network interface for
testing purposes on Linux.

ifconfig bondeth0 mtu 9000 up

Repeat the same oratcp performance methodology as described above with the higher MTU
size to see if greater throughput is achieved.

If performance gains are noticed, work with system and network engineers to change MTU
size for DG transport for both primary and standby databases.

Chapter 14
Assessing and Optimizing Network Performance

14-16

Using This Data
The throughput numbers can be used to determine throughput to aid in Redo Transport and
Instantiation situations.

Redo Transport

If the single process throughput does not exceed the single instance redo generation rate for a
primary database, the standby will not stay current with the primary during these times. Further
evaluation and network tuning by the network engineering team may be required in these
cases.

Instantiation

Once the maximum aggregate throughput of all nodes is understood, a rough estimate for
instantiation can be developed. As an example, if there is a 100 TB database on a 2-node RAC
to be instantiated and each node can achieve 300 MB/s it should take about 50 hours to copy
the data files. Additional work to instantiate will add some percentage to that number (~30%).

300 MB/s * 60 seconds/minute * 60 minutes/hour * 2 nodes = ~2 TB/hr aggregate
for both nodes
100TB / 2TB/hr = ~50 hours

The steps to instantiate a database using large database optimizations such as using multiple
nodes is described in Creating a Physical Standby database using RMAN restore database
from service (Doc ID 2283978.1).

Determining Oracle Data Guard Protection Mode
Oracle Data Guard can run in three different protection modes, which cater to different
performance, availability, and data loss requirements. Use this guide to determine which
protection mode fits your business requirements and your potential environmental constraints.

Maximum Protection mode guarantees that no data loss will occur if the primary database
fails, even in the case of multiple failures (for example, the network between the primary and
standby fails, and then at a later time, the primary fails). This policy is enforced by never
signaling commit success for a primary database transaction until at least one synchronous
Data Guard standby has acknowledged that redo has been hardened to disk. Without such an
acknowledgment the primary database will stall and eventually shut down rather than allow
unprotected transactions to commit.

To maintain availability in cases where the primary database is operational but the standby
database is not, the best practice is to always have a minimum of two synchronous standby
databases in a Maximum Protection configuration. Primary database availability is not
impacted if it receives acknowledgment from at least one synchronous standby database.

Choose this protection mode if zero data loss is more important than database availability.
Workload impact analysis is recommended to measure whether any overhead is acceptable
when enabling SYNC transport.

Maximum Availability mode guarantees that no data loss will occur in cases where the
primary database experiences the first failure to impact the configuration. Unlike the Maximum
Protection mode, Maximum Availability will wait a maximum of NET_TIMEOUT seconds for an
acknowledgment from any of the standby databases, after which it will signal commit success
to the application and move to the next transaction. Primary database availability (thus the
name of the mode) is not impacted by an inability to communicate with the standby (for

Chapter 14
Determining Oracle Data Guard Protection Mode

14-17

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2283978.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2283978.1

example, due to standby or network outages). Data Guard will continue to ping the standby
and automatically re-establish connection and resynchronize the standby database when
possible, but during the period when primary and standby have diverged there will be data loss
should a second failure impact the primary database.

For this reason, it is a best practice to monitor protection level, which is simplest using
Enterprise Manager Grid Control, and quickly resolve any disruption in communication
between the primary and standby before a second failure can occur. This is the most common
zero data loss database protection mode.

Choose this protection mode if zero data loss is very important but you want the primary
database to continue to be available even with the unlikely case that all standby databases are
not reachable. You can complement this solution by integrating multiple standby databases or
using Far Sync instances to implement a zero data loss standby solution across a WAN.
Workload impact analysis is recommended to measure whether any overhead is acceptable
when enabling SYNC transport.

Maximum Performance mode is the default Data Guard mode, and it provides the highest
level of data protection that is possible without affecting the performance or the availability of
the primary database. This is accomplished by allowing a transaction to commit as soon as the
redo data needed to recover that transaction is written to the local online redo log at the
primary database (the same behavior as if there were no standby database). Data Guard
transmits redo concurrently to 1) the standby database directly from the primary log buffer and
2) to the local online redo log write asynchronously enabling a very low potential data loss if
the primary site is lost. There is never any wait for standby acknowledgment but the potential
data loss for this data protection mode can still be near zero..

Similar to Maximum Availability mode, it is a best practice to monitor the protection level using
Enterprise Manager Grid Control, and quickly resolve any disruption in communication
between primary and standby before a second failure can occur.

Choose this mode if minimum data loss is acceptable and zero performance impact on the
primary is required.

Offloading Queries to a Read-Only Standby Database
Offloading queries and reporting workloads to read-only standby databases can free up your
primary database system resources, giving you the ability to add more users, workloads, or
even databases.

When you leverage both primary and standby database resources, your business and your
applications benefit with higher total system usage, and potentially higher application
throughput.

Offload appropriate workloads by following these steps.

1. Identify which application modules are read-only or read-mostly.

• Evaluate whether you have application services or modules that are read-only.

• Small and short read-only queries are good candidates to offload to the standby
database.

• Short DMLs, especially those that are response-time sensitive, should not be offloaded
to the standby.

• Large reports or analytic reports are good candidates to offload.

• Reports that are primarily reads, and that may have an infrequent DML, typically at the
start or end of a report, may be good candidates to offload.

Chapter 14
Offloading Queries to a Read-Only Standby Database

14-18

To enable DML Redirection, see ADG_REDIRECT_DML.

2. Gather information about the expected application performance, throughput, response
time, or elapsed time service levels for each offload candidate.

• Once you have determined which queries and reports are good candidates to offload,
find out the required expected and maximum response time or elapsed time for each
of them. For example some large analytic reports must complete within a 2 hour time
span.

• For short queries, determine the expected response time and throughput expectations.

• These requirements are sometimes referred to as application performance Service
Level Agreements, which you need for the next step.

3. Test the performance of each candidate on the standby, and determine whether it meets
your requirements.

• Even though the primary and standby databases have essentially identical data, they
are independent databases, independent machines, independent configurations, and
have different workloads. For example, an Active Data Guard read-only standby
database has a redo apply workload plus the queries that are offloaded, while the
primary database may have OLTP, batch, and query workloads.

• Reported elapsed times, query response time, and workload performance may vary
between the primary and standby due to these system, configuration, and workload
differences.

• Tuning requires that you understand system resources, SQL plans, and individual
query CPU and wait profile. The tuning recommendations are applicable for both
primary and standby databases. See Diagnosing and Tuning Database Performance .

4. Offload a subset of the queries that meet your performance requirements, freeing up
resources on the primary database for additional processing capacity.

• Once you have determined which queries and reports can be offloaded, and the
performance of those activities are acceptable, then slowly offload some of the
workload and monitor it.

• Do not oversubscribe and offload too much workload to the standby such that redo
apply cannot keep pace after tuning. If the standby falls behind. then you lose that
standby as a viable role transition target, and in most cases a standby that lags cannot
be used to offload queries.

What if a specific query does not meet your requirements?

1. Consult with a performance engineer and follow the recommendations in Database
Performance Tuning Guide.

2. A particular query response time or throughput or report elapsed time is not guaranteed to
be the same on the standby system as it was on the primary. Analyze the system
resources, SQL plans, overall CPU work time and wait times.

For example, you may see standby query scn advance wait is contributing to a much
longer elapsed time in one of your short queries. This wait increase is attributed to Active
Data Guard redo apply. If a query sees a certain row in a data block and needs to roll it
back because the transaction has not committed as of the query System Commit Number
(SCN), it needs to apply corresponding undo to get a consistent read for that query. If the
redo for the corresponding undo change has not been applied by redo apply yet, the query
needs to wait. The presence of such wait is itself not an issue, and typically may be a
couple of milliseconds, but it will vary by workload and may be higher in Real Application
Cluster database systems.

Chapter 14
Offloading Queries to a Read-Only Standby Database

14-19

15
Configure and Deploy Oracle Data Guard

Use the following Oracle MAA best practice recommendations to configure and deploy Oracle
Data Guard.

Oracle Data Guard Configuration Best Practices
The following topics describe Oracle MAA best practices for configuring your Oracle Data
Guard configuration.

Apply Oracle Database Configuration Best Practices First
Before you implement the Oracle Data Guard best practices that follow, apply the Oracle
Database configuration best practices.

The Oracle Data Guard configuration best practices are considered additional to the general
Oracle Database configuration best practices, and will help you achieve the services levels you
expect of the MAA Gold reference architecture. It is implied that all of the database
configuration best practices should be followed in a Data Guard configuration, and that the
Data Guard recommendations discussed here supplant the general database recommendation
where there are conflicts.

See Oracle Database Configuration Best Practices for more details.

Use Recovery Manager to Create Standby Databases
There are several methods you can use to create an Oracle Data Guard standby database, but
because of its simplicity, the Oracle MAA recommended approach is to create a physical
standby database using the RMAN RESTORE ... FROM SERVICE clause.

For information about this approach see Creating a Physical Standby database using RMAN
restore from service (Doc ID 2283978.1).

Use Oracle Data Guard Broker with Oracle Data Guard
Use Oracle Data Guard broker to create, manage, and monitor an Oracle Data Guard
configuration.

You can perform all Data Guard management operations locally or remotely using the broker
interfaces: the Data Guard management pages in Oracle Enterprise Manager, which is the
broker's graphical user interface (GUI), and the Data Guard command-line interface, called
DGMGRL.

The broker interfaces improve usability and centralize management and monitoring of the Data
Guard configuration. Available as a feature of Oracle Database Enterprise Edition and
Personal Edition, the broker is also integrated with Oracle Database, Oracle Enterprise
Manager, and Oracle Cloud Control Plane.

15-1

https://support.oracle.com/rs?type=doc&id=2283978.1
https://support.oracle.com/rs?type=doc&id=2283978.1

Example Broker Installation and Configuration
The following is an example broker installation and configuration, which is used in all of the
broker configuration best practices examples.

Prerequisites:

• Primary database, standby database, and observers reside on separate servers and
hardware to provide fault isolation.

• Both primary and standby databases must use an SPFILE.

• Set the DG_BROKER_START initialization parameter to TRUE.

• If any of the databases in the configuration is an Oracle RAC database, you must set up
the DG_BROKER_CONFIG_FILEn initialization parameters for that database such that they
point to the same shared files for all instances of that database. The shared files could be
files on a cluster file system, if available, on raw devices, or stored using Oracle Automatic
Storage Management.

1. If they do not already exist, create Oracle Net Services aliases that connect to the primary
and the standby databases. These aliases should exist in the database home for each host
or member of the Data Guard configuration. For Oracle RAC configurations, the aliases
should connect using the SCAN name.

chicago =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS=(PROTOCOL= TCP)
 (HOST=prmy-scan)(PORT=1521)))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = chicago)))

boston =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS=(PROTOCOL= TCP)
 (HOST=stby-scan)(PORT=1521)))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = boston)))

2. On a primary host, connect with DGMGRL and create the configuration.

$ dgmgrl sys
Enter password: password
DGMGRL> create configuration 'dg_config' as primary database is 'chicago'
connect identifier is chicago;

 Configuration "dg_config" created with primary database "chicago"

DGMGRL> add database 'boston' as connect identifier is boston;

 Database "boston" added

Chapter 15
Oracle Data Guard Configuration Best Practices

15-2

DGMGRL> enable configuration;
 Enabled.

3. By default the broker sets up a LOG_ARCHIVE_DEST_n for Maximum Performance database
protection mode.

The broker configures the remote archive destinations with the default values for
asynchronous transport, as shown here.

log_archive_dest_3=service="boston", ASYNC NOAFFIRM delay=0 optional
compression=disable max_failure=0 reopen=300 db_unique_name="boston"
net_timeout=30, valid_for=(online_logfile,all_roles)

Configure Redo Transport Mode
Configure the redo transport service on each configuration member by setting the LogXptMode
property to one of the following modes.

• ASYNC configures redo transport services for this standby database using the ASYNC and
NOAFFIRM attributes of the LOG_ARCHIVE_DEST_n initialization parameter. This mode, along
with standby redo log files, enables minimum data loss data protection of potentially less
couple seconds with zero performance impact.

• FASTSYNC configures redo transport services for this standby database using the SYNC and
NOAFFIRM attributes of the LOG_ARCHIVE_DEST_n initialization parameter. Configure
synchronous redo transport mode with the NOAFFIRM attribute (default=AFFIRM) when using
maximum availability mode protection mode. This helps to minimize the performance
impact of synchronous redo transport by acknowledging the receipt of redo once it has
been successfully received and verified within standby memory, but before the redo has
been written to the standby redo log. Zero data loss protection is still preserved when only
the primary database fails.

• SYNC configures redo transport services for this standby database using the SYNC and
AFFIRM attributes of the LOG_ARCHIVE_DEST_n initialization parameter. This mode, along
with standby redo log files, is required for configurations operating in either maximum
protection mode or maximum availability mode. This redo transport service enables zero
data loss data protection to the primary database, but also can incur a higher performance
impact if the round trip latency between primary and standby is high (for example, more
than 2ms). This option is required for maximum protection mode.

Use the EDIT DATABASE SET PROPERTY command to set the transport mode the broker
configuration, as shown in these examples.

DGMGRL> EDIT DATABASE 'boston' SET PROPERTY LogXptMode=ASYNC;
DGMGRL> EDIT DATABASE 'chicago' SET PROPERTY LogXptMode=FASTSYNC;
DGMGRL> EDIT DATABASE 'SanFran' SET PROPERTY LogXptMode=SYNC;

Validate the Broker Configuration
To identify any problems with the overall configuration, validate it using the following steps.

1. Show the status of the broker configuration using the SHOW CONFIGURATION command.

DGMGRL> show configuration;

 Configuration – dg

Chapter 15
Oracle Data Guard Configuration Best Practices

15-3

 Protection Mode: MaxPerformance
 Members:
 chicago - Primary database
 boston - Physical standby database

 Fast-Start Failover: DISABLED

 Configuration Status:
 SUCCESS (status updated 18 seconds ago)

If the configuration status is SUCCESS, everything in the broker configuration is working
properly. However, if the configuration status is WARNING or ERROR then something is wrong
in the configuration. Additional error messages that accompany a WARNING or ERROR status
can be used to identify the issues. The next step is to examine each database in the
configuration to narrow down what the specific error is related to.

2. To identify warnings on the primary and standby databases, show their statuses using the
SHOW DATABASE command.

DGMGRL> show database chicago

 Database – chicago

 Role: PRIMARY
 Intended State: TRANSPORT-ON
 Instance(s):
 tin1
 tin2

 Database Status:
 SUCCESS

If the database status is SUCCESS then the database is working properly. However, if
database status is WARNING or ERROR, then something is wrong in the database. Additional
error messages accompany the WARNING or ERROR status and can be used to identify
current issues.

Repeat the SHOW DATABASE command on the standby database and assess any error
messages.

3. Validate the databases on Oracle Database 12.1 and later.

In addition to the above commands, in Oracle Database 12.1 and later, the Data Guard
broker features a VALIDATE DATABASE command.

DGMGRL> validate database chicago

 Database Role: Primary database
 Ready for Switchover: Yes

DGMGRL> validate database boston;

 Database Role: Physical standby database
 Primary Database: tin

Chapter 15
Oracle Data Guard Configuration Best Practices

15-4

 Ready for Switchover: No
 Ready for Failover: Yes (Primary Running)

 Capacity Information:
 Database Instances Threads
 tin 2 2
 can 1 2
 Warning: the target standby has fewer instances than the
 primary database, this may impact application performance

 Standby Apply-Related Information:
 Apply State: Not Running
 Apply Lag: Unknown
 Apply Delay: 0 minutes

The VALIDATE DATABASE command does not provide a SUCCESS or WARNING status and must
be examined to determine if any action needs to be taken.

Configure Fast Start Failover
Fast-start failover allows the broker to automatically fail over to a previously chosen standby
database in the event of loss of the primary database. Enabling fast-start failover is
requirement to meet stringent RTO requirements in the case of primary database, cluster, or
site failure.

Fast-start failover quickly and reliably fails over the target standby database to the primary
database role, without requiring you to perform any manual steps to invoke the failover. Fast-
start failover can be used only in a broker configuration.

If the primary database has multiple standby databases, then you can specify multiple fast-
start failover targets, using the FastStartFailoverTarget property. The targets are referred to
as candidate targets. The broker selects a target based on the order in which they are
specified on the FastStartFailoverTarget property. If the designated fast-start failover target
develops a problem and cannot be the target of a failover, then the broker automatically
changes the fast-start failover target to one of the other candidate targets.

You can use any protection mode with fast-start failover. The maximum protection and
maximum availability modes provide an automatic failover environment guaranteed to lose no
data. Maximum performance mode provides an automatic failover environment guaranteed to
lose no more than the amount of data (in seconds) specified by the
FastStartFailoverLagLimit configuration property. This property indicates the maximum
amount of data loss that is permissible in order for an automatic failover to occur. It is only
used when fast-start failover is enabled and the configuration is operating in maximum
performance mode.

1. Set the FastStartFailoverThreshold property to specify the number of seconds you want
the observer and target standby database to wait, after detecting the primary database is
unavailable, before initiating a failover, as shown in this example.

DGMGRL> EDIT CONFIGURATION SET PROPERTY FastStartFailoverThreshold =
seconds;

A fast-start failover occurs when the observer and the standby database both lose contact
with the production database for a period of time that exceeds the value set for
FastStartFailoverThreshold, and when both parties agree that the state of the

Chapter 15
Oracle Data Guard Configuration Best Practices

15-5

configuration is synchronized (Maximum Availability), or that the lag is not more than the
configured FastStartFailoverLagLimit (Maximum Performance).

An optimum value for FastStartFailoverThreshold weighs the trade-off between the
fastest possible failover (minimizing downtime) and unnecessarily triggering failover
because of temporary network irregularities or other short-lived events that do not have
material impact on availability.

The default value for FastStartFailoverThreshold is 30 seconds.

The following table shows the recommended settings for FastStartFailoverThreshold in
different use cases.

Table 15-1 Minimum Recommended Settings for FastStartFailoverThreshold

Configuration minimum Recommended Setting

Single-instance primary, low latency, and a
reliable network

15 seconds

Single-instance primary and a high latency
network over WAN

30 seconds

Oracle RAC primary Oracle RAC miscount + reconfiguration time + 30
seconds

2. Determine where to place the observer in your topology.

In an ideal state fast-start failover is deployed with the primary, standby, and observer,
each within their own availability domain (AD) or data center; however, configurations that
only use two availability domains, or even a single availability domain, must be supported.
The following are observer placement recommendations for two use cases.

Deployment Configuration 1: 2 regions with two ADs in each region.

• Initial primary region has the primary database in AD1, and two high availability
observers (one observer in AD2 and second HA observer in AD1)

• Initial standby region has the standby database in AD1, and two high availability
observers used after role change (one observer in AD2 and second HA observer in
AD1)

• For the observer, MAA recommends at least 2 observer targets in the same primary
region but in different ADs

Deployment Configuration 2: 2 regions with only 1 AD in each region

• Initial primary regions have the primary database and two light weight servers to host
observers

• Initial standby region has the standby database and two light weight servers to host
observers (when there is a role change)

3. Configure observer high availability.

You can register up to three observers to monitor a single Data Guard broker configuration.
Each observer is identified by a name that you supply when you issue the START OBSERVER
command. You can also start the observers as a background process.

DGMGRL> sys@boston
Enter password: password
DGMGRL> start observer number_one in background;

Chapter 15
Oracle Data Guard Configuration Best Practices

15-6

On the same host or a different host you can start additional observers for high availability:

DGMGRL> sys@boston
Enter password: password
DGMGRL> start observer number_two in background;

Only the primary observer can coordinate fast-start failover with Data Guard broker. All
other registered observers are considered to be backup observers.

If the observer was not placed in the background then the observer is a continuously
running process that is created when the START OBSERVER command is issued. Therefore,
the command-line prompt on the observer computer does not return until you issue the
STOP OBSERVER command from another DGMGRL session. To issue commands and interact
with the broker configuration, you must connect using another DGMGRL client session.

Now that you have correctly configured fast-start failover, the following conditions can trigger a
failover.

• Database failure where all database instances are down

• Data files taken offline because of I/O errors

• Both the Observer and the standby database lose their network connection to the
production database, and the standby database confirms that it is in a synchronized state

• A user-configurable condition

Optionally, you can specify the following conditions for which a fast-start failover can be
invoked. It is recommend that you leave these user-configurable conditions at the default
values and not invoke an automatic failover.

• Data file offline (write error)

• Corrupted Dictionary

• Corrupted Control file

• Inaccessible Log file

• Stuck Archiver

• ORA-240 (control file enqueue timeout)

Should one of these conditions be detected, the observer fails over to the standby, and the
primary shuts down, regardless of how FastStartFailoverPmyShutdown is set. Note that the
for user-configurable conditions, the fast-start failover threshold is ignored and the failover
proceeds immediately.

Fast Start Failover with Multiple Standby Databases
The FastStartFailoverTarget configuration property specifies the DB_UNIQUE_NAME of one or
more standby databases that can act as target databases in a fast-start failover situation when
the database on which the property is set is the primary database. These possible target
databases are referred to as candidate fast-start failover targets.

The FastStartFailoverTarget configuration property can only be set to the name of physical
standbys. It cannot be set to the name of a snapshot standby database, far sync instance, or
Zero Data Loss Recovery Appliance.

If only one physical standby database exists, then the broker selects that as the default value
for this property on the primary database when fast-start failover is enabled. If more than one

Chapter 15
Oracle Data Guard Configuration Best Practices

15-7

physical standby database exists, then the broker selects one based on the order in which they
are specified in the property definition. Targets are verified when fast-start failover is enabled

Set Log Buffer Optimally
Set LOG_BUFFER to a minimum of 256 MB when using Oracle Data Guard with asynchronous
redo transport.

Doing so allows the asynchronous redo transport to read redo from the log buffer and avoid
disk I/Os to online redo logs. For workloads that have a very high redo generation rate (for
example, > 50 MB/sec per database instance) the LOG_BUFFER can be increased up to
maximum value allowed for the platform being used.

Note:

The maximum LOG_BUFFER setting for Linux platform is 2 GB and for Windows is 1
GB.

Set Send and Receive Buffer Sizes
Redo transport processes, especially the receive/standby side, generally benefit from more
TCP socket buffers in high latency network paths. TCP socket buffers can be managed by the
TCP stack dynamically.

Setting the maximum values for tcp_rmem and tcp_wmem allows the kernel to dynamically
modify the buffers allocated to a socket as needed.

Bandwidth Delay Product (BDP) is the product of the network link capacity of a channel and
the round time, or latency. The minimum recommended value for socket buffer sizes is 3*BDP,
especially for a high-latency, high-bandwidth network. Use oratcptest to tune the socket buffer
sizes.

As root, set the maximum value for tcp_rmem and tcp_wmem to 3*<Bandwidth Delay
Product>. In this example BDP is 16MB. The other two values for these parameters should be
left as they currently are set on the system.

sysctl -w net.ipv4.tcp_rmem='4096 87380 16777216';

sysctl -w net.ipv4.tcp_wmem='4096 16384 16777216';

Using sysctl to change these values changes them dynamically in memory only and will be lost
when the system is rebooted. Additionally set these values in /etc/sysctl.conf on linux systems.
Add these entries if the values are absent in the file.

net.ipv4.tcp_rmem='4096 87380 16777216'

net.ipv4.tcp_wmem='4096 16384 16777216'

Set SDU Size to 65535 for Synchronous Transport Only
With Oracle Net Services you can control data transfer by adjusting the session data unit
(SDU) size. Oracle testing has shown that setting the SDU parameter to its maximum value of
65535 improves performance of synchronous transport.

Chapter 15
Oracle Data Guard Configuration Best Practices

15-8

You can set SDU on a per connection basis using the SDU parameter in the local naming
configuration file, tnsnames.ora, and the listener configuration file, listener.ora, or you can
set the SDU for all Oracle Net Services connections with the profile parameter
DEFAULT_SDU_SIZE in the sqlnet.ora file.

Configure Online Redo Logs Appropriately
Redo log switching has a significant impact on redo transport and apply performance. Follow
these best practices for sizing the online redo logs on the primary and standby databases.

Following these guidelines for online redo logs.

• All online redo log groups should have identically sized logs (to the byte).

• Online redo logs should reside on high performing disks (DATA disk groups).

• Create a minimum of three online redo log groups per thread of redo on Oracle RAC
instances.

• Create online redo log groups on shared disks in an Oracle RAC environment.

• Multiplex online redo logs (multiple members per log group) unless they are placed on high
redundancy disk groups.

• Size online redo logs to switch no more than 12 times per hour (every ~5 minutes). In most
cases a log switch every 15 to 20 minutes is optimal even during peak workloads.

Sizing Redo Logs
Size the redo logs based on the peak redo generation rate of the primary database.

You can determine the peak rate by running the query below for a period of time that includes
the peak workload. The peak rate could be seen at month-end, quarter-end, or annually. Size
the redo logs to handle the highest rate in order for redo apply to perform consistently during
these workloads.

SQL> SELECT thread#,sequence#,blocks*block_size/1024/1024 MB,(next_time-
first_time)*86400 sec,
 blocks*block_size/1024/1024)/((next_time-first_time)*86400) "MB/s"
 FROM v$archived_log WHERE ((next_time-first_time)*86400<>0) and first_time
 between to_date('2015/01/15 08:00:00','YYYY/MM/DD HH24:MI:SS')
 and to_date('2015/01/15 11:00:00','YYYY/MM/DD HH24:MI:SS') and dest_id=1
order by first_time;

 THREAD# SEQUENCE# MB SEC MB/s
---------- ---------- ---------- ---------- ----------
 2 2291 29366.1963 831 35.338383
 1 2565 29365.6553 781 37.6000708
 2 2292 29359.3403 537 54.672887
 1 2566 29407.8296 813 36.1719921
 2 2293 29389.7012 678 43.3476418
 2 2294 29325.2217 1236 23.7259075
 1 2567 11407.3379 2658 4.29169973
 2 2295 29452.4648 477 61.7452093
 2 2296 29359.4458 954 30.7751004
 2 2297 29311.3638 586 50.0193921
 1 2568 3867.44092 5510 .701894903

Chapter 15
Oracle Data Guard Configuration Best Practices

15-9

Choose the redo log size based on the peak generation rate with the following chart.

Table 15-2 Recommended Redo Log Size

Peak Redo Rate Recommended Redo Log Size

<= 1 MB/s 1 GB

<= 5 MB/s 4 GB

<= 25 MB/s 16 GB

<= 50 MB/s 32 GB

> 50 MB/s 64 GB

Use Standby Redo Log Groups
Configure the standby redo log groups on all primary and standby databases for improved
availability and performance.

For each redo log thread--a thread is associated with an Oracle RAC database instance--the
number of standby redo log groups must be greater than or equal to (>=) the number of online
redo log groups.

Consider the following additional guidelines when creating standby redo log groups.

• All online redo logs and standby redo log groups should have identically sized logs (to the
byte). Standby redo logs are not used if they are not the same size as the online redo logs.

• All standby redo log groups should have identically sized logs (to the byte) on both the
primary and standby databases.

• Standby redo logs should reside on high performing disks (DATA disk group).

• Standby redo logs should be multiplexed (multiple members per log group) unless placed
on high redundancy disk groups. Multiplexing standby redo logs is optional in all cases
because Data Guard can fetch any missing redo.

• In an Oracle RAC environment, create standby redo logs on a shared disk.

• In an Oracle RAC environment, assign a thread to each standby redo log group.

The following example creates three log groups for each redo thread.

SQL> ALTER DATABASE ADD STANDBY LOGFILE THREAD 1 GROUP 7 ('+DATA') SIZE
4194304000, GROUP 8 ('+DATA') SIZE 4194304000, GROUP 9 ('+DATA') SIZE
4194304000;

SQL> ALTER DATABASE ADD STANDBY LOGFILE THREAD 2 GROUP 10 ('+DATA') SIZE
4194304000, GROUP 11 ('+DATA') SIZE 4194304000, GROUP 12 ('+DATA') SIZE
419430400

To check the thread number and group numbers of the online redo logs, query the V$LOG view.

SQL> SELECT * FROM V$LOG;

To check the results of the ALTER DATABASE ADD STANDBY LOGFILE THREAD statements, query
the V$STANDBY_LOG view.

SQL> SELECT * FROM V$STANDBY_LOG;

Chapter 15
Oracle Data Guard Configuration Best Practices

15-10

Protect Against Data Corruption
Oracle Database corruption prevention, detection, and repair capabilities are built on internal
knowledge of the data and transactions it protects, and on the intelligent integration of its
comprehensive high availability solutions.

When data corruption is detected, Oracle Data Guard, block media recovery, and data file
media recovery can recover the data. Database-wide logical corruptions caused by human or
application errors can be undone with Oracle Flashback Technologies.

Tools are also available for proactive validation of logical data structures. For example, the
SQL*Plus ANALYZE TABLE statement detects inter-block corruptions.

Achieve the most comprehensive data corruption prevention and detection with these best
practices.

• Use Oracle Data Guard with physical standby databases to prevent widespread block
corruption. Oracle Data Guard is the best solution for protecting Oracle data against data
loss and corruption, and lost writes.

• Set the Oracle Database block-corruption initialization parameters on the Data Guard
primary and standby databases as shown in the following table.

Table 15-3 Block-Corruption Initialization Parameter Settings

On the primary database set... On the standby databases set...

DB_BLOCK_CHECKSUM=TYPICAL or FULL
DB_LOST_WRITE_PROTECT=TYPICAL
DB_BLOCK_CHECKING=FALSE*

DB_BLOCK_CHECKSUM=TYPICAL or FULL
DB_LOST_WRITE_PROTECT=TYPICAL
DB_BLOCK_CHECKING=MEDIUM or FULL

* DB_BLOCK_CHECKING on the PRIMARY is recommended to be set to MEDIUM or FULL but only
after a full performance evaluation with the application.

• Performance overhead is incurred on every block change, therefore performance testing is
of particular importance when setting the DB_BLOCK_CHECKING parameter. Oracle highly
recommends the minimum setting of DB_BLOCK_CHECKING=MEDIUM (block checks on data
blocks but not index blocks) on either the primary or standby database. If the performance
overhead of enabling DB_BLOCK_CHECKING to MEDIUM or FULL is unacceptable on your
primary database, then set DB_BLOCK_CHECKING to MEDIUM or FULL for your standby
databases.

The following recommendations also help to protect against data corruptions.

• Use Oracle Automatic Storage Management (Oracle ASM) to provide disk mirroring to
protect against disk failures.

• Use Oracle ASM HIGH REDUNDANCY for optimal corruption repair. Using Oracle ASM
redundancy for disk groups provides mirrored extents that can be used by the database if
an I/O error or corruption is encountered. For continued protection, Oracle ASM
redundancy provides the ability to move an extent to a different area on a disk if an I/O
error occurs. The Oracle ASM redundancy mechanism is useful if you have bad sectors
returning media errors.

• Enable Flashback Technologies for fast point-in-time recovery from logical corruptions
most often caused by human error and for fast reinstatement of a primary database
following failover.

Chapter 15
Oracle Data Guard Configuration Best Practices

15-11

• Use RMAN for additional block checks during backup and restore operations. Implement a
backup and recovery strategy with Recovery Manager (RMAN) and periodically use the
RMAN BACKUP VALIDATE CHECK LOGICAL scan to detect corruptions.

• Use Zero Data Loss Recovery Appliance for backup and recovery validation including
corruption checks and repairs, central backup validation, reduced production database
impact, and Enterprise Cloud backup and recovery solution.

Use Flashback Database for Reinstatement After Failover
Enable Flashback Database on both the primary and standby database, so that if the original
primary database has not been damaged, you can reinstate the original primary database as a
new standby database following a failover.

If there is a failure during the switchover process, then it can easily be reversed when
Flashback Database is enabled.

Set DB_FLASHBACK_RETENTION_TARGET to the same value on the standby database as the
primary. Set DB_FLASHBACK_RETENTION_TARGET initialization parameter to the largest value
prescribed by any of the following conditions that apply.

• To leverage flashback database to reinstate your failed primary database after Data Guard
failover, for most cases set DB_FLASHBACK_RETENTION_TARGET to a minimum of 120
(minutes) to enable reinstatement of a failed primary.

• If using Flashback Database for fast point in time recovery from user error or logical
corruptions, set DB_FLASHBACK_RETENTION_TARGET to a value equal to the farthest time in
the past to which the database should be recovered. If you can detect and repair from
logical corruptions in less than 24 hours, then set DB_FLASHBACK_RETENTION_TARGET to a
minimum of 1440 (minutes).

Use Force Logging Mode
When the primary database is in FORCE LOGGING mode, all database data changes are logged.
FORCE LOGGING mode ensures that the standby database remains consistent with the primary
database.

If it is not possible to use this mode because you require the load performance with NOLOGGING
operations, then see Enable an Appropriate Logging Mode for other options.

You can enable force logging immediately by issuing an ALTER DATABASE FORCE LOGGING
statement. If you specify FORCE LOGGING, then Oracle waits for all ongoing non-logged
operations to finish.

Configure Fast Start Failover to Bound RTO and RPO (MAA Gold
Requirement)

Enabling fast-start failover is requirement to meet stringent RTO requirements in the case of
primary database, cluster, or site failure. With Data Guard fast-start failover, there's a Data
Guard observer to provide quorum of 2 and to preserve database consistency and prevent
database split brains.

Fast-start failover allows the Data Guard broker to automatically fail over to a previously
chosen standby database in the event of loss of the primary database. Fast-start failover
quickly and reliably switches the target standby database over to the primary database role,

Chapter 15
Oracle Data Guard Configuration Best Practices

15-12

without requiring you to perform any manual steps to invoke the failover. Fast-start failover can
be used only in a Data Guard broker configuration.

If the primary database has multiple standby databases, then you can specify multiple fast-
start failover targets, using the FastStartFailoverTarget property. The targets are referred to
as candidate targets. The broker selects a target based on the order in which they are
specified on the FastStartFailoverTarget property. If the designated fast-start failover target
develops a problem and cannot be the target of a failover, then the broker automatically
changes the fast-start failover target to one of the other candidate targets.

You can use any Data Guard protection mode with fast-start failover. The maximum protection
and maximum availability modes provide an automatic failover environment guaranteed to lose
no data. Maximum performance mode provides an automatic failover environment guaranteed
to lose no more than the amount of data (in seconds) specified by the
FastStartFailoverLagLimit configuration property. This property indicates the maximum
amount of data loss that is permissible in order for an automatic failover to occur. It is only
used when fast-start failover is enabled and the configuration is operating in maximum
performance mode.

1. Set the FastStartFailoverThreshold property to specify the number of seconds you want
the observer and target standby database to wait, after detecting the primary database is
unavailable, before initiating a failover, as shown in this example.

DGMGRL> EDIT CONFIGURATION SET PROPERTY FastStartFailoverThreshold =
seconds;

A fast-start failover occurs when the observer and the standby database both lose contact
with the production database for a period of time that exceeds the value set for
FastStartFailoverThreshold, and when both parties agree that the state of the
configuration is synchronized (Maximum Availability mode), or that the lag is not more than
the configured FastStartFailoverLagLimit (Maximum Performance mode).

An optimum value for FastStartFailoverThreshold weighs the trade-off between the
fastest possible failover (minimizing downtime) and unnecessarily triggering failover
because of temporary network irregularities or other short-lived events that do not have
material impact on availability.

The default value for FastStartFailoverThreshold is 30 seconds.

The following table shows the recommended settings for FastStartFailoverThreshold in
different use cases.

Configuration Minimum Recommended Setting

Single-instance primary, low latency, and a
reliable network

15 seconds

Single-instance primary and a high latency
network over WAN

30 seconds

Oracle RAC primary Oracle RAC miscount + reconfiguration time + 30
seconds

For Exadata systems, minimum setting of 30
seconds

2. Determine where to place the observer in your topology.

The Data Guard broker observer provides a quorum of 2 to preserve database consistency
and avoid split brains. Data Guard fast-start failover always guarantees that only one
primary database exists, and external consistency is guaranteed by routing transactions to

Chapter 15
Oracle Data Guard Configuration Best Practices

15-13

the primary database. In an ideal state, fast-start failover is deployed with the primary,
standby, and observer, each within their own availability domain (AD) or data center;
however, configurations that only use two availability domains, or even a single availability
domain, must be supported. The following are observer placement recommendations for
two use cases.

• Deployment Configuration 1: 2 regions with two ADs in each region.

– Initial primary region has the primary database in AD1, and two high availability
observers (one observer in AD2 and second HA observer in AD1)

– Initial standby region has the standby database in AD1, and two high availability
observers used after role change (one observer in AD2 and second HA observer
in AD1)

– For the observer, MAA recommends at least 2 observer targets in the same
primary region but in different ADs

• Deployment Configuration 2: 2 regions with only 1 AD in each region

– Initial primary regions have the primary database and two light weight servers to
host observers

– Initial standby region has the standby database and two light weight servers to
host observers (when there is a role change)

3. Configure observer high availability.

You can register up to three observers to monitor a single Data Guard broker configuration.
Each observer is identified by a name that you supply when you issue the START OBSERVER
command. You can also start the observers as a background process.

DGMGRL> sys@boston
Enter password:
DGMGRL> start observer number_one in background;

On the same host or a different host you can start additional observers for high availability:

DGMGRL> sys@boston
Enter password:
DGMGRL> start observer number_two in background;

Only the primary observer can coordinate fast-start failover with Data Guard broker. All
other registered observers are considered to be backup observers.

If the observer was not placed in the background, then the observer is a continuously
executing process that is created when the START OBSERVER command is issued.
Therefore, the command-line prompt on the observer computer does not return until you
issue the STOP OBSERVER command from another DGMGRL session. To issue commands and
interact with the broker configuration, you must connect using another DGMGRL client
session.

Triggering Fast-Start Failover

Now that you have correctly configured fast-start failover, the following conditions can trigger a
failover.

• Database failure where all database instances are down

• Datafiles taken offline because of I/O errors

Chapter 15
Oracle Data Guard Configuration Best Practices

15-14

• Both the Observer and the standby database lose their network connection to the
production database, and the standby database confirms that it is in a synchronized state

• A user-configurable condition

Optionally, you can specify the following conditions for which a fast-start failover can be
invoked. It is recommend that you leave these user-configurable conditions at the default
values and not invoke an automatic failover.

• Datafile offline (write error)

• Corrupted Dictionary

• Corrupted Controlfile

• Inaccessible Logfile

• Stuck Archiver

• ORA-240 (control file enqueue timeout)

Should one of these conditions be detected, the observer fails over to the standby, and the
primary shuts down, regardless of how FastStartFailoverPmyShutdown is set. Note that the
for user-configurable conditions, the fast-start failover threshold is ignored and the failover
proceeds immediately.

Fast Start Failover with Multiple Standby Databases

The FastStartFailoverTarget configuration property specifies the DB_UNIQUE_NAME of one or
more standby databases that can act as target databases in a fast-start failover situation when
the database on which the property is set is the primary database. These possible target
databases are referred to as candidate fast-start failover targets.

The FastStartFailoverTarget configuration property can only be set to the name of physical
standbys. It cannot be set to the name of a snapshot standby database, far sync instance, or
Zero Data Loss Recovery Appliance.

If only one physical standby database exists, then the broker selects that as the default value
for this property on the primary database when fast-start failover is enabled. If more than one
physical standby database exists, then the broker selects one based on the order in which they
are specified in the property definition. Targets are verified when fast-start failover is enabled.

Configure Standby AWR
Since Oracle Database 12c (12.2), Automatic Workload Repository (AWR) snapshots can be
taken of the standby database.

Standby AWR is the best tool for identifying performance issues with recovery and reporting
workloads in an Active Data Guard standby database.

See Managing Automatic Workload Repository in Active Data Guard Standby Databases for
details about configuring and managing standby AWR.

Note:

For Oracle Exadata Cloud Data Guard deployments, standby AWR is configured as
part of instantiation.

To Create Standby AWR Reports

Chapter 15
Oracle Data Guard Configuration Best Practices

15-15

1. Identify the AWR ID (NODE_ID) for the standby database.

SQL> select NODE_ID,NODE_NAME from DBA_UMF_REGISTRATION;

2. Run the reports from the primary database using the NODE_ID for the target database as
the DBID.

• For instance level reports (for example, assessing redo apply performance
bottlenecks) use the awrrpti script.

SQL> ?/rdbms/admin/awrrpti

• For global AWR reports on the standby (for example, assessing query performance)
use the awrgrpti script.

SQL> ?/rdbms/admin/awrgrpti

Configuring Multiple Standby Databases
An Oracle Data Guard configuration with multiple standby databases gives you the benefits of
both local and remote standby databases.

A local standby database can provide zero data loss failover and application downtime
reduced to seconds. If a regional disaster occurs, making the primary and local standby
systems inaccessible, the application and database can fail over to the remote standby. See
"Gold: Multiple Standby Databases" for a full discussion of the features and benefits of a
multiple standby configuration.

Managing Oracle Data Guard Configurations with Multiple Standby
Databases

The Oracle Data Guard broker automates management and operation tasks across multiple
databases in an Oracle Data Guard configuration. The broker also monitors all of the systems
in a single Oracle Data Guard configuration.

In a multi-member Data Guard configuration the following redo transport destinations are
supported:

• Oracle Data Guard standby databases

• Far sync instances (See Using Far Sync Instances for more information)

• Oracle Streams downstream capture databases

• Zero Data Loss Recovery Appliance (Recovery Appliance)

Multiple Standby Databases and Redo Routes
You can use the Oracle Data Guard broker RedoRoutes property to override the default
behavior by which a primary database sends the redo that it generates to every other redo
transport destination in the configuration.

An example redo transport topology that differs from the default would be one in which a
physical standby, or a far sync instance, forwards redo received from the primary database to
one or more destinations, or one in which the redo transport mode used for a given destination
is dependent on which database is in the primary role.

Chapter 15
Configuring Multiple Standby Databases

15-16

https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html

Consider a configuration that has a primary database (North_Sales) and two physical standby
databases (Local_Sales and Remote_Sales). The Local_Sales database is located in the
same data center as the primary for high availability purposes and for simpler application and
database failover. The Remote_Sales database is located in a remote data center for disaster
recovery purposes.

Rather than have North_Sales ship its redo to both databases, you can use the RedoRoutes
broker property to configure real-time cascading, in which the local physical standby database
forwards to Remote_Sales the redo it receives from North_Sales. To accomplish this, the
RedoRoutes property is set on North_Sales and Local_Sales as follows:

• On the North_Sales database, the RedoRoutes property specifies that if North_Sales is in
the primary role, then it should ship redo to the Local_Sales database using synchronous
transport mode. This rule prevents the primary from shipping redo data directly to the
Remote_Sales database.

• On the Local_Sales database, the RedoRoutes property must specify that if North_Sales is
in the primary role, then Local_Sales should forward redo it receives from North_Sales on
to Remote_Sales.

To see the runtime RedoRoutes configuration, use the SHOW CONFIGURATION command. For
example:

DGMGRL> SHOW CONFIGURATION;

Configuration - Sales_Configuration

 Protection Mode: MaxAvailability
 Members:
 North_Sales - Primary database
 Local_Sales - Physical standby database
 Remote_Sales - Physical standby database (receiving current redo)

Fast-Start Failover: DISABLED

Configuration Status:
SUCCESS

Note that the asynchronous redo transport attribute was explicitly specified in the redo route
rule for the Remote_Sales destination to enable real-time cascading of redo to that destination.
(Real-time cascading requires a license for the Oracle Active Data Guard option.)

To disable real-time cascading of redo, do not specify the asynchronous redo transport
attribute. For example:

DGMGRL> EDIT DATABASE 'Local_Sales' SET PROPERTY 'RedoRoutes' =
'(North_Sales : Remote_Sales)';

See RedoRoutes for more information.

Using the RedoRoutes Property for Remote Alternate Destinations
The RedoRoutes property can be used to set up a remote alternate destination, so that a
terminal member can still receive redo data even if the member from which it was receiving the
redo data fails.

Chapter 15
Configuring Multiple Standby Databases

15-17

Using the previous example, you can have the primary database, North_Sales, send redo data
directly to Remote_Sales if the Local_Sales standby database failed. It is also possible, using
the PRIORITY attribute, to specify that once the Local_Sales failure has been resolved it can
resume shipping redo to Remote_Sales.

DGMGRL> EDIT DATABASE 'North_Sales' SET PROPERTY
 'RedoRoutes' = '(LOCAL : (Local_Sales ASYNC PRIORITY=1, Remote_Sales ASYNC
PRIORITY=2))';
Property "RedoRoutes" updated

DGMGRL> EDIT DATABASE 'Local_Sales'
 SET PROPERTY 'RedoRoutes' = '(North_Sales : Remote_Sales ASYNC)';
Property "RedoRoutes" updated

DGMGRL> SHOW CONFIGURATION;

Configuration - Sales_Configuration

 Protection Mode: MaxPerformance
 Members:
 North_Sales - Primary database
 Local_Sales - Physical standby database
 Remote_Sales - Physical standby database
Fast-Start Failover: DISABLED

Configuration Status:
SUCCESS

To see the full RedoRoutes configuration, use the SHOW CONFIGURATION VERBOSE command. For
example:

DGMGRL> SHOW CONFIGURATION VERBOSE;

Configuration - Sales_Configuration

 Protection Mode: MaxPerformance
 Members:
 North_Sales - Primary database
 Local_Sales - Physical standby database
 Remote_Sales - Physical standby database
 Remote_Sales - Physical standby database (alternate of Local_Sales)

 Properties:
 FastStartFailoverThreshold = '180'
 OperationTimeout = '30'
 TraceLevel = 'USER'
 FastStartFailoverLagLimit = '300'
 CommunicationTimeout = '180'
 ObserverReconnect = '0'
 FastStartFailoverAutoReinstate = 'TRUE'
 FastStartFailoverPmyShutdown = 'TRUE'
 BystandersFollowRoleChange = 'ALL'
 ObserverOverride = 'FALSE'
 ExternalDestination1 = ''
 ExternalDestination2 = ''

Chapter 15
Configuring Multiple Standby Databases

15-18

 PrimaryLostWriteAction = 'CONTINUE'
 ConfigurationWideServiceName = 'c0_CFG'

Fast-Start Failover: DISABLED

Configuration Status:
SUCCESS

Fast Start Failover with Multiple Standby Databases
The Oracle Data Guard FastStartFailoverTarget broker configuration property specifies the
DB_UNIQUE_NAME of one or more standby databases that can act as target databases in a fast-
start failover scenario when the database on which the property is set is the primary database.

These possible target databases are referred to as candidate fast-start failover targets. The
FastStartFailoverTarget property can only be set to the name of physical standbys. It cannot
be set to the name of a snapshot standby database, far sync instance, or Zero Data Loss
Recovery Appliance.

If only one physical standby database exists, then the broker selects that database as the
default value for FastStartFailoverTarget on the primary database when fast-start failover is
enabled. If more than one physical standby database exists, then the broker selects a single
standby based on the order in which they are specified in the property definition. The targets
are verified when fast-start failover is enabled.

See also, FastStartFailoverTarget.

Setting FastStartFailoverTarget
If you have two or more standby databases, set up the FastStartFailoverTarget
configuration property on the primary database to indicate the desired fast-start failover target
standby database.

The Oracle Data Guard broker reciprocally sets this property for the target standby database to
indicate the primary database as its future target standby database when fast-start failover is
actually enabled. There is no need for you set this property on the target standby as this is
done for you automatically. For example:

DGMGRL> edit database moe set property ='curly,larry';
Property "faststartfailovertarget" updated

After FastStartFailoverTarget is configured, continue with enabling fast-start failover. When
fast-start failover is enabled, you cannot change the FastStartFailoverTarget configuration
property on the primary or target standby databases.

To change the FastStartFailoverTarget property to point to a different standby database,
disable fast-start failover, set the FastStartFailoverTarget property, and reenable fast-start
failover. This action does not impact primary or standby database availability or up time.

Switchover with FastStartFailoverTarget Set
If fast-start failover is enabled with FastStartFailoverTarget set you can still perform a
switchover or a manual failover, as long the role change is directed to the same standby
database that was specified for the FastStartFailoverTarget database property on the
primary database.

Chapter 15
Configuring Multiple Standby Databases

15-19

Attempting to switch over to a standby that is not the fast-start failover target results in
ORA-16655.

DGMGRL> switchover to curly
Performing switchover NOW, please wait...
Error: ORA-16655: specified standby database not the current fast-start
failover target standby

To switch over to a standby that is not the primary fast-start target:

1. Disable fast-start failover.

DGMGRL> DISABLE FAST_START FAILOVER;

2. Edit the FastStartFailoverTarget property to list the standby you wish to switch over to
first.

DGMGRL> edit database moe set property
FastStartFailoverTarget='curly,larry';
Property "faststartfailovertarget" updated

3. Enable fast-start failover.

DGMGRL> ENABLE FAST_START FAILOVER;

4. Perform the switchover operation.

DGMGRL> switchover to curly
Performing switchover NOW, please wait...

Fast-Start Failover Outage Handling
If the primary database's fast-start failover target standby database becomes unavailable,
perhaps because the standby database or instance is down or there's an issue with
transporting redo, then the primary's fast-start failover target is automatically switched to the
next target configured in the FastStartFailoverTarget property.

Note that is can take several ping cycles to effect the target switch: one ping to recognize that
the current target is not viable, and another ping to propose the target switch and finalize it.

If the original fast-start failover target comes back online, a switch back to the original target is
not performed automatically. To get the original target back after an outage you must disable
and then enable fast-start failover.

Oracle Active Data Guard Far Sync Solution
To support zero data loss, you can deploy between the primary and standby databases an
Oracle Data Guard far sync instance, which is a remote Oracle Data Guard destination that
accepts redo from the primary database and then ships that redo to other members of the
Oracle Data Guard configuration.

Chapter 15
Oracle Active Data Guard Far Sync Solution

15-20

About Far Sync
Far Sync is an Oracle Active Data Guard feature that provides increased flexibility in the
location of a disaster recovery site for those who wish to implement zero data loss protection.

Even users who have already deployed Oracle Data Guard synchronous transport can benefit
from configuring a far sync instance closer to the primary than their current standby to reduce
the performance impact on the production database.

Synchronous redo transport over WAN distances or on an under-performing network often has
too large an impact on primary database performance to support zero data loss protection.
Oracle Active Data Guard Far Sync provides the ability to perform a zero data loss failover to a
remote standby database without requiring a second standby database or complex operation.

Far Sync enables this by deploying a far sync instance (a lightweight Oracle instance) at a
distance that is within an acceptable range of the primary for synchronous redo transport. A far
sync instance receives redo from the primary using synchronous transport and forwards the
redo to up to 29 remote standby databases using asynchronous transport.

Far sync instances are part of the Oracle Active Data Guard Far Sync feature, which requires
an Oracle Active Data Guard license.

Offloading to a Far Sync Instance
A far sync instance offloads from the primary any overhead of resolving gaps in redo received
by the remote standby database (for example, following network or standby database outages)
and can conserve WAN bandwidth by performing redo transport compression without
impacting primary database performance.

Note that redo compression requires that the Advanced Compression Option be licensed.

Redo Transport Encryption can additionally be offloaded to the far sync instance. Including
Advanced Security Option (ASO) encryption during MAA testing showed no impact to the
performance of the primary nor currency of the standby databases.

Oracle recommends using ASO for encryption because it is tested and integrated with Oracle
Net and Data Guard.

Note that Oracle Advanced Security Option is a licensed option.

Far Sync Deployment Topologies
Oracle Active Data Guard Far Sync provides the ability to perform a zero data loss failover to a
remote standby database without requiring a second standby database or complex operation.

Data Guard enables this by deploying a far sync instance (a lightweight Oracle instance that
has only a control file, SPFILE, password file and standby log files; there are no database files
or online redo logs) at a distance that is within an acceptable range of the primary for
synchronous transport. A far sync instance receives redo from the primary through
synchronous transport and immediately forwards the redo to up to 29 remote standby
databases using asynchronous transport. A far sync instance can also forward redo to the new
Oracle Database Backup, Logging, and Recovery Appliance.

Chapter 15
Oracle Active Data Guard Far Sync Solution

15-21

Figure 15-1 Far Sync Architecture Overview

The following use cases illustrate the benefits of various architecture choices you can
implement with far sync instances.

Case 1: Zero Data Loss Protection Following Role Transitions
This is the most basic example in which a primary database uses high availability far sync
instances to extend zero data loss failover to a remote standby database.

Ideally the high availability far sync instance is deployed in a location separate from the
primary database to isolate it from site failure, but within a metro area distance (network RTT of
5ms or less – subject to performance testing). Even if no separate location is available there is
still a benefit to deploying a far sync instance within the same data center to enable fast, zero
data loss failover for all unrecoverable outages short of full site failure.

The remote high availability far sync instance is idle while the standby database is in a standby
role. It becomes active when the standby database transitions to the primary database role,
enabling zero data loss failover to the new standby (old primary). The high availability far sync
instance that is local to the original primary database becomes inactive while it is in a standby
role.

Figure 15-2 Role Transition Facilitated by Far Sync

High availability far sync options are described in Far Sync Instance High Availability
Typologies.

Chapter 15
Oracle Active Data Guard Far Sync Solution

15-22

Case 2: Reader Farm Support
Far Sync can support up to 30 remote destinations, making it a very useful tool for supporting a
reader farm – an Active Data Guard configuration having multiple active standby databases to
easily scale read performance.

In this example the reader farm is configured in a remote location from the primary database.
The primary ships once over the WAN to the far sync instance located in the remote
destination and Far Sync distributes redo locally to all active standby databases in the reader
farm.

Figure 15-3 Far Sync Ships Redo to Reader Farm

Case 3: Cloud Deployment With Far Sync Hub
Far Sync is a very lightweight process; a single physical server can support multiple far sync
instances, each providing zero data loss failover to a remote destination.

The diagram below shows primary databases shipping to a single physical machine operating
as a far sync "hub" consisting of multiple far sync instances on a single physical machine.
Primaries and the far sync hub are on-premises while standby databases are deployed
remotely in the cloud.

Note that all of the systems in this configuration (primary and standby database hosts and far
sync instance host) must meet the usual requirements for compatibility in a Data Guard
configuration described in Data Guard Support for Heterogeneous Primary and Physical
Standbys in Same Data Guard Configuration (Doc ID 413484.1).

Chapter 15
Oracle Active Data Guard Far Sync Solution

15-23

https://support.oracle.com/rs?type=doc&id=413484.1
https://support.oracle.com/rs?type=doc&id=413484.1

Figure 15-4 Far Sync Hub Architecture

Far Sync High Availability Topologies
To keep far sync instances highly available, consider the following deployment topologies.

Deploy Far Sync Instances on Oracle Real Application Clusters

The far sync instance can be placed on an Oracle RAC cluster. In this configuration a far sync
instance is only active on one server at a time while other servers provide automatic failover for
high availability. The characteristics of this approach include:

• Lowest data loss potential and brown-out when the active far sync instance or node fails.

• The ability to resume zero data loss protection quickly after far sync instance failure.

• By itself, this solution does not address cluster failure.

The most critical applications are well served by a pair of Oracle RAC far sync instances, each
configured as an alternate for the other and deployed at different locations. This provides the
most robust HA and data protection (during instance, node, cluster and site outages).

Deploy Far Sync Instances on Alternate Destinations and Multiple Far Sync instances

Configuring two separate far sync instances on distinct physical machines, each serving as an
alternate destination for the other, provides far sync instance high availability in a non-Oracle
RAC environment. Each destination defined on the primary database contains the
ALTERNATE keyword assigning the other far sync instance as the alternate. When the active
far sync instance enters an error state the alternate destination pointing to the alternate far
sync instance is enabled automatically. By defining a far sync instance as an alternate
destination, Maximum Availability protection will be maintained after a briefly dropping to a
resynchronization state while the new destination is prepared.

The characteristics of this approach include:

• Retains zero data loss coverage after far sync instance transport failures (instance or
network outages).

• Failure testing has shown

– During far sync instance failures a performance brownout of approximately 3.5
seconds while SYNC redo transport starts (network sync service - NSS).

Chapter 15
Oracle Active Data Guard Far Sync Solution

15-24

– During network failures a short brownout equal to the setting of the destination's
net_timeout parameter was observed.

• HA for machine outage assuming each far sync instance is on separate hardware.

• HA for site outage assuming far sync instances are deployed in separate sites.

• Higher application brown-out and resynchronization time during far sync instance outages
compared with Far Sync with Oracle RAC

Deploy a Far Sync Instance on the Terminal Standby as an Alternate Destination

The simplest approach to maintaining data protection during a far sync instance outage is to
create an alternate LOG_ARCHIVE_DEST_n pointing directly to the terminal standby (the terminal
failover target). Asynchronous transport to the remote destination is the most likely choice in
order to avoid the performance impact on the primary caused by WAN network latency.

Asynchronous transport can achieve near-zero data loss protection (as little as sub-seconds to
seconds of exposure), but because it never waits for standby acknowledgment, it is unable to
provide a zero data loss guarantee. In this configuration the protection level must be dropped
to Maximum Performance prior to a switchover (planned event) as the level must be
enforceable on the target in order to perform the transition. Changing protection levels and
transport methods is a dynamic operation that does not require downtime.

During a far sync instance outage, redo transport automatically fails over to using the alternate
destination. Once the far sync instance is repaired and resumes operation, transport
automatically switches back to the far sync instance and zero data loss protection is restored.

The characteristics of this approach include:

• No additional hardware or far sync instances to manage.

• Loss of zero data loss coverage during a far sync instance outage. Data protection level
drops to UNSYNCHRONIZED with ASYNC transport until the Far sync instance can resume
operation and the standby become fully synchronized.

Choosing a Far Sync Deployment Topology
All configurations for far sync instance high availability perform equally with regard to receiving
and sending redo. The choice of configuration should be based on application tolerance to the
maximum data loss (RPO) and application brownout period of the different failure scenarios.

• Far sync instances deployed on Oracle RAC provides the lowest brownout and best
protection however has no coverage for cluster or site outage. The most critical
applications are well served by a pair of Oracle RAC far sync instances configured as
alternates for each other and deployed at different locations. This provides the most robust
Far Sync high availability (instance, node, cluster, and site failure) protection.

• Alternate far sync instances in a non-RAC environment provide the ability to place each
instance on separate physical database servers. This configuration provides protection by
deploying the far sync instances in different sites. Applications where data protection is
critical but where cost is an important consideration are best served by deploying a pair of
single node far sync instances, each as an alternate for the other. There is, however,
slightly increased application brownout and longer resynchronization time while transport
transitions from one far sync instance to the other. There is also the potential for data loss
should a second outage impact the primary database while transport transitions from one
far sync instance to the other.

• Terminal standby alternate configurations require that the application accept that there is
no zero data loss protection while the far sync instance is not available, but requires no
additional hardware to implement. Applications that can tolerate increased data loss

Chapter 15
Oracle Active Data Guard Far Sync Solution

15-25

potential during a far sync instance outage, and where low cost is the main consideration,
are best served by configuring the terminal standby as an alternate location using
asynchronous redo transport. Use of the terminal standby as an alternate destination
requires accepting that the configuration will run in asynchronous mode during the entire
period required to resolve the far sync instance outage. The advantage of this approach is
that it requires no additional hardware or software to deploy or manage. Applications that
can tolerate increased data loss potential during a far sync instance outage and where low
cost is the main consideration are best served by configuring the terminal standby as an
alternate location using ASYNC redo transport.

• A Far Sync hub is an efficient way of consolidating far sync instances for multiple Data
Guard configurations on a single physical host. Cloud deployments that include a zero data
loss service level category can deploy a Far Sync hub to efficiently consolidate far sync
instances for multiple zero data loss configuration on a single physical machine or cluster

• Applications where data protection is critical but where cost is an important consideration
are best served by deploying a pair of single node far sync instances, each as an alternate
for the other.

Far Sync Configuration Best Practices
The following are far sync configuration best practices that are necessary in addition to those
best practices that apply to any synchronous redo transport destination.

• The network between the primary database and the far sync instance must:

– Have round trip latency low enough so that the impact to response time and
throughput of the primary database does not exceed business requirements. The
degree of impact is very application specific and will require testing to validate. In
general, experience shows that there is a higher likelihood of success if the round-trip
latency is less than 5ms, though there are successful deployments at higher latencies.

– Provide enough bandwidth between the primary database and the far sync instance to
accommodate peak redo volumes, in addition to any other traffic sharing the network.
Redo transport compression can be used to reduce network bandwidth requirements.

– Ideally have redundant network links that also tolerate network component failure.

• Standard Oracle Data Guard network best practices, such as setting appropriate TCP send
and receive buffer sizes equal to three times the bandwidth delay product. See Configure
Online Redo Logs Appropriately.

• Standby redo logs for a far sync instance should be placed on storage with sufficient IOPS
(writes per second) capacity to exceed the I/O of the LGWR process on the primary
database during peak activity, in addition to any IOPS from other activities. This is an
important consideration. For example:

– If the far sync instance has lower performing disks than the primary database, it will
not be able to forward redo to remote destinations as fast as it is received, and an
archive log gap may form.

– In redo gap resolution scenarios, due to planned maintenance on the standby or
network outages, for example, there will be additional I/O requests for gap resolution
on top of peak redo coming in.

– Lower performing disks at the far sync instance will delay acknowledgment to the
primary database, increasing the total round-trip time between primary and standby
databases and impacting application response time. This impact can be eliminated by
using Fast Sync between the primary database and the far sync instance.

Chapter 15
Oracle Active Data Guard Far Sync Solution

15-26

• The far sync instance should follow the same standby redo log best practices as the
standby database. See Configure Online Redo Logs Appropriately.

• The standby redo logs of an alternate far sync instance should be manually cleared before
use to achieve the fastest return to synchronous transport when the alternate far sync is
activated. For example:

ALTER DATABASE CLEAR LOGFILE GROUP 4, GROUP 5, GROUP 6;

• Oracle MAA performance testing shows that a small far sync instance SGA does not
impact the performance of the far sync instance or the primary database. To conserve
system resources, you can configure the minimum SGA required for Far Sync to function.

– Set CPU_COUNT=4. Values of 1 or 2 are possible when neither compression nor
encryption are not being used.

– Reducing the CPU_COUNT during testing has no effect on the performance of the Far
sync instance.

• Configure far sync instances for both the primary and standby databases to maintain zero
data loss protection following role transitions. The second far sync instance configured in
proximity to the standby database is idle until the standby becomes the primary database,
enabling synchronous redo transport in the reverse direction.

Note that in a Data Guard Broker configuration, a switchover (planned role transition)
cannot occur while in Maximum Availability mode unless the protection mode can be
enforced from the target standby site. If the standby database does not have its own far
sync instance it will have to be configured to ship asynchronous redo to the original
primary database after the roles are reversed. This prevents a switchover from occurring
unless the protection mode for the primary database is first dropped from Maximum
Availability to Maximum Performance.

• Fast Sync yields a 4% to 12% primary database performance improvement compared to
synchronous transport, depending on the network latency and the I/O speed of the far sync
instance hardware.

• Provided CPU, I/O, and network requirements are met.

– Placing the far sync instance on a virtual machine produces no reduction in
performance over physical hardware configurations.

– Multiple far sync instances servicing multiple Data Guard configurations can share the
same physical server, cluster, or virtual machine.

• Note that archives may need to be managed on the far sync server.

Configuring the Active Data Guard Far Sync Architecture
The following topics walk you through an example of configuring an Active Data Guard Far
Sync architecture.

Configuring the Far Sync Instances
The following examples show you how to add far sync instances to an Oracle Data Guard
broker configuration.

The first step is to add a far sync standby instance that is independent or fault isolated from the
primary database server, and where the network latency between the primary server and the
far sync server is consistently low enough that application performance can tolerate it (for
example, < 5 ms).

Chapter 15
Oracle Active Data Guard Far Sync Solution

15-27

In the following example, far sync instance FS1 is created for the primary database,
North_Sales.

DGMGRL> ADD FAR_SYNC FS1 AS CONNECT IDENTIFIER IS FS1.example.com;
Far Sync FS1 added
DGMGRL> ENABLE FAR_SYNC FS1;
Enabled.
DGMGRL> SHOW CONFIGURATION;

Configuration - DRSolution

 Protection Mode: MaxPerformance
 Members:
 North_Sales - Primary database
 FS1 - Far Sync
 South_Sales - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:
SUCCESS

After a far sync instance has been added to the configuration, set up redo transport to support
maximum availability mode and then upgrade the protection mode, as shown in the following
example.

DGMGRL> EDIT DATABASE 'North_Sales' SET PROPERTY 'RedoRoutes' = '(LOCAL : FS1
SYNC)';
DGMGRL> EDIT FAR_SYNC 'FS1' SET PROPERTY 'RedoRoutes' = '(North_Sales :
South_Sales ASYNC)';
DGMGRL> EDIT CONFIGURATION SET PROTECTION MODE AS MaxAvailability;
DGMGRL> SHOW CONFIGURATION;

Configuration - DRSolution

 Protection Mode: MaxAvailability
 Members:
 North_Sales - Primary database
 FS1 - Far Sync
 South_Sales - Physical standby database

Fast-Start Failover: DISABLED
Configuration Status:
SUCCESS

To ensure that maximum availability protection mode can be maintained when the remote
standby database, South_Sales, becomes the primary database after a switchover or a
failover, add a second far sync instance to the configuration so that South_Sales can send
redo in synchronous mode, which in turn will send redo to the new terminal database,
North_Sales, after the role transition.

Chapter 15
Oracle Active Data Guard Far Sync Solution

15-28

The following example shows you how to add a second far sync instance (FS2) to the broker
configuration.

DGMGRL> ADD FAR_SYNC FS2 AS CONNECT IDENTIFIER IS FS2.example.com;
Far Sync FS2 added
DGMGRL> EDIT FAR_SYNC 'FS2' SET PROPERTY 'RedoRoutes' = '(South_Sales :
North_Sales ASYNC)';
DGMGRL> ENABLE FAR_SYNC FS2;
Enabled.
DGMGRL> EDIT DATABASE 'South_Sales' SET PROPERTY 'RedoRoutes' = '(LOCAL : FS2
SYNC)';
DGMGRL> SHOW CONFIGURATION;

Configuration - DRSolution

 Protection Mode: MaxAvailability
 Members:
 North_Sales - Primary database
 FS1 - Far Sync
 South_Sales - Physical standby database
 FS2 - Far Sync (inactive)

Fast-Start Failover: DISABLED
Configuration Status:
SUCCESS

Setting Up HA Far Sync Instances
Alternate HA far sync instances are set up to provide high availability for the far sync instances
you created for the primary and remote standby databases.

The following example shows you how to add a second far sync instance (FS1a) to the primary
database's far sync instance (FS1) in the Oracle Data Guard broker configuration, so that if the
primary far sync instance becomes unavailable, redo transport will use the alternate far sync
instance.

DGMGRL> ADD FAR_SYNC FS1a AS CONNECT IDENTIFIER IS FS1a.example.com;
Far Sync FS1a added
DGMGRL> EDIT DATABASE 'North_Sales' SET PROPERTY 'RedoRoutes' = ' (LOCAL:(FS1
SYNC PRIORITY=1, FS1a SYNC PRIORITY=2))';
DGMGRL> EDIT FAR_SYNC 'FS1' SET PROPERTY 'RedoRoutes' = '(North_Sales :
South_Sales ASYNC)';
DGMGRL> EDIT FAR_SYNC 'FS1a' SET PROPERTY 'RedoRoutes' = '(North_Sales :
South_Sales ASYNC)';
DGMGRL> EDIT CONFIGURATION SET PROTECTION MODE AS MaxAvailability;
DGMGRL> SHOW CONFIGURATION;

Configuration - DRSolution

 Protection Mode: MaxAvailability
 Members:
 North_Sales - Primary database
 FS1 - Far Sync
 FS1a - Far Sync
 South_Sales - Physical standby database

Chapter 15
Oracle Active Data Guard Far Sync Solution

15-29

Fast-Start Failover: DISABLED
Configuration Status:
SUCCESS

After adding the alternate far sync instance on the primary, use the following example to add
an alternate far sync instance (FS2a) on the standby.

DGMGRL> ADD FAR_SYNC FS2a AS CONNECT IDENTIFIER IS FS2a.example.com;
Far Sync FS2a added
DGMGRL> EDIT DATABASE 'South_Sales' SET PROPERTY 'RedoRoutes' = ' (LOCAL:(FS2
SYNC PRIORITY=1, FS2a SYNC PRIORITY=2))';
DGMGRL> EDIT FAR_SYNC 'FS2' SET PROPERTY 'RedoRoutes' = '(South_Sales :
North_Sales ASYNC)';
DGMGRL> EDIT FAR_SYNC 'FS2a' SET PROPERTY 'RedoRoutes' = '(South_Sales :
North_Sales ASYNC)';
DGMGRL> EDIT CONFIGURATION SET PROTECTION MODE AS MaxAvailability;
DGMGRL> SHOW CONFIGURATION;

Configuration - DRSolution

 Protection Mode: MaxAvailability
 Members:
 North_Sales - Primary database
 FS1 - Far Sync
 FS1a - Far Sync
 South_Sales - Physical standby database
 FS2 - Far Sync (inactive)
 FS2a - Far Sync (inactive)

Fast-Start Failover: DISABLED
Configuration Status:
SUCCESS

Configuring Far Sync Instances with Oracle RAC or Oracle Clusterware
If a far sync instance is deployed on a server or cluster with Oracle Clusterware (for example,
in an Oracle Restart, Oracle Real Application Clusters (Oracle RAC), or Oracle RAC One Node
installation), then use the SRVCTL utility to specify a default open mode of mount.

You can use a command such as the following:

srvctl modify database -d db_unique_name -startoption MOUNT

Encrypting a Database Using Data Guard and Fast Offline
Encryption

Encrypting a database using Transparent Data Encryption (TDE) can be done more quickly,
with minimal down time, and no extra space requirements, by using the standby database and
offline encryption.

In this two-phase process, the standby database is encrypted offline, followed by a switchover,
and then the offline encryption is repeated on the new standby database (formerly the primary).

Chapter 15
Encrypting a Database Using Data Guard and Fast Offline Encryption

15-30

In more recent Oracle releases online encryption is also available. Online encryption may fit
the needs for some, but requires additional storage while a tablespace is converted, and online
encryption can be a time-consuming process because each block is read and written to a new
encrypted data file. With fast offline encryption, each data file is encrypted directly, in-place, on
a mounted standby database.

Step 1: Configure Transparent Data Encryption (TDE)

There are a number of different TDE configuration options. Different Oracle releases have
different requirements. It is strongly recommended that you review Introduction to Transparent
Data Encryption in the Oracle Database Advanced Security Guide for your database release to
understand the configuration options and implications of TDE.

Note:

This process describes configuring a united, file-based keystore, which means that
the wallets are stored on a file system, and all keys for all PDBs are stored in a single
wallet.
For more complex configurations such as isolated PDBs, Oracle Key Vault (OKV), or
Hardware Security Module (HSM), see Using Transparent Data Encryption in Oracle
Database Advanced Security Guide for details.

The following are the basic parameters required to configure a united, file-based keystore. The
parameters are configured on the primary and standby databases but may have different
values.

Parameter Configuration Best Practice

WALLET_ROOT Starting in Oracle Database 18c, configuring the
WALLET_ROOT database parameter is the best practice for
specifying the root directory for all database wallets. For
clustered databases, the location specified in WALLET_ROOT
must be a shared location such as an ASM disk.

ALTER SYSTEM SET
 WALLET_ROOT='+DATA/db_unique_name'
 SCOPE=SPFILE SID='*';

Note:

WALLET_ROOT is a static
parameter; the database must
be restarted for the changes to
take effect.
TDE_CONFIGURATION cannot
be set until the database is
restarted with the
WALLET_ROOT set.

See WALLET_ROOT in the Oracle Database Reference for
more details.

Chapter 15
Encrypting a Database Using Data Guard and Fast Offline Encryption

15-31

https://docs.oracle.com/en/database/oracle/oracle-database/21/asoag/asopart1.html

Parameter Configuration Best Practice

TDE_CONFIGURATION The TDE_CONFIGURATION database parameter sets the type
of keystore.

TDE_CONFIGURATION is dynamic, but it can only be set after
the database is restarted with WALLET_ROOT configured.

ALTER SYSTEM SET

TDE_CONFIGURATION='KEYSTORE_CONFIGURATION=FIL
E'
 SCOPE=SPFILE SID='*';

See TDE_CONFIGURATION in the Oracle Database
Reference for more details.

TABLESPACE_ENCRYPTION The database parameter TABLESPACE_ENCRYPTION is
available in Oracle 19c (19.16). TABLESPACE_ENCRYPTION is
an alternative to ENCRYPT_NEW_TABLESPACES, which
specifies whether to encrypt new tablespaces when they are
created. If both TABLESPACE_ENCRYPTION and
ENCRYPT_NEW_TABLESPACES parameters are set,
TABLESPACE_ENCRYPTION takes precedence.

The values for TABLESPACE_ENCRYPTION are as follows:

• AUTO_ENABLE - All newly created tablespaces will be
encrypted. This is the Oracle Cloud default which cannot
be overridden in Oracle 19c (19.16) and later.

• MANUAL_ENABLE - Manually control whether tablespaces
are encrypted with the ENCRYPTION clause on the
CREATE statement.

• DECRYPT_ONLY - No tablespaces will be encrypted. This
setting is used in a hybrid Data Guard configuration
where the on-premises database remains unencrypted
while the cloud database is encrypted.

ALTER SYSTEM SET
TABLESPACE_ENCRYPTION=MANUAL_ENABLE
SCOPE=BOTH SID='*';

See TABLESPACE_ENCRYPTION in the Oracle Database
Reference for more details.

Chapter 15
Encrypting a Database Using Data Guard and Fast Offline Encryption

15-32

https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/TABLESPACE_ENCRYPTION.html#GUID-42408BFB-1A3F-4BAA-B0E9-1AA0CD48FA5A

Parameter Configuration Best Practice

ENCRYPT_NEW_TABLESPACES Before Oracle Database 19c (19.16) the
ENCRYPT_NEW_TABLESPACES parameter specifies whether to
encrypt new tablespaces.

The values for ENCRYPT_NEW_TABLESPACES are as follows:

• CLOUD_ONLY - When a tablespace is created in the
Oracle Cloud, it is transparently encrypted with the
default encryption algorithm, whether or not the
encryption clause in included. The default encryption
algorithm can be changed as shown in Step 2, but
AES128 is the default algorithm.

• ALWAYS - The new tablespace is transparently encrypted
whether or not the database is in the Oracle Cloud.

• DDL - Manually control whether tablespaces are
encrypted with the ENCRYPTION clause.

See ENCRYPT_NEW_TABLESPACES in the Oracle
Database Reference for more details.

The following table indicates which TDE parameters to configure based on your Oracle
Database release.

Oracle Release WALLET_ROOT and
TDE_CONFIGURATION

TABLESPACE_ENCRY
PTION

ENCRYPT_NEW_TABL
ESPACES

Oracle 19c (19.16) and
later

Yes Yes No

Oracle 18c to 19c
(19.15)

Yes No Yes

Step 2: Set the default encryption algorithm

The default encryption algorithm for TDE is AES128. In Oracle 21c and later releases, the
algorithm can be set with the TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM parameter, but this
setting must be configured before creating the wallet. Likewise,
"_tablespace_encryption_default_algorithm" can be used in Oracle 19c and earlier with
patch 30398099.

This setting determines the encryption algorithm used on new tablespaces for
TABLESPACE_ENCRYPTION=AUTO_ENABLE, ENCRYPT_NEW_TABLESPACES=ALWAYS, and for offline
encryption used in this process.

On the primary and standby databases issue:

-- for Oracle 21c and later
ALTER SYSTEM SET "tablespace_encryption_default_algorithm"='AES256'
scope=both;

 -- for Oracle 19c and earlier
ALTER SYSTEM SET "_tablespace_encryption_default_algorithm"='AES256'
scope=both;

Step 3: Create the encryption wallet and set the master key

The TDE documentation is very thorough in describing creation of the wallet, or keystore, and
setting the master encryption key on the primary database.

Chapter 15
Encrypting a Database Using Data Guard and Fast Offline Encryption

15-33

https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/ENCRYPT_NEW_TABLESPACES.html#GUID-44EF2AAC-1313-4437-B0F3-A427F45016F2

See Configuring a Software Keystore and TDE Master Encryption Key for United Mode in
Oracle Database Advanced Security Guide for details.

Note that even if the primary database is to remain unencrypted after the standby is encrypted,
in a hybrid Data Guard use case the master key must be set on the primary database. This
key is used to encrypt data on the standby during redo apply, and after role transition. The key
is be used to decrypt data from the encrypted primary cloud database after role transition.

Step 4: Copy the wallet files to the standby database environment

The standby database must have a copy of the encryption wallet and the auto-login keystore to
perform encryption operations on the standby database. Copy the files from the primary
database to the standby database accordingly.

From the location defined by WALLET_ROOT. If the target directory does not exist on the standby,
it should be created manually.

Copy files to each node:

ASMCMD> cp +DATA/PRIMARY_ORACLE_UNQNAME/TDE/cwallet.sso /tmp
ASMCMD> cp +DATA/PRIMARY_ORACLE_UNQNAME/TDE/ewallet.p12 /tmp

<primary host>$ scp /tmp/cwallet.sso ewallet.p12 oracle@standby_host:/tmp

<standby host> ASMCMD> cp /tmp/cwallet.sso +DATA/STANDBY_db_unique_name/TDE/
<standby host> ASMCMD> cp /tmp/ewallet.p12 +DATA/STANDBY_db_unique_name/TDE/

Alternatively, the files can be copied directly from ASM to ASM.

ASMCMD>cp cwallet.sso sys/password@stbyhost1.+ASM1:+DATA/
STANDBY_ORACLE_UNQNAME/TDE/
ASMCMD>cp ewallet.p12 sys/password@stbyhost1.+ASM1:+DATA/
STANDBY_ORACLE_UNQNAME/TDE/

Note:

In Oracle Database 19c and later releases the kscopy asmcmd command can be used
instead of cp. See My Oracle Support Doc ID 2951705.1 How to backup TDE
keystore using ASMCMD for additional details.

Step 5: Verify Data Guard health

Before starting the offline encryption process, make sure that the standby database is current
with the primary. Managed recovery must be stopped during the encryption process, and so
ensuring that the standby database is current with the primary reduces the redo gap that must
be applied after the encryption process.

On the primary or standby database, look up redo apply lag, then validate the standby
database as shown in the following example. The Data Guard Broker command VALIDATE
DATABASE lists potential configuration gaps. Address any gaps and verify that the status of
"Ready for Switchover" and "Ready for Failover" are both YES.

DGMGRL> SHOW CONFIGURATION LAG

Configuration - dgconfig

Chapter 15
Encrypting a Database Using Data Guard and Fast Offline Encryption

15-34

https://docs.oracle.com/en/database/oracle/oracle-database/21/asoag/configuring-united-mode2.html#GUID-2E40034B-4523-4D1C-9A2F-BCC3D58C570D

 Protection Mode: MaxPerformance
 Members:
primary_db - Primary database
 standby_db - Physical standby database
 Transport Lag: 0 seconds (computed 1 second ago)
 Apply Lag: 0 seconds (computed 1 second ago)

Fast-Start Failover: Disabled

Configuration Status:
SUCCESS (status updated 11 seconds ago)

DGMGRL> VALIDATE DATABASE <standby>

 Database Role: Physical standby database
 Primary Database: primary

 Ready for Switchover: Yes
 Ready for Failover: Yes (Primary Running)

Step 6: Place the standby database in a mounted state with recovery stopped

Before you run the offline encryption process directly against the data files, the standby
database must be mounted and recovery must be stopped. All instances of the standby can be
used during the encryption process to encrypt multiple files simultaneously.

$ srvctl stop database -d standby -o immediate

$ srvctl start database -d standby -o mount

DGMGRL> EDIT DATABASE standby SET STATE=APPLY-OFF;

Redo transport services continue to ship redo to ensure that the archived logs are present at
the standby database. This process maintains Recovery Point Objective (RPO) in the event of
a failure during the encryption process.

For a database that is very active, the required number of archived logs could be significant, so
make sure that there is sufficient space in the recovery area.

Step 7: Encrypt data files in-place and in parallel on the standby database

The encryption properties of TEMP tablespaces cannot be changed after creation. To encrypt a
TEMP tablespace it must be created as encrypted.

To use an encrypted TEMP tablespace, create a new TEMP tablespace using the ENCRYPTION
clause and make it the default temporary tablespace. Then drop the original TEMP tablespace.

SQL> CREATE TEMPORARY TABLESPACE TEMP_ENC ENCRYPTION ENCRYPT;

SQL> ALTER DATABASE DEFAULT TEMPORARY TABLESPACE TEMP_ENC;

The UNDO and TEMP metadata that is generated from sensitive data in an encrypted
tablespace is already encrypted; therefore, encrypting UNDO and TEMP tablespaces is
optional.

Chapter 15
Encrypting a Database Using Data Guard and Fast Offline Encryption

15-35

1. Make sure the standby database is mounted and the keystore is open.

SQL> select inst_id,database_role,open_mode from gv$database;

 INST_ID DATABASE_ROLE OPEN_MODE
---------- ---------------- --------------------
 1 PHYSICAL STANDBY MOUNTED
 2 PHYSICAL STANDBY MOUNTED

SQL> col WRL_PARAMETER format a40
SQL> set linesize 120 pagesize 9999
SQL> select * from gv$encryption_wallet;

INST_ID WRL_TYPE WRL_PARAMETER STATUS
------- -------- --------------------------------------- ------
 1 file +DATA/ORACLE_UNQNAME/TDE OPEN

2. Encrypt the data files.

The offline encryption command encrypts each data file with a single process; however,
multiple data files can be encrypted in parallel with separate sessions. Each session can
fully utilize a CPU core. It is recommended that each instance issues a number of sessions
less than or equal to the number of cores on the host.

The following query can be used to generate a script to convert the data files. Break the
script into multiple scripts and run each smaller script in an individual session. The most
efficient process is to encrypt large files individually while placing multiple smaller files in a
separate script.

Note:

The seed database files do not need to be encrypted.

set lines 120
set pages 9999
spool encrypt.sql
select 'alter session set container='||pdb.name||';'||chr(10)||'alter
database datafile '||chr(39)||df.name||chr(39)||' encrypt;' COMMAND
from v$tablespace ts, v$datafile df, v$pdbs pdb where ts.ts#=df.ts# and
ts.con_id=df.con_id and df.con_id=pdb.con_id and pdb.name <> 'PDB$SEED';

spool off
COMMAND

alter session set container=ORADBP11;
alter database datafile '+DATA/DB_UNIQUE_NAME/
E73F249E7030C3B8E0537B544664A065/DATAFILE/system.336.1113852973' encrypt;

alter session set container=ORADBP11;
alter database datafile '+DATA/DB_UNIQUE_NAME/
E73F249E7030C3B8E0537B544664A065/DATAFILE/sysaux.335.1113852973' encrypt;

alter session set container=ORADBP11;

Chapter 15
Encrypting a Database Using Data Guard and Fast Offline Encryption

15-36

alter database datafile '+DATA/DB_UNIQUE_NAME/
E73F249E7030C3B8E0537B544664A065/DATAFILE/undotbs1.337.1113852973' encrypt;

<...>

3. TEMP files can be encrypted by dropping and recreating them using the ENCRYPTION
clause in the CREATE statement. Identify existing TEMP files using the V$TEMPFILE view.

4. Validate that all data files are encrypted by querying V$DATAFILE_HEADER.ENCRYPTED. After
file encryption is completed, the ENCRYPTED column indicates whether the file is encrypted
(YES) or not (NO). All data files except those belonging to the seed PDB should be
encrypted.

Step 8: Restart redo apply and catch up on the standby database

After it is confirmed that all data files are encrypted, the standby database must apply all of the
redo from the primary that was generated during the encryption process. The following are
recommended ways to catch up redo on the standby database, depending on the amount of
redo that needs to be applied.

• If the gap is small, restart managed recovery and apply the redo gap until the apply lag is
0.

On the primary or standby database run

DGMGRL> edit database standby set state=apply-on;

• If the encryption process took longer, and the primary database was very active, the gap
might be large. It is often faster to use an incremental roll forward approach to copy only
the blocks which have changed since apply was stopped.

That process is described in My Oracle Support note How to Roll Forward a Standby
Database Using Recover Database From Service (Doc ID 2850185.1). Recovery is still
needed when the roll forward is complete, but this process can shorten the time
significantly to close large gaps.

Step 9: Perform a Data Guard switchover to begin encryption on the primary database

Until you are ready to encrypt the primary database, you can allow the unencrypted primary
database to ship unencrypted redo to the standby, where it is encrypted by the standby
indefinitely.

When you are ready to encrypt the primary database, and it is convenient to switch the
database roles, perform a Data Guard switchover, making the encrypted standby database the
new primary and the unencrypted primary database the new standby.

On the original primary database which is now the standby, repeat steps 5-8 to encrypt the
data files and catch up on redo.

Step 11: Perform a Data Guard switchover (optional)

If, after both the standby and primary database are encrypted, you prefer to revert to the
original primary-standby database roles, you can perform a Data Guard switchover to re-
establish their original roles.

Chapter 15
Encrypting a Database Using Data Guard and Fast Offline Encryption

15-37

https://support.oracle.com/rs?type=doc&id=2850185.1
https://support.oracle.com/rs?type=doc&id=2850185.1

16
Tune and Troubleshoot Oracle Data Guard

When redo transport, redo apply, or role transitions are not meeting your expected
requirements, use the following guidelines to help you tune and troubleshoot your deployment.

Overview of Oracle Data Guard Tuning and Troubleshooting
To get the best performance from your Oracle Data Guard configuration, use the following
Oracle MAA best practices for monitoring, assessment, and performance tuning.

• Ensure that Oracle Database and Oracle Data Guard configuration best practices are in
place.

The assumption when assessing and tuning is that all of the Oracle Database and Data
Guard configuration best practices are already integrated in the environment. Evaluate the
adherence to those best practices before doing any tuning.

• Assess and tune redo transport services

Oracle Data Guard automatically tunes redo transport to optimize performance. However, if
you observe performance issues, you can monitor and tune redo transport services.

Asynchronous redo transport with Maximum Performance data protection mode is the
default Oracle Data Guard configuration. Tuning asynchronous redo transport consists
mainly of ensuring that the primary, standby, and network resources are sufficient for
handling the workload, and that you monitor those resources for bottlenecks.

Synchronous redo transport does sacrifice some performance for zero data loss; however,
using sound MAA recommended methods, you can monitor and assess the impact and
distribute resources appropriately.

• Assess and tune redo apply

In most cases, the default Oracle settings result in satisfactory performance for media
recovery when the standby is always up to date. However, as applications and databases
increase in size and throughput, media recovery operations can benefit from additional
tuning to further optimize recovery time or redo apply throughput on a standby database

• Assess and tune role transitions

With proper planning and implementation, Oracle Data Guard and Active Data Guard role
transitions can effectively minimize downtime and ensure that the database environment is
restored with minimal impact on the business. Performance tests using a physical standby
database and Oracle Maximum Availability Architecture (MAA) best practices have shown
that switchover and failover can be reduced to seconds.

Redo Transport Troubleshooting and Tuning
Oracle Data Guard redo transport performance is directly dependent on the performance of the
primary and standby systems, the network that connects them, and the I/O subsystem.

For most Oracle Data Guard configurations, you should be able to achieve zero or minimal
data loss by troubleshooting and tuning redo transport.

16-1

The guidance presented here assumes that the MAA configuration best practices are followed.
As a prerequisite, ensure that the Oracle Data Guard Configuration Best Practices are
implemented.

To improve transport holistically, leverage the data gathering and troubleshooting methodology
described in the topics below, which guide you through gathering the necessary data to assess
whether there is indeed a redo transport problem and what can be tuned to optimize redo
transport throughput.

• Gather Topology Information

• Verify Transport Lag and Understand Redo Transport Configuration

• Gather Information to Troubleshoot Transport Lag

• Compare Redo Generation Rate History on the Primary

• Evaluate the Transport Network and Tune

• Gather and Monitor System Resources

• Advanced Troubleshooting: Determining Network Time with Asynchronous Redo Transport

• Tuning and Troubleshooting Synchronous Redo Transport

Gather Topology Information
Understanding the topology of the Oracle Data Guard configuration, and its relevance to Data
Guard performance, helps eliminate infrastructure weaknesses that are often incorrectly
attributed to the Data Guard architecture.

Oracle recommends that you outline the following high-level architecture information.

• Describe the primary and standby database system (number of nodes in Oracle RAC
cluster, CPUs and memory per database node, storage I/O system)

• Describe network topology connecting the primary and standby systems

– Network components/devices in between primary and standby

– Network bandwidth and latency

For standby databases with symmetric hardware and configuration, and with a good tuned
network configuration, the transport lag should be less than 10 seconds and in most cases less
than 1 second.

Verify Transport Lag and Understand Redo Transport Configuration

To determine if there is any lag on the standby database, and if this is a transport or apply lag,
query the V$DATAGUARD_STATS view.

SQL> select name,value,time_computed,datum_time from v$dataguard_stats where
name=’%lag’;
The DATUM_TIME column is the local time on the standby database when the datum used to
compute the metric was received. The lag metrics are computed based on data that is
periodically received from the primary database. An unchanging value in this column across
multiple queries indicates that the standby database is not receiving data from the primary
database. The potential data loss in this scenario would be from the last datum time from
V$DATAGUARD_STATS to the current time on the standby.

Chapter 16
Redo Transport Troubleshooting and Tuning

16-2

To obtain a histogram that shows the history of transport or apply lag values since the standby
instance was last started, query the V$STANDBY_EVENT_HISTOGRAM view.

SQL> select * from v$standby_event_histogram where name like '%lag' and count >0;
To evaluate the transport or apply lag over a time period, take a snapshot of
V$STANDBY_EVENT_HISTOGRAM at the beginning of the time period and compare that snapshot
with one taken at the end of the time period.

SQL> col NAME format a10
SQL> select NAME,TIME,UNIT,COUNT,LAST_TIME_UPDATED from
V$STANDBY_EVENT_HISTOGRAM where
 name like '%lag' and count >0 order by LAST_TIME_UPDATED;

NAME TIME UNIT COUNT LAST_TIME_UPDATED

---------- ---------- ---------------- ---------- --------------------

transport lag 41 seconds 3 01/05/2022 16:30:59

transport lag 245 seconds 1 01/05/2022 16:31:02

transport lag 365 seconds 2 01/05/2022 16:31:03

transport lag 451 seconds 2 01/05/2022 16:31:04

If you observe a high redo transport lag, continue this redo transport investigation with Gather
Information to Troubleshoot Transport Lag. If you see no transport lag but a high redo apply
lag, address the apply lag using the methodology in Redo Apply Troubleshooting and Tuning.

Gather Information to Troubleshoot Transport Lag

Gather the following information and investigate the questions when an unacceptable redo
transport lag is observed:

• When did the transport lag occur? Record the V$DATAGUARD_STATS and
V$STANDBY_EVENT_HISTOGRAM data to show when the lag started and how the lag is
changing over time.

• Does the transport lag occur during certain time period, such as daily at 12 midnight for
daily batch operations, monthly during large batch operation, or quarterly during quarter
end?

• Check the LOG_ARCHIVE_DEST setting for any enabled Oracle Data Guard transport, and
verify whether redo COMPRESSION or ENCRYPTION is enabled. Overall redo transport
throughput can be negatively impacted because redo must be compressed or encrypted
before sending, and then uncompressed or unencrypted upon receiving it on the standby.
Verify if that change was recent, and if you can test disabling these setting attributes.

• Check the Oracle Net settings to evaluate if Oracle Net encryption is enabled. If Oracle Net
encryption is enabled, when was it enabled and at what level? Oracle Net encryption can
slow down redo throughput significantly because redo is encrypted before sending and
unencrypted upon receiving the redo on the standby. Optionally, disable or reduce
encryption levels to see if the redo transport lag reduces.

Chapter 16
Redo Transport Troubleshooting and Tuning

16-3

Compare Redo Generation Rate History on the Primary

There are cases where the primary database redo generation rate is exceptionally high for a
short period of time, such as during large batch jobs, data loads, data pump operations, create
table as select, PDML operations, or end of month, quarter, or year batch updates.

Obtain the redo generation history from the primary database and compare that to when the
redo transport or redo apply lag started. Check if the redo generation rate is exceptionally high
because of additional workloads, such as adding new pluggable databases or new application
services. By doing so, additional tuning may be required to accommodate this additional load.

As part of troubleshooting, gather the following information or address the following questions:

• Gather daily history of primary database's redo generation rate using this query.

SQL> select trunc(completion_time) as "DATE", count(*) as "LOG SWITCHES",
round(sum(blocks*block_size)/1024/1024) as "REDO PER DAY (MB)"
from v$archived_log
where dest_id=1
group by trunc(completion_time) order by 1;

• Gather per log redo generation rate starting 6 hours prior to start any redo or transport lag.

SQL> alter session set nls_date_format='YYYY/MM/DD HH24:MI:SS';
SQL> select thread#,sequence#,blocks*block_size/1024/1024 MB,(next_time-
first_time)*86400 sec, blocks*block_size/1024/1024)/((next_time-
first_time)*86400) "MB/s" from v$archived_log
where ((next_time-first_time)*86400<>0)
and first_time between to_date('2015/01/15 08:00:00','YYYY/MM/DD
HH24:MI:SS')
and to_date('2015/01/15 11:00:00','YYYY/MM/DD HH24:MI:SS')
and dest_id=1 order by first_time;

• Gather hourly snapshots of the redo generation rate from the Automatic Workload
Repository (AWR) report 6 hours before the start of any redo or transport lag.

By default, Oracle Database automatically generates snapshots once every hour; however,
you may want to manually create snapshots to capture statistics at times different from
those of the automatically generated snapshots. To view information about an existing
snapshot, use the DBA_HIST_SNAPSHOT view.

See Creating Snapshots in the Oracle Database Performance Tuning Guide for complete
information about AWR and generating snapshots and AWR reports.

• Is this primary redo generation rate exceptionally high compared to prior history?

• If possible, determine the workload that corresponds to the high redo generation rate and
evaluate whether it's transient or if it can be tuned.

For example, for large purge operations, consider truncate or drop partition operations to
reduce the redo generation volumes.

Evaluate the Transport Network and Tune
Redo transport consists of the primary database instance background process sending redo to
the standby database background process. You can evaluate if the network is optimized for
Oracle Data Guard redo transport.

Chapter 16
Redo Transport Troubleshooting and Tuning

16-4

If asynchronous redo transport is configured, redo data is streamed to the standby in large
packets asynchronously. To tune asynchronous redo transport over the network, you need to
optimize a single process network transfer.

If synchronous redo transport is configured, each redo write must be acknowledged by the
primary and standby databases before proceeding to the next redo write. You can optimize
standby synchronous transport by using the FASTSYNC attribute as part of the
LOG_ARCHIVE_DEST setting, but higher network latency (for example > 5 ms) impacts overall
redo transport throughput.

Before you continue, see Assessing and Optimizing Network Performance first to:

• Assess whether you have sufficient network bandwidth to support the primary's redo
generation rate

• Determine optimal TCP socket buffer sizes to tune redo transport

• Tune operating system limits on socket buffer sizes to tune redo transport

• Determine optimal MTU setting for redo write size

• Tune MTU to increase network throughput for redo transport

If network configuration is tuned, evaluate if the transport lag (refer to Verify Transport Lag and
Understand Redo Transport Configuration) is reducing to acceptable levels. If that's the case,
you have met your goals and you can stop. Otherwise continue with the rest of the rest of
tuning and troubleshooting section.

Gather and Monitor System Resources
Gather Oracle Linux OSwatcher or Oracle Exadata Exawatcher data to analyze system
resources.

OSWatcher (oswbb) is a collection of UNIX shell scripts intended to collect and archive
operating system and network metrics to aid support in diagnosing performance issues. As a
best practice, you should install and run OSWatcher on every node that has a running Oracle
instance. In the case of a performance issue, Oracle support can use this data to help
diagnose performance problems which may outside the database.

You can download OSWatcher from OSWatcher (Doc ID 301137.1).

ExaWatcher is a utility that collects performance data on the storage servers and database
servers on an Exadata system. The data collected includes operating system statistics, such
as iostat, cell statistics (cellsrvstat), and network statistics.

See Using ExaWatcher Charts to Monitor Exadata Database Machine Performance in the
Oracle Exadata Database Machine Maintenance Guide for more information.

Tune to Meet Data Guard Resource Requirements
Redo transport can be impacted if:

• Primary or standby database is completely CPU bound

• Primary or standby database I/O system is saturated

• Network topology can't support the redo generation rates

Evaluate whether the primary database system has:

• Sufficient CPU utilization for Log Writer Process (LGWR) to post foregrounds efficiently

• Sufficient I/O bandwidth so local log writes maintain low I/O latency during peak rates

Chapter 16
Redo Transport Troubleshooting and Tuning

16-5

https://support.oracle.com/rs?type=doc&id=301137.1

• Network interfaces that can handle peak redo rate volumes combined with any other
network activity across the same interface

• Automatic Workload Repository (AWR), Active Session History (ASH), and OSwatcher or
Exawatcher data gathered from the primary database for tuning and troubleshooting

Evaluate whether the standby database system has:

• Sufficient CPU utilization for the remote file server (RFS), the Oracle Data Guard process
that receives redo at the standby database, to efficiently write to standby redo logs

• Sufficient I/O bandwidth to enable local log writes to maintain low I/O latency during peak
rates

• A network interface that can receive the peak redo rate volumes combined with any other
network activity across the same interface

• AWR, ASH, and OSwatcher or Exawatcher data gathered from the standby database for
tuning and troubleshooting

Note:

The top issue encountered with the standby database is poor standby log write
latency because of insufficient I/O bandwidth. This problem can be mitigated by using
Data Guard Fast Sync.

If system configuration is tuned and the above resource constraints are removed, evaluate if
the transport lag (refer to Verify Transport Lag and Understand Redo Transport Configuration)
is reducing to acceptable levels. If that's the case, you have met your goals.

Advanced Troubleshooting: Determining Network Time with Asynchronous
Redo Transport

Before you proceed, first see Assessing and Optimizing Network Performance.

Given enough resources, especially network bandwidth, asynchronous redo transport can
maintain pace with very high workloads. In cases where resources are constrained,
asynchronous redo transport can begin to fall behind resulting in a growing transport lag on the
standby database.

Asynchronous redo transport (ASYNC) transmits redo data asynchronously with respect to
transaction commitment. A transaction can commit without waiting for an acknowledgment that
the redo generated by that transaction was successfully transmitted to a remote standby
database. With ASYNC, the primary database Log Writer Process (LGWR) continues to
acknowledge commit success even if limited bandwidth prevents the redo of previous
transactions from being sent to the standby database immediately (picture a sink filling with
water faster than it can drain).

ASYNC uses a TT00 process to transmit redo directly from the log buffer of the primary
database. If the TT00 process is unable to keep pace, and the log buffer is recycled before the
redo can be transmitted to the standby database, then the TT00 process automatically
transitions to reading and sending from the online redo log file (ORL) on disk. Once TT00
transmission has caught up with current redo generation, it automatically transitions back to
reading and sending directly from the log buffer.

Chapter 16
Redo Transport Troubleshooting and Tuning

16-6

In cases in which there are two or more log switches before the TT00 has completed sending
the original ORL, the TT00 will still transition back to reading the contents of the current online
log file. Any ORLs that were archived in between the original ORL and the current ORL are
automatically transmitted using Oracle Data Guard’s redo gap resolution process.

Sufficient resources, such as network bandwidth, CPU, memory, and log file I/O on both the
primary and standby databases are critical to the performance of an asynchronous Data Guard
configuration.

To determine which resource is constraining asynchronous transport, use krsb stats which can
be enabled by setting event 16421 on both the primary and standby databases:

alter session set events ‘16421 trace name context forever, level 3’;

This event is very lightweight and won't affect performance of the primary or standby database.

This dynamic event should be set on all primary and standby instances, and it will write
statistics into the TT00 or remote file server (RFS) trace file when shipping for a given
sequence has completed. Looking in the trace file, you will see the krsb_end stats at the
beginning and end of the file. The stats at the end of the file will provide insight into where
asynchronous shipping was spending time. For example:

krsb_end: Begin stats dump for T-1.S-593
 max number of buffers in use 10
 Operation elapsed time (micro seconds) 474051333
 File transfer time (micro seconds) 474051326
 Network Statistics
 LOG_ARCHIVE_DEST_2 : OCI REQUEST
 Total count : OCI REQUEST 2748
 Total time : OCI REQUEST 81374
 Average time : OCI REQUEST 29
 LOG_ARCHIVE_DEST_2 : NETWORK SEND
 Total count : NETWORK SEND 2748
 Total time : NETWORK SEND 286554724
 Average time : NETWORK SEND 104277
 Total data buffers queued 9644
 Total data buffers completed 9644
 Total bytes written 9885272064
 Total bytes completed synchronously 9885272064
 Average network send size (blocks) 7025
 Average network send buffers 3.51
 Average buffer turnaround time 240889
 Throughput (MB/s) 19.89
 Total network layer time 286636098
 Percentage of time in network 60.47
 Disk Statistics
 Total count : DISK READ 11531
 Total time : DISK READ 12335132
 Average time : DISK READ 1069
 Read-ahead blocks 14151680
 Log buffer blocks 266915
 Disk stall blocks 4888576
 Total count : BUFFER RELEASE 9643
 Total time : BUFFER RELEASE 7229
 Average time : BUFFER RELEASE 0
 Total disk layer time 12342361

Chapter 16
Redo Transport Troubleshooting and Tuning

16-7

 Percentage of time in disk layer 2.60
 Data Guard Processing Statistics
 Total count : SLEEP 198
 Total time : SLEEP 172351312
 Average time : SLEEP 870461
 Total DG layer time 175072867
 Percentage of time in DG layer 36.93
 Remote Server-Side Network Statistics
 LOG_ARCHIVE_DEST_2 : NETWORK GET
 Total count : NETWORK GET 8242
 Total bytes : NETWORK GET 9885272064
 Total time : NETWORK GET 453233790
 Average time : NETWORK GET 54990
 Total server-side network layer time 453233790
 Percentage of time in network 95.61
 Remote Server-Side Disk Statistics
 LOG_ARCHIVE_DEST_2 : DISK WRITE
 Total count : DISK WRITE 9644
 Total time : DISK WRITE 8731303
 Average time : DISK WRITE 905
 LOG_ARCHIVE_DEST_2 : DISK NOSTALL REAP
 Total count : DISK NOSTALL REAP 9644
 Total time : DISK NOSTALL REAP 579066
 Average time : DISK NOSTALL REAP 60
 LOG_ARCHIVE_DEST_2 : BUFFER GET
 Total count : BUFFER GET 9644
 Total time : BUFFER GET 3607
 Average time : BUFFER GET 0
 Total server-side disk layer time 9313976
 Percentage of time in disk layer 1.96
 Remote Server-Side Data Guard Processing Statistics
 LOG_ARCHIVE_DEST_2 : PUBLISH RTA BOUNDARY
 Total count : PUBLISH RTA BOUNDARY 8948
 Total time : PUBLISH RTA BOUNDARY 3665841
 Average time : PUBLISH RTA BOUNDARY 409
 LOG_ARCHIVE_DEST_2 : VALIDATE BUFFER
 Total count : VALIDATE BUFFER 9644
 Total time : VALIDATE BUFFER 1403088
 Average time : VALIDATE BUFFER 145
 Total Server-Side DG layer time 11503560
 Percentage of time in DG layer 2.43
krsb_end: End stats dump

The above output comes from a test run where a transport lag is just beginning to occur. You
can observe a lag due to network congestion increase, and the time waiting on the network
layer increases above 50%. If a transport lag is the result of either compression or encryption,
the percentage of time spent in the Data Guard layer would become the majority.

To disable krsb stats set event 16421 to level 1:

alter session set events ‘16421 trace name context forever, level 1’;

Tuning and Troubleshooting Synchronous Redo Transport

Chapter 16
Redo Transport Troubleshooting and Tuning

16-8

Before you proceed, first see Assessing and Optimizing Network Performance.

The following topics describe how to assess synchronous redo transport.

• Understanding How Synchronous Transport Ensures Data Integrity

• Assessing Performance in a Synchronous Redo Transport Environment

• Why the Log File Sync Wait Event is Misleading

• Understanding What Causes Outliers

• Effects of Synchronous Redo Transport Remote Writes

• Example of Synchronous Redo Transport Performance Troubleshooting

Understanding How Synchronous Transport Ensures Data Integrity
The following algorithms ensure data consistency in an Oracle Data Guard synchronous redo
transport configuration.

• Log Writer Process (LGWR) redo write on the primary database online redo log and the
Data Guard Network Services Server (NSS) redo write to standby redo log are identical.

• The Data Guard Managed Recovery Process (MRP) at the standby database cannot apply
redo unless the redo has been written to the primary database online redo log, with the
only exception being during a Data Guard failover operation (when the primary is gone).

In addition to shipping redo synchronously, NSS and LGWR exchange information
regarding the safe redo block boundary that standby recovery can apply up to from its
standby redo logs (SRLs). This prevents the standby from applying redo it may have
received, but which the primary has not yet acknowledged as committed to its own online
redo logs.

The possible failure scenarios include:

• If primary database LGWR cannot write to online redo log, then LGWR and the instance
crash. Instance or crash recovery will recover to the last committed transaction in the
online redo log and roll back any uncommitted transactions. The current log will be
completed and archived.

• On the standby, the partial standby redo log completes with the correct value for the size to
match the corresponding online redo log. If any redo blocks are missing from the standby
redo log, those are shipped over (without reshipping the entire redo log).

• If the primary database crashes resulting in an automatic or manual zero data loss failover,
then part of the Data Guard failover operation will do "terminal recovery" and read and
recover the current standby redo log.

Once recovery finishes applying all of the redo in the standby redo logs, the new primary
database comes up and archives the newly completed log group. All new and existing
standby databases discard any redo in the online redo logs, flashback to a consistent
system change number (SCN), and only apply the archives coming from the new primary
database. Once again the Data Guard environment is in sync with the (new) primary
database.

Assessing Performance in a Synchronous Redo Transport Environment
When assessing performance in an Oracle Data Guard synchronous redo transport
environment (SYNC) it is important that you know how the different wait events relate to each
other. The impact of enabling synchronous redo transport varies between applications.

Chapter 16
Redo Transport Troubleshooting and Tuning

16-9

To understand why, consider the following description of work the Log Writer Process (LGWR)
performs when a commit is issued.

1. Foreground process posts LGWR for commit ("log file sync" starts). If there are concurrent
commit requests queued, LGWR will batch all outstanding commit requests together
resulting in a continuous strand of redo.

2. LGWR waits for CPU.

3. LGWR starts redo write ("redo write time" starts).

4. For Oracle RAC database, LGWR broadcasts the current write to other instances.

5. After preprocessing, if there is a SYNC standby, LGWR starts the remote write (“SYNC
remote write” starts).

6. LGWR issues local write ("log file parallel write").

7. If there is a SYNC standby, LGWR waits for the remote write to complete.

8. After checking the I/O status, LGWR ends "redo write time / SYNC remote write".

9. For Oracle RAC database, LGWR waits for the broadcast ack.

10. LGWR updates the on-disk SCN.

11. LGWR posts the foregrounds.

12. Foregrounds wait for CPU.

13. Foregrounds ends "log file sync".

Use the following approaches to assess performance.

• For batch loads, the most important factor is to monitor the elapsed time, because most of
these processes must be completed in a fixed period of time. The database workloads for
these operations are very different than the normal OLTP workloads. For example, the size
of the writes can be significantly larger, so using log file sync averages does not give you
an accurate view or comparison.

• For OLTP workloads, monitor the volume of transactions per second (from Automatic
Workload Repository (AWR)) and the redo rate (redo size per second) from the AWR
report. This information gives you a clear picture of the application throughput and how it is
impacted by enabling synchronous redo transport.

Why the Log File Sync Wait Event is Misleading
Typically, the "log file sync" wait event on the primary database is the first place administrators
look when they want to assess the impact of enabling synchronous redo transport (SYNC).

If the average log file sync wait before enabling SYNC was 3ms, and after enabling SYNC was
6ms, then the assumption is that SYNC impacted performance by one hundred percent. Oracle
does not recommend using log file sync wait times to measure the impact of SYNC because
the averages can be very deceiving, and the actual impact of SYNC on response time and
throughput may be much lower than the event indicates.

When a user session commits, the Log Writer Process (LGWR) will go through the process of
getting on the CPU, submitting the I/O, waiting for the I/O to complete, and then getting back
on the CPU to post foreground processes that the commit has completed. This whole time
period is covered by the log file sync wait event. While LGWR is performing its work there are,
in most cases, other sessions committing that must wait for LGWR to finish before processing
their commits. The size and number of sessions waiting are determined by how many sessions
an application has, and how frequently those sessions commit. This batching up of commits is
generally referred to as application concurrency.

Chapter 16
Redo Transport Troubleshooting and Tuning

16-10

For example, assume that it normally takes 0.5ms to perform log writes (log file parallel write),
1ms to service commits (log file sync), and on average you are servicing 100 sessions for each
commit. If there was an anomaly in the storage tier, and the log write I/O for one commit took
20ms to complete, then you could have up to 2,000 sessions waiting on log file sync, while
there would only be 1 long wait attributed to log file parallel write. Having a large number of
sessions waiting on one long outlier can greatly skew the log file sync averages.

The output from V$EVENT_HISTOGRAM for the log file sync wait event for a particular period in
time is shown in the following table.

Table 16-1 V$EVENT_HISTOGRAM Output for the Log File Sync Wait Event

Milliseconds Number of Waits Percent of Total Waits

1 17610 21.83%

2 43670 54.14%

4 8394 10.41%

8 4072 5.05%

16 4344 5.39%

32 2109 2.61%

64 460 0.57%

128 6 0.01%

The output shows that 92% of the log file sync wait times are less than 8ms, with the vast
majority less than 4ms (86%). Waits over 8ms are outliers and only make up 8% of wait times
overall, but because of the number of sessions waiting on those outliers (because of batching
of commits) the averages get skewed. The skewed averages are misleading when log file sync
average waits times are used as a metric for assessing the impact of SYNC.

Understanding What Causes Outliers
Any disruption to the I/O on the primary or standby databases, or spikes in network latency,
can cause high log file sync outliers with synchronous redo transport. You can see this effect
when the standby system's I/O subsytem is inferior to that of the primary system.

Often administrators host multiple databases such as dev and test on standby systems, which
can impair I/O response. It is important to monitor I/O using iostat to determine if the disks
reach maximum IOPS, because this affects the performance of SYNC writes.

Frequent log switches are significant cause of outliers. Consider what occurs on the standby
when a log switch on the primary occurs, as follows.

1. Remote file server (RFS) process on the standby must finish updates to the standby redo
log header.

2. RFS then switches into a new standby redo log with additional header updates.

3. Switching logs forces a full checkpoint on the standby.

This causes all dirty buffers in the buffer cache to be written to disk, causing a spike in
write I/O. In a non-symmetric configuration where the standby storage subsystem does not
have the same performance as the primary database, this results in higher I/O latency.

4. The previous standby redo log must be archived, increasing both read and write I/O.

Chapter 16
Redo Transport Troubleshooting and Tuning

16-11

Effects of Synchronous Redo Transport Remote Writes
When you enable synchronous redo transport (SYNC), you introduce a remote write (remote
file server (RFS) write to a standby redo log) in addition to the normal local write for commit
processing.

This remote write, depending on network latency and remote I/O bandwidth, can make commit
processing time increase. Because commit processing takes longer, you observe more
sessions waiting on the Log Writer Process (LGWR) to finish its work and begin work on the
commit request, that is, application concurrency has increased. You can observe increased
application concurrency by analyzing database statistics and wait events.

Consider the example in the following table.

Table 16-2 Affect of Sync Transport Increasing Application Concurrency

SYNC Redo
Rate

Network
Latency

TPS from
AWR

log file
sync
average
(ms)

log file
parallel
write
average
(ms)

RFS
random
I/O

SYNC
remote
write
average
(ms)

Redo
write size
(KB)

Redo
writes

Defer 25MB 0 5,514.94 0.74 0.47 NA NA 10.58 2,246,356

Yes 25MB 0 5,280.20 2.6 .51 .65 .95 20.50 989,791

Impact 0 - -4% +251% +8.5% NA NA +93.8% -55.9%

In the above example, enabling SYNC reduced the number of redo writes, but increased the
size of each redo write. Because the size of the redo write increased, you can expect the time
spent doing the I/O (both local and remote) to increase. The log file sync wait time is higher
because there is more work per wait.

However, at the application level, the impact on the transaction rate or the transaction
response time might change very little as more sessions are serviced for each commit. This is
why it is important to measure the impact of SYNC at the application level, and not depend
entirely on database wait events. It is also a perfect example of why log file sync wait event is a
misleading indicator of the actual impact SYNC has on the application.

Example of Synchronous Redo Transport Performance Troubleshooting
To look at synchronous redo transport performance, calculate the time spent for local redo
writes latency, average redo write size for each write, and overall redo write latency, as shown
here.

Use the following wait events to do the calculations.

• local redo write latency = 'log file parallel write'

• remote write latency = ‘SYNC remote write’

• average redo write size per write = ‘redo size’ / ‘redo writes’

• average commit latency seen by foregrounds = 'log file sync'

Statistics from an Automatic Work Repository (AWR) report on an Oracle database are
provided in the following table. Synchronous redo transport (SYNC) was enabled to a local
standby with a 1ms network latency to compare the performance impact to a baseline with
SYNC disabled.

Chapter 16
Redo Transport Troubleshooting and Tuning

16-12

Table 16-3 Assessing Synchronous Redo Transport Performance with Oracle Database

Metric Baseline (No SYNC) SYNC Impact

redo rate (MB/s) 25 25 no change

log file sync 0.68 4.60 +576%

log file parallel write
average (ms)

0.57 0.62 +8.8%

TPS 7,814.92 6224.03 -20.3%

RFS random I/O NA 2.89 NA

SYNC remote write
average (ms)

NA 3.45 NA

redo writes 2,312,366 897,751 -61,2%

redo write size (KB) 10.58 20.50 +93.8%

In the above example observe that log file sync waits averages increased dramatically after
enabling SYNC. While the local writes remained fairly constant, the biggest factor in increasing
log file sync was the addition of the SYNC remote write. Of the SYNC remote write the network
latency is zero, so focusing on the remote write into the standby redo log shows an average
time of 2.89ms. This is an immediate red flag given that the primary and standby were using
the same hardware, and the SYNC remote write average time should be similar to the
primary's log file parallel write average time.

In the above example, the standby redo logs have multiple members, and they are placed in a
slower performing disk group. After reducing the standby redo logs to a single member, and
placing them in a fast disk group, you can see results such as those shown in the following
table.

Table 16-4 SYNC Performance After Reducing Standby Redo Logs to a Single Member
and Placing on a Fast Disk Group

Metric Baseline (No SYNC) SYNC Impact

redo rate (MB/s) 25 25 no change

log file sync 0.67 1.60 +139%

log file parallel write 0.51 0.63 +23.5%

TPS 7714.36 7458.08 -3.3%

RFS random I/O NA .89 NA

SYNC remote write
average (ms)

NA 1.45 NA

redo writes 2,364,388 996,532 -57.9%

redo write size (KB) 10.61 20.32 +91.5%

Redo Apply Troubleshooting and Tuning
Most Oracle Data Guard configurations should be able to minimize apply lag by
troubleshooting and tuning redo apply. Redo apply performance is directly dependent on the
performance of the standby systems.

The guidance presented here assumes that the MAA configuration best practices are followed.
As a prerequisites, ensure that the Oracle Data Guard Configuration Best Practices are
implemented.

Chapter 16
Redo Apply Troubleshooting and Tuning

16-13

To improve apply performance holistically, leverage the data gathering and troubleshooting
methodology described in the topics below.

Understanding Redo Apply and Redo Apply Performance Expectations

Standby database recovery is the process of replaying all DML and DDL operations. The high
level process is:

1. Redo is received from the primary database and written into standby redo logs (SRLs).
When the database is an Oracle RAC database, each thread (instance) is stored in it's
assigned SRLs.

2. The log merger process, sometimes known as the recovery coordinator, merges the
threads of redo and places the resulting change vectors into memory buffers.

3. Recovery worker processes identify which data blocks are required and read them into the
buffer cache if they are not already present. Then the worker processes apply the change
vectors to the blocks in the buffer cache.

4. At checkpoint time, database writer processes write the validated buffer changes to data
files, advancing the database's checkpoint time stamp, called the System Commit Number
(SCN). Checkpoint can be the most extensive I/O load in the recovery process.

Redo Apply Performance Expectations

Performance, and the resulting apply rate, mainly depend on the type of workload that is being
recovered and the system resources allocated to and available for recovery.

Oracle recommends that the primary and standby database systems are symmetric, including
equivalent I/O subsystems, memory, and CPU resources. The primary reason for this
recommendation is so that the application performs at the same level, no matter which
database is the primary database; however, redo apply performance also benefits greatly from
symmetric primary and standby databases. Features such as data protection
(DB_BLOCK_CHECKING, DB_BLOCK_CHECKSUM, DB_LOST_WRITE_PROTECT) require CPU and I/O
resources, as does reporting on the standby database using Oracle Active Data Guard.

For the most part, redo apply performance should keep up with the redo generation rates,
resulting in near zero apply lag with system resources are symmetric. During peak workloads,
there may be a slight redo apply gap which should naturally reduce to near zero once
workloads return to normal levels.

OLTP Workloads

Recovering Online Transaction Processing (OLTP) workloads can be very I/O intensive
because an OLTP workload performs small changes to many different blocks. This results in
large numbers of small random block reads into the buffer cache during recovery.
Subsequently, the database writers run large batches of write I/Os to maintain the buffer cache
and to checkpoint the database periodically. Therefore, recovery of OLTP workloads requires
the storage subsystem to handle a high number of I/Os Per Second (IOPS) in order to achieve
optimal rates. This is another reason for recommending that the primary and standby database
systems are symmetric.

Recovery testing of OLTP workloads, generated by swingbench on Oracle Exadata Database
Machine quarter rack systems with no resource bottlenecks, achieved approximately 150
MB/sec apply rates. Rates of 200+ MB/s with single instance redo apply have been observed
by customers on larger Exadata systems. These rates are more challenging to achieve in non-
Exadata systems since the I/O and network throughput are lower.

Batch Workloads

Chapter 16
Redo Apply Troubleshooting and Tuning

16-14

In contrast to OLTP workload recovery, recovering batch workloads is more efficient because
batch workloads consist of large sequential reads and writes. A lot more redo changes are
occurring while reading and modifying significantly fewer data blocks, resulting in much faster
redo apply rates than OLTP workloads. In addition, batch direct load operation recovery
optimizations result in greater efficiency and even higher recovery rates.

Using batch load or parallel DML (PDML) workloads with no impeding system resource
bottleneck, internal redo apply testing on small Exadata Database Machine quarter rack
systems resulted in approximately 200-300 MB/sec apply rates. Customers have observed
600+ MB/sec apply rates with single instance redo apply for their batch workloads for larger
Exadata systems. These rates can be achieved by non-Exadata systems, but system resource
capacity and scalable network and I/O subsystems are required to handle these demanding
workloads.

Mixed Workloads

The difference between OLTP and batch recovery performance profiles and different system
shapes explains why applications with variation in their mixtures of OLTP and batch workloads
can have different recovery rates at a standby database, even if the primary database redo
generation rates are similar. Customers have achieved 100-1100 MB/sec redo apply rates with
various mixed workloads for various Exadata systems. These rates can be achieved by non-
Exadata systems, but system resource capacity and scalable database compute, network, and
I/O subsystems are required to handle these demanding workloads. These extreme redo apply
rates are rarely achieved on non-Exadata systems.

Catch Up Redo Apply Performance Expectations

Compared to real-time redo apply, redo apply during a "catch up" period may require even
more system resources. If there is a large redo gap, see Addressing a Very Large Redo Apply
Gap for recommendations.

Verify Apply Lag

Recovery performance can vary with the workload type and the redo generation rate of the
primary database. A lower apply rate does not necessarily indicate a recovery performance
issue. However, a persistent or increasing apply lag, without an accompanying transport lag, is
the best indication of a recovery performance bottleneck.

To identify and quantify apply lags and transport lags, query the V$DATAGUARD_STATS view in
the standby database.

SQL> select name, value, time_computed, datum_time from v$dataguard_stats
where name=’%lag’;

The DATUM_TIME column is the local time on the standby database when the datum used to
compute the metric was received. The lag metrics are computed based on data that is
periodically received from the primary database. An unchanging value in this column across
multiple queries indicates that the standby database is not receiving data from the primary
database. The potential data loss in this scenario would be from the last datum time from
V$DATAGUARD_STATS to the current time on the standby.

Chapter 16
Redo Apply Troubleshooting and Tuning

16-15

To obtain a histogram that shows the history of transport or apply lag values since the standby
instance was last started, query the V$STANDBY_EVENT_HISTOGRAM view.

 SQL> select * from v$standby_event_histogram where name like '%lag' and
count >0;

To evaluate the transport or apply lag over a time period, take a snapshot of
V$STANDBY_EVENT_HISTOGRAM in the standby database at the beginning of the time period, and
compare that snapshot with one taken at the end of the time period.

SQL> col NAME format a10
SQL> select NAME,TIME,UNIT,COUNT,LAST_TIME_UPDATED from
V$STANDBY_EVENT_HISTOGRAM
 where name like '%lag' and count >0 order by LAST_TIME_UPDATED;

Example output:

NAME TIME UNIT COUNT LAST_TIME_UPDATED

---------- ------ ---------- ----- -------------------
apply lag 23 seconds 3 02/05/2022 16:30:59
apply lag 135 seconds 1 02/05/2022 16:31:02
apply lag 173 seconds 2 02/05/2022 16:32:03
apply lag 295 seconds 2 02/05/2022 16:34:04

A transport lag can cause an apply lag. If a high apply lag is observed with a near zero
transport lag, continue with this redo apply investigation in Gather Information.

If a high transport lag is observed, first address the transport lag, using the methodology in
Redo Transport Troubleshooting and Tuning.

Gather Information
Gather the following information when an unacceptable apply lag is occurring:

• When did the apply lag occur?

Record the V$DATAGUARD_STATS and V$STANDBY_EVENT_HISTOGRAM data every
15 to 30 minutes to identify when the lag started and how lag changed over time in the last
24 hours.

SQL>select name, value, time_computed, datum_time from v$dataguard_stats
where name=’%lag’;

SQL>select * from v$standby_event_histogram where name like '%lag' and
count >0;

• Does the apply lag occur at certain time period, such as daily at 12 midnight for daily batch
operations, monthly during large batch operation, quarterly during quarter end?

• Gather data from the standby Automatic Work Repository (AWR) report
V$RECOVERY_PROGRESS, and take multiple standby AWR snapshots at 30 minute
intervals before and during the apply lag.

Chapter 16
Redo Apply Troubleshooting and Tuning

16-16

See How to Generate AWRs in Active Data Guard Standby Databases (Doc ID
2409808.1).

For example:

SQL> set lines 120 pages 99
SQL> alter session set nls_date_format='YYYY/MM/DD HH24:MI:SS';
SQL> select START_TIME, ITEM, SOFAR, UNITS from gv$recovery_progress;

Sample output:

START_TIME ITEM SOFAR UNITS
------------------- -------------------------------- ---------- ---------
2022/02/28 23:02:36 Log Files 8 Files
2022/02/28 23:02:36 Active Apply Rate 54385 KB/sec
2022/02/28 23:02:36 Average Apply Rate 12753 KB/sec
2022/02/28 23:02:36 Maximum Apply Rate 65977 KB/sec
2022/02/28 23:02:36 Redo Applied 2092 Megabytes
2022/02/28 23:02:36 Last Applied Redo 0 SCN+Time
2022/02/28 23:02:36 Active Time 41 Seconds
2022/02/28 23:02:36 Apply Time per Log 1 Seconds
2022/02/28 23:02:36 Checkpoint Time per Log 0 Seconds
2022/02/28 23:02:36 Elapsed Time 168 Seconds
2022/02/28 23:02:36 Standby Apply Lag 2 Seconds

The simplest way to determine application throughput in terms of redo volume is to collect
Automatic Workload Repository (AWR) reports on the primary database during normal and
peak workloads, and determine the number of bytes per second of redo data the production
database is producing. Then compare the speed at which redo is being generated with the
Active Apply Rate columns in the V$RECOVERY_PROGRESS view to determine if the
standby database is able to maintain the pace.

If the apply lag is above your expectations, then evaluate redo apply performance by querying
the V$RECOVERY_PROGRESS view. This view contains the columns described in the
following table.

The most useful statistic is the Active Apply rate because the Average Apply Rate includes idle
time spent waiting for redo to arrive making it less indicative of apply performance.

Table 16-5 V$RECOVERY_PROGRESS View Columns

Column Description

Average Apply Rate Redo Applied / Elapsed Time includes time spent
actively applying redo and time spent waiting for
redo to arrive

Active Apply Rate Redo Applied / Active Time is a moving average
over the last 3 minutes, and the rate does not
include time spent waiting for redo to arrive

Maximum Apply Rate Redo Applied / Active Time is peak measured
throughput or maximum rate achieved over a
moving average over last 3 minutes; rate does not
include time spent waiting for redo to arrive

Redo Applied Total amount of data in bytes that has been applied

Chapter 16
Redo Apply Troubleshooting and Tuning

16-17

https://support.oracle.com/rs?type=doc&id=2409808.1
https://support.oracle.com/rs?type=doc&id=2409808.1

Table 16-5 (Cont.) V$RECOVERY_PROGRESS View Columns

Column Description

Last Applied Redo System change number (SCN) and time stamp of
last redo applied. This is the time as stored in the
redo stream, so it can be used to compare where
the standby database is relative to the primary.

Apply Time per Log Average time spent actively applying redo in a log
file.

Checkpoint Time per Log Average time spent for a log boundary checkpoint.

Active Time Total duration applying the redo, but not waiting for
redo

Elapsed Time Total duration applying the redo, including waiting
for redo

Standby Apply Lag Number of seconds that redo apply has not been
applied for. Possible standby is behind the primary.

Log Files Number of log files applied so far.

Active Session History

In cases where standby AWR is not available, or the standby database is not in open read-only
mode, the top waits can be gathered using the V$ACTIVE_SESSION_HISTORY view. Standby
AWR is strongly recommended due to the additional information and detail provided but these
queries are useful in some cases.

To select to top 10 waits over the last 30 minutes (replace 30 with some other number of
minutes ago from current time):

select * from (
select a.event_id, e.name, sum(a.time_waited) total_time_waited
from v$active_session_history a, v$event_name e
where a.event_id = e.event_id and a.SAMPLE_TIME>=(sysdate-30/(24*60))
group by a.event_id, e.name order by 3 desc)
where rownum < 11;

To select the waits between two timestamps (example shows a 3 hour period between
2021/01/01 00:00:00 and 2021/01/01 03:00:00) :

select * from (
select a.event_id, e.name, sum(a.time_waited) total_time_waited
from v$active_session_history a, v$event_name e
where a.event_id = e.event_id
and a.SAMPLE_TIME
between to_date('2021/01/01 00:00:00','YYYY/MM/DD HH24:MI:SS') and
to_date('2021/01/01 03:00:00','YYYY/MM/DD HH24:MI:SS')
group by a.event_id, e.name
order by 3 desc)
where rownum < 11
/

Chapter 16
Redo Apply Troubleshooting and Tuning

16-18

Compare Redo Generation Rate History on the Primary
There are cases where the primary database's redo generation rate is exceptionally high for a
small period of time, such as during large batch jobs, data loads, data pump operations, create
table as select or PDML operations or end of month, quarter or year batch updates.

Obtain the redo generation history from the primary database and compare that to when the
redo transport or redo apply lag started. Check if the redo generation rate is exceptionally high
due to additional workloads, such as adding new pluggable databases (PDBs) or new
application services. Additional tuning may be required to accommodate this additional load.

As part of troubleshooting, gather the following information or address the following questions:

• Gather daily history of the primary database's redo generation rate using this query.

SQL> select trunc(completion_time) as "DATE", count(*) as "LOG SWITCHES",
round(sum(blocks*block_size)/1024/1024) as "REDO PER DAY (MB)"
from v$archived_log
where dest_id=1
group by trunc(completion_time) order by 1;

• Gather the per log redo generation rate, starting 6 hours before the start of any redo or
transport lag.

SQL> alter session set nls_date_format='YYYY/MM/DD HH24:MI:SS';
SQL> select thread#,sequence#,blocks*block_size/1024/1024 MB,(next_time-
first_time)*86400 sec, blocks*block_size/1024/1024)/((next_time-
first_time)*86400) "MB/s" from v$archived_log
where ((next_time-first_time)*86400<>0)
and first_time between to_date('2015/01/15 08:00:00','YYYY/MM/DD
HH24:MI:SS')
and to_date('2015/01/15 11:00:00','YYYY/MM/DD HH24:MI:SS')
and dest_id=1 order by first_time;

• Is this primary redo generation rate exceptionally high compared to prior history?

• If possible, determine the workload that corresponds to the high redo generation rate, and
evaluate if it's transient or if it can be tuned.

For example, for large purge operations, consider truncate or drop partition operations to
reduce the redo generation volumes.

Tune Single Instance Redo Apply

Single instance redo apply (SIRA) tuning is an iterative process and a mandatory prerequisite
before even evaluating multi-instance redo apply (MIRA). The iterative process consists of

1. Evaluating and addressing system resource bottlenecks

2. Tuning based on top standby database wait events

Evaluate System Resource Bottlenecks

First, evaluate system resources such as CPU utilization and I/O subsystem. Use utilities such
as top and iostat or statistics from OSwatcher or ExaWatcher to determine if there is

Chapter 16
Redo Apply Troubleshooting and Tuning

16-19

contention for those resources. Addressing any resource bottlenecks to free up resources
required for redo apply can improve apply performance.

Redo apply can be impacted if:

• The managed recovery node is completely CPU bound

• The standby database's I/O system is saturated

• The standby database SGA, specifically the buffer cache, is not at least the same size (or
larger) than that on the primary database

For optimal recovery performance the standby database system requires:

• Sufficient CPU utilization for Recovery Coordinator (PR00) and recovery workers (PRnn)

• Sufficient I/O bandwidth to maintain low I/O latency during peak rates

• A network interface that can receive the peak redo rate volumes, in addition to any other
network activity across the same interface

• Sufficient memory to accommodate a symmetric SGA and buffer cache; the size of the log
buffer and buffer cache generally have the biggest impact on redo apply performance

What to gather and how?

• Gather standby Automatic Work Repository (AWR) reports with intervals of 30 minutes or
less.

See Managing Automatic Workload Repository in Active Data Guard Standby Databases
in Oracle Database Performance Tuning Guide

• Gather Active Session History (ASH) data for more real time granular waits.

See Generating Active Session History Reports in Oracle Database Performance Tuning
Guide

• Gather Oracle Linux OSwatcher or Oracle Exadata ExaWatcher data to analyze system
resources.

For Exadata systems, see Using ExaWatcher Charts to Monitor Exadata Database
Machine Performance in Oracle Exadata Database Machine Maintenance Guide

• Gather top process information to check if the recovery coordinator (PR00) is CPU bound
by using top or ps commands.

Some common indicators and causes of resource bottlenecks include:

• Low CPU idle time may indicate the system is CPU bound

• Long disk or flash service times or high IOPS may indicate I/O contention or saturation

• Undersized systems and shared systems with many active databases may cause
contention for these resources

• Reporting workloads in an Active Data Guard standby can also cause contention

Tune Redo Apply by Evaluating Database Wait Events
Once you have verified that there are no system resource bottlenecks, it is time to assess
standby database wait events by looking at the standby Automatic Work Repository (AWR)
reports.

Before assessing database wait events, it is important to understand where the waits occur
during the process flow involved in recovery.

1. Redo is received on the standby by the Remote File Server (RFS) process.

Chapter 16
Redo Apply Troubleshooting and Tuning

16-20

The RFS process writes newly received redo for each thread into the current standby redo
log for that thread. The RFS write operation is tracked by the rfs random I/O wait event.

2. Once redo has been written, the recovery coordinator process (pr00) reads the redo from
the standby redo logs (or archived logs) for each thread.

This read I/O is tracked by the log file sequential read wait event.

3. The recovery coordinator then merges redo from all threads together and places the redo
into memory buffers for the recovery workers.

The wait events for writing and reading into recovery memory buffers is tracked by the
parallel recovery read buffer free and parallel recovery change buffer free wait events.

4. The recovery processes retrieve redo or change vectors from the memory buffers and
begin the process of applying the changes to data blocks.

First the recovery workers determine which data blocks need to be recovered and reads
those into the buffer cache if it’s not already present.

This read I/O by the recovery workers is tracked by the recovery read wait event.

5. When a log is switched on the primary for any thread, the standby coordinates a switch of
the standby redo log for that thread at the same time.

In earlier versions a log switch on a standby forces a full checkpoint, which results in
flushing all dirty buffers from the buffer cache out to the data files on the standby. Starting
with Oracle Database 18c, checkpoints also occur at regular time intervals, thus amortizing
checkpoint I/O across all phases.

During checkpoint, multiple database writer processes (DBWR) write the data file blocks
down to the data files, with its write time tracked by the db file parallel write wait event. The
total time for the checkpoint to complete is covered by the checkpoint complete wait event.

During the apply phase it is normal to observe that the recovery coordinator process (pr00) has
high utilization on a single CPU, while during the checkpoint phase there is an increase in DB
writer processes (dbwn) CPU utilization indicating increased write I/O to the data files.

The following table provides a description as well as tuning advice for wait events involved in
the recovery process.

Table 16-6 Recovery Process Wait Events

Column Description Tuning Recommendations

Logfile sequential read The parallel recovery coordinator
is waiting on I/O from the online
redo log, standby redo log, or the
archived redo log.

Tune or increase the I/O
bandwidth for the ASM disk group
or storage subsystem where the
archive logs, standby redo logs,
or online redo logs reside.

Parallel recovery read buffer free This event indicates that all read
buffers are being used by
workers, and usually indicates
that the recovery workers lag
behind the coordinator.

Increase _log_read_buffers to
max 256

Parallel recovery change buffer
free

The parallel recovery coordinator
is waiting for a buffer to be
released by a recovery worker.
Again, this is a sign the recovery
workers are behind the
coordinator.

Tune or increase the I/O
bandwidth for the ASM disk group
or storage subsystem where data
files reside.

Chapter 16
Redo Apply Troubleshooting and Tuning

16-21

Table 16-6 (Cont.) Recovery Process Wait Events

Column Description Tuning Recommendations

Data file init write The parallel recovery coordinator
is waiting for a file resize to finish,
as would occur with file auto
extend.

This is a non-tunable event, but
evaluate your primary database
workload to discover why there
are so many data file resize
operations. Optionally, use a
larger NEXT size when
AUTOEXTEND is enabled

Parallel recovery control message
reply

The parallel recovery coordinator
is waiting for all recovery workers
to respond to a synchronous
control message.

N/A. This is an idle event.

Parallel recovery slave next
change

The parallel recovery worker is
waiting for a change to be
shipped from the coordinator.
This is in essence an idle event
for the recovery worker. To
determine the amount of CPU a
recovery worker is using, divide
the time spent in this event by the
number of workers started, and
subtract that value from the total
elapsed time.

N/A. This is an idle event.

DB File Sequential Read A parallel recovery worker (or
serial recovery process) is waiting
for a batch of synchronous data
block reads to complete.

Tune or increase the I/O
bandwidth for the ASM disk group
or storage subsystem where data
files reside.

Checkpoint completed Recovery is waiting for
checkpoint to complete, and redo
apply is not applying any changes
currently.

Tune or increase the I/O
bandwidth for the ASM disk group
or storage subsystem where data
files reside.

Also, increase the number of
db_writer_processes until the
checkpoint completed wait event
is lower than the db file parallel
write wait event.

Also consider increasing the
online log file size on the primary
and standby to decrease the
number of full checkpoints at log
switch boundaries.

Recovery read A parallel recovery worker is
waiting for a batched data block
I/O.

Tune or increase the I/O
bandwidth for the ASM disk group
where data files reside.

Chapter 16
Redo Apply Troubleshooting and Tuning

16-22

Table 16-6 (Cont.) Recovery Process Wait Events

Column Description Tuning Recommendations

Recovery apply pending and/or
recovery receive buffer free
(MIRA)

Recovery apply pending = the
time the logmerger process
waited (in centiseconds) for apply
workers to apply all pending
changes up to a certain SCN.

Recovery receive buffer free = the
time (in centiseconds) spent by
the receiver process on the
instance waiting for apply workers
to apply changes from received
buffers so that they can be freed
for the next change.

Increase
_mira_num_local_buffers
and
_mira_num_receive_buffers
Note that these parameters use
space from the shared pool equal
to

(_mira_num_local_buffers *
2) +
(_mira_num_receive_buffers
* instances-1)

in each instance of the standby
database.

For example: In a 2-node RAC
standby database when
_mira_num_local_buffers =
100 and
_mira_num_receive_buffers
= 100 the total SGA space used
by these parameters is
(100*2)+(100*1)=300MB of the
SGA.

No

te:

The
defa
ult
for
_mi
ra_
num
_lo
cal
_bu
ffe
rs
and
_mi
ra_
num
_re
cei
ve_
buf
fer
s is
25.

Chapter 16
Redo Apply Troubleshooting and Tuning

16-23

See How to Generate AWRs in Active Data Guard Standby Databases (Doc ID 2409808.1) for
more information about generating AWRs on the standby database.

Enable Multi-Instance Redo Apply if Required
Multi-instance redo apply (MIRA) has the potential to improve redo apply by running multiple
recovery coordinators and redo apply (worker) processes across Oracle RAC database
instances of the standby database. MIRA is optimized for later Oracle Database releases, and
the redo apply benefits vary based on workloads.

Prerequisites for Considering MIRA

• Single-instance redo apply (SIRA) has been completely tuned and is not I/O bound.

• Recovery coordinator (PR00) is CPU bound.

Examine the CPU utilization of the recovery coordinator/log merger process
ora_pr00_<SID> over a period of an hour. If the coordinator process has a CPU utilization
% of over 70% for a majority of that time, this may be the bottleneck, and MIRA may
improve recovery performance.

Shown here are two examples of output from the top command showing the CPU
utilization of the pr00.

If the recovery coordinator CPU utilization is largely below 70% with only a few short
spikes, it is not CPU bound, and there is likely a resource issue or some additional tuning

Chapter 16
Redo Apply Troubleshooting and Tuning

16-24

https://support.oracle.com/rs?type=doc&id=2409808.1

that will improve performance. If the recovery coordinator is not CPU bound, return to
tuning SIRA.

• Most MIRA optimizations are implemented in Oracle Database 19c and are not available in
earlier database releases. In fact, Oracle recommends the database release be no earlier
than Oracle Database 19.13 because it includes some important fixes, including
29924147, 31290017, 31047740, 31326320, 30559129, 31538891, 29785544, 29715220,
29845691, 30421009, 30412188, 30361070, 32486528, 33821145 and 28389153.

• All Oracle Exadata Database Machine systems based either on InfiniBand network fabric
or on RDMA over Converged Ethernet (RoCE) network fabric require an additional step on
the primary database, as shown in this table.

Table 16-7 Oracle Exadata Database Machine prerequisites to enable MIRA

Exadata System Database Release Steps

Exadata Storage cells with
persistent memory (PMEM)

19.13 and higher No additional steps

Without PMEM 19.13 and higher Set dynamic parameter on all
instances
_cache_fusion_pipelined_u
pdates_enable=FALSE

Any Exadata System 19.12 and lower 1. Apply Patch 31962730

2. Set dynamic parameter on all
instances
_cache_fusion_pipelined_u
pdates_enable=FALSE

Note:

Only redo generated with the dynamic parameter
_cache_fusion_pipelined_updates_enable or static parameter
_cache_fusion_pipelined_updates set to FALSE can be recovered with MIRA.

Enable Multi-instance Redo Apply and Tune

1. Enable multi-instance redo apply (MIRA) by indicating the number of apply instances.

Leave all previous single-instance redo apply (SIRA) tuning changes in place. The MAA
recommendation for MIRA is to use all standby database instances for apply.

2. It is recommended that you start with increased buffer sizes for MIRA.

These parameters provide additional buffer space to pass blocks between instances.

• "_mira_local_buffers"=100 (default 25)

• "_mira_num_receive_buffers"=100 (default 25)

• “_mira_rcv_max_buffers”=10000 (default 500) - does not increase SGA usage, simply
sets a cap.

These values will increase SGA usage of MIRA. Ensure that there is sufficient available
SGA memory for these new settings.

The additional memory requirements (in MB) for each participating MIRA Oracle RAC
instance = ((_mira_local_buffers*2)+(_mira_num_receive_buffers*[#instances-1])) MB

Chapter 16
Redo Apply Troubleshooting and Tuning

16-25

For example: In a 4-node Oracle RAC system, if _mira_num_local_buffers=100 and
_mira_num_receive_buffers=100, then (100*2)+(100*3)=500MB from the SGA.

Note:

For these parameter to take effect, the standby database must be restarted (A
RAC rolling restart is allowed).

3. Enable MIRA using one of these methods.

• Set an Oracle Data Guard Broker property

‘ApplyInstances’=<#|ALL>
• Or run

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM
SESSION INSTANCES ALL;

4. Check for system resource contention after tuning MIRA.

Follow the same practices described in Evaluate System Resource Bottlenecks.

5. Tune MIRA based on wait events described here.

Follow the methodology in Tune Redo Apply by Evaluating Database Wait Events.

If "recovery apply pending" or "recovery receive buffer free" are among the top wait events,
increase _mira_num_receive_buffers and _mira_num_local_buffers incrementally by
100 to reduce this wait event.

These parameters provide additional buffer space to pass blocks between instances.
Evaluate whether there is sufficient memory in the SGA to accommodate the additional
buffer space.

6. Finding the right values for buffers can be in iterative process.

Monitor the apply rate and Standby AWR reports for a period of time that is representative
of the normal workload, including peak workload time periods. If "recovery apply pending"
and/or "recovery receive buffer free" are still among the top waits, and are of a significant
percentage of the waits, increase the buffer parameters further and repeat.

Addressing a Very Large Redo Apply Gap

If the apply lag is larger than 24 hours, consider using a standby roll forward method to skip
over the gap rather than apply all of the redo. See How to Roll Forward a Standby Database
Using Recover Database From Service (12.2 and higher) (Doc ID 2850185.1)

This approach pulls changed Oracle data blocks directly from the primary database, and can
potentially mitigate a large redo gap in half the time required to apply all of the redo.

The disadvantages of this approach are:

• Logical corruption and lost write detection checks and balances that are inherent to redo
apply and standby databases are skipped

• Manual intervention is required to issue these commands and restart redo apply once it's
completed.

Data blocks are still verified for physical corruptions.

Chapter 16
Redo Apply Troubleshooting and Tuning

16-26

https://support.oracle.com/rs?type=doc&id=2850185.1
https://support.oracle.com/rs?type=doc&id=2850185.1

Improving Redo Apply Rates by Sacrificing Data Protection
There are extremely rare conditions where redo apply cannot be tuned to achieve even higher
redo apply rates to stay current with the primary. In these cases it may be necessary to turn off
recommended data protection settings to help improve redo apply performance.

The following table describes some potential interim changes and their potential gains and
trade offs.

Change Potential Gain Potential Trade-offs

Stop redo apply and use recover from
service

See How to Roll Forward a Standby
Database Using Recover Database
From Service (12.2 and higher) (Doc ID
2850185.1)

Optimized approach to recover from a
large redo transport or redo apply gap,
such as when the gap exceeds 24 hours

No logical block or lost writes data
protection checks

No redo block checksum verification

Mount standby instead of Active Data
Guard

Potential 5-10% redo apply performance
gain, but mostly for batch workloads

No real-time auto block repair of
physical corruptions

No real-time query on the standby

Neither of the above trade-offs may be
as relevant when the standby is lagging
beyond application threshold

Disable or reduce DB_BLOCK_CHECKING
on the standby

Reduces CPU utilization during redo
apply

If CPU resources are limited, this
change can improve redo apply by
10-40%

Potential "rare" logical block corruptions
may not be detected and can be
propagated to the standby

Disable Flashback Database Eliminates flashback IOPS requirement
on RECO

If storage IOPS is the constraining
resource, then this change can help
redo apply performance

Lose the ability to quickly rewind the
standby

Disable DB_LOST_WRITE_PROTECT on
the primary and standby

Eliminates additional read IOPS on the
standby due to block read redo
generated on the primary to detect lost
writes

This change is an option if IOPS
capacity is saturated

Lost writes are not detected early on
either primary or standby databases

Role Transition, Assessment, and Tuning
With thorough planning, configuration, and tuning, Oracle Data Guard role transitions can
effectively minimize downtime and ensure that the database environment is restored with
minimal impact on the business.

Using a physical standby database, Oracle MAA testing has determined that switchover and
failover times with Oracle Data Guard have been reduced to seconds. This section describes
best practices for both switchover and failover. While following best practices, switchover times
of approximately 30 seconds for Oracle RAC and less 10 seconds for a single instance
database have been observed. Detection time is separate.

Chapter 16
Role Transition, Assessment, and Tuning

16-27

https://support.oracle.com/rs?type=doc&id=2850185.1
https://support.oracle.com/rs?type=doc&id=2850185.1
https://support.oracle.com/rs?type=doc&id=2850185.1
https://support.oracle.com/rs?type=doc&id=2850185.1

Prerequisite Data Guard Health Check Before Role Transition
Complete the following prerequisites before performing a switchover operation.

Every Quarter
Perform the following steps every quarter.

1. Ensure that your Oracle Data Guard configuration is MAA compliant.

a. Refer to Oracle Database Configuration Best Practices and Oracle Data Guard
Configuration Best Practices to ensure that all recommended Data Guard configuration
practices are in place.

b. Refer to Overview of Oracle Multitenant Best Practices for PDB service
recommendations.

2. Run a simple application test, which includes:

a. Convert existing the standby database to a snapshot standby.

b. Validate the application connection to the read-write test database as if this was a
disaster recovery test. See Configuring Continuous Availability for Applications for
configuration guidance.

3. Test your end-to-end application failover after a Data Guard role transition.

a. Issue a Data Guard switchover.

b. Orchestrate the entire application failover.

c. Switch back is optional.

One Month Before Switchover
One month before performing a switchover operation, consult the MOS note “Oracle Database
19c Important Recommended One-off Patches (Doc ID 555.1)” to identify any critical issues
that might affect your release.

Also consider suspending or shutting down long running reporting or jobs including monitoring,
auditing, and database backups that create persistent connections during the target planned
maintenance window that contains the Data Guard switchover operation.

Common configuration issues that impact application service availability while performing a
Data Guard role transition with Oracle Multitenant database are:

• PDB saved state or triggers are used and fail during Data Guard role transition

• PDB default service is leveraged instead of using Oracle clusterware-managed distinct
services for each PDB for your application service

• Wallet/security settings are not the same on the standby

To ensure application service and application failover readiness:

1. Never use PDB default services, nor SAVED STATE (except during relocate operations), nor
database triggers to manage role-based services.

2. Use clusterware-managed distinct services on each PDB for your application service, and
leverage that application service to connect to the database.

Chapter 16
Role Transition, Assessment, and Tuning

16-28

3. When defining a clusterware-managed application service, define which PDB and services
will be started, and in which Oracle RAC instance and database role.

4. For Data Guard, always use role-based services by assigning a role to each clusterware-
managed service.

Validate Database Switchover and Failover Readiness

You can use the VALIDATE command to perform a comprehensive set of database checks
before performing a role change. The command checks the following items:

• Whether there is missing redo data on a standby database

• Whether flashback is enabled

• The number of temporary tablespace files configured

• Whether an online data file move is in progress

• Whether online redo logs are cleared for a physical standby database

• Whether standby redo logs are cleared for a primary database

• The online log file configuration

• The standby log file configuration

• Apply-related property settings

• Transport-related property settings

• Whether there are any errors in the Automatic Diagnostic Repository (for example, control
file corruptions, system data file problems, user data file problems)

The three main VALIDATE commands that should be issued prior to switchover are:

1. VALIDATE DATABASE VERBOSE standby - The VALIDATE DATABASE command shows a brief
summary of the database, and reports any errors or warnings that were detected.
VALIDATE DATABASE VERBOSE shows everything in the brief summary plus all items that
were validated.

2. VALIDATE DATABASE standby SPFILE - The VALIDATE DATABASE SPFILE command reports
any parameter differences between primary and the specified standby databases.

3. VALIDATE NETWORK CONFIGURATION FOR ALL - The VALIDATE NETWORK CONFIGURATION
command performs network connectivity checks between members of a configuration.

To summarize how to evaluate Role Transition readiness, review the following:

• PRIMARY DATABASE Section:

– DGMGRL> VALIDATE DATABASE VERBOSE 'Primary_DBName';

– Check if there are PDB saved states in the primary database.

* SELECT * FROM dba_pdb_saved_states;

– Evaluate health with exachk or orachk.

• For each STANDBY DATABASE STANDBY_DB_UNIQUE_NAME Section:

– DGMGRL> VALIDATE DATABASE VERBOSE 'Standby_DBName';

– DGMGRL> VALIDATE DATABASE 'Standby_DBName' SPFILE;

Chapter 16
Role Transition, Assessment, and Tuning

16-29

– Evaluate health with exachk or orachk.

– Evaluate if the standby cluster and database are symmetric with the primary cluster
and database. This ensures identical or similar performance after role transition.

– Evaluate whether the cluster shape and system resources are the same, spfile
memory settings are the same, and number of databases sharing the cluster
resources are the same. If not, highlight the differences and evaluate if system
resources are available by reviewing exawatcher or oswatcher graphs.

• Network Section:

– DGMGRL> VALIDATE NETWORK CONFIGURATION FOR ALL;

• Redo Rate History Section:

– SQL> SELECT thread#,sequence#,blocks*block_size/1024/1024 MB,(next_time-
first_time)*86400 sec,
 blocks*block_size/1024/1024)/((next_time-first_time)*86400) "MB/s"
 FROM v$archived_log
 WHERE ((next_time-first_time)*86400<>0) and first_time
 between to_date('2015/01/15 08:00:00','YYYY/MM/DD HH24:MI:SS')
 and to_date('2015/01/15 11:00:00','YYYY/MM/DD HH24:MI:SS') and
dest_id=1
 order by first_time;

Example:

The Oracle Data Guard broker VALIDATE DATABASE command gathers information related to
switchover and failover readiness.

The validation verifies that the standby and primary database are reachable and the apply lag
is less than ApplyLagThreshold for the target database. If these data points are favorable, the
command output displays "Ready for Failover: Yes" as shown below. In addition, if redo
transport is running, the command output displays "Ready for Switchover: Yes".

DGMGRL> validate database [verbose] database_name

Database Role: Physical standby database
 Primary Database: standby_db_unique_name

Ready for Switchover: Yes
 Ready for Failover: Yes (Primary Running)

VALIDATE DATABASE checks additional information that can impact switchover time and
database performance, such as whether the online redo logs have been cleared, number of
temporary tablespaces, parameter mismatches between primary and standby, and the status
of flashback databases.

In most failover cases the primary database has crashed or become unavailable. The Ready
for Failover output indicates if the primary database is running when VALIDATE DATABASE was
issued. This state does not prevent a failover, but it is recommended that you stop the primary
database before issuing a failover to avoid a split-brain scenario where the configuration has
two primary databases. The broker only guarantees split-brain avoidance on failover when
Fast-Start Failover is used.

Chapter 16
Role Transition, Assessment, and Tuning

16-30

You should also run VALIDATE DATABASE VERBOSE standby, VALIDATE DATABASE standby
SPFILE, and VALIDATE NETWORK CONFIGURATION FOR ALL periodically as a configuration
monitoring tool.

Days Before Switchover
Perform the following steps days before performing a Data Guard switchover.

1. Set the Data Guard broker trace level.

The Data Guard broker TraceLevel configuration property is used to control the amount of
tracing performed by the broker for every member in the configuration. Setting the property
to USER limits the tracing to completed operations and to any warning or error messages
resulting from an operation or health check. Setting the property to SUPPORT increases the
amount of tracing to include lower-level information needed to troubleshoot any issues.

DGMGRL> SET TRACE_LEVEL SUPPORT;

2. Enable role transition metrics.

The Time Management Interface (TMI) event is a low overhead event which adds a line to
the alert log whenever certain calls are executed in Oracle.

These entries in the alert log, or tags, delineate the beginning and end of a call. The tables
in the topics below depict the delineation of key switchover and failover operations. This
method is the most accurate for determining where time is being spent.

Set the database level event 16453 trace name context forever, level 15 on all databases.
There are two methods of enabling this trace, either using the EVENT database parameter
or setting the EVENTS at the system level. The difference is that the EVENT parameter is not
dynamic but is persistent across restarts. SET EVENTS is dynamic but NOT persistent
across database restarts. See the following examples.

ALTER SYSTEM SET EVENT=‘16453 trace name contextforever, level 15’
scope=spfile sid=’*’;

ALTER SYSTEM SET EVENTS ‘16453 trace name context forever, level 15’;

Data Guard Role Transition
Always use Oracle Data Guard broker or any Oracle UI or utility that ultimately calls the Data
Guard broker command.

Suspend or shut down any long running reports or batch jobs including monitoring, auditing,
and database backups that have persistent connections.

Use the Oracle Data Guard broker SWITCHOVER command to initiate switchover, and the
FAILOVER command to initiate failover.

As part of a switchover or failover operation the broker does the following.

• Configures redo transport from the new primary database

• Starts redo apply on the new standby database

• Ensures that other standby databases in the broker configuration are viable and receiving
redo from the new primary

Chapter 16
Role Transition, Assessment, and Tuning

16-31

• Integrates Oracle Clusterware and Global Data Services to ensure that the role-based
services are started

Before issuing the Data Guard switchover, suspend or shut down long running reporting or jobs
including monitoring, auditing, and database backups that create persistent connections.

To configure broker to initiate switchover, log in as SYS or SYSDBA and issue:

DGMGRL> SWITCHOVER TO database_name;

To configure broker to initiate failover, run:

DGMGRL> FAILOVER TO database_name [IMMEDIATE];

By default FAILOVER applies all redo that was received before failing over. The IMMEDIATE
clause skips the pending redo and fails over immediately.

The SWITCHOVER and FAILOVER commands are idempotent and can be re-issued in the unlikely
event of a failed transition.

Monitor Data Guard Role Transitions
Refer to the Data Guard Broker messages while the Data Guard role transition is happening.
To extract detailed role transition status, refer to the primary and standby alert logs and broker
logs for Data Guard switchover and failover messages and tags.

Key Switchover Operations and Alert Log Tags
Switchover is broken down into four main steps as follows.

1. Convert to Standby - terminate any existing production sessions, convert the control file
into a standby control file, and send a message to the standby to continue the switchover.

The Convert to Standby - these steps are found in the alert log of the original primary. All
remaining steps are found in the original standby alert log.

2. Cancel Recovery - apply remaining redo and stop recovery.

3. Convert to Primary - a two-step close (to the mounted state) of instances (one instance,
then all others), clear online redo logs, convert control file to primary control file, and data
Guard Broker bookkeeping.

4. Open New Primary - parallel open of all instances.

Table 16-8 Alert Log Tags Defining the Steps with Time Management Interface Event
Enabled

Step Stage Time Management Interface
Event Enabled

Convert To Standby(primary alert
log)

BEGIN TMI: dbsdrv switchover to target
BEGIN <DATE> <TIMESTAMP>

Convert To Standby(primary alert
log)

END TMI: kcv_switchover_to_target
send 'switchover to primary' msg
BEGIN <DATE> <TIMESTAMP>

Chapter 16
Role Transition, Assessment, and Tuning

16-32

Table 16-8 (Cont.) Alert Log Tags Defining the Steps with Time Management Interface
Event Enabled

Step Stage Time Management Interface
Event Enabled

Cancel Recovery(standby alert
log)

BEGIN TMI:
kcv_commit_to_so_to_primary
wait for MRP to die BEGIN
<DATE> <TIMESTAMP>

Cancel Recovery(standby alert
log)

END TMI:
kcv_commit_to_so_to_primary
wait for MRP to die END <DATE>
<TIMESTAMP>

Convert to Primary (standby alert
log)

BEGIN TMI:
kcv_commit_to_so_to_primary
BEGIN CTSO to primary <DATE>
<TIMESTAMP>

Convert to Primary (standby alert
log)

END TMI: adbdrv BEGIN 10 <DATE>
<TIMESTAMP>

Open Primary(standby alert log) BEGIN TMI: adbdrv BEGIN 10 <DATE>
<TIMESTAMP>

Open Primary(standby alert log) END TMI: adbdrv END 10 <DATE>
<TIMESTAMP>

Key Failover Operations and Alert Log Tags
All failover steps are documented in the alert log of the target standby where the failover was
performed.

1. Cancel Recovery - Stop recovery and close all instances (to mounted) in parallel.

2. Terminal Recovery - Archive standby redo logs and recover any unapplied redo.

3. Convert to Primary - Clear online redo logs and convert control file to standby control file.

4. Open Primary - Open all instances in parallel.

Table 16-9 Failover Alert Log Tags Defining the Steps with Time Management Interface
Event Enabled

Step Stage Time Management Interface
Event Enabled

Cancel Recovery BEGIN TMI: adbdrv termRecovery
BEGIN <DATE> <TIMESTAMP>

Cancel Recovery END TMI: adbdrv termRecovery END
<DATE> <TIMESTAMP>

Terminal Recovery BEGIN TMI: krdsmr full BEGIN Starting
media recovery <DATE>
<TIMESTAMP>

Terminal Recovery END TMI: krdemr full END end media
recovery <DATE> <TIMESTAMP>

Convert to Primary BEGIN TMI:
kcv_commit_to_so_to_primary
BEGIN CTSO to primary <DATE>
<TIMESTAMP>

Chapter 16
Role Transition, Assessment, and Tuning

16-33

Table 16-9 (Cont.) Failover Alert Log Tags Defining the Steps with Time Management
Interface Event Enabled

Step Stage Time Management Interface
Event Enabled

Convert to Primary END TMI: adbdrv BEGIN 10 <DATE>
<TIMESTAMP>

Open Primary BEGIN TMI: adbdrv BEGIN 10 <DATE>
<TIMESTAMP>

Open Primary END TMI: adbdrv END 10 <DATE>
<TIMESTAMP>

Post Role Transition Validation
Use the SHOW CONFIGURATION VERBOSE command to verify that the switchover or failover and
standby reinstate was successful.

DGMGRL> SHOW CONFIGURATION VERBOSE;
Configuration - DRSolution
Protection Mode: MaxAvailability
Members:
 South_Sales - Primary database
 North_Sales - Physical standby database
 Fast-Start Failover: DISABLED
 Configuration Status:
 SUCCESS

Troubleshooting Problems During a Switchover Operation
The most important goal after a failed Data Guard switchover or failover operation is to resume
database and application availability as soon as possible.

Sources of Diagnostic Information
The Oracle Data Guard broker provides information about its activities in several forms.

• Database status information - You can use the SHOW DATABASE VERBOSE db_unique_name
command to get a brief description of the database (name, role, and so on), database
status, and information about any health check problems.

DGMGRL> SHOW DATABASE VERBOSE db_unique_name

• Oracle alert log files - The broker records key information in the alert log file for each
instance of each database in a broker configuration. You can check the alert log files for
such information when troubleshooting Oracle Data Guard.

• Oracle Data Guard "broker log files" - For each instance of each database in a broker
configuration, the broker DMON process records important behavior and status information
in a broker log file, useful in diagnosing Oracle Data Guard failures. The TraceLevel
configuration property is used to specify the level of diagnostic information reported in the
broker log files. The broker log file is created in the same directory as the alert log and is
named drc<$ORACLE_SID>.log.

Chapter 16
Role Transition, Assessment, and Tuning

16-34

Retry Switchover After Correcting the Initial Problem
If the reported problems can be corrected quickly, you can retry the switchover operation.

If the reported problems cannot be corrected or the switchover operation fails even after
correcting the reported problems, then you can choose another database for the switchover or
restore the configuration to its pre-switchover state and then retry the switchover or refer to
Rolling Back After Unsuccessful Switchover to Maximize Uptime.

DGMGRL> SWITCHOVER TO database_name;

Rolling Back After Unsuccessful Switchover to Maximize Uptime
For physical standby databases in situations where an error occurred, and it is not possible to
continue with the switchover in a timely fashion, revert the new physical standby database
back to the primary role to minimize database downtime.

Take the following steps.

1. Shut down and mount the new standby database (old primary).

2. Start Redo Apply on the new standby database.

3. Verify that the new standby database is ready to be switched back to the primary role.

Query the SWITCHOVER_STATUS column of the V$DATABASE view on the new standby
database. A value of TO PRIMARY or SESSIONS ACTIVE indicates that the new standby
database is ready to be switched to the primary role. Continue to query this column until
the value returned is either TO PRIMARY or SESSIONS ACTIVE.

4. Issue the following statement to convert the new standby database back to the primary
role:

 SQL> ALTER DATABASE SWITCHOVER TO target_db_name;

If step 4 fails, see Roll Back After Unsuccessful Switchover and Start Over in

Data Guard Performance Observations

Data Guard Role Transition Duration

Oracle Data Guard and Oracle MAA Gold reference architectures provide disaster recovery
and high availability solutions when the primary database, cluster, or site fails or is
inaccessible.

Each Data Guard environment is different and the time to perform role transitions can vary
significantly. Variables including, but not limited to, SGA size, number of Oracle RAC instances,
number of PDBs, data files, and connections to the database at the time of role transition
impact the length of a given role transition.

Generally, Data Guard switchover (planned maintenance) is slightly longer than Data Guard
failover (unplanned outages).

The following information is meant to educate you about ways to optimize role transitions.

Chapter 16
Data Guard Performance Observations

16-35

Data Guard Switchover Duration

When attempting to minimize application downtime for planned maintenance:

• Before planned maintenance windows, avoid or defer batch jobs or long running reports.
Peak processing windows should also be avoided.

• Because Data Guard switchover is graceful, which entails a shutdown of the source
primary database, any application drain timeout is respected. See Enabling Continuous
Service for Applications for Oracle Clusterware service drain attributes and settings.

• Data Guard switchover operations on a single instance (non-RAC) can be less than 30
seconds.

• Data Guard switchover operations on Real Application Cluster vary, but can be from 30
seconds to 7 minutes. The duration may increase with more PDBs (for example, > 25
PDBs), more application services (for example, 200 services), and if the database has a
large number of data files (for example, 1000s of data files).

The following graph and table show one example of how much switchover operation duration
can decrease when MAA tuning recommendations are implemented. Results will vary.

Figure 16-1 Planned maintenance: DR switch duration in seconds

Planned DR Switch
(Switchover)

Initial Configuration Tuned MAA Configuration

Convert Primary to Standby 26 secs 21 sec

Convert Standby to Primary
(C2P)

47 secs 7 secs

Open new Primary (OnP) 152 secs 14 secs

Open PDB and Start Service
(OPDB)

130 secs 39 secs

Total App Downtime 355 secs or 5 mins 55 secs 81 secs (78% drop)

The "Tuned" timings were achieved by implementing the following MAA recommended
practices:

• Use Bigfile Tablespace

• Oracle Data Guard Configuration Best Practices

Chapter 16
Data Guard Performance Observations

16-36

• Role Transition, Assessment, and Tuning

Data Guard Failover Duration

When attempting to minimize application downtime for DR scenarios:

• To limit Recovery Time Objective (RTO or database down time) and Recovery Point
Objective (RPO or data loss), automatic detection and fail over is required. See Fast-Start
Failover in Oracle Data Guard Broker.

• The database administrator can determine the appropriate "detection time" before initiating
an automatic failover by setting FastStartFailoverThreshold. See Enabling Fast-Start
Failover Task 4: Set the FastStartFailoverThreshold Configuration Property in Oracle Data
Guard Broker.

The MAA recommended setting is between 5 seconds and 60 seconds for a reliable
network. Oracle RAC restart may also recover from a transient error on the primary.
Setting this threshold higher gives the restart a chance to complete and avoid failover,
which can be intrusive in some environments. The trade off is that application downtime
increases in the event an actual failover is required.

• Data Guard failover operations on a single instance (non-RAC) can be less than 20
seconds.

• Data Guard failover operations on a Real Application Cluster vary but can be from 20
seconds to 7 minutes. The duration may increase with more PDBs (for example, > 25
PDBs), more application services (for example, 200 services) and if the database has a
large number of data files (for example, 1000s of data files).

The following graph and table show one example how much failover operation duration can
decrease when MAA tuning recommendations are implemented. Results will vary.

Figure 16-2 Unplanned DR failover duration in seconds

Unplanned Outage/DR
(Failover)

Initial Configuration Tuned MAA Configuration

Close to Mount (C2M) 21 secs 1 sec

Terminal Recovery (TR) 154 secs 2 secs

Chapter 16
Data Guard Performance Observations

16-37

Unplanned Outage/DR
(Failover)

Initial Configuration Tuned MAA Configuration

Convert to Primary (C2P) 114 secs 5 secs

Open new Primary (OnP) 98 secs 28 secs

Open PDB and Start Service
(OPDB)

146 secs 16 secs

Total App Downtime 533 secs or 8min 53 secs 52 secs (90% drop)

The "Tuned" timings were achieved by implementing the following MAA recommended
practices:

• Evaluate Data Guard Fast-Start Failover and test with different
FastStartFailoverThreshold settings

• Use Bigfile Tablespace

• Oracle Data Guard Configuration Best Practices

• Role Transition, Assessment, and Tuning

Customer Examples

Real-world Data Guard role transition duration observations from Oracle customers are shown
in the following table.

Primary and Data Guard Configuration Observed RTO

Single instance database failover in Database
Cloud (DBCS) with heavy OLTP workload. Data
Guard threshold is 5 seconds.

20 secs

Large Commercial Bank POC Results with 4 node
RAC with heavy OLTP workload

51 secs (unplanned DR)

82 secs (planned DR)

ExaDB-D 2-node RAC MAA testing with heavy
OLTP workload

78 secs

ADB-D 2-node RAC MAA testing (25 PDBs, 250
services) with heavy OLTP workload

104 secs

ADB-D 2-node RAC MAA testing (50 PDBs, 600
services) with heavy OLTP workload

180 secs

ADB-D 2-node RAC MAA testing (4 CDBs, 100
PDBs total, 500 services) with heavy OLTP
workload

164 secs

Oracle SaaS Fleet (thousands) of 12-node RAC,
400 GB SGA, 4000+ data files

(note: reducing number of data files to hundreds
can reduce downtime by minutes)

< 6 mins

Third Party SaaS Fleet (thousands) of 7-12 node
RACs with quarterly site switch

< 5 mins

Application Throughput and Response Time Impact with Data Guard
Application throughput and response time impact is near zero when you enable Data Guard
Max Performance protection mode or ASYNC transport. Throughput and application response
time is typically not impacted at all in those cases.

Chapter 16
Data Guard Performance Observations

16-38

With Data Guard Max Availability or Max Protection mode or SYNC transport, the application
performance impact varies, which is why application performance testing is always
recommended before you enable SYNC transport. With a tuned network and low round-trip
latency (RTT), the impact can also be negligible, even though every log commit has to be
acknowledged to every available SYNC standby database in parallel to preserve a zero data
loss solution.

Here's an example of the application throughput impact but application impact varies based on
workload:

Figure 16-3 Application impact with MTU=9000

Notice the lower network RTT latency (x axis), the application (TPS or y axis) throughput
reduces.

Note that in this network environment we observed that increasing MTU from 1500 (default) to
9000 (for example, jumbo frames) helped significantly since log message size increased
significantly with SYNC. With the larger MTU size, the number of network packets per redo
send request are reduced.

See Assessing and Optimizing Network Performance for details about tuning the network
including the socket buffer size and MTU.

Even when throughput decreases significantly with higher RTT latency, you can increase TPS
if your application can increase the concurrency. In the above chart, the last 2 columns
increased the workload concurrency by adding more users.

Application response time with SYNC transport can also increase, but will vary based on each
application workload and network tuning. With SYNC transport, all log writes have to wait for
standby SYNC acknowledgment. This additional wait result in more foregrounds waiting for

Chapter 16
Data Guard Performance Observations

16-39

commit acknowledgment. Because commits have to be acknowledged by the standby
database and more foregrounds are waiting for commits, the average log write size increases
which affects the redo/data transfer time, as shown in the following chart.

Figure 16-4 Database response time (ms) vs latency (ms) for tuned and default MTU

In this example, we observed from AWR reports that average redo write size increased
significantly, and tuning MTU reduced the response time impact. See Assessing and
Optimizing Network Performance on tuning network including the socket buffer size and MTU.

After tuning the network, the response time impact was very predictable and low. Note that
response impact varies per application workload.

To get the best application performance with Data Guard, use the following practices:

• Tune the application without Data Guard first and you should observe similar performance
for ASYNC transport

• Implement Oracle Data Guard Configuration Best Practices

• Use Redo Transport Troubleshooting and Tuning methods

• Tune the network to improve application performance with SYNC. See Assessing and
Optimizing Network Performance

• Application workload specific changes that can help increase throughput for SYNC
Transport are:

– Evaluate adding more concurrency or users to increase throughput.

– For non-critical workloads within certain sessions that do not require zero data loss,
evaluate advanced COMMIT_WRITE attribute to NOWAIT.

Chapter 16
Data Guard Performance Observations

16-40

In this case, you can commit before receiving the acknowledgment. Redo is still sent to
persistent redo logs but is done asynchronously. Recovery is guaranteed for all
persistent committed transactions in the redo that is applied. See COMMIT_WRITE in
Oracle Database Reference.

Chapter 16
Data Guard Performance Observations

16-41

17
Monitor an Oracle Data Guard Configuration

Use the following Oracle MAA best practice recommendations to monitor an Oracle Data
Guard configuration.

Monitoring Oracle Data Guard Configuration Health Using the
Broker

The Oracle data Guard broker issues a health check once a minute and updates the
configuration status. To force a health check to occur immediately, run the command show
configuration verbose.

On a primary database, the health check determines if the following conditions are met.

• Database is in the state specified by the user, as recorded in the broker configuration file

• Database is in the correct data protection mode

• Database is using a server parameter file(SPFILE)

• Database is in the ARCHIVELOG mode

• Redo transport services do not have any errors

• Database settings match those specified by the broker configurable properties

• Redo transport settings match those specified by the redo transport-related properties of
the standby databases

• Current data protection level is consistent with configured data protection mode

• Primary database is able to resolve all gaps for all standby databases

On a standby database, the health check determines whether the following conditions are met.

• Database is in the state specified by the user, as recorded in the broker configuration file

• Database is using a server parameter file (SPFILE)

• Database settings match those specified by the broker configurable properties

• Primary and target standby databases are synchronized or within lag limits if fast-start
failover is enabled

To identify any warnings on the overall configuration, show the status using the SHOW
CONFIGURATION command.

DGMGRL> show configuration;

Configuration – dg

 Protection Mode: MaxPerformance
 Members:
 tin - Primary database
 can - Physical standby database

17-1

Fast-Start Failover: DISABLED

Configuration Status:
SUCCESS (status updated 18 seconds ago)

If the configuration status is SUCCESS, everything in the broker configuration is working properly.

However, if you see a status of WARNING or ERROR, then something is wrong in the configuration.
Additional error messages will accompany the WARNING or ERROR status that should be used to
identify current issues.

The next step is to examine each database in the configuration to narrow down what the
specific error is related to.

To identify the warnings on the primary database, get its status using the SHOW DATABASE
command.

DGMGRL> show database tin

Database – tin

 Role: PRIMARY
 Intended State: TRANSPORT-ON
 Instance(s):
 tin1
 tin2

Database Status:
SUCCESS

If the database status is SUCCESS then the database is working properly.

However, if you see a status of WARNING or ERROR, then something is wrong in the database.
Additional error messages will accompany the WARNING or ERROR status that should be used to
identify current issues.

Repeat the same SHOW DATABASE command on the standby database and assess any error
messages.

In addition to the above commands, the broker features a VALIDATE DATABASE command.

DGMGRL> validate database tin

 Database Role: Primary database
 Ready for Switchover: Yes

DGMGRL> validate database can;

 Database Role: Physical standby database
 Primary Database: tin

 Ready for Switchover: No
 Ready for Failover: Yes (Primary Running)

 Capacity Information:
 Database Instances Threads

Chapter 17
Monitoring Oracle Data Guard Configuration Health Using the Broker

17-2

 tin 2 2
 can 1 2
 Warning: the target standby has fewer instances than the
 primary database, this may impact application performance

 Standby Apply-Related Information:
 Apply State: Not Running
 Apply Lag: Unknown
 Apply Delay: 0 minutes

The VALIDATE DATABASE does not provide a SUCCESS or WARNING status and must be examined
to determine if any action needs to be taken.

It is recommended that you run the VALIDATE DATABASE command after creating the broker
configuration, and before and after any role transition operation.

The VALIDATE DATABASE command performs the following checks.

• Whether there is missing redo data on a standby database

• Whether flashback is enabled

• The number of temporary tablespace files configured

• Whether an online data file move is in progress

• Whether online redo logs are cleared for a physical standby database

• Whether standby redo logs are cleared for a primary database

• The online log file configuration

• The standby log file configuration

• Apply-related property settings

• Transport-related property settings

• Whether there are any errors in the Automatic Diagnostic Repository (for example, control
file corruptions, system data file problems, user data file problems)

Detecting Transport or Apply Lag Using the Oracle Data Guard Broker
Given enough resources, in particular network bandwidth, an Oracle Data Guard standby can
maintain pace with very high workloads. In cases where resources are constrained, the
standby can begin to fall behind, resulting in a transport or apply lag.

A transport lag is the amount of data, measured in time, that the standby has not received
from the primary.

An apply lag is the difference, in elapsed time, between when the last applied change became
visible on the standby and when that same change was first visible on the primary.

When using the Data Guard broker, the transport or apply lag can be viewed by using the SHOW
DATABASE command and referencing the standby database, as shown here.

DGMGRL> show database orclsb

Database – orclsb

 Role: PHYSICAL STANDBY
 Intended State: APPLY-ON

Chapter 17
Monitoring Oracle Data Guard Configuration Health Using the Broker

17-3

 Transport Lag: 0 seconds (computed 0 seconds ago)
 Apply Lag: 0 seconds (computed 1 second ago)
 Average Apply Rate: 792.00 KByte/s
 Real Time Query: ON
 Instance(s):
 orclsb1 (apply instance)
 orclsb2

Database Status:
SUCCESS

The broker TransportDisconnectedThreshold database property (default of 0 in Oracle
Database 11.2, and 30 seconds for Oracle Database 12.1 and later releases) can be used to
generate a warning status for a standby when the last communication from the primary
database exceeds the value specified by the property. The property value is expressed in
seconds.

The following is an example of the warning when a disconnection has occurred.

DGMGRL> show database orclsb;

Database – orclsb

 Role: PHYSICAL STANDBY
 Intended State: APPLY-ON
 Transport Lag: 0 seconds (computed 981 seconds ago)
 Apply Lag: 0 seconds (computed 981 seconds ago)
 Average Apply Rate: 12.00 KByte/s
 Real Time Query: OFF
 Instance(s):
 orclsb1 (apply instance)
 orclsb2

 Database Warning(s):
 ORA-16857: member disconnected from redo source for longer than specified
threshold

The broker also has the following configurable database properties that you can use to
generate warnings when a transport or apply lag exceed a user defined value.

• The ApplyLagThreshold property generates a warning status for a logical or physical
standby when the database's apply lag exceeds the value specified by the property.

The property value is expressed in seconds. A value of 0 seconds results in no warnings
being generated when an apply lag exists. As a best practice, Oracle recommends setting
ApplyLagThreshold to at least 15 minutes.

• The TransportLagThreshold property can be used to generate a warning status for a
logical, physical, or snapshot standby when the database's transport lag exceeds the value
specified by the property.

The property value is expressed in seconds. A value of 0 seconds results in no warnings
being generated when a transport lag exists. As a best practice, Oracle recommends
setting TransportLagThreshold to at least 15 minutes.

Chapter 17
Monitoring Oracle Data Guard Configuration Health Using the Broker

17-4

Monitoring Oracle Data Guard Configuration Health Using SQL
You can use the queries in the following tables to assess the overall Data Guard configuration
health on the primary database and the standby database.

Table 17-1 Primary Database Queries

Goal Query Expected Results

Check if any remote standby
archive destination is getting
errors

Check if all remote standby
archive destinations is enabled or
VALID

select
sysdate,status,error
 from
gv$archive_dest_status
 where type='PHYSICAL'
 and status!='VALID'
 or error is not null;

Good health = no rows returned

If the query returns rows, then
raise an alert with the returned
data.

Check if any NOLOGGING activity
occurred on the primary database
in the last day

select file#, name,
unrecoverable_change#,
unrecoverable_time
 from v$datafile
 where
unrecoverable_time >
(sysdate - 1);

Good health = no rows returned

If the query returns rows, then the
standby database is vulnerable,
and the files listed in the output
must be refreshed on the
standby.

Detect gaps on the standby
database select

sysdate,database_mode,re
covery_mode, gap_status
 from
v$archive_dest_status
 where type='PHYSICAL'
 and gap_status !='NO
GAP';

Good health = no rows returned

If the query returns rows, then
there's an existing gap between
the primary and the standby
database, and you must run the
same query on the standby
database.

If the output from the primary and
standby is identical, then no
action is required.

If the output on the standby does
not match the output from the
primary, then the datafile on the
standby should be refreshed.

Assess whether any severe Data
Guard event occurred in the last
day

select *
 from v$dataguard_status
 where severity in
('Error','Fatal')
 and timestamp >
(sysdate -1);

Good health = no rows returned

If the query returns rows, then
raise an alert with the returned
output.

Chapter 17
Monitoring Oracle Data Guard Configuration Health Using SQL

17-5

Table 17-1 (Cont.) Primary Database Queries

Goal Query Expected Results

FOR SYNC ENVIRONMENTS
ONLY:

Assess if running in Maximum
Availability mode and
configuration is in sync

select
sysdate,protection_mode,
 synchronized,
synchronization_status
 from
v$archive_dest_status
 where type='PHYSICAL'
 and
synchronization_status !
='OK';

Good health = no rows returned

If the query returns rows, then
raise an alert with the returned
output.

Table 17-2 Physical Standby Database Queries

Goal Query Expected Results

Determine if there is a transport lag
select
name,value,time_computed,datu
m_time
 from v$dataguard_stats
 where name='transport lag'
 and value > '+00 00:01:00';

Good health = no rows returned

If no rows are returned, then this implies
that there is no transport lag

Determine if there is an apply lag
select
name,value,time_computed,datu
m_time
 from v$dataguard_stats
 where name='apply lag'
 and value > '+00 00:01:00';

Good health = no rows returned

If no rows are returned, then this implies
that there is no apply lag

Standby data file check (offline files or
files that are not accessible) select *

 from v$datafile_header
 where status ='OFFLINE'
 or ERROR is not null;

Good health = no rows returned

Any rows returned list the files that have
I/O or recovery issues

Verify that the Media Recovery Process
is currently running select *

 from v$managed_standby
 where process like 'MRP%';

Good health = rows returned

If no rows are returned, then the MRP
process is not running

Chapter 17
Monitoring Oracle Data Guard Configuration Health Using SQL

17-6

Table 17-2 (Cont.) Physical Standby Database Queries

Goal Query Expected Results

Assess whether any severe Data Guard
event occurred in the last day select *

 from v$dataguard_status
 where severity in
('Error','Fatal')
 and timestamp > (sysdate
-1);

Good health = no rows returned

If the query returns rows, then raise an
alert with the returned output

Oracle Data Guard Broker Diagnostic Information
The Oracle Data Guard broker provides information about its activities in several forms.

• Database status information

• Oracle alert log files

The broker records key information in the alert log file for each instance of each database
in a broker configuration.

• Oracle Data Guard broker log files

For each instance of each database in a broker configuration, the broker DMON process
records important behavior and status information in a broker log file, which are useful for
diagnosing Oracle Data Guard failures. The Set the TraceLevel configuration property to
specify the level of diagnostic information reported in the broker log files. The broker log
file is created in the same directory as the alert log and is named drc<$ORACLE_SID>.log.

• Oracle Data Guard command line (DGMGRL) logfile option

If the DGMGRL command-line interface was started with the -logfile optional parameter,
then the resulting log file may contain a useful record of past operations and error
conditions.

Detecting and Monitoring Data Corruption
If corrupt data is written to disk, or if a component failure causes good data to become corrupt
after it is written, then it is critical that you detect the corrupted blocks as soon as possible.

To monitor the database for errors and alerts:

• Query the V$DATABASE_BLOCK_CORRUPTION view that is automatically updated when block
corruption is detected or repaired.

• Configure Data Recovery Advisor to automatically diagnose data failures, determine and
present appropriate repair options, and perform repair operations at your request.

Note that Data Recovery Advisor integrates with the Oracle Enterprise Manager Support
Workbench (Support Workbench), the Health Monitor, and RMAN.

• Use Data Guard to detect physical corruptions and to detect lost writes.

Data Guard can detect physical corruptions when the apply process stops due to a
corrupted block in the redo steam or when it detects a lost write.

Chapter 17
Oracle Data Guard Broker Diagnostic Information

17-7

Use Enterprise Manager to manage and monitor your Data Guard configuration.

By taking advantage of Automatic Block Media Recovery, a corrupt block found on either a
primary database or a physical standby database can be fixed automatically when the
Active Data Guard option is used.

• Use SQL*Plus to detect data file corruptions and inter-block corruptions.

Run this SQL*Plus statement:

sqlplus> ANALYZE TABLE table_name VALIDATE STRUCTURE CASCADE;

After finding the corruptions, the table can be re-created or another action can be taken.

• An Recovery Manager (RMAN) backup and recovery strategy can detect physical block
corruptions.
A more intensive RMAN check using the following command can detect logical block
corruptions.

RMAN> BACKUP VALIDATE CHECK LOGICAL;

Chapter 17
Detecting and Monitoring Data Corruption

17-8

18
Optimizing Automatic Failover in Common
Scenarios to Minimize Downtime

The following topics provide Oracle Data Guard MAA best practices in relation to common
scenarios to avoid or minimize downtime and prevent various problematic scenarios.

Automatic Database Failover for Primary Database Outages
Fast Start Failover (FSFO) is the Oracle Data Guard feature that performs automatic database
failover when there is an outage of a primary database. FSFO is controlled by the Data Guard
observer process, which is part of the Data Guard broker. When the observer process that
controls automatic database failover is started, it creates threads that connect to both the
primary and standby databases. Each thread creates a database session and verifies the
database health using the dbms_drs package. If a thread doesn’t respond, a new thread is
created and Data Guard attempts to create a session and use the dbms_drs package. If the
threads do not respond by a defined period of time (threshold) then the database is considered
to be unavailable.

If the primary database becomes network isolated from the standby and observer at the same
time, the primary stalls (no new transactions are able to commit) until it can again make
contact with either observer or standby. This is done to explicitly prevent split brain. If the
observer and standby agree that neither can see the primary and if FSFO was enabled at the
time they lost contact, then automatic failover occurs once the FSFO threshold is exceeded. At
this same time, the primary will have also passed the FSFO threshold, causing it to abort so
that existing connections are not able to continue reading stale data after a failover has
occurred. If the primary is able to connect with either the observer or the standby designated
as the failover target before the FSFO threshold expires, then it is allowed to continue to
process transactions. If the primary aborts because the FSFO threshold is exceeded, then
when the primary is restarted, it must receive permission from the observer or its original
standby before it is able to open. When it makes contact, it is told that either a failover occurred
while it was away, and it is automatically converted into a standby database or, if no failover
occurred, it is allowed to open. This assures there is never a case where there are two active
primaries at the same time.

If the primary loses contact with either the observer or the standby, the primary keeps
processing transactions because it still has the ability to communicate with one of the two
parties. If both the primary and standby have lost contact with the observer they fall into an
UNOBSERVED state. If the primary has lost contact with the standby it falls into an
UNSYNCHRONIZED state. This is how we ensure that an observer or standby outage, or the
outage of both at different times, does not impact the availability of the primary database in an
FSFO configuration.

If the primary database appears unavailable to the observer, the observer initiates an
automatic failover if the standby is 1) responding 2) perceives the primary to be unavailable
and 3) is synchronized as of the last communication.

As a best practice, the observer should ideally be located at a third site or third data center so
that the primary, observer, and standby have isolated power, server, storage, and network
infrastructure. It is possible to achieve a similar level of isolation using two sites; however,

18-1

when Data Guard is used for disaster recovery, the observer should never be deployed at the
primary database server or cluster, or on the standby database server or cluster.

An additional best practice is to have the observer use the same path to connect to the
production database as is used by the application tier. The intent of this practice is for the
observer to have the same access path as application connections so that if application
connections can't see the primary, the observer has the same problem and can quickly
respond. This best practice comes with a caveat if the application tier is local to the production
database while the standby is in a remote data center for disaster recovery. In this case, it is
not wise to deploy the observer with the application tier, as it could experience the same issues
as the database. Instead, the observer should be deployed at either the standby location or a
third data center.

In all recent Oracle Database releases, the Data Guard broker includes a feature that regularly
makes a new connection with the primary to simulate what new connections see, providing
additional health monitoring of the primary database.

Automatic Data Integrity and Avoidance of Split Brain
An Oracle Data Guard configuration maintains multiple synchronized copies of the production
database. Because Data Guard uses simple one-way replication, the primary database is the
only database open read-write; all other replicas (standby databases) must be either in mount
mode or open read-only (if using Oracle Active Data Guard). The term ‘split brain’ describes a
scenario where there are two copies of the same database open read-write, each operating
independently of the other. This is a very undesirable circumstance that results in inconsistent
data. The following algorithms ensure data consistency in a Data Guard synchronous
configuration and the avoidance of split-brain:

• The primary database Log Writer (LGWR) redo write and the sync redo transport write that
transmits to the standby database are identical in redo content and size.

• The Data Guard Managed Recovery Process (MRP) at the standby database cannot apply
redo unless the redo has been written to the primary's online redo log, with the only
exception being during a Data Guard failover (via the recover managed standby database
finish) operation. In addition to shipping redo synchronously, the sync transport process
and LGWR also exchange information regarding the safe redo block boundary that
standby recovery can apply up to from its standby redo logs. This boundary prevents the
standby from applying redo it may have received, but which the primary has not yet
acknowledged as committed to its own online redo logs.

Data Guard SYNC maintains data integrity in all of the 3 general outage categories:

• Primary failure and restart (for example, LGWR I/O failure, LGWR crash, instance failure,
or database failure and restart): For example, if a primary database's LGWR cannot write
to an online redo log, then the instance’s LGWR and instance will crash. An Oracle RAC
node or single instance database crash recovery will recover to the last committed
transaction in the online redo log and roll back any uncommitted transactions. The current
log will be completed and archived to any enabled log archive destination in a Data Guard
destination.

• Failure resulting in missing redo on the standby: If the sync transport process and the
Remote File Server (RFS) process that receives redo at the standby database detects
missing current or last bit of redo on the standby regardless the outage cause, RFS
requests the missing redo to be resent, and it is written directly into the Standby Redo Log
(SRL).

• Any outage resulting in a zero data loss failover operation: If the primary database
crashes, resulting in an automatic or manual zero data loss failover, then the Data Guard

Chapter 18
Automatic Data Integrity and Avoidance of Split Brain

18-2

failover operation will do "terminal recovery" (using the recover managed standby finish
operation) and read and recover the current SRL. Once recovery completes applying all
the redo in the SRLs, the new primary database comes up, and it archives the newly
completed online log group. All new and existing standby databases discard any redo for
the same log group sequence and thread, flashback to consistent SCN, and only apply the
archives coming from the new primary database. Once again, the Data Guard environment
is in sync with the (new) primary database and there’s no deviation or data loss.

Automatic Reconnect Following Any Outage That Results in
Network Timeout

Network or cluster failure outage cases are more involved because the heartbeat ARCH can
hang on the network and may end up getting killed based on internal timers. The internal
timers for detecting hung transport processes are controlled by the underscore parameter
_redo_transport_stall_time, which is for the short disk/network calls, and the underscore
parameter _redo_transport_stall_time_long, which is for the longer version of the disk/
network calls.

After the heartbeat ARCH is killed, another ARCH becomes the heartbeat ARCH, and, after
approximately 'REOPEN + 1 minute + <hang time..before killed >', it attempts to connect to the
network. Only when the heartbeat ARCH is able to reconnect to the standby will LGWR
attempt to connect to the standby database. This ensures that the application does not incur
any unnecessary impact, and LGWR does not suffer a NetTimeout hang on an unhealthy
network.

Automatic Reconnect Following Resolution of Standby Outage
The heartbeat ARCH is one of the primary database’s ARCH processes that is designated to
ping the standby. The heartbeat ARCH will 'ping' the standby every 1 minute when the network
is healthy and the standby is reachable. This is done to detect gaps in archive logs received by
the standby. If there is a network failure, the heartbeat ARCH does not attempt to connect for
up to REOPEN time; however, there are states where Oracle Data Guard will reset the 'remote'
destination sooner than 'REOPEN + 1 minute' using a feature called standby announcement.
For the standby bounce case (not a network hang), a mounted standby RFS or Fetch Archive
Log (FAL) will communicate with the primary database and 'announce' that the standby is now
available. In such cases, the primary does not wait for REOPEN - it will connect to the standby
immediately after being posted.

With Maximum Availability and LGWR SYNC redo transport, note that it is only the heartbeat
ARCH that attempts a reconnect to the standby after a network failure. LGWR never attempts
to connect to the standby after a failure unless the heartbeat ARCH has already confirmed that
the standby is accessible.

Gap resolution for a reconnect following a standby outage is done automatically. For example,
consider a primary in the middle of log sequence 100, the standby database crashes, and then
the primary advances through logs 101, 102, and 103. When the standby becomes available,
the primary switches logs to 104 and starts either ASYNC or SYNC transport at that point. It
then ships the remaining portion of log sequence 100 and uses several archive processes to
ship 101, 102, and 103 in parallel.

Data Guard Broker Properties That Affect Outage Repair Times

Chapter 18
Automatic Reconnect Following Any Outage That Results in Network Timeout

18-3

The following Data Guard broker properties can be configured to reduce outage repair times.
Recommended values depend on the environment in which they are being used, and they
should be tested to assess application impact.

Data Guard Broker Property: NetTimeout

Default Value: 30 Seconds

Recommended value: 5 to 10 seconds if the network is responsive and reliable

Specifies a maximum number of seconds that the LGWR background process blocks while
waiting for a synchronous redo transport destination to acknowledge redo data sent to it. If an
acknowledgment is not received within NetTimeout seconds, an error is logged, and the redo
transport session to that destination is terminated.

This property is put into effect for all outages that would place the sync transport process in a
TCP timeout with the standby processes, such as network failure, standby host failure, and
standby cluster failure. NetTimeout should not be set < 5 seconds.

Data Guard Broker Property: ReopenSecs
Default Value: 300 Seconds

Recommended value: 30 seconds

Specifies the minimum number of seconds before redo transport services should try to reopen
a failed destination. Once reopen expires and the destination is open it is attempted at the next
log switch.

This property is in effect for all outages that place the sync transport in an error state that
closes the destination, such as a standby instance/database/node/cluster outage, network
outage, or sync transport process death.

Data Guard Broker Property: MaxFailure
Default Value: None

Recommended Value: Depends on application availability and business requirements.

Controls the consecutive number of times redo transport services attempt to reestablish
communication and transmit redo data to a failed destination before the primary database
gives up on the destination.

This property is in effect for all outages that place the sync transport in an error state that
closes the destination, such as a standby instance/database/node/cluster outage, network
outage, or sync transport process death.

Data Guard Broker Property: FastStartFailoverThreshold
Default Value: 30 seconds

Recommended value: 6 to 15 seconds if the network is responsive and reliable. For primary
Oracle RAC instances, add maximum clusterware heartbeat timeout (CSS miscount default for
Linux is 30 seconds. For Exadata, you can use 2 seconds) to FastStartFailoverThreshold.

The FastStartFailoverThreshold configuration property defines the number of seconds the
observer attempts to reconnect to the primary database before initiating a fast-start failover to
the target standby database. The time interval starts when the observer first loses connection
with the primary database. If the observer is unable to regain a connection to the primary
database within the specified time, then the observer initiates a fast-start failover.

Chapter 18
Data Guard Broker Properties That Affect Outage Repair Times

18-4

This property is in effect for all outages that would require a failover to the standby database
due to a complete primary database outage.

Database Initialization Parameter: FAST_START_MTTR_TARGET
Default Value: 0

Recommended value: the value required for your expected recovery time objective (RTO)

FAST_START_MTTR_TARGET lets you specify the number of seconds the database takes to
perform crash recovery of a single instance. When specified, FAST_START_MTTR_TARGET is
overridden by LOG_CHECKPOINT_INTERVAL.

This property is put into effect for all outages that require a database to perform instance
recovery, such as instance failure. When you set this database initialization parameter, the
database manages incremental checkpoint writes in an attempt to meet the target. The
incremental checkpoints may occur more often, increasing the amount of I/O from the
database writer (DBWR). It is recommended that you perform testing before reducing this
parameter.

Data Guard Standby Database Outage Repair

Kill Apply Instance

How to run a test

1. Start workload on the primary database.

2. Ensure that the primary database is in Maximum Availability mode.

select protection_mode,protection_level from v$database;

3. Abort instance running managed recovery process (MRP).

shutdown abort

What to look for

• Notification of primary becoming unsynchronized

LGWR: Attempting destination LOG_ARCHIVE_DEST_2 network reconnect (3135)
LGWR: Error 1041 disconnecting from destination LOG_ARCHIVE_DEST_2 standby
host

• Notification of primary becoming synchronized

Destination LOG_ARCHIVE_DEST_2 is SYNCHRONIZED

After the first log switch, the PROTECTION_LEVEL drops to RESYNCHRONIZATION.

SQL> select inst_id,protection_mode,protection_level from gv$database;

 INST_ID PROTECTION_MODE PROTECTION_LEVEL
 -------- -------------------- --------------------
 1 MAXIMUM AVAILABILITY RESYNCHRONIZATION
 2 MAXIMUM AVAILABILITY RESYNCHRONIZATION

Chapter 18
Data Guard Standby Database Outage Repair

18-5

The PROTECTION_LEVEL returns to MAXIMUM AVAILABILITY after the second log switch.

SQL> select inst_id,protection_mode,protection_level from gv$database;

 INST_ID PROTECTION_MODE PROTECTION_LEVEL
 ------ -------------------- --------------------
 1 MAXIMUM AVAILABILITY MAXIMUM AVAILABILITY
 2 MAXIMUM AVAILABILITY MAXIMUM AVAILABILITY

Expected impact on primary

With the loss of the apply instance, the primary database immediately switches a log to demote
the destination to RESYCHRONIZATION MODE. After the primary is able to reconnect to the
standby and ship the missing redo, a second log switch occurs to promote the destination to
SYNCHRONOUS, restoring MAXIMUM AVAILABILITY.

Figure 18-1 Primary Database Workload with Apply Instance Crash

If the standby instances are open read-only and an apply instance is killed, all standby
instances must be brought down to the mount state. This is done using alter database close
normal. If this close operation takes a long time due to a large number of read-only
connections, set _ABORT_ON_MRP_CRASH=TRUE. With the database initialization parameter
ABORT_ON_MRP_CRASH=TRUE, the standby aborts and restarts all other instances and brings them
to the mount state.

Kill Standby Database (All Instances)

How to run a test

Chapter 18
Data Guard Standby Database Outage Repair

18-6

1. Start workload on the primary database.

2. Ensure that the primary database is in Maximum Availability mode.

select protection_mode,protection_level from v$database;

3. Abort all standby database instances at the same time using shutdown abort.

srvctl stop database -d <standby> -o abort

What to look for

• Notification of primary becoming unsynchronized

Destination LOG_ARCHIVE_DEST_2 is UNSYNCHRONIZED

• Notification of primary becoming synchronized

Destination LOG_ARCHIVE_DEST_2 is SYNCHRONIZED

Note:

This notification only occurs after the standby has been restarted.

After the log switch the PROTECTION_LEVEL drops to RESYNCHRONIZATION.

SQL> select inst_id,protection_mode,protection_level from gv$database;

 INST_ID PROTECTION_MODE PROTECTION_LEVEL
---------- -------------------- --------------------
 1 MAXIMUM AVAILABILITY RESYNCHRONIZATION
 2 MAXIMUM AVAILABILITY RESYNCHRONIZATION

Expected impact on primary

Sync transport detects the instance crashes immediately, and there should not be any
additional brownout for the application. With the loss of the entire standby database, the
primary database immediately switches a log in order to demote the destination to
RESYCHRONIZATION MODE. The primary does not return to MAXIMUM AVAILABILITY until the
standby is brought back to at least a mounted state, at which point the gap in redo will be
resolved and log shipping may resume. A second brief brownout occurs when the standby is
again made available to the primary due to the necessary log switch to put the configuration
back into MAXIMUM AVAILABILITY.

Chapter 18
Data Guard Standby Database Outage Repair

18-7

Figure 18-2 Primary Database Workload with Standby Database Crash

Oracle Active Data Guard Far Sync – Examples and Outage
Scenarios

Oracle Active Data Guard Far Sync provides the ability to perform a zero data loss failover to a
remote standby database without requiring a second standby database or complex operation.
Far Sync enables this by deploying a Far Sync instance (a lightweight Oracle instance that has
only a control file, server parameter file (SPFILE), password file, and standby log files-- there
are no database files or online redo logs-- at a distance that is within an acceptable range of
the primary for SYNC transport. A Far Sync instance receives redo from the primary via SYNC
transport and immediately forwards the redo to up to 29 remote standby databases via ASYNC
transport. A Far Sync instance can also forward redo to the Oracle Zero Data Loss Recovery
Appliance.

An outage of a Far Sync instance running in Maximum Availability mode has no impact on the
availability of the primary database other than a transitory brownout while the primary database
receives an error notification. The primary resumes processing database transactions after
notification is received. In most cases, notification is immediate, though there are certain fault
conditions that suspend fault notification until the threshold for net_timeout expires (a user-
configurable Data Guard broker property with a default of 30 seconds). This is standard
operation for any Data Guard configuration that uses Maximum Availability mode. Data
Guard’s self-healing mechanisms automatically reconnect and resynchronize a standby

Chapter 18
Oracle Active Data Guard Far Sync – Examples and Outage Scenarios

18-8

database once the problem that caused it to disconnect is resolved. These same automatic
mechanisms also apply to Far Sync.

High availability (HA) in the Far Sync context addresses the ability to eliminate or minimize the
potential for data loss should there be a double failure scenario, for example, a primary
database outage immediately following a Far Sync outage or vice versa. HA in this context can
be achieved in multiple ways. Each approach has its own trade-offs and considerations, which
are described in the sections that follow. Combinations of the options listed are also feasible.

High Availability Using the Terminal Standby as an Alternate Destination

The simplest approach to maintaining data protection during a Far Sync outage is to create an
alternate log archive destination pointing directly to the terminal standby (the ultimate failover
target). Asynchronous transport (ASYNC) to the remote destination is the most likely choice in
order to avoid the performance impact caused by WAN network latency. ASYNC can achieve
near-zero data loss protection (as little as sub-seconds of exposure), but because it never
waits for standby acknowledgment, it is unable to provide a zero data loss guarantee. During a
Far Sync outage, redo transport automatically fails over to using the alternate destination.
Once the Far Sync instance has been repaired and resumes operation, transport will
automatically switch back to the Far Sync instance and zero data loss protection is restored.

Note that during a switchover to the terminal standby (a planned role transition), the
configuration's protection mode must be reduced to Maximum Performance so that the mode is
enforceable on the role transition target. Changing protection modes and transport methods is
a dynamic operation with zero downtime.

The characteristics of this approach include:

• No additional Far Sync hardware or instances to manage.

• Loss of zero data loss coverage during a far sync instance outage. Data protection level
drops to UNSYNCHRONIZED with ASYNC transport until the Far Sync instance is able to resume
operation, synchronous communication is re-established, and the standby database
becomes fully synchronized.

Relevant Data Guard broker properties for this example include:

• Primary (primary):
RedoRoutes='(LOCAL : farsyncA FASTSYNC ALT=(standby ASYNC FALLBACK))';
MaxFailure=1

NetTimeout=15

reopensecs=10

• Primary Far Sync “A” (farsyncA)
RedoRoutes='(primary:standby ASYNC)';
MaxFailure=1

NetTimeout=15

reopensecs=10

• Standby (standby):
RedoRoutes='(LOCAL : primary ASYNC)';
MaxFailure=1

NetTimeout=15

reopensecs=10

Chapter 18
Oracle Active Data Guard Far Sync – Examples and Outage Scenarios

18-9

High Availability Using an Alternate Far Sync Instance

A more robust approach to maintaining data protection in the event of a Far Sync outage is to
deploy a second Far Sync instance as an alternative destination. Unlike the previous example,
the alternate Far Sync instance prevents the data protection level from being degraded to
Maximum Performance (ASYNC) while the first Far Sync instance is repaired.

The following image shows what occurs during an outage when the active Far Sync instance in
this example has failed but the server on which it was running is still operating.

• There is a brief application brownout of 3 to 4 seconds while the primary database
connects to the alternate Far Sync instance.

– In this failure state, an error is immediately returned to the primary database without
waiting for NetTimeout. The brownout can be calculated based on property settings
((MaxFailure-1)*ReopenSecs) + 4s.

• The maximum potential data loss, should there be a second outage that impacts the
primary database before the configuration is resynchronized, is a function of the amount of
redo generated while the primary reconnects to the alternate Far Sync instance and the
configuration is resynchronized.

Figure 18-3 Primary Database Workload with Failover to Alternate Far Sync Instance

Behavior is slightly different in a failure state where the server on which the Far Sync instance
is running crashes. The application brownout is extended by an additional NetTimeout
seconds, and the potential exposure to data loss should a second outage impact the primary is
increased due to the additional processing required before resynchronization is complete.

The characteristics of this approach include:

Chapter 18
Oracle Active Data Guard Far Sync – Examples and Outage Scenarios

18-10

• Reduced data loss exposure should there be a second outage that impacts the primary
database before a Far Sync instance is repaired and returned to service.

• A symmetrical configuration that is able to maintain zero data loss protection following a
role transition (planned switchover) that promotes the standby database to the primary role
(the original primary becomes a zero data loss failover target). Please note that an
SQL*Plus configuration with an alternate destination will automatically fall back to the initial
log archive destination when it becomes available. Within a Data Guard broker
configuration, the FALLBACK keyword in the RedoRoutes property is used to enable this
behavior.

Relevant configuration Data Guard broker properties for this example include:

• Primary (primary):
RedoRoutes='(LOCAL : farsyncA FASTSYNC ALT=(farsyncB ASYNC FALLBACK))';
MaxFailure=1

NetTimeout=15

reopensecs=10

• Primary Far Sync “A” (farsyncA)
RedoRoutes='(primary:standby ASYNC)';
MaxFailure=1

NetTimeout=15

reopensecs=10

• Far Sync “B” (farsyncB)
RedoRoutes='(primary:standby ASYNC)';
MaxFailure=1

NetTimeout=15

reopensecs=10

• Standby (standby):
RedoRoutes='(LOCAL : SBfarsyncA FASTSYNC ALT=(SBfarsyncB ASYNC FALLBACK))';
MaxFailure=1

NetTimeout=15

reopensecs=10

• Standby Far Sync “A” (SBfarsyncA)
RedoRoutes='(standby:primary ASYNC)';
MaxFailure=1

NetTimeout=15

reopensecs=10

• Standby Far Sync “B” (SBfarsyncB)
RedoRoutes='(standby:primary ASYNC)';
MaxFailure=1

NetTimeout=15

reopensecs=10

Chapter 18
Oracle Active Data Guard Far Sync – Examples and Outage Scenarios

18-11

Far Sync Using Oracle Real Application Clusters

A Far Sync instance can also be placed on an Oracle RAC. In this configuration, Far Sync is
only active on one server at a time while other servers provide automatic failover for HA.

The characteristics of this approach include:

• Lowest application brownout when a Far Sync instance fails.

• Fastest resumption of zero data loss protection after Far Sync instance failure.

• This solution does not address cluster failure by itself; if the cluster becomes unavailable,
configuring an alternate destination is still required to maintain data protection.

Far Sync Instance Failure in an Oracle RAC Cluster

The following image shows the impact on application throughput and data protection should
there be a failure of the Far Sync instance receiving redo when all Oracle RAC nodes are still
functional.

Figure 18-4 Primary Database Workload with RAC Far Sync Instance Failure

In this use case, when the active Far Sync instance fails, Oracle RAC immediately detects the
outage and automatically fails over redo transport to an already running Far Sync instance on
one of the surviving Oracle RAC nodes (no alternate destination needs to be defined for this to
occur). There is a very brief application brownout of less than one second to acknowledge and
process the error notification during instance failover (net_timeout does not apply to this error
state). The configuration remains at the Maximum Availability protection level, maintaining zero
data loss protection throughout the transition from one node of the cluster to the next – no re-

Chapter 18
Oracle Active Data Guard Far Sync – Examples and Outage Scenarios

18-12

transmission is necessary due to the new Far Sync instance being able to access existing
SRLs on the cluster’s shared storage. Fast detection and no interruption of zero data loss
protection are substantial benefits of using Oracle RAC to host the Far Sync instance.

Node (Server) Failure in an Oracle RAC Cluster

The following image shows the impact of an Oracle RAC node failure--an outage of the server
on which the active Far Sync instance is running. Node failure incurs a brief brownout equal to
the Data Guard NetTimeout property causing the first dip in application throughput. Then a
second brownout occurs while Data Guard redo transport re-establishes connection with the
surviving node. Data loss potential is greater in this case because the node failure results in
Data Guard entering a resynchronization state. Data Guard quickly resynchronizes the primary
and standby and returns the configuration to a zero data loss protection level after the new
connection is established. The time required to resynchronize the configuration will vary
depending on how much redo needs to be transmitted to the surviving instance.

Figure 18-5 Primary Database Workload with RAC Far Sync Node Failure

Primary Database Outage Repair
The following topic describes outage repair for various outages that could occur on the primary
side of an Oracle Data Guard configuration.

Sync Transport Process Death

How to run a test

Chapter 18
Primary Database Outage Repair

18-13

1. Start workload on the primary database.

2. Ensure that the primary database is in Maximum Availability mode.

select protection_mode,protection_level from v$database;

3. Find the NSS process for one instance.

ps -aef | grep ora_nss

4. Kill the NSS process.

kill -9 <pid>

What to look for

• Notification of primary becoming unsynchronized

Destination LOG_ARCHIVE_DEST_2 is UNSYNCHRONIZED

• Notification of primary becoming synchronized

Destination LOG_ARCHIVE_DEST_2 is SYNCHRONIZED

After the first log switch, the PROTECTION_LEVEL drops to RESYNCHRONIZATION.

SQL> select inst_id,protection_mode,protection_level from gv$database;

 INST_ID PROTECTION_MODE PROTECTION_LEVEL
 ------- -------------------- --------------------
 1 MAXIMUM AVAILABILITY RESYNCHRONIZATION
 2 MAXIMUM AVAILABILITY RESYNCHRONIZATION

The PROTECTION_LEVEL returns to MAXIMUM AVAILABILITY after the second log switch.

SQL> select inst_id,protection_mode,protection_level from gv$database;

INST_ID PROTECTION_MODE PROTECTION_LEVEL
------- -------------------- --------------------
 1 MAXIMUM AVAILABILITY MAXIMUM AVAILABILITY
 2 MAXIMUM AVAILABILITY MAXIMUM AVAILABILITY

Expected impact on primary

With the loss of a sync transport process on the primary, LGWR detects sync transport death in
approximately 10 seconds, after which a log switch occurs in order to demote the destination to
RESYCHRONIZATION mode. Up to 60 seconds later, heartbeat ARCH initiates the respawn of the
sync transport process followed by a log switch to promote the destination to MAXIMUM
AVAILABILITY.

Loss of Network Between Primary and Standby Databases

How to run a test

1. Set the standby properties NetTimeout=30 or 5 and MaxFailure=1.

Chapter 18
Primary Database Outage Repair

18-14

2. Start workload on the primary database.

3. Ensure that the primary database is in Maximum Availability mode.

select protection_mode,protection_level from v$database;

Figure 18-6 Primary Database Workload with Loss of Sync Transport Process

4. Down the standby interfaces used by the primary as root.

ifdown eth0

What to look for

• Notification of primary becoming unsynchronized

Destination LOG_ARCHIVE_DEST_2 is UNSYNCHRONIZED

Note:

The destination will not become resynchronized until the network is restored, the
destination FAILURE_COUNT is reset, and the primary reconnects with the standby.

Chapter 18
Primary Database Outage Repair

18-15

Note:

Once the failure count for the destination reaches the specified MaxFailure property
value, the only way to reuse the destination is to modify the MaxFailure property
value (setting it to the current value qualifies) or any property. This has the effect of
resetting the failure count to zero (0).

Expected impact to primary

After the loss of the network the primary freezes all processing for NetTimeout seconds waiting
for the network. Provided MaxFailure=1, once NetTimeout expires the destination drops to
RESYNCHRONIZATION and processing continues unprotected. NetTimeout should not be set
lower than 5 and should only be set as low as 5 on a low latency reliable network.

Figure 18-7 Primary Database workload with Loss of Standby Network

Primary Instance Death

How to run a test

1. Start workload on the primary database.

2. Ensure that the primary database is in Maximum Availability mode.

select protection_mode,protection_level from v$database;

Chapter 18
Primary Database Outage Repair

18-16

3. Abort one instance of the primary.

shutdown abort

What to look for

• There is no explicit warning in the alert log of the drop to resync however it is implied due
to the loss of instance and necessary instance recovery.

• Notification of reconfiguration and instance recovery

Reconfiguration started (old inc 3, new inc 5)
<...>
Instance recovery: looking for dead threads
<...>
Completed instance recovery at

• Notification of primary becoming synchronized

Client pid [#####] attached to RFS pid [#####] at remote instance number
[#] at dest '<standby>'

Expected Impact on Primary

After the instance is lost, one of the surviving instances performs instance recovery, and the
remote destination must be re-initialized followed by a log switch, which puts the configuration
back into MAXIMUM AVAILABILITY protection.

Figure 18-8 RAC Primary Database Workload with Primary instance Failure

Chapter 18
Primary Database Outage Repair

18-17

Primary Database Outage and Failover

How to run a test

1. Start workload on the primary database.

2. Ensure that the primary database is in Maximum Availability mode.

select protection_mode, protection_level from v$database;

3. Abort the primary database.

shutdown abort

4. Initiate failover to standby, using manual or Fast-start Failover (FSFO).

What to look for

• Beginning of the failover in the initial standby alert log

Data Guard Broker: Beginning failover

• Completion of the failover in the initial standby alert log

Failover succeeded. The primary database is now ‘<standby>’

Expected impact on primary

After the failover, the primary database opens, providing database availability to the
application. MAXIMUM AVAILABILITY protection is not restored until the old primary database is
reinstated and resynchronized.

Chapter 18
Primary Database Outage Repair

18-18

Figure 18-9 Primary Database Workload with Primary Database Crash and Failover

Chapter 18
Primary Database Outage Repair

18-19

Part V
MAA Platinum and Oracle GoldenGate Best
Practices

• MAA Platinum Reference Architecture Overview

• Overview of Oracle GoldenGate Best Practices

• Cloud Within Region: Configuring Oracle GoldenGate Hub for MAA Platinum

• Cloud Across Regions: Configuring Oracle GoldenGate Hub for MAA Platinum

• Cloud: Oracle GoldenGate Microservices Architecture on Oracle Exadata Database
Service Configuration Best Practices

• Cloud MAA Platinum: Oracle GoldenGate Microservices Architecture Integrated with Active
Data Guard

• On-Premises: Configuring Oracle GoldenGate Hub

• On-Premises: Oracle GoldenGate Microservices Architecture with Oracle Real Application
Clusters Configuration Best Practices

• On-Premises MAA Platinum: Oracle GoldenGate Microservices Architecture Integrated
with Active Data Guard

• Managing Outages for Oracle GoldenGate Hub

• Oracle GoldenGate Active-Active Guidance for Developers and Administrators

• Troubleshooting Oracle GoldenGate

19
MAA Platinum Reference Architecture
Overview

MAA Platinum or Never-Down Architecture, delivers near-zero Recovery Time Objective (RTO,
or downtime incurred during an outage) and potentially zero or near zero Recover Point
Objective (RPO, or data loss potential).

The MAA Platinum reference architecture ensures:

• RTO = zero or near-zero for all local failures using the Oracle Exadata Database Machine
platform with its inherent Oracle RAC, full-stack redundancy, and failover capabilities

• RTO = zero or near-zero for disasters, such as database, cluster, or site failures, achieved
by redirecting the application to an active Oracle GoldenGate source or target

• Zero downtime maintenance for software and hardware updates using Oracle RAC and
Exadata Database Machine platform

• Zero downtime database upgrade or application upgrade by redirecting the application to
an upgraded Oracle GoldenGate source or target database

• RPO = zero or near-zero data loss, depending on the Oracle Data Guard protection mode
setting, which dictates the redo transport (SYNC, FAR SYNC, or ASYNC)

• Fast re-synchronization and zero or near-zero RPO between Oracle GoldenGate source
and target databases after a disaster.

After any database failure, automatic failover to its standby database occurs automatically.
Subsequently, automatic re-synchronization between Oracle GoldenGate source and
target databases will resume. For SYNC transport, this leads to eventual zero data loss.

Table 19-1 MAA Platinum Outage Matrix

Event RTO/RPO Service Level Objective1

Unplanned Outage

Recoverable node or instance failure Zero or single digit seconds2,3

Disasters including corruptions and site failures Zero3

Planned Maintenance

Most common software and hardware updates Zero2

Major database upgrade or application upgrade Zero3

1RPO=0 unless explicitly specified

2To achieve zero downtime or lowest impact for online processing, apply MAA application high
availability best practices (also known as The Checklist). For long running transactions, such
as batch operations, it's recommended that you defer them outside the planned maintenance
window.

3Application failover is customized or managed with Global Data Services.

Enabling features of the Platinum MAA solution include:

19-1

• Oracle Real Application Clusters with recommended Exadata Database Machine
Platform, Exadata Database Service on Dedicated Infrastructure (ExaDB-D), or Oracle
Exadata Database Service on Cloud@Customer (ExaDB-C@C) for the source and target
databases

• Oracle Active Data Guard with Fast-Start Failover to bound data loss and automatically
fail over to standby in case of database, cluster, or data center failures. The standby
databases are typically in separate Fault Domains (FDs) with separate power supplies,
residing in separate data centers, Availability Domains (ADs), or Availability Zones (AZs),
with independent power and network. The standbys can also reside across regions with
typically the greatest fault isolation.

• Oracle GoldenGate enables two active read-write database systems that can be
leveraged for applications to fail over immediately after database, cluster, site failure, or
planned outages such as database or application upgrades. The source and target
databases on which Oracle GoldenGate replication is occurring can reside in the same
region, across ADs, or across regions.

MAA Platinum architecture is illustrated in the image below, where two "active read-write"
primary databases, or source or target databases, reside in separate regions. Oracle
GoldenGate replication occurs between the source and target databases between primary and
remote regions. Each primary database is protected by a standby database in another AD
within the same region.

With Data Guard Fast-Start Failover (FSFO), the standby database becomes the new primary
database automatically after primary database, cluster, or AD failure. With MAA Oracle
GoldenGate configuration best practices implemented, replication resumes automatically
between the source and target databases after any Data Guard role transition. Each database
resides on an Exadata platform with its inherent built-in Real Application Cluster, system and
storage redundancy, and low brownout failover capabilities.

Chapter 19

19-2

Figure 19-1 MAA Platinum Reference Architecture

Primary Region

Remote Region

AD2

AD1

AD1

AD2

Primary
Database

Primary
Database

Standby
Database

Standby
Database

Local Backup

Local Backup

Exadata

Exadata

Exadata

Exadata

Exadata

Exadata

Exadata

Exadata

Data Guard
FSFO

Data Guard
FSFO

Oracle
GoldenGate
Replication

MAA Platinum Architecture Variants

When setting up MAA Platinum architecture, the administrator can decide between setting up
Oracle GoldenGate on each potential source or target database, or creating an Oracle
GoldenGate hub independent from the database servers.

The MAA Oracle GoldenGate hub, shown in the following image, provides the following
advantages:

• Offloads Oracle GoldenGate software installation, configuration, and life cycle
management from source and target Exadata database systems.

• Reduces Oracle GoldenGate resource impact on the source and target database systems.

Chapter 19

19-3

• Provides high availability by configuring a 2-node cluster server for fast and simple failover,
and disaster recovery by leveraging ACFS replication to another identical GoldenGate hub
server on a separate 2-node cluster server.

• Consolidates Oracle GoldenGate configurations and software deployment for multiple
independent MAA Platinum or Oracle GoldenGate architectures.

Figure 19-2 MAA Oracle GoldenGate Hub

Oracle GoldenGate Hub

GoldenGate DeploymentDatabase 12c
Release 2

Database 19cGoldenGate Deployment

Extract Trail Files Replicate

Service
Manager

Service
Manager

Administration
Server

Administration
Server

Performance
Metrics Server

Performance
Metrics Server

Source
Database

Target
Database

Network Network

An example of MAA Oracle GoldenGate hub with MAA Platinum architecture is shown in the
image below. Each hub is a 2-node cluster providing local high availability, and for additional
protection uses ACFS replication to another hub, typically deployed across Availability
Domains (ADs) or across regions.

Chapter 19

19-4

Figure 19-3 MAA Platinum with Oracle GoldenGate Hub

Primary Region

Remote Region

Availability Domain 1

Availability Domain 1

Availability Domain 2

Availability Domain 2

Application Tier

Application Tier

GGhub

GGhub

GGhub

GGhub

Production-A

Production-B

Standby-A

Standby-B

 Oracle GoldenGate Replication

Legend:

 Active Data Guard Fast-Start Fallover

Sync Transport with

Sync Transport with

Write

Write

Zero Data Loss

Zero Data Loss

Read/

Read/

Read

Read

Chapter 19

19-5

How to Implement the MAA Platinum Solution

To achieve an MAA Platinum solution, review and leverage the technical papers and
documentation referenced in the following steps.

1. Review Oracle MAA Platinum Tier for Oracle Exadata to understand MAA Platinum
benefits and use cases.

2. Decide between implementing the MAA Oracle GoldenGate hub solution, or setting up
Oracle GoldenGate directly on database servers.

• Option 1: (RECOMMENDED) Configure MAA Oracle GoldenGate Hub

– For the Oracle Cloud configuration, see Cloud Within Region: Configuring Oracle
GoldenGate Hub for MAA Platinum or Cloud Across Regions: Configuring Oracle
GoldenGate Hub for MAA Platinum.

– For on-premises configuration, see On-Premises: Configuring Oracle GoldenGate
Hub.

• Option 2: Configure Oracle GoldenGate on the Exadata Database servers

– For Oracle Cloud Service, see

a. Cloud: Oracle GoldenGate Microservices Architecture on Oracle Exadata
Database Service Configuration Best Practices and

b. Cloud MAA Platinum: Oracle GoldenGate Microservices Architecture
Integrated with Active Data Guard

– For on-premises systems, see

a. On-Premises: Oracle GoldenGate Microservices Architecture with Oracle Real
Application Clusters Configuration Best Practices and

b. On-Premises MAA Platinum: Oracle GoldenGate Microservices Architecture
Integrated with Active Data Guard

3. Configure Bidirectional Replication and Automatic Conflict Detection and Resolution. See
Oracle Cloud Infrastructure GoldenGate documentation or the latest Oracle GoldenGate
documentation.

4. Configure application failover options such as

• Global Data Services (see Oracle Global Data Services Best Practices)

• MAA application high availability configuration (also known as the "Checklist"; see
Configuring Continuous Availability for Applications)

Chapter 19

19-6

https://www.oracle.com/a/tech/docs/exadata-maa-platinum-focused.pdf
https://docs.oracle.com/en/cloud/paas/goldengate-service/index.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/mabooks.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/mabooks.html

20
Overview of Oracle GoldenGate Best
Practices

Configure Oracle GoldenGate using Oracle MAA best practices to get the highest availability
and performance out of your Oracle GoldenGate deployment.

Oracle GoldenGate provides the following benefits:

• Uni-directional or bi-directional replication, allowing reads and updates in any replicated
database.

• Data movement is in real-time, reducing latency.

• Replicated databases can run on different hardware platforms, database versions, and
different database or application configurations, allowing for online migration. This flexibility
also allows online database and application upgrades.

• Source and target replicated databases are online, ensuring zero downtime application
switchover during outages and planned maintenance activities is possible. Note that
application switchover must be customized, rather than using a built-in feature, such as
Transparent Application Continuity.

• MAA Oracle GoldenGate Hub (MAA GGHub) can reduce the complexity and system
resource utilization by moving GoldenGate software and processes off of the Exadata
database servers.

• Dependable disaster recovery solutions by replicating data across different geographic
locations. This allows for failover during regional outages or data center problems,
minimizing recovery time objectives (RTO) and fulfilling recovery point objectives (RPO).

The following table highlights various Oracle GoldenGate configuration best practices and
MAA Platinum best practices.

Table 20-1 Oracle GoldenGate Use Cases and Best Practices

Use Case Oracle GoldenGate Best Practices

Database migration to Oracle Cloud or Exadata
Platform

Zero Downtime Migration (ZDM) with GoldenGate
(logical migration)

Oracle Zero Downtime Migration – Logical
Migration Performance Guidelines

Database migration requiring minimal or zero
downtime

Database migration involving cross platform or
different database versions

Oracle Database Migration with an Oracle
GoldenGate Hub Configuration

Deploy Oracle GoldenGate off of the database
server in a Hub configuration

Cloud Within Region: Configuring Oracle
GoldenGate Hub for MAA Platinum

Cloud Across Regions: Configuring Oracle
GoldenGate Hub for MAA Platinum

On-Premises: Configuring Oracle GoldenGate Hub

20-1

https://www.oracle.com/database/zero-downtime-migration/
https://www.oracle.com/a/tech/docs/zdm-gg-performance.pdf
https://www.oracle.com/a/tech/docs/zdm-gg-performance.pdf
https://www.oracle.com/a/tech/docs/maa-database-migration-with-a-goldengate-hub.pdf
https://www.oracle.com/a/tech/docs/maa-database-migration-with-a-goldengate-hub.pdf

Table 20-1 (Cont.) Oracle GoldenGate Use Cases and Best Practices

Use Case Oracle GoldenGate Best Practices

Install and configure Oracle GoldenGate directly on
the Oracle RAC database server or Exadata
database system

Cloud: Oracle GoldenGate Microservices
Architecture on Oracle Exadata Database Service
Configuration Best Practices

On-Premises: Oracle GoldenGate Microservices
Architecture with Oracle Real Application Clusters
Configuration Best Practices

Implement MAA Platinum or install and configure
Oracle GoldenGate directly on Oracle RAC
database servers with Oracle Active Data Guard

Oracle Cloud:

1. Cloud: Oracle GoldenGate Microservices
Architecture on Oracle Exadata Database
Service Configuration Best Practices and

2. Cloud MAA Platinum: Oracle GoldenGate
Microservices Architecture Integrated with
Active Data Guard

On-premises systems:

1. On-Premises: Oracle GoldenGate
Microservices Architecture with Oracle Real
Application Clusters Configuration Best
Practices and

2. On-Premises MAA Platinum: Oracle
GoldenGate Microservices Architecture
Integrated with Active Data Guard

Application failover options for Oracle GoldenGate Oracle Global Data Services Best Practices and

Configuring Continuous Availability for Applications

Oracle GoldenGate bidirectional replication and
automatic conflict detection and resolution

For Oracle Cloud Service, Oracle Cloud
Infrastructure GoldenGate documentation

For on-premises, the latest Oracle GoldenGate
documentation

For these Oracle GoldenGate or Platinum MAA
architectures, active-active replication requires
conflict detection and resolution, which includes
Automatic Conflict Detection and Resolution (Auto-
CDR) or the manual CompareCols /
ResolveConflict (CC/RC) method of conflict
detection and resolution. Also see Automatic
Conflict Detection and Resolution and Manual
Conflict Detection and Resolution in Oracle
GoldenGate documentation.

Also see Oracle GoldenGate documentation at: https://docs.oracle.com/en/middleware/
goldengate/core/21.1/

Overview of Oracle GoldenGate and Supporting Technologies

The technologies that are required to replicate data between databases are Oracle
GoldenGate and supporting technologies (such as Oracle Grid Infrastructure Agents, ACFS or
DBFS, or GoldenGate hub) to ensure that replication will resume after various failures. A brief
overview of Oracle GoldenGate and supporting technologies are described here.

Oracle GoldenGate

Chapter 20

20-2

https://docs.oracle.com/en/cloud/paas/goldengate-service/index.html
https://docs.oracle.com/en/cloud/paas/goldengate-service/index.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/mabooks.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/mabooks.html
https://docs.oracle.com/en/middleware/goldengate/core/23/coredoc/administer-automatic-cdr.html
https://docs.oracle.com/en/middleware/goldengate/core/23/coredoc/administer-automatic-cdr.html
https://docs.oracle.com/en/middleware/goldengate/core/23/coredoc/administer-automatic-cdr.html
https://docs.oracle.com/en/middleware/goldengate/core/23/coredoc/administer-automatic-cdr.html
https://docs.oracle.com/en/middleware/goldengate/core/23/coredoc/administer-configure-conflict-detection-and-resolution.html
https://docs.oracle.com/en/middleware/goldengate/core/23/coredoc/administer-configure-conflict-detection-and-resolution.html
https://docs.oracle.com/en/middleware/goldengate/core/21.1/
https://docs.oracle.com/en/middleware/goldengate/core/21.1/

Oracle GoldenGate provides real-time, log-based change data capture and delivery between
homogenous and heterogeneous systems. This technology lets you construct a cost-effective
and low-impact real-time data integration and continuous availability solution.

Oracle GoldenGate replicates data from committed transactions with transaction integrity and
minimal overhead on your existing infrastructure. The architecture supports multiple data
replication topologies, such as one-to-many, many-to-many, cascading, and bidirectional. Its
wide variety of use cases includes real-time business intelligence; query offloading; zero-
downtime upgrades and migrations; and active-active databases for data distribution, data
synchronization, and high availability.

Oracle GoldenGate Microservices Architecture provides REST-enabled services. The REST-
enabled services provide remote configuration, administration, and monitoring through HTML5
web pages, command line interfaces, and APIs.

Recommended Oracle GoldenGate 21c (and higher releases) introduces unified build support,
so that a single software installation supports capturing and applying replicated data to multiple
major Oracle Database versions (11g Release 2 to 21c). This is possible because an Oracle
GoldenGate installation includes the required Oracle Database client libraries without requiring
a separate database ORACLE_HOME installation.

Oracle Grid Infrastructure Agents

Oracle Grid Infrastructure Agents (XAG) are Oracle Grid Infrastructure components that
provide the high availability (HA) framework to application resources and resource types
managed through the agent management interface, AGCTL. This framework provides a
complete, ready-to-use solution that contains pre-defined Oracle Grid Infrastructure resource
configurations and agents to integrate applications for complete application HA.

The Oracle Grid Infrastructure Agents provide pre-defined Oracle Clusterware resources for
Oracle GoldenGate, Siebel, Oracle PeopleSoft, JD Edwards, and Oracle WebLogic Server, as
well as Apache and MySQL applications. Using the agent for Oracle GoldenGate simplifies the
creation of dependencies on the source and target databases, the application VIP, and the file
system (ACFS or DBFS) mount point. The agent command line utility (AGCTL) is used to start
and stop Oracle GoldenGate, and can also be used to relocate Oracle GoldenGate between
the nodes in the cluster.

Oracle Database File System (DBFS)

Oracle DBFS can be used to store Oracle GoldenGate files.

The Oracle Database File System (DBFS) creates a file system interface to files stored in the
database. DBFS is similar to NFS in that it provides a shared network file system that looks like
a local file system. Because the data is stored in the database, the file system inherits all the
high availability and disaster recovery capabilities provided by Oracle Database.

With DBFS, the server is the Oracle Database. Files are stored as SecureFiles LOBs. PL/SQL
procedures implement file system access primitives such as create, open, read, write, and list
directory. The implementation of the file system in the database is called the DBFS SecureFiles
Store. The DBFS SecureFiles Store allows users to create file systems that can be mounted by
clients. Each file system has its own dedicated tables that hold the file system content.

Oracle Advanced Cluster File System (ACFS)

Oracle ACFS can be used to store Oracle GoldenGate files.

Oracle Advanced Cluster File System (Oracle ACFS) is a multi-platform, scalable file system,
and storage management technology that extends Oracle Automatic Storage Management
(Oracle ASM) functionality to support all customer files.

Chapter 20

20-3

Oracle ACFS leverages Oracle Clusterware for cluster membership state transitions and
resource-based high availability. Oracle ACFS is bundled into the Oracle Grid Infrastructure
(GI) allowing for integrated optimized management of databases, resources, volumes, and file
systems.

Chapter 20

20-4

21
Cloud Within Region: Configuring Oracle
GoldenGate Hub for MAA Platinum

Configure and deploy MAA Oracle GoldenGate Hub architecture within one region on Oracle
Cloud using the provided planning considerations, tasks, management, and troubleshooting
information.

See the following topics:

• Overview of MAA GoldenGate Hub

• Planning GGHub Placement in the Platinum MAA Architecture

• Task 1: Configure the Source and Target Databases for Oracle GoldenGate

• Task 2: Deploy Oracle GoldenGate Maximum Availability Hub on Oracle Cloud
Marketplace

• Task 3: Configure the Oracle GoldenGate Environment

Overview of MAA GoldenGate Hub
To achieve the highest levels of availability, resulting in zero or near-zero downtime for both
unplanned outages and planned maintenance activities, you can use the combination of Oracle
Real Application Clusters (Oracle RAC), Oracle Active Data Guard, and Oracle GoldenGate.

This architecture, typically referred as MAA Platinum, or Never Down Architecture, delivers
near zero Recovery Time Objective (RTO--downtime incurred during outage) and potentially
zero or near zero Recovery Point Objective (RPO--data loss potential).

Traditionally, Oracle GoldenGate is installed and run locally on the database server that the
GoldenGate processes connect to. When used with Oracle Grid Infrastructure Standalone
Agent (XAG), Oracle GoldenGate processes can be configured to seamlessly relocate or
failover between Oracle RAC nodes and follow Oracle Active Data Guard switchover and
failovers.

Using MAA Oracle GoldenGate Hub (MAA GGHub) moves the GoldenGate software and
processes off of the Exadata database servers, reducing complexity and system resource
utilization. MAA GGHub centralizes Oracle GoldenGate management and offloads the majority
of the Oracle GoldenGate processing and associated CPU and storage resource utilization
from Exadata system resources. Connectivity between the GoldenGate processes and the
databases they operate against is managed with Oracle Net Services.

To achieve an MAA Platinum solution in the Oracle Cloud, you follow these high level steps:

1. Review Oracle MAA Platinum Tier for Oracle Exadata to understand Platinum MAA
benefits and use cases.

2. Deploy or migrate your database onto Exadata Cloud Service, Base Database Service, or
Autonomous Database on Dedicated Infrastructure Service.

3. Add symmetric standby databases in the Oracle Cloud using Oracle Cloud Control Plan or
Cloud automation.

21-1

https://www.oracle.com/a/tech/docs/exadata-maa-platinum-focused.pdf

4. Configure and deploy Oracle Data Guard Fast Start Failover using the Oracle MAA best
practice recommendations in Configure Fast Start Failover. For Exadata Cloud Service
and Base Database Service, this is manual step.

5. Set up MAA GGHub within a single OCI region, which is detailed in the topics that follow.
For an MAA GGHub setup across OCI regions, see Cloud Across Regions: Configuring
Oracle GoldenGate Hub for MAA Platinum.

6. Configure Bidirectional Replication and Automatic Conflict Detection and Resolution. See
Oracle Cloud Infrastructure GoldenGate documentation for information.

7. Decide on Application Failover Options such as Global Data Services (see Oracle Global
Data Services Best Practices), or use your own customized application failover.

Planning GGHub Placement in the Platinum MAA Architecture
Extreme availability that delivers zero downtime (RTO=0 or near zero) and zero or near zero
data loss (RPO=0 or near zero) typically requires the following Platinum MAA architecture.

1. You have the source and target database in an Oracle GoldenGate architecture to allow
your application to fail over immediately in the case of disaster (database, cluster, or site
failure) or switch over in the case of a database or application upgrade. This architecture
enables the potential RTO of zero or near zero for disaster scenarios and database and
application upgrade maintenance.

2. Each source and target database is deployed in Exadata cloud systems so any local
failures are tolerated or recovered almost instantly.

3. Each source and target database is configured with a standby database with Data Guard
Fast-Start Failover so any failure of the database results in activating a new primary
database in seconds to minutes. If SYNC transport is leveraged with Max Availability
protection mode, zero data loss Data Guard failover is achieved.

4. Configured with GoldenGate replication using MAA GGhub between the source and target
databases.

5. Configured so that any standby becoming a primary database due to Data Guard
switchover or failover will automatically resynchronize with its target GoldenGate database.
If zero data loss Data Guard switchover or failover occurs, GoldenGate resychronization
ensures zero data loss across the distributed database environment.

6. Configured with GoldenGate Automatic Conflict Detection and Resolution, which is
required after any Data Guard failover operation occurs.

Where to Place the MAA Primary GGHub and Standby GGHub

1. The GGHub Pair (Primary and Standby GGHub) must reside in the same OCI regions as
each primary and standby database. For example:

a. If the primary database is in AD1, Region A, and the standby database is in AD2,
Region A, then the GGHub pair will reside in Region A. For this configuration, continue
reading the topics in this chapter.

b. If the primary database is in Region A and the standby database is in Region B, then
the GGHub pair will split between Region A and B. The primary, or active, GGHub
must be co-located in the same OCI region as the target primary database. For this
configuration, see Cloud Across Regions: Configuring Oracle GoldenGate Hub for
MAA Platinum.

2. Performance implications:

Chapter 21
Planning GGHub Placement in the Platinum MAA Architecture

21-2

https://docs.oracle.com/en/cloud/paas/goldengate-service/index.html

a. Primary or active GGHub must reside in the same data center as the target database
to ensure round trip latency of 4ms or less. (Replicat performance)

b. Primary or active GGHub should be < 90 ms from the source database without
incurring GoldenGate performance degradation. (Extract performance)

3. GoldenGate distribution path:

a. A GoldenGate distribution path is required if the source and target GGHubs are in
different regions and latency between the OCI regions is > 90 ms.

b. In Oracle Cloud, when your Oracle GoldenGate source and target databases reside in
the same region, or in different regions in the same country, you never need to set up a
GoldenGate distribution path because the latency is always < 90 ms.

MAA GGHubs Placed in the Same OCI Region
In this scenario, the primary and standby database are located in the same OCI region, and so
the primary (active) GGHub and the standby GGHub are also located in the same region.

The following architectural components comprise the GGHubs, as shown in the image below:

1. Primary database and associated standby database are configured with Oracle Active
Data Guard Fast Start Failover (FSFO). FSFO can be configured with any Data Guard
protection mode, with ASYNC or SYNC redo transport, depending on your maximum data
loss tolerance.

2. Primary GGHub Active/Passive Cluster: Only one GGHub software deployment and
configuration on the 2-node cluster. This cluster contains the 21c Oracle GoldenGate
software deployment that can support Oracle Database 11g (11.2.0.4) and later releases.

This GGHub can support many primary databases and encapsulates the GoldenGate
processes. GoldenGate Extract mines transactions from the source database and
GoldenGate Replicat applies the same changes to target database. GoldenGate trail and
checkpoint files also reside in the GGhub ACFS file system.

The HA failover solution is built in to the GGhub, which includes automatic failover to the
passive node in the same cluster, and restarts GoldenGate processes and activity after a
node failure.

3. Standby GGHub Active/Passive Cluster: A Symmetric standby GGhub is configured. ACFS
replication is set up between the primary and standby GGHubs to preserve all GoldenGate
files.

Manual GGhub failover, which includes ACFS failover, can be performed in the rare case
that you lose the entire primary GGhub.

Chapter 21
Planning GGHub Placement in the Platinum MAA Architecture

21-3

Figure 21-1 Primary and Standby GGHubs in the Same OCI Region

The figure above depicts data replicated from Primary Database A to Primary Database B and
Primary B back to Primary A with the following steps:

1. Primary Database A: Primary A’s Logminer server sends redo changes to a Primary
GGHub Extract process.

2. Primary GGHub: An Extract process writes changes to trail files.

3. Primary GGHub to Primary Database B: A Primary GGHub Replicat process applies those
changes to the target database (Primary B).

4. Primary Database B: Primary B’s Logminer server sends redo to a Primary GGHub Extract
process.

5. Primary GGHub: A Primary GGHub Extract process writes changes to trail files.

6. Primary GGHub to Primary Database A: A Primary GGHub Replicat process applies those
changes to the target database (Primary A).

Note that one GGHub can support multiple source and target databases, even when the
source and target databases are different Oracle Database releases.

Chapter 21
Planning GGHub Placement in the Platinum MAA Architecture

21-4

Table 21-1 Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in the Same OCI Region

Outage Scenario Application Availability and Repair Restoring Redundancy and Pristine
State

Primary Database A (or Database B)
failure

Impact: Near-zero application
downtime. GoldenGate replication
resumes when a new primary database
starts.

1. One primary database is still
available. All activity is routed to the
existing available primary database
to achieve zero application
downtime. Refer to Global Data
Service Global Services Failover
solution. For example, application
services A-F are routed to
Database A and application
services G-J are routed to
Database B. If Database A fails, all
application services temporarily go
to Database B.

2. The standby becomes the new
primary automatically with Data
Guard FSFO. Oracle GoldenGate
replication resumes and the
primary databases resynchronize.
Data loss is bounded by the Data
Guard protection level. If Maximum
Availability or Maximum Protection
is configured, zero data loss is
achieved. All committed
transactions are in one or both
databases. Workload can be
“rebalanced” when Primary
Database A and Database B are
available and in sync. For example,
when Database A is up and running
and in sync, services A-F can go
back to Database A.

1. The old primary database is
reinstated as the new standby
database to restore redundancy.

2. Optionally performing a Data Guard
switchover to switch back to the
original configuration ensures that
at least one primary database
resides in an independent AD.

Primary or standby GGHub single node
failure

Impact: No application impact.
GoldenGate replication resumes
automatically after a couple of minutes.

No action is required. The HA failover
solution built in to the GGHub includes
automatic failover and restart of
GoldenGate processes and activity.
Replication activity is blocked until
GoldenGate processes are active again.
GoldenGate replication blackout could
last a couple of minutes.

Once the node restarts, active/passive
configuration is re-established.

Chapter 21
Planning GGHub Placement in the Platinum MAA Architecture

21-5

Table 21-1 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in the Same OCI
Region

Outage Scenario Application Availability and Repair Restoring Redundancy and Pristine
State

Primary GGHub cluster crashes and is
not recoverable

Impact: No application impact.
GoldenGate replication resumes after
restarting the existing GGHub or
performing a manual GGHub failover
operation.

1. If the GGHub cluster can be
restarted, then that’s the simplest
solution.

2. If the primary GGHub is not
recoverable, then perform a manual
GGHub failover to the standby
GGHub, which includes ACFS
failover. This typically takes several
minutes.

3. GoldenGate replication stops until
the new primary GGhub is
available, so performing step 1 or
step 2 should take little time.

If the previous GGHub eventually
restarts, ACFS replication resumes in
the other direction automatically. If the
GGHub cluster is lost or unrecoverable,
you need to rebuild a new standby
GGHub.

Standby GGHub cluster crashes and
not recoverable

Impact: No application or replication
impact.

1. If the GGHub cluster can be
restarted, then that is the simplest
solution, and ACFS replication can
resume.

2. If the standby GGHub is not
recoverable, you can rebuild a new
standby GGHub.

N/A

Chapter 21
Planning GGHub Placement in the Platinum MAA Architecture

21-6

Table 21-1 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in the Same OCI
Region

Outage Scenario Application Availability and Repair Restoring Redundancy and Pristine
State

Complete Data Center or Availability
Domain (AD1 or AD2) failure

Impact: Near-zero application
downtime. GoldenGate replication
resumes when the new primary
database starts.

1. One primary database is still
available. All activity is routed to the
existing available primary database
to achieve zero application
downtime. Refer to Global Data
Service Global Services Failover
solution. For example, application
services A-F are routed to
Database A and application
services G-J are routed to
Database B. If Database A fails, all
services temporarily go to
Database B.

2. If the primary GGHub is still
functional, GoldenGate replication
continues. If the primary GGHub is
lost due to availability domain (AD)
failure, then a manual GGhub
failover is required. GoldenGate
replication resumes and the
primary databases resynchronize.
Data loss is bounded by the Data
Guard protection level. If Maximum
Availability or Maximum Protection
is configured, zero data loss is
achieved. All committed
transactions are in one or both
databases. Workload can be
rebalanced when Primary
Database A and Database B are
available and in sync. When
Database A is up and running and
in sync, services A-F can go back
to Database A.

1. When the data center/AD returns,
re-establish the configuration, such
as reinstate standby. If the previous
GGHub eventually restarts, ACFS
replication resumes in the other
direction automatically.

2. When possible, perform a Data
Guard switchover (back) to get back
to the original state where one
primary database exists in each
AD.

Task 1: Configure the Source and Target Databases for Oracle
GoldenGate

The source and target Oracle GoldenGate databases should be configured using the
recommendations that follow.

Chapter 21
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

21-7

Step 1.1 - Configure the Databases

For Oracle Autonomous Database (ADB-D), Oracle Database 19c (19.20) or a later release is
required to support parallel integrated Replicat and conflict resolution. For Oracle Exadata
Database Service (ExaDB) or BaseDB, you can use any supported Oracle Database release
available in the Oracle cloud.

The database configuration steps that follow are applicable for each Database Cloud Service
that supports Platinum MAA solution.

The source and target Oracle GoldenGate databases should be configured using the following
recommendations:

For Oracle Autonomous Database (ADB-D), you only need to add supplemental logging:

PDB: ALTER PLUGGABLE DATABASE ADD SUPPLEMENTAL LOG DATA;

For Oracle Exadata Database Service (ExaDB) or BaseDB do the following steps:

1. Enable Archivelog Mode.

SQL> ARCHIVE LOG LIST
Database log mode Archive Mode
Automatic archival Enabled
Archive destination USE_DB_RECOVERY_FILE_DEST
Oldest online log sequence 110
Next log sequence to archive 113
Current log sequence 113

2. Enable Force Logging.

ALTER DATABASE FORCE LOGGING;

3. Enable GoldenGate replication.

ALTER SYSTEM SET ENABLE_GOLDENGATE_REPLICATION=TRUE SCOPE=BOTH SID='*'

4. Add supplemental logging.

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

5. Configure STREAMS_POOL_SIZE larger to accommodate GoldenGate.

Use this formula to calculate the appropriate STREAMS_POOL_SIZE value:

STREAMS_POOL_SIZE = (((#Extracts + #Integrated Replicats) * 1GB) * 1.25)
For example, in a database with 2 Extracts and 2 integrated Replicats:

STREAMS_POOL_SIZE = 4GB * 1.25 = 5GB
And the parameter is set:

ALTER SYSTEM SET STREAMS_POOL_SIZE=5G SCOPE=BOTH SID='*';

Chapter 21
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

21-8

For the steps to prepare the database for Oracle GoldenGate, see Preparing the Database for
Oracle GoldenGate.

Step 1.2 - Create a GoldenGate Database Administrator User

For ADB-D

For ADB-D deployments, you only need to issue

ALTER USER ggadmin IDENTIFIED BY <password> ACCOUNT UNLOCK;

For Oracle Exadata Database Service (ExaDB) or BaseDB

The following steps are only applicable for Oracle Exadata Database Service (ExaDB) or
BaseDB.

The source and target databases need a GoldenGate administrator user created, with
appropriate privileges assigned as follows:

• For the multitenant container database (CDB):

– Source database - GoldenGate Extract must be configured to connect to a user in the
root container database, using a c##

– Target database - a separate GoldenGate administrator user is needed for each
pluggable database (PDB).

– For details about creating a GoldenGate administrator in an Oracle Multitenant
Database, see Configuring Oracle GoldenGate in a Multitenant Container Database.

• For non-CDB databases, see Establishing Oracle GoldenGate Credentials

1. As the oracle OS user on the source database system, execute the following SQL
instructions to create the database user for Oracle GoldenGate and assign the required
privileges:

[opc@exadb1_node1 ~]$ sudo su - oracle
[oracle@exadb1_node1 ~]$ source dbName.env
[oracle@exadb1_node1 ~]$ sqlplus / as sysdba

Source CDB
SQL>
alter session set container=cdb$root;
create user c##ggadmin identified by "ggadmin_password" container=all
default tablespace USERS temporary tablespace temp;
alter user c##ggadmin quota unlimited on users;
grant set container to c##ggadmin container=all;
grant alter system to c##ggadmin container=all;
grant create session to c##ggadmin container=all;
grant alter any table to c##ggadmin container=all;
grant resource to c##ggadmin container=all;
exec
dbms_goldengate_auth.grant_admin_privilege('c##ggadmin',container=>'all');

Source PDB
SQL>
alter session set container=pdbName;
create user ggadmin identified by "ggadmin_password" container=current;

Chapter 21
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

21-9

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-multitenant-container-database-1.html#GUID-0B0CEB35-51C6-4319-BEE1-FA208FF4DE05
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/establishing-oracle-goldengate-credentials.html#GUID-E40B375A-5042-4195-B563-BE7EDC251880

grant create session to ggadmin container=current;
grant alter any table to ggadmin container=current;
grant resource to ggadmin container=current;
exec dbms_goldengate_auth.grant_admin_privilege('ggadmin');

2. As the oracle OS user on the target system, execute the following SQL instructions to
create the database user for Oracle GoldenGate and assign the required privileges:

[opc@exadb2_node1 ~]$ sudo su - oracle
[oracle@exadb2_node1 ~]$ source dbName.env
[oracle@exadb2_node1 ~]$ sqlplus / as sysdba

Target PDB
SQL>
alter session set container=pdbName;
create user ggadmin identified by "ggadmin_password" container=current;
grant alter system to ggadmin container=current;
grant create session to ggadmin container=current;
grant alter any table to ggadmin container=current;
grant resource to ggadmin container=current;
grant dv_goldengate_admin, dv_goldengate_redo_access to ggadmin
container=current;
exec dbms_goldengate_auth.grant_admin_privilege('ggadmin');

Step 1.3 - Create the Database Services

Note:

This step is not required for ADB-D deployments.

If the source and target databases are running the recommended configuration on an Oracle
RAC cluster with Oracle Data Guard, a role-based service must be created that allows the
Extract or Replicat processes to connect to the correct Data Guard primary database instance.

When using a source multitenant database, a separate service is required for the root
container database (CDB) and the pluggable database (PDB) that contains the schema being
replicated. For a target multitenant database, a single service is required for the PDB.

1. As the oracle OS user on the primary database system, use dbaascli to find the CDB and
PDB name, as shown here:

[opc@exadb1_node1 ~]$ sudo su - oracle
[oracle@exadb1_node1 ~]$ source dbName.env
[oracle@exadb1_node1 ~]$ dbaascli database getDetails
 --dbname dbName |egrep 'dbName|pdbName'

 "dbName" : "dbName",
 "pdbName" : "pdbName",

Chapter 21
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

21-10

2. As the oracle OS user on the primary and standby database systems, create and start the
CDB database service using the following command:

[opc@exadb1_node1 ~]$ sudo su - oracle
[oracle@exadb1_node1 ~]$ source dbName.env
[oracle@exadb1_node1 ~]$ srvctl add service -db $ORACLE_UNQNAME
 -service dbName.goldengate.com -preferred ORACLE_SID1
 -available ORACLE_SID2 -role PRIMARY

3. As the oracle OS user on the primary and standby database systems, create and start the
PDB database service using the following command:

[oracle@exadb1_node1 ~]$ srvctl add service -db $ORACLE_UNQNAME
 -service dbName.pdbName.goldengate.com -preferred ORACLE_SID1
 -available ORACLE_SID2 -pdb pdbName -role PRIMARY

4. As the oracle OS user on the primary and standby database systems, start and verify that
the services are running, as shown here:

[oracle@exadb1_node1 ~]$ srvctl start service -db $ORACLE_UNQNAME -role
[oracle@exadb1_node1 ~]$ srvctl status service -d $ORACLE_UNQNAME |grep
goldengate

Service dbName.goldengate.com is running on instance(s) SID1
Service dbName.pdbName.goldengate.com is running on instance(s) SID1

Note:

Repeat Step 1.3 in the source and target database system.

Task 2: Deploy Oracle GoldenGate Maximum Availability Hub on
Oracle Cloud Marketplace

Oracle GoldenGate Maximum Availability Hub was designed to save you time in setting up and
configuring your Oracle GoldenGate high availability solution.

It provides high availability by configuring a 2-node cluster server for fast and simple failover,
and disaster recovery by leveraging Oracle Advanced Cluster File System (ACFS) replication
to another identical GoldenGate hub server on a separate 2-node cluster server.

Follow the steps in Using Oracle GoldenGate Maximum Availability Hub on Oracle Cloud
Marketplace to deploy the system, and come back to this topic to continue with the GGHub
configuration.

Chapter 21
Task 2: Deploy Oracle GoldenGate Maximum Availability Hub on Oracle Cloud Marketplace

21-11

https://docs.oracle.com/en/middleware/goldengate/core/21.3/ggmah/get-started.html#GUID-C508B269-0CF7-46A4-906D-11CFD0811734
https://docs.oracle.com/en/middleware/goldengate/core/21.3/ggmah/get-started.html#GUID-C508B269-0CF7-46A4-906D-11CFD0811734

Figure 21-2 Oracle GoldenGate Maximum Availability Hub Hardware Architecture

Task 3: Configure the Oracle GoldenGate Environment

Step 3.1 - Create Database Credentials

With the Oracle GoldenGate deployment created, use the Oracle GoldenGate Administration
Service home page to create the database credentials using the above TNS alias names. See
figure 4 below for an example of the database credential creation using the TNS alias.

From a client machine with access to the GGHUB, create a ssh tunnel to connect to the Oracle
GoldenGate Administration Service:

$ ssh -N -L <local_port>:<vip>:443 -p 22 <gghub-node>

As the oggadmin user, create the database credentials:

1. Log in into the Administration Service: https://localhost:<localPort>/<instance_name>/
adminsrvr.

2. Click Configuration under Administration Service.

3. Click the plus button to Add Credentials under the Database tab.

4. Add the required information for the source and target CDB and PDB as shown in the
table:

Region Container Domain Alias User ID

Region 1 CDB GoldenGate Reg1_CDB c##ggadmin@<tns
_alias>

Region 1 PDB GoldenGate Reg1_PDB ggadmin@<tns_ali
as>

Chapter 21
Task 3: Configure the Oracle GoldenGate Environment

21-12

Region Container Domain Alias User ID

Region 2 CDB GoldenGate Reg2_CDB c##ggadmin@<tns
_alias>

Region 2 PDB GoldenGate Reg2_PDB ggadmin@<tns_ali
as>

Step 3.2 - Create an Oracle Net TNS Alias for Oracle GoldenGate Database
Connections

To provide local database connections for the Oracle GoldenGate processes when switching
between nodes, create a TNS alias on all nodes of the cluster where Oracle GoldenGate may
be started. Create the TNS alias in the tnsnames.ora file in the TNS_ADMIN directory specified
in the deployment creation.

If the source database is a multitenant database, two TNS alias entries are required, one for
the container database (CDB) and one for the pluggable database (PDB) that is being
replicated. For a target Multitenant database, the TNS alias connects the PDB to where
replicated data is being applied. The pluggable database SERVICE_NAME should be set to the
database service created in an earlier step (refer to Step 2.3: Create the Database Services in
Task 2: Prepare a Primary and Standby Base System for GGHub).

As the oracle OS user on any database node of the primary and the standby database
systems, use dbaascli to find the database domain name and the SCAN name:

Primary DB
[opc@exadb1_node1]$ sudo su - oracle
[oracle@exadb1_node1]$ source db_name.env
[oracle@exadb1_node1]$ dbaascli database getDetails --dbname <db_name>
 |grep 'connectString'

 "connectString" : "<primary_scan_name>:1521/<service_name>"

Standby DB
[opc@exadb2_node1]$ sudo su - oracle
[oracle@exadb2_node1]$ source db_name.env
[oracle@exadb2_node1]$ dbaascli database getDetails --dbname <db_name>
 |grep 'connectString'

 "connectString" : "<standby_scan_name>:1521/<service_name>"

As the oracle OS user on all nodes of the primary and standby GGHUB, add the
recommended parameters for Oracle GoldenGate in the sqlnet.ora file:

[opc@gghub_prim1]$ sudo su - oracle
[oracle@gghub_prim1]$ mkdir -p /u01/app/oracle/goldengate/network/admin
[oracle@gghub_prim1]$
cat > /u01/app/oracle/goldengate/network/admin/sqlnet.ora <<EOF
DEFAULT_SDU_SIZE = 2097152
EOF

Chapter 21
Task 3: Configure the Oracle GoldenGate Environment

21-13

As the oracle OS user on all nodes of the primary and standby GGHUB, follow the steps to
create the TNS alias definitions:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$

cat > /u01/app/oracle/goldengate/network/admin/tnsnames.ora <<EOF

Source
<source_cbd_service_name>=
 (DESCRIPTION =
 (CONNECT_TIMEOUT=3)(RETRY_COUNT=2)(LOAD_BALANCE=off)(FAILOVER=on)
(RECV_TIMEOUT=30)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<primary_scan_name>)
(PORT=1521)))
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<standby_scan_name>)
(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME =
<source_cbd_service_name>.goldengate.com)))

<source_pdb_service_name>=
 (DESCRIPTION =
 (CONNECT_TIMEOUT=3)(RETRY_COUNT=2)(LOAD_BALANCE=off)(FAILOVER=on)
(RECV_TIMEOUT=30)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<primary_scan_name>)(PORT=1521)))
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<standby_scan_name>)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME =
<source_pdb_service_name>.goldengate.com)))

Target
<target_pdb_service_name>=
 (DESCRIPTION =
 (CONNECT_TIMEOUT=3)(RETRY_COUNT=2)(LOAD_BALANCE=off)(FAILOVER=on)
(RECV_TIMEOUT=30)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<primary_scan_name>)(PORT=1521)))
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<standby_scan_name>)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME =
<target_pdb_service_name>.goldengate.com)))

EOF

[oracle@gghub_prim1 ~]$ scp /u01/app/oracle/goldengate/network/admin/*.ora
 gghub_prim2:/u01/app/oracle/goldengate/network/admin

Chapter 21
Task 3: Configure the Oracle GoldenGate Environment

21-14

Note:

When the tnsnames.ora or sqlnet.ora (located in the TNS_ADMIN directory for the
Oracle GoldenGate deployment) are modified, the deployment needs to be restarted
to pick up the changes.

Step 3.3 - Set Up Schema Supplemental Logging

1. Log in to the Oracle GoldenGate Administration Server.

2. Click Configuration under Administration Service.

3. Click the Connect to database button under Actions for the Source Database
(Reg_CDB).

4. Click the plus button (Add TRANDATA) to Add TRANDATA for the Schema or Tables.

Step 3.4 - Create the Autostart Profile

Create a new profile to automatically start the Extract and Replicat processes when the Oracle
GoldenGate Administration Server is started. Then, restart if any Extract or Replicat processes
are abandoned. With GoldenGate Microservices, auto start and restart is managed by Profiles.

Using the Oracle GoldenGate Administration Server GUI, create a new profile that can be
assigned to each of the Oracle GoldenGate processes:

1. Log in to the Administration Service on the Source and Target GoldenGate.

2. Click on Profile under Administration Service.

3. Click the plus (+) sign next to Profiles on the Managed Process Settings home page.

4. Enter the details as follows:

• Profile Name: Start_Default

• Description: Default auto-start/resteart profile

• Default Profile: Yes

• Auto Start: Yes

• Auto Start Options

– Startup Delay: 1 min

– Auto Restart: Yes

• Auto Restart Options

– Max Retries: 5

– Retry Delay: 30 sec

– Retries Window: 30 min

– Restart on Failure only: Yes

– Disable Task After Retries Exhausted: Yes

5. Click Submit

Chapter 21
Task 3: Configure the Oracle GoldenGate Environment

21-15

Step 3.5 - Configure Oracle GoldenGate Processes

When creating Extract, Distribution Paths, and Replicat processes with Oracle GoldenGate
Microservices Architecture, all files that need to be shared between the GGHub nodes are
already shared with the deployment files stored on a shared file system.

Listed below are essential configuration details recommended for running Oracle GoldenGate
Microservices on GGhub for Extract, Distribution Paths, and Replicat processes.

Perform the following sub-steps to complete this step:

• Step 4.4.1 - Extract Configuration

• Step 4.4.2 - Replicat Configuration

• Step 4.4.3 - Distribution Path Configuration

• Step 4.4.4 - Set up a Heartbeat Table for Monitoring Lag Times

The main goal is to prevent data divergence between GoldenGate replicas and their
associated standby databases. This section focuses on configuring Extract so that GoldenGate
Extract never gets ahead of the standby database which can result in data divergence.

GoldenGate Parameter Description Recommendations

TRANLOGOPTIONS HANDLEDLFAILOVER This is mandatory setting for Data
Guard configurations that have Oracle
GoldenGate to ensure GoldenGate
Extract never extract data that has not
been received by standby database.
The HANDLEDLFAILOVER stands for
handle DATA LOSS for Data Guard
failover. The following parameter must
be added to the Extract process
parameter fileto avoid losing
transactions and resulting in logical data
inconsistencies after data loss Data
Guard failover event. When the two
primary tried to reconcile, this
parameter ensures that all transactions
can be reconciled since the new primary
(old standby) is not further behind as
expected.

Prevents Extract from extracting redo
data from the source database, and
writing to the trail file data that has not
yet been applied to the Oracle Data
Guard standby database. If this
parameter is not specified, after a data
loss failover, it is possible to have data
in the target database that is not present
in the source database, leading to data
divergence and logical data
inconsistencies.

MANDATORY when the source
database is configured with Data Guard
in Max Availaibility or Max Performance
mode.

Chapter 21
Task 3: Configure the Oracle GoldenGate Environment

21-16

GoldenGate Parameter Description Recommendations

TRANLOGOPTIONS
FAILOVERTARGETDESTID n

For multiple standby configurations or
cases when Data Guard Fast-Start
failover is not enabled, set
FAILOVERTARGETDESTID to standby
demarcated by LOG_ARCHIV_DEST to
ensure GoldenGate Extract never
extract data that has not been received
by target standby database. To
determine the correct value for
FAILOVERTARGETDESTID, use the
LOG_ARCHIVE_DEST_N parameter from
the GoldenGate source database which
is used for sending redo to the source
standby database. For example, if
LOG_ARCHIVE_DEST_2 points to the
standby database, then use a value of
2.

When not using Data Guard Fast Start
Failover (FSFO) in the source database,
this parameter Identifies which standby
database the Extract process must
remain behind, with regard to not
extracting redo data that has not yet
been applied to the Oracle Data Guard
standby database.

MANDATORY when not using FSFO in
the source database.

To determine the correct value for
FAILOVERTARGETDESTID, use the
LOG_ARCHIVE_DEST_N parameter from
the GoldenGate source database which
is used for sending redo to the source
standby database. For example, if
LOG_ARCHIVE_DEST_2 points to the
standby database, then use a value of
2.

TRANLOGOPTIONS HANDLEDLFAILOVER
STANDBY_WARNING value

The amount of time before a warning
message is written to the Extract report
file, if Extract is stalled, due to being
unable to query the source database
standby apply progress. This can occur
after a Data Guard failover when the old
primary database is not currently
available. The default is 60 seconds.

OPTIONAL if want to adjust the timing
of when the warning message is written
to the Extract report file.

Add STANDBY_WARNING value to the
TRANLOGOPTIONS HANDLEDLFAILOVER
parameter.

TRANLOGOPTIONS HANDLEDLFAILOVER
STANDBY_ABEND value

The amount of time before Extract
abends, if Extract is stalled, due to
being unable to query the standby apply
progress. The default is 30 minutes.

OPTIONAL if want to adjust the amount
of time it takes Extract to abend, when
the source database standby is not
accessible to enforce the
HANDLEDLFAILOVER parameter.

Add STANDBY_ABEND value to the
TRANLOGOPTIONS HANDLEDLFAILOVER
parameter.

Chapter 21
Task 3: Configure the Oracle GoldenGate Environment

21-17

GoldenGate Parameter Description Recommendations

TRANLOGOPTIONS
DLFAILOVER_TIMEOUT value

The amount of time Extract will run on
the new source primary database, after
a Data Guard role transition, before it
will check the status of the standby
database. If standby database is not
available after the
DLFAILOVER_TIMEOUT, Extract will
abend. The default is 300 seconds.

NOTE: If during normal operations of
the source Oracle Data Guard
configuration, the standby database
becomes unavailable, Extract will stop
extracting data from the source
database to prevent possible data
divergence with the GoldenGate target
database due to the
HANDLEDLFAILOVER parameter. The
DLFAILOVER_TIMEOUT parameter
does not take effect when a Data Guard
failover has not occurred, and there are
no messages output to the Extract
report file.

OPTIONAL. if you want to adjust the
amount of time an Extract can run on a
new primary source database, after a
role transition, when the standby is not
yet available to honor the
TRANLOGOPTIONS HANDLEDLFAILOVER
parameter.

Refer to the Reference for Oracle GoldenGate for more information about the Extract
TRANLOGOPTIONS parameters.

When creating an Extract using the Oracle GoldenGate Administration Service GUI interface,
leave the Trail SubDirectory parameter blank so that the trail files are automatically created in
the deployment directories stored on the shared file system. The default location for trail files is
the /<deployment directory>/var/lib/data directory.

Note:

To capture from a multitenant database, you must use an Extract configured at the
root level using a c## account. To apply data into a multitenant database, a separate
Replicat is needed for each PDB because a Replicat connects at the PDB level and
doesn't have access to objects outside of that PDB.

Step 4.4.1 - Extract Configuration

Create the Extract:

1. Log in to the Oracle GoldenGate Administration Server.

2. Click Overview under Administration Service.

3. Click the plus button to Add Extract.

4. Select Integrated Extract.

5. Add the required information as follows:

• Process Name: EXT_1

• Description: Extract for Region 1 CDB

• Intent: Unidirection

Chapter 21
Task 3: Configure the Oracle GoldenGate Environment

21-18

https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/tranlogoptions.html#GUID-B6ADFEC9-10E6-456D-9477-088513E113AF

• Begin: Now

• Trail Name: aa

• Credential Domain: GoldenGate

• Credential Alias: Reg1_CDB

• Register to PDBs: PDB Name

6. Click Next and set parameters.

EXTRACT ext_1
USERIDALIAS Reg1_CDB DOMAIN GoldenGate
EXTTRAIL aaTRANLOGOPTIONS HANDLEDLFAILOVER
TRANLOGOPTIONS FAILOVERTARGETDESTID 2
SOURCECATALOG PDB_NAME
TABLE OWNER.*;

7. Click Next.

8. If using CDB Root Capture from PDB, add the SOURCECATALOG parameter with the PDB
Name.

9. Click Create and Run.

Note:

For ADB-D deployments, the extract requires a connection to the PDB rather than the
CDB.

See Oracle GoldenGate Extract Failure or Error Conditions Considerations for more
information.

Step 4.4.2 - Replicat Configuration

Oracle generally recommends using integrated parallel Replicat which offers better apply
performance for most workloads when the GGHub is in the same region as the target Oracle
GoldenGate database.

The best apply performance can be achieved when the network latency between the GGHub
and the target database is as low as possible. The following configuration is recommended for
the remote Replicat running on the Oracle GGHub.

• APPLY_PARALLELISM – Disables automatic parallelism, instead of using
MAX_APPLY_PARALLELISM and MIN_APPLY_PARALLELISM, and allows the highest amount of
concurrency to the target database. It is recommended to set this as high as possible
based on available CPU of the hub and the target database server.

• MAP_PARALLELISM – Should be set with a value of 2 to 5. With a larger number of appliers,
increasing the Mappers increases the ability to hand work to the appliers.

• BATCHSQL – applies DML using array processing which reduces the amount network
overheads with a higher latency network. Be aware that if there are many data conflicts,
BATCHSQL results in reduced performance, as rollback of the batch operations followed
by a re-read from trail file to apply in non-batch mode.

Add a Replicat:

Chapter 21
Task 3: Configure the Oracle GoldenGate Environment

21-19

After you’ve set up your database connections and verified them, you can add a Replicat for
the deployment by following these steps:

1. Log in to the Oracle GoldenGate Administration Server.

2. Click theplus (+) sign next to Replicats on the Administration Service home page. The Add
Replicat page is displayed.

3. Select a Replicat type and click Next.

4. Enter the details as follows:

• Process Name: REP_1

• Description: Replicat for Region 2 PDB

• Intent: Unidirectional

• Credential Domain: GoldenGate

• Credential Alias: Reg2_PDB

• Source: Trail

• Trail Name: aa

• Begin: Position in Log

• Checkpoint Table: "GGADMIN"."CHKP_TABLE"

5. Click Next.

6. From the Action Menu, click Details to edit the Replicat Parameters:

REPLICAT REP_1
USERIDALIAS Reg2_PDB DOMAIN GoldenGate
MAP <SOURCE_PDB_NAME>.<OWNER>.*, TARGET <OWNER>.*;

7. From the Action Menu, click Start.

Step 4.4.3 - Distribution Path Configuration

Distribution paths are only necessary when trail files need to be sent to an additional Oracle
GoldenGate Hub in a different, or even the same, region as described in the following figure.

Chapter 21
Task 3: Configure the Oracle GoldenGate Environment

21-20

Figure 21-3 Oracle GoldenGate Distribution Path

Region 2Region 1

Source Deployment Target Deployment

Target
Database

Replicat

Trail
Files

Source
Database

Trail
Files

Extract

Distribution
Path

When using Oracle GoldenGate Distribution paths with the NGINX Reverse Proxy, additional
steps must be carried out to ensure the path client and server certificates are configured.

More instructions about creating distribution paths are available in Using Oracle GoldenGate
Microservices Architecture. A step-by-step example is in the following video, “Connect an on-
premises Oracle GoldenGate to OCI GoldenGate using NGINX,” to correctly configure the
certificates.

Here are the steps performed in this sub-step:

• Step 4.4.3.1 - Download the Target Server’s Root Certificate, and then upload it to the
source Oracle GoldenGate

• Step 4.4.3.2 - Create a user in the Target Deployment for the Source Oracle GoldenGate
to use

• Step 4.4.3.3 - Create a Credential in the Source Oracle GoldenGate

• Step 4.4.3.4 - Create a Distribution Path on the Source Oracle GoldenGate to the Target
Deployment

Step 4.4.3.1 - Download the Target Server’s Root Certificate, and then upload it to the
source Oracle GoldenGate

Download the target deployment server’s root certificate and add the CA certificate to the
source deployment Service Manager.

1. Log in to the Administration Service on the Target GoldenGate.

2. Follow “Step 2 - Download the target server’s root certificate” in the video “Connect an on-
premises Oracle GoldenGate to OCI GoldenGate using NGINX.”

Step 4.4.3.2 - Create a user in the Target Deployment for the Source Oracle GoldenGate
to use

Create a user in the target deployment for the distribution path to connect to:

1. Log in to the Administration Service on the Target GoldenGate.

Chapter 21
Task 3: Configure the Oracle GoldenGate Environment

21-21

https://docs.oracle.com/en/middleware/goldengate/core/21.3/ggmas/working-paths.html#GUID-7F9F7045-AA27-4007-9852-BC69C2F301A1.
https://docs.oracle.com/en/middleware/goldengate/core/21.3/ggmas/working-paths.html#GUID-7F9F7045-AA27-4007-9852-BC69C2F301A1.
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380

2. Click on Administrator under Administration Service.

3. Click the plus (+) sign next to Users.

4. Enter the details as follows:

• Username: ggnet

• Role: Operator

• Type: Password

5. Click Submit

Step 4.4.3.3 - Create a Credential in the Source Oracle GoldenGate

Create a credential in the source deployment connecting the target deployment with the user
created in the previous step. For example, a domain of OP2C and an alias of WSSNET.

1. Log in to the Administration Service on the Source Oracle GoldenGate.

2. Click in Configuration under Administration Service.

3. Click the plus (+) sign next to Credentials on the Database home page.

4. Enter the details as follows:

• Credential Domain: OP2C

• Credential Alias: wssnet

• User ID: ggnet

5. Click Submit

Step 4.4.3.4 - Create a Distribution Path on the Source Oracle GoldenGate to the Target
Deployment

A path is created to send trail files from the Distribution Server to the Receiver Server. You can
create a path from the Distribution Service. To add a path for the source deployment:

1. Log in to the Distribution Service on the Source Oracle Goldengate.

2. Click the plus (+) sign next to Path on the Distribution Service home page. The Add Path
page is displayed.

3. Enter the details as follows:

Option Description

Path Name Select a name for the path.

Source: Trail Name Select the Extract name from the drop-down list,
which populates the trail name automatically. If it
doesn’t, enter the trail name you provided while
adding the Extract.

Generated Source URI Specify localhost for the server’s name; this
allows the distribution path to be started on any
of the Oracle RAC nodes.

Target Authentication Method Use ‘UserID Alias’

Target Set the Target transfer protocol to wss (secure
web socket). Set the Target Host to the target
hostname/VIP that will be used for connecting to
the target system along with the Port Number
that NGINX was configured with (default is 443).

Chapter 21
Task 3: Configure the Oracle GoldenGate Environment

21-22

Option Description

Domain Set the Domain to the credential domain created
above in Step 11.3.3, for example, OP2C.

Alias The Alias is set to the credential alias wssnet,
also created in Step 11.3.3.

Auto Restart Options Set the distribution path to restart when the
Distribution Server starts automatically. This is
required, so that manual intervention is not
required after a RAC node relocation of the
Distribution Server. It is recommended to set the
number of Retries to 10. Set the Delay, which is
the time in minutes to pause between restart
attempts, to 1.

4. Click Create Path.

5. From the Action Menu, click Start.

Step 4.4.4 - Set up a Heartbeat Table to Monitor Lag Times

Follow Steps to add Heartbeat Table in OCI GoldenGate to implement the best practices for
creating a heartbeat process that can be used to determine where and when lag are
developing between a source and target system.

This document walks you through the step-by-step process of creating the necessary tables
and added table mapping statements needed to keep track of processing times between a
source and target database. Once the information is added into the data flow, the information is
then stored in a target table that can be analyzed to determine when and where the lag is
being introduced between the source and target systems.

Chapter 21
Task 3: Configure the Oracle GoldenGate Environment

21-23

https://blogs.oracle.com/dataintegration/post/steps-to-add-heartbeat-table-in-oci-goldengate

22
Cloud Across Regions: Configuring Oracle
GoldenGate Hub for MAA Platinum

Configure and deploy MAA Oracle GoldenGate Hub architecture on Oracle Cloud using the
provided planning considerations, tasks, management, and troubleshooting information.

See the following topics:

• Overview of MAA GoldenGate Hub

• Planning GGHub Placement in the Platinum MAA Architecture

• Task 1: Configure the Source and Target Databases for Oracle GoldenGate

• Task 2: Prepare a Primary and Standby Base System for GGHub

• Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

• Task 4: Configure the Oracle GoldenGate Environment

Overview of MAA GoldenGate Hub
To achieve the highest levels of availability, resulting in zero or near-zero downtime for both
unplanned outages and planned maintenance activities, you can use the combination of Oracle
Real Application Clusters (Oracle RAC), Oracle Active Data Guard, and Oracle GoldenGate.

This architecture, typically referred as MAA Platinum, or Never Down Architecture, delivers
near zero Recovery Time Objective (RTO--downtime incurred during outage) and potentially
zero or near zero Recovery Point Objective (RPO--data loss potential).

Traditionally, Oracle GoldenGate is installed and run locally on the database server that the
GoldenGate processes connect to. When used with Oracle Grid Infrastructure Standalone
Agent (XAG), Oracle GoldenGate processes can be configured to seamlessly relocate or
failover between Oracle RAC nodes and follow Oracle Active Data Guard switchover and
failovers.

Using MAA Oracle GoldenGate Hub (MAA GGHub) moves the GoldenGate software and
processes off of the Exadata database servers, reducing complexity and system resource
utilization. MAA GGHub centralizes Oracle GoldenGate management and offloads the majority
of the Oracle GoldenGate processing and associated CPU and storage resource utilization
from Exadata system resources. Connectivity between the GoldenGate processes and the
databases they operate against is managed with Oracle Net Services.

To achieve an MAA Platinum solution in the Oracle Cloud, you follow these high level steps:

1. Review Oracle MAA Platinum Tier for Oracle Exadata to understand Platinum MAA
benefits and use cases.

2. Deploy or migrate your database onto Exadata Cloud Service, Base Database Service, or
Autonomous Database on Dedicated Infrastructure Service.

3. Add symmetric standby databases in the Oracle Cloud using Oracle Cloud Control Plan or
Cloud automation.

22-1

https://www.oracle.com/a/tech/docs/exadata-maa-platinum-focused.pdf

4. Configure and deploy Oracle Data Guard Fast Start Failover using the Oracle MAA best
practice recommendations in Configure Fast Start Failover. For Exadata Cloud Service
and Base Database Service, this is manual step.

5. Set up MAA GGHub across different OCI regions, which is detailed in the topics that follow.
For an MAA GGHub within one OCI region, see Cloud Within Region: Configuring Oracle
GoldenGate Hub for MAA Platinum.

6. Configure Bidirectional Replication and Automatic Conflict Detection and Resolution. See
Oracle Cloud Infrastructure GoldenGate documentation for information.

7. Decide on Application Failover Options such as Global Data Services (see Oracle Global
Data Services Best Practices), or use your own customized application failover.

Planning GGHub Placement in the Platinum MAA Architecture
Extreme availability that delivers zero downtime (RTO=0 or near zero) and zero or near zero
data loss (RPO=0 or near zero) typically requires the following Platinum MAA architecture.

1. You have the source and target database in an Oracle GoldenGate architecture to allow
your application to fail over immediately in the case of disaster (database, cluster, or site
failure) or switch over in the case of a database or application upgrade. This architecture
enables the potential RTO of zero or near zero for disaster scenarios and database and
application upgrade maintenance.

2. Each source and target database is deployed in Exadata cloud systems so any local
failures are tolerated or recovered almost instantly.

3. Each source and target database is configured with a standby database with Data Guard
Fast-Start Failover so any failure of the database results in activating a new primary
database in seconds to minutes. If SYNC transport is leveraged with Max Availability
protection mode, zero data loss Data Guard failover is achieved.

4. Configured with GoldenGate replication using MAA GGhub between the source and target
databases.

5. Configured so that any standby becoming a primary database due to Data Guard
switchover or failover will automatically resynchronize with its target GoldenGate database.
If zero data loss Data Guard switchover or failover occurs, GoldenGate resychronization
ensures zero data loss across the distributed database environment.

6. Configured with GoldenGate Automatic Conflict Detection and Resolution, which is
required after any Data Guard failover operation occurs.

Where to Place the MAA Primary GGHub and Standby GGHub

1. The GGHub pair (Primary and Standby GGHub) must reside in the same OCI regions as
each primary and standby database. For example:

a. If the primary database is in AD1, Region A, and the standby database is in AD2,
Region A, then the GGHub pair will reside in Region A. For this configuration, see
Cloud Within Region: Configuring Oracle GoldenGate Hub for MAA Platinum.

b. If the primary database is in Region A and the standby database is in Region B, then
the GGHub pair will split between Region A and B. The primary, or active, GGHub
must be co-located in the same OCI region as the target primary database. For this
configuration, continue reading the topics in this chapter.

2. Performance implications:

Chapter 22
Planning GGHub Placement in the Platinum MAA Architecture

22-2

https://docs.oracle.com/en/cloud/paas/goldengate-service/index.html

a. Primary or active GGHub must reside in the same data center as the target database
to ensure round trip latency of 4ms or less. (Replicat performance)

b. Primary or active GGHub should be < 90 ms from the source database without
incurring GoldenGate performance degradation. (Extract performance)

3. GoldenGate distribution path:

a. A GoldenGate distribution path is required if the source and target GGHubs are in
different regions and latency between the OCI regions is > 90 ms.

b. In Oracle Cloud, when your Oracle GoldenGate source and target databases reside in
the same region, or in different regions in the same country, you never need to set up a
GoldenGate distribution path because the latency is always < 90 ms.

MAA GGHubs Placed in Different OCI Regions
In this scenario, the primary database and its standby database are located in different OCI
regions, so the primary (active) GGHub is located in the same region as the primary database,
and the standby GGHub is located in the same region as the standby database.

The following architectural components comprise the GGHubs, as shown in the image below:

1. The primary database and associated standby database are configured with Oracle Active
Data Guard Fast Start Failover (FSFO). FSFO can be configured with any Data Guard
protection mode, with ASYNC or SYNC redo transport, depending on your maximum data
loss tolerance.

2. Primary GGHub Active/Passive Cluster: In this configuration, there’s a 2-node cluster with
two Oracle GoldenGate software configurations. Because the primary GGHub needs to be
<= 4 ms from the target database, and the two regions (PHX and ASH) network latency >
5 ms, two GGHub configurations are created for each GGHub cluster. Essentially, a
primary GGHub configuration will always be in the same region as the target database.

GGHub is configured with the Oracle GoldenGate 21c software deployment that can
support Oracle Database 11g and later releases. This GGHub can support many primary
databases and encapsulates the GoldenGate processes. Extract mines transactions from
the source database, and Replicat applies those changes to the target database.
GoldenGate trail and checkpoint files also reside in the ACFS file system.

An HA failover solution is built in to the GGHub cluster, which includes automatic failover
and restart of GoldenGate processes and activity after a node failure.

Each GGHub configuration contains a GoldenGate service manager and deployment,
ACFS file system with ACFS replication, and separate application VIP.

3. Standby GGHub Active/Passive Cluster: A symmetric standby GGHub is configured. ACFS
replication is set up between the primary and standby GGHubs to preserve all GoldenGate
files.

Manual GGHub failover, which includes ACFS failover, can be performed if you lose the
entire primary GGHub.

Chapter 22
Planning GGHub Placement in the Platinum MAA Architecture

22-3

Figure 22-1 Primary and Standby GGHubs in Different OCI Regions

PHX Region ASH Region

Primary GGHub for DB_B/Standby GGHub for DB_A Primary GGHub for DB_A/Standby GGHub for DB_B

 GGHub Active/Passive Cluster

 GGHub Active/Passive Cluster

GGHub Active/Passive Cluster

GGHub Active/Passive Cluster

ACFS

ACFS

ACFS

ACFS

VIP

VIP

VIP

VIP

Oracle
GoldenGate
Installation

Oracle
GoldenGate
Installation

Oracle
GoldenGate
Installation

Oracle
GoldenGate
Installation

GoldenGate Deployment

GoldenGate Deployment

GoldenGate Deployment

GoldenGate Deployment

Extracts

Extracts

Extracts

Extracts

Replicats

Replicats

Replicats

Replicats

Trail Files

Trail Files

Trail Files

Trail Files

Primary
Database A

Standby
Database A

Standby
Database B

Primary
Database B

Redo
Transport

2

5
ACFS

Replication

ACFS
Replication

Redo
Transport

4 3

1

6

The figure above depicts replicating data from Primary Database A to Primary Database B,
and Primary B back to Primary A with the following steps:

1. Primary Database A: Primary A’s Logminer server sends redo changes to an ASH region
GGHub Extract process, which is on the Primary GGHub for Database A.

2. Primary GGHub: The Extract process writes changes to trail files.

3. Primary GGHub to Primary Database B: An ASH region GoldenGate Replicat process
applies those changes to the target database (Primary B).

4. Primary Database B: Primary B’s Logminer server sends redo to a PHX region GGHub
Extract process, which is on the Primary GGHub for Database B.

5. Primary GGHub: The Extract process writes changes to trail files.

6. Primary GGHub to Primary Database A: A PHX region GoldenGate Replicat process
applies those changes to the target database (Primary A).

Chapter 22
Planning GGHub Placement in the Platinum MAA Architecture

22-4

Table 22-1 Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in Different OCI Regions

Outage Scenario Application Availability and Repair Restoring Redundancy and Pristine
State

Primary Database A (or Database B)
failure

Impact: Near-zero application
downtime. GoldenGate replication
resumes when the new primary
database starts.

1. One primary database is still
available. All activity is routed to the
existing available primary database
to achieve zero application
downtime. Refer to the Global Data
Services Global Services Failover
solution. For example, application
services A-F are routed to
Database A, and application
services G-J are routed to
Database B. If Database A fails, all
services temporarily go to
Database B.

2. The standby becomes the new
primary automatically with Data
Guard FSFO. GoldenGate
replication resumes and the
primary databases resynchronize.
Data loss is bounded by the Data
Guard protection level. If Maximum
Availability or Maximum Protection
is configured, zero data loss is
achieved. All committed
transactions are in one or both
databases. Workload can be
rebalanced when primary Database
A and Database B are available
and in sync. For example, when
Database A is up and running and
in sync, services A-F can go back
to Database A.

3. Replicat performance will be
degraded if the primary GGHub is
not in the same region as the target
database. Schedule a GGHub
switchover with ACFS replication
switchover to resume optimal
Replicat performance to the target
database. You may then experience
two active GGHub configurations
on the same GGHub cluster.

1. The old primary database is
reinstated as the new standby
database to restore redundancy.

2. Optionally performing a Data Guard
switchover, to switch back to the
original configuration, ensures that
at least one primary database
resides in an independent AD.
Schedule a GGHub switchover with
ACFS replication switchover to
resume optimal Replicat
performance to the target database.

Chapter 22
Planning GGHub Placement in the Platinum MAA Architecture

22-5

Table 22-1 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in Different OCI
Regions

Outage Scenario Application Availability and Repair Restoring Redundancy and Pristine
State

Primary or standby GGHub single node
failure

Impact: No application impact.
GoldenGate replication resumes
automatically after a couple of minutes.

No action is required. An HA failover
solution is built in to the GGHub that
includes automatic failover and restart
of GoldenGate processes and activity.
Replication activity is blocked until
GoldenGate processes are active again.
GoldenGate Replication blackout could
last a couple of minutes.

Once the node restarts, active/passive
configuration is re-established.

Primary GGHub cluster crashes and is
not recoverable

Impact: No application impact.
GoldenGate replication resumes after
the existing primary GGHub restarts or
manual GGHub failover completes.

1. If the GGHub cluster can be
restarted, then that’s the simplest
solution.

2. If the primary GGHub is not
recoverable, then perform a manual
GGHub failover to the standby
GGHub, which includes ACFS
failover. This typically takes several
minutes.

3. Replication stops until the new
primary GGhub is started, so
performing step 1 or step 2 should
take little time. If there’s any
orchestration, this should be
automated.

1. If the previous GGHub eventually
restarts, ACFS replication resumes
in the other direction automatically.
If the GGHub cluster is lost or
unrecoverable, you need to rebuild
a new standby GGHub.

2. Replicat performance is degraded if
the primary GGHub is not in the
same region as the target
database. Schedule a GGHub
switchover with ACFS replication
switchover to resume optimal
Replicat performance to the target
database.

Standby GGHub cluster crashes and is
not recoverable

Impact: No application or replication
impact.

1. If the GGHub cluster can be
restarted, then that’s the simplest
solution, and ACFS replication will
resume.

2. If the standby GGHub is not
recoverable, you can rebuild a new
standby GGHub.

N/A

Chapter 22
Planning GGHub Placement in the Platinum MAA Architecture

22-6

Table 22-1 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in Different OCI
Regions

Outage Scenario Application Availability and Repair Restoring Redundancy and Pristine
State

Complete Regional failure Impact: Near Zero Application
Downtime. GoldenGate replication
resumes when the new primary
database starts.

1. One primary database is still
available. All activity is routed to the
existing available primary database
to achieve zero application
downtime. Refer to the Global Data
Services Global Services Failover
solution. For example, application
services A-F routed to Database A
and application services G-J routed
to Database B. If Database A fails,
all services will temporarily go to
Database B.

2. If the primary GGHub is still
functional, GoldenGate replication
will continue. If the primary GGHub
is lost due to regional failure, then a
manual GGHub failover is required.
GoldenGate replication resumes
and the primary databases
resynchronize. Data loss is
bounded by the Data Guard
protection level. If Maximum
availability or protection is
configured, zero data loss is
achieved. All committed
transactions are in one or both
databases. Workload can be
rebalanced when Primary
Database A and Database B are
available and in sync. When
Database A is up and running and
in sync, services A-F can go back
to Database A.

1. When the OCI region returns, re-
establish configuration such as
reinstate standby. If the previous
GGHub eventually restarts, ACFS
replication resumes in the other
direction automatically.

2. When possible, perform a Data
Guard switchover (failback) to get
back to the original state where one
primary database exists in each
region.

3. Replicat performance is degraded if
the primary GGHub is not in the
same region as the target
database. Schedule a GGHub
switchover with ACFS replication
switchover to resume optimal
Replicat performance to the target
database.

Task 1: Configure the Source and Target Databases for Oracle
GoldenGate

The source and target Oracle GoldenGate databases should be configured using the
recommendations that follow.

Chapter 22
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

22-7

Step 1.1 - Configure the Databases

For Oracle Autonomous Database (ADB-D), Oracle Database 19c (19.20) or a later release is
required to support parallel integrated Replicat and conflict resolution. For Oracle Exadata
Database Service (ExaDB) or BaseDB, you can use any supported Oracle Database release
available in the Oracle cloud.

The database configuration steps that follow are applicable for each Database Cloud Service
that supports Platinum MAA solution.

The source and target Oracle GoldenGate databases should be configured using the following
recommendations:

For Oracle Autonomous Database (ADB-D), you only need to add supplemental logging:

PDB: ALTER PLUGGABLE DATABASE ADD SUPPLEMENTAL LOG DATA;

For Oracle Exadata Database Service (ExaDB) or BaseDB do the following steps:

1. Enable Archivelog Mode.

SQL> ARCHIVE LOG LIST
Database log mode Archive Mode
Automatic archival Enabled
Archive destination USE_DB_RECOVERY_FILE_DEST
Oldest online log sequence 110
Next log sequence to archive 113
Current log sequence 113

2. Enable Force Logging.

ALTER DATABASE FORCE LOGGING;

3. Enable GoldenGate replication.

ALTER SYSTEM SET ENABLE_GOLDENGATE_REPLICATION=TRUE SCOPE=BOTH SID='*'

4. Add supplemental logging.

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

5. Configure STREAMS_POOL_SIZE larger to accommodate GoldenGate.

Use this formula to calculate the appropriate STREAMS_POOL_SIZE value:

STREAMS_POOL_SIZE = (((#Extracts + #Integrated Replicats) * 1GB) * 1.25)
For example, in a database with 2 Extracts and 2 integrated Replicats:

STREAMS_POOL_SIZE = 4GB * 1.25 = 5GB
And the parameter is set:

ALTER SYSTEM SET STREAMS_POOL_SIZE=5G SCOPE=BOTH SID='*';

Chapter 22
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

22-8

For the steps to prepare the database for Oracle GoldenGate, see Preparing the Database for
Oracle GoldenGate.

Step 1.2 - Create a GoldenGate Database Administrator User

For ADB-D

For ADB-D deployments, you only need to issue

ALTER USER ggadmin IDENTIFIED BY <password> ACCOUNT UNLOCK;

For Oracle Exadata Database Service (ExaDB) or BaseDB

The following steps are only applicable for Oracle Exadata Database Service (ExaDB) or
BaseDB.

The source and target databases need a GoldenGate administrator user created, with
appropriate privileges assigned as follows:

• For the multitenant container database (CDB):

– Source database - GoldenGate Extract must be configured to connect to a user in the
root container database, using a c##

– Target database - a separate GoldenGate administrator user is needed for each
pluggable database (PDB).

– For details about creating a GoldenGate administrator in an Oracle Multitenant
Database, see Configuring Oracle GoldenGate in a Multitenant Container Database.

• For non-CDB databases, see Establishing Oracle GoldenGate Credentials

1. As the oracle OS user on the source database system, execute the following SQL
instructions to create the database user for Oracle GoldenGate and assign the required
privileges:

[opc@exadb1_node1 ~]$ sudo su - oracle
[oracle@exadb1_node1 ~]$ source dbName.env
[oracle@exadb1_node1 ~]$ sqlplus / as sysdba

Source CDB
SQL>
alter session set container=cdb$root;
create user c##ggadmin identified by "ggadmin_password" container=all
default tablespace USERS temporary tablespace temp;
alter user c##ggadmin quota unlimited on users;
grant set container to c##ggadmin container=all;
grant alter system to c##ggadmin container=all;
grant create session to c##ggadmin container=all;
grant alter any table to c##ggadmin container=all;
grant resource to c##ggadmin container=all;
exec
dbms_goldengate_auth.grant_admin_privilege('c##ggadmin',container=>'all');

Source PDB
SQL>
alter session set container=pdbName;
create user ggadmin identified by "ggadmin_password" container=current;

Chapter 22
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

22-9

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-multitenant-container-database-1.html#GUID-0B0CEB35-51C6-4319-BEE1-FA208FF4DE05
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/establishing-oracle-goldengate-credentials.html#GUID-E40B375A-5042-4195-B563-BE7EDC251880

grant create session to ggadmin container=current;
grant alter any table to ggadmin container=current;
grant resource to ggadmin container=current;
exec dbms_goldengate_auth.grant_admin_privilege('ggadmin');

2. As the oracle OS user on the target system, execute the following SQL instructions to
create the database user for Oracle GoldenGate and assign the required privileges:

[opc@exadb2_node1 ~]$ sudo su - oracle
[oracle@exadb2_node1 ~]$ source dbName.env
[oracle@exadb2_node1 ~]$ sqlplus / as sysdba

Target PDB
SQL>
alter session set container=pdbName;
create user ggadmin identified by "ggadmin_password" container=current;
grant alter system to ggadmin container=current;
grant create session to ggadmin container=current;
grant alter any table to ggadmin container=current;
grant resource to ggadmin container=current;
grant dv_goldengate_admin, dv_goldengate_redo_access to ggadmin
container=current;
exec dbms_goldengate_auth.grant_admin_privilege('ggadmin');

Step 1.3 - Create the Database Services

Note:

This step is not required for ADB-D deployments.

If the source and target databases are running the recommended configuration on an Oracle
RAC cluster with Oracle Data Guard, a role-based service must be created that allows the
Extract or Replicat processes to connect to the correct Data Guard primary database instance.

When using a source multitenant database, a separate service is required for the root
container database (CDB) and the pluggable database (PDB) that contains the schema being
replicated. For a target multitenant database, a single service is required for the PDB.

1. As the oracle OS user on the primary database system, use dbaascli to find the CDB and
PDB name, as shown here:

[opc@exadb1_node1 ~]$ sudo su - oracle
[oracle@exadb1_node1 ~]$ source dbName.env
[oracle@exadb1_node1 ~]$ dbaascli database getDetails
 --dbname dbName |egrep 'dbName|pdbName'

 "dbName" : "dbName",
 "pdbName" : "pdbName",

Chapter 22
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

22-10

2. As the oracle OS user on the primary and standby database systems, create and start the
CDB database service using the following command:

[opc@exadb1_node1 ~]$ sudo su - oracle
[oracle@exadb1_node1 ~]$ source dbName.env
[oracle@exadb1_node1 ~]$ srvctl add service -db $ORACLE_UNQNAME
 -service dbName.goldengate.com -preferred ORACLE_SID1
 -available ORACLE_SID2 -role PRIMARY

3. As the oracle OS user on the primary and standby database systems, create and start the
PDB database service using the following command:

[oracle@exadb1_node1 ~]$ srvctl add service -db $ORACLE_UNQNAME
 -service dbName.pdbName.goldengate.com -preferred ORACLE_SID1
 -available ORACLE_SID2 -pdb pdbName -role PRIMARY

4. As the oracle OS user on the primary and standby database systems, start and verify that
the services are running, as shown here:

[oracle@exadb1_node1 ~]$ srvctl start service -db $ORACLE_UNQNAME -role
[oracle@exadb1_node1 ~]$ srvctl status service -d $ORACLE_UNQNAME |grep
goldengate

Service dbName.goldengate.com is running on instance(s) SID1
Service dbName.pdbName.goldengate.com is running on instance(s) SID1

Note:

Repeat Step 1.3 in the source and target database system.

Task 2: Prepare a Primary and Standby Base System for GGHub

Step 2.1 - Deploy an Oracle RAC 2-Node Cluster System

Deploy a minimum of two GGHubs (primary and standby). Each GGHub must be deployed as
a 2-node Oracle RAC database system as described in Oracle Base Database Service.

Chapter 22
Task 2: Prepare a Primary and Standby Base System for GGHub

22-11

https://docs.oracle.com/en/cloud/paas/bm-and-vm-dbs-cloud/aboutbmvmdbs/index.html#articletitle

Figure 22-2 Oracle GoldenGate Hub Hardware Architecture

Availability Domain 1 Availability Domain 2

Primary GGHUB

2-node RAC
Database system

Standby GGHUB

2-node RAC
Database system

ACFS
Replication

Step 2.2 - Remove the Standard Database and Rearrange the Disk Group
Layout

1. As the oracle OS user on the first GGHub node, remove the standard database:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghubN-node1 ~]$ dbca -deleteDatabase -silent -
sourceDB $ORACLE_UNQNAME
Enter SYS user password: ##############

[WARNING] [DBT-19202] The Database Configuration Assistant will delete the
Oracle instances and datafiles for your database. All information in the
database will be destroyed.
Prepare for db operation
32% complete
Connecting to database
39% complete
...
100% complete
Database deletion completed.
Look at the log file "/u01/app/oracle/cfgtoollogs/dbca/DB0502_fra2pr/
DB0502_fra2pr.log" for further details.

2. As the grid OS user on the second GGHub node, dismount the RECO diskgroup:

[opc@gghub_prim2 ~]$ sudo su - grid
[grid@gghub_prim2 ~]$ sqlplus / as sysasm

SQL> alter diskgroup RECO dismount;

Chapter 22
Task 2: Prepare a Primary and Standby Base System for GGHub

22-12

3. As the grid OS user on the first gghub node, drop the RECO diskgroup and assign the
disks to the DATA diskgroup:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ sqlplus / as sysasm

SQL>
drop diskgroup RECO INCLUDING CONTENTS;
alter diskgroup DATA add disk '/dev/RECODISK1';
alter diskgroup DATA add disk '/dev/RECODISK2';
alter diskgroup DATA add disk '/dev/RECODISK3';
alter diskgroup DATA add disk '/dev/RECODISK4';

4. As the root OS user on all GGhub nodes, reboot the node:

[opc@gghub_prim1 ~]$ sudo reboot

Note:

Repeat this step in the primary and standby GGHubs.

Step 2.3 - Download the Required Software

1. As the opc OS user on all GGHub nodes, create the staging and scripts directories:

[opc@gghub_prim1 ~]$
sudo mkdir -p /u01/oracle/stage
sudo mkdir /u01/oracle/scripts
sudo chown -R oracle:oinstall /u01/oracle
sudo chmod -R g+w /u01/oracle
sudo chmod -R o+w /u01/oracle/stage

2. As the opc OS user on all GGHub nodes, download the following software in the
directory /u01/oracle/stage:

• Download the latest Oracle GoldenGate 21c (or later release) Microservices software
from Oracle GoldenGate Downloads.

• Download subsequent patches to the base release from the Patches and Updates
tab of My Oracle Support.

– See Installing Patches for Oracle GoldenGate Microservices Architecture for more
information.

– Minimum required version is Patch 35214851: Oracle GoldenGate 21.9.0.0.2
Microservices for Oracle

• Download the latest OPatch release, Patch 6880880, for Oracle Database 21c
(21.0.0.0.0) from My Oracle Support Document 2542082.1.

• Download the Oracle Grid Infrastructure Standalone Agents for Oracle Clusterware
19c, release 10.2 or later, from Oracle Grid Infrastructure Standalone Agents for
Oracle Clusterware.

Chapter 22
Task 2: Prepare a Primary and Standby Base System for GGHub

22-13

http://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html
https://support.oracle.com/epmos/faces/PatchHome
https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc/install-installing-patches-ma.html#GUID-BE9C5FCD-9DC0-4452-B232-123BA82979D0
https://support.oracle.com/rs?type=doc&id=2542082.1
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html

• Download the python script (secureServices.py) from My Oracle Support Document
2826001.1

• Download the Oracle GGHUB Scripts from My Oracle Support Document 2951572.1

3. As the grid OS user on all GGHub nodes, unzip the GGhub scripts file downloaded from
My Oracle Support Document 2951572.1 into the directory /u01/oracle/scripts.

Place the script in the same location on all primary and standby GGhub nodes

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ unzip -q /u01/oracle/stage/
gghub_scripts_YYYYYMMDD.zip -d /u01/oracle/scripts/

Step 2.4 - Configure Oracle Linux To Use the Oracle Public YUM Repository

The Oracle Linux yum server hosts software for Oracle Linux and compatible distributions.
These instructions help you get started configuring your Linux system for Oracle Linux yum
server and installing software through yum.

• As the root OS user in all GGHub systems, create the file /etc/yum.repos.d/oracle-
public-yum-ol7.repo with the following contents:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]#
cat > /etc/yum.repos.d/oracle-public-yum-ol7.repo <<EOF
[ol7_latest]
name=Oracle Linux $releasever Latest ($basearch)
baseurl=http://yum$ociregion.oracle.com/repo/OracleLinux/OL7/latest/
\$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1
EOF

Task 3: Configure Oracle GoldenGate for the Primary and
Standby GGHub

Step 3.1 - Install Oracle GoldenGate Software

Install Oracle GoldenGate software locally on all nodes of the primary and standby GGHub
configuration that will be part of the GoldenGate configuration. Make sure the installation
directory is identical on all nodes.

Perform the following sub-steps to complete this step:

• Step 3.1.1 Unzip the Software and Create the Response File for the Installation

• Step 3.1.2 Install Oracle GoldenGate Software

• Step 3.1.3 Installing Patches for Oracle GoldenGate Microservices Architecture

Step 3.1.1 Unzip the Software and Create the Response File for the Installation

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-14

https://support.oracle.com/rs?type=doc&id=2826001.1
https://support.oracle.com/rs?type=doc&id=2826001.1
https://support.oracle.com/rs?type=doc&id=2951572.1
https://support.oracle.com/rs?type=doc&id=2951572.1

As the oracle OS user on all GGHub nodes, unzip the Oracle GoldenGate software:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ unzip -q
 /u01/oracle/stage/p36175132_2113000OGGRU_Linux-x86-64.zip -d
 /u01/oracle/stage

The software includes an example response file for Oracle Database 21c and earlier supported
versions. Copy the response file to a shared file system, so the same file can be used to install
Oracle GoldenGate on all database nodes, and edit the following parameters:

• INSTALL_OPTION=ora21c
• SOFTWARE_LOCATION=/u01/app/oracle/goldengate/gg21c (recommended location)
As the oracle OS user on all GGHub nodes, copy and edit the response file for the installation:

[oracle@gghub_prim1 ~]$ cp
 /u01/oracle/stage/fbo_ggs_Linux_x64_Oracle_services_shiphome/Disk1/response/
oggcore.rsp
 /u01/oracle/stage
[oracle@gghub_prim1 ~]$ vi /u01/oracle/stage/oggcore.rsp

Before
INSTALL_OPTION=
SOFTWARE_LOCATION=

After
INSTALL_OPTION=ora21c
SOFTWARE_LOCATION=/u01/app/oracle/goldengate/gg21c

Step 3.1.2 Install Oracle GoldenGate Software

As the oracle OS user on all GGHub nodes, run runInstaller to install Oracle GoldenGate:

[oracle@gghub_prim1 ~]$ cd
 /u01/oracle/stage/fbo_ggs_Linux_x64_Oracle_services_shiphome/Disk1/
[oracle@gghub_prim1 ~]$./runInstaller -silent -nowait
 -responseFile /u01/oracle/stage/oggcore.rsp

Starting Oracle Universal Installer...

Checking Temp space: must be greater than 120 MB. Actual 32755 MB Passed
Checking swap space: must be greater than 150 MB. Actual 16383 MB Passed
Preparing to launch Oracle Universal Installer from
 /tmp/OraInstall2022-07-08_02-54-51PM.
 Please wait ...
You can find the log of this install session at:
 /u01/app/oraInventory/logs/installActions2022-07-08_02-54-51PM.log
Successfully Setup Software.
The installation of Oracle GoldenGate Services was successful.
Please check
 '/u01/app/oraInventory/logs/silentInstall2022-07-08_02-54-51PM.log'
 for more details.

[oracle@gghub_prim1 ~]$ cat

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-15

 /u01/app/oraInventory/logs/silentInstall2022-07-08_02-54-51PM.log

The installation of Oracle GoldenGate Services was successful.

Step 3.1.3 Installing Patches for Oracle GoldenGate Microservices Architecture

As the oracle OS user on all GGHub nodes, install the latest OPatch:

[oracle@gghub_prim1 ~]$ unzip -oq -d
 /u01/app/oracle/goldengate/gg21c
 /u01/oracle/stage/p6880880_210000_Linux-x86-64.zip
[oracle@gghub_prim1 ~]$ cat >> ~/.bashrc <<EOF
export ORACLE_HOME=/u01/app/oracle/goldengate/gg21c
export PATH=$ORACLE_HOME/OPatch:$PATH
EOF
[oracle@gghub_prim1 ~]$. ~/.bashrc
[oracle@gghub_prim1 ~]$ opatch lsinventory |grep
 'Oracle GoldenGate Services'

Oracle GoldenGate Services 21.1.0.0.0

[oracle@gghub_prim1 Disk1]$ opatch version
OPatch Version: 12.2.0.1.37

OPatch succeeded.

As the oracle OS user on all GGHub nodes, run OPatch prereq to validate any conflict before
applying the patch:

[oracle@gghub_prim1 ~]$ unzip -oq -d /u01/oracle/stage/
 /u01/oracle/stage/p35214851_219000OGGRU_Linux-x86-64.zip
[oracle@gghub_prim1 ~]$ cd /u01/oracle/stage/35214851/
[oracle@gghub_prim1 35214851]$ opatch prereq
 CheckConflictAgainstOHWithDetail -ph ./

Oracle Interim Patch Installer version 12.2.0.1.26
Copyright (c) 2023, Oracle Corporation. All rights reserved.

PREREQ session

Oracle Home : /u01/app/oracle/goldengate/gg21c
Central Inventory : /u01/app/oraInventory
 from : /u01/app/oracle/goldengate/gg21c/oraInst.loc
OPatch version : 12.2.0.1.26
OUI version : 12.2.0.9.0
Log file location :
 /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_13-44-16PM_1.log

Invoking prereq "checkconflictagainstohwithdetail"

Prereq "checkConflictAgainstOHWithDetail" passed.

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-16

OPatch succeeded.

As the oracle OS user on all GGHub nodes, patch Oracle GoldenGate Microservices
Architecture using OPatch:

[oracle@gghub_prim1 35214851]$ opatch apply

Oracle Interim Patch Installer version 12.2.0.1.37
Copyright (c) 2023, Oracle Corporation. All rights reserved.

Oracle Home : /u01/app/oracle/goldengate/gg21c
Central Inventory : /u01/app/oraInventory
 from : /u01/app/oracle/goldengate/gg21c/oraInst.loc
OPatch version : 12.2.0.1.37
OUI version : 12.2.0.9.0
Log file location :
 /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_19-40-41PM_1.log
Verifying environment and performing prerequisite checks...
OPatch continues with these patches: 35214851

Do you want to proceed? [y|n]
y
User Responded with: Y
All checks passed.

Please shutdown Oracle instances running out of this ORACLE_HOME on
 the local system.
(Oracle Home = '/u01/app/oracle/goldengate/gg21c'

Is the local system ready for patching? [y|n]
y
User Responded with: Y
Backing up files...
Applying interim patch '35214851' to OH '/u01/app/oracle/goldengate/gg21c'

Patching component oracle.oggcore.services.ora21c, 21.1.0.0.0...
Patch 35214851 successfully applied.
Log file location:
 /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_19-40-41PM_1.log

OPatch succeeded.

[oracle@gghub_prim1 35214851]$ opatch lspatches
35214851;

OPatch succeeded.

Note:

Repeat all of the steps in step 3.1 for the primary and standby GGHub systems.

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-17

Step 3.2 - Configure the Cloud Network

You must configure virtual cloud network (VCN) components such as private DNS zones, VIP,
bastion, security lists, and firewalls for Oracle GoldenGate to function correctly.

To learn more about VCNs and security lists, including instructions for creating them, see the
Oracle Cloud Infrastructure Networking documentation.

Perform the following sub-steps to complete this step:

• Step 3.2.1 - Create an Application Virtual IP Address (VIP) for GGhub

• Step 3.2.2 - Add an Ingress Rule for port 443

• Step 3.2.3 - Open Port 443 in the GGhub Firewall

• Step 3.2.4 - Configure Network Connectivity Between the Primary and Standby GGHUB
Systems

• Step 3.2.5 - Configure Private DNS Zones Views and Resolvers

Step 3.2.1 - Create an Application Virtual IP Address (VIP) for GGhub

A dedicated application VIP is required to allow access to the GoldenGate Microservices using
the same host name, regardless of which node of the cluster is hosting the services. The VIP is
assigned to the GGHUB system and is automatically migrated to another node in the event of
a node failure. Two VIPs are required, one for the primary and another one for the standby
GGHUBs.

As the grid OS user on all GGhub nodes, run the following commands to get the vnicId of the
Private Endpoint in the same subnet at resource ora.net1.network:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ crsctl status resource -p -attr NAME,USR_ORA_SUBNET
 -w "TYPE = ora.network.type" |sort | uniq

NAME=ora.net1.network
USR_ORA_SUBNET=10.60.2.0

[grid@gghub_prim1 ~]$ curl 169.254.169.254/opc/v1/vnics

[
 {
 "macAddr": "02:00:17:04:70:AF",
 "privateIp": "10.60.2.120",
 "subnetCidrBlock": "10.60.2.0/24",
 "virtualRouterIp": "10.60.2.1",
 "vlanTag": 3085,
 "vnicId": "ocid1.vnic.oc1.eu-frankfurt-1.ocid_value"
 },
 {
 "macAddr": "02:00:17:08:69:6E",
 "privateIp": "192.168.16.18",
 "subnetCidrBlock": "192.168.16.16/28",
 "virtualRouterIp": "192.168.16.17",
 "vlanTag": 879,
 "vnicId": "ocid1.vnic.oc1.eu-frankfurt-1.ocid_value"
 }

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-18

https://docs.cloud.oracle.com/iaas/Content/Network/Concepts/overview.htm

[grid@gghub_prim2 ~]$ curl 169.254.169.254/opc/v1/vnics

[
 {
 "macAddr": "00:00:17:00:C9:19",
 "privateIp": "10.60.2.148",
 "subnetCidrBlock": "10.60.2.0/24",
 "virtualRouterIp": "10.60.2.1",
 "vlanTag": 572,
 "vnicId": "ocid1.vnic.oc1.eu-frankfurt-1.ocid_value"
 },
 {
 "macAddr": "02:00:17:00:84:B5",
 "privateIp": "192.168.16.19",
 "subnetCidrBlock": "192.168.16.16/28",
 "virtualRouterIp": "192.168.16.17",
 "vlanTag": 3352,
 "vnicId": "ocid1.vnic.oc1.eu-frankfurt-1.ocid_value"
 }

Note:

For the next step, you will need to use the Cloud Shell to assign the private IP to the
GGHUB nodes. See Using Cloud Shell for more information.

As your user on the cloud shell, run the following commands to assign the private IP to the
GGHUB nodes:

username@cloudshell:~ (eu-frankfurt-1)$ export node1_vnic=
'ocid1.vnic.oc1.eu-
frankfurt-1.abtheljrl5udtgryrscypy5btmlfncawqkjlcql3kkpj64e2lb5xbmbrehkq'
username@cloudshell:~ (eu-frankfurt-1)$ export node2_vnic=
'ocid1.vnic.oc1.eu-
frankfurt-1.abtheljre6rf3xoxtgl2gam3lav4vcyftz5fppm2ciin4wzjxucalzj7b2bq'
username@cloudshell:~ (eu-frankfurt-1)$ export ip_address='10.60.2.65'
username@cloudshell:~ (eu-frankfurt-1)$ oci network vnic assign-private-ip
 --unassign-if-already-assigned --vnic-id $node1_vnic --ip-address $ip_address
username@cloudshell:~ (eu-frankfurt-1)$ oci network vnic assign-private-ip
 --unassign-if-already-assigned --vnic-id $node2_vnic --ip-address $ip_address

Example of the output:
{
 "data": {
 "availability-domain": null,
 "compartment-id": "ocid1.compartment.oc1..ocid_value",
 "defined-tags": {},
 "display-name": "privateip20230292502117",
 "freeform-tags": {},
 "hostname-label": null,
 "id": "ocid1.privateip.oc1.eu-frankfurt-1.ocid_value",
 "ip-address": "10.60.2.65",
 "is-primary": false,
 "subnet-id": "ocid1.subnet.oc1.eu-frankfurt-1.ocid_value",

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-19

https://docs.oracle.com/en-us/iaas/Content/API/Concepts/devcloudshellgettingstarted.htm

 "time-created": "2023-07-27T10:21:17.851000+00:00",
 "vlan-id": null,
 "vnic-id": "ocid1.vnic.oc1.eu-frankfurt-1.ocid_value"
 },
 "etag": "da972988"
}

As the root OS user on the first GGhub node, run the following command to create the
application VIP managed by Oracle Clusterware:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_appvip.sh

Application VIP Name: gghub_prim_vip
Application VIP Address: 10.60.2.65
Using configuration parameter file:
 /u01/app/19.0.0.0/grid/crs/install/crsconfig_params
The log of current session can be found at:
 /u01/app/grid/crsdata/gghublb1/scripts/appvipcfg.log

Note:

Repeat all the steps in step 3.2.1 for the primary and standby GGHUB systems.

Step 3.2.2 - Add the Ingress Security List Rules

Using the Cloud Console, add two ingress security list rules in the Virtual Cloud Network (VCN)
assigned to the GGhub.

One ingress rule is for TCP traffic on destination port 443 from authorized source IP addresses
and any source port to connect to the Oracle GoldenGate service using NGINX as a reverse
proxy, and the other is for allowing ICMP TYPE 8 (ECHO) between the primary and standby
GGhubs required to enable ACFS replication. For more information, see Working with Security
Lists and My Oracle Support Document 2584309.1.

After you update the security list, it will have an entry with values similar to the following ones:

1. NGINX - TCP 443

• Source Type: CIDR

• Source CIDR: 0.0.0.0/0

• IP Protocol: TCP

• Source Port Range: All

• Destination Port Range: 443

• Allows: TCP traffic for ports: 443 HTTPS

• Description: Oracle GoldenGate 443

2. ACFS - ICMP TYPE 8 (ECHO)

• Source Type: CIDR

• Source CIDR: 0.0.0.0/0

• IP Protocol: ICMP

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-20

https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/securitylists.htm
https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/securitylists.htm
https://support.oracle.com/rs?type=doc&id=2584309.1

• Allows: ICMP traffic for: 8 Echo

• Description: Required for ACFS replication

Step 3.2.3 - Open Port 443 in the GGhub Firewall

As the opc OS user on all GGhub nodes of the primary and standby system, add the required
rules to IPTables:

[opc@gghub_prim1 ~]$ sudo vi /etc/sysconfig/iptables

-A INPUT -p tcp -m state --state NEW -m tcp --dport 443 -j ACCEPT
 -m comment --comment "Required for access to GoldenGate, Do not remove
 or modify. "
-A INPUT -p tcp -m state --state NEW -m tcp --match multiport
 --dports 9100:9105 -j ACCEPT -m comment --comment "Required for access
 to GoldenGate, Do not remove or modify. "

[opc@gghub_prim1 ~]$ sudo systemctl restart iptables

Note:

See Implementing Oracle Linux Security for more information.

Step 3.2.4 - Configure Network Connectivity Between the Primary and Standby GGHUB
Systems

Oracle ACFS snapshot-based replication uses ssh as the transport between the primary and
standby clusters. To support ACFS replication, ssh must be usable in either direction between
the clusters — from the primary cluster to the standby cluster and from the standby to the
primary. See Configuring ssh for Use With Oracle ACFS Replication in Oracle Automatic
Storage Management Administrator's Guide.

To learn more about whether subnets are public or private, including instructions for creating
the connection, see section Connectivity Choices in the Oracle Cloud Infrastructure Networking
documentation.

Step 3.2.5 - Configure Private DNS Zones Views and Resolvers

You must create a private DNS zone view and records for each application VIP. This is
required for the primary GGHUB to reach the standby GGHUB deployment VIP host name.

Follow the steps in Configure private DNS zones views and resolvers to create your private
DNS zone and a record entry for each dedicated GGHUB application virtual IP address (VIP)
created in Step 3.2.1.

As the opc OS user on any GGhub node, validate that all application VIPs can be resolved:

[opc@gghub_prim1 ~]$ nslookup
 gghub_prim_vip.frankfurt.goldengate.com |tail -2

Address: 10.60.2.120

[opc@gghub_prim1 ~]$ nslookup
 gghub_stby_vip.frankfurt.goldengate.com |tail -2

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-21

https://docs.oracle.com/en/operating-systems/oracle-linux/7/security/security-ImplementingOracleLinuxSecurity.html#ol7-implement-sec
https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/overview.htm#connectivity
https://docs.oracle.com/en/learn/oci_private_dns/index.html#introduction

Address: 10.60.0.185

Step 3.3 - Configure ACFS File System Replication Between GGHubs in the
Same Region

Oracle GoldenGate Microservices Architecture is designed with a simplified installation and
deployment directory structure. The installation directory: should be placed on local storage on
each database node to minimize downtime during software patching. The deployment
directory: which is created during deployment creation using the Oracle GoldenGate
Configuration Assistant (oggca.sh), must be placed on a shared file system. The deployment
directory contains configuration, security, log, parameter, trail, and checkpoint files. Placing the
deployment in Oracle Automatic Storage Management Cluster File system (ACFS) provides
the best recoverability and failover capabilities in the event of a system failure. Ensuring the
availability of the checkpoint files cluster-wide is essential so that the GoldenGate processes
can continue running from their last known position after a failure occurs.

It is recommended that you allocate enough trail file disk space for a minimum of 12 hours of
trail files. Doing this will give sufficient space for trail file generation should a problem occur
with the target environment that prevents it from receiving new trail files. The amount of space
needed for 12 hours can only be determined by testing trail file generation rates with real
production data. If you want to build contingency for a long planned maintenance event of one
of the GoldenGate Primary Database or systems, you can allocate sufficient ACFS space for 2
days. Monitoring space utilization is always recommended regardless of how much space is
allocated.

Note:

If the GoldenGate hub will support multiple service manager deployments using
separate ACFS file systems, the following steps should be repeated for each file
ACFS file system.

Perform the following sub-steps to complete this step:

• Step 3.3.1 - Create the ASM File system

• Step 3.3.2 - Create the Cluster Ready Services (CRS) Resource

• Step 3.3.3 - Verify the Currently Configured ACFS File System

• Step 3.3.4 - Start and Check the Status of the ACFS Resource

• Step 3.3.5 – Create CRS Dependencies Between ACFS and an Application VIP

• Step 3.3.6 – Create the SSH Daemon CRS Resource

• Step 3.3.7 – Enable ACFS Replication

• Step 3.3.8 – Create the ACFS Replication CRS Action Scripts

Step 3.3.1 - Create the ASM File system

As the grid OS user on the first GGHUB node, use asmcmd to create the ACFS volume:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ asmcmd volcreate -G DATA -s 120G ACFS_GG1

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-22

Note:

Modify the file system size according to the determined size requirements.

As the grid OS user on the first GGHUB node, use asmcmd to confirm the “Volume Device”:

[grid@gghub_prim1 ~]$ asmcmd volinfo -G DATA ACFS_GG1

Diskgroup Name: DATA
 Volume Name: ACFS_GG1
 Volume Device: /dev/asm/acfs_gg1-256
 State: ENABLED
 Size (MB): 1228800
 Resize Unit (MB): 64
 Redundancy: UNPROT
 Stripe Columns: 8
 Stripe Width (K): 1024
 Usage:
 Mountpath:

As the grid OS user on the first GGHUB node, format the partition with the following mkfs
command:

[grid@gghub_prim1 ~]$ /sbin/mkfs -t acfs /dev/asm/acfs_gg1-256

mkfs.acfs: version = 19.0.0.0.0
mkfs.acfs: on-disk version = 46.0
mkfs.acfs: volume = /dev/asm/acfs_gg1-256
mkfs.acfs: volume size = 128849018880 (120.00 GB)
mkfs.acfs: Format complete.

Step 3.3.2 - Create the Cluster Ready Services (CRS) Resource

As the opc OS user on all GGHUB nodes, create the ACFS mount point:

[opc@gghub_prim1 ~]$ sudo mkdir -p /mnt/acfs_gg1
[opc@gghub_prim1 ~]$ sudo chown oracle:oinstall /mnt/acfs_gg1

Create the file system resource as the root user. Due to the implementation of distributed file
locking on ACFS, unlike DBFS, it is acceptable to mount ACFS on more than one GGhub node
at any one time.

As the root OS user on the first GGHUB node, create the CRS resource for the new ACFS file
system:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]#

cat > /u01/oracle/scripts/add_asm_filesystem.sh <<EOF
Run as ROOT
$(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/bin/srvctl
 add filesystem \

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-23

-device /dev/asm/<acfs_volume> \
-volume ACFS_GG1 \
-diskgroup DATA \
-path /mnt/acfs_gg1 -user oracle \
-node gghub_prim1,gghub_prim2 \
-autostart NEVER \
-mountowner oracle \
-mountgroup oinstall \
-mountperm 755
EOF
[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_asm_filesystem.sh

Step 3.3.3 - Verify the Currently Configured ACFS File System

As the grid OS user on the first GGHUB node, use the following command to validate the file
system details:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ srvctl config filesystem -volume ACFS_GG1
 -diskgroup DATA

Volume device: /dev/asm/acfs_gg1-256
Diskgroup name: data
Volume name: acfs_gg1
Canonical volume device: /dev/asm/acfs_gg1-256
Accelerator volume devices:
Mountpoint path: /mnt/acfs_gg1
Mount point owner: oracle
Mount point group: oinstall
Mount permissions: owner:oracle:rwx,pgrp:oinstall:r-x,other::r-x
Mount users: grid
Type: ACFS
Mount options:
Description:
Nodes: gghub_prim1 gghub_prim2
Server pools: *
Application ID:
ACFS file system is enabled
ACFS file system is individually enabled on nodes:
ACFS file system is individually disabled on nodes:

Step 3.3.4 - Start and Check the Status of the ACFS Resource

As the grid OS user on the first gghub node, use the following command to start and check
the file system:

[grid@gghub_prim1 ~]$ srvctl start filesystem -volume ACFS_GG1
 -diskgroup DATA -node `hostname`
[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1
 -diskgroup DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim1

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-24

The CRS resource created is named using the format
ora.diskgroup_name.volume_name.acfs. Using the above file system example, the CRS
resource is called ora.data.acfs_gg.acfs.

As the grid OS user on the first gghub node, use the following command to see the ACFS
resource in CRS:

[grid@gghub_prim1 ~]$ crsctl stat res ora.data.acfs_gg1.acfs

NAME=ora.data.acfs_gg1.acfs
TYPE=ora.acfs_cluster.type
TARGET=ONLINE
STATE=ONLINE on gghub_prim1

Step 3.3.5 – Create CRS Dependencies Between ACFS and an Application VIP

To ensure that the file system is mounted on the same Oracle GGHub node as the VIP, add the
VIP CRS resource as a dependency to the ACFS resource, using the following example
commands. Each separate replicated ACFS file system will have its own dedicated VIP.

1. As the root OS user on the first GGHub node, use the following command to determine
the current start and stop dependencies of the VIP resource:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl stat res -w "TYPE co appvip" |grep NAME | cut -f2 -d"="
gghub_prim_vip1

[root@gghub_prim1 ~]# export APPVIP=gghub_prim_vip1
[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl stat res $APPVIP -f|grep _DEPENDENCIES

START_DEPENDENCIES=hard(ora.net1.network) pullup(ora.net1.network)
STOP_DEPENDENCIES=hard(intermediate:ora.net1.network)

2. As the root OS user on the first GGHub node, determine the ACFS file system name:

[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl stat res -w "NAME co acfs_gg1" |grep NAME

NAME=ora.data.acfs_gg.acfs

[root@gghub_prim1 ~]# export ACFS_NAME='ora.data.acfs_gg1.acfs'

3. As the root OS user on the first GGHub node, modify the start and stop dependencies of
the VIP resource:

[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl modify res $APPVIP -attr
 "START_DEPENDENCIES='hard(ora.net1.network,$ACFS_NAME)
pullup(ora.net1.network)

pullup:always($ACFS_NAME)',STOP_DEPENDENCIES='hard(intermediate:ora.net1.ne
twork,$ACFS_NAME)',HOSTING_MEMBERS=,PLACEMENT=balanced"

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-25

4. As the grid OS user on the first GGHub node, start the VIP resource:

[grid@gghub_prim1 ~]$ $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl stat res -w "TYPE co appvip" |grep NAME | cut -f2 -d"="
gghub_prim_vip1

[grid@gghub_prim1 ~]$ export APPVIP=gghub_prim_vip1

[grid@gghub_prim1 ~]$ crsctl start resource $APPVIP
CRS-2672: Attempting to start 'gghub_prim_vip1' on 'gghub_prim1'
CRS-2676: Start of 'gghub_prim_vip1' on 'gghub_prim1' succeeded

Note:

Before moving to the next step, it is important to ensure the VIP can be mounted
on both GGHub nodes.

5. As the grid OS user on the first GGHub node, relocate the VIP resource:

[grid@gghub_prim1 ~]$ crsctl relocate resource $APPVIP -f

CRS-2673: Attempting to stop 'gghub_prim_vip1' on 'gghub_prim1'
CRS-2677: Stop of 'gghub_prim_vip1' on 'gghub_prim1' succeeded
CRS-2673: Attempting to stop 'ora.data.acfs_gg1.acfs' on 'gghub_prim1'
CRS-2677: Stop of 'ora.data.acfs_gg1.acfs' on 'gghub_prim1' succeeded
CRS-2672: Attempting to start 'ora.data.acfs_gg1.acfs' on 'gghub_prim2'
CRS-2676: Start of 'ora.data.acfs_gg1.acfs' on 'gghub_prim2' succeeded
CRS-2672: Attempting to start 'gghub_prim_vip1' on 'gghub_prim2'
CRS-2676: Start of 'gghub_prim_vip1' on 'gghub_prim2' succeeded

[grid@gghub_prim1 ~]$ crsctl status resource $APPVIP

NAME=gghub_prim_vip1
TYPE=app.appviptypex2.type
TARGET=ONLINE
STATE=ONLINE on gghub_prim2

[grid@gghub_prim1 ~]$ crsctl relocate resource $APPVIP -f

CRS-2673: Attempting to stop 'gghub_prim_vip1' on 'gghub_prim2'
CRS-2677: Stop of 'gghub_prim_vip1' on 'gghub_prim2' succeeded
CRS-2673: Attempting to stop 'ora.data.acfs_gg1.acfs' on 'gghub_prim2'
CRS-2677: Stop of 'ora.data.acfs_gg1.acfs' on 'gghub_prim2' succeeded
CRS-2672: Attempting to start 'ora.data.acfs_gg1.acfs' on 'gghub_prim1'
CRS-2676: Start of 'ora.data.acfs_gg1.acfs' on 'gghub_prim1' succeeded
CRS-2672: Attempting to start 'gghub_prim_vip1' on 'gghub_prim1'
CRS-2676: Start of 'gghub_prim_vip1' on 'gghub_prim1' succeeded

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-26

6. As the grid OS user on the first GGHub node, check the status of the ACFS file system:

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1 -diskgroup
DATA

ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim1

Step 3.3.6 – Create the SSH Daemon CRS Resource

ACFS replication uses secure shell (ssh) to communicate between the primary and standby file
systems using the virtual IP addresses that were previously created. When a server is
rebooted, the ssh daemon is started before the VIP CRS resource, preventing access to the
cluster using VIP. The following instructions create an ssh restart CRS resource that will restart
the ssh daemon after the virtual IP resource is started. A separate ssh restart CRS resource is
needed for each replicated file system.

As the grid OS user on all GGHUB nodes, copy the CRS action script to restart the ssh
daemon. Place the script in the same location on all primary and standby GGHUB nodes:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ unzip /u01/oracle/stage/gghub_scripts_<YYYYMMDD>.zip
 -d /u01/oracle/scripts/

Archive: /u01/oracle/stage/gghub_scripts_<YYYYMMDD>.zip
 inflating: /u01/oracle/scripts/acfs_primary.scr
 inflating: /u01/oracle/scripts/acfs_standby.scr
 inflating: /u01/oracle/scripts/sshd_restart.scr
 inflating: /u01/oracle/scripts/add_acfs_primary.sh
 inflating: /u01/oracle/scripts/add_acfs_standby.sh
 inflating: /u01/oracle/scripts/add_nginx.sh
 inflating: /u01/oracle/scripts/add_sshd_restart.sh
 inflating: /u01/oracle/scripts/reverse_proxy_settings.sh
 inflating: /u01/oracle/scripts/secureServices.py

As the root OS user on the first GGHUB node, create the CRS resource using the following
command:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_sshd_restart.sh

Application VIP Name: gghub_prim_vip

As the grid OS user on the first GGHUB node, start and test the CRS resource:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ crsctl stat res sshd_restart
NAME=sshd_restart
TYPE=cluster_resource
TARGET=OFFLINE
STATE=OFFLINE

[grid@gghub_prim1 ~]$ crsctl start res sshd_restart

CRS-2672: Attempting to start 'sshd_restart' on 'gghub_prim1'
CRS-2676: Start of 'sshd_restart' on 'gghub_prim1' succeeded

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-27

[grid@gghub_prim1 ~]$ cat /tmp/sshd_restarted
STARTED

[grid@gghubtest1 ~]$ crsctl stop res sshd_restart

CRS-2673: Attempting to stop 'sshd_restart' on 'gghub_prim1'
CRS-2677: Stop of 'sshd_restart' on 'gghub_prim1' succeeded

[grid@gghub1 ~]$ cat /tmp/sshd_restarted
STOPPED

[grid@gghub1 ~]$ crsctl start res sshd_restart

CRS-2672: Attempting to start 'sshd_restart' on 'gghub_prim1'
CRS-2676: Start of 'sshd_restart' on 'gghub_prim1' succeeded

[grid@gghub1 ~]$ crsctl stat res sshd_restart

NAME=sshd_restart
TYPE=cluster_resource
TARGET=ONLINE
STATE=ONLINE on gghub_prim1

Step 3.3.7 – Enable ACFS Replication

ACFS snapshot-based replication uses openssh to transfer the snapshots from between the
primary and standby hosts using the designated replication user, which is commonly the grid
user.

1. As the grid OS user in the primary and standby hub systems, follow the instructions
provided in Configuring ssh for Use With Oracle ACFS Replication to configure the ssh
connectivity between the primary and standby nodes.

2. As the grid OS user on all primary and standby GGHub nodes, use ssh to test
connectivity between all primary to standby nodes, and in the reverse direction using ssh
as the replication user:

On the Primary GGhub
[grid@gghub_prim1 ~]$ ssh gghub_stby_vip1.frankfurt.goldengate.com hostname
gghub_stby1

[grid@gghub_prim2 ~]$ ssh gghub_stby_vip1.frankfurt.goldengate.com hostname
gghub_stby1

On the Standby GGhub
[grid@gghub_stby1 ~]$ ssh gghub_prim_vip1.frankfurt.goldengate.com hostname
gghub_prim1

[grid@gghub_stby2 ~]$ ssh gghub_prim_vip1.frankfurt.goldengate.com hostname
gghub_prim1

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-28

3. As the grid OS user on the primary and standby GGHub nodes where ACFS is mounted,
use acfsutil to test connectivity between the primary and the standby nodes:

On the Primary GGhub

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1 -diskgroup
DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim1

[grid@gghub_prim1 ~]$ acfsutil repl info -c -u
 grid gghub_prim_vip1.frankfurt.goldengate.com
gghub_stby_vip1.frankfurt.goldengate.com
 /mnt/acfs_gg1
A valid 'ssh' connection was detected for standby node
 gghub_prim_vip1.frankfurt.goldengate.com as user grid.
A valid 'ssh' connection was detected for standby node
 gghub_stby_vip1.frankfurt.goldengate.com as user grid.

On the Standby GGhub

[grid@gghub_stby1 ~]$ srvctl status filesystem -volume ACFS_GG1 -diskgroup
DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_stby1

[grid@gghub_stby1 ~]$ acfsutil repl info -c -u grid
 gghub_prim_vip1.frankfurt.goldengate.com
gghub_stby_vip1.frankfurt.goldengate.com
 /mnt/acfs_gg
A valid 'ssh' connection was detected for standby node
 gghub_prim_vip1.frankfurt.goldengate.com as user grid.
A valid 'ssh' connection was detected for standby node
 gghub_stby_vip1.frankfurt.goldengate.com as user grid.

4. If the acfsutil command is executed from a GGHub node where ACFS is not mounted,
the error ACFS-05518 will be shown as expected. Use srvctl status filesytem to find
the GGHub where ACFS is mounted and re-execute the command:

[grid@gghub_prim1 ~]$ acfsutil repl info -c -u grid
 gghub_stby_vip1.frankfurt.goldengate.com
gghub_stby_vip1.frankfurt.goldengate.com
 /mnt/acfs_gg1
acfsutil repl info: ACFS-05518: /mnt/acfs_gg1 is not an ACFS mount point

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1 -diskgroup
DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim2

[grid@gghub_prim1 ~]$ ssh gghub_prim2
[grid@gghub_prim2 ~]$ acfsutil repl info -c -u grid
 gghub_prim_vip1.frankfurt.goldengate.com
gghub_stby_vip1.frankfurt.goldengate.com
 /mnt/acfs_gg1
A valid 'ssh' connection was detected for standby node
 gghub_prim_vip1.frankfurt.goldengate.com as user grid.

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-29

A valid 'ssh' connection was detected for standby node
 gghub_stby_vip1.frankfurt.goldengate.com as user grid.

Note:

Make sure the connectivity is verified between all primary nodes to all standby
nodes, as well as in the opposite direction. Only continue when there are no
errors with any of the connection tests.

5. As the grid OS user on the standby GGHub node where ACFS is currently mounted,
initialize ACFS replication:

[grid@gghub_stby1 ~]$ srvctl status filesystem -volume ACFS_GG1 -diskgroup
DATA

ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_stby1

[grid@gghub_stby1 ~]$ /sbin/acfsutil repl init standby -u grid /mnt/
acfs_gg1

6. As the grid OS user on the primary GGHub node where ACFS is currently mounted,
initialize ACFS replication:

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1 -diskgroup
DATA

ACFS file system /mnt/acfs_gg is mounted on nodes gghub_prim1

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl init primary -C -p
 grid@gghub_prim_vip1.frankfurt.goldengate.com -s
 grid@gghub_stby_vip1.frankfurt.goldengate.com -m /mnt/acfs_gg1 /mnt/
acfs_gg1

7. As the grid OS user on the primary and standby GGHub nodes, monitor the initialization
progress, when the status changes to “Send Completed” it means the initial primary file
system copy has finished and the primary file system is now being replicated to the
standby host:

On the Primary GGhub

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 | grep -
i Status

Status: Send Completed

On the Standby GGhub

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 | grep -
i Status

Status: Receive Completed

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-30

8. As the grid OS user on the primary and standby GGHub nodes, verify and monitor the
ACFS replicated file system:

On the Primary GGhub

[grid@gghub_prim1 ~]$ acfsutil repl util verifystandby /mnt/acfs_gg1

verifystandby returned: 0

On the Standby GGhub

[grid@gghubtest31 ~]$ acfsutil repl util verifyprimary /mnt/acfs_gg1

verifyprimary returned: 0

Note:

Both commands will return a value of 0 (zero) if there are no problems detected.
If a non-zero value is returned, refer to Troubleshooting ACFS Replication for
monitoring, diagnosing, and resolving common issues with ACFS Replication
before continuing.

9. As the grid OS user on the primary GGHub node, use the following command to monitor
the status of the ACFS replication:

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1

Site: Primary
Primary hostname:
 gghub_prim_vip1.frankfurt.goldengate.com
Primary path: /mnt/acfs_gg1
Primary status: Running
Background Resources: Active

Standby connect string:
 grid@gghub_stby_vip1.frankfurt.goldengate.com
Standby path: /mnt/acfs_gg1
Replication interval: 0 days, 0 hours, 0 minutes, 0 seconds
Sending primary as of: Fri May 05 12:37:02 2023
Status: Send Completed
Lag Time: 00:00:00
Retries made: 0
Last send started at: Fri May 05 12:37:02 2023
Last send completed at: Fri May 05 12:37:12 2023
Elapsed time for last send: 0 days, 0 hours, 0 minutes, 10 seconds
Next send starts at: now
Replicated tags:
Data transfer compression: Off
ssh strict host key checking: On
Debug log level: 3
Replication ID: 0x4d7d34a

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-31

10. As the grid OS user on the standby GGHub node where ACFS is currently mounted, use
the following command to monitor the status of the ACFS replication:

[grid@gghub_stby1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1

Site: Standby
Primary hostname:
 gghub_prim_vip1.frankfurt.goldengate.com
Primary path: /mnt/acfs_gg1

Standby connect string:
 grid@gghub_stby_vip1.frankfurt.goldengate.com
Standby path: /mnt/acfs_gg1
Replication interval: 0 days, 0 hours, 0 minutes, 0 seconds
Last sync time with primary: Fri May 05 12:37:02 2023
Receiving primary as of: Fri May 05 12:37:02 2023
Status: Receive Completed
Last receive started at: Fri May 05 12:37:02 2023
Last receive completed at: Fri May 05 12:37:07 2023
Elapsed time for last receive: 0 days, 0 hours, 0 minutes, 5 seconds
Data transfer compression: Off
ssh strict host key checking: On
Debug log level: 3
Replication ID: 0x4d7d34a

Step 3.3.8 – Create the ACFS Replication CRS Action Scripts

To determine the health of the ACFS primary and standby file systems, CRS action scripts are
used. At predefined intervals the action scripts report the health of the file systems into the
CRS trace file crsd_scriptagent_grid.trc, located in the Grid Infrastructure trace file
directory /u01/app/grid/diag/crs/<node_name>/crs/trace on each of the primary and
standby file system of the GGhub nodes.

On both, the primary and standby file system clusters, there are two scripts required. One to
monitor the local primary file system, and if the remote standby file system is available, and
one to monitor the local standby file system and check remote primary file systems’ availability.
Example scripts are provided to implement the ACFS monitoring, but you must edit them to
suit your environment.

Each replicated file system will need its own acfs_primary and acfs_standby action scripts.

Step 3.3.8.1 - Action Script acfs_primary.scr

The acfs_primary CRS resource checks whether the current ACFS mount is a primary file
system and confirms that the standby file system is accessible and receiving replicated data.
The resource is used to automatically determine if Oracle GoldenGate can start processes on
the primary Oracle GoldenGate hub. If the standby file system is not accessible by the primary,
the example script makes multiple attempts to verify the standby file system.

The acfs_primary CRS resource runs on both, the primary and standby hosts, but only returns
success when the current file system is the primary file system, and the standby file system is
accessible. The script must be placed in the same location on all primary and standby file
system nodes.

The following parameters use suggested default settings, which should be tested before
changing their values:

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-32

• MOUNT_POINT=/mnt/acfs_gg1
The replicated ACFS mount point

• PATH_NAME=$MOUNT_POINT/status/acfs_primary
Must be unique from other mount files

• ATTEMPTS=3
Number of attempts to check the remote standby file system

• INTERVAL=10
Number of seconds between each attempt

As the grid OS user on all primary and standby GGHUB nodes, edit the acfs_primary.scr
script to match the environment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ vi /u01/oracle/scripts/acfs_primary.scr

As the oracle OS user on the primary GGhub node where ACFS is currently mounted, run the
following commands to create the status directory:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ mkdir /mnt/acfs_gg1/status
[oracle@gghub_prim1 ~]$ chmod g+w /mnt/acfs_gg1/status

As the grid OS user on the primary and standby GGHub node where ACFS is currently
mounted, run the following command to register the acfs_primary action script for monitoring
the primary and standby file system:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ sh /u01/oracle/scripts/add_acfs_primary.sh

##
##
List of ACFS resources:
ora.data.acfs_gg1.acfs
##
##
ACFS resource name: <ora.data.acfs_gg1.acfs>

As the grid OS user on the primary GGHub node where ACFS is currently mounted, start and
check the status of the acfs_primary resource:

[grid@gghub_prim1 ~]$ crsctl start resource acfs_primary

CRS-2672: Attempting to start 'acfs_primary' on 'gghub_prim1'
CRS-2676: Start of 'acfs_primary' on 'gghub_prim1' succeeded

[grid@gghub_prim1 ~]$ crsctl stat resource acfs_primary

NAME=acfs_primary
TYPE=cluster_resource
TARGET=ONLINE
STATE=ONLINE on gghub_prim1

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-33

[grid@gghub_prim1 ~]$ grep acfs_primary
 /u01/app/grid/diag/crs/`hostname`/crs/trace/crsd_scriptagent_grid.trc
 |grep check

2023-05-05 12:57:40.372 :CLSDYNAM:2725328640: [acfs_primary]{1:33562:34377}
 [check] Executing action script:
 /u01/oracle/scripts/acfs_primary.scr[check]
2023-05-05 12:57:42.376 :CLSDYNAM:2725328640: [acfs_primary]{1:33562:34377}
 [check] SUCCESS: STANDBY file system /mnt/acfs_gg1 is ONLINE

As the grid OS user on the standby GGHub node where ACFS is currently mounted, start and
check the status of the acfs_primary resource. This step should fail because acfs_primary
should ONLY be online on the primary GGhub:

[grid@gghub_stby1 ~]$ crsctl start res acfs_primary -n `hostname`

CRS-2672: Attempting to start 'acfs_primary' on 'gghub_stby1'
CRS-2674: Start of 'acfs_primary' on 'gghub_stby1' succeeded
CRS-2679: Attempting to clean 'acfs_primary' on 'gghub_stby1'
CRS-2681: Clean of 'acfs_primary' on 'gghub_stby1' succeeded
CRS-4000: Command Start failed, or completed with errors.

[grid@gghub_stby1 ~]$ crsctl stat res acfs_primary

NAME=acfs_primary
TYPE=cluster_resource
TARGET=ONLINE
STATE=OFFLINE

[grid@gghub_stby1 trace]$ grep acfs_primary
 /u01/app/grid/diag/crs/`hostname`/crs/trace/crsd_scriptagent_grid.trc
 |grep check

2023-05-05 13:09:53.343 :CLSDYNAM:3598239488: [acfs_primary]{1:8532:2106}
 [check] Executing action script: /u01/oracle/scripts/acfs_primary.scr[check]
2023-05-05 13:09:53.394 :CLSDYNAM:3598239488: [acfs_primary]{1:8532:2106}
 [check] Detected local standby file system
2023-05-05 13:09:53.493 :CLSDYNAM:1626130176: [acfs_primary]{1:8532:2106}
 [clean] Clean/Abort -- Stopping ACFS file system type checking...

Note:

The status of the acfs_primary resources will only be ONLINE if the ACFS file system
is the primary file system. When starting the resource on a node which is not
currently on the primary cluster an error will be reported because the resource fails
due to being the standby file system. This error can be ignored. The resource will be
in OFFLINE status on the ACFS standby cluster.

Step 3.3.8.2 - Action Script acfs_standby.scr

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-34

The acfs_standby resource checks that the local file system is a standby file system and
verifies the remote primary file system status. If the primary file system fails verification multiple
times (controlled by the action script variables), a warning is output to the CRS trace file
crsd_scriptagent_grid.trc located in the Grid Infrastructure trace file directory /u01/app/
grid/diag/crs/<node_name>/crs/trace.

This resource runs on both the primary and standby hosts, but only returns success when the
current file system is the standby file system, and the primary file system is accessible.

The following parameters use suggested default settings, which should be tested before
changing their values.

• MOUNT_POINT=/mnt/acfs_gg
This is the replicated ACFS mount point

• ATTEMPTS=3
Number of tries to check the remote primary file system

• INTERVAL=10
Number of seconds between each attempt

As the grid OS user on all primary and standby GGHUB nodes, edit the acfs_standby.scr
script to match the environment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ vi /u01/oracle/scripts/acfs_standby.scr

As the grid OS user on the primary GGHUB node where ACFS is currently mounted, run the
following command to register the acfs_standby action script for monitoring the primary and
standby file system:

[grid@gghub_prim1 ~]$ crsctl stat res -w "TYPE co appvip"
 |grep NAME

NAME=gghub_prim_vip

[grid@gghub_prim1 ~]$ vi /u01/oracle/scripts/add_acfs_standby.sh

crsctl add resource acfs_standby \
 -type cluster_resource \
 -attr "ACTION_SCRIPT=/u01/oracle/scripts/acfs_standby.scr, \
 CHECK_INTERVAL=150, \
 CHECK_TIMEOUT=140, \
 START_DEPENDENCIES='hard(ora.data.acfs_gg1.acfs,gghub_prim_vip)
 pullup:always(ora.data.acfs_gg1.acfs,gghub_prim_vip)', \
 STOP_DEPENDENCIES='hard(ora.data.acfs_gg1.acfs,gghub_prim_vip)' \
 OFFLINE_CHECK_INTERVAL=300, \
 RESTART_ATTEMPTS=0, \
 INSTANCE_FAILOVER=0"

[grid@gghub_prim1 ~]$ sh /u01/oracle/scripts/add_acfs_standby.sh

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-35

As the grid OS user on the primary GGHUB node where ACFS is currently mounted, start and
check the status of the acfs_standby resource:

[grid@gghub_prim1 ~]$ crsctl start res acfs_standby

CRS-2672: Attempting to start 'acfs_standby' on 'gghub_prim1'
CRS-2676: Start of 'acfs_standby' on 'gghub_prim1' succeeded

[grid@gghub_prim1 ~]$ grep acfs_standby
 /u01/app/grid/diag/crs/`hostname`/crs/trace/crsd_scriptagent_grid.trc
 |egrep 'check|INFO'

2023-05-05 13:22:09.612 :CLSDYNAM:2725328640: [acfs_standby]{1:33562:34709}
 [start] acfs_standby.scr starting to check ACFS remote primary at
 /mnt/acfs_gg1
2023-05-05 13:22:09.612 :CLSDYNAM:2725328640: [acfs_standby]{1:33562:34709}
 [check] Executing action script: /u01/oracle/scripts/acfs_standby.scr[check]
2023-05-05 13:22:09.663 :CLSDYNAM:2725328640: [acfs_standby]{1:33562:34709}
 [check] Local PRIMARY file system /mnt/acfs_gg1

As the grid OS user on the standby GGHUB node where ACFS is currently mounted, run the
following command to register the acfs_standby action script for monitoring the primary and
standby file system:

[grid@gghub_stby1 ~]$ crsctl stat res -w "TYPE co appvip"
 |grep NAME

NAME=gghub_stby_vip

[grid@gghub_stby1 ~]$ vi /u01/oracle/scripts/add_acfs_standby.sh

crsctl add resource acfs_standby \
 -type cluster_resource \
 -attr "ACTION_SCRIPT=/u01/oracle/scripts/acfs_standby.scr, \
 CHECK_INTERVAL=150, \
 CHECK_TIMEOUT=140, \
 START_DEPENDENCIES='hard(ora.data.acfs_gg1.acfs,gghub_stby_vip)
 pullup:always(ora.data.acfs_gg1.acfs,gghub_stby_vip)', \
 STOP_DEPENDENCIES='hard(ora.data.acfs_gg1.acfs,gghub_stby_vip)' \
 OFFLINE_CHECK_INTERVAL=300, \
 RESTART_ATTEMPTS=0, \
 INSTANCE_FAILOVER=0"

[grid@gghub_stby1 ~]$ sh /u01/oracle/scripts/add_acfs_standby.sh

As the grid OS user on the primary GGHUB node where ACFS is currently mounted, start and
check the status of the acfs_standby resource:

[grid@gghub_stby1 ~]$ crsctl start res acfs_standby

CRS-2672: Attempting to start 'acfs_standby' on 'gghub_stby1'
CRS-2676: Start of 'acfs_standby' on 'gghub_stby1' succeeded

[grid@gghub_stby1 ~]$ grep acfs_standby

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-36

 /u01/app/grid/diag/crs/`hostname`/crs/trace/crsd_scriptagent_grid.trc
 |egrep 'check|INFO'
2023-05-05 13:25:20.699 :CLSDYNAM:1427187456: [acfs_standby]{1:8532:2281}
 [check] SUCCESS: PRIMARY file system /mnt/acfs_gg1 is ONLINE
2023-05-05 13:25:20.699 : AGFW:1425086208: [INFO] {1:8532:2281}
 acfs_standby 1 1 state changed from: STARTING to: ONLINE
2023-05-05 13:25:20.699 : AGFW:1425086208: [INFO] {1:8532:2281}
 Started implicit monitor for [acfs_standby 1 1]
 interval=150000 delay=150000
2023-05-05 13:25:20.699 : AGFW:1425086208: [INFO] {1:8532:2281}
 Agent sending last reply for: RESOURCE_START[acfs_standby 1 1]
 ID 4098:8346

Step 3.3.9 – Test ACFS GGhub Node Relocation

It is very important to test planned and unplanned ACFS GGhub node relocations and server
role transitions before configuring Oracle GoldenGate.

As the grid OS user on the primary and standby GGHUB nodes, run the following command
to relocate ACFS between the GGhub nodes:

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1
 -diskgroup DATA

ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim1

[grid@gghub_prim1 ~]$ srvctl relocate filesystem -diskgroup DATA
 -volume acfs_gg1 -force

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1
 -diskgroup DATA

ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim2

As the grid OS user on the primary and standby GGHUB nodes, verify that the file system is
mounted on another node, along with the VIP, sshd_restart, and the two ACFS resources
(acfs_primary and acfs_standby) using the following example command:

[grid@gghub_prim1 ~]$ crsctl stat res sshd_restart acfs_primary
 acfs_standby ora.data.acfs_gg1.acfs sshd_restart -t

--
--
Name Target State Server State details

--
--
Cluster Resources
--
--
acfs_primary
 1 ONLINE ONLINE gghub_prim2 STABLE
acfs_standby
 1 ONLINE ONLINE STABLE
gghubfad2

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-37

 1 ONLINE ONLINE gghub_prim2 STABLE
ora.data.acfs_gg1.acfs
 1 ONLINE ONLINE gghub_prim2 mounted on /mnt/
acfs
 _gg1,STABLE
sshd_restart
 1 ONLINE ONLINE gghub_prim2 STABLE
--
--

[grid@gghub_stby1 ~]$ crsctl stat res sshd_restart acfs_primary acfs_standby
 ora.data.acfs_gg1.acfs sshd_restart -t

--
--
Name Target State Server State details
--
--
Cluster Resources
--
--
acfs_primary
 1 ONLINE OFFLINE STABLE
acfs_standby
 1 ONLINE ONLINE gghub_stby2 STABLE
ora.data.acfs_gg1.acfs
 1 ONLINE ONLINE gghub_stby2 mounted on /mnt/
acfs
 _gg1,STABLE
sshd_restart
 1 ONLINE ONLINE gghub_stby2 STABLE
--
--

Step 3.3.10 – Test ACFS Switchover Between the Primary and Standby GGhub

As the grid OS user on the standby GGHUB node, run the following command to issue an
ACFS switchover (role reversal) between the primary and standby GGhub:

[grid@gghub_stby2 ~]$ crsctl stat res ora.data.acfs_gg1.acfs

NAME=ora.data.acfs_gg.acfs
TYPE=ora.acfs_cluster.type
TARGET=ONLINE
STATE=ONLINE on gghub_stby2

[grid@gghub_stby2 ~]$ acfsutil repl failover /mnt/acfs_gg1

[grid@gghub_stby2 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1

Site: Primary
Primary hostname: gghub_stby_vip.frankfurt.goldengate.com
Primary path: /mnt/acfs_gg1

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-38

Primary status: Running
Background Resources: Active

Standby connect string: gghub_prim_vip.frankfurt.goldengate.com
Standby path: /mnt/acfs_gg1
Replication interval: 0 days, 0 hours, 0 minutes, 0 seconds
Sending primary as of: Fri May 05 13:51:37 2023
Status: Send Completed
Lag Time: 00:00:00
Retries made: 0
Last send started at: Fri May 05 13:51:37 2023
Last send completed at: Fri May 05 13:51:48 2023
Elapsed time for last send: 0 days, 0 hours, 0 minutes, 11 seconds
Next send starts at: now
Replicated tags:
Data transfer compression: Off
ssh strict host key checking: On
Debug log level: 3
Replication ID: 0x4d7d34a

As the grid OS user on the new standby GGHUB node (old primary), run the following
command to issue an ACFS switchover (role reversal) between the primary and standby
GGhub. This step is optional but recommended to return the sites to the original role:

[grid@gghub_prim2 ~]$ crsctl stat res ora.data.acfs_gg1.acfs

NAME=ora.data.acfs_gg1.acfs
TYPE=ora.acfs_cluster.type
TARGET=ONLINE
STATE=ONLINE on gghub_prim2

[grid@gghub_prim2 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 |grep Site
Site: Standby

[grid@gghub_prim2 ~]$ acfsutil repl failover /mnt/acfs_gg1

[grid@gghub_prim2 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 |grep Site

Site: Primary

Step 3.4 - Create the Oracle GoldenGate Deployment

Once the Oracle GoldenGate software has been installed in GGHub, the next step is to create
a response file to create the GoldenGate deployment using the Oracle GoldenGate
Configuration Assistant.

Due the unified build feature introduced in Oracle GoldenGate 21c, a single deployment can
now manage Extract and Replicat processes that attach to different Oracle Database versions.
Each deployment is created with an Administration Server and (optionally) Performance
Metrics Server. If the GoldenGate trail files don’t need to be transferred to another hub or
GoldenGate environment, there is no need to create a Distribution or Receiver Server.

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-39

There are two limitations that currently exist with Oracle GoldenGate and XAG:

• A Service Manager that is registered with XAG can only manage a single deployment. If
multiple deployments are required, each deployment must use their own Service Manager.
Oracle GoldenGate release 21c simplifies this requirement because it uses a single
deployment to support Extract and Replicat processes connecting to different versions of
the Oracle Database.

• Each Service Manager registered with XAG must belong to separate OGG_HOME software
installation directories. Instead of installing Oracle GoldenGate multiple times, the
recommended approach is to install Oracle GoldenGate one time, and then create a
symbolic link for each Service Manager OGG_HOME. The symbolic link and OGG_HOME
environment variable must be configured before running the Oracle GoldenGate
Configuration Assistant on all Oracle RAC nodes.

1. Create a Response File

For a silent configuration, please copy the following example file and paste it into any
location the oracle user can access. Edit the following values appropriately:

• CONFIGURATION_OPTION
• DEPLOYMENT_NAME
• ADMINISTRATOR_USER
• SERVICEMANAGER_DEPLOYMENT_HOME
• OGG_SOFTWARE_HOME
• OGG_DEPLOYMENT_HOME
• ENV_TNS_ADMIN
• OGG_SCHEMA
Example Response File (oggca.rsp):

As the oracle OS user on the primary GGHUB node where ACFS is currently mounted,
create and edit the response file oggca.rsp to create the Oracle GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ vi /u01/oracle/stage/oggca.rsp

oracle.install.responseFileVersion=/oracle/install/
rspfmt_oggca_response_schema_v21_1_0
CONFIGURATION_OPTION=ADD
DEPLOYMENT_NAME=gghub1
ADMINISTRATOR_USER=oggadmin
ADMINISTRATOR_PASSWORD=<password_for_oggadmin>
SERVICEMANAGER_DEPLOYMENT_HOME=/mnt/acfs_gg1/deployments/ggsm01
HOST_SERVICEMANAGER=localhost
PORT_SERVICEMANAGER=9100
SECURITY_ENABLED=false
STRONG_PWD_POLICY_ENABLED=true
CREATE_NEW_SERVICEMANAGER=true
REGISTER_SERVICEMANAGER_AS_A_SERVICE=false
INTEGRATE_SERVICEMANAGER_WITH_XAG=true
EXISTING_SERVICEMANAGER_IS_XAG_ENABLED=false
OGG_SOFTWARE_HOME=/u01/app/oracle/goldengate/gg21c
OGG_DEPLOYMENT_HOME=/mnt/acfs_gg1/deployments/gg01
ENV_LD_LIBRARY_PATH=${OGG_HOME}/lib/instantclient:${OGG_HOME}/lib

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-40

ENV_TNS_ADMIN=/u01/app/oracle/goldengate/network/admin
FIPS_ENABLED=false
SHARDING_ENABLED=false
ADMINISTRATION_SERVER_ENABLED=true
PORT_ADMINSRVR=9101
DISTRIBUTION_SERVER_ENABLED=true
PORT_DISTSRVR=9102
NON_SECURE_DISTSRVR_CONNECTS_TO_SECURE_RCVRSRVR=false
RECEIVER_SERVER_ENABLED=true
PORT_RCVRSRVR=9103
METRICS_SERVER_ENABLED=true
METRICS_SERVER_IS_CRITICAL=false
PORT_PMSRVR=9104
UDP_PORT_PMSRVR=9105
PMSRVR_DATASTORE_TYPE=BDB
PMSRVR_DATASTORE_HOME=/u01/app/oracle/goldengate/datastores/gghub1
OGG_SCHEMA=ggadmin

2. Create the Oracle GoldenGate Deployment

As the oracle OS user on the primary GGHUB node where ACFS is currently mounted,
run oggca.sh to create the GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ export OGG_HOME=/u01/app/oracle/goldengate/gg21c
[oracle@gghub_prim1 ~]$ $OGG_HOME/bin/oggca.sh -silent
 -responseFile /u01/oracle/stage/oggca.rsp

Successfully Setup Software.

3. Create the Oracle GoldenGate Datastores and TNS_ADMIN Directories

As the oracle OS user on all GGHUB nodes of the primary and standby systems, run the
following commands to create the Oracle GoldenGate Datastores and TNS_ADMIN
directories:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ mkdir -p /u01/app/oracle/goldengate/network/admin
[oracle@gghub_prim1 ~]$ mkdir -p /u01/app/oracle/goldengate/datastores/
gghub1

Step 3.5 - Configure Oracle Grid Infrastructure Agent (XAG)

The following step-by-step procedure shows how to configure Oracle Clusterware to manage
GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG). Using XAG
automates the ACFS file system mounting, as well as the stopping and starting of the
GoldenGate deployment when relocating between Oracle GGhub nodes.

Step 3.5.1 - Install the Oracle Grid Infrastructure Standalone Agent

It is recommended to install the XAG software as a standalone agent outside the Grid
Infrastructure ORACLE_HOME. This way, you can use the latest XAG release available, and the
software can be updated without impact to the Grid Infrastructure.

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-41

Install the XAG standalone agent outside of the Oracle Grid Infrastructure home directory. XAG
must be installed in the same directory on all GGhub nodes in the system where GoldenGate
is installed.

As the grid OS user on the first GGHub node of the primary and standby systems, unzip the
software and run xagsetup.sh:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ unzip /u01/oracle/stage/p31215432_190000_Generic.zip
 -d /u01/oracle/stage
[grid@gghub_prim1 ~]$ /u01/oracle/stage/xag/xagsetup.sh --install
 --directory /u01/app/grid/xag --all_nodes

Installing Oracle Grid Infrastructure Agents on: gghub_prim1
Installing Oracle Grid Infrastructure Agents on: gghub_prim2
Updating XAG resources.
Successfully updated XAG resources.

As the grid OS user on all GGHUB nodes of the primary and standby systems, add the
location of the newly installed XAG software to the PATH variable so that the location of agctl
is known when the grid user logs on to the machine.

[grid@gghub_prim1 ~]$ vi ~/.bashrc

PATH=/u01/app/grid/xag/bin:$PATH:/u01/app/19.0.0.0/grid/bin; export PATH

Note:

It is essential to ensure that the XAG bin directory is specified BEFORE the Grid
Infrastructure bin directory to ensure the correct agctl binary is found. This should be
set in the grid user environment to take effect when logging on, such as in
the .bashrc file when the Bash shell is in use.

Step 3.5.2 - Register Oracle Grid Infrastructure Agent on the Primary and Standby
GGhubs
The following procedure shows how to configure Oracle Clusterware to manage Oracle
GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG). Using XAG
automates the mounting of the shared file system as well as the stopping and starting of the
Oracle GoldenGate deployment when relocating between Oracle GGhub nodes.

Oracle GoldenGate must be registered with XAG so that the deployment is started and
stopped automatically when the database is started, and the file system is mounted.

To register Oracle GoldenGate Microservices Architecture with XAG, use the following
command format.

agctl add goldengate <instance_name>
--gg_home <GoldenGate_Home>
--service_manager
--config_home <GoldenGate_SvcMgr_Config>
--var_home <GoldenGate_SvcMgr_Var Dir>
--port <port number>
--oracle_home <$OGG_HOME/lib/instantclient>

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-42

--adminuser <OGG admin user>
--user <GG instance user>
--group <GG instance group>
--file systems <CRS_resource_name>
--db_services <service_name>
--use_local_services
--attribute START_TIMEOUT=60

Where:

• --gg_home specifies the location of the GoldenGate software.

• --service_manager indicates this is an GoldenGate Microservices instance.

• --config_home specifies the GoldenGate deployment configuration home directory.

• --var_home specifies the GoldenGate deployment variable home directory.

• --oracle_home specifies the Oracle Instant Client home

• --port specifies the deployment Service Manager port number.

• --adminuser specifies the GoldenGate Microservices administrator account name.

• --user specifies the name of the operating system user that owns the GoldenGate
deployment.

• --group specifies the name of the operating system group that owns the GoldenGate
deployment.

• --filesystems specifies the CRS file system resource that must be ONLINE before the
deployment is started. This will be the acfs_primary resource created in a previous step.

• --filesystem_verify specifies if XAG should check the existence of the directories
specified by the config_home and var_home parameters. This should be set to yes for the
active ACFS primary file system. When adding the GoldenGate instance on the standby
cluster, specify no.

• --filesystems_always specifies that XAG will start the GoldenGate Service Manager on
the same GGhub node as the file system CRS resources, specified by the --filesystems
parameter.

• --attributes specifies that the target status of the resource is online. This is required to
automatically start the GoldenGate deployment when the acfs_primary resource starts.

The GoldenGate deployment must be registered on the primary and standby GGHUBs where
ACFS is mounted in either read-write or read-only mode.

As the grid OS user on the first GGHUB node of the primary and standby systems, run the
following command to determine which node of the cluster the file system is mounted on:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ crsctl stat res acfs_standby |grep STATE
STATE=ONLINE on gghub_prim1

Step 3.5.2.1 - Register the Primary Oracle GoldenGate Microservices Architecture with
XAG

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-43

As the root OS user on the first node of the primary GGHUB, register Oracle GoldenGate
Microservices Architecture with XAG using the following command format:

[opc@gghub_prim1 ~]$ sudo su - root
[root@gghub_prim1 ~]# vi /u01/oracle/scripts/add_xag_goldengate.sh

Run as ROOT:
/u01/app/grid/xag/bin/agctl add goldengate gghub1 \
--gg_home /u01/app/oracle/goldengate/gg21c \
--service_manager \
--config_home /mnt/acfs_gg1/deployments/ggsm01/etc/conf \
--var_home /mnt/acfs_gg1/deployments/ggsm01/var \
--oracle_home /u01/app/oracle/goldengate/gg21c/lib/instantclient \
--port 9100 \
--adminuser oggadmin \
--user oracle \
--group oinstall \
--filesystems acfs_primary \
--filesystems_always yes \
--filesystem_verify yes \
--attribute TARGET_DEFAULT=online

[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_xag_goldengate.sh
Enter password for 'oggadmin' : ##########

As the grid OS user on the first node of the primary GGHUB, verify that Oracle GoldenGate
Microservices Architecture is registered with XAG:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is not running

Step 3.5.2.2 - Register the Standby Oracle GoldenGate Microservices Architecture with
XAG

As the root OS user on the first node of the standby GGHUB, register Oracle GoldenGate
Microservices Architecture with XAG using the following command format:

[opc@gghub_stby1 ~]$ sudo su - root
[root@gghub_stby1 ~]# vi /u01/oracle/scripts/add_xag_goldengate.sh

Run as ROOT:
/u01/app/grid/xag/bin/agctl add goldengate gghub1 \
--gg_home /u01/app/oracle/goldengate/gg21c \
--service_manager \
--config_home /mnt/acfs_gg1/deployments/ggsm01/etc/conf \
--var_home /mnt/acfs_gg1/deployments/ggsm01/var \
--oracle_home /u01/app/oracle/goldengate/gg21c/lib/instantclient \
--port 9100 --adminuser oggadmin --user oracle --group oinstall \
--filesystems acfs_primary \
--filesystems_always yes \
--filesystem_verify no \
--attribute TARGET_DEFAULT=online

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-44

[root@gghub_stby1 ~]# sh /u01/oracle/scripts/add_xag_goldengate.sh
Enter password for 'oggadmin' : ##########

Note:

When adding the GoldenGate instance on the standby cluster, specify --
filesystem_verify no.

As the grid OS user on the first node of the standby GGHUB, verify that Oracle GoldenGate
Microservices Architecture is registered with XAG:

[opc@gghub_stby1 ~]$ sudo su - grid
[grid@gghub_stby1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is not running

Step 3.5.3 - Start the Oracle GoldenGate Deployment

Below is some example agctl commands used to manage the GoldenGate deployment with
XAG.

As the grid OS user on the first node of the primary GGHUB, run the following command to
start and check Oracle GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - grid

[grid@gghub_prim1 ~]$ agctl start goldengate gghub1

[grid@gghub_prim1 ~]$ agctl status goldengate
Goldengate instance 'gghub1' is running on gghub_prim1

As the grid OS user on the first GGHUB node, run the following command to validate the
configuration parameters for the Oracle GoldenGate resource:

[grid@gghub_prim1 ~]$ agctl config goldengate gghub1

Instance name: gghub1
Application GoldenGate location is: /u01/app/oracle/goldengate/gg21c
Goldengate MicroServices Architecture environment: yes
Goldengate Service Manager configuration directory:
 /mnt/acfs_gg1/deployments/ggsm01/etc/conf
Goldengate Service Manager var directory:
 /mnt/acfs_gg1/deployments/ggsm01/var
Service Manager Port: 9100
Goldengate Administration User: oggadmin
Autostart on DataGuard role transition to PRIMARY: no
ORACLE_HOME location is:
 /u01/app/oracle/goldengate/gg21c/lib/instantclient
File System resources needed: acfs_primary
CRS additional attributes set: TARGET_DEFAULT=online

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-45

For more information see Oracle Grid Infrastructure Bundled Agent.

Step 3.6 - Configure NGINX Reverse Proxy

The GoldenGate reverse proxy feature allows a single point of contact for all the GoldenGate
microservices associated with a GoldenGate deployment. Without a reverse proxy, the
GoldenGate deployment microservices are contacted using a URL consisting of a hostname or
IP address and separate port numbers, one for each of the services. For example, to contact
the Service Manager, you could use http://gghub.example.com:9100, then the Administration
Server is http://gghub.example.com:9101, the second Service Manager may be accessed
using http://gghub.example.com:9110, and so on.

When running Oracle GoldenGate in a High Availability (HA) configuration on Oracle Exadata
Database Service with the Grid Infrastructure agent (XAG), there is a limitation preventing
more than one deployment from being managed by a GoldenGate Service Manager. Because
of this limitation, creating a separate virtual IP address (VIP) for each Service Manager/
deployment pair is recommended. This way, the microservices can be accessed directly using
the VIP.

With a reverse proxy, port numbers are not required to connect to the microservices because
they are replaced with the deployment name and the host name’s VIP. For example, to connect
to the console via a web browser, use the URLs:

GoldenGate Services URL

Service Manager https://localhost:localPort

Administration Server https://localhost:localPort/instance_name/
adminsrvr

Distribution Server https://localhost:localPort/instance_name/distsrvr

Performance Metric Server https://localhost:localPort/instance_name/pmsrvr

Receiver Server https://localhost:localPort/instance_name/recvsrvr

Note:

To connect to Oracle GoldenGate in OCI, you must create a bastion (see Step 3.2)
and an SSH port forwarding session (see Step 4.1). After this, you can connect to the
Oracle GoldenGate Services using https://locahost:localPort.

A reverse proxy is mandatory to ensure easy access to microservices and enhance security
and manageability.

When running multiple Service Managers, the following instructions will provide configuration
using a separate VIP for each Service Manager. NGINX uses the VIP to determine which
Service Manager an HTTPS connection request is routed to.

An SSL certificate is required for clients to authenticate the server they connect to through
NGINX. Contact your systems administrator to follow your corporate standards to create or
obtain the server certificate before proceeding. A separate certificate is required for each VIP
and Service Manager pair.

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-46

http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html

Note:

The common name in the CA-signed certificate must match the target hostname/VIP
used by NGINX.

Follow the instructions to install and configure NGINX Reverse Proxy with an SSL connection
and ensure all external communication is secure.

Step 3.6.1 - Secure Deployments Requirements (Certificates)

A secure deployment involves making RESTful API calls and conveying trail data between the
Distribution Server and Receiver Server, over SSL/TLS. You can use your own existing
business certificate from your Certificate Authority (CA) or you might create your own
certificates. Contact your systems administrator to follow your corporate standards to create or
obtain the server certificate before proceeding. A separate certificate is required for each VIP
and Service Manager pair.

Step 3.6.2 - Install NGINX Reverse Proxy Server

As the root OS user on all GGHUB nodes, set up the yum repository by creating the file /etc/
yum.repos.d/nginx.repo with the following contents:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# cat > /etc/yum.repos.d/nginx.repo <<EOF
[nginx-stable]
name=nginx stable repo
baseurl=http://nginx.org/packages/rhel/7/\$basearch/
gpgcheck=1
enabled=1
gpgkey=https://nginx.org/keys/nginx_signing.key
module_hotfixes=true
EOF

As the root OS user on all GGHUB nodes, run the following commands to install, enable, and
start NGINX:

[root@gghub_prim1 ~]# yum install -y python-requests python-urllib3 nginx
[root@gghub_prim1 ~]# systemctl enable nginx

As the root OS user on all GGHUB node, disable the NGINX repository after the software has
been installed:

[root@gghub_prim1 ~]# yum-config-manager --disable nginx-stable

Step 3.6.3 - Create the NGINX Configuration File

You can configure Oracle GoldenGate Microservices Architecture to use a reverse proxy.
Oracle GoldenGate MA includes a script called ReverseProxySettings that generates a
configuration file for only the NGINX reverse proxy server.

The script requires the following parameters:

• The --user parameter should mirror the GoldenGate administrator account specified with
the initial deployment creation.

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-47

• The GoldenGate administrator password will be prompted.

• The reverse proxy port number specified by the --port parameter should be the default
HTTPS port number (443) unless you are running multiple GoldenGate Service Managers
using the same --host. In this case, specify an HTTPS port number that does not conflict
with previous Service Manager reverse proxy configurations. For example, if running two
Service Managers using the same hostname/VIP, the first reverse proxy configuration is
created with '--port 443 --host hostvip01', and the second is created with '--port 444 --host
hostvip01'. If using separate hostnames/VIPs, the two Service Manager reverse proxy
configurations would be created with '--port 443 --host hostvip01' and '--port 443 --host
hostvip02'.

• Lastly, the HTTP port number (9100) should match the Service Manager port number
specified during the deployment creation.

Repeat this step for each additional GoldenGate Service Manager.

As the oracle OS user on the first GGHUB node, use the following command to create the
Oracle GoldenGate NGINX configuration file:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ export OGG_HOME=/u01/app/oracle/goldengate/gg21c
[oracle@gghub_prim1 ~]$ export PATH=$PATH:$OGG_HOME/bin
[oracle@gghub_prim1 ~]$ cd /u01/oracle/scripts
[oracle@gghub_prim1 ~]$ $OGG_HOME/lib/utl/reverseproxy/ReverseProxySettings
 --user oggadmin --port 443 --output ogg_<gghub1>.conf http://localhost:9100
 --host <VIP hostname>
Password: <oggadmin_password>

Step 3.6.4 - Modify NGINX Configuration Files

When multiple GoldenGate Service Managers are configured to use their IP/VIPs with the
same HTTPS 443 port, some small changes are required to the NGINX reverse proxy
configuration files generated in the previous step. With all Service Managers sharing the same
port number, they are independently accessed using their VIP/IP specified by the --host
parameter.

As the oracle OS user on the first GGHUB node, determine the deployment name managed
by this Service Manager listed in the reverse proxy configuration file and change all
occurrences of “_ServiceManager” by prepending the deployment name before the
underscore:

[oracle@gghub_prim1 ~]$ cd /u01/oracle/scripts

[oracle@gghub_prim1 ~]$ grep "Upstream Servers" ogg_<gghub1>.conf

Upstream Servers for Deployment 'gghub1'

[oracle@gghub_prim1 ~]$ sed -i 's/_ServiceManager/<gghub1>_ServiceManager/'
 ogg_<gghub1>.conf

Step 3.6.5 - Install the Server Certificates for NGINX

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-48

As the root OS user on the first GGHUB node, copy the server certificates and key files in
the /etc/nginx/ssl directory, owned by root with file permissions 400 (-r--------):

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# mkdir /etc/nginx/ssl
[root@gghub_prim1 ~]# cp <ssl_keys> /etc/nginx/ssl/.
[root@gghub_prim1 ~]# chmod 400 /etc/nginx/ssl
[root@gghub_prim1 ~]# ll /etc/nginx/ssl

-r-------- 1 root root 2750 May 17 06:12 gghub1.chained.crt
-r-------- 1 root root 1675 May 17 06:12 gghub1.key

As the oracle OS user on the first GGHUB node, set the correct file names for the certificate
and key files for each reverse proxy configuration file:

[root@gghub_prim1 ~]$ vi /u01/oracle/scripts/ogg_<gghub1>.conf

Before
 ssl_certificate /etc/nginx/ogg.pem;
 ssl_certificate_key /etc/nginx/ogg.pem;

After
 ssl_certificate /etc/nginx/ssl/gghub1.chained.crt;
 ssl_certificate_key /etc/nginx/ssl/gghub1.key;

When using CA-signed certificates, the certificate named with the ssl_certificate NGINX
parameter must include the 1) CA signed, 2) intermediate, and 3) root certificates in a single
file. The order is significant; otherwise, NGINX fails to start and displays the error message:

(SSL: error:0B080074:x509 certificate routines:
 X509_check_private_key:key values mismatch)

The root and intermediate certificates can be downloaded from the CA-signed certificate
provider.

As the root OS user on the first GGHUB node, generate the SSL certificate single file by using
the following example command:

[root@gghub_prim1 ~]# cd /etc/nginx/ssl
[root@gghub_prim1 ~]# cat CA_signed_cert.crt
 intermediate.crt root.crt > gghub1.chained.crt

The ssl_certificate_key file is generated when creating the Certificate Signing Request
(CSR), which is required when requesting a CA-signed certificate.

Step 3.6.6 - Install the NGINX Configuration File

As the root OS user on the first GGhub node, copy the deployment configuration file to /etc/
nginx/conf.d directory and remove the default configuration file:

[root@gghub_prim1 ~]# cp /u01/oracle/scripts/ogg_<gghub1>.conf
 /etc/nginx/conf.d
[root@gghub_prim1 ~]# rm /etc/nginx/conf.d/default.conf

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-49

As the root OS user on the first GGHUB node, validate the NGINX configuration file. If there
are errors in the file, they will be reported with the following command:

[root@gghub_prim1 ~]# nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginxconf test is successful

As the root OS user on the first GGHUB node, restart NGINX to load the new configuration:

[root@gghub_prim1 ~]# systemctl restart nginx

Step 3.6.7 - Test GoldenGate Microservices Connectivity

As the root OS user on the first GGHUB node, create a curl configuration file (access.cfg)
that contains the deployment user name and password:

[root@gghub_prim1 ~]# vi access.cfg
user = "oggadmin:<password>"

[root@gghub_prim1 ~]# curl -svf
 -K access.cfg https://<VIP hostname>:<port#>/services/v2/config/health
 -XGET && echo -e "\n*** Success"

Sample output:
* About to connect() to gghub_prim_vip.frankfurt.goldengate.com port 443 (#0)
* Trying 10.40.0.75...
* Connected to gghub_prim_vip.frankfurt.goldengate.com (10.40.0.75) port 443
(#0)
* Initializing NSS with certpath: sql:/etc/pki/nssdb
* CAfile: /etc/pki/tls/certs/ca-bundle.crt
 CApath: none
* skipping SSL peer certificate verification
* NSS: client certificate not found (nickname not specified)
* SSL connection using TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
* Server certificate:
* subject: CN=gghub_prim_vip.frankfurt.goldengate.com,OU=Oracle MAA,
O=Oracle,L=Frankfurt,ST=Frankfurt,C=GE
* start date: Jul 27 15:59:00 2023 GMT
* expire date: Jul 26 15:59:00 2024 GMT
* common name: gghub_prim_vip.frankfurt.goldengate.com
* issuer: OID.2.5.29.19=CA:true,
CN=gghub_prim_vip.frankfurt.goldengate.com,OU=Oracle
MAA,O=Oracle,L=Frankfurt,C=EU
* Server auth using Basic with user 'oggadmin'
> GET /services/v2/config/health HTTP/1.1
> Authorization: Basic b2dnYWRtaW46V0VsY29tZTEyM19fXw==
> User-Agent: curl/7.29.0
> Host: gghub_prim_vip.frankfurt.goldengate.com
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: nginx/1.24.0
< Date: Thu, 27 Jul 2023 16:25:26 GMT
< Content-Type: application/json

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-50

< Content-Length: 941
< Connection: keep-alive
< Set-Cookie:

ogg.sca.mS+pRfBERzqE+RTFZPPoVw=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOi
Jv
Z2cuc2NhIiwiZXhwIjozNjAwLCJ0eXAiOiJ4LVNDQS1BdXRob3JpemF0aW9uIiwic3ViIjoib2dnYW
Rta
W4iLCJhdWQiOiJvZ2cuc2NhIiwiaWF0IjoxNjkwNDc1MTI2LCJob3N0IjoiZ2dodWJsYV92aXAubG9
uZG
9uLmdvbGRlbmdhdGUuY29tIiwicm9sZSI6IlNlY3VyaXR5IiwiYXV0aFR5cGUiOiJCYXNpYyIsImNy
ZWQ
iOiJFd3VqV0hOdzlGWDNHai9FN1RYU3A1N1dVRjBheUd4OFpCUTdiZDlKOU9RPSIsInNlcnZlcklEI
joi
ZmFkNWVkN2MtZThlYi00YmE2LTg4Y2EtNmQxYjk3ZjdiMGQ3IiwiZGVwbG95bWVudElEIjoiOTkyZm
E5N
DUtZjA0NC00NzNhLTg0ZjktMTRjNTY0ZjNlODU3In0=.knACABXPmZE4BEyux7lZQ5GnrSCCh4x1zB
VBL
aX3Flo=; Domain=gghub_prim_vip.frankfurt.goldengate.com; Path=/; HttpOnly;
Secure;
 SameSite=strict
< Set-Cookie:

ogg.csrf.mS+pRfBERzqE+RTFZPPoVw=1ae439e625798ee02f8f7498438f27c7bad036b270d6bf
c9
5aee60fcee111d35ea7e8dc5fb5d61a38d49cac51ca53ed9307f9cbe08fab812181cf163a743bf
c7;
 Domain=gghub_prim_vip.frankfurt.goldengate.com; Path=/; Secure;
SameSite=strict
< Cache-Control: max-age=0, no-cache, no-store, must-revalidate
< Expires: 0
< Pragma: no-cache
< Content-Security-Policy: default-src 'self' 'unsafe-eval'
 'unsafe-inline';img-src 'self' data:;frame-ancestors
 https://gghub_prim_vip.frankfurt.goldengate.com;child-src
 https://gghub_prim_vip.frankfurt.goldengate.com blob:;
< X-Content-Type-Options: nosniff
< X-XSS-Protection: 1; mode=block
< X-OGG-Proxy-Version: v1
< Strict-Transport-Security: max-age=31536000 ; includeSubDomains
<
* Connection #0 to host gghub_prim_vip.frankfurt.goldengate.com left intact
{"$schema":"api:standardResponse","links":[{"rel":"canonical",
"href":"https://gghub_prim_vip.frankfurt.goldengate.com/services/v2/config/
health",
"mediaType":"application/json"},{"rel":"self",
"href":"https://gghub_prim_vip.frankfurt.goldengate.com/services/v2/config/
health",
"mediaType":"application/json"},{"rel":"describedby",
"href":"https://gghub_prim_vip.frankfurt.goldengate.com/services/
ServiceManager/v2/metadata-catalog/health",
"mediaType":"application/schema+json"}],"messages":[],
"response":{"$schema":"ogg:health","deploymentName":"ServiceManager",
"serviceName":"ServiceManager","started":"2023-07-27T15:39:41.867Z","healthy":
true,
"criticalResources":

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-51

[{"deploymentName":"gghubl1","name":"adminsrvr","type":"service",
"status":"running","healthy":true},
{"deploymentName":"gghub1","name":"distsrvr",
"type":"service","status":"running","healthy":true},
{"deploymentName":"gghub1",
"name":"recvsrvr","type":"service","status":"running","healthy":true}]}}
*** Success

[root@gghub_prim1 ~]# rm access.cfg

Note:

If the environment is using self-signed SSL certificates, add the flag --insecure to the
curl command to avoid the error "NSS error -8172
(SEC_ERROR_UNTRUSTED_ISSUER)".

Step 3.6.8 - Remove NGINX default.conf Configuration File

As the root OS user on all GGhub GGHUB, remove the default configuration file
(default.conf) created in /etc/nginx/conf.d:

[opc@gghub_prim1 ~]$ sudo rm -f /etc/nginx/conf.d/default.conf
[opc@gghub_prim1 ~]$ sudo nginx -s reload

Step 3.6.9 - Distribute the GoldenGate NGINX Configuration Files

Once all the reverse proxy configuration files have been created for the GoldenGate Service
Managers, they must be copied to the second GoldenGate Hub node.

As the opc OS user on the first GGHUB node, distribute the NGINX configuration files to all
database nodes:

[opc@gghub_prim1 ~]$ sudo tar fczP /tmp/nginx_conf.tar /etc/nginx/conf.d/
 /etc/nginx/ssl/
[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ scp /tmp/nginx_conf.tar gghub_prim2:/tmp/.

As the opc OS user on the second GGHUB node, extract the NGINX configuration files and
remove the default configuration file:

[opc@gghub_prim2 ~]$ sudo tar fxzP /tmp/nginx_conf.tar
[opc@gghub_prim2 ~]$ sudo rm /etc/nginx/conf.d/default.conf

As the opc OS user on the second GGHUB node, restart NGINX:

[opc@gghub_prim2 ~]$ sudo nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful

[root@gghub_prim2 ~]$ sudo systemctl restart nginx

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-52

Note:

Repeat all the steps in section 3.6 for the primary and standby GGHUB systems.

Step 3.7 - Securing Oracle GoldenGate Microservices to Restrict Non-
Secure Direct Access

After configuring the NGINX reverse proxy with an unsecured Oracle GoldenGate
Microservices deployment, the microservices can continue accessing HTTP (non-secure)
using the configured microservices port numbers. For example, the following non-secure URL
could be used to access the Administration Server: http://vip-name:9101.

Oracle GoldenGate Microservices' default behavior for each server (Service Manager,
adminserver, pmsrvr. distsrvr, and recsrvr) is to listen using a configured port number on all
network interfaces. This is undesirable for more secure installations, where direct access using
HTTP to the Microservices needs to be disabled and only permitted using NGINX HTTPS.

Use the following commands to alter the Service Manager and deployment services listener
address to use only the localhost address. Access to the Oracle GoldenGate Microservices will
only be permitted from the localhost, and any access outside of the localhost will only succeed
using the NGINX HTTPS port.

Step 3.7.1 - Stop the Service Manager

As the grid OS user on the first GGHUB node, stop the GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl stop goldengate gghub1
[grid@gghub_prim1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is not running

Step 3.7.2 - Modify the Service Manager Listener Address

As the oracle OS user on the first GGHUB node, modify the listener address with the following
commands. Use the correct port number for the Service Manager being altered:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ export OGG_HOME=/u01/app/oracle/goldengate/gg21c
[oracle@gghub_prim1 ~]$ export OGG_VAR_HOME=/mnt/acfs_gg1/deployments/
ggsm01/var
[oracle@gghub_prim1 ~]$ export OGG_ETC_HOME=/mnt/acfs_gg1/deployments/
ggsm01/etc
[oracle@gghub_prim1 ~]$ $OGG_HOME/bin/ServiceManager
 --prop=/config/network/serviceListeningPort
 --value='{"port":9100,"address":"127.0.0.1"}' --type=array --persist --exit

Step 3.7.3 - Restart the Service Manager and Deployment

As the grid OS user on the first GGHUB node, restart the GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl start goldengate gghub1

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-53

[grid@gghub_prim1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is running on exadb-node1

Step 3.7.4 - Modify the GoldenGate Microservices listener address

As the oracle OS user on the first GGHUB node, modify all the GoldenGate microservices
(adminsrvr, pmsrvr, distsrvr, recvsrvr) listening address to localhost for the deployments
managed by the Service Manager using the following command:

[opc@gghub_prim1 ~]$ sudo chmod g+x /u01/oracle/scripts/secureServices.py
[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ /u01/oracle/scripts/secureServices.py http://
localhost:9100
 --user oggadmin

Password for 'oggadmin': <oggadmin_password>

*** Securing deployment - gghub1
Current value of "/network/serviceListeningPort" for "gghub1/adminsrvr" is
9101
Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/adminsrvr" is
{
 "address": "127.0.0.1",
 "port": 9101
}.
Current value of "/network/serviceListeningPort" for "gghub1/distsrvr" is 9102
Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/distsrvr" is
{
 "address": "127.0.0.1",
 "port": 9102
}.
Current value of "/network/serviceListeningPort" for "gghub1/pmsrvr" is 9104
Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/pmsrvr" is
{
 "address": "127.0.0.1",
 "port": 9104
}.
Current value of "/network/serviceListeningPort" for "gghub1/recvsrvr" is 9103
Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/recvsrvr" is
{
 "address": "127.0.0.1",
 "port": 9103
}.

Note:

To modify a single deployment (adminsrvr, pmsrvr, distsrvr, recvsrvr), add the flag --
deployment instance_name

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-54

Step 3.8 - Create a Clusterware Resource to Manage NGINX

Oracle Clusterware needs to have control over starting the NGINX reverse proxy so that it can
be started automatically before the GoldenGate deployments are started.

As the grid OS user on the first GGHUB node, use the following command to get the
application VIP resource name required to create the NGINX resource with a dependency on
the underlying network CRS resource:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ crsctl stat res -w "TYPE = app.appviptypex2.type" |grep
NAME

NAME=gghub_prim_vip

As the root OS user on the first GGHUB node, use the following command to create a
Clusterware resource to manage NGINX. Replace the HOSTING_MEMBERS and CARDINALITY
values to match your environment:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# vi /u01/oracle/scripts/add_nginx.sh

Run as ROOT
$(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/bin/crsctl add resource
nginx
 -type generic_application
 -attr "ACL='owner:root:rwx,pgrp:root:rwx,other::r--,group:oinstall:r-x,
user:oracle:rwx',EXECUTABLE_NAMES=nginx,START_PROGRAM='/bin/systemctl
 start -f nginx',STOP_PROGRAM='/bin/systemctl stop
 -f nginx',CHECK_PROGRAMS='/bin/systemctl status nginx'
 ,START_DEPENDENCIES='hard(<gghub_prim_vip>)
 pullup(<gghub_prim_vip>)',
STOP_DEPENDENCIES='hard(intermediate:<gghub_prim_vip>)',
 RESTART_ATTEMPTS=0, HOSTING_MEMBERS='<gghub_prim1>,<gghub_prim2>',
CARDINALITY=2"

[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_nginx.sh

The NGINX resource created in this example will run on the named database nodes
simultaneously, specified by HOSTING_MEMBERS. This is recommended when multiple
GoldenGate Service Manager deployments are configured and can independently move
between database nodes.

Once the NGINX Clusterware resource is created, the GoldenGate XAG resources need to be
altered so that NGINX must be started before the GoldenGate deployments are started.

As the root OS user on the first GGHUB node, modify the XAG resources using the following
example commands.

Determine the current --file systems parameter:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl config goldengate gghub1 |grep -i "file system"

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-55

File System resources needed: acfs_primary

Modify the --file systems parameter:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# /u01/app/grid/xag/bin/agctl modify goldengate gghub1
 --filesystems acfs_primary,nginx

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl config goldengate gghub1 |grep -i "File system"

File System resources needed: acfs_primary,nginx

Note:

Repeat the above commands for each XAG GoldenGate registration relying on
NGINX.
Repeat all the steps in section 3.8 for the primary and standby GGHUB systems.

Step 3.9 - Create an Oracle Net TNS Alias for Oracle GoldenGate Database
Connections

To provide local database connections for the Oracle GoldenGate processes when switching
between nodes, create a TNS alias on all nodes of the cluster where Oracle GoldenGate may
be started. Create the TNS alias in the tnsnames.ora file in the TNS_ADMIN directory specified
in the deployment creation.

If the source database is a multitenant database, two TNS alias entries are required, one for
the container database (CDB) and one for the pluggable database (PDB) that is being
replicated. For a target Multitenant database, the TNS alias connects the PDB to where
replicated data is being applied. The pluggable database SERVICE_NAME should be set to the
database service created in an earlier step (refer to Step 2.3: Create the Database Services in
Task 2: Prepare a Primary and Standby Base System for GGHub).

As the oracle OS user on any database node of the primary and the standby database
systems, use dbaascli to find the database domain name and the SCAN name:

Primary DB
[opc@exadb1_node1]$ sudo su - oracle
[oracle@exadb1_node1]$ source db_name.env
[oracle@exadb1_node1]$ dbaascli database getDetails --dbname <db_name>
 |grep 'connectString'

 "connectString" : "<primary_scan_name>:1521/<service_name>"

Standby DB
[opc@exadb2_node1]$ sudo su - oracle
[oracle@exadb2_node1]$ source db_name.env
[oracle@exadb2_node1]$ dbaascli database getDetails --dbname <db_name>
 |grep 'connectString'

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-56

 "connectString" : "<standby_scan_name>:1521/<service_name>"

As the oracle OS user on all nodes of the primary and standby GGHUB, add the
recommended parameters for Oracle GoldenGate in the sqlnet.ora file:

[opc@gghub_prim1]$ sudo su - oracle
[oracle@gghub_prim1]$ mkdir -p /u01/app/oracle/goldengate/network/admin
[oracle@gghub_prim1]$
cat > /u01/app/oracle/goldengate/network/admin/sqlnet.ora <<EOF
DEFAULT_SDU_SIZE = 2097152
EOF

As the oracle OS user on all nodes of the primary and standby GGHUB, follow the steps to
create the TNS alias definitions:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$

cat > /u01/app/oracle/goldengate/network/admin/tnsnames.ora <<EOF

Source
<source_cbd_service_name>=
 (DESCRIPTION =
 (CONNECT_TIMEOUT=3)(RETRY_COUNT=2)(LOAD_BALANCE=off)(FAILOVER=on)
(RECV_TIMEOUT=30)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<primary_scan_name>)
(PORT=1521)))
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<standby_scan_name>)
(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME =
<source_cbd_service_name>.goldengate.com)))

<source_pdb_service_name>=
 (DESCRIPTION =
 (CONNECT_TIMEOUT=3)(RETRY_COUNT=2)(LOAD_BALANCE=off)(FAILOVER=on)
(RECV_TIMEOUT=30)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<primary_scan_name>)(PORT=1521)))
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<standby_scan_name>)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME =
<source_pdb_service_name>.goldengate.com)))

Target
<target_pdb_service_name>=
 (DESCRIPTION =
 (CONNECT_TIMEOUT=3)(RETRY_COUNT=2)(LOAD_BALANCE=off)(FAILOVER=on)
(RECV_TIMEOUT=30)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<primary_scan_name>)(PORT=1521)))
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<standby_scan_name>)(PORT=1521)))

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-57

 (CONNECT_DATA=(SERVICE_NAME =
<target_pdb_service_name>.goldengate.com)))

EOF

[oracle@gghub_prim1 ~]$ scp /u01/app/oracle/goldengate/network/admin/*.ora
 gghub_prim2:/u01/app/oracle/goldengate/network/admin

Note:

When the tnsnames.ora or sqlnet.ora (located in the TNS_ADMIN directory for the
Oracle GoldenGate deployment) are modified, the deployment needs to be restarted
to pick up the changes.

Task 4: Configure the Oracle GoldenGate Environment

Step 4.1 - Create Database Credentials

With the Oracle GoldenGate deployment created, use the Oracle GoldenGate Administration
Service home page to create the database credentials using the above TNS alias names. See
figure 4 below for an example of the database credential creation using the TNS alias.

From a client machine with access to the GGHUB, create a ssh tunnel to connect to the Oracle
GoldenGate Administration Service:

$ ssh -N -L <local_port>:<vip>:443 -p 22 <gghub-node>

As the oggadmin user, create the database credentials:

1. Log in into the Administration Service: https://localhost:<localPort>/<instance_name>/
adminsrvr.

2. Click Configuration under Administration Service.

3. Click the plus button to Add Credentials under the Database tab.

4. Add the required information for the source and target CDB and PDB as shown in the
table:

Region Container Domain Alias User ID

Region 1 CDB GoldenGate Reg1_CDB c##ggadmin@<tns
_alias>

Region 1 PDB GoldenGate Reg1_PDB ggadmin@<tns_ali
as>

Region 2 CDB GoldenGate Reg2_CDB c##ggadmin@<tns
_alias>

Region 2 PDB GoldenGate Reg2_PDB ggadmin@<tns_ali
as>

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-58

Step 4.2 - Set Up Schema Supplemental Logging

1. Log in to the Oracle GoldenGate Administration Server.

2. Click Configuration under Administration Service.

3. Click the Connect to database button under Actions for the Source Database
(Reg_CDB).

4. Click the plus button (Add TRANDATA) to Add TRANDATA for the Schema or Tables.

Step 4.3 - Create the Autostart Profile

Create a new profile to automatically start the Extract and Replicat processes when the Oracle
GoldenGate Administration Server is started. Then, restart if any Extract or Replicat processes
are abandoned. With GoldenGate Microservices, auto start and restart is managed by Profiles.

Using the Oracle GoldenGate Administration Server GUI, create a new profile that can be
assigned to each of the Oracle GoldenGate processes:

1. Log in to the Administration Service on the Source and Target GoldenGate.

2. Click on Profile under Administration Service.

3. Click the plus (+) sign next to Profiles on the Managed Process Settings home page.

4. Enter the details as follows:

• Profile Name: Start_Default

• Description: Default auto-start/resteart profile

• Default Profile: Yes

• Auto Start: Yes

• Auto Start Options

– Startup Delay: 1 min

– Auto Restart: Yes

• Auto Restart Options

– Max Retries: 5

– Retry Delay: 30 sec

– Retries Window: 30 min

– Restart on Failure only: Yes

– Disable Task After Retries Exhausted: Yes

5. Click Submit

Step 4.4 - Configure Oracle GoldenGate Processes

When creating Extract, Distribution Paths, and Replicat processes with Oracle GoldenGate
Microservices Architecture, all files that need to be shared between the GGHub nodes are
already shared with the deployment files stored on a shared file system.

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-59

Listed below are essential configuration details recommended for running Oracle GoldenGate
Microservices on GGhub for Extract, Distribution Paths, and Replicat processes.

Perform the following sub-steps to complete this step:

• Step 4.4.1 - Extract Configuration

• Step 4.4.2 - Replicat Configuration

• Step 4.4.3 - Distribution Path Configuration

• Step 4.4.4 - Set up a Heartbeat Table for Monitoring Lag Times

The main goal is to prevent data divergence between GoldenGate replicas and their
associated standby databases. This section focuses on configuring Extract so that GoldenGate
Extract never gets ahead of the standby database which can result in data divergence.

GoldenGate Parameter Description Recommendations

TRANLOGOPTIONS HANDLEDLFAILOVER This is mandatory setting for Data
Guard configurations that have Oracle
GoldenGate to ensure GoldenGate
Extract never extract data that has not
been received by standby database.
The HANDLEDLFAILOVER stands for
handle DATA LOSS for Data Guard
failover. The following parameter must
be added to the Extract process
parameter fileto avoid losing
transactions and resulting in logical data
inconsistencies after data loss Data
Guard failover event. When the two
primary tried to reconcile, this
parameter ensures that all transactions
can be reconciled since the new primary
(old standby) is not further behind as
expected.

Prevents Extract from extracting redo
data from the source database, and
writing to the trail file data that has not
yet been applied to the Oracle Data
Guard standby database. If this
parameter is not specified, after a data
loss failover, it is possible to have data
in the target database that is not present
in the source database, leading to data
divergence and logical data
inconsistencies.

MANDATORY when the source
database is configured with Data Guard
in Max Availaibility or Max Performance
mode.

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-60

GoldenGate Parameter Description Recommendations

TRANLOGOPTIONS
FAILOVERTARGETDESTID n

For multiple standby configurations or
cases when Data Guard Fast-Start
failover is not enabled, set
FAILOVERTARGETDESTID to standby
demarcated by LOG_ARCHIV_DEST to
ensure GoldenGate Extract never
extract data that has not been received
by target standby database. To
determine the correct value for
FAILOVERTARGETDESTID, use the
LOG_ARCHIVE_DEST_N parameter from
the GoldenGate source database which
is used for sending redo to the source
standby database. For example, if
LOG_ARCHIVE_DEST_2 points to the
standby database, then use a value of
2.

When not using Data Guard Fast Start
Failover (FSFO) in the source database,
this parameter Identifies which standby
database the Extract process must
remain behind, with regard to not
extracting redo data that has not yet
been applied to the Oracle Data Guard
standby database.

MANDATORY when not using FSFO in
the source database.

To determine the correct value for
FAILOVERTARGETDESTID, use the
LOG_ARCHIVE_DEST_N parameter from
the GoldenGate source database which
is used for sending redo to the source
standby database. For example, if
LOG_ARCHIVE_DEST_2 points to the
standby database, then use a value of
2.

TRANLOGOPTIONS HANDLEDLFAILOVER
STANDBY_WARNING value

The amount of time before a warning
message is written to the Extract report
file, if Extract is stalled, due to being
unable to query the source database
standby apply progress. This can occur
after a Data Guard failover when the old
primary database is not currently
available. The default is 60 seconds.

OPTIONAL if want to adjust the timing
of when the warning message is written
to the Extract report file.

Add STANDBY_WARNING value to the
TRANLOGOPTIONS HANDLEDLFAILOVER
parameter.

TRANLOGOPTIONS HANDLEDLFAILOVER
STANDBY_ABEND value

The amount of time before Extract
abends, if Extract is stalled, due to
being unable to query the standby apply
progress. The default is 30 minutes.

OPTIONAL if want to adjust the amount
of time it takes Extract to abend, when
the source database standby is not
accessible to enforce the
HANDLEDLFAILOVER parameter.

Add STANDBY_ABEND value to the
TRANLOGOPTIONS HANDLEDLFAILOVER
parameter.

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-61

GoldenGate Parameter Description Recommendations

TRANLOGOPTIONS
DLFAILOVER_TIMEOUT value

The amount of time Extract will run on
the new source primary database, after
a Data Guard role transition, before it
will check the status of the standby
database. If standby database is not
available after the
DLFAILOVER_TIMEOUT, Extract will
abend. The default is 300 seconds.

NOTE: If during normal operations of
the source Oracle Data Guard
configuration, the standby database
becomes unavailable, Extract will stop
extracting data from the source
database to prevent possible data
divergence with the GoldenGate target
database due to the
HANDLEDLFAILOVER parameter. The
DLFAILOVER_TIMEOUT parameter
does not take effect when a Data Guard
failover has not occurred, and there are
no messages output to the Extract
report file.

OPTIONAL. if you want to adjust the
amount of time an Extract can run on a
new primary source database, after a
role transition, when the standby is not
yet available to honor the
TRANLOGOPTIONS HANDLEDLFAILOVER
parameter.

Refer to the Reference for Oracle GoldenGate for more information about the Extract
TRANLOGOPTIONS parameters.

When creating an Extract using the Oracle GoldenGate Administration Service GUI interface,
leave the Trail SubDirectory parameter blank so that the trail files are automatically created in
the deployment directories stored on the shared file system. The default location for trail files is
the /<deployment directory>/var/lib/data directory.

Note:

To capture from a multitenant database, you must use an Extract configured at the
root level using a c## account. To apply data into a multitenant database, a separate
Replicat is needed for each PDB because a Replicat connects at the PDB level and
doesn't have access to objects outside of that PDB.

Step 4.4.1 - Extract Configuration

Create the Extract:

1. Log in to the Oracle GoldenGate Administration Server.

2. Click Overview under Administration Service.

3. Click the plus button to Add Extract.

4. Select Integrated Extract.

5. Add the required information as follows:

• Process Name: EXT_1

• Description: Extract for Region 1 CDB

• Intent: Unidirection

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-62

https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/tranlogoptions.html#GUID-B6ADFEC9-10E6-456D-9477-088513E113AF

• Begin: Now

• Trail Name: aa

• Credential Domain: GoldenGate

• Credential Alias: Reg1_CDB

• Register to PDBs: PDB Name

6. Click Next and set parameters.

EXTRACT ext_1
USERIDALIAS Reg1_CDB DOMAIN GoldenGate
EXTTRAIL aaTRANLOGOPTIONS HANDLEDLFAILOVER
TRANLOGOPTIONS FAILOVERTARGETDESTID 2
SOURCECATALOG PDB_NAME
TABLE OWNER.*;

7. Click Next.

8. If using CDB Root Capture from PDB, add the SOURCECATALOG parameter with the PDB
Name.

9. Click Create and Run.

Note:

For ADB-D deployments, the extract requires a connection to the PDB rather than the
CDB.

See Oracle GoldenGate Extract Failure or Error Conditions Considerations for more
information.

Step 4.4.2 - Replicat Configuration

Oracle generally recommends using integrated parallel Replicat which offers better apply
performance for most workloads when the GGHub is in the same region as the target Oracle
GoldenGate database.

The best apply performance can be achieved when the network latency between the GGHub
and the target database is as low as possible. The following configuration is recommended for
the remote Replicat running on the Oracle GGHub.

• APPLY_PARALLELISM – Disables automatic parallelism, instead of using
MAX_APPLY_PARALLELISM and MIN_APPLY_PARALLELISM, and allows the highest amount of
concurrency to the target database. It is recommended to set this as high as possible
based on available CPU of the hub and the target database server.

• MAP_PARALLELISM – Should be set with a value of 2 to 5. With a larger number of appliers,
increasing the Mappers increases the ability to hand work to the appliers.

• BATCHSQL – applies DML using array processing which reduces the amount network
overheads with a higher latency network. Be aware that if there are many data conflicts,
BATCHSQL results in reduced performance, as rollback of the batch operations followed
by a re-read from trail file to apply in non-batch mode.

Add a Replicat:

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-63

After you’ve set up your database connections and verified them, you can add a Replicat for
the deployment by following these steps:

1. Log in to the Oracle GoldenGate Administration Server.

2. Click theplus (+) sign next to Replicats on the Administration Service home page. The Add
Replicat page is displayed.

3. Select a Replicat type and click Next.

4. Enter the details as follows:

• Process Name: REP_1

• Description: Replicat for Region 2 PDB

• Intent: Unidirectional

• Credential Domain: GoldenGate

• Credential Alias: Reg2_PDB

• Source: Trail

• Trail Name: aa

• Begin: Position in Log

• Checkpoint Table: "GGADMIN"."CHKP_TABLE"

5. Click Next.

6. From the Action Menu, click Details to edit the Replicat Parameters:

REPLICAT REP_1
USERIDALIAS Reg2_PDB DOMAIN GoldenGate
MAP <SOURCE_PDB_NAME>.<OWNER>.*, TARGET <OWNER>.*;

7. From the Action Menu, click Start.

Step 4.4.3 - Distribution Path Configuration

Distribution paths are only necessary when trail files need to be sent to an additional Oracle
GoldenGate Hub in a different, or even the same, region as described in the following figure.

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-64

Figure 22-3 Oracle GoldenGate Distribution Path

Region 2Region 1

Source Deployment Target Deployment

Target
Database

Replicat

Trail
Files

Source
Database

Trail
Files

Extract

Distribution
Path

When using Oracle GoldenGate Distribution paths with the NGINX Reverse Proxy, additional
steps must be carried out to ensure the path client and server certificates are configured.

More instructions about creating distribution paths are available in Using Oracle GoldenGate
Microservices Architecture. A step-by-step example is in the following video, “Connect an on-
premises Oracle GoldenGate to OCI GoldenGate using NGINX,” to correctly configure the
certificates.

Here are the steps performed in this sub-step:

• Step 4.4.3.1 - Download the Target Server’s Root Certificate, and then upload it to the
source Oracle GoldenGate

• Step 4.4.3.2 - Create a user in the Target Deployment for the Source Oracle GoldenGate
to use

• Step 4.4.3.3 - Create a Credential in the Source Oracle GoldenGate

• Step 4.4.3.4 - Create a Distribution Path on the Source Oracle GoldenGate to the Target
Deployment

Step 4.4.3.1 - Download the Target Server’s Root Certificate, and then upload it to the
source Oracle GoldenGate

Download the target deployment server’s root certificate and add the CA certificate to the
source deployment Service Manager.

1. Log in to the Administration Service on the Target GoldenGate.

2. Follow “Step 2 - Download the target server’s root certificate” in the video “Connect an on-
premises Oracle GoldenGate to OCI GoldenGate using NGINX.”

Step 4.4.3.2 - Create a user in the Target Deployment for the Source Oracle GoldenGate
to use

Create a user in the target deployment for the distribution path to connect to:

1. Log in to the Administration Service on the Target GoldenGate.

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-65

https://docs.oracle.com/en/middleware/goldengate/core/21.3/ggmas/working-paths.html#GUID-7F9F7045-AA27-4007-9852-BC69C2F301A1.
https://docs.oracle.com/en/middleware/goldengate/core/21.3/ggmas/working-paths.html#GUID-7F9F7045-AA27-4007-9852-BC69C2F301A1.
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380

2. Click on Administrator under Administration Service.

3. Click the plus (+) sign next to Users.

4. Enter the details as follows:

• Username: ggnet

• Role: Operator

• Type: Password

5. Click Submit

Step 4.4.3.3 - Create a Credential in the Source Oracle GoldenGate

Create a credential in the source deployment connecting the target deployment with the user
created in the previous step. For example, a domain of OP2C and an alias of WSSNET.

1. Log in to the Administration Service on the Source Oracle GoldenGate.

2. Click in Configuration under Administration Service.

3. Click the plus (+) sign next to Credentials on the Database home page.

4. Enter the details as follows:

• Credential Domain: OP2C

• Credential Alias: wssnet

• User ID: ggnet

5. Click Submit

Step 4.4.3.4 - Create a Distribution Path on the Source Oracle GoldenGate to the Target
Deployment

A path is created to send trail files from the Distribution Server to the Receiver Server. You can
create a path from the Distribution Service. To add a path for the source deployment:

1. Log in to the Distribution Service on the Source Oracle Goldengate.

2. Click the plus (+) sign next to Path on the Distribution Service home page. The Add Path
page is displayed.

3. Enter the details as follows:

Option Description

Path Name Select a name for the path.

Source: Trail Name Select the Extract name from the drop-down list,
which populates the trail name automatically. If it
doesn’t, enter the trail name you provided while
adding the Extract.

Generated Source URI Specify localhost for the server’s name; this
allows the distribution path to be started on any
of the Oracle RAC nodes.

Target Authentication Method Use ‘UserID Alias’

Target Set the Target transfer protocol to wss (secure
web socket). Set the Target Host to the target
hostname/VIP that will be used for connecting to
the target system along with the Port Number
that NGINX was configured with (default is 443).

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-66

Option Description

Domain Set the Domain to the credential domain created
above in Step 11.3.3, for example, OP2C.

Alias The Alias is set to the credential alias wssnet,
also created in Step 11.3.3.

Auto Restart Options Set the distribution path to restart when the
Distribution Server starts automatically. This is
required, so that manual intervention is not
required after a RAC node relocation of the
Distribution Server. It is recommended to set the
number of Retries to 10. Set the Delay, which is
the time in minutes to pause between restart
attempts, to 1.

4. Click Create Path.

5. From the Action Menu, click Start.

Step 4.4.4 - Set up a Heartbeat Table to Monitor Lag Times

Follow Steps to add Heartbeat Table in OCI GoldenGate to implement the best practices for
creating a heartbeat process that can be used to determine where and when lag are
developing between a source and target system.

This document walks you through the step-by-step process of creating the necessary tables
and added table mapping statements needed to keep track of processing times between a
source and target database. Once the information is added into the data flow, the information is
then stored in a target table that can be analyzed to determine when and where the lag is
being introduced between the source and target systems.

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-67

https://blogs.oracle.com/dataintegration/post/steps-to-add-heartbeat-table-in-oci-goldengate

23
Cloud: Oracle GoldenGate Microservices
Architecture on Oracle Exadata Database
Service Configuration Best Practices

Use these best practices for configuring Oracle GoldenGate Microservices Architecture to work
with Oracle Exadata Database Service on Dedicated Infrastructure (ExaDB-D) or Oracle
Exadata Database Service on Cloud@Customer (ExaDB-C@C), and with Oracle Database
File System (DBFS) or Oracle ASM Cluster File System (ACFS).

See the following topics:

• Overview of Oracle GoldenGate Microservices Architecture Configuration on Oracle
Exadata Database Service

• Task 1 - Before You Begin

• Task 2 - Configure the Oracle Database for GoldenGate

• Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

• Task 4 - Install Oracle GoldenGate

• Task 5 - Create the Oracle GoldenGate Deployment

• Task 6 - Configure the Network

• Task 7 - Configure Oracle Grid Infrastructure Agent

• Task 8 - Configure NGINX Reverse Proxy

• Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections

• Task 10 - Create a New Profile

• Task 11 - Configure Oracle GoldenGate Processes

• Troubleshooting Oracle GoldenGate on Oracle RAC

• Example Configuration Problems

Overview of Oracle GoldenGate Microservices Architecture
Configuration on Oracle Exadata Database Service

The target Oracle Exadata Database Service that hosts Oracle GoldenGate Microservices
Architecture can act as the source database, the target database, or in some cases, as both
source and target databases for Oracle GoldenGate. These best practices are applicable for
configuring Oracle GoldenGate Microservices Architecture with Oracle Exadata Database
Service on Dedicated Infrastructure or Cloud@Customer.

Follow this roadmap to configure Oracle GoldenGate on Oracle Exadata Database Service on
Dedicated Infrastructure (ExaDB-D) or Oracle Exadata Database Service on
Cloud@Customer.

23-1

• Task 1 - Before You Begin: To configure Oracle GoldenGate on Oracle Exadata Cloud
Infrastructure or Cloud@Customer, you need an ExaDB-D or ExaDB-C@C system, CA
certificates, and configure some extra software.

• Task 2 - Configure the Oracle Database for GoldenGate: Use best practices to configure
the source and target databases in an Oracle GoldenGate replicated environment.

• Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment: Set up
either Oracle DBFS or Oracle ACFS for configuring HA on Oracle Cloud Infrastructure with
Oracle GoldenGate. If your architecture has a GoldenGate replica database protected by a
cloud physical standby database (Oracle Data Guard), use Oracle DBFS; otherwise use
ACFS.

• Task 4 - Install Oracle GoldenGate: Use best practices to install and configure Oracle
GoldenGate components on Oracle Cloud Infrastructure.

• Task 5 - Create the Oracle GoldenGate Deployment: Create a response file to create the
GoldenGate deployment using the Oracle GoldenGate Configuration Assistant.

• Task 6 - Configure the Network: Configure virtual cloud network (VCN) components such
as private DNS zones, VIP, bastion, security lists and firewalls for Oracle GoldenGate to
function properly.

• Task 7 - Configure Oracle Grid Infrastructure Agent: Configure Oracle GoldenGate for HA
on Oracle Cloud Infrastructure.

• Task 8 - Configure NGINX Reverse Proxy: Configure reverse proxy and HA by using
Nginx.

• Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections:
Create a TNS alias to simplify database connectivity for the Oracle GoldenGate processes
when switching between Oracle RAC nodes.

• Task 10 - Create a New Profile: Create a new profile to automatically start the Extract and
Replicat processes when the Oracle GoldenGate Administration Server is started.

• Task 11 - Configure Oracle GoldenGate Processes: Create and configure Oracle
GoldenGate Extract, Replicat, and Path processes need for data replication

Task 1 - Before You Begin
Perform the following steps to complete this task:

• Step 1.1 - Set Up the Oracle Cloud Infrastructure DB System

• Step 1.2 - Download the Required Software

• Step 1.3 - Configure Your System to Install Software from Oracle Linux Yum Server

• Step 1.4 - Secure Deployments Requirements (Certificates)

Step 1.1 - Set Up the Oracle Cloud Infrastructure DB System

To get started, you need an Oracle Exadata Database Service on Dedicated Infrastructure or
Cloud@Customer for Oracle GoldenGate deployment.

You can deploy Oracle GoldenGate with an existing ExaDB-D/ExaDB-C@C system or launch
a new system, according to your business needs.

For instructions on launching and managing an ExaDB-D system, see Oracle Exadata
Database Service on Dedicated Infrastructure or for ExaDB-C@C see Oracle Exadata
Database Service on Cloud@Customer.

Chapter 23
Task 1 - Before You Begin

23-2

https://docs.oracle.com/en-us/iaas/exadatacloud/index.html
https://docs.oracle.com/en-us/iaas/exadatacloud/index.html
https://docs.oracle.com/en-us/iaas/exadata/index.html
https://docs.oracle.com/en-us/iaas/exadata/index.html

Step 1.2 - Download the Required Software

1. Create the staging directory to download all the required software.

[opc@exadb-node1 ~]$ sudo su -
[root@exadb-node1 ~]# mkdir /u02/app_acfs/goldengate
[root@exadb-node1 ~]# chown oracle:oinstall /u02/app_acfs/goldengate
[root@exadb-node1 ~]# chmod g+w /u02/app_acfs/goldengate

2. Download subsequent patches to the base release, go to the Patches and Updates tab of
My Oracle Support.

• See Installing Patches for Oracle GoldenGate Microservices Architecture for more
information.

• The minimum required version is Patch 35214851: Oracle GoldenGate 21.9.0.0.2
Microservices for Oracle

3. Download the latest OPatch release, Patch 6880880, for Oracle Database 21c (21.0.0.0.0)
from My Oracle Support Document 2542082.1.

4. Download the Oracle GoldenGate 21c Microservices software, or higher, from Oracle
GoldenGate Downloads.

5. Download the Oracle Grid Infrastructure Standalone Agents for Oracle Clusterware 19c,
version 10.2 or higher, from Oracle Grid Infrastructure Standalone Agents for Oracle
Clusterware.

6. Download the mount-dbfs-version.zip file with mount-dbfs.sh and mount-dbfs.conf
from My Oracle Support Document 1054431.1.

7. Download the python script (secureServices.py) from My Oracle Support Document
2826001.1.

Step 1.3 - Configure Your System to Install Software from Oracle Linux Yum Server

Oracle Linux yum server hosts software for Oracle Linux and compatible distributions. These
instructions help you get started configuring your Linux system for Oracle Linux yum server
and installing software via yum.

1. As the root OS user, create the file /etc/yum.repos.d/oracle-public-yum-ol7.repo with
the following contents:

[opc@exadb-node1 ~]$ sudo su -
[root@exadb-node1 ~]#
cat > /etc/yum.repos.d/oracle-public-yum-ol7.repo <<EOF
[ol7_latest]
name=Oracle Linux $releasever Latest ($basearch)
baseurl=http://yum$ociregion.oracle.com/repo/OracleLinux/OL7/latest/
\$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1
EOF

2. As the root OS user, follow Doc ID 2397264.1 to modify the configuration file /etc/
yum.conf and validate the software repositories are enabled:

[root@exadb-node1 ~]# yum repolist
repo id repo name status

Chapter 23
Task 1 - Before You Begin

23-3

https://support.oracle.com/epmos/faces/PatchHome
https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc/install-installing-patches-ma.html#GUID-BE9C5FCD-9DC0-4452-B232-123BA82979D0
https://support.oracle.com/rs?type=doc&id=2542082.1
http://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html
http://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
https://support.oracle.com/rs?type=doc&id=1054431.1
https://support.oracle.com/rs?type=doc&id=2826001.1
https://support.oracle.com/rs?type=doc&id=2826001.1
https://support.oracle.com/rs?type=doc&id=2397264.1

!public_ol7_latest Oracle Linux 7.9-6.0.1.el7_9 Latest
(x86_64) 19,712+4,957
repolist: 19,992

Step 1.4 - Secure Deployments Requirements (Certificates)

A secure deployment involves making RESTful API calls and conveying trail data between the
Distribution Server and Receiver Server, over SSL or TLS.

You can use your own existing business certificate from your Certificate Authority (CA) or you
might create your own certificates.

Contact your systems administrator to follow your corporate standards to create or obtain the
server certificate before proceeding. A separate certificate is required for each VIP and Service
Manager pair.

Task 2 - Configure the Oracle Database for GoldenGate
The source and target Oracle GoldenGate databases should be configured using the following
recommendations.

Perform the following steps to complete this task:

• Step 2.1 - Database Configuration

• Step 2.2 - Create the Database Replication Administrator User

• Step 2.3 - Create the Database Services

Step 2.1 - Database Configuration

The source and target Oracle GoldenGate databases should be configured using the following
recommendations.

1. Enable Oracle GoldenGate replication by setting the database initialization parameter.

2. Source Oracle GoldenGate Database:

• Run the database in ARCHIVELOG mode

• Enable FORCE LOGGING mode

• Enable minimal supplemental logging

• Additionally, add schema or table level logging for all replicated objects

3. Configure the streams pool in the System Global Area (SGA) on the source database
using the STREAMS_POOL_SIZE initialization parameter. The streams pool is only needed on
the target database if integrated Replicat will be used.

For the steps on preparing the database for Oracle GoldenGate, refer to Using Oracle
GoldenGate Classic Architecture with Oracle Database.

1. As the oracle OS user on the source and target systems, issue the following SQL
instructions to configure the database:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ source <db_name>.env
[oracle@exadb-node1 ~]$ sqlplus / as sysdba
SQL> alter system set ENABLE_GOLDENGATE_REPLICATION=true scope=both
sid='*';
SQL> alter system set STREAMS_POOL_SIZE=<SIZE_IN_GB> scope=both sid='*';

Chapter 23
Task 2 - Configure the Oracle Database for GoldenGate

23-4

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41

2. As the oracle OS user on the source system, issue the following SQL instructions to
configure the database:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ source <db_name>.env
[oracle@exadb-node1 ~]$ sqlplus / as sysdba
SQL> ALTER DATABASE FORCE LOGGING;
SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
SQL> ARCHIVE LOG LIST
Database log mode Archive Mode
Automatic archival Enabled
Archive destination USE_DB_RECOVERY_FILE_DEST
Oldest online log sequence 110
Next log sequence to archive 113
Current log sequence 113

Step 2.2 - Create the Database Replication Administrator User

The source and target Oracle databases need a GoldenGate Administrator user created, with
appropriate privileges assigned:

• For multitenant container database (CDB):

– Source database, GoldenGate Extract must be configured to connect to a user in the
root container database, using a c##

– Target database, a separate GoldenGate administrator user is needed for each
pluggable database (PDB). For details about creating a GoldenGate Administrator in
an Oracle Multitenant Database, see Configuring Oracle GoldenGate in a Multitenant
Container Database.

• For non-CDB databases, see Establishing Oracle GoldenGate Credentials.

1. As the oracle OS user on the source system, issue the following SQL instructions to
create the database user for Oracle GoldenGate and assign the required privileges:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ source <db_name>.env
[oracle@exadb-node1 ~]$ sqlplus / as sysdba

CDB
alter session set container=cdb$root;
create user c##ggadmin identified by "<ggadmin_password>" container=all
default
 tablespace USERS temporary tablespace temp;
alter user c##ggadmin quota unlimited on users;
grant set container to c##ggadmin container=all;
grant alter system to c##ggadmin container=all;
grant create session to c##ggadmin container=all;
grant alter any table to c##ggadmin container=all;
grant resource to c##ggadmin container=all;
exec
dbms_goldengate_auth.grant_admin_privilege('c##ggadmin',container=>'all');

Source PDB
alter session set container=<PDB_name>;
create user ggadmin identified by "<ggadmin_password>" container=current;
grant create session to ggadmin container=current;

Chapter 23
Task 2 - Configure the Oracle Database for GoldenGate

23-5

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-multitenant-container-database-1.html#GUID-0B0CEB35-51C6-4319-BEE1-FA208FF4DE05
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-multitenant-container-database-1.html#GUID-0B0CEB35-51C6-4319-BEE1-FA208FF4DE05
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/establishing-oracle-goldengate-credentials.html#GUID-E40B375A-5042-4195-B563-BE7EDC251880

grant alter any table to ggadmin container=current;
grant resource to ggadmin container=current;
exec dbms_goldengate_auth.grant_admin_privilege('ggadmin');

2. As the oracle OS user on the target system, issue the following SQL instructions to create
the database user for Oracle GoldenGate and assign the required privileges:

Target PDB
[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ source <db_name>.env
[oracle@exadb-node1 ~]$ sqlplus / as sysdba
alter session set container=<PDB_name>;
create user ggadmin identified by "<ggadmin_password>" container=current;
grant alter system to ggadmin container=current;
grant create session to ggadmin container=current;
grant alter any table to ggadmin container=current;
grant resource to ggadmin container=current;
grant dv_goldengate_admin, dv_goldengate_redo_access to ggadmin
container=current;
exec dbms_goldengate_auth.grant_admin_privilege('ggadmin');

Step 2.3 - Create the Database Services

A database service is required so that the Oracle Grid Infrastructure Agent will automatically
start the Oracle GoldenGate deployment when the database is opened. When DBFS is used
for the shared file system, the database service is also used to mount DBFS to the correct
RAC instance.

When using a source multitenant database, a separate service is required for the root
container database (CDB) and the pluggable database (PDB) that contains the schema being
replicated. For a target multitenant database, a single service is required for the PDB.

1. As the oracle OS user, create and start the CDB database service using the following
command:

[oracle@exadb-node1 ~]$ source <db_name>.env
[oracle@exadb-node1 ~]$ srvctl add service -db $ORACLE_UNQNAME
 -service `echo $ORACLE_UNQNAME`_ogg -preferred <SID1> -available <SID2>
 -role PRIMARY
[oracle@exadb-node1 ~]$ srvctl start service -db $ORACLE_UNQNAME
 -service `echo $ORACLE_UNQNAME`_ogg

If your database is part of a multitenant environment, remember to create the service at the
pluggable database (PDB).

2. As the oracle OS user, create and start the PDB database service using the following
command:

[oracle@exadb-node1 ~]$ dbaascli database getDetails
 --dbname <db_name> |grep pdbName
 "pdbName" : "<PDB_NAME>",
[oracle@exadb-node1 ~]$ srvctl add service -db $ORACLE_UNQNAME
 -service <PDB_NAME>_ogg -preferred <SID1>,<SID2> -pdb <PDB_NAME> -role
PRIMARY
[oracle@exadb-node1 ~]$ srvctl start service -db $ORACLE_UNQNAME
 -service <PDB_NAME>_ogg

Chapter 23
Task 2 - Configure the Oracle Database for GoldenGate

23-6

3. As the oracle OS user, verify that the services are running:

[oracle@exadb-node1 ~]$ srvctl status service -d $ORACLE_UNQNAME |grep _ogg
Service <ORACLE_UNQNAME>_ogg is running on instance(s) <SID1>
Service <PDB_NAME>_ogg is running on instance(s) <SID1>

See Server Control Utility Reference in Oracle Real Application Clusters Administration and
Deployment Guide for details about creating database services.

Task 3 - Create a Shared File System to Store the Oracle
GoldenGate Deployment

Oracle GoldenGate Microservices Architecture is designed with a simplified installation and
deployment directory structure.

• The installation directory should be placed on local storage on each database node to
minimize downtime during software patching.

• The deployment directory which is created during deployment creation using the Oracle
GoldenGate Configuration Assistant (oggca.sh), must be placed on a shared file system.
The deployment directory contains configuration, security, log, parameter, trail, and
checkpoint files.

Placing the deployment in DBFS or Oracle Automatic Storage Management Cluster File
System (ACFS) provides the best recoverability and failover capabilities in the event of a
system failure. Ensuring the availability of the checkpoint files cluster-wide is essential so that
the GoldenGate processes can continue running from their last known position after a failure
occurs.

If Oracle GoldenGate will be configured along with Oracle Data Guard, the recommended file
system is DBFS. DBFS is contained in the database protected by Data Guard and can be fully
integrated with XAG. In the event of a Data Guard role transition, the file system can be
automatically mounted on the new primary server, followed by the automated start-up Oracle
GoldenGate. This is currently not possible with ACFS since it is not part of the Oracle Data
Guard configuration.

Note:

This document does not include steps to configure Oracle GoldenGate with Oracle
Data Guard.

If Oracle Data Guard is not present, the recommended file system is ACFS. ACFS is a multi-
platform, scalable file system and storage management technology that extends Oracle
Automatic Storage Management (Oracle ASM) functionality to support customer files
maintained outside the Oracle Database.

Perform one of the following steps to complete this task, based on your file system
requirements:

• Step 3a - Oracle Database File System (DBFS)

• Step 3b - Oracle ASM Cluster File System (ACFS)

Step 3a - Oracle Database File System (DBFS)

Chapter 23
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

23-7

You must create the DBFS tablespace inside the same database to which the Oracle
GoldenGate processes are connected. For example, if an Oracle GoldenGate integrated
Extract process is extracted from a database called GGDB, the DBFS tablespace would be
located in the same GGDB database.

Create a file system for storing the Oracle GoldenGate deployment files. You should allocate
enough trail file disk space to permit storage of up to 12 hours of trail files. Doing this will give
sufficient space for trail file generation should a problem occur with the target environment that
prevents it from receiving new trail files. The amount of space needed for 12 hours can only be
determined by testing trail file generation rates with real production data.

Perform the following sub-steps to complete this step:

• Step 3a.1 - Configuring DBFS on Oracle Exadata Database Service

• Step 3a.2 - Create the DBFS Repository

• Step 3a.3 - (Only for CDB) Create an Entry in TNSNAMES

• Step 3a.4 - Download and Edit the mount-dbfs Scripts

• Step 3a.5 - Register the DBFS Resource with Oracle Clusterware

• Step 3a.6 - Start the DBFS Resource

Step 3a.1 - Configuring DBFS on Oracle Exadata Database Service

1. As the opc OS user, add the grid user to the fuse group:

[opc@exadb-node1]$ sudo -u grid $(grep ^crs_home /etc/oracle/olr.loc | cut
-d= -f2)/bin/olsnodes > ~/dbs_group
[opc@exadb-node1]$ dcli -g ~/dbs_group -l opc sudo usermod -a -G fuse grid

2. As the opc OS user, validate that the file /etc/fuse.conf exists and contains the
user_allow_other option:

[opc@exadb-node1]$ cat /etc/fuse.conf
mount_max = 1000
user_allow_other

3. Skip this step if the option user_allow_other is already in the /etc/fuse.conf file.
Otherwise, run the following commands as the opc OS user to add the option:

[opc@exadb-node1]$ dcli -g ~/dbs_group -l opc "echo user_allow_other |
sudo tee -a /etc/fuse.conf"

4. As the opc OS user, create an empty directory that will be used as the mount point for the
DBFS file system:

[opc@exadb-node1]$ dcli -g ~/dbs_group -l opc sudo mkdir -p /mnt/dbfs

5. As the opc OS user, change ownership on the mount point directory so the grid OS user
can access it:

[opc@exadb-node1]$ dcli -g ~/dbs_group -l opc sudo chown
oracle:oinstall /mnt/dbfs

Step 3a.2 - Create the DBFS Repository

Chapter 23
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

23-8

Create the DBFS repository inside the target database. To create the repository, create a new
tablespace within the target PDB to hold the DBFS objects and a database user that will own
the objects.

Note:

When using an Oracle Multitenant Database, the DBFS tablespace MUST be created
in a Pluggable Database (PDB). It is recommended that you use the same PDB that
the GoldenGate Extract or Replicat processes connect to, allowing DBFS to use the
same database service created above for its database dependency.

1. As the oracle OS user, create the tablespace in the database:

[opc@exadb-node1]$ sudo su - oracle
[oracle@exadb-node1]$ source DB_NAME.env
[oracle@exadb-node1]$ sqlplus / as sysdba
SQL> alter session set container=<pdb_name>;
SQL> create bigfile tablespace dbfstb1 datafile size 32g autoextend on
next 8g
 maxsize 300g NOLOGGING EXTENT MANAGEMENT LOCAL AUTOALLOCATE SEGMENT SPACE
 MANAGEMENT AUTO;
SQL> create user dbfs_user identified by "<dbfs_user_password>"
 default tablespace dbfstb1 quota unlimited on dbfstb1;
SQL> grant connect, create table, create view, create procedure,
 dbfs_role to dbfs_user;

2. As the oracle OS user, create the database objects that will hold DBFS. This script takes
two arguments:

• dbfstb1: tablespace for the DBFS database objects

• goldengate: file system name - this can be any string and will appear as a directory
under the mount point

 [oracle@exadb-node1]$ sqlplus
dbfs_user/"<dbfs_user_password>"@<db_name>_dbfs
SQL> start $ORACLE_HOME/rdbms/admin/dbfs_create_filesystem dbfstb1
goldengate

Step 3a.3 - (Only for CDB) Create an Entry in TNSNAMES

1. As the oracle OS user, find the database domain name:

[opc@exadb-node1]$ sudo su - oracle
[oracle@exadb-node1]$ source DB_NAME.env
[oracle@exadb-node1]$ sqlplus / as sysdba
SQL> show parameter db_domain

NAME TYPE VALUE
------------------------------------ -----------

db_domain string <db_domain_name>

Chapter 23
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

23-9

2. As the oracle OS user, add a connect entry in $TNS_ADMIN/tnsnames.ora file:

[oracle@exadb-node1]$ vi $TNS_ADMIN/tnsnames.ora
dbfs =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY=LISTENER))
 (CONNECT_DATA =
 (SERVICE_NAME = <pdb_service_name>.<db_domain_name>)
)
)

3. As the oracle OS user, distribute the $TNS_ADMIN/tnsnames.ora file to the rest of the
nodes:

[oracle@exadb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group
 -f $TNS_ADMIN/tnsnames.ora -d $TNS_ADMIN/

Step 3a.4 - Edit the mount-dbfs Scripts

1. Unzip the zip file and edit the variable settings in the file mount-dbfs.conf for your
environment.
Comments in the file will help you to confirm the values for these variables:

• DBNAME: echo $ORACLE_UNQNAME
• MOUNT_POINT: /mnt/dbfs/goldengate
• ORACLE_HOME (RDBMS ORACLE_HOME directory): echo $ORACLE_HOME
• GRID_HOME (GRID INFRASTRUCTURE HOME directory): echo $(grep

^crs_home /etc/oracle/olr.loc | cut -d= -f2)
• DBFS_PASSWD (used only if WALLET=false)

• DBFS_PWDFILE_BASE (used only if WALET=false)

• WALLET (must be true or false)

• TNS_ADMIN (used only if WALLET=true or PDB): echo $TNS_ADMIN
• DBFS_LOCAL_TNSALIAS (used only if WALLET=true)

• IS_PDB (set to true if using PDB)

• PDB (PDB name, if applicable): PDB name
• PDB_SERVICE (the database service created in step 2.3, if applicable):

PDB_SERVICE_NAME

• MOUNT_OPTIONS: allow_other,direct_io,failover,nolock
– The failover option forces all file writes to be committed to the DBFS database in

an IMMEDIATE WAIT mode. This prevents data from getting lost when it has been
written into the dbfs_client cache, but not yet written to the database at the time
of a database or node failure.

– The nolock mount option is required if you use Oracle Database 18c or later
versions because of a change in the DBFS file locking, which can cause issues for
GoldenGate processes after an Oracle RAC node failure when a file is currently
locked.

Chapter 23
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

23-10

2. As the grid OS user, unzip the mount-dbfs-<version>.zip and edit the configuration file
mount-dbfs.conf:

[opc@exadb-node1]$ sudo su - grid
[grid@exadb-node1]$ cd /u02/app_acfs/goldengate
[grid@exadb-node1]$ unzip mount-dbfs-<version>.zip
[grid@exadb-node1]$ vi mount-dbfs.conf

Example of mount-dbfs.conf:

DBNAME=<DB_UNIQUE_NAME>
MOUNT_POINT=/mnt/dbfs/goldengate
DBFS_USER=dbfs_user
GRID_HOME=$(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)
if [-z "${GRID_HOME}"]; then
 echo "GRID_HOME is unset or set to the empty string"
fi
ORACLE_HOME=$($GRID_HOME/bin/srvctl config database -d $DBNAME |grep
'Oracle home:' | cut -d: -f2 |sed 's/ //g')
if [-z "${ORACLE_HOME}"]; then
 echo "ORACLE_HOME is unset or set to the empty string"
fi
LOGGER_FACILITY=user
MOUNT_OPTIONS=allow_other,direct_io,failover,nolock
PERL_ALARM_TIMEOUT=14
DBFS_PASSWD=<DBFS_USER_PASSWORD>
DBFS_PWDFILE_BASE=/tmp/.dbfs-passwd.txt
WALLET=false
TNS_ADMIN=$ORACLE_HOME/network/admin/<DB_NAME>
IS_PDB=true
PDB=<PDB_NAME>
PDB_SERVICE=<PDB_SERVICE_NAME>

3. As the grid OS user, modify the mount-dbfs.sh script to force unmounting of DBFS when
the CRS resource is stopped:

[grid@exadb-node1]$ vi /u02/app_acfs/goldengate/mount-dbfs.sh

Change two occurrences of:
$FUSERMOUNT -u $MOUNT_POINT
To the following:
$FUSERMOUNT -uz $MOUNT_POINT

4. As the opc OS user, copy mount-dbfs.conf (rename it if desired or needed) to the
directory /etc/oracle on database nodes and set proper permissions on it:

[opc@exadb-node1]$ sudo -u grid $(grep ^crs_home /etc/oracle/olr.loc | cut
 -d= -f2)/bin/olsnodes > ~/dbs_group
[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l opc -d /tmp
 -f /u02/app_acfs/goldengate/mount-dbfs.conf
[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 cp /u02/app_acfs/goldengate/mount-dbfs.conf /etc/oracle
[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 chown grid:oinstall /etc/oracle/mount-dbfs.conf

Chapter 23
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

23-11

[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 chmod 660 /etc/oracle/mount-dbfs.conf

5. As the opc OS user, copy mount-dbfs.sh (rename it if desired or needed) to the proper
directory ($GI_HOME/crs/script) on database nodes and set proper permissions on it:

[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 mkdir $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/script
[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo chown
 grid:oinstall $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/
script
[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l grid
 -d $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/script
 -f /u02/app_acfs/goldengate/mount-dbfs.sh
[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l grid chmod 770
 $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/script/mount-
dbfs.sh

Step 3a.5 - Register the DBFS Resource with Oracle Clusterware

When registering the resource with Oracle Clusterware, create it as a cluster_resource.

The reason for using cluster_resource is so the file system can only be mounted on a single
node at one time, preventing mounting of DBFS from concurrent nodes creating the potential
of concurrent file writes, and causing file corruption problems.

1. As the grid OS user, find the resource name for the database service created in a
previous step for the DBFS service dependency:

[opc@exadb-node1]$ sudo su - grid
[grid@exadb-node1]$ crsctl stat res |grep <PDB_NAME>
NAME=ora.<DB_UNIQUE_NAME>.<SERVICE_NAME>.svc

2. As the oracle OS user, register the Clusterware resource by running the following script:

[opc@exadb-node1]$ sudo su - oracle
[oracle@exadb-node1]$ vi /u02/app_acfs/goldengate/add-dbfs-resource.sh

start script add-dbfs-resource.sh
#!/bin/bash
ACTION_SCRIPT=$(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/
script/mount-dbfs.sh
RESNAME=dbfs_mount
DEPNAME=ora.<DB_UNIQUE_NAME>.<SERVICE_NAME>.svc
ORACLE_HOME=$(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)
PATH=$ORACLE_HOME/bin:$PATH
export PATH ORACLE_HOME
crsctl add resource $RESNAME \
 -type cluster_resource \
 -attr "ACTION_SCRIPT=$ACTION_SCRIPT, \
 CHECK_INTERVAL=30,RESTART_ATTEMPTS=10, \
 START_DEPENDENCIES='hard($DEPNAME)pullup($DEPNAME)',\
 STOP_DEPENDENCIES='hard($DEPNAME)',\
 SCRIPT_TIMEOUT=300"
end script add-dbfs-resource.sh

Chapter 23
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

23-12

[oracle@exadb-node1]$ sh /u02/app_acfs/goldengate/add-dbfs-resource.sh

Note:

After creating the $RESNAME resource, to stop the $DBNAME database when
the $RESNAME resource is ONLINE, you specify the force flag when using srvctl.

For example: srvctl stop database -d fsdb -f

Step 3a.6 - Start the DBFS Resource

As the grid OS user, start the resource:

 [opc@exadb-node1]$ sudo su - grid
[grid@exadb-node1]$ crsctl start res dbfs_mount -n `hostname`
CRS-2672: Attempting to start 'dbfs_mount' on 'exadb-node1'
CRS-2676: Start of 'dbfs_mount' on 'exadb-node1' succeeded

[grid@exadb-node1]$ crsctl stat res dbfs_mount -t

--
--
Name Target State Server State
details
--
--
Cluster Resources
--
--
dbfs_mount
 1 ONLINE ONLINE exadb-node1 STABLE
--
--

Note:

Leave the shared file system mounted. It is required for creating the Oracle
GoldenGate deployment in a later step.

Step 3b - Oracle ASM Cluster File System (ACFS)
Oracle ACFS is an alternative to DBFS for the shared Oracle GoldenGate files in an Oracle
RAC configuration. Create a single ACFS file system for storing the Oracle deployment files.

It is recommended that you allocate enough trail file disk space to permit the storage of up to
12 hours of trail files. Doing this will give sufficient space for trail file generation should a
problem occur with the target environment that prevents it from receiving new trail files. The
amount of space needed for 12 hours can only be determined by testing trail file generation
rates with real production data.

Perform the following sub-steps to complete this step:

Chapter 23
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

23-13

• Step 3b.1 - Create the ASM File System

• Step 3b.2 - Make the File System

• Step 3b.3 - Create the Cluster Ready Services (CRS) Resource

• Step 3b.4 - Verify the Currently Configured ACFS File Systems

• Step 3b.5 - Start and Check the Status of the ACFS Resource

• Step 3b.6- Create GoldenGate ACFS Directory

Step 3b.1 - Create the ASM File System

As the grid OS user, use asmcmd to create the volume:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ asmcmd volcreate -G DATAC1 -s 1200G ACFS_GG

Note:

Modify the file system size according to the determined size requirements.

Step 3b.2 - Make the File System

1. As the grid OS user, use asmcmd to confirm the “Volume Device”:

[grid@exadb-node1 ~]$ asmcmd volinfo -G DATAC1 ACFS_GG

Following is an example of the ACFS volume device output:

Diskgroup Name: DATAC1
 Volume Name: ACFS_GG
 Volume Device: /dev/asm/acfs_gg-151
 State: ENABLED
 Size (MB): 1228800
 Resize Unit (MB): 64
 Redundancy: MIRROR
 Stripe Columns: 8
 Stripe Width (K): 1024
 Usage:
 Mountpath:

2. As the grid OS user, make the file system with the following mkfs command:

[grid@exadb-node1 ~]$ /sbin/mkfs -t acfs /dev/asm/acfs_gg-151

Step 3b.3 - Create the Cluster Ready Services (CRS) Resource

1. As the opc OS user, create the ACFS mount point:

[opc@exadb-node1 ~]$ dcli -l opc -g ~/dbs_group sudo mkdir -p /mnt/acfs_gg
[opc@exadb-node1 ~]$ dcli -l opc -g ~/dbs_group sudo chown
 oracle:oinstall /mnt/acfs_gg

2. Create the file system resource as the root user.

Chapter 23
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

23-14

Because the implementation of distributed file locking on ACFS, unlike DBFS, it is
acceptable to mount ACFS on more than one Oracle RAC node at any one time.

3. As the root OS user, create the ACFS resource for the new ACFS file system:

[opc@exadb-node1 ~]$ sudo su -
[root@exadb-node1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -
f2)/bin/srvctl
 add filesystem -device /dev/asm/acfs_gg-151 -volume ACFS_GG -diskgroup
DATAC1
 -path /mnt/acfs_gg -user oracle

Step 3b.4 - Verify the Currently Configured ACFS File Systems

As the grid OS user, use the following command to view the file system details:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ srvctl config filesystem -volume ACFS_GG -diskgroup
DATAC1

Volume device: /dev/asm/acfs_gg-151
Diskgroup name: datac1
Volume name: acfs_gg
Canonical volume device: /dev/asm/acfs_gg-151
Accelerator volume devices:
Mountpoint path: /mnt/acfs_gg
Mount point owner: oracle
Mount point group: oinstall
Mount permissions: owner:oracle:rwx,pgrp:oinstall:r-x,other::r-x
Mount users: grid
Type: ACFS
Mount options:
Description:
ACFS file system is enabled
ACFS file system is individually enabled on nodes:
ACFS file system is individually disabled on nodes:

Step 3b.5 - Start and Check the Status of the ACFS Resource

As the grid OS user, use the following command to start and check the file system:

[grid@exadb-node1 ~]$ srvctl start filesystem -volume ACFS_GG
 -diskgroup DATAC1 -node `hostname`
[grid@exadb-node1 ~]$ srvctl status filesystem -volume ACFS_GG -diskgroup
DATAC1

ACFS file system /mnt/acfs_gg is mounted on nodes exadb-node1
The CRS resource created is named using the format
ora.diskgroup_name.volume_name.acfs. Using the above file system example, the CRS
resource is called ora.datac1.acfs_gg.acfs.

To see all ACFS file system CRS resources that currently exist, use the following command.

[grid@exadb-node1 ~]$ crsctl stat res -w "((TYPE = ora.acfs.type) OR (TYPE =
ora.acfs_cluster.type))"

Chapter 23
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

23-15

NAME=ora.datac1.acfs_gg.acfs
TYPE=ora.acfs.type
TARGET=ONLINE , OFFLINE
STATE=ONLINE on exadb-node1, OFFLINE
NAME=ora.datac1.acfsvol01.acfs
TYPE=ora.acfs.type
TARGET=ONLINE , ONLINE
STATE=ONLINE on exadb-node1, ONLINE on exadb-node2

Step 3b.6- Create GoldenGate ACFS Directory

As the grid OS user, create the directory for storing the Oracle GoldenGate deployments.

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ mkdir -p /mnt/acfs_gg/deployments

Refer to the Oracle Automatic Storage Management Cluster File System Administrator’s Guide
for more information about ACFS.

Note:

Leave the shared file system mounted. It is required for creating the Oracle
GoldenGate deployment in a later step.

Task 4 - Install Oracle GoldenGate
Install the Oracle GoldenGate software locally on all nodes in the Oracle Exadata Database
Service configuration that will be part of the Oracle GoldenGate configuration. Make sure the
installation directory is identical on all nodes.

Perform the following steps to complete this task:

• Step 4.1 - Unzip the Software and Create the Response File for the Installation

• Step 4.2 - Install Oracle GoldenGate

• Step 4-3 - Patch Oracle GoldenGate

Step 4.1 - Unzip the Software and Create the Response File for the Installation

1. As the oracle OS user on the first database node, unzip the software:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ unzip
 /u02/app_acfs/goldengate/
213000_fbo_ggs_Linux_x64_Oracle_services_shiphome.zip
 -d /u02/app_acfs/goldengate

The software includes an example response file for Oracle Database release 21c and
earlier supported releases. Copy the response file to a shared file system, so the same file
can be used to install Oracle GoldenGate on all database nodes, and edit the following
parameters:

Chapter 23
Task 4 - Install Oracle GoldenGate

23-16

https://docs.oracle.com/en/database/oracle/oracle-database/21/acfsg/index.html

• INSTALL_OPTION=ora21c
• SOFTWARE_LOCATION=/u02/app/oracle/goldengate/gg21c (recommended location)

2. As the oracle OS user on the first database node, copy and edit the response file for the
installation.

[oracle@exadb-node1 ~]$ cp
 /u02/app_acfs/goldengate/fbo_ggs_Linux_x64_Oracle_services_shiphome/Disk1/
response/oggcore.rsp
 /u02/app_acfs/goldengate
[oracle@exadb-node1 ~]$ vi /u02/app_acfs/goldengate/oggcore.rsp

Before edit
INSTALL_OPTION=
SOFTWARE_LOCATION=

After edit
INSTALL_OPTION=ora21c
SOFTWARE_LOCATION=/u02/app/oracle/goldengate/gg21c

Step 4.2 - Install Oracle GoldenGate

As the oracle OS user on all database nodes install Oracle GoldenGate:

[oracle@exadb-node1 ~]$ cd
 /u02/app_acfs/goldengate/fbo_ggs_Linux_x64_Oracle_services_shiphome/Disk1/
[oracle@exadb-node1 ~]$./runInstaller -silent -nowait
 -responseFile /u02/app_acfs/goldengate/oggcore.rsp

Starting Oracle Universal Installer...

Checking Temp space: must be greater than 120 MB. Actual 32755 MB Passed
Checking swap space: must be greater than 150 MB. Actual 16383 MB Passed
Preparing to launch Oracle Universal Installer from
 /tmp/OraInstall2022-07-08_02-54-51PM. Please wait ...
You can find the log of this install session at:
 /u01/app/oraInventory/logs/installActions2022-07-08_02-54-51PM.log
Successfully Setup Software.
The installation of Oracle GoldenGate Services was successful.
Please check '/u01/app/oraInventory/logs/
silentInstall2022-07-08_02-54-51PM.log'
 for more details.

[oracle@exadb-node1 ~]$ cat
 /u01/app/oraInventory/logs/silentInstall2022-07-08_02-54-51PM.log
The installation of Oracle GoldenGate Services was successful.

[oracle@exadb-node1 ~]$ ssh exadb-node2
[oracle@exadb-node2 ~]$ cd
 /u02/app_acfs/goldengate/fbo_ggs_Linux_x64_Oracle_services_shiphome/Disk1
[oracle@exadb-node2 ~]$./runInstaller -silent -nowait
 -responseFile /u02/app_acfs/goldengate/oggcore.rsp

Starting Oracle Universal Installer...

Checking Temp space: must be greater than 120 MB. Actual 32755 MB Passed

Chapter 23
Task 4 - Install Oracle GoldenGate

23-17

Checking swap space: must be greater than 150 MB. Actual 16383 MB Passed
Preparing to launch Oracle Universal Installer from
 /tmp/OraInstall2022-07-08_03-54-51PM. Please wait ...
You can find the log of this install session at:
 /u01/app/oraInventory/logs/installActions2022-07-08_03-54-51PM.log
Successfully Setup Software.
The installation of Oracle GoldenGate Services was successful.
Please check '/u01/app/oraInventory/logs/
silentInstall2022-07-08_03-54-51PM.log'
 for more details.

[oracle@exadb-node1 ~]$ cat
 /u01/app/oraInventory/logs/silentInstall2022-07-08_03-54-51PM.log
The installation of Oracle GoldenGate Services was successful.

Step 4.3 - Patch Oracle Goldengate

As the oracle OS user on all database nodes, install the latest OPatch:

[oracle@exadb-node1 ~]$ unzip -oq -d /u01/app/oracle/goldengate/gg21c
 /u02/app_acfs/goldengate /p6880880_210000_Linux-x86-64.zip
[oracle@exadb-node1 ~]$ cat >> ~/.bashrc <<EOF
export ORACLE_HOME=/u01/app/oracle/goldengate/gg21c
export PATH=$ORACLE_HOME/OPatch:$PATH
EOF
[oracle@exadb-node1 ~]$. ~/.bashrc
[oracle@exadb-node1 ~]$ opatch lsinventory |grep 'Oracle GoldenGate Services'

Oracle GoldenGate Services
21.1.0.0.0

[oracle@gghub_prim1 Disk1]$ opatch version

OPatch Version: 12.2.0.1.37

As the oracle OS user, run OPatch prereq to validate any conflict before applying the patch:

[oracle@exadb-node1 ~]$ unzip -oq -d /u02/app_acfs/goldengate
 /u02/app_acfs/goldengate /p35214851_219000OGGRU_Linux-x86-64.zip
[oracle@exadb-node1 ~]$ cd /u02/app_acfs/goldengate/35214851/
[oracle@exadb-node1 35214851]$ opatch prereq CheckConflictAgainstOHWithDetail
-ph ./

Oracle Interim Patch Installer version 12.2.0.1.26
Copyright (c) 2023, Oracle Corporation. All rights reserved.

PREREQ session
Oracle Home : /u01/app/oracle/goldengate/gg21c
Central Inventory : /u01/app/oraInventory
 from : /u01/app/oracle/goldengate/gg21c/oraInst.loc
OPatch version : 12.2.0.1.26
OUI version : 12.2.0.9.0
Log file location : /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_13-44-16PM_1.log

Chapter 23
Task 4 - Install Oracle GoldenGate

23-18

Invoking prereq "checkconflictagainstohwithdetail"

Prereq "checkConflictAgainstOHWithDetail" passed.

As the oracle OS user on all database nodes, patch Oracle GoldenGate Microservices
Architecture using OPatch:

[oracle@exadb-node1 ~]$ cd /u02/app_acfs/goldengate/35214851/
[oracle@exadb-node1 35214851]$ opatch apply

Oracle Interim Patch Installer version 12.2.0.1.37
Copyright (c) 2023, Oracle Corporation. All rights reserved.

Oracle Home : /u01/app/oracle/goldengate/gg21c
Central Inventory : /u01/app/oraInventory
 from : /u01/app/oracle/goldengate/gg21c/oraInst.loc
OPatch version : 12.2.0.1.37
OUI version : 12.2.0.9.0
Log file location : /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_19-40-41PM_1.log
Verifying environment and performing prerequisite checks...
OPatch continues with these patches: 35214851

Do you want to proceed? [y|n]
y
User Responded with: Y
All checks passed.

Please shutdown Oracle instances running out of this ORACLE_HOME on the local
system.
(Oracle Home = '/u01/app/oracle/goldengate/gg21c')

Is the local system ready for patching? [y|n]
y
User Responded with: Y
Backing up files...
Applying interim patch '35214851' to OH '/u01/app/oracle/goldengate/gg21c'

Patching component oracle.oggcore.services.ora21c, 21.1.0.0.0...
Patch 35214851 successfully applied.
Log file location: /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_19-40-41PM_1.log

OPatch succeeded.

[oracle@exadb-node1 35214851]$ opatch lspatches

35214851;

Chapter 23
Task 4 - Install Oracle GoldenGate

23-19

Task 5 - Create the Oracle GoldenGate Deployment
When the Oracle GoldenGate software has been installed, your next step is to create a
response file to create the Oracle GoldenGate deployment using the Oracle GoldenGate
Configuration Assistant.

Perform the following steps to complete this task:

• Step 5.1 - Create a Response File

• Step 5.2 - Create the GoldenGate Deployment

• Step 5.3 - (only if using DBFS) Move the GoldenGate Deployment Temp Directory

Step 5.1 - Create a Response File

For a silent configuration, as the oracle OS user, create and edit the response file oggca.rsp
to create the Oracle GoldenGate deployment:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ vi /u02/app_acfs/goldengate/oggca.rsp
oracle.install.responseFileersion=/oracle/install/
rspfmt_oggca_response_schema_v21_1_0

CONFIGURATION_OPTION=ADD
DEPLOYMENT_NAME=<ggNN>
ADMINISTRATOR_USER=oggadmin
ADMINISTRATOR_PASSWORD=<password_for_oggadmin>
SERVICEMANAGER_DEPLOYMENT_HOME=<ACFS or DBFS mount point>/deployments/<ggsmNN>
HOST_SERVICEMANAGER=localhost
PORT_SERVICEMANAGER=9100
SECURITY_ENABLED=false
STRONG_PWD_POLICY_ENABLED=true
CREATE_NEW_SERVICEMANAGER=true
REGISTER_SERVICEMANAGER_AS_A_SERVICE=false
INTEGRATE_SERVICEMANAGER_WITH_XAG=true
EXISTING_SERVICEMANAGER_IS_XAG_ENABLED=false
OGG_SOFTWARE_HOME=/u02/app/oracle/goldengate/gg21c
OGG_DEPLOYMENT_HOME=<ACFS or DBFS mount point>/deployments/<ggNN>
ENV_LD_LIBRARY_PATH=${OGG_HOME}/lib/instantclient:${OGG_HOME}/lib
ENV_TNS_ADMIN=/u02/app/oracle/goldengate/network/admin
FIPS_ENABLED=false
SHARDING_ENABLED=false
ADMINISTRATION_SERVER_ENABLED=true
PORT_ADMINSRVR=9101
DISTRIBUTION_SERVER_ENABLED=true
PORT_DISTSRVR=9102
NON_SECURE_DISTSRVR_CONNECTS_TO_SECURE_RCVRSRVR=false
RECEIVER_SERVER_ENABLED=true
PORT_RCVRSRVR=9103
METRICS_SERVER_ENABLED=true
METRICS_SERVER_IS_CRITICAL=false
PORT_PMSRVR=9104
UDP_PORT_PMSRVR=9105
PMSRVR_DATASTORE_TYPE=BDB

Chapter 23
Task 5 - Create the Oracle GoldenGate Deployment

23-20

PMSRVR_DATASTORE_HOME=/u02/app/oracle/goldengate/datastores/<instance_name>
OGG_SCHEMA=<goldengate_database_schema>

In the response file, edit the following values appropriately:

• CONFIGURATION_OPTION
• DEPLOYMENT_NAME
• ADMINISTRATOR_USER
• SERVICEMANAGER_DEPLOYMENT_HOME
• OGG_SOFTWARE_HOME
• OGG_DEPLOYMENT_HOME
• ENV_TNS_ADMIN
• OGG_SCHEMA
Step 5.2 - Create the GoldenGate Deployment

As the oracle OS user on the first database node, run oggca.sh to create the Oracle
GoldenGate deployment:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ export OGG_HOME=/u02/app/oracle/goldengate/gg21c
[oracle@exadb-node1 ~]$ $OGG_HOME/bin/oggca.sh -silent
 -responseFile /u02/app_acfs/goldengate/oggca.rsp
Successfully Setup Software.

Step 5.3 - (only if using DBFS) Move the GoldenGate Deployment Temp Directory

After the deployment has been created, if you use DBFS for the shared file system, run the
following commands to move the GoldenGate deployment temp directory from DBFS to local
storage.

1. As the oracle OS user on the first database node, move the GoldenGate deployment
temporary directory to the local storage:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ dcli -l oracle -g ~/dbs_group mkdir
 -p /u02/app/oracle/goldengate/deployments/<instance_name>
[oracle@exadb-node1 ~]$ mv
 /mnt/dbfs/goldengate/deployments/<instance_name>/var/temp
 /u02/app/oracle/goldengate/datastores/<instance_name>
[oracle@exadb-node1 ~]$ ln -s
 /u02/app/oracle/goldengate/deployments/<instance_name>/temp
 /mnt/dbfs/goldengate/deployments/<instance_name>/var/temp

2. As the oracle OS user on the rest of the database nodes, create a directory on the local
storage:

[oracle@exadb-node2 ~]$ mkdir
 /u02/app/oracle/goldengate/deployments/<instance_name>

Chapter 23
Task 5 - Create the Oracle GoldenGate Deployment

23-21

Task 6 - Configure the Network
The way you configure the network depends on your Exadata platform. The first method
described in Step 6a applies to ExaDB-D only, and the second method described in Step 6b
applies to ExaDB-C@C only.

Perform one of the following steps to complete this task:

• Step 6a - (ExaDB-D only) Configure Oracle Cloud Infrastructure Networking

• Step 6b - (ExaDB-C@C only) Prepare for Application Virtual IP Address Creation

Step 6a - (ExaDB-D only) Configure Oracle Cloud Infrastructure Networking

You must configure virtual cloud network (VCN) components such as private DNS zones, VIP,
bastion, security lists, and firewalls for Oracle GoldenGate to function correctly.

To learn more about VCNs and security lists, including instructions for creating them, see
Oracle Cloud Infrastructure Networking.

Perform the following sub-steps to complete this step:

• Step 6a.1 - Connect to GoldenGate Microservices Web Interface Using a Private IP

• Step 6a.2 - Create an Application Virtual IP Address (VIP)

• Step 6a.3 - Add Ingress Rule

• Step 6a.4 - Open Port 443 in the Firewall

• Step 6a.5 - Connecting your Source and Target VIP

• Step 6a.5 - Configuring Network Connectivity Between GoldenGate Source and Target

• Step 6a.6 - Configure Private DNS Zones Views and Resolvers

Step 6a.1 - Connect to GoldenGate Microservices Web Interface Using a Private IP
GoldenGate Microservices web interface is only accessible using a private endpoint from
within the OCI network or through a bastion host that secures access to OCI resources.

If OCI Bastion service is unavailable in your region, you can use your OCI Compute Instance
as a bastion. Follow the steps in OCI Bastion As A Service to create your bastion. You will
need one bastion for each region where Oracle GoldenGate Microservices is running.

Note:

After creating a bastion or using a compute instance as a bastion, you need to create
an SSH port forwarding session to use https://localhost:local_port to connect to
Oracle GoldenGate Microservices.

Step 6a.2 - Create an Application Virtual IP Address (VIP)

A dedicated application VIP is required to allow access to the Oracle GoldenGate
Microservices using the same host name, regardless of which Oracle RAC node is hosting the
services. An application VIP will also ensure the Oracle GoldenGate Distribution Server can
communicate with the Distribution Receiver running the current Oracle RAC node.

The VIP is a cluster resource that Oracle Clusterware manages. The VIP is assigned to a
database node and is automatically migrated to another node in the event of a node failure.

Chapter 23
Task 6 - Configure the Network

23-22

https://docs.cloud.oracle.com/iaas/Content/Network/Concepts/overview.htm
https://www.ateam-oracle.com/post/oci-bastion-as-a-service

Using the Console, assign the VIP to the Oracle Exadata Database Service:

1. Open the navigation menu. Click Oracle Database, then click Exadata on Oracle Public
Cloud.

2. Choose your compartment.

3. Click Exadata VM Cluster under Oracle Exadata Database Service on Dedicated
Infrastructure.

4. Navigate to the Exadata VM Cluster you want to create the new VIP.

5. Under Resources, click Virtual IP Address.

6. Click Attach Virtual IP Address.

7. In the Attach Virtual IP Address dialog, enter the following mandatory information:

• Subnet: The client subnet

• Virtual IP address hostname: Use the SCAN DNS Name and replace the SCAN
word for Oracle GoldenGate (Example: exadb-xxxx-ggN)

8. Click Create.

When the Virtual IP Address creation is complete, the status changes from Provisioning to
Available, and the assigned IP will be shown in the Virtual IP Address. Make a note of the fully
qualified domain name; this is the host name required to connect the source with the target
Oracle GoldenGate deployment.

Note:

Adding a new VIP is available in most tenancies; log a Service Request if you have
any issues.

Step 6a.3 - Add an Ingress Rule

Using the Console, open ingress port 443 to connect the Oracle GoldenGate service using
NGINX as a reverse proxy. For more information, see Working with Security Lists.

After you update the security list, it will have an entry with values similar to the following:

• Source Type: CIDR

• Source CIDR: 0.0.0.0/0

• IP Protocol: TCP

• Source Port Range: All

• Destination Port Range: 443

• Allows: TCP traffic for ports: 443 HTTPS

• Description: Oracle GoldenGate 443

Step 6a.4 - Open Port 443 in the Firewall

As the opc OS user, validate if the chains are currently figured to accept traffic:

[opc@exadb-node1 ~]$ sudo iptables --list |grep policy

Chain INPUT (policy ACCEPT)

Chapter 23
Task 6 - Configure the Network

23-23

https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/securitylists.htm

Chain FORWARD (policy ACCEPT)
Chain OUTPUT (policy ACCEPT)

If the policy is ACCEPT, you can skip this step and proceed with Task 7. Otherwise, contact your
network administrator to update the firewall to open port 443 for ingress activity.

Step 6a.5 - Configuring Network Connectivity Between the GoldenGate Source and
Target

You can set up your VCN to access the internet if you like. You can also privately connect your
VCN to public Oracle Cloud Infrastructure services such as Object Storage, your on-premises
network, or another VCN.

To learn more about whether subnets are public or private, including instructions for creating
the connection, see Connectivity Choices in the Oracle Cloud Infrastructure Networking
documentation.

Step 6a.6 - Configure Private DNS Zones Views and Resolvers

If the source and target Oracle GoldenGate deployments are in different regions, you must
create a private DNS view in the source region with a private zone. This is required for the
source Oracle GoldenGate Distribution Path to reach the target Oracle GoldenGate
deployment VIP host name.

Follow the steps in Configure private DNS zones views and resolvers to create your private
DNS view and zone.

As the opc OS user on the source system, use the command nslookup to resolve the Fully
qualified domain name (from Step 6.2) of the target Oracle GoldenGate deployment:

[opc@exadb-node1 ~]$ nslookup <target_vip_fully_qualified_domain_name>
Server: <DNS_IP>
Address: <DNS_IP>#53

Non-authoritative answer:
Name: <target_vip_fully_qualified_domain_name>
Address: <target_vip_ip>

Step 6b - (ExaDB-C@C only) Prepare for Application Virtual IP Address Creation

A dedicated application VIP is required to allow access to the Oracle GoldenGate
Microservices using the same host name, regardless of which Oracle RAC node is hosting the
services. An application VIP will also ensure that the Oracle GoldenGate Distribution Server
can communicate with the Distribution Receiver running the current Oracle RAC node.

The VIP is a cluster resource that Oracle Clusterware manages. The VIP is assigned to a
database node and is automatically migrated to another node in the event of a node failure.

Your system administrator must provide the IP address for the new Application VIP. This IP
address must be in the same subnet as the system environment as determined above.

The VIP will be created in the next Task when you configure the Oracle Grid Infrastructure
Agent.

Chapter 23
Task 6 - Configure the Network

23-24

https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/overview.htm#connectivity
https://docs.oracle.com/en/learn/oci_private_dns/index.html#introduction

Task 7 - Configure Oracle Grid Infrastructure Agent
The following procedure shows you how to configure Oracle Clusterware to manage Oracle
GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG).

Using XAG automates the mounting of the shared file system (DBFS or ACFS) as well as the
stopping and starting of the Oracle GoldenGate deployment when relocating between Oracle
RAC nodes.

Perform the following steps to complete this task:

• Step 7.1 - Install the Oracle Grid Infrastructure Standalone Agent

• Step 7.2 - Configure Oracle Grid Infrastructure Agent

• Step 7.2 - Start the Oracle GoldenGate Deployment

Step 7.1 - Install the Oracle Grid Infrastructure Standalone Agent

It is recommended that you install the XAG software as a standalone agent outside the Grid
Infrastructure ORACLE_HOME. This way, you can use the latest XAG release available, and the
software can be updated without impact to the Grid Infrastructure.

XAG must be installed in the same directory on all Oracle RAC database nodes in the system
where Oracle GoldenGate is installed.

1. As the grid OS user on the first database node, unzip the software and run xagsetup.sh:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ unzip /u02/app_acfs/goldengate/
p31215432_190000_Generic.zip
 -d /u02/app_acfs/goldengate
[grid@exadb-node1 ~]$ /u02/app_acfs/goldengate/xag/xagsetup.sh --install
 --directory /u01/app/grid/xag --all_nodes
Installing Oracle Grid Infrastructure Agents on: exadb-node1
Installing Oracle Grid Infrastructure Agents on: exadb-node2
Updating XAG resources.
Successfully updated XAG resources.

2. Add the location of the newly installed XAG software to the PATH variable so that the
location of agctl is known when the grid user logs on to the machine.

[grid@exadb-node1 ~]$ grep PATH ~/.bashrc
PATH=
/u01/app/grid/xag/bin:/sbin:/bin:/usr/sbin:/usr/bin:/u01/app/19.0.0.0/grid/
bin:/u01/app/19.0.0.0/grid/OPatch;
 export PATH

Note:

It is essential that you ensure that the XAG bin directory is specified before the Grid
Infrastructure bin directory to ensure that the correct agctl binary is found. This
should be set in the grid user environment to take effect when logging on, such as in
the .bashrc file when the Bash shell is in use.

Chapter 23
Task 7 - Configure Oracle Grid Infrastructure Agent

23-25

Step 7.2 - Configure Oracle Grid Infrastructure Agent

The following procedure shows you how to configure Oracle Clusterware to manage Oracle
GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG).

Using XAG automates the mounting of the shared file system (DBFS or ACFS) as well as the
stopping and starting of the Oracle GoldenGate deployment when relocating between Oracle
RAC nodes.

Oracle GoldenGate must be registered with XAG so that the deployment is started and
stopped automatically when the database is started and the file system is mounted.

To register Oracle GoldenGate Microservices Architecture with XAG, use the following
command format:

agctl add goldengate <instance_name>
--gg_home <GoldenGate_Home>
--service_manager
--config_home <GoldenGate_SvcMgr_Config>
--var_home <GoldenGate_SvcMgr_Var Dir>
--port <port number>
--oracle_home <$OGG_HOME/lib/instantclient>
--adminuser <OGG admin user>
--user <GG instance user>
--group <GG instance group>
--network <network_number>
--ip <ip_address>
--vip_name <vip_name>
--filesystems <CRS_resource_name>
--db_services <service_name>
--use_local_services
--attribute START_TIMEOUT=60
--nodes <node1, node2, ... ,nodeN>

Where:

• --gg_home specifies the location of the Oracle GoldenGate software.

• --service_manager indicates this is a GoldenGate Microservices instance.

• --config_home specifies the GoldenGate Service Manager deployment configuration
home directory.

• --var_home specifies the GoldenGate Service Manager deployment variable home
directory.

• --port specifies the deployment Service Manager port number.

• --oracle_home specifies the location of the Oracle database libraries that are included as
part of Oracle GoldenGate 21c and later releases.
Example: $OGG_HOME/lib/instantclient

• --adminuser specifies the Oracle GoldenGate Microservices administrator account name.

• --user specifies the name of the operating system user that owns the Oracle GoldenGate
deployment.

• --group specifies the name of the operating system group that owns the Oracle
GoldenGate deployment.

• --network specifies the network subnet for the VIP.

Chapter 23
Task 7 - Configure Oracle Grid Infrastructure Agent

23-26

• --ip specifies the IP address for the VIP.
If you have already created a VIP, specify it using the --vip_name vip_name parameter in
place of --network and --ip.

• --vip_name specifies a CRS resource name for an application VIP previously created.
This parameter replaces --network and ––ip (optional).

• --filesystems specifies the DBFS or ACFS CRS file system resource that must be
mounted before the deployment is started.

• --db_services specifies the ora.<database>.<service_name>.svc service name created
in the previous step.
If you are using Oracle Multitenant Database, specify the PDB database service for
Replicat or the CDB database service for an Extract. If using Replicat and Extract, specify
both service names, separated by a comma.

• --use_local_services specifies that the Oracle GoldenGate instance must be co-located
on the same Oracle RAC node where the db_services service is running.

• --attribute name=value specifies attributes that can be applied.
It is recommended that you modify the attribute START_TIMEOUT=60 to optimize the blackout
after a database crash and restart.

• --nodes specifies which of the Oracle RAC nodes this GoldenGate instance can run on.
If Oracle GoldenGate is configured to run on any of the Oracle RAC nodes in the cluster,
this parameter should still be used to determine the preferred order of nodes to run Oracle
GoldenGate.

Perform one of the following steps to complete this task:

• Step 7.2a - GoldenGate Deployments on DBFS

• Step 7.2b - GoldenGate Deployments on ACFS

Step 7.2a - GoldenGate Deployments on DBFS

1. As the grid OS user on the first database node, run the following command to identify the
network number:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ srvctl config network
Network 1 exists
Subnet IPv4: 10.1.0.0/255.255.255.0/bondeth0, static
Subnet IPv6:
Ping Targets: 10.1.0.1
Network is enabled
Network is individually enabled on nodes:
Network is individually disabled on nodes:

2. As the root OS user on the first database node, register Oracle GoldenGate Microservices
Architecture with XAG using the following command format:

[opc@exadb-node1 ~]$ sudo su -

[root@exadb-node1 ~]# /u01/app/grid/xag/bin/agctl add goldengate
<instance_name> \
--gg_home /u02/app/oracle/goldengate/gg21c
 \
--service_manager
 \

Chapter 23
Task 7 - Configure Oracle Grid Infrastructure Agent

23-27

--config_home /mnt/dbfs/deployments/ggsm01/etc/conf
 \
--var_home /mnt/dbfs/deployments/ggsm01/var
 \
--port 9100
 \
--oracle_home /u02/app/oracle/goldengate/gg21c/lib/instantclient
 \
--adminuser oggadmin
 \
--user oracle
 \
--group oinstall
 \
--network 1 --ip <virtual_IP_address>
 \
--filesystems <dbfs_mount_name>
 \
--db_services ora.<db_service_name>.svc , ora.<pdb_service_name>.svc
 \
--use_local_services
 \
--attribute START_TIMEOUT=60
 \
--nodes <exadb-node1>, <exadb-node2>

Enter password for 'oggadmin' : <oggadmin_password>

Step 7.2b - GoldenGate Deployments on ACFS

1. As the grid OS user on the first database node, run the following command to identify the
network number:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ srvctl config network
Network 1 exists
Subnet IPv4: 10.1.0.0/255.255.255.0/bondeth0, static
Subnet IPv6:
Ping Targets: 10.1.0.1
Network is enabled
Network is individually enabled on nodes:
Network is individually disabled on nodes:

2. As the root OS user on the first database node, register Oracle GoldenGate Microservices
Architecture with XAG using the following command format:

[root@exadb-node1 ~]# /u01/app/grid/xag/bin/agctl add goldengate
<instance_name> \
--gg_home /u02/app/oracle/goldengate/gg21c
 \
--service_manager
 \
--config_home /mnt/acfs_gg/deployments/ggsm01/etc/conf
 \
--var_home /mnt/acfs_gg/deployments/ggsm01/var
 \

Chapter 23
Task 7 - Configure Oracle Grid Infrastructure Agent

23-28

--port 9100
 \
--oracle_home /u02/app/oracle/goldengate/gg21c/lib/instantclient
 \
--adminuser oggadmin
 \
--user oracle
 \
--group oinstall
 \
--network 1 --ip <virtual_IP_address>
 \
--filesystems ora.<acfs_name>.acfs
 \
--db_services ora.<db_service_name>.svc
 \
--use_local_services
 \
--attribute START_TIMEOUT=60
 \
--nodes <exadb-node1>,<exadb-node2>

Step 7.3 - Start the Oracle GoldenGate Deployment

Below are some example agctl commands used to manage the Oracle GoldenGate
deployment with XAG.

1. As the grid OS user, run the following command to start the Oracle GoldenGate
deployment:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ agctl start goldengate <instance_name>

2. As the grid OS user, run the following command to check the status of the Oracle
GoldenGate:

[grid@exadb-node1 ~]$ agctl status goldengate
Goldengate instance <instance_name> is running on exadb-node1

3. As the grid OS user, run the following command to view the configuration parameters for
the Oracle GoldenGate resource:

[grid@exadb-node1 ~]$ agctl config goldengate <instance_name>
Instance name: <instance_name>
Application GoldenGate location is: /u02/app/oracle/goldengate/gg21c_MS
Goldengate MicroServices Architecture environment: yes
Goldengate Service Manager configuration directory:
 /mnt/acfs_gg/deployments/ggsm01/etc/conf
Goldengate Service Manager var directory: /mnt/acfs_gg/deployments/
ggsm01/var
Service Manager Port: 9100
Goldengate Administration User: oggadmin
Autostart on DataGuard role transition to PRIMARY: no
Configured to run on Nodes: exadb-node1 exadb-node2
ORACLE_HOME location is: /u02/app/oracle/goldengate/gg21c/lib/instantclient
Database Services needed: ora.<db_unique_name>.<service_name>.svc

Chapter 23
Task 7 - Configure Oracle Grid Infrastructure Agent

23-29

[use_local_services]
File System resources needed: ora.datac1.acfs_gg.acfs
Network: 1, IP:NN.NN.NN.NN, User:oracle, Group:oinstall

See Oracle Grid Infrastructure Standalone Agents for Oracle Clusterware 11g Rel. 2, 12c, 18c
and 19c for more information about Oracle Grid Infrastructure Bundled Agent.

Task 8 - Configure NGINX Reverse Proxy
The Oracle GoldenGate reverse proxy feature allows a single point of contact for all of the
Oracle GoldenGate Microservices associated with an Oracle GoldenGate deployment.

Without a reverse proxy, the Oracle GoldenGate deployment microservices are contacted
using a URL consisting of a host name or IP address and separate port numbers, one for each
of the services.

For example, to contact the Service Manager, you could use http://gghub.example.com:9100,
then the Administration Server is http://gghub.example.com:9101, the second Service Manager
may be accessed using http://gghub.example.com:9110, and so on.

When running Oracle GoldenGate in a High Availability (HA) configuration on Oracle Exadata
Database Service with the Grid Infrastructure agent (XAG), there is a limitation preventing
more than one deployment from being managed by a GoldenGate Service Manager. Because
of this limitation, creating a separate virtual IP address (VIP) for each Service Manager and
deployment pair is recommended. This way, the microservices can be accessed directly using
the VIP.

With a reverse proxy, port numbers are not required to connect to the microservices because
they are replaced with the deployment name and the host name’s VIP. For example, to connect
to the console with a web browser, use the URLs.

Service URL

Service Manager https://localhost:localPort

Administration Server https://localhost:localPort/instance_name/
adminsrvr

Distribution Server https://localhost:localPort/instance_name/distsrvr

Performance Metric Server https://localhost:localPort/instance_name/pmsrvr

Receiver Server https://localhost:localPort/instance_name/recvsrvr

Note:

To connect to Oracle GoldenGate in OCI, you must create a bastion and an SSH port
forwarding session (see Step 6.1). After this, you can connect to the Oracle
GoldenGate Services using https://locahost:<localPort>.

A reverse proxy is mandatory to ensure easy access to microservices and enhance security
and manageability.

Follow the instructions to install and configure NGINX Reverse Proxy with an SSL connection
and ensure all external communication is secure.

Chapter 23
Task 8 - Configure NGINX Reverse Proxy

23-30

https://www.oracle.com/database/technologies/xag-agents-download.html
https://www.oracle.com/database/technologies/xag-agents-download.html

Note:

When using CA Signed Certificates with NGINX, make sure the NGINX
ssl_certificate parameter points to a certificate file that contains the certificates in
the correct order of CA signed certificate, intermediate certificate, and root certificate.

Perform the following steps to complete this task:

• Step 8.1 - Install NGINX

• Step 8.2 - Configure NGINX Reverse Proxy

• Step 8.3 - Securing GoldenGate Microservices to Restrict Non-secure Direct Access

• Step 8.4 - Create a Clusterware Resource to Manage NGINX

Step 8.1 - Install NGINX Reverse Proxy Server

1. As the root OS user on all nodes, set up the YUM repository by creating the file /etc/
yum.repos.d/nginx.repo with the following contents:

[opc@exadb-node1 ~]$ sudo su -
[root@exadb-node1 ~]# cat > /etc/yum.repos.d/nginx.repo <<EOF
[nginx-stable]
name=nginx stable repo
baseurl=http://nginx.org/packages/rhel/7/\$basearch/
gpgcheck=1
enabled=1
gpgkey=https://nginx.org/keys/nginx_signing.key
module_hotfixes=true
EOF

2. As the root OS user, run the following commands to install, enable, and start NGINX:

[root@exadb-node1 ~]# yum install -y python-requests python-urllib3 nginx
[root@exadb-node1 ~]# systemctl enable nginx

3. As the root OS user, disable the NGINX repository after the software has been installed:

[root@exadb-node1 ~]# yum-config-manager --disable nginx-stable

Step 8.2 - Configure NGINX Reverse Proxy

A separate reverse proxy configuration is required for each Oracle GoldenGate Home.

When running multiple Service Managers, the following instructions will provide configuration
using a separate VIP for each Service Manager. NGINX uses the VIP to determine which
Service Manager an HTTPS connection request is routed to.

An SSL certificate is required for clients to authenticate the server they connect to through
NGINX. Contact your systems administrator to follow your corporate standards to create or
obtain the server certificate before proceeding. A separate certificate is required for each VIP
and Service Manager pair.

Chapter 23
Task 8 - Configure NGINX Reverse Proxy

23-31

Note:

The common name in the CA-signed certificate must match the target hostname/VIP
used by NGINX.

Perform the following sub-steps to complete this step:

• Step 8.2.1 - Create the NGINX Configuration File

• Step 8.2.2 - Modify NGINX Configuration Files

• Step 8.2.3 - Install Server Certificates for NGINX

• Step 8.2.4 - Install the NGINX Configuration File

• Step 8.2.5 - Test the New NGINX Configuration

• Step 8.2.6 - Reload NGINX and the New Configuration

• Step 8.2.7 - Test GoldenGate Microservices Connectivity

• Step 8.2.8 - Distribute the GoldenGate NGINX Configuration Files

Step 8.2.1 - Create the NGINX Configuration File

You can configure Oracle GoldenGate Microservices Architecture to use a reverse proxy.
Oracle GoldenGate Microservices Architecture includes a script called ReverseProxySettings
that generates a configuration file for only the NGINX reverse proxy server.

The script requires the following parameters:

• The --user parameter should mirror the GoldenGate administrator account specified with
the initial deployment creation.

• The GoldenGate administrator password will be prompted.

• The reverse proxy port number specified by the --port parameter should be the default
HTTPS port number (443) unless you are running multiple GoldenGate Service Managers
using the same --host. In this case, specify an HTTPS port number that does not conflict
with previous Service Manager reverse proxy configurations.
For example, if you are running two Service Managers using the same hostname/VIP, the
first reverse proxy configuration is created with --port 443 --host hostvip01, and the
second is created with --port 444 --host hostvip01.

If you are using separate hostnames/VIPs, the two Service Manager reverse proxy
configurations would be created with --port 443 --host hostvip01 and --port 443 --
host hostvip02.

• Lastly, the HTTP port number (9100) should match the Service Manager port number
specified during the deployment creation.

Repeat this step for each additional GoldenGate Service Manager.

As the oracle OS user, use the following command to create the Oracle GoldenGate NGINX
configuration file:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ export OGG_HOME=/u02/app/oracle/goldengate/gg21c
[oracle@exadb-node1 ~]$ export PATH=$PATH:$OGG_HOME/bin
[oracle@exadb-node1 ~]$ cd /u02/app_acfs/goldengate
[oracle@exadb-node1 ~]$ $OGG_HOME/lib/utl/reverseproxy/ReverseProxySettings
 --user oggadmin --port 443 --output ogg_<instance_name>.conf http://

Chapter 23
Task 8 - Configure NGINX Reverse Proxy

23-32

localhost:9100
 --host <VIP hostname/IP>
Password: <oggadmin_password>

Step 8.2.2 - Modify NGINX Configuration Files

When multiple GoldenGate Service Managers are configured to use their IP/VIPs with the
same HTTPS 443 port, some small changes are required to the NGINX reverse proxy
configuration files generated in the previous step.

With all Service Managers sharing the same port number, they are independently accessed
using their VIP/IP specified by the --host parameter.

1. As the oracle OS user, determine the deployment name managed by this Service
Manager. If not already known, the deployment name is listed in the reverse proxy
configuration file:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ cd /u02/app_acfs/goldengate
[oracle@exadb-node1 ~]$ grep "Upstream Servers" ogg_<instance_name>.conf
Upstream Servers for Deployment '<instance_name>'

In this example, the deployment is called SOURCE.

2. As the oracle OS user, change all occurrences of _ServiceManager by prepending the
deployment name before the underscore:

$ sed -i 's/_ServiceManager/<instance_name>_ServiceManager/'
 ogg_<instance_name>.conf

Step 8.2.3 - Install Server Certificates for NGINX

1. As the root OS user, copy the server certificates and key files in the /etc/nginx/ssl
directory, owned by root with file permissions 400 (-r--------):

[opc@exadb-node1 ~]$ sudo su -
[root@exadb-node1 ~]# mkdir /etc/nginx/ssl
[root@exadb-node1 ~]# chmod 400 /etc/nginx/ssl

2. As the root OS user, set the correct filenames for the certificate and key files for each
reverse proxy configuration file generated in Step 8.2.1:

[oracle@exadb-node1 ~]$ vi /u02/app_acfs/goldengate/
ogg_<instance_name>.conf

Before
 ssl_certificate /etc/nginx/ogg.pem;
 ssl_certificate_key /etc/nginx/ogg.pem;

After
 ssl_certificate /etc/nginx/ssl/server.chained.crt;
 ssl_certificate_key /etc/nginx/ssl/server.key;

When using CA-signed certificates, the certificate named with the ssl_certificate NGINX
parameter must include the 1) CA signed, 2) intermediate, and 3) root certificates in a single
file. The order is significant; otherwise, NGINX fails to start and displays the error message:

Chapter 23
Task 8 - Configure NGINX Reverse Proxy

23-33

(SSL: error:0B080074:x509 certificate routines: X509_check_private_key:key values
mismatch)
The root and intermediate certificates can be downloaded from the CA-signed certificate
provider.

The SSL certificate single file can be generated using the following example command:

[root@exadb-node1 ~]# cat
 CA_signed_cert.crt intermediate.crt root.crt > server.chained.crt

The ssl_certificate_key file is generated when creating the Certificate Signing Request
(CSR), which is required when requesting a CA-signed certificate.

Step 8.2.4 - Install the NGINX Configuration File

As the root OS user, copy the deployment configuration file (or files if multiple files were
created in Step 8.2.1) to /etc/nginx/conf.d directory:

[root@exadb-node1 ~]# mv /u02/app_acfs/goldengate/ogg_<instance_name>.conf
 /etc/nginx/conf.d

Step 8.2.5 - Test the New NGINX Configuration

As the root OS user, validate the NGINX configuration file.

If there are errors in the file, they will be reported with the following command:

[root@exadb-node1 ~]# nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginxconf test is successful

Step 8.2.6 - Reload NGINX and the New Configuration

As the root OS user, restart NGINX to load the new configuration:

[root@exadb-node1 ~]# systemctl restart nginx

Step 8.2.7 - Test GoldenGate Microservices Connectivity

1. As the root OS user, create a curl configuration file (access.cfg) that contains the
deployment username and password:

[root@exadb-node1 ~]# vi access.cfg
user = "oggadmin:<password>"

2. As the root OS user, query the health of the deployments using the following command:

[root@exadb-node1 ~]# curl -svf
 -K access.cfg https://<VIP hostname/IP>:<port#>/services/v2/config/health
 -XGET && echo -e "\n*** Success"

Chapter 23
Task 8 - Configure NGINX Reverse Proxy

23-34

Sample output:

{"$schema":"api:standardResponse","links":
[{"rel":"canonical","href":"https://gg-prmy-vip1/services/v2/config/
health",
"mediaType":"application/json"},
{"rel":"self","href":"https://gg-prmy-vip1/services/v2/config/health",
"mediaType":"application/json"},{"rel":"describedby",
"href":"https://gg-prmy-vip1/services/ServiceManager/v2/metadata-catalog/
health",
"mediaType":"application/schema+json"}],"messages":[],
"response":{"$schema":"ogg:health","deploymentName":"ServiceManager",
"serviceName":"ServiceManager","started":"2021-12-09T23:33:03.425Z","health
y":true,
"criticalResources":
[{"deploymentName":"SOURCE","name":"adminsrvr","type":"service",
"status":"running","healthy":true},
{"deploymentName":"SOURCE","name":"distsrvr",
"type":"service","status":"running","healthy":true},
{"deploymentName":"SOURCE","name":"recvsrvr","type":"service","status":"run
ning",
"healthy":true}]}}
*** Success ***

3. As the root OS user, remove the curl configuration file (access.cfg) that contains the
deployment username and password:

[root@exadb-node1 ~]# rm access.cfg
rm: remove regular file ‘access.cfg’? y

Step 8.2.8 - Distribute the GoldenGate NGINX Configuration Files
When all of the reverse proxy configuration files have been created for the GoldenGate Service
Managers, they must be copied to all the database nodes.

1. As the opc OS user, distribute the NGINX configuration files to all database nodes:

[opc@exadb-node1 ~]$ sudo tar fczP nginx_conf.tar
 /etc/nginx/conf.d/ /etc/nginx/ssl/
[opc@exadb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc -d /tmp
 -f nginx_conf.tar
[opc@exadb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo tar
fxzP
 /tmp/nginx_conf.tar

2. As the opc OS user, test the new NGINX configuration on all nodes the new configuration
files were copied to:

[opc@exadb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo nginx -
t

exadb-node1: nginx: the configuration file /etc/nginx/nginx.conf syntax is
ok
exadb-node1: nginx: configuration file /etc/nginx/nginx.conf test is
successful
exadb-node2: nginx: the configuration file /etc/nginx/nginx.conf syntax is
ok

Chapter 23
Task 8 - Configure NGINX Reverse Proxy

23-35

exadb-node2: nginx: configuration file /etc/nginx/nginx.conf test is
successful

3. As the opc OS user, restart NGINX to load the new configuration on all nodes:

[opc@exadb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
systemctl
 restart nginx

Step 8.3 - Securing GoldenGate Microservices to Restrict Non-secure Direct Access

After configuring the NGINX reverse proxy with an unsecured Oracle GoldenGate
Microservices deployment, the microservices can continue accessing HTTP (non-secure)
using the configured microservices port numbers.

For example, the following non-secure URL could be used to access the Administration Server:
http://<vip-name>:9101.

Oracle GoldenGate Microservices' default behavior for each server (Service Manager,
adminserver, pmsrvr. distsrvr, and recsrvr) is to listen using a configured port number on all
network interfaces. This is undesirable for more secure installations, where direct access using
HTTP to the microservices needs to be disabled and only permitted using NGINX HTTPS.

Use the following commands to alter the Service Manager and deployment services listener
address to use only the localhost address. Access to the Oracle GoldenGate Microservices will
only be permitted from the localhost, and any access outside of the localhost will only succeed
using the NGINX HTTPS port.

Step 8.3.1 - Stop the Service Manager

As the grid OS user, stop the service manager:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ agctl stop goldengate <instance_name>
[grid@exadb-node1 ~]$ agctl status goldengate
Goldengate instance '<instance_name>' is not running

Step 8.3.2 - Modify the Service Manager Listener Address

As the oracle OS user, modify the listener address with the following commands.

Use the correct port number for the Service Manager being altered. The server will fail to start,
ignore the error, and proceed with the next step:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ export OGG_HOME=/u02/app/oracle/goldengate/gg21c
[oracle@exadb-node1 ~]$ export
 OGG_VAR_HOME=<acfs or dbfs mount point>/deployments/ggsm01/var
[oracle@exadb-node1 ~]$ export OGG_ETC_HOME=<acfs or
 dbfs mount point>/deployments/ggsm01/etc
[oracle@exadb-node1 ~]$ $OGG_HOME/bin/ServiceManager
 --prop=/config/network/serviceListeningPort
 --value='{"port":9100,"address":"127.0.0.1"}'
 --type=array --persist --exit
[oracle@exadb-node1 ~]$

Step 8.3.3 - Restart the Service Manager and Deployment

Chapter 23
Task 8 - Configure NGINX Reverse Proxy

23-36

As the grid OS user, restart the Service Manager and deployment:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ agctl start goldengate <instance_name>
[grid@exadb-node1 ~]$ agctl status goldengate
Goldengate instance '<instance_name>' is running on exadb-node1

Step 8.3.4 - Modify the GoldenGate Microservices listener address

As the oracle OS user, modify all the GoldenGate microservices (adminsrvr, pmsrvr,
distsrvr, recvsrvr) listening address to localhost for the deployments managed by the
Service Manager using the following command:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ cd /u02/app_acfs/goldengate
[oracle@exadb-node1 ~]$ chmod u+x secureServices.py
[oracle@exadb-node1 ~]$./secureServices.py http://localhost:9100 --user
oggadmin
Password for 'oggadmin': <oggadmin_password>

*** Securing deployment - ogg_deployment

Current value of "/network/serviceListeningPort" for "<instance_name>/
adminsrvr" is
{
 "address": "127.0.0.1",
 "port": 9101
}
Current value of "/network/serviceListeningPort" for "<instance_name>/
distsrvr" is
{
 "address": "127.0.0.1",
 "port": 9102
}
Current value of "/network/serviceListeningPort" for "<instance_name>/pmsrvr"
is
{
 "address": "127.0.0.1",
 "port": 9104
}
Current value of "/network/serviceListeningPort" for "<instance_name>/
recvsrvr" is
{
 "address": "127.0.0.1",
 "port": 9103
}

Note:

To modify a single deployment (adminsrvr, pmsrvr, distsrvr, recvsrvr), add the
flag --deployment instance_name

Chapter 23
Task 8 - Configure NGINX Reverse Proxy

23-37

Step 8.3.5 - Remove NGINX default.conf Configuration File

As the opc OS user, remove the default configuration file (default.conf) created in /etc/
nginx/conf.d:

[opc@exadb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo rm
 -f /etc/nginx/conf.d/default.conf
[opc@exadb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo nginx -s
reload

Step 8.4 - Create a Clusterware Resource to Manage NGINX
Oracle Clusterware needs to have control over starting the NGINX reverse proxy so that it can
be started automatically before the Oracle GoldenGate deployments are started.

1. As the grid OS user, use the following command to get the network CRS resource name
required to create the NGINX resource with a dependency on the underlying network CRS
resource:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ crsctl stat res -w "TYPE == ora.network.type"|grep
NAME

NAME=ora.net1.network

2. As the root OS user, use the following example command to create a Clusterware
resource to manage NGINX. Replace the HOSTING_MEMBERS and CARDINALITY to match
your environment:

[opc@exadb-node1 ~]$ sudo su -

[root@exadb-node1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -
f2)/bin/crsctl
 add resource nginx -type generic_application -attr
 "ACL='owner:root:rwx,pgrp:root:rwx,other::r--,group:oinstall:r-
x,user:oracle:rwx',
EXECUTABLE_NAMES=nginx,START_PROGRAM='/bin/systemctl start
 -f nginx',STOP_PROGRAM='/bin/systemctl stop
 -f nginx',CHECK_PROGRAMS='/bin/systemctl status nginx'
 ,START_DEPENDENCIES='hard(ora.net1.network) pullup(ora.net1.network)',
 STOP_DEPENDENCIES='hard(intermediate:ora.net1.network)',
 RESTART_ATTEMPTS=0, HOSTING_MEMBERS='<exadb-node1, exadb-node2>',
CARDINALITY=2"

The NGINX resource created in this example will run on the named database nodes
simultaneously, specified by HOSTING_MEMBERS. This is recommended when multiple
GoldenGate Service Manager deployments are configured and can independently move
between database nodes.

Once the NGINX Clusterware resource is created, the GoldenGate XAG resources need to
be altered so that NGINX must be started before the GoldenGate deployments are started.

3. As the root OS user, modify the XAG resources using the following example commands.

Determine the current --filesystems parameter:
[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ agctl config goldengate <instance_name> |grep "File

Chapter 23
Task 8 - Configure NGINX Reverse Proxy

23-38

System"
File System resources needed: <file_system_resource_name>

Modify the --filesystems parameter:
[opc@exadb-node1 ~]$ sudo su -
[root@exadb-node1 ~]# /u01/app/grid/xag/bin/agctl modify goldengate
<instance_name>
 --filesystems <file_system_resource_name>,nginx

4. Repeat the above commands for each XAG GoldenGate registration relying on NGINX.

Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate
Database Connections

To provide local database connections for the Oracle GoldenGate processes when switching
between Oracle RAC nodes, create a TNS alias on all of the Oracle RAC nodes where Oracle
GoldenGate may be started.

Create the TNS alias in the tnsnames.ora file in the TNS_ADMIN directory specified in the
deployment creation.

Perform the following steps to complete this task:

• Step 9.1 - Create the TNS Alias Definitions

• Step 9.2 - Create the Database Credentials

Step 9.1 - Create the TNS Alias Definitions
If the source database is a multitenant database, two TNS alias entries are required, one for
the container database (CDB) and one for the pluggable database (PDB) that is being
replicated.

For a target Multitenant database, the TNS alias connects the PDB to where replicated data is
being applied. The pluggable database SERVICE_NAME should be set to the database service
created in an earlier step (Step 2.3: Create the Database Services).

1. As the oracle OS user, find the database domain name:

[opc@exadb-node1]$ sudo su - oracle
[oracle@exadb-node1]$ source DB_NAME.env
[oracle@exadb-node1]$ sqlplus / as sysdba
SQL> show parameter db_domain

NAME TYPE VALUE
------------------------------------ -----------

db_domain string <db_domain_name>

2. As the oracle OS user on the first database node, follow the steps to create the TNS alias
definitions and distribute them to all database nodes:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ dcli -l oracle -g ~/dbs_group mkdir -p /u02/app/
oracle/goldengate/network/admin
[oracle@exadb-node1 ~]$ vi /u02/app/oracle/goldengate/network/admin/
tnsnames.ora

Chapter 23
Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections

23-39

OGGSRV_CDB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=IPC)(KEY=LISTENER))
 (CONNECT_DATA =
 (SERVICE_NAME = <cdb_service_name>.<db_domain_name>)
)
)
OGGSRV_<PDB_NAME> =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=IPC)(KEY=LISTENER))
 (CONNECT_DATA =

 (SERVICE_NAME = <pdb_service_name>.<db_domain_name>)
)
)
[oracle@exadb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group -
f /u02/app/oracle/goldengate/network/admin/*.ora -d /u02/app/oracle/
goldengate/network/admin

Note:

When the tnsnames.ora or sqlnet.ora located in the TNS_ADMIN directory for the
Oracle GoldenGate deployment are modified; the deployment needs to be restarted
to pick up the changes.

Step 9.2 - Create the Database Credentials
With the Oracle GoldenGate deployment created, use the Oracle GoldenGate Administration
Service home page to create the database credentials using the above TNS alias names.

As the oggadmin user, create the database credentials:

1. Log in into the Administration Service: https://localhost:<localPort>/<instance_name>/
adminsrvr

2. Click on Configuration under Administration Service.

3. Click the plus button to Add Credentials.

4. Add the required information.
If the source database is a Multitenant Database, create database credentials for the CDB
and PDB. If the target database is a Multitenant Database, create a single credential for
the PDB.

Task 10 - Create a New Profile
Create a new profile to automatically start the Extract and Replicat processes when the Oracle
GoldenGate Administration Server is started.

Then, restart if any Extract or Replicat processes are abandoned. With GoldenGate
Microservices, auto start and restart is managed by Profiles.

Using the Oracle GoldenGate Administration Server GUI, create a new profile that can be
assigned to each of the Oracle GoldenGate processes:

Chapter 23
Task 10 - Create a New Profile

23-40

1. Log in to the Administration Service on the Source and Target GoldenGate.

2. Click on Profile under Administration Service.

3. Click the plus (+) sign next to Profiles on the Managed Process Settings home page.
The Add Profile page is displayed.

4. Enter the details.

5. Click Submit.

Task 11 - Configure Oracle GoldenGate Processes
When creating Extract, Distribution Paths, and Replicat processes with Oracle GoldenGate
Microservices Architecture, all files that need to be shared between Oracle RAC nodes are
already shared with the deployment files stored on a shared file system (DBFS or ACFS).

Listed below are the essential configuration details recommended for running Oracle
GoldenGate Microservices on Oracle RAC for Extract, Distribution Paths, and Replicat
processes.

Perform the following steps to complete this task:

• Step 11.1 - Extract Configuration

• Step 11.2 - (DBFS only) Place the Temporary Cache Files on the Shared Storage

• Step 11.3 - Distribution Path Configuration

• Step 11.4 - Replicat Configuration

Step 11.1 - Extract Configuration

When creating an Extract using the Oracle GoldenGate Administration Service GUI interface,
leave the Trail SubDirectory parameter blank so that the trail files are automatically created
in the deployment directories stored on the shared file system. The default location for trail files
is the /<deployment directory>/var/lib/data directory.

Note:

To capture from a multitenant database, you must use an Extract configured at the
root level using a c## account. To apply data into a multitenant database, a separate
Replicat is needed for each PDB because a Replicat connects at the PDB level and
doesn't have access to objects outside of that PDB

Create the database credentials:

1. Log in to the Oracle GoldenGate Administration Server in the Source Oracle
GoldenGate.

2. Click in Overview under Administration Service.

3. Click the plus button to Add Extract.

4. Select Integrated Extract.

5. Add the required information.

6. Click Next.

Chapter 23
Task 11 - Configure Oracle GoldenGate Processes

23-41

7. If using CDB Root Capture from PDB, add the SOURCATALOG parameter with the PDB
Name.

8. Click Create.

Step 11.2 - (DBFS only) Place the Temporary Cache Files on the Shared Storage

If you are using DBFS for shared storage, and the deployment var/temp directory was moved
to local storage as described in Task 5 - Create the Oracle GoldenGate Deployment, it is
recommended that you use the Extract CACHEMGR parameter to place the temporary cache files
on the shared storage.

1. As the oracle OS user, create a new directory under the DBFS deployment mount point.:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ mkdir
 /mnt/dbfs/goldengate/deployments/<instance_name>/temp_cache

2. Set the Extract parameter to the new directory:

CACHEMGR CACHEDIRECTORY
 /mnt/dbfs/goldengate/deployments/<instance_name>/temp_cache

More instructions about creating an Extract process are available in Using Oracle GoldenGate
Classic Architecture with Oracle Database.

Step 11.3 - Distribution Path Configuration

When using Oracle GoldenGate Distribution paths with the NGINX Reverse Proxy, additional
steps must be carried out to ensure the path client and server certificates are configured.

More instructions about creating distribution paths are available in Oracle GoldenGate
Microservices Documentation. A step-by-step example is in the following video, “Connect an
on-premises Oracle GoldenGate to OCI GoldenGate using NGINX,” to correctly configure the
certificates.

Perform the following sub-steps to complete this step:

• Step 11.3.1 - Download the Target Server’s Root Certificate, and then upload it to the
source Oracle GoldenGate

• Step 11.3.2 - Create a user in the Target Deployment for the Source Oracle GoldenGate to
use

• Step 11.3.3 - Create a Credential in the Source Oracle GoldenGate

• Step 11.3.4 - Create a Distribution Path on the Source Oracle GoldenGate to the Target
Deployment

• Step 11.3.5 - Verify the Connection in the Target Deployment Console Receiver Service

Step 11.3.1 - Download the Target Server’s Root Certificate, and then upload it to the
source Oracle GoldenGate

Download the target deployment server’s root certificate and add the CA certificate to the
source deployment Service Manager.

1. Log in to the Administration Service on the Target GoldenGate.

2. Follow “Step 2 - Download the target server’s root certificate” in the video “Connect an on-
premises Oracle GoldenGate to OCI GoldenGate using NGINX.”

Chapter 23
Task 11 - Configure Oracle GoldenGate Processes

23-42

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/index.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/index.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc
https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380

Step 11.3.2 - Create a user in the Target Deployment for the Source Oracle GoldenGate
to use

Create a user in the target deployment for the distribution path to connect to:

1. Log in to the Administration Service on the Target GoldenGate.

2. Click Administrator under Administration Service.

3. Click the plus (+) sign next to Users.

4. Enter the details.

Step 11.3.3 - Create a Credential in the Source Oracle GoldenGate

Create a credential in the source deployment connecting the target deployment with the user
created in the previous step. For example, a domain of OP2C and an alias of WSSNET.

1. Log in to the Administration Service on the Source Oracle GoldenGate.

2. Click Configuration under Administration Service.

3. Click the plus (+) sign next to Credentials on the Database home page. The Add
Credentials page is displayed.

4. Enter the details.

Step 11.3.4 - Create a Distribution Path on the Source Oracle GoldenGate to the Target
Deployment

A path is created to send trail files from the Distribution Server to the Receiver Server. You can
create a path from the Distribution Service.

To add a path for the source deployment:

1. Log in to the Distribution Service on the Source Oracle Goldengate.

2. Click the plus (+) sign next to Path on the Distribution Service home page. The Add Path
page is displayed.

3. Enter the details as follows:

Option Description

Path Name Select a name for the path.

Source: Trail Name Select the Extract name from the drop-down list,
which populates the trail name automatically. If it
doesn’t, enter the trail name you provided while
adding the Extract.

Generated Source URI Specify localhost for the server’s name; this
allows the distribution path to be started on any
of the Oracle RAC nodes.

Target Authentication Method Use UserID Alias
Target Set the Target transfer protocol to wss (secure

web socket). Set the Target Host to the target
hostname/VIP that will be used for connecting to
the target system along with the Port Number
that NGINX was configured with (default is 443).

Domain Set the Domain to the credential domain created
above in Step 11.3.3, for example, OP2C.

Alias The Alias is set to the credential alias wssnet,
also created in Step 11.3.3.

Chapter 23
Task 11 - Configure Oracle GoldenGate Processes

23-43

Option Description

Auto Restart Options Set the distribution path to restart when the
Distribution Server starts automatically. This is
required, so that manual intervention is not
required after an Oracle RAC node relocation of
the Distribution Server. It is recommended to set
the number of Retries to 10. Set the Delay,
which is the time in minutes to pause between
restart attempts, to 1.

4. Click Create Path.

5. From the Action Menu, click Start.

6. Verify that the Distribution Service is running.

Step 11.3.5 - Verify the Connection in the Target Deployment Console Receiver Service

1. Log in to the Administration Service on the Target Deployment Console.

2. Click on Receiver Service.

Step 11.4 - Replicat Configuration

The Replicat process receives the trail data and applies it to the database.

Perform the following sub-steps to complete this step:

• Step 11.4.1 - Create the Checkpoint Table

• Step 11.4.2 - Add a Replicat

Step 11.4.1 - Create the Checkpoint Table

The checkpoint table is a required component for Oracle GoldenGate Replicat processes. After
connecting to the database from the Credentials page of the Administration Service, you can
create the checkpoint table.

Create the checkpoint table in the target deployment:

1. Log in to the Administration Service on the Target GoldenGate.

2. Click Configuration under Administration Service.

3. Click Database and Connect to the target database or PDB.

4. Click the plus (+) sign next to Checkpoint. The Add Checkpoint page is displayed.

5. Enter the details.

See About Checkpoint Table for more information about the checkpoint table.

Step 11.4.2 - Add a Replicat

After you set up your database connections and verified them, you can add a Replicat for the
deployment by following these steps:

1. Log in to the Administration Service on the Target GoldenGate.

2. Click the plus (+) sign next to Replicats on the Administration Service home page. The
Add Replicat page is displayed.

3. Select a Replicat type and click Next.

4. Enter the details as follows:

Chapter 23
Task 11 - Configure Oracle GoldenGate Processes

23-44

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-apply.html#GUID-3DFBE2BE-20C5-48AA-B96A-7697126D77FE

Option Description

Process Name The name of the Replicat process

Credential Domain Credential domain created in Step 9.2. In our
example is GoldenGate

Credential Alias Credential alias created in Step 9.2. Our
example is Target_PDB

Source Select the source to use Trail.

Trail Name A two-character trail name.

Checkpoint Table Set the use of an existing checkpoint table.

5. Click Create Path.

6. From the Action Menu, click Start.

7. Verify that the Replicat is running.

Chapter 23
Task 11 - Configure Oracle GoldenGate Processes

23-45

24
Cloud MAA Platinum: Oracle GoldenGate
Microservices Architecture Integrated with
Active Data Guard

The combination and integration of Oracle GoldenGate Microservices and Oracle Data Guard
enables you to achieve an MAA Platinum service-level configuration that achieves zero or near
zero downtime for all planned and unplanned outages.

See the following topics:

• Overview

• Task 1 - Before You Begin

• Task 2 - Configure the Oracle Database for GoldenGate

• Task 3 - Configure Oracle Database File System

• Task 4 - Install Oracle GoldenGate

• Task 5 - Create Oracle GoldenGate Deployment Directories

• Task 6 - Network Configuration

• Task 7 - Configure Standby NGINX Reverse Proxy

• Task 8 - Configure Oracle Grid Infrastructure Agent

• Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections

• Task 10 - Configure Oracle GoldenGate Processes

• Example Distribution Path Target Change Script

Overview
With these configuration and operational best practices, Oracle GoldenGate can be configured
to work seamlessly with Oracle Data Guard after any zero data loss or data loss role transition.

By using Database File System (DBFS) as the file system for the Oracle GoldenGate
Microservices deployment files, Oracle GoldenGate Extract, Distribution Paths, and Replicat
processes continue to stay synchronized with the database after a role transition.

Implement these best practices for configuring Oracle GoldenGate Microservices Architecture
on Oracle Exadata Database Service on Dedicated Infrastructure (ExaDB-D), or Oracle
Exadata Database Service on Cloud@Customer (ExaDB-C@C), to work seamlessly with
Oracle Data Guard, using Oracle Real Application Clusters (Oracle RAC), Oracle Clusterware,
and Oracle Database File System (DBFS).

These best practices enable Oracle GoldenGate Microservices replication using a database
that is protected by a Data Guard standby, to work following an Oracle Data Guard role
transition transparently and seamlessly, no matter which Data Guard protection mode is
configured (Maximum Performance, Maximum Availability, or Maximum Protection).

There are several key software requirements:

24-1

• Oracle Grid Infrastructure 19c or later
Oracle Grid Infrastructure provides the necessary components needed to manage high
availability for any business-critical applications. Using Oracle Clusterware (a component
of Oracle Grid Infrastructure) network, database, and Oracle GoldenGate resources can be
managed to provide availability in the event of a failure.

• Oracle Grid Infrastructure Agent version 10.2 or later
The Oracle Grid Infrastructure Agent leverages the Oracle Grid Infrastructure components
to provide integration between Oracle GoldenGate and its dependent resources, such as
the database, network, and file system. The agent also integrates Oracle GoldenGate with
Oracle Data Guard so that Oracle GoldenGate is restarted on the new primary database
following a role transition.

• Oracle Database 19c or later
Refer to My Oracle Support note 2193391.1 for a full list of recommended Oracle
Database patches when using Oracle GoldenGate.

• Oracle GoldenGate Microservices version 21c or later
Oracle GoldenGate 21c introduces unified build support so a single software installation
supports capturing and applying replicated data to multiple major Oracle Database
versions (11g Release 2 to 21c). This is possible because an Oracle GoldenGate
installation includes the required Oracle Database client libraries without requiring a
separate database ORACLE_HOME installation.

• Oracle DBFS to protect and replicate critical Oracle GoldenGate files
The Oracle Database File System (DBFS) is the only MAA-validated and recommended
file system for an Oracle Data Guard and Oracle GoldenGate configuration, because it
allows the storage of the required Oracle GoldenGate files, such as the checkpoint and
trail files, to be located inside the same database that is protected with Oracle Data Guard,
ensuring consistency between the Oracle GoldenGate files and the database in a
seamless fashion.

Task 1 - Before You Begin
To get started, complete the following prerequisites:

• Procure Oracle Exadata Database Service on Dedicated Infrastructure or
Cloud@Customer for the Oracle GoldenGate deployment.

You can deploy Oracle GoldenGate with an existing ExaDB-D or ExaDB-C@C system or
launch a new system, according to your business needs. For instructions on launching and
managing an ExaDB-D system, see Oracle Exadata Database Service on Dedicated
Infrastructure or for ExaDB-C@C see Oracle Exadata Database Service on
Cloud@Customer.

• Have Oracle GoldenGate configured as detailed in Cloud: Oracle GoldenGate
Microservices Architecture on Oracle Exadata Database Service Configuration Best
Practices .

DBFS is required for critical Oracle GoldenGate files when integrating with Data Guard.

• The Oracle Data Guard standby database should also be configured and operational
before continuing.

For more information about Oracle Data Guard see Getting Started with Oracle Data
Guard.

• A secure deployment involves making RESTful API calls and conveying trail data between
the Distribution Server and Receiver Server, over SSL/TLS. You can use your own existing

Chapter 24
Task 1 - Before You Begin

24-2

https://support.oracle.com/rs?type=doc&id=2193391.1
https://docs.oracle.com/en-us/iaas/exadatacloud/index.html
https://docs.oracle.com/en-us/iaas/exadatacloud/index.html
https://docs.oracle.com/en-us/iaas/exadata/index.html
https://docs.oracle.com/en-us/iaas/exadata/index.html

business certificate from your Certificate Authority (CA) or you might create your own
certificates.

Contact your systems administrator to follow your corporate standards to create or obtain
the server certificate before proceeding. A separate certificate is required for each VIP and
Service Manager pair.

Task 2 - Configure the Oracle Database for GoldenGate
Perform the following steps to complete this task:

• Step 2.1 - Configure the Standby Database for Oracle GoldenGate

• Step 2.2 - Modify the Primary Database Service

• Step 2.3 - Create the Standby Database Service

Step 2.1 - Configure the Standby Database for Oracle GoldenGate

The standby database initialization parameters should match those of the primary database, as
specified in Cloud: Oracle GoldenGate Microservices Architecture on Oracle Exadata
Database Service Configuration Best Practices .

This includes the following parameters:

• ENABLE_GOLDENGATE_REPLICATION=TRUE
• For Oracle GoldenGate source databases, enable FORCE LOGGING mode and enable

minimal supplemental logging.

• If an Oracle GoldenGate source database or running integrated Replicat (parallel or non-
parallel), configure the STREAMS_POOL_SIZE.

Step 2.2 - Modify the Primary Database Service

On the primary database server, validate the existing database services that were created as
part of the original Oracle GoldenGate on Oracle Exadata Database Service configuration.

By default, the service role is defined as PRIMARY, so that the service is only started when the
database becomes the Data Guard primary database role after a role transition.

As the oracle OS user on the primary system, validate the service role using the following
command:

[opc@exapri-node1 ~]$ sudo su - oracle
[oracle@exapri-node1 ~]$ source <db_name>.env
[oracle@exapri-node1 ~]$ srvctl config service -db $ORACLE_UNQNAME |
 egrep 'Service name|role|Pluggable database name'
Service name: <CDB_SERVICE_NAME>
Service role: PRIMARY
Pluggable database name:
Service name: <PDB_SERVICE_NAME>
Service role: PRIMARY
Pluggable database name: <PDB_NAME>

If the roles is not PRIMARY, modify the service using the following command:

[oracle@exapri-node1 ~]$ srvctl modify service -db $ORACLE_UNQNAME
 -service <service_name> -role PRIMARY

Chapter 24
Task 2 - Configure the Oracle Database for GoldenGate

24-3

If your database is part of a multitenant environment, remember to modify both the multitenant
container database (CDB) and pluggable database (PDB) services.

Step 2.3 - Create the Standby Database Service
On the standby Oracle Exadata Database Service, a database service is required for the
standby database so that the Oracle Grid Infrastructure Agent will automatically start the
Oracle GoldenGate deployment when the database is opened with the primary role.

When a source database is in a multitenant environment, a separate service is required for the
root container database (CDB) and the pluggable database (PDB) that contains the schema
being replicated. For a multitenant environment target database, a single service is required for
the PDB.

Create the service in the standby database as it was created on the primary database. It is
recommended that you use the same service name as was specified on the primary system.
The service must be created as a singleton service, using the -preferred option, because the
application Virtual IP address (VIP), DBFS, and Oracle GoldenGate will run on the system
node where the service is running.

1. As the oracle OS user, get the Fully Qualified Domain Name (FQDN):

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ hostname -f
exadb-node1.<FQDN>

2. As the oracle OS user on the standby system, create the service using the following
command:

[opc@exastb-node1 ~]$ sudo su - oracle
[oracle@exastb-node1 ~]$ source <db_name>.env
[oracle@exastb-node1 ~]$ srvctl add service -db $ORACLE_UNQNAME
 -service <CDB_SERVICE_NAME>.<FQDN> -preferred <SID1> -available <SID2>
 -role PRIMARY
[oracle@exastb-node1 ~]$ srvctl add service -db $ORACLE_UNQNAME
 -service <PDB_SERVICE_NAME>.<FQDN> -preferred <SID1> -available <SID2>
 -pdb <PDB name> -role PRIMARY

Task 3 - Configure Oracle Database File System
The Database File System (DBFS) is the only recommended solution when configuring Oracle
GoldenGate with Oracle Data Guard.

The DBFS user, tablespace, and file system in the database was previously created in the
primary database, as detailed in Cloud: Oracle GoldenGate Microservices Architecture on
Oracle Exadata Database Service Configuration Best Practices .

Perform the following steps to complete this task:

• Step 3.1 - Configuring DBFS on Oracle Exadata Database Service

• Step 3.2 - (PDB Only) Create an Entry in TNSNAMES

• Step 3.3 - Copy and Edit the mount-dbfs Scripts from the Primary System

• Step 3.4 - Register the DBFS Resource with Oracle Clusterware

Step 3.1 - Configuring DBFS on Oracle Exadata Database Service

Chapter 24
Task 3 - Configure Oracle Database File System

24-4

1. As the opc OS user on the standby system, add the grid user to the fuse group:

[opc@exastb-node1 ~]$ sudo -u grid
 $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/bin/olsnodes > ~/
dbs_group
[opc@exadb-node1 ~]$ dcli -g ~/dbs_group -l opc sudo usermod -a -G fuse
grid

2. As the opc OS user on the standby system, validate that the file /etc/fuse.conf exists
and contains the user_allow_other option:

[opc@exastb-node1 ~]$ cat /etc/fuse.conf
mount_max = 1000
user_allow_other

3. As the opc OS user on the standby system, skip this step if the option user_allow_other is
already in the /etc/fuse.conf file. Otherwise run the following commands to add the
option:

[opc@exastb-node1 ~]$ dcli -g ~/dbs_group -l opc “echo user_allow_other |
 sudo tee -a /etc/fuse.conf”

4. As the opc OS user on the standby system, create an empty directory that will be used as
the mount point for the DBFS filesystem.

Note:

It is important that the mount point is identical as the one in the primary system,
because the physical location of the Oracle GoldenGate deployment is included
within the deployment configuration files.

[opc@exastb-node1 ~]$ dcli -g ~/dbs_group -l opc sudo mkdir -p /mnt/dbfs

5. As the opc OS user on the standby system, change ownership on the mount point directory
so the grid OS user can access it:

[opc@exastb-node1 ~]$ dcli -g ~/dbs_group -l opc
 sudo chown oracle:oinstall /mnt/dbfs

Step 3.2 - (PDB Only) Create an Entry in TNSNAMES

1. As the oracle OS user on the standby system, add a connect entry in $TNS_ADMIN/
tnsnames.ora file. Use the PDB service name created in Step 2.3:

[oracle@exadb-node1 ~]$ vi $TNS_ADMIN/tnsnames.ora
dbfs =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY=LISTENER))
 (CONNECT_DATA =
 (SERVICE_NAME = <PDB_SERVICE_NAME>)
)
)

Chapter 24
Task 3 - Configure Oracle Database File System

24-5

2. As the oracle OS user, distribute the $TNS_ADMIN/tnsnames.ora file to the rest of the
nodes:

[oracle@exadb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group
 -f $TNS_ADMIN/tnsnames.ora -d $TNS_ADMIN/

Step 3.3 - Copy and Edit the mount-dbfs Scripts from the Primary System

1. As the root OS user on the primary system, create a zip file with the files mount-
dbfs.conf and mount-dbfs.sh:

[opc@exapri-node1 ~]$ sudo su -
[root@exapri-node1 ~]# zip -j /tmp/mount-dbfs.zip
 $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/script/mount-
dbfs.sh
 /etc/oracle/mount-dbfs.conf
 adding: mount-dbfs.sh (deflated 67%)
 adding: mount-dbfs.conf (deflated 58%)

2. As the opc OS user on the standby system, copy the mount-dbfs.zip file from the primary
system to the standby system:

[opc@exastb-node1 ~]$ scp exapri-node1.oracle.com:/tmp/mount-dbfs.zip /tmp

3. As the opc OS user on the standby system, unzip the mount-dbfs.zip file and edit the
configuration file mount-dbfs.conf:

[opc@exastb-node1 ~]$ unzip /tmp/mount-dbfs.zip -d /tmp
Archive: /tmp/mount-dbfs.zip
 inflating: /tmp/mount-dbfs.sh
 inflating: /tmp/mount-dbfs.conf
[opc@exastb-node1 ~]$ vi /tmp/mount-dbfs.conf

It is recommended that you place them in the same directory as the primary system. You
will need to modify the following parameters in the mount-dbfs.conf file to match the
standby database:

• DBNAME
• TNS_ADMIN
• PDB_SERVICE

4. As the opc OS user on the standby system, copy mount-dbfs.conf to the directory /etc/
oracle on database nodes and set proper permissions on it:

[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc -d /tmp
 -f /tmp/mount-dbfs.conf
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 cp /tmp/mount-dbfs.conf /etc/oracle
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 chown oracle:oinstall /etc/oracle/mount-dbfs.conf
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 chmod 660 /etc/oracle/mount-dbfs.conf

Chapter 24
Task 3 - Configure Oracle Database File System

24-6

5. As the opc OS user on the standby system, copy mount-dbfs.sh to the
directory $GI_HOME/crs/script on database nodes and set proper permissions on it:

[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo mkdir
 $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/script
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo chown
 grid:oinstall $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/
script
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l grid
 -d $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/script
 -f /tmp/mount-dbfs.sh
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l grid chmod 770
 $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/script/mount-
dbfs.sh

Step 3.3 - Register the DBFS Resource with Oracle Clusterware

When registering the resource with Oracle Clusterware, be sure to create it as a
cluster_resource. The reason for using cluster_resource is so the file system can only by
mounted on a single node at one time, preventing mounting of DBFS from concurrent nodes
creating the potential of concurrent file writes, causing file corruption problems.

If using Oracle Multitenant, make sure to use the service name for the same PDB that contains
the DBFS repository as was created in the primary database.

1. As the grid OS user on the standby system, find the resource name for the database
service created in a previous step for the DBFS service dependency:

[opc@exastb-node1 ~]$ sudo su - grid
[grid@exastb-node1 ~]$ crsctl stat res |grep <PDB_NAME>
NAME=ora.<DB_UNIQUE_NAME>.<PDB_SERVICE_NAME>.svc

2. As the oracle OS user on the standby system, register the Clusterware resource by
executing the following script:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ vi add-dbfs-resource.sh
start script add-dbfs-resource.sh
#!/bin/bash
ACTION_SCRIPT=$(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/crs/script/mount-dbfs.sh
RESNAME=dbfs_mount
DEPNAME=ora.<DB_UNIQUE_NAME>.<PDB_SERVICE_NAME>.svc
ORACLE_HOME=$(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)
PATH=$ORACLE_HOME/bin:$PATH
export PATH ORACLE_HOME
crsctl add resource $RESNAME \
 -type cluster_resource \
 -attr "ACTION_SCRIPT=$ACTION_SCRIPT, \
 CHECK_INTERVAL=30,RESTART_ATTEMPTS=10, \
 START_DEPENDENCIES='hard($DEPNAME)pullup($DEPNAME)',\
 STOP_DEPENDENCIES='hard($DEPNAME)',\
 SCRIPT_TIMEOUT=300"
end script add-dbfs-resource.sh
[oracle@exadb-node1 ~]$ sh add-dbfs-resource.sh

Chapter 24
Task 3 - Configure Oracle Database File System

24-7

Note:

After creating the $RESNAME resource, in order to stop the $DBNAME database when
the $RESNAME resource is ONLINE, you will have to specify the force flag when using
srvctl.

For example: srvctl stop database -d $ORACLE_UNQNAME -f

Task 4 - Install Oracle GoldenGate
Install the Oracle GoldenGate software locally on all nodes in the Oracle Exadata Database
Service configuration that will be part of the GoldenGate configuration.

Note:

Make sure the installation directory is the identical on all nodes to match the primary
system installation directory.

1. As the opc OS user on the standby system, copy the oggcore.rsp response file from the
primary system to the standby system:

[opc@standby_node_1 ~]$ scp
 primary_node_1:/u02/app_acfs/goldengate/oggcore.rsp
 /u02/app_acfs/goldengate

2. On the standby system, follow “Step 4.2 - Install Oracle GoldenGate” as detailed in Task 4
- Install Oracle GoldenGate.

Task 5 - Create Oracle GoldenGate Deployment Directories
The Oracle GoldenGate Service Manager and deployment were already created on the
primary system, but certain directories and symbolic links need to be configured on the
standby system nodes. These directories and symbolic links were created on the primary
system, as detailed in Cloud: Oracle GoldenGate Microservices Architecture on Oracle
Exadata Database Service Configuration Best Practices .

1. As the oracle OS user on the primary system, determine the datastore directory:

[opc@exapri-node1 ~]$ sudo su - oracle
[oracle@exapri-node1 ~]$ grep RepoDatastorePath /mnt/dbfs/goldengate
 /deployments/<instance_name>/var/log/pmsrvr.log|uniq
"RepoDatastorePath": "",
 "RepoDatastorePath": "/u02/app/oracle/goldengate/datastores/
<instance_name>",

Chapter 24
Task 4 - Install Oracle GoldenGate

24-8

2. As the oracle OS user on the standby system, create the directory on all database nodes:

[oracle@exastb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group mkdir
 -p /u02/app/oracle/goldengate/datastores/<gg_deployment_name>

Create the Oracle GoldenGate deployment temp directory local storage to match the
symbolic link created on the primary system.

3. As the oracle OS user on the primary system, determine the datastore directory:

[oracle@exapri-node1 ~]$ ls -l
 /mnt/dbfs/goldengate/deployments/<instance_name>/var |grep temp
lrwxrwxrwx 1 oracle oinstall 49 Oct 3 10:20 temp ->
 /u02/app/oracle/goldengate/deployments/<instance_name>/temp

4. As the oracle OS user on the standby system, create the same directory on the standby
database nodes:

[oracle@exastb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group mkdir
 -p /u02/app/oracle/goldengate/deployments/<instance_name>/temp

Task 6 - Network Configuration
On the standby system, follow the instructions in Task 6 - Configure the Network from Chapter
Cloud: Oracle GoldenGate Microservices Architecture on Oracle Exadata Database Service
Configuration Best Practices .

Task 7 - Configure Standby NGINX Reverse Proxy
The Oracle GoldenGate reverse proxy feature allows a single point of contact for all of the
Oracle GoldenGate microservices associated with an Oracle GoldenGate deployment.

Without reverse proxy, the GoldenGate deployment microservices are contacted using a URL
consisting of a host name or IP address and separate port numbers, one for each of the
services. Reverse proxy is mandatory to ensure easy access to microservices and provide
enhanced security and manageability.

Perform the following steps to complete this task:

• Step 7.1 - Install NGINX Reverse Proxy

• Step 7.2 - Copy NGINX Configuration Files from the Primary System

• Step 7.3 - Install Server Certificates for NGINX

• Step 7.4 - Test and Reload the New NGINX Configuration

• Step 7.5 - Distribute the GoldenGate NGINX Configuration Files

• Step 7.6 - Create a Clusterware Resource to Manage NGINX

Step 7.1 - Install NGINX Reverse Proxy

On the standby system, follow the instructions in “Step 8.1 - Install NGINX Reverse Proxy
Server” of Task 8 - Configure NGINX Reverse Proxy to install NGINX.

Step 7.2 - Copy NGINX Configuration Files from the Primary System

Chapter 24
Task 6 - Network Configuration

24-9

1. As the opc user on the standby system, copy the NGINX configuration file from the primary
to the standby database system:

[opc@standby_node_1 ~]$ scp
primary_node_1.oracle.com:/etc/nginx/conf.d/ogg_<deployment_name>.conf
 /tmp

2. As the root user on the standby system, copy the NGINX configuration file from the
directory /tmp to the directory /etc/nginx/conf.d:

[opc@exastb-node1 ~]$ sudo su -
[root@exastb-node1 ~]# cp /tmp/ogg_<deployment_name>.conf /etc/nginx/conf.d

Step 7.3 - Install Server Certificates for NGINX

The standby system will need a different CA signed certificate due to using a different VIP
name/address than the primary system. Contact your systems administrator to follow your
corporate standards to create or obtain the server certificate before proceeding. A separate
certificate is required for each VIP and Service Manager pair.

1. As the root user on the standby system, copy the server CA certificates and key files in
the /etc/nginx/ssl directory, owned by root with file permissions 400 (-r--------):

[opc@exastb-node1 ~]$ sudo su -
[root@exastb-node1 ~]# mkdir /etc/nginx/ssl
[root@exastb-node1 ~]# chmod 400 /etc/nginx/ssl

2. As the root user on the standby system, set the correct filenames for the certificate and
key file to match the same the filenames in the NGINX configuration file:

[root@exastb-node1 ~]# grep
 ssl_certificate /etc/nginx/conf.d/ogg_<deployment_name>.conf
 ssl_certificate /etc/nginx/ssl/server.chained.crt;
 ssl_certificate_key /etc/nginx/ssl/server.key;

Note:

If you have copied multiple reverse proxy configuration files copied from the
primary system, you will need to repeat this process for each file.

When using CA signed certificates, the certificate named with the ssl_certificate NGINX
parameter must include the 1) CA signed, 2) intermediate and 3) root certificates in a
single file. The order is very important, otherwise NGINX fails to start and displays the error
message:

(SSL: error:0B080074:x509 certificate routines: X509_check_private_key:key
values mismatch).
The root and intermediate certificates can be downloaded from the CA signed certificate
provider.

Chapter 24
Task 7 - Configure Standby NGINX Reverse Proxy

24-10

The single file can be generated using the following example command:

[root@exastb-node1 ~]# cat CA_signed_cert.crt intermediate.crt root.crt >
 /etc/nginx/ssl/server.chained.crt

The ssl_certificate_key file is the key file generated when creating the Certificate
Signing Request (CSR), which is required when requesting a CA signed certificate.

3. As the root user on the standby system, change the server_name parameter to the correct
VIP name in the reverse proxy configuration file copied from the primary system:

[root@exastb-node1 ~]# vi /etc/nginx/conf.d/ogg_<deployment_name>.conf
Before:
server_name exapri-vip.oracle.com;
After:
server_name exastb-vip.oracle.com;

Step 7.4 - Test and Reload the New NGINX Configuration

Because the VIP will not be running on the standby system until the primary database service
is running, there is a parameter that needs to be set in the /etc/sysctl.conf file.

1. As the opc user on the standby system, add the following parameter to the file /etc/
sysctl.conf:

[opc@exastb-node1 ~]$ sudo vi /etc/sysctl.conf
allow processes to bind to the non-local address
net.ipv4.ip_nonlocal_bind = 1

2. As the opc user on the standby system, distribute the /etc/sysctl.conf file:

[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc
 -d /tmp -f /etc/sysctl.conf
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 cp /tmp/sysctl.conf /etc/sysctl.conf

3. As the opc user on the standby system, reload the modified configuration:

[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo sysctl
 -p /etc/sysctl.conf

4. As the opc user on the standby system, validate the NGINX configuration file to detect any
errors in the configuration. If there are errors in the file, they will be reported by the
following command:

[opc@exastb-node1 ~]$ sudo nginx -t
nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginxconf test is successful

5. As the opc user on the standby system, restart NGINX with the new configuration:

[opc@exastb-node1 ~]$ sudo systemctl restart nginx

Step 7.5 - Distribute the GoldenGate NGINX Configuration Files

Chapter 24
Task 7 - Configure Standby NGINX Reverse Proxy

24-11

Once all the reverse proxy configuration files have been created for the GoldenGate Service
Managers, they need to be copied to all the database nodes.

1. As the opc OS user on the standby system, distribute the NGINX configuration files to all
the database nodes:

[opc@exastb-node1 ~]$ sudo tar fczP nginx_conf.tar
 /etc/nginx/conf.d/ /etc/nginx/ssl/
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc
 -d /tmp -f nginx_conf.tar
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc
 sudo tar fxzP /tmp/nginx_conf.tar

2. As the opc OS user on the standby system, test the new NGINX configuration on all nodes
the new configuration files were copied to:

[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo nginx
-t

exastb-node1: nginx: the configuration file /etc/nginx/nginx.conf syntax
is ok
exastb-node1: nginx: configuration file /etc/nginx/nginx.conf test is
successful
exastb-node2: nginx: the configuration file /etc/nginx/nginx.conf syntax
is ok
exastb-node2: nginx: configuration file /etc/nginx/nginx.conf test is
successful

3. As the opc OS user on the standby system, restart NGINX to load the new configuration on
all nodes:

[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc
 sudo systemctl restart nginx

Step 7.6 - Create a Clusterware Resource to Manage NGINX

Oracle Clusterware needs to have control over starting the NGINX reverse proxy so that it can
be started automatically before the GoldenGate deployments are started.

1. As the grid OS user on the standby system, use the following command to get the
network CRS resource name required to create the NGINX resource with a dependency on
the underlying network CRS resource:

[opc@exastb-node1 ~]$ sudo su - grid
[grid@exastb-node1 ~]$ crsctl stat res -w "TYPE == ora.network.type"|grep
NAME
NAME=ora.net1.network

2. As the root user on the standby system, use the following example command to create a
Clusterware resource to manage NGINX. Replace HOSTING_MEMBERS and CARDINALITY to
match your environment:

[opc@exastb-node1 ~]$ sudo su -

[root@exastb-node1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl add resource nginx -type generic_application -attr

Chapter 24
Task 7 - Configure Standby NGINX Reverse Proxy

24-12

 "ACL='owner:root:rwx,pgrp:root:rwx,other::r--,group:oinstall:r-
x,user:oracle:rwx',
EXECUTABLE_NAMES=nginx,START_PROGRAM='/bin/systemctl start -f nginx',
STOP_PROGRAM='/bin/systemctl stop -f nginx',
CHECK_PROGRAMS='/bin/systemctl status nginx' ,
START_DEPENDENCIES='hard(ora.net1.network) pullup(ora.net1.network)',
STOP_DEPENDENCIES='hard(intermediate:ora.net1.network)',
RESTART_ATTEMPTS=0,
HOSTING_MEMBERS='<exastb-node1, exastb-node2>', CARDINALITY=2"

The NGINX resource created in this example will run on the named database nodes at the
same time, specified by HOSTING_MEMBERS. This is recommended when multiple GoldenGate
Service Manager deployments are configured, and they can independently move between
database nodes.

Task 8 - Configure Oracle Grid Infrastructure Agent
The following procedure shows you how to configure Oracle Clusterware to manage Oracle
GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG).

Using XAG automates the mounting of the shared file system (DBFS) as well as the stopping
and starting of the Oracle GoldenGate deployment when relocating between Oracle RAC
nodes.

Perform the following steps to complete this task:

• Step 8.1 - Modify the Primary Cluster XAG GoldenGate Instance

• Step 8.2 - Install Oracle Grid Infrastructure Agent

• Step 8.3 - Configure Oracle Grid Infrastructure Agent

Step 8.1 - Modify the Primary Cluster XAG GoldenGate Instance
The Oracle Grid Infrastructure Standalone Agent (XAG) GoldenGate instance on the primary
system, must be modified to identify that it is part of an Oracle Data Guard configuration.

As the root user on the primary system, use the following command to modify the Oracle Data
Guard autostart flag:

[opc@exapri-node1 ~]$ sudo su -
[root@exapri-node1 ~]# /u01/app/grid/xag/bin/agctl modify goldengate
<instance_name>
 --dataguard_autostart yes

Step 8.2 - Install Oracle Grid Infrastructure Agent

On the standby system, follow the instructions in “Step 7.1 - Install the Oracle Grid
Infrastructure Standalone Agent” from Task 7 - Configure Oracle Grid Infrastructure Agent.

Step 8.3 - Configure Oracle Grid Infrastructure Agent

The parameters used to register Oracle GoldenGate Microservices with XAG are similar to
those used when registering with the primary system.

Chapter 24
Task 8 - Configure Oracle Grid Infrastructure Agent

24-13

1. As the grid user on the primary system, use the following command to determine the
current parameters in the primary system:

[grid@exapri-node1 ~]$ agctl config goldengate <instance_name>
Instance name: <instance_name>
Application GoldenGate location is: /u02/app/oracle/goldengate/gg21c
Goldengate MicroServices Architecture environment: yes
Goldengate Service Manager configuration directory:
 /mnt/dbfs/goldengate/deployments/<instance_name>/etc/conf
Goldengate Service Manager var directory:
 /mnt/dbfs/goldengate/deployments/<instance_name>/var
Service Manager Port: 9100
Goldengate Administration User: oggadmin
Autostart on DataGuard role transition to PRIMARY: yes
Configured to run on Nodes: exapri-node1 exapri-node2
ORACLE_HOME location is: /u02/app/oracle/goldengate/gg21c/lib/instantclient
Database Services needed: ora.<DB_UNIQUE_NAME>.<SERVICE_NAME>.<FQDN>.svc
File System resources needed: dbfs_mount,nginx
Network: 1, IP:<VIP>, User:oracle, Group:oinstall

In addition, the XAG parameter --filesystem_verify no must be specified to prevent
XAG from checking the existence of the DBFS deployment directory when registering the
Oracle GoldenGate instance. Without setting this parameter, the XAG registration will fail,
because DBFS is not mounted on the standby system.

Note:

It is recommended to use the same GoldenGate instance name when registering
GoldenGate with XAG as was used in the primary system.

2. As the root user on the standby system, register Oracle GoldenGate Microservices
Architecture with XAG use the following command format:

https://support.oracle.com/rs?type=doc&id=2193391.1

http://www.oracle.com/pls/topic/lookup?ctx=db19&id=SBYDB

[root@exastb-node1 ~]# /u01/app/grid/xag/bin/agctl add goldengate
<instance_name> \
--gg_home /u02/app/oracle/goldengate/gg21c \
--service_manager \
--config_home /mnt/dbfs/goldengate/deployments/<ggsm1>/etc/conf \
--var_home /mnt/dbfs/goldengate/deployments/<ggsm1>/var \
--port 9100 \
--oracle_home /u02/app/goldengate/gg21c/lib/instantclient \
--adminuser oggadmin \
--user oracle \
--group oinstall \
--network 1 --ip <virtual_IP_address> \
--filesystems dbfs_mount,nginx \
--db_services ora.<DB_UNIQUE_NAME>.<SERVICE_NAME>.<FQDN>.svc \
--use_local_services \
--nodes <exastb-node1>,<exastb-node2> \

Chapter 24
Task 8 - Configure Oracle Grid Infrastructure Agent

24-14

--filesystem_verify no \
--dataguard_autostart yes

Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate
Database Connections

The same TNS aliases created on the primary system for the primary database using the IPC
protocol must be created with the same alias names on each database node of the standby
system, using the IPC communication protocol as specified in Cloud: Oracle GoldenGate
Microservices Architecture on Oracle Exadata Database Service Configuration Best Practices .

The location of the tnsnames.ora used by the Oracle GoldenGate deployment must be
identical on the standby system nodes as it is on the primary system.

1. As the oracle user on the primary system, use the following query REST API call to query
the TNS_ADMIN location:

[opc@exapri-node1 ~]$ sudo su - oracle
[oracle@exapri-node1 ~]$ grep -1 TNS_ADMIN
 /mnt/dbfs/goldengate/deployments/ggsm1/etc/conf/deploymentRegistry.dat
 {
 "name": "TNS_ADMIN",
 "value": "/u02/app/oracle/goldengate/network/admin"

Make sure the tnsnames.ora is in this same directory on all standby database nodes.

2. As the oracle OS user on the standby system, follow the steps to create the TNS alias
definitions and distribute to all database nodes:

[opc@exastb-node1 ~]$ sudo su - oracle
[oracle@exastb-node1 ~]$ dcli -l oracle -g ~/dbs_group mkdir
 -p /u02/app/oracle/goldengate/network/admin
[oracle@exastb-node1 ~]$ vi /u02/app/oracle/goldengate/network/admin/
tnsnames.ora

OGGSRV_CDB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=IPC)(KEY=LISTENER))
 (CONNECT_DATA =
 (SERVICE_NAME = <CDB_SERVICE_NAME>)
)
)

OGGSRV_<PDB_NAME> =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=IPC)(KEY=LISTENER))
 (CONNECT_DATA =
 (SERVICE_NAME = <PDB_SERVICE_NAME>)
)
)

[oracle@exastb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group

Chapter 24
Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections

24-15

 -f /u02/app/oracle/goldengate/network/admin/*.ora
 -d /u02/app/oracle/goldengate/network/admin

Note:

When the tnsnames.ora or sqlnet.ora located in the TNS_ADMIN directory for the
Oracle GoldenGate deployment are modified, the deployment needs to be restarted
in order to pick up the changes.

Task 10 - Configure Oracle GoldenGate Processes
In addition to the advice provided in Cloud: Oracle GoldenGate Microservices Architecture on
Oracle Exadata Database Service Configuration Best Practices , follow the recommendations
provided below for Extract, Distribution Paths, and Replicats.

Perform the following steps to complete this task:

• Step 10.1 - Modify the Extract Configuration on the Primary System

• Step 10.2 - Modify the Distribution Path Configuration on the Primary and Standby
Systems

Step 10.1 - Modify the Extract Configuration on the Primary System

For Extract processes using Data Guard configurations that are using redo transport Maximum
Performance or Maximum Availability modes, the following parameter must be added to the
Extract process parameter file on the primary system to avoid losing transactions and
resulting in logical data inconsistencies:

TRANLOGOPTIONS HANDLEDLFAILOVER

This parameter prevents Extract from extracting transaction data from redo that has not yet
been applied to the Data Guard standby database. This is crucial to preventing Oracle
GoldenGate from replicating data to a target database that does not exist in the source
standby database.

If this parameter is not specified, after a data loss failover of the source database it is possible
to have data in the target database that is not present in the source database, leading to
logical data inconsistencies.

By default, after 60 seconds, a warning message will be written to the Extract report file when
the Extract is stalled due to not being able to query the standby database applied SCN
information. For example:

WARNING OGG-02721 Extract has been waiting for the standby database for 60
seconds.
The amount of time before the warning message is written to Extract report file can be adjusted
using the Extract parameter TRANLOGOPTIONS HANDLEDLFAILOVER STANDBY_WARNING.

If the Extract is still not able to query the standby database applied SCN information after 30
minutes (default), the Extract process will abend, logging the following message in the Extract
report file:

Chapter 24
Task 10 - Configure Oracle GoldenGate Processes

24-16

ERROR OGG-02722 Extract abended waiting for 1,800 seconds for the standby
database to be accessible or caught up with the primary database.
If the standby database becomes available before the default 30 timeout expires, Extract
continues mining data from the source database and reports the following message to the
report file:

INFO OGG-02723 Extract resumed from stalled state and started processing LCRs.
The timeout value of 30 minutes can be adjusted using the Extract parameter TRANLOGOPTIONS
HANDLEDLFAILOVER STANDBY_ABEND <value>, where value is the number of seconds the
standby is unavailable before abending.

If the standby database will be unavailable for a prolonged duration, such as during a planned
maintenance outage, and you wish Extract to continue extracting data from the primary
database, remove the TRANLOGOPTIONS HANDLEDLFAILOVER parameter from the Extract
parameter file and restart Extract. Remember to set the parameter after the standby becomes
available.

Note:

If extracting from a primary database continues while the standby is unavailable, a
data loss failover could result after the standby becomes available, and not all the
primary redo was applied before a failover. The Oracle GoldenGate target database
will contain data that does not exist in the source database.

If the Extract process has been assigned an auto restart profile, as documented in Cloud:
Oracle GoldenGate Microservices Architecture on Oracle Exadata Database Service
Configuration Best Practices , after a Data Guard role transition, the Extract process will
automatically restart. Extract will continue to mine redo data from the new primary database,
ignoring the current state of the new standby database, until a default 5-minute timeout period
expires. After this time, if the standby is not available Extract will abend with the following
errors:

INFO OGG-25053 Timeout waiting for 300 seconds for standby database
reinstatement. Now enforcing HANDLEDLFAILOVER.
ERROR OGG-06219 Unable to extract data from the Logmining server OGG$CAP_XXXXX.
ERROR OGG-02078 Extract encountered a fatal error in a processing thread and is
abending.
Extract will continue to automatically restart, based on the Oracle GoldenGate Microservices
auto restart profile, and failing due to reaching the HANDLEDLFAILOVER timeout, until the number
retries is reached or the new standby database becomes available.

During the timeout period following a database role transition, the HANDLEDLFAILOVER
parameter is automatically suspended, so data will be replicated to the Oracle GoldenGate
replica database without consideration of the source standby database not being kept up to
date. The timeout period for the standby database to start up before Extract abends can be
adjusted using the Extract parameter TRANLOGOPTIONS DLFAILOVER_TIMEOUT.

It is recommended that you leave DLFAILOVER_TIMEOUT at the default of 5 minutes, to allow the
old primary to convert to a standby. If the new standby database will be unavailable for an
extended period of time or completely gone, then in order for Extract to start and remain
running, you must remove the HANDLEDLFAILOVER parameter from the Extract parameter file.

Chapter 24
Task 10 - Configure Oracle GoldenGate Processes

24-17

After removing the parameter, Extract no longer waits until redo has been applied to the
standby database before extracting the data.

During the time it takes for the standby database to come back online and apply all the redo
from the primary database, there will be data divergence between it and the Oracle
GoldenGate replica database. This will be resolved once the standby database is up to date.
At which point, add the HANDLEDLFAILOVER parameter back into the integrated Extract process
parameter file, and then stop and restart the Extract.

When Oracle Data Guard Fast-Start Failover is disabled, such that the broker can
automatically fail over to a standby database in the event of loss of the primary database, you
must specify an additional integrated Extract parameter shown below.

TRANLOGOPTIONS FAILOVERTARGETDESTID n
This parameter identifies which standby database the Oracle GoldenGate Extract process
must remain behind, with regards to not extracting redo data that has not yet been applied to
the standby database.

If Oracle Data Guard Fast-Start Failover is disabled, and you don’t specify the additional
integrated Extract parameter FAILOVERTARGETDESTID, the extract will abend with the following
errors:

ERROR OGG-06219 Unable to extract data from the Logmining server OGG$CAP_XXXXX.
ERROR OGG-02078 Extract encountered a fatal error in a processing thread and is
abending.
To determine the correct value for FAILOVERTARGETDESTID, use the LOG_ARCHIVE_DEST_N
parameter from the Oracle GoldenGate source database which is used for sending redo to the
source standby database. For example, if LOG_ARCHIVE_DEST_2 points to the standby
database, then use a value of 2.

As the oracle user on the primary system, execute the following command:

[opc@exapri-node1 ~]$ sudo su - oracle
[oracle@exapri-node1 ~]$ source <db_name>.env
[oracle@exapri-node1 ~]$ sqlplus / as sysdba

SQL> show parameters log_archive_dest
NAME TYPE VALUE
--------------------- -----------

log_archive_dest_1 string location=USE_DB_RECOVERY_FILE_DEST,
 valid_for=(ALL_LOGFILES, ALL_ROLES)

log_archive_dest_2 string service="<db_name>", SYNC AFFIRM delay=0
 optional compression=disable max_failure=0
reopen=300
 db_unique_name="<db_name>" net_timeout=30,
 valid_for=(online_logfile,all_roles)

In this example, the Extract parameter would be set to the following:

TRANLOGOPTIONS FAILOVERTARGETDESTID 2
To add the parameters to the Extract parameter file:

Chapter 24
Task 10 - Configure Oracle GoldenGate Processes

24-18

1. Log in into the Oracle GoldenGate Administration Server in the Source Oracle
GoldenGate.

2. Click in Overview under Administration Service.

3. Click the Action button next to the Extract that you want to modify.

4. Select Details.

5. Select the Parameters tab, and then select the pencil icon to edit the current parameter
file.

6. Add the TRANLOGOPTIONS parameters and select Apply to save the changes.

For the new parameters to take effect, the Extract process needs to be stopped and restarted,
which can be done using the Administration Server.

See Reference for Oracle GoldenGate for further information about the Extract
TRANLOGOPTIONS parameters.

Step 10.2 - Modify the Distribution Path Configuration on the Primary and Standby
Systems

When the target database of an Oracle GoldenGate environment, where the Receiver Server
runs, is protected with Oracle Data Guard, there is an important consideration that must be
given to any Distribution Path that are sending trail files to the Receiver Server. When the
Receiver Server moves to a different system after an Oracle Data Guard role transition, any
Distribution Path must be altered to reflect the new target system address.

You can automatically change the Distribution Paths using a database role transition trigger in
the target database on the Receiver Server system.

If the primary and standby system VIPs use different root CA certificates, the standby
certificate will need to be added to the source deployment Service Manager, as detailed in the
"Step 11.3 - Distribution Path Configuration” of Task 11 - Configure Oracle GoldenGate
Processes

Follow the instructions below to create a database role transition trigger to modify the
Distribution Path target address when the receiver server moves between the primary and
standby system, during target database Data Guard role transitions.

Perform the following sub-steps to complete this step:

• Step 10.2.1 - Create a Shell Script to Modify the Distribution Paths

• Step 10.2.2 - Create a DBMS_SCHEDULER job

• Step 10.2.3 - Create the Deployment Config File

• Step 10.2.4 - Create the Database Role Transition Trigger

Step 10.2.1 - Create a Shell Script to Modify the Distribution Paths

Example Distribution Path Target Change Script contains an example shell script that can be
used to modify a distribution path target address. Refer to the example script comments for
setting appropriate variable values.

Chapter 24
Task 10 - Configure Oracle GoldenGate Processes

24-19

https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/tranlogoptions.html#GUID-B6ADFEC9-10E6-456D-9477-088513E113AF

Note:

The script should be placed in the same local directory on all Oracle RAC nodes of
the TARGETprimary and standby database systems. Set the script file permissions
to 6751.

As the oracle OS user on the TARGET primary and standby systems, follow the steps to create
and distribute the script change_path_target.sh:

[opc@exadb-node1 ~]$ sudo su – oracle
[oracle@exadb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group mkdir
 -p /u02/app/oracle/goldengate/scripts
[oracle@exadb-node1 ~]$ vi /u02/app/oracle/goldengate/scripts/
change_path_target.sh
Paste the script from Example Distribution Path Target Change
 Script
[oracle@exadb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group
 -f /u02/app/oracle/goldengate/scripts/change_path_target.sh
 -d /u02/app/oracle/goldengate/scripts

Step 10.2.2 - Create a DBMS_SCHEDULER job

Creating a DBMS_SCHEDULER job is required to run an operating system shell script from within
PL/SQL.

1. As the oracle OS user on the TARGET primary system, create the scheduler job as a
SYSDBA user in the root container database (CDB):

[opc@exapri-node1 ~]$ sudo su - oracle
[oracle@exapri-node1 ~]$ source <db_name>.env
[oracle@exapri-node1 ~]$ sqlplus / as sysdba
SQL> exec dbms_scheduler.create_job(job_name=>'gg_change_path_target',
 job_type=>'EXECUTABLE', number_of_arguments => 6,
 job_action=>'/u02/app/oracle/goldengate/scripts/change_path_target.sh',
 enabled=>FALSE);

To run an external job, you must set the run_user and run_group parameters in
the $ORACLE_HOME/rdbms/admin/externaljob.ora file to the Oracle database operating
system user and group.

2. As the root OS user on the TARGET primary and standby systems, create file
externaljob.ora:

[opc@exadb-node1 ~]$ sudo su –
[root@exadb-node1 ~]# export DB_NAME=<database_name>
[root@exadb-node1 ~]# dbaascli database getDetails
 --dbname $DB_NAME |grep homePath |uniq
 "homePath" : "/u02/app/oracle/product/19.0.0.0/dbhome_1",

[root@exadb-node1 ~]# vi
 /u02/app/oracle/product/19.0.0.0/dbhome_1/rdbms/admin/externaljob.ora
Before
run_user = nobody

Chapter 24
Task 10 - Configure Oracle GoldenGate Processes

24-20

run_group = nobody
After
run_user = oracle
run_group = oinstall

3. Repeat this step on all nodes on the primary and standby systems.

Note:

The extrernaljob.ora must be configured on all Oracle RAC nodes of the
primary and standby database systems.

Step 10.2.3 - Create the Deployment Config File

The example shell script uses REST API calls to access the Oracle GoldenGate distribution
path. In order to make the REST API calls secure, it is recommended that you include the user
name and password in a configuration file, which is read by curl.

As the oracle OS user on the TARGET primary and standby systems, create the configuration
file containing the deployment credentials:

[opc@exadb-node1 ~]$ sudo su – oracle
[oracle@exadb-node1 ~]$
cat > /u02/app/oracle/goldengate/scripts/<INSTANCE_NAME>.cfg << EOF
 user = "oggadmin:<password>"
EOF
[oracle@exadb-node1 ~]$ chmod 600 /u02/app/oracle/goldengate/scripts/
<INSTANCE_NAME>.cfg
[oracle@exadb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group
 -f /u02/app/oracle/goldengate/scripts/<INSTANCE_NAME>.cfg
 -d /u02/app/oracle/goldengate/scripts

Step 10.2.4 - Create the Database Role Transition Trigger

Create a role transition trigger on the Oracle GoldenGate source database that will be fire
when a standby database becomes a primary database, changing the distribution path target
address.

As the oracle OS user on the TARGET primary system, execute the following SQL sentence to
create the role transition trigger:

[opc@exapri-node1 ~]$ sudo su - oracle
[oracle@exapri-node1 ~]$ source <db_name>.env
[oracle@exapri-node1 ~]$ sqlplus / as sysdba
CREATE OR REPLACE TRIGGER gg_change_path
AFTER db_role_change ON DATABASE
declare
 role varchar2(30);
 hostname varchar2(64);
begin
 select database_role into role from v$database;
 select host_name into hostname from v$instance;
 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',1,'<PRIMARY
Source VIP');
 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',2,'<STANDBY

Chapter 24
Task 10 - Configure Oracle GoldenGate Processes

24-21

Source VIP');

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',4,'<Distribution
 path name');
 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',5,'<Instance
name>'
 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',6,'<Config
file containing the deployment credentials>');
 if role = 'PRIMARY' and hostname like '<primary target cluster name>%'
 then
 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',3,'<PRIMARY
Target VIP>:443');
 elsif role = 'PRIMARY'
 then
 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',3,'<STANDBY
Target VIP>:443');
 end if;
 DBMS_SCHEDULER.RUN_JOB(job_name=>'gg_change_path_target');
end;
/

Step 10.3 - Replicat Configuration on the Primary System

As documented in “Step 11.4 - Replicat Configuration” of Task 11 - Configure Oracle
GoldenGate Processes, a checkpoint table in the target database is required for all Oracle
GoldenGate Replicat processes. There are no other configuration requirements for Replicat
when configured with Oracle Data Guard.

Example Distribution Path Target Change Script
The following example script can be used to change a source Oracle GoldenGate deployment
distribution path target address to reflect the new location of the receiver server after an Oracle
Data Guard role transition. This example assumes the source Oracle GoldenGate deployment
is configured in an MAA architecture with Data Guard, such that the distribution server can
relocate between a primary and standby systems.

#!/bin/bash

change_path_target.sh - changes the target host of a GG Distribution Path
when the target moves between primary/standby systems.
Example usage:
./change_path_target.sh <primary source VIP>:443 <standby source VIP>:443
<path target VIP> <path name> <deployment name> <credentials file>

SOURCE1=$1 # PRIMARY Distribution Server VIP
SOURCE2=$2 # STANDBY Distribution Server VIP
TARGET=$3 # Distribution path target VIP
DPATH=$4 # Distribution path name
DEP=$5 # Deployment name
ACCESS=$6 # Config file containing the deployment credentials.
 # Example contents:
 # user = "oggadmin:<password>"

CONNECT=0

Chapter 24
Example Distribution Path Target Change Script

24-22

#echo "#${i} - `date`:"
LOGFILE=/tmp/ogg_dpatch_change.txt

result=$(curl -si -K
 $ACCESS https://$SOURCE1/$DEP/distsrvr/services/v2/sources/$DPATH
 -X GET| grep HTTP | awk '{print $2}')

Will return NULL of nginx not running, 502 if cannot contact server, 200 if
contact to server good, and others (404) for other bad reasons:

if [[-z $result || $result -ne 200]]; then # Managed to access the Distr
Server
 echo "`date` - Couldn't contact Distribution Server at $SOURCE1
 Deployment $DEP ****" >> $LOGFILE
else # Try the other source host:
 echo "`date` - Got status of Distribution Server at $SOURCE1 Deployment
 $DEP ***" >> $LOGFILE
 SOURCE=$SOURCE1
 CONNECT=1
fi

if [$CONNECT -eq 1]; then
For secure NGINX patch destination (wss)
 PAYLOAD='{"target":{"uri":"wss://'${TARGET}'/services/ggnorth/v2/targets?
trail=bb"}}'
 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/sources/$DPATH
 -X PATCH --data '{"status": "stopped"}'

Set new target for path:
 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/sources/$DPATH
 -X PATCH --data "$PAYLOAD"
 echo "`date` - Set path $DPATH on $SOURCE deployment $DEP:" >> $LOGFILE

 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/sources/$DPATH
 -X GET | python -m json.tool | grep uri >> $LOGFILE
 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/sources/$DPATH
 -X PATCH --data '{"status": "running"}'
 exit 0
else
 echo "`date` - ERROR: COULDN'T CHANGE DISTRIBUTION PATH ($DPATH) in
Deployement
 $DEP at $SOURCE! ***" >> $LOGFILE
fi

If here, means we couldn't connect to either Distribution Servers
exit 1

Chapter 24
Example Distribution Path Target Change Script

24-23

25
On-Premises: Configuring Oracle GoldenGate
Hub

Configure and deploy the MAA Oracle GoldenGate Hub architecture using the provided
planning considerations, tasks, management, and troubleshooting information.

Topics:

• Overview of MAA GoldenGate Hub

• Planning GGHub Placement in the Platinum MAA Architecture

• Task 1: Configure the Source and Target Databases for Oracle GoldenGate

• Task 2: Prepare a Primary and Standby Base System for GGHub

• Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

• Task 4: Configure the Oracle GoldenGate Environment

Overview of MAA GoldenGate Hub
To achieve the highest levels of availability, resulting in zero or near-zero downtime for both
unplanned outages and planned maintenance activities, customers frequently use the
combination of Oracle Real Application Clusters (Oracle RAC), Oracle Active Data Guard, and
Oracle GoldenGate.

This architecture, typically referred as Platinum MAA or Never Down Architecture, delivers
near zero Recovery Time Objective (RTO, or downtime incurred during outage) and potentially
zero or near zero Recovery Point Objective (RPO, or data loss potential).

Traditionally, Oracle GoldenGate is installed and run locally on the database server that the
GoldenGate processes connect to. When used with Oracle Grid Infrastructure Standalone
Agent (XAG), Oracle GoldenGate processes can be configured to seamlessly relocate or
failover between Oracle RAC nodes and follow Oracle Active Data Guard switchover and
failovers.

Using MAA Oracle GoldenGate Hub (MAA GGHub) moves the GoldenGate software and
processes off of the Exadata database servers, reducing complexity and system resource
utilization. MAA GGHub centralizes Oracle GoldenGate management and offloads the majority
of the Oracle GoldenGate processing and associated CPU and storage resource utilization
from Exadata system resources. Connectivity between the GoldenGate processes and the
databases they operate against is managed with Oracle Net Services.

To achieve an MAA Platinum solution on-premises, you follow these high level steps:

1. Review Oracle MAA Platinum Tier for Oracle Exadata to understand Platinum MAA
benefits and use cases.

2. Deploy or migrate your database onto Exadata Database Machine

3. Add symmetric standby databases.

4. Configure and deploy Oracle Data Guard Fast Start Failover using the Oracle MAA best
practice recommendations in Configure Fast Start Failover.

25-1

https://www.oracle.com/a/tech/docs/exadata-maa-platinum-focused.pdf

5. Set up MAA GGHub, which is detailed in the topics that follow.

6. Configure Bidirectional Replication and Automatic Conflict Detection and Resolution. See
Bi-Directional Replication and Automatic Conflict Detection and Resolution.

7. Decide on application failover options such as Global Data Services (see Oracle Global
Data Services Best Practices), or use your own customized application failover.

Refer to the Reference for Oracle GoldenGate for more information about the Extract
TRANLOGOPTIONS parameters.

When creating an Extract using the Oracle GoldenGate Administration Service GUI, leave the
Trail SubDirectory parameter blank so that the trail files are automatically created in the
deployment directories stored on the shared file system. The default location for trail files is
the /<deployment directory>/var/lib/data directory.

Note:

To capture from a multitenant database, you must use an Extract configured at the
root level using a c## account. To apply data into a multitenant database, a separate
Replicat is needed for each PDB because a Replicat connects at the PDB level and
doesn't have access to objects outside of that PDB.

Planning GGHub Placement in the Platinum MAA Architecture
Extreme availability that delivers zero downtime (RTO=0 or near zero) and zero or near zero
data loss (RPO=0 or near zero) typically requires the following Platinum MAA architecture
where:

1. You have the source and target database in an Oracle GoldenGate architecture to allow
your application to fail over immediately in the case of disaster (database, cluster, or site
failure) or switch over in the case of a database or application upgrade. This architecture
enables the potential RTO of zero or near zero for disaster scenarios and database and
application upgrade maintenance.

2. Each source and target database is deployed in Exadata systems so that any local failures
are tolerated or recovered almost instantly.

3. Each source and target database is configured with a standby database with Data Guard
Fast-Start Failover so that any failure of the database results in activating a new primary
database in seconds to minutes. If SYNC transport is leveraged with Maximum Availability
protection mode, zero data loss Data Guard failover is achieved.

4. Configured with GoldenGate replication using MAA GGHub between the source and target
databases.

5. Configured so that any standby that becomes a primary database because of Data Guard
switchover or failover automatically resynchronizes with its target GoldenGate database. If
zero data loss Data Guard switchover or failover occurs, GoldenGate resychronization
ensures zero data loss across the distributed database environment.

6. Configured with GoldenGate Automatic Conflict Detection and Resolution, which is
required after any Data Guard failover operation occurs.

Where to Place the MAA Primary GGHub and Standby GGHub

Chapter 25
Planning GGHub Placement in the Platinum MAA Architecture

25-2

https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc/administer-configuring-bi-directional-replication.html?source=%3Aow%3Alp%3Acpo%3A%3Arc_bumk180724p00001%3Alpd100743723%2C%3Aow%3Alp%3Acpo%3A%3Arc_bumk180724p00001%3Alpd100743723&source=%3Aow%3Alp%3Acpo%3A%3Arc_bumk180724p00001%3Alpd100743723%2C%3Aow%3Alp%3Acpo%3A%3Arc_bumk180724p00001%3Alpd100743723&source=%3Aow%3Alp%3Acpo%3A%3Arc_bumk180724p00001%3Alpd100743723%2C%3Aow%3Alp%3Acpo%3A%3Arc_bumk180724p00001%3Alpd100743723&source=%3Aow%3Alp%3Acpo%3A%3Arc_bumk180724p00001%3Alpd100743723%2C%3Aow%3Alp%3Acpo%3A%3Arc_bumk180724p00001%3Alpd100743723&source=%3Aow%3Alp%3Acpo%3A%3Arc_bumk180724p00001%3Alpd100743723%2C%3Aow%3Alp%3Acpo%3A%3Arc_bumk180724p00001%3Alpd100743723#GUID-BF69D963-8336-4209-A3A1-FCD94B27ACF6
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/automatic-conflict-detection-and-resolution1.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/tranlogoptions.html#GUID-B6ADFEC9-10E6-456D-9477-088513E113AF

1. GGHub Pair (Primary and Standby GGHub) must reside in the same data center (round
trip latency of less 4ms) as each primary and standby database. For example,

a. If the primary database is in Data Center 1, Region A and standby database is in Data
Center 2, Region A, then the GGHub pair will reside in Region A.

b. If the primary database is in Region A and standby database is in Region B, then the
GGHub pair will split between Region A and B. The primary or active GGHub must be
co-located in the same region as the target primary database.

2. Performance implications:

a. Primary or active GGHub must reside in the same data center as the target database
to ensure round trip latency of 4ms or less. (Replicat performance)

b. Primary or active GGHub should be < 90 ms from the source database without
incurring GoldenGate performance degradation (Extract performance).

3. GoldenGate Distribution Path

a. GoldenGate distribution path is required if the source and target GGHubs are in
different areas with a latency > 90 ms.

b. With bi-directional replication, or when there are multiple target databases in different
data centers, it may be necessary to have additional hubs with distribution paths
sending trail files between them.

MAA GGHubs Placed in the Same Data Center
In this scenario, the primary and standby database are located in the same data center
(latency less 4ms), and so the primary (active) GGHub and the standby GGHub are also
located in the same data center.

The example below has two data centers, or availability domains (ADs), in the same data
center.

As shown in Figure 1, you have the following architectural components:

1. Primary database and associated standby database are configured with Oracle Active
Data Guard Fast Start Failover (FSFO). FSFO can be configured with Data Guard
protection mode with ASYNC or SYNC redo transport depending on your maximum data
loss tolerance.

2. Primary GGHub Active/Passive Cluster: Only one GGHub software deployment and
configuration on the 2-node cluster. This cluster contains the 21c Oracle GoldenGate
software deployment that can support 11.2.0.4 and later database versions. This GGHub
can support many primary databases and encapsulates the GoldenGate processes:
GoldenGate Extract mines transactions from the source database and GoldenGate
Replicat applies the same changes to target database. GoldenGate trail and checkpoint
files will also reside in the GGhub ACFS file system. The HA failover solution is built in to
the GGhub, which includes automatic failover to the passive node in the same cluster, and
restarts GoldenGate processes and activity after a node failure.

3. Standby GGHub Active/Passive Cluster: A Symmetric standby GGhub is configured. ACFS
replication is set up between the primary and standby GGHubs to preserve all GoldenGate
files. Manual GGhub failover, which includes ACFS failover, can be executed in the rare
case that you lose the entire primary GGhub.

Chapter 25
Planning GGHub Placement in the Platinum MAA Architecture

25-3

Figure 25-1 Primary and Standby GGHubs in the same data center with two separate
Availability Domains

PHX Data Center, AD1 PHX Data Center, AD2

Primary GGHub Standby GGHub

 GGHub Active/Passive Cluster GGHub Active/Passive Cluster

ACFS ACFS

VIP VIP
Oracle

GoldenGate
Installation

Oracle
GoldenGate
Installation

GoldenGate Deployment GoldenGate Deployment

Extracts ExtractsReplicats ReplicatsTrail Files Trail Files

Primary
Database A

Standby
Database A

Standby
Database B

Primary
Database B

1 6

Redo
Transport

2

5

ACFS
Replication

Redo
Transport

3
4

The figure above depicts replicating data from Primary Database A to Primary Database B and
Primary B back to Primary A with the following steps:

1. Primary Database A: Primary A’s Logminer server sends redo changes to a Primary
GGHub Extract process.

2. Primary GGHub: An Extract process writes changes to trail files.

3. Primary GGHub to Primary Database B: A Primary GGHub Replicat process applies those
changes to the target database (Primary B).

4. Primary Database B: Primary B’s Logminer server sends redo to a Primary GGHub Extract
process.

5. Primary GGHub: A Primary GGHub Extract process writes changes to trail files.

6. Primary GGHub to Primary Database A: A Primary GGHub Replicat process applies those
changes to the target database (Primary A).

Note that one GGHub can support multiple source and target databases, even when the
source and target databases are different Oracle Database releases.

Chapter 25
Planning GGHub Placement in the Platinum MAA Architecture

25-4

Table 25-1 Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in the Same Data Center

Outage Scenario Application Availability and Repair Restoring Redundancy and Pristine
State

Primary Database A (or Database B)
failure

Impact: Near-zero application
downtime. GoldenGate replication
resumes when a new primary database
starts.

1. One primary database is still
available. All activity is routed to the
existing available primary database
to achieve zero application
downtime. Refer to the Global Data
Services Global Services Failover
solution. For example, application
services A-F are routed to
Database A and application
services G-J are routed to
Database B. If Database A fails, all
application services temporarily go
to Database B.

2. The standby becomes the new
primary automatically with Data
Guard FSFO. Oracle GoldenGate
replication resumes and the
primary databases resynchronize.
Data loss is bounded by the Data
Guard protection level. If Maximum
Availability or Maximum Protection
is configured, zero data loss is
achieved. All committed
transactions are in one or both
databases. Workload can be
“rebalanced” when Primary
Database A and Database B are
available and in sync. For example,
when Database A is up and running
and in sync, services A-F can go
back to Database A.

1. The old primary database is
reinstated as the new standby
database to restore redundancy.

2. Optionally performing a Data Guard
switchover to switch back to the
original configuration ensures that
at least one primary database
resides in an independent AD.

Primary or standby GGHub single node
failure

Impact: No application impact.
GoldenGate replication resumes
automatically after a couple of minutes.

No action is required. The HA failover
solution built in to the GGHub includes
automatic failover and restart of
GoldenGate processes and activity.
Replication activity is blocked until
GoldenGate processes are active again.
GoldenGate replication blackout could
last a couple of minutes.

Once the node restarts, active/passive
configuration is re-established.

Chapter 25
Planning GGHub Placement in the Platinum MAA Architecture

25-5

Table 25-1 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in the Same Data
Center

Outage Scenario Application Availability and Repair Restoring Redundancy and Pristine
State

Primary GGHub cluster crashes and is
not recoverable

Impact: No application impact.
GoldenGate replication resumes after
restarting the existing GGHub or
executing a manual GGHub failover
operation.

1. If the GGHub cluster can be
restarted, then that’s the simplest
solution.

2. If the primary GGHub is not
recoverable, then execute a manual
GGHub failover to the standby
GGHub, which includes ACFS
failover. This typically takes several
minutes.

3. GoldenGate replication stops until
the new primary GGhub is
available, so executing step 1 or
step 2 should be quick.

If the previous GGHub eventually
restarts, ACFS replication resumes in
the other direction automatically. If the
GGHub cluster is lost or unrecoverable,
you need to rebuild a new standby
GGHub.

Standby GGHub cluster crashes and
not recoverable

Impact: No application or replication
impact.

1. If the GGHub cluster can be
restarted, then that is the simplest
solution, and ACFS replication can
resume.

2. If the standby GGHub is not
recoverable, you can rebuild a new
standby GGHub.

N/A

Chapter 25
Planning GGHub Placement in the Platinum MAA Architecture

25-6

Table 25-1 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in the Same Data
Center

Outage Scenario Application Availability and Repair Restoring Redundancy and Pristine
State

Complete Data Center or Availability
Domain (AD1 or AD2) failure

Impact: Near-zero application
downtime. GoldenGate replication
resumes when the new primary
database starts.

1. One primary database is still
available. All activity is routed to the
existing available primary database
to achieve zero application
downtime. Refer to the Global
Services Failover solution. For
example, application services A-F
are routed to Database A and
application services G-J are routed
to Database B. If Database A fails,
all services temporarily go to
Database B.

2. If the primary GGHub is still
functional, GoldenGate replication
continues. If the primary GGHub is
lost due to availability domain (AD)
failure, then a manual GGhub
failover is required. GoldenGate
replication resumes and the
primary databases resynchronize.
Data loss is bounded by the Data
Guard protection level. If Maximum
Availability or Maximum Protection
is configured, zero data loss is
achieved. All committed
transactions are in one or both
databases. Workload can be
rebalanced when Primary
Database A and Database B are
available and in sync. When
Database A is up and running and
in sync, services A-F can go back
to Database A.

1. When the data center/AD returns,
re-establish configuration such as
reinstate standby. If the previous
GGHub eventually restarts, ACFS
replication resumes in the other
direction automatically.

2. When possible, perform a Data
Guard switchover (failback) to get
back to the original state where one
primary database exists in each
AD.

MAA GGHubs Placed in Different Data Centers
In this scenario, the primary and standby databases are located in different data centers, and
so the primary (active) GGHub is located in the same data center as the primary database, and
the standby GGHub is located in the same data center as the standby database.

As shown in the following image, you have the following architectural components:

1. The primary database and associated standby database are configured with Oracle Active
Data Guard Fast Start Failover (FSFO). FSFO can be configured with Data Guard
protection mode with ASYNC or SYNC redo transport depending on your maximum data
loss tolerance.

Chapter 25
Planning GGHub Placement in the Platinum MAA Architecture

25-7

2. Primary GGHub Active/Passive Cluster: In this configuration, there’s a 2-node cluster with
two Oracle GoldenGate software configurations. Because the primary GGHub needs to be
<= 4 ms from the target database and the two data centers network latency > 5 ms, two
GGhub configurations are created for each GGHub cluster. Essentially, a primary GGHub
configuration is always in the same data center as the target database. GGHub is
configured with the Oracle GoldenGate 21c software deployment that can support 11g and
later Oracle Database releases. This GGHub can support many primary databases and
encapsulates the GoldenGate processes: Extract mines transactions from the source
database, and Replicat applies those changes to the target database. GoldenGate trail and
checkpoint files will also reside in the ACFS file system. An HA failover solution is built in to
the GGhub cluster, which includes automatic failover and restart of GoldenGate processes
and activity after a node failure.

Each GGhub configuration contains a GoldenGate service manager and deployment,
ACFS file system with ACFS replication, and a separate application VIP.

3. Standby GGHub Active/Passive Cluster: A symmetric standby GGhub is configured. ACFS
replication is set up between the primary and standby GGHubs to preserve all GoldenGate
files. Manual GGhub failover, which includes ACFS failover, can be executed if you lose
the entire primary GGhub.

Figure 25-2 Primary and Standby GGHubs in Different Data Centers

PHX Data Center ASH Data Center

Primary GGHub for DB_B/Standby GGHub for DB_A Primary GGHub for DB_A/Standby GGHub for DB_B

 GGHub Active/Passive Cluster

 GGHub Active/Passive Cluster

GGHub Active/Passive Cluster

GGHub Active/Passive Cluster

ACFS

ACFS

ACFS

ACFS

VIP

VIP

VIP

VIP

Oracle
GoldenGate
Installation

Oracle
GoldenGate
Installation

Oracle
GoldenGate
Installation

Oracle
GoldenGate
Installation

GoldenGate Deployment

GoldenGate Deployment

GoldenGate Deployment

GoldenGate Deployment

Extracts

Extracts

Extracts

Extracts

Replicats

Replicats

Replicats

Replicats

Trail Files

Trail Files

Trail Files

Trail Files

Redo
Transport

2

5

ACFS
Replication

ACFS
Replication

Redo
Transport

4

3

1

6Primary
Database A

Standby
Database B

Standby
Database A

Primary
Database B

The figure above depicts replicating data from Primary Database A to Primary Database B and
Primary B back to Primary A with the following steps:

1. Primary Database A: Primary A’s Logminer server sends redo changes to an PHX
DataCenter GGHub Extract process, which is on the Primary GGHub for Database A.

2. Primary GGHub: The Extract process writes changes to trail files.

3. Primary GGHub to Primary Database B: An PHX DataCenter GoldenGate Replicat
process applies those changes to the target database (Primary B).

4. Primary Database B: Primary B’s Logminer server sends redo to a ASH DataCenter
GGHub Extract process, which is on the Primary GGHub for Database B.

Chapter 25
Planning GGHub Placement in the Platinum MAA Architecture

25-8

5. Primary GGHub: The Extract process writes changes to trail files.

6. Primary GGHub to Primary Database A: A ASH DataCenter GoldenGate Replicat process
applies those changes to the target database (Primary A).

Table 25-2 Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in Different Data Centers

Outage Scenario Application Availability and Repair Restoring Redundancy and Pristine
State

Primary Database A (or Database B)
failure

Impact: Near-zero application
downtime. GoldenGate replication
resumes when the new primary
database starts.

1. One primary database is still
available. All activity is routed to the
existing available primary database
to achieve zero application
downtime. Refer to the Global Data
Services Global Services Failover
solution. For example, application
services A-F are routed to
Database A and application
services G-J are routed to
Database B. If Database A fails, all
services temporarily go to
Database B.

2. The standby becomes the new
primary automatically with Data
Guard FSFO. GoldenGate
replication resumes and the
primary databases resynchronize.
Data loss is bounded by the Data
Guard protection level. If Maximum
Availability or Maximum Protection
is configured, zero data loss is
achieved. All committed
transactions are in one or both
databases. Workload can be
rebalanced when primary Database
A and Database B are available
and in sync. For example, when
Database A is up and running and
in sync, services A-F can go back
to Database A.

3. Replicat performance will be
degraded if the primary GGHub is
not in the same data center as the
target database. Schedule a
GGHub switchover with ACFS
replication switchover to resume
optimal Replicat performance to the
target database. You may then
experience two active GGhub
configurations on the same GGHub
cluster.

1. The old primary database is
reinstated as the new standby
database to restore redundancy.

2. Optionally performing a Data Guard
switchover, to switch back to the
original configuration, ensures that
at least one primary database
resides in an independent AD.
Schedule a GGHub switchover with
ACFS replication switchover to
resume optimal Replicat
performance to the target database.

Chapter 25
Planning GGHub Placement in the Platinum MAA Architecture

25-9

Table 25-2 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in Different Data
Centers

Outage Scenario Application Availability and Repair Restoring Redundancy and Pristine
State

Primary or standby GGHub single node
failure

Impact: No application impact.
GoldenGate replication resumes
automatically after a couple of minutes.

No action is required. An HA failover
solution is built in to the GGHub that
includes automatic failover and restart
of GoldenGate processes and activity.
Replication activity is blocked until
GoldenGate processes are active again.
GoldenGate Replication blackout could
last a couple of minutes.

Once the node restarts, active/passive
configuration is re-established.

Primary GGHub cluster crashes and is
not recoverable

Impact: No application impact.
GoldenGate replication resumes after
the existing primary GGHub restarts or
manual GGHub failover completes.

1. If the GGHub cluster can be
restarted, then that’s the simplest
solution.

2. If the primary GGHub is not
recoverable, then execute a manual
GGHub failover to the standby
GGHub, which includes ACFS
failover. This typically takes several
minutes.

3. Replication stops until the new
primary GGhub is started, so
executing step 1 or step 2 should
be quick. If there’s any
orchestration, this should be
automated.

1. If the previous GGHub eventually
restarts, ACFS replication resumes
in the other direction automatically.
If the GGHub cluster is lost or
unrecoverable, you need to rebuild
a new standby GGHub.

2. Replicat performance is degraded if
the primary GGhub is not in the
same data center as the target
database. Schedule a GGHub
switchover with ACFS replication
switchover to resume optimal
Replicat performance to the target
database.

Standby GGHub cluster crashes and is
not recoverable

Impact: No application or replication
impact.

1. If the GGHub cluster can be
restarted, then that’s the simplest
solution, and ACFS replication will
resume.

2. If the standby GGHub is not
recoverable, you can rebuild a new
standby GGHub.

N/A

Chapter 25
Planning GGHub Placement in the Platinum MAA Architecture

25-10

Table 25-2 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in Different Data
Centers

Outage Scenario Application Availability and Repair Restoring Redundancy and Pristine
State

Complete Regional failure Impact: Near Zero Application
Downtime. GoldenGate replication
resumes once new primary database
starts.

1. One primary database is still
available. All activity is routed to the
existing available primary database
to achieve zero application
downtime. Refer to the Global Data
Services Global Services Failover
solution. For example, application
services A-F routed to Database A
and application services G-J routed
to Database B. If Database A fails,
all services will temporarily go to
Database B.

2. If the primary GGHub is still
functional, GoldenGate replication
will continue. If the primary GGHub
is lost due to regional failure, then a
manual GGhub failover is required.
GoldenGate replication resumes
and the primary databases
resynchronize. Data loss is
bounded by the Data Guard
protection level. If Maximum
availability or protection is
configured, zero data loss is
achieved. All committed
transactions are in one or both
databases. Workload can be
rebalanced when Primary
Database A and Database B are
available and in sync. When
Database A is up and running and
in sync, services A-F can go back
to Database A.

1. When the data center returns, re-
establish configuration such as
reinstate standby. If the previous
GGHub eventually restarts, ACFS
replication resumes in the other
direction automatically.

2. When possible, execute a Data
Guard switchover (failback) to get
back to the original state where one
primary database exists in each
data center.

3. Replicat performance is degraded if
the primary GGHub is not in the
same data center as the target
database. Schedule a GGHub
switchover with ACFS replication
switchover to resume optimal
Replicat performance to the target
database.

Task 1: Configure the Source and Target Databases for Oracle
GoldenGate

The source and target Oracle GoldenGate databases should be configured using the following
recommendations.

Perform the following steps to complete this task:

• Step 1.1 - Database Configuration

• Step 1.2 - Create the Database Replication Administrator User

• Step 1.3 - Create the Database Services

Chapter 25
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

25-11

Step 1.1 - Database Configuration

The source and target Oracle GoldenGate databases should be configured using the following
recommendations:

Configuration Scope Example

Enable Archivelog Mode Source and Target SQL> ARCHIVE LOG LIST
Database log
mode Archive
Mode
Automatic
archival Enabled
Archive
destination
USE_DB_RECOVERY_FILE_DEST
Oldest online log
sequence 110
Next log sequence to
archive 113
Current log
sequence 113

Enable FORCE LOGGING Source and Target ALTER DATABASE FORCE
LOGGING;

ENABLE_GOLDENGATE_REPLICAT
ION

Source, Target, and Standbys ALTER SYSTEM SET
ENABLE_GOLDENGATE_REPLICATIO
N=TRUE SCOPE=BOTH SID='*';

Add Supplemental Logging Source

Required on Target for cases
when replication reverses

ALTER DATABASE ADD
SUPPLEMENTAL LOG DATA;

Configure STREAMS_POOL_SIZE
larger to accommodate
GoldenGate

Source

Required on Target for cases
when replication reverses

The value of
STREAMS_POOL_SIZE should be
set to the following value:

STREAMS_POOL_SIZE =
(((#Extracts + #Integrated
Replicats) * 1GB) * 1.25)

For example, in a database with 2
Extracts and 2 integrated
Replicats:

STREAMS_POOL_SIZE = 4GB *
1.25 = 5GB

ALTER SYSTEM SET
STREAMS_POOL_SIZE=5G
SCOPE=BOTH SID='*';

For the steps on preparing the database for Oracle GoldenGate, see Preparing the Database
for Oracle GoldenGate.

Step 1.2 - Create the Database Replication Administrator User

The source and target databases need a GoldenGate administrator user created, with
appropriate privileges assigned as follows:

Chapter 25
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

25-12

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41

• For the multitenant container database (CDB):

– Source database, GoldenGate Extract must be configured to connect to a user in the
root container database, using a c##

– Target database, a separate GoldenGate administrator user is needed for each
pluggable database (PDB).

– For more details about creating a GoldenGate administrator in an Oracle Multitenant
Database, see Configuring Oracle GoldenGate in a Multitenant Container Database.

• For non-CDB databases, see Establishing Oracle GoldenGate Credentials

As the oracle OS user on the source database system, run the following SQL instructions to
create the database user for Oracle GoldenGate and assign the required privileges:

[oracle@exadb1_node1 ~]$ sqlplus / as sysdba

Source CDB
SQL>
alter session set container=cdb$root;
create user c##ggadmin identified by "<ggadmin_password>" container=all
default tablespace USERS temporary tablespace temp;
alter user c##ggadmin quota unlimited on users;
grant set container to c##ggadmin container=all;
grant alter system to c##ggadmin container=all;
grant create session to c##ggadmin container=all;
grant alter any table to c##ggadmin container=all;
grant resource to c##ggadmin container=all;
exec
dbms_goldengate_auth.grant_admin_privilege('c##ggadmin',container=>'all');

Source PDB
SQL>
alter session set container=<pdbName>;
create user ggadmin identified by "<ggadmin_password>" container=current;
grant create session to ggadmin container=current;
grant alter any table to ggadmin container=current;
grant resource to ggadmin container=current;
exec dbms_goldengate_auth.grant_admin_privilege('ggadmin');

As the oracle OS user on the target database system, run the following SQL instructions to
create the database user for Oracle GoldenGate and assign it the required privileges:

[oracle@exadb2_node1 ~]$ sqlplus / as sysdba

Target PDB
SQL>
alter session set container=<pdbName>;
create user ggadmin identified by "<ggadmin_password>" container=current;
grant alter system to ggadmin container=current;
grant create session to ggadmin container=current;
grant alter any table to ggadmin container=current;
grant resource to ggadmin container=current;
grant dv_goldengate_admin, dv_goldengate_redo_access to ggadmin
container=current;
exec dbms_goldengate_auth.grant_admin_privilege('ggadmin');

Chapter 25
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

25-13

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-multitenant-container-database-1.html#GUID-0B0CEB35-51C6-4319-BEE1-FA208FF4DE05
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/establishing-oracle-goldengate-credentials.html#GUID-E40B375A-5042-4195-B563-BE7EDC251880

Step 1.3 - Create the Database Services

If the source and target databases are running the recommended configuration on an Oracle
RAC cluster with Oracle Data Guard, a role-based service must be created that allows the
Extract or Replicat processes to connect to the correct Data Guard primary database instance.

When using a source multitenant database, a separate service is required for the root
container database (CDB) and the pluggable database (PDB) that contains the schema being
replicated. For a target multitenant database, a single service is required for the PDB.

As the oracle OS user on the primary and standby database systems, create and start the
CDB database service using the following command:

[oracle@exadb1_node1 ~]$ srvctl add service -db <dbName>
 -service <dbName>_goldengate -preferred <ORACLE_SID1> -available
<ORACLE_SID2>
 -role PRIMARY

As the oracle OS user on the primary and standby database systems, create and start the PDB
database service using the following command:

[oracle@exadb1_node1 ~]$ srvctl add service -db <dbName>
 -service <dbName>_<pdbName>_goldengate -preferred <ORACLE_SID1>
 -available <ORACLE_SID2> -pdb <pdbName> -role PRIMARY

As the oracle OS user on the primary and standby database systems, start and verify that the
services are running, as shown here:

[oracle@exadb1_node1 ~]$ srvctl start service -db <dbName> -role
[oracle@exadb1_node1 ~]$ srvctl status service -db <dbName> |grep goldengate

Service <dbName>_goldengate is running on instance(s) <SID1>
Service <dbName>_<pdbName>_goldengate is running on instance(s) <SID1>

Note:

Repeat step 1.3 in the source and target database system.

Task 2: Prepare a Primary and Standby Base System for GGHub
Perform the following steps to complete this task:

• Step 2.1 - Deploy Oracle 2-node Cluster System

• Step 2.2 - Download the Required Software

• Step 2.3 - Configure Oracle Linux to use the Oracle Public YUM Repository

Step 2.1 - Deploy a Oracle 2-Node Oracle Grid Infrastructure System

Deploy a minimum of two GGHubs (primary and standby). Each GGHub must be deployed as
a 2-node Oracle Grid Infrastructure system as described in Installing Oracle Grid Infrastructure.

Chapter 25
Task 2: Prepare a Primary and Standby Base System for GGHub

25-14

http://www.oracle.com/pls/topic/lookup?ctx=db19&id=CWLIN-GUID-D4E3FADF-360E-49EB-89A2-E4CBBB9CC61F

Figure 25-3 Oracle GoldenGate Hub Hardware Architecture

Availability Domain 1 Availability Domain 2

Primary GGHUB

2-node RAC
Database system

Standby GGHUB

2-node RAC
Database system

ACFS
Replication

Step 2.2 - Download the Required Software

1. As the root OS user on all GGHub nodes, create the staging and scripts directories:

[root@gghub_prim1 ~]#
mkdir -p /u01/oracle/stage
mkdir /u01/oracle/scripts
chown -R oracle:oinstall /u01/oracle
chmod -R g+w /u01/oracle
chmod -R o+w /u01/oracle/stage

2. As the opc OS user on all GGHub nodes, download the following software in the
directory /u01/oracle/stage:

• Download the latest Oracle GoldenGate 21c (or later release) Microservices software
from My Oracle Support Doc ID 2193391.1.

• Download the Oracle Grid Infrastructure Standalone Agents for Oracle Clusterware
19c, release 10.2 or later, from Oracle Grid Infrastructure Standalone Agents for
Oracle Clusterware.

• Download the python script (secureServices.py) from My Oracle Support Document
2826001.1

• Download the Oracle GGHUB Scripts from My Oracle Support Document 2951572.1

3. As the grid OS user on all GGHub nodes, unzip the GGhub scripts file downloaded from
My Oracle Support Document 2951572.1 into the directory /u01/oracle/scripts.

Place the script in the same location on all primary and standby GGhub nodes

[grid@gghub_prim1 ~]$ unzip
 -q /u01/oracle/stage/gghub_scripts_<YYYYYMMDD>.zip
 -d /u01/oracle/scripts/

Step 2.3 - Configure Oracle Linux to use the Oracle Public YUM Repository

Chapter 25
Task 2: Prepare a Primary and Standby Base System for GGHub

25-15

https://support.oracle.com/rs?type=doc&id=2193391.1
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
https://support.oracle.com/rs?type=doc&id=2826001.1
https://support.oracle.com/rs?type=doc&id=2826001.1
https://support.oracle.com/rs?type=doc&id=2951572.1
https://support.oracle.com/rs?type=doc&id=2951572.1

The Oracle Linux yum server hosts software for Oracle Linux and compatible distributions.
These instructions help you get started configuring your Linux system for Oracle Linux yum
server and installing software through yum.

For example, as the root OS user in all GGHub systems, create the file /etc/yum.repos.d/
oracle-public-yum-ol7.repo with the following contents:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]#
cat > /etc/yum.repos.d/oracle-public-yum-ol7.repo <<EOF
[ol7_latest]
name=Oracle Linux $releasever Latest ($basearch)
baseurl=http://yum.oracle.com/repo/OracleLinux/OL7/latest/\$basearch
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1
EOF

Task 3: Configure Oracle GoldenGate for the Primary and
Standby GGHub

Perform the following steps to complete this task:

• Step 3.1 - Install Oracle GoldenGate Software

• Step 3.2 - Set Up Oracle GoldenGate Hub Architecture Network Configuration

• Step 3.3 - Configure ACFS File System Replication between GGHubs in the same data
canter

Step 3.1 - Install Oracle GoldenGate Software

Install Oracle GoldenGate software locally on all nodes of the primary and standby GGHub
configuration that will be part of the GoldenGate configuration. Make sure the installation
directory is identical on all nodes.

Step 3.1.1 Unzip the Software and Create the Response File for the Installation

As the oracle OS user on all GGHub nodes, unzip the Oracle GoldenGate software:

[oracle@gghub_prim1 ~]$ unzip -q
 /u01/oracle/stage/p36175132_2113000OGGRU_Linux-x86-64.zip -d /u01/oracle/
stage

The software includes an example response file for Oracle Database 21c and earlier supported
versions.

Copy the response file to a shared file system, so the same file can be used to install Oracle
GoldenGate on all database nodes, and edit the following parameters:

• INSTALL_OPTION=ora21c
• SOFTWARE_LOCATION=/u01/app/oracle/goldengate/gg21c (recommended location)

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-16

As the oracle OS user on all GGHub nodes, copy and edit the response file for the installation:

[oracle@gghub_prim1 ~]$ cp
 /u01/oracle/stage/fbo_ggs_Linux_x64_Oracle_services_shiphome/Disk1/response/
oggcore.rsp
 /u01/oracle/stage
[oracle@gghub_prim1 ~]$ vi /u01/oracle/stage/oggcore.rsp

Before
INSTALL_OPTION=
SOFTWARE_LOCATION=

After
INSTALL_OPTION=ora21c
SOFTWARE_LOCATION=/u01/app/oracle/goldengate/gg21c

Step 3.1.2 Install Oracle GoldenGate Software

As the oracle OS user on all GGHub nodes, run runInstaller to install Oracle GoldenGate:

[oracle@gghub_prim1 ~]$ cd
 /u01/oracle/stage/fbo_ggs_Linux_x64_Oracle_services_shiphome/Disk1/
[oracle@gghub_prim1 ~]$./runInstaller -silent -nowait
 -responseFile /u01/oracle/stage/oggcore.rsp

Starting Oracle Universal Installer...

Checking Temp space: must be greater than 120 MB. Actual 32755 MB Passed
Checking swap space: must be greater than 150 MB. Actual 16383 MB Passed
Preparing to launch Oracle Universal Installer from
 /tmp/OraInstall2022-07-08_02-54-51PM. Please wait ...
You can find the log of this install session at:
 /u01/app/oraInventory/logs/installActions2022-07-08_02-54-51PM.log
Successfully Setup Software.
The installation of Oracle GoldenGate Services was successful.
Please check '/u01/app/oraInventory/logs/
silentInstall2022-07-08_02-54-51PM.log'
 for more details.

[oracle@gghub_prim1 ~]$ cat
 /u01/app/oraInventory/logs/silentInstall2022-07-08_02-54-51PM.log

The installation of Oracle GoldenGate Services was successful.

Step 3.1.3 Install Patches for Oracle GoldenGate Microservices Architecture

As the oracle OS user on all GGHub nodes, install the latest OPatch:

[oracle@gghub_prim1 ~]$ unzip -oq
 -d /u01/app/oracle/goldengate/gg21c
 /u01/oracle/stage/p6880880_210000_Linux-x86-64.zip
[oracle@gghub_prim1 ~]$ cat >> ~/.bashrc <<EOF
export ORACLE_HOME=/u01/app/oracle/goldengate/gg21c
export PATH=/u01/app/oracle/goldengate/gg21c/OPatch:$PATH
EOF

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-17

[oracle@gghub_prim1 ~]$. ~/.bashrc
[oracle@gghub_prim1 ~]$ opatch lsinventory |grep 'Oracle GoldenGate Services'

Oracle GoldenGate Services
21.1.0.0.0

[oracle@gghub_prim1 Disk1]$ opatch version
OPatch Version: 12.2.0.1.37

OPatch succeeded.

As the oracle OS user on all GGHub nodes, run OPatch prereq to validate any conflict before
applying the patch:

[oracle@gghub_prim1 ~]$ unzip -oq
 -d /u01/oracle/stage/ /u01/oracle/stage/p35214851_219000OGGRU_Linux-
x86-64.zip

[oracle@gghub_prim1 ~]$ cd /u01/oracle/stage/35214851/
[oracle@gghub_prim1 35214851]$ opatch prereq CheckConflictAgainstOHWithDetail
-ph ./

Oracle Interim Patch Installer version 12.2.0.1.26
Copyright (c) 2023, Oracle Corporation. All rights reserved.

PREREQ session

Oracle Home : /u01/app/oracle/goldengate/gg21c
Central Inventory : /u01/app/oraInventory
 from : /u01/app/oracle/goldengate/gg21c/oraInst.loc
OPatch version : 12.2.0.1.26
OUI version : 12.2.0.9.0
Log file location :
 /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_13-44-16PM_1.log

Invoking prereq "checkconflictagainstohwithdetail"

Prereq "checkConflictAgainstOHWithDetail" passed.

OPatch succeeded.

As the oracle OS user on all GGHub nodes, patch Oracle GoldenGate Microservices
Architecture using OPatch:

[oracle@gghub_prim1 35214851]$ opatch apply

Oracle Interim Patch Installer version 12.2.0.1.37
Copyright (c) 2023, Oracle Corporation. All rights reserved.

Oracle Home : /u01/app/oracle/goldengate/gg21c
Central Inventory : /u01/app/oraInventory
 from : /u01/app/oracle/goldengate/gg21c/oraInst.loc
OPatch version : 12.2.0.1.37
OUI version : 12.2.0.9.0

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-18

Log file location :
 /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_19-40-41PM_1.log
Verifying environment and performing prerequisite checks...
OPatch continues with these patches: 35214851

Do you want to proceed? [y|n]
y
User Responded with: Y
All checks passed.

Please shutdown Oracle instances running out of this ORACLE_HOME on the local
system.
(Oracle Home = '/u01/app/oracle/goldengate/gg21c')

Is the local system ready for patching? [y|n]
y
User Responded with: Y
Backing up files...
Applying interim patch '35214851' to OH '/u01/app/oracle/goldengate/gg21c'

Patching component oracle.oggcore.services.ora21c, 21.1.0.0.0...
Patch 35214851 successfully applied.
Log file location:
 /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_19-40-41PM_1.log

OPatch succeeded.

[oracle@gghub_prim1 35214851]$ opatch lspatches
35214851;

OPatch succeeded.

Note:

Repeat all of the sub steps in step 3.1 for the primary and standby GGHub systems.

Step 3.2 - Create Application Virtual IP Address (VIP)

A dedicated application virtual IP address (VIP) is required on each hub cluster to ensure that
the primary ACFS replication process sends file system data to the correct hub standby node
where the file system is currently mounted. This is accomplished by co-locating the VIP and
the ACFS CRS resources on the same node. The VIP is a cluster resource that Oracle
Clusterware manages, and is migrated to another cluster node in the event of a node failure.

As the root OS user on the first GGHub node, run the following command to identify the
network number:

[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl status resource -p -attr NAME,USR_ORA_SUBNET
 -w "TYPE = ora.network.type" |sort | uniq

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-19

NAME=ora.net1.network
USR_ORA_SUBNET=10.128.26.0

As the root OS user on the first GGHub node, run the following command to create the
application VIP managed by Oracle Clusterware:

[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_appvip.sh

Application VIP Name: gghub_prim_vip1
Application VIP Address: 10.128.26.200
Using configuration parameter file: /u01/app/19.0.0.0/grid/crs/install/
crsconfig_params
The log of current session can be found at:
 /u01/app/grid/crsdata/gghub_prim1/scripts/appvipcfg.log

Step 3.3 - Configure ACFS File System Replication between GGHubs in the Same
Region

Oracle GoldenGate Microservices Architecture is designed with a simplified installation and
deployment directory structure. The installation directory should be placed on local storage on
each database node to minimize downtime during software patching. The deployment
directory, which is created during deployment creation using the Oracle GoldenGate
Configuration Assistant (oggca.sh), must be placed on a shared file system.

The deployment directory contains configuration, security, log, parameter, trail, and checkpoint
files. Placing the deployment in Oracle Automatic Storage Management Cluster File system
(ACFS) provides the best recoverability and failover capabilities in the event of a system
failure. Ensuring the availability of the checkpoint files cluster-wide is essential so that the
GoldenGate processes can continue running from their last known position after a failure
occurs.

It is recommended that you allocate enough trail file disk space for a minimum of 12 hours of
trail files. This will provide sufficient space for trail file generation should a problem occur with
the target environment that prevents it from receiving new trail files. The amount of space
needed for 12 hours can only be determined by testing trail file generation rates with real
production data.

If you want to build contingency for a long planned maintenance event of one of the
GoldenGate Primary Database or systems, you can allocate sufficient ACFS space for 2 days.
Monitoring space utilization is always recommended regardless of how much space is
allocated.

Note:

If the GoldenGate hub will support multiple service manager deployments using
separate ACFS file systems, the following steps should be repeated for each file
ACFS file system.

Perform the following sub-steps to complete this step:

• Step 3.3.1 - Create the ASM File system

• Step 3.3.2 - Create the Cluster Ready Services (CRS) Resource

• Step 3.3.3 - Verify the Currently Configured ACFS File System

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-20

• Step 3.3.4 - Start and Check the Status of the ACFS Resource

• Step 3.3.5 – Create CRS Dependencies Between ACFS and an Application VIP

• Step 3.3.6 – Create the SSH Daemon CRS Resource

• Step 3.3.7 – Enable ACFS Replication

• Step 3.3.8 – Create the ACFS Replication CRS Action Scripts

Step 3.3.1 - Create the ASM File system

As the grid OS user on the first GGHub node, use asmcmd to create the ACFS volume:

[grid@gghub_prim1 ~]$ asmcmd volcreate -G DATA -s 120G ACFS_GG1

Note:

Modify the file system size according to the determined size requirements.

As the grid OS user on the first GGHub node, use asmcmd to confirm the “Volume Device”:

[grid@gghub_prim1 ~]$ asmcmd volinfo -G DATA ACFS_GG1

Diskgroup Name: DATA
 Volume Name: ACFS_GG1
 Volume Device: /dev/asm/acfs_gg1-256
 State: ENABLED
 Size (MB): 1228800
 Resize Unit (MB): 64
 Redundancy: UNPROT
 Stripe Columns: 8
 Stripe Width (K): 1024
 Usage:
 Mountpath:

As the grid OS user on the first GGHub node, format the partition with the following mkfs
command:

[grid@gghub_prim1 ~]$ /sbin/mkfs -t acfs /dev/asm/acfs_gg1-256

mkfs.acfs: version = 19.0.0.0.0
mkfs.acfs: on-disk version = 46.0
mkfs.acfs: volume = /dev/asm/acfs_gg1-256
mkfs.acfs: volume size = 128849018880 (120.00 GB)
mkfs.acfs: Format complete.

Step 3.3.2 - Create the Cluster Ready Services (CRS) Resource

As the root OS user on all GGHub nodes, create the ACFS mount point:

[root@gghub_prim1 ~]# mkdir -p /mnt/acfs_gg1
[root@gghub_prim1 ~]# chown oracle:oinstall /mnt/acfs_gg1

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-21

Create the file system resource as the root user. Due to the implementation of distributed file
locking on ACFS, unlike DBFS, it is acceptable to mount ACFS on more than one GGHub
node at any one time.

As the root OS user on the first GGHub node, create the CRS resource for the new ACFS file
system:

[root@gghub_prim1 ~]# vi /u01/oracle/scripts/add_asm_filesystem.sh
Run as ROOT
$(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/bin/srvctl add filesystem
\
-device /dev/asm/<acfs_volume> \
-volume ACFS_GG1 \
-diskgroup DATA \
-path /mnt/acfs_gg1 -user oracle \
-node gghub_prim1,gghub_prim2 \
-autostart NEVER \
-mountowner oracle \
-mountgroup oinstall \
-mountperm 755

[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_asm_filesystem.sh

Step 3.3.3 - Verify the Currently Configured ACFS File System

As the grid OS user on the first GGHub node, use the following command to validate the file
system details:

[grid@gghub_prim1 ~]$ srvctl config filesystem -volume ACFS_GG1
 -diskgroup DATA

Volume device: /dev/asm/acfs_gg1-256
Diskgroup name: data
Volume name: acfs_gg1
Canonical volume device: /dev/asm/acfs_gg1-256
Accelerator volume devices:
Mountpoint path: /mnt/acfs_gg1
Mount point owner: oracle
Mount point group: oinstall
Mount permissions: owner:oracle:rwx,pgrp:oinstall:r-x,other::r-x
Mount users: grid
Type: ACFS
Mount options:
Description:
Nodes: gghub_prim1 gghub_prim2
Server pools: *
Application ID:
ACFS file system is enabled
ACFS file system is individually enabled on nodes:
ACFS file system is individually disabled on nodes:

Step 3.3.4 - Start and Check the Status of the ACFS Resource

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-22

As the grid OS user on the first GGHub node, use the following command to start and check
the file system:

[grid@gghub_prim1 ~]$ srvctl start filesystem -volume ACFS_GG1
 -diskgroup DATA -node `hostname`
[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1 -diskgroup
DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim1

The CRS resource created is named using the format
ora.diskgroup_name.volume_name.acfs. Using the above file system example, the CRS
resource is called ora.data.acfs_gg.acfs.

As the grid OS user on the first GGHub node, use the following command to see the ACFS
resource in CRS:

[grid@gghub_prim1 ~]$ crsctl stat res ora.data.acfs_gg1.acfs

NAME=ora.data.acfs_gg1.acfs
TYPE=ora.acfs_cluster.type
TARGET=ONLINE
STATE=ONLINE on gghub_prim1

Step 3.3.5 – Create CRS Dependencies Between ACFS and an Application VIP

To ensure that the file system is mounted on the same Oracle GGHub node as the VIP, add the
VIP CRS resource as a dependency to the ACFS resource, using the following example
commands. Each separate replicated ACFS file system will have its own dedicated VIP.

As the root OS user on the first GGHub node, use the following command to determine the
current start and stop dependencies of the VIP resource:

[root@gghub_prim1 ~]# export APPVIP=`$(grep ^crs_home /etc/oracle/olr.loc |
cut
 -d= -f2)/bin/crsctl stat res -w "TYPE co appvip" |grep NAME | cut -f2 -d"="`
gghub_prim_vip1

[root@gghub_prim1 ~]# export APPVIP=gghub_prim_vip1
[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/bin/
crsctl
 stat res $APPVIP -f|grep _DEPENDENCIES

START_DEPENDENCIES=hard(ora.net1.network) pullup(ora.net1.network)
STOP_DEPENDENCIES=hard(intermediate:ora.net1.network)

As the root OS user on the first GGHub node, determine the ACFS file system name:

[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl stat res -w "NAME co acfs_gg1" |grep NAME

NAME=ora.data.acfs_gg.acfs

[root@gghub_prim1 ~]# export ACFS_NAME=ora.data.acfs_gg1.acfs

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-23

As the root OS user on the first GGHub node, modify the start and stop dependencies of the
VIP resource:

[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl modify res $APPVIP
 -attr "START_DEPENDENCIES='hard(ora.net1.network,$ACFS_NAME)
pullup(ora.net1.network)

pullup:always($ACFS_NAME)',STOP_DEPENDENCIES='hard(intermediate:ora.net1.netwo
rk,$ACFS_NAME)',HOSTING_MEMBERS=,PLACEMENT=balanced"

As the grid OS user on the first GGHub node, start the VIP resource:

[grid@gghub_prim1 ~]$ $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl stat res -w "TYPE co appvip" |grep NAME | cut -f2 -d"="
gghub_prim_vip1

[grid@gghub_prim1 ~]$ export APPVIP=gghub_prim_vip1

[grid@gghub_prim1 ~]$ crsctl start resource $APPVIP

CRS-2672: Attempting to start 'gghub_prim_vip1' on 'gghub_prim1'
CRS-2676: Start of 'gghub_prim_vip1' on 'gghub_prim1' succeeded

Note:

Before moving to the next step, it is important to make sure that the VIP can be
mounted on both GGHub nodes.

As the grid OS user on the first GGHub node, relocate the VIP resource:

[grid@gghub_prim1 ~]$ crsctl relocate resource $APPVIP -f

CRS-2673: Attempting to stop 'gghub_prim_vip1' on 'gghub_prim1'
CRS-2677: Stop of 'gghub_prim_vip1' on 'gghub_prim1' succeeded
CRS-2673: Attempting to stop 'ora.data.acfs_gg1.acfs' on 'gghub_prim1'
CRS-2677: Stop of 'ora.data.acfs_gg1.acfs' on 'gghub_prim1' succeeded
CRS-2672: Attempting to start 'ora.data.acfs_gg1.acfs' on 'gghub_prim2'
CRS-2676: Start of 'ora.data.acfs_gg1.acfs' on 'gghub_prim2' succeeded
CRS-2672: Attempting to start 'gghub_prim_vip1' on 'gghub_prim2'
CRS-2676: Start of 'gghub_prim_vip1' on 'gghub_prim2' succeeded

[grid@gghub_prim1 ~]$ crsctl status resource $APPVIP

NAME=gghub_prim_vip1
TYPE=app.appviptypex2.type
TARGET=ONLINE
STATE=ONLINE on gghub_prim2

[grid@gghub_prim1 ~]$ crsctl relocate resource $APPVIP -f

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-24

CRS-2673: Attempting to stop 'gghub_prim_vip1' on 'gghub_prim2'
CRS-2677: Stop of 'gghub_prim_vip1' on 'gghub_prim2' succeeded
CRS-2673: Attempting to stop 'ora.data.acfs_gg1.acfs' on 'gghub_prim2'
CRS-2677: Stop of 'ora.data.acfs_gg1.acfs' on 'gghub_prim2' succeeded
CRS-2672: Attempting to start 'ora.data.acfs_gg1.acfs' on 'gghub_prim1'
CRS-2676: Start of 'ora.data.acfs_gg1.acfs' on 'gghub_prim1' succeeded
CRS-2672: Attempting to start 'gghub_prim_vip1' on 'gghub_prim1'
CRS-2676: Start of 'gghub_prim_vip1' on 'gghub_prim1' succeeded

As the grid OS user on the first GGHub node, check the status of the ACFS file system:

[grid@gghub_prim1 ~]$ srvctl status filesystem
 -volume ACFS_GG1 -diskgroup DATA

ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim1

Step 3.3.6 – Create the SSH Daemon CRS Resource

ACFS replication uses a secure shell (ssh) to communicate between the primary and standby
file systems using the virtual IP addresses that were previously created. When a server is
rebooted, the ssh daemon is started before the VIP CRS resource, preventing access to the
cluster using VIP.

The following instructions create a ssh restart CRS resource that will restart the ssh daemon
after the virtual IP resource is started. A separate ssh restart CRS resource is needed for each
replicated file system.

As the root OS user on the first GGHub node, create the CRS resource using the following
command:

[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut
 -d= -f2)/bin/crsctl stat res -w "TYPE co appvip" |grep NAME | cut -f2 -d"="
gghub_prim_vip1

[root@gghub_prim1 ~]# export APPVIP=gghub_prim_vip1
[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_sshd_restart.sh

As the grid OS user on the first GGHub node, start and test the CRS resource:

[grid@gghub_prim1 ~]$ crsctl stat res sshd_restart
NAME=sshd_restart
TYPE=cluster_resource
TARGET=OFFLINE
STATE=OFFLINE

[grid@gghub_prim1 ~]$ crsctl start res sshd_restart

CRS-2672: Attempting to start 'sshd_restart' on 'gghub_prim1'
CRS-2676: Start of 'sshd_restart' on 'gghub_prim1' succeeded
[grid@gghub_prim1 ~]$ cat /tmp/sshd_restarted
STARTED

[grid@gghubtest1 ~]$ crsctl stop res sshd_restart

CRS-2673: Attempting to stop 'sshd_restart' on 'gghub_prim1'

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-25

CRS-2677: Stop of 'sshd_restart' on 'gghub_prim1' succeeded
[grid@gghub1 ~]$ cat /tmp/sshd_restarted
STOPPED

[grid@gghub1 ~]$ crsctl start res sshd_restart

CRS-2672: Attempting to start 'sshd_restart' on 'gghub_prim1'
CRS-2676: Start of 'sshd_restart' on 'gghub_prim1' succeeded
[grid@gghub1 ~]$ crsctl stat res sshd_restart

NAME=sshd_restart
TYPE=cluster_resource
TARGET=ONLINE
STATE=ONLINE on gghub_prim1

Step 3.3.7 – Enable ACFS Replication

ACFS snapshot-based replication uses openssh to transfer the snapshots from between the
primary and standby hosts using the designated replication user, which is commonly the grid
user.

As the grid OS user in the primary and standby hub systems, follow the instructions in
Configuring ssh for Use With Oracle ACFS Replication to configure the ssh connectivity
between the primary and standby nodes.

As the grid OS user on all primary and standby GGHub nodes, use ssh to test connectivity
between all primary to standby nodes, and in the reverse direction using ssh as the replication
user:

On the Primary GGhub
[grid@gghub_prim1 ~]$ ssh gghub_stby_vip1.frankfurt.goldengate.com hostname
gghub_stby1

[grid@gghub_prim2 ~]$ ssh gghub_stby_vip1.frankfurt.goldengate.com hostname
gghub_stby1

On the Standby GGhub

[grid@gghub_stby1 ~]$ ssh gghub_prim_vip1.frankfurt.goldengate.com hostname
gghub_prim1

[grid@gghub_stby2 ~]$ ssh gghub_prim_vip1.frankfurt.goldengate.com hostname
gghub_prim1

As the grid OS user on the primary and standby GGHub nodes where ACFS is mounted, use
acfsutil to test connectivity between the primary and the standby nodes:

On the Primary GGhub

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1 -diskgroup
DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim1

[grid@gghub_prim1 ~]$ acfsutil repl info -c
-u grid gghub_prim_vip1.frankfurt.goldengate.com

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-26

 gghub_stby_vip1.frankfurt.goldengate.com
 /mnt/acfs_gg1
A valid 'ssh' connection was detected for standby node
 gghub_prim_vip1.frankfurt.goldengate.com as user grid.
A valid 'ssh' connection was detected for standby node
 gghub_stby_vip1.frankfurt.goldengate.com as user grid.

On the Standby GGhub

[grid@gghub_stby1 ~]$ srvctl status filesystem -volume ACFS_GG1
 -diskgroup DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_stby1

[grid@gghub_stby1 ~]$ acfsutil repl info -c
 -u grid gghub_prim_vip1.frankfurt.goldengate.com
 gghub_stby_vip1.frankfurt.goldengate.com
 /mnt/acfs_gg
A valid 'ssh' connection was detected for standby node
 gghub_prim_vip1.frankfurt.goldengate.com as user grid.
A valid 'ssh' connection was detected for standby node
 gghub_stby_vip1.frankfurt.goldengate.com as user grid.

If the acfsutil command is run from a GGHub node where ACFS is not mounted, the error
ACFS-05518 will be shown as expected.

Use srvctl status filesytem to find the GGHub where ACFS is mounted and re-run the
command:

[grid@gghub_prim1 ~]$ acfsutil repl info -c
 -u grid gghub_stby_vip1.frankfurt.goldengate.com
gghub_stby_vip1.frankfurt.goldengate.com
 /mnt/acfs_gg1
acfsutil repl info: ACFS-05518: /mnt/acfs_gg1 is not an ACFS mount point

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1 -diskgroup
DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim2

[grid@gghub_prim1 ~]$ ssh gghub_prim2
[grid@gghub_prim2 ~]$ acfsutil repl info -c -u
 grid gghub_prim_vip1.frankfurt.goldengate.com
gghub_stby_vip1.frankfurt.goldengate.com
 /mnt/acfs_gg1
A valid 'ssh' connection was detected for standby node
 gghub_prim_vip1.frankfurt.goldengate.com as user grid.
A valid 'ssh' connection was detected for standby node
 gghub_stby_vip1.frankfurt.goldengate.com as user grid.

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-27

Note:

Make sure the connectivity is verified between all primary nodes to all standby nodes,
as well as in the opposite direction. Only continue when there are no errors with any
of the connection tests.

As the grid OS user on the standby GGhub node where ACFS is currently mounted, initialize
ACFS replication:

[grid@gghub_stby1 ~]$ srvctl status filesystem -volume ACFS_GG1 -diskgroup
DATA

ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_stby1

[grid@gghub_stby1 ~]$ /sbin/acfsutil repl init standby -u grid /mnt/acfs_gg1

As the grid OS user on the primary GGhub node where ACFS is currently mounted, initialize
ACFS replication:

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1 -diskgroup
DATA

ACFS file system /mnt/acfs_gg is mounted on nodes gghub_prim1

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl init primary -C -p
 grid@gghub_prim_vip1.frankfurt.goldengate.com -s
 grid@gghub_stby_vip1.frankfurt.goldengate.com -m /mnt/acfs_gg1 /mnt/acfs_gg1

As the grid OS user on the primary and standby GGhub nodes, monitor the initialization
progress.

When the status changes to “Send Completed” it means that the initial primary file system copy
has finished and the primary file system is now being replicated to the standby host:

On the Primary GGhub

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 | grep
Status

Status: Send Completed

On the Standby GGhub

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 | grep
Status

Status: Receive Completed

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-28

As the grid OS user on the primary and standby GGhub nodes, verify and monitor the ACFS
replicated file system:

On the Primary GGhub

[grid@gghub_prim1 ~]$ acfsutil repl util verifystandby /mnt/acfs_gg1

verifystandby returned: 0

On the Standby GGhub

[grid@gghubtest31 ~]$ acfsutil repl util verifyprimary /mnt/acfs_gg1

verifyprimary returned: 0

Note:

Both commands will return a value of 0 (zero) if there are no problems detected. See
Troubleshooting ACFS Replication for monitoring, diagnosing, and resolving common
issues with ACFS Replication before continuing.

As the grid OS user on the primary GGhub node, use the following command to monitor the
status of the ACFS replication:

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1

Site: Primary
Primary hostname: gghub_prim_vip1.frankfurt.goldengate.com
Primary path: /mnt/acfs_gg1
Primary status: Running
Background Resources: Active

Standby connect string:
grid@gghub_stby_vip1.frankfurt.goldengate.com
Standby path: /mnt/acfs_gg1
Replication interval: 0 days, 0 hours, 0 minutes, 0 seconds
Sending primary as of: Fri May 05 12:37:02 2023
Status: Send Completed
Lag Time: 00:00:00
Retries made: 0
Last send started at: Fri May 05 12:37:02 2023
Last send completed at: Fri May 05 12:37:12 2023
Elapsed time for last send: 0 days, 0 hours, 0 minutes, 10 seconds
Next send starts at: now
Replicated tags:
Data transfer compression: Off
ssh strict host key checking: On
Debug log level: 3
Replication ID: 0x4d7d34a

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-29

As the grid OS user on the standby GGhub node where ACFS is currently mounted, use the
following command to monitor the status of the ACFS replication:

[grid@gghub_stby1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1

Site: Standby
Primary hostname: gghub_prim_vip1.frankfurt.goldengate.com
Primary path: /mnt/acfs_gg1

Standby connect string:
grid@gghub_stby_vip1.frankfurt.goldengate.com
Standby path: /mnt/acfs_gg1
Replication interval: 0 days, 0 hours, 0 minutes, 0 seconds
Last sync time with primary: Fri May 05 12:37:02 2023
Receiving primary as of: Fri May 05 12:37:02 2023
Status: Receive Completed
Last receive started at: Fri May 05 12:37:02 2023
Last receive completed at: Fri May 05 12:37:07 2023
Elapsed time for last receive: 0 days, 0 hours, 0 minutes, 5 seconds
Data transfer compression: Off
ssh strict host key checking: On
Debug log level: 3
Replication ID: 0x4d7d34a

Step 3.3.8 – Create the ACFS Replication CRS Action Scripts

To determine the health of the ACFS primary and standby file systems, CRS action scripts are
used. At predefined intervals the action scripts report the health of the file systems into the
CRS trace file crsd_scriptagent_grid.trc (or crsd_scriptagent_oracle.trc if role
separation is not used) located in the Grid Infrastructure trace file directory /u01/app/grid/
diag/crs/node_name/crs/trace on each of the primary and standby file system of the GGhub
nodes.

On both the primary and standby file system clusters, there are two scripts required. One to
monitor the local primary file system, and if the remote standby file system is available, and
one to monitor the local standby file system and check remote primary file systems’ availability.
Example scripts are provided to implement the ACFS monitoring, but you must edit them to
suit your environment.

Each replicated file system will need its own acfs_primary and acfs_standby action scripts.

Step 3.3.8.1 - Action Script acfs_primary.scr

The acfs_primary CRS resource checks whether the current ACFS mount is a primary file
system and confirms that the standby file system is accessible and receiving replicated data.
The resource is used to automatically determine if Oracle GoldenGate can start processes on
the primary Oracle GoldenGate hub. If the standby file system is not accessible by the primary,
the example script makes multiple attempts to verify the standby file system.

The acfs_primary CRS resource runs on both, the primary and standby hosts, but only returns
success when the current file system is the primary file system, and the standby file system is
accessible. The script must be placed in the same location on all primary and standby file
system nodes.

The following parameters use suggested default settings, which should be tested before
changing their values:

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-30

• MOUNT_POINT=/mnt/acfs_gg1
The replicated ACFS mount point

• PATH_NAME=$MOUNT_POINT/status/acfs_primary
Must be unique from other mount files

• ATTEMPTS=3
Number of attempts to check the remote standby file system

• INTERVAL=10
Number of seconds between each attempt

As the grid OS user on all primary and standby GGHub nodes, edit the acfs_primary.scr
script to match the environment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ vi /u01/oracle/scripts/acfs_primary.scr

As the oracle OS user on the primary GGhub node where ACFS is currently mounted, run the
following commands to create the status directory:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ mkdir /mnt/acfs_gg1/status
[oracle@gghub_prim1 ~]$ chmod g+w /mnt/acfs_gg1/status

As the grid OS user on the primary and standby GGHub node where ACFS is currently
mounted, run the following command to register the acfs_primary action script for monitoring
the primary and standby file system:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ sh /u01/oracle/scripts/add_acfs_primary.sh

##
##
List of ACFS resources:
ora.data.acfs_gg1.acfs
##
##
ACFS resource name: <ora.data.acfs_gg1.acfs>

As the grid OS user on the primary GGhub node where ACFS is currently mounted, start and
check the status of the acfs_primary resource:

[grid@gghub_prim1 ~]$ crsctl start resource acfs_primary

CRS-2672: Attempting to start 'acfs_primary' on 'gghub_prim1'
CRS-2676: Start of 'acfs_primary' on 'gghub_prim1' succeeded

[grid@gghub_prim1 ~]$ crsctl stat resource acfs_primary

NAME=acfs_primary
TYPE=cluster_resource
TARGET=ONLINE
STATE=ONLINE on gghub_prim1

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-31

[grid@gghub_prim1 ~]$
 grep acfs_primary /u01/app/grid/diag/crs/`hostname`/crs/trace/
crsd_scriptagent_grid.trc
 |grep check

2023-05-05 12:57:40.372 :CLSDYNAM:2725328640: [acfs_primary]{1:33562:34377}
[check]
 Executing action script: /u01/oracle/scripts/acfs_primary.scr[check]
2023-05-05 12:57:42.376 :CLSDYNAM:2725328640: [acfs_primary]{1:33562:34377}
[check]
 SUCCESS: STANDBY file system /mnt/acfs_gg1 is ONLINE

As the grid OS user on the standby GGhub node where ACFS is currently mounted, start and
check the status of the acfs_primary resource.

This step should fail because acfs_primary should ONLY be online on the primary GGhub:

[grid@gghub_stby1 ~]$ crsctl start res acfs_primary -n `hostname`

CRS-2672: Attempting to start 'acfs_primary' on 'gghub_stby1'
CRS-2674: Start of 'acfs_primary' on 'gghub_stby1' succeeded
CRS-2679: Attempting to clean 'acfs_primary' on 'gghub_stby1'
CRS-2681: Clean of 'acfs_primary' on 'gghub_stby1' succeeded
CRS-4000: Command Start failed, or completed with errors.

[grid@gghub_stby1 ~]$ crsctl stat res acfs_primary

NAME=acfs_primary
TYPE=cluster_resource
TARGET=ONLINE
STATE=OFFLINE

[grid@gghub_stby1 trace]$ grep
 acfs_primary /u01/app/grid/diag/crs/`hostname`/crs/trace/
crsd_scriptagent_grid.trc
 |grep check

2023-05-05 13:09:53.343 :CLSDYNAM:3598239488: [acfs_primary]{1:8532:2106}
[check]
 Executing action script: /u01/oracle/scripts/acfs_primary.scr[check]
2023-05-05 13:09:53.394 :CLSDYNAM:3598239488: [acfs_primary]{1:8532:2106}
[check]
 Detected local standby file system
2023-05-05 13:09:53.493 :CLSDYNAM:1626130176: [acfs_primary]{1:8532:2106}
[clean]
 Clean/Abort -- Stopping ACFS file system type checking...

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-32

Note:

The status of the acfs_primary resources will only be ONLINE if the ACFS file system
is the primary file system. When starting the resources on a node which is not
currently on the primary cluster, an error is reported because the resource fails due to
being the standby file system. This error can be ignored. The resource will be in
OFFLINE status on the ACFS standby cluster.

Step 3.3.8.2 - Action Script acfs_standby.scr

The acfs_standby resource checks that the local file system is a standby file system and
verifies the remote primary file system status. If the primary file system fails verification multiple
times (controlled by the action script variables), a warning is output to the CRS trace file
crsd_scriptagent_grid.trc (or crsd_scriptagent_oracle.trc if role separation is not used)
located in the Grid Infrastructure trace file directory /u01/app/grid/diag/crs/node_name/crs/
trace.

This resource runs on both the primary and standby hosts, but only returns success when the
current file system is the standby file system, and the primary file system is accessible.

The following parameters use suggested default settings, which should be tested before
changing their values.

• MOUNT_POINT=/mnt/acfs_gg1
This is the replicated ACFS mount point

• ATTEMPTS=3
Number of tries to check the remote primary file system

• INTERVAL=10
Number of seconds between each attempt

As the grid OS user on all primary and standby GGHub nodes, edit the acfs_standby.scr
script to match the environment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ vi /u01/oracle/scripts/acfs_standby.scr

As the grid OS user on the primary and standby GGHub node where ACFS is currently
mounted, run the following command to register the acfs_standby action script for monitoring
the primary and standby file system:

[grid@gghub_prim1 ~]$ sh /u01/oracle/scripts/add_acfs_standby.sh

##
##
List of VIP resources:
gghub_prim1_vip1
gghub_prim1_vip2
##
##
Application VIP CRS Resource: <gghub_prim1_vip1>
##
##
List of ACFS resources:
ora.data.acfs_gg1.acfs

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-33

##
##
ACFS resource name: <ora.data.acfs_gg1.acfs>

As the grid OS user on the primary and standby GGHub node where ACFS is currently
mounted, start and check the status of the acfs_standby resource:

[grid@gghub_prim1 ~]$ crsctl start res acfs_standby

CRS-2672: Attempting to start 'acfs_standby' on 'gghub_prim1'
CRS-2676: Start of 'acfs_standby' on 'gghub_prim1' succeeded

[grid@gghub_prim1 ~]$ grep acfs_standby
 /u01/app/grid/diag/crs/`hostname`/crs/trace/crsd_scriptagent_grid.trc |egrep
'check|INFO'

2023-05-05 13:22:09.612 :CLSDYNAM:2725328640: [acfs_standby]{1:33562:34709}
[start]
 acfs_standby.scr starting to check ACFS remote primary at /mnt/acfs_gg1
2023-05-05 13:22:09.612 :CLSDYNAM:2725328640: [acfs_standby]{1:33562:34709}
[check]
 Executing action script: /u01/oracle/scripts/acfs_standby.scr[check]
2023-05-05 13:22:09.663 :CLSDYNAM:2725328640: [acfs_standby]{1:33562:34709}
[check]
 Local PRIMARY file system /mnt/acfs_gg1

Step 3.3.9 – Test ACFS GGhub Node Relocation

It is very important to test planned and unplanned ACFS GGhub node relocations and server
role transitions before configuring Oracle GoldenGate.

As the grid OS user on the primary and standby GGHub nodes, copy the scripts from node 1
to node 2:

[grid@gghub_prim1 ~]$ scp -rq /u01/oracle/scripts gghub_prim2:/u01/oracle

[grid@gghub_stby1 ~]$ scp -rq /u01/oracle/scripts gghub_stby2:/u01/oracle

As the grid OS user on the primary and standby GGHub nodes, verify that the file system is
mounted on another node, along with the VIP, sshd_restart, and the two ACFS resources
(acfs_primary and acfs_standby) using the following example command:

[grid@gghub_prim1 ~]$ crsctl stat res sshd_restart acfs_primary
 acfs_standby ora.data.acfs_gg1.acfs sshd_restart -t

--
--
Name Target State Server State
details
--
--
Cluster Resources
--
--

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-34

acfs_primary
 1 ONLINE ONLINE gghub_prim2 STABLE
acfs_standby
 1 ONLINE ONLINE STABLE
gghubfad2
 1 ONLINE ONLINE gghub_prim2 STABLE
ora.data.acfs_gg1.acfs
 1 ONLINE ONLINE gghub_prim2 mounted on /mnt/
acfs
 _gg1,STABLE
sshd_restart
 1 ONLINE ONLINE gghub_prim2 STABLE
--
--

[grid@gghub_stby1 ~]$ crsctl stat res sshd_restart acfs_primary acfs_standby
 ora.data.acfs_gg1.acfs sshd_restart -t

--
--
Name Target State Server State details
--
--
Cluster Resources
--
--
acfs_primary
 1 ONLINE OFFLINE STABLE
acfs_standby
 1 ONLINE ONLINE gghub_stby2 STABLE
ora.data.acfs_gg1.acfs
 1 ONLINE ONLINE gghub_stby2 mounted on /mnt/
acfs
 _gg1,STABLE
sshd_restart
 1 ONLINE ONLINE gghub_stby2 STABLE
--
--

Step 3.3.10 – Test ACFS Switchover Between the Primary and Standby GGhub

As the grid OS user on the standby GGHub node, run the following command to issue an
ACFS switchover (role reversal) between the primary and standby GGhub:

[grid@gghub_stby2 ~]$ crsctl stat res ora.data.acfs_gg1.acfs

NAME=ora.data.acfs_gg.acfs
TYPE=ora.acfs_cluster.type
TARGET=ONLINE
STATE=ONLINE on gghub_stby2

[grid@gghub_stby2 ~]$ acfsutil repl failover /mnt/acfs_gg1

[grid@gghub_stby2 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1

Site: Primary

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-35

Primary hostname: gghub_stby_vip1.frankfurt.goldengate.com
Primary path: /mnt/acfs_gg1
Primary status: Running
Background Resources: Active

Standby connect string: gghub_prim_vip1.frankfurt.goldengate.com
Standby path: /mnt/acfs_gg1
Replication interval: 0 days, 0 hours, 0 minutes, 0 seconds
Sending primary as of: Fri May 05 13:51:37 2023
Status: Send Completed
Lag Time: 00:00:00
Retries made: 0
Last send started at: Fri May 05 13:51:37 2023
Last send completed at: Fri May 05 13:51:48 2023
Elapsed time for last send: 0 days, 0 hours, 0 minutes, 11 seconds
Next send starts at: now
Replicated tags:
Data transfer compression: Off
ssh strict host key checking: On
Debug log level: 3
Replication ID: 0x4d7d34a

As the grid OS user on the new standby GGHub node (old primary), run the following
command to issue an ACFS switchover (role reversal) between the primary and standby
GGhub.

This step is optional but recommended to return the sites to the original role:

[grid@gghub_prim2 ~]$ crsctl stat res ora.data.acfs_gg1.acfs

NAME=ora.data.acfs_gg1.acfs
TYPE=ora.acfs_cluster.type
TARGET=ONLINE
STATE=ONLINE on gghub_prim2

[grid@gghub_prim2 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 |grep Site
Site: Standby

[grid@gghub_prim2 ~]$ acfsutil repl failover /mnt/acfs_gg1

[grid@gghub_prim2 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 |grep Site

Site: Primary

Step 3.4 - Create the Oracle GoldenGate Deployment

Once the Oracle GoldenGate software has been installed in the GGHub, the next step is to
create a response file to create the GoldenGate deployment using the Oracle GoldenGate
Configuration Assistant.

The unified build feature introduced in Oracle GoldenGate 21c means a single deployment can
now manage Extract and Replicat processes that attach to different Oracle Database versions.
Each deployment is created with an Administration Server and (optionally) Performance
Metrics Server. If the GoldenGate trail files don’t need to be transferred to another hub or
GoldenGate environment, there is no need to create a Distribution or Receiver Server.

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-36

Two limitations currently exist with Oracle GoldenGate and XAG:

1. A Service Manager that is registered with XAG can only manage a single deployment. If
multiple deployments are required, each deployment must use its own Service Manager.
Oracle GoldenGate release 21c simplifies this requirement because it uses a single
deployment to support Extract and Relicat processes connecting to different versions of
the Oracle Database.

2. Each Service Manager registered with XAG must belong to separate OGG_HOME
software installation directories. Instead of installing Oracle GoldenGate multiple times, the
recommended approach is to install Oracle GoldenGate one time, and then create a
symbolic link for each Service Manager OGG_HOME. The symbolic link and OGG_HOME
environment variable must be configured before running the Oracle GoldenGate
Configuration Assistant on all Oracle RAC nodes.

Create a Response File

For a silent configuration, copy the following example file and paste it into any location the
oracle user can access. Edit the following values appropriately:

• CONFIGURATION_OPTION
• DEPLOYMENT_NAME
• ADMINISTRATOR_USER
• SERVICEMANAGER_DEPLOYMENT_HOME
• OGG_SOFTWARE_HOME
• OGG_DEPLOYMENT_HOME
• ENV_TNS_ADMIN
• OGG_SCHEMA
Example Response File (oggca.rsp):

As the oracle OS user on the primary GGHub node where ACFS is currently mounted, create
and edit the response file oggca.rsp to create the Oracle GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ vi /u01/oracle/scripts/oggca.rsp

oracle.install.responseFileVersion=/oracle/install/
rspfmt_oggca_response_schema_v21_1_0
CONFIGURATION_OPTION=ADD
DEPLOYMENT_NAME=<GG_DEPLOYMENT_NAME>
ADMINISTRATOR_USER=oggadmin
ADMINISTRATOR_PASSWORD=<password_for_oggadmin>
SERVICEMANAGER_DEPLOYMENT_HOME=/mnt/acfs_gg1/deployments/ggsm01
HOST_SERVICEMANAGER=localhost
PORT_SERVICEMANAGER=9100
SECURITY_ENABLED=false
STRONG_PWD_POLICY_ENABLED=true
CREATE_NEW_SERVICEMANAGER=true
REGISTER_SERVICEMANAGER_AS_A_SERVICE=false
INTEGRATE_SERVICEMANAGER_WITH_XAG=true
EXISTING_SERVICEMANAGER_IS_XAG_ENABLED=false
OGG_SOFTWARE_HOME=/u01/app/oracle/goldengate/gg21c
OGG_DEPLOYMENT_HOME=/mnt/acfs_gg1/deployments/gg01
ENV_LD_LIBRARY_PATH=${OGG_HOME}/lib/instantclient:${OGG_HOME}/lib

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-37

ENV_TNS_ADMIN=/u01/app/oracle/goldengate/network/admin
FIPS_ENABLED=false
SHARDING_ENABLED=false
ADMINISTRATION_SERVER_ENABLED=true
PORT_ADMINSRVR=9101
DISTRIBUTION_SERVER_ENABLED=true
PORT_DISTSRVR=9102
NON_SECURE_DISTSRVR_CONNECTS_TO_SECURE_RCVRSRVR=false
RECEIVER_SERVER_ENABLED=true
PORT_RCVRSRVR=9103
METRICS_SERVER_ENABLED=true
METRICS_SERVER_IS_CRITICAL=false
PORT_PMSRVR=9104
UDP_PORT_PMSRVR=9105
PMSRVR_DATASTORE_TYPE=BDB
PMSRVR_DATASTORE_HOME=/u01/app/oracle/goldengate/datastores/
<GG_DEPLOYMENT_NAME>
OGG_SCHEMA=ggadmin

Create the Oracle GoldenGate Deployment

As the oracle OS user on the primary GGHub node where ACFS is currently mounted, run
oggca.sh to create the GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ export OGG_HOME=/u01/app/oracle/goldengate/gg21c
[oracle@gghub_prim1 ~]$ $OGG_HOME/bin/oggca.sh -silent
 -responseFile /u01/oracle/scripts/oggca.rsp

Successfully Setup Software.

Create the Oracle GoldenGate Datastores and TNS_ADMIN Directories

As the oracle OS user on all GGHub nodes of the primary and standby systems, run the
following commands to create the Oracle GoldenGate Datastores and TNS_ADMIN directories:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ mkdir -p /u01/app/oracle/goldengate/network/admin
[oracle@gghub_prim1 ~]$ mkdir -p /u01/app/oracle/goldengate/datastores/
<GG_DEPLOYMENT_NAME>

Step 3.5 - Configure Oracle Grid Infrastructure Agent (XAG)

The following step-by-step procedure shows you how to configure Oracle Clusterware to
manage GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG). Using XAG
automates the ACFS file system mounting, as well as the stopping and starting of the
GoldenGate deployment when relocating between Oracle GGhub nodes.

Step 3.5.1 - Install the Oracle Grid Infrastructure Standalone Agent

It is recommended that you install the XAG software as a standalone agent outside the Grid
Infrastructure ORACLE_HOME so that you can use the latest XAG release available, and the
software can be updated without impact to the Grid Infrastructure.

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-38

Install the XAG standalone agent outside of the Oracle Grid Infrastructure home directory. XAG
must be installed in the same directory on all GGhub nodes in the system where GoldenGate
is installed.

As the grid OS user on the first GGHub node of the primary and standby systems, unzip the
software and run xagsetup.sh:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ unzip /u01/oracle/stage/p31215432_190000_Generic.zip
 -d /u01/oracle/stage
[grid@gghub_prim1 ~]$ /u01/oracle/stage/xag/xagsetup.sh --install
 --directory /u01/app/grid/xag --all_nodes

Installing Oracle Grid Infrastructure Agents on: gghub_prim1
Installing Oracle Grid Infrastructure Agents on: gghub_prim2
Updating XAG resources.
Successfully updated XAG resources.

As the grid OS user on all GGHub nodes of the primary and standby systems, add the
location of the newly installed XAG software to the PATH variable so that the location of agctl is
known when the grid user logs on to the machine.

[grid@gghub_prim1 ~]$ vi ~/.bashrc

PATH=/u01/app/grid/xag/bin:$PATH:/u01/app/19.0.0.0/grid/bin; export PATH

Note:

It is essential to ensure that the XAG bin directory is specified BEFORE the Grid
Infrastructure bin directory to ensure the correct agctl binary is found. This should be
set in the grid user environment to take effect when logging on, such as in
the .bashrc file when the Bash shell is in use.

Step 3.5.2 - Register Oracle Grid Infrastructure Agent on the Primary and Standby
GGHubs
The following procedure shows you how to configure Oracle Clusterware to manage Oracle
GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG). Using XAG
automates the mounting of the shared file system as well as the stopping and starting of the
Oracle GoldenGate deployment when relocating between Oracle GGhub nodes.

Oracle GoldenGate must be registered with XAG so that the deployment is started and
stopped automatically when the database is started, and the file system is mounted.

To register Oracle GoldenGate Microservices Architecture with XAG, use the following
command format.

agctl add goldengate <instance_name>
--gg_home <GoldenGate_Home>
--service_manager
--config_home <GoldenGate_SvcMgr_Config>
--var_home <GoldenGate_SvcMgr_Var Dir>
--oracle_home <$OGG_HOME/lib/instantclient>
--port <port number>

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-39

--adminuser <OGG admin user>
--user <GG instance user>
--group <GG instance group>
--file systems <CRS_resource_name>
--filesystems_always yes
--filesystem_verify <yes/no>
--attribute TARGET_DEFAULT=online

Where:

• --gg_home specifies the location of the GoldenGate software.

• --service_manager indicates this is an GoldenGate Microservices instance.

• --config_home specifies the GoldenGate deployment configuration home directory.

• --var_home specifies the GoldenGate deployment variable home directory.

• --oracle_home specifies the Oracle Instant Client home

• --port specifies the deployment Service Manager port number.

• --adminuser specifies the GoldenGate Microservices administrator account name.

• --user specifies the name of the operating system user that owns the GoldenGate
deployment.

• --group specifies the name of the operating system group that owns the GoldenGate
deployment.

• --filesystems specifies the CRS file system resource that must be ONLINE before the
deployment is started. This will be the acfs_primary resource created in a previous step.

• --filesystem_verify specifies if XAG should check the existence of the directories
specified by the config_home and var_home parameters. This should be set to ‘yes’ for the
active ACFS primary file system. When adding the GoldenGate instance on the standby
cluster, specify ‘no’.

• --filesystems_always specifies that XAG will start the GoldenGate Service Manager on
the same GGhub node as the file system CRS resources, specified by the --filesystems
parameter.

• --attributes specifies that the target status of the resource is online. This is required to
automatically start the GoldenGate deployment when the acfs_primary resource starts.

The GoldenGate deployment must be registered on the primary and standby GGHubs where
ACFS is mounted in either read-write or read-only mode.

As the grid OS user on the first GGHub node of the primary and standby systems, run the
following command to determine which node of the cluster the file system is mounted on:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ crsctl stat res acfs_standby |grep STATE
STATE=ONLINE on gghub_prim1

Step 3.5.2.1 - Register the Primary Oracle GoldenGate Microservices Architecture with
XAG

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-40

As the root OS user on the first node of the primary GGHub, register Oracle GoldenGate
Microservices Architecture with XAG using the following command format:

[opc@gghub_prim1 ~]$ sudo su - root
[root@gghub_prim1 ~]# grep DEPLOYMENT_NAME= /u01/oracle/scripts/oggca.rsp
DEPLOYMENT_NAME=<gghub1>
[root@gghub_prim1 ~]# export GG_DEPLOYMENT_NAME=<gghub1>

[root@gghub_prim1 ~]# vi /u01/oracle/scripts/add_xag_goldengate_prim.sh

Run as ROOT:

/u01/app/grid/xag/bin/agctl add goldengate $GG_DEPLOYMENT_NAME \
--gg_home /u01/app/oracle/goldengate/gg21c \
--service_manager \
--config_home /mnt/acfs_gg1/deployments/ggsm01/etc/conf \
--var_home /mnt/acfs_gg1/deployments/ggsm01/var \
--oracle_home /u01/app/oracle/goldengate/gg21c/lib/instantclient \
--port 9100 \
--adminuser oggadmin \
--user oracle \
--group oinstall \
--filesystems acfs_primary \
--filesystems_always yes \
--filesystem_verify yes \
--attribute TARGET_DEFAULT=online

[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_xag_goldengate_prim.sh
Enter password for 'oggadmin' : ##########

As the grid OS user on the first node of the primary GGHub, verify that Oracle GoldenGate
Microservices Architecture is registered with XAG:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is not running

As the grid OS user on the first node of the primary GGHub, add the environment variable
GG_DEPLOYMENT_NAME to the ~/.bashrc file:

[grid@gghub_prim1 ~]$ cat >> ~/.bashrc <<EOF
export GG_DEPLOYMENT_NAME=`/u01/app/grid/xag/bin/agctl status goldengate |
 awk '{print $3}' | tr -d "'"`
EOF

[grid@gghub_prim1 ~]$. ~/.bashrc
[grid@gghub_prim1 ~]$ echo $GG_DEPLOYMENT_NAME

gghub1

Step 3.5.2.2 - Register the Standby Oracle GoldenGate Microservices Architecture with
XAG

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-41

As the root OS user on the first node of the standby GGHub, register Oracle GoldenGate
Microservices Architecture with XAG using the following command format:

[opc@gghub_stby1 ~]$ sudo su - root
[root@gghub_stby1 ~]# vi /u01/oracle/scripts/add_xag_goldengate_stby.sh
[root@gghub_stby1 ~]# export GG_DEPLOYMENT_NAME=<gghub1>

Run as ROOT:

/u01/app/grid/xag/bin/agctl add goldengate $GG_DEPLOYMENT_NAME \
--gg_home /u01/app/oracle/goldengate/gg21c \
--service_manager \
--config_home /mnt/acfs_gg1/deployments/ggsm01/etc/conf \
--var_home /mnt/acfs_gg1/deployments/ggsm01/var \
--oracle_home /u01/app/oracle/goldengate/gg21c/lib/instantclient \
--port 9100 --adminuser oggadmin --user oracle --group oinstall \
--filesystems acfs_primary \
--filesystems_always yes \
--filesystem_verify no \
--attribute TARGET_DEFAULT=online

[root@gghub_stby1 ~]# sh /u01/oracle/scripts/add_xag_goldengate_stby.sh
Enter password for 'oggadmin' : ##########

Note:

When adding the GoldenGate instance on the standby cluster, specify --
filesystem_verify no.

As the grid OS user on the first node of the standby GGHub, verify that Oracle GoldenGate
Microservices Architecture is registered with XAG:

[opc@gghub_stby1 ~]$ sudo su - grid
[grid@gghub_stby1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is not running

As the grid OS user on the first node of the standby GGHub, add the environment variable
GG_DEPLOYMENT_NAME to the ~/.bashrc file:

[grid@gghub_stby1 ~]$ cat >> ~/.bashrc <<EOF
export GG_DEPLOYMENT_NAME=`/u01/app/grid/xag/bin/agctl status goldengate |
 awk '{print $3}' | tr -d "'"`
EOF

[grid@gghub_stby1 ~]$. ~/.bashrc
[grid@gghub_prim1 ~]$ echo $GG_DEPLOYMENT_NAME

gghub1

Step 3.5.3 - Start the Oracle GoldenGate Deployment

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-42

Below are some example agctl commands used to manage the GoldenGate deployment with
XAG.

As the grid OS user on the first node of the primary GGHub, execute the following command
to start and check Oracle GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - grid

[grid@gghub_prim1 ~]$ agctl start goldengate $GG_DEPLOYMENT_NAME

[grid@gghub_prim1 ~]$ agctl status goldengate
Goldengate instance 'gghub1' is running on gghub_prim1

As the grid OS user on the first GGHub node, run the following command to validate the
configuration parameters for the Oracle GoldenGate resource:

[grid@gghub_prim1 ~]$ agctl config goldengate $GG_DEPLOYMENT_NAME

Instance name: gghub1
Application GoldenGate location is: /u01/app/oracle/goldengate/gg21c
Goldengate MicroServices Architecture environment: yes
Goldengate Service Manager configuration directory: /mnt/acfs_gg1/deployments/
ggsm01/etc/conf
Goldengate Service Manager var directory: /mnt/acfs_gg1/deployments/ggsm01/var
Service Manager Port: 9100
Goldengate Administration User: oggadmin
Autostart on DataGuard role transition to PRIMARY: no
ORACLE_HOME location is: /u01/app/oracle/goldengate/gg21c/lib/instantclient
File System resources needed: acfs_primary
CRS additional attributes set: TARGET_DEFAULT=online

For more information see Oracle Grid Infrastructure Bundled Agent.

Step 3.6 - Configure NGINX Reverse Proxy

The Oracle GoldenGate reverse proxy feature allows a single point of contact for all the
GoldenGate microservices associated with a GoldenGate deployment. Without a reverse
proxy, the GoldenGate deployment microservices are contacted using a URL consisting of a
hostname or IP address and separate port numbers, one for each of the services. For
example, to contact the Service Manager, you could use http://gghub.example.com:9100, then
the Administration Server is http://gghub.example.com:9101, the second Service Manager may
be accessed using http://gghub.example.com:9110, and so on.

When running Oracle GoldenGate in a High Availability (HA) configuration on Oracle Exadata
Database Service with the Grid Infrastructure agent (XAG), there is a limitation preventing
more than one deployment from being managed by a GoldenGate Service Manager. Because
of this limitation, creating a separate virtual IP address (VIP) for each Service Manager/
deployment pair is recommended. This way, the microservices can be accessed directly using
the VIP.

With a reverse proxy, port numbers are not required to connect to the microservices because
they are replaced with the deployment name and the hostname's VIP. For example, to connect
to the console via a web browser, use the URLs:

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-43

http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html

GoldenGate Services URL

Service Manager https://localhost:443

Administration Server https://localhost:443/instance_name/adminsrvr

Distribution Server https://localhost:443/instance_name/distsrvr

Performance Metric Server https://localhost:443/instance_name/pmsrvr

Receiver Server https://localhost:443/instance_name/recvsrvr

When running multiple Service Managers, the following instructions will provide configuration
using a separate VIP for each Service Manager. NGINX uses the VIP to determine which
Service Manager an HTTPS connection request is routed to.

An SSL certificate is required for clients to authenticate the server they connect to through
NGINX. Contact your systems administrator to follow your corporate standards to create or
obtain the server certificate before proceeding. A separate certificate is required for each VIP
and Service Manager pair.

Note:

The common name in the CA-signed certificate must match the target hostname/VIP
used by NGINX.

Follow the instructions to install and configure NGINX Reverse Proxy with an SSL connection
and ensure all external communication is secure.

Step 3.6.1 - Secure Deployments Requirements (Certificates)

A secure deployment involves making RESTful API calls and conveying trail data between the
Distribution Server and Receiver Server, over SSL/TLS.

You can use your own existing business certificate from your Certificate Authority (CA) or you
might create your own certificates.

Contact your systems administrator to follow your corporate standards to create or obtain the
server certificate before proceeding. A separate certificate is required for each VIP and Service
Manager pair.

Step 3.6.2 - Install NGINX Reverse Proxy Server

As the root OS user on all GGHub nodes, set up the yum repository by creating the file /etc/
yum.repos.d/nginx.repo with the following contents:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# cat > /etc/yum.repos.d/nginx.repo <<EOF
[nginx-stable]
name=nginx stable repo
baseurl=http://nginx.org/packages/rhel/7/\$basearch/
gpgcheck=1
enabled=1
gpgkey=https://nginx.org/keys/nginx_signing.key
module_hotfixes=true
EOF

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-44

As the root OS user on all GGHub nodes, run the following commands to install, enable, and
start NGINX:

[root@gghub_prim1 ~]# yum install -y python-requests python-urllib3 nginx
[root@gghub_prim1 ~]# systemctl enable nginx

As the root OS user on all GGHub node, disable the NGINX repository after the software has
been installed:

[root@gghub_prim1 ~]# yum-config-manager --disable nginx-stable

Step 3.6.3 - Create the NGINX Configuration File

You can configure Oracle GoldenGate Microservices Architecture to use a reverse proxy.
Oracle GoldenGate MA includes a script called ReverseProxySettings that generates a
configuration file for only the NGINX reverse proxy server.

The script requires the following parameters:

• The --user parameter should mirror the GoldenGate administrator account specified with
the initial deployment creation.

• The GoldenGate administrator password will be prompted.

• The reverse proxy port number specified by the --port parameter should be the default
HTTPS port number (443) unless you are running multiple GoldenGate Service Managers
using the same --host. In this case, specify an HTTPS port number that does not conflict
with previous Service Manager reverse proxy configurations. For example, if running two
Service Managers using the same hostname/VIP, the first reverse proxy configuration is
created with '--port 443 --host VIP_NAME1.FQDN', and the second is created with '--port
444 --host VIP_NAME2.FQDN'. If using separate hostnames/VIPs, the two Service
Manager reverse proxy configurations would be created with '--port 443 --host
VIP_NAME1.FQDN' and '--port 443 --host VIP_NAME2.FQDN'.

• The --host parameter is the VIP_NAME.FQDN configured in the Private DNS Zone View

• Lastly, the HTTP port number (9100) should match the Service Manager port number
specified during the deployment creation.

Repeat this step for each additional GoldenGate Service Manager.

As the oracle OS user on the first GGHub node, use the following command to create the
Oracle GoldenGate NGINX configuration file:

[oracle@gghub_prim1 ~]$ export OGG_HOME=/u01/app/oracle/goldengate/gg21c
[oracle@gghub_prim1 ~]$ export PATH=$PATH:$OGG_HOME/bin
[oracle@gghub_prim1 ~]$ cd /u01/oracle/scripts
[oracle@gghub_prim1 ~]$ $OGG_HOME/lib/utl/reverseproxy/ReverseProxySettings
 --user oggadmin --port 443 --output ogg_$GG_DEPLOYMENT_NAME.conf http://
localhost:9100
 --host <VIP_NAME.FQDN>
Password: <oggadmin_password>

Step 3.6.4 - Modify NGINX Configuration Files

When multiple GoldenGate Service Managers are configured to use their IP/VIPs with the
same HTTPS 443 port, some small changes are required to the NGINX reverse proxy
configuration files generated in the previous step. With all Service Managers sharing the same

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-45

port number, they are independently accessed using their VIP/IP specified by the --host
parameter.

As the oracle OS user on the first GGHub node, determine the deployment name managed by
this Service Manager listed in the reverse proxy configuration file and change all occurrences
of “_ServiceManager” by prepending the deployment name before the underscore:

[oracle@gghub_prim1 ~]$ cd /u01/oracle/scripts
[oracle@gghub_prim1 ~]$ grep "Upstream Servers" ogg_$GG_DEPLOYMENT_NAME.conf

Upstream Servers for Deployment 'gghub1'

[oracle@gghub_prim1 ~]$ sed -i 's/_ServiceManager/
<REPLACE_WITH_DEPLOYMENT_NAME>_ServiceManager/' ogg_$GG_DEPLOYMENT_NAME.conf

Step 3.6.5 - Install the Server Certificates for NGINX

As the root OS user on the first GGHub node, copy the server certificates and key files in
the /etc/nginx/ssl directory, owned by root with file permissions 400 (-r--------):

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# mkdir /etc/nginx/ssl
[root@gghub_prim1 ~]# cp <ssl_keys> /etc/nginx/ssl/.
[root@gghub_prim1 ~]# chmod -R 400 /etc/nginx/ssl
[root@gghub_prim1 ~]# ll /etc/nginx/ssl

-r-------- 1 root root 2750 May 17 06:12 gghub1.chained.crt
-r-------- 1 root root 1675 May 17 06:12 gghub1.key

As the oracle OS user on the first GGHub node, set the correct file names for the certificate
and key files for each reverse proxy configuration file:

[oracle@gghub_prim1 ~]$ vi /u01/oracle/scripts/ogg_$GG_DEPLOYMENT_NAME.conf

Before
 ssl_certificate /etc/nginx/ogg.pem;
 ssl_certificate_key /etc/nginx/ogg.pem;

After
 ssl_certificate /etc/nginx/ssl/gghub1.chained.crt;
 ssl_certificate_key /etc/nginx/ssl/gghub1.key;

When using CA-signed certificates, the certificate named with the ssl_certificate NGINX
parameter must include the 1) CA signed, 2) intermediate, and 3) root certificates in a single
file. The order is significant; otherwise, NGINX fails to start and displays the error message:

(SSL: error:0B080074:x509 certificate routines:
 X509_check_private_key:key values mismatch)

The root and intermediate certificates can be downloaded from the CA-signed certificate
provider.

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-46

As the root OS user on the first GGHub node, generate the SSL certificate single file by using
the following example command:

[root@gghub_prim1 ~]# cd /etc/nginx/ssl
[root@gghub_prim1 ~]# cat CA_signed_cert.crt
 intermediate.crt root.crt > gghub1.chained.crt

The ssl_certificate_key file is generated when creating the Certificate Signing Request
(CSR), which is required when requesting a CA-signed certificate.

Step 3.6.6 - Install the NGINX Configuration File

As the root OS user on the first GGhub node, copy the deployment configuration file to /etc/
nginx/conf.d directory and remove the default configuration file:

[root@gghub_prim1 ~]# cp /u01/oracle/scripts/ogg_<gghub1>.conf
 /etc/nginx/conf.d
[root@gghub_prim1 ~]# rm /etc/nginx/conf.d/default.conf

As the root OS user on the first GGHub node, validate the NGINX configuration file. If there
are errors in the file, they will be reported with the following command:

[root@gghub_prim1 ~]# nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginxconf test is successful

As the root OS user on the first GGHub node, restart NGINX to load the new configuration:

[root@gghub_prim1 ~]# systemctl restart nginx

Step 3.6.7 - Test GoldenGate Microservices Connectivity

As the root OS user on the first GGHub node, create a curl configuration file (access.cfg) that
contains the deployment user name and password:

[root@gghub_prim1 ~]# vi access.cfg
user = "oggadmin:<password>"

[root@gghub_prim1 ~]# curl <--insecure> -svf -K access.cfg
 https://<vip_name.FQDN>:<port#>/services/v2/config/health -XGET && echo -e
 "\n*** Success"

Sample output:
* About to connect() to .frankfurt.goldengate.com port 443 (#0)
* Trying 10.40.0.75...
* Connected to gghub_prim_vip1.frankfurt.goldengate.com (10.40.0.75) port 443
(#0)
* Initializing NSS with certpath: sql:/etc/pki/nssdb
* CAfile: /etc/pki/tls/certs/ca-bundle.crt
 CApath: none
* skipping SSL peer certificate verification
* NSS: client certificate not found (nickname not specified)
* SSL connection using TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-47

* Server certificate:
* subject: CN=gghub_prim_vip1.frankfurt.goldengate.com,OU=Oracle
 MAA,O=Oracle,L=Frankfurt,ST=Frankfurt,C=GE
* start date: Jul 27 15:59:00 2023 GMT
* expire date: Jul 26 15:59:00 2024 GMT
* common name: gghub_prim_vip1.frankfurt.goldengate.com
* issuer:
OID.2.5.29.19=CA:true,CN=gghub_prim_vip1.frankfurt.goldengate.com,OU=Oracle
MAA,O=Oracle,L=Frankfurt,C=EU
* Server auth using Basic with user 'oggadmin'
> GET /services/v2/config/health HTTP/1.1
> Authorization: Basic b2dnYWRtaW46V0VsY29tZTEyM19fXw==
> User-Agent: curl/7.29.0
> Host: gghub_prim_vip1.frankfurt.goldengate.com
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: nginx/1.24.0
< Date: Thu, 27 Jul 2023 16:25:26 GMT
< Content-Type: application/json
< Content-Length: 941
< Connection: keep-alive
< Set-Cookie:
ogg.sca.mS+pRfBERzqE+RTFZPPoVw=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOi
JvZ2cuc2NhIiwiZXhwIjozNjAwLCJ0eXAiOiJ4LVNDQS1BdXRob3JpemF0aW9uIiwic3ViIjoib2dn
YWRtaW4iLCJhdWQiOiJvZ2cuc2NhIiwiaWF0IjoxNjkwNDc1MTI2LCJob3N0IjoiZ2dodWJsYV92aX
AubG9uZG9uLmdvbGRlbmdhdGUuY29tIiwicm9sZSI6IlNlY3VyaXR5IiwiYXV0aFR5cGUiOiJCYXNp
YyIsImNyZWQiOiJFd3VqV0hOdzlGWDNHai9FN1RYU3A1N1dVRjBheUd4OFpCUTdiZDlKOU9RPSIsIn
NlcnZlcklEIjoiZmFkNWVkN2MtZThlYi00YmE2LTg4Y2EtNmQxYjk3ZjdiMGQ3IiwiZGVwbG95bWVu
dElEIjoiOTkyZmE5NDUtZjA0NC00NzNhLTg0ZjktMTRjNTY0ZjNlODU3In0=.knACABXPmZE4BEyux
7lZQ5GnrSCCh4x1zBVBLaX3Flo=; Domain=gghub_prim_vip1.frankfurt.goldengate.com;
Path=/; HttpOnly; Secure; SameSite=strict
< Set-Cookie:
ogg.csrf.mS+pRfBERzqE+RTFZPPoVw=1ae439e625798ee02f8f7498438f27c7bad036b270d6bf
c95aee60fcee111d35ea7e8dc5fb5d61a38d49cac51ca53ed9307f9cbe08fab812181cf163a743
bfc7; Domain=gghub_prim_vip1.frankfurt.goldengate.com; Path=/; Secure;
SameSite=strict
< Cache-Control: max-age=0, no-cache, no-store, must-revalidate
< Expires: 0
< Pragma: no-cache
< Content-Security-Policy: default-src 'self' 'unsafe-eval' 'unsafe-
inline';img-src 'self' data:;frame-ancestors https://
gghub_prim_vip1.frankfurt.goldengate.com;child-src https://
gghub_prim_vip1.frankfurt.goldengate.com blob:;
< X-Content-Type-Options: nosniff
< X-XSS-Protection: 1; mode=block
< X-OGG-Proxy-Version: v1
< Strict-Transport-Security: max-age=31536000 ; includeSubDomains
<
* Connection #0 to host gghub_prim_vip1.frankfurt.goldengate.com left intact
{"$schema":"api:standardResponse","links":[{"rel":"canonical","href":"https://
gghub_prim_vip1.frankfurt.goldengate.com/services/v2/config/
health","mediaType":"application/json"},{"rel":"self","href":"https://
gghub_prim_vip1.frankfurt.goldengate.com/services/v2/config/
health","mediaType":"application/json"},{"rel":"describedby","href":"https://
gghub_prim_vip1.frankfurt.goldengate.com/services/ServiceManager/v2/metadata-

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-48

catalog/health","mediaType":"application/schema+json"}],"messages":
[],"response":
{"$schema":"ogg:health","deploymentName":"ServiceManager","serviceName":"Servi
ceManager","started":"2023-07-27T15:39:41.867Z","healthy":true,"criticalResour
ces":
[{"deploymentName":"gghubl1","name":"adminsrvr","type":"service","status":"run
ning","healthy":true},
{"deploymentName":"gghub1","name":"distsrvr","type":"service","status":"runnin
g","healthy":true},
{"deploymentName":"gghub1","name":"recvsrvr","type":"service","status":"runnin
g","healthy":true}]}}
*** Success

[root@gghub_prim1 ~]# rm access.cfg

Note:

If the environment is using self-signed SSL certificates, add the flag --insecure to the
curl command to avoid the error "NSS error -8172
(SEC_ERROR_UNTRUSTED_ISSUER)".

Step 3.6.8 - Remove NGINX default.conf Configuration File

As the root OS user on all GGHubs, remove the default configuration file (default.conf)
created in /etc/nginx/conf.d:

[opc@gghub_prim1 ~]$ sudo rm -f /etc/nginx/conf.d/default.conf
[opc@gghub_prim1 ~]$ sudo nginx -s reload

Step 3.6.9 - Distribute the GoldenGate NGINX Configuration Files

Once all of the reverse proxy configuration files have been created for the GoldenGate Service
Managers, they must be copied to the second GoldenGate Hub node.

As the opc OS user on the first GGHub node, distribute the NGINX configuration files to all
database nodes:

[opc@gghub_prim1 ~]$ sudo tar fczP /tmp/nginx_conf.tar /etc/nginx/conf.d/
 /etc/nginx/ssl/
[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ scp /tmp/nginx_conf.tar gghub_prim2:/tmp/.

As the opc OS user on the second GGHub node, extract the NGINX configuration files and
remove the default configuration file:

[opc@gghub_prim2 ~]$ sudo tar fxzP /tmp/nginx_conf.tar
[opc@gghub_prim2 ~]$ sudo rm /etc/nginx/conf.d/default.conf

As the opc OS user on the second GGHub node, restart NGINX:

[opc@gghub_prim2 ~]$ sudo nginx -t

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-49

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful

[root@gghub_prim2 ~]$ sudo systemctl restart nginx

Note:

Repeat all of the steps in section 3.6 for the primary and standby GGHub systems.

Step 3.7 - Securing GoldenGate Microservices to Restrict Non-secure Direct Access

After configuring the NGINX reverse proxy with an unsecured Oracle GoldenGate
Microservices deployment, the microservices can continue accessing HTTP (non-secure)
using the configured microservices port numbers. For example, the following non-secure URL
could be used to access the Administration Server: http://<vip-name>:9101.

Oracle GoldenGate Microservices' default behavior for each server (Service Manager,
adminserver, pmsrvr. distsrvr, and recsrvr) is to listen using a configured port number on all
network interfaces. This is undesirable for more secure installations, where direct access using
HTTP to the Microservices needs to be disabled and only permitted using NGINX HTTPS.

Use the following commands to alter the Service Manager and deployment services listener
address to use only the localhost address. Access to the Oracle GoldenGate Microservices will
only be permitted from the localhost, and any access outside of the localhost will only succeed
using the NGINX HTTPS port.

Step 3.7.1 - Stop the Service Manager

As the grid OS user on the first GGHub node, stop the GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl stop goldengate $GG_DEPLOYMENT_NAME
[grid@gghub_prim1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is not running

Step 3.7.2 - Modify the Service Manager Listener Address

As the oracle OS user on the first GGHub node, modify the listener address with the following
commands. Use the correct port number for the Service Manager being altered:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ export OGG_HOME=/u01/app/oracle/goldengate/gg21c
[oracle@gghub_prim1 ~]$ export OGG_VAR_HOME=/mnt/acfs_gg1/deployments/
ggsm01/var
[oracle@gghub_prim1 ~]$ export OGG_ETC_HOME=/mnt/acfs_gg1/deployments/
ggsm01/etc
[oracle@gghub_prim1 ~]$ $OGG_HOME/bin/ServiceManager
 --prop=/config/network/serviceListeningPort
 --value='{"port":9100,"address":"127.0.0.1"}' --type=array --persist --exit

Step 3.7.3 - Restart the Service Manager and Deployment

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-50

As the grid OS user on the first GGHub node, restart the GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl start goldengate $GG_DEPLOYMENT_NAME
[grid@gghub_prim1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is running on gghub_prim1

Step 3.7.4 - Modify the GoldenGate Microservices listener address

As the oracle OS user on the first GGHub node, modify all the GoldenGate microservices
(adminsrvr, pmsrvr, distsrvr, recvsrvr) listening address to localhost for the deployments
managed by the Service Manager using the following command:

[opc@gghub_prim1 ~]$ sudo chmod g+x /u01/oracle/scripts/secureServices.py
[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ /u01/oracle/scripts/secureServices.py http://
localhost:9100
 --user oggadmin

Password for 'oggadmin': <oggadmin_password>

*** Securing deployment - gghub1

Current value of "/network/serviceListeningPort" for "gghub1/adminsrvr" is
9101
Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/adminsrvr" is
{
 "address": "127.0.0.1",
 "port": 9101

}.
Current value of "/network/serviceListeningPort" for "gghub1/distsrvr" is 9102
Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/distsrvr" is
{
 "address": "127.0.0.1",
 "port": 9102
}.
Current value of "/network/serviceListeningPort" for "gghub1/pmsrvr" is 9104
Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/pmsrvr" is
{
 "address": "127.0.0.1",
 "port": 9104
}.
Current value of "/network/serviceListeningPort" for "gghub1/recvsrvr" is 9103
Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/recvsrvr" is
{
 "address": "127.0.0.1",
 "port": 9103
}.

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-51

Note:

To modify a single deployment (adminsrvr, pmsrvr, distsrvr, recvsrvr), add the flag --
deployment instance_name

Step 3.8 - Create a Clusterware Resource to Manage NGINX

Oracle Clusterware needs to have control over starting the NGINX reverse proxy so that it can
be started automatically before the GoldenGate deployments are started.

As the root OS user on the first GGHub node, use the following command to create a
Clusterware resource to manage NGINX. Replace HOSTING_MEMBERS and CARDINALITY to
match your environment:

[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_nginx.sh

#######################
List of VIP resources:

gghub_prim1_vip1

Application VIP CRS Resource: <gghub_prim1_vip1>

########################
List of Hosting Members

gghub_prim1
gghub_prim2

HOSTING_MEMBERS: gghub_prim1,gghub_prim2

The NGINX resource created in this example will run on the named database nodes
simultaneously, specified by HOSTING_MEMBERS. This is recommended when multiple
GoldenGate Service Manager deployments are configured and can independently move
between database nodes.

Once the NGINX Clusterware resource is created, the GoldenGate XAG resources need to be
altered so that NGINX must be started before the GoldenGate deployments are started.

As the root OS user on the first GGHub node, modify the XAG resources using the following
example commands.

Determine the current --file systems parameter:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl config goldengate $GG_DEPLOYMENT_NAME
 |grep -i "file system"

File System resources needed: acfs_primary

Modify the --file systems parameter:

[opc@gghub_prim1 ~]$ /u01/app/grid/xag/bin/agctl modify goldengate

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-52

 $GG_DEPLOYMENT_NAME
 --filesystems acfs_primary,nginx

Validate the current --file systems parameter:

[grid@gghub_prim1 ~]$ agctl config goldengate $GG_DEPLOYMENT_NAME
 |grep -i "File system"

File System resources needed: acfs_primary,nginx

Note:

• Repeat the above commands for each XAG GoldenGate registration relying on
NGINX.

• Repeat all the steps in step 3.8 for the primary and standby GGHub systems.

Step 3.9 - Create an Oracle Net TNS Alias for Oracle GoldenGate Database Connections

To provide local database connections for the Oracle GoldenGate processes when switching
between nodes, create a TNS alias on all nodes of the cluster where Oracle GoldenGate may
be started. Create the TNS alias in the tnsnames.ora file in the TNS_ADMIN directory specified
in the deployment creation.

If the source database is a multitenant database, two TNS alias entries are required, one for
the container database (CDB) and one for the pluggable database (PDB) that is being
replicated. For a target Multitenant database, the TNS alias connects the PDB to where
replicated data is being applied. The pluggable database SERVICE_NAME should be set to the
database service created in an earlier step (refer to Step 2.3: Create the Database Services in
Task 2: Prepare a Primary and Standby Base System for GGHub).

As the oracle OS user on any database node of the primary and the standby database
systems, use dbaascli to find the database domain name and the SCAN name:

Primary DB
[opc@exadb1_node1]$ sudo su - oracle
[oracle@exadb1_node1]$ source <dbName>.env
[oracle@exadb1_node1]$ dbaascli database getDetails --dbname <dbName> |grep
'connectString'

 "connectString" : "<primary_scan_name>:1521/<service_name>"

Standby DB

[opc@exadb2_node1]$ sudo su - oracle
[oracle@exadb2_node1]$ source dbName.env
[oracle@exadb2_node1]$ dbaascli database getDetails --dbname <dbName> |grep
'connectString'

 "connectString" : "<standby_scan_name>:1521/<service_name>"

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-53

As the oracle OS user on all nodes of the primary and standby GGHub, add the
recommended parameters for Oracle GoldenGate in the sqlnet.ora file:

[opc@gghub_prim1]$ sudo su - oracle
[oracle@gghub_prim1]$ mkdir -p /u01/app/oracle/goldengate/network/admin
[oracle@gghub_prim1]$
cat > /u01/app/oracle/goldengate/network/admin/sqlnet.ora <<EOF

DEFAULT_SDU_SIZE = 2097152
EOF

As the oracle OS user on all nodes of the primary and standby GGHub, follow the steps to
create the TNS alias definitions:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$

cat > /u01/app/oracle/goldengate/network/admin/tnsnames.ora <<EOF

Source
<source_cbd_service_name>=
 (DESCRIPTION =
 (CONNECT_TIMEOUT=3)(RETRY_COUNT=2)(LOAD_BALANCE=off)(FAILOVER=on)
(RECV_TIMEOUT=30)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<primary_scan_name>)
(PORT=1521)))
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<standby_scan_name>)
(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME =
<source_cbd_service_name>.goldengate.com)))

<source_pdb_service_name>=
 (DESCRIPTION =
 (CONNECT_TIMEOUT=3)(RETRY_COUNT=2)(LOAD_BALANCE=off)(FAILOVER=on)
(RECV_TIMEOUT=30)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<primary_scan_name>)(PORT=1521)))
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<standby_scan_name>)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME =
<source_pdb_service_name>.goldengate.com)))

Target
<target_pdb_service_name>=
 (DESCRIPTION =
 (CONNECT_TIMEOUT=3)(RETRY_COUNT=2)(LOAD_BALANCE=off)(FAILOVER=on)
(RECV_TIMEOUT=30)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<primary_scan_name>)(PORT=1521)))
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<standby_scan_name>)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME =
<target_pdb_service_name>.goldengate.com)))

Chapter 25
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

25-54

EOF

[oracle@gghub_prim1 ~]$ scp /u01/app/oracle/goldengate/network/admin/*.ora
 gghub_prim2:/u01/app/oracle/goldengate/network/admin

Note:

When the tnsnames.ora or sqlnet.ora (located in the TNS_ADMIN directory for the
Oracle GoldenGate deployment) are modified, the deployment needs to be restarted
to pick up the changes.

Task 4: Configure the Oracle GoldenGate Environment
Perform the following steps to complete this task:

• Step 4.1 - Create the Database Credentials

• Step 4.2 - Set Up Schema Supplemental Logging

• Step 4.3 - Create the Autostart Profile

• Step 4.3 - Configure Oracle GoldenGate Processes

Step 4.1 - Create the Database Credentials

With the Oracle GoldenGate deployment created, use the Oracle GoldenGate Administration
Service home page to create the database credentials using the above TNS alias names.

As the oggadmin user, create the database credentials:

1. Log in into the Administration Service: https://gghub.example.com:443/deployment_name/
adminsrvr

2. Click Configuration under Administration Service.

3. Click the plus (+) to Add Credentials under the Database tab.

4. Add the required information for the source and target CDB and PDB:

Data Center Container Domain Alias User ID

DC 1 CDB GoldenGate DC1_CDB c##ggadmin@<tns
_alias>

DC 1 PDB GoldenGate DC1_PDB ggadmin@<tns_ali
as>

DC 2 CDB GoldenGate DC2_CDB c##ggadmin@<tns
_alias>

DC 2 PDB GoldenGate DC2_PDB ggadmin@<tns_ali
as>

Step 4.2 - Setup Schema Supplemental Logging

• Log in to the Oracle GoldenGate Administration Server.

• Click Configuration under Administration Service.

Chapter 25
Task 4: Configure the Oracle GoldenGate Environment

25-55

• Click the Connect to database button under Actions for the Source Database
(Reg_CDB).

• Click the plus button (Add TRANDATA) to Add TRANDATA for the Schema or Tables.

Step 4.3 - Create the Autostart Profile

Create a new profile to automatically start the Extract and Replicat processes when the Oracle
GoldenGate Administration Server is started. Then, restart if any Extract or Replicat processes
are abandoned. With GoldenGate Microservices, auto start and restart is managed by Profiles.

Using the Oracle GoldenGate Administration Server GUI, create a new profile that can be
assigned to each of the Oracle GoldenGate processes:

1. Log in to the Administration Service on the Source and Target GoldenGate.

2. Click on Profile under Administration Service.

3. Click the plus (+) sign next to Profiles on the Managed Process Settings home page.

4. Enter the details as follows:

• Profile Name: Start_Default

• Description: Default auto-start/restart profile

• Default Profile: Yes

• Auto Start: Yes

• Auto Start Options

– Startup Delay: 1 min

– Auto Restart: Yes

• Auto Restart Options

– Max Retries: 5

– Retry Delay: 30 sec

– Retries Window: 30 min

– Restart on Failure only: Yes

– Disable Task After Retries Exhausted: Yes

5. Click Submit

Step 4.4 - Configure Oracle GoldenGate Processes

When creating Extract, Distribution Paths, and Replicat processes with Oracle GoldenGate
Microservices Architecture, all files that need to be shared between the GGHub nodes are
already shared with the deployment files stored on a shared file system.

Below are essential configuration details recommended for running Oracle GoldenGate
Microservices on GGHub for Extract, Distribution Paths, and Replicat processes.

Perform the following sub-steps to complete this step:

• Step 4.4.1 - Extract Configuration

• Step 4.4.2 - Replicat Configuration

• Step 4.4.3 - Distribution Path Configuration

• Step 4.4.4 - Set Up a Heartbeat Table for Monitoring Lag Times

Chapter 25
Task 4: Configure the Oracle GoldenGate Environment

25-56

The main goal is to prevent data divergence between GoldenGate replicas and their
associated standby databases. This section focuses on configuring Extract so that GoldenGate
Extract never gets ahead of the standby database which can result in data divergence.

GoldenGate Parameter Description Recommendations

TRANLOGOPTIONS HANDLEDLFAILOVER This is mandatory setting for Data
Guard configurations that have Oracle
GoldenGate to ensure GoldenGate
Extract never extract data that has not
been received by standby database.
The HANDLEDLFAILOVER stands for
handle DATA LOSS for Data Guard
failover. The following parameter must
be added to the Extract process
parameter fileto avoid losing
transactions and resulting in logical data
inconsistencies after data loss Data
Guard failover event. When the two
primary tried to reconcile, this
parameter ensures that all transactions
can be reconciled since the new primary
(old standby) is not further behind as
expected.

Prevents Extract from extracting redo
data from the source database, and
writing to the trail file data that has not
yet been applied to the Oracle Data
Guard standby database. If this
parameter is not specified, after a data
loss failover, it is possible to have data
in the target database that is not present
in the source database, leading to data
divergence and logical data
inconsistencies.

MANDATORY when the source
database is configured with Data Guard
in Max Availaibility or Max Performance
mode.

TRANLOGOPTIONS
FAILOVERTARGETDESTID n

For multiple standby configurations or
cases when Data Guard Fast-Start
failover is not enabled, set
FAILOVERTARGETDESTID to standby
demarcated by LOG_ARCHIV_DEST to
ensure GoldenGate Extract never
extract data that has not been received
by target standby database. To
determine the correct value for
FAILOVERTARGETDESTID, use the
LOG_ARCHIVE_DEST_N parameter
from the GoldenGate source database
which is used for sending redo to the
source standby database. For example,
if LOG_ARCHIVE_DEST_2 points to
the standby database, then use a value
of 2.

When not using Data Guard Fast Start
Failover (FSFO) in the source database,
this parameter Identifies which standby
database the Extract process must
remain behind, with regard to not
extracting redo data that has not yet
been applied to the Oracle Data Guard
standby database.

MANDATORY when not using FSFO in
the source database.

To determine the correct value for
FAILOVERTARGETDESTID, use the
LOG_ARCHIVE_DEST_N parameter
from the GoldenGate source database
which is used for sending redo to the
source standby database. For example,
if LOG_ARCHIVE_DEST_2 points to
the standby database, then use a value
of 2.

Chapter 25
Task 4: Configure the Oracle GoldenGate Environment

25-57

GoldenGate Parameter Description Recommendations

TRANLOGOPTIONS HANDLEDLFAILOVER
STANDBY_WARNING value

The amount of time before a warning
message is written to the Extract report
file, if Extract is stalled, due to being
unable to query the source database
standby apply progress. This can occur
after a Data Guard failover when the old
primary database is not currently
available. The default is 60 seconds.

OPTIONAL if want to adjust the timing
of when the warning message is written
to the Extract report file.

Add STANDBY_WARNING <value> to
the TRANLOGOPTIONS
HANDLEDLFAILOVER parameter.

TRANLOGOPTIONS HANDLEDLFAILOVER
STANDBY_ABEND value

The amount of time before Extract
abends, if Extract is stalled, due to
being unable to query the standby apply
progress. The default is 30 minutes.

OPTIONAL if want to adjust the amount
of time it takes Extract to abend, when
the source database standby is not
accessible to enforce the
HANDLEDLFAILOVER parameter.

Add STANDBY_ABEND <value> to the
TRANLOGOPTIONS
HANDLEDLFAILOVER parameter.

TRANLOGOPTIONS
DLFAILOVER_TIMEOUT value

The amount of time Extract will run on
the new source primary database, after
a Data Guard role transition, before it
will check the status of the standby
database. If standby database is not
available after the
DLFAILOVER_TIMEOUT, Extract will
abend. The default is 300 seconds.

NOTE: If during normal operations of
the source Oracle Data Guard
configuration, the standby database
becomes unavailable, Extract will stop
extracting data from the source
database to prevent possible data
divergence with the GoldenGate target
database due to the
HANDLEDLFAILOVER parameter. The
DLFAILOVER_TIMEOUT parameter
does not take effect when a Data Guard
failover has not occurred, and there are
no messages output to the Extract
report file.

OPTIONAL if you want to adjust the
amount of time an Extract can run on a
new primary source database, after a
role transition, when the standby is not
yet available to honor the
TRANLOGOPTIONS
HANDLEDLFAILOVER parameter.

Refer to the Reference for Oracle GoldenGate for more information about the Extract
TRANLOGOPTIONS parameters.

When creating an Extract using the Oracle GoldenGate Administration Service GUI, leave the
Trail SubDirectory parameter blank so that the trail files are automatically created in the
deployment directories stored on the shared file system. The default location for trail files is
the /<deployment directory>/var/lib/data directory.

Note:

To capture from a multitenant database, you must use an Extract configured at the
root level using a c## account. To apply data into a multitenant database, a separate
Replicat is needed for each PDB because a Replicat connects at the PDB level and
doesn't have access to objects outside of that PDB.

Chapter 25
Task 4: Configure the Oracle GoldenGate Environment

25-58

https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/tranlogoptions.html#GUID-B6ADFEC9-10E6-456D-9477-088513E113AF

Step 4.4.1 - Extract Configuration

1. Log in to the Oracle GoldenGate Administration Server

2. Click in Overview under Administration Service

3. Click the plus (+) button to Add Extract

4. Select Integrated Extract

5. Add the required information as follows:

• Process Name: EXT_1

• Description: Extract for DC 1 CDB

• Intent: Unidirectional

• Begin: Now

• Trail Name: aa

• Credential Domain: GoldenGate

• Credential Alias: DC1_CDB

• Register to PDBs: PDB Name

6. Click Next and set parameters:

EXTRACT ext_1
USERIDALIAS DC1_CDB DOMAIN GoldenGate
EXTTRAIL aa
TRANLOGOPTIONS HANDLEDLFAILOVER
TRANLOGOPTIONS FAILOVERTARGETDESTID 2
SOURCECATALOG <PDB_NAME>
TABLE <OWNER>.*;

7. Click Next.

8. If using CDB Root Capture from PDB, add the SOURCECATALOG parameter with the PDB
Name

9. For Oracle Data Guard configurations, add the TRANLOGOPTIONS parameter, if required, as
explained earlier in this step:

• Add the parameter TRANLOGOPTIONS HANDLEDLFAILOVER
• Add the parameter TRANLOGOPTIONS FAILOVERTARGETDESTID

<log_archive_dest_numer> only if Oracle Data Guard Fast-Start Failover (FSFO) is
NOT in use.

10. Click Create and Run.

See Oracle GoldenGate Extract Failure or Error Conditions Considerations for more
information.

Step 4.4.2 - Replicat Configuration

Oracle generally recommends using integrated parallel Replicat which offers better apply
performance for most workloads when the GGHub is in the same region as the target Oracle
GoldenGate database.

The best apply performance can be achieved when the network latency between the GGHub
and the target database is as low as possible. The following configuration is recommended for
the remote Replicat running on the Oracle GGHub.

Chapter 25
Task 4: Configure the Oracle GoldenGate Environment

25-59

• APPLY_PARALLELISM – Disables automatic parallelism, instead of using
MAX_APPLY_PARALLELISM and MIN_APPLY_PARALLELISM, and allows the highest amount of
concurrency to the target database. It is recommended to set this as high as possible
based on available CPU of the hub and the target database server.

• MAP_PARALLELISM – Should be set with a value of 2 to 5. With a larger number of appliers,
increasing the Mappers increases the ability to hand work to the appliers.

• BATCHSQL – applies DML using array processing which reduces the amount network
overheads with a higher latency network. Be aware that if there are many data conflicts,
BATCHSQL results in reduced performance, as rollback of the batch operations followed by a
re-read from trail file to apply in non-batch mode.

After you’ve set up your database connections and verified them, you can add a Replicat for
the deployment by following these steps:

1. Log in to the Oracle GoldenGate Administration Server

2. Click theplus (+) sign next to Replicats on the Administration Service home page. The Add
Replicat page is displayed.

3. Select a Replicat type and click Next.

4. Enter the details as follows:

• Process Name: REP_1

• Description: Replicat for DC 2 PDB

• Intent: Unidirectional

• Credential Domain: GoldenGate

• Credential Alias: DC2_PDB

• Source: Trail

• Trail Name: aa

• Begin: Position in Log

• Checkpoint Table: "GGADMIN"."CHKP_TABLE"

5. Click Next

6. From the Action Menu, click Details to edit the Replicat Parameters:

REPLICAT REP_1
USERIDALIAS Reg2_PDB DOMAIN GoldenGate
MAP <SOURCE_PDB_NAME>.<OWNER>.*, TARGET <OWNER>.*;

7. From the Action Menu, click Start.

Step 4.4.3 - Distribution Path Configuration

Distribution paths are only necessary when trail files need to be sent to an additional Oracle
GoldenGate Hub in a different, or even the same, data center as described in the following
figure.

Chapter 25
Task 4: Configure the Oracle GoldenGate Environment

25-60

Figure 25-4 Oracle GoldenGate Distribution Path

Region 2Region 1

Source Deployment Target Deployment

Target
Database

Replicat

Trail
Files

Source
Database

Trail
Files

Extract

Distribution
Path

When using Oracle GoldenGate Distribution paths with the NGINX Reverse Proxy, additional
steps must be carried out to ensure the path client and server certificates are configured.

More instructions about creating distribution paths are available in Using Oracle GoldenGate
Microservices Architecture. A step-by-step example is in the following video, “Connect an on-
premises Oracle GoldenGate to OCI GoldenGate using NGINX,” to correctly configure the
certificates.

Here are the steps performed in this sub-step:

• Step 4.4.3.1 - Download the Target Server’s Root Certificate, and then upload it to the
source Oracle GoldenGate

• Step 4.4.3.2 - Create a user in the Target Deployment for the Source Oracle GoldenGate
to use

• Step 4.4.3.3 - Create a Credential in the Source Oracle GoldenGate

• Step 4.4.3.4 - Create a Distribution Path on the Source Oracle GoldenGate to the Target
Deployment

• Step 4.4.3.5 - Distribution Path Recommendations

Step 4.4.3.1 - Download the Target Server’s Root Certificate, and then upload it to the
source Oracle GoldenGate

Download the target deployment server’s root certificate and add the CA certificate to the
source deployment Service Manager.

1. Log in to the Administration Service on the Target GoldenGate deployment.

2. Follow “Step 2 - Download the target server’s root certificate” in the video “Connect an on-
premises Oracle GoldenGate to OCI GoldenGate using NGINX.”

Step 4.4.3.2 - Create a user in the Target Deployment for the Source Oracle GoldenGate
to use

Create a user in the target deployment for the distribution path to connect to:

Chapter 25
Task 4: Configure the Oracle GoldenGate Environment

25-61

https://docs.oracle.com/en/middleware/goldengate/core/21.3/ggmas/working-paths.html#GUID-7F9F7045-AA27-4007-9852-BC69C2F301A1.
https://docs.oracle.com/en/middleware/goldengate/core/21.3/ggmas/working-paths.html#GUID-7F9F7045-AA27-4007-9852-BC69C2F301A1.
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380

1. Log in to the Administration Service on the Target GoldenGate.

2. Click on Administrator under Administration Service.

3. Click the plus (+) sign next to Users.

4. Enter the details as follows:

• Username: ggnet

• Role: Operator

• Type: Password

5. Click Submit

Step 4.4.3.3 - Create a Credential in the Source Oracle GoldenGate Deployment

Create a credential in the source deployment connecting the target deployment with the user
created in the previous step. For example, a domain of OP2C and an alias of WSSNET.

1. Log in to the Administration Service on the Source Oracle GoldenGate.

2. Click in Configuration under Administration Service.

3. Click the plus (+) sign next to Credentials on the Database home page.

4. Enter the details as follows:

• Credential Domain: OP2C

• Credential Alias: wssnet

• User ID: ggnet

5. Click Submit

Step 4.4.3.4 - Create a Distribution Path on the Source Oracle GoldenGate to the Target
Deployment

A path is created to send trail files from the Distribution Server to the Receiver Server. You can
create a path from the Distribution Service. To add a path for the source deployment:

1. Log in to the Distribution Service on the Source Oracle Goldengate.

2. Click the plus (+) sign next to Path on the Distribution Service home page. The Add Path
page is displayed.

3. Enter the details as follows:

Option Description

Path Name Select a name for the path.

Source: Trail Name Select the Extract name from the drop-down list,
which populates the trail name automatically. If it
doesn’t, enter the trail name you provided while
adding the Extract.

Generated Source URI Specify localhost for the server’s name; this
allows the distribution path to be started on any
of the Oracle RAC nodes.

Target Authentication Method Use ‘UserID Alias’

Target Set the Target transfer protocol to wss (secure
web socket). Set the Target Host to the target
hostname/VIP that will be used for connecting to
the target system along with the Port Number
that NGINX was configured with (default is 443).

Chapter 25
Task 4: Configure the Oracle GoldenGate Environment

25-62

Option Description

Domain Set the Domain to the credential domain created
above, for example, OP2C.

Alias The Alias is set to the credential alias wssnet.

Auto Restart Options Set the distribution path to restart when the
Distribution Server starts automatically. This is
required, so that manual intervention is not
required after a RAC node relocation of the
Distribution Server. It is recommended to set the
number of Retries to 10. Set the Delay, which is
the time in minutes to pause between restart
attempts, to 1.

4. Click Create Path.

5. From the Action Menu, click Start.

Step 4.4.3.5 - Distribution Path Recommendations

If there are any GoldenGate distribution paths sending trail files to the GGHub, after a role
transition of the GGHub, the paths will need to be altered to send the trail files to the new
primary GGHub system. This can be done using the following example REST call:

curl -s -K src_access.cfg
 https://Source_VIP/Source_Deployment_Name/distsrvr/services/v2/sources/
Distribution_Path_Name
 -X PATCH --data '{"target":{"uri":"ogg://Target_VIP:9103/services/v2/targets?
trail=dd"}}' | python
 -m json.tool

You can automate changing the source distribution path target address after a hub role
transition using the sample shell script shown in Managing Outages for Oracle GoldenGate
Hub which is called by the acfs_standby CRS action script when a file system switchover/
failover occurs.

The source distribution paths must be configured to restart automatically after it has failed so
that if the target GoldenGate deployment relocates between Oracle RAC nodes or to the
standby hub, the distribution paths will restart. If a distribution path was created without
automatic restart enabled, it can be enabled through the distribution server web UI or a REST
call. For example:

$ curl -s -K
 access.cfg https://<Source VIP>/<Source Deployment Name>/distsrvr/
services/v2/sources/ggs_to_gghub
 -X PATCH --data '{"options":{"autoRestart":{"delay": 2,"retries": 10}}}' |
python -m json.tool

To check the current configuration of a distribution path, use the following example:

$ curl -s -K
 access.cfg https://<Source VIP>/<Source Deployment Name>/distsrvr/
services/v2/sources/ggs_to_gghub
 -X GET | python -m json.tool

Sample output:
"name": "scam_to_gghub",
 "options": {
 "autoRestart": {

Chapter 25
Task 4: Configure the Oracle GoldenGate Environment

25-63

 "delay": 2,
 "retries": 10
 },

Step 4.4.4 - Set up a Heartbeat Table for Monitoring Lag Times

Use the instructions in Steps to add Heartbeat Table in OCI GoldenGate to implement the best
practices for creating a heartbeat process that can be used to determine where and when lag
is developing between a source and target system.

This document guides you through the step-by-step process of creating the necessary tables
and added table mapping statements needed to keep track of processing times between a
source and target database. Once the information is added into the data flow, the information is
then stored into a target tables that can be analyzed to determine when and when the lag is
introduced between the source and target systems.

Chapter 25
Task 4: Configure the Oracle GoldenGate Environment

25-64

https://blogs.oracle.com/dataintegration/post/steps-to-add-heartbeat-table-in-oci-goldengate

26
On-Premises: Oracle GoldenGate
Microservices Architecture with Oracle Real
Application Clusters Configuration Best
Practices

Use these best practices for configuring Oracle GoldenGate Microservices Architecture for on-
premises systems, including Oracle Exadata, to work with Oracle Real Application Clusters
(RAC), Oracle Clusterware, and Oracle Database File System (DBFS) or Oracle Advanced
Cluster File System (ACFS).

The target Oracle RAC system that hosts Oracle GoldenGate Microservices Architecture can
act as the source database, as the target database, or in some cases as both source and
target databases, for Oracle GoldenGate operations.

See the following topics:

• Summary of Recommendations when Deploying Oracle GoldenGate on Oracle RAC

• Task 1: Configure the Oracle Database for Oracle GoldenGate

• Task 2: Create the Database Replication Administrator User

• Task 3: Create the Database Services

• Task 4: Set Up a File System on Oracle RAC

• Task 5: Install Oracle GoldenGate

• Task 6: Create the Oracle GoldenGate Deployment

• Task 7: Oracle Clusterware Configuration

• Task 8: Configure NGINX Reverse Proxy

• Task 9: Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections

• Task 10: Configure Oracle GoldenGate Processes

• Task 11: Configure Autostart of Extract and Replicat Processes

Summary of Recommendations when Deploying Oracle
GoldenGate on Oracle RAC

When configuring Oracle GoldenGate in an Oracle RAC environment, follow these
recommendations.

• Install the latest version of Oracle GoldenGate software locally on each Oracle RAC node,
making sure that the software location is the same on all Oracle RAC nodes.

• Use the Oracle Database File System (DBFS) or Oracle Advanced Cluster File System
(ACFS) for the file system where the Oracle GoldenGate files are stored (trail, checkpoint,
temporary, report, and parameter files).

26-1

• Use the same DBFS or ACFS mount point on all of the Oracle RAC nodes that may run
Oracle GoldenGate.

• When creating the GoldenGate deployment, specify either DBFS or ACFS for the
deployment location.

• Install Grid Infrastructure agent (XAG) version 10 or later on all Oracle RAC nodes that will
run Oracle GoldenGate.

• Configure the GoldenGate processes to automatically start and restart when the
deployment is started.

Task 1: Configure the Oracle Database for Oracle GoldenGate
The source and target Oracle GoldenGate databases should be configured using the following
recommendations.

• Enable Oracle GoldenGate replication by setting the database initialization parameter
ENABLE_GOLDENGATE_REPLICATION=TRUE.

• Run the Oracle GoldenGate source database in ARCHIVELOG mode.

• Enable FORCE LOGGING mode in the Oracle GoldenGate source database.

• Enable minimal supplemental logging in the source database. Additionally, add schema or
table level logging for all replicated objects.

• If the Replicat process will be used, configure the streams pool in the System Global Area
(SGA) on the source database using the STREAMS_POOL_SIZE initialization parameter.

Note that the streams pool is only needed on the target database if integrated Replicat will
be used.

Use the following equation to determine the value for STREAMS_POOL_SIZE:

STREAMS_POOL_SIZE = (#Extracts and #Integrated Replicats * 1GB) * 1.25

For example, in a database with 2 Extracts and 2 integrated Replicats:

STREAMS_POOL_SIZE = 4GB * 1.25 = 5GB

When adding Extract or Replicat processes, it is important to recalculate and configure the
new streams pool size requirement.

For more information about preparing the database for Oracle GoldenGate, see Preparing the
Database for Oracle GoldenGate.

Task 2: Create the Database Replication Administrator User
The source and target Oracle databases need a GoldenGate Administrator user with
appropriate privileges assigned.

For single tenant (non-CDB architecture) databases, see Establishing Oracle GoldenGate
Credentials

For a multitenant source database, GoldenGate Extract must be configured to connect to a
user in the root container database, using a c## account. For a multitenant target database, a
separate GoldenGate administrator user is needed for each PDB that a Replicat applies data
to.

For more details about creating a GoldenGate Administrator in an Oracle Multitenant
Database, see Configuring Oracle GoldenGate in a Multitenant Container Database

Chapter 26
Task 1: Configure the Oracle Database for Oracle GoldenGate

26-2

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/establishing-oracle-goldengate-credentials.html#GUID-F9EBB989-E22F-4355-BE60-40F957B8515E
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/establishing-oracle-goldengate-credentials.html#GUID-F9EBB989-E22F-4355-BE60-40F957B8515E
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-multitenant-container-database-1.html#GUID-0B0CEB35-51C6-4319-BEE1-FA208FF4DE05

Task 3: Create the Database Services
A database service is required so that the Oracle Grid Infrastructure Agent automatically starts
the GoldenGate deployment when the database is opened. When DBFS is used for the shared
file system, the database service is also used to mount DBFS to the correct Oracle RAC
instance.

When using a source multitenant database, a separate service is required for the root
container database (CDB) and the pluggable database (PDB) that contains the schema being
replicated. For a target multitenant database, a single service is required for the PDB.

Create the service using the following command, as the oracle user.

$ srvctl add service -db db_name -service service_name
 -preferred instance_1 -available instance_2, instance_3 etc.
 -pdb PDB_name

For example:

$ srvctl add service -db ggdb -service oggserv_pdb -preferred ggdb1
 -available ggdb2 –pdb GGPDB01

It you are not using Oracle Multitenant Database, omit the -pdb parameter.

Task 4: Set Up a File System on Oracle RAC
Oracle GoldenGate Microservices Architecture is designed with a simplified installation and
deployment directory structure. The installation directory should be placed on local storage on
each Oracle RAC node to provide minimized downtime during software patching.

The deployment directory, which is created during deployment creation using the Oracle
GoldenGate Configuration Assistant (oggca.sh), must be placed on a shared file system. The
deployment directory contains configuration, security, log, parameter, trail, and checkpoint files.

Placing the deployment in DBFS or ACFS provides the best recovery and failover capabilities
in the event of a system failure. Ensuring the availability of the checkpoint files cluster-wide is
essential so that after a failure occurs the GoldenGate processes can continue running from
their last known position.

If Oracle GoldenGate will be configured along with Oracle Data Guard, the recommended file
system is DBFS. DBFS is contained in the database protected by Data Guard, and can be fully
integrated with XAG. In the event of a Data Guard role transition, the file system can be
automatically mounted on the new primary server, followed by automated start-up of Oracle
GoldenGate. This is currently not possible with ACFS, because it is not part of the Oracle Data
Guard configuration.

Follow the instructions in the appropriate section below to configure the file system for either
DBFS or ACFS.

Oracle Database File System (DBFS)

It is required that you create the DBFS tablespace inside the same database that the Oracle
GoldenGate processes are connected to. For example, if a GoldenGate integrated Extract

Chapter 26
Task 3: Create the Database Services

26-3

process is extracting from a database called GGDB, the DBFS tablespace would be located in
the same GGDB database.

Follow instructions in My Oracle Support note 869822.1 to install the required FUSE libraries if
they are not already installed.

Use the instructions in My Oracle Support note 1054431.1 to configure the database,
tablespace, database user, tnsnames.ora Oracle Net connection alias, and permissions on
source or target GoldenGate environments required for DBFS.

Note:

When using an Oracle Multitenant Database, the DBFS tablespace MUST be created
in a Pluggable Database (PDB). It is recommended that you use the same PDB that
the GoldenGate Extract or Replicat processes are connecting to, allowing DBFS to
use the same database service, created above in Task 2, for its database
dependency.

When you create a file system for storing the GoldenGate deployment files, it is recommended
that you allocate enough trail file disk space to permit storage of up to 12 hours of trail files.
Doing this provides sufficient space for trail file generation should a problem occur with the
target environment that prevents it from receiving new trail files. The amount of space needed
for 12 hours can only be determined by testing trail file generation rates with real production
data.

Example DBFS creation:

$ cd $ORACLE_HOME/rdbms/admin
$ sqlplus dbfs_user/dbfs_password@database_tns_alias
SQL> start dbfs_create_filesystem dbfs_gg_tbs goldengate

Follow the instructions in My Oracle Support note 1054431.1 to configure the newly created
DBFS file system so that the DBFS instance and mount point resources are automatically
started by Cluster Ready Services (CRS) after a node failure, with the following DBFS
configuration and script file modifications.

1. Change the mount-dbfs.conf parameters to reflect your database environment.

Modify the MOUNT_OPTIONS parameter to the following:

MOUNT_OPTIONS=allow_other,direct_io,failover,nolock

The failover option forces all file writes to be committed to the DBFS database in an
IMMEDIATE WAIT mode. This prevents data getting lost when it has been written into the
dbfs_client cache but not yet written to the database at the time of a database or node
failure.

The nolock mount option is required if you are using Oracle Database 18c or a later
release, due to a change in the DBFS file locking which can cause issues for GoldenGate
processes after an Oracle RAC node failure when a file is currently locked.

If you are using a dbfs_client from Oracle Database 12c Release 2 (12.2), make sure
you have applied the latest release update that includes the fix for bug 27056711. Once
the fix has been applied, the MOUNT_OPTIONS should also include the nolock option.

Chapter 26
Task 4: Set Up a File System on Oracle RAC

26-4

https://support.oracle.com/rs?type=doc&id=869822.1
https://support.oracle.com/rs?type=doc&id=1054431.1
https://support.oracle.com/rs?type=doc&id=1054431.1

2. Modify the mount-dbfs.sh script to force unmounting of DBFS when the CRS resource is
stopped.

Change two occurrences of:

$FUSERMOUNT -u $MOUNT_POINT
To the following:

$FUSERMOUNT -uz $MOUNT_POINT
3. When registering the resource with Oracle Clusterware, be sure to create it as a

cluster_resource instead of a local_resource, as specified in the My Oracle Support
note.

The reason for using cluster_resource is so that the file system can only be mounted on
a single node at a time, preventing mounting of DBFS from concurrent nodes, which
creates the potential for concurrent file writes, causing file corruption problems.

Make sure to use the database service name created in a previous step for the DBFS
service dependency.

For example:

DBNAME=ggdb
DEPNAME=ora.$DBNAME.oggserv.svc

crsctl add resource $RESNAME \
 -type cluster_resource \
 -attr "ACTION_SCRIPT=$ACTION_SCRIPT, \
 CHECK_INTERVAL=30,RESTART_ATTEMPTS=10, \
START_DEPENDENCIES='hard($DEPNAME)pullup($DEPNAME)',\
 STOP_DEPENDENCIES='hard($DEPNAME)',\
 SCRIPT_TIMEOUT=300"

Once the DBFS resource has been created, the file system should be mounted and tested.

$ crsctl start res dbfs_mount
$ crsctl stat res dbfs_mount

After the file system is mounted, create the directory for storing the GoldenGate files.

$ cd /mnt/dbfs/goldengate
$ mkdir deployments

Note:

Leave the shared file system mounted. It is required for creating the GoldenGate
deployment in a later step.

Oracle Advanced Cluster File System (ACFS)

Oracle ACFS is an alternative to DBFS for the shared GoldenGate files in an Oracle RAC
configuration.

Refer to My Oracle Support note 1929629.1 for more information about ACFS configuration
requirements for Oracle Exadata Database Machine.

Chapter 26
Task 4: Set Up a File System on Oracle RAC

26-5

https://support.oracle.com/rs?type=doc&id=1929629.1

Create a single ACFS file system for storing the Oracle deployment files.

It is recommended that you allocate enough trail file disk space to permit storage of up to 12
hours of trail files. Doing this provides sufficient space for trail file generation should a problem
occur with the target environment that prevents it from receiving new trail files. The amount of
space needed for 12 hours can only be determined by testing trail file generation rates with
real production data.

1. Create the file system using ASMCMD as the Oracle ASM administrator user.

ASMCMD [+] > volcreate -G datac1 -s 1200G ACFS_GG

Note:

Modify the file system size according to the determined size requirements.

ASMCMD> volinfo -G datac1 acfs_gg

Diskgroup Name: DATAC1
 Volume Name: ACFS_GG
 Volume Device: /dev/asm/acfs_gg-151
 State: ENABLED
 Size (MB): 1228800
 Resize Unit (MB): 64
 Redundancy: MIRROR
 Stripe Columns: 8
 Stripe Width (K): 1024
 Usage:
 Mountpath:

Make the file system with the following mkfs command.

$ /sbin/mkfs -t acfs /dev/asm/acfs-gg-151

2. Create the CRS resource for the newly created ACFS file system, if not already created.

Check to see if the file system resource was already created.

$ srvctl status filesystem -volume ACFS_GG -diskgroup DATAC1

ACFS file system /mnt/acfs_gg is mounted on nodes oggadm07, oggadm08

If not already created, create the ACFS mount point on all of the Oracle RAC nodes.

mkdir -p /mnt/acfs_gg

Create the file system resource as the root user. Due to the implementation of distributed
file locking on ACFS, unlike DBFS, it is acceptable to mount ACFS on more than one RAC
node at any one time.

Chapter 26
Task 4: Set Up a File System on Oracle RAC

26-6

Create the ACFS resource using srvctl from the Oracle Grid Infrastructure
ORACLE_HOME.

srvctl add filesystem -device /dev/asm/acfs_gg-151 -volume ACFS_GG
-diskgroup DATAC1 -path /mnt/acfs_gg -user oracle -autostart RESTORE

To verify the currently configured ACFS file systems, use the following command to view
the file system details.

$ srvctl config filesystem

Volume device: /dev/asm/acfs_gg-151
Diskgroup name: datac1
Volume name: ACFS_GG
Canonical volume device: /dev/asm/acfs_gg-151
Accelerator volume devices:
Mountpoint path: /mnt/acfs_gg
Mount point owner: oracle

Check the status of the ACFS resource and mount it.

$ srvctl status filesystem -volume ACFS_GG -diskgroup DATAC1

ACFS file system /mnt/acfs is not mounted

$ srvctl start filesystem -volume ACFS_GG -diskgroup DATAC1 –node
dc1north01

The CRS resource that is created is named using the format
ora.diskgroup_name.volume_name.acfs. Using the above file system example, the CRS
resource is called ora.datac1.acfs_gg.acfs.

To see all ACFS file system CRS resources that currently exist, use the following
command.

$ crsctl stat res -w "((TYPE = ora.acfs.type) OR (TYPE =
ora.acfs_cluster.type))"

NAME=ora.datac1.acfs_gg.acfs
TYPE=ora.acfs.type
TARGET=ONLINE , OFFLINE
STATE=ONLINE on dc1north01, OFFLINE

3. Create a GoldenGate deployment directory on ACFS.

After the file system is mounted, create the directory for storing the GoldenGate
deployments.

$ cd /mnt/acfs_gg
$ mkdir deployments

Chapter 26
Task 4: Set Up a File System on Oracle RAC

26-7

Note:

Leave the shared file system mounted. It is required for creating the GoldenGate
deployment in a later Task.

Task 5: Install Oracle GoldenGate
Download and install the Oracle GoldenGate 21c Microservices software, or later release.

Download the software at https://www.oracle.com/middleware/technologies/goldengate-
downloads.html.

Install the Oracle GoldenGate software locally on all nodes in the Oracle RAC configuration
that will be part of the GoldenGate configuration. Make sure the installation directory is
identical on all nodes.

Follow the generic installation instructions detailed in Oracle GoldenGate Microservices
Documentation.

Task 6: Create the Oracle GoldenGate Deployment
Once the Oracle GoldenGate software has been installed, the next step is to create a
deployment using the Oracle GoldenGate Configuration Assistant (oggca).

There are two limitations that currently exist with Oracle GoldenGate and XAG:

1. A Service Manager that is registered with XAG can only manage a single deployment. If
multiple deployments are required, each deployment must use their own Service Manager.
Oracle GoldenGate release 21c simplifies this requirement because it uses a single
deployment to support Extract and Replicat processes connecting to different versions of
the Oracle Database.

2. Each Service Manager registered with XAG must belong to separate OGG_HOME software
installation directories. Instead of installing Oracle GoldenGate multiple times, the
recommended approach is to install Oracle GoldenGate one time, and then create a
symbolic link for each Service Manager OGG_HOME.

For example:

$ echo $OGG_HOME
/u01/oracle/goldengate/gg21c_MS

$ ln –s /u01/oracle/goldengate/gg21c_MS /u01/oracle/goldengate/
gg21c_MS_ggnorth

$ export OGG_HOME=/u01/oracle/goldengate/gg21c_MS_ggnorth
$ $OGG_HOME/bin/oggca.sh

The symbolic link and OGG_HOME environment variable must be configured before running the
Oracle GoldenGate Configuration Assistant on all Oracle RAC nodes.

Recommendations for creating the GoldenGate deployment in the Oracle GoldenGate
Configuration Assistant are as follows.

Chapter 26
Task 5: Install Oracle GoldenGate

26-8

https://www.oracle.com/middleware/technologies/goldengate-downloads.html
https://www.oracle.com/middleware/technologies/goldengate-downloads.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc/install1.html#GUID-50852868-55A2-4E10-8362-D69B7F62B5D8
https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc/install1.html#GUID-50852868-55A2-4E10-8362-D69B7F62B5D8

1. In Service Manager Options, specify the following for the creation of a new Service
Manager.

a. In the Service Manager Details pane, select Create New Service Manager.

b. Enter the Service Manager Deployment Home location on the shared DBFS or
ACFS file system.

c. Select to Integrate with XAG.

d. In the Service Manager Connection Details pane, specify localhost in the Listening
hostname/address field.

Using localhost allows the deployment to be started on all of the Oracle RAC nodes
without the need for a Virtual IP address (VIP).

e. Enter the port number in Listening port.

2. In Deployment Directories, specify the Deployment home directory on the shared DBFS
or ACFS file system.

3. In Environment Variables, specify a correct TNS_ADMIN directory.

Starting with Oracle GoldenGate release 21.3, a database ORACLE_HOME is no longer
required because the required database libraries are installed as part of the Oracle
GoldenGate installation. It is recommended that you use TNS_ADMIN directory outside of
any existing ORACLE_HOME directories.

4. In Security Options, do not select SSL/TLS Security.

External access to the Oracle GoldenGate Microservices server is achieved by using
NGINX Reverse Proxy SSL-termination. Secure access and communication to the
GoldenGate deployments will be exclusively through the SSL port 443. Internal
connectivity within the same local host between NGINX and GoldenGate does not require
SSL.

5. In Port Settings, if the Management Pack for Oracle GoldenGate has been licensed,
select Enable Monitoring to use the performance metric server using either Berkeley
Database (BDB) or Lightening Memory Database (LMDB).

For both BDB and LMDB Metrics Service DataStore types, set the Metrics Service
DataStore home directory to a local directory that exists on all Oracle RAC nodes. For
example: /u01/oracle/goldengate/datastores/deployment name

6. Continue through the Oracle GoldenGate Configuration Assistant until the deployment is
created.

7. After the deployment has been created, if you are using DBFS for the shared file system
and the database version is a release earlier than Oracle Database Release 21c (21.3),
run the following commands to move the Oracle GoldenGate deployment temp directory
from DBFS to local storage.

On the first node:

$ cd <DBFS GoldenGate deployment home directory/var
$ mkdir -p local_storage_directory/deployment_name
$ mv temp local_storage_directory/deployment_name
$ ln -s local_storage_directory/deployment_name/temp temp

On all other nodes:

$ mkdir local_storage_directory/deployment_name/temp

Chapter 26
Task 6: Create the Oracle GoldenGate Deployment

26-9

First node example:

$ cd /mnt/dbfs/goldengate/deployments/ggnorth/var
$ mkdir –p /u01/oracle/goldengate/deployments/ggnorth
$ mv temp /u01/oracle/goldengate/deployments/ggnorth
$ ln -s /u01/oracle/goldengate/deployments/ggnorth/temp temp

On all other nodes:

$ mkdir /u01/oracle/goldengate/deployments/ggnorth/temp

Task 7: Oracle Clusterware Configuration
The following procedure shows you how to configure Oracle Clusterware to manage Oracle
GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG).

Using XAG automates the mounting of the shared file system (DBFS or ACFS) and the
stopping and starting of the GoldenGate deployment when relocating between Oracle RAC
nodes.

1. Install the Oracle Grid Infrastructure Standalone Agent.

It is recommended that you install the XAG software as a standalone agent outside of the
Grid Infrastructure ORACLE_HOME. This allows you to use the latest XAG release
available, and the software can be updated without impact to the Grid Infrastructure.

When using Oracle GoldenGate Microservices Architecture you MUST use XAG version
10.2 or later.

The latest agent software is available for download from the following location:

http://www.oracle.com/technetwork/database/database-technologies/clusterware/
downloads/xag-agents-downloads-3636484.html

Install the XAG standalone agent outside of the Oracle Grid Infrastructure home directory.
XAG must be installed in the same directory on all RAC nodes in the cluster where Oracle
GoldenGate is installed.

For example, as the Oracle Grid Infrastructure user, the default of oracle:

$./xagsetup.sh --install --directory /u01/oracle/xag --all_nodes

Add the location of the newly installed XAG software to the PATH variable so that the
location of agctl is known when the oracle user logs on to the machine.

$ cat .bashrc
export PATH=/u01/oracle/xag/bin:$PATH

Note:

It is important to make sure that the XAG bin directory is specified BEFORE the
Grid Infrastructure bin directory, to ensure the correct agctl binary is found. Set
this location in the oracle user environment to take effect at time of logging on,
such as in the .bashrc file when the Bash shell is in use.

Chapter 26
Task 7: Oracle Clusterware Configuration

26-10

http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html

2. Prepare for Application Virtual IP Address (VIP) Creation.

A dedicated application VIP is required to allow access to the GoldenGate Microservices
using the same host name, regardless of which Oracle RAC node is hosting the services.
An application VIP also ensures that the GoldenGate Distribution Server can communicate
with the Distribution Receiver running the current Oracle RAC node.

The VIP is a cluster resource that Oracle Clusterware manages. The VIP is assigned to a
cluster node and is automatically migrated to another node in the event of a node failure.

There are two pieces of information needed before creating the application VIP:

• The network number, which can be identified using the following command.

$ crsctl status resource -p -attr ADDRESS_TYPE,NAME,USR_ORA_SUBNET -w
"TYPE = ora.network.type" |sort | uniq

ADDRESS_TYPE=IPV4
NAME=ora.net1.network

USR_ORA_SUBNET=10.133.16.0

The net1 in NAME=ora.net1.network indicates that this is network 1, and it is of type
IPV4.

• The IP address for the new Application VIP, provided by your system administrator.
This IP address must be in the same subnet of the cluster environment as determined
above.

The VIP will be created in the next step, when configuring the Oracle Grid
Infrastructure Agent.

3. Configure Oracle Grid Infrastructure Agent (XAG).

Oracle GoldenGate must be registered with XAG so that the deployment is started and
stopped automatically when the database is started and the file system is mounted.

To register Oracle GoldenGate Microservices Architecture with XAG use the following
command format.

agctl add goldengate instance_name
 --gg_home GoldenGate_Home
 --service_manager
 --config_home GoldenGate_SvcMgr_Config
 --var_home GoldenGate_SvcMgr_Var_Dir
 --port port_number
 --oracle_home $OGG_HOME/lib/instantclient
 --adminuser OGG_admin_user
 --user GG_instance_user
 --group GG_instance_group
 --network network_number
 --ip ip_address
 --vip_name vip_name
 --filesystems CRS_resource_name
 --db_services service_name
 --use_local_services
 --nodes node1, node2, ... ,nodeN

Where:

Chapter 26
Task 7: Oracle Clusterware Configuration

26-11

--gg_home specifies the location of the Oracle GoldenGate software. Specify the OGG_HOME
symbolic link for the OGG_HOME if registering multiple Service Managers (see Task 6: Create
the Oracle GoldenGate Deployment).

--service_manager indicates this is a GoldenGate Microservices instance.

--config_home specifies the GoldenGate Service Manager deployment configuration
home directory.

--var_home specifies the GoldenGate Service Manager deployment variable home
directory.

--port specifies the deployment Service Manager port number.

--oracle_home specifies the location of the Oracle database libraries that are included as
part of Oracle GoldenGate 21c and later releases. Example: $OGG_HOME/lib/
instantclient
--adminuser specifies the Oracle GoldenGate Microservices administrator account name.

--user specifies the name of the operating system user that owns the GoldenGate
deployment.

--group specifies the name of the operating system group that owns the GoldenGate
deployment.

--network specifies the network subnet for the VIP, determined above.

--ip specifies the IP address for the VIP, which was determined above. If you have
already created a VIP, then specify it using the --vip_name parameter in place of --
network and --ip.

--vip_name specifies a CRS resource name for an application VIP that has previously
been created. This parameter replaces --network and -–ip (optional).

--filesystems specifies the DBFS or ACFS CRS file system resource that must be
mounted before the deployment is started.

--db_services specifies the ora.database.service_name.svc service name that was
created in the previous step. If using Oracle Multitenant Database, specify the PDB
database service for Replicat, or the CDB database service for an Extract. If using both
Replicat and Extract, specify both services names, separated by a comma.

--use_local_services specifies that the GoldenGate instance must be co-located on the
same Oracle RAC node where the db_services service is running.

--nodes specifies which of the Oracle RAC nodes this GoldenGate instance can run on. If
GoldenGate is configured to run on any of the Oracle RAC nodes in the cluster, this
parameter should still be used to determine the preferred order of nodes to run Oracle
GoldenGate.

Notes:

• The GoldenGate instance registration with XAG MUST be run as the root user.

• The user and group parameters are mandatory because the GoldenGate registration with
XAG is run as the root user.

Below are some examples of registering Oracle GoldenGate with XAG.

Example 1: Oracle RAC cluster using DBFS, using an already created application VIP

agctl add goldengate GGNORTH \
--gg_home /u01/oracle/goldengate/gg21c_MS \

Chapter 26
Task 7: Oracle Clusterware Configuration

26-12

--service_manager \
--config_home /mnt/dbfs/goldengate/deployments/ggsm01/etc/conf \
--var_home /mnt/dbfs/goldengate/deployments/ggsm01/var \
--port 9100 \
--oracle_home /u01/oracle/goldengate/gg21c_MS/lib/instantclient
--adminuser oggadmin
--user oracle \
--group oinstall \
--vip_name gg_vip_prmy \
--filesystems dbfs_mount \
--db_services ora.ds19c.oggserv.svc \
--use_local_services \
--nodes dc1north01,dc1north02

Where:

• GoldenGate instance is GGNORTH

• GoldenGate home directory is /u01/oracle/goldengate/gg21c_MS
• This is an Oracle GoldenGate Microservices Architecture instance (--service_manager)

• GoldenGate deployment configuration home directory is /mnt/dbfs/goldengate/
deployments/ggsm01/etc/conf

• GoldenGate deployment variable home directory is /mnt/dbfs/goldengate/deployments/
ggsm01/var

• Deployment Service Manager port number is 9100

• Oracle GoldenGate Microservices administrator account name is oggadmin
• The GoldenGate user is oracle in the group oinstall
• Application VIP name, managed by CRS, is called gg_vip_prmy
• The CRS resource name for the file system the deployment depends on is dbfs_mount
• The GoldenGate instance will be started on the same Oracle RAC node as the CRS

service called ora.ds19c.oraserv.svc will be co-located on the same node as this
GoldenGate instance.

Example 2: Oracle RAC cluster, using ACFS, with an application VIP running on a
subset of the nodes in the cluster.

agctl add goldengate GGNORTH \
--gg_home /u01/oracle/goldengate/gg21c_MS \
--service_manager \
--config_home /mnt/acfs/goldengate/deployments/ggsm01/etc/conf \
--var_home /mnt/acfs/goldengate/deployments/ggsm01/var \
--port 9100 \
--oracle_home /u01/oracle/goldengate/gg21c_MS/lib/instantclient
--adminuser admin \
--user oracle \
--group oinstall \
--network 1 --ip 10.13.11.203 \
--filesystems ora.datac1.acfs_gg.acfs \
--db_services ora.ds19c.oraserv.svc \
--use_local_services \
--nodes dc1north01,dc1north02

Chapter 26
Task 7: Oracle Clusterware Configuration

26-13

Where:

• GoldenGate instance is GGNORTH

• GoldenGate home directory is /u01/oracle/goldengate/gg21c_MS
• This is an Oracle GoldenGate Microservices Architecture instance (--service_manager)

• GoldenGate deployment configuration home directory is /mnt/acfs/goldengate/
deployments/ggsm02/etc/conf

• GoldenGate deployment variable home directory is /mnt/acfs/goldengate/deployments/
ggsm02/var

• Deployment Service Manager port number is 9100

• Oracle GoldenGate Microservices administrator account name is admin
• GoldenGate user is oracle in the group oinstall
• The network is the default ora.net1.network and the VIP is 10.13.11.203
• The CRS resource name for the file system the deployment depends on is

ora.datac1.acfs_gg.acfs
• This GoldenGate instance will be started on the same Oracle RAC node as the CRS

service called ora.ds19c.oraserv.svc will be co-located on the same node as this
GoldenGate instance

• Oracle GoldenGate will only run on Oracle RAC nodes dc1north01 and dc1north02, listed
in priority order.

Example AGCTL Commands

Below are some example agctl commands that are used to manage the Oracle GoldenGate
deployment with XAG.

To check the status of Oracle GoldenGate:

% agctl status goldengate
Goldengate instance 'GGNORTH' is running on dc1north01

To start the GoldenGate deployment, and all Extract/Replicat processes that have been
configured to autostart (instructions in a later step):

% agctl start goldengate GGNORTH --node dc1north02

To stop the GoldenGate deployment:

% agctl stop goldengate GGNORTH

To manually relocate the GoldenGate deployment to another node:

% agctl relocate goldengate GGNORTH --node dc1north02

To view the configuration parameters for the GoldenGate resource:

% agctl config goldengate GGNORTH

Instance name: GGNORTH

Chapter 26
Task 7: Oracle Clusterware Configuration

26-14

Application GoldenGate location is: /u01/oracle/goldengate/gg21c_MS
Goldengate MicroServices Architecture environment: yes
Goldengate Service Manager configuration directory: /mnt/dbfs/goldengate/
deployments/ggsm01/etc/conf

Goldengate Service Manager var directory: /mnt/dbfs/goldengate/deployments/
ggsm01/var

Service Manager Port: 9100
Goldengate Administration User: oggadmin
Autostart on DataGuard role transition to PRIMARY: no
Configured to run on Nodes: dc1north01 dc1north02
ORACLE_HOME location is: /u01/oracle/goldengate/gg21c_MS/lib/instantclient
Database Services needed: ora.cdb1.oggcdb.svc [use_local_services]
File System resources needed: ora.datac1.acfs_gg.acfs
Network: 1, IP: 10.13.11.203, User:oracle, Group:oinstall

To delete the GoldenGate XAG resource:

$ agctl stop goldengate GGNORTH
agctl remove goldengate GGNORTH

For more information about the Oracle Grid Infrastructure Bundled Agent see Oracle Grid
Infrastructure Standalone Agents for Oracle Clusterware 11g Rel. 2, 12c, 18c and 19c.

Task 8: Configure NGINX Reverse Proxy
Follow the instructions provided in My Oracle Support note 2826001.1 to install and configure
NGINX Reverse Proxy with SSL connection, and to ensure all external communication is
completely secure.

Note:

When using CA Signed Certificates with NGINX, make sure the NGINX
ssl_certificate parameter points to a certificate file that contains the certificates in
the correct order of CA signed certificate, intermediate certificate and root certificate.

Oracle Clusterware needs to have control over starting the NGINX reverse proxy so that it can
be started automatically before the GoldenGate deployments are started.

The NGINX resource is created with a dependency on the underlying network CRS resource,
the name of which can be determined using the following command:

$ $GRID_HOME/bin/crsctl stat res -w "TYPE == ora.network.type"|grep NAME

NAME=ora.net1.network

Chapter 26
Task 8: Configure NGINX Reverse Proxy

26-15

https://www.oracle.com/database/technologies/xag-agents-download.html
https://www.oracle.com/database/technologies/xag-agents-download.html
https://support.oracle.com/rs?type=doc&id=2826001.1

As the root user, use the following example command to create a Clusterware resource to
manage NGINX.

$GRID_HOME/bin/crsctl add resource nginx -type generic_application -attr
 "ACL='owner:root:rwx,pgrp:root:rwx,other::r--,group:oinstall:r-
x,user:oracle:rwx',
EXECUTABLE_NAMES=nginx,START_PROGRAM='/bin/systemctl
 start -f nginx',STOP_PROGRAM='/bin/systemctl
 stop -f nginx',CHECK_PROGRAMS='/bin/systemctl
 status nginx' ,START_DEPENDENCIES='hard(ora.net1.network)
 pullup(ora.net1.network)',
STOP_DEPENDENCIES='hard(intermediate:ora.net1.network)',
 RESTART_ATTEMPTS=0, HOSTING_MEMBERS='dc1north01,dc1north02', CARDINALITY=2"

The NGINX resource created in this example run on the named cluster nodes at the same
time, specified by HOSTING_MEMBERS. This is recommended when multiple GoldenGate Service
Manager deployments are configured, and they can independently move between cluster
nodes.

Once the NGINX Clusterware resource is created, alter the GoldenGate XAG resources so
that NGINX must be started before the GoldenGate deployments are started.

As the oracle user, modify the XAG resources using the following example commands.

Determine the current --filesystems parameter:

$ agctl config goldengate SOURCE|grep "File System"

File System resources needed: ora.datac1.acfs_gg.acfs

Modify the --filesystems parameter:

$ agctl modify goldengate SOURCE --filesystems ora.datac1.acfs_gg.acfs,nginx

Repeat the above commands for each of the XAG GoldenGate registrations relying on NGINX.

Task 9: Create Oracle Net TNS Alias for Oracle GoldenGate
Database Connections

Create a TNS alias on all of the Oracle RAC nodes where Oracle GoldenGate may be started
to provide local database connections for the GoldenGate processes when switching between
Oracle RAC nodes. Create the TNS alias in the tnsnames.ora file in the TNS_ADMIN directory
specified in the deployment creation.

If the source database is a multitenant database, two TNS alias entries are required: one for
the container database (CDB) and one for the pluggable database (PDB) that is being
replicated. For a target multitenant database, the TNS alias connects the PDB where
replicated data is being applied to. The pluggable database SERVICE_NAME should be set to the
database service created in an earlier step (refer to Task 3: Create the Database Services).

Chapter 26
Task 9: Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections

26-16

Below are some example source database TNS alias definitions using the IPC protocol, which
must be defined locally on all RAC nodes.

OGGSOURCE_CDB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=IPC)(KEY=LISTENER))
 (CONNECT_DATA =
 (SERVICE_NAME = oggserv_cdb)
)
)

OGGSOURCE_PDB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=IPC)(KEY=LISTENER))
 (CONNECT_DATA =

 (SERVICE_NAME = oggserv_pdb)
)
)

Note:

When the tnsnames.ora or sqlnet.ora, located in the TNS_ADMIN directory for the
GoldenGate deployment, are modified, the deployment needs to be restarted in order
to pick up the changes.

With the GoldenGate deployment created, use the Administration Server home page to create
the database credentials using the above TNS alias names. See Figure 6 below for an
example of the database credential creation using the TNS alias appended to the database
user name in the ‘User ID” field.

If the source database is a multitenant database, create database credentials for the CDB and
PDB. If the target database is a multitenant database, create a single credential for the PDB.

Task 10: Configure Oracle GoldenGate Processes
When creating Extract, Distribution Paths, and Replicat processes with Oracle GoldenGate
Microservices Architecture, all files that need to be shared between Oracle RAC nodes are
already shared with the deployment files stored on a shared file system (DBFS or ACFS).

Listed below are important configuration details that are recommended for running Oracle
GoldenGate Microservices on Oracle RAC for Extract, Distribution Paths and Replicat
processes.

Extract Configuration

1. When creating an Extract using the Oracle GoldenGate Administration Server GUI
interface, leave the Trail SubDirectory parameter blank, so that the trail files are
automatically created in the deployment directories stored on the shared file system.

The default location for trail files is the /<deployment directory>/var/lib/data

Chapter 26
Task 10: Configure Oracle GoldenGate Processes

26-17

2. If you are using DBFS for shared storage, and the deployment var/temp directory was
moved to local storage as described in Task 6: Create the Oracle GoldenGate Deployment,
it is recommended that you use the Extract CACHEMGR parameter to place the temporary
cache files on the shared storage.

Create a new directory under the DBFS deployment mount point. For example:

$ mkdir –p /mnt/dbfs/goldengate/deployments/ggnorth/temp_cache

Set the Extract parameter to the new directory:

CACHEMGR CACHEDIRECTORY /mnt/dbfs/goldengate/deployments/ggnorth/temp_cache

Shown below is an example of how the parameters specified for an integrated Extract with the
Oracle GoldenGate Administration Server GUI looks in the UI.

Figure 26-1 Extract parameters for defining the temporary cache files

Distribution Path Configuration

When using Oracle GoldenGate distribution paths with the NGINX Reverse Proxy, there are
additional steps that must be performed to ensure that the path server certificates are
configured.

Follow the instructions provided in the following video to correctly configure the certificates:
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380

Configuration highlights presented in this video:

1. Create a client certificate for the source deployment and add the client certificate to the
source deployment Service Manager. (This is not required when using Oracle GoldenGate
21c or later releases.)

Chapter 26
Task 10: Configure Oracle GoldenGate Processes

26-18

https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380

2. Download the target deployment server’s root certificate and add the CA certificate to the
source deployment Service Manager.

3. Create a user in the target deployment for the distribution path to connect to.

4. Create a credential in the source deployment connecting to the target deployment with the
user created in the previous step.

For example, a domain of GGNORTH_to_GGSOUTH and an alias of PathReceiver.

After configuring the client and server certificates, the following configuration options need to
be set. Refer to the figures below to see where these options are set in the UI.

1. Change the Generated Source URI specifying localhost for the server name.

This allows the distribution path to be started on any of the Oracle RAC nodes.

2. Set the Target Authentication Method to UserID Alias and the Target transfer protocol
to wss (secure web socket).

Set the Target Host to the target host name/VIP that will be used for connecting to the
target system along with the Port Number that NGINX was configured with (default is
443).

The target host name/VIP should match the common name in the CA signed certificate
used by NGINX.

3. Set the Domain to the credential domain created above in step 4 and presented in the
video, for example GGNORTH_to_GGSOUTH.

The Alias is set to the credential alias, also created in step 4 in the video.

4. Set the distribution path to automatically restart when the Distribution Server starts.

This is required so that manual intervention is not required after an Oracle RAC node
relocation of the Distribution Server. It is recommended that you set the number of Retries
to 10. Set the Delay, which is the amount of time in minutes to pause between restart
attempts, to 1.

Chapter 26
Task 10: Configure Oracle GoldenGate Processes

26-19

Figure 26-2 Distribution Path Creation steps 1-3

Chapter 26
Task 10: Configure Oracle GoldenGate Processes

26-20

Figure 26-3 Distribution Path Creation step 4

Replicat Configuration

1. The checkpoint table is a required component for GoldenGate Replicat processes. Make
sure that a checkpoint table has been created in the database GoldenGate administrator
(GGADMIN) schema.

The checkpoint table can be created using the Oracle GoldenGate Administration Server
GUI, clicking on the ‘+’ button and entering the checkpoint table name in the format of
schema.tablename. This is shown in the image below

Figure 26-4 Creating the checkpoint table for Replicat processes

See About Checkpoint Table for more information about creating a checkpoint table.

2. When creating a Replicat using the Oracle GoldenGate Administration Server GUI
interface, set the Trail SubDirectory parameter to the location where the distribution path
or local Extract are creating the trail files.

3. If a checkpoint table was created previously, select the table name from the Checkpoint
Table pulldown list.

Chapter 26
Task 10: Configure Oracle GoldenGate Processes

26-21

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-apply.html#GUID-3DFBE2BE-20C5-48AA-B96A-7697126D77FE

Figure 26-5 Replicat creation with Trail SubDirectory and Checkpoint Table

Task 11: Configure Autostart of Extract and Replicat Processes
Configure the Extract and Replicat processes to automatically start when the Oracle
GoldenGate Administration Server is started, and then to restart if any Extract or Replicat
processes abend. With GoldenGate Microservices auto start and restart is managed by
Profiles.

Using the Oracle GoldenGate Administration Server GUI, create a new profile which can be
assigned to each of the Oracle GoldenGate processes.

Profile Configuration Option Recommended Setting

Default Profile Enabled

Auto Start Enabled

Startup Delay 1 minute

Auto Restart Enabled

Max Retries 5

Retry Delay 30 seconds

Retries Window 30 minutes

Restart on Failure only Enabled

Chapter 26
Task 11: Configure Autostart of Extract and Replicat Processes

26-22

Profile Configuration Option Recommended Setting

Disable Task After Retries Exhausted Enabled

After the profile has been created, and set as the default profile, all new GoldenGate
processes created are assigned this profile. For all existing processes, the profile must be
assigned to each process.

In the Overview pane, on the Process Information tab, select the Profile Name under
Managed Options.

Note:

When using Oracle GoldenGate Microservices with XAG, it is strongly recommended
not to enable the ‘Critical to deployment health’ flag for any Extract or Replicat
processes. Doing so can cause an entire GoldenGate deployment outage from a
single Extract or Replicat failure, and also prevents XAG from being able to restart
GoldenGate. Refer to Troubleshooting Oracle GoldenGate on Oracle RAC for an
example of troubleshooting an outage caused by setting a Replicat to critical.

Chapter 26
Task 11: Configure Autostart of Extract and Replicat Processes

26-23

27
On-Premises MAA Platinum: Oracle
GoldenGate Microservices Architecture
Integrated with Active Data Guard

The combination and integration of Oracle GoldenGate Microservices and Oracle Data Guard
enables you to achieve an MAA Platinum service-level configuration that achieves zero or near
zero downtime for all planned and unplanned outages.

Follow these configuration best practices to enable Oracle GoldenGate Microservices
replication using a database that is protected by a Data Guard standby, to transparently and
seamlessly work following an Oracle Data Guard role transition, no matter which Data Guard
protection mode is configured (Maximum Performance, Maximum Availability, or Maximum
Protection).

Topics:

• Prerequisites

• Task 1: Configure the Standby Database for Oracle GoldenGate

• Task 2: Modify the Primary Database Service

• Task 3: Create the Standby Database Service

• Task 4: Configure DBFS on the Standby Cluster Nodes

• Task 5: Install Oracle GoldenGate Software

• Task 6: Create Oracle GoldenGate Deployment Directories

• Task 7: Configure the Standby NGINX Reverse Proxy

• Task 8: Configure Oracle Clusterware

• Task 9: Create Oracle Net TNS Aliases for Oracle GoldenGate Database Connections

• Task 10: Configure Oracle GoldenGate Processes

• Example Distribution Path Target Change Script

Prerequisites
Be sure to complete the following prerequisites before performing any tasks for on-premises
MAA Platinum architecture configuration.

• As a prerequisite for MAA Platinum on-premises, have Oracle GoldenGate configured as
detailed in On-Premises: Oracle GoldenGate Microservices Architecture with Oracle Real
Application Clusters Configuration Best Practices.

• The Database File System (DBFS) is required for critical Oracle GoldenGate files when
integrating with Data Guard.

• The Oracle Data Guard standby database should also be configured and operational
before continuing.

The following are software requirements that the MAA Platinum configuration is based on:

27-1

• Oracle Grid Infrastructure 19c or later

Oracle Grid Infrastructure provides the necessary components needed to manage high
availability for any business-critical applications. Using Oracle Clusterware (a component
of Oracle Grid Infrastructure) network, database, and Oracle GoldenGate resources can be
managed to provide availability in the event of a failure.

• Oracle Grid Infrastructure Agent version 10.2 or later

The Oracle Grid Infrastructure Agent leverages the Oracle Grid Infrastructure components
to provide integration between Oracle GoldenGate and its dependent resources, such as
the database, network, and file system. The agent also integrates Oracle GoldenGate with
Oracle Data Guard so that Oracle GoldenGate is restarted on the new primary database
following a role transition.

• Oracle Database 19c or later

See My Oracle Support Document 2193391.1 for a full list of recommended Oracle
Database patches when using Oracle GoldenGate.

• Oracle GoldenGate Microservices version 21c or later

Oracle GoldenGate 21c introduces unified build support so a single software installation
supports capturing and applying replicated data to multiple major Oracle Database
versions (11g Release 2 to 21c). This is possible because an Oracle GoldenGate
installation includes the required Oracle Database client libraries without requiring a
separate database ORACLE_HOME installation.

• Oracle DBFS to protect and replicate critical Oracle GoldenGate files

The Oracle Database File System (DBFS) is the only MAA-validated and recommended
file system for an Oracle Data Guard and Oracle GoldenGate configuration, because it
allows the storage of the required Oracle GoldenGate files, such as the checkpoint and
trail files, to be located inside the same database that is protected with Oracle Data Guard,
ensuring consistency between the Oracle GoldenGate files and the database in a
seamless fashion.

When the prerequisites are met, follow the configuration best practices in the Tasks that follow.
These tasks should be performed to ensure the seamless integration of Oracle GoldenGate
Microservices with Oracle Data Guard, which in turn ensures that GoldenGate continues
running after any Data Guard role transition.

Task 1: Configure the Standby Database for Oracle GoldenGate
The standby database initialization parameters should match those of the primary database.

See Task 1: Configure the Oracle Database for Oracle GoldenGate for details. This includes
the following parameters:

• ENABLE_GOLDENGATE_REPLICATION=TRUE
• For Oracle GoldenGate source databases, enable FORCE LOGGING mode and enable

minimal supplemental logging.

• If a GoldenGate source database, or running integrated Replicat (parallel or non-parallel),
configure the STREAMS_POOL_SIZE.

Chapter 27
Task 1: Configure the Standby Database for Oracle GoldenGate

27-2

https://support.oracle.com/rs?type=doc&id=2193391.1

Task 2: Modify the Primary Database Service
On the primary database server, modify the existing database service that was created as part
of the original Oracle GoldenGate on Oracle RAC configuration.

Set the service role to PRIMARY, so that the service is only be started when the database
becomes the Data Guard primary database role after a role transition.

As the oracle user, modify the service using the following command:

$ srvctl modify service -db dbName -service service_name
 -role PRIMARY

If your database is part of a multitenant environment, remember to modify both the multitenant
container database (CDB) and pluggable database (PDB) services.

Task 3: Create the Standby Database Service
On the standby cluster, a database service is required for the standby database so that the
Oracle Grid Infrastructure Agent automatically starts the Oracle GoldenGate deployment when
the database is opened with the primary role.

When a source database is in a multitenant environment, a separate service is required for the
root container database (CDB) and the pluggable database (PDB) that contains the schema
being replicated. For a multitenant environment target database, a single service is required for
the PDB.

Create the service using the following command, as the oracle user, the same way the service
was created on the primary cluster.

$ srvctl add service -db dbName -service service_name
 -preferred instance_1 -available instance_2, instance_3 etc.
 -pdb pdbName -role PRIMARY

It is recommended that you use the same service name as was specified on the primary
cluster. The service must be created as a singleton service, using the –preferred option,
because the application Virtual IP address (VIP), DBFS, and Oracle GoldenGate run on the
cluster node where the service is running.

If the database is not in a multitenant environment, or the database is a target database for
Oracle GoldenGate, omit the -pdb parameter.

Task 4: Configure DBFS on the Standby Cluster Nodes
The Database File System (DBFS) is the only recommended solution when configuring Oracle
GoldenGate with Oracle Data Guard.

The DBFS user, tablespace, and file system in the database was previously created in the
primary database, as detailed in Task 4: Set Up a File System on Oracle RAC.

The remaining configuration steps are required on all nodes of the standby cluster where
Oracle GoldenGate may run.

Chapter 27
Task 2: Modify the Primary Database Service

27-3

1. Install the required FUSE libraries, if they are not already installed, by following the
instructions in My Oracle Support Document 869822.1.

2. Create the tnsnames.ora Oracle Net connection alias using the IPC protocol, similar to the
one created on the primary cluster.

dbfs =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY=LISTENER))
 (CONNECT_DATA =
 (SERVICE_NAME = NAME)
)
)

3. Create the same mount point for DBFS that is used on the primary cluster.

It is important that the mount point is identical, because the physical location of the Oracle
GoldenGate deployment is included in the deployment configuration files.

For example:

mkdir /mnt/dbfs

4. Copy the mount-dbfs.conf and mount-dbfs.sh files from the primary cluster to the
standby cluster nodes.

It is recommended that you place them in the same directory as the primary cluster.

5. Register the DBFS resource with Oracle Clusterware, using the following example
command.

If you are using Oracle Multitenant, make sure to use the service name for the same PDB
that contains the DBFS repository as was created in the primary database.

DBNAME=dbName
DEPNAME=ora.$DBNAME.oggserv_pdb.svc

crsctl add resource $RESNAME \
 -type cluster_resource \
 -attr "ACTION_SCRIPT=$ACTION_SCRIPT, \
 CHECK_INTERVAL=30,RESTART_ATTEMPTS=10, \
 START_DEPENDENCIES='hard($DEPNAME)pullup($DEPNAME)',\
 STOP_DEPENDENCIES='hard($DEPNAME)',\
 SCRIPT_TIMEOUT=300"

Task 5: Install Oracle GoldenGate Software
Install the Oracle GoldenGate software locally on all nodes in the standby cluster that will be
part of the Oracle GoldenGate configuration.

Make sure the installation directory is identical on all nodes to match the primary cluster
installation directory.

Download the Oracle GoldenGate 21c software, or later version, at this location:

http://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html

Chapter 27
Task 5: Install Oracle GoldenGate Software

27-4

https://support.oracle.com/rs?type=doc&id=869822.1
http://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html

Task 6: Create Oracle GoldenGate Deployment Directories
The Oracle GoldenGate Service Manager and deployment are already created on the primary
cluster, as required by the prerequisites, but certain directories and symbolic links need to be
configured on the standby cluster nodes.

These directories and symbolic links were created on the primary cluster, in the tasks you
performed as part of On-Premises: Oracle GoldenGate Microservices Architecture with Oracle
Real Application Clusters Configuration Best Practices.

Now you create the following directories and symbolic links on the all Oracle RAC nodes on
the standby cluster as follows.

1. If there are multiple GoldenGate Service Managers configured on the primary cluster, each
with their own deployment, and individually registered with XAG, they must belong to
separate OGG_HOME software installation directories.

The same directories and symbolic links for the OGG_HOME directories that were configured
on primary cluster, must match on the standby cluster.

2. If the GoldenGate deployment was created with the Performance Metric Server enabled,
the metric datastore home directory must be created on the standby Oracle RAC nodes.

For example, determine the datastore directory on the primary cluster nodes:

$ grep RepoDatastorePath <deployment directory>/var/log/pmsrvr.log|uniq

"RepoDatastorePath": "",
 "RepoDatastorePath": "/u01/oracle/goldengate/datastores/ggnorth",

Then create the directory on all standby cluster nodes:

$ mkdir -p /u01/oracle/goldengate/datastores/ggnorth

3. If the database release is earlier than Oracle Database 21c (21.3), create the Oracle
GoldenGate deployment temp directory local storage to match the symbolic link created on
the primary cluster.

For example, on the primary cluster if you have:

$ ls –lrt DBFS_GoldenGate_deployment_home_directory/var/temp

lrwxrwxrwx 1 oracle oinstall 32 Aug 31 12:27 temp
 -> /u01/oracle/goldengate/deployments/ggnorth/temp

Then create the same directory on the standby cluster nodes:

$ mkdir –p /u01/oracle/goldengate/deployments/ggnorth/temp

Task 7: Configure the Standby NGINX Reverse Proxy
Follow these steps to configure the standby NGINX reverse proxy.

1. Install NGINX Reverse Proxy.

Chapter 27
Task 6: Create Oracle GoldenGate Deployment Directories

27-5

If NGINX Reverse Proxy has not already been installed, follow the installation instructions
at https://nginx.org/en/linux_packages.html.

As the root user, copy the Oracle GoldenGate deployment NGINX configuration files from
a primary cluster node to a single standby node directory /etc/nginx/conf.d.

For example:

[root@dc2north01]# scp dc1north01:/etc/nginx/conf.d/ogg_north.conf
 /etc/nginx/conf.d

The standby cluster will need a different CA signed certificate due to using a different VIP
name/address than the primary cluster. Contact your systems administrator to follow your
corporate standards to create or obtain the server certificate before proceeding. A separate
certificate is required for each VIP and Service Manager pair.

2. Install server certificates for NGINX.

Install the server CA certificates and key files in the /etc/nginx/ssl directory, owned by
root with file permissions 400 (-r--------):

mkdir /etc/nginx/ssl
chmod 400 /etc/nginx/ssl

For each reverse proxy configuration file copied from the primary cluster, set the correct file
names for the certificate and key file using the following example:

ssl_certificate /etc/nginx/ssl/gg-stby-vip1.pem;
ssl_certificate_key /etc/nginx/ssl/gg-stby-vip1.key;

When using CA signed certificates, the certificate named with the ssl_certificate NGINX
parameter must include the root, intermediate, and CA signed certificates in a single file.
The order is very important, otherwise NGINX fails to start and displays the error message

(SSL: error:0B080074:x509 certificate routines: X509_check_private_key:key
values mismatch).
The root and intermediate certificates can be downloaded from the CA signed certificate
provider.

The single file can be generated using the following example command:

cat CA_signed_cert.crt intermediate.crt root.crt
 > gg-stby-vip1.pem

The ssl_certificate_key file is the key file generated when creating the Certificate
Signing Request (CSR), which is required when requesting a CA signed certificate.

Change the server_name parameter in the reverse proxy configuration file copied from the
primary cluster, setting to the correct VIP name. For example:

Before:

server_name dc1north-vip1.example.com;
After:

server_name dc2north-vip1.example.com;

Chapter 27
Task 7: Configure the Standby NGINX Reverse Proxy

27-6

https://nginx.org/en/linux_packages.html

3. Validate and restart NGINX.

Because the VIP will not be running on the standby cluster until the primary database
service is running, there is a parameter that needs to be set in the /etc/sysctl.conf file.

a. As the root user, make the following modifications to /etc/sysctl.conf.

vi /etc/sysctl.conf

b. Add the following parameter:

allow processes to bind to the non-local address

net.ipv4.ip_nonlocal_bind = 1

c. Reload the modified configuration:

sysctl -p /etc/sysctl.conf

d. Validate the NGINX configuration file to detect any errors in the configuration. If there
are errors in the file, they will be reported by the following command.

nginx -t
nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginxconf test is successful

e. Restart NGINX with the new configuration:

systemctl restart nginx

When the NGINX configuration is complete, copy the configuration file and certificates to
matching directories on the other standby cluster nodes.

4. Create an NGINX Clusterware resource.

Oracle Clusterware needs to have control over starting the NGINX reverse proxy so that it
can be started automatically before the GoldenGate deployments are started.

The NGINX resource is created with a dependency on the underlying network CRS
resource, the name of which can be determined using the following command:

$ $GRID_HOME/bin/crsctl stat res -w "TYPE == ora.network.type"|grep NAME
NAME=ora.net1.network

a. As the root user, use the following example command to create a Clusterware
resource to manage NGINX.

$GRID_HOME/bin/crsctl add resource nginx -type generic_application
 -attr "ACL='owner:root:rwx,pgrp:root:rwx,other::r--,group:oinstall:r-
x,user:oracle:rwx',EXECUTABLE_NAMES=nginx,START_PROGRAM='/bin/systemctl
 start -f nginx',STOP_PROGRAM='/bin/systemctl
 stop -f nginx',CHECK_PROGRAMS='/bin/systemctl
 status nginx' ,START_DEPENDENCIES='hard(ora.net1.network)
pullup(ora.net1.network)',
 STOP_DEPENDENCIES='hard(intermediate:ora.net1.network)',

Chapter 27
Task 7: Configure the Standby NGINX Reverse Proxy

27-7

 RESTART_ATTEMPTS=0, HOSTING_MEMBERS='dc1north01,dc1north02',
CARDINALITY=2"

The NGINX resource created in this example runs on the named cluster nodes at the
same time, specified by HOSTING_MEMBERS. This is recommended when multiple
GoldenGate Service Manager deployments are configured, and they can
independently move between cluster nodes.

b. When the NGINX Clusterware resource is created, alter the GoldenGate XAG
resources so that NGINX must be started before the GoldenGate deployments are
started.

As the root user, modify the XAG resources using the following example commands.

Determine the current --filesystems parameter:

agctl config goldengate GGNORTH | grep "File System"

File System resources needed: dbfsgg

Task 8: Configure Oracle Clusterware
1. Modify the primary cluster XAG GoldenGate instance.

The Oracle Grid Infrastructure Standalone Agent (XAG) GoldenGate instance on the
primary cluster must be modified as the root user, to identify that it is part of an Oracle
Data Guard configuration using the following example command.

agctl modify goldengate instance_name --dataguard_autostart yes

2. On the standby cluster, follow the instructions in Task 7: Oracle Clusterware Configuration
to do steps 3-5 below.

3. Install the XAG software on each standby cluster node.

It is recommended that you install the XAG software into the same directory as the primary
cluster.

4. Prepare for the XAG application VIP creation.

It is assumed that the VIP and VIP name will be different from that of the primary cluster,
so the VIP address will need to be allocated by your systems administrator for the standby
cluster.

5. Register Oracle GoldenGate Microservices with XAG.

The parameters used to register Oracle GoldenGate Microservices with XAG are similar to
those used when registering with the primary cluster.

a. Determine the current parameters in the primary cluster using the following command:

$ agctl config goldengate GoldenGate_instance_name

Instance name: GoldenGate_instance_name
Application GoldenGate location is: /u01/oracle/goldengate/gg21c_MS
Goldengate MicroServices Architecture environment: yes
Goldengate Service Manager configuration directory:
 /mnt/dbfs/goldengate/deployments/ggnorth_sm/etc/conf

Chapter 27
Task 8: Configure Oracle Clusterware

27-8

Goldengate Service Manager var directory:
 /mnt/dbfs/goldengate//deployments/ggnorth_sm/var
Service Manager Port: 9100
Goldengate Administration User: oggadmin
Autostart on DataGuard role transition to PRIMARY: yes
Configured to run on Nodes: dc1north01,dc1north02
ORACLE_HOME location is: /u01/oracle/goldengate/gg21c_MS/lib/
instantclient
Database Services needed:
ora.ggdg.oggserv_cdb.svc,ora.ggdg.oggserv_pdb.svc
File System resources needed: dbfsgg,nginx
VIP name: gg_vip_prmy

In addition, the XAG parameter --filesystem_verify no must be specified to prevent
XAG from checking the existence of the DBFS deployment directory when registering
the GoldenGate instance. Without setting this parameter, the XAG registration will fail,
because DBFS is not mounted on the standby cluster.

Note:

It is recommended that you use the same GoldenGate instance name when
registering GoldenGate with XAG as was used in the primary cluster.

b. Register GoldenGate with XAG on the standby cluster, as the root user:

agctl add goldengate GoldenGate_instance_name \
--gg_home /u01/oracle/goldengate/gg21c_MS \
--service_manager \
--config_home /mnt/dbfs/goldengate/deployments/ggnorth_sm/etc/conf \
--var_home /mnt/dbfs/goldengate/deployments/ggnorth_sm/var \
--port 9100 \
--oracle_home /u01/goldengate/gg21c_MS/lib/instantclient \
--adminuser oggadmin \
--user oracle \
--group oinstall \
--vip_name gg_vip_stby \
--filesystems dbfsgg,nginx \
--db_services ora.ggdgs.oggserv_cdb.svc,ora.ggdgs.oggserv_pdb.svc \
--use_local_services \
--nodes dc2north01,dc2north02 \
--filesystem_verify no \
--dataguard_autostart yes

For more information about the Oracle Grid Infrastructure Bundled Agent, see http://
www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-
agents-downloads-3636484.html

Chapter 27
Task 8: Configure Oracle Clusterware

27-9

http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html

Task 9: Create Oracle Net TNS Aliases for Oracle GoldenGate
Database Connections

The same TNS aliases created on the primary cluster for the primary database using the IPC
protocol must be created with the same alias names on each node of the standby cluster,
using the IPC communication protocol as specified in Task 9: Create Oracle Net TNS Alias for
Oracle GoldenGate Database Connections.

The location of tnsnames.ora used by the Oracle GoldenGate deployment must be the same
on the standby cluster nodes as it is on the primary cluster.

Use the following query REST API call to query the TNS_ADMIN location on the primary cluster.

$ curl -s -u OGG_admin_username
 https://vip_name/services/v2/deployments/deployment_name
 -XGET|python -m json.tool|grep TNS_ADMIN -A1

You will be prompted to enter the Oracle GoldenGate Service Manager administrator user
password.

For example:

$ curl -s -u oggadmin https://dc1north01-vip1/services/v2/deployments/ggnorth
 -XGET|python -m json.tool|grep TNS_ADMIN -A1

 "name": "TNS_ADMIN",
 "value": "/u01/goldengate/network/admin"

Make sure the tnsnames.ora is located in this same directory on all standby cluster nodes.

Example TNS alias for the GoldenGate database:

ggnorth_pdb =
 (DESCRIPTION =
 (SDU = 2097152)
 (ADDRESS = (PROTOCOL = IPC)(KEY=LISTENER))
 (CONNECT_DATA =
 (SERVICE_NAME = oggserv_pdb.example.com)
)
)

Task 10: Configure Oracle GoldenGate Processes
In addition to the guidance provided in Task 10: Configure Oracle GoldenGate Processes,
follow the recommendations provided below for Extract, Distribution Paths, and Replicats.

Extract Configuration on the Primary Cluster

For GoldenGate Extract processes using Data Guard configurations that are using redo
transport Maximum Performance or Maximum Availability modes, the following parameter must

Chapter 27
Task 9: Create Oracle Net TNS Aliases for Oracle GoldenGate Database Connections

27-10

be added to the Extract process parameter file on the primary cluster to avoid losing
transactions and resulting in logical data inconsistencies:

TRANLOGOPTIONS HANDLEDLFAILOVER

This parameter prevents Extract from extracting transaction data from redo that has not yet
been applied to the Data Guard standby database. This is crucial to preventing Oracle
GoldenGate from replicating data to a target database that does not exist in the source
standby database.

If this parameter is not specified, after a data loss failover of the source database it is possible
to have data in the target database that is not present in the source database, leading to
logical data inconsistencies.

By default, after 60 seconds, a warning message will be written to the Extract report file when
the Extract is stalled due to not being able to query the standby database applied SCN
information. For example:

WARNING OGG-02721 Extract has been waiting for the standby database for 60
seconds.
The amount of time before the warning message is written to Extract report file can be adjusted
using the Extract parameter TRANLOGOPTIONS HANDLEDLFAILOVER STANDBY_WARNING.

If the Extract is still not able to query the standby database applied SCN information after 30
minutes (default), the Extract process will abend, logging the following message in the Extract
report file:

ERROR OGG-02722 Extract abended waiting for 1,800 seconds for the standby
database to be accessible or caught up with the primary database.
If the standby database becomes available before the 30 default timeout expires, Extract
continues mining data from the source database and reports the following message to the
report file:

INFO OGG-02723 Extract resumed from stalled state and started processing LCRs.
The timeout value of 30 minutes can be adjusted using the Extract parameter TRANLOGOPTIONS
HANDLEDLFAILOVER STANDBY_ABEND value, where value is the number of seconds the standby
is unavailable before abending.

If the standby database will be unavailable for a prolonged duration, such as during a planned
maintenance outage, and you wish Extract to continue extracting data from the primary
database, remove the TRANLOGOPTIONS HANDLEDLFAILOVER parameter from the Extract
parameter file and restart Extract. Remember to set the parameter after the standby becomes
available.

Note:

If extracting from a primary database continues while the standby is unavailable, a
data loss failover could result after the standby becomes available, and not all the
primary redo was applied before a failover. The GoldenGate target database will
contain data that does not exist in the source database.

Chapter 27
Task 10: Configure Oracle GoldenGate Processes

27-11

See Oracle GoldenGate Reference Guide for more information about the TRANLOGOPTIONS
HANDLEDLFAILOVER parameters at https://docs.oracle.com/en/middleware/goldengate/core/21.3/
reference/reference-oracle-goldengate.pdf.

If the Extract process has been assigned an auto restart profile, as documented in Task 11:
Configure Autostart of Extract and Replicat Processes, after a Data Guard role transition, the
Extract process will automatically restart. Extract will continue to mine redo data from the new
primary database, ignoring the current state of the new standby database, until a default 5
minute timeout period expires. After this time, if the standby is not available Extract will abend
with the following errors:

INFO OGG-25053 Timeout waiting for 300 seconds for standby database
reinstatement. Now enforcing HANDLEDLFAILOVER.
ERROR OGG-06219 Unable to extract data from the Logmining server OGG$CAP_EXT1.
ERROR OGG-02078 Extract encountered a fatal error in a processing thread and is
abending.
Extract will continue to automatically restart, based on the Oracle GoldenGate Microservices
auto restart profile, and failing due to reaching the HANDLEDLFAILOVER timeout, until the number
retries is reached or the new standby database becomes available.

During the timeout period following a database role transition, the HANDLEDLFAILOVER
parameter is automatically suspended, so data will be replicated to the Oracle GoldenGate
replica database without consideration of the source standby database not being kept up to
date. The timeout period for the standby database to start up before Extract abends can be
adjusted using the Extract parameter TRANLOGOPTIONS DLFAILOVER_TIMEOUT.

It is recommended that you leave DLFAILOVER_TIMEOUT at the default of 5 minutes, to allow the
old primary to convert to a standby. If the new standby database will be unavailable for an
extended period of time or completely gone, then in order for Extract to start and remain
running, you must remove the HANDLEDLFAILOVER parameter from the Extract parameter file.
After removing the parameter, Extract no longer waits until redo has been applied to the
standby database before extracting the data.

During the time it takes for the standby database to come back online and apply all the redo
from the primary

database, there will be data divergence between it and the Oracle GoldenGate replica
database. This will be resolved once the standby database is up to date. At which point, add
the HANDLEDLFAILOVER parameter back into the integrated Extract process parameter file, and
then stop and restart the Extract.

When Oracle Data Guard is configured with fast-start failover, such that the broker can
automatically fail over to a standby database in the event of loss of the primary database, you
must specify an additional integrated Extract parameter shown below.

TRANLOGOPTIONS FAILOVERTARGETDESTID n
This parameter identifies which standby database the Oracle GoldenGate Extract process
must remain behind, with regards to not extracting redo data that has not yet been applied to
the standby database.

To determine the correct value for FAILOVERTARGETDESTID, use the LOG_ARCHIVE_DEST_N
parameter from the GoldenGate source database which is used for sending redo to the source
standby database. For example, if LOG_ARCHIVE_DEST_2 points to the standby database, then
use a value of 2.

Chapter 27
Task 10: Configure Oracle GoldenGate Processes

27-12

https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/reference-oracle-goldengate.pdf
https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/reference-oracle-goldengate.pdf

For example:

SQL> show parameters log_archive_dest

NAME TYPE VALUE
--------------------- --------

log_archive_dest_1 string location=USE_DB_RECOVERY_FILE_DEST,
 valid_for=(ALL_LOGFILES, ALL_ROLES)

log_archive_dest_2 string service="ggnorths", SYNC AFFIRM delay=0
 optional compression=disable max_failure=0
reopen=300
 db_unique_name="GGNORTHS" net_timeout=30,
 valid_for=(online_logfile,all_roles)

In this example, the Extract parameter would be set to the following:

TRANLOGOPTIONS FAILOVERTARGETDESTID 2
To add the parameters to the Extract parameter file, use the Oracle GoldenGate Administration
Server to select display the Extract details

1. On the Administration Service tab, select the Actions menu for the Extract and choose
Details.

2. In the Extract details view select the Parameters tab, and then select the pencil icon to
edit the current parameter file,

3. Add the TRANLOGOPTIONS parameters and select Apply to save the changes.

For the new parameters to take effect, the Extract process needs to be stopped and restarted,
which can be done using the Administration Server.

More information about the Extract TRANLOGOPTIONS parameters mentioned above, can be
found in the Reference for Oracle GoldenGate at https://docs.oracle.com/en/middleware/
goldengate/core/21.3/reference/tranlogoptions.html#GUID-
B6ADFEC9-10E6-456D-9477-088513E113AF.

Distribution Path Configuration on the Primary and Standby Cluster

When the target database of an Oracle GoldenGate environment, where the Receiver Server
runs, is protected with Oracle Data Guard, there is an important consideration that must be
given to any Distribution Paths that are sending trail files to the Receiver Server. When the
Receiver Server moves to a different cluster after an Oracle Data Guard role transition, any
distribution paths must be altered to reflect the new target cluster address.

You can automatically change the distribution paths using a database role transition trigger in
the target database on the Receiver Server cluster.

If the primary and standby cluster VIPs use different root CA certificates, the standby certificate
will need to be added to the source deployment Service Manager, as detailed in On-Premises:
Oracle GoldenGate Microservices Architecture with Oracle Real Application Clusters
Configuration Best Practices.

Follow the instructions below to create a database role transition trigger to modify the
distribution path target address when the receiver server moves between the primary and
standby cluster, during target database Data Guard role transitions.

1. Create a shell script to modify the distribution paths.

Chapter 27
Task 10: Configure Oracle GoldenGate Processes

27-13

https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/tranlogoptions.html#GUID-B6ADFEC9-10E6-456D-9477-088513E113AF
https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/tranlogoptions.html#GUID-B6ADFEC9-10E6-456D-9477-088513E113AF
https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/tranlogoptions.html#GUID-B6ADFEC9-10E6-456D-9477-088513E113AF

Example Distribution Path Target Change Script contains an example shell script that can
be used to modify a distribution path target address. Refer to the example script comments
for setting appropriate variable values.

The script should be placed in the same local directory on all Oracle RAC nodes of the
primary and standby database clusters. Set the script file permissions to 6751.

For example:

$ chmod 6751 /u01/oracle/goldengate/scripts/change_path_target.sh

The example shell script uses REST API calls to access the GoldenGate distribution path.
In order to make the REST API calls secure, it is recommended that you include the
GoldenGate deployment administrator user name and password in a configuration file
(access.cfg), as shown here.

$ cat /u01/oracle/goldengate/scripts/access.cfg

user = "oggadmin:<password>"

The access.cfg file is also referenced in the database role transition trigger below.

2. Create a DBMS_SCHEDULER job.

Creating a DBMS_SCHEDULER job is required to run an operating system shell script from
within PL/SQL. Create the scheduler job as a SYSDBA user in the root container database
(CDB).

For example:

SQL> exec dbms_scheduler.drop_job('gg_change_path_target');
SQL> exec dbms_scheduler.create_job(job_name=>'gg_change_path_target',
 job_type=>'EXECUTABLE', number_of_arguments => 6,
 job_action=>'/u01/oracle/goldengate/scripts/change_path_target.sh',
 enabled=>FALSE);

To run an external job, you must set the run_user and run_group parameters in
the $ORACLE_HOME/rdbms/admin/externaljob.ora file to the Oracle database operating
system user and group.

For example:

run_user = oracle
run_group = oinstall

The extrernaljob.ora must be configured on all Oracle RAC nodes of the primary and
standby database clusters.

3. Create the database role transition trigger.

Create a role transition trigger on the GoldenGate target database that will fire when a
standby database becomes a primary database, changing the distribution path target
address, using the following example.

CREATE OR REPLACE TRIGGER gg_change_path
AFTER db_role_change ON DATABASE
declare

Chapter 27
Task 10: Configure Oracle GoldenGate Processes

27-14

 role varchar2(30);
 hostname varchar2(64);
begin
 select database_role into role from v$database;
 select host_name into hostname from v$instance;

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',1,'source_pri
mary_cluster_VIP');

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',2,'source_sta
ndby_cluster_VIP');

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',4,'dist_path_
name');

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',5,'deployment
_name');
 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',6, '<dir/
access.cfg>');

 if role = 'PRIMARY' and hostname like 'primary_target_cluster_name%'
 then

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',3,'primary_ta
rget_cluster_VIP:443');
 elsif role = 'PRIMARY'
 then

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',3,'standby_ta
rget_cluster_VIP:443');
 end if;
 DBMS_SCHEDULER.RUN_JOB(job_name=>'gg_change_path_target');
end;
/

After creating the database trigger, switch the log file on the primary database to ensure
the code is propagated to the standby database using the following command:

SQL> alter system switch all logfile;

Replicat Configuration on the Primary Cluster

As documented in On-Premises: Oracle GoldenGate Microservices Architecture with Oracle
Real Application Clusters Configuration Best Practices, a checkpoint table in the target
database is required for all Oracle GoldenGate Replicat processes. There are no other
configuration requirements for Replicat when configured with Oracle Data Guard.

Example Distribution Path Target Change Script
The following example script can be used to change a source GoldenGate deployment
distribution path target address to reflect the new location of the receiver server after a Data
Guard role transition. This example assumes the source GoldenGate deployment is configured

Chapter 27
Example Distribution Path Target Change Script

27-15

in an MAA architecture with Data Guard, such that the distribution server can relocate between
a primary and standby cluster.

#!/bin/bash

change_path_target.sh - changes the target host of a GG Distribution Path
when the target
moves between primary/standby clusters.
Example usage:
./change_path_target.sh <primary source VIP>:443 <standby source VIP>:443
<path target VIP> <path name> <deployment name> <credentials file>

SOURCE1=$1 # PRIMARY Distribution Server VIP
SOURCE2=$2 # STANDBY Distribution Server VIP
TARGET=$3 # Distribution path target VIP
DPATH=$4 # Distribution path name
DEP=$5 # Deployment name
ACCESS=$6 # access.cfg file containing the deployment credentials.
Example contents:
 # user = "oggadmin:<password>"

CONNECT=0

#echo "#${i} - `date`:"
LOGFILE=/tmp/ogg_dpatch_change.txt

result=$(curl -si -K $ACCESS https://$SOURCE1/$DEP/distsrvr/services/v2/
sources/$DPATH -X GET| grep HTTP | awk '{print $2}')

Will return NULL of nginx not running, 502 if cannot contact server, 200 if
contact to server good, and others (404) for other bad reasons:

if [[-z $result || $result -ne 200]]; then # Managed to access the Distr
Server
 echo "`date` - Couldn't contact Distribution Server at $SOURCE1
Deployment $DEP ****" >> $LOGFILE
else # Try the other source host:
 echo "`date` - Got status of Distribution Server at $SOURCE1
Deployment $DEP ***" >> $LOGFILE
 SOURCE=$SOURCE1
 CONNECT=1
fi

if [$CONNECT -eq 1]; then
For secure NGINX patch destination (wss)
 PAYLOAD='{"target":{"uri":"wss://'${TARGET}'/services/ggnorth/v2/targets?
trail=bb"}}'
 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/sources/$DPATH
-X PATCH --data '{"status": "stopped"}'

Set new target for path:
 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/sources/$DPATH
-X PATCH --data "$PAYLOAD"
 echo "`date` - Set path $DPATH on $SOURCE deployment $DEP:" >> $LOGFILE

 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/sources/$DPATH

Chapter 27
Example Distribution Path Target Change Script

27-16

-X GET | python -m json.tool | grep uri >> $LOGFILE
 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/sources/$DPATH
-X PATCH --data '{"status": "running"}'

exit 0
else
 echo "`date` - ERROR: COULDN'T CHANGE DISTRIBUTION PATH ($DPATH) in
Deployement $DEP at $SOURCE! ***" >> $LOGFILE
fi

If here, means we couldn't connect to either Distribution Servers
exit 1

Chapter 27
Example Distribution Path Target Change Script

27-17

28
Managing Outages for Oracle GoldenGate
Hub

There are a number of considerations that must be taken into account when the hub
undergoes a planned or unplanned outage of either the primary or standby file system clusters.

Topics:

• Managing Planned Outages

• Managing Unplanned Outages

Managing Planned Outages
When there is a requirement to perform planned maintenance on the GGHub, some of the
CRS resources should be stopped and disabled to prevent them from restarting, or from
causing undesirable results when incorrectly instigating a file system failover, or stopping
GoldenGate from running.

Use the following recommendations in the event of a planned outage of the primary or standby
hub clusters.

For all planned maintenance events:

• Operating system software or hardware updates and patches

• Oracle Grid Infrastructure interim or diagnostic patches

• Oracle Grid Infrastructure quarterly updates under the Critical Patch Update (CPU)
program, or Oracle Grid Infrastructure release upgrades

• GGHub software life cycle, including:

– Oracle GoldenGate

– Oracle Grid Infrastructure Agent

– NGINX

High Availability Solutions with Target Outage Time:

Seconds to minutes where GoldenGate replication is temporarily suspended

Step 1: Software update of idle GGHub node

Step 2: GGHub Node Relocate

Step 3: Software update of the remaining inactive GGHub node

GGHub Node Relocate

As the grid OS user on the primary GGHub system, relocate the Oracle GoldenGate Instance:

[grid@gghub_prim1 ~]$ agctl status goldengate

Goldengate instance 'gghub' is running on gghub_prim1

28-1

[grid@gghub_prim1 ~]$ time agctl relocate goldengate gghub

real 0m43.984s
user 0m0.156s
sys 0m0.049s

As the grid OS user on the primary GGHub system, check the status of the Oracle
GoldenGate Instance:

[grid@gghub_prim1 ~]$ agctl status goldengate

Goldengate instance 'gghub' is running on gghub_prim2

GGHub Role Reversal for DR events or to move GGHub in the same region as the target
database

GGHub role reversal performs an ACFS role reversal so that the standby becomes the new
primary. With both the primary and standby file systems online, the acfsutil repl failover
command ensures that all outstanding primary file system changes are transferred and applied
to the standby before the role reversal completes.

When to use GGHub role reversal:

• To move the GGHub deployment close to the target database for replication performance

• To support site outage

• To support site maintenance

As the grid OS user on the current standby GGHub node, create the script to perform the
ACFS role reversal:

[grid@gghub_stby1]$ export ACFS_MOUNT_POINT=/mnt/acfs_gg1
[grid@gghub_stby1]$ export GG_DEPLOYMENT_NAME=gghub
[grid@gghub_stby1]$ ssh `/sbin/acfsutil repl info -c -v $ACFS_MOUNT_POINT|
grep
 'Primary hostname' | awk '{print $3}'| cut -d "@" -f2`
 "agctl stop goldengate $GG_DEPLOYMENT_NAME"
[grid@gghub_stby1]$ /sbin/acfsutil repl failover $ACFS_MOUNT_POINT
[grid@gghub_stby1]$ agctl start goldengate $GG_DEPLOYMENT_NAME
[grid@gghub_stby1]$ agctl status goldengate $GG_DEPLOYMENT_NAME
Goldengate instance 'gghub' is running on gghub_stby1

Alternatively, as the grid OS user on any GGHub node, run the script acfs_role_reversal.sh
to perform the ACFS role reversal:

[grid@gghub_stby1]$ sh /u01/oracle/scripts/acfs_role_reversal.sh
 /mnt/acfs_gg1 gghub

##
##
ACFS Primary Site: gghub_prim_vip1.frankfurt.goldengate.com
ACFS Standby Site: gghub_stby_vip1.frankfurt.goldengate.com
##
##

Chapter 28
Managing Planned Outages

28-2

Thu Nov 30 17:28:37 UTC 2023 - Begin Stop GoldenGate gghub
Thu Nov 30 17:28:38 UTC 2023 - End Stop GoldenGate gghub
##
##
Thu Nov 30 17:28:38 UTC 2023 - Begin ACFS replication sync /mnt/acfs_gg1
Thu Nov 30 17:28:59 UTC 2023 - End ACFS replication sync /mnt/acfs_gg1
##
##
Site: Primary
Primary status: Running
Status: Send Completed
Lag Time: 00:00:00
Retries made: 0
Last send started at: Thu Nov 30 17:28:45 2023
Last send completed at: Thu Nov 30 17:28:55 2023
##
##
Site: Standby
Last sync time with primary: Thu Nov 30 17:28:45 2023
Status: Receive Completed
Last receive started at: Thu Nov 30 17:28:46 2023
Last receive completed at: Thu Nov 30 17:28:52 2023
##
##
Thu Nov 30 17:29:00 UTC 2023 - Begin Role Reversal
Thu Nov 30 17:30:02 UTC 2023 - End Role Reversal
##
##
ACFS Primary Site: gghub_stby_vip1.frankfurt.goldengate.com
ACFS Standby Site: gghub_prim_vip1.frankfurt.goldengate.com
##
##
Site: Primary
Primary status: Running
Status: Send Completed
Lag Time: 00:00:00
Retries made: 0
Last send started at: Thu Nov 30 17:29:45 2023
Last send completed at: Thu Nov 30 17:29:56 2023
##
##
Site: Standby
Last sync time with primary: Thu Nov 30 17:29:45 2023
Status: Receive Completed
Last receive started at: Thu Nov 30 17:29:50 2023
Last receive completed at: Thu Nov 30 17:29:50 2023
##
##
Thu Nov 30 17:30:03 UTC 2023 - Begin Start GoldenGate gghub
Thu Nov 30 17:30:10 UTC 2023 - End Start GoldenGate gghub
##
##

Managing Unplanned Outages

Chapter 28
Managing Unplanned Outages

28-3

Expected Impact with Unplanned Outages

When an unplanned outage occurs on either the primary or standby GGHub clusters, there are
some instructions to ensure the continuous operation of GoldenGate. Use the following
GGHUB failure use cases to guide you in the event of an unplanned outage of the primary and
standby GGHUB systems.

Use case #1 – Standby Hub Failure or Primary GGHub Cannot Communicate with the
Standby GGHub

If the primary GGhub cannot communicate with the standby GGhub, the following messages
will be output into the primary CRS trace file (crsd_scriptagent_grid.trc) on the active cluster
node:

2023-06-21 12:06:59.506 :CLSDYNAM:1427187456: [acfs_primary]{1:8532:12141}
[check] Executing action script: /u01/oracle/scripts/acfs_primary.scr[check]
2023-06-21 12:07:05.666 :CLSDYNAM:1427187456: [acfs_primary]{1:8532:12141}
[check] WARNING: STANDBY not accessible (attempt 1 of 3))
2023-06-21 12:07:18.683 :CLSDYNAM:1427187456: [acfs_primary]{1:8532:12141}
[check] WARNING: STANDBY not accessible (attempt 2 of 3))
2023-06-21 12:07:31.751 :CLSDYNAM:1427187456: [acfs_primary]{1:8532:12141}
[check] WARNING: STANDBY not accessible (attempt 3 of 3))
2023-06-21 12:07:31.751 :CLSDYNAM:1427187456: [acfs_primary]{1:8532:12141}
[check] WARNING: Problem with STANDBY file system (error: 222)

At this time, the standby file system is no longer receiving the primary file system changes. The
primary file system and Oracle GoldenGate will continue to function unimpeded.

Use the following action plan with this scenario.

• Check the standby file system, using the command ‘acfsutil repl util verifystandby /mnt/
acfs_gg –v’ to determine why the standby hub is inaccessible.

• After fixing the cause of the communication errors, the standby will automaitically catch up
applying the outstanding primary file system changes. The warning messages will no
longer be reported into the CRS trace file, being replaced with the following message:

2023-06-21 12:15:01.720 :CLSDYNAM:1427187456: [acfs_primary]{1:8532:12141}
[check] SUCCESS: STANDBY file system /mnt/acfs_gg is ONLINE

Use case #2 – Primary GGHub Failure or Standby GGHub Cannot Communicate with the
Primary GGHub

If the standby GGhub cannot communicate with the primary GGhub, the the following
messages will be output into the standby CRS trace file (crsd_scriptagent_grid.trc) on the
active cluster node:

2023-06-21 12:24:03.823 :CLSDYNAM:4156544768: [acfs_standby]{1:10141:2}
[check] Executing action script: /u01/oracle/scripts/acfs_standby.scr[check]
2023-06-21 12:24:06.928 :CLSDYNAM:4156544768: [acfs_standby]{1:10141:2}
[check] WARNING: PRIMARY not accessible (attempt 1 of 3)
2023-06-21 12:24:19.945 :CLSDYNAM:4156544768: [acfs_standby]{1:10141:2}
[check] WARNING: PRIMARY not accessible (attempt 2 of 3)
2023-06-21 12:24:32.962 :CLSDYNAM:4156544768: [acfs_standby]{1:10141:2}
[check] WARNING: PRIMARY not accessible (attempt 3 of 3)
2023-06-21 12:24:32.962 :CLSDYNAM:4156544768: [acfs_standby]{1:10141:2}
[check] WARNING: Problem with PRIMARY file system (error: 222)

Chapter 28
Managing Unplanned Outages

28-4

At this time, it is unlikely that the standby file system is receiving file system changes from the
primary file system.

Use the following action plan with this scenario.

• Check the primary file system, using the command ‘acfsutil repl util verifyprimary /mnt/
acfs_gg -v’ to determine why the primary hub is inaccessible.

• If the primary file system cluster is down and cannot be restarted, issue an ACFS failover
on the standby GGhub:

[grid@gghub_stby1]$ /sbin/acfsutil repl failover /mnt/acfs_gg #
Specify the correct mount point

[grid@gghub_stby1]$ acfsutil repl info -c -v /mnt/acfs_gg |egrep 'Site:|
Primary status|Background Resources:'

Site: Primary
Primary status: Running
Background Resources: Active

• Run the following commands to prepare the acfs_primary resource to start on the new
primary hub, and then restart GoldenGate:

[grid@gghub_stby1]$ echo "RESTART" > /mnt/acfs_gg/status/acfs_primary

[grid@gghub_stby1]$ agctl start goldengate <instance_name> #
Specify the GoldenGate instance name

[grid@gghub_stby1]$ agctl status goldengate

Goldengate instance '<instance_name>' is running on gghubstby-node1

• When the old primary file system comes back online, if connectivity is resumed between
the new primary and old primary, the old primary file system will automatically convert to
the standby.

• If the old primary file system comes back online, but connectivity cannot be established
between the primary and standby file systems the acfs_primary resource will detect that
node had crashed, and because connectivity to the standby cannot be confirmed,
GoldenGate will not be started. This avoids a ‘split-brain’ where two file systems think they
are both the primary because they cannot commnunicate with each other.

Use case #3 – Double Failure Case: Primary GGHub Failure and Standby GGHub
Connectivity Failure

If the primary GGhub crashes and communication cannot be established with the standby file
system when it comes back online, the following messages will be output into the primary CRS
trace file (crsd_scriptagent_grid.trc) on the active cluster node:

2023-06-21 17:08:52.621:[acfs_primary]{1:40360:36312} [start] WARNING:
PRIMARY file system /mnt/acfs_gg previously crashed
2023-06-21 17:08:55.678:[acfs_primary]{1:40360:36312} [start] WARNING:
STANDBY not accessible - disabling acfs_primary

Chapter 28
Managing Unplanned Outages

28-5

If an attempt is made to manually restart the primary file system, an additional message will be
output into the CRS trace file:

2023-06-21 17:25:54.224:[acfs_primary]{1:40360:37687} [start] WARNING:
 PRIMARY /mnt/acfs_gg disabled to prevent split brain

Use the following action plan with this scenario.

• Check the standby file system, using the command ‘acfsutil repl util verifystandby /mnt/
acfs_gg -v’ to determine why the standby hub is inaccessible.

• If communication with the the standby file system can re-established, restart GoldenGate
on the primary hub:

[grid@gghub_prim1]$ agctl start goldengate <instance_name> # Specify the
GoldenGate instance name

[grid@gghub_prim1]$ agctl status goldengate

Goldengate instance '<instance_name>' is running on gghub_prim1

• If communication with the standby file system cannot be re-established, use the following
commands to restart GoldenGate on the primary hub:

[grid@gghub_prim1]$ echo "RESTART" > /mnt/acfs_gg/status/acfs_primary

[grid@gghub_prim1]$ agctl start goldengate <instance_name> #
Specify the GoldenGate instance name

[grid@gghub_prim1]$ agctl status goldengate

Goldengate instance '<instance_name>' is running on gghub_prim1

• When communication with the standby file system is restored, ACFS Replication will
continue to replicate primary file system changes.

Chapter 28
Managing Unplanned Outages

28-6

29
Oracle GoldenGate Active-Active Guidance for
Developers and Administrators

Oracle MAA provides guidance for developers and administrators when designing an active-
active distributed database architecture using Oracle GoldenGate architecture, where data
conflicts may occur between GoldenGate replicas.

For these Oracle GoldenGate or MAA Platinum architectures, active-active replication requires
conflict detection and resolution, which includes Automatic Conflict Detection and Resolution
(Auto-CDR), or the manual method of conflict detection and resolution using the GoldenGate
parameters COMPARECOLS and RESOLVECONFLICT (referred to as the COMPARECOLS/
RESOLVECONFLICTS method in this topic). Also see Automatic Conflict Detection and Resolution
and Manual Conflict Detection and Resolution in Oracle GoldenGate documentation.

For more information about GoldenGate in general, refer to Oracle GoldenGate
documentation. These instructions are specific for Oracle-to-Oracle replication. For non-
Oracle/heterogeneous active-active refer to COMPARECOLS and RESOLVECONFLICT parameters in
the Oracle GoldenGate Parameters and Functions Reference Guide.

Preparing for Conflict Resolution
Active-active replication requires tighter integration between Oracle Database and Oracle
GoldenGate, and there are some additional requirements that must be met from an application
and database structure perspective to ensure a smooth experience.

These requirements only pertain to tables that could have a conflict. If there are tables in the
application that will be updated on one server only (for example, a lookup table that contains
zip codes to city relationships that is updated once a year as part of a batch process) then
those tables do not need to meet these requirements.

To understand why these requirements exist, here's a quick refresher on how a conflict is
detected and how it’s resolved:

To detect a conflict, Oracle GoldenGate constructs an UPDATE or DELETE DML statement with a
WHERE clause that includes the before image of every column that the GoldenGate Replicat can
use in a WHERE clause. If that DML operation returns a “row not found” exception, that means
that there is a conflict, and additional steps are then taken by the Replicat to determine if some
other value in that row was changed, or if the row was deleted. This determination is done by
querying the target table to see if the row with that primary key exists or not. The resolution
portion will provide eventual consistency so that the two rows are the same between two
distinct databases. This resolution typically involves ignoring the current DML operation the
Replicat is applying, or overwriting the existing data in the target row.

The Oracle GoldenGate documentation covers the different ways to resolve conflicts for both
Auto-CDR and COMPARECOLS/RESOLVECONFLICTS methods as well as examples on how each of
them work. See Automatic Conflict Detection and Resolution and Manual Conflict Detection
and Resolution for details.

Requirements

• Primary key requirements

29-1

http://www.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/23/coredoc&id=GGABB-GUID-BBCE680A-BFCA-44DC-8597-B206CB965EF4
http://www.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/23/coredoc&id=GGABB-GUID-13CEA748-94F4-4B80-9F1B-B6FDB93FF5C5
https://docs.oracle.com/en/middleware/goldengate/core/index.html
https://docs.oracle.com/en/middleware/goldengate/core/index.html
http://www.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/23/coredoc&id=GWURF-GUID-C2356234-3780-48EE-9E7A-F21DC352638C
http://www.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/23/coredoc&id=GGABB-GUID-BBCE680A-BFCA-44DC-8597-B206CB965EF4
http://www.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/23/coredoc&id=GGABB-GUID-13CEA748-94F4-4B80-9F1B-B6FDB93FF5C5
http://www.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/23/coredoc&id=GGABB-GUID-13CEA748-94F4-4B80-9F1B-B6FDB93FF5C5

– The table must have a primary key that is made up of one or more columns.

– The uniqueness of a primary key must be generated so that they are unique across all
databases. In two-way active-active, you could have sequences assigned to the
primary key that are odd (1,3,5,…) in one database and even (2,4,6,…) in the other.
This could guarantee that two databases don’t have the same primary key for different
rows and you’ll never have an insert conflict.

• Table structure requirements

– If you are using manual conflict detection and resolution and defining your own
COMPARECOLS/RESOLVECONFLICTS, which is time-stamp-based resolution, the table must
have a time stamp column that uses the same time zone across all databases. Auto-
CDR does not require a time stamp column on the existing table.

– Conflicts within Large Objects (JSON, BLOB, CLOB, for example) and user-defined
objects (Abstract data types, collections, arrays) cannot be detected by Oracle
GoldenGate, because these columns are not used in the WHERE clause by Oracle
GoldenGate.

– If there is a requirement for uniqueness in non-primary key columns this must be
enforced using a trigger on the table or through the application.

– Supplemental logging of all columns is required for tables that you are replicating, and
will result in higher redo log generation for those targeted table changes.

• Required GoldenGate settings

– For Auto-CDR you must include MAPINVISIBLECOLUMNS and LOGALLSUPCOLS in the
Extract. The Replicat must be integrated Replicat or parallel Replicat in integrated
mode.

– For COMPARECOLS/RESOLVECONFLICTS, you must use LOGALLSUPCOLS in the Extract.

Best Practices for Active-Active Oracle GoldenGate Architecture
To ensure that your active-active configuration runs smoothly these are some best-practice
recommendations to consider.

Application Recommendations

• If conflicts can be avoided, do so. This could include splitting users by geographical region,
like routing users East of the Mississippi to use the server in Ashburn, VA, and routing
users West of the Mississippi to use the server located in Phoenix, AZ. This geographical
split can often avoid conflicts where two users would be modifying the same row. Users
could also be split by account numbers (even on one server, odd on another), or names
(A-M or N-Z).

• Connection stickiness or geographical affinity is also important. If you are using a load
balancer to route traffic to the databases, it should include some type of connection
persistence, so that if a user’s connection is lost and they reconnect very quickly they are
sent to the same server as before. This prevents situations where a user makes changes
on server A, disconnects, and then reconnects. If the user is connected to server B before
the data is replicated to it, that could cause a poor user experience.

• While Auto-CDR does support the conflict detection and resolution of primary key updates
(which it does through the use of the tombstone table), the COMPARECOLS/
RESOLVECONFLICTS method does not. So if you are using the COMPARECOLS/
RESOLVECONFLICTS method, ensure that primary key updates are performed in a manner
that would prevent conflicts from occurring.

Chapter 29
Best Practices for Active-Active Oracle GoldenGate Architecture

29-2

• In some cases, it may be necessary to communicate back to a user that something they
did in the database was reversed or overwritten due to the conflict resolution policies in
place. Auto-CDR has a view (DBA_APPLY_ERROR_MESSAGES) that can be used to track when
a conflict has occurred and what resolution was performed. Monitor this table on all
databases.

Database Recommendations

• Edition Based Redefinition can be used to help ensure zero downtime for schema
changes, and in Oracle Database 23ai, DDL operations on tables with supplemental
logging no longer require an exclusive lock on the table. In Oracle Database 19c, Edition
Based Redefinition was not leveraged with active GoldenGate replication because of this
exclusive lock requirement.

• DDL should only be performed on one node at a time, and only replicated uni-directionally.
GoldenGate doesn’t provide support for conflicts within DDL operations.

Oracle GoldenGate Recommendations

• Procedural replication should be enabled, so that when you use the DBMS_GOLDENGATE_ADM
calls to enable or disable Auto-CDR on a table, that command is replicated to the target
database automatically.
TRANLOGOPTIONS INTEGRATEDPARAMS (ENABLE_PROCEDURAL_REPLICATION Y)

• Oracle recommends using Integrated Parallel Replicat. Auto-CDR is not supported with
Parallel non-integrated Replicat, Classic Replicat, or Coordinated Replicat.

• DDL replication should be enabled for all tables in replication (syntax DDL INCLUDE ALL) in
both the Extract and Replicat parameter files.

Chapter 29
Best Practices for Active-Active Oracle GoldenGate Architecture

29-3

30
Troubleshooting Oracle GoldenGate

Topics:

• Troubleshooting MAA GoldenGate Hub

• Troubleshooting Oracle GoldenGate on Oracle RAC

Troubleshooting MAA GoldenGate Hub

Oracle GoldenGate Extract Failure or Error Conditions Considerations

For Oracle GoldenGate Extract processes using Oracle Data Guard configurations that are
using redo transport Maximum Performance or Maximum Availability modes, the following
parameter must be added to the Extract process parameter file on the primary database
system to avoid losing transactions and resulting in logical data inconsistencies:

TRANLOGOPTIONS HANDLEDLFAILOVER

This parameter prevents Extract from extracting transaction data from redo that has not yet
been applied to the Data Guard standby database. This is crucial to preventing Oracle
GoldenGate from replicating data to a target database that does not exist in the source
standby database.

If this parameter is not specified, after a data loss failover of the source database it is possible
to have data in the target database that is not present in the source database, leading to
logical data inconsistencies.

By default, after 60 seconds, a warning message is written to the Extract report file when the
Extract is stalled because it can't query the standby database applied SCN information. For
example:

WARNING OGG-02721 Extract has been waiting for the standby database for 60
seconds.
The amount of time before the warning message is written to the Extract report file can be
adjusted using the Extract parameter TRANLOGOPTIONS HANDLEDLFAILOVER STANDBY_WARNING.

If the Extract is still unable to query the standby database applied SCN information after 30
minutes (default), the Extract process abend, logging the following message in the Extract
report file:

ERROR OGG-02722 Extract abended waiting for 1,800 seconds for the standby
database to be accessible or caught up with the primary database.
If the standby database becomes available before the default 30 timeout expires, Extract
continues mining data from the source database and reports the following message to the
report file:

30-1

INFO OGG-02723 Extract resumed from stalled state and started processing LCRs.
The timeout value of 30 minutes can be adjusted using the Extract parameter TRANLOGOPTIONS
HANDLEDLFAILOVER STANDBY_ABEND <value>, where value is the number of seconds the
standby is unavailable before abending.

If the standby database will be unavailable for a prolonged duration, such as during a planned
maintenance outage, and you wish Extract to continue extracting data from the primary
database, remove the TRANLOGOPTIONS HANDLEDLFAILOVER parameter from the Extract
parameter file and restart Extract. Remember to set the parameter after the standby becomes
available.

Note:

If extracting from a primary database continues while the standby is unavailable, a
data loss failover could result after the standby becomes available, and not all the
primary redo was applied before a failover. The GoldenGate target database will
contain data that does not exist in the source database.

If the Extract process has been assigned an auto restart profile, as documented in Cloud:
Oracle GoldenGate Microservices Architecture on Oracle Exadata Database Service
Configuration Best Practices , after a Data Guard role transition, the Extract process
automatically restarts. Extract continues to mine redo data from the new primary database,
ignoring the current state of the new standby database, until a default 5 minute timeout period
expires. After this time, if the standby is not available Extract will abend with the following
errors:

INFO OGG-25053 Timeout waiting for 300 seconds for standby database
reinstatement. Now enforcing HANDLEDLFAILOVER.
ERROR OGG-06219 Unable to extract data from the Logmining server OGG$CAP_XXXXX.
ERROR OGG-02078 Extract encountered a fatal error in a processing thread and is
abending.
Extract continues attempting to automatically restart, based on the Oracle GoldenGate
Microservices auto restart profile, and fails because it reaches the HANDLEDLFAILOVER timeout,
until the number of retries is reached or the new standby database becomes available.

During the timeout period following a database role transition, the HANDLEDLFAILOVER
parameter is automatically suspended, so data is replicated to the Oracle GoldenGate replica
database without consideration of the source standby database not being kept up to date. The
timeout period for the standby database to start up before Extract abends can be adjusted
using the Extract parameter TRANLOGOPTIONS DLFAILOVER_TIMEOUT.

It is recommended that you leave DLFAILOVER_TIMEOUT at the default of 5 minutes to allow the
old primary to convert to a standby. If the new standby database will be unavailable for an
extended period of time or completely gone, then to ensure that Extract starts and remains
running, you must remove the HANDLEDLFAILOVER parameter from the Extract parameter file.
After removing the parameter, Extract no longer waits until redo has been applied to the
standby database before extracting the data.

During the time it takes for the standby database to come back online and apply all of the redo
from the primary database, there is data divergence between it and the Oracle GoldenGate
replica database. This divergence is resolved when the standby database is up to date. At this
point you can add the HANDLEDLFAILOVER parameter back into the integrated Extract process
parameter file, and then stop and restart the Extract.

Chapter 30
Troubleshooting MAA GoldenGate Hub

30-2

When Oracle Data Guard Fast Start Failover is disabled, such that the broker can
automatically fail over to a standby database in the event of loss of the primary database, you
must specify an additional integrated Extract parameter:

TRANLOGOPTIONS FAILOVERTARGETDESTID n

This parameter identifies which standby database the Oracle GoldenGate Extract process
must remain behind, with regards to not extracting redo data that has not yet been applied to
the standby database.

If Oracle Data Guard Fast Start Failover is disabled, and you don’t specify the additional
integrated Extract parameter FAILOVERTARGETDESTID, the extract will abend with the following
errors:

ERROR OGG-06219 Unable to extract data from the Logmining server OGG$CAP_XXXXX.
ERROR OGG-02078 Extract encountered a fatal error in a processing thread and is
abending.

Troubleshooting ACFS Replication

The health of ACFS replication is determined by the acfsutil repl util verifyprimary/
verifystandby commands. These commands are called by the example CRS action scripts
acfs_primary.scr and acfs_standby.scr, but they are also implicitly called during a file system
role transition.

Both commands will return a value of ‘0’ if there are no problems detected. If a non-zero value
is returned, run the same command with verbose flag to see comprehensive output of the
verification tests.

As the grid user on the standby GGHub system, verify the ACFS replication with the primary
GGHub:

[grid@gghub_stby1]$ acfsutil repl util verifyprimary /mnt/acfs_gg -v

- Attempting to ping clust1-vip1
- ping successful
- Attempting to ssh
 '/usr/bin/ssh -o BatchMode=true -o Ciphers=aes128-ctr -o ConnectTimeout=3
-x oracle@clust1-vip1 true 2>&1'
- ssh output: Host key verification failed.
- ssh output: Host key verification failed.
- ssh attempt failed, ret=255
verifyprimary return code: 255

The errors reported by the verify command, Host key verification failed, clearly showing
why it failed. In this example, there is a problem with the ssh configuration between the
standby and the primary file system GGHubs. Once the problem has been resolved, rerun the
verify commands to ensure there are no further problems.

After a failover has completed, it is recommended to check the acfsutil trace files for the reason
behind the failover. The acfsutil trace files are located in the CRS trace file directory, which
defaults to /u01/app/grid/diag/crs/`hostname`/crs/trace/crsd_scriptagent_grid.trc.

Below are some common failures that can occur with incorrect ACFS replication configuration.

Chapter 30
Troubleshooting MAA GoldenGate Hub

30-3

SSH daemon is shutdown or not configured to run on the VIP

When using an application VIP on the ACFS primary and standby GGHubs, the ssh daemon
must be configured to listen for incoming connections on the VIP address. If this configuration
is not done, or the ssh daemon is not running on either of the current primary/standby hosts
the verifyprimary or verifystandby commands will fail with the following error.

As the grid user on the primary GGHub system, verify the ACFS recplication with the standby
GGHub:

[grid@gghub_prim1]$ acfsutil repl util verifystandby /mnt/acfs_gg -v

- Attempting to ping gghubstby.goldengate.com
- ping successful
- Attempting to ssh
 '/usr/bin/ssh -o BatchMode=true -o Ciphers=aes128-ctr -o
ConnectTimeout=3 -x oracle@gghub_stby-avip true 2>&1'

- ssh output: ssh: connect to host gghub_stby1 port 22: Connection refused
- ssh output: ssh: connect to host gghub_stby2 port 22: Connection refused

- ssh attempt failed, ret=255
verifystandby return code: 255

As the grid user on the standby GGHub system, check that the resource application VIP and
sshd_restart are running and restart them if not:

[grid@gghub_stby1 ~]$ crsctl stat res -w "TYPE co app.appviptypex2"

NAME=gghubstby
TYPE=app.appviptypex2.type
TARGET=OFFLINE
STATE=OFFLINE

[grid@gghub_stby1 ~]$ crsctl start res gghubstby

CRS-2672: Attempting to start 'gghubstby' on 'gghub_stby1'
CRS-2676: Start of 'gghubstby' on 'gghub_stby1' succeeded
CRS-2672: Attempting to start 'sshd_restart' on 'gghub_stby1'
CRS-2676: Start of 'sshd_restart' on 'gghub_stby1' succeeded

Check that acfsutil repl verifystandby/verifyprimary returns a result of ‘0’ from both the
primary and standby host.

Primary ACFS background resources are not running

1. The primary or standby ACFS servers are not accessible

2. ACFS Replication ssh user problem

3. SSH Host key verification failed

Troubleshooting Oracle GoldenGate

Chapter 30
Troubleshooting MAA GoldenGate Hub

30-4

There may be occasions when GoldenGate processes are not successfully started on an
Oracle RAC node. There are number of files generated by GoldenGate, XAG, and CRS that
should be reviewed to determine the cause of the problem.

Below is a list of important log and trace files, along with their example locations and some
example output.

XAG log file

Location: <XAG installation directory>/log/<hostname>

Example location: /u01/app/grid/xag/log/`hostname`

File name: agctl_goldengate_grid.trc

Contains all commands executed with agctl along with the output from the commands,
including those that CRS executes.

2022-04-18 11:52:21: stop resource success
2022-04-18 11:52:38: agctl start goldengate <instance_name>
2022-04-18 11:52:38: executing cmd: /u01/app/19.0.0.0/grid/bin/crsctl status
res xag.<INSTANCE_NAME>.goldengate
2022-04-18 11:52:38: executing cmd: /u01/app/19.0.0.0/grid/bin/crsctl status
res xag.<INSTANCE_NAME>.goldengate -f
2022-04-18 11:52:38: executing cmd: /u01/app/19.0.0.0/grid/bin/crsctl start
resource xag.<INSTANCE_NAME>.goldengate -f
2022-04-18 11:52:45: Command output:
> CRS-2672: Attempting to start 'xag.<INSTANCE_NAME>.goldengate' on 'exadb-
node1'
> CRS-2676: Start of 'xag.<INSTANCE_NAME>.goldengate' on 'exadb-node1'
succeeded
>End Command output
2022-04-18 11:52:45: start resource success

XAG GoldenGate instance trace file

Location: <XAG installation directory>/log/<hostname>

Example location: /u01/app/grid/xag/log/`hostname`

File name: <GoldenGate_instance_name>_agent_goldengate.trc

It contains the output from the commands executed by agctl, the environment variables used,
and any debug output enabled for the underlying commands.

2022-04-18 12:14:46: Exported ORACLE_SID ggdg1
2022-04-18 12:14:46: Exported GGS_HOME /u01/oracle/goldengate/gg21c_MS
2022-04-18 12:14:46: Exported OGG_CONF_HOME /mnt/dbfs/goldengate/deployments/
ggsm01/etc/conf
2022-04-18 12:14:46: Exported LD_LIBRARY_PATH
/u01/oracle/goldengate/gg21c_MS:/u01/app/19.0.0.0/grid/lib:/etc/
ORCLcluster/lib
2022-04-18 12:14:46: Exported LD_LIBRARY_PATH_64 /u01/oracle/goldengate/
gg21c_MS
2022-04-18 12:14:46: Exported LIBPATH /u01/oracle/goldengate/gg21c_MS
2022-04-18 12:14:46: ogg input = {"oggHome":"/u01/oracle/goldengate/
gg21c_MS","serviceManager":{"oggConfHome":"/mnt/dbfs/goldengate/deployments/
ggsm01/etc/
conf","portNumber":9100},"username":"<username>","credential":"*****"}

Chapter 30
Troubleshooting MAA GoldenGate Hub

30-5

2022-04-18 12:14:46: About to exec /u01/oracle/goldengate/gg21c_MS/bin/
XAGTask HealthCheck
2022-04-18 12:14:47: XAGTask retcode = 0

CRS trace file

Location: /u01/app/grid/diag/crs/<hostname>/crs/trace

Example location: /u01/app/grid/diag/crs/`hostname`/crs/trace

File name: crsd_scriptagent_oracle.trc

Contains the output created by any CRS resource action scripts, like XAG or dbfs_mount. This
trace file is crucial to determining why DBFS or GoldenGate did not start on a RAC node.

2022-04-18 11:52:38.634 : AGFW:549631744: {1:30281:59063} Agent received
the message: RESOURCE_START[xag.<INSTANCE_NAME>.goldengate 1 1] ID
4098:4125749
2022-04-18 11:52:38.634 : AGFW:549631744: {1:30281:59063} Preparing START
command for: xag.<INSTANCE_NAME>.goldengate 1 1
2022-04-18 11:52:38.634 : AGFW:549631744: {1:30281:59063}
xag.<INSTANCE_NAME>.goldengate 1 1 state changed from: OFFLINE to: STARTING
2022-04-18 11:52:38.634 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] Executing action script: /u01/oracle/XAG_MA/bin/
aggoldengatescaas[start]
2022-04-18 11:52:38.786 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] GG agent running command 'start' on
xag.<INSTANCE_NAME>.goldengate
2022-04-18 11:52:42.140 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] ServiceManager fork pid = 265747
2022-04-18 11:52:42.140 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] Waiting for /mnt/dbfs/goldengate/deployments/
ggsm01/var/run/ServiceManager.pid
2022-04-18 11:52:42.140 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] Waiting for SM to start
2022-04-18 11:52:42.140 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] ServiceManager PID = 265749
2022-04-18 11:52:43.643 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] XAGTask retcode = 0
2022-04-18 11:52:43.643 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] XAG HealthCheck after start returned 0
2022-04-18 11:52:43.643 : AGFW:558036736: {1:30281:59063} Command: start
for resource: xag.<INSTANCE_NAME>.goldengate 1 1 completed with status:
SUCCESS
2022-04-18 11:52:43.643 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [check] Executing action script: /u01/oracle/XAG_MA/bin/
aggoldengatescaas[check]
2022-04-18 11:52:43.644 : AGFW:549631744: {1:30281:59063} Agent sending
reply for: RESOURCE_START[xag.<INSTANCE_NAME>.goldengate 1 1] ID 4098:4125749
2022-04-18 11:52:43.795 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [check] GG agent running command 'check' on
xag.<INSTANCE_NAME>.goldengate
2022-04-18 11:52:45.548 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [check] XAGTask retcode = 0
2022-04-18 11:52:45.548 : AGFW:549631744: {1:30281:59063}
xag.<INSTANCE_NAME>.goldengate 1 1 state changed from: STARTING to: ONLINE

Chapter 30
Troubleshooting MAA GoldenGate Hub

30-6

GoldenGate deployment log files

Location: <Goldengate_deployment_directory>/<instance_name>/var/log

Example location: /mnt/dbfs/goldengate/deployments/<instance_name>/var/log

File names: adminsrvr.log, recvsrvr.log, pmsrvr.log, distsrvr.log

Contains the output of start, stop, and status checks of the Oracle GoldenGate deployment
processes (Administration Server, Distribution Server, Receiver Server, and Performance
Metrics Server).

2022-04-18T11:52:42.645-0400 INFO | Setting deploymentName to
'<instance_name>'. (main)
2022-04-18T11:52:42.665-0400 INFO | Read SharedContext from store for length
19 of file '/mnt/dbfs/goldengate/deployments/<instance_name>/var/lib/conf/
adminsrvr-resources.dat'. (main)
2022-04-18T11:52:42.723-0400 INFO | XAG Integration enabled (main)
2022-04-18T11:52:42.723-0400 INFO | Configuring security. (main)
2022-04-18T11:52:42.723-0400 INFO | Configuring user authorization secure
store path as '/mnt/dbfs/goldengate/deployments/<instance_name>/var/lib/
credential/secureStore/'. (main)
2022-04-18T11:52:42.731-0400 INFO | Configuring user authorization as
ENABLED. (main)
2022-04-18T11:52:42.749-0400 INFO | Set network configuration. (main)
2022-04-18T11:52:42.749-0400 INFO | Asynchronous operations are enabled with
default synchronous wait time of 30 seconds (main)
2022-04-18T11:52:42.749-0400 INFO | HttpServer configuration complete. (main)
2022-04-18T11:52:42.805-0400 INFO | SIGHUP handler installed. (main)
2022-04-18T11:52:42.813-0400 INFO | SIGINT handler installed. (main)
2022-04-18T11:52:42.815-0400 INFO | SIGTERM handler installed. (main)
2022-04-18T11:52:42.817-0400 WARN | Security is configured as 'disabled'.
(main)
2022-04-18T11:52:42.818-0400 INFO | Starting service listener... (main)
2022-04-18T11:52:42.819-0400 INFO | Mapped 'ALL' interface to address
'ANY:9101' with default IPV4/IPV6 options identified by 'exadb-node1.domain'.
(main)
2022-04-18T11:52:42.821-0400 INFO | Captured 1 interface host names: 'exadb-
node1.domain' (main)
2022-04-18T11:52:42.824-0400 INFO | The Network ipACL specification is empty.
Accepting ANY address on ALL interfaces. (main)
2022-04-18T11:52:42.826-0400 INFO | Server started at
2022-04-18T11:52:42.827-05:00 (2022-04-18T15:52:42.827Z GMT) (main)

GoldenGate report files

Location: <Goldengate_deployment_directory>/<instance_name>/var/lib/report

Example location: /mnt/dbfs/goldengate/deployments/<instance_name>/var/lib/report

The GoldenGate report files contain important information, warning messages, and errors for
all GoldenGate processes, including the Manager processes. If any of the GoldenGate
processes fail to start or abend when running, the process report file will contain important
information that can be used to determine the cause of the failure.

2022-04-23 13:01:50 ERROR OGG-00446 Unable to lock file " /mnt/acfs_gg/
deployments/<instance_name>/var/lib/checkpt/EXT_1A.cpe" (error 95, Operation

Chapter 30
Troubleshooting MAA GoldenGate Hub

30-7

not supported).
2022-04-23 13:01:50 ERROR OGG-01668 PROCESS ABENDING.

Troubleshooting Oracle GoldenGate on Oracle RAC
There may be occasions when Oracle GoldenGate processes are not successfully started on
an Oracle RAC node. Several files generated by Oracle GoldenGate, XAG, and CRS should
be reviewed to determine the cause of the problem.

Below is a list of important log and trace files, their example locations, and some examples of
output.

XAG log file

Location: <XAG installation directory>/log/<hostname>

Example location: /u01/app/grid/xag/log/`hostname`

File name: agctl_goldengate_grid.trc

Contains all commands executed with agctl along with the output from the commands,
including those that CRS executes.

Example:

2022-04-18 11:52:21: stop resource success
2022-04-18 11:52:38: agctl start goldengate <instance_name>
2022-04-18 11:52:38: executing cmd: /u01/app/19.0.0.0/grid/bin/crsctl status
res xag.<INSTANCE_NAME>.goldengate
2022-04-18 11:52:38: executing cmd: /u01/app/19.0.0.0/grid/bin/crsctl status
res xag.<INSTANCE_NAME>.goldengate -f
2022-04-18 11:52:38: executing cmd: /u01/app/19.0.0.0/grid/bin/crsctl start
resource xag.<INSTANCE_NAME>.goldengate -f
2022-04-18 11:52:45: Command output:
> CRS-2672: Attempting to start 'xag.<INSTANCE_NAME>.goldengate' on 'exadb-
node1'
> CRS-2676: Start of 'xag.<INSTANCE_NAME>.goldengate' on 'exadb-node1'
succeeded
>End Command output
2022-04-18 11:52:45: start resource success

XAG GoldenGate instance trace file

Location: <XAG installation directory>/log/<hostname>

Example location: /u01/app/grid/xag/log/`hostname`

File name: <GoldenGate_instance_name>_agent_goldengate.trc

It contains the output from the commands executed by agctl, the environment variables used,
and any debug output enabled for the underlying commands.

Example:

2022-04-18 12:14:46: Exported ORACLE_SID ggdg1
2022-04-18 12:14:46: Exported GGS_HOME /u01/oracle/goldengate/gg21c_MS
2022-04-18 12:14:46: Exported OGG_CONF_HOME /mnt/dbfs/goldengate/deployments/
ggsm01/etc/conf

Chapter 30
Troubleshooting Oracle GoldenGate on Oracle RAC

30-8

2022-04-18 12:14:46: Exported LD_LIBRARY_PATH
/u01/oracle/goldengate/gg21c_MS:/u01/app/19.0.0.0/grid/lib:/etc/
ORCLcluster/lib
2022-04-18 12:14:46: Exported LD_LIBRARY_PATH_64 /u01/oracle/goldengate/
gg21c_MS
2022-04-18 12:14:46: Exported LIBPATH /u01/oracle/goldengate/gg21c_MS
2022-04-18 12:14:46: ogg input = {"oggHome":"/u01/oracle/goldengate/
gg21c_MS","serviceManager":{"oggConfHome":"/mnt/dbfs/goldengate/deployments/
ggsm01/etc/conf","portNumber":9100},"username":"admin","credential":"xyz"}
2022-04-18 12:14:46: About to exec /u01/oracle/goldengate/gg21c_MS/bin/
XAGTask HealthCheck
2022-04-18 12:14:47: XAGTask retcode = 0

CRS trace file

Location: /u01/app/grid/diag/crs/<hostname>/crs/trace

Example location: /u01/app/grid/diag/crs/`hostname`/crs/trace

File name: crsd_scriptagent_oracle.trc

Contains the output created by any CRS resource action scripts, like XAG or dbfs_mount. This
trace file is crucial to determining why DBFS or GoldenGate did not start on a RAC node.

Example:

2022-04-18 11:52:38.634 : AGFW:549631744: {1:30281:59063} Agent received
the message: RESOURCE_START[xag.<INSTANCE_NAME>.goldengate 1 1] ID
4098:4125749
2022-04-18 11:52:38.634 : AGFW:549631744: {1:30281:59063} Preparing START
command for: xag.<INSTANCE_NAME>.goldengate 1 1
2022-04-18 11:52:38.634 : AGFW:549631744: {1:30281:59063}
xag.<INSTANCE_NAME>.goldengate 1 1 state changed from: OFFLINE to: STARTING
2022-04-18 11:52:38.634 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] Executing action script: /u01/oracle/XAG_MA/bin/
aggoldengatescaas[start]
2022-04-18 11:52:38.786 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] GG agent running command 'start' on
xag.<INSTANCE_NAME>.goldengate
2022-04-18 11:52:42.140 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] ServiceManager fork pid = 265747
2022-04-18 11:52:42.140 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] Waiting for /mnt/dbfs/goldengate/deployments/
ggsm01/var/run/ServiceManager.pid
2022-04-18 11:52:42.140 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] Waiting for SM to start
2022-04-18 11:52:42.140 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] ServiceManager PID = 265749
2022-04-18 11:52:43.643 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] XAGTask retcode = 0
2022-04-18 11:52:43.643 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] XAG HealthCheck after start returned 0
2022-04-18 11:52:43.643 : AGFW:558036736: {1:30281:59063} Command: start
for resource: xag.<INSTANCE_NAME>.goldengate 1 1 completed with status:
SUCCESS
2022-04-18 11:52:43.643 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [check] Executing action script: /u01/oracle/XAG_MA/bin/

Chapter 30
Troubleshooting Oracle GoldenGate on Oracle RAC

30-9

aggoldengatescaas[check]
2022-04-18 11:52:43.644 : AGFW:549631744: {1:30281:59063} Agent sending
reply for: RESOURCE_START[xag.<INSTANCE_NAME>.goldengate 1 1] ID 4098:4125749
2022-04-18 11:52:43.795 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [check] GG agent running command 'check' on
xag.<INSTANCE_NAME>.goldengate
2022-04-18 11:52:45.548 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [check] XAGTask retcode = 0
2022-04-18 11:52:45.548 : AGFW:549631744: {1:30281:59063}
xag.<INSTANCE_NAME>.goldengate 1 1 state changed from: STARTING to: ONLINE

GoldenGate deployment log files

Location: <Goldengate_deployment_directory>/<instance_name>/var/log

Example location: /mnt/dbfs/goldengate/deployments/<instance_name>/var/log

File names: adminsrvr.log, recvsrvr.log, pmsrvr.log, distsrvr.log

Contains the output of start, stop, and status checks of the Oracle GoldenGate deployment
processes (Administration Server, Distribution Server, Receiver Server, and Performance
Metrics Server).

Example:

2022-04-18T11:52:42.645-0400 INFO | Setting deploymentName to
'<instance_name>'. (main)
2022-04-18T11:52:42.665-0400 INFO | Read SharedContext from store for length
19 of file '/mnt/dbfs/goldengate/deployments/<instance_name>/var/lib/conf/
adminsrvr-resources.dat'. (main)
2022-04-18T11:52:42.723-0400 INFO | XAG Integration enabled (main)
2022-04-18T11:52:42.723-0400 INFO | Configuring security. (main)
2022-04-18T11:52:42.723-0400 INFO | Configuring user authorization secure
store path as '/mnt/dbfs/goldengate/deployments/<instance_name>/var/lib/
credential/secureStore/'. (main)
2022-04-18T11:52:42.731-0400 INFO | Configuring user authorization as
ENABLED. (main)
2022-04-18T11:52:42.749-0400 INFO | Set network configuration. (main)
2022-04-18T11:52:42.749-0400 INFO | Asynchronous operations are enabled with
default synchronous wait time of 30 seconds (main)
2022-04-18T11:52:42.749-0400 INFO | HttpServer configuration complete. (main)
2022-04-18T11:52:42.805-0400 INFO | SIGHUP handler installed. (main)
2022-04-18T11:52:42.813-0400 INFO | SIGINT handler installed. (main)
2022-04-18T11:52:42.815-0400 INFO | SIGTERM handler installed. (main)
2022-04-18T11:52:42.817-0400 WARN | Security is configured as 'disabled'.
(main)
2022-04-18T11:52:42.818-0400 INFO | Starting service listener... (main)
2022-04-18T11:52:42.819-0400 INFO | Mapped 'ALL' interface to address
'ANY:9101' with default IPV4/IPV6 options identified by 'exadb-node1.domain'.
(main)
2022-04-18T11:52:42.821-0400 INFO | Captured 1 interface host names: 'exadb-
node1.domain' (main)
2022-04-18T11:52:42.824-0400 INFO | The Network ipACL specification is empty.
Accepting ANY address on ALL interfaces. (main)
2022-04-18T11:52:42.826-0400 INFO | Server started at
2022-04-18T11:52:42.827-05:00 (2022-04-18T15:52:42.827Z GMT) (main)

Chapter 30
Troubleshooting Oracle GoldenGate on Oracle RAC

30-10

GoldenGate report files

Location: <Goldengate_deployment_directory>/<instance_name>/var/lib/report

Example location: /mnt/dbfs/goldengate/deployments/<instance_name>/var/lib/report

The GoldenGate report files contain important information, warning messages, and errors for
all GoldenGate processes, including the Manager processes. If any of the GoldenGate
processes fail to start or abend when running, the process report file will contain important
information that can be used to determine the cause of the failure.

Example errors from an Extract report file:

2022-04-23 13:01:50 ERROR OGG-00446 Unable to lock file " /mnt/acfs_gg/
deployments/<instance_name>/var/lib/checkpt/EXT_1A.cpe" (error 95, Operation
not supported).
2022-04-23 13:01:50 ERROR OGG-01668 PROCESS ABENDING.

Example Configuration Problems
Below are some configuration problems that can be encountered with GoldenGate in a RAC
environment and how to diagnose and resolve them.

Incorrect parameter settings in the mount-dbfs.conf file

When XAG fails to mount DBFS, the failure will be reported either on the command line (if you
are running the manual agctl command) or in the XAG log file:

$ agctl start goldengate <instance_name> --node exadb-node1

CRS-2672: Attempting to start 'dbfs_mount' on 'exadb-node1'
CRS-2674: Start of 'dbfs_mount' on 'exadb-node1' failed
CRS-2679: Attempting to clean 'dbfs_mount' on 'exadb-node1'
CRS-2681: Clean of 'dbfs_mount' on 'exadb-node1' succeeded
CRS-4000: Command Start failed, or completed with errors.

The XAG log file (agctl_goldengate_grid.trc) has the advantage that it shows timestamps that
can be used when looking at other log or trace files:

2022-04-19 15:32:16: executing cmd: /u01/app/19.0.0.0/grid/bin/crsctl start
resource xag.<INSTANCE_NAME>.goldengate -f -n exadb-node1
2022-04-19 15:32:19: Command output:
> CRS-2672: Attempting to start 'dbfs_mount' on 'exadb-node1'
> CRS-2674: Start of 'dbfs_mount' on 'exadb-node1' failed
> CRS-2679: Attempting to clean 'dbfs_mount' on 'exadb-node1'
> CRS-2681: Clean of 'dbfs_mount' on 'exadb-node1' succeeded
> CRS-4000: Command Start failed, or completed with errors.
>End Command output
2022-04-19 15:32:19: start resource failed rc=1

Next, check the CRS trace file (crsd_scriptagent_oracle.trc), which shows why DBFS failed to
mount. Below are some example errors caused by incorrect parameter settings in the mount-
dbfs.conf file.

Chapter 30
Troubleshooting Oracle GoldenGate on Oracle RAC

30-11

• Incorrect DBNAME

2022-04-19 15:32:16.679 : AGFW:1190405888: {1:30281:17383} dbfs_mount
 1 1 state changed from: UNKNOWN to: STARTING
2022-04-19 15:32:16.680 :CLSDYNAM:1192507136: [dbfs_mount]{1:30281:17383}
[start]
 Executing action script: /u01/oracle/scripts/mount-dbfs.sh[start]
2022-04-19 15:32:16.732 :CLSDYNAM:1192507136: [dbfs_mount]{1:30281:17383}
[start]
 mount-dbfs.sh mounting DBFS at /mnt/dbfs from database ggdg
2022-04-19 15:32:17.883 :CLSDYNAM:1192507136: [dbfs_mount]{1:30281:17383}
[start]
 ORACLE_SID is
2022-04-19 15:32:17.883 :CLSDYNAM:1192507136: [dbfs_mount]{1:30281:17383}
[start]
 No running ORACLE_SID available on this host, exiting
2022-04-19 15:32:17.883 : AGFW:1192507136: {1:30281:17383} Command:
start for
 resource: dbfs_mount 1 1 completed with invalid status: 2

• Incorrect MOUNT_POINT

2022-04-19 16:45:14.534 : AGFW:1734321920: {1:30281:17604} dbfs_mount
 1 1 state changed from: UNKNOWN to: STARTING
2022-04-19 16:45:14.535 :CLSDYNAM:1736423168: [dbfs_mount]{1:30281:17604}
[start]
 Executing action script: /u01/oracle/scripts/mount-dbfs.sh[start]
2022-04-19 16:45:14.586 :CLSDYNAM:1736423168: [dbfs_mount]{1:30281:17604}
[start]
 mount-dbfs.sh mounting DBFS at /mnt/dbfs from database ggdgs
2022-04-19 16:45:15.638 :CLSDYNAM:1736423168: [dbfs_mount]{1:30281:17604}
[start]
 ORACLE_SID is ggdg1
2022-04-19 16:45:15.738 :CLSDYNAM:1736423168: [dbfs_mount]{1:30281:17604}
[start]
 spawning dbfs_client command using SID ggdg1
2022-04-19 16:45:20.745 :CLSDYNAM:1736423168: [dbfs_mount]{1:30281:17604}
[start]
 fuse: bad mount point `/mnt/dbfs': No such file or directory
2022-04-19 16:45:21.747 :CLSDYNAM:1736423168: [dbfs_mount]{1:30281:17604}
[start]
 Start - OFFLINE
2022-04-19 16:45:21.747 : AGFW:1736423168: {1:30281:17604} Command:
start for
 resource: dbfs_mount 1 1 completed with status: FAIL

• Incorrect DBFS_USER or DBFS_PASSWD

2022-04-19 16:47:47.855 : AGFW:1384478464: {1:30281:17671} dbfs_mount
 1 1 state changed from: UNKNOWN to: STARTING
2022-04-19 16:47:47.856 :CLSDYNAM:1386579712: [dbfs_mount]{1:30281:17671}
[start]
 Executing action script: /u01/oracle/scripts/mount-dbfs.sh[start]
2022-04-19 16:47:47.908 :CLSDYNAM:1386579712: [dbfs_mount]{1:30281:17671}
[start]
 mount-dbfs.sh mounting DBFS at /mnt/dbfs from database ggdgs

Chapter 30
Troubleshooting Oracle GoldenGate on Oracle RAC

30-12

2022-04-19 16:47:48.959 :CLSDYNAM:1386579712: [dbfs_mount]{1:30281:17671}
[start]
 ORACLE_SID is ggdg1
2022-04-19 16:47:49.010 :CLSDYNAM:1386579712: [dbfs_mount]{1:30281:17671}
[start]
 spawning dbfs_client command using SID ggdg1
2022-04-19 16:47:55.118 :CLSDYNAM:1386579712: [dbfs_mount]{1:30281:17671}
[start]
 Fail to connect to database server. Error: ORA-01017: invalid username/
password;
 logon denied
2022-04-19 16:47:55.118 :CLSDYNAM:1386579712: [dbfs_mount]{1:30281:17671}
[start]
2022-04-19 16:47:56.219 :CLSDYNAM:1386579712: [dbfs_mount]{1:30281:17671}
[start]
 Start - OFFLINE
2022-04-19 16:47:56.220 : AGFW:1386579712: {1:30281:17671} Command:
start for
 resource: dbfs_mount 1 1 completed with status: FAIL

• Incorrect ORACLE_HOME

2022-04-19 16:50:38.952 : AGFW:567502592: {1:30281:17739} dbfs_mount
 1 1 state changed from: UNKNOWN to: STARTING
2022-04-19 16:50:38.953 :CLSDYNAM:569603840: [dbfs_mount]{1:30281:17739}
[start]
 Executing action script: /u01/oracle/scripts/mount-dbfs.sh[start]
2022-04-19 16:50:39.004 :CLSDYNAM:569603840: [dbfs_mount]{1:30281:17739}
[start]
 mount-dbfs.sh mounting DBFS at /mnt/dbfs from database ggdgs
2022-04-19 16:50:39.004 :CLSDYNAM:569603840: [dbfs_mount]{1:30281:17739}
[start]
 /u01/oracle/scripts/mount-dbfs.sh: line 136:
 /u01/app/oracle/product/19.0.0.0/rdbms/bin/srvctl: No such file or
directory
2022-04-19 16:50:39.004 :CLSDYNAM:569603840: [dbfs_mount]{1:30281:17739}
[start]
 /u01/oracle/scripts/mount-dbfs.sh: line 139:
 /u01/app/oracle/product/19.0.0.0/rdbms/bin/srvctl: No such file or
directory
2022-04-19 16:50:39.004 :CLSDYNAM:569603840: [dbfs_mount]{1:30281:17739}
[start]
 ORACLE_SID is
2022-04-19 16:50:39.004 :CLSDYNAM:569603840: [dbfs_mount]{1:30281:17739}
[start]
 No running ORACLE_SID available on this host, exiting
2022-04-19 16:50:39.004 : AGFW:569603840: {1:30281:17739} Command:
start for
 resource: dbfs_mount 1 1 completed with invalid status: 2

To resolve these configuration issues, set the correct parameter values in mount-dbfs.conf.

Problems with file locking on DBFS

If using Oracle Database 12c Release 2 (12.2) and the nolock DBFS mount option is not used,
there can be problems with GoldenGate processes trying to lock checkpoint or trail files. The

Chapter 30
Troubleshooting Oracle GoldenGate on Oracle RAC

30-13

same problem will be encountered if using Oracle Database 11g Release 2 (11.2.0.4) or 12c
Release 1 (12.1) with a patch for bug 22646150 applied. This patch changes how DBFS
handles file locking to match Oracle Database 12c Release 2 (12.2). To add the nolock DBFS
mount option, a patch for bug 27056711 must be applied to the database. If the patch for bug
22646150 has not been applied to the database, the patch for bug 27056711 and the nolock
mount option is not required.

Below is an example of diagnosing a GoldenGate Microservices Architecture locking problem.

When starting a deployment with XAG, one or more processes may not start due to detecting a
locking conflict on one or more files. This will often occur after a RAC node failover where the
deployment did not get a chance to shut down cleanly.

When one of the deployment server processes fails to start (Administration Server,
Performance Metrics Server, Distribution Server, Receiver Server, or Service Manager), check
the log file for the particular server located in the deployment var/log directory.

For example, the log file /mnt/dbfs/goldengate/deployments/<INSTANCE_NAME>/var/log/
pmsrvr.log shows the following error on startup:

2022-04-11T12:41:57.619-0700 ERROR| SecureStore failed on open after
 retrying due to extended file lock. (main)
2022-04-11T12:41:57.619-0700 ERROR| SecureStore failed to close (28771).
(main)
2022-04-11T12:41:57.619-0700 INFO | Set network configuration. (main)
2022-04-11T12:41:57.619-0700 INFO | Asynchronous operations are enabled with
default
 synchronous wait time of 30 seconds (main)
2022-04-11T12:41:57.619-0700 INFO | HttpServer configuration complete. (main)
2022-04-11T12:42:07.674-0700 ERROR| Unable to lock process file, Error is
[1454]
 - OGG-01454 (main)
2022-04-11T12:42:07.675-0700 ERROR| Another Instance of PM Server is Already
Running
 (main)

An Extract process will report start-up failures in the ER-events.log logfile located in the
deployment log file directory.

For example, /mnt/dbfs/goldengate/deployments/<instance_name>/var/log/ER-events.log
shows the following error:

2022-04-11T00:14:56.845-0700 ERROR OGG-01454 Oracle GoldenGate Capture for
 Oracle, EXT1.prm: Unable to lock file
 "/mnt/dbfs/goldengate/deployments/<instance_name>/var/run/EXT1.pce" (error
11, Resource
 temporarily unavailable). Lock currently held by process id (PID) 237495.
2022-04-11T00:14:56.861-0700 ERROR OGG-01668 Oracle GoldenGate Capture
for Oracle,
 EXT1.prm: PROCESS ABENDING.

Next, check to ensure the process failing to start up is not running on any of the RAC nodes.

Example:

$ ps -ef|grep EXT1|grep -v grep

Chapter 30
Troubleshooting Oracle GoldenGate on Oracle RAC

30-14

Once it has been determined that the process is not running, the deployment must be
shutdown cleanly, the file system unmounted, and the correct DBFS patch applied.

Example:

$ agctl stop goldengate <INSTANCE_NAME>
$ crsctl stop resource dbfs_mount

Check the DBFS mount options:

$ ps -ef|grep dbfs_client

oracle 204017 1 0 14:37 ?
 00:00:00 /u01/app/oracle/product/19.1.0.0/dbhome_1/bin/dbfs_client
dbfs@dbfs.local
 -o allow_other,failover,direct_io /mnt/dbfs

It is clear the nolock mount option was not used, which leads to the locking errors.

Use the guidelines above to determine if a DBFS patch is required. After which, add the nolock
mount option to the mount-dbfs.conf file on all Oracle RAC nodes that are part of the
deployment.

Example:

MOUNT_OPTIONS=allow_other,direct_io,failover,nolock

Finally, restart the deployment:

$ agctl start goldengate <INSTANCE_NAME>

Critical Extract/Replicat process preventing GoldenGate start-up

When an Extract or Replicat process has been set as critical to the health of the deployment in
the Administration Server, if the process abends, the Service Manager and deployment will be
stopped.

When restarting GoldenGate using XAG (agctl start goldengate) it will fail with the following
error:

$ agctl start goldengate GGNORTH --node dc1north01
CRS-2672: Attempting to start 'xag.GGNORTH.goldengate' on 'dc1north01'
CRS-2674: Start of 'xag.GGNORTH.goldengate' on 'dc1north01' failed
CRS-2679: Attempting to clean 'xag.GGNORTH.goldengate' on ' dc1north01'
CRS-2681: Clean of 'xag.GGNORTH.goldengate' on ' dc1north01' succeeded
CRS-2632: There are no more servers to try to place resource
'xag.GGNORTH.goldengate' on
that would satisfy its placement policy
CRS-4000: Command Start failed, or completed with errors.

The CRS trace file (crsd_scriptagent_oracle.trc) does not provide enough information to
determine the reason behind the startup failure.

Chapter 30
Troubleshooting Oracle GoldenGate on Oracle RAC

30-15

Example:

2022-06-30 20:20:28.675 : AGFW:521639680: [INFO] {1:29336:52291}
 Command: start for resource: xag.GGNORTH.goldengate 1 1 completed with
status: SUCCESS
2022-06-30 20:20:28.675 :CLSDYNAM:521639680: [xag.GGNORTH.goldengate]
{1:29336:52291}
 [check] Executing action script: /u01/oracle/XAG/bin/aggoldengatescaas[check]
2022-06-30 20:20:28.677 : AGFW:517437184: [INFO] {1:29336:52291}
Agent sending
 reply for: RESOURCE_START[xag.GGNORTH.goldengate 1 1] ID 4098:178187
2022-06-30 20:20:28.827 :CLSDYNAM:521639680: [xag.GGNORTH.goldengate]
{1:29336:52291}
 [check] GG agent running command 'check' on xag.GGNORTH.goldengate
2022-06-30 20:20:28.978 :CLSDYNAM:521639680: [xag.GGNORTH.goldengate]
{1:29336:52291}
 [check] execute XAGTask HealthCheck
2022-06-30 20:20:29.779 :CLSDYNAM:521639680: [xag.GGNORTH.goldengate]
{1:29336:52291}
 [check] XAGTask retcode = 3
2022-06-30 20:20:29.780 : AGFW:517437184: [INFO] {1:29336:52291}
 xag.GGNORTH.goldengate 1 1 state changed from: STARTING to: FAILED

Starting with Oracle GoldenGate version 21.11, when using XAG, additional GoldenGate status
information is logged into the Service Manager $OGG_VAR_HOME/log/XAGTask.log file.

For earlier releases of Oracle GoldenGate, enable the CRS debug logging for XAG using the
following commands.

$ crsctl set log res xag.GGNORTH.goldengate=5
$ agctl start goldengate GGNORTH --node dc1north01
$ crsctl set log res xag.GGNORTH.goldengate=1

Check the Service Manager $OGG_VAR_HOME/log/XAGTask.log or the CRS trace file
(crsd_scriptagent_oracle.trc) for more information on the failure.

Example:

2022-06-30 20:24:36.389 :CLSDYNAM:521639680:
 [xag.GGNORTH.goldengate]{1:29336:52435} [check] Deployment: GGNORTH
2022-06-30 20:24:36.389 :CLSDYNAM:521639680: [xag.GGNORTH.goldengate]
{1:29336:52435}
 [check] Service: adminsrvr
2022-06-30 20:24:36.389 :CLSDYNAM:521639680: [xag.GGNORTH.goldengate]
{1:29336:52435}
 [check] Status: running
2022-06-30 20:24:36.389 :CLSDYNAM:521639680: [xag.GGNORTH.goldengate]
{1:29336:52435}
 [check] Started: 2022-07-01T03:24:35.911Z
2022-06-30 20:24:36.389 :CLSDYNAM:521639680: [xag.GGNORTH.goldengate]
{1:29336:52435}
 [check] Health: Failed
2022-06-30 20:24:36.389 :CLSDYNAM:521639680: [xag.GGNORTH.goldengate]
{1:29336:52435}
 [check] Resources: Name Type

Chapter 30
Troubleshooting Oracle GoldenGate on Oracle RAC

30-16

Status Health
2022-06-30 20:24:36.389 :CLSDYNAM:521639680: [xag.GGNORTH.goldengate]
{1:29336:52435}
 [check] -------------------------------- ----------
---------- ------
2022-06-30 20:24:36.389 :CLSDYNAM:521639680: [xag.GGNORTH.goldengate]
{1:29336:52435}
 [check] REP1 replicat
abended Failed
2022-06-30 20:24:36.389 :CLSDYNAM:521639680: [xag.GGNORTH.goldengate]
{1:29336:52435}
 [check] HealthCheck failed

When Extract or Replicat processes are not set to critical, they will not appear in the CRS trace
file. Because Replicat REP1 is shown as failed, this indicates that REP1 is set to critical and is
preventing GoldenGate from starting.

To disable the critical setting for Replicat, the GoldenGate Service Manager and deployment
must be started manually.

Example:

$ export OGG_ETC_HOME=/mnt/acfs/goldengate/deployments/ggsm01/etc
$ export OGG_VAR_HOME=/mnt/acfs/goldengate/deployments/ggsm01/var
$ export OGG_HOME=/u01/oracle/goldengate/ggMS_21c
$ $OGG_HOME/bin/ServiceManager --xagEnabled

Using the Administration Server GUI, select the Replicat or Extract details, and unset the
critical flag.

Once the critical setting has been disabled, XAG can be used to start and stop Oracle
GoldenGate Microservices.

Example:

$ agctl start goldengate GGNORTH --node dc1north01
$ agctl status goldengate GGNORTH

Chapter 30
Troubleshooting Oracle GoldenGate on Oracle RAC

30-17

Part VI
Oracle Database Cloud Best Practices

• Overview of Oracle Database Cloud Best Practices

• Oracle Maximum Availability Architecture and Oracle Autonomous Database

• Oracle Maximum Availability Architecture in Oracle Exadata Cloud Systems

• Oracle Maximum Availability Architecture for Multicloud

• Oracle Data Guard Hybrid Cloud Configuration

31
Overview of Oracle Database Cloud Best
Practices

Oracle Cloud and MAA collaborate closely to enable customer success using the varies Oracle
Database Cloud services.

This partnership ensures

• Databases, Grid Infrastructure, Exadata, and infrastructure are deployed and configured
with MAA best practices in the Oracle cloud.

• Cloud life cycle practices such as patching, backup and restore, disaster recovery, and
pluggable database management incorporate MAA optimizations as new features and
capabilities are introduced into the Oracle cloud.

• Oracle owns and manages network, system, and Exadata infrastructure using MAA
practices and optimizations.

• Oracle high availability and disaster recovery (HA/DR) solutions meet our Enterprise
customer standards for Gold and Platinum MAA solutions.

For the latest details, see Oracle Cloud Maximum Availability Architecture.

The following table outlines MAA validated solutions and guidance for Oracle Database Cloud
services.

31-1

https://www.oracle.com/a/tech/docs/cloud-maa-overview.pdf

Service Bronze Silver Gold Platinum

Oracle Base Database
Service (BaseDB)

Base DB – Single
Instance

• Use Oracle
Database cloud
automation to
configure the
network and create
DB Systems and
databases

• Use Oracle
Database cloud
automation for
system and
database life cycle
operations
including software
updates, upgrades,
monitoring,
alerting and
database
administration and
management.

• Use cloud-
managed backup
service.
Recommended:
Use (Zero Data
Loss) Autonomous
Recovery Service
and real time redo
to reduce data loss
in case of
disasters

• Customer's
responsibilities
– Create test

systems to
evaluate
application,
configuration
or software
changes

– Execute
System and
database
sizing,
resource
management
and
monitoring

Base DB – 2-Nodes
Oracle RAC

• Bronze, plus the
following:

• Use Oracle
Database cloud
automation to
create multi-node
RAC DB systems
on Oracle Cloud
Infrastructure
(OCI)

• Customer's
responsibilities
– Maximize

application
failover and
uptime with
Achieving
Continuous
Availability For
Your
Applications

Base DB – 2-Nodes
Oracle RAC with Active
Data Guard

• Silver, plus the
following:

• Recommended:
primary and
standby database
systems are
symmetric in
shape and system
resources.

• Use cloud
automation to
create and
manage standby
database. The
location can be in
another Availability
Domain or Region
for better fault
isolation.

• Customer's
responsibilities:
– Configure

Fast Start
Failover
(automatic
failover) with
MAA practices
to bound RTO
after
database,
cluster,
potentially
Availability
Domain or
regional
failure

– Tune Data
Guard if
lagging (see
Tune and
Troubleshoot
Oracle Data
Guard

– Extend
application
failover to
standby with
Achieving
Continuous
Availability For
Your
Applications
or use Full
Stack Disaster
Recovery
Service.

Base DB – 2-Nodes
Oracle RAC with Active
Data Guard and Oracle
GoldenGate

• Gold, plus the
following:

• Customer's
responsibilities:
– Set up

GoldenGate
Cloud Within
Region:
Configuring
Oracle
GoldenGate
Hub for MAA
Platinum.
GoldenGate
management
and tuning.

– Extend
application
failover to
Oracle
GoldenGate
replica with
Achieving
Continuous
Availability For
Your
Applications

– Optionally use
Global Data
Services for
smart
workload
management
between
GoldenGate
replicas and
standby
databases

Chapter 31

31-2

https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/database/technologies/high-availability/global-data-services.html
https://www.oracle.com/database/technologies/high-availability/global-data-services.html

Service Bronze Silver Gold Platinum

Oracle Exadata
Database Service on
Dedicated
Infrastructure (ExaDB-
D)

NA ExaDB-D (Default)

• Use Oracle
Database cloud
automation to
create Exadata
infrastructure, VM
cluster, and RAC
databases.

• Use Oracle
Database cloud
automation for
system and
database life cycle
operations
including software
updates, upgrades,
monitoring, service
events and health
alerts, and
database
administration and
management.

• Use cloud-
managed backup
service.
Recommended:
Use (Zero Data
Loss) Autonomous
Recovery Service
and real time redo
to reduce data loss
in case of
disasters

• Customer
Responsibilities:
– Create test

systems to
evaluate
application,
configuration
or software
changes.

– Execute
system and
database
sizing,
resource
management
and
monitoring
and reviewing
exachk
(holistic
health)

– Maximize
application
failover and

ExaDB-D with Active
Data Guard

• Silver, plus the
following:

• Recommended:
primary and
standby database
systems are
symmetric in
shape and system
resources.

• Use cloud
automation to
create and
manage standby
database. The
location can be in
another Availability
Domain or Region
for better fault
isolation.

• Customer's
responsibilities:
– Configure

Fast Start
Failover
(automatic
failover) with
MAA practices
to bound RTO
after
database,
cluster,
potentially
Availability
Domain or
regional
failure

– Tune Data
Guard if
lagging (see
Tune and
Troubleshoot
Oracle Data
Guard

– Extend
application
failover to
standby with
Achieving
Continuous
Availability For
Your
Applications
or use Full
Stack Disaster
Recovery
Service.

ExaDB-D with Active
Data Guard and Oracle
GoldenGate

• Gold, plus the
following:

• Customer's
responsibilities:
– Set up

GoldenGate
Cloud Within
Region:
Configuring
Oracle
GoldenGate
Hub for MAA
Platinum.
GoldenGate
management
and tuning.

– Extend
application
failover to
Oracle
GoldenGate
replica with
Achieving
Continuous
Availability For
Your
Applications

– Optionally use
Global Data
Services for
smart
workload
management
between
GoldenGate
replicas and
standby
databases

Chapter 31

31-3

https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/database/technologies/high-availability/global-data-services.html
https://www.oracle.com/database/technologies/high-availability/global-data-services.html

Service Bronze Silver Gold Platinum

uptime with
Achieving
Continuous
Availability For
Your
Applications

Chapter 31

31-4

Service Bronze Silver Gold Platinum

Oracle Exadata
Database Service on
Cloud@Customer
(ExaDB-C@C)

NA ExaDB-CC (Default)

• Use Oracle
Database cloud
automation to
create Exadata
infrastructure, VM
cluster, and RAC
databases.

• Use Oracle
Database cloud
automation for
system and
database life cycle
operations
including software
updates, upgrades,
monitoring, service
events and health
alerts, and
database
administration and
management.

• Use cloud-
managed backup
service.
Recommended:
Use Zero Data
Loss Recovery
Server and real
time redo to
reduce data loss in
case of disasters

• Customer
Responsibilities:
– Create test

systems to
evaluate
application,
configuration
or software
changes.

– Execute
system and
database
sizing,
resource
management
and
monitoring
and reviewing
exachk
(holistic
health)

– Maximize
application
failover and
uptime with

ExaDB-CC with Active
Data Guard

• Silver, plus the
following:

• Recommended:
primary and
standby database
systems are
symmetric in
shape and system
resources.

• Use cloud
automation to
create and
manage standby
database. The
location can be in
another Availability
Domain or Region
for better fault
isolation.

• Customer's
responsibilities:
– Configure

Fast Start
Failover
(automatic
failover) with
MAA practices
to bound RTO
after
database,
cluster,
potentially
Availability
Domain or
regional
failure

– Tune Data
Guard if
lagging (see
Tune and
Troubleshoot
Oracle Data
Guard

– Extend
application
failover to
standby with
Achieving
Continuous
Availability For
Your
Applications
or use Full
Stack Disaster
Recovery
Service.

ExaDB-CC with Active
Data Guard and Oracle
GoldenGate

• Gold, plus the
following:

• Customer's
responsibilities:
– Set up On-

Premises:
Configuring
Oracle
GoldenGate
Hub

– Extend
application
failover to
Oracle
GoldenGate
replica with
Achieving
Continuous
Availability For
Your
Applications

– Optionally use
Global Data
Services for
smart
workload
management
between
GoldenGate
replicas and
standby
databases

Chapter 31

31-5

https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/database/technologies/high-availability/global-data-services.html
https://www.oracle.com/database/technologies/high-availability/global-data-services.html

Service Bronze Silver Gold Platinum

Achieving
Continuous
Availability For
Your
Applications

Autonomous Database
Serverless (ADB-S)

NA ADB-S (Default)

• Use Oracle
Database cloud
automation life
cycle operations
including software
updates, upgrades,
monitoring, and
database
administration and
management.

• Customer
Responsibilities:
– Create test

systems to
evaluate
application
changes

– Maximize
application
failover and
uptime with
Achieving
Continuous
Availability For
Your
Applications

ADB-S with
Autonomous Data
Guard

• Silver, plus the
following:

• Enable
Autonomous Data
Guard, choose
automatic failover
and data loss
tolerance. The
location can be in
another Availability
Domain for better
fault isolation.

• Customer's
responsibility:
– Extend

application
failover to
standby with
Achieving
Continuous
Availability For
Your
Applications
or use Full
Stack Disaster
Recovery
Service.

MAA evaluation
completed only with a
standby database
within the same region
or cross Availability-
Domains.

Cross-Region
Autonomous Data
Guard Evaluation In
Progress

Planned

Chapter 31

31-6

https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/

Service Bronze Silver Gold Platinum

Autonomous Database
on Dedicated
Infrastructure (ADB-D)

NA ADB-D (Default)

• Use Oracle
Database cloud
automation life
cycle operations
including software
updates, upgrades,
monitoring, and
database
administration and
management.

• Customer
Responsibilities:
– Create test

systems to
evaluate
application
changes

– Maximize
application
failover and
uptime with
Achieving
Continuous
Availability For
Your
Applications

ADB-D with
Autonomous Data
Guard

• Silver, plus the
following:

• Enable
Autonomous Data
Guard, choose
protection mode,
data loss
tolerance, and
enable automatic
failover. The
location can be in
another Availability
Domain or Region
for better fault
isolation.

• Customer's
responsibility:
– Extend

application
failover to
standby with
Achieving
Continuous
Availability For
Your
Applications
or use Full
Stack Disaster
Recovery
Service.

ADB-D with
Autonomous Data
Guard and Oracle
GoldenGate

• Gold, plus the
following:

• Customer's
responsibilities:
– Set up

GoldenGate
Cloud Within
Region:
Configuring
Oracle
GoldenGate
Hub for MAA
Platinum.
GoldenGate
management
and tuning.

– Extend
application
failover to
Oracle
GoldenGate
replica with
Achieving
Continuous
Availability For
Your
Applications

Chapter 31

31-7

https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/

32
Oracle Maximum Availability Architecture and
Oracle Autonomous Database

Oracle Maximum Availability Architecture (MAA) represents Oracle's comprehensive
framework of best practices, reference blueprints, and technologies for ensuring the highest
levels of Oracle Database availability, data protection, and disaster recovery.

For users of Oracle Autonomous Database, whether leveraging the elastic, self-service
Autonomous Database Serverless or the powerful, dedicated resources of Autonomous
Database on Exadata Dedicated Infrastructure, the principles and capabilities of MAA are not a
separate set of components to configure; they are the fundamental architecture upon which the
service is built and automatically managed.

This fully automated, standardized Autonomous Database infrastructure means that achieving
robust availability and disaster recovery for your mission-critical data is dramatically simplified
and automated with Autonomous Database. The complexities typically associated with
designing, implementing, and maintaining MAA configurations, such as setting up Real
Application Clusters and infrastructure redundancy for fast failover for local failures, and setting
up Autonomous Data Guard for additional high availability within a region or cross-region
disaster recovery, are primarily handled by the Autonomous Database service.

Autonomous Database follows MAA best practices, using integrated technologies to provide
built-in resilience, automated failover, and streamlined data protection. This self-managing
approach reduces operational overhead and ensures your database benefits from Oracle's
highest availability standards with minimal manual intervention. This includes built-in managed
services that handle software updates and hardware maintenance, database backup and
recovery, system and database monitoring and alerting, and zero downtime for elastic system
changes such as increasing CPU and storage requirements.

The following topics provide the latest MAA certifications and observations for each of Oracle
Autonomous Database Cloud services.

• Oracle MAA for Oracle Autonomous Database on Dedicated Exadata Infrastructure

• Oracle MAA for Oracle Autonomous Database Serverless

Oracle MAA for Oracle Autonomous Database on Dedicated
Exadata Infrastructure

Autonomous Database Dedicated with Default High Availability Option (MAA
Silver)

High availability is suitable for all development, test, and production databases that have high
uptime requirements and zero or low data loss tolerance.

By default, Autonomous Database is highly available, incorporating a multi-node configuration
to protect against localized software and hardware failures.

32-1

Each Autonomous Database application service resides in at least one Oracle Real Application
Clusters (Oracle RAC) instance, with the option to fail over to another available Oracle RAC
instance for unplanned outages or planned maintenance activities, enabling zero or near-zero
downtime.

Autonomous Database automatic backups are stored in Oracle Cloud Infrastructure Object
Storage, and are replicated to another available domain if available. For Autonomous
Database with Exadata Cloud at Customer, you have the option to back up to NFS, Oracle
Cloud Infrastructure Object Storage, or Zero Data Loss Recovery Appliance (ZDLRA);
however, replication of those backups in NFS or ZDLRA is the responsibility of the customer.

You can set up Automatic Backups with varying backup retention policy/period or on-demand
manual backups including long-term backups. These backups can be used to restore the
database in the event of a disaster. See Backup and Restore Autonomous Database on
Dedicated Exadata Infrastructure

The uptime service-level objective (SLOs) per month is 99.95% (a maximum of 22 minutes of
downtime per month). To achieve the application uptime SLAs where most months would be
zero downtime, see Preparing Application for Seamless Application Failover.

The following table describes the recovery-time objectives and recovery-point objectives (data
loss tolerance) for different outages.

Table 32-1 Default High Availability Policy Recovery Time (RTO) and Recovery Point (RPO) Service-
level Objectives for Autonomous Database Dedicated

Failure and Maintenance
Events

Database Downtime Service-level Downtime
(RTO)

Potential Service-level Data
Loss (RPO)

Localized events, including:

• Exadata cluster network
topology failures

• Storage (disk and flash)
failures

• Database instance
failures

• Database server failures
• Periodic software and

hardware maintenance
updates

Zero Near-zero Zero

Events that require restoring
from backup because a
standby database does not
exist:

• Data corruptions
• Human error
• Full database failures
• Complete storage

failures
• Availability domain (AD)

for multi-AD regions

Minutes to hours

(without Autonomous Data
Guard)

Minutes to hours

(without Autonomous Data
Guard)

15 minutes for Autonomous
Database on Dedicated
Infrastructure(without
Autonomous Data Guard)

Events that require non-
rolling software updates or
database upgrades

Minutes to an hour for
Autonomous Database on
Dedicated Infrastructure

(without Autonomous Data
Guard)

Minutes to an hour for
Autonomous Database on
Dedicated Infrastructure

(without Autonomous Data
Guard)

Zero

Chapter 32
Oracle MAA for Oracle Autonomous Database on Dedicated Exadata Infrastructure

32-2

https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbcm/index.html#articletitle
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbcm/index.html#articletitle

In the table above, the amount of downtime for events that require restoring from a backup
varies depending on the nature of the failure. In the most optimistic case, physical block
corruption is detected, and the block is repaired with block media recovery in minutes. In this
case, only a small portion of the database is affected with zero data loss. In a more pessimistic
case, the entire database or cluster fails, then the database is restored and recovered using
the latest database backup, including all archives.

Data loss is limited by the last successful archive log backup, the frequency of which is every
15 minutes for Autonomous Database on Dedicated Exadata Infrastructure. Archive or redo
logs are backed up to Oracle Cloud Infrastructure Object Storage, or any supported
Autonomous Database on Dedicated Exadata Infrastructure backup destination. Data loss can
be seconds, or, at worst minutes of data loss, around the last successful archive log and
remaining redo in the online redo logs that were not archived to backup destination.

All local failures incur zero database downtime because of built-in Exadata HA benefit and
Oracle Cloud Infrastructure redundancy, and application brownouts are near zero or less 10
seconds. Software and hardware maintenance updates can incur zero database downtime and
possible zero application impact because of online updates, Oracle RAC rolling updates, and
application failover best practices. See Preparing Application for Seamless Application
Failover.

Autonomous Database Dedicated with Autonomous Data Guard Option
(MAA Gold)

Enable Autonomous Data Guard for mission-critical production databases that require better
uptime requirements for disasters from data corruptions, and database or site failures, while
still reaping the Autonomous Database High Availability Option benefits. Additionally, a read-
only standby database provides expanded application services to offload reporting, queries,
and some updates.

You can also convert your physical standby database to a snapshot standby, but that impacts
your Recovery Time Objective (RTO) if you have to switchover or failover to that specific
standby.

Enabling Autonomous Data Guard adds one symmetric standby database to an Exadata rack
that is located in the same availability domain, another availability domain, or in another region.
The primary and standby database systems are configured symmetrically to ensure that
performance service levels are maintained after Data Guard role transitions. Up to two standby
databases are supported.

For additional protection, a typical MAA Gold architecture consists of a local standby with
automatic failover enabled, and a cross-region standby for disaster recovery. For more
information about managing an Autonomous Data Guard configuration, see View the Status of
an Autonomous Data Guard Configuration

To meet bound Recovery Time Objectives (RTO) and Recovery Point Objectives (RPO)
service-level objectives for database, cluster, or even site failures, enable Automatic Failover in
the OCI Console Autonomous Data Guard Settings (see Updating Autonomous Data Guard
Settings). You can choose which standby you want as the automatic failover target by updating
Autonomous Data Guard Settings.

If RPO=0 or zero data loss is required, MAA customers typically deploy a local standby where
the standby database is placed within the same availability domain or in a different availability
domain in the same region. MAA recommends placing the standby in a separate availability
domain if available. The round-trip latency between availability domains is typically less 1
millisecond, which in most cases has minimum application performance impact.

Chapter 32
Oracle MAA for Oracle Autonomous Database on Dedicated Exadata Infrastructure

32-3

https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbcl/index.html#GUID-B86D1882-FC9E-41BF-9658-23CFAD91A666
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbcl/index.html#GUID-B86D1882-FC9E-41BF-9658-23CFAD91A666

MAA recommends evaluating zero data loss configuration or Maximum Availability protection
mode with Data Guard synchronous transport mode to ensure acceptable performance. If your
RPO is near zero or minimum data loss is acceptable, you can choose any standby database
to enable automatic failover, and configure a fast start failover lag limit to bound maximum data
loss before initiating automatic failover.

If the target is a cross-region standby and cross-region disaster recovery orchestration is
required, MAA recommends enabling OCI Full Stack Disaster Recovery service where
applicable to orchestrate database, application, and possibly network DNS failover and
switchover operations. See Use OCI Full Stack Disaster Recovery on Autonomous Database
on Dedicated Exadata infrastructure.

Backups

Backups are scheduled automatically for the standby database, and they are stored in Oracle
Cloud Infrastructure Object Storage.

Autonomous Database with Exadata Cloud at Customer provides you with an option to backup
to NFS, Oracle Cloud Infrastructure Object Storage, or Zero Data Loss Recovery Appliance;
however, replication of those backups is your responsibility. Those backups can be used to
restore databases in the event of a double disaster, where both primary and standby
databases are lost.

You can set up Automatic Backups with varying backup retention policy/period or on-demand
manual backups including long-term backups. See Backup and Restore Autonomous
Database on Dedicated Exadata Infrastructure.

Autonomous Data Guard Recovery Time (RTO) and Recovery Point (RPO) Service-level
Objectives

The uptime service-level objective (SLO) per month is 99.995% (maximum 132 seconds of
downtime per month) and recovery time objectives (downtime) and recovery point objectives
(data loss) are low, as described in the table below.

To achieve the application uptime SLAs where most months would be zero downtime, see
Preparing Application for Seamless Application Failover. The target uptime SLO 99.995
applies to container databases with less 25 pluggable databases and does not include 30
seconds default detection time for automatic failover to standby.

Chapter 32
Oracle MAA for Oracle Autonomous Database on Dedicated Exadata Infrastructure

32-4

https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/ufcif/index.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/ufcif/index.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbcm/index.html#articletitle
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbcm/index.html#articletitle

Failure and Maintenance Events Service-level Downtime (RTO)1 Potential Service-level Data Loss
(RPO)

Localized events, including:

• Exadata cluster network fabric
failures

• Storage (disk and flash) failures
• Database instance failures
• Database server failures
• Periodic software and hardware

maintenance updates on primary or
standby

Zero or Near Zero Zero

Note:

Maintenan
ce is
typically
applied on
the
standby
first. For
database
software
updates,
the
standby
software is
applied
first, and
after
approxima
tely a
week the
primary
database
software is
updated.

Events that require failover to the
standby database using Autonomous
Data Guard, including:

• Data corruptions (because Active
Data Guard has automatic block
repair for physical corruptions2, a
failover operation is required only
for logical corruptions or extensive
data corruptions)

• Full database failures
• Complete storage failures
• Availability domain or region

failures3

A few seconds to two minutes4 Zero with maximum availability
protection mode (uses synchronous
redo transport). Most commonly used
for intra-region standby databases.

Near zero for maximum performance
protection mode (uses asynchronous
redo transport). Most commonly used
for cross-region standby databases.
Also used for intra-regional standby
databases and to ensure zero
application impact. RPO is typically less
than 10 seconds. RPO can be impacted
by network bandwidth and workload
throughput between primary and
standby clusters.

1 Service-Level Downtime (RTO) excludes detection time that includes multiple heartbeats to
ensure the source is indeed inaccessible before initiating an automatic failover.

2 The Active Data Guard automatic block repair for physical corruptions feature is only
available for Autonomous Data Guard on Dedicated Infrastructure.

3 Regional failure protection is only available if the standby is located in another region.

4 The back-end Autonomous Data Guard role transition timings are much faster than indicated
by the Cloud Console refresh rates.

Chapter 32
Oracle MAA for Oracle Autonomous Database on Dedicated Exadata Infrastructure

32-5

Autonomous Database on Dedicated Infrastructure has been MAA Gold validated and certified.
Autonomous Database on Dedicated Infrastructure was validated with a standby database in
the same region, and also with a standby database in a different region, and the above SLOs
were met when the standby target was symmetric to the primary. RTO and RPO SLOs were
met with redo rates of up to 1100 MB/sec.

Depending on workload, you may have to scale your Autonomous Exadata VM Cluster system
resource on either the primary or standby clusters. Follow the instructions in Manage
Autonomous Exadata VM Cluster Resources.

Updating Autonomous Data Guard Settings
You can update the settings of an Autonomous Data Guard standby from the details page of
the primary Autonomous Container Database in the configuration.

Required IAM Policies:

use autonomous-container-databases

1. Go to the details page of the primary Autonomous Container Database in the Autonomous
Data Guard configuration.

For instructions, see View Details of an Autonomous Container Database.

2. Click Update Autonomous Data Guard from More actions.

The Update Autonomous Data Guard dialog displays the current settings for Protection
Mode and Automatic Failover.

3. You can make the following updates from this dialog:

a. Protection mode: Select Maximum performance or Maximum availability from the
drop-down list.

b. Automatic failover: To bound RTO and RPO, automatic failover needs to be enabled.

If automatic failover is not enabled already, you can enable it by selecting Enable
automatic failover. Similarly, you can deselect Enable automatic failover to disable
automatic failover for this Autonomous Data Guard setup.

If one of your standby databases is in the same region as the primary database, and
the second is in a different region, the local standby database is prioritized over the
remote standby as the automatic failover target. When you enable automatic failover,
any of the standby databases is considered for the automatic failover target.

Note:

You can not enable Automatic Failover for databases with cross-region
Autonomous Data Guard setup on Exadata Cloud@Customer deployments.

c. Fast start failover lag limit: If automatic failover is enabled and the protection mode
is Maximum Performance, the Fast Start Failover lag limit value is displayed in
seconds. By default, this value is set to 30 seconds, but you can change it to any value
between 5 and 3600 seconds.

4. Save your changes.

Chapter 32
Oracle MAA for Oracle Autonomous Database on Dedicated Exadata Infrastructure

32-6

https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbcj/index.html#ADBCJ-GUID-574B2EC9-A13B-47EB-92F5-0B4D034A1B12
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbcj/index.html#ADBCJ-GUID-574B2EC9-A13B-47EB-92F5-0B4D034A1B12
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbck/index.html

Autonomous Data Guard Life Cycle Management

1. Setting up Standby or Adding Standby with Automatic Failover: see Manage Autonomous
Data Guard Configuration

2. Monitoring Transport and Apply Lags

a. You can view the Autonomous Data Guard details by selecting Autonomous Data
Guard groups or Autonomous Data Guard associations under Resources. The
Autonomous Data Guard table displays information about the peer container database,
the current apply lag and transport lag, state, and last role change and creation dates.
See Manage Primary and Standby Databases in an Autonomous Data Guard
Configuration

b. Set alarms for ApplyLag and TransportLag to ensure the standby is in sync and
protecting your primary database. See Using the Console

3. Data Guard Role Transitions or Reinstate Standby: see Switchover or Failover topics in
Manage Autonomous Data Guard Configuration

4. Automatic Failover Notifications can be set up using information in Events for Autonomous
Database on Dedicated Exadata Infrastructure

MAA Autonomous Data Guard RTO and RPO Observations

The following table illustrates several configurations that MAA testing and evaluation show
achieve 99.995 SLOs. This was achieved after hundreds of role transitions with various
database and cluster outages.

Primary Cluster Standby Cluster PDBs Data Files Services Timing (minutes)

2 Node 2 Node 1 14 2 1:18

2 Node 2 Node 5 50 10 1:20

2 Node 2 Node 25 300 250 1:44

4 Node 4 Node 1 500 12 1:17

Autonomous Data Guard Failover Improvements

The tables below illustrate how role transition times have improved in Oracle 23ai.

Large CDB with Single PDB: Data Guard Failover Improvements

• Data Guard configured with between primary Exadata (4 node RAC) and standby Exadata
(4 node RAC) X9

• CDB version 23.4 with one PDB, 500 data files, and 12 services

• Workload running: OLTP Swingbench against PDB during role transition

• Redo rate 100MB/second at CDB level with no lag

Oracle
release

Close to
mount

Term
recovery

Media
recovery

Convert to
primary

CDB open PDB open +
srv start

Total

Oracle 19c
(19.22)

00:14 00:17 00:05 00:01 00:06 00:50 01:17

Chapter 32
Oracle MAA for Oracle Autonomous Database on Dedicated Exadata Infrastructure

32-7

https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbcl/index.html#articletitle
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbcl/index.html#articletitle
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/hkuka/#articletitle
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/hkuka/#articletitle
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/lbdmm/index.html#GUID-B28C699E-0CBC-4843-8AB5-501BB0C160A9
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbcl/index.html#articletitle
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/arfad/index.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/arfad/index.html

Oracle
release

Close to
mount

Term
recovery

Media
recovery

Convert to
primary

CDB open PDB open +
srv start

Total

Oracle 23ai
(23.4)
Release
Label

00:04 00:07 00:08 00:01 00:06 00:07 00:29
(62% drop)

CBD with 5 PDBs: Data Guard Failover Improvements

• Data Guard configured with between primary Exadata (2 node RAC) and standby Exadata
(2 node RAC)

• CDB version 23.4 with 5x PDB

• 50 total data files spread across the 5 PDBs

• 10 services - 2 per PDB

• Workload running: OLTP Swingbench against each PDB during role transition

• Redo rate ~60MB/second on the CDB

• All improvements in timing have been the result of code fixes

Oracle
release

Close to
mount

Term
recovery

Media
recovery

Convert to
primary

CDB open PDB open +
srv start

Total

ExaCS Oracle
19c (19.18 +
fixes)

00:19 00:25 00:05 00:01 00:15 00:24)1:20

Oracle 23ai
(23.4)
Release
Label

00:02 00:03 00:01 00:01 00:04 00:04 00:15
(81% drop)

Autonomous Database with Autonomous Data Guard Option and Oracle
GoldenGate (MAA Platinum)

MAA Platinum with Autonomous Database on Dedicated Infrastructure is configurable. No
guaranteed SLAs are provided since the GoldenGate and application failover configuration is
manual.

MAA Platinum or Never-Down Architecture, delivers near-zero recovery time objective (RTO,
or downtime incurred during an outage) and potentially zero or near zero recover point
objective (RPO, or data loss potential).

The MAA Platinum with Autonomous Database on Dedicated Infrastructure ensures:

• RTO = zero or near-zero for all local failures

• RTO = zero or near-zero for disasters, such as database, cluster, or site failures, achieved
by redirecting the application to an Autonomous Database with Autonomous Data Guard or
Oracle GoldenGate replica

• Zero downtime maintenance for software and hardware updates

• Zero downtime database upgrade or application upgrade by redirecting the application to
an upgraded Oracle GoldenGate replica residing in a separate Autonomous Database on
Dedicated Infrastructure

Chapter 32
Oracle MAA for Oracle Autonomous Database on Dedicated Exadata Infrastructure

32-8

• RPO = zero or near-zero data loss, depending on selecting the Oracle Data Guard
Maximum Availability or Maximum Performance protection modes with synchronous redo
transport in Autonomous Database with Autonomous Data Guard

• Fast re-synchronization and zero or near-zero RPO between Oracle GoldenGate source
and target databases after a disaster using Cloud MAA GoldenGate Hub and Oracle
GoldenGate best practices

• After any database failure, automatic failover to its standby database occurs automatically
using integrated Data Guard Fast-start Failover (FSFO). Subsequently, automatic re-
synchronization between Oracle GoldenGate source and target databases resumes from
the new primary after a role transition. For synchronous transport, this leads to eventual
zero data loss.

Prerequisites:

• Autonomous Database on Dedicated Infrastructure must be running Oracle Database
software release 19.20 or later for GoldenGate conflict resolution support

• Autonomous Database with Autonomous Data Guard and automatic failover needs to be
configured for fast GoldenGate resynchronization after a disaster

• GoldenGate setup must be done manually according to Cloud MAA best practices

• Application failover to an available GoldenGate replica or a new primary database must be
configured. Currently, Global Data Services (GDS) cannot be used with an Autonomous
Database in this architecture.

Implementing the MAA Platinum Solution
To achieve an MAA Platinum solution, review and leverage the technical briefs and
documentation referenced in the following steps.

1. Review Oracle MAA Platinum Tier for Oracle Exadata to understand MAA Platinum
benefits and use cases.

a. Decide primary database locations based on application needs. The primary database
will reside in Autonomous Database on Dedicated Infrastructure.

b. Decide standby database location based on fault isolation requirements.

c. Enable Autonomous Data Guard.

d. Choose Autonomous Data Guard protection mode based on RPO tolerance, and set
up automatic failover.

2. Set up MAA GoldenGate Hub in Oracle cloud.

a. If all primary databases (GoldenGate replicas) are in the same region, see Cloud
Within Region: Configuring Oracle GoldenGate Hub for MAA Platinum.

If primary databases (GoldenGate replicas) are spread across 2 regions, see Cloud
Across Regions: Configuring Oracle GoldenGate Hub for MAA Platinum.

b. Configure Bidirectional Replication and Automatic Conflict Detection and Resolution.
See Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture
or the latest Oracle GoldenGate 21c documentation.

3. Configure custom application failover options so that your application can fail over
automatically in the case of database, cluster, or site failure.

Chapter 32
Oracle MAA for Oracle Autonomous Database on Dedicated Exadata Infrastructure

32-9

https://www.oracle.com/a/tech/docs/exadata-maa-platinum-focused.pdf
https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc/quickstart-bidirectional-replication.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/mabooks.html

Preparing Application for Seamless Application Failover
Ensure that network connectivity to Oracle Cloud Infrastructure is reliable so that you can
access your tenancy's Autonomous Database resources.

Follow the guidelines to connect to your Autonomous Database (see Autonomous Database
on Dedicated Exadata Infrastructure). Applications must connect to the predefined service
name and download client credentials that include the proper tnsnsames.ora and sqlnet.ora
files. You can also change your specific application service’s drain_timeout attribute to fit your
requirements.

For more details about enabling continuous application service through planned and
unplanned outages, see Configuring Continuous Availability for Applications.

For Exadata cloud planned maintenance events that require restarting database instances,
Oracle automatically relocates services and drain sessions to another available Oracle RAC
instance before stopping any Oracle RAC instance. For OLTP applications that follow the MAA
checklist, draining and relocating services results in zero application downtime.

Some applications, such as long-running batch jobs or reports, may not be able to drain and
relocate gracefully, even with a longer drain timeout. For those applications, Oracle
recommends that you schedule the software planned maintenance window excluding these
types of activities, or stop these activities before the planned maintenance window. For
example, you can reschedule a planned maintenance window so that it is outside your batch
windows, or stop batch jobs before a planned maintenance window.

Oracle MAA for Oracle Autonomous Database Serverless

Autonomous Database Serverless with Default High Availability Option
(MAA Silver)

High availability for Oracle Autonomous Database Serverless is recommended for all database
environments (development, test, production) with demanding uptime requirements and low
tolerance for data loss.

Autonomous Databases are provisioned with high availability enabled by default, employing a
multi-node configuration to protect against localized failures. Specifically, Autonomous
Database Serverless integrates Exadata Maximum Availability Architecture (MAA) best
practices, supports online Oracle RAC rolling software updates, includes integrated backup
and recovery, and offers flexible resource scaling, providing a robust, available, and highly
scalable service foundation.

The service architecture places each Autonomous Database application service within at least
one Oracle RAC instance. This design facilitates automatic failover to other available RAC
instances during unplanned outages or planned maintenance, ensuring zero or near-zero
downtime. The underlying Exadata platform contributes significantly, providing inherent data
protection, low brownout impact, performance QoS (MAA qualities), and Exadata Smart
performance benefits.

Automated backups are stored externally in Oracle Cloud Infrastructure (OCI) Object Storage
and are replicated to an alternate availability domain if available. These backups are essential
for database recovery and disaster preparedness.

Chapter 32
Oracle MAA for Oracle Autonomous Database Serverless

32-10

https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbbd/index.html#articletitle
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbbd/index.html#articletitle

The integrated software lifecycle framework automates major database upgrades, greatly
minimizing required downtime for Autonomous Database Serverless.

Autonomous Database provides a monthly uptime SLA of 99.95% (maximum 22 minutes
downtime). For strategies to achieve higher application uptime, see Configuring Continuous
Availability for Applications.

The following table describes the recovery-time objectives and recovery-point objectives (data
loss tolerance) for different outages.

Table 32-2 Default High Availability Policy Recovery Time (RTO) and Recovery Point (RPO) Service-
level Objectives for Autonomous Database Serverless

Failure and Maintenance
Events

Database Downtime Service-level Downtime
(RTO)

Potential Service-level Data
Loss (RPO)

Localized events, including:

• Exadata cluster network
topology failures

• Storage (disk and flash)
failures

• Database instance
failures

• Database server failures
• Periodic software and

hardware maintenance
updates

Zero Near-zero Zero

Events that require restoring
from backup when an
Autonomous Data Guard
standby database is not
configured:

• Data corruptions
• Human error
• Full database failures
• Complete storage

failures
• Availability domain (AD)

for multi-AD regions

Minutes to hours

(without Autonomous Data
Guard)

Minutes to hours

(without Autonomous Data
Guard)

1 minute for Autonomous
Database Serverless

(without Autonomous Data
Guard)

Events that require non-
rolling software updates or
database upgrades

Less than 10 minutes for
Autonomous Database
Serverless

(without Autonomous Data
Guard)

Less than 10 minutes for
Autonomous Database
Serverless

(without Autonomous Data
Guard)

Zero

In the table above, the amount of downtime for events that require restoring from a backup
varies depending on the nature of the failure. In the most optimistic case, limited physical block
corruption is detected, and individual objects can be restored. In this case, only a small portion
of the database is affected, with zero data loss. In a more pessimistic case, the entire database
or cluster fails, then the database is restored and recovered using the latest database backup,
including all archives.

Data loss is limited by the last successful archive log backup, the frequency of which is 1
minute for Autonomous Database Serverless. Archives and redo from online redo logs are sent
to the File Storage Service in different fault domains, if available, in real time, and further
transferred remotely to additional regions in Oracle Cloud Infrastructure Object Storage or File
Storage Service for future recovery purposes. Data loss can be seconds or, at worst, minutes

Chapter 32
Oracle MAA for Oracle Autonomous Database Serverless

32-11

of data loss, around the last successful archive log and remaining redo in the online redo logs
that were not transferred to external storage.

Autonomous Database Serverless with Autonomous Data Guard Option
(MAA Gold)

Enable Autonomous Data Guard for mission-critical production databases that require more
strict uptime requirements for disasters from data corruptions, and database or site failures,
while still receiving the Autonomous Database High Availability Option benefits.

Autonomous Database Serverless provides protection at the pluggable database (PDB) level.
Enabling Autonomous Data Guard adds one symmetric standby database to an Exadata rack
that is located in the same region or in another region. The primary and standby database
systems are configured symmetrically to ensure that performance service levels are
maintained after Data Guard role transitions.

Autonomous Database Serverless supports configuring multiple standby databases. A multiple
standby configuration consists of a local standby database in the same region and one or more
cross-region standby databases. Cross-regional standby databases are restricted to one per
region. The MAA Gold Certification for Autonomous Database Serverless architecture includes
a primary database and a local standby database in the same region, configured with
automatic failover to meet the RTO and RPO Service Level Objectives. An alternative MAA
Gold Architecture for Autonomous Database Services is a primary database and a local
standby database in the same region, configured with automatic failover and one or more
cross-region standby databases for disaster recovery.

Oracle Autonomous Data Guard features asynchronous redo transport (in maximum
performance mode) by default to ensure zero application performance impact.

Backups are scheduled automatically for the Autonomous Databases and stored in Oracle
Cloud Infrastructure Object Storage. Those backups can be used to restore databases in the
event of a combined disaster, where both primary and standby databases are lost.

Automatic Data Guard failover with Autonomous Database Serverless supports a maximum
data loss value that needs to be met before automatic failover to the standby. Zero data loss
failover is not guaranteed for Autonomous Database Serverless, but it is possible when the
primary database fails while the primary system container and infrastructure are still available.
This allows the remaining redo to be sent and applied to the same region or local standby
database. Automatic failover to the cross-region standby database is not available through the
OCI Console.

In all cases, automatic Autonomous Data Guard failover occurs for primary database, cluster,
or data center failures when those data loss service levels can be guaranteed. The target
standby becomes the new primary database, and all application services are enabled
automatically. A manual Data Failover option is provided in the OCI Console. For the manual
Data Guard failover option, the calculated downtime for the uptime SLA starts with the time to
execute the Data Guard failover operation and ends when the new primary service is enabled.

Depending on your application or business requirements, you can choose whether your
database failover site is located in the same region or in a different region.

Chapter 32
Oracle MAA for Oracle Autonomous Database Serverless

32-12

Table 32-3 Autonomous Data Guard Recovery Time (RTO) and Recovery Point (RPO) Service-level
Objectives

Failure and Maintenance Events Service-level Downtime (RTO)1 Potential Service-level Data Loss
(RPO)

Localized events, including:

• Exadata cluster network fabric
failures

• Storage (disk and flash) failures
• Database instance failures
• Database server failures
• Periodic software and hardware

maintenance updates

Zero or Near Zero Zero

Events that require failover to the
standby database using Autonomous
Data Guard, including:

• Data corruptions
• Full database failures
• Complete storage failures
• Availability domain or region failures

A few seconds to two minutes2 Near zero due to the use of
asynchronous redo transport. RPO is
typically less than 10 seconds. RPO can
be impacted by network bandwidth and
throughput between primary and
standby clusters.

Regional failure protection is only
available if the standby is located in
another region. Manual failover timings
are slightly higher and do not include
detection time.

1 Service-Level Downtime (RTO) excludes detection time of up to 90 seconds that includes
multiple heartbeats to ensure the source is indeed inaccessible before initiating an automatic
failover.

2The back-end Autonomous Data Guard role transition timings are much faster than the Cloud
Console refresh rates indicate.

Autonomous Database Serverless was validated and met the above SLOs. RTO and RPO
SLOs were met with redo rates up to 300 MB/sec for the entire Container Database (CDB)
where the target Autonomous Data Guard pluggable primary database resides.

Adding an Autonomous Standby Database

Autonomous Database Serverless supports, at most, one Autonomous Data Guard local
standby database in the same region, and multiple cross-region standby databases for each
available region with at most one per region. These additional regions are determined by
Oracle. You can have any mix of local and cross-region standby databases for each primary.

When you create a standby database in the same region as your primary database, you can
specify a maximum data loss criteria to enable automatic failover for non-zero data loss
situations. To achieve MAA Gold, in all configurations you must have at least a local standby
database configured with automatic failover so you can meet a low RTO and RPO value in the
case of disaster. Automatic failover is not currently provided for cross-region standby
databases.

Adding a Local Standby Database

1. In the primary database's OCI Console details page, in the Autonomous Database
information tab, go to theDisaster recovery section, and select the Action menu (3 dots)
on the Local line, and select Upgrade to Autonomous Data Guard.

Chapter 32
Oracle MAA for Oracle Autonomous Database Serverless

32-13

2. In the Update disaster recovery panel, verify that the local region and Autonomous Data
Guard are selected, then Submit.

You can optionally enable a maximum data loss limit in Automatic Failover with data
loss limit in seconds. If you lose the primary cluster or site, there is some data loss
because redo is sent asynchronously, so entering a non-zero value is reasonable if you
want to reduce application and database downtime in case of most primary database,
primary cluster, or complete data center failures. By setting the value greater than zero,
automatic failover occurs only if the calculated data loss is less than or equal to the limit. If
zero data loss failover is possible by accessing all primary database redo, it is done
automatically. If data loss is greater than the setting, no automatic action occurs.

Adding a Cross-region Standby Database

1. In the primary database's OCI Console details page, select the Disaster recovery tab,
then select Add peer database.

2. In the Add peer database panel, select the location for the standby database from the
Region list, then Add.

Chapter 32
Oracle MAA for Oracle Autonomous Database Serverless

32-14

There is no option for automatic failover for a cross-region standby database.

After adding the cross-region standby, you can select the standby database name to view
its characteristics in the remote region.

Listing Standby Databases

Local standby databases are not directly accessible using either the OCI Console or clients,
but they are visible in the Disaster recovery sections of the primary database's details page.

A cross-region standby can be managed in its own console page, which is accessible by
selecting the database name. Cross-region standbys also appear in the Disaster recovery
sections of the primary database details page with the region abbreviation appended to the
database name.

The original region of the primary database is called the "home region". Each home region has
one or more remote regions ("buddy regions") associated with it to contain cross-region
standby databases.

Monitoring Apply Lag

You can monitor Autonomous Data Guard apply lag for redo for both a local standby and a
cross-region standby. The data is provided in near real time; there is a short delay between
gathering and uploading to the control plane for display, and the data applies to the entire
POD, not just your specific Autonomous database.

To access the lag information, in the OCI Console Autonomous Database details page, on the
Monitoring tab, select view all database metrics.

Chapter 32
Oracle MAA for Oracle Autonomous Database Serverless

32-15

On the Service Metrics page, scroll down until you see the Peer Lag metric display.

The database being viewed determines the data in the metric. If you are viewing the primary
database, the metric data display is for the local standby; if you are viewing the cross-region
standby, the metric data display is for the cross-region standby.

Transport lag is typically less than 10 seconds for a local standby and less than 60 seconds for
cross-region standby, depending on workloads and peaks.

Figure 32-1 Peer Lag for Local Standby

Figure 32-2 Peer Lag for Cross-Region Standby

Chapter 32
Oracle MAA for Oracle Autonomous Database Serverless

32-16

Autonomous Data Guard Role Transitions
Either a local or cross-region standby database can be used as the target destination for a role
transition.

The local standby should be the primary target for switchover operations, ensuring that there is
no additional latency in connections and network operations after role transitions complete.

To perform a switchover to the local standby database, in the OCI Console, in the primary
database's details page (in the home region), in the Disaster recovery section, select
Switchover on the Local line, as shown in the following image.

Figure 32-3 Switchover to Local Standby

If the local standby switchover fails, perform a switchover to the cross-region standby.

Note:

The cross-region switchover must be initiated from the remote region cross-region
standby's details page in the OCI Console, not from the primary database page.

To perform a switchover to the remote (cross-region) standby database, in the OCI Console, in
the cross-region database's details page (in the remote region), in the Disaster recovery
section, select Switchover on the Role line, as shown in the following image.

Chapter 32
Oracle MAA for Oracle Autonomous Database Serverless

32-17

Figure 32-4 Switchover to Cross-region Standby

If the switchover is successful, the Role line status changes from Standby to Primary.

Manual Failover Operations and Determining Data Loss

Because your database is in a shared environment and you only have access to your
autonomous databases, you will not know if issues are impacting only your databases or the
entire POD. It is always best to react under the premise that the issues are local to only your
database.

If you do not have automatic failover enabled, always attempt a switchover using the OCI
Console first. A successful switchover guarantees zero data loss. If switchover fails, the role
transition option in the OCI Console will change to Failover.

The following image shows the Disaster recovery section of the cross-region (remote)
standby details page, showing that because the Switchover action was not successful, the
choice is now a Failover.

In this case, the failover operation ensures that all available redo will be applied, though it does
not guarantee zero data loss. This applies to both local and cross-region failover operations.

Determining Data Loss

Each manual failover job generates a work request visible in the console.

Chapter 32
Oracle MAA for Oracle Autonomous Database Serverless

32-18

To determine the amount of data loss after a failover to the local standby, go to the Work
requests tab on the Autonomous Database details page. For a cross-region standby, look at
the Work requests in the cross-region new primary.

Select the work request for the failover and view the Log messages, which report the data
loss incurred during the failover.

Notifications for Automatic Failover

Automatic failover is only provided for the local standby database, and activates when
connection loss is detected against the primary database.

Oracle scans the Connection Manager (CMAN) connection log, searching for connection
failures. When failures are detected for a period of time (typically 60 to 90 seconds) with no
successful connections found for the duration, automatic failover is triggered. Detection of a
successful connection resets the check and timing.

Regardless of any Automatic Failover settings, if a failure is detected and if Oracle can
guarantee zero data loss, failover to your local region standby occurs automatically.

If a non-zero data loss situation is encountered, Oracle checks if automatic failover is enabled
and compares the potential data loss to the Automatic Failover loss limit defined. If the
potential data loss is determined to be less than the specified loss limit, automatic failover
occurs.

Local standby automatic failover jobs do not create work requests that can be reviewed;
however, you can create events to receive notification of the beginning and end of automatic
failover operations, in addition to displaying the data loss associated with the failover.
Information about creating events can be found in Get Notified of Autonomous Database
Events. Notifications require rules to establish the conditions under which a notification is sent.

To enable notifications for local standby automatic failover:

1. Open the Notifications service.

In the OCI Console, select the hamburger menu in the upper left-hand corner, and select
Developer Services, then select Notifications under Application Integration.

2. Select Create Topic and provide a name and description.

3. Select the new topic and select Create Subscription

4. In the Create Subscription panel, select a notification type (email, Slack, pager, etc) and
select Create.

5. Open the Events service Rules page.

Chapter 32
Oracle MAA for Oracle Autonomous Database Serverless

32-19

https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/autonomous-database-events.html#GUID-66B76449-6025-4A0F-BE9C-9B9F981347CF
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/autonomous-database-events.html#GUID-66B76449-6025-4A0F-BE9C-9B9F981347CF

In the OCI Console, select the hamburger menu in the upper left hand corner, and select
Observability & Management, then select Rules under Events Service.

6. On the Rules page, select Create Rule.

A single rule can generate notifications for multiple events.

7. Provide a display name and description, and in the Rule Conditions section, enter the
following conditions for notifying on Automatic Failover Begin and End events.

a. To establish the type of event for the rule, configure the first Condition with these
values:

• Condition: Event Type

• Service Name: Database

• Event Type: Autonomous Container Database - Critical

b. To limit the rule to just your tenancy, add a Condition with the following values:

• Condition: Attribute

• Service Name: compartmentId

• Attribute Values: my.tenancy.id

c. To cause the rule to send notifications for Automatic Failure Begin and End events,
add another Condition with the following values:

• Condition: Attribute

• Attribute Name: eventName

• Attribute Values: AutomaticFailoverBegin and AutomaticFailoverEnd

8. In the Actions section, below the Rule Conditions section in the same dialog, associate
the rule with an action to trigger notification, using the following settings:

• Action Type: Notifications.

• Notifications Compartment: Your tenancy name from the drop down list.

• Topic: choose the topic you created in Step 2 above.

9. Click Create Rule to save the rule.

After the rules and notification creation are completed, whenever an automatic failover
operation begins and ends you receive a notification based on the rule you set up. For
example, if you chose an email subscription, you would receive a begin email message with a
subject like "OCI Event

Chapter 32
Oracle MAA for Oracle Autonomous Database Serverless

32-20

Notification :com.oraclecloud.databaseservice.autonomous.database.critical" containing
messaging including something like the following:

{
 "eventType" :
"com.oraclecloud.databaseservice.autonomous.database.critical",
 "cloudEventsVersion" : "0.1",
 "eventTypeVersion" : "2.0",
 "source" : "DatabaseService",
 "eventTime" : "2025-03-18T20:21:24Z",
 "contentType" : "application/json",
 "data" : {
 "compartmentId" : "<OCID of your Tenancy>",
 "compartmentName" : "<Tenancy Name>",
 "resourceName" : "<Autonomous Database name>",
 "resourceId" : "<OCID of the Autonomous Database involved",
 "additionalDetails" : {
 "dbName" : "<Autonomous Database name>",
 "eventName" : "AutomaticFailoverBegin",
 "description" : "Automatic failover for database <Autonomous Database
name> has begun.",
 "autonomousDataType" : "Serverless",
 "workloadType" : "Data Warehouse"
 }
 },
 "eventID" : "<Event ID>",
 "extensions" : {
 "compartmentId" : "<OCID of your Tenancy>"
 }
}

Then you would receive an end email message with the same subject containing something
like the following. The end email message also contains the calculated data loss from the
operation.

{
 "eventType" :
"com.oraclecloud.databaseservice.autonomous.database.critical",
 "cloudEventsVersion" : "0.1",
 "eventTypeVersion" : "2.0",
 "source" : "DatabaseService",
 "eventTime" : "2025-03-19T20:47:13Z",
 "contentType" : "application/json",
 "data" : {
 "compartmentId" : "<OCID of your Tenancy>",
 "compartmentName" : "<Tenancy Name>",
 "resourceName" : "<Autonomous Database name>",
 "resourceId" : "<OCID of the Autonomous Database>",
 "additionalDetails" : {
 "dbName" : "<Autonomous Database name>",
 "eventName" : "AutomaticFailoverEnd",
 "description" : "Automatic failover completed with 4 seconds data loss
and <Autonomous Database name> is AVAILABLE and ready for user operations.",
 "autonomousDataType" : "Serverless",
 "workloadType" : "Data Warehouse"

Chapter 32
Oracle MAA for Oracle Autonomous Database Serverless

32-21

 }
 },
 "eventID" : "<Event ID>",
 "extensions" : {
 "compartmentId" : "<OCID of your Tenancy>"
 }
}

MAA Autonomous Data Guard RTO and RPO Observations

The following table provides MAA observations of hundreds of switchover and failover
operations with heavy workload.

Note that the redo rates listed are for the entire POD, not for just the Autonomous Databases
involved in the role transition. In Autonomous Database Serverless you have no control over
the activity in Autonomous Databases not owned by you. Manual failovers require human
detection time and attempts to switchover before submitting the failover operation. The Return
to Operation (RTO) times are from the time the failover was submitted. For automatic failover,
the detection time is typically 60 to 90 seconds.

Table 32-4 Autonomous Data Guard Local Standby Observations

Use Cases Operation Type PDBs with
Autonomous
Data Guard

POD Redo Rate Maximum
Application RTO

Maximum RPO

CDB Failure Manual 6 250-270 MB/sec Detection time + 85
seconds

2 secs

CDB Failure Automatic 6 250-265 MB/sec Detection time +57
seconds

2 secs

Cluster Failure Manual 6 250-280 MB/sec Detection time +72
seconds

2 secs

Cluster Failure Automatic 6 250-280 MB/sec Detection time +63
secs

1 secs

Switchover Manual 6 225-240 MB/sex 118 secs 0

Table 32-5 Autonomous Data Guard Cross-Region Standby Observations

Use Cases Operation Type PDBs with
Autonomous
Data Guard

POD Redo Rate Maximum
Application RTO

Maximum RPO

CDB Failure Manual 5 175-200MB/s Based on reaction
to outage by user +
potential 5 minutes
for failed
switchover in UI

106s

1s-3s

Cluster Failure Manual 5 175-200MB/s Based on reaction
to outage by user +
potential 5 minutes
for failed
switchover in UI

126s

13s

Switchover Manual 5 175-200 MB/s 407s 0

Chapter 32
Oracle MAA for Oracle Autonomous Database Serverless

32-22

Table 32-5 (Cont.) Autonomous Data Guard Cross-Region Standby Observations

Use Cases Operation Type PDBs with
Autonomous
Data Guard

POD Redo Rate Maximum
Application RTO

Maximum RPO

Site Failure All 5 175-200 MB/s Same as cluster
failure

Typically, 30-60
seconds

Cross-region redo
push is every 60
seconds

Preparing an Application for Seamless Application Failover

To retrieve sample connection strings for the database, in the OCI Console, on the
Autonomous Database home region details page select Database connection.

You have two options:

• The Regional wallet provides connect strings for all local databases in the local region for
your tenancy. For example, if you have 10 databases in Ashburn region and you are
viewing one of them, the OCI Console generates TNS aliases for all 10, with an address
list consisting of only the required host names to connect to the Ashburn copies of the
databases.

• When running in the remote region there are two options for the connection string:

– Connect to the cross-region standby displayed in the remote region in the OCI console
and retrieve the Regional wallet under Wallet Type from the Database connection
section.

The download consists of a ZIP file including a number of files required for connection.
The tnsnames.ora in the ZIP file contains only the host for the CMAN local to that
region, and provides connect strings for all local databases for the local region for your
tenancy.

For example, if you have 10 databases in Ashburn region, and you are viewing one of
them, the OCI Console generates TNS aliases for all 10 with an address list consisting
of only the required host names to connect to the Ashburn copies of the databases.

– Connect to primary database in the home region and retrieve the Instance wallet
under Wallet type from the Database Connection section.

The download consists of a ZIP file including a number of files required for connection.
The tnsnames.ora in the ZIP file contains both of the host names in the address list,
with the remote region listed first and the home region listed second.

Using the instance wallet as is, the connection to the initial host in the address list
must fail before it tries to connect to the remote region. You can modify the connect
strings to follow MAA recommendations and avoid the delay caused by waiting for the
connection to the first host in the address list to timeout. For more information see
Step 2: Configure the Connection String for High Availability.

Chapter 32
Oracle MAA for Oracle Autonomous Database Serverless

32-23

Note:

For the local standby, the same connect string works regardless of where in the
region the database resides internally. The host address connects to the local
Connection Manager (CMAN), which in turn connects to the appropriate primary
database for the connection string.

MAA has recommendations for connection strings and methods to ensure the highest
availability and smoothest transitioning. The connection strings provided here should be used
as the starting point. See Configuring Continuous Availability for Applications for more
information.

Chapter 32
Oracle MAA for Oracle Autonomous Database Serverless

32-24

33
Oracle Maximum Availability Architecture in
Oracle Exadata Cloud Systems

Oracle Maximum Availability Architecture in Oracle Exadata Cloud Infrastructure (ExaDB-D)
and Oracle Exadata Cloud@Customer (ExaDB-C@C) provides inherent high availability, data
protection, and disaster recovery protection integrated with both cloud automation and life
cycle operations, enabling Oracle Exadata Cloud systems to be the best cloud solution for
enterprise databases and applications.

See Oracle Cloud: Maximum Availability Architecture for detailed walk-through of Oracle Cloud
MAA architectures and features.

Oracle Maximum Availability Architecture Benefits
• Deployment: Oracle Exadata Cloud systems (ExaDB-D and ExaDB-C@C)) are deployed

using Oracle Maximum Availability Architecture best practices, including configuration best
practices for storage, network, operating system, Oracle Grid Infrastructure, and Oracle
Database. ExaDB-D is optimized to run enterprise Oracle databases with extreme
scalability, availability, and elasticity.

• Oracle Maximum Availability Architecture database templates: All Oracle Cloud
databases created with Oracle Cloud automation use Oracle Maximum Availability
Architecture default settings, which are optimized for ExaDB-D.

Oracle does not recommend that you use custom scripts to create cloud databases. Other
than adjusting memory and system resource settings, avoid migrating previous database
parameter settings, especially undocumented parameters. One beneficial database data
protection parameter, DB_BLOCK_CHECKING, is not enabled by default due to its potential
overhead. MAA recommends evaluating the performance impact for your application and
enabling this setting if performance impact is reasonable.

• Backup and restore automation: When you configure automatic backup to Oracle Cloud
Infrastructure Object Storage, backup copies provide additional protection when multiple
availability domains exist in your region, and RMAN validates cloud database backups for
any physical corruptions.

Database backups occur daily, with a full backup occurring once per week and incremental
backups occurring on all other days. Archive log backups occur frequently to reduce
potential data loss in case of disaster. The archive log frequency is typically 30 minutes.

• Oracle Exadata Database Machine inherent benefits: Oracle Exadata Database
Machine is the best Oracle Maximum Availability Architecture platform that Oracle offers.
Exadata is engineered with hardware, software, database, and availability innovations that
support the most mission-critical enterprise applications.

Specifically, Exadata provides unique high availability, data protection, and quality-of-
service capabilities that set Oracle apart from any other platform or cloud vendor. Sizing
Exadata cloud systems to meet your application and database system resource needs (for
example, sufficient CPU, memory, and I/O resources) is very important to maintain the
highest availability, stability, and performance. Proper sizing is especially important when
consolidating many databases on the same cluster.

33-1

https://www.oracle.com/a/tech/docs/cloud-maa-overview.pdf

For a comprehensive list of Oracle Maximum Availability Architecture benefits for Oracle
Exadata Database Machine systems, see Exadata Database Machine: Maximum Availability
Architecture Best Practices.

Examples of these benefits include:

• High availability and low brownout: Fully-redundant, fault-tolerant hardware exists in the
storage, network, and database servers. Resilient, highly-available software, such as
Oracle Real Application Clusters (Oracle RAC), Oracle Clusterware, Oracle Database,
Oracle Automatic Storage Management, Oracle Linux, and Oracle Exadata Storage Server
enable applications to maintain application service levels through unplanned outages and
planned maintenance events.

For example, Exadata has instant failure detection that can detect and repair database
node, storage server, and network failures in less than two seconds, and resume
application and database service uptime and performance. Other platforms can experience
30 seconds, or even minutes, of blackout and extended application brownouts for the
same type of failures. Only the Exadata platform offers a wide range of unplanned outage
and planned maintenance tests to evaluate end-to-end application and database
brownouts and blackouts.

• Data protection: Exadata provides Oracle Database with physical and logical block
corruption prevention, detection, and, in some cases, automatic remediation.

The Exadata Hardware Assisted Resilient Data (HARD) checks include support for server
parameter files, control files, log files, Oracle data files, and Oracle Data Guard broker
files, when those files are stored in Exadata storage. This intelligent Exadata storage
validation stops corrupted data from being written to disk when a HARD check fails, which
eliminates a large class of failures that the database industry had previously been unable
to prevent.

Examples of the Exadata HARD checks include:

– Redo and block checksum

– Correct log sequence

– Block type validation

– Block number validation

– Oracle data structures, such as block magic number, block size, sequence number,
and block header and tail data structures

Exadata HARD checks are initiated from Exadata storage software (cell services) and work
transparently after enabling a database DB_BLOCK_CHECKSUM parameter, which is enabled
by default in the cloud. Exadata is the only platform that currently supports the HARD
initiative.

Furthermore, Oracle Exadata Storage Server provides non-intrusive, automatic hard disk
scrub and repair. This feature periodically inspects and repairs hard disks during idle time.
If bad sectors are detected on a hard disk, then Oracle Exadata Storage Server
automatically sends a request to Oracle Automatic Storage Management (ASM) to repair
the bad sectors by reading the data from another mirror copy.

Finally, Exadata and Oracle ASM can detect corruptions as data blocks are read into the
buffer cache, and automatically repair data corruption with a good copy of the data block
on a subsequent database write. This inherent intelligent data protection makes Exadata
Database Machine and ExaDB-D the best data protection storage platform for Oracle
databases.

For comprehensive data protection, a Maximum Availability Architecture best practice is to
use a standby database on a separate Exadata instance to detect, prevent, and

Chapter 33
Oracle Maximum Availability Architecture Benefits

33-2

https://www.oracle.com/database/technologies/high-availability/exadata-maa-best-practices.html
https://www.oracle.com/database/technologies/high-availability/exadata-maa-best-practices.html

automatically repair corruptions that cannot be addressed by Exadata alone. The standby
database also minimizes downtime and data loss for disasters that result from site, cluster,
and database failures.

• Response time quality of service: Only Exadata has end-to-end quality-of-service
capabilities to ensure that response time remains low and optimum. Database server I/O
latency capping and Exadata storage I/O latency capping ensure that read or write I/O can
be redirected to partnered cells when response time exceeds a certain threshold.

If storage becomes unreliable (but not failed) because of poor and unpredictable
performance, then the disk or flash cache can be confined offline, and later brought back
online if heuristics show that I/O performance is back to acceptable levels. Resource
management can help prioritize key database network or I/O functionality, so that your
application and database perform at an optimized level.

For example, database log writes get priority over backup requests on Exadata network
and storage. Furthermore, rapid response time is maintained during storage software
updates by ensuring that partner flash cache is warmed so flash misses are minimized.

• End-to-end testing and holistic health checks: Because Oracle owns the entire Oracle
Exadata Cloud Infrastructure, end-to-end testing and optimizations benefit every Exadata
customer around the world, whether hosted on-premises or in the cloud. Validated
optimizations and fixes required to run any mission-critical system are uniformly applied
after rigorous testing. Health checks are designed to evaluate the entire stack.

The Exadata health check utility EXACHK is Exadata cloud-aware and highlights any
configuration and software alerts that may have occurred because of customer changes.
No other cloud platform currently has this kind of end-to-end health check available. For
Oracle Autonomous Database, EXACHK runs automatically to evaluate Maximum
Availability Architecture compliance. For non-autonomous databases, Oracle recommends
running EXACHK at least once a month, and before and after any software updates, to
evaluate any new best practices and alerts.

• Higher Uptime: The uptime service-level agreement per month is 99.95% (a maximum of
22 minutes of downtime per month), but when you use MAA best practices for continuous
service, most months would have zero downtime.

Full list of Exadata features and benefits: Whats New in Oracle Exadata Database Machine

Oracle Maximum Availability Architecture best practices paper: Oracle Maximum
Availability Architecture (MAA) engineering collaborates with Oracle Cloud teams to integrate
Oracle MAA practices that are optimized for Oracle Cloud Infrastructure and security. See MAA
Best Practices for the Oracle Cloud for additional information about continuous availability,
Oracle Data Guard, Hybrid Data Guard, Oracle GoldenGate, and other Maximum Availability
Architecture-related topics.

Expected Impact with Unplanned Outages
The following table lists various unplanned outages and the associated potential database
downtime, application level Recovery Time Objective (RTO), and data loss potential or
recovery point objective (RPO). For Oracle Data Guard architectures, the database downtime
or service level downtime does not include detection time or the time it takes before a
customer initiates the Cloud Console Data Guard failover operation.

Chapter 33
Expected Impact with Unplanned Outages

33-3

https://www.oracle.com/database/technologies/high-availability/oracle-cloud-maa.html
https://www.oracle.com/database/technologies/high-availability/oracle-cloud-maa.html

Table 33-1 Availability and Performance Impact for Exadata Cloud Software Updates

Failure and Maintenance
Events

Database Downtime Service-Level Downtime
(RTO)

Potential Service-Level
Data Loss (RPO)

Localized events, including:

Exadata cluster network
topology failures

Storage (disk and flash)
failures

Database instance failures

Database server failures

Zero Near-zero Zero

Events that require restoring
from backup because a
standby database does not
exist:

Data corruptions

Full database failures

Complete storage failures

Availability domain

Minutes to hours

(without Data Guard)

Minutes to hours

(without Data Guard)

30 minutes

(without Data Guard)

Events using Data Guard to
fail over:

Data corruptions

Full database failures

Complete storage failures

Availability domain or region
failures

Seconds to minutes1

Zero downtime for physical
corruptions due to auto-block
repair feature

Seconds to minutes1

The foreground process that
detects the physical
corruption pauses while auto
block repair completes

Zero for Max Availability
(SYNC)

Near Zero for Max
Performance (ASYNC)

1 To protect from regional failure, you will need a standby database in a different region than
the primary database.

Expected Impact with Planned Maintenance
The following table lists various software updates and the associated database and application
impact. This is applicable for all Oracle Exadata Cloud infrastructures, including Oracle
Exadata Cloud@Customer (ExaDB-C@C), Oracle Exadata Cloud Infrastructure (ExaDB-D)
Gen2, and Oracle Autonomous Database (ADB).

Table 33-2 Availability and Performance Impact for Oracle Exadata Cloud Software Updates

Software Update Database Impact Application Impact Scheduled By Performed By

Exadata Network
Fabric Switches

Zero downtime with No
Database Restart

Zero to single-digit
seconds brownout

Oracle schedules
based on customer
preferences and
customer can
reschedule

Oracle Cloud for both
ADB and non-ADB

Chapter 33
Expected Impact with Planned Maintenance

33-4

Table 33-2 (Cont.) Availability and Performance Impact for Oracle Exadata Cloud Software Updates

Software Update Database Impact Application Impact Scheduled By Performed By

Exadata Storage
Servers

Zero downtime with No
Database Restart

Zero to single-digit
seconds brownout

Exadata storage
servers are updated in
rolling manner
maintaining
redundancy

Oracle Exadata System
Software pre-fetches
the secondary mirrors
of the OLTP data that is
most frequently
accessed into the flash
cache, maintaining
application
performance during
storage server restarts

Exadata smart flash for
database buffers is
maintained across
storage server restart

With Exadata 21.2
software, Persistent
Storage Index and
Persistent Columnar
Cache features enable
consistent query
performance after a
storage server software
update

Oracle schedules
based on customer
preferences and
customer can
reschedule

Oracle Cloud for both
ADB and non-ADB

Exadata Database
Host - Monthly
Infrastructure Security
Maintenance

Zero downtime with No
Host or Database
Restart

Zero downtime Oracle schedules and
customer can
reschedule

Oracle Cloud for both
ADB and non-ADB

Exadata Database
Host - Quarterly
Infrastructure
Maintenance

Zero downtime with
Oracle RAC rolling
updates

Zero downtime

Exadata Database
compute resources are
reduced until planned
maintenance
completes

Oracle schedules
based on customer
preferences and
customer can
reschedule

Oracle Cloud for both
ADB and non-ADB

Exadata Database
Guest

Zero downtime with
Oracle RAC rolling
updates

Zero downtime

Exadata Database
compute resources are
reduced until planned
maintenance
completes

Customer for ADB Oracle Cloud for ADB

Customer using Oracle
Cloud Console/APIs for
non-ADB

Chapter 33
Expected Impact with Planned Maintenance

33-5

https://docs.oracle.com/en/engineered-systems/exadata-database-machine/dbmso/new-features-exadata-system-software-release-21.html#GUID-3C74128F-3305-40EC-9481-81843C0B2075
https://docs.oracle.com/en/engineered-systems/exadata-database-machine/dbmso/new-features-exadata-system-software-release-21.html#GUID-3C74128F-3305-40EC-9481-81843C0B2075
https://docs.oracle.com/en/engineered-systems/exadata-database-machine/dbmso/new-features-exadata-system-software-release-21.html#GUID-88E0A908-C2E7-4D86-B880-C6AF0F46FD60
https://docs.oracle.com/en/engineered-systems/exadata-database-machine/dbmso/new-features-exadata-system-software-release-21.html#GUID-88E0A908-C2E7-4D86-B880-C6AF0F46FD60

Table 33-2 (Cont.) Availability and Performance Impact for Oracle Exadata Cloud Software Updates

Software Update Database Impact Application Impact Scheduled By Performed By

Oracle Database
quarterly update or
custom image update

Zero downtime with
Oracle RAC rolling
updates

Zero downtime

Exadata Database
compute resources are
reduced until planned
maintenance
completes

Special consideration is
required during rolling
database quarterly
updates for
applications that use
database OJVM. See
MOS Note 2217053.1
for details.

Customer for ADB Oracle Cloud for ADB.
For ADB-D, standby-
first patch practices are
automatically applied.

Customer using Oracle
Cloud Console/APIs or
dbaascli utility for non-
ADB. In-place via
database home patch,
and out-of-place via
database move,
software updates exist.
Works for Data Guard
and standby databases
(refer to MOS
2701789.1)

Oracle Grid
Infrastructure quarterly
update or upgrade

Zero downtime with
Oracle RAC rolling
updates

Zero downtime

Exadata Database
compute resources are
reduced until planned
maintenance
completes

Customer for ADB Oracle Cloud for ADB

Customer using Oracle
Cloud Console/APIs or
dbaascli utility for non-
ADB

Oracle Database
upgrade with downtime

Minutes to Hour(s)
downtime

Minutes to Hour(s)
downtime

Customer for ADB Oracle Cloud for ADB

Customer using Oracle
Cloud Console/APIs or
dbaascli utility for non-
ADB

Works for Data Guard
and standby databases
(refer to MOS
2628228.1)

Oracle Database
upgrade with near zero
downtime

Minimal downtime with
DBMS_ROLLING,
Oracle GoldenGate
replication, or with
pluggable database
relocate

Minimal downtime with
DBMS_ROLLING,
Oracle GoldenGate
replication, or with
pluggable database
relocate

Customer for non-ADB Oracle Cloud for ADB
on Shared Exadata
Infrastructure (ADB-S)
can run pluggable
database relocate for
upgrade use cases

Customer using
dbaascli for non-
autonomous leveraging
DBMS_ROLLING.
Refer to Exadata Cloud
Database 19c Rolling
Upgrade With
DBMS_ROLLING (Doc
ID 2832235.1)

Customer using
generic Maximum
Availability Architecture
best practices for non-
ADB

Chapter 33
Expected Impact with Planned Maintenance

33-6

https://support.oracle.com/rs?type=doc&id=2832235.1
https://support.oracle.com/rs?type=doc&id=2832235.1
https://support.oracle.com/rs?type=doc&id=2832235.1
https://support.oracle.com/rs?type=doc&id=2832235.1
https://support.oracle.com/rs?type=doc&id=2832235.1

Exadata cloud systems have many elastic capabilities that can be used to adjust database and
application performance needs. By rearranging resources on need, you can maximize system
resources to targeted databases and applications and you can minimize costs. The following
table lists elastic Oracle Exadata Cloud Infrastructure and VM Cluster updates, and the
impacts associated with those updates on databases and applications. All of these operations
can be performed using Oracle Cloud Console or APIs unless specified otherwise.

Table 33-3 Availability and Performance Impact for Exadata Elastic Operations

VM Cluster Changes Database Impact Application Impact

Scale Up or Down VM Cluster Memory Zero downtime with Oracle RAC rolling
updates

Zero to single-digit seconds brownout

Scale Up or Down VM Cluster CPU Zero downtime with No Database
Restart

Zero downtime

Application performance and throughput
can be impacted by available CPU
resources

Scale Up or Down (resize) ASM Storage
for Database usage

Zero downtime with No Database
Restart

Zero downtime

Application performance might be
minimally impacted.

Scale Up VM Local /u02 File System
Size (Exadata X8M and later systems)

Zero downtime with No Database
Restart

Zero downtime

Scale Up VM Local /u02 File System
Size (Exadata X8 and earlier systems)

Zero downtime with Oracle RAC rolling
updates

Zero to single-digit seconds brownout

Scale Down VM Local /u02 File System
Size

Zero downtime with Oracle RAC rolling
updates for scaling down

Zero to single-digit seconds brownout

Adding Exadata Storage Cells Zero downtime with No Database
Restart

Zero to single-digit seconds brownout

Application performance might be
minimally impacted

Adding Exadata Database Servers Zero downtime with No Database
Restart

Zero to single-digit seconds brownout

Application performance and throughput
may increase by adding Oracle RAC
instances and CPU resources

Adding/Dropping Database Nodes in
Virtual Machines (VMs) Cluster

Zero downtime with No Database
Restart

Zero to single-digit seconds brownout

Application performance and throughput
may increase or decrease by adding or
dropping Oracle RAC instances and
CPU resources

Because some of these elastic changes may take significant time, and may impact available
resources for your application, some planning is required.

Note that “scale down” and “drop” changes will decrease available resources. Care must be
taken to not reduce resources below the amount required for database and application stability
and to meet application performance targets. Refer to the following table for estimated timings
and planning recommendations.

Chapter 33
Expected Impact with Planned Maintenance

33-7

Table 33-4 Customer Planning Recommendations for Exadata Elastic Operations

VM Cluster Changes Estimated Timings Customer Planning
Recommendations

Scale Up or Down VM Cluster Memory Time to drain services and Oracle RAC
rolling restart

Typically 15-30 minutes per node, but
may vary depending on application
draining

Understanding application draining.

See Achieving Continuous Availability
For Your Applications

Before scaling down memory, ensure
that database SGAs can still be stored
in hugepages, and that application
performance is still acceptable.

To preserve predictable application
performance and stability:

• Monitor and scale up before
important high workload patterns
require the memory resources

• Avoid memory scale down unless
all your Databases' SGA and PGA
memory fit into the new memory
size and that all SGAs are
accommodated by system's
hugepages.

Scale Up or Down VM Cluster CPU Online operation, typically less than 5
minutes per VM cluster. Scaling up from
a very low value to very high value (10+
oCPU increase) may take 10 minutes.

To preserve predictable application
performance and stability:

• Monitor and scale up before
important high workload patterns
require the CPU resources or when
consistently reaching an OCPU
threshold for tolerated amount of
time.

• Only scale down if the load average
is below a threshold for at least 30
minutes or scale down based on
fixed workload schedules (e.g.
business hours with 60 OCPUs,
non-business hours with 10 OCPUs
and batch with 100 oCPUs)

• Avoid more than one scale down
requests within 2 hours period

Chapter 33
Expected Impact with Planned Maintenance

33-8

Table 33-4 (Cont.) Customer Planning Recommendations for Exadata Elastic Operations

VM Cluster Changes Estimated Timings Customer Planning
Recommendations

Scale Up or Down (resize) ASM Storage
for Database usage

Time varies based on utilized database
storage capacity and database activity.
The higher percentage of utilized
database storage, the longer the resize
operation (which includes ASM
rebalance) will take.

Typically minutes to hours.

Oracle ASM rebalance is initiated
automatically. Storage redundancy is
retained. Due to inherent best practices
of using non-intrusive ASM power limit,
application workload impact is minimal.

Choose a non-peak window so resize
and rebalance operations can be
optimized.

Since the time may vary significantly,
plan for the operation to complete in
hours. To estimate the time that an
existing resize or rebalance operation
per VM cluster, query
GV$ASM_OPERATION. For example, a
customer can run the following query
every 30 minutes to evaluate how much
work (EST_WORK) and how much
more time (EST_MINUTES) potentially
is required:

select operation, pass, state,
sofar, est_work, est_minutes
from gv$asm_operation where
operation='REBAL';
Note the estimated statistics tend to
become more accurate as the rebalance
progresses but can vary based on the
concurrent workload.

Scale Up VM Local /u02 File System
Size (Exadata X8M and later)

Online operation, typically less than 5
minutes per VM cluster

VM local file system space is allocated
on local database host disks, which is
shared by all VM guests for all VM
clusters provisioned on that database
host. Do not scale up space for
Local /u02 File System unnecessarily on
one VM cluster such that no space
remains to scale up on other VM
clusters on the same Exadata
Infrastructure because Local /u02 File
System scale down must be performed
in a RAC rolling manner, which may
cause application disruption.

Scale Up VM Local /u02 File System
Size (Exadata X8 and earlier)

Time to drain services and Oracle RAC
rolling restart. Typically 15-30 minutes
per node, but may vary depending on
application draining settings.

Understanding application draining.

See Achieving Continuous Availability
For Your Applications

Scale Down VM Local /u02 File System
Size

Time to drain services and Oracle RAC
rolling restart. Typically 15-30 minutes
per node, but may vary depending on
application draining settings.

Understanding application draining

See Achieving Continuous Availability
For Your Applications

Chapter 33
Expected Impact with Planned Maintenance

33-9

Table 33-4 (Cont.) Customer Planning Recommendations for Exadata Elastic Operations

VM Cluster Changes Estimated Timings Customer Planning
Recommendations

Adding Exadata Storage Cells Online operation to create more
available space for administrator to
choose how to distribute.

Typically 3-72 hours per operation
depending number of VM clusters,
database storage usage and storage
activity. With very active database and
heavy storage activity, this can take up
to take 72 hours.

As part of the add storage cell
operation, there are two parts to this
operation. 1) storage is added to the
system as part the add storage, 2)
administrator needs to decide which VM
cluster to expand its ASM disk groups
as a separate operation.

Plan to add storage when your storage
capacity utilization will hit 80% within a
month's time since the operation may
complete in days.

Oracle ASM rebalance is initiated
automatically. Storage redundancy is
retained. Due to inherent best practices
of using non-intrusive ASM power limit,
application workload impact is minimal.

Since the time may vary significantly,
plan for the operation to complete in
days before the storage is available. To
estimate the time that an existing resize
or rebalance operation per VM cluster,
query GV$ASM_OPERATION. For
example a customer can run the
following query every 30 minutes to
evaluate how much work (EST_WORK)
and how much more time
(EST_MINUTES) potentially is required:

select operation, pass, state,
sofar, est_work, est_minutes
from gv$asm_operation where
operation='REBAL';
Note the estimated statistics tend to
become more accurate as the rebalance
progresses, but can vary based on the
concurrent workload.

Adding Exadata Database Servers Online operation to expand your VM
cluster. One step process to add the
Database Compute to the ExaDB-D and
then expand the VM cluster.

Approximately 1 to 6 hours per Exadata
Database Server

Plan to add Database Compute when
your Database resource utilization will
hit 80% within a month's time. Be aware
and plan for this operation to take many
hours to a day.

Choose a non-peak window so that the
add Database Compute operation can
complete faster

Each Oracle RAC database registered
by Oracle Clusterware and visible in the
Oracle Cloud Console is extended. If a
database was configured outside the
Oracle Cloud Console or without
dbaascli, then those databases will not
be extended.

Adding/Dropping Database Nodes in
Virtual Machines (VMs) Cluster

Zero database downtime when adding
Database Nodes in VM cluster typically
takes 3-6 hours, depending on the
number of databases in the VM cluster

Zero database downtime with dropping
Database Nodes in VM cluster typically
takes 1-2 hours, depending on number
of databases in the VM cluster

Understand that the add/drop operation
is not instantaneous, and operation may
take several hours to complete

Drop operation reduces Database
compute, OCPU and memory
resources, so application performance
can be impacted

Chapter 33
Expected Impact with Planned Maintenance

33-10

Achieving Continuous Availability For Your Applications
As part of Oracle Exadata Database Service (ExaDB-D and ExaDB-C@C) all software updates
(except for non-rolling database upgrades or non-rolling patches) can be done online or with
Oracle RAC rolling updates to achieve continuous database up time. Furthermore, any local
failures of storage, Exadata network, or Exadata database server are managed automatically,
and database up time is maintained.

To achieve continuous application up time during Oracle RAC switchover or failover events,
follow these application-configuration best practices:

• Use Oracle Clusterware-managed database services to connect your application. For
Oracle Data Guard environments, use role based services.

• Use recommended connection string with built-in timeouts, retries, and delays, so that
incoming connections do not see errors during outages.

• Configure your connections with Fast Application Notification.

• Drain and relocate services. Refer to the table below and use recommended best practices
that support draining, such as test connections, when borrowing or starting batches of
work, and return connections to pools between uses.

• Leverage Application Continuity or Transparent Application Continuity to replay in-flight
uncommitted transactions transparently after failures.

For more details on the above checklist, refer to Configuring Continuous Availability for
Applications. Oracle recommends testing your application readiness by following Validating
Application Failover Readiness (Doc ID 2758734.1).

Depending on the Oracle Exadata Database Service planned maintenance event, Oracle
attempts to automatically drain and relocate database services before stopping any Oracle
RAC instance. For OLTP applications, draining and relocating services typically work very well
and result in zero application downtime.

Some applications, such as long running batch jobs or reports, may not be able to drain and
relocate gracefully within the maximum draining time. For those applications, Oracle
recommends scheduling the software planned maintenance window around these types of
activities or stopping these activities before the planned maintenance window. For example,
you can reschedule a planned maintenance window to run outside your batch windows, or stop
batch jobs before a planned maintenance window.

Special consideration is required during rolling database quarterly updates for applications that
use database OJVM. See MOS Note 2217053.1 for details.

The following table lists planned maintenance events that perform Oracle RAC instance rolling
restart, and the relevant service drain timeout variables that may impact your application.

Chapter 33
Achieving Continuous Availability For Your Applications

33-11

https://support.oracle.com/rs?type=doc&id=2758734.1
https://support.oracle.com/rs?type=doc&id=2758734.1

Table 33-5 Application Drain Attributes for Exadata Cloud Software Updates and
Elastic Operations

Oracle Exadata Database Service Software
Updates or Elastic Operations

Drain Timeout Variables

Oracle DBHOME patch apply and database MOVE Oracle Cloud software automation stops/relocates
database services while honoring drain_timeout
settings defined by database service configuration
(for example, srvctl).1

You can override drain_timeout defined on services
by using option –drainTimeoutInSeconds with
command line operation dbaascli dbHome
patch or dbaascli database move.

The Oracle Cloud internal maximum draining time
supported is 2 hours.

Oracle Grid Infrastructure (GI) patch apply and
upgrade

Oracle Cloud software automation stops/relocates
database services while honoring drain_timeout
settings defined by database service configuration
(for example,. srvctl).1

You can override drain_timeout defined on
services by using option –
drainTimeoutInSeconds with command line
operation dbaascli grid patch or dbaascli
grid upgrade.

The Oracle cloud internal maximum draining time
supported is 2 hours.

Virtual machine operating system software update
(Exadata Database Guest)

Exadata patchmgr/dbnodeupdate software program
calls drain orchestration (rhphelper).

Drain orchestration has the following drain timeout
settings (See Using RHPhelper to Minimize
Downtime During Planned Maintenance on
Exadata (Doc ID 2385790.1) for details):

• DRAIN_TIMEOUT – if a service does not have
drain_timeout defined, then this value is used.
Default value is 180 seconds.

• MAX_DRAIN_TIMEOUT - overrides any higher
drain_timeout value defined by database
service configuration. Default value is 300
seconds. There is no maximum value.

DRAIN_TIMEOUT settings defined by database
service configuration are honored during service
stop/relocate.

Chapter 33
Achieving Continuous Availability For Your Applications

33-12

https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1

Table 33-5 (Cont.) Application Drain Attributes for Exadata Cloud Software Updates
and Elastic Operations

Oracle Exadata Database Service Software
Updates or Elastic Operations

Drain Timeout Variables

Exadata X8 and earlier systems

• Scale up and down VM local /u02 file system
size

• Scale up or down VM cluster memory

Exadata X8 and earlier systems local file system
resize operation calls drain orchestration
(rhphelper).

Drain orchestration has the following drain timeout
settings (See Using RHPhelper to Minimize
Downtime During Planned Maintenance on
Exadata (Doc ID 2385790.1) for details):

• DRAIN_TIMEOUT – if a service does not have
drain_timeout defined, then this value is used.
Default value is 180 seconds.

• MAX_DRAIN_TIMEOUT - overrides any higher
drain_timeout value defined by database
service configuration. Default value is 300
seconds.

DRAIN_TIMEOUT settings defined by database
service configuration are honored during service
stop/relocate.

The Oracle Cloud internal maximum draining time
supported for this operation is 300 seconds.

Exadata X8M and later systems

• Scale down VM local file system size

Exadata X8M and later systems call drain
orchestration (rhphelper).

Drain orchestration has the following drain timeout
settings (See Using RHPhelper to Minimize
Downtime During Planned Maintenance on
Exadata (Doc ID 2385790.1) for details):

• DRAIN_TIMEOUT – if a service does not have
drain_timeout defined, then this value is used.
Default value is 180 seconds.

• MAX_DRAIN_TIMEOUT - overrides any higher
drain_timeout value defined by database
service configuration. Default value is 300
seconds.

DRAIN_TIMEOUT settings defined by database
service configuration are honored during service
stop/relocate.

The Oracle Cloud internal maximum draining time
supported for this operation is 300 seconds.

Chapter 33
Achieving Continuous Availability For Your Applications

33-13

https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1

Table 33-5 (Cont.) Application Drain Attributes for Exadata Cloud Software Updates
and Elastic Operations

Oracle Exadata Database Service Software
Updates or Elastic Operations

Drain Timeout Variables

Exadata X8M and later systems

• Scale up or down VM cluster memory

Exadata X8M and later systems call drain
orchestration (rhphelper).

Drain orchestration has the following drain timeout
settings (See Using RHPhelper to Minimize
Downtime During Planned Maintenance on
Exadata (Doc ID 2385790.1) for details):

• DRAIN_TIMEOUT – if a service does not have
drain_timeout defined, then this value is used.
Default value is 180 seconds.

• MAX_DRAIN_TIMEOUT - overrides any higher
drain_timeout value defined for a given
service, default 300.

DRAIN_TIMEOUT settings defined by database
service configuration are honored during service
stop/relocate.

The Oracle Cloud internal maximum draining time
supported for this operation is 300 seconds.

Chapter 33
Achieving Continuous Availability For Your Applications

33-14

https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1

Table 33-5 (Cont.) Application Drain Attributes for Exadata Cloud Software Updates
and Elastic Operations

Oracle Exadata Database Service Software
Updates or Elastic Operations

Drain Timeout Variables

Oracle Exadata Cloud Infrastructure (ExaDB-D)
software update

The ExaDB-D database host calls drain
orchestration (rhphelper).

Drain orchestration has the following drain timeout
settings (See Using RHPhelper to Minimize
Downtime During Planned Maintenance on
Exadata (Doc ID 2385790.1) for details):

• DRAIN_TIMEOUT – if a service does not have
drain_timeout defined, then this value is used.
Default value is 180 seconds.

• MAX_DRAIN_TIMEOUT - overrides any higher
drain_timeout value defined by database
service configuration. Default value is 300
seconds.

DRAIN_TIMEOUT settings defined by database
service configuration are honored during service
stop/relocate.

The Oracle Cloud internal maximum draining time
supported for this operation is

• For Exadata X8 and earlier systems, the
timeout is 300 seconds.

• For Exadata X8M and later systems, the
timeout is 500 seconds.

Enhanced Infrastructure Maintenance Controls
feature:

To achieve draining time longer than the Oracle
Cloud internal maximum, leverage the custom
action capability of the Enhanced Infrastructure
Maintenance Controls feature, which allows you to
suspend infrastructure maintenance before the next
database server update starts, then directly stop/
relocate database services running on the
database server, and then resume infrastructure
maintenance to proceed to the next database
server. This feature is also currently available for
Oracle Exadata Cloud@Customer (ExaDB-C@C).
See Configure Oracle-Managed Infrastructure
Maintenance in Oracle Cloud Infrastructure
Documentation for details.

1 Minimum software requirements to achieve this service drain capability is 1) Oracle Database
12.2 and later and 2) the latest Oracle Cloud DBaaS tooling software

Oracle Maximum Availability Architecture Reference
Architectures in Oracle Exadata Cloud

Oracle Exadata Cloud (ExaDB-D and ExaDB-C@C) supports all Oracle Maximum Availability
Architecture reference architectures, providing support for all Oracle Databases, regardless of
their specific high availability, data protection, and disaster recovery service-level agreements.

Chapter 33
Oracle Maximum Availability Architecture Reference Architectures in Oracle Exadata Cloud

33-15

https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://docs.oracle.com/en-us/iaas/exadata/doc/ecc-vw-maint-hist.html
https://docs.oracle.com/en-us/iaas/exadata/doc/ecc-vw-maint-hist.html

See MAA Best Practices for the Oracle Cloud for more information about Oracle Maximum
Availability Architecture in the Oracle Exadata Cloud.

Chapter 33
Oracle Maximum Availability Architecture Reference Architectures in Oracle Exadata Cloud

33-16

https://www.oracle.com/database/technologies/high-availability/oracle-cloud-maa.html

34
Oracle Maximum Availability Architecture for
Multicloud

Oracle Maximum Availability Architecture (MAA) in Oracle Exadata Database Service on
Dedicated Infrastructure (ExaDB-D) running within Oracle Multicloud data centers ensures
inherent high availability (HA), data protection, and scalability, including zero database
downtime for software updates and elastic operations.

Oracle Multicloud partners include Oracle Database@Azure, Oracle Database@Google Cloud,
and Oracle Database@AWS.

See more at the following topics:

• MAA Evaluations on Multicloud Solutions

• Oracle Maximum Availability Architecture for Oracle Database@Azure

• Oracle Maximum Availability Architecture for Oracle Database@Google Cloud

MAA Evaluations on Multicloud Solutions
Oracle Maximum Availability Architecture (MAA) validates the MAA Silver, MAA Gold, and
MAA Platinum reference architectures with its Oracle Multicloud partners.

• MAA Silver - The validated MAA Silver solution encompasses the best high availability
(HA) database platform, which includes configuration and lifecycle best practices covering
Oracle database creation, elastic operations, software updates, and backup and restore.
All applications can leverage this solution without any changes.

• MAA Gold - The validated MAA Gold solution achieves comprehensive data protection and
disaster recovery (DR) when augmented with an Oracle Cloud standby database
configured with Oracle Active Data Guard. MAA Gold is the best and simplest cloud
solution for mission-critical enterprise databases and applications to achieve maximum
resiliency in the case of a local or widespread unexpected outage, without requiring
application changes.

• MAA Platinum - When augmented with Oracle GoldenGate or OCI GoldenGate
Marketplace and MAA life cycle best practices, the validated MAA Platinum solution
achieves a NeverDown option, because you can direct the application to any one of the
available logical GoldenGate replicas for any outage scenario. MAA Platinum can be
implemented with minimum application changes other than routing work to avoid logical
transaction conflicts and make logical conflict resolution a rare case.

See Oracle Cloud: Maximum Availability Architecture for a detailed walk-through of Oracle
Cloud MAA architectures and features.

Oracle Database Multicloud Evaluations by Oracle MAA
To ensure success and consistency for Oracle customers, the Oracle MAA solution team
evaluates MAA reference architectures and key life cycle operations on the actual Oracle
Database in Multicloud environments. The goal is to provide assurances using chaos
engineering validation methods.

34-1

https://www.oracle.com/a/tech/docs/cloud-maa-overview.pdf

• Expected RTO and RPO are achieved with 100s of different unplanned outages (gray and
complex failures) and planned maintenance activities

• Expected performance impact brownout observed with software updates and elastic
operations

• Configuration best practices are in place at deployment, and configuration health checks
continue to work as expected

• Key life cycle practices work as expected

When the validation of the MAA solution in our Multicloud environments meets the minimum
requirements, Oracle MAA documents the MAA architecture, RTO and RPO observations, and
network and performance considerations.

Network Evaluation
An MAA network evaluation of Oracle Database Multicloud solutions consists of the following:

Network Considerations

Network considerations such as network bandwidth and network latency using OCI peered
network or Multicloud peered network

• Application to database VM

• Database VM to database VM within the same Availability Domains (ADs) or Availability
Zones (AZs)

• Database VM to database VM across ADs or AZs

• Database VM to database VM across regions

• Database VM to database VM across Availability Domain or Availability Zone or cross-
region

Network Test Prerequisites

Latency and throughput are measured by iperf3 and qperf (installed on Exadata by default).

• Ensure that the ingress and egress security rules on each OCI VCN allow for port 5201,
the default port for iperf3, which will also be used for qperf in these tests. See Updating a
Security List for more information about security rules.

• Record the Virtual IP addresses (VIP) for the database server VMs that will be tested.

On each database server VM being tested run:

as grid (sudo su - grid from opc user):

$ srvctl config vip -n $(hostname -s)
VIP exists: network number 1, hosting node <hostname>
VIP Name: <VIP name>
VIP IPv4 Address: <VIP> ← record this IP address for each host involved in
the tests
VIP IPv6 Address:
VIP is enabled.
VIP is individually enabled on nodes:
VIP is individually disabled on nodes:

Chapter 34
MAA Evaluations on Multicloud Solutions

34-2

https://docs.public.oneportal.content.oci.oraclecloud.com/iaas/compute-cloud-at-customer/topics/network/updating-a-security-list.htm
https://docs.public.oneportal.content.oci.oraclecloud.com/iaas/compute-cloud-at-customer/topics/network/updating-a-security-list.htm

Network Tests

• Run the following tests multiple times to ensure consistency.

• It is recommended that the tests be run at different times of the day to ensure consistency
throughout.

• For database server VMs, these tests should minimally be performed between one VM of
the primary cluster and one VM of the standby database cluster. Additional tests can be
performed on all database servers to ensure consistency.

• All iperf3 and qperf commands should be run as root (sudo su - from opc user).

• For iperf3 tests, you can optionally use the -f M parameter to display bitrate results in
MB/s.

Single Process Throughput Tests

1. On the standby database server VM run:

iperf3 -s

2. On the primary database server VM run the following test multiple times to ensure
consistency.

iperf3 -c <remote VIP>

3. Record the SUM of the sender at the end of each run.

Sample output:

Connecting to host <remote VIP>, port 5201
[5] local <local IP> port 49230 connected to <remote VIP> port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.00 sec 474 MBytes 3.97 Gbits/sec 1656 2.70 MBytes

[5] 1.00-2.00 sec 235 MBytes 1.97 Gbits/sec 0 3.06 MBytes
[5] 2.00-3.00 sec 266 MBytes 2.23 Gbits/sec 0 3.44 MBytes
[5] 3.00-4.00 sec 264 MBytes 2.21 Gbits/sec 61 2.73 MBytes
[5] 4.00-5.00 sec 240 MBytes 2.01 Gbits/sec 0 3.09 MBytes
[5] 5.00-6.00 sec 268 MBytes 2.24 Gbits/sec 0 3.43 MBytes
[5] 6.00-7.00 sec 266 MBytes 2.23 Gbits/sec 76 1.87 MBytes
[5] 7.00-8.00 sec 169 MBytes 1.42 Gbits/sec 0 2.25 MBytes
[5] 8.00-9.00 sec 199 MBytes 1.67 Gbits/sec 0 2.61 MBytes
[5] 9.00-10.00 sec 229 MBytes 1.92 Gbits/sec 0 2.99 MBytes
- -
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.00 sec 2.55 GBytes 2.19 Gbits/sec 1793
sender <---- USE THIS VALUE
[5] 0.00-10.01 sec 2.54 GBytes 2.18 Gbits/sec receiver

Multi-Process Throughput Tests

For multiple processes, evaluate different degrees of parallelism 4, 10, and 16.

1. On the standby database server VM run:

iperf3 -s

Chapter 34
MAA Evaluations on Multicloud Solutions

34-3

2. On the primary database server VM run each of the following tests multiple times to ensure
consistency.

iperf3 -c <remote VIP> -P 4

iperf3 -c <remote VIP> -P 10

iperf3 -c <remote VIP> -P 16

3. Record the SUM of the sender at the end of each run. For example:

<...>

[SUM] 0.00-10.00 sec 10.1 GBytes 8.71 Gbits/sec 2159
sender

4. Repeat these tests in both directions (server on primary VM) to ensure throughput.

Note:

High degrees of parallelism (for example, above 16) do not show a representative
measure of throughput with iperf3. It is not recommended that you use higher
parallelism in the tests.

Latency Tests

1. On the standby database server VM run:

qperf -lp 5201

2. On the primary database server VM run the following test multiple times to ensure
consistency.

qperf 10.255.0.118 -lp 5201 tcp_lat

Note:

qperf measures latency in only one direction. Run this test in both directions and
sum the values for round trip time (RTT).

Network Results Impact on Application and Database Workload and Architecture

• Application performance and network round trip latency: If your application is OLTP or
dependent on low latency between the application VM and the database VM, co-locate
your application VM with the database VM and ensure that RTT latency meets your
response time requirements.

• Local standby database and network round trip latency: If you are considering a zero
data loss SYNC transport configuration between the primary and standby in the same
region, round trip (RTT) network latency over 3 milliseconds (<1ms preferred) can impact
the response time and throughput of the application.

Chapter 34
MAA Evaluations on Multicloud Solutions

34-4

Most standby databases using SYNC transport have RTT network latency < 1 ms. A
Globally Distributed Database (sharded database) also benefits from low RTT latency
between database shards.

• Sufficient single process network throughput to support peak database change rate
for standby: A single process iperf throughput test must exceed the maximum
throughput of each database instance's peak redo rate, preferably by 20% or more, to
handle growth.

If this throughput is not met, once the standby is configured, it may be unable to keep up
with the primary database during peak times. Single process throughput is also critical for
Oracle Golden Gate and Globally Distributed Database configurations.

Single process throughput should be at least 2.4 Gb/sec (300 MB/sec). If not, log a service
request with the multi-vendor partner. With OCI peering, the expectation is that throughput
will be much higher than the aforementioned minimum.

• Sufficient multiple-process network throughput to high data volume transfers: The
parallel iperf test indicates approximately how fast the database can be instantiated with
the tested number of processes.

For example, for a 50 TB database, if the test with a degree of parallelism of 8 achieves
1GB/s, a database with eight processes will take over 14 hours to instantiate. The default
instantiation uses four channels; a service request can be opened with Oracle Support to
increase the degree of parallelism for instantiation.

Multiple-process throughput should be at least 8 Gb/sec (1000 MB/sec). If not, log a
service request with the multi-vendor partner. With OCI peering, the expectation is that
throughput will be much higher than the aforementioned minimum. Higher latency means a
longer delay in data transmission, which can result in lower throughput even if the network
speed is high. Other factors resulting in lower throughput include packet loss and
congestion.

MAA Silver Architecture and Evaluation

MAA Silver on Oracle Database in a Multicloud solution consists of the following architecture:

• The Oracle Exadata Database Service on Dedicated Infrastructure (ExaDB-D) cluster
residing in the Multicloud partner's data center

• High Availability (HA) and redundant application tier spread across multiple AZs

• Key Management Service, Autonomous Recovery Service (in Multicloud data center or
OCI), and Object Storage Service (in OCI) for backup and restore

• Pre-configured redundant and HA network topology

MAA Silver evaluation consists of:

• Network tests from the application VM to database VM, then database VM to backup target
solution

• Testing backup and restore performance, throughput, and key use cases using Oracle
Cloud Infrastructure (OCI) Object Storage Service (in OCI), or Autonomous Recovery
Service in Multicloud data center or OCI

• Setting up an application workload and MAA framework to simulate 100s of different
unplanned (blackout and brownout) outages

• Ensuring RTO and RPO are met for local failures

• Ensuring zero downtime or expected brief application brownout for system and database
elastic changes or software updates can be met

Chapter 34
MAA Evaluations on Multicloud Solutions

34-5

• Ensuring that the exachk or configuration health checks work as expected, and that the
deployed system is MAA compliant

MAA Gold Architecture and Evaluation

MAA Gold on Oracle Database in a Multicloud solution consists of the following architecture:

• Oracle Exadata Database Service on Dedicated Infrastructure (ExaDB-D) VM clusters
(primary and standby databases) reside in the same or separate availability domains (AD)
or availability zones (AZ) or separate Multicloud regions

Note that all primary and standby databases and their data reside in Oracle's Multicloud
partner's data centers. Assuming primary and standby databases reside in the same AD or
AZ, the MAA Gold architecture still provides inherent HA benefits plus DR failover options
for database and cluster failures. However, this configuration lacks DR protection for a
complete AD or AZ site failure, such as a regional power outage. The MAA architecture
only provides regional failure protection if the standby database resides in a separate
region.

• HA and redundant application tiers are spread across multiple AZs or regions

• Key Management Service, Autonomous Recovery Service (in Multicloud data center or
OCI), and Object Storage Service (in OCI) for backup and restore

• Pre-configured redundant and HA network topology

MAA Gold evaluation builds upon the MAA Silver evaluation, plus:

• Network tests between primary and standby database clusters using OCI peered or
Multicloud peered networks to evaluate round-trip latency and bandwidth

• Oracle Data Guard role transition performance and timings for disaster recovery use cases

• Oracle database rolling upgrade with Data Guard

Oracle Maximum Availability Architecture Benefits

Once certified, the following are some benefits of implementing Oracle MAA reference
architectures for Oracle Multicloud.

For a comprehensive list of Oracle Maximum Availability Architecture benefits for Oracle
Exadata Database Machine systems, see Exadata Database Machine: Maximum Availability
Architecture.

Deployment

Oracle Database in a Multicloud solution running Oracle Exadata Database Service on
Dedicated Infrastructure is deployed using Oracle Maximum Availability Architecture best
practices, including configuration best practices for storage, network, operating system, Oracle
Grid Infrastructure, and Oracle Database. Oracle Exadata Database Service on Dedicated
Infrastructure (ExaDB-D) is optimized to run enterprise Oracle databases with extreme
scalability, availability, and elasticity.

Oracle MAA Database Templates

All Oracle Cloud databases created with Oracle Cloud automation use Oracle Maximum
Availability Architecture default settings, which are optimized for Oracle Database in Multicloud
environments. Oracle does not recommend that you use custom scripts to create cloud
databases. To migrate Oracle databases to Oracle Database in a Multicloud solution, use

Chapter 34
MAA Evaluations on Multicloud Solutions

34-6

https://www.oracle.com/docs/tech/exadata-maa.pdf
https://www.oracle.com/docs/tech/exadata-maa.pdf

Oracle Zero Downtime Migration (ZDM). See Introduction to Zero Downtime Migration
(oracle.com).

Other than adjusting memory and system resource settings, avoid migrating previous database
parameter settings, especially undocumented parameters. One beneficial primary database
data protection parameter, DB_BLOCK_CHECKING, is not enabled by default because of its
potential performance overhead. Any standby database configured with cloud automation
enables DB_BLOCK_CHECKING on the standby automatically to maximize data protection and
detection on the standby database. MAA recommends evaluating the performance impact of
your application and allowing this parameter to be set on the primary database to maximize
logical data corruption prevention and detection if the performance impact is reasonable. In
Oracle Database releases 19c and later, the Data Guard broker maintains the data protection
settings through MAA best practices.

Backup and Restore Automation

Backup copies provide additional protection when you configure automatic backup to
Autonomous Recovery Service in Azure, Google Cloud, or OCI, or to Object Storage Service in
OCI. Oracle Recovery Manager (RMAN) validates cloud database backups for physical
corruptions.

Database backups occur daily, with a full backup occurring once a week, and incremental
backups occurring on all other days. Archived log backups occur frequently to reduce potential
data loss in case a complete database restoration and recovery is required. The archived log
backup frequency is 30 minutes by default; however, the possible data loss will be zero or near
zero with Oracle Data Guard.

With Autonomous Recovery Service, weekly full backups are eliminated, reducing backup
windows and impact with its unique incremental backup forever benefit. When Real-Time Data
Protection is enabled, data loss can be near zero when restoring from backups. Backups can
occur on primary or standby databases, and various retention options exist.

Oracle Exadata Database Machine Inherent Benefits

Oracle Exadata Database Machine is the best Oracle Maximum Availability Architecture
database platform that Oracle offers. Exadata is engineered with hardware, software,
database, availability, and extreme performance for all workloads and scalability innovations
supporting mission-critical enterprise applications.

Specifically, Exadata provides unique high availability, data protection, and quality-of-service
capabilities that set Oracle apart from any other platform or cloud vendor. Sizing Exadata cloud
systems to meet your application and database system resource needs (for example, sufficient
CPU, memory, and I/O resources) is crucial to maintaining the highest availability, stability, and
performance. Proper sizing and resource management are critical when consolidating many
databases on the same cluster. Database consolidation is a widespread benefit when
leveraging Exadata.

See Oracle Maximum Availability Architecture in Oracle Exadata Cloud Systems for details

Expected Impact During Unplanned Outages
The following table lists various unplanned outage events and the associated potential
database downtime, application Recovery Time Objective (RTO), and data loss potential or
recovery point objective (RPO).

For Oracle Data Guard architectures (MAA Gold), the database or service level downtime does
not include detection time or the time it takes before a customer initiates the Cloud Console
Data Guard failover operation.

Chapter 34
MAA Evaluations on Multicloud Solutions

34-7

https://docs.oracle.com/en/database/oracle/zero-downtime-migration/21.4/zdmug/introduction-to-zero-downtime-migration.html#GUID-FF4CA22F-CC83-4118-AF26-6E7BE224717F
https://docs.oracle.com/en/database/oracle/zero-downtime-migration/21.4/zdmug/introduction-to-zero-downtime-migration.html#GUID-FF4CA22F-CC83-4118-AF26-6E7BE224717F

Outage Event Database Downtime Service-Level
Downtime (RTO)

Potential Service-
Level Data Loss
(RPO)

Localized events, including:

Exadata cluster network topology failures

Storage (disk, flash, and storage cell) failures

Database instance failures

Database server failures

Zero Near-zero Zero

Events that require restoration from backup
because a standby database does not exist:

Data corruptions

Full database failures

Complete storage failures

Availability Zone failures

Minutes to hours

(without Data Guard)

Minutes to hours

(without Data Guard)

Near Zero with
Autonomous Recovery
Service and Real-Time
Data Protection
enabled

30 minutes with
Autonomous Recovery
Service and Real-Time
Data Protection
disabled, or with Object
Storage Service for
cloud backups

(without Data Guard)

Events using Data Guard to fail over:

Data corruptions

Full database failures

Complete storage failures

Availability Zone failures

Complete Region failures

Seconds to minutes1

Zero downtime for
physical corruptions
due to the auto-block
repair feature

Seconds to minutes1

The foreground
process that detects
the physical corruption
pauses while auto-
block repair completes

Zero for Maximum
Availability (SYNC redo
transport)

Near Zero for Maximum
Performance (ASYNC
redo transport)

1For MAA Gold, to protect your database from regional failure, instantiate the standby
database in a region different from the primary database. For this MAA evaluation, the standby
database was in a different AZ. Also, Data Guard Fast-Start Failover and its Data Guard
observers must be set up manually to perform automatic database failover. Application
workloads as high as 300 MB/second per Oracle Real Application Cluster instance were
validated. The standby database was up-to-date with near-zero lag. Depending on the
workload, standby database tuning may be required for extreme workloads (see Tune and
Troubleshoot Oracle Data Guard).

Expected Impact During Planned Maintenance
The following tables describe the impact of various planned maintenance events for Oracle
Exadata Database Service on Dedicated Infrastructure (ExaDB-D) on Oracle's multicloud
solutions: Oracle Database@Azure, Oracle Database@Google Cloud, and Oracle
Database@AWS.

Impact of Exadata Cloud Software Updates

The following table lists various software updates and their impact on the associated database
and application. This applies to ExaDB-D on Oracle's multicloud solutions.

Chapter 34
MAA Evaluations on Multicloud Solutions

34-8

Software Update Database Impact Application Impact Scheduled By Performed By

Exadata Network
Fabric Switches

Zero downtime with no
database restart

Zero to single-digit
seconds brownout

Oracle schedules
based on customer
preferences, and
customers can
reschedule

Oracle Cloud Operation

Exadata Storage
Servers

Zero downtime with no
database restart

Zero to single-digit
seconds brownout

Exadata storage
servers are updated in
a rolling manner,
maintaining
redundancy.

Oracle Exadata System
Software pre-fetches
the secondary mirrors
of the OLTP data most
frequently accessed
into the flash cache,
maintaining application
performance during
storage server restarts.

Exadata smart flash for
database buffers is
maintained across a
storage server restart.

With Exadata 21.2
software, Persistent
Storage Index and
Persistent Columnar
Cache features enable
consistent query
performance after a
storage server software
update.

Oracle schedules
based on customer
preferences, and
customers can
reschedule

Oracle Cloud Operation

Exadata Database
Host

Monthly Infrastructure
Security Maintenance

Zero downtime with no
host or database
restart

Zero downtime Oracle schedules, and
customers can
reschedule

Oracle Cloud Operation

Exadata Database
Host

Quarterly Infrastructure
Maintenance

Zero downtime with
Oracle RAC rolling
updates

Zero downtime

Exadata Database
compute resources are
reduced until planned
maintenance is
completed.

Oracle schedules
based on customer
preferences, and
customers can
reschedule

Oracle Cloud Operation

Exadata Database
Guest

Zero downtime with
Oracle RAC rolling
updates

Zero downtime

Exadata Database
compute resources are
reduced until planned
maintenance is
completed.

Customer Customers, using
Oracle Cloud Console
or APIs

Chapter 34
MAA Evaluations on Multicloud Solutions

34-9

http://www.oracle.com/pls/topic/lookup?ctx=en/engineered-systems/exadata-database-machine&id=DBMSO-GUID-3C74128F-3305-40EC-9481-81843C0B2075
http://www.oracle.com/pls/topic/lookup?ctx=en/engineered-systems/exadata-database-machine&id=DBMSO-GUID-3C74128F-3305-40EC-9481-81843C0B2075
http://www.oracle.com/pls/topic/lookup?ctx=en/engineered-systems/exadata-database-machine&id=DBMSO-GUID-88E0A908-C2E7-4D86-B880-C6AF0F46FD60
http://www.oracle.com/pls/topic/lookup?ctx=en/engineered-systems/exadata-database-machine&id=DBMSO-GUID-88E0A908-C2E7-4D86-B880-C6AF0F46FD60

Software Update Database Impact Application Impact Scheduled By Performed By

Oracle Database
quarterly update or
custom image update

Zero downtime with
Oracle RAC rolling
updates

Zero downtime

Exadata Database
compute resources are
reduced until planned
maintenance is
completed.

Applications that use
database OJVM
require special
consideration during
rolling database
quarterly updates (see
My Oracle Support Doc
ID 2217053.1).

Customer Customers using
Oracle Cloud Console,
APIs, or dbaascli
utility

In-place, with database
home patch, and out-
of-place with database
move (recommended)

Works for Data Guard
and standby databases
(see My Oracle
Support Doc ID
2701789.1)

Oracle Grid
Infrastructure quarterly
update or upgrade

Zero downtime with
Oracle RAC rolling
updates

Zero downtime

Exadata Database
compute resources are
reduced until planned
maintenance is
completed.

Customer Customers, using
Oracle Cloud Console,
APIs, or dbaascli
utility

Oracle Database
upgrade with downtime

Minutes to Hour(s)
downtime

Minutes to Hour(s)
downtime

Customer Customers, using
Oracle Cloud Console,
APIs, or dbaascli
utility

Works for Data Guard
and standby databases
(see My Oracle
Support Doc ID
2628228.1)

Oracle Database
upgrade with near-zero
downtime

Minimal downtime with
DBMS_ROLLING, Oracle
GoldenGate replication,
or with pluggable
database relocate

Minimal downtime with
DBMS_ROLLING, Oracle
GoldenGate replication,
or with pluggable
database relocate

Customer Customers, using
dbaascli leveraging
DBMS_ROLLING (see
My Oracle Support Doc
ID 2832235.1)

Customers, using
generic Maximum
Availability Architecture
best practices

Impact of Exadata Elastic Operations

Exadata cloud systems have many elastic capabilities that can be used to adjust database and
application performance needs. By rearranging resources on need, you can maximize system
resources to targeted databases and applications and minimize costs.

The following table lists elastic Oracle Exadata Cloud Infrastructure and VM Cluster updates
and the impacts associated with those updates on databases and applications. Unless
specified otherwise, these operations can be performed using Oracle Cloud Console or APIs.

VM Cluster Change Database Impact Application Impact

Scale Up or Down VM Cluster
Memory

Zero downtime with Oracle RAC
rolling updates

Zero to single-digit seconds brownout

Chapter 34
MAA Evaluations on Multicloud Solutions

34-10

https://support.oracle.com/rs?type=doc&id=2217053.1
https://support.oracle.com/rs?type=doc&id=2217053.1
https://support.oracle.com/rs?type=doc&id=2701789.1
https://support.oracle.com/rs?type=doc&id=2701789.1
https://support.oracle.com/rs?type=doc&id=2701789.1
https://support.oracle.com/rs?type=doc&id=2628228.1
https://support.oracle.com/rs?type=doc&id=2628228.1
https://support.oracle.com/rs?type=doc&id=2628228.1
https://support.oracle.com/rs?type=doc&id=2832235.1
https://support.oracle.com/rs?type=doc&id=2832235.1

VM Cluster Change Database Impact Application Impact

Scale Up or Down VM Cluster CPU Zero downtime with no database
restart

Zero downtime

Available CPU resources can impact application
performance and throughput

Scale Up or Down (resize) ASM
Storage for Database usage

Zero downtime with no database
restart

Zero downtime

Application performance might be minimally
impacted

Scale Up VM Local /u02 File
System Size (Exadata X9M and
later systems)

Zero downtime with no database
restart

Zero downtime

Scale Down VM Local /u02 File
System Size

Zero downtime with Oracle RAC
rolling updates for scaling down

Zero to single-digit seconds brownout

Adding Exadata Storage Cells Zero downtime with no database
restart

Zero to single-digit seconds brownout

Application performance might be minimally
impacted

Adding Exadata Database Servers Zero downtime with no database
restart

Zero to single-digit seconds brownout

Adding Oracle RAC instances and CPU
resources may improve application performance
and throughput

Adding Database Nodes in Virtual
Machines (VMs) Cluster

Zero downtime with no database
restart

Zero to single-digit seconds brownout

Application performance and throughput may
increase or decrease by adding or dropping
Oracle RAC instances and CPU resources

Planning for the Impact of Exadata Elastic Operations

Because some of the above elastic changes may take significant time and impact your
application's available resources, some planning is required.

Note that “scale down” and “drop” changes will decrease available resources. Care must be
taken to not reduce resources below the amount required for database and application stability
and to meet application performance targets. The following table provides the estimated
duration and planning recommendations for these changes.

VM Cluster Change Database Impact Application Impact

Scale Up or Down VM
Cluster Memory

Time to drain services and Oracle RAC rolling
restart

Typically 15-30 minutes per node, but may vary
depending on application draining

Understanding application draining

See Configuring Continuous Availability for
Applications before scaling down memory,
ensure that database SGAs can still be stored in
hugepages, and that application performance is
still acceptable.

To preserve predictable application performance
and stability:

• Monitor and scale up before important high
workload patterns require the memory
resources

• Avoid memory scale down unless all of the
database SGA and PGA memory fits into
the new memory size, and the system's
hugepages accommodate all SGAs

Chapter 34
MAA Evaluations on Multicloud Solutions

34-11

VM Cluster Change Database Impact Application Impact

Scale Up or Down VM
Cluster CPU

Online operation, typically less than 5 minutes
for each VM cluster

Scaling up from a very low value to a very high
value (10+ OCPUs increase) may take 10
minutes.

To preserve predictable application performance
and stability:

• Monitor and scale up before important high
workload patterns require the CPU
resources, or when consistently reaching an
OCPU threshold for a tolerated amount of
time

• Only scale down if the load average is
below the threshold for at least 30 minutes,
or scale down based on fixed workload
schedules (such as business hours with 60
OCPUs, non-business hours with 10
OCPUs, and batch with 100 OCPUs)

• Avoid more than one scale-down request
within a 2 hour period

Scale Up or Down
(resize) ASM Storage
for Database usage

Typically minutes to hours

Time varies based on utilized database storage
capacity and database activity. The higher the
percentage of utilized database storage, the
longer the resize operation (which includes ASM
rebalance) will take.

Oracle ASM rebalance is initiated automatically.
Storage redundancy is retained. Because of the
inherent best practice of using a non-intrusive
ASM power limit, application workload impact is
minimal.

Choose a non-peak window so resize and
rebalance operations can be optimized.

Because the time may vary significantly, plan for
the operation to be completed in hours. To
estimate the time that an existing resize or
rebalance operation per VM cluster requires,
query GV$ASM_OPERATION. For example, you
can run the following query every 30 minutes to
evaluate how much work (EST_WORK) and how
much more time (EST_MINUTES) potentially is
required:

select operation, pass, state, sofar,
est_work, est_minutes from
gv$asm_operation where
operation='REBAL';
Note that the estimated statistics tend to
become more accurate as the rebalance
progresses, but can vary based on the
concurrent workload.

Scale Up VM
Local /u02 File System
Size (Exadata X9M and
later)

Online operation, typically less than 5 minutes
for each VM cluster

VM local file system space is allocated on local
database host disks, which are shared by all VM
guests for all VM clusters provisioned on that
database host.

Do not scale up space for Local /u02 File
System unnecessarily on one VM cluster, such
that no space remains to scale up on other VM
clusters on the same Exadata Infrastructure,
because a Local /u02 File System scale down
must be performed in an Oracle RAC rolling
manner, which may cause application disruption.

Scale Down VM
Local /u02 File System
Size

Time to drain services and Oracle RAC rolling
restart

Typically 15-30 minutes for each node, but may
vary depending on application draining settings.

To plan, learn about application draining at
Configuring Continuous Availability for
Applications

Chapter 34
MAA Evaluations on Multicloud Solutions

34-12

VM Cluster Change Database Impact Application Impact

Adding Exadata
Storage Cells

The online operation creates more available
space for administrators to choose how to
distribute.

Typically, 3-72 hours per operation, depending
on the number of VM clusters, database storage
usage, and storage activity. With a very active
database and heavy storage activity, this can
take up to 72 hours.

As part of the add storage cell operation, there
are two parts to this operation:

1. Storage is added to the Exadata system as
part of the add storage operation.

2. The administrator must decide which VM
cluster to expand its ASM disk groups as a
separate operation.

Plan to add storage when your storage capacity
utilization hits 80% within a month, because this
operation may be completed in days.

Oracle ASM rebalance is initiated automatically.
Storage redundancy is retained. Because of
inherent best practices in using non-intrusive
ASM power limits, the impact of application
workload is minimal.

Because the time duration may vary significantly,
plan to complete the operation days before the
storage is available.

To estimate the time that an existing resize or
rebalance operation will take on each VM
cluster, query GV$ASM_OPERATION. For
example, you can run the following query every
30 minutes to evaluate how much work
(EST_WORK) and how much more time
(EST_MINUTES) is potentially required:

Select operation, pass, state, sofar,
est_work, est_minutes from
gv$asm_operation where
operation='REBAL';
Note that the estimated statistics tend to
become more accurate as the rebalance
progresses, but can vary based on the
concurrent workload.

Adding Exadata
Database Servers

Online operation to expand your VM cluster

One-step process to add the Database Compute
to the Exadata infrastructure and then expand
the VM cluster

Approximately 1 to 6 hours for each Exadata
Database Server

Plan to add Database Compute when your
database resource utilization reaches 80%
within a month. Be aware, and plan for this
operation to take many hours to a day.

Choose a non-peak window so that the add
Database Compute operation can be completed
faster.

Each Oracle RAC database registered by Oracle
Clusterware and visible in the Oracle Cloud
Console is extended. If a database was
configured outside the Oracle Cloud Console, or
without dbaascli, it will not be extended.

Adding or Dropping
Database Nodes in
Virtual Machines (VMs)
Cluster

Zero database downtime when adding Database
Nodes in the VM cluster. Typically takes 3-6
hours, depending on the number of databases in
the VM cluster.

Zero database downtime when dropping
Database Nodes in the VM cluster. Typically
takes 1-2 hours, depending on the number of
databases in the VM cluster.

Understand that the add/drop operation is not
instantaneous, and the operation may take
several hours to complete.

The drop operation reduces database
computing, OCPU, and memory resources so
that application performance can be impacted.

Achieving Continuous Availability For Your Applications
As part of Oracle Exadata Database Service on Dedicated Infrastructure on Oracle Database
in a Multicloud solution, all software updates (except for non-rolling database upgrades or non-
rolling patches) can be done online or with Oracle RAC rolling updates to achieve continuous
database uptime.

Chapter 34
MAA Evaluations on Multicloud Solutions

34-13

Furthermore, any local failures of storage, Exadata network, or Exadata database server are
managed automatically, and database uptime is maintained.

To achieve continuous application uptime during Oracle RAC switchover or failover events,
follow these application-configuration best practices:

• Use Oracle Clusterware-managed database services to connect your application. For
Oracle Data Guard environments, use role-based services.

• Use the recommended connection string with built-in timeouts, retries, and delays so that
incoming connections do not see errors during outages.

• Configure your connections with Fast Application Notification.

• Drain and relocate services. Use the recommended best practices in the table below that
support draining, such as test connections, when borrowing or starting batches of work,
and return connections to pools between uses.

• Leverage Application Continuity or Transparent Application Continuity to replay in-flight
uncommitted transactions transparently after failures.

For more details, see Configuring Continuous Availability for Applications. Oracle recommends
testing your application readiness by following Validating Application Failover Readiness (My
Oracle Support Doc ID 2758734.1).

Depending on the Oracle Exadata Database Service planned maintenance event, Oracle
attempts to automatically drain and relocate database services before stopping any Oracle
RAC instance. For OLTP applications, draining and relocating services typically work very well
and result in zero application downtime.

Some applications, such as long-running batch jobs or reports, may not be able to drain and
relocate gracefully within the maximum draining time. For those applications, Oracle
recommends scheduling the software planned maintenance window around these types of
activities or stopping these activities before the planned maintenance window. For example,
you can reschedule a planned maintenance window to run outside your batch windows or stop
batch jobs before a planned maintenance window.

Special consideration is required during rolling database quarterly updates for applications that
use database OJVM. See My Oracle Support Doc ID 2217053.1 for details.

The following table lists planned maintenance events that perform Oracle RAC instance rolling
restart, as well as the relevant service drain timeout variables that may impact your application.

Exadata Cloud Software Updates or Elastic Operation Drain Timeout Variables

Oracle DBHOME patch apply and database MOVE Cloud software automation stops/relocates database
services while honoring DRAIN_TIMEOUT settings defined by
database service configuration (such as srvctl).1

You can override DRAIN_TIMEOUT defined on services using
the option drainTimeoutInSeconds with command line
operation dbaascli dbHome patch or dbaascli
database move.

The Oracle Cloud internal maximum draining time supported
is 2 hours.

Chapter 34
MAA Evaluations on Multicloud Solutions

34-14

https://support.oracle.com/rs?type=doc&id=2758734.1
https://support.oracle.com/rs?type=doc&id=2758734.1
https://support.oracle.com/rs?type=doc&id=2217053.1

Exadata Cloud Software Updates or Elastic Operation Drain Timeout Variables

Oracle Grid Infrastructure (GI) patch apply and upgrade Cloud software automation stops/relocates database
services while honoring DRAIN_TIMEOUT settings defined by
database service configuration (such as srvctl).1

You can override the DRAIN_TIMEOUT defined on services
using the option drainTimeoutInSeconds with command
line operation dbaascli grid patch or dbaascli grid
upgrade.

The Oracle Cloud internal maximum draining time supported
is 2 hours.

Virtual Machine Operating System Software Update
(Exadata Database Guest)

Exadata patchmgr/dbnodeupdate software program calls
drain orchestration (rhphelper).

Drain orchestration has the following drain timeout settings
(see My Oracle Support Doc ID 2385790.1 for details):

• DRAIN_TIMEOUT – If a service does not have
DRAIN_TIMEOUT defined, then the default value of 180
seconds is used.

• MAX_DRAIN_TIMEOUT - Overrides any higher
DRAIN_TIMEOUT value defined by database service
configuration. The default value is 300 seconds. There is
no maximum value.

The DRAIN_TIMEOUT settings defined by the database
service configuration are honored during service stop/
relocate.

Exadata X9M and later systems

Scale Down VM Local File System Size

Exadata X9M and later systems call drain orchestration
(rhphelper).

Drain orchestration has the following drain timeout settings
(see My Oracle Support Doc ID 2385790.1 for details):

• DRAIN_TIMEOUT – If a service does not have
DRAIN_TIMEOUT defined, then the default value of 180
seconds is used.

• MAX_DRAIN_TIMEOUT - Overrides any higher
DRAIN_TIMEOUT value defined by database service
configuration. The default value is 300 seconds.

The DRAIN_TIMEOUT settings defined by the database
service configuration are honored during service stop/
relocate.

The Oracle Cloud internal maximum draining time supported
for this operation is 300 seconds.

Chapter 34
MAA Evaluations on Multicloud Solutions

34-15

https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1

Exadata Cloud Software Updates or Elastic Operation Drain Timeout Variables

Exadata X9M and later systems

Scale Up or Down VM Cluster Memory

Exadata X9M and later systems call drain orchestration
(rhphelper).

Drain orchestration has the following drain timeout settings
(see My Oracle Support Doc ID 2385790.1 for details):

• DRAIN_TIMEOUT – If a service does not have
DRAIN_TIMEOUT defined, then the default value of 180
seconds is used.

• MAX_DRAIN_TIMEOUT - Overrides any higher
DRAIN_TIMEOUT value defined by database service
configuration. The default value is 300 seconds.

The DRAIN_TIMEOUT settings defined by the database
service configuration are honored during service stop/
relocate.

The Oracle Cloud internal maximum draining time supported
for this operation is 900 seconds.

Oracle Exadata Cloud Infrastructure (ExaDB) software
update

The ExaDB-D database host calls drain orchestration
(rhphelper).

Drain orchestration has the following drain timeout settings
(see My Oracle Support Doc ID 2385790.1 for details):

• DRAIN_TIMEOUT – If a service does not have
DRAIN_TIMEOUT defined, then the default value of 180
seconds is used.

• MAX_DRAIN_TIMEOUT - Overrides any higher
DRAIN_TIMEOUT value defined by database service
configuration. The default value is 300 seconds.

The DRAIN_TIMEOUT settings defined by the database
service configuration are honored during service stop/
relocate.

The Oracle Cloud internal maximum draining time supported
for this operation is 500 seconds.

Enhanced Infrastructure Maintenance Controls:

To achieve draining time longer than the Oracle Cloud
internal maximum, leverage the custom action capability of
Enhanced Infrastructure Maintenance Controls, which allows
you to suspend infrastructure maintenance before the next
database server update starts, directly stop/relocate
database services running on the database server, and then
resume infrastructure maintenance to proceed to the next
database server. See Configure Oracle-Managed
Infrastructure Maintenance in Oracle Cloud Infrastructure
documentation for details.

1Minimum software requirements to achieve this service drain capability are: Oracle Database
release 12.2 and later and the latest cloud DBaaS tooling software.

Oracle Maximum Availability Architecture for Oracle
Database@Azure

Microsoft Azure is a strategic Oracle Multicloud partner. Oracle Maximum Availability
Architecture (MAA) evaluates MAA reference architectures on Oracle Database@Azure, the
results of which are shown here.

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Azure

34-16

https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://docs.oracle.com/iaas/exadata/doc/ecc-vw-maint-hist.html#ECCCM-GUID-94A6038F-6329-46BC-AEBD-E5491D67B72F
https://docs.oracle.com/iaas/exadata/doc/ecc-vw-maint-hist.html#ECCCM-GUID-94A6038F-6329-46BC-AEBD-E5491D67B72F

To learn more about MAA Silver and MAA Gold evaluations and their benefits after
certification, see MAA Evaluations on Multicloud Solutions.

Oracle MAA evaluated Oracle's solution in Azure. Oracle MAA continues to re-evaluate
periodically to ensure the solution meets all the expected benefits and to highlight any new
MAA for Oracle Database@Azure benefits and capabilities. Certification is only given after the
MAA evaluation meets the requirements.

Oracle MAA has evaluated and endorsed Oracle Database@Azure for:

• MAA Silver reference architecture on Exadata Database Service on Dedicated
Infrastructure (ExaDB-D)

• MAA Gold reference architecture when the standby database resides on another ExaDB-D
in the same or separate Availability Zones (AZ) or different regions

Evaluation environments:

• Cross-region between Ashburn, Virginia, USA, and London, England regions

• Cross-availability zone (AZ) within the Ashburn, Virginia, USA region

Network Results

The results shown here are based on network tests described in Oracle Database Multicloud
Evaluations by Oracle MAA.

Use Cases RTT Latency Observed Network Bandwidth MAA Recommendations

Application VMs to Exadata
VM Cluster (same region)

Varies based on placement

• Cluster in same AZ:
~300 microseconds

• Cluster across AZs: ~500
microseconds

Variable based on placement
and VM size

Ensure your required RTT
latency meets your
application requirements.

Test thoroughly with your
implementation. Variables
such as VM size and
placement can impact results.

Refer to Application Network
Layer on Azure

See also, Proximity
placement groups and Sizes
for virtual machines in Azure)

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Azure

34-17

https://learn.microsoft.com/en-us/azure/virtual-machines/co-location
https://learn.microsoft.com/en-us/azure/virtual-machines/co-location
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/overview
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/overview

Use Cases RTT Latency Observed Network Bandwidth MAA Recommendations

Between Exadata VM
Clusters, across AZs
(Ashburn, Virginia USA) for:

• Redo Transport
• Database migration or

standby database
instantiation

~1.2 msec (for both peering
options)

Single process throughput:

• OCI VCN peering
(recommended): 11.7
Gb/sec

• Azure Global Virtual
Network: 2.97 Gb/sec

Maximum parallel throughput:

• OCI VCN peering
(recommended): 41.5
Gb/sec

• Azure Global Virtual
Network: 41.5 Gb/sec

Repeat MAA-recommended
network tests in your
environment. See Network
Evaluation for examples.

Recommended to use OCI
peering for higher bandwidth
(up to 600% in some
examples)

For OCI peering, see

• Same region: Local VCN
Peering using Local
Peering Gateways

• Cross-region: Perform
Cross-Regional Disaster
Recovery for Exadata
Database on Oracle
Database@Azure

For Azure peering, see Virtual
network peering

Variables may impact
bandwidth; see Optimize
network throughput for Azure
virtual machines

Between Exadata VM
Clusters across regions
(Ashburn, Virginia, USA and
London, England) for:

• Redo Transport
• Database migration or

standby database
instantiation

~76 msec (for both peering
options)

Single process throughput:

• OCI VCN peering
(recommended): 1.57
Gb/sec

• Azure global virtual
network: 0.197 Gb/sec

Maximum parallel throughput:

• OCI VCN peering
(recommended): 25.5
Gb/sec

• Azure global virtual
network: 2.81 Gb/sec

Repeat MAA-recommended
network tests in your
environment. See Network
Evaluation test examples

Use OCI peering for higher
bandwidth (up to 600% in
some examples)

For OCI peering, see

• Same region: Local VCN
Peering using Local
Peering Gateways

• Cross-region: Perform
Cross-Regional Disaster
Recovery for Exadata
Database on Oracle
Database@Azure

For Azure peering, see Virtual
network peering

Variables may impact
bandwidth; see Optimize
network throughput for Azure
virtual machines

Azure Network Recommendations and Considerations

• Network Topology and Connectivity for Oracle Database

– https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/oracle-
iaas/oracle-network-topology-odaa#design-recommendations

• Cross Region Azure Peering for Data Guard (OCI Peering Recommended) will be
influenced by aggregate throughput

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Azure

34-18

https://docs.oracle.com/iaas/Content/Network/Tasks/localVCNpeering.htm#Local_VCN_Peering_Within_Region
https://docs.oracle.com/iaas/Content/Network/Tasks/localVCNpeering.htm#Local_VCN_Peering_Within_Region
https://docs.oracle.com/iaas/Content/Network/Tasks/localVCNpeering.htm#Local_VCN_Peering_Within_Region
https://docs.oracle.com/en/solutions/exadb-dr-on-db-azure/index.html#GUID-C5016FB8-DD90-4F5C-8965-AC4230537EB1
https://docs.oracle.com/en/solutions/exadb-dr-on-db-azure/index.html#GUID-C5016FB8-DD90-4F5C-8965-AC4230537EB1
https://docs.oracle.com/en/solutions/exadb-dr-on-db-azure/index.html#GUID-C5016FB8-DD90-4F5C-8965-AC4230537EB1
https://docs.oracle.com/en/solutions/exadb-dr-on-db-azure/index.html#GUID-C5016FB8-DD90-4F5C-8965-AC4230537EB1
https://docs.oracle.com/en/solutions/exadb-dr-on-db-azure/index.html#GUID-C5016FB8-DD90-4F5C-8965-AC4230537EB1
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-optimize-network-bandwidth
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-optimize-network-bandwidth
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-optimize-network-bandwidth
https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/localVCNpeering.htm#Local_VCN_Peering_Within_Region
https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/localVCNpeering.htm#Local_VCN_Peering_Within_Region
https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/localVCNpeering.htm#Local_VCN_Peering_Within_Region
https://docs.oracle.com/en/solutions/exadb-dr-on-db-azure/index.html#GUID-C5016FB8-DD90-4F5C-8965-AC4230537EB1
https://docs.oracle.com/en/solutions/exadb-dr-on-db-azure/index.html#GUID-C5016FB8-DD90-4F5C-8965-AC4230537EB1
https://docs.oracle.com/en/solutions/exadb-dr-on-db-azure/index.html#GUID-C5016FB8-DD90-4F5C-8965-AC4230537EB1
https://docs.oracle.com/en/solutions/exadb-dr-on-db-azure/index.html#GUID-C5016FB8-DD90-4F5C-8965-AC4230537EB1
https://docs.oracle.com/en/solutions/exadb-dr-on-db-azure/index.html#GUID-C5016FB8-DD90-4F5C-8965-AC4230537EB1
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-optimize-network-bandwidth
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-optimize-network-bandwidth
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-optimize-network-bandwidth
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/oracle-iaas/oracle-network-topology-odaa#design-recommendations
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/oracle-iaas/oracle-network-topology-odaa#design-recommendations

– https://learn.microsoft.com/en-us/azure/virtual-wan/hub-settings#edit-virtual-hub-
capacity

MAA Silver Network Topology and Evaluation

The following MAA Silver HA Diagram illustrates Oracle RAC on ExaDB-D with backup to
Autonomous Recovery Service running in Azure or OCI.

Figure 34-1 MAA Silver Architecture for Oracle Database@Azure

Oracle MAA evaluated and endorsed Oracle Database@Azure for the MAA Silver reference
architecture, and observed the following results.

• Application latency may be impacted by the application VM's proximity to the database
server target. For the lowest latency, place the application VM in the same Availability Zone
(AZ) as the database and use direct communication (not Azure network virtual appliances,
firewalls, and so on). For high availability, evaluate placing application VMs in multiple AZs
when possible. See Application Network Layer on Azure below and Network topology and
connectivity for Oracle Database@Azure - Getting started.

• The backup and restore performance with Autonomous Recovery Service@Azure,
Autonomous Recovery Service on OCI, and OSS on OCI meets expectations. See Backup
and Restore Observations below.

• Application and database uptime is adhered to as expected while injecting unplanned local
outages, updating database and system software, and during system and database elastic
changes (for example, increasing CPU, storage, etc). See Oracle Database Multicloud
Evaluations by Oracle MAA for tests evaluated and Oracle Maximum Availability
Architecture in Oracle Exadata Cloud Systems for expected results and benefits.

• Configuration health checks, such as Exachk runs, help ensure MAA compliance. Enabling
Database Service "Health" Events and reviewing Exachk output monthly is recommended.

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Azure

34-19

https://learn.microsoft.com/en-us/azure/virtual-wan/hub-settings#edit-virtual-hub-capacity
https://learn.microsoft.com/en-us/azure/virtual-wan/hub-settings#edit-virtual-hub-capacity
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/oracle-iaas/oracle-network-topology-odaa#design-recommendations
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/oracle-iaas/oracle-network-topology-odaa#design-recommendations

Application Network Layer on Azure
The proximity of the application tier to the database cluster affects application response time.

If you require a very low latency response time (200-400 microseconds), deploy the application
VMs in the same Availability Zone (AZ) as the database cluster. Latency increases to 1
millisecond or more when application and database servers are configured across VNets or
AZs.

Deploy the application tier over at least two AZs to ensure high availability. The deployment
process and solution over multiple AZs varies depending on the application’s components,
Azure services, and resources involved. For example, with Azure Kubernetes Services (AKS),
you can deploy the worker nodes in different AZs. Kubernetes control plane maintains and
synchronizes the pods and the workload.

Backup and Restore Observations

RMAN nettest was used for backups, and the expected results were met. See My Oracle
Support Doc ID 2371860.1 for details about nettest.

Oracle Database backup and restore throughput to Oracle's Autonomous Recovery Service or
Oracle’s Object Storage Service were within performance expectations. For example, an
ExaDB-D 2 node cluster (using 16+ OCPUs) and three storage cells may observe a 4 TB/hour
backup rate and approximately 8.7 TB/hour restore rate with no other workloads.

By increasing the RMAN channels, you can leverage available network bandwidth or storage
bandwidth and achieve as much as 42 TB/hour backup rate and 8.7 TB/hour restore rate for 3
Exadata storage cells. The restore rates can increase as you add more Exadata storage cells.
The performance varies based on existing workloads and network traffic on the shared
infrastructure.

The Autonomous Recovery Service provides the following additional benefits:

• Leverage real-time data protection capabilities to eliminate data loss

• With a unique "incremental forever" backup benefit, you can significantly reduce backup
processing overhead and time for your production databases.

• Implement a policy-driven backup life-cycle management.

• Additional malware protection

MAA Gold Network Topology and Evaluation

The recommended MAA Gold architecture in Azure consists of:

• When using Oracle Data Guard, Oracle Exadata infrastructures (ExaDB-D) are provisioned
in two different Availability Zones (AZs) or Regions using separate VNets that do not have
overlapping IP CIDR ranges.

• Backup network subnets assigned to the primary and standby clusters do not have
overlapping IP CIDR ranges.

• The application tier spans at least two AZs and the VNet peers, with each VNet consisting
of primary and standby VM Clusters.

• Database backups and restore operations use a high bandwidth network for Autonomous
Recovery Service@Azure, Autonomous Recovery Service on OCI, or OCI Object Storage.

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Azure

34-20

Figure 34-2 MAA Gold DR Architecture in the Same Azure Region

Figure 34-3 MAA Gold DR Architecture Across Two Azure Regions

Network Layer

Oracle Data Guard maintains an exact physical copy of the primary database by transmitting
(and applying) all data changes (redo) to the standby database across the network, making

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Azure

34-21

network throughput, and in some cases latency, critical to the implementation's success. Use
Data Guard switchover for planned maintenance or disaster recovery tests. If the primary
database becomes unavailable, use Data Guard failover to resume service.

Peering Networks Between Primary and Standby

This is the most critical decision to ensure your standby can keep up. If the network does not
have sufficient bandwidth to support single-process redo throughput, the standby will have a
growing transport lag.

The primary and standby Exadata Clusters are deployed in separate networks. Oracle
Database@Azure Exadata Clusters are always deployed using separate Virtual Cloud
Networks (VCN) in OCI. These separate VCNs must be connected to allow traffic to pass
between them, that is they must be "peered" before enabling Data Guard with Oracle cloud
automation. For this reason, the networks must use separate, non-overlapping IP CIDR
ranges.

Peering across Availability Zones (AZs) can be done using the OCI or Azure networks. The
recommended option is to peer the OCI VCNs and use the OCI network for redo traffic. OCI
VCN peering provides higher single-process network throughput (observed up to 11.7 Gbits/s)
between database clusters at a lower cost. Peering using the Azure network provides an
observed 2.97 Gb/sec single process throughput (which will not be sufficient for applications
with OLTP or batch jobs with redo rates > 350 MB/sec), and there is a chargeback for cross-
VNet traffic. Note that Azure VNets are virtual networks similar to an OCI VCN (Virtual Cloud
Network).

For cross-region network peering, OCI is the only viable choice for any Enterprise application
and databases generating more than 197 Mbits/sec or 25 MB/sec per database instance. OCI
VCN peering provides higher single-process network throughput (observed up to 1.57
Gbits/sec or up to 196MB/sec) per Oracle RAC database instance. The latency between
database clusters will vary based on physical location and network topology. There is no
chargeback for cross-region traffic for the first 10TB per month. Note that single process
throughput, maximum network throughput, and latency may vary based on data center
locations.

Oracle Database@Azure service network is connected to the Exadata client subnet by a
Dynamic Routing Gateway (DRG) managed by Oracle. A DRG is also required to peer VCNs
between regions, and only one DRG is allowed for each VCN in OCI. Therefore, to connect the
primary and standby VCNs, the communication requires transit over a second VCN with its
own DRG in each region.

Recommended OCI VCN Peering for Data Guard

• For a cross availability zone configuration of Data Guard at Azure, follow the instructions in
Setting Up Networking Across Availability Zones.

• For a cross-region configuration of Data Guard at Azure, follow the instructions in Setting
Up Networking Across Regions.

– Azure Virtual WAN Hub Model and Network Recommendations: https://
learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/oracle-iaas/
oracle-network-topology-odaa#design-recommendations

– Network Bandwidth based Virtual Hub Settings: https://learn.microsoft.com/en-us/
azure/virtual-wan/hub-settings#edit-virtual-hub-capacity

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Azure

34-22

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/oracle-iaas/oracle-network-topology-odaa#design-recommendations
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/oracle-iaas/oracle-network-topology-odaa#design-recommendations
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/oracle-iaas/oracle-network-topology-odaa#design-recommendations
https://learn.microsoft.com/en-us/azure/virtual-wan/hub-settings#edit-virtual-hub-capacity
https://learn.microsoft.com/en-us/azure/virtual-wan/hub-settings#edit-virtual-hub-capacity

Alternative Option of Azure VNet Peering for Data Guard

Choose this option only if the database workload and redo generation rate are much lower
than the single process network bandwidth results. To peer the Azure VNets for Data Guard
redo traffic, see Virtual network peering.

When networks are peered through Azure, single-process network throughput can be
significantly lower than Oracle OCI peered networks.. This is relevant because Data Guard
redo transport is a single process for each database instance; therefore, if a single instance
produces redo at a higher rate, transport lag may increase and accumulate. There is an
additional cost for ingress and egress network traffic in each VNet when networks are peered
through Azure.

Enabling Data Guard

After the network is peered by one of the above options, you can Enable Data Guard (see Use
Oracle Data Guard with Exadata Cloud Infrastructure).

Data Guard Role Transitions

The timings of the Data Guard switchover and failover were within expectations compared to a
similar setup in Oracle OCI. Application downtime when performing a Data Guard switchover
and failover can range from 30 seconds to a few minutes. For guidance on tuning Data Guard
role transition timings or examples of role transition timings, see Tune and Troubleshoot Oracle
Data Guard.

Setting Up Networking Across Availability Zones

Oracle MAA recommends best practices for networking across availability zones in a disaster
recovery setup.

Ensure the following

• Oracle Exadata infrastructures (ExaDB-D) are provisioned in two Availability Zones (AZs).
Each Exadata infrastructure deployed at least one Exadata VM Cluster in a separate
Virtual Network (VNet) to form the primary and standby environments.

• Ensure primary and standby client and backup subnets are separated VNets without
overlapping IP CIDR ranges.

• The Azure Kubernetes Services spans at least two AZs, and the VNet is peered with each
VNet of primary and standby VM Clusters.

• Database backups and restore operations are done across a high bandwidth network to
OCI Object Storage.

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Azure

34-23

https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
http://www.oracle.com/pls/topic/lookup?ctx=en/engineered-systems/exadata-cloud-service&id=ECSCM-GUID-6EBC4D6A-C58B-4721-B756-F22FC6819A45
http://www.oracle.com/pls/topic/lookup?ctx=en/engineered-systems/exadata-cloud-service&id=ECSCM-GUID-6EBC4D6A-C58B-4721-B756-F22FC6819A45

Figure 34-4 MAA Gold DR Architecture in the Same Azure Region

Configuring the Application Tier on Azure

1. Deploy the application tier over at least two AZs.

The process and solution for deploying over multiple AZs varies depending on the
application’s components, Azure services, and resources involved. For example, with
Azure Kubernetes Services (AKS), you can deploy the worker nodes in different AZs. The
Kubernetes control plane maintains and synchronizes the pods and the workload.

2. Follow the steps described in Configuring Continuous Availability for Applications.

Configuring the Database Tier on OCI

When Exadata Clusters are created in Azure, each cluster is in a different Virtual Cloud
Network (VCN) in OCI. Connectivity between VCNs is required for Data Guard redo transport.
This connectivity, or peering, must be configured before enabling Data Guard in Azure. For
resources in different VCNs to communicate with each other, as is required by Data Guard,
additional steps are required to peer the VCNs and allow the IP address ranges access to
each other.

Oracle Data Guard maintains a standby database by transmitting and applying redo data from
the primary database. Use Data Guard switchover for planned maintenance or disaster
recovery tests. If the primary database becomes unavailable, use Data Guard failover to
resume service.

OCI is the preferred network for performance (latency, throughput), and no egress or ingress
costs are incurred. When Exadata Clusters are created in Azure, each cluster will be
configured in a different OCI Virtual Cloud Network (VCN). As Data Guard requires, you must
perform additional steps to peer the VCNs and allow the IP address ranges access to each
other for resources in different VCNs to communicate with each other.

The following steps describe the process to enable Data Guard across AZs using the OCI-
managed network.

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Azure

34-24

1. Log in to the OCI Console and create a Local Peering Gateway (LPG) in the VCNs of the
primary and standby Exadata VM Clusters.

For details see Creating a Local Peering Gateway.

2. Establish a Peer Connection between primary and standby LPG, and select the Unpeered
Peer Gateway in the standby VCN.

For details see Connecting to Another LPG.

Each VCN can have only one Local Peering Gateway (LPG), if there are multiple
databases on a given Exadata Cluster which will have standby databases on different
Exadata Clusters, a Hub VCN will need to be configured. See Transit Routing inside a hub
VCN

3. Update the default route table to route the traffic between the primary and standby
databases over the OCI network without incurring any inbound and outbound data transfer
costs.

Note:

To update the default route table, you currently need to create a support ticket
SR providing the tenancy name and dynamic routing gateway (DRG) OCID.
If you encounter the error "Authorization failed or requested resource not found",
open a service ticket with the following information:

• Title of ticket: "Required VCN Route Table Update permission"

• Include information for each VNC and its DRG attachment: Region, Tenancy
OCID, VCN OCID, DRG OCID

4. Update the primary and standby Network Security Group to create a security rule to allow
primary and standby client subnet ingress for TCP port 1521.

Optionally you can add SSH port 22 for direct SSH access to the database servers.

5. Enable Data Guard or Oracle Active Data Guard for the primary database.

From the Oracle Database details page, click the Data Guard Associations link, then click
Enable Data Guard.

On the Enable Data Guard page:

a. Select the standby Availability Domain mapped to Azure AZ.

b. Select the standby Exadata Infrastructure.

c. Select the desired standby VM Cluster.

d. Choose Data Guard or Active Data Guard (MAA recommends Active Data Guard for
auto block repair of data corruptions and ability to offload reporting).

e. Choose a protection mode and redo transport type that satisfies your RTO and RPO.

f. Select an existing database home or create a new one.

It is recommended that you use the same custom database software image of the
primary database for the standby database home, so that both have the same patches
available.

g. Enter the password for the SYS user and Enable Data Guard.

Optionally, to reduce the recovery time in case of failures, enable automatic failover (Fast-
Start Failover) by installing Data Guard Observer or a separate VM, preferably in a

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Azure

34-25

https://docs.oracle.com/iaas/Content/Network/Tasks/create-lpg.htm
https://docs.oracle.com/iaas/Content/Network/Tasks/connect-lpg.htm
https://docs.public.oneportal.content.oci.oraclecloud.com/iaas/Content/Network/Tasks/transitrouting.htm#Transit_Routing_Access_to_Multiple_VCNs_in_the_Same_Region
https://docs.public.oneportal.content.oci.oraclecloud.com/iaas/Content/Network/Tasks/transitrouting.htm#Transit_Routing_Access_to_Multiple_VCNs_in_the_Same_Region

separate location or in the application network. For more information, see Fast-Start
Failover in the Oracle Data Guard Broker guide and Configure Fast Start Failover to Bound
RTO and RPO (MAA Gold Requirement). Currently these steps are not part of cloud
automation and are manual.

After Data Guard is enabled, the standby database is listed in the Data Guard Associations
section.

Setting Up Networking Across Regions

Oracle MAA recommends these best practices for networking across Azure regions in an
Oracle Database@Azure DR configuration.

The architecture diagram below shows a containerized Azure Kubernetes Service (AKS)
application in two Azure regions. The container images are stored in the Azure container
registry and replicated between primary and standby regions. Users access the application
externally through a public load balancer. The database is running in an Exadata VM Cluster in
primary/standby mode with Oracle Data Guard for data protection. The database TDE
encryption keys are stored in OCI Private Vault and are replicated between the regions. The
automatic backups are in OCI object storage in each region.

Figure 34-5 MAA Gold DR Architecture Across Two Azure Regions

Network Principles for Oracle Database@Azure Across Regions

Oracle MAA recommends:

• Deploy Exadata Infrastructure in each region, primary and standby.

• On each Exadata infrastructure, deploy an Exadata VM Cluster in the delegated subnet of
an Azure Virtual Network (VNet).

• The Oracle Real Application Clusters (RAC) database can be instantiated on the cluster. In
the same VNet, deploy AKS in a separate subnet.

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Azure

34-26

• Configure Oracle Data Guard to replicate data from one Oracle Database to the other
across regions.

• When Exadata VM clusters are created in the Oracle OCI child site, each is created within
its own OCI Virtual Cloud Network (VCN). Data Guard requires that the databases
communicate with each other to ship redo and perform role transitions. The VCNs must be
peered to enable this communication.

• OCI is the preferred network for higher network bandwidth, better network throughput, and
reduced cost (the First 10 TB / Month is Free).

For additional details and setup instructions see Perform Cross-Regional Disaster Recovery for
Exadata Database on Oracle Database@Azure.

Note:

Once configured, it is possible to enable automatic failover (Fast-Start Failover) to
reduce recovery time in case of failure by installing Data Guard Observer on a
separate VM, preferably in a separate location or in the application network. For more
information, see the documentation for Fast-Start Failover, and Configure and Deploy
Oracle Data Guard. (These are currently manual steps and not part of cloud
automation.)

Oracle Maximum Availability Architecture for Oracle
Database@Google Cloud

Google is a strategic Oracle Multicloud hyperscaler partner. Oracle Maximum Availability
Architecture (MAA) evaluates MAA reference architectures for Oracle Exadata Database
Service on Dedicated Infrastructure (ExaDB-D) on Oracle Database@Google Cloud, the
results of which are shown here.

To learn more about MAA Silver and MAA Gold evaluations and their benefits after
certification, see MAA Evaluations on Multicloud Solutions.

Oracle MAA evaluated Oracle's solution in Google Cloud. The goal is to re-evaluate at least
annually to ensure the solution meets all the expected benefits and to highlight any new MAA
for Oracle Database@Google Cloud benefits and capabilities. Certification is only given after
the MAA for Oracle Database@Google Cloud evaluation meets the requirements.

Oracle MAA has evaluated and endorsed the MAA Silver and MAA Gold reference architecture
for ExaDB-D on Oracle Database@Google Cloud when the standby database resides on an
ExaDB-D in another region only.

• The environment tested was cross-region between Frankfurt, Germany and London,
England.

• Active Data Guard configurations on Oracle Database@Google Cloud involving different
regions will have different results for throughput and latency.

Network Results

Common abbreviations:

• OCI - Oracle Cloud Infrastructure (Oracle Cloud)

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Google Cloud

34-27

http://www.oracle.com/pls/topic/lookup?ctx=en/solutions/exadb-dr-on-db-azure&id=GUID-C5016FB8-DD90-4F5C-8965-AC4230537EB1
http://www.oracle.com/pls/topic/lookup?ctx=en/solutions/exadb-dr-on-db-azure&id=GUID-C5016FB8-DD90-4F5C-8965-AC4230537EB1

• VCN - Virtual Cloud Network (Oracle)

• VPC - Virtual Private Cloud (Google Cloud)

• ExaDB-D - Exadata Database Service on Dedicated Infrastructure

• VLAN - Virtual Local Area Network

• RCV - Oracle Database Autonomous Recovery Service

The results shown here are based on network tests described in MAA Evaluations on
Multicloud Solutions.

Use Case RTT Latency Observed Network Throughput
Observed

MAA Recommendations

Application VMs to Exadata
VM Cluster (Same Region)

~300 microseconds (same
region/zone)

Varies based on placement.
For improved application VM
latency requirements, a
Google support ticket should
be filed.

Variable based on VM shape.

See a machine series
comparison at https://
cloud.google.com/compute/
docs/machine-
resource#machine_type_com
parison

Example: n2-standard-4 (4
vCPUs, 16 GB Memory) 10
Gbps.

Ensure that your required
RTT latency meets your
application requirements.

Test thoroughly with your
implementation. Variables
such as VM size and
placement can impact results.

Refer to Application Network
Layer on Google Cloud test
examples.

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Google Cloud

34-28

https://cloud.google.com/compute/docs/machine-resource#machine_type_comparison
https://cloud.google.com/compute/docs/machine-resource#machine_type_comparison
https://cloud.google.com/compute/docs/machine-resource#machine_type_comparison
https://cloud.google.com/compute/docs/machine-resource#machine_type_comparison
https://cloud.google.com/compute/docs/machine-resource#machine_type_comparison

Use Case RTT Latency Observed Network Throughput
Observed

MAA Recommendations

Between Exadata VM
Clusters for:

• Redo Transport
• Database migration or

standby database
instantiation

Example data is for a
configuration between
London, England (LHR) and
Frankfurt Germany (FRA).
Results will vary between
different regions.

12 ms (FRA-LHR) FRA-LHR example

1 process (min 1.4 Gb/sec)

• OCI VCN Peering: 2.1
Gb/s (250 MB/s)

• Google Cloud VPC
Networking*: 2.7 Gb/s
(300 MB/s)

4 processes:

• OCI VCN Peering: 9.1
Gb/s (1137 MB/s)

• Google Cloud VPC
Networking*: 8.3 Gb/s
(1037 MB/s)

10 processes (min 8 Gb/sec):

• OCI VCN Peering: 22.6
Gb/s (2825 MB/s)

• Google Cloud VPC
Networking*: 11.4 Gb/s
(1425 MB/s)

*Google Cloud VPC
networking throughput results
are heavily dependent upon
the Cloud Interconnect VLAN
attachments in both regions
having 10Gbps bandwidth
(default 2Gbps). File a
Google support ticket to
request the increase or
observed throughput is
significantly less.

Repeat MAA-recommended
network tests in your
environment. Refer to
Network Evaluation.

Test both networking options
as described in the 'Testing
Throughput' section in
Networking Between Primary
and Standby Clusters below
and ensure the network
throughput exceeds minimum
requirements and your peak
redo rates.

For cross-region OCI peering,
see Perform cross-region
disaster recovery for Exadata
Database Service on Google
Cloud.

For Google networking, both
ExaDB-D Clusters must be:

• Created in the same
VPC Network (this
requires no extra
networking)

• The VPC Network must
have MTU set to jumbo
frames (8896).

• The Cloud Interconnect
VLAN attachments in
both regions, which have
4 per region, must be set
to 10Gbps network
bandwidth or higher to
achieve acceptable
results for Active Data
Guard redo transport and
standby database
instantiation.

Variables may impact
bandwidth; refer to Google
doc https://cloud.google.com/
compute/docs/network-
bandwidth.

MAA Silver Network Topology and Evaluation

The MAA Silver Reference Architecture provides database high availability in the case of
hardware or software failures. Refer to the documentation for a full description of MAA Silver.

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Google Cloud

34-29

https://docs.oracle.com/en/solutions/exadb-dr-on-db-google-cloud/index.html
https://docs.oracle.com/en/solutions/exadb-dr-on-db-google-cloud/index.html
https://docs.oracle.com/en/solutions/exadb-dr-on-db-google-cloud/index.html
https://docs.oracle.com/en/solutions/exadb-dr-on-db-google-cloud/index.html
https://cloud.google.com/compute/docs/network-bandwidth
https://cloud.google.com/compute/docs/network-bandwidth
https://cloud.google.com/compute/docs/network-bandwidth
https://docs.oracle.com/en/database/oracle/oracle-database/23/haiad/maara_silver.html

Figure 34-6 MAA Silver Architecture for Oracle Database@Google

Oracle MAA has evaluated and endorsed ExaDB-D on Oracle Database@Google Cloud for
MAA Silver with the following observations:

• Application latency may be impacted by the application VM's proximity to the target
database server. A Google support ticket should be opened to request close proximity for
applications which require the lowest latency to the database. For high availability of the
application itself, evaluate multiple, fault-isolated application VMs.

• The backup and restore performance with RCV in Google Cloud (default), RCV in OCI,
and Object Storage Service in OCI meets MAA Silver expectations. See "Backup/Restore"
<add link> below.

• Application and database availability meet MAA Silver expectations while injecting
unplanned local outages, updating database and system software, and during elastic
changes for the system and database (for example, increasing CPU, storage, and so on).
See MAA Evaluations on Multicloud Solutions for the relevant tests and Oracle Maximum
Availability Architecture in Oracle Exadata Cloud Systems for expected results and
benefits.

• Configuration health checks, such as Exachk, help ensure MAA compliance. MAA
recommends enabling Database Service Health Events and reviewing Exachk output
monthly.

Application Network Layer on Google Cloud

The proximity of the application tier to the database cluster affects application response time. If
you require a very low latency response time (300 microseconds), deploy the application VMs
in the VPC Network in close proximity to the database cluster. Log a Google support ticket to
ensure close proximity of the application VMs to the database cluster.

Deploy the application tier with multiple application VMs with sufficient fault isolation for high
availability. The deployment process and solution depend on the application’s components,
Google services, and the resources involved. For example, with Google Kubernetes Engine

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Google Cloud

34-30

https://docs.oracle.com/en/cloud/paas/base-database/events/index.html#articletitle
https://cloud.google.com/kubernetes-engine

(GKE), you can deploy the worker nodes in different locations. Kubernetes control plane
maintains and synchronizes the pods and the workload.

Backup and Restore Observations

RMAN nettest results met expectations. See My Oracle Support Doc ID 2371860.1 for details
about nettest.

Oracle database backup and restore throughput to Oracle Database Autonomous Recovery
Service or OCI Object Storage Service were within performance expectations. For example, an
ExaDB-D 2-node cluster (using 16+ OCPUs) and 3 storage cells may observe a 4 TB/hour
backup rate and approximately 8.7 TB/hour restore rate with no other workloads. By increasing
the RMAN channels, you can leverage available network bandwidth or storage bandwidth and
achieve as much as 42 TB/hour backup rate and 8.7 TB/hour restore rate for 3 Exadata
storage cells. The restore rates can increase as you add more Exadata storage cells. The
performance varies based on existing workloads and network traffic on the shared
infrastructure.

The Oracle Database Autonomous Recovery Service provides the following additional benefits:

• Leverage real-time data protection capabilities to eliminate data loss.

• With a unique "incremental forever" backup benefit, you can significantly reduce backup
processing overhead and time for your production databases.

• Implement a policy-driven backup life-cycle management.

• Additional malware protection

MAA Gold Network Topology and Evaluation

The MAA Gold Reference Architecture protects mission-critical databases with a remote
synchronized copy of the database which can be activated in the event of disaster. Refer to the
documentation for a full description of MAA Gold.

The recommended MAA Gold architecture in Google Cloud consists of:

• When using Oracle Active Data Guard, Oracle Exadata infrastructures (ExaDB-D) are
provisioned in two different regions.

• Network subnets assigned to the primary and standby clusters do not have overlapping IP
CIDR ranges.

• The application tier spans multiple App Servers consisting of primary and standby App VM
Clusters.

• Database backups and restore operations use a high bandwidth network for Oracle
Database Autonomous Recovery Service (in Google Cloud or OCI) or OCI Object Storage.

MAA Gold evaluation builds upon the Silver MAA evaluation, with:

• Network tests between primary and standby database clusters using OCI peered or
multicloud partner peered networks to evaluate round-trip latency and bandwidth.

• Oracle Active Data Guard role transition performance and timings for disaster recovery use
cases.

• Oracle Database rolling upgrade with Active Data Guard.

The architecture diagram below shows an application in two Google regions. The database is
running in an Exadata VM Cluster in primary/standby mode with Oracle Active Data Guard for

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Google Cloud

34-31

https://cloud.google.com/kubernetes-engine
https://support.oracle.com/rs?type=doc&id=2371860.1
https://docs.oracle.com/iaas/recovery-service/doc/overview-recovery-service.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/haiad/maara_gold.html

data protection. The database Transparent Data Encryption (TDE) keys are stored in OCI Vault
and are replicated between the regions. The automatic backups are in Oracle Database
Autonomous Recovery Service (in Google Cloud or OCI).

Figure 34-7 MAA Gold Architecture for Oracle Database@Google

Oracle MAA has evaluated and endorsed ExaDB-D on Google Cloud for MAA Gold with the
following observations:

• Regions chosen for the primary and standby databases are critical to supporting the
Recovery Point Objective (RPO). Network throughput must be sufficient as described
below in Networking Between Primary and Standby Clusters.

– Single node throughput from London to Frankfurt for a single process was 2 Gb/sec
with a maximum multi-process throughput of ~47 Gb/sec. These throughputs can
support most database workloads.

• The latency between an application VM and the database server within the same region
was observed to be less than 300 microseconds, which meets MAA Gold expectations.

• Application VM throughput to the database server is dependent on the size of the VM.
Refer to Google Cloud documentation for details about the bandwidth allocated per VM
shape.

• Oracle Active Data Guard Life Cycle Operations, switchover, failover, and reinstate are
initiated from the OCI Console (accessible from the Google Cloud Console). The
performance of these operations is in line with MAA Gold expectations.

• OCI VCN Peering was evaluated, and bandwidth and latency meet MAA criteria. For
Google Cloud VCP Networking between the regions, the Google VPC Attachment
bandwidth impacts the throughput of the network connections significantly. MAA
Recommends at least 10 Gb/sec bandwidth for these attachments of which there are 4 per
region (default 2 Gbps). A Google support ticket can be opened to increase the values
from the default or when throughput is significantly below expectations. Refer to https://
cloud.google.com/oracle/database/docs/get-support

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Google Cloud

34-32

https://cloud.google.com/compute/docs/machine-resource#machine_type_comparison
https://cloud.google.com/oracle/database/docs/get-support
https://cloud.google.com/oracle/database/docs/get-support

• The VPC network should have an MTU setting of 8896 (default 1460). Refer to Google
Cloud documentation to change this value.

Oracle Active Data Guard Principles for ExaDB-D on Google Cloud Configuration

Oracle MAA recommends:

1. Deploy Exadata Infrastructure in the selected regions for primary and standby.

2. From the Google Cloud Console, on each Exadata infrastructure, deploy an Exadata VM
Cluster in the appropriate VPC.

• For Google Cloud VPC networking option, both VM Clusters should be in the same
VPC. For OCI VCN peering the VPC used for each VM Cluster can be different.

• CIDR ranges for the primary and standby client and backup networks cannot overlap.

3. Using the OCI Console, create an Oracle Real Application Clusters (RAC) database on the
VM cluster.

a. The OCI Console can be reached from the Exadata Infrastructure details page in the
Google Cloud Console by clicking MANAGE IN OCI.

b. Click the appropriate VM cluster.

c. Click Create Database and complete the wizard.

4. For the application tier, deploy Google Kubernetes Engine (GKE) in the same VPC network
as the VM Clusters, on a separate subnet.

• Note: the CIDR range for the VM Clusters are not shown in the Google Console but
should not overlap the GKE subnet CIDRs.

5. Using the OCI Console, configure Oracle Active Data Guard to replicate data across
regions from one Oracle Database to the other.

a. From the database page for the targeted database, click Data Guard group in the left-
hand column.

b. Click the Add Standby button and complete the wizard.

c. Depending on the size of the database, standby creation may take 30 minutes to
hours. Progress can be monitored using the Work Requests resource.

6. When Exadata VM clusters are created in the Oracle OCI child site, each is created within
its own OCI Virtual Cloud Network (VCN). Active Data Guard requires that the databases
communicate with each other to ship redo and perform role transitions.

• See the Networking Between Primary and Standby Clusters section below for
additional details about connecting the networks.

• For VPC networking, VM Clusters created in the same VPC will be able to
communicate with each other over the Google Cloud backbone.

• For OCI VCN peering, follow the steps in "OCI Peering Setup" in the Networking
Between Primary and Standby Clusters section below.

7. When considering full stack disaster recovery failover, you need to consider DNS failover
and coordinate application failover to the new primary database (after Data Guard
switchover or failover)

For additional details and setup instructions, see Perform Cross-Regional Disaster Recovery
for Exadata Database Service on Google Cloud.

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Google Cloud

34-33

https://cloud.google.com/vpc/docs/change-mtu-vpc-network
https://cloud.google.com/vpc/docs/change-mtu-vpc-network
https://docs.oracle.com/en/solutions/exadb-dr-on-db-google-cloud/index.html
https://docs.oracle.com/en/solutions/exadb-dr-on-db-google-cloud/index.html

Networking Between Primary and Standby Clusters

Oracle Active Data Guard maintains an exact physical copy of the primary database by
transmitting (and applying) all data changes (redo) to the standby database across the
network. This makes network throughput and, in some cases, latency critical to the
implementation's success.

There are two networking options to connect the primary and standby database clusters. OCI
VCN peering and Google Cloud VPC networking. Regardless of the networking option chosen,
the CIDR blocks for each cluster must not overlap.

OCI VCN Peering

Each Exadata VM cluster will be deployed on its own OCI Virtual Cloud Network (VCN) within
the Google Cloud region, regardless of the Google Cloud VPC used for these infrastructures.
To route traffic through the OCI backbone (MAA recommended for consistent throughput
results) the VCNs are peered through hub VCNs and associated gateways. See the "OCI
Peering Steps" below.

Google Cloud VPC Networking

When connecting the Exadata VM clusters with Google Cloud networking, ensure that each
cluster is created in the same VPC network (but in different regions for cross-region
configurations). There are no additional steps to allow these clusters to communicate.

Testing Throughput

It is recommended that you test your configuration with both options (see MAA Evaluations on
Multicloud Solutions). Multiple VM clusters can be created on a single infrastructure, while the
networking between the two pairs of VM Clusters can be configured differently for testing
purposes. Each VM cluster should be the same size.

Figure 34-8 Testing scenario using two Exadata infrastructures with multiple VM
clusters peered in two different ways

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Google Cloud

34-34

Comparing the Observed Network Throughput For Frankfurt and London

Two measurements of throughput are critical for a successful implementation.

1. Parallel process throughput is an indicator of how long it will take to instantiate (create) the
standby database. By default, parallelism is set to 4 processes per primary database node.

2. Single process throughput is an indicator of how fast redo transport can ship redo to the
standby database. Each primary database instance creates its own thread of redo and
ships it to the standby by a single process. If the redo generation rate of any instance
exceeds the single process throughput capability of a single database node, a transport lag
will develop and potentially impact the RPO of the database.

Table 34-1 Network Throughput Example (FRA-LHR)

Processes OCI VCN Peering Google Cloud VPC
Networking

Minimum Expectations

1 2.1 Gb/sec (260 MB/sec) 2.7 Gb/sec (300 MB/sec) 2 Gb/sec (250 MB/sec)

4 9.1 Gb/sec (1137 MB/sec) 8.3 Gb/sec (1037 MB/sec)

10 22.6 Gb/sec (2825 MB/sec) 11.4 Gb/sec (1425 MB/sec) 8 Gb/sec (1000 MB/sec)

Note:

Each pair of regions will have different throughput. It is important that testing is
performed before Active Data Guard configuration to understand the capabilities of
the network option chosen for the selected regions.

OCI Peering Setup

See the detailed steps for deploying and configuring Data Guard using OCI VCN peering in
Perform Cross-Region Disaster Recovery for Exadata Database Service on Google Cloud.

Google Cloud VPC Networking Setup

Create the related Oracle Database@Google Cloud Exadata Infrastructures in the same VPC
network, in different subnets.

Enabling Active Data Guard

Once the network is configured and tested using one of the above options, you can enable
Active Data Guard. See Use Oracle Data Guard with Exadata Cloud Infrastructure for details.

Active Data Guard Role Transitions

The timings of the Active Data Guard switchover and failover were within expectations
compared to a similar setup in Oracle OCI. Application downtime when performing an Active
Data Guard switchover and failover can range from 30 seconds to a few minutes. For guidance
on tuning Active Data Guard role transition timings or examples of role transition timings, see
Role Transition, Assessment, and Tuning.

Automatic Failover

Once configured, it is possible to enable automatic failover (Fast-Start Failover), to reduce
recovery time in case of failure, by installing Data Guard Observer on a separate VM,

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Google Cloud

34-35

https://docs.oracle.com/en/solutions/exadb-dr-on-db-google-cloud/index.html#GUID-391EB6BB-1305-4278-83B7-095BCDD52AEC
http://www.oracle.com/pls/topic/lookup?ctx=en/engineered-systems/exadata-cloud-service&id=ECSCM-GUID-6EBC4D6A-C58B-4721-B756-F22FC6819A45

preferably in a separate location or the application network. For more information, see
Configure Fast Start Failover to Bound RTO and RPO (MAA Gold Requirement). (These are
currently manual steps and not part of cloud automation.)

Chapter 34
Oracle Maximum Availability Architecture for Oracle Database@Google Cloud

34-36

35
Oracle Data Guard Hybrid Cloud Configuration

A hybrid Oracle Data Guard configuration consists of a primary database and one or more
standby databases residing partially on-premises and partially in the Oracle OCI cloud or
Oracle multicloud (for example, Oracle@Azure, Oracle@Google, or Oracle@AWS).

Note that the term Oracle cloud refers to both Oracle OCI and Oracle multicloud going
forward.

The process detailed in this topic uses the Oracle Database as a Service (DBaaS) tools to
create a cloud standby database from an existing on-premises primary database. Oracle
DBaaS tools streamline and simplify the process of creating the standby database in Oracle
Cloud while incorporating MAA best practices.

After establishing the cloud standby database as described here, you can perform a role
transition so that the primary database runs in the cloud instead of on-premises, and Oracle
Data Guard life-cycle operations (switchover, failover, and reinstate) are available using the
dbaascli commands.

Note:

Additional manual steps may be required during configuration if there are standby
databases residing on-premises.

Benefits Of Hybrid Data Guard in the Oracle Cloud
The following are the primary benefits to using a hybrid Data Guard configuration in the Oracle
Cloud.

• Flexibility to use Oracle Cloud Infrastructure data centers to supplement an on-premises
data center footprint for disaster recovery or other purposes

• Oracle manages the cloud data center and infrastructure

• Ability to switch over (planned events) or fail over (unplanned events) production to the
standby database in the cloud during scheduled maintenance or unplanned outages.

Once a failed on-premises database is repaired, it can be synchronized with the current
production database in the cloud. Then, production can be switched back to the on-
premises database if required.

• Use the same Oracle MAA best practices as the on-premises deployment. Additional
Oracle MAA best practices specific to hybrid Data Guard deployments are specified in the
topics that follow. When configured with MAA best practices, a hybrid Data Guard
configuration provides:

– Recovery Time Objective (RTO) of seconds when configured with Data Guard fast-
start failover and its automatic failover benefits

– Recovery Point Objective (RPO) less than a second for Data Guard with ASYNC
transport

35-1

– RPO zero for Data Guard in a Maximum Availability protection mode that leverages a
SYNC or FAR SYNC configuration

MAA Recommendations for Using Exadata Cloud for Disaster
Recovery

When deploying Exadata Cloud for Disaster Recovery, Oracle MAA recommends:

• Create a cloud database system target that is symmetric or similar to the on-premises
primary database to ensure performance SLAs can be met after a role transition. For
example, create an Oracle RAC target for an Oracle RAC source, Exadata for Exadata,
and so on.

• Ensure that network bandwidth can handle peak redo rates in addition to existing network
traffic.

My Oracle Support document Assessing and Tuning Network Performance for Data Guard
and RMAN (Doc ID 2064368.1) provides additional network bandwidth troubleshooting
guidance for assessing and tuning network performance for Data Guard and RMAN.

• Ensure network reliability and security between on-premises and the Cloud environment.

• Use Oracle Active Data Guard for additional automatic block repair, data protection, and
offloading benefits.

• Use Oracle Transparent Data Encryption (TDE) for both primary and standby databases.

My Oracle Support document Oracle Database Tablespace Encryption Behavior in Oracle
Cloud (Doc ID 2359020.1) has additional details on TDE behavior in cloud configurations.

• Configure backups to Autonomous Recovery Service or Object Storage for the Oracle
databases, in primary or standby role. See Manage Database Backup and Recovery on
Oracle Exadata Database Service on Dedicated Infrastructure and Database Autonomous
Recovery Service.

Security Requirements and Considerations
Oracle MAA best practices recommend using Oracle Transparent Data Encryption (TDE) to
encrypt the primary and standby databases to ensure that data is encrypted at-rest.

Using TDE to protect data is an essential part of improving the security of the system. Note the
following variables that need to be considered when evaluating TDE.

• CPU overhead - Encryption requires additional CPU cycles to calculate encrypted and
decrypted values. TDE, however, is optimized to minimize the overhead by taking
advantage of database caching capabilities and leveraging hardware acceleration within
Exadata. Most TDE users see little performance impact on their production systems after
enabling TDE.

• Lower data compression - Encrypted data compresses less efficiently than non-
encrypted data, so any compression applied to data encrypted with TDE results in lower
compression ratios. When TDE encryption is used, redo transport compression is not
recommended or typically required since data in the redo is already encrypted; however,
when TDE is used in conjunction with Oracle Database compression technologies such as
Advanced Compression or Hybrid Columnar Compression, compression is performed
before the encryption occurs, and the benefits of compression and encryption are both
achieved.

Chapter 35
MAA Recommendations for Using Exadata Cloud for Disaster Recovery

35-2

https://support.oracle.com/rs?type=doc&id=2064368.1
https://support.oracle.com/rs?type=doc&id=2064368.1
https://support.oracle.com/rs?type=doc&id=2359020.1
https://support.oracle.com/rs?type=doc&id=2359020.1
https://docs.oracle.com/iaas/exadatacloud/exacs/ecs-managing-db-backup-and-recovery.html#ECSCM-GUID-07D1B1D6-4A06-4859-B7DF-4C3A681A6B40
https://docs.oracle.com/iaas/exadatacloud/exacs/ecs-managing-db-backup-and-recovery.html#ECSCM-GUID-07D1B1D6-4A06-4859-B7DF-4C3A681A6B40
https://docs.public.oneportal.content.oci.oraclecloud.com/iaas/recovery-service/doc/overview-recovery-service.html
https://docs.public.oneportal.content.oci.oraclecloud.com/iaas/recovery-service/doc/overview-recovery-service.html

• Key management - Encryption is only as strong as the encryption key used and the loss
of the encryption key is tantamount to losing all data protected by that key.

If encryption is enabled on a few databases, keeping track of the key and its life cycle is
relatively easy. As the number of encrypted databases grows, managing keys becomes an
increasingly difficult problem. If you are managing a large number of encrypted databases,
it is recommended that Oracle Key Vault be used on-premises to store and manage TDE
master keys.

Data can be converted during the migration process, but it is recommended that TDE be
enabled before beginning the migration to provide the most secure Oracle Data Guard
environment. A VPN connection or Oracle Net encryption is also required for inflight encryption
for any other database payload that is not encrypted by TDE, such as data file or redo headers
for example. See My Oracle Support document Oracle Database Tablespace Encryption
Behavior in Oracle Cloud (Doc ID 2359020.1) for more information.

If the on-premises database is not already enabled with TDE, see My Oracle Support
document Primary Note For Transparent Data Encryption (TDE) (Doc ID 1228046.1) to
enable TDE and create wallet files.

If TDE cannot be enabled for the on-premises database, see Encryption of Tablespaces in an
Oracle Data Guard Environment in Oracle Database Advanced Security Guide for information
about decrypting redo operations in hybrid cloud disaster recovery configurations where the
Cloud database is encrypted with TDE and the on-premises database is not.

Platform, Database, and Network Prerequisites
The following requirements must be met to ensure a successful migration to a Cloud standby
database.

Requirement Type On-Premises Requirements Oracle Cloud Requirements

Operating System Linux, Windows or Solaris X86 (My
Oracle Support Note 413484.1 for Data
Guard cross-platform compatibility)

Oracle Enterprise Linux (64-bit)

Oracle Database Version* Extreme performance / BYOL*

See Supported Database Editions and
Versions for information about database
service options in Oracle Cloud.

Extreme performance / BYOL*

See Supported Database Editions and
Versions for information about database
service options in Oracle Cloud.

Oracle Database Architecture Oracle RAC or single-instance Oracle RAC or single-instance

Oracle Multitenant For Oracle 12.1 and above, the primary
database must be a multitenant
container database (CDB)

Multitenant container database (CDB) or
non-CDB

Physical or Virtual Host Physical or Virtual Exadata Virtual

Database Size Any size Any size.

For shape limits please consult Exadata
Cloud documentation

TDE Encryption Recommended Mandatory for Cloud databases

* The Oracle Database release on the primary and standby databases should be the same
database major release and database release update (RU) during initial standby instantiation.
For database software updates that are standby-first compatible, the primary and standby
database Oracle Home software can be different (for example, 19RU vs 19 RU+1). For the
standby instantiation in the Oracle cloud, the standby database Oracle Home software must be

Chapter 35
Platform, Database, and Network Prerequisites

35-3

https://support.oracle.com/rs?type=doc&id=2359020.1
https://support.oracle.com/rs?type=doc&id=2359020.1
https://support.oracle.com/rs?type=doc&id=1228046.1
https://docs.oracle.com/en-us/iaas/dbcs/doc/bare-metal-and-virtual-machine-db-systems.html#DBSCB-GUID-AFDF235F-FED1-4FF4-A10D-D067ACD80C9D
https://docs.oracle.com/en-us/iaas/dbcs/doc/bare-metal-and-virtual-machine-db-systems.html#DBSCB-GUID-AFDF235F-FED1-4FF4-A10D-D067ACD80C9D
https://docs.oracle.com/en-us/iaas/dbcs/doc/bare-metal-and-virtual-machine-db-systems.html#DBSCB-GUID-AFDF235F-FED1-4FF4-A10D-D067ACD80C9D
https://docs.oracle.com/en-us/iaas/dbcs/doc/bare-metal-and-virtual-machine-db-systems.html#DBSCB-GUID-AFDF235F-FED1-4FF4-A10D-D067ACD80C9D

the same or a later RU. See Oracle Patch Assurance - Data Guard Standby-First Patch Apply
(Doc ID 1265700.1).

Cloud Network Prerequisites
Data transfers from on-premises to Oracle Cloud use the public network, VPN, and/or the high
bandwidth option provided by Oracle FastConnect.

In an Oracle Data Guard configuration, the primary and standby databases must be able to
communicate bi-directionally. This requires additional network configuration to allow access to
ports between the systems.

Note:

Network connectivity configuration is not required for Oracle Exadata Database
Service on Cloud@Customer because it is deployed on the on-premises network.
Skip to On-Premises Prerequisites if you are using ExaDB-C@C.

Secure Connectivity

For Oracle Exadata Database Service (not required for ExaDB-C@C) there are two options to
privately connect the virtual cloud network to the on-premises network: FastConnect and IPSec
VPN. Both methods require a Dynamic Routing Gateway (DRG) to connect to the private
Virtual Cloud Network (VCN).

See Access to Your On-Premises Network for details about creating a DRG.

• OCI FastConnect - Provides an easy way to create a dedicated, private connection
between the data center and OCI. FastConnect provides higher bandwidth options and a
more reliable and consistent networking experience compared to internet-based
connections. See FastConnect Overview. (link https://docs.oracle.com/en-us/iaas/Content/
Network/Concepts/fastconnectoverview.htm) for details.

• IPSec VPN - Internet Protocol Security or IP Security (IPSec) is a protocol suite that
encrypts the entire IP traffic before the packets are transferred from the source to the
destination. See Site-to-Site VPN Overview for an overview of IPSec in OCI.

Public Internet Connectivity

Connectivity between OCI and on-premises can also be achieved using the public internet.

This method is not secure by default; additional steps must be taken to secure transmissions.
The steps for hybrid Data Guard configuration assume public internet connectivity.

By default, cloud security for port 1521 is disabled. Also, this default pre-configured port in the
cloud for either a Virtual Machine (VM) or Bare Metal (BM) has open access from the public
internet.

1. If a Virtual Cloud Network (VCN) for the standby database doesn't have an Internet
Gateway, one must be added.

To create an internet gateway see Internet Gateway.

2. Ingress and egress rules must be configured in the VCN security list to connect from and
to the on-premises database.

See Security Lists for additional information.

Chapter 35
Platform, Database, and Network Prerequisites

35-4

https://support.oracle.com/rs?type=doc&id=1265700.1
https://support.oracle.com/rs?type=doc&id=1265700.1
https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/connectivityonprem.htm
https://docs.cloud.oracle.com/iaas/Content/Network/Concepts/fastconnectoverview.htm
https://docs.oracle.com/iaas/Content/Network/Tasks/overviewIPsec.htm
https://docs.oracle.com/iaas/Content/Network/Tasks/managingIGs.htm
https://docs.oracle.com/iaas/Content/Network/Concepts/securitylists.htm

On-Premises Prerequisites
The following prerequisites must be met before instantiating the standby database.

Evaluate Network Using oratcptest

In an Oracle Data Guard configuration, the primary and standby databases transmit
information in both directions. This requires basic configuration, network tuning, and opening of
ports at both the primary and standby databases.

It is vital that the bandwidth exists to support the redo generation rate of the primary database.

Follow instructions in Assessing and Tuning Network Performance for Data Guard and RMAN
(Doc ID 2064368.1) to assess and tune the network link between the on-premises and cloud
environments.

Configuration

• Name resolution

– For ExaDB-C@C, because the clusters reside on the on-premises network, the on-
premises DNS should resolve each cluster, and no further configuration should be
necessary.

– For Oracle Exadata Database Service, name resolution between the clusters must be
configured.

This can be done either using a static file like /etc/hosts, or by configuring the on-
premises DNS to properly resolve the public IP address of the OCI instance. In
addition, the on-premises firewall must have Access Control Lists configured to allow
SSH and Oracle Net to be accessed from the on-premises system to OCI.

• Oracle Data Guard in a DR configuration requires access from the Cloud instance to the
on-premises database; the primary database listener port must be opened with restricted
access from the Cloud IP addresses using features like iptables.

Because every corporation has different network security policies, the network
administrator must perform operations like the cloud-side network configuration shown in
Cloud Network Prerequisites.

• Prompt-less SSH from Oracle Cloud to the on-premises machine. This is configured both
for on-premises to Cloud during the provisioning process and from the Cloud to on-
premises.

• The configuration of the on-premises firewall to allow inbound SSH connectivity from the
Cloud to the on-premises machine.

• It is strongly recommended that you complete the network assessment described above in
Evaluate Network Using oratcptest. Setting the appropriate TCP socket buffers setting is
especially important for ASYNC redo transport.

• It is recommended that the RDBMS software be the same on the primary and standby
database for instantiation. If the current on-premises Oracle Database release is not
available in Oracle Exadata Database Service, then the primary database must be on the
same major database release and the same or lower Release Update (RU).

Chapter 35
Platform, Database, and Network Prerequisites

35-5

https://support.oracle.com/rs?type=doc&id=2064368.1
https://support.oracle.com/rs?type=doc&id=2064368.1

Implement MAA Best Practice Parameter Settings on the Primary Database

Most MAA best practices for Data Guard are part of the process described here; however, the
Standby Redo Log should be created on the primary database before starting this process.

See Oracle Data Guard Configuration Best Practices for information.

Validating Connectivity between On-Premises and Exadata Cloud Hosts

After the networking steps are implemented successfully, run the command below to validate
that the connection is successful between all sources and all targets in both directions.

1. As the oracle OS user on all nodes of the on-premises environment, use curl to test
connectivity between all on-premises and all cloud nodes.

[oracle@on-prem1]$ curl -v telnet://<FQDN-CLOUD-HOST1>:22 (or other
available port)
* Rebuilt URL to: telnet://<FQDN-CLOUD-HOST1>:22/
* Trying <CLOUD-HOST1-IP>...
* TCP_NODELAY set
* Connected to <FQDN-CLOUD-HOST1> (<CLOUD-HOST1-IP>) port 22 (#0)
SSH-2.0-OpenSSH_8.0
^C
[oracle@on-prem1]$

2. As the oracle OS user on all nodes of the cloud environment, use curl to test connectivity
between all cloud and all on-premises nodes.

[oracle@cloud-exadata1]$ curl -v telnet://<FQDN-ON-PREM-HOST1>:22 (or
other available port)
* Rebuilt URL to: telnet://<FQDN-CLOUD-HOST1>:22/
* Trying <ON-PREM-HOST1-IP>...
* TCP_NODELAY set
* Connected to <FQDN-ON-PREM-HOST1> (<ON-PREM-HOST1-IP>) port 22 (#0)
SSH-2.0-OpenSSH_8.0
^C
[oracle@cloud-exadata1]$

3.

If curl connection is successful, proceed to the next step.

Note:

Successful connections will get the message "Connected to <FQDN-HOST1>
(<HOST-IP>) port 22", while unsuccessful connections will get the message "Failed
to connect to <FQDN-HOST1> port 22: Connection refused"

Chapter 35
Platform, Database, and Network Prerequisites

35-6

Prepare the Primary Database Environment
The Hybrid Data Guard configuration process uses the Oracle Cloud DBaaS tools and
automation to ensure the process used to create the standby database is the same process as
is used in the Oracle Cloud.

This will ensure that the cloud database is visible in the cloud user interface.

Because the on-premises database is not a cloud created database, some steps are required
to ensure successful completion.

Create an ACFS Mount Point
Hybrid Data Guard configurations require an ACFS mount point for sharing files between
instances, for example tnsnames.ora and TDE wallets.

This mount point exists in cloud platforms in /var/opt/oracle/dbaas_acfs. If there is no
existing ACFS mount point for the primary cluster create one using the steps in Creating an
Oracle ACFS File System. (An existing ACFS mount point can be used)

Configure Transparent Data Encryption on the Source Database
Transparent Data Encryption (TDE) is required on Oracle Cloud databases, including any
standby database which is part of a hybrid Data Guard configuration.

While it is strongly recommended that the on-premises database also be encrypted, leaving
the primary database unencrypted as part of a hybrid Data Guard configuration can be
configured and is better supported by new parameters in Oracle Database 19c (19.16) and
later releases.

For all TDE configurations with Oracle Data Guard, the encryption wallet must be created on
the primary database and the master key must be set whether or not the primary database will
be encrypted with TDE.

The parameters required for TDE configuration differ depending with Oracle Database
releases. The values may be different for each database in the Data Guard configuration.

• In Oracle Database release 19c (19.16) and later, the parameters
TABLESPACE_ENCRYPTION, WALLET_ROOT, and TDE_CONFIGURATION are required to properly
configure TDE.

• For Oracle Database 19c releases before 19.16, set parameters WALLET_ROOT,
TDE_CONFIGURATION, and ENCRYPT_NEW_TABLESPACES.

• For releases earlier than Oracle Database19c, set parameters
ENCRYPTION_WALLET_LOCATION and ENCRYPT_NEW_TABLESPACES.

Note:

Unless otherwise specified by the TABLESPACE_ENCRYPTION=DECRYPT_ONLY parameter,
a new tablespace's encryption on the standby database will be the same as that of
the primary.

Chapter 35
Platform, Database, and Network Prerequisites

35-7

In the following table use the links to find references for setting the primary and standby
database parameters.

Parameter Definition All Oracle
Database
releases before
19c

Oracle
Database
release 19.15
and earlier

Oracle
Database
release 19.16
and later

ENCRYPTION_
WALLET_LOCAT
ION

Defines the location of the wallet RECOMMENDE
D

DEPRECATED DEPRECATED

WALLET_ROOT
and
TDE_CONFIGU
RATION

WALLET_ROOT sets the location of the root of the
directory for wallet storage for each PDB in a
CDB.

TDE_CONFIGURATION defines the type of
keystore. For example, FILE for a wallet
keystore. The keystore type must be set to the
same value on the primary and standby
database.

N/A RECOMMENDE
D

RECOMMENDE
D

ENCRYPT_NEW
_TABLESPACES

Indicates whether a new tablespace on the
primary database should be encrypted

The ENCRYPT_NEW_TABLESPACES parameter
can be set as follows:

• CLOUD_ONLY - Default setting. Any new
tablespaces created are transparently
encrypted with the AES128 algorithm,
unless a different algorithm is specified in
the ENCRYPTION clause in the CREATE
TABLESPACE statement. For on-premises
databases, tablespaces are only encrypted
if the CREATE
TABLESPACE...ENCRYPTION clause is
specified.

• ALWAYS - Any new tablespace created in a
primary database, on-premises or in the
cloud, will be transparently encrypted with
the AES128 algorithm, unless a different
encryption algorithm is specified in the
CREATE TABLESPACE ENCRYPTION clause.

• DDL - Allows you to create tablespaces with
or without encryption following the CREATE
TABLESPACE command, and also lets you
change the encryption algorithm. Note: This
value is not applicable for cloud primary
databases with releases from Oracle
Database 19c (19.16) and later because
tablespace encryption is enforced.

RECOMMENDE
D

RECOMMENDE
D

NOT
RECOMMENDE
D

Override with
recommended
setting for
TABLESPACE_EN
CRYPTION

Chapter 35
Platform, Database, and Network Prerequisites

35-8

Parameter Definition All Oracle
Database
releases before
19c

Oracle
Database
release 19.15
and earlier

Oracle
Database
release 19.16
and later

TABLESPACE_E
NCRYPTION
(see note above)

Oracle Database 19c (19.16) and later releases
- indicates whether a new tablespace should be
encrypted. Available options are AUTO_ENABLE,
MANUAL_ENABLE, and DECRYPT_ONLY.

Starting with Oracle Database 19c (19.16),
Oracle Cloud forces encryption for all
tablespaces in the cloud database. This cannot
be overridden.

To prevent encrypted tablespaces on an on-
premises database (primary or standby) set the
TABLESPACE_ENCRYPTION parameter to
DECRYPT_ONLY.

DECRYPT_ONLY is only valid in an on-premises
database.

N/A N/A RECOMMENDE
D

To configure Transparent Data Encryption using a TDE wallet follow the steps in Configuring
Transparent Data Encryption.

Check the TDE Master Key Before Instantiation
Even in cases where the primary database remains unencrypted, TDE must be configured on
the primary database. This configuration includes creating the encryption wallet and setting the
master key.

During the process the wallet is copied to the standby database. The master key stored in the
wallet will be used by the standby database for encryption.

In the event of a switchover where the cloud standby database becomes the primary database,
the key is used by the unencrypted on-premises database to decrypt the encrypted redo from
the cloud database.

Failure to set the master key will result in failure of Data Guard managed recovery.

To confirm the master key is set properly:

• Verify that the MASTERKEYID column in V$DATABASE_KEY_INFO matches a key existing in
V$ENCRYPTION_KEYS on the source database.

In a multitenant container database (CDB) environment, check CDB$ROOT and all the PDBs
except PDB$SEED.

Configure Online Redo Logs
Redo log switches can have a significant impact on redo transport and apply performance.

Follow these best practices for sizing the online redo logs on the primary database before
instantiation.

• All online redo log groups should have identically sized logs (to the byte).

• Online redo logs should reside on high performing disks (DATA disk groups) and on high
redundancy disk groups if possible.

Chapter 35
Platform, Database, and Network Prerequisites

35-9

• Create a minimum of three online redo log groups per thread of redo on Oracle RAC
instances.

• Create online redo log groups on shared disks in an Oracle RAC environment.

• Do not multiplex online redo logs (multiple members per log group) unless they are not
placed on high redundancy disk groups.

• Size online redo logs to switch no more than 12 times per hour (every ~5 minutes) during
peak workloads.

Size Redo Logs
Size redo logs based on the peak redo generation rate of the primary database.

You can determine the peak rate by running the query below for a time period that includes the
peak workload.

The peak rate could be seen at month-end, quarter-end, or annually. Using the guidance
above, size the redo logs to handle the highest rate +10% in order for redo apply to perform
consistently during these workloads.

SQL> SELECT thread#,sequence#,blocks*block_size/1024/1024 MB,
(next_time-first_time)*86400 sec,
 blocks*block_size/1024/1024)/((next_time-first_time)*86400) "MB/s"
 FROM v$archived_log
 WHERE ((next_time-first_time)*86400<>0)
 and first_time between to_date('2015/01/15 08:00:00','YYYY/MM/DD HH24:MI:SS')
 and to_date('2015/01/15 11:00:00','YYYY/MM/DD HH24:MI:SS')
 and dest_id=1 order by first_time;

 THREAD# SEQUENCE# MB SEC MB/s
---------- ---------- ---------- ---------- ----------
 2 2291 29366.1963 831 35.338383
 1 2565 29365.6553 781 37.6000708
 2 2292 29359.3403 537 54.672887
 1 2566 29407.8296 813 36.1719921
 2 2293 29389.7012 678 43.3476418
 2 2294 29325.2217 1236 23.7259075
 1 2567 11407.3379 2658 4.29169973
 2 2295 29452.4648 477 61.7452093
 2 2296 29359.4458 954 30.7751004
 2 2297 29311.3638 586 50.0193921
 1 2568 3867.44092 5510 .701894903

Choose the redo log size based on the peak generation rate with the following chart.

Peak Redo Rate Recommended Redo Log Size

<= 1 MB/s 500 MB

<= 5 MB/s 1 GB

<= 25 MB/s 8 GB

<= 50 MB/s 16 GB

> 50 MB/s 32 GB

Chapter 35
Platform, Database, and Network Prerequisites

35-10

Enable Flashback Database
Flashback Database allows reinstatement of the old primary database as a standby database
after a failover.

Without Flashback Database enabled, the old primary database would have to be recreated as
a standby after a failover. If flashback database has not already been enabled, enable it now.

To enable flashback database, make sure you have sufficient space and I/O throughput in your
Fast Recovery Area or RECO disk group, and evaluate any performance impact.

As the oracle OS user on the first node of the on-premises environment, run the command
below to enable flashback database on the primary if it is not already enabled.

[oracle@on-prem1]$ echo "alter database flashback on;" | sqlplus -SILENT "/
as sysdba"

Database altered.

Investigate Log for Errors (TFA)

As the root OS user on the first node of the on-premises environment, use Oracle Trace File
Analyzer to analyze all of your logs across your cluster to identify recent database errors.

The Event Summary gives you a real-time report the database status.

[root@on-prem1]# tfactl events -component RDBMS -database [DBname] -last 7d

Output from host : on-prem1

Event Summary:
INFO :0
ERROR :0
WARNING :0

Event Timeline:
No Events Found

Output from host : on-prem2

Event Summary:
INFO :0
ERROR :0
WARNING :0

Event Timeline:
No Events Found

Chapter 35
Platform, Database, and Network Prerequisites

35-11

Note:

Review the result and investigate and any failures before moving forward. Refer to
Collecting and Analyzing Oracle Database Diagnostic Data for more information.

Instantiate the Standby Using Oracle DBaaS Tools
Prepare the on-premises environment and instantiate the standby database using the DBaaS
Tools prepareForStandby and configureStandby work flows.

Task 1: Install DBaaSCA in the On-Premises Environment

1. Copy the /var/opt/oracle/dbaastools/dbaasca.zip artifact from the Cloud environment
to the first node of the on-premises environment as the oracle OS user.

Note:

A fresh version of dbaasca should be downloaded each time this process is run.

[oracle@on-prem1]$ scp
<cloud-exadata1>@/var/opt/oracle/dbaastools/dbaasca.zip /tmp

2. As the root OS user on the first node of the on-premises environment, create the dbaasca
directory.

[root@on-prem1]# mkdir -p /var/opt/oracle/dbaastools/dbaasca

[root@on-prem1]# chown -R oracle:oinstall /var/opt/oracle

3. As the oracle OS user on the first node of the on-premises environment, unzip the
dbaasca.zip file into /var/opt/oracle/dbaastools/dbaasca.

[oracle@on-prem1]$ unzip -q
 /tmp/dbaasca.zip -d /var/opt/oracle/dbaastools/dbaasca

Task 2: Prepare the Cloud Environment for Instantiation of the Standby
Database

The target ORACLE_HOME for the standby database must already exist on the standby system.
Use the following steps to create the home if one does not already exist.

It is recommended that the home for the standby database be the same version, RU and
include one-off patches. If the same RU is not available, a more recent RU of the same major
version can be used.

To install an Oracle Home for the standby database:

Chapter 35
Instantiate the Standby Using Oracle DBaaS Tools

35-12

https://docs.oracle.com/en/engineered-systems/health-diagnostics/trace-file-analyzer/tfaug/quick-start-guide.html#GUID-A1DBE3D4-6501-47D3-854E-E9978F19F7BA

1. As the oracle OS user on the first node of the on-premises environment, use opatch to list
the database release.

[oracle@on-prem1]$ $ORACLE_HOME/OPatch/opatch lspatches | grep 'Database
Release Update'

36912597;Database Release Update : 19.25.0.0.241015 (36912597)

2. As the root OS user on the first node of the cloud environment, use dbaascli to list the
available images matching the on-premises release.

[root@cloud-exadata1 ~]# dbaascli cswLib showImages | grep -A 1 '19.25'

2.IMAGE_TAG=19.25.0.0.0
 VERSION=19.25.0.0.0
 DESCRIPTION=19c OCT 2024 DB Image

3. As the root OS user on the first node of the cloud environment, use dbaascli to download
the available image matching the on-premises release.

[root@cloud-exadata1 ~]# dbaascli cswlib download --version 19.25.0.0.0
...
dbaascli execution completed

4. As the root OS user on the first node of the cloud environment, use dbaascli to create the
target ORACLE_HOME matching the on-premises release.

[root@cloud-exadata ~]# dbaascli dbHome create --version 19.25.0.0.0

Running Plugin_initialization job
...
---------- START OF PLUGIN RESULT ----------
{"ORACLE_HOME_NAME":"OraHome4","ORACLE_HOME":"/u02/app/oracle/product/
19.0.0.0/dbhome_3"}
---------- END OF PLUGIN RESULT ----------

dbaascli execution completed

Note:

Take note of the ORACLE_HOME_NAME, you will need it for the migration.

The Oracle Home on the cloud system can also be created using the OCI User
Interface.

Task 3: Instantiate the Standby Database
After the preparations are complete you can run the Oracle DBaaS Tools prepareForStandby
and configureStandby work flows to instantiate the cloud standby database.

You will actually run two jobs using the Oracle DBaaS Tools:

Chapter 35
Instantiate the Standby Using Oracle DBaaS Tools

35-13

• Run dbaasca operation prepareForStandby in the on-premises environment.

• Run dbaascli operation configureStandby in the cloud environment.

Configure ACFS

As the root OS user on the first node of the on-premises environment, create the ACFS mount
point required to execute prepareForStandby.

[root@on-prem1]# $(grep ^crs_home /etc/oracle/olr.loc |
 cut -d= -f2)/bin/crsctl stat res -w "TYPE == ora.acfs.type" |grep NAME
NAME=ora.datac1.acfsvol01.acfs

[root@on-prem1]# $(grep ^crs_home /etc/oracle/olr.loc |
 cut -d= -f2)/bin/crsctl stat res ora.datac1.acfsvol01.acfs -f |grep
^MOUNTPOINT_PATH
MOUNTPOINT_PATH=/acfs01

Create a directory for the dbname (oradb1 for this example):

[root@on-prem1]# mkdir /acfs01/oradb1
[root@on-prem1]# chown oracle:oinstall /acfs01/oradb1

Run dbaasca Operation prepareForStandby in the On-Premises Environment

Now you are prepared to start the process. First, you will prepare the primary database to
become part of a Data Guard configuration. Gather the following information which will be
passed to the workflow.

1. As the root OS user on the first node of the cloud environment, collect the
standbyScanName and standbyScanPort required to execute dbaasca.

[root@cloud-exadata1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/srvctl config scan |grep 'SCAN name:' | awk '{print $3}'
cloud-exadata-scan.clientnet.default.oraclevcn.com,

[root@cloud-exadata1 ~]# dbaascli grid getDetails | grep
scanListenerTCPPorts |
 cut -d "[" -f2 | cut -d "]" -f1
 1521

Make note of these pieces of information to be passed to the workflow.

2. As the oracle OS user on the first node of the on-premises environment, collect the
primary database unique name required to execute dbaasca.

[oracle@on-prem1]$ echo "select DB_UNIQUE_NAME from v\$database;" |
 sqlplus -SILENT "/ as sysdba"

DB_UNIQUE_NAME

oradb1_onprem

Chapter 35
Instantiate the Standby Using Oracle DBaaS Tools

35-14

3. As the oracle OS user on the first node of the on-premises environment, set the
environment variable ORACLE_HOME pointing to the on-premises database Oracle Home.

[oracle@on-prem1]$ srvctl config database -home
oradb1 /u01/app/oracle/product/19.0.0.0/dbhome_1 19.0.0.0.0

[oracle@on-prem1]$ export ORACLE_HOME=/u01/app/oracle/product/19.0.0.0/
dbhome_1

4. With that information gathered, run the prepareForStandby work flow with the appropriate
replacements.

As the oracle OS user on the first node of the on-premises environment, run dbaasca
operation prepareForStandby with corresponding arguments.

[oracle@on-prem1]$

/var/opt/oracle/dbaastools/dbaasca/bin/dbca \
-silent \
-oui_internal \
-configureDatabase \
-prepareForStandby \
-dgTNSNamesoraFilePath /acfs01/oradb1 \
-sourceDB oradb1_onprem \
-standbyDBUniqueName oradb1_cloud \
-standbyScanName cloud-exadata-scan.clientnet.default.oraclevcn.com \
-standbyScanPort 1521 \
-standbyDBDomain clientnet.default.oraclevcn.com \
-blobFileLocation /tmp

SYS_PASSWORD_PROMPT
<ENTER_SYS_PASSWORD>

Session ID of the current execution is: 53

Running Create_dg_services job
Completed Create_dg_services job
25% complete

Running Update_tnsnames_ora_file job
Completed Update_tnsnames_ora_file job
50% complete

Running Update_ifile_entry job
Completed Update_ifile_entry job
75% complete

Running Prepare_blob_file job
Completed Prepare_blob_file job
100% complete
---------- PLUGIN NOTES ----------
Successfully created blob file: /tmp/
oradb1_2024-11-21_10-59-53AM_137640.tar
---------- END OF PLUGIN NOTES ----------
Look at the log file

Chapter 35
Instantiate the Standby Using Oracle DBaaS Tools

35-15

 "/u01/app/oracle/cfgtoollogs/dbca/oradb1_onprem/oradb1_onprem.log"
 for further details.

The workflow creates a zip file with required files to instantiate the standby database. For
example, tnsnames.ora, TDE wallet and so on. This tar file is listed in the output of the
command and must be copied from the to a location on the standby system.

5. As the oracle OS user on the first node of the on-premises environment, copy the
generated blob file to the first node of the cloud environment.

[oracle@on-prem1]$ scp
 /tmp/oradb1_2024-11-21_10-59-53AM_137640.tar opc@cloud-exadata1:/tmp

Run dbaascli Operation configureStandby in the Cloud Environment

1. First, gather some information that has to be passed to the configureStandby work flow.

As the oracle OS user on the first node of the on-premises environment, collect the
primaryScanIPAddresses, primaryScanPort, and primaryServiceName required to
execute dbaascli.

[oracle@on-prem1]$ $(grep ^crs_home /etc/oracle/olr.loc |
 cut -d= -f2)/bin/srvctl config scan |grep 'SCAN name:' | awk '{print $3}'
maafra2vm01-oe6ab-scan.clientnet.maafradefault.oraclevcn.com

[oracle@on-prem1]$ srvctl config scan_listener -scannumber 1 |grep
Endpoints
Endpoints: TCP:1521/TCPS:2484

[oracle@on-prem1]$ lsnrctl status | grep oradb1_onprem | cut -d'"' -f 2
oradb1_onprem.clientnet.maafradefault.oraclevcn.com

2. As the root OS user on the first node of the cloud environment, run dbaascli operation
configureStandby with corresponding arguments.

[root@cloud-exadata1]#

dbaascli dataguard configureStandby \
--dbname oradb1 \
--oracleHome /u02/app/oracle/product/19.0.0.0/dbhome_3 \
--standbyDBUniqueName oradb1_cloud \
--primaryScanIPAddresses companyxyz.region.com \
--primaryScanPort 1521 \
--primaryServiceName oradb1_onprem.companyxyz.region.com \
--protectionMode MAX_PERFORMANCE \
--transportType ASYNC \
--activeDG true \
--standbyScanIPAddresses cloud-exadata-
scan.clientnet.default.oraclevcn.com \
--standbyScanPort 1521 \
--standbyBlobFromPrimary /tmp/oradb1_2024-11-21_10-59-53AM_137640.tar

Enter PRIMARY_DB_SYS_PASSWORD:

Chapter 35
Instantiate the Standby Using Oracle DBaaS Tools

35-16

<ENTER_PRIMARY_DB_SYS_PASSWORD>
Enter PRIMARY_DB_TDE_PASSWORD:
<ENTER_PRIMARY_DB_SYS_PASSWORD>
Enter AWR_ADMIN_PASSWORD:
<ENTER_AWR_ADMIN_PASSWORD>
Enter AWR_ADMIN_PASSWORD (reconfirmation):
<ENTER_AWR_ADMIN_PASSWORD>

Loading PILOT...
Session ID of the current execution is: 10015
Log file location:
 /var/opt/oracle/log/oradb1/dataguard/configureStandby/
pilot_2024-11-21_11-28-21-AM_270773

Running Plugin_initialization job
Enter PRIMARY_DB_SYS_PASSWORD

Enter PRIMARY_DB_TDE_PASSWORD

Enter AWR_ADMIN_PASSWORD

Completed Plugin_initialization job

Running Validate_plugin_inputs job
Completed Validate_plugin_inputs job

Running Default_database_values_initialization job
Completed Default_database_values_initialization job

...

Running Generate_dgconfig_details job
Acquiring native write lock: global_dgsystem_details_generation
Releasing native lock: global_dgsystem_details_generation
Completed Generate_dgconfig_details job
Releasing lock: oradb1
Releasing lock: _u02_app_oracle_product_19.0.0.0_dbhome_3

Running Cleanup job
Completed Cleanup job

dbaascli execution completed

Note:

The Oracle MAA best practice is for the standby to be open read-only to enable
Automatic Block Media Recovery; Use the flag --activeDG true

3. As the root OS user on the first node of the cloud environment, run the following
commands to monitor the progress of the dbaascli operation configureStandby.

[root@cloud-exadata1]# export dbName=oradb1
[root@cloud-exadata1]# export dbUniqueName=oradb1_cloud

Chapter 35
Instantiate the Standby Using Oracle DBaaS Tools

35-17

[root@cloud-exadata1]# tail -20f `ls -t
 /var/opt/oracle/log/$dbName/dataguard/configureStandby/pilot_* | head -1`

FINE: [2024-11-21 11:43:38.908 UTC][pool-334-thread-1]
[DBCAExecutor$DBCAExecutionProcessHandler.logOutput:96]

FINE: [2024-11-21 11:43:38.910 UTC][pool-334-thread-1]
[DBCAExecutor$DBCAExecutionProcessHandler.logOutput:96]
 Running Open_pdbs job
FINE: [2024-11-21 11:43:42.661 UTC][pool-334-thread-1]
[DBCAExecutor$DBCAExecutionProcessHandler.logOutput:96]
 Completed Open_pdbs job
FINE: [2024-11-21 11:43:42.668 UTC][pool-334-thread-1]
[DBCAExecutor$DBCAExecutionProcessHandler.logOutput:96]
 90% complete
FINE: [2024-11-21 11:43:42.692 UTC][pool-334-thread-1]
[DBCAExecutor$DBCAExecutionProcessHandler.logOutput:96]

FINE: [2024-11-21 11:43:42.697 UTC][pool-334-thread-1]
[DBCAExecutor$DBCAExecutionProcessHandler.logOutput:96]
 Running Create_services job

[root@cloud-exadata1]# tail -20f `ls -t
 /var/opt/oracle/log/$dbName/dataguard/configureStandby/$dbUniqueName/
trace* | head -1`

[pool-3-thread-4] [2024-11-21 12:03:55.015 UTC]
[CRSCache.getAttributesFromCRS:155]
 CRS: name: ora.oradb1_cloud.oradb1_oradb1p3.paas.oracle.com.svc, type 1,
node: null
[pool-3-thread-4] [2024-11-21 12:03:55.015 UTC]
[CRSCache.getAttributesFromCRS:156]
 attrs: [GLOBAL]
[pool-3-thread-4] [2024-11-21 12:03:55.016 UTC]
[CRSCache.getAttributesFromCRS:163]
 CRS: [<GLOBAL:false>]
[pool-3-thread-4] [2024-11-21 12:03:55.016 UTC]
[CRSNative.genericStartEntity:668]
 [MAJOR EVENT] About to start resource:
 Name: ora.oradb1_cloud.oradb1_oradb1p3.paas.oracle.com.svc, force:false
node: null,
 options: 0, filter null
[pool-3-thread-4] [2024-11-21 12:03:55.016 UTC]
[CRSNative.genericStartEntity:678]
 filter = null
[pool-3-thread-4] [2024-11-21 12:03:55.016 UTC]
[CRSNative.genericStartEntity:679]
 node name = null

[root@cloud-exadata1]# tail -20f /u01/app/grid/diag/crs/`hostname`/crs/
trace/alert.log

2024-11-21 12:13:59.362 [CRSD(398369)]
 CRS-2772: Server 'maafra3vm02-qbi0z1' has been assigned to pool
 'ora.oradb1_oradb1_oradb1p3_ro.paas.oracle.com'.
2024-11-21 12:13:59.363 [CRSD(398369)]

Chapter 35
Instantiate the Standby Using Oracle DBaaS Tools

35-18

 CRS-2772: Server 'maafra3vm02-qbi0z2' has been assigned to pool
 'ora.oradb1_oradb1_oradb1p3_ro.paas.oracle.com'.
2024-11-21 12:14:00.420 [CRSD(398369)]
 CRS-2772: Server 'maafra3vm02-qbi0z1' has been assigned to pool
 'ora.oradb1_oradb1_oradb1p4.paas.oracle.com'.
2024-11-21 12:14:00.421 [CRSD(398369)]
 CRS-2772: Server 'maafra3vm02-qbi0z2' has been assigned to pool
 'ora.oradb1_oradb1_oradb1p4.paas.oracle.com'.

Note:

Once this process completes, delete dbaasca and the zip file from the on-premises
system.

Task 4: Validate the Standby Database

1. As the root OS user on the first node of the cloud environment, check the Oracle database
configuration.

[root@cloud-exadata1]# dbaascli database getDetails --dbname oradb1 |
 egrep 'dbName|dbRole|dbType|patchVersion'
 "dbName" : "oradb1",
 "dbRole" : "PHYSICAL_STANDBY",
 "dbType" : "RAC",
 "patchVersion" : "19.25.0.0.0",
 "pdbName" : "ORADB1P1",
 "pdbName" : "ORADB1P2",
 "pdbName" : "ORADB1P3",
 "pdbName" : "ORADB1P4",
 "pdbName" : "ORADB1P5",

2. As the root OS user on the first node of the cloud environment, check the Oracle Data
Guard Broker configuration.

[root@cloud-exadata1]# dbaascli dataguard getDetails --dbName oradb1 |
 egrep 'protectionMode|"status"|dbUniqueName|dgRole|standbyType|
transportType|"switchoverReadiness"|"failoverReadiness"|redoTransportState|
databaseStatus'

 "protectionMode" : "MAX_PERFORMANCE",
 "status" : "SUCCESS",
 "dbUniqueName" : "oradb1_onprem",
 "dgRole" : "PRIMARY",
 "standbyType" : null,
 "transportType" : "ASYNC",
 "switchoverReadiness" : "HEALTHY",
 "failoverReadiness" : "HEALTHY",
 "redoTransportState" : "ON",
 "databaseStatus" : "SUCCESS",
 "dbUniqueName" : "oradb1_cloud",
 "dgRole" : "STANDBY",

Chapter 35
Instantiate the Standby Using Oracle DBaaS Tools

35-19

 "standbyType" : "PHYSICAL_STANDBY",
 "transportType" : "ASYNC",
 "switchoverReadiness" : "HEALTHY",
 "failoverReadiness" : "HEALTHY",
 "redoTransportState" : null,
 "databaseStatus" : "SUCCESS",

'status' should be SUCCESS. If any other status is shown, re-run the command after
waiting 2 minutes to give the Broker time to update. If issues persist, see the Oracle Data
Guard Broker documentation to diagnose and correct any issues.

3. As the oracle OS user on the first node of the cloud environment, validate the standby
database.

[oracle@cloud-exadata1]$ dgmgrl / 'validate database oradb1_cloud'

DGMGRL for Linux: Release 19.0.0.0.0 - Production on Thu Nov 21 15:26:55
2024
Version 19.25.0.0.0

Copyright (c) 1982, 2019, Oracle and/or its affiliates. All rights
reserved.

Welcome to DGMGRL, type "help" for information.
Connected to "oradb1_cloud"
Connected as SYSDG.

 Database Role: Physical standby database
 Primary Database: oradb1_onprem

 Ready for Switchover: Yes
 Ready for Failover: Yes (Primary Running)

 Managed by Clusterware:
 oradb1_onprem : YES
 oradb1_cloud: YES

Task 5: Implement Recommended MAA Best Practices
After standby instantiation, evaluate implementing the following Oracle MAA best practices to
achieve better data protection and availability.

While many of the recommended best practices are implemented as part of the workflows,
some additional recommendations are not implemented as they may have a performance
impact.

The additional key best practices are listed below. Also see Oracle Data Guard Configuration
Best Practices for details about Oracle MAA recommended best practices for Oracle Data
Guard.

Set Data Protection Parameters

MAA best practice recommendations include the following settings on the primary and standby
databases.

db_block_checksum=TYPICAL

Chapter 35
Instantiate the Standby Using Oracle DBaaS Tools

35-20

db_lost_write_protect=TYPICAL
db_block_checking=MEDIUM

SQL> show parameter db_block_checksum

NAME TYPE VALUE
------------------------------------ -----------

db_block_checksum string TYPICAL

SQL> alter system set db_block_checksum=TYPICAL scope=both sid='*';

SQL> show parameter db_lost_write_protect

NAME TYPE VALUE
------------------------------------ -----------

db_lost_write_protect string typical

SQL> alter system set db_lost_write_protect=TYPICAL scope=both sid='*';

SQL> show parameter db_block_checking

NAME TYPE VALUE
------------------------------------ -----------

db_block_checking string OFF

SQL> alter system set db_block_checking=MEDIUM scope=both sid='*';

Note that the db_block_checking setting has an impact on primary database performance and
should be thoroughly tested with a production workload in a lower, production-like environment.

If the performance impact is determined to be unacceptable on the primary database, the
standby database should set db_block_checking=MEDIUM with the primary set to NONE and set
the cloudautomation Data Guard Broker property to '1' for both databases so that the value
will be automatically changed accordingly after a role transition swapping values of the primary
and standby databases.

DGMGRL> edit database primary-unique-name set property cloudautomation=1;
Property "cloudautomation" updated

DGMGRL> edit database standby-unique-name set property cloudautomation=1;
Property "cloudautomation" updated

Note that the cloudautomation property must be set on both databases to work properly.

Configure Redo Transport - Oracle Net Encryption

To protect against plain text or unencrypted tablespace redo from being visible on the WAN,
place the following entries in the sqlnet.ora file on all on-premises database nodes.

Chapter 35
Instantiate the Standby Using Oracle DBaaS Tools

35-21

These values should already be set by the deployment tool in cloud configurations.

#SQLNET.ORA ON ON-PREMISES HOST(S)
SQLNET.ENCRYPTION_SERVER=REQUIRED
SQLNET.CRYPTO_CHECKSUM_SERVER=REQUESTED
SQLNET.ENCRYPTION_TYPES_SERVER=(AES256,AES192,AES128)
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER=(SHA1)
SQLNET.ENCRYPTION_CLIENT=REQUESTED
SQLNET.CRYPTO_CHECKSUM_CLIENT=REQUIRED
SQLNET.ENCRYPTION_TYPES_CLIENT=(AES256,AES192,AES128)
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT=(SHA1)

Configure Backups

Optionally, configure automatic backups for the Oracle cloud database, for primary or standby
role, using Autonomous Recovery Service or object storage.

Autonomous Recovery Service allows you to offload backup processing and storage in
addition to the following benefits:

• Significantly reduce dependencies on backup infrastructure

• Develop a centralized backup management strategy for all the supported OCI database
services

• Retain backups with Recovery Service for a maximum period of 95 days

• Leverage real-time data protection capabilities to eliminate data loss

• Significantly reduce backup processing overhead for your production databases

• Implement a dedicated network for Recovery Service operations in each virtual cloud
network (VCN)

• Automate backup validation to ensure recoverability

• Implement a policy-driven backup life-cycle management

See Manage Database Backup and Recovery on Oracle Exadata Database Service on
Dedicated Infrastructure and Database Autonomous Recovery Service for more information.

Data Guard Life Cycle Operations
When the configuration is complete, Data Guard life-cycle operations, failover, switchover, and
reinstate can be performed by dbaascli commands. See the OCI Documentation for details.

Health Check and Monitoring
After instantiating the standby database, a health check should be performed to ensure that
the Oracle Data Guard databases (primary and standby) are compliant with Oracle MAA best
practices.

It is also recommended that you perform the health check monthly, and before and after
database maintenance. Oracle Autonomous Health Framework and automated tools including
an Oracle MAA Scorecard using OraChk or ExaChk are recommended for checking the health
of a Data Guard configuration. See Oracle Autonomous Health Framework User's Guide and
Oracle ORAchk and Oracle EXAchk documentation.

Chapter 35
Data Guard Life Cycle Operations

35-22

https://docs.oracle.com/iaas/exadatacloud/exacs/ecs-managing-db-backup-and-recovery.html#ECSCM-GUID-07D1B1D6-4A06-4859-B7DF-4C3A681A6B40
https://docs.oracle.com/iaas/exadatacloud/exacs/ecs-managing-db-backup-and-recovery.html#ECSCM-GUID-07D1B1D6-4A06-4859-B7DF-4C3A681A6B40
https://docs.public.oneportal.content.oci.oraclecloud.com/iaas/recovery-service/doc/overview-recovery-service.html
https://docs.oracle.com/en/cloud/paas/database-dbaas-cloud/csdbi/dbaascli.html
http://www.oracle.com/pls/topic/lookup?ctx=en/engineered-systems/health-diagnostics/autonomous-health-framework&id=AHFUG-GUID-A1DBE3D4-6501-47D3-854E-E9978F19F7BA
https://docs.oracle.com/en/engineered-systems/health-diagnostics/exachk/index.html

Regular monitoring of the Oracle Data Guard configuration is not provided in a hybrid Data
Guard configuration and must be done manually. See Monitor an Oracle Data Guard
Configuration for more information.

Chapter 35
Health Check and Monitoring

35-23

Part VII
Continuous Availability for Applications

• Configuring Continuous Availability for Applications

36
Configuring Continuous Availability for
Applications

Ensure that your applications are configured to quickly and automatically shift workload to
available Oracle RAC instances or standby databases during planned maintenance and
unplanned outages.

Application up time is maximized by following these recommendations when there are outages.

The primary audience for this document is application developers and application owners.
Operational examples are included for database administrators and PDB administrators.

Topics:

• About Application High Availability Levels

• Configuring Level 1: Basic Application High Availability

• Configuring Level 2: Prepare Applications for Planned Maintenance

• Configuring Level 3: Mask Unplanned and Planned Failovers from Applications

• Reference

About Application High Availability Levels
Depending on your application's high availability requirements, you can implement the level of
high availability (HA) protection that you need.

HA protection levels are defined in the table below, and each increase in level builds upon the
previous level.

36-1

HA Level Configuration Experience Benefits

Level 1: Basic Application
High Availability

See Configuring Level 1:
Basic Application High
Availability

Database or Security
Administrator:

• Configure role-based
database services

• Leverage recommended
database connection
string, and optionally
configure LDAP and
wallets

• Enable Oracle
Notification Service
(ONS)/Fast Application
Notification (FAN)

Application Developer:

• Use MAA recommended
connect string

• Use Basic exception
handling

Implementation effort:
Minimal - estimated 1 hour for
administrator, and less than 1
hour for developers
(assuming the application has
connection failure exception
logic already coded)

Implementing Level 1
protection provides significant
benefits compared to third
party application failover
solutions due to application +
Oracle integration and
intelligence to reduce
application impact.

• Reduced application
downtime

• Applications see errors
during planned
maintenance and
unplanned outages; the
application may trap the
connection error and, if it
is appropriate for the
application, reconnect to
another Oracle RAC
instance or database
with the target service

• Applicable for unplanned
outages and planned
maintenance. In some
cases, long running
transactions should be
deferred or suspended
during planned
maintenance.

High availability with
application automatically
failing over and reconnecting
(if appropiate for the
application)

• Quick timeouts and
automated connection
retry with database
connect string

• Location transparency
with services: role-based
services for standby and
read-only databases so
that applications are
automatically routed to
the proper instance with
the correct role

• ONS/FAN auto-
configured with database
connect string

• Immediate interrupt on
outages when using FAN
(no need to tune
timeouts and wait for
them)

• Clusterware is aware of
RAC and VIP health, so
there is no waiting on
downed end points
thanks to FAN

Level 2: Prepare Applications
for Planned Maintenance

See Configuring Level 2:
Prepare Applications for
Planned Maintenance

Level 1 configuration +

Application Developer:

• Use Oracle connection
pools or connection tests
and return your
connection to the pool
between uses

Additional implementation
effort for developers: A few
hours with minimal effort with
Oracle Connection pools,
including those in application
servers - up to days when not
using an application server,
depending on application
complexity. Developer may
need to identify connection
tests used in the application
and possibly create new ones
in the database

• Avoids errors during
planned maintenance
(errors still possible for
unplanned outages)

• Ability to drain and move
workload gracefully
without application
interruption

• Applicable for unplanned
outages and planned
maintenance events. For
some cases, long
running transactions
should be staged with
connection tests between
batches. If this is not
possible, the batch job
should be deferred
during planned
maintenance.

Workload moves gracefully
across instances with a slight
delay and no errors during
planned maintenance

Chapter 36
About Application High Availability Levels

36-2

HA Level Configuration Experience Benefits

Level 3: Mask Unplanned and
Planned Failovers from
Applications

See Configuring Level 3:
Mask Unplanned and
Planned Failovers from
Applications

Level 1 and 2 configuration +
"Application Continuity"
Solution

Database or Security
Administrator:

• Additional security and
privileges required for
PL/SQL aspects of the
application

Application Developers:

• External actions (for
example, side effects)
outside the database
need to be considered

Additional implementation
effort: Days to weeks of
collaboration between
developers and database
administrators to review
protection coverage
(depending on application
complexity)

• In-flight transactions
automatically
acknowledge the commit
or replay without
application code changes

• Database administrators
and application
developers coordinate to
ensure readiness using
AWR statistics to assess
protection coverage, and
use ACCHK (application
continuity health check)
to identify coverage or
exceptions when
transactions can or
cannot be replayed

Masks unplanned and
planned fail overs from
applications

• Applications avoid seeing
errors during planned
maintenance and
outages

• In-flight uncommitted
transactions are
replayed; committed
transactions are
acknowledged and not
replayed

All of the HA Levels described in the table above are superior to connection management
approaches using load balancers as single connection VIP endpoints for the following reasons:

• Smart Service Health and Intelligent Reconnect: Oracle Clusterware and Oracle Data
Guard Broker closely monitor the health and state of the clusters and databases to ensure
connections are routed to the database service that is opened on a primary.

• Transparent and Automatic Failover: There is no need to query the health of databases
and decide which is the proper one to move a VIP; everything is transparent in the high
availability approaches described in the table.

• Fast Notification and Automatic Connection Retries: The disconnection of already
connected sessions is immediate, and happens intelligently when Oracle Clusterware and
Data Guard Broker detect outages or role changes on the primary and standby databases.

Terms

The following terms are used throughout this document:

• Application Continuity: Application Continuity is an Oracle Database feature that masks
interruptions at the database level for planned and unplanned events, improving the fault
tolerance of applications that rely on Oracle Database.

• Transparent Application Continuity (TAC): Introduced with Oracle Database 18c, and
enhanced in Oracle Database 19c and 23ai, extends support to application configurations
that do not use Oracle connection pools (though they are still the preferred solution).

• Draining: Move a connection from one Oracle Real Application Clusters (RAC) instance to
another available Oracle RAC instance.

Draining to move sessions gracefully from one instance to another is used during planned
maintenance and load rebalancing. The connection is moved when the application returns
the connection to a pool and then obtains a new connection or another rule is satisfied.

• Fail over: Reestablish an equivalent session at a new instance that offers the service.

Chapter 36
About Application High Availability Levels

36-3

Fail over occurs during unplanned outages and during planned maintenance when
sessions do not drain within an allotted period of time. The application should not receive
errors when Application Continuity is configured.

• Fast Application Notification (FAN): FAN is essential to break clients out of TCP/IP
timeouts immediately following failures. FAN notifies clients immediately when resources
become available, and initiates draining of database sessions so clients experience no
outages during planned maintenance. FAN also includes notifying configuration-level and
service-level information that includes changes in service status.

• Oracle Notification Service (ONS): A facility that creates a bridge with middle-tier servers
or applications to transport cluster events to application logic for handling or reaction.

Software Recommendations

The following software is recommended for HA Level configurations:

• Oracle Real Application Clusters (Oracle RAC) and Oracle Clusterware (which provides
services and infrastructure to efficiently manage outages), preferably with Oracle Grid
Infrastructure (GI) release 19c or later

• Oracle Active Data Guard is recommended for protection from database, cluster, storage
or site failures

• Oracle Database 19c client and database or a later long-term support version, with the
most recent patch level

Configuring Level 1: Basic Application High Availability
Implement a level of high availability that allows applications to immediately react to instance,
node, or database failures, and quickly establish new connections to surviving database
instances.

With application HA Level 1, downtime is minimized for unplanned and planned outages. You
get these benefits by ensuring that the application configuration implements these
recommendations. No code changes are required.

At a high level, the steps to implement Level 1 are:

• Step 1: Configure High Availability Database Services

• Step 2: Configure the Connection String for High Availability

• Step 3: Ensure That FAN Is Used and ONS port 6200 is Open

• Step 4: Developer Determines if the Application Should Implement Reconnection Logic

Step 1: Configure High Availability Database Services
Create a non-default, role-based database service to use high-availability features.

A database service is a logical abstraction for managing workloads or a group of applications
sharing similar SLAs or types of workloads (for example, OLTP vs. batch). Database services
provide location transparency and hide complex aspects of the underlying system from the
client.

Your application must connect to a non-default database service to use high-availability
features. You must explicitly create a service (or several services as needed for different
application workloads) instead of using the default database service or the default PDB service
(that is, the service with the same name as the database or PDB).

Chapter 36
Configuring Level 1: Basic Application High Availability

36-4

On Oracle Autonomous Database, services are created for you using recommended attributes.

About Server-Side Configuration for Services

These services are configured by a database administrator to set up services through Oracle
Clusterware.

When using Oracle Data Guard and standby databases, create services using the primary role
to ensure that applications connect to the primary database for read/write operations, and
standby role for services to optionally offload read-only and small infrequent writes to the
standby database.

Services start and stop automatically after a Data Guard role transition (for example,
switchover or failover) based on their roles.

Configure your services according to your architecture in one of the following sections:

• Configure High Availability Services

• Configure High Availability Services for Oracle Active Data Guard or Standby Roles

Note:

Services must be started so that they can be used after creating them. Use a
command like this:

$ srvctl start service -db mydb -service my_service

See also:

Using Oracle Services in Oracle Real Application Clusters Administration and Deployment
Guide

Configure High Availability Services
Create a non-default, role-based database service to use high-availability features.

A service may be configured to direct connections to a single preferred instance, or
alternatively, if the preferred instance is down, to an available instance. When a service is
available only on one instance, it is called a singleton service. This allows you to isolate
workloads among instances in a cluster.

You could also configure a service to put connections on multiple instances of a cluster, to
spread work across all instances. Also, if one instance is down, connections can be made on
the surviving instances.

There are other combinations where you can configure a subset of instances as "preferred"
and another subset of instances as "available". These subsets provide for spreading load
across some instances while isolating work from others (and still have instances available in
case of a failure).

See Considerations for Oracle Cloud Database Services if your database is running on the
Oracle Cloud.

Example 1: Singleton Service

This example creates a singleton service called my_service for the primary role, where the
connections are made on instance inst1, unless that instance is not available. If the instance

Chapter 36
Configuring Level 1: Basic Application High Availability

36-5

is not available, connections are made on inst2. It also configures a default drain timeout of
300 seconds to wait for sessions to drain; at the end of that time any remaining sessions are
terminated because of the IMMEDIATE option.

The settings for commit_outcome and failovertype enable Transparent Application Continuity
(TAC) if you decide to implement it. See Configuring Level 3: Mask Unplanned and Planned
Failovers from Applications.

$ srvctl add service -db mydb -service my_service -pdb mypdb
 –preferred inst1 -available inst2 -notification TRUE -drain_timeout 300
 -stopoption IMMEDIATE -role PRIMARY

If you want your application to gracefully switch to another Oracle RAC instance with no
application blackout, set the drain_timeout interval to a sufficient timeout that allows your
applications to close their connections between transactions and gracefully stop or move to
another instance. The drain_timeout interval is best leveraged for short OLTP applications.
For large batch operations, it's best defer or suspend these operations before a planned
maintenance window.

Example 2: Service with Multiple Instances

This example creates a service that is similar to the singleton above but spreads connections
across multiple instances in this cluster:

$ srvctl add service -db mydb -service my_service -pdb mypdb
 –preferred inst1,inst2 -commit_outcome TRUE -failovertype AUTO -
notification TRUE
 -drain_timeout 300 -stopoption IMMEDIATE -clbgoal LONG -rlbgoal SERVICE_TIME
 -clbgoal LONG -rlbgoal SERVICE_TIME -role PRIMARY

Configure High Availability Services for Oracle Active Data Guard or Standby Roles
Create a service used to connect to a standby database (read-only physical standby).

Create a service as shown in the following example:

$ srvctl add service -db mydb -service my_standby_service -pdb mypdb
 –preferred inst1 -available inst2 -notification TRUE -drain_timeout 300
 -stopoption IMMEDIATE -clbgoal LONG -rlbgoal SERVICE_TIME -clbgoal LONG
 -rlbgoal SERVICE_TIME -role PHYSICAL_STANDBY

Considerations for Oracle Cloud Database Services
A default service is created along with every PDB that is provisioned in the Oracle cloud.

Note the following considerations depending on the type of cloud service you have.

Autonomous Database Serverless

For Autonomous Database Serverless, database services are pre-configured to support
different performance and concurrency characteristics. You can modify the services to enable
certain availability features using the DBMS_APP_CONT_ADMIN package.

Specifically:

Chapter 36
Configuring Level 1: Basic Application High Availability

36-6

• To set the drain timeout attributes, use DBMS_APP_CONT_ADMIN.SET_DRAINING. See
DBMS_APP_CONT_ADMIN for details.

• To set TAC or AC attributes, use DBMS_APP_CONT_ADMIN.ENABLE_TAC or
DBMS_APP_CONT_ADMIN.ENABLE_AC
This sets the associated service attributes to their recommended values to support TAC or
AC

• To set specific attributes, use DBMS_APP_CONT_ADMIN.MODIFY_SERVICE
The extent to which the DBMS_APP_CONT_ADMIN package supports changes to the service
depends on the database version.

Availability aspects of services in Autonomous Database Serverless, such as preferred and
available instances are configured automatically. See Database Service Names for
Autonomous Database for more details and other options.

Autonomous Database on Dedicated Exadata Infrastructure

For Autonomous Database on Dedicated Exadata Infrastructure, database services are pre-
configured with TAC, AC, and support for various degrees of parallelism. Use the service name
that meets the needs of your application.

Availability aspects of services in Autonomous Database, such as preferred and available
instances, are configured automatically. See Predefined Database Service Names for
Autonomous Databases for more details and other options.

Oracle Exadata Database Service on Dedicated Infrastructure and Oracle Base Database

The service in the connect string provided by the UI is for administrative purposes, not for
client application connections. You must create a database service for your applications by
following the recommendations in Configure High Availability Services.

Step 2: Configure the Connection String for High Availability
Oracle recommends that your application use the connection string configuration shown here
to connect successfully during various scenarios including database switchover and failover to
other sites.

Example 1: Connect string with Oracle RAC primary database and no standby

Alias = (DESCRIPTION =
(CONNECT_TIMEOUT= 90)(RETRY_COUNT=20)(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=1000ms)
 (ADDRESS_LIST =
 (LOAD_BALANCE=on)
 (ADDRESS = (PROTOCOL = TCP)(HOST=clu_site1-scan)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME = my_service)))

Example 2: Connect string with Oracle RAC primary and standby databases

This example makes connections to an Oracle RAC primary database or a standby database,
depending on which one is available.

Alias = (DESCRIPTION =
(CONNECT_TIMEOUT= 90)(RETRY_COUNT=100)(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=1000ms)
 (ADDRESS_LIST =

Chapter 36
Configuring Level 1: Basic Application High Availability

36-7

https://docs.oracle.com/iaas/autonomous-database-serverless/doc/predefined-database-services-names.html#GUID-6CEFC4B7-6EF8-4237-A004-C88F570A480B
https://docs.oracle.com/iaas/autonomous-database-serverless/doc/predefined-database-services-names.html#GUID-6CEFC4B7-6EF8-4237-A004-C88F570A480B
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbbd/#GUID-07401C82-6A01-4CDF-AAE5-54B78B50CA0A
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbbd/#GUID-07401C82-6A01-4CDF-AAE5-54B78B50CA0A

 (LOAD_BALANCE=on)
 (ADDRESS = (PROTOCOL = TCP)(HOST=clu_site1-scan)(PORT=1521)))
 (ADDRESS_LIST =
 (LOAD_BALANCE=on)
 (ADDRESS = (PROTOCOL = TCP)(HOST=clu_site2-scan)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME = my_service)))

Note:

clu_site1-scan and clu_site2-scan refer to SCAN listeners in a cluster on site1 and
site2, respectively.

It's recommended that you use the most recent drivers, but all Oracle drivers from release 12.2
and later should use the example connection strings above. Specific values can be tuned, but
the values shown in this example are reasonable starting points, and so usable for almost all
cases.

It is highly recommended that you maintain your connect string or URL in a central location,
such as LDAP or tnsnames.ora. Do not scatter the connect string or URL in property files or
private locations, as doing so makes it extremely difficult to maintain. Using a centralized
location helps you preserve standard format, tuning, and service settings. Oracle's solution for
this is to use LDAP with the Oracle Unified Directory product.

For JDBC, the connection strings listed above would be implemented as shown in these
examples.

Example 1. Oracle RAC with no standby

jdbc:oracle:thin:@(DESCRIPTION =(CONNECT_TIMEOUT= 90)(RETRY_COUNT=20)
(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=1000ms)(ADDRESS_LIST=(LOAD_BALANCE=on)(ADDRESS =
(PROTOCOL = TCP)
(HOST=clu_site1-scan)(PORT=1521)))(CONNECT_DATA=(SERVICE_NAME = my_service)))

Example 2. Oracle RAC with standby

jdbc:oracle:thin:@(DESCRIPTION =(CONNECT_TIMEOUT= 90)(RETRY_COUNT=100)
(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=1000ms)(ADDRESS_LIST=(LOAD_BALANCE=on)(ADDRESS =
(PROTOCOL = TCP)
(HOST=clu_site1-scan)(PORT=1521)))(ADDRESS_LIST=(LOAD_BALANCE=on)(ADDRESS =
(PROTOCOL = TCP)
(HOST=clu_site2-scan)(PORT=1521)))(CONNECT_DATA=(SERVICE_NAME = my_service)))

For other clients, refer to your client's documentation.

See also:

• Connection Time Estimates During Data Guard Switchover or Failover

• Oracle Net TNS String Parameters

• Oracle Unified Directory in Administering Oracle Unified Directory

• Overview of Local Naming Parameters in Oracle Database Net Services Reference

Chapter 36
Configuring Level 1: Basic Application High Availability

36-8

https://docs.oracle.com/en/middleware/idm/unified-directory/12.2.1.4/oudag/introduction-oracle-unified-directory.html#GUID-53DE34B1-370C-4C09-93EB-F5FAE76CCA02

Oracle Cloud Considerations for Connection Strings

Oracle Cloud provides sample connection strings for CDBs and PDBs that are provisioned.

For Cloud services such as Exadata Database Services on Dedicated Infrastructure or Oracle
Base Database Service, you must change the connection string that is provided to include the
new service you added in step 1, instead of the default service in the provided connect string.

If your database has a Data Guard association, then you may want to use the connection
string format in step 2 that includes the primary and standby entries, if you require your existing
application to fail over to the standby automatically after a primary database failure.

For a standby in the same region, you should typically add the standby in the connect string,
but for a cross-region standby, evaluate the OCI Full Stack Disaster Recovery service to
orchestrate application, database, and client failover. See Full Stack Disaster Recovery on
Oracle.com.

Step 3: Ensure That FAN Is Used and ONS port 6200 is Open

When a service needs to drain for routine maintenance, or experiences unplanned failures
(such as node or network outages), the application needs to be informed in real time so that it
can quickly move connections to another instance or site. This is accomplished using Oracle's
Fast Application Notification (FAN) feature, which enables applications and connection pools to
receive event notifications from one or more clusters.

The ability to receive FAN events is enabled automatically when using the recommended
service and connect string in steps 1 and 2 above, along with Oracle JDBC drivers (the latest
version is recommended, but not earlier than 12.2).

The ONS port (by default, 6200) needs to be opened on all of your database servers, the
firewall, and Oracle Active Data Guard nodes.

The use of FAN is not mandatory, but is highly desirable because it can detect many types of
unplanned outage scenarios and enable applications to handle these scenarios gracefully to
maintain high availability.

FAN uses Oracle Clusterware's Oracle Notification Service (ONS) to receive events from the
cluster. ONS requires ports to be available between the client and the servers, and in some
cases this requires a firewall port to be opened (6200 by default) on all of your database
servers, the firewall, and Oracle Active Data Guard nodes.

Alternative if you can't use FAN: In-Band Notification

When port 6200 cannot be opened or is not available, Oracle's connection drivers will enable
"in-band" notifications automatically using the database connections themselves. In-band
notifications are received on the next round-trip to the database.

This notification simply tells the driver that the service is draining and the client should close
the connection. Clients will not receive events for an instance or node failure to advise a client
to disconnect immediately, because those kinds of failures will terminate connections
ungracefully, removing the ability to see any notification because the connection would be
gone.

In-band notification is for planned maintenance and does not apply to unplanned outages.

Enabling ONS/FAN for Clients

There are no application code changes to use FAN. FAN only requires an Oracle driver and the
recommended database connect strings in step 2 above.

Chapter 36
Configuring Level 1: Basic Application High Availability

36-9

https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/

By default, starting with 19c, ONS is auto-configured by leveraging the recommended
database connect strings (in step 2 above), when those strings are used to connect to a cluster
using the cluster's SCAN listeners. ONS will automatically determine which nodes it should
establish connections to, including nodes in standby clusters (as long as the standby clusters
are in the connect string).

It is important to use the TNS formats shown in Step 2 for auto-configuration of FAN. Using a
different format syntax can prevent FAN from being auto-configured.

If you are not able to use the recommended connect URL/string (in step 2), configure your
clients to subscribe to ONS manually by setting the list of ONS nodes and ports.

For example, in UCP, ONS endpoints could be configured like the following example (other
pools would use something similar; check your pool's documentation):

pds.setONSConfiguration("nodes=racnode1:4200,racnode2:4200\nwalletfile=/
oracle11/onswalletfile");

This shows an ONS configuration using a wallet file, which is typically required with Oracle
Cloud but should not be used in other environments. It is recommended that you create a
property file and reference that file instead of hard-coding values (see the Remote
Configuration of ONS for details).

See also:

Overview of Oracle Integrated Clients and FAN in Oracle Real Application Clusters
Administration and Deployment Guide

Step 4: Developer Determines if the Application Should Implement
Reconnection Logic

Applications can be written to catch connection failure exceptions and errors during database
calls so that they can obtain new connections and continue with new work, if it is reasonable to
continue.

There are many factors to take into account to determine if it is reasonable for an application to
continue and how it should proceed after losing connections. In Configuring Level 3: Mask
Unplanned and Planned Failovers from Applications, a robust solution is presented for
masking failures from your application transparently using AC and TAC.

For JDBC-based applications, the SQLRecoverableException can be caught to distinguish
connection errors from typical application or SQL errors. If a connection error is caught, then a
new connection should be obtained. This is simpler and more robust than checking for
individual Oracle errors (which can adjust by Oracle Database release) in the SQLException
class.

See also:

Connection Retry Logic Examples

Chapter 36
Configuring Level 1: Basic Application High Availability

36-10

Configuring Level 2: Prepare Applications for Planned
Maintenance

Building on Level 1: Basic Application High Availability, application HA Level 2 adds the ability
to drain sessions for minimal application impact during planned maintenance.

After implementing Level 1, you are ready to implement a planned maintenance solution
appropriate to your application from one of the choices below. You can use planned operations
to relocate or stop services, or to switch over, allowing for graceful completion of the users'
work.

The recommended approach to avoid impacting applications is drain work in an Oracle RAC
rolling fashion. Typically a period of time is allocated to perform the draining. Our
recommended choice is to use Oracle connection pools that are integrated with FAN to initiate
draining.

If you are unable to drain automatically using the options listed below, an alternative approach
is to ensure the application manages to stop and defer work before maintenance starts.

Employ the following practices to increase your application high availability to level 2:

• Use an Oracle Connection Pool and return your connection to the pool between requests.
See Recommended Option: Use an Oracle Connection Pool.

Alternatively, use a third-party connection pool that uses request boundaries.

• If you cannot use an Oracle connection pool or third-party pool with request boundaries,
you can use the following alternatives with existing applications:

– Alternate Option 1: Use Request Boundaries

– Alternate Option 2: Use Connection Validation or Tests

• Leverage server-side operations for planned maintenance. See Server-Side Operations for
Planned Maintenance

• Ensure that sufficient node capacity is available so that the load from one instance can be
spread to other available instances without impacting the workload during a maintenance
period.

Recommended Option: Use an Oracle Connection Pool
Using a FAN-aware Oracle connection pool is the recommended solution for managing
planned maintenance.

Oracle pools provide full lifecycle management: draining, reconnecting, and rebalancing across
nodes and sites. When performing rolling maintenance across a cluster, as the maintenance
progresses and completes (for each instance or node), sessions are moved and rebalanced
across instances. There is no impact to users when your application uses an Oracle Pool with
FAN and returns connections to the pool between requests since these connections will drain
and move to other instances.

Supported Oracle Pools include:

• Java; Universal Connection Pool (UCP)

– UCP documentation: Introduction to UCP

– Springboot with UCP: UCP Best Practices for Oracle Database 19c and Spring Boot

Chapter 36
Configuring Level 2: Prepare Applications for Planned Maintenance

36-11

https://medium.com/oracledevs/ucp-best-practices-for-oracle-database-19c-and-spring-boot-fb837f8e195b

• Java; WebLogic Active GridLink

• Tuxedo

• OCI Session Pool

• ODP.NET core, managed, and unmanaged providers

• Oracle Python driver connection pool

• Node.js Oracle driver connection pool

• Hikari Connection Pools: HikariCP Best Practices for Oracle Database and Spring Boot —
V2

When using these pools, no application changes are needed other than ensuring that your
connections are returned to the pool between requests.

It is a best practice that an application obtains a connection only for the time that it needs it,
and then returns the connection to the pool as soon as it is finished making its database calls.
Holding a connection instead of returning it to the pool prevents the pool from gracefully
moving sessions to available instances, and it uses resources inefficiently, requiring many
more connections than would otherwise be used. An application should, therefore, obtain a
connection and then return that connection immediately after the work is complete. The
connections are then available for later use by other threads, or your thread when needed
again. Returning connections to a connection pool is a general recommendation regardless of
how draining is implemented.

Note:

The syntax for obtaining and returning a connection varies by pool implementation.
For example, in UCP you use the getConnection() method of the PoolDataSource
object to obtain a connection and mark the beginning of the database request, and
the close() method to return it, marking the end of the database request after you've
done some work in the database.

Oracle Connection Pools validate a connection whenever a connection is borrowed to ensure
that the connection can be used without any errors.

Alternate Options

Only look at these alternate options if you cannot use the recommended option. The alternate
options are listed in priority order.

Alternate Option 1: Use Request Boundaries

For existing applications, retrofit them by using session/connection pools or by wrapping
operations within a requestBegin and requestEnd boundary. For example, for the Oracle Call
Interface: OCIRequestBegin and OCIRequestEnd).

Request boundaries are visible to the database, and they enable functionality such as draining
for planned maintenance, load balancing, and multiplexing to be isolated at the database layer.
Sessions can be re-established with no visible disruption to the application layers above.

Chapter 36
Configuring Level 2: Prepare Applications for Planned Maintenance

36-12

https://medium.com/oracledevs/hikaricp-best-practices-for-oracle-database-and-spring-boot-4d6723621c0b
https://medium.com/oracledevs/hikaricp-best-practices-for-oracle-database-and-spring-boot-4d6723621c0b

Alternate Option 2: Use Connection Validation or Tests
If you cannot use an Oracle Pool, or do not wish to implement request boundaries, then the
Oracle client drivers (19c or later) or Oracle Database (19c or later) can drain the sessions for
you.

When services are relocated or stopped, or there is a switchover to a standby site via Oracle
Data Guard, the Oracle Database and Oracle client drivers are notified to look for safe places
to release connections according to the following:

• Standard connection tests for connection validity (for example isValid() in JDBC)

• Custom SQL tests for connection validity

For custom batch applications, test the connection between batches. When the connection test
fails, create or borrow another connection.

For third-party connection pools, enable connection tests offered by the vendor. When the
connection test fails, the third-party pool will close the connection and allow you to borrow
another one.

Chapter 36
Configuring Level 2: Prepare Applications for Planned Maintenance

36-13

Note:

• When you use a connection test, the outcome of the connection test applies to
that session only. Do not use connection tests to make general decisions about
the instance and to make a determination to stop more than the session to which
the test applies.

• Disable connection pool properties for flushing and destroying the pool on
connection test failure when using Oracle WebLogic Server data sources.

• A monitor is functionality that makes a decision about the health of an instance.
With FAN and Runtime Load Balancing such monitors are no longer needed and
not susceptible to incorrect decisions. If you do want a monitor, SQL in that
monitor must NOT be misinterpreted as a connection test for draining the
application. There are a few ways to avoid this misinterpretation:

– Disable a monitor's specific health query using the dbms_app_cont_admin
package:

dbms_app_cont_admin.disable_connection_test(dbms_app_cont_admin
.sql_test,'SELECT COUNT(1) FROM DUAL’);

Here, the query used by the monitor, 'SELECT COUNT(1) FROM DUAL’, is not
considered a connection test. If there are any connection tests that also use
this query, then they would be disabled and a different query would be
needed.

– Embed a comment into the monitor query to distinguish it from any of the
registered connection tests:

SELECT /* My Health monitor query */ COUNT(1) monitor FROM DUAL

• You may disable connection tests by using the
DBMS_APP_CONT_ADMIN.DISABLE_CONNECTION_TEST procedure. You can also add,
modify, or delete connection tests using the DBMS_APP_CONT_ADMIN package.

Server-Side Operations for Planned Maintenance
Server-side operations are required to manage connections for planned maintenance.

The server side operations for planned maintenance are implicitly executed If you are using
Oracle cloud software automation, or are in a cloud maintenance window that requires
restarting the database instance.

Note that services connected to the Oracle Database are configured with connection tests and
a drain timeout specifying how long to allow for draining, and the stopoption (typically
IMMEDIATE), that applies after the drain timeout expires. The stop, relocate, and switchover
commands managed by SRVCTL include a drain_timeout and stopoption switch to override
values set on the service if needed.

Oracle recommends configuring services with the required drain timeout applicable to that
service, so they are used automatically during maintenance operations.

Maintenance commands are similar to the commands described in the examples in Server-
Side Planned Maintenance Command Examples. You can use these commands to start

Chapter 36
Configuring Level 2: Prepare Applications for Planned Maintenance

36-14

draining. Include additional options, if needed, as described in My Oracle Support (MOS) Note:
Doc ID 1593712.1. Oracle tools, such as Fleet Patching and Provisioning (FPP) use these
commands as well.

Oracle Clusterware can start instances that are not currently running, but can run a service that
requires that instance. Services that cannot be relocated or do not need relocation, are
stopped. If a singleton service is defined with no other available instances, then it may incur
complete downtime, which is expected behavior. It is better to have preferred instances and at
least one available instance always defined.

After the maintenance is complete and the instance is restarted, no additional SRVCTL action
is required because the Oracle Clusterware service attribute automatically determines where
services will end up.

See also:

Server Draining Ahead of Planned Maintenance in Oracle Real Application Clusters
Administration and Deployment Guide

Configuring Level 3: Mask Unplanned and Planned Failovers
from Applications

Building on Level 1 and Level 2, the features presented in Level 3 are recommended to
achieve continuous availability for applications, regardless of database interruptions, outages,
timeouts, or when application workload won't drain.

Application Continuity

Application Continuity (AC) hides unplanned outages, starting with Oracle Database 12.1 for
thin Java-based applications, and Oracle Database 12.2.0.1 for OCI and ODP.NET based
applications with support for open-source drivers, such as Node.js, and Python, beginning with
Oracle Database 19c.

Application Continuity rebuilds the session by recovering the session from a known point which
includes session states and transactional states. Application Continuity rebuilds all in-flight
work. The application continues as it was, seeing a slightly delayed execution time when a
failover occurs.

The standard mode for Application Continuity is for OLTP applications using an Oracle
connection pool or a third party connection pool with request boundaries.

Transparent Application Continuity

Starting with Oracle Database19c, Transparent Application Continuity (TAC) transparently
tracks and records session and transactional state so the database session can be recovered
following recoverable outages. This is done with no reliance on application knowledge or
application code changes, allowing Transparent Application Continuity to be enabled for
applications by default.

Application transparency and failover are achieved by consuming the state-tracking information
that captures and categorizes the session state usage as the application issues user calls.

Choose AC or TAC

If you have an OLTP application that uses an Oracle connection pool (or RedHat JBOSS EAP),
you have a choice between Application Continuity and Transparent Application Continuity.

To decide which feature to use, you can run the application with each and choose the one with
higher value for cumulative user calls protected by Application Continuity.

Chapter 36
Configuring Level 3: Mask Unplanned and Planned Failovers from Applications

36-15

If you are not using an Oracle connection pool (as with SQL*Plus 19c or SQLcl 23), or you do
not have knowledge about the application, then use TAC.

Planned Failover with AC and TAC

Planned failover is failover that is invoked by the Oracle Database at points where the
database decides that a session is replayable and is expected not to drain.

Planned failover is enabled by default when using AC or TAC. It improves situations where
other draining methods are not active, for example, because FAN or connection tests are not
configured.

Planned failover expedites maintenance by failing over early when replay is enabled.

For example, planned failover with TAC is the maintenance solution used with SQL*Plus.

See also:

• Ensuring Application Continuity in Oracle Real Application Clusters Administration and
Deployment Guide

• Blog: database-heartbeat Application Continuity

• Restrictions and Other Considerations for Application Continuity

Configure Services for AC and TAC

Set COMMIT_OUTCOME = TRUE

Determines whether transaction COMMIT outcome is accessible after the COMMIT has executed.
While the database guarantees that COMMIT is durable, this setting ensures that the outcome of
the COMMIT is durable. Applications use this feature to probe the status of the commit last
executed after an outage, and is available to applications to determine an outcome

Set FAILOVER_TYPE

Set FAILOVER_TYPE to AUTO when using TAC.

Alternatively, set the database service attribute FAILOVER_TYPE to TRANSACTION to use
Application Continuity.

Set FAILOVER_RESTORE

An application can be written to change the database session state (using ALTER SESSION
commands typically), and these states need to be in place if you want the work to be replayed
after failover.

To restore your session state at failover, set the attribute FAILOVER_RESTORE on your database
service. Use LEVEL1 for AC or use AUTO for TAC.

The use of wallets is highly recommended. AC and TAC leverage wallets to ensure all
modifiable database parameters are restored automatically with FAILOVER_RESTORE. Wallets
are enabled for Autonomous Database and are the same as those used for database links.

See also:

Configuring a Keystore for FAILOVER_RESTORE in Oracle Real Application Clusters
Administration and Deployment Guide to learn how to set up wallets for databases.

Chapter 36
Configuring Level 3: Mask Unplanned and Planned Failovers from Applications

36-16

https://database-heartbeat.com/category/application-continuity/

Examples

Example service configuration for TAC:

$ srvctl add service -db mydb -service my_service -pdb mypdb
 –preferred inst1 -available inst2 -commit_outcome TRUE -failovertype AUTO
 -failover_restore AUTO -notification TRUE -drain_timeout 300 -stopoption
IMMEDIATE
 -role PRIMARY

Example service configuration for AC:

$ srvctl add service -db mydb -service my_service -pdb mypdb –preferred inst1
 -available inst2 -commit_outcome TRUE -failovertype TRANSACTION
 -failover_restore LEVEL1 -notification TRUE -drain_timeout 300 -stopoption
IMMEDIATE
 -role PRIMARY

Return Connections to the Connection Pool
Request boundaries are required for Application Continuity (AC) and are recommended for
Transparent Application Continuity (TAC).

Request boundaries are automatically embedded in the session for you when you use an
Oracle connection pool, such as Universal Connection Pool (UCP) or OCI Session Pool. The
application should return the connection to the Oracle connection pool when the unit of work,
the database request, is completed, to insert the end of request boundary. This also applies to
using ODP.Net Unmanaged Provider, WebLogic Active GridLink, and RedHat.

Side Effect

When a database request includes an external call from the database, such as sending mail or
transferring a file, this is called a side effect.

When replay occurs, there is a choice as to whether side effects should be replayed. Many
applications want to repeat side effects such as creating journal entries, sending mail, and
performing file writes. For Application Continuity, side effects are replayed, but can be
programmatically avoided. Conversely, Transparent Application Continuity does not replay side
effects.

Starting with Oracle 23ai, there are PL/SQL procedures to set rules for how replay handles
side effects. See the REPLAY related procedures in the DBMS_APP_CONT in Summary of
DBMS_APP_CONT Subprograms.

Restore Original Function Values During Replay

Oracle Database 19c keeps the values of SYSDATE, SYSTIMESTAMP, SYS_GUID, and
sequence.NEXTVAL, CURRENT_TIMESTAMP, and LOCALTIMESTAMP for SQL during replay.

Chapter 36
Configuring Level 3: Mask Unplanned and Planned Failovers from Applications

36-17

If you are using PL/SQL, then GRANT KEEP for application users, and use the KEEP clause for a
sequence owner. When the KEEP privilege is granted, replay applies the original function result
at replay.

SQL> GRANT KEEP DATE TIME to scott;
SQL> GRANT KEEP SYSGUID to scott;
SQL> GRANT KEEP SEQUENCE mySequence on mysequence.myobject to scott;

JDBC Configuration

Ensure your JDBC configuration uses:

• The recommended JDBC data source for standalone JDBC, or configure it as connection
factory class for a Java connection pool (such as UCP) or a WebLogic AGL Server
connection pool or RedHat JBOSS EAP.

See Configuring the Data Source for Application Continuity in the Oracle Universal
Connection Pool Developer's Guide for information about enabling AC and TAC on UCP.
You configure the JDBC driver data source class
oracle.jdbc.replay.OracleDataSourceImpl as the connection factory class on the UCP
data source PoolDataSourceImpl.

For 19c.x.x.x and older drivers, use oracle.jdbc.replay.OracleDataSourceImpl
For 21ai.x.x.x and newer drivers, use oracle.jdbc.datasource.impl.OracleDataSource
Note that the exact data source and connection pool configuration are always specific to a
particular vendor's product, such as a 3rd-party connection pool, framework, application
server, or container.

• The JDBC driver statement cache in place of an application server statement cache.

This allows the driver to know that statements are closed and memory is to be freed at the
end of requests. To use the JDBC statement cache, use the connection property
oracle.jdbc.implicitStatementCacheSize
(OracleConnection.CONNECTION_PROPERTY_IMPLICIT_STATEMENT_CACHE_SIZE). The value
for the cache size matches your number of open_cursors. For example:

oracle.jdbc.implicitStatementCacheSize=nnn where nnn is typically between 10 and
100, and is equal to the number of open cursors your application maintains.

Monitoring

Application Continuity collects statistics to monitor your protection levels.

These statistics are saved in the Automatic Workload Repository (AWR) and are available in
Automatic Workload Repository reports. Review the statistics to determine the extent of
protected calls or If the protected call count or protected time decreases. Use the ACCHK utility
for details as to the cause.

See Protection Level Statistics for details about using database statistics for analyzing AC
protection.

Chapter 36
Configuring Level 3: Mask Unplanned and Planned Failovers from Applications

36-18

Reference
Reference topics for Configuring Continuous Availability for Applications.

Topics:

• Connection Time Estimates During Data Guard Switchover or Failover

• Oracle Net TNS String Parameters

• Connection Retry Logic Examples

• Server-Side Planned Maintenance Command Examples

Connection Time Estimates During Data Guard Switchover or Failover
The settings in the connect string allow for the following maximum times to connect during
switchover or failover.

• Data Guard Switchover:

RETRY_COUNT X RETRY_DELAY = 100 x 3 sec = 300 sec.

• Data Guard Failover:

(3 SCANs x TRANSPORT_CONNECT_TIMEOUT) + (RETRY_COUNT x (RETRY_DELAY
+ (3 SCANS x TRANSPORT_CONNECT_TIMEOUT))) = (3 x 1) + (100 x (3 + (3 x 1)) = 3 +
600 = 603 sec

After Data Guard switchover / Data Guard failover to clu-site2, initial connections to clu-site2
take 3 seconds when clu-site1 is down (use of a connection pool helps mitigate this delay).
When clu-site1 is reachable again (when it becomes a standby) connections are nearly
instantaneous because the listener on the standby will answer immediately that the service is
not there, prompting the client to connect to the other ADDRESS_LIST.

• If the switchover or failover completes much earlier than the maximum time, the application
will experience less impact.

• Increase RETRY_COUNT if your system might take longer than 300 sec to complete a
switchover or failover. If you need more time to complete a Data Guard switchover, then
change RETRY_COUNT greater than 100.

• If you aren't using Oracle Clusterware, then your HOST address will not reference a SCAN
VIP but a single VIP. This means that TRANSPORT_CONNECT_TIMEOUT must be set to higher
or lower values to account for network latency.

Oracle Net TNS String Parameters
The parameters used in the connect string are explained here.

CONNECT_TIMEOUT

Applies when a connection to a listener address is attempted.

This setting represents the maximum time in which a connection using a specific ADDRESS
endpoint has to complete. It includes the transport connection time and any other actions that
must happen (redirection from SCAN VIP to listener VIP and finally to the foreground spawned
process).

Chapter 36
Reference

36-19

CONNECT_TIMEMOUT should be larger than TRANSPORT_CONNECT_TIMEOUT, otherwise
TRANSPORT_CONNECT_TIMEOUT is effectively capped by CONNECT_TIMEOUT. When
TRANSPORT_CONNECT_TIMEOUT is not specified, then CONNECT_TIMEOUT acts as the timeout for
the entire connection attempt to an ADDRESS endpoint, both transport and final connection to
the database foreground.

Oracle recommends the value for CONNECT_TIMEOUT be large enough to account for the value
of TRANSPORT_CONNECT_TIMEOUT, in addition to potential delays that may occur when
connecting to busy listeners and hosts. The value of 90 seconds in the example connect string
is very generous and might need to be shortened in some cases. But, if it is too short, then the
setting could be counter-productive because it causes additional attempts that can also fail,
and can introduce more unproductive workload on the servers to handle connection requests
that might be prematurely abandoned.

RETRY_COUNT

If a connection attempt fails across all ADDRESS_LISTS, then additional attempts to connect
beginning with the first ADDRESS_LIST will be made RETRY_COUNT times.

This is useful when a switchover or failover to a standby is in progress and the connection
needs to keep trying until the operation is complete.

RETRY_DELAY

Seconds in between retry attempts.

A short amount of time is given to allow the new primary database time to open. This
parameter is used with RETRY_COUNT to wait a reasonable amount of time to connect to a
newly opened database.

It is better to have short retry delays with many retry counts so the connection can complete
close to the time the primary database opened.

TRANSPORT_CONNECT_TIMEOUT=1000ms

Allow up to 1000 milliseconds to connect to the listener using TCP hosts in the ADDRESS. If
no connection is made, then try the next ADDRESS.

When an Oracle RAC SCAN host name is used, each IP in the SCAN address is expanded
internally into a separate ADDRESS string. Each ADDRESS is then attempted if a connection
attempt fails.

Adjust this parameter for your environment to minimize the time spent waiting for the listener
endpoint connection to succeed. If the time is too short, you might give up on a connection
attempt too soon, causing more delays and potentially a failure to connect. If the time is too
long, then if the listener endpoint is unreachable, you might spend too much time waiting
before giving up and trying another endpoint.

The host names specify SCAN VIPs. They are always available when using a cluster. This
means that if a node or network is down, the VIP sends an instant reply, so that when
connecting, the next address is used immediately if the service is not offered at the VIP
address.

LOAD_BALANCE=ON within ADDRESS_LIST

When a HOST inside an ADDRESS resolves to multiple addresses for Oracle RAC SCAN, then all
of the addresses are tried in a random order.

Chapter 36
Reference

36-20

If you set LOAD_BALANCE=OFF, then the order is the same every time, which might overburden
one of the SCAN listeners, so its recommended to set it to ON.

Connection Retry Logic Examples
Reference code examples for reconnection logic.

See Step 4: Developer Determines if the Application Should Implement Reconnection Logic for
more information.

Simple Retry (SANITY CHECK)

Connection jdbcConnection = getConnection();
int iterationCount = 0;
int maxIterations = 10;
for (int i = 0; i < maxIterations, i++)) {
 try {
 // apply the raise (DML + commit):
 giveRaiseToAllEmployees(jdbcConnection, i * 5);
 // no exception, the procedure completed:
 iterationCount++;
 Thread.sleep(1000);
 } catch (SQLRecoverableException recoverableException) {
 // Get a new connection only if the error was recoverable.
 System.out.println("SQLRecoverableException on iteration " +
iterationCount)
 System.out.println("DB Connection lost - will attempt to get a new
connection to continue with the other iterations")

 // IF its OK to lose this work and move onto the next
 // iteration you could now try to get a new connection
 // This depends on what the code is doing; in many use
 // cases you must stop working, in others you can proceed
 // after logging a message to a log file
 // In our example, we assume we can proceed with the rest
 // of the loop if possible.
 // Using Transaction Guard, we can know if the work
 // committed and move on safely (covered in another example).
 try {
 jdbcConnection.close(); // close old connection:
 System.out.println("Connection closed - getting a new one")
 jdbcConnection = getConnection(); // reconnect to continue with
other iterations
 } catch (Exception ex) {
 System.out.println("Unable to close or get a new connection -
giving up")
 throw ex;
 }
 } catch (SQLException nonRecoverableException) {
 // This is not a recoverable exception, so give up
 System.out.println("SQL UN-recoverable exception...give up the rest of
the iterations")
 throw nonRecoverableException;
 }
}

Chapter 36
Reference

36-21

Connection Retry Logic with Transaction Guard

Connection jdbcConnection = getConnection();
boolean isJobDone = false;
while (!isJobDone) {
 try {
 // apply the raise (DML + commit):
 giveRaiseToAllEmployees(jdbcConnection, 5);
 // no exception, the procedure completed:
 isJobDone = true;
 } catch (SQLRecoverableException recoverableException) {
 // Retry only if the error was recoverable.
 try {
 jdbcConnection.close(); // close old connection:
 } catch (Exception ex) {} // pass through other exceptions
 Connection newJDBCConnection = getConnection(); // reconnect to allow
retry
 // Use Transacton Guard to force last request: committed or
uncommitted
 LogicalTransactionId ltxid
 = ((OracleConnection) jdbcConnection).getLogicalTransactionId();
 isJobDone = getTransactionOutcome(newJDBCConnection, ltxid);
 jdbcConnection = newJDBCConnection;
 }
}

void giveRaiseToAllEmployees(Connection conn, int percentage) throws
SQLException {
 Statement stmt = null;
 try {
 stmt = conn.createStatement();
 stmt.executeUpdate("UPDATE emp SET sal=sal+(sal*" + percentage + "/
100)");
 } catch (SQLException sqle) {
 throw sqle;
 } finally {
 if (stmt != null)
 stmt.close();
 }
 // At the end of the request we commit our changes:
 conn.commit(); // commit can succeed but the commit outcome is lost
}

/**
 * GET_LTXID_OUTCOME_WRAPPER wraps DBMS_APP_CONT.GET_LTXID_OUTCOME
 */
private static final String GET_LTXID_OUTCOME_WRAPPER =
 "DECLARE PROCEDURE GET_LTXID_OUTCOME_WRAPPER(" +
 " ltxid IN RAW," +
 " is_committed OUT NUMBER) " +
 "IS " +
 " call_completed BOOLEAN; " +
 " committed BOOLEAN; " +
 "BEGIN " +
 " DBMS_APP_CONT.GET_LTXID_OUTCOME(ltxid, committed, call_completed); " +
 " if committed then is_committed := 1; else is_committed := 0; end if;

Chapter 36
Reference

36-22

" +
 "END; " +
 "BEGIN GET_LTXID_OUTCOME_WRAPPER(?,?); END;";

/**
 * getTransactionOutcome returns true if the LTXID committed or false
otherwise.
 * note that this particular version is not considering user call completion
 */
boolean getTransactionOutcome(Connection conn, LogicalTransactionId ltxid)
throws SQLException {
 boolean committed = false;
 CallableStatement cstmt = null;
 try {
 cstmt = conn.prepareCall(GET_LTXID_OUTCOME_WRAPPER);
 cstmt.setObject(1, ltxid); // use this starting in 12.1.0.2
 cstmt.registerOutParameter(2, OracleTypes.BIT);
 cstmt.execute();
 committed = cstmt.getBoolean(2);
 } catch (SQLException sqlexc) {
 throw sqlexc;
 } finally {
 if (cstmt != null)
 cstmt.close();
 }
 return committed;
}

Server-Side Planned Maintenance Command Examples

Note:

• If you are using these commands in scripts, you may find it helpful to include
wait = yes.

• The parameters, -force -failover cause the service to start on other available
instances configured on each service.

• For more details see Managing a Group of Services for Maintenance in Oracle
Real Application Clusters Administration and Deployment Guide.

To stop all instances on a node (node1) with all associated services' configured -
drain_timeout and -stopoption parameters.

srvctl stop instance -db myDB -node node1 -force -failover
 -role primary

Chapter 36
Reference

36-23

To stop one instance (inst1) with all associated services' configured -drain_timeout and -
stopoption parameters

srvctl stop instance -db myDB -instance inst1 -force -failover
 -role primary

Stop all instances with explicit draining parameters that override the parameters configured for
associated services.

srvctl stop instance -db db_name -node node_name
 -stopoption IMMEDIATE -drain_timeout <#> -force -failover

Stop a service with explicit draining parameters.

srvctl stop service -db db_name -service service_name
 -instance instance_name -drain_timeout <#> -stopoption IMMEDIATE
 -force -failover

To stop a service named GOLD on an instance named inst1 (a given instance) with a 5 minute
drain timeout and an IMMEDIATE stop option.

srvctl stop service -db myDB -service GOLD -instance inst1
 -drain_timeout 300 -stopoption IMMEDIATE -force -failover

Stop a Data Guard instance with explicit draining parameters.

srvctl stop instance -db db_name -node node_name
 -stopoption IMMEDIATE -drain_timeout <#> -force -failover
 -role primary

Relocate all services by database, node, or PDB.

srvctl relocate service -database db_unique_name
 -pdb pluggable_database
 {-oldinst old_inst_name [-newinst new_inst_name] |
 -currentnode current_node
 [-targetnode target_node]}
 -drain_timeout timeout -stopoption stop_option -force

srvctl relocate service -database db_unique_name
 -oldinst old_inst_name [-newinst new_inst_name]
 -drain_timeout timeout -stopoption stop_option
 -force

srvctl relocate service -database db_unique_name
 -currentnode current_node [-targetnode target_node]
 -drain_timeout timeout -stopoption stop_option
 -force

Chapter 36
Reference

36-24

To switch over to a Data Guard secondary site with a wait timeout of 60 seconds, using Data
Guard Broker.

SWITCHOVER TO dg_south WAIT 60

To switch over to Data Guard secondary site with a wait timeout from the services, using Data
Guard Broker.

SWITCHOVER TO dg_south WAIT

Chapter 36
Reference

36-25

Part VIII
Oracle Multitenant Best Practices

• Overview of Oracle Multitenant Best Practices

• PDB Switchover and Failover in a Multitenant Configuration

Configuring Continuous Availability for
Applications

Ensure that your applications are configured to quickly and automatically shift workload to
available Oracle RAC instances or standby databases during planned maintenance and
unplanned outages.

Application up time is maximized by following these recommendations when there are outages.

The primary audience for this document is application developers and application owners.
Operational examples are included for database administrators and PDB administrators.

Topics:

• About Application High Availability Levels

• Configuring Level 1: Basic Application High Availability

• Configuring Level 2: Prepare Applications for Planned Maintenance

• Configuring Level 3: Mask Unplanned and Planned Failovers from Applications

• Reference

About Application High Availability Levels
Depending on your application's high availability requirements, you can implement the level of
high availability (HA) protection that you need.

HA protection levels are defined in the table below, and each increase in level builds upon the
previous level.

HA Level Configuration Experience Benefits

Level 1: Basic Application
High Availability

See Configuring Level 1:
Basic Application High
Availability

Database or Security
Administrator:

• Configure role-based
database services

• Leverage recommended
database connection
string, and optionally
configure LDAP and
wallets

• Enable Oracle
Notification Service
(ONS)/Fast Application
Notification (FAN)

Application Developer:

• Use MAA recommended
connect string

• Use Basic exception
handling

Implementation effort:
Minimal - estimated 1 hour for
administrator, and less than 1
hour for developers
(assuming the application has
connection failure exception
logic already coded)

Implementing Level 1
protection provides significant
benefits compared to third
party application failover
solutions due to application +
Oracle integration and
intelligence to reduce
application impact.

• Reduced application
downtime

• Applications see errors
during planned
maintenance and
unplanned outages; the
application may trap the
connection error and, if it
is appropriate for the
application, reconnect to
another Oracle RAC
instance or database
with the target service

• Applicable for unplanned
outages and planned
maintenance. In some
cases, long running
transactions should be
deferred or suspended
during planned
maintenance.

High availability with
application automatically
failing over and reconnecting
(if appropiate for the
application)

• Quick timeouts and
automated connection
retry with database
connect string

• Location transparency
with services: role-based
services for standby and
read-only databases so
that applications are
automatically routed to
the proper instance with
the correct role

• ONS/FAN auto-
configured with database
connect string

• Immediate interrupt on
outages when using FAN
(no need to tune
timeouts and wait for
them)

• Clusterware is aware of
RAC and VIP health, so
there is no waiting on
downed end points
thanks to FAN

Level 2: Prepare Applications
for Planned Maintenance

See Configuring Level 2:
Prepare Applications for
Planned Maintenance

Level 1 configuration +

Application Developer:

• Use Oracle connection
pools or connection tests
and return your
connection to the pool
between uses

Additional implementation
effort for developers: A few
hours with minimal effort with
Oracle Connection pools,
including those in application
servers - up to days when not
using an application server,
depending on application
complexity. Developer may
need to identify connection
tests used in the application
and possibly create new ones
in the database

• Avoids errors during
planned maintenance
(errors still possible for
unplanned outages)

• Ability to drain and move
workload gracefully
without application
interruption

• Applicable for unplanned
outages and planned
maintenance events. For
some cases, long
running transactions
should be staged with
connection tests between
batches. If this is not
possible, the batch job
should be deferred
during planned
maintenance.

Workload moves gracefully
across instances with a slight
delay and no errors during
planned maintenance

HA Level Configuration Experience Benefits

Level 3: Mask Unplanned and
Planned Failovers from
Applications

See Configuring Level 3:
Mask Unplanned and
Planned Failovers from
Applications

Level 1 and 2 configuration +
"Application Continuity"
Solution

Database or Security
Administrator:

• Additional security and
privileges required for
PL/SQL aspects of the
application

Application Developers:

• External actions (for
example, side effects)
outside the database
need to be considered

Additional implementation
effort: Days to weeks of
collaboration between
developers and database
administrators to review
protection coverage
(depending on application
complexity)

• In-flight transactions
automatically
acknowledge the commit
or replay without
application code changes

• Database administrators
and application
developers coordinate to
ensure readiness using
AWR statistics to assess
protection coverage, and
use ACCHK (application
continuity health check)
to identify coverage or
exceptions when
transactions can or
cannot be replayed

Masks unplanned and
planned fail overs from
applications

• Applications avoid seeing
errors during planned
maintenance and
outages

• In-flight uncommitted
transactions are
replayed; committed
transactions are
acknowledged and not
replayed

All of the HA Levels described in the table above are superior to connection management
approaches using load balancers as single connection VIP endpoints for the following reasons:

• Smart Service Health and Intelligent Reconnect: Oracle Clusterware and Oracle Data
Guard Broker closely monitor the health and state of the clusters and databases to ensure
connections are routed to the database service that is opened on a primary.

• Transparent and Automatic Failover: There is no need to query the health of databases
and decide which is the proper one to move a VIP; everything is transparent in the high
availability approaches described in the table.

• Fast Notification and Automatic Connection Retries: The disconnection of already
connected sessions is immediate, and happens intelligently when Oracle Clusterware and
Data Guard Broker detect outages or role changes on the primary and standby databases.

Terms

The following terms are used throughout this document:

• Application Continuity: Application Continuity is an Oracle Database feature that masks
interruptions at the database level for planned and unplanned events, improving the fault
tolerance of applications that rely on Oracle Database.

• Transparent Application Continuity (TAC): Introduced with Oracle Database 18c, and
enhanced in Oracle Database 19c and 23ai, extends support to application configurations
that do not use Oracle connection pools (though they are still the preferred solution).

• Draining: Move a connection from one Oracle Real Application Clusters (RAC) instance to
another available Oracle RAC instance.

Draining to move sessions gracefully from one instance to another is used during planned
maintenance and load rebalancing. The connection is moved when the application returns
the connection to a pool and then obtains a new connection or another rule is satisfied.

• Fail over: Reestablish an equivalent session at a new instance that offers the service.

Fail over occurs during unplanned outages and during planned maintenance when
sessions do not drain within an allotted period of time. The application should not receive
errors when Application Continuity is configured.

• Fast Application Notification (FAN): FAN is essential to break clients out of TCP/IP
timeouts immediately following failures. FAN notifies clients immediately when resources
become available, and initiates draining of database sessions so clients experience no
outages during planned maintenance. FAN also includes notifying configuration-level and
service-level information that includes changes in service status.

• Oracle Notification Service (ONS): A facility that creates a bridge with middle-tier servers
or applications to transport cluster events to application logic for handling or reaction.

Software Recommendations

The following software is recommended for HA Level configurations:

• Oracle Real Application Clusters (Oracle RAC) and Oracle Clusterware (which provides
services and infrastructure to efficiently manage outages), preferably with Oracle Grid
Infrastructure (GI) release 19c or later

• Oracle Active Data Guard is recommended for protection from database, cluster, storage
or site failures

• Oracle Database 19c client and database or a later long-term support version, with the
most recent patch level

Configuring Level 1: Basic Application High Availability
Implement a level of high availability that allows applications to immediately react to instance,
node, or database failures, and quickly establish new connections to surviving database
instances.

With application HA Level 1, downtime is minimized for unplanned and planned outages. You
get these benefits by ensuring that the application configuration implements these
recommendations. No code changes are required.

At a high level, the steps to implement Level 1 are:

• Step 1: Configure High Availability Database Services

• Step 2: Configure the Connection String for High Availability

• Step 3: Ensure That FAN Is Used and ONS port 6200 is Open

• Step 4: Developer Determines if the Application Should Implement Reconnection Logic

Step 1: Configure High Availability Database Services
Create a non-default, role-based database service to use high-availability features.

A database service is a logical abstraction for managing workloads or a group of applications
sharing similar SLAs or types of workloads (for example, OLTP vs. batch). Database services
provide location transparency and hide complex aspects of the underlying system from the
client.

Your application must connect to a non-default database service to use high-availability
features. You must explicitly create a service (or several services as needed for different
application workloads) instead of using the default database service or the default PDB service
(that is, the service with the same name as the database or PDB).

On Oracle Autonomous Database, services are created for you using recommended attributes.

About Server-Side Configuration for Services

These services are configured by a database administrator to set up services through Oracle
Clusterware.

When using Oracle Data Guard and standby databases, create services using the primary role
to ensure that applications connect to the primary database for read/write operations, and
standby role for services to optionally offload read-only and small infrequent writes to the
standby database.

Services start and stop automatically after a Data Guard role transition (for example,
switchover or failover) based on their roles.

Configure your services according to your architecture in one of the following sections:

• Configure High Availability Services

• Configure High Availability Services for Oracle Active Data Guard or Standby Roles

Note:

Services must be started so that they can be used after creating them. Use a
command like this:

$ srvctl start service -db mydb -service my_service

See also:

Using Oracle Services in Oracle Real Application Clusters Administration and Deployment
Guide

Configure High Availability Services
Create a non-default, role-based database service to use high-availability features.

A service may be configured to direct connections to a single preferred instance, or
alternatively, if the preferred instance is down, to an available instance. When a service is
available only on one instance, it is called a singleton service. This allows you to isolate
workloads among instances in a cluster.

You could also configure a service to put connections on multiple instances of a cluster, to
spread work across all instances. Also, if one instance is down, connections can be made on
the surviving instances.

There are other combinations where you can configure a subset of instances as "preferred"
and another subset of instances as "available". These subsets provide for spreading load
across some instances while isolating work from others (and still have instances available in
case of a failure).

See Considerations for Oracle Cloud Database Services if your database is running on the
Oracle Cloud.

Example 1: Singleton Service

This example creates a singleton service called my_service for the primary role, where the
connections are made on instance inst1, unless that instance is not available. If the instance

is not available, connections are made on inst2. It also configures a default drain timeout of
300 seconds to wait for sessions to drain; at the end of that time any remaining sessions are
terminated because of the IMMEDIATE option.

The settings for commit_outcome and failovertype enable Transparent Application Continuity
(TAC) if you decide to implement it. See Configuring Level 3: Mask Unplanned and Planned
Failovers from Applications.

$ srvctl add service -db mydb -service my_service -pdb mypdb
 –preferred inst1 -available inst2 -notification TRUE -drain_timeout 300
 -stopoption IMMEDIATE -role PRIMARY

If you want your application to gracefully switch to another Oracle RAC instance with no
application blackout, set the drain_timeout interval to a sufficient timeout that allows your
applications to close their connections between transactions and gracefully stop or move to
another instance. The drain_timeout interval is best leveraged for short OLTP applications.
For large batch operations, it's best defer or suspend these operations before a planned
maintenance window.

Example 2: Service with Multiple Instances

This example creates a service that is similar to the singleton above but spreads connections
across multiple instances in this cluster:

$ srvctl add service -db mydb -service my_service -pdb mypdb
 –preferred inst1,inst2 -commit_outcome TRUE -failovertype AUTO -
notification TRUE
 -drain_timeout 300 -stopoption IMMEDIATE -clbgoal LONG -rlbgoal SERVICE_TIME
 -clbgoal LONG -rlbgoal SERVICE_TIME -role PRIMARY

Configure High Availability Services for Oracle Active Data Guard or Standby Roles
Create a service used to connect to a standby database (read-only physical standby).

Create a service as shown in the following example:

$ srvctl add service -db mydb -service my_standby_service -pdb mypdb
 –preferred inst1 -available inst2 -notification TRUE -drain_timeout 300
 -stopoption IMMEDIATE -clbgoal LONG -rlbgoal SERVICE_TIME -clbgoal LONG
 -rlbgoal SERVICE_TIME -role PHYSICAL_STANDBY

Considerations for Oracle Cloud Database Services
A default service is created along with every PDB that is provisioned in the Oracle cloud.

Note the following considerations depending on the type of cloud service you have.

Autonomous Database Serverless

For Autonomous Database Serverless, database services are pre-configured to support
different performance and concurrency characteristics. You can modify the services to enable
certain availability features using the DBMS_APP_CONT_ADMIN package.

Specifically:

• To set the drain timeout attributes, use DBMS_APP_CONT_ADMIN.SET_DRAINING. See
DBMS_APP_CONT_ADMIN for details.

• To set TAC or AC attributes, use DBMS_APP_CONT_ADMIN.ENABLE_TAC or
DBMS_APP_CONT_ADMIN.ENABLE_AC
This sets the associated service attributes to their recommended values to support TAC or
AC

• To set specific attributes, use DBMS_APP_CONT_ADMIN.MODIFY_SERVICE
The extent to which the DBMS_APP_CONT_ADMIN package supports changes to the service
depends on the database version.

Availability aspects of services in Autonomous Database Serverless, such as preferred and
available instances are configured automatically. See Database Service Names for
Autonomous Database for more details and other options.

Autonomous Database on Dedicated Exadata Infrastructure

For Autonomous Database on Dedicated Exadata Infrastructure, database services are pre-
configured with TAC, AC, and support for various degrees of parallelism. Use the service name
that meets the needs of your application.

Availability aspects of services in Autonomous Database, such as preferred and available
instances, are configured automatically. See Predefined Database Service Names for
Autonomous Databases for more details and other options.

Oracle Exadata Database Service on Dedicated Infrastructure and Oracle Base Database

The service in the connect string provided by the UI is for administrative purposes, not for
client application connections. You must create a database service for your applications by
following the recommendations in Configure High Availability Services.

Step 2: Configure the Connection String for High Availability
Oracle recommends that your application use the connection string configuration shown here
to connect successfully during various scenarios including database switchover and failover to
other sites.

Example 1: Connect string with Oracle RAC primary database and no standby

Alias = (DESCRIPTION =
(CONNECT_TIMEOUT= 90)(RETRY_COUNT=20)(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=1000ms)
 (ADDRESS_LIST =
 (LOAD_BALANCE=on)
 (ADDRESS = (PROTOCOL = TCP)(HOST=clu_site1-scan)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME = my_service)))

Example 2: Connect string with Oracle RAC primary and standby databases

This example makes connections to an Oracle RAC primary database or a standby database,
depending on which one is available.

Alias = (DESCRIPTION =
(CONNECT_TIMEOUT= 90)(RETRY_COUNT=100)(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=1000ms)
 (ADDRESS_LIST =

https://docs.oracle.com/iaas/autonomous-database-serverless/doc/predefined-database-services-names.html#GUID-6CEFC4B7-6EF8-4237-A004-C88F570A480B
https://docs.oracle.com/iaas/autonomous-database-serverless/doc/predefined-database-services-names.html#GUID-6CEFC4B7-6EF8-4237-A004-C88F570A480B
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbbd/#GUID-07401C82-6A01-4CDF-AAE5-54B78B50CA0A
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbbd/#GUID-07401C82-6A01-4CDF-AAE5-54B78B50CA0A

 (LOAD_BALANCE=on)
 (ADDRESS = (PROTOCOL = TCP)(HOST=clu_site1-scan)(PORT=1521)))
 (ADDRESS_LIST =
 (LOAD_BALANCE=on)
 (ADDRESS = (PROTOCOL = TCP)(HOST=clu_site2-scan)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME = my_service)))

Note:

clu_site1-scan and clu_site2-scan refer to SCAN listeners in a cluster on site1 and
site2, respectively.

It's recommended that you use the most recent drivers, but all Oracle drivers from release 12.2
and later should use the example connection strings above. Specific values can be tuned, but
the values shown in this example are reasonable starting points, and so usable for almost all
cases.

It is highly recommended that you maintain your connect string or URL in a central location,
such as LDAP or tnsnames.ora. Do not scatter the connect string or URL in property files or
private locations, as doing so makes it extremely difficult to maintain. Using a centralized
location helps you preserve standard format, tuning, and service settings. Oracle's solution for
this is to use LDAP with the Oracle Unified Directory product.

For JDBC, the connection strings listed above would be implemented as shown in these
examples.

Example 1. Oracle RAC with no standby

jdbc:oracle:thin:@(DESCRIPTION =(CONNECT_TIMEOUT= 90)(RETRY_COUNT=20)
(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=1000ms)(ADDRESS_LIST=(LOAD_BALANCE=on)(ADDRESS =
(PROTOCOL = TCP)
(HOST=clu_site1-scan)(PORT=1521)))(CONNECT_DATA=(SERVICE_NAME = my_service)))

Example 2. Oracle RAC with standby

jdbc:oracle:thin:@(DESCRIPTION =(CONNECT_TIMEOUT= 90)(RETRY_COUNT=100)
(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=1000ms)(ADDRESS_LIST=(LOAD_BALANCE=on)(ADDRESS =
(PROTOCOL = TCP)
(HOST=clu_site1-scan)(PORT=1521)))(ADDRESS_LIST=(LOAD_BALANCE=on)(ADDRESS =
(PROTOCOL = TCP)
(HOST=clu_site2-scan)(PORT=1521)))(CONNECT_DATA=(SERVICE_NAME = my_service)))

For other clients, refer to your client's documentation.

See also:

• Connection Time Estimates During Data Guard Switchover or Failover

• Oracle Net TNS String Parameters

• Oracle Unified Directory in Administering Oracle Unified Directory

• Overview of Local Naming Parameters in Oracle Database Net Services Reference

https://docs.oracle.com/en/middleware/idm/unified-directory/12.2.1.4/oudag/introduction-oracle-unified-directory.html#GUID-53DE34B1-370C-4C09-93EB-F5FAE76CCA02

Oracle Cloud Considerations for Connection Strings

Oracle Cloud provides sample connection strings for CDBs and PDBs that are provisioned.

For Cloud services such as Exadata Database Services on Dedicated Infrastructure or Oracle
Base Database Service, you must change the connection string that is provided to include the
new service you added in step 1, instead of the default service in the provided connect string.

If your database has a Data Guard association, then you may want to use the connection
string format in step 2 that includes the primary and standby entries, if you require your existing
application to fail over to the standby automatically after a primary database failure.

For a standby in the same region, you should typically add the standby in the connect string,
but for a cross-region standby, evaluate the OCI Full Stack Disaster Recovery service to
orchestrate application, database, and client failover. See Full Stack Disaster Recovery on
Oracle.com.

Step 3: Ensure That FAN Is Used and ONS port 6200 is Open

When a service needs to drain for routine maintenance, or experiences unplanned failures
(such as node or network outages), the application needs to be informed in real time so that it
can quickly move connections to another instance or site. This is accomplished using Oracle's
Fast Application Notification (FAN) feature, which enables applications and connection pools to
receive event notifications from one or more clusters.

The ability to receive FAN events is enabled automatically when using the recommended
service and connect string in steps 1 and 2 above, along with Oracle JDBC drivers (the latest
version is recommended, but not earlier than 12.2).

The ONS port (by default, 6200) needs to be opened on all of your database servers, the
firewall, and Oracle Active Data Guard nodes.

The use of FAN is not mandatory, but is highly desirable because it can detect many types of
unplanned outage scenarios and enable applications to handle these scenarios gracefully to
maintain high availability.

FAN uses Oracle Clusterware's Oracle Notification Service (ONS) to receive events from the
cluster. ONS requires ports to be available between the client and the servers, and in some
cases this requires a firewall port to be opened (6200 by default) on all of your database
servers, the firewall, and Oracle Active Data Guard nodes.

Alternative if you can't use FAN: In-Band Notification

When port 6200 cannot be opened or is not available, Oracle's connection drivers will enable
"in-band" notifications automatically using the database connections themselves. In-band
notifications are received on the next round-trip to the database.

This notification simply tells the driver that the service is draining and the client should close
the connection. Clients will not receive events for an instance or node failure to advise a client
to disconnect immediately, because those kinds of failures will terminate connections
ungracefully, removing the ability to see any notification because the connection would be
gone.

In-band notification is for planned maintenance and does not apply to unplanned outages.

Enabling ONS/FAN for Clients

There are no application code changes to use FAN. FAN only requires an Oracle driver and the
recommended database connect strings in step 2 above.

https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://www.oracle.com/cloud/full-stack-disaster-recovery/

By default, starting with 19c, ONS is auto-configured by leveraging the recommended
database connect strings (in step 2 above), when those strings are used to connect to a cluster
using the cluster's SCAN listeners. ONS will automatically determine which nodes it should
establish connections to, including nodes in standby clusters (as long as the standby clusters
are in the connect string).

It is important to use the TNS formats shown in Step 2 for auto-configuration of FAN. Using a
different format syntax can prevent FAN from being auto-configured.

If you are not able to use the recommended connect URL/string (in step 2), configure your
clients to subscribe to ONS manually by setting the list of ONS nodes and ports.

For example, in UCP, ONS endpoints could be configured like the following example (other
pools would use something similar; check your pool's documentation):

pds.setONSConfiguration("nodes=racnode1:4200,racnode2:4200\nwalletfile=/
oracle11/onswalletfile");

This shows an ONS configuration using a wallet file, which is typically required with Oracle
Cloud but should not be used in other environments. It is recommended that you create a
property file and reference that file instead of hard-coding values (see the Remote
Configuration of ONS for details).

See also:

Overview of Oracle Integrated Clients and FAN in Oracle Real Application Clusters
Administration and Deployment Guide

Step 4: Developer Determines if the Application Should Implement
Reconnection Logic

Applications can be written to catch connection failure exceptions and errors during database
calls so that they can obtain new connections and continue with new work, if it is reasonable to
continue.

There are many factors to take into account to determine if it is reasonable for an application to
continue and how it should proceed after losing connections. In Configuring Level 3: Mask
Unplanned and Planned Failovers from Applications, a robust solution is presented for
masking failures from your application transparently using AC and TAC.

For JDBC-based applications, the SQLRecoverableException can be caught to distinguish
connection errors from typical application or SQL errors. If a connection error is caught, then a
new connection should be obtained. This is simpler and more robust than checking for
individual Oracle errors (which can adjust by Oracle Database release) in the SQLException
class.

See also:

Connection Retry Logic Examples

Configuring Level 2: Prepare Applications for Planned
Maintenance

Building on Level 1: Basic Application High Availability, application HA Level 2 adds the ability
to drain sessions for minimal application impact during planned maintenance.

After implementing Level 1, you are ready to implement a planned maintenance solution
appropriate to your application from one of the choices below. You can use planned operations
to relocate or stop services, or to switch over, allowing for graceful completion of the users'
work.

The recommended approach to avoid impacting applications is drain work in an Oracle RAC
rolling fashion. Typically a period of time is allocated to perform the draining. Our
recommended choice is to use Oracle connection pools that are integrated with FAN to initiate
draining.

If you are unable to drain automatically using the options listed below, an alternative approach
is to ensure the application manages to stop and defer work before maintenance starts.

Employ the following practices to increase your application high availability to level 2:

• Use an Oracle Connection Pool and return your connection to the pool between requests.
See Recommended Option: Use an Oracle Connection Pool.

Alternatively, use a third-party connection pool that uses request boundaries.

• If you cannot use an Oracle connection pool or third-party pool with request boundaries,
you can use the following alternatives with existing applications:

– Alternate Option 1: Use Request Boundaries

– Alternate Option 2: Use Connection Validation or Tests

• Leverage server-side operations for planned maintenance. See Server-Side Operations for
Planned Maintenance

• Ensure that sufficient node capacity is available so that the load from one instance can be
spread to other available instances without impacting the workload during a maintenance
period.

Recommended Option: Use an Oracle Connection Pool
Using a FAN-aware Oracle connection pool is the recommended solution for managing
planned maintenance.

Oracle pools provide full lifecycle management: draining, reconnecting, and rebalancing across
nodes and sites. When performing rolling maintenance across a cluster, as the maintenance
progresses and completes (for each instance or node), sessions are moved and rebalanced
across instances. There is no impact to users when your application uses an Oracle Pool with
FAN and returns connections to the pool between requests since these connections will drain
and move to other instances.

Supported Oracle Pools include:

• Java; Universal Connection Pool (UCP)

– UCP documentation: Introduction to UCP

– Springboot with UCP: UCP Best Practices for Oracle Database 19c and Spring Boot

https://medium.com/oracledevs/ucp-best-practices-for-oracle-database-19c-and-spring-boot-fb837f8e195b

• Java; WebLogic Active GridLink

• Tuxedo

• OCI Session Pool

• ODP.NET core, managed, and unmanaged providers

• Oracle Python driver connection pool

• Node.js Oracle driver connection pool

• Hikari Connection Pools: HikariCP Best Practices for Oracle Database and Spring Boot —
V2

When using these pools, no application changes are needed other than ensuring that your
connections are returned to the pool between requests.

It is a best practice that an application obtains a connection only for the time that it needs it,
and then returns the connection to the pool as soon as it is finished making its database calls.
Holding a connection instead of returning it to the pool prevents the pool from gracefully
moving sessions to available instances, and it uses resources inefficiently, requiring many
more connections than would otherwise be used. An application should, therefore, obtain a
connection and then return that connection immediately after the work is complete. The
connections are then available for later use by other threads, or your thread when needed
again. Returning connections to a connection pool is a general recommendation regardless of
how draining is implemented.

Note:

The syntax for obtaining and returning a connection varies by pool implementation.
For example, in UCP you use the getConnection() method of the PoolDataSource
object to obtain a connection and mark the beginning of the database request, and
the close() method to return it, marking the end of the database request after you've
done some work in the database.

Oracle Connection Pools validate a connection whenever a connection is borrowed to ensure
that the connection can be used without any errors.

Alternate Options

Only look at these alternate options if you cannot use the recommended option. The alternate
options are listed in priority order.

Alternate Option 1: Use Request Boundaries

For existing applications, retrofit them by using session/connection pools or by wrapping
operations within a requestBegin and requestEnd boundary. For example, for the Oracle Call
Interface: OCIRequestBegin and OCIRequestEnd).

Request boundaries are visible to the database, and they enable functionality such as draining
for planned maintenance, load balancing, and multiplexing to be isolated at the database layer.
Sessions can be re-established with no visible disruption to the application layers above.

https://medium.com/oracledevs/hikaricp-best-practices-for-oracle-database-and-spring-boot-4d6723621c0b
https://medium.com/oracledevs/hikaricp-best-practices-for-oracle-database-and-spring-boot-4d6723621c0b

Alternate Option 2: Use Connection Validation or Tests
If you cannot use an Oracle Pool, or do not wish to implement request boundaries, then the
Oracle client drivers (19c or later) or Oracle Database (19c or later) can drain the sessions for
you.

When services are relocated or stopped, or there is a switchover to a standby site via Oracle
Data Guard, the Oracle Database and Oracle client drivers are notified to look for safe places
to release connections according to the following:

• Standard connection tests for connection validity (for example isValid() in JDBC)

• Custom SQL tests for connection validity

For custom batch applications, test the connection between batches. When the connection test
fails, create or borrow another connection.

For third-party connection pools, enable connection tests offered by the vendor. When the
connection test fails, the third-party pool will close the connection and allow you to borrow
another one.

Note:

• When you use a connection test, the outcome of the connection test applies to
that session only. Do not use connection tests to make general decisions about
the instance and to make a determination to stop more than the session to which
the test applies.

• Disable connection pool properties for flushing and destroying the pool on
connection test failure when using Oracle WebLogic Server data sources.

• A monitor is functionality that makes a decision about the health of an instance.
With FAN and Runtime Load Balancing such monitors are no longer needed and
not susceptible to incorrect decisions. If you do want a monitor, SQL in that
monitor must NOT be misinterpreted as a connection test for draining the
application. There are a few ways to avoid this misinterpretation:

– Disable a monitor's specific health query using the dbms_app_cont_admin
package:

dbms_app_cont_admin.disable_connection_test(dbms_app_cont_admin
.sql_test,'SELECT COUNT(1) FROM DUAL’);

Here, the query used by the monitor, 'SELECT COUNT(1) FROM DUAL’, is not
considered a connection test. If there are any connection tests that also use
this query, then they would be disabled and a different query would be
needed.

– Embed a comment into the monitor query to distinguish it from any of the
registered connection tests:

SELECT /* My Health monitor query */ COUNT(1) monitor FROM DUAL

• You may disable connection tests by using the
DBMS_APP_CONT_ADMIN.DISABLE_CONNECTION_TEST procedure. You can also add,
modify, or delete connection tests using the DBMS_APP_CONT_ADMIN package.

Server-Side Operations for Planned Maintenance
Server-side operations are required to manage connections for planned maintenance.

The server side operations for planned maintenance are implicitly executed If you are using
Oracle cloud software automation, or are in a cloud maintenance window that requires
restarting the database instance.

Note that services connected to the Oracle Database are configured with connection tests and
a drain timeout specifying how long to allow for draining, and the stopoption (typically
IMMEDIATE), that applies after the drain timeout expires. The stop, relocate, and switchover
commands managed by SRVCTL include a drain_timeout and stopoption switch to override
values set on the service if needed.

Oracle recommends configuring services with the required drain timeout applicable to that
service, so they are used automatically during maintenance operations.

Maintenance commands are similar to the commands described in the examples in Server-
Side Planned Maintenance Command Examples. You can use these commands to start

draining. Include additional options, if needed, as described in My Oracle Support (MOS) Note:
Doc ID 1593712.1. Oracle tools, such as Fleet Patching and Provisioning (FPP) use these
commands as well.

Oracle Clusterware can start instances that are not currently running, but can run a service that
requires that instance. Services that cannot be relocated or do not need relocation, are
stopped. If a singleton service is defined with no other available instances, then it may incur
complete downtime, which is expected behavior. It is better to have preferred instances and at
least one available instance always defined.

After the maintenance is complete and the instance is restarted, no additional SRVCTL action
is required because the Oracle Clusterware service attribute automatically determines where
services will end up.

See also:

Server Draining Ahead of Planned Maintenance in Oracle Real Application Clusters
Administration and Deployment Guide

Configuring Level 3: Mask Unplanned and Planned Failovers
from Applications

Building on Level 1 and Level 2, the features presented in Level 3 are recommended to
achieve continuous availability for applications, regardless of database interruptions, outages,
timeouts, or when application workload won't drain.

Application Continuity

Application Continuity (AC) hides unplanned outages, starting with Oracle Database 12.1 for
thin Java-based applications, and Oracle Database 12.2.0.1 for OCI and ODP.NET based
applications with support for open-source drivers, such as Node.js, and Python, beginning with
Oracle Database 19c.

Application Continuity rebuilds the session by recovering the session from a known point which
includes session states and transactional states. Application Continuity rebuilds all in-flight
work. The application continues as it was, seeing a slightly delayed execution time when a
failover occurs.

The standard mode for Application Continuity is for OLTP applications using an Oracle
connection pool or a third party connection pool with request boundaries.

Transparent Application Continuity

Starting with Oracle Database19c, Transparent Application Continuity (TAC) transparently
tracks and records session and transactional state so the database session can be recovered
following recoverable outages. This is done with no reliance on application knowledge or
application code changes, allowing Transparent Application Continuity to be enabled for
applications by default.

Application transparency and failover are achieved by consuming the state-tracking information
that captures and categorizes the session state usage as the application issues user calls.

Choose AC or TAC

If you have an OLTP application that uses an Oracle connection pool (or RedHat JBOSS EAP),
you have a choice between Application Continuity and Transparent Application Continuity.

To decide which feature to use, you can run the application with each and choose the one with
higher value for cumulative user calls protected by Application Continuity.

If you are not using an Oracle connection pool (as with SQL*Plus 19c or SQLcl 23), or you do
not have knowledge about the application, then use TAC.

Planned Failover with AC and TAC

Planned failover is failover that is invoked by the Oracle Database at points where the
database decides that a session is replayable and is expected not to drain.

Planned failover is enabled by default when using AC or TAC. It improves situations where
other draining methods are not active, for example, because FAN or connection tests are not
configured.

Planned failover expedites maintenance by failing over early when replay is enabled.

For example, planned failover with TAC is the maintenance solution used with SQL*Plus.

See also:

• Ensuring Application Continuity in Oracle Real Application Clusters Administration and
Deployment Guide

• Blog: database-heartbeat Application Continuity

• Restrictions and Other Considerations for Application Continuity

Configure Services for AC and TAC

Set COMMIT_OUTCOME = TRUE

Determines whether transaction COMMIT outcome is accessible after the COMMIT has executed.
While the database guarantees that COMMIT is durable, this setting ensures that the outcome of
the COMMIT is durable. Applications use this feature to probe the status of the commit last
executed after an outage, and is available to applications to determine an outcome

Set FAILOVER_TYPE

Set FAILOVER_TYPE to AUTO when using TAC.

Alternatively, set the database service attribute FAILOVER_TYPE to TRANSACTION to use
Application Continuity.

Set FAILOVER_RESTORE

An application can be written to change the database session state (using ALTER SESSION
commands typically), and these states need to be in place if you want the work to be replayed
after failover.

To restore your session state at failover, set the attribute FAILOVER_RESTORE on your database
service. Use LEVEL1 for AC or use AUTO for TAC.

The use of wallets is highly recommended. AC and TAC leverage wallets to ensure all
modifiable database parameters are restored automatically with FAILOVER_RESTORE. Wallets
are enabled for Autonomous Database and are the same as those used for database links.

See also:

Configuring a Keystore for FAILOVER_RESTORE in Oracle Real Application Clusters
Administration and Deployment Guide to learn how to set up wallets for databases.

https://database-heartbeat.com/category/application-continuity/

Examples

Example service configuration for TAC:

$ srvctl add service -db mydb -service my_service -pdb mypdb
 –preferred inst1 -available inst2 -commit_outcome TRUE -failovertype AUTO
 -failover_restore AUTO -notification TRUE -drain_timeout 300 -stopoption
IMMEDIATE
 -role PRIMARY

Example service configuration for AC:

$ srvctl add service -db mydb -service my_service -pdb mypdb –preferred inst1
 -available inst2 -commit_outcome TRUE -failovertype TRANSACTION
 -failover_restore LEVEL1 -notification TRUE -drain_timeout 300 -stopoption
IMMEDIATE
 -role PRIMARY

Return Connections to the Connection Pool
Request boundaries are required for Application Continuity (AC) and are recommended for
Transparent Application Continuity (TAC).

Request boundaries are automatically embedded in the session for you when you use an
Oracle connection pool, such as Universal Connection Pool (UCP) or OCI Session Pool. The
application should return the connection to the Oracle connection pool when the unit of work,
the database request, is completed, to insert the end of request boundary. This also applies to
using ODP.Net Unmanaged Provider, WebLogic Active GridLink, and RedHat.

Side Effect

When a database request includes an external call from the database, such as sending mail or
transferring a file, this is called a side effect.

When replay occurs, there is a choice as to whether side effects should be replayed. Many
applications want to repeat side effects such as creating journal entries, sending mail, and
performing file writes. For Application Continuity, side effects are replayed, but can be
programmatically avoided. Conversely, Transparent Application Continuity does not replay side
effects.

Starting with Oracle 23ai, there are PL/SQL procedures to set rules for how replay handles
side effects. See the REPLAY related procedures in the DBMS_APP_CONT in Summary of
DBMS_APP_CONT Subprograms.

Restore Original Function Values During Replay

Oracle Database 19c keeps the values of SYSDATE, SYSTIMESTAMP, SYS_GUID, and
sequence.NEXTVAL, CURRENT_TIMESTAMP, and LOCALTIMESTAMP for SQL during replay.

If you are using PL/SQL, then GRANT KEEP for application users, and use the KEEP clause for a
sequence owner. When the KEEP privilege is granted, replay applies the original function result
at replay.

SQL> GRANT KEEP DATE TIME to scott;
SQL> GRANT KEEP SYSGUID to scott;
SQL> GRANT KEEP SEQUENCE mySequence on mysequence.myobject to scott;

JDBC Configuration

Ensure your JDBC configuration uses:

• The recommended JDBC data source for standalone JDBC, or configure it as connection
factory class for a Java connection pool (such as UCP) or a WebLogic AGL Server
connection pool or RedHat JBOSS EAP.

See Configuring the Data Source for Application Continuity in the Oracle Universal
Connection Pool Developer's Guide for information about enabling AC and TAC on UCP.
You configure the JDBC driver data source class
oracle.jdbc.replay.OracleDataSourceImpl as the connection factory class on the UCP
data source PoolDataSourceImpl.

For 19c.x.x.x and older drivers, use oracle.jdbc.replay.OracleDataSourceImpl
For 21ai.x.x.x and newer drivers, use oracle.jdbc.datasource.impl.OracleDataSource
Note that the exact data source and connection pool configuration are always specific to a
particular vendor's product, such as a 3rd-party connection pool, framework, application
server, or container.

• The JDBC driver statement cache in place of an application server statement cache.

This allows the driver to know that statements are closed and memory is to be freed at the
end of requests. To use the JDBC statement cache, use the connection property
oracle.jdbc.implicitStatementCacheSize
(OracleConnection.CONNECTION_PROPERTY_IMPLICIT_STATEMENT_CACHE_SIZE). The value
for the cache size matches your number of open_cursors. For example:

oracle.jdbc.implicitStatementCacheSize=nnn where nnn is typically between 10 and
100, and is equal to the number of open cursors your application maintains.

Monitoring

Application Continuity collects statistics to monitor your protection levels.

These statistics are saved in the Automatic Workload Repository (AWR) and are available in
Automatic Workload Repository reports. Review the statistics to determine the extent of
protected calls or If the protected call count or protected time decreases. Use the ACCHK utility
for details as to the cause.

See Protection Level Statistics for details about using database statistics for analyzing AC
protection.

Reference
Reference topics for Configuring Continuous Availability for Applications.

Topics:

• Connection Time Estimates During Data Guard Switchover or Failover

• Oracle Net TNS String Parameters

• Connection Retry Logic Examples

• Server-Side Planned Maintenance Command Examples

Connection Time Estimates During Data Guard Switchover or Failover
The settings in the connect string allow for the following maximum times to connect during
switchover or failover.

• Data Guard Switchover:

RETRY_COUNT X RETRY_DELAY = 100 x 3 sec = 300 sec.

• Data Guard Failover:

(3 SCANs x TRANSPORT_CONNECT_TIMEOUT) + (RETRY_COUNT x (RETRY_DELAY
+ (3 SCANS x TRANSPORT_CONNECT_TIMEOUT))) = (3 x 1) + (100 x (3 + (3 x 1)) = 3 +
600 = 603 sec

After Data Guard switchover / Data Guard failover to clu-site2, initial connections to clu-site2
take 3 seconds when clu-site1 is down (use of a connection pool helps mitigate this delay).
When clu-site1 is reachable again (when it becomes a standby) connections are nearly
instantaneous because the listener on the standby will answer immediately that the service is
not there, prompting the client to connect to the other ADDRESS_LIST.

• If the switchover or failover completes much earlier than the maximum time, the application
will experience less impact.

• Increase RETRY_COUNT if your system might take longer than 300 sec to complete a
switchover or failover. If you need more time to complete a Data Guard switchover, then
change RETRY_COUNT greater than 100.

• If you aren't using Oracle Clusterware, then your HOST address will not reference a SCAN
VIP but a single VIP. This means that TRANSPORT_CONNECT_TIMEOUT must be set to higher
or lower values to account for network latency.

Oracle Net TNS String Parameters
The parameters used in the connect string are explained here.

CONNECT_TIMEOUT

Applies when a connection to a listener address is attempted.

This setting represents the maximum time in which a connection using a specific ADDRESS
endpoint has to complete. It includes the transport connection time and any other actions that
must happen (redirection from SCAN VIP to listener VIP and finally to the foreground spawned
process).

CONNECT_TIMEMOUT should be larger than TRANSPORT_CONNECT_TIMEOUT, otherwise
TRANSPORT_CONNECT_TIMEOUT is effectively capped by CONNECT_TIMEOUT. When
TRANSPORT_CONNECT_TIMEOUT is not specified, then CONNECT_TIMEOUT acts as the timeout for
the entire connection attempt to an ADDRESS endpoint, both transport and final connection to
the database foreground.

Oracle recommends the value for CONNECT_TIMEOUT be large enough to account for the value
of TRANSPORT_CONNECT_TIMEOUT, in addition to potential delays that may occur when
connecting to busy listeners and hosts. The value of 90 seconds in the example connect string
is very generous and might need to be shortened in some cases. But, if it is too short, then the
setting could be counter-productive because it causes additional attempts that can also fail,
and can introduce more unproductive workload on the servers to handle connection requests
that might be prematurely abandoned.

RETRY_COUNT

If a connection attempt fails across all ADDRESS_LISTS, then additional attempts to connect
beginning with the first ADDRESS_LIST will be made RETRY_COUNT times.

This is useful when a switchover or failover to a standby is in progress and the connection
needs to keep trying until the operation is complete.

RETRY_DELAY

Seconds in between retry attempts.

A short amount of time is given to allow the new primary database time to open. This
parameter is used with RETRY_COUNT to wait a reasonable amount of time to connect to a
newly opened database.

It is better to have short retry delays with many retry counts so the connection can complete
close to the time the primary database opened.

TRANSPORT_CONNECT_TIMEOUT=1000ms

Allow up to 1000 milliseconds to connect to the listener using TCP hosts in the ADDRESS. If
no connection is made, then try the next ADDRESS.

When an Oracle RAC SCAN host name is used, each IP in the SCAN address is expanded
internally into a separate ADDRESS string. Each ADDRESS is then attempted if a connection
attempt fails.

Adjust this parameter for your environment to minimize the time spent waiting for the listener
endpoint connection to succeed. If the time is too short, you might give up on a connection
attempt too soon, causing more delays and potentially a failure to connect. If the time is too
long, then if the listener endpoint is unreachable, you might spend too much time waiting
before giving up and trying another endpoint.

The host names specify SCAN VIPs. They are always available when using a cluster. This
means that if a node or network is down, the VIP sends an instant reply, so that when
connecting, the next address is used immediately if the service is not offered at the VIP
address.

LOAD_BALANCE=ON within ADDRESS_LIST

When a HOST inside an ADDRESS resolves to multiple addresses for Oracle RAC SCAN, then all
of the addresses are tried in a random order.

If you set LOAD_BALANCE=OFF, then the order is the same every time, which might overburden
one of the SCAN listeners, so its recommended to set it to ON.

Connection Retry Logic Examples
Reference code examples for reconnection logic.

See Step 4: Developer Determines if the Application Should Implement Reconnection Logic for
more information.

Simple Retry (SANITY CHECK)

Connection jdbcConnection = getConnection();
int iterationCount = 0;
int maxIterations = 10;
for (int i = 0; i < maxIterations, i++)) {
 try {
 // apply the raise (DML + commit):
 giveRaiseToAllEmployees(jdbcConnection, i * 5);
 // no exception, the procedure completed:
 iterationCount++;
 Thread.sleep(1000);
 } catch (SQLRecoverableException recoverableException) {
 // Get a new connection only if the error was recoverable.
 System.out.println("SQLRecoverableException on iteration " +
iterationCount)
 System.out.println("DB Connection lost - will attempt to get a new
connection to continue with the other iterations")

 // IF its OK to lose this work and move onto the next
 // iteration you could now try to get a new connection
 // This depends on what the code is doing; in many use
 // cases you must stop working, in others you can proceed
 // after logging a message to a log file
 // In our example, we assume we can proceed with the rest
 // of the loop if possible.
 // Using Transaction Guard, we can know if the work
 // committed and move on safely (covered in another example).
 try {
 jdbcConnection.close(); // close old connection:
 System.out.println("Connection closed - getting a new one")
 jdbcConnection = getConnection(); // reconnect to continue with
other iterations
 } catch (Exception ex) {
 System.out.println("Unable to close or get a new connection -
giving up")
 throw ex;
 }
 } catch (SQLException nonRecoverableException) {
 // This is not a recoverable exception, so give up
 System.out.println("SQL UN-recoverable exception...give up the rest of
the iterations")
 throw nonRecoverableException;
 }
}

Connection Retry Logic with Transaction Guard

Connection jdbcConnection = getConnection();
boolean isJobDone = false;
while (!isJobDone) {
 try {
 // apply the raise (DML + commit):
 giveRaiseToAllEmployees(jdbcConnection, 5);
 // no exception, the procedure completed:
 isJobDone = true;
 } catch (SQLRecoverableException recoverableException) {
 // Retry only if the error was recoverable.
 try {
 jdbcConnection.close(); // close old connection:
 } catch (Exception ex) {} // pass through other exceptions
 Connection newJDBCConnection = getConnection(); // reconnect to allow
retry
 // Use Transacton Guard to force last request: committed or
uncommitted
 LogicalTransactionId ltxid
 = ((OracleConnection) jdbcConnection).getLogicalTransactionId();
 isJobDone = getTransactionOutcome(newJDBCConnection, ltxid);
 jdbcConnection = newJDBCConnection;
 }
}

void giveRaiseToAllEmployees(Connection conn, int percentage) throws
SQLException {
 Statement stmt = null;
 try {
 stmt = conn.createStatement();
 stmt.executeUpdate("UPDATE emp SET sal=sal+(sal*" + percentage + "/
100)");
 } catch (SQLException sqle) {
 throw sqle;
 } finally {
 if (stmt != null)
 stmt.close();
 }
 // At the end of the request we commit our changes:
 conn.commit(); // commit can succeed but the commit outcome is lost
}

/**
 * GET_LTXID_OUTCOME_WRAPPER wraps DBMS_APP_CONT.GET_LTXID_OUTCOME
 */
private static final String GET_LTXID_OUTCOME_WRAPPER =
 "DECLARE PROCEDURE GET_LTXID_OUTCOME_WRAPPER(" +
 " ltxid IN RAW," +
 " is_committed OUT NUMBER) " +
 "IS " +
 " call_completed BOOLEAN; " +
 " committed BOOLEAN; " +
 "BEGIN " +
 " DBMS_APP_CONT.GET_LTXID_OUTCOME(ltxid, committed, call_completed); " +
 " if committed then is_committed := 1; else is_committed := 0; end if;

" +
 "END; " +
 "BEGIN GET_LTXID_OUTCOME_WRAPPER(?,?); END;";

/**
 * getTransactionOutcome returns true if the LTXID committed or false
otherwise.
 * note that this particular version is not considering user call completion
 */
boolean getTransactionOutcome(Connection conn, LogicalTransactionId ltxid)
throws SQLException {
 boolean committed = false;
 CallableStatement cstmt = null;
 try {
 cstmt = conn.prepareCall(GET_LTXID_OUTCOME_WRAPPER);
 cstmt.setObject(1, ltxid); // use this starting in 12.1.0.2
 cstmt.registerOutParameter(2, OracleTypes.BIT);
 cstmt.execute();
 committed = cstmt.getBoolean(2);
 } catch (SQLException sqlexc) {
 throw sqlexc;
 } finally {
 if (cstmt != null)
 cstmt.close();
 }
 return committed;
}

Server-Side Planned Maintenance Command Examples

Note:

• If you are using these commands in scripts, you may find it helpful to include
wait = yes.

• The parameters, -force -failover cause the service to start on other available
instances configured on each service.

• For more details see Managing a Group of Services for Maintenance in Oracle
Real Application Clusters Administration and Deployment Guide.

To stop all instances on a node (node1) with all associated services' configured -
drain_timeout and -stopoption parameters.

srvctl stop instance -db myDB -node node1 -force -failover
 -role primary

To stop one instance (inst1) with all associated services' configured -drain_timeout and -
stopoption parameters

srvctl stop instance -db myDB -instance inst1 -force -failover
 -role primary

Stop all instances with explicit draining parameters that override the parameters configured for
associated services.

srvctl stop instance -db db_name -node node_name
 -stopoption IMMEDIATE -drain_timeout <#> -force -failover

Stop a service with explicit draining parameters.

srvctl stop service -db db_name -service service_name
 -instance instance_name -drain_timeout <#> -stopoption IMMEDIATE
 -force -failover

To stop a service named GOLD on an instance named inst1 (a given instance) with a 5 minute
drain timeout and an IMMEDIATE stop option.

srvctl stop service -db myDB -service GOLD -instance inst1
 -drain_timeout 300 -stopoption IMMEDIATE -force -failover

Stop a Data Guard instance with explicit draining parameters.

srvctl stop instance -db db_name -node node_name
 -stopoption IMMEDIATE -drain_timeout <#> -force -failover
 -role primary

Relocate all services by database, node, or PDB.

srvctl relocate service -database db_unique_name
 -pdb pluggable_database
 {-oldinst old_inst_name [-newinst new_inst_name] |
 -currentnode current_node
 [-targetnode target_node]}
 -drain_timeout timeout -stopoption stop_option -force

srvctl relocate service -database db_unique_name
 -oldinst old_inst_name [-newinst new_inst_name]
 -drain_timeout timeout -stopoption stop_option
 -force

srvctl relocate service -database db_unique_name
 -currentnode current_node [-targetnode target_node]
 -drain_timeout timeout -stopoption stop_option
 -force

To switch over to a Data Guard secondary site with a wait timeout of 60 seconds, using Data
Guard Broker.

SWITCHOVER TO dg_south WAIT 60

To switch over to Data Guard secondary site with a wait timeout from the services, using Data
Guard Broker.

SWITCHOVER TO dg_south WAIT

37
Overview of Oracle Multitenant Best Practices

Oracle Multitenant is Oracle's strategic product for database consolidation.

The benefits of the Oracle Multitenant architecture include:

• Access isolation between individual Pluggable Databases (PDBs) stored in the same
Container Database (CDB)

• Ability to manage many databases with the simplicity of managing just one CDB that
contains many PDBs. By backing up your CDB, updating the CDB software or setting up a
standby CDB for disaster recovery, you are essentially reducing the complexity and steps
by administrating one CDB instead of applying the same administrative steps on many
independent databases. You reduce administrative tasks, steps and errors.

• Sharing of system resources to reduce CAPEX with the flexibility to set resource limits for
things like memory, I/O and on a per PDB level

• Flexibility to operate on an individual PDB, for example relocating a single PDB into
another container and upgrading just that PDB

• Rapid cloning and provisioning

• Tight integration with Oracle RAC

The following table highlights various Oracle Multitenant configuration and operational best
practices.

Table 37-1 Oracle Multitenant configuration and operational best practices

Use Case Best Practices

Pluggable Database (PDB) configuration For all Oracle RDBMS releases 12c Release 2 (12.2) to 21c,
configure the CDB with local undo mode

See Undo Modes in 12.2 Multitenant Databases - Local and
Shared Modes (Doc ID 2169828.1)

37-1

https://support.oracle.com/rs?type=doc&id=2169828.1
https://support.oracle.com/rs?type=doc&id=2169828.1

Table 37-1 (Cont.) Oracle Multitenant configuration and operational best practices

Use Case Best Practices

PDB service management Mandatory MAA best practices for any Oracle databases with
Oracle Clusterware (for example, Oracle RAC and single
instance databases with Oracle Clusterware installed)

1. Never use PDB default services, nor SAVED STATE
(except during relocate operations), nor database
triggers to manage role-based services.

2. Use clusterware-managed distinct services per PDB for
your application service, and leverage that application
service to connect to the database.

3. When defining a clusterware-managed application
service, define which PDB and services will be started
and in which RAC instance and database role.

4. For Data Guard, always use role-based services by
assigning a role to each clusterware-managed service.

If the above practices are applied, you will have predictable
service management during PDB open and Data Guard role
transitions. This will lead to higher application service
availability and avoid application errors.

For single instance databases without MAA-recommended
Oracle clusterware setup, follow these practices:

1. Never use PDB default services.

2. Use distinct services per PDB for your application
service, and leverage that application service to connect
to the database.

3. For non-Data Guard, use only SAVED state to open
PDBs and start up explicit application services OR for
Data Guard, use only AFTER STARTUP database
triggers to programmatically manage which application
services should be started depending on primary, READ
ONLY, or snapshot standby database role.

See Best Practices for Pluggable Database End User and
Application Connection and Open on Database Startup (Doc
ID 2833029.1)

Chapter 37

37-2

https://support.oracle.com/rs?type=doc&id=2833029.1
https://support.oracle.com/rs?type=doc&id=2833029.1
https://support.oracle.com/rs?type=doc&id=2833029.1

Table 37-1 (Cont.) Oracle Multitenant configuration and operational best practices

Use Case Best Practices

Using Data Guard with Oracle Multitenant The following My Oracle Support notes provide operational
best practice recommendations when using Oracle
Multitenant in an Oracle Data Guard configuration.

• Data Guard Impact on Oracle Multitenant Environments
(Doc ID 2049127.1)

• Making Use Deferred PDB Recovery and the
STANDBYS=NONE Feature with Oracle Multitenant
(Doc ID 1916648.1) during use cases: PDB creation,
PDB migration, and PDB cloning

• Reusing the Source Standby Database Files When
Plugging a PDB into the Primary Database of a Data
Guard Configuration (Doc ID 2273829.1) for PDB
migration

• Reusing the Source Standby Database Files When
Plugging a non-CDB as a PDB into the Primary
Database of a Data Guard Configuration (Doc ID
2273304.1) for PDB migration

• Using standby_pdb_source_file_dblink and
standby_pdb_source_file_directory to Maintain Standby
Databases when Performing PDB Remote Clones or
Plugins (Doc ID 2274735.1) for PDB remote clone or
PDB plug-in

• Parameter enabled_pdbs_on_standby and STANDBYS
Option With Data Guard Subset Standby (Doc ID
2417018.1) to support subset standby

Data Guard: PDB switchover and failover use cases Using Data Guard Broker to Migrate a Pluggable Database
to a New Data Guard Configuration Document 2887844.1

PDB Failover in a Data Guard environment: Using Data
Guard Broker to Unplug a Single Failed PDB from a Standby
Database and Plugging into a New Container or Migrate a
Single PDB into a New Container Document 2088201.1

PDB migration The following My Oracle Support notes provide operational
best practices for different types of PDB migration with
minimal downtime:

• Use Zero Downtime Migration if your target is Exadata
platform or cloud. See https://www.oracle.com/database/
technologies/rac/zdm.html

• Step by Step Process of Migrating non-CDBs and PDBs
Using ASM for File Storage (Doc ID 1576755.1)

• Cloning a Pluggable Database from an RMAN Container
Database Backup (Doc ID 2042607.1)

• Using Data Guard Broker to Migrate a Pluggable
Database to a New Data Guard Configuration Document
2887844.1

PDB relocation • Using PDB Relocation to Upgrade an Individual PDB
(Doc ID 2771716.1)

• Using PDB Relocation to Move a Single PDB to Another
CDB Without Upgrade (Doc ID 2771737.1)

PDB resource management The following My Oracle Support note provides operational
use cases for Oracle Multitenant resource management:

How to Control and Monitor the Memory Usage (Both SGA
and PGA) Among the PDBs in Mutitenant Database- 12.2
New Feature (Doc ID 2170772.1)

Chapter 37

37-3

https://support.oracle.com/rs?type=doc&id=2049127.1
https://support.oracle.com/rs?type=doc&id=2049127.1
https://support.oracle.com/rs?type=doc&id=1916648.1
https://support.oracle.com/rs?type=doc&id=1916648.1
https://support.oracle.com/rs?type=doc&id=1916648.1
https://support.oracle.com/rs?type=doc&id=2273829.1
https://support.oracle.com/rs?type=doc&id=2273829.1
https://support.oracle.com/rs?type=doc&id=2273829.1
https://support.oracle.com/rs?type=doc&id=2273304.1
https://support.oracle.com/rs?type=doc&id=2273304.1
https://support.oracle.com/rs?type=doc&id=2273304.1
https://support.oracle.com/rs?type=doc&id=2273304.1
https://support.oracle.com/rs?type=doc&id=2274735.1
https://support.oracle.com/rs?type=doc&id=2274735.1
https://support.oracle.com/rs?type=doc&id=2274735.1
https://support.oracle.com/rs?type=doc&id=2274735.1
https://support.oracle.com/rs?type=doc&id=2417018.1
https://support.oracle.com/rs?type=doc&id=2417018.1
https://support.oracle.com/rs?type=doc&id=2417018.1
https://support.oracle.com/rs?type=doc&id=2887844.1
https://support.oracle.com/rs?type=doc&id=2887844.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://www.oracle.com/database/technologies/rac/zdm.html
https://www.oracle.com/database/technologies/rac/zdm.html
https://support.oracle.com/rs?type=doc&id=1576755.1
https://support.oracle.com/rs?type=doc&id=1576755.1
https://support.oracle.com/rs?type=doc&id=2042607.1
https://support.oracle.com/rs?type=doc&id=2042607.1
https://support.oracle.com/rs?type=doc&id=2887844.1
https://support.oracle.com/rs?type=doc&id=2887844.1
https://support.oracle.com/rs?type=doc&id=2887844.1
https://support.oracle.com/rs?type=doc&id=2771716.1
https://support.oracle.com/rs?type=doc&id=2771716.1
https://support.oracle.com/rs?type=doc&id=2771737.1
https://support.oracle.com/rs?type=doc&id=2771737.1
https://support.oracle.com/rs?type=doc&id=2170772.1
https://support.oracle.com/rs?type=doc&id=2170772.1
https://support.oracle.com/rs?type=doc&id=2170772.1

With Oracle Multitenant MAA solutions, you can achieve administration and system resource
savings while still benefiting from various MAA solutions. The following tables highlight zero
and near-zero downtime and data loss for various unplanned outages and planned
maintenance activities.

Table 37-2 Unplanned Outages

Unplanned Outages Key Features for Solution RTO RPO

Recoverable node or instance
failures

Real Application Cluster
(RAC)

Application Continuity (AC)

Seconds Zero

Database, cluster, and site
failures

Active Data Guard fast-start
failover

<2 Minutes Zero or Seconds

Data corruptions Active Data Guard that
includes auto block repair of
physical corruptions

Zero Zero

PDB unrecoverable failure or
"sick" PDB

PDB failover using Data
Guard migrate command

Another target CDB on the
same cluster is required

See PDB Failover in a Data
Guard environment: Using
Data Guard Broker to Unplug
a Single Failed PDB from a
Standby Database and
Plugging into a New
Container or Migrate a Single
PDB into a New Container
(Doc ID 2088201.1)

<2 Minutes Zero or Seconds

PDB failover to active replica Option 1: Failover entire CDB
with Primary and Standby
CDB Data Guard architecture

Option 2: Create PDB replica
with Oracle GoldenGate.
Perform PDB active failover
using PDB replica in a
different CDB.

Use Global Data Services
and practices from
Application Checklist for
Continuous Service for MAA
Solutions help with the
application failover

Potentially Zero Zero or Seconds

Table 37-3 Planned Maintenance

Planned Downtime Solution RTO

Software and hardware updates Real Application Cluster (RAC)

Application Checklist for Continuous
Service for MAA Solutions

Zero

Major database upgrade for entire CDB Active Data Guard DBMS_ROLLING Seconds

Major database upgrade for single PDB
within CDB

PDB Relocate + Upgrade

See Using PDB Relocation to Upgrade
an Individual PDB (Doc ID 2771716.1)

Minutes

Chapter 37

37-4

https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://support.oracle.com/rs?type=doc&id=2771716.1
https://support.oracle.com/rs?type=doc&id=2771716.1

Table 37-3 (Cont.) Planned Maintenance

Planned Downtime Solution RTO

Migration to remote CDB PDB Relocate

See Using PDB Relocation to Move a
Single PDB to Another CDB Without
Upgrade (Doc ID 2771737.1)

Minutes

Migration to remote CDB (logical
migration)

Data Pump and Oracle GoldenGate or
Zero Downtime Migration

Potentially Zero

Chapter 37

37-5

https://support.oracle.com/rs?type=doc&id=2771737.1
https://support.oracle.com/rs?type=doc&id=2771737.1
https://support.oracle.com/rs?type=doc&id=2771737.1

38
PDB Switchover and Failover in a Multitenant
Configuration

The use cases documented here demonstrate how to set up single pluggable database (PDB)
failover and switchover for an Oracle Data Guard configuration with a container database
(CDB) with many PDBs.

With Oracle Multitenant and the ability to consolidate multiple pluggable databases (PDBs) in a
container database (CDB), you can manage many databases that have similar SLAs and
planned maintenance requirements with fewer system resources, and more importantly with
less operational investment. Leveraging Oracle Multitenant and its CDBs/PDBs technologies
with Oracle’s resource management, it is an effective means to reduce overall hardware and
operational costs.

Planning and sizing are key prerequisites in determining which databases to consolidate in the
same CDB. For mission critical databases that require HA and DR protection and minimal
downtime for planned maintenance, it’s important that you

• Size and leverage resource management to ensure sufficient resources for each PDB to
perform within response and throughput expectations

• Target PDB databases that have the same planned maintenance requirements and
schedule

• Target PDB databases that can all fail over to same CDB standby in case of unplanned
outages such as CDB, cluster, or site failures

Note that Data Guard failover and switchover times can increase as you add more PDBs and
their associated application services. A good rule is to have fewer than 25 PDBs per CDB for
mission critical “Gold” CDBs with Data Guard if you want to reduce Data Guard switchover and
failover timings.

Separating mission critical databases and dev/test databases into different CDBs is important.
For example a mission critical “Gold” CDB with a standby may have only 5 PDBs with identical
HA/DR requirements and may be sized to have ample system resource headroom while an
important CDB with standby can contain 100 PDBs for dev, UAT and application testing
purposes and may set up some level of over subscription to reduce costs. Refer to Overview of
Oracle Multitenant Best Practices for more information on Multitenant MAA and Multitenant
best practices.

This use case provides an overview and step by step instructions for the exception cases
where a complete CDB Data Guard switchover and failover operation is not possible. With
PDB failover and switchover steps, you can isolate the Data Guard role transition to one PDB
to achieve Recovery Time Objective (RTO) of less 5 minutes and zero or near zero Recovery
Point Objective (RPO or data loss).

Starting with Oracle RDBMS 19c (19.15) you can use Data Guard broker command line
interface (DGMGRL) to migrate PDBs from one Data Guard configuration to another. Using
broker, you can initiate PDB disaster recovery (DR) and switchover operations in isolation
without impacting other PDBs in the same CDB.

The following primary use cases are described below for Data Guard broker migration:

38-1

• PDB switchover use case - Planned maintenance DR validation which invokes a PDB
switchover operation without impacting existing PDBs in a Data Guard CDB

• PDB Failover use case - Unplanned outage DR which invokes a PDB failover without
impacting existing PDBs in a Data Guard CDB

Note:

To relocate a single PDB when upgrade is not required without impacting other PDBs
in a CDB see Using PDB Relocation to Move a Single PDB to Another CDB Without
Upgrade (Doc ID 2771737.1). To relocate a single PDB requiring upgrade without
impacting other PDBs in a CDB see .

PDB Switchover Use Case
In this PDB switchover or "DR Test” use case, a PDB is migrated from one Oracle Data Guard
protected CDB to another Data Guard protected CDB.

As part of this use case, the files for the PDB on both the primary and standby databases of
the source CDB are used directly in the respective primary and standby databases of the
destination CDB.

The source CDB contains multiple PDBs, but we perform role transition testing on only one
PDB because the others are not able to accept the impact. Before starting the migration, a
second CDB must be created and it must have the same database options as the source CDB.
The destination CDB is also in a Data Guard configuration, but it contains no PDBs at the start.
The two corresponding primary and standby databases share the same storage and no data
file movement is performed.

Prerequisites
Make sure your environment meets these prerequisites for the use case.

The Oracle Data Guard broker CLI (DGMGRL) supports maintaining configurations with a
single physical standby database.

Using the method described here, for the PDB being migrated (the source), the data files of
both the primary and the standby databases physically remain in their existing directory
structure at the source and are consumed by the destination CDB and its standby database.

• Oracle patches/versions required

– Oracle RDBMS 19c (19.15) or later

– Patch 33358233 installed on the source and destination CDB RDBMS Oracle Homes
to provide the broker functionality to manage the switchover process. You don't need to
apply the patch on Oracle RDBMS 19c (19.18) and later; it is included.

– Patch 34904997 installed on the source and destination CDB RDBMS Oracle Homes
to provide the functionality to migrate the PDB back to the original configuration after
performing the PDB Failover Use Case.

• Configuration

– DB_CREATE_FILE_DEST = ASM_Disk_Group
– DB_FILE_NAME_CONVERT=””

Chapter 38
PDB Switchover Use Case

38-2

https://support.oracle.com/rs?type=doc&id=2771737.1
https://support.oracle.com/rs?type=doc&id=2771737.1

– STANDBY_FILE_MANAGEMENT=AUTO
– The source and destination standby CDBs must run on the same cluster

– The source and destination primary CDBs should run from the same Oracle Home,
and the source and destination standby CDBs should run from the same Oracle Home

– The source and destination primary CDBs must run on the same host

– The source and destination primary databases must use the same ASM disk group,
and the source and destination standby databases must use the same ASM disk group

• You must have access to the following

– Password for the destination CDB sysdba user

– Password for the standby site ASM sysasm user (to manage aliases)

– Password for the destination CDB Transparent Data Encryption (TDE) keystore if TDE
is enabled

Note:

PDB snapshot clones and PDB snapshot clone parents are not supported for
migration or failover.
For destination primary databases with multiple physical standby databases you must
either use the manual steps in Reusing the Source Standby Database Files When
Plugging a PDB into the Primary Database of a Data Guard Configuration (Doc ID
2273829.1), or use the ENABLED_PDBS_ON_STANDBY initialization parameter in the
standby databases, to limit which standby will be managed by this process. See
Creating a Physical Standby of a CDB in Oracle Data Guard Concepts and
Administration for information about using ENABLED_PDBS_ON_STANDBY.

Existing ASM aliases for the source PDB migrated are managed by the broker during
the migrate process. ASM only allows one alias per file, so existing aliases pointing to
a different location must be removed and new ones in the correct location created.

Configuring PDB Switchover
You configure the "DR test" PDB switchover use case in the following steps.

The sample commands included in the steps below use the following CDB and PDB names.

• CDB100 (source CDB)

– Contains PDB001, PDB002, PDB003; PDB001 will be configured for switchover

• CDB100_STBY (source standby CDB)

• CDB200 (destination CDB)

• CDB200_STBY (destination standby CDB)

Step 1: Extract PDB Clusterware managed services on the source database

Determine any application and end user services created for the source PDB that have been
added to CRS.

Because there are certain service attributes such as database role not stored in the database,
the detail attributes should be retrieved from CRS using SRVCTL CONFIG SERVICE.

Chapter 38
PDB Switchover Use Case

38-3

https://support.oracle.com/rs?type=doc&id=2273829.1
https://support.oracle.com/rs?type=doc&id=2273829.1
https://support.oracle.com/rs?type=doc&id=2273829.1

1. Retrieve the service names from the primary PDB (PDB001 in our example).

PRIMARY_HOST $ sqlplus sys@cdb100 as sysdba
SQL> alter session set container=pdb001;
SQL> select name from dba_services;

2. For each service name returned, retrieve the configuration including DATABASE_ROLE.

PRIMARY_HOST $ srvctl config service -db cdb100 -s SERVICE_NAME

Step 2: Create an empty target database

Create an empty CDB (CDB200 in our example) on the same cluster as the source CDB
(CDB100) which will be the destination for the PDB.

Allocate resources for this CDB to support the use of the PDB for the duration of the testing.

Step 3: Create a target standby database

Enable Oracle Data Guard on the target CDB to create a standby database (CDB200_STBY).

The standby database must reside on the same cluster as the source standby database.

The configuration should resemble the image below.

Step 4: Migrate the PDB

Migrate the PDB (PDB001) from the source CDB (CDB100) to the destination CDB (CDB200).

1. Start a connection to the source primary database using Oracle Data Guard broker
command line (DGMGRL).

This session should run on a host that contains instances of both the source primary CDB
and the destination primary CDB. The session should be started with a sysdba user.

Chapter 38
PDB Switchover Use Case

38-4

The broker CLI should be run from the command line on the primary CDB environment and
run while connected to the source primary CDB. If you are using a TNS alias to connect to
the source primary, it should connect to the source primary instance running on the same
host as the broker CLI session.

The host and environment settings when running the broker CLI must have access to
SQL*Net aliases for:

• Destination primary CDB – This alias should connect to the destination primary
instance that is on the same host as the broker CLI session/source primary database
instance to ensure the plug-in operation can access the PDB unplug manifest file that
will be created.

• Destination standby CDB, this can connect to any instance in the standby
environment.

• Standby site ASM instance, this can connect to any instance in the standby
environment.

PRIMARY_HOST1 $ dgmgrl sys@cdb100_prim_inst1 as sysdba

This session should run on a host that contains instances of both the source primary
CDB and the destination primary CDB and connected to a sysdba user. Use specific
host/instance combinations instead of SCAN to ensure connections are made to the
desired instances.

2. Run the DGMGRL MIGRATE PLUGGABLE DATABASE command.

The STANDBY FILES keyword is required.

See Full Example Commands with Output for examples with complete output and
MIGRATE PLUGGABLE DATABASE for additional information about the command line
arguments.

• Sample command example without TDE:

DGMGRL> MIGRATE PLUGGABLE DATABASE PDB001 TO CONTAINER CDB200
 USING ‘/tmp/PDB001.xml’ CONNECT AS sys/password@cdb200_inst1
 STANDBY FILES sys/standby_asm_sys_password@standby_asm_inst1
 SOURCE STANDBY CDB100_STBY DESTINATION STANDBY CDB200_STBY ;

• Sample command example with TDE

DGMGRL> MIGRATE PLUGGABLE DATABASE PDB001 TO CONTAINER CDB200
 USING ‘/tmp/pdb001.xml’ CONNECT AS sys/password@cdb200_inst1
 SECRET "some_value" KEYSTORE IDENTIFIED BY
"destination_TDE_keystore_passwd"
 STANDBY FILES sys/standby_asm_sys_password@standby_asm_inst1
 SOURCE STANDBY cdb100_stby DESTINATION STANDBY cdb200_stby;

When the command is executed, it:

1. Connects to the destination database and ASM instances to ensure credentials and
connect strings are correct

2. Performs a variety of prechecks - If any precheck fails, the command stops processing and
returns control to the user, an error is returned, and no changes are made on the target
CDB

Chapter 38
PDB Switchover Use Case

38-5

3. Creates a flashback guaranteed restore point in the destination standby CDB - This
requires a short stop and start of redo apply

4. Closes the PDB on the source primary

5. Unplugs the PDB on the source primary - If TDE is in use, the keys are included in the
manifest file generated as part of the unplug operation

6. Drops the PDB on the source primary database with the KEEP DATAFILES clause, ensuring
that the source files are not dropped

7. Waits for the drop PDB redo to be applied to the source standby database - It must wait
because the files are still owned by the source standby database until the drop redo is
applied

The command waits a maximum of TIMEOUT minutes (default 10). If the redo hasn't been
applied by then the command fails and you must manually complete the process.

8. Manages the ASM aliases for the PDB files at the standby, removing any existing aliases
and creating new aliases as needed - If the standby files already exist in the correct
location, all aliases for the standby copy of the PDB are removed

9. Plugs in the PDB into the destination primary CDB - If TDE is in use, the keys are imported
into the destination primary keystore as part of the plug-in

10. Ships and applies redo for the plug-in operation to the destination CDB, which uses any
created aliases (if necessary) to access the files and incorporate them into the standby
database

11. Validates that the standby files are added to the destination standby using redo apply

12. Opens the PDB in the destination primary database

13. Stops redo apply

14. Drops the flashback guaranteed restore point from the destination standby database

15. If TDE is enabled, redo apply remains stopped, if TDE is not enabled, redo apply is
restarted

Step 5: Post Migration - Optional TDE Configuration Step and Restart Apply

If TDE is in use, redo apply will have been stopped by the broker MIGRATE PLUGGABLE
DATABASE operation on the destination standby (CDB200_STBY) to allow the new TDE keys to
be managed. Copy the keystore for the destination primary (CDB200) to the destination
standby keystore and start redo apply.

SOURCE_HOST $ scp DESTINATION_PRIMARY_WALLET_LOCATION/*>
 DESTINATION_HOST:DESTINATION_STANDBY_WALLET_LOCATION/

$ dgmgrl sys/password@CDB200 as sysdba
DGMGRL> edit database cdb200_stby set state=’APPLY-ON’;

Step 6: Post Migration - Enable Services

Add any application services for the PDB to Cluster Ready Services (CRS), associating them
with the PDB and correct database role in the destination CDB, and remove the corresponding
service from the source CDB.

1. For each service on both the primary and standby environments, run the following:

PRIMARY_HOST $ srvctl add service -db cdb200 -s SERVICE_NAME
 -pdb pdb001 -role [PRIMARY|PHYSICAL_STANDBY]….

Chapter 38
PDB Switchover Use Case

38-6

STANDBY_HOST $ srvctl add service -db cdb200_stby -s SERVICE_NAME
 -pdb pdb001 -role [PRIMARY|PHYSICAL_STANDBY]….

PRIMARY_HOST $ srvctl remove service -db cdb100 -s SERVICE_NAME
STANDBY_HOST $ srvctl remove service -db cdb100_stby -s SERVICE_NAME

2. Start the required services for the appropriate database role.

a. Start each PRIMARY role database service

PRIMARY_HOST $ srvctl start service -db cdb200 -s SERVICE_NAME

b. Start each PHYSICAL_STANDBY role database service:

STANDBY_HOST $ srvctl start service -db cdb200_stby -s SERVICE_NAME

Step 7: Perform PDB role transition testing

After completing the migration, you can now perform required Oracle Data Guard role
transitions or DR test with the PDB in destination CDB (CDB200). No other PDBs in the source
CDB (CDB100) are impacted.

In addition, you continue to maintain the Data Guard benefits for both the source and
destination CDB, such as DR readiness, Automatic Block Media Recovery for data corruptions,
Fast-Start Failover to bound recovery time, Lost Write detection for logical corruptions,
offloading reads to the standby to reduce scale and reduce impact of the primary, and so on.
etc.

• Connect to the destination CDB using DGMGRL and perform the switchover.

$ dgmgrl sys@cdb200 as sysdba
DGMGRL> switchover to CDB200_STBY;

You can continue performing your DR testing for the PDB.

Once the DR testing for the PDB is complete, you can switch back and subsequently migrate
the PDB back to the original source CDB.

• Connect to the destination CDB (CDB200) using DGMGRL and perform the switchback
operation.

$ dgmgrl sys@cdb200 as sysdba
DGMGRL> switchover to CDB200;

Step 8: Return the PDB to the original CDB

After migration and role transition testing, switch back to the original configuration for this CDB
and migrate the PDB back to the original Data Guard configuration, again automatically
maintaining the standby database files. Data Guard broker migration handles any aliases that
need to be dropped or created as part of the migration process.

See Full Example Commands with Output for examples with complete output.

• Start a connection to the source primary using Data Guard Broker command line (DGMGRL)

$ dgmgrl
DGMGRL> connect sys/@cdb200_inst1 as sysdba

Chapter 38
PDB Switchover Use Case

38-7

– Command without TDE

DGMGRL> MIGRATE PLUGGABLE DATABASE PDB001 TO CONTAINER CDB100
 USING ‘/tmp/PDB001_back.xml’ CONNECT AS sys/password@cdb100_inst1
 STANDBY FILES sys/standby_asm_sys_password@standby_asm_inst
 SOURCE STANDBY CDB200_STBY DESTINATION STANDBY CDB100_STBY ;

– Command with TDE

DGMGRL> MIGRATE PLUGGABLE DATABASE PDB001 TO CONTAINER CDB100
 USING ‘/tmp/PDB001_back.xml’ CONNECT AS sys/password@cdb100_inst1
 SECRET "some_value" KEYSTORE
 IDENTIFIED BY "destination_TDE_keystore_passwd"
 STANDBY FILES sys/standby_asm_sys_password@standby_asm_inst
 SOURCE STANDBY CDB200_STBY DESTINATION STANDBY CDB100_STBY ;

Step 9: Post Migration - Enable Services

Add any application services for the PDB to Cluster Ready Services (CRS), associating them
with the PDB and correct database role in the destination CDB (CDB100), and remove the
corresponding service from the source CDB (CDB200).

• For each service on both the primary and standby environments, run the following:

PRIMARY_HOST $ srvctl add service -db cdb100 -s SERVICE_NAME
 -pdb pdb001 -role [PRIMARY|PHYSICAL_STANDBY]….
STANDBY_HOST $ srvctl add service -db cdb100_stby -s SERVICE_NAME
 -pdb pdb001 -role [PRIMARY|PHYSICAL_STANDBY]….

<PRIMARY_HOST>PRIMARY_HOST $ srvctl remove service -db cdb200 -s
SERVICE_NAME
STANDBY_HOST $ srvctl remove service -db cdb200_stby -s SERVICE_NAME

• Start the required services for the appropriate database role.

1. Start each PRIMARY role database service.

PRIMARY_HOST $ srvctl start service -db cdb100 -s SERVICE_NAME

2. Start each PHYSICAL_STANDBY role database service.

STANDBY_HOST $ srvctl start service -db cdb100_stby -s SERVICE_NAME

PDB Failover Use Case
This is a very rare use case since a real disaster that encompasses CDB, cluster, or site failure
should always leverage a complete CDB Data Guard failover operation to bound downtime,
reduce potential data loss, and reduce administrative steps.

Even with widespread logical or data corruptions or inexplicable database hangs, it's more
efficient to issue a CDB Data Guard role transition operation because the source environment
may be suspect and root cause analysis may take a long time.

When does a PDB failover operation make sense? PDB failover may be viable if the
application is getting fatal errors such as data integrity or corruption errors, or simply is not
performing well (not due to system resources). If the source CDB and its corresponding PDBs

Chapter 38
PDB Failover Use Case

38-8

are still running well, and the standby did not receive any errors for the target sick PDB, then
you can fail over just the target sick PDB from the standby without impacting any other PDBs in
the source primary CDB.

The process below describes how to set up a PDB failover of a sick PDB that migrates the
standby’s healthy PDB from the source CDB standby (CDB100_STBY) to an empty destination
CDB (CDB200). Before starting the migration, the destination CDB must be created and it must
have the same database options as the source standby CDB. The destination CDB will contain
no PDBs. The source and destination CDBs share the same storage and no data file
movement is performed.

Prerequisites
Make sure your environment meets these prerequisites for the use case.

In addition to the prerequisites listed in the PDB switchover use case, above, the following
prerequisites exist for failing over.

• Oracle recommends that you shut down the services on both the primary and the standby
that are accessing the PDB before starting the migration process.

If the PDB is not closed on the primary before running the DGMGRL MIGRATE PLUGGABLE
DATABASE command, an error is returned stating that you will incur data loss. Closing the
PDB on the primary resolves this issue. All existing connections to the PDB are terminated
as part of the migration.

Assuming a destination CDB is already in place and patched correctly on the standby site, the
entire process of moving the PDB can be completed in less than 15 minutes.

Additional Considerations
The following steps assume the source CDB database (either primary for migration or standby
for failover) and the destination CDB database have access to the same storage, so copying
data files is not required.

• Oracle Active Data Guard is required for the source CDB standby for failover operations.

• Create an empty CDB to be the destination for the PDB on the same cluster as the source
CDB.

• Ensure that the TEMP file in the PDB has already been created in the source CDB standby
before performing the migration.

• If the destination CDB is a later Oracle release the PDB will be plugged in but left closed to
allow for manual upgrade as a post-migration task.

• After processing is completed, you may need to clean up leftover database files from the
source databases.

• The plugin operation at the destination CDB is performed with STANDBYS=NONE, so you will
need to manually enable recovery at any standby databases upon completion of the
migration. See Making Use Deferred PDB Recovery and the STANDBYS=NONE Feature
with Oracle Multitenant (Doc ID 1916648.1) for steps to enable recovery of a PDB.

Configuring PDB Failover
You configure the DR PDB failover use case in the following steps.

In this use case, the example topology has source primary CDB100 with 3 PDBs (PDB001,
PDB002, PDB003). CDB100 also has a Data Guard physical standby (CDB100_STBY).

Chapter 38
PDB Failover Use Case

38-9

https://support.oracle.com/rs?type=doc&id=1916648.1
https://support.oracle.com/rs?type=doc&id=1916648.1

On the same environment as the standby CDB, we will create a new CDB (CDB200) which is a
read-write database that becomes the new host for one of the source PDBs.

Step 1: Extract PDB Clusterware managed services on the source database

Determine any application and end user services created for the source PDB that have been
added to CRS.

Because there are certain service attributes such as database role not stored in the database,
the detail attributes should be retrieved from CRS using SRVCTL CONFIG SERVICE.

1. Retrieve the service names from the primary PDB (PDB002 in our example).

PRIMARY_HOST $ sqlplus sys@cdb100 as sysdba
SQL> alter session set container=pdb002;
SQL> select name from dba_services;

2. For each service name returned, retrieve the configuration including DATABASE_ROLE.

PRIMARY_HOST $ srvctl config service -db cdb100 -s SERVICE_NAME

Step 2: Create an empty target database

Create an empty CDB (CDB200 in our example) on the same cluster as the source standby
CDB (CDB100_STBY) which will be the destination for the PDB (PDB002).

Allocate resources for this CDB to support the use of the PDB while it remains in this CDB.

Step 3: Create an Oracle Data Guard configuration for the empty target database

To allow Data Guard broker to access the new CDB (CDB200), it must be part of a Data Guard
configuration. This configuration can consist of only a primary database.

1. Configure the database for broker.

STANDBY_HOST $ sqlplus sys@cdb200 as sysdba
SQL> alter system set dg_broker_config_file1='+DATAC1/cdb200/
dg_broker_1.dat';
SQL> alter system set dg_broker_config_file2='+DATAC1/cdb200/
dg_broker_2.dat';
SQL> alter system set dg_broker_start=TRUE;

2. Create the configuration and add the database as the primary.

STANDBY_HOST $ dgmgrl
DGMGRL> connect sys@cdb200 as sysdba
DGMGRL> create configuration failover_dest as primary database is cdb200
 connect identifier is 'cdb200';
DGMGRL> enable configuration;

The configuration should resemble the image below.

Chapter 38
PDB Failover Use Case

38-10

In this image, the source primary CDB (CDB100) and all PDBs are running normally. the
source standby CDB (CDB100_STBY) must run in Active Data Guard mode to allow for the
"unplug" operation to succeed without impacting other PDBs. The destination CDB (CDB200)
is currently empty.

Assume that one of the source primary PDBs (PDB002) experiences a failure, as shown in the
image below, which requires a long recovery period, but the failure does not impact the other
PDBs (PDB001 and PDB003), and the standby for the source CDB continues to apply redo
without error.

Chapter 38
PDB Failover Use Case

38-11

This configuration will use files from PDB002 at the standby site (CDB100_STBY) to plug into
the destination CDB (CDB200) to restore read/write application access and then drop the sick
PDB (PDB002) from the source primary CDB (CDB100). This will not be a native unplug
operation because native unplug requires a read/write CDB and in this scenario we're
extracting from the standby.

Step 4: Stop services for the failed PDB

Although not required, stop all services on both the source primary database and any standby
database(s) pertaining to the PDB (PDB002) to be migrated.

The following commands stop all services defined in CRS but does not close the PDB.

SOURCE_PRIMARY $ srvctl stop service -d CDB100 -pdb PDB002
SOURCE_PRIMARY $ srvctl stop service -d CDB100_STBY -pdb PDB002

Step 5: Fail over the PDB from the standby

Fail over the sick PDB (PDB002) from the standby CDB (CDB100_STBY) to the destination
CDB (CDB200).

1. Start a DGMGRL session connecting to the source configuration standby database
(CDB100_STBY).

You must connect to the source standby database as SYSDBA using something similar to
the following:

$ dgmgrl
DGMGRL> connect sys@cdb100_stby_inst1 as sysdba

2. Run the DGMGRL MIGRATE PLUGGABLE DATABASE command to perform the failover.

Chapter 38
PDB Failover Use Case

38-12

Note:

The DGMGRL FAILOVER command has a similar format to the MIGRATE PLUGGABLE
DATABASE command.
Do not use the STANDBY FILES keyword for the failover operation.

If data loss is detected (SCN in the header of the first SYSTEM tablespace standby
data file is less than the corresponding SCN of the file in the primary) and
IMMEDIATE has not been specified, the MIGRATE PLUGGABLE DATABASE command
will fail. The most common reason is that the PDB in the primary CDB is still
open, the PDB on the primary should be closed before attempting a failover.

You must resolve the SCN discrepancy or accept the data loss with the
IMMEDIATE clause.

3. Fail over the PDB

See Full Example Commands with Output for examples with complete output.

The CONNECT alias should connect to the destination primary instance that is on the
same host as the broker CLI session/source standby database instance to ensure that the
plugin operation can access the PDB unplug manifest file that will be created.

Note:

In the following examples, you will be prompted for the SYSDBA password for
the destination CDB (CDB200) when the broker attempts to connect to the
CDB200_INST1 instance.

• For non-TDE enabled environments:

DGMGRL> migrate pluggable database PDB002 to container CDB200
 using '/tmp/PDB002.xml>' connect as sys@”CDB200_INST1”;

• For TDE enabled environments:

DGMGRL> migrate pluggable database PDB002 to container CDB200
 using '/tmp/PDB002.xml>' connect as sys@”CDB200_INST1”
 secret “some_value”
 keystore identified by “destination_keystore_password”
 keyfile ‘/tmp/pdb002_key.dat’
 source keystore identified by “source_keystore_password”;

Note:

For TDE environments, if SECRET, KEYSTORE, KEYFILE, or SOURCE KEYSTORE
are not specified in the command line, the MIGRATE PLUGGABLE DATABASE
command fails.

Once the connection to the destination is established the command will:

1. Perform all necessary validations for the failover operation

Chapter 38
PDB Failover Use Case

38-13

2. If TDE is enabled, export the TDE keys for the PDB from the source standby keystore

3. Stop redo apply on the source standby if it is running

4. Create the manifest on the standby at the location specified in the command using the
DBMS_PDB.DESCRIBE command

5. Disable recovery of the PDB at the source standby

6. If TDE is enabled, import TDE keys into the destination CDB keystore to allow the plugin to
succeed

7. Plugin the PDB in the destination database using the standby's data files (NOCOPY clause)
and with STANDBYS=NONE.

8. Open the PDB in all instances of the destination primary database

9. If TDE is enabled, issue ADMINISTER KEY MANAGEMENT USE KEY in the context of the PDB
to associate the imported key and the PDB.

10. Unplug the PDB from the source primary. If errors occur on unplug messaging is provided
to user to perform cleanup manually

11. If unplug succeeds, drop the PDB from the source primary with the KEEP DATAFILES
clause. This will also drop the PDB in all of the source standby databases.

Step 6: Post Migration - Enable Services

Add any application services for the PDB to Cluster Ready Services (CRS), associating them
with the PDB and correct database role in the destination CDB, and remove the corresponding
service from the source CDB.

1. For each service on both the primary and standby environments, run the following:

DESTINATION_PRIMARY_HOST $ srvctl add service -db cdb200 -s SERVICE_NAME
 -pdb pdb002 -role [PRIMARY|PHYSICAL_STANDBY]….

SOURCE_PRIMARY_HOST $ srvctl remove service -db cdb100 -s SERVICE_NAME
SOURCE_STANDBY_HOST $ srvctl remove service -db cdb100_stby -s SERVICE_NAME

2. Start the required services for the appropriate database role.

Start each PRIMARY role database service

DESTINATION_PRIMARY_HOST $ srvctl start service -db cdb200 -s SERVICE_NAME

Step 7: Back up the PDB

Back up the PDB in the destination CDB (CDB200) to allow for recovery going forward.

DESTINATION_PRIMARY_HOST $ rman
RMAN> connect target sys@cdb200
RMAN> backup pluggable database pdb002;

Step 8: Optionally enable recovery of the PDB

Follow the steps in Making Use Deferred PDB Recovery and the STANDBYS=NONE Feature
with Oracle Multitenant (Doc ID 1916648.1) to enable recovery of the PDB at any standby
databases to establish availability and disaster recovery requirements.

Step 9: Optionally to Migrate Back

Chapter 38
PDB Failover Use Case

38-14

https://support.oracle.com/rs?type=doc&id=1916648.1
https://support.oracle.com/rs?type=doc&id=1916648.1

See the migration steps in Configuring PDB Switchover.

Resolving Errors
For cases where the plugin to the destination primary CDB succeeds but there are issues such
as file not found at the destination standby, you can use the GRP created on the destination
CDB standby database to help in resolution.

If the broker detects an error at the standby it ends execution without removing the GRP, it can
be used to help resolve errors. The GRP name is displayed in the output from the CLI
command execution.

Before using this method, ensure that all patches from the prerequisites section have been
applied.

1. Turn off redo apply in Data Guard Broker so it does not automatically start

DGMGRL> edit database CDB200_STBY set state=’APPLY-OFF’;
2. Restart the destination CDB standby in mount mode, ensuring in RAC environments only

one instance is running.

• For Oracle RAC
$ srvctl stop database –d cdb200_stby –o immediate
$ srvctl start instance –d cdb200_stby –i cdb200s1 –o mount

• For SIDB
SQL> shutdown immediate
SQL> startup mount

3. Connect to the PDB in the destination CDB standby database and disable recovery of the
PDB.

SQL> alter session set container=pdb001;
SQL> alter pluggable database disable recovery;

4. Connect to the CDB$root of the destination CDB standby database and flashback the
standby database.
SQL> alter session set container=cdb$root;
SQL> flashback database to restore point <GRP from execution>;

5. Repair any issues that caused redo apply to fail (e.g. missing ASM aliases).

6. Staying in mount mode on the CDB standby, start redo apply.

SQL> recover managed standby database disconnect;
Redo apply will now start applying all redo from the GRP forward, including rescanning for
all the files for the newly plugged in PDB. The flashback GRP rolls back the destination
CDB standby to the point where the PDB is unknown to the standby, so the disabling of
recovery for the PDB is backed out as well.

Steps 1-6 can be repeated as many times as is required until all files are added to the standby
and additional redo is being applied at which point you would:

1. Stop recovery

DGMGRL> edit database CDB200_STBY set state='APPLY-OFF';
2. Connect to the CDB$root of the destination CDB standby database and drop the GRP from

the destination standby database:

Chapter 38
Resolving Errors

38-15

SQL> drop restore point <GRP from execution>;
3. Restart redo apply

DGMGRL> edit database CDB200_STBY set state=’APPLY-ON’;
If you continue to have issues and require that your CDB standby database maintain protection
of additional PDBs in the standby during problem resolution:

• Disable recovery of the PDB as noted above

• Restart redo apply so that the other PDBs in the CDB standby are protected

• Follow the Enable Recovery steps in Making Use Deferred PDB Recovery and the
STANDBYS=NONE Feature with Oracle Multitenant (Doc ID 1916648.1) to enable
recovery of the failed PDB.

• Drop the GRP from the destination CDB standby.

During testing if there are repetitive errors on the standby that cannot be resolved:

1. Enable PDB operation debugging for redo apply on the standby.

SQL> alter system set "_pluggable_database_debug"=256 comment=’set to help
debug PDB plugin issues for PDB100, reset when done’ scope=both;

2. Follow the steps above to flashback the destination CDB standby database.

3. Restart redo apply.

After the new failure, gather the redo apply trace files from the standby host that was running
redo apply (..../trace/<SID>_pr*.trc) and open a bug.

Once debugging is done:

1. Reset the parameter to turn off debugging.

SQL> alter system reset “_pluggable_database_debug” scope=spfile;
2. Bounce the CDB standby database.

Reference
Note that the following examples may generate different output as part of the DGMGRL MIGRATE
command than you will see while executing the command, based on the different states of
PDBs and items found by DGMGRL running prechecks in your environment. In addition, Oracle
does not ship message files with bug fixes, so instead of displaying full messages you may
receive something similar to the following:

Message 17241 not found; product=rdbms; facility=DGM
This does not mean it's an error or a problem, it means that the text we want to display is
missing from the message file. All messages are displayed in their entirety in the first release
containing all of the fixes.

Full Example Commands with Output
The following are examples of the commands with output.

Example 38-1 Migrate without TDE

DGMGRL> MIGRATE PLUGGABLE DATABASE PDB001 TO CONTAINER CDB200
 USING ‘/tmp/PDB001.xml’ CONNECT AS sys/password@cdb200_inst1

Chapter 38
Reference

38-16

https://support.oracle.com/rs?type=doc&id=1916648.1
https://support.oracle.com/rs?type=doc&id=1916648.1

 STANDBY FILES sys/standby_asm_sys_passwd@standby_asm_inst1
 SOURCE STANDBY CDB100_STBY DESTINATION STANDBY CDB200_STBY ;

Beginning migration of pluggable database PDB001.
Source multitenant container database is CDB100.
Destination multitenant container database is CDB200.
Connecting to "+ASM1".
Connected as SYSASM.
Stopping Redo Apply services on multitenant container database cdb200_stby.
The guaranteed restore point "<GRP name>" was created for multitenant
container database "cdb2001_stby".
Restarting redo apply services on multitenant container database cdb200_stby.
Closing pluggable database PDB001 on all instances of multitenant container
database CDB100.
Unplugging pluggable database PDB001 from multitenant container database
cdb100.
Pluggable database description will be written to /tmp/pdb001.xml
Dropping pluggable database PDB001 from multitenant container database CDB100.
Waiting for the pluggable database PDB001 to be dropped from standby
multitenant container database cdb100_stby.
Creating pluggable database PDB100 on multitenant container database CDB200.
Checking whether standby multitenant container database cdb200_stby has added
all data files for pluggable database PDB001.
Opening pluggable database PDB001 on all instances of multitenant container
database CDB200.
The guaranteed restore point "<GRP_name>" was dropped for multitenant
container database "cdb200_stby".
Migration of pluggable database PDB001 completed.

Succeeded.

Example 38-2 Migrate with TDE

DGMGRL> MIGRATE PLUGGABLE DATABASE PDB001 TO CONTAINER CDB200 USING ‘/tmp/
pdb001.xml’
 CONNECT AS sys/password@cdb200_inst1 SECRET "some_value"
 KEYSTORE IDENTIFIED BY "destination_TDE_keystore_passwd"
 STANDBY FILES sys/standby_ASM_sys_passwd@standby_asm_inst1
 SOURCE STANDBY cdb100_stby DESTINATION STANDBY cdb200_stby;

Master keys of the pluggable database PDB001 to need to be migrated.
Keystore of pluggable database PDB001 is open.
Beginning migration of pluggable database PDB001.
Source multitenant container database is cdb100.
Destination multitenant container database is cdb200.
Connecting to "+ASM1".
Connected as SYSASM.
Stopping Redo Apply services on multitenant container database cdb200_stby.
The guaranteed restore point "..." was created for multitenant container
database "cdb200_stby".
Restarting redo apply services on multitenant container database cdb200_stby.
Closing pluggable database PDB001 on all instances of multitenant container
database cdb100.
Unplugging pluggable database PDB001 from multitenant container database
cdb100.

Chapter 38
Reference

38-17

Pluggable database description will be written to /tmp/pdb001.xml
Dropping pluggable database PDBT001 from multitenant container database
cdb100.
Waiting for the pluggable database PDB001 to be dropped from standby
multitenant container
database cdb100_stby.
Creating pluggable database PDB1001 on multitenant container database cdb200.
Checking whether standby multitenant container database cdb200_stby has added
all data files for pluggable database PDB001.
Stopping Redo Apply services on multitenant container database cdb200_stby.
Opening pluggable database PDB001 on all instances of multitenant container
database cdb400.
The guaranteed restore point "..." was dropped for multitenant container
database "cdb200_stby".

Please complete the following steps to finish the operation:
1. Copy keystore located in <cdb200 primary keystore location> for migration
destination primary database to <cdb200 standby keystore location> for
migration destination standby database.
2. Start DGMGRL, connect to multitenant container database cdb200_stby, and
issue command "EDIT DATABASE cdb200_stby SET STATE=APPLY-ON".
3. If the clusterware is configured on multitenant container databases cdb200
or cdb200_stby, add all non-default services for the migrated pluggable
database in cluster ready services.
Migration of pluggable database PDB001 completed.

Succeeded.

Example 38-3 Failover without TDE

DGMGRL> migrate pluggable database PDB002 immediate to container CDB200
 using '/tmp/<pdb002.xml>';
Username: USERNAME@cdb200
Password:
Connected to "cdb200"
Connected as SYSDBA.

Beginning migration of pluggable database pdb002.
Source multitenant container database is cdb100_stby.
Destination multitenant container database is cdb200.

Connected to "cdb100"
Closing pluggable database pdb002 on all instances of multitenant container
database cdb100.
Continuing with migration of pluggable database pdb002 to multitenant
container database cdb200.
Stopping Redo Apply services on source multitenant container database
cdb100_stby.
Succeeded.
Pluggable database description will be written to /tmp/pdb002.xml.
Closing pluggable database pdb002 on all instances of multitenant container
database cdb100_stby.
Disabling media recovery for pluggable database pdb002.
Restarting redo apply services on source multitenant container database
cdb100_stby.

Chapter 38
Reference

38-18

Succeeded.
Creating pluggable database pdb002 on multitenant container database cdb200.
Opening pluggable database pdb002 on all instances of multitenant container
database cdb200.
Unplugging pluggable database pdb002 from multitenant container database
cdb100.
Pluggable database description will be written to /tmp/pdb002_temp.xml.
Dropping pluggable database pdb002 from multitenant container database cdb100.
Unresolved plug in violations found while migrating pluggable database pdb002
to multitenant container database cdb200.
Please examine the PDB_PLUG_IN_VIOLATIONS view to see the violations that
need to be resolved.
Migration of pluggable database pdb002 completed.
Succeeded.

Example 38-4 Filover with TDE

NOTE: ORA-46655 errors in the output can be ignored.

DGMGRL> migrate pluggable database PDB002 to container CDB200
 using '/tmp/PDB002.xml>' connect as sys@”CDB200” secret “some_value”
 keystore identified by “destination_keystore_password” keyfile ‘/tmp/
pdb002_key.dat’
 source keystore identified by “source_keystore_password”;
Connected to "cdb200"
Connected as SYSDBA.
Master keys of the pluggable database PDB002 need to be migrated.
Keystore of pluggable database PDB002 is open.

Beginning migration of pluggable database PDB002.
Source multitenant container database is adg.
Destination multitenant container database is cdb200.

Connected to "cdb1001"
Exporting master keys of pluggable database PDB002.
Continuing with migration of pluggable database PDB002 to multitenant
container database cdb200.
Stopping Redo Apply services on multitenant container database adg.
Pluggable database description will be written to /tmp/PDB002.xml.
Closing pluggable database PDB002 on all instances of multitenant container
database adg.
Disabling media recovery for pluggable database PDB002.
Restarting redo apply services on multitenant container database adg.
Unplugging pluggable database PDB002 from multitenant container database
cdb100.
Pluggable database description will be written to /tmp/ora_tfilSxnmva.xml.
Dropping pluggable database PDB002 from multitenant container database cdb100.
Importing master keys of pluggable database PDB002 to multitenant container
database cdb200.
Creating pluggable database PDB002 on multitenant container database cdb200.
Opening pluggable database PDB002 on all instances of multitenant container
database cdb200.
ORA-46655: no valid keys in the file from which keys are to be imported

Closing pluggable database PDB002 on all instances of multitenant container
database cdb200.

Chapter 38
Reference

38-19

Opening pluggable database PDB002 on all instances of multitenant container
database cdb200.

Please complete the following steps to finish the operation:
If the Oracle Clusterware is configured on multitenant container database
CDB200, add all non-default services for the migted pluggable database in
Cluster Ready Services.

Migration of pluggable database PDB002 completed.
Succeeded.

Keyword Definitions
The DGMGRL MIGRATE command keywords are explained below.

Syntax

DGMGRL> MIGRATE PLUGGABLE DATABASE pdb-name
TO CONTAINER dest-cdb-name
USING XML-description-file
CONNECT AS { /@dest-cdb-connect-identifer |
 dest-cdb-user/dest-cdb-password@dest-cdb-connect-identifier}
[SECRET “secret” KEYSTORE IDENTIFIED BY (EXTERNAL STORE | wallet-password) ;]
STANDBY FILES { /@asm-instance-connect-identifer |
 sysasm-user/sysasm-password@asm-instance-connect-identifier}
SOURCE STANDBY source-standby-cdb-name
DESTINATION STANDBY dest-standby-cdb-name
[TIMEOUT timeout]

These are the keyword definitions used on the PDB migrate command

• pdb-name - The name of the PDB to be migrated.

• dest-cdb-name - The database unique name of the CDB to receive the PDB to be
migrated.

• XML-description-file - An XML file that contains the description of the PDB to be
migrated. This file is automatically created by the SQL statements executed by the
MIGRATE PLUGGABLE DATABASE command and the location of the file must be directly
accessible by both the source and destination primary database instances. It cannot exist
prior to command execution.

• dest-cdb-user - The user name of the user that has SYSDBA access to the destination
CDB.

• dest-cdb-password - The password associated with the user name specified for dest-
cdb-user.

• dest-cdb-connect-identifier - An Oracle Net connect identifier used to reach the
destination CDB.

• secret - A word used to encrypt the export file containing the exported encryption keys of
the source PDB. This clause is only required for TDE enabled environments.

• keyfile - A data file that contains the exported encryption keys for the source PDB. This
file is created by SQL statements executed by the MIGRATE PLUGGABLE DATABASE
command in the failover use case and the location of the file must be directly accessible by
the source standby instance and the destination primary instance.

Chapter 38
Reference

38-20

• wallet-password - The password of the destination CDB keystore containing the
encryption keys. This is required if the source PDB was encrypted using a password
keystore in TDE enabled environments.

• asm-instance-connect-identifier - The connect identifier to the ASM instance having
the source standby database file.

• sysasm-user - A user having SYSASM privilege for ASM instance.

• sysasm-password - The password for sysasm-user.

• source-standby-cdb-name - DB_UNIQUE_NAME of the migration source CDB’s standby
database.

• dest-standby-cdb-name - DB_UNIQUE_NAME of the migration destination CDB’s standby
database.

• timeout - The timeout value in seconds when waiting for the destination standby database
picks up the data files during migration. This is optional. The default if the TIMEOUT clause
is omitted is 5 minutes.

Messages
The following is the list of messages possibly produced by the DGMGRL MIGRATE function:

For generic processing

17180 - "Pluggable database %s must be open prior to starting a migration operation."

17217 - "Migration cannot be performed when the source multitenant container database
(%(1)s) is a physical standby running a different version of Oracle than %(2)s."

17235 - "Investigate why the pluggable database %s could not be unplugged."

17236 - "Resolve the issue and then manually unplug and drop the pluggable database from
database %s."

17237 - "Migration of pluggable database %s completed."

17238 - "Migration of pluggable database %s completed with warnings."

17239 - "Failed to migrate pluggable database %s."

17240 - "Media recovery is disabled for pluggable database %(1)s on multitenant container
database %(2)s."

17241 - "Warning: either source or destination multitenant container database does not have
local undo enabled."

17242 - "Migration from pluggable database %s not possible since it is either a snapshot child
or snapshot parent."

17243 - "Pluggable database %s could not be opened because it was migrated to a database
running a higher Oracle version."

17244 - "Please run the appropriate upgrade procedures prior to opening the pluggable
database."

17245 - "The file location specified (%s) is not accessible."

17246 - "A file name was not specified."

17247 - "An invalid file name (%s) was specified."

Chapter 38
Reference

38-21

17248 - "Retry the command after the lag is resolved or use the IMMEDIATE option to ignore
the data loss."

17249 - "Media recovery is disabled for pluggable database %(1)s on multitenant container
database %(2)s."

17250 - "Warning: either source or destination multitenant container database does not have
local undo enabled."

17251 - "Migration from pluggable database %s not possible since it is either a snapshot child
or snapshot parent."

For addition of TDE support

17413 - "Failed to open keystore of pluggable database %s."

17414 - "Keystore of pluggable database %s is not open."

17415 - "Keystore password of pluggable database %s is required."

17416 - "Keystore password of multitenant container database %s is required."

17427 - "Unable to fetch keystore status of pluggable database %s."

17428 - "Keystore of pluggable database %s is open."

17429 - "Keystore password of pluggable database %s is not correct."

17430 - "Keystore password of multitenant container database %s is not correct."

For standby file support

17510 - "The standby database \"%s\" is not using or connected to an ASM instance."

17511 - "The standby database of the source multitenant container database is using a
different ASM disk group than that of the destination multitenant container database."

17512 - "The initialization parameter DB_FILE_NAME_CONVERT of the migration destination
standby database is not NULL."

17513 - "The initialization parameter STANDBY_FILE_MANAGEMENT of the migration source
standby database is not AUTO."

17514 - "The multitenant container database %s is not a physical standby database."

17515 - "The ASM alias of data file %s is not in the expected location."

17516 - "A multitenant container standby database in the Data Guard Broker configuration
must be specified."

17517 - "Data files cannot be reused when the source multitenant container database is a
standby database."

17518 - "The ASM alias %s refers to an ASM file that is not in the expected location."

17519 - "The guaranteed restore point \"%(1)s\" was created for multitenant container
database \"%(2)s\"."

17520 - "The guaranteed restore point \"%(1)s\" was dropped for multitenant container
database \"%(2)s\"."

17521 - “Connected as SYSASM.”

17522 - "The multitenant container database \"%(1)s\" failed to find the data file \"%(2)s\"."

Chapter 38
Reference

38-22

17523 - "The multitenant container database \"%s\" is in an unstable state."

17524 - "The multitenant container database \"%(1)s\" can be restored using the restore point
\"%(2)s\"."

17525 - "Redo apply stopped or failed on multitenant container database \"%s\"."

17530 - "The standby multitenant container database %(1)s failed to add all data files for
pluggable database %(2)s."

17532 - "Failed to drop the pluggable database %(1)s from standby multitenant container
database %(2)s."

17533 - "The specified file (%s) must not exist."

17534 - "A path was not specified."

17536 - "Unable to fetch keystore mode of pluggable database %s."

17537 - "KEYFILE and SOURCE IDENTIFIED BY clauses are required."

17539 - "Importing master keys of pluggable database %(1)s to multitenant container database
%(2)s."

Sample Oracle Database Net Services Connect Aliases
The following Net Services connect aliases must be accessible to DGMGRL when starting the
broker session. This can be through default tnsnames.ora location or by setting TNS_ADMIN
in the environment before starting DGMGRL.

PDB Switchover

The host names in the following examples reference Oracle Single Client Access Name
(SCAN) host names. There is overlap in the host names between the source and destination
databases as they must reside on the same hosts. In all cases the connect strings should
connect to the cdb$root of the database.

Source primary database

CDB100 =
 (DESCRIPTION =
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)(RETRY_COUNT=3)
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = <source-primary-scan-name>)
 (PORT = <source-primary-listener-port>)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = <source-primary-service-name>)
 (FAILOVER_MODE =
 (TYPE = select)
 (METHOD = basic)
)
)
)

Chapter 38
Reference

38-23

Source primary database local instance

CDB100_INST1 =
 (DESCRIPTION =
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)(RETRY_COUNT=3)
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = <source-primary-scan-name>)
 (PORT = <source-primary-listener-port>)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = <source-primary-cdb$root-service-name>)
 (INSTANCE_NAME = <source-primary-local-instance-name>)
)
)

Destination primary database

CDB200=
 (DESCRIPTION=
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)(RETRY_COUNT=3)
 (ADDRESS=
 (PROTOCOL= TCP)
 (HOST= <source-primary-scan-name>)
 (PORT= <source-primary-listener-port>))
 (CONNECT_DATA=
 (SERVER= DEDICATED)
 (SERVICE_NAME= <destination-primary-cdb$root-service-name>)))

Destination primary local instance

This must connect to an instance on the same host that dgmgrl is being executed

CDB200_INST1=
 (DESCRIPTION=
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)(RETRY_COUNT=3)
 (ADDRESS=
 (PROTOCOL= TCP)
 (HOST= <source-primary-scan-name>)
 (PORT= <source-primary-listener-port>))
 (CONNECT_DATA=
 (SERVER= DEDICATED)
 (SERVICE_NAME= <destination-primary-cdb$root-service-name>)
 (INSTANCE_NAME = <destination-primary-local-instance-name>)
)
)

Source standby database

CDB100_STBY =
 (DESCRIPTION =
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)(RETRY_COUNT=3)
 (ADDRESS =

Chapter 38
Reference

38-24

 (PROTOCOL = TCP)
 (HOST = <source-standby-scan-name)
 (PORT = <source-standby-listener-port>)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = <source-standby-cdb$root-service-name>)
 (FAILOVER_MODE =
 (TYPE = select)
 (METHOD = basic)
)
)
)

Destination standby database

CDB200_STBY =
 (DESCRIPTION =
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)(RETRY_COUNT=3)
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = <source-standby-scan-name>)
 (PORT = <source-standby-listener-port>)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = <destination-standby=cdb$root-service-name>)
 (FAILOVER_MODE =
 (TYPE = select)
 (METHOD = basic)
)
)
)

Standby environment ASM

This must connect to an ASM instance running on the same host as one instance each of the
source standby and destination standby

STANDBY_ASM_INST1=
 (DESCRIPTION=
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)(RETRY_COUNT=3)
 (ADDRESS=
 (PROTOCOL= TCP)
 (HOST = <source-standby-scan-name>)
 (PORT= <source-standby-listener-port>))
 (CONNECT_DATA=
 (SERVER= DEDICATED)
 (SERVICE_NAME= +ASM)
 (INSTANCE_NAME=<ASM_instance_name>)
)
)

Chapter 38
Reference

38-25

PDB Failover

Source primary database

CDB100 =
 (DESCRIPTION =
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)(RETRY_COUNT=3)
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = <source-primary-scan-name>)
 (PORT = <source-primary-listener-port>)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = <source-primary-cdb$root-service-name>)
 (FAILOVER_MODE =
 (TYPE = select)
 (METHOD = basic)
)
)
)

Source standby database

CDB100_STBY =
 (DESCRIPTION =
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)(RETRY_COUNT=3)
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = <source-standby-scan-name>)
 (PORT = <source-standby-listener-port>)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = <source-standby-cdb$root-service-name>)
 (FAILOVER_MODE =
 (TYPE = select)
 (METHOD = basic)
)
)
)

Source standby database local instance

This must connect to an instance on the same host that dgmgrl is being executed

CDB100_STBY_INST1=
 (DESCRIPTION=
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)(RETRY_COUNT=3)
 (ADDRESS=
 (PROTOCOL= TCP)
 (HOST= <source-standby-scan-name>)

Chapter 38
Reference

38-26

 (PORT= <source-standby-listener-port>))
 (CONNECT_DATA=
 (SERVER= DEDICATED)
 (SERVICE_NAME= <source-standby-cdb$root-service-name>)
 (INSTANCE_NAME = <source-standby-local-instance-name>)
)
)

Destination primary database

CDB200=
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL= TCP)
 (HOST= <source-standby-scan-name>)
 (PORT= <source-standby-listener-port>))
 (CONNECT_DATA=
 (SERVER= DEDICATED)
 (SERVICE_NAME= <destination-primary-cdb$root-service-name>)))

Destination primary local instance

This must connect to an instance on the same host that dgmgrl is being executed

CDB200_INST1=
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL= TCP)
 (HOST= <source-standby-scan-name>)
 (PORT= <source-standby-listener-port>))
 (CONNECT_DATA=
 (SERVER= DEDICATED)
 (SERVICE_NAME= <destination-primary-cdb$root-service-name>)
 (INSTANCE_NAME = <destination-primary-local-instance-name>)
)
)

Chapter 38
Reference

38-27

Part IX
Full Site Switch in Oracle Cloud or On-
Premises

• Full Site Switch in Oracle Cloud or On-Premise

39
Full Site Switch in Oracle Cloud or On-
Premise

A complete-site or full site failure results in both the application and database tiers being
unavailable. To maintain availability users must be redirected to a secondary site that hosts a
redundant application tier and a synchronized copy of the production database. MAA best
practice is to use Data Guard to maintain the synchronized copy of the production database.
Upon site failure a WAN traffic manager or load balancer is used to perform a DNS failover
(either manually or automatically) to redirect all users to the application tier at standby site
while a Data Guard failover transitions the standby database to the primary production role.

During normal runtime operations the following occurs:

1. Client requests enter the client tier of the primary site and travel by the WAN traffic
manager.

2. Client requests are sent to the application server tier.

3. Requests are forwarded through the active load balancer to the application servers.

4. Requests are sent into the database server tier.

5. The application requests, if required, are routed to an Oracle RAC instance.

6. Responses are sent back to the application and clients by a similar path.

The following illustrates the possible network routes before site switchover:

Figure 39-1 Sites before switchover

39-1

The following steps describe the effect of a site switchover:

1. The administrator has failed over or switched over the primary database to the secondary
site. This is automatic if you are using Data Guard Fast-Start Failover. Autonomous
Database on Dedicated Hardware supports Data Guard Fast-Start Failover.

2. The administrator starts the middle-tier application servers on the secondary site, if they
are not running. In some cases the same middle-tier application servers can be leveraged
if they do not reside in the failed site.

3. The wide-area traffic manager selection of the secondary site can be automatic for an
entire site failure.

4. The wide-area traffic manager at the secondary site returns the virtual IP address of a load
balancer at the secondary site and clients are directed automatically on the subsequent
reconnect. In this scenario, the site failover is accomplished by an automatic domain name
system (DNS) failover.

The following figure illustrates the network routes after site failover. Client or application
requests enter the secondary site at the client tier and follow the same path on the secondary
site that they followed on the primary site.

Figure 39-2 Sites after switchover

Failover also depends on the client's web browser. Most browser applications cache the DNS
entry for a period. Consequently, sessions in progress during an outage might not fail over until
the cache timeout expires. To resume service to such clients, close the browser and restart it.

Performing Role Transitions Between Regions
Examples below leverage Oracle Public Cloud. However similar steps can be done on-premise
or hybrid cloud scenarios.

Chapter 39
Performing Role Transitions Between Regions

39-2

Failover to Another Region

A failover operation is performed when the primary site becomes unavailable, and it is
commonly an unplanned operation. You can role-transition a standby database to a primary
database when the original primary database fails and there is no possibility of recovering the
primary database in a timely manner. There may or may not be data loss depending upon
whether your primary and target standby databases were consistent at the time of the primary
database failure.

To perform a manual failover in a DR configuration follow these steps:

1. Switchover DNS name.

Perform the required DNS push in the DNS server hosting the names used by the system
or alter the file host resolution in clients to point the front-end address of the system to the
public IP used by load balancer in site2. For scenarios where DNS is used for the external
front-end resolution (OCI DNS, commercial DNS, etc.), appropriate API can be used to
push the change. An example that push this change in an OCI DNS:

The following is an OCI client script that updates a front end DNS entry, such as
ordscsdroci.domainexample.com, to the site 1 load balancer's public IP address (for
example: 111.111.111.123).

oci dns record rrset update
 --config-file /home/opc/scripts/.oci_ordscsdr/config
 --zone-name-or-id "domainexample.com"
 --domain "ordscsdroci.domainexample.com"
 --rtype "A"
 --items
'[{"domain":"ordscsdroci.domainexample.com","rdata":"111.111.111.123","rtyp
e":"A","ttl":60}]'
 --force

2. Failover database.

On Oracle Cloud:

Use Oracle Control Plane and issue a Data Guard switchover or failover operation.

On-Premises:

Use Data Guard broker in secondary database host to perform the failover. As user oracle:

[oracle@drdbwlmp1b ~]$ dgmgrl sys/your_sys_password@secondary_db_unqname
DGMGRL> failover to “secondary_db_unqname”

3. Start the servers in the secondary site.

Restart the secondary application servers.

Switchover

A switchover is a planned operation where an administrator reverts the roles of the two sites.
The roles change from the primary to the standby as well as from standby to primary. This is
known as a manual switchover. To perform a manual switchover follow these steps:

1. Propagate any pending configuration changes.

For non-database files, you can use rsync or Object Storage Service (OSS) to replicate to
your secondary site.

2. Stop servers in the primary site.

Chapter 39
Performing Role Transitions Between Regions

39-3

Use scripts to stop managed servers / mid tiers in primary Site.

3. Switchover DNS name

Perform the required DNS push in the DNS server hosting the names used by the system
or alter the file host resolution in clients to point the front-end address of the system to the
public IP used by load balancer in site 2. For scenarios where DNS is used for the external
front-end resolution (OCI DNS, commercial DNS, etc.), appropriate API can be used to
push the change.

The following example pushes this change in an OCI DNS.

The OCI client script updates the front end DNS entry, for example
ordscsdroci.domainexample.com, to the site1 load balancer's public IP address (for
example: 111.111.111.123).

oci dns record rrset update
 --config-file /home/opc/scripts/.oci_ordscsdr/config
 --zone-name-or-id "domainexample.com"
 --domain "ordscsdroci.domainexample.com"
 --rtype "A"
 --items
'[{"domain":"ordscsdroci.domainexample.com","rdata":"111.111.111.123","rtyp
e":"A","ttl":60}]'
 --force

Note that the TTL value of the DNS entry will affect to the effective RTO of the switchover:
if the TTL is high (example, 20 mins), the DNS change will take that time to be effective in
the clients. Using lower TTL values will make this to be faster, however, this can cause an
overhead because the clients check the DNS more frequently. A good approach is to set
the TTL to a low value temporarily (example, 1 min), before the change in the DNS. Then,
perform the change, and once the switchover procedure is completed, set the TTL to the
normal value again.

4. Perform database switchover.

On Oracle Cloud:

Use Oracle Control Plane and issue a Data Guard switchover operation.

On-Premises:

Use Data Guard broker on the primary database host to perform the switchover.

As user oracle:

$ dgmgrl sys/your_sys_password@primary_db_unqname
DGMGRL> switchover to “secondary_db_unqname”

5. Start the servers in secondary site (new primary).

Restart the secondary managed servers and mid tiers.

Best Practices for Full Site Switchover
Oracle recommends the following best practices:

• Maintain the same configuration in primary and standby sites: any changes applied to the
primary system must be performed in the secondary system too, so both primary and

Chapter 39
Best Practices for Full Site Switchover

39-4

secondary systems have the same configuration. For example: a modification in the
primary load balancer, any modifications to the operating system, and so on.

• Perform regular switchovers to verify the health of the secondary site.

• Perform any switchover related activity that does not require downtime before you stop the
primary servers. For example, the WLS configuration replication based on
config_replica.sh script does not require downtime, you can perform it while the primary
system is up and running. Other example is to start any shutdown host in the standby site.

• If required to restart the application servers, stop and start the managed servers / mid tiers
in parallel.

• The front-end update in DNS is customer dependent. Use a low TTL value in the
appropriate DNS entry (at least during the switchover operation) to reduce the time for
update. Once the switchover finished, the TTL can be reverted to its original value.

• The OCI load balancer takes some time also to realize that the servers are up and to start
sending requests to them. It is usually some seconds, depending on the frequency of the
OCI load balancer health checks. Lower the interval used for the checks is, faster it
realizes that the servers are up. However, be cautious when you use too low intervals: if
the health check is a heavy check, it could overload the back end.

More Information About Full Site Switchover
The previous topics describe full site failover in a generic fashion. For detailed information for
full site failover for specific applications refer to the following sources:

• SOA Suite on Oracle Cloud Infrastructure Marketplace Disaster Recovery

• Oracle WebLogic Server for Oracle Cloud Infrastructure Disaster Recovery

• Full Stack Disaster Recovery

• Oracle Cloud Infrastructure Full Stack Disaster Recovery

Chapter 39
More Information About Full Site Switchover

39-5

https://www.oracle.com/a/tech/docs/maa-soamp-dr.pdf
https://www.oracle.com/a/otn/docs/middleware/maa-wls-mp-dr.pdf
https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://docs.oracle.com/en/cloud/iaas/disaster-recovery/index.html

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Oracle Database High Availability Overview
	1 Overview of High Availability
	What Is High Availability?
	Importance of Availability
	Cost of Downtime
	Causes of Downtime
	Chaos Engineering
	Roadmap to Implementing the Maximum Availability Architecture

	2 High Availability and Data Protection – Getting From Requirements to Architecture
	High Availability Requirements
	A Methodology for Documenting High Availability Requirements
	Business Impact Analysis
	Cost of Downtime
	Recovery Time Objective
	Recovery Point Objective
	Manageability Goal
	Total Cost of Ownership and Return on Investment

	Mapping Requirements to Architectures
	Oracle MAA Reference Architectures
	Bronze Reference Architecture
	Silver Reference Architecture
	Gold Reference Architecture
	Platinum Reference Architecture
	High Availability and Data Protection Attributes by Tier

	3 Features for Maximizing Availability
	Oracle Data Guard
	Oracle Active Data Guard
	Oracle Data Guard Advantages Over Traditional Solutions
	Data Guard and Planned Maintenance
	Data Guard Redo Apply and Standby-First Patching
	Data Guard Transient Logical Rolling Upgrades
	Rolling Upgrade Using Oracle Active Data Guard

	Oracle GoldenGate
	Best Practice: Oracle Active Data Guard and Oracle GoldenGate
	When to Use Oracle Active Data Guard
	When to Use Oracle GoldenGate
	When to Use Oracle Active Data Guard and Oracle GoldenGate Together

	Recovery Manager
	Oracle Real Application Clusters and Oracle Clusterware
	Benefits of Using Oracle Clusterware
	Benefits of Using Oracle Real Application Clusters and Oracle Clusterware
	Oracle RAC Advantages Over Traditional Cold Cluster Solutions

	Oracle RAC One Node
	Oracle Automatic Storage Management
	Fast Recovery Area
	Corruption Prevention, Detection, and Repair
	Data Recovery Advisor
	Oracle Flashback Technology
	Oracle Flashback Query
	Oracle Flashback Version Query
	Oracle Flashback Transaction
	Oracle Flashback Transaction Query
	Oracle Flashback Table
	Oracle Flashback Drop
	Restore Points
	Oracle Flashback Database
	Flashback Pluggable Database
	Block Media Recovery Using Flashback Logs or Physical Standby Database
	Flashback Data Archive

	Oracle Data Pump and Data Transport
	Oracle Replication Technologies for Non-Database Files
	Oracle ASM Cluster File System
	Oracle Database File System
	Oracle Solaris ZFS Storage Appliance Replication

	Oracle Multitenant
	Oracle Sharding
	Oracle Restart
	Online Reorganization and Redefinition
	Zero Data Loss Recovery Appliance
	Fleet Patching and Provisioning
	Edition-Based Redefinition

	4 Oracle Database High Availability Solutions for Unplanned Downtime
	Outage Types and Oracle High Availability Solutions for Unplanned Downtime
	Managing Unplanned Outages for MAA Reference Architectures and Multitenant Architectures

	5 Oracle Database High Availability Solutions for Planned Downtime
	Oracle High Availability Solutions for Planned Maintenance
	High Availability Solutions for Migration

	6 Enabling Continuous Service for Applications
	7 Operational Prerequisites to Maximizing Availability
	Understand High Availability and Performance Service-Level Agreements
	Implement and Validate a High Availability Architecture That Meets Your SLAs
	Establish Test Practices and Environment
	Configuring Test and QA Environments
	Performing Preproduction Validation Steps

	Set Up and Use Security Best Practices
	Establish Change Control Procedures
	Apply Recommended Software Updates and Security Updates Periodically
	Establish Disaster Recovery Environment
	Establish and Validate Disaster Recovery Practices
	Establish Escalation Management Procedures
	Configure Monitoring and Service Request Infrastructure for High Availability
	Run Database Health Checks Periodically
	Configure Monitoring
	Configure Automatic Service Request Infrastructure

	Exercise Capacity Planning
	Check the Latest MAA Best Practices

	Part II Oracle Database High Availability Best Practices
	8 Overview of Oracle Database High Availability Best Practices
	9 Oracle Database Configuration Best Practices
	Use a Server Parameter File (SPFILE)
	Enable Archive Log Mode and Forced Logging
	Configure an Alternate Local Archiving Destination
	Use a Fast Recovery Area
	Enable Flashback Database
	Set FAST_START_MTTR_TARGET Initialization Parameter
	Protect Against Data Corruption
	Set the LOG_BUFFER Initialization Parameter to 128MB or Higher
	Set USE_LARGE_PAGES=ONLY
	Use Bigfile Tablespace
	Use Automatic Shared Memory Management and Avoid Memory Paging
	Use Oracle Clusterware

	10 Oracle Flashback Best Practices
	Oracle Flashback Performance Observations
	Oracle Flashback Configuration Best Practices
	Oracle Flashback Operational Best Practices
	Oracle Flashback Performance Tuning for Specific Application Use Cases

	11 Oracle Global Data Services Best Practices
	Introduction to Global Data Services
	Global Data Services Concepts
	Key Capabilities of Global Data Services
	Benefits of Global Data Services

	Application Workload Suitability for Global Data Services
	Global Data Services in Oracle Maximum Availability Architecture
	Partial or Full Site Outage with Global Data Services
	Global Data Services Configuration
	High-Level Deployment Steps
	Configuration Example
	Configuration Best Practices
	Using FAN ONS with Global Data Services
	Application-Level Configuration
	Configuring FAN for OCI Clients
	Controlling Logon Storms
	Graceful Application Switchover
	Using Oracle Active Data Guard with Global Data Services
	Using Oracle GoldenGate with Global Data Services

	Global Data Services Failover Across Regions Flow
	Global Data Services Limitations and Requirements

	Part III Oracle RAC and Clusterware Best Practices
	12 Overview of Oracle RAC and Clusterware Best Practices

	Part IV Oracle Data Guard Best Practices
	13 Overview of MAA Best Practices for Oracle Data Guard
	14 Plan an Oracle Data Guard Deployment
	Oracle Data Guard Architectures
	Application Considerations for Oracle Data Guard Deployments
	Deciding Between Full Site Failover or Seamless Connection Failover
	Full Site Failover Best Practices
	Configuring Seamless Connection Failover

	Assessing and Optimizing Network Performance
	Gather Topology Information
	Understanding Network Usage of Data Guard
	Understanding Targets and Goals for Instantiation
	Understanding Throughput Requirements and Average Redo Write Size for Redo Transport
	Verify Average Redo Write Size
	Understand Current Network Throughput
	Optimizing Redo Transport with One and Many Processes
	Using This Data

	Determining Oracle Data Guard Protection Mode
	Offloading Queries to a Read-Only Standby Database

	15 Configure and Deploy Oracle Data Guard
	Oracle Data Guard Configuration Best Practices
	Apply Oracle Database Configuration Best Practices First
	Use Recovery Manager to Create Standby Databases
	Use Oracle Data Guard Broker with Oracle Data Guard
	Example Broker Installation and Configuration
	Configure Redo Transport Mode
	Validate the Broker Configuration
	Configure Fast Start Failover
	Fast Start Failover with Multiple Standby Databases

	Set Log Buffer Optimally
	Set Send and Receive Buffer Sizes
	Set SDU Size to 65535 for Synchronous Transport Only
	Configure Online Redo Logs Appropriately
	Sizing Redo Logs

	Use Standby Redo Log Groups
	Protect Against Data Corruption
	Use Flashback Database for Reinstatement After Failover
	Use Force Logging Mode
	Configure Fast Start Failover to Bound RTO and RPO (MAA Gold Requirement)
	Configure Standby AWR

	Configuring Multiple Standby Databases
	Managing Oracle Data Guard Configurations with Multiple Standby Databases
	Multiple Standby Databases and Redo Routes
	Using the RedoRoutes Property for Remote Alternate Destinations

	Fast Start Failover with Multiple Standby Databases
	Setting FastStartFailoverTarget
	Switchover with FastStartFailoverTarget Set
	Fast-Start Failover Outage Handling

	Oracle Active Data Guard Far Sync Solution
	About Far Sync
	Offloading to a Far Sync Instance

	Far Sync Deployment Topologies
	Case 1: Zero Data Loss Protection Following Role Transitions
	Case 2: Reader Farm Support
	Case 3: Cloud Deployment With Far Sync Hub
	Far Sync High Availability Topologies
	Choosing a Far Sync Deployment Topology

	Far Sync Configuration Best Practices
	Configuring the Active Data Guard Far Sync Architecture
	Configuring the Far Sync Instances
	Setting Up HA Far Sync Instances
	Configuring Far Sync Instances with Oracle RAC or Oracle Clusterware

	Encrypting a Database Using Data Guard and Fast Offline Encryption

	16 Tune and Troubleshoot Oracle Data Guard
	Overview of Oracle Data Guard Tuning and Troubleshooting
	Redo Transport Troubleshooting and Tuning
	Gather Topology Information
	Verify Transport Lag and Understand Redo Transport Configuration
	Gather Information to Troubleshoot Transport Lag
	Compare Redo Generation Rate History on the Primary
	Evaluate the Transport Network and Tune
	Gather and Monitor System Resources
	Tune to Meet Data Guard Resource Requirements
	Advanced Troubleshooting: Determining Network Time with Asynchronous Redo Transport
	Tuning and Troubleshooting Synchronous Redo Transport
	Understanding How Synchronous Transport Ensures Data Integrity
	Assessing Performance in a Synchronous Redo Transport Environment
	Why the Log File Sync Wait Event is Misleading
	Understanding What Causes Outliers
	Effects of Synchronous Redo Transport Remote Writes
	Example of Synchronous Redo Transport Performance Troubleshooting

	Redo Apply Troubleshooting and Tuning
	Understanding Redo Apply and Redo Apply Performance Expectations
	Verify Apply Lag
	Gather Information
	Compare Redo Generation Rate History on the Primary
	Tune Single Instance Redo Apply
	Evaluate System Resource Bottlenecks
	Tune Redo Apply by Evaluating Database Wait Events

	Enable Multi-Instance Redo Apply if Required
	Addressing a Very Large Redo Apply Gap
	Improving Redo Apply Rates by Sacrificing Data Protection

	Role Transition, Assessment, and Tuning
	Prerequisite Data Guard Health Check Before Role Transition
	Every Quarter
	One Month Before Switchover
	Days Before Switchover

	Data Guard Role Transition
	Monitor Data Guard Role Transitions
	Key Switchover Operations and Alert Log Tags
	Key Failover Operations and Alert Log Tags

	Post Role Transition Validation
	Troubleshooting Problems During a Switchover Operation
	Sources of Diagnostic Information
	Retry Switchover After Correcting the Initial Problem
	Rolling Back After Unsuccessful Switchover to Maximize Uptime

	Data Guard Performance Observations
	Data Guard Role Transition Duration
	Application Throughput and Response Time Impact with Data Guard

	17 Monitor an Oracle Data Guard Configuration
	Monitoring Oracle Data Guard Configuration Health Using the Broker
	Detecting Transport or Apply Lag Using the Oracle Data Guard Broker

	Monitoring Oracle Data Guard Configuration Health Using SQL
	Oracle Data Guard Broker Diagnostic Information
	Detecting and Monitoring Data Corruption

	18 Optimizing Automatic Failover in Common Scenarios to Minimize Downtime
	Automatic Database Failover for Primary Database Outages
	Automatic Data Integrity and Avoidance of Split Brain
	Automatic Reconnect Following Any Outage That Results in Network Timeout
	Automatic Reconnect Following Resolution of Standby Outage
	Data Guard Broker Properties That Affect Outage Repair Times
	Data Guard Standby Database Outage Repair
	Oracle Active Data Guard Far Sync – Examples and Outage Scenarios
	Primary Database Outage Repair

	Part V MAA Platinum and Oracle GoldenGate Best Practices
	19 MAA Platinum Reference Architecture Overview
	20 Overview of Oracle GoldenGate Best Practices
	21 Cloud Within Region: Configuring Oracle GoldenGate Hub for MAA Platinum
	Overview of MAA GoldenGate Hub
	Planning GGHub Placement in the Platinum MAA Architecture
	Where to Place the MAA Primary GGHub and Standby GGHub
	MAA GGHubs Placed in the Same OCI Region

	Task 1: Configure the Source and Target Databases for Oracle GoldenGate
	Step 1.1 - Configure the Databases
	Step 1.2 - Create a GoldenGate Database Administrator User
	Step 1.3 - Create the Database Services

	Task 2: Deploy Oracle GoldenGate Maximum Availability Hub on Oracle Cloud Marketplace
	Task 3: Configure the Oracle GoldenGate Environment
	Step 3.1 - Create Database Credentials
	Step 3.2 - Create an Oracle Net TNS Alias for Oracle GoldenGate Database Connections
	Step 3.3 - Set Up Schema Supplemental Logging
	Step 3.4 - Create the Autostart Profile
	Step 3.5 - Configure Oracle GoldenGate Processes

	22 Cloud Across Regions: Configuring Oracle GoldenGate Hub for MAA Platinum
	Overview of MAA GoldenGate Hub
	Planning GGHub Placement in the Platinum MAA Architecture
	Where to Place the MAA Primary GGHub and Standby GGHub
	MAA GGHubs Placed in Different OCI Regions

	Task 1: Configure the Source and Target Databases for Oracle GoldenGate
	Step 1.1 - Configure the Databases
	Step 1.2 - Create a GoldenGate Database Administrator User
	Step 1.3 - Create the Database Services

	Task 2: Prepare a Primary and Standby Base System for GGHub
	Step 2.1 - Deploy an Oracle RAC 2-Node Cluster System
	Step 2.2 - Remove the Standard Database and Rearrange the Disk Group Layout
	Step 2.3 - Download the Required Software
	Step 2.4 - Configure Oracle Linux To Use the Oracle Public YUM Repository

	Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub
	Step 3.1 - Install Oracle GoldenGate Software
	Step 3.2 - Configure the Cloud Network
	Step 3.3 - Configure ACFS File System Replication Between GGHubs in the Same Region
	Step 3.4 - Create the Oracle GoldenGate Deployment
	Step 3.5 - Configure Oracle Grid Infrastructure Agent (XAG)
	Step 3.6 - Configure NGINX Reverse Proxy
	Step 3.7 - Securing Oracle GoldenGate Microservices to Restrict Non-Secure Direct Access
	Step 3.8 - Create a Clusterware Resource to Manage NGINX
	Step 3.9 - Create an Oracle Net TNS Alias for Oracle GoldenGate Database Connections

	Task 4: Configure the Oracle GoldenGate Environment
	Step 4.1 - Create Database Credentials
	Step 4.2 - Set Up Schema Supplemental Logging
	Step 4.3 - Create the Autostart Profile
	Step 4.4 - Configure Oracle GoldenGate Processes

	23 Cloud: Oracle GoldenGate Microservices Architecture on Oracle Exadata Database Service Configuration Best Practices
	Overview of Oracle GoldenGate Microservices Architecture Configuration on Oracle Exadata Database Service
	Task 1 - Before You Begin
	Task 2 - Configure the Oracle Database for GoldenGate
	Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment
	Task 4 - Install Oracle GoldenGate
	Task 5 - Create the Oracle GoldenGate Deployment
	Task 6 - Configure the Network
	Task 7 - Configure Oracle Grid Infrastructure Agent
	Task 8 - Configure NGINX Reverse Proxy
	Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections
	Task 10 - Create a New Profile
	Task 11 - Configure Oracle GoldenGate Processes

	24 Cloud MAA Platinum: Oracle GoldenGate Microservices Architecture Integrated with Active Data Guard
	Overview
	Task 1 - Before You Begin
	Task 2 - Configure the Oracle Database for GoldenGate
	Task 3 - Configure Oracle Database File System
	Task 4 - Install Oracle GoldenGate
	Task 5 - Create Oracle GoldenGate Deployment Directories
	Task 6 - Network Configuration
	Task 7 - Configure Standby NGINX Reverse Proxy
	Task 8 - Configure Oracle Grid Infrastructure Agent
	Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections
	Task 10 - Configure Oracle GoldenGate Processes
	Example Distribution Path Target Change Script

	25 On-Premises: Configuring Oracle GoldenGate Hub
	Overview of MAA GoldenGate Hub
	Planning GGHub Placement in the Platinum MAA Architecture
	Where to Place the MAA Primary GGHub and Standby GGHub
	MAA GGHubs Placed in the Same Data Center
	MAA GGHubs Placed in Different Data Centers

	Task 1: Configure the Source and Target Databases for Oracle GoldenGate
	Task 2: Prepare a Primary and Standby Base System for GGHub
	Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub
	Task 4: Configure the Oracle GoldenGate Environment

	26 On-Premises: Oracle GoldenGate Microservices Architecture with Oracle Real Application Clusters Configuration Best Practices
	Summary of Recommendations when Deploying Oracle GoldenGate on Oracle RAC
	Task 1: Configure the Oracle Database for Oracle GoldenGate
	Task 2: Create the Database Replication Administrator User
	Task 3: Create the Database Services
	Task 4: Set Up a File System on Oracle RAC
	Task 5: Install Oracle GoldenGate
	Task 6: Create the Oracle GoldenGate Deployment
	Task 7: Oracle Clusterware Configuration
	Task 8: Configure NGINX Reverse Proxy
	Task 9: Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections
	Task 10: Configure Oracle GoldenGate Processes
	Task 11: Configure Autostart of Extract and Replicat Processes

	27 On-Premises MAA Platinum: Oracle GoldenGate Microservices Architecture Integrated with Active Data Guard
	Prerequisites
	Task 1: Configure the Standby Database for Oracle GoldenGate
	Task 2: Modify the Primary Database Service
	Task 3: Create the Standby Database Service
	Task 4: Configure DBFS on the Standby Cluster Nodes
	Task 5: Install Oracle GoldenGate Software
	Task 6: Create Oracle GoldenGate Deployment Directories
	Task 7: Configure the Standby NGINX Reverse Proxy
	Task 8: Configure Oracle Clusterware
	Task 9: Create Oracle Net TNS Aliases for Oracle GoldenGate Database Connections
	Task 10: Configure Oracle GoldenGate Processes
	Example Distribution Path Target Change Script

	28 Managing Outages for Oracle GoldenGate Hub
	Managing Planned Outages
	Managing Unplanned Outages

	29 Oracle GoldenGate Active-Active Guidance for Developers and Administrators
	Preparing for Conflict Resolution
	Best Practices for Active-Active Oracle GoldenGate Architecture

	30 Troubleshooting Oracle GoldenGate
	Troubleshooting MAA GoldenGate Hub
	Oracle GoldenGate Extract Failure or Error Conditions Considerations
	Troubleshooting ACFS Replication
	Troubleshooting Oracle GoldenGate

	Troubleshooting Oracle GoldenGate on Oracle RAC
	Example Configuration Problems

	Part VI Oracle Database Cloud Best Practices
	31 Overview of Oracle Database Cloud Best Practices
	32 Oracle Maximum Availability Architecture and Oracle Autonomous Database
	Oracle MAA for Oracle Autonomous Database on Dedicated Exadata Infrastructure
	Autonomous Database Dedicated with Default High Availability Option (MAA Silver)
	Autonomous Database Dedicated with Autonomous Data Guard Option (MAA Gold)
	Updating Autonomous Data Guard Settings
	Autonomous Data Guard Life Cycle Management
	MAA Autonomous Data Guard RTO and RPO Observations

	Autonomous Database with Autonomous Data Guard Option and Oracle GoldenGate (MAA Platinum)
	Implementing the MAA Platinum Solution

	Preparing Application for Seamless Application Failover

	Oracle MAA for Oracle Autonomous Database Serverless
	Autonomous Database Serverless with Default High Availability Option (MAA Silver)
	Autonomous Database Serverless with Autonomous Data Guard Option (MAA Gold)
	Adding an Autonomous Standby Database
	Monitoring Apply Lag
	Autonomous Data Guard Role Transitions
	Manual Failover Operations and Determining Data Loss
	Notifications for Automatic Failover
	MAA Autonomous Data Guard RTO and RPO Observations
	Preparing an Application for Seamless Application Failover

	33 Oracle Maximum Availability Architecture in Oracle Exadata Cloud Systems
	Oracle Maximum Availability Architecture Benefits
	Expected Impact with Unplanned Outages
	Expected Impact with Planned Maintenance
	Achieving Continuous Availability For Your Applications
	Oracle Maximum Availability Architecture Reference Architectures in Oracle Exadata Cloud

	34 Oracle Maximum Availability Architecture for Multicloud
	MAA Evaluations on Multicloud Solutions
	Oracle Database Multicloud Evaluations by Oracle MAA
	Network Evaluation
	MAA Silver Architecture and Evaluation
	MAA Gold Architecture and Evaluation

	Oracle Maximum Availability Architecture Benefits
	Expected Impact During Unplanned Outages
	Expected Impact During Planned Maintenance
	Achieving Continuous Availability For Your Applications

	Oracle Maximum Availability Architecture for Oracle Database@Azure
	Network Results
	MAA Silver Network Topology and Evaluation
	Application Network Layer on Azure
	Backup and Restore Observations

	MAA Gold Network Topology and Evaluation
	Network Layer

	Setting Up Networking Across Availability Zones
	Setting Up Networking Across Regions

	Oracle Maximum Availability Architecture for Oracle Database@Google Cloud
	Network Results
	MAA Silver Network Topology and Evaluation
	Application Network Layer on Google Cloud
	Backup and Restore Observations

	MAA Gold Network Topology and Evaluation
	Oracle Active Data Guard Principles for ExaDB-D on Google Cloud Configuration
	Networking Between Primary and Standby Clusters

	35 Oracle Data Guard Hybrid Cloud Configuration
	Benefits Of Hybrid Data Guard in the Oracle Cloud
	MAA Recommendations for Using Exadata Cloud for Disaster Recovery
	Security Requirements and Considerations
	Platform, Database, and Network Prerequisites
	Cloud Network Prerequisites
	On-Premises Prerequisites
	Evaluate Network Using oratcptest
	Configuration
	Implement MAA Best Practice Parameter Settings on the Primary Database
	Validating Connectivity between On-Premises and Exadata Cloud Hosts

	Prepare the Primary Database Environment
	Create an ACFS Mount Point
	Configure Transparent Data Encryption on the Source Database
	Check the TDE Master Key Before Instantiation
	Configure Online Redo Logs
	Size Redo Logs
	Enable Flashback Database
	Investigate Log for Errors (TFA)

	Instantiate the Standby Using Oracle DBaaS Tools
	Task 1: Install DBaaSCA in the On-Premises Environment
	Task 2: Prepare the Cloud Environment for Instantiation of the Standby Database
	Task 3: Instantiate the Standby Database
	Configure ACFS
	Run dbaasca Operation prepareForStandby in the On-Premises Environment
	Run dbaascli Operation configureStandby in the Cloud Environment

	Task 4: Validate the Standby Database
	Task 5: Implement Recommended MAA Best Practices

	Data Guard Life Cycle Operations
	Health Check and Monitoring

	Part VII Continuous Availability for Applications
	36 Configuring Continuous Availability for Applications
	About Application High Availability Levels
	Configuring Level 1: Basic Application High Availability
	Step 1: Configure High Availability Database Services
	Configure High Availability Services
	Configure High Availability Services for Oracle Active Data Guard or Standby Roles
	Considerations for Oracle Cloud Database Services

	Step 2: Configure the Connection String for High Availability
	Step 3: Ensure That FAN Is Used and ONS port 6200 is Open
	Step 4: Developer Determines if the Application Should Implement Reconnection Logic

	Configuring Level 2: Prepare Applications for Planned Maintenance
	Recommended Option: Use an Oracle Connection Pool
	Alternate Options
	Alternate Option 1: Use Request Boundaries
	Alternate Option 2: Use Connection Validation or Tests

	Server-Side Operations for Planned Maintenance

	Configuring Level 3: Mask Unplanned and Planned Failovers from Applications
	Configure Services for AC and TAC
	Return Connections to the Connection Pool
	Side Effect
	Restore Original Function Values During Replay
	JDBC Configuration
	Monitoring

	Reference
	Connection Time Estimates During Data Guard Switchover or Failover
	Oracle Net TNS String Parameters
	Connection Retry Logic Examples
	Server-Side Planned Maintenance Command Examples

	Part VIII Oracle Multitenant Best Practices
	37 Overview of Oracle Multitenant Best Practices
	38 PDB Switchover and Failover in a Multitenant Configuration
	PDB Switchover Use Case
	Prerequisites
	Configuring PDB Switchover

	PDB Failover Use Case
	Prerequisites
	Additional Considerations
	Configuring PDB Failover

	Resolving Errors
	Reference
	Full Example Commands with Output
	Keyword Definitions
	Messages
	Sample Oracle Database Net Services Connect Aliases

	Configuring Continuous Availability for Applications
	About Application High Availability Levels
	Configuring Level 1: Basic Application High Availability
	Step 1: Configure High Availability Database Services
	Configure High Availability Services
	Configure High Availability Services for Oracle Active Data Guard or Standby Roles
	Considerations for Oracle Cloud Database Services

	Step 2: Configure the Connection String for High Availability
	Step 3: Ensure That FAN Is Used and ONS port 6200 is Open
	Step 4: Developer Determines if the Application Should Implement Reconnection Logic

	Configuring Level 2: Prepare Applications for Planned Maintenance
	Recommended Option: Use an Oracle Connection Pool
	Alternate Options
	Alternate Option 1: Use Request Boundaries
	Alternate Option 2: Use Connection Validation or Tests

	Server-Side Operations for Planned Maintenance

	Configuring Level 3: Mask Unplanned and Planned Failovers from Applications
	Configure Services for AC and TAC
	Return Connections to the Connection Pool
	Side Effect
	Restore Original Function Values During Replay
	JDBC Configuration
	Monitoring

	Reference
	Connection Time Estimates During Data Guard Switchover or Failover
	Oracle Net TNS String Parameters
	Connection Retry Logic Examples
	Server-Side Planned Maintenance Command Examples

	Part IX Full Site Switch in Oracle Cloud or On-Premises
	39 Full Site Switch in Oracle Cloud or On-Premise
	Performing Role Transitions Between Regions
	Best Practices for Full Site Switchover
	More Information About Full Site Switchover

