Oracle® XML DB
Developer's Guide

19c
E96222-03
April 2019

ORACLE"



Oracle XML DB Developer's Guide, 19c

E96222-03

Copyright © 2002, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author:  Drew Adams

Contributors:  Oracle XML DB development, product management, and quality assurance teams.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

Preface

Audience xlv
Documentation Accessibility xlvi
Related Documents xlvi
Conventions Xlvii
Code Examples Xlvii
Syntax Descriptions xlix

Changes in This Release for Oracle XML DB Developer's Guide

Changes in Oracle Database Release 18c, Version 1, for Oracle XML DB |

Part | Oracle XML DB Basics

1 Introduction to Oracle XML DB

1.1 Overview of Oracle XML DB 1-1
1.2 Oracle XML DB Benefits 1-2
1.2.1 Data and Content Unified 1-4
1.2.1.1 Database Capabilities for Working with XML 1-5

1.2.1.2 Advantages of Storing Data as XML in the Database 1-7

1.2.2 Data Duality: XML and Relational 1-8
1.2.2.1 Use XMLType Views If Your Data Is Not XML 1-8

1.2.3 Efficient Storage and Retrieval of Complex XML Documents 1-9

1.3 Oracle XML DB Architecture 1-9
1.4 Oracle XML DB Features 1-10
1.41 XMLType Data Type 1-11
1.4.2 XMLType Storage Models 1-12
1.4.3 XML Schema Support in Oracle XML DB 1-13
1.4.4 DTD Support in Oracle XML DB 1-15
1.4.5 Static Data Dictionary Views Related to XML 1-16
1.4.6 SQL/XML Standard Functions 1-17

ORACLE iii



1.4.7 Programmatic Access to Oracle XML DB (Java, PL/SQL, and C) 1-17
1.4.8 Oracle XML DB Repository: Overview 1-18
1.5 Standards Supported by Oracle XML DB 1-19
1.6 Oracle XML DB Technical Support 1-21
1.7 Oracle XML DB Examples 1-21
1.8 Oracle XML DB Case Studies and Demonstrations on OTN 1-21
2 Getting Started with Oracle XML DB
2.1 Oracle XML DB Installation 2-1
2.2 Oracle XML DB Use Cases 2-1
2.3 Application Design Considerations for Oracle XML DB 2-2
2.3.1 XML Data Storage 2-4
2.3.2 The Structure of Your XML Data 2-5
2.3.3 Languages Used to Implement Your Application 2-5
2.3.4 XML Processing Options 2-5
2.3.5 Oracle XML DB Repository Access 2-6
2.3.6  Oracle XML DB Cooperates with Other Database Options and Features 2-7
3 Overview of How To Use Oracle XML DB
3.1 Creating XMLType Tables and Columns 3-2
3.2 Creating Virtual Columns on XMLType Data Stored as Binary XML 3-3
3.3 Partitioning Tables That Contain XMLType Data Stored as Binary XML 3-4
3.4 Enforcing XML Data Integrity Using the Database 3-6
3.4.1 Enforcing Referential Integrity Using SQL Constraints 3-7
3.5 Loading XML Content into Oracle XML DB 3-10
3.5.1 Loading XML Content Using SQL or PL/SQL 3-11
3.5.2 Loading XML Content Using Java 3-12
3.5.3 Loading XML Content Using C 3-13
3.5.4 Loading Large XML Files that Contain Small XML Documents 3-14
3.5.5 Loading Large XML Files Using SQL*Loader 3-14
3.5.6 Loading XML Documents into the Repository Using
DBMS_XDB_REPOS 3-15
3.5.7 Loading Documents into the Repository Using Protocols 3-15
3.6 Querying XML Content Stored in Oracle XML DB 3-16
3.6.1 PurchaseOrder XML Document Used in Examples 3-17
3.6.2 Retrieving the Content of an XML Document Using Pseudocolumn
OBJECT_VALUE 3-18
3.6.3 Accessing Fragments or Nodes of an XML Document Using
XMLQUERY 3-19
ORACLE v



3.6.4 Accessing Text Nodes and Attribute Values Using XMLCAST and

XMLQUERY 3-20
3.6.5 Searching an XML Document Using XMLEXISTS, XMLCAST, and

XMLQUERY 3-21
3.6.6  Performing SQL Operations on XMLType Fragments Using XMLTABLE 3-25
3.7 Updating XML Content Stored in Oracle XML DB 3-27
3.8 Generating XML Data from Relational Data 3-31
3.8.1 Generating XML Data from Relational Data Using SQL/XML Functions 3-31
3.8.2 Generating XML Data from Relational Data Using DBURITYPE 3-36
3.9 Character Sets of XML Documents 3-38
3.9.1 XML Encoding Declaration 3-38

3.9.2 Character-Set Determination When Loading XML Documents into the
Database 3-39

3.9.3 Character-Set Determination When Retrieving XML Documents from
the Database 3-40

Part Il Manipulation of XML Data in Oracle XML DB
4 XQuery and Oracle XML DB

4.1 Overview of the XQuery Language 4-1
4.1.1 XPath Expressions Are XQuery Expressions 4-2
4.1.2 XQuery: A Functional Language Based on Sequences 4-3
4.1.2.1 XQuery Is About Sequences 4-4
4.1.2.2 XQuery Is Referentially Transparent 4-4
4.1.2.3 XQuery Update Has Side Effects on Your Data 4-5
4.1.2.4 XQuery Update Snapshots 4-5
4.1.2.5 XQuery Full Text Provides Full-Text Search 4-6
4.1.3 XQuery Expressions 4-6
4.1.4 FLWOR Expressions 4-8
4.2 Overview of XQuery in Oracle XML DB 4-9
4.2.1 When To Use XQuery 4-10
4.2.2 Predefined XQuery Namespaces and Prefixes 4-10
4.3 SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast 4-11
431 XMLQUERY SQL/XML Function in Oracle XML DB 4-12
4.3.2 XMLTABLE SQL/XML Function in Oracle XML DB 4-14
4.3.2.1 Chaining Calls to SQL/XML Function XMLTABLE 4-16
4.3.3 XMLEXISTS SQL/XML Function in Oracle XML DB 4-18
4.3.4 Using XMLEXxists to Find a Node 4-19
4.3.5 XMLCAST SQL/XML Function in Oracle XML DB 4-20
4.3.6 Using XMLCAST to Extract the Scalar Value of an XML Fragment 4-21
4.4  URI Scheme oradb: Querying Table or View Data with XQuery 4-22

ORACLE



4.5 Oracle XQuery Extension Functions 4-23
4.5.1 ora:contains XQuery Function (Deprecated) 4-24
45.2 ora:sqrt XQuery Function 4-24
4.5.3 ora:tokenize XQuery Function 4-24

4.6 Oracle XQuery Extension-Expression Pragmas 4-25

4.7 XQuery Static Type-Checking in Oracle XML DB 4-28

4.8 Oracle XML DB Support for XQuery 4-29
4.8.1 Support for XQuery and SQL 4-30

4.8.1.1 Implementation Choices Specified in the XQuery Standards 4-30
4.8.1.2 XQuery Features Not Supported by Oracle XML DB 4-31
4.8.1.3 XQuery Optional Features 4-31
4.8.2  Support for XQuery Functions and Operators 4-32
4.8.2.1 XQuery Functions fn:doc, fn:collection, and fn:doc-available 4-32
4.8.3 Support for XQuery Full Text 4-32

4.8.3.1 XQuery Full Text, XML Schema-Based Data, and Pragma
ora:no_schema 4-33
4.8.3.2 Restrictions on Using XQuery Full Text with XMLEXists 4-34
4.8.3.3 Supported XQuery Full Text FTSelection Operators 4-34
4.8.3.4 Supported XQuery Full Text Match Options 4-35
4.8.3.5 Unsupported XQuery Full Text Features 4-36
4.8.3.6  XQuery Full Text Errors 4-36

5 Query and Update of XML Data

5.1 Using XQuery with Oracle XML DB 5-2
5.1.1 XQuery Sequences Can Contain Data of Any XQuery Type 5-3
5.1.2 Querying XML Data in Oracle XML DB Repository Using XQuery 5-4
5.1.3 Querying Relational Data Using XQuery and URI Scheme oradb 5-6
5.1.4 Querying XMLType Data Using XQuery 5-11
5.1.5 Using Namespaces with XQuery 5-18

5.2 Querying XML Data Using SQL and PL/SQL 5-20

5.3 Using the SQL*Plus XQUERY Command 5-25

5.4 Using XQuery with XQJ to Access Database Data 5-26

5.5 Using XQuery with PL/SQL, JDBC, and ODP.NET to Access Database Data 5-26

5.6 Updating XML Data 5-30
5.6.1 Updating an Entire XML Document 5-30
5.6.2 Replacing XML Nodes 5-31

5.6.2.1 Updating XML Data to NULL Values 5-37

5.6.3 Inserting Child XML Nodes 5-40

5.6.4 Deleting XML Nodes 5-43

5.6.5 Creating XML Views of Modified XML Data 5-43

5.7 Performance Tuning for XQuery 5-44
ORACLE Vi



5.7.1 Rule-Based and Cost-Based XQuery Optimization 5-46

5.7.2 XQuery Optimization over Relational Data 5-46
5.7.3 XQuery Optimization over XML Schema-Based XMLType Data 5-48
5.7.4 Diagnosis of XQuery Optimization: XMLOptimizationCheck 5-50
5.7.5 Performance Improvement for fn:doc and fn:collection on Repository
Data 5-51
5.7.5.1 Use EQUALS_PATH and UNDER_PATH Instead of fn:doc and
fn:collection 5-52
5.7.5.2 Using Oracle XQuery Pragma ora:defaultTable 5-52

6 Indexes for XMLType Data

6.1 Oracle XML DB Tasks Involving Indexes 6-1
6.2 Overview of Indexing XMLType Data 6-4
6.2.1 XMLIndex Addresses the Fine-Grained Structure of XML Data 6-5
6.2.2 Oracle Text Indexes for XML Data 6-6
6.2.3 Optimization Chooses the Right Indexes to Use 6-6
6.2.4 Function-Based Indexes Are Deprecated for XMLType 6-6
6.3 XMLIndex 6-7
6.3.1 Advantages of XMLIndex 6-8
6.3.2 Structured and Unstructured XMLIndex Components 6-9
6.3.3 XMLIndex Structured Component 6-11
6.3.3.1 Ignore the Index Content Tables; They Are Transparent 6-13
6.3.3.2 Data Type Considerations for XMLIndex Structured Component 6-13
6.3.3.3 Exchange Partitioning and XMLIndex 6-15
6.3.4 XMLIndex Unstructured Component 6-17
6.3.4.1 Ignore the Path Table — It Is Transparent 6-20
6.3.4.2 Column VALUE of an XMLIndex Path Table 6-21
6.3.4.3 Secondary Indexes on Column VALUE 6-22
6.3.4.4 XPath Expressions That Are Not Indexed by an XMLIndex
Unstructured Component 6-23
6.3.5 Creating, Dropping, Altering, and Examining an XMLIndex Index 6-23
6.3.6  Using XMLIndex with an Unstructured Component 6-24
6.3.6.1 Creating Additional Secondary Indexes on an XMLIndex Path
Table 6-26
6.3.7 Use of XMLIndex with a Structured Component 6-28
6.3.7.1 Using Namespaces and Storage Clauses with an XMLIndex
Structured Component 6-30
6.3.7.2 Adding a Structured Component to an XMLIndex Index 6-31
6.3.7.3  Using Non-Blocking ALTER INDEX with an XMLIndex Structured
Component 6-33
6.3.7.4 Modifying the Data Type of a Structured XMLIndex Component 6-35
6.3.7.5 Dropping an XMLIndex Structured Component 6-35

ORACLE vii



6.3.7.6  Indexing the Relational Tables of a Structured XMLIndex
Component

6.3.8 How to Tell Whether XMLIndex is Used

6.3.9 Turning Off Use of XMLIndex

6.3.10 XMLIndex Path Subsetting: Specifying the Paths You Want to Index
6.3.10.1 Examples of XMLIndex Path Subsetting
6.3.10.2 XMLIndex Path-Subsetting Rules

6.3.11 Guidelines for Using XMLIndex with an Unstructured Component

6.3.12 Guidelines for Using XMLIndex with a Structured Component

6.3.13 XMLIndex Partitioning and Parallelism

6.3.14  Asynchronous (Deferred) Maintenance of XMLIndex Indexes
6.3.14.1 Syncing an XMLIndex Index in Case of Error ORA-08181

6.3.15 Collecting Statistics on XMLIndex Objects for the Cost-Based
Optimizer

6.3.16 Data Dictionary Static Public Views Related to XMLIndex
6.3.17 PARAMETERS Clause for CREATE INDEX and ALTER INDEX
6.3.17.1 Using a Registered PARAMETERS Clause for XMLIndex

6.3.17.2 PARAMETERS Clause Syntax for CREATE INDEX and ALTER
INDEX

6.3.17.3 Usage of XMLIndex_parameters_clause
6.3.17.4 Usage of XMLIndex_parameters
6.3.17.5 Usage of PATHS Clause

6.3.17.6  Usage of create_index_paths_clause and
alter_index_paths_clause

6.3.17.7 Usage of pikey_clause, path_id_clause, and order_key clause
6.3.17.8 Usage of value_clause
6.3.17.9 Usage of async_clause
6.3.17.10 Usage of groups_clause and alter_index_group_clause
6.3.17.11 Usage of XMLIndex_xmltable_clause
6.3.17.12 Usage of column_clause
6.4 Indexing XML Data for Full-Text Queries
6.4.1 Creating and Using an XML Search Index
6.4.2 What To Do If an XML Search Index Is Not Picked Up

6.4.3 Pragma ora:no_schema: Using XML Schema-Based Data with XQuery
Full Text

6.4.4 Pragma ora:use_xmltext_idx: Forcing the Use of an XML Search Index
6.4.5 Migrating from Using Oracle Text Index to XML Search Index
6.5 Indexing XMLType Data Stored Object-Relationally
6.5.1 Indexing Non-Repeating Text Nodes or Attribute Values
6.5.2 Indexing Repeating (Collection) Elements

ORACLE

6-35
6-36
6-41
6-41
6-43
6-43
6-44
6-45
6-46
6-48
6-49

6-50
6-51
6-52
6-53

6-54
6-60
6-61
6-61

6-61
6-62
6-62
6-62
6-63
6-63
6-63
6-63
6-64
6-66

6-66
6-68
6-68
6-70
6-71
6-72

viii



7 Transformation and Validation of XMLType Data

7.1 XSL Transformation and Oracle XML DB 7-1
7.1.1 SQL Function XMLTRANSFORM and XMLType Method

TRANSFORM() 7-4

7.1.1.1 XMLTRANSFORM and XMLType.transform(): Examples 7-4

7.1.2 XSL Transformation Using DBUri Servlet 7-10

7.2 Validation of XMLType Instances 7-12

7.2.1 Partial and Full XML Schema Validation 7-13

7.2.1.1 Partial Validation 7-14

7.2.1.2 Full Validation 7-14

7.2.2 Validating XML Data Stored as XMLType: Examples 7-16

Part Il  Relational Data To and From XML Data
8 Generation of XML Data from Relational Data

8.1 Overview of Generating XML Data 8-1

8.2 Generation of XML Data Using SQL Functions 8-2

8.2.1 XMLELEMENT and XMLATTRIBUTES SQL/XML Functions 8-3

8.2.1.1 Escape of Characters in Generated XML Data 8-6

8.2.1.2 Formatting of XML Dates and Timestamps 8-7

8.2.1.3 XMLElement Examples 8-7

8.2.2 XMLFOREST SQL/XML Function 8-11

8.2.3 XMLCONCAT SQL/XML Function 8-13

8.2.4 XMLAGG SQL/XML Function 8-14

8.2.5 XMLPI SQL/XML Function 8-17

8.2.6 XMLCOMMENT SQL/XML Function 8-18

8.2.7 XMLSERIALIZE SQL/XML Function 8-19

8.2.8 XMLPARSE SQL/XML Function 8-20

8.2.9 XMLCOLATTVAL Oracle SQL Function 8-21

8.2.10 XMLCDATA Oracle SQL Function 8-23

8.3 Generation of XML Data Using DBMS_XMLGEN 8-24

8.3.1 Using PL/SQL Package DBMS_ XMLGEN 8-24

8.3.2 Functions and Procedures of Package DBMS_XMLGEN 8-26

8.3.3 DBMS_XMLGEN Examples 8-32

8.4 SYS XMLAGG Oracle SQL Function 8-50
8.5 Ordering Query Results Before Aggregating, Using XMLAGG ORDER BY

Clause 8-50

8.6 Returning a Rowset Using XMLTABLE 8-51

ORACLE iX



O Relational Views over XML Data

9.1 Introduction to Creating and Using Relational Views over XML Data 9-1
9.2 Creating a Relational View over XML: One Row for Each XML Document 9-2
9.3 Creating a Relational View over XML: Mapping XML Nodes to Columns 9-3
9.4 Indexing Binary XML Data Exposed Using a Relational View 9-4
9.5 Querying XML Content As Relational Data 9-5

10 XMLType Views

10.1 What Are XMLType Views? 10-1
10.2 CREATE VIEW for XMLType Views: Syntax 10-3
10.3 Creating Non-Schema-Based XMLType Views 10-3
10.4 Creating XML Schema-Based XMLType Views 10-4
10.4.1 Creating XML Schema-Based XMLType Views Using SQL/XML
Publishing Functions 10-4
10.4.1.1 Using Namespaces with SQL/XML Publishing Functions 10-7
10.4.2 Creating XML Schema-Based XMLType Views Using Object Types or
Object Views 10-11
10.4.2.1 Creating XMLType Employee View, with Nested Department
Information 10-12
10.4.2.2 Creating XMLType Department View, with Nested Employee
Information 10-16
10.5 Creating XMLType Views from XMLType Tables 10-20
10.6 Referencing XMLType View Objects Using SQL Function REF 10-21
10.7 Using DML (Data Manipulation Language) on XMLType Views 10-21

Part IV XMLType APIs

11 PL/SQL APIs for XMLType

11.1  Overview of PL/SQL APIs for XMLType 11-1
11.1.1 PL/SQL APIs for XMLType: Features 11-2
11.1.1.1 Lazy Load of XML Data (Lazy Manifestation) 11-2
11.1.1.2 XMLType Data Type Supports XML Schema 11-2
11.1.1.3 XMLType Supports Data in Different Character Sets 11-3
11.1.2 PL/SQL APIs for XMLType: References 11-3
11.2 PL/SQL DOM API for XMLType (DBMS_XMLDOM) 11-5
11.2.1 Overview of the W3C Document Object Model (DOM)

Recommendation 11-7

11.2.1.1 Oracle XML Developer's Kit Extensions to the W3C DOM
Standard 11-7

ORACLE X



11.2.1.2 Supported W3C DOM Recommendations 11-8

11.2.1.3 Difference Between DOM and SAX 11-8
11.2.2 PL/SQL DOM API for XMLType (DBMS_XMLDOM): Features 11-9
11.2.2.1 PL/SQL DOM API Support for XML Schema 11-9
11.2.2.2 Enhanced DOM Performance 11-10
11.2.3 Application Design Using Oracle XML Developer's Kit and Oracle
XML DB 11-10
11.2.4 Preparing XML Data to Use the PL/SQL DOM API for XMLType 11-11
11.2.5 XML Schema Types Are Mapped to SQL Object Types 11-11
11.2.5.1 DOM Fidelity for XML Schema Mapping 11-12
11.2.6  Wrap Existing Data as XML with XMLType Views 11-13
11.2.7 DBMS_XMLDOM Methods Supported by Oracle XML DB 11-13
11.2.8 PL/SQL DOM API for XMLType: Node Types 11-14
11.2.9 PL/SQL Function NEWDOMDOCUMENT and DOMDOCUMENT
Nodes 11-15
11.2.10 DOM NodeList and NamedNodeMap Objects 11-16
11.2.11  Overview of Using the PL/SQL DOM API for XMLType
(DBMS_XMLDOM) 11-16
11.2.12 PL/SQL DOM API for XMLType — Examples 11-17
11.2.13 Large Node Handling Using DBMS_XMLDOM 11-19
11.2.14 Get-Push Model for Large Node Handling 11-22
11.2.15 Get-Pull Model for Large Node Handling 11-23
11.2.16 Set-Pull Model for Large Node Handling 11-24
11.2.17 Set-Push Model for Large Node Handling 11-26
11.2.18 Determining Binary Stream or Character Stream for Large Node
Handling 11-27
11.3 PL/SQL Parser API for XMLType (DBMS_XMLPARSER) 11-27
11.4 PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR) 11-29
11.4.1 PL/SQL XSLT Processor for XMLType: Features 11-30
11.4.2 Using the PL/SQL XSLT Processor API for XMLType
(DBMS_XSLPROCESSOR) 11-30

12 PL/SQL Package DBMS_XMLSTORE

12.1  Using Package DBMS_XMLSTORE 12-1
12.2 Inserting an XML Document Using DBMS_XMLSTORE 12-2
12.3 Updating XML Data Using DBMS_XMLSTORE 12-4
12.4 Deleting XML Data Using DBMS_XMLSTORE 12-5

13 Java DOM API for XMLType

13.1 Overview of Java DOM API for XMLType 13-2
13.2 Access to XMLType Data Using JDBC 13-3

ORACLE Xi



13.2.1 Using JDBC to Access XML Documents in Oracle XML DB

13-3

13.3 Manipulating XML Database Documents Using JDBC 13-5
13.4 Loading a Large XML Document into the Database Using JDBC 13-10
13.5 MS Windows Java Security Manager Permissions for Java DOM API with a
Thick Connection 13-11
13.6 Creating XML Schema-Based Documents 13-12
13.7 XMLType Instance Representation in Java (JDBC or SQLJ) 13-13
13.8 Classes of Java DOM API for XMLType 13-13
13.9 Using the Java DOM API for XMLType 13-14
13.10 Large XML Node Handling with Java 13-15
13.10.1  Stream Extensions to Java DOM 13-16
13.10.1.1  Get-Pull Model 13-17
13.10.1.2 Get-Push Model 13-18
13.10.1.3  Set-Pull Model 13-18
13.10.1.4 Set-Push Model 13-19
13.11 Using the Java DOM API and JDBC with Binary XML 13-20
14 C DOM API for XMLType
14.1 Overview of the C DOM API for XMLType 14-1
14.2  Access to XMLType Data Stored in the Database Using OCI 14-2
14.3 Creating XMLType Instances on the Client 14-3
14.4 XML Context Parameter for C DOM API Functions 14-3
14.4.1  OCIXmIDbInitXmICtx() Syntax 14-3
14.4.2 OCIXmIDbFreeXmICtx() Syntax 14-4
14.5 Initializing and Terminating an XML Context 14-4
14.6  Using the C API for XML with Binary XML 14-8
14.7  Using the Oracle XML Developer's Kit Pull Parser with Oracle XML DB 14-11
14.8 Common XMLType Operations in C 14-16
15  Oracle XML DB and Oracle Data Provider for .NET
15.1 Oracle XML DB and ODP.NET XML 15-1
15.2 Using XMLType Data with ODP.NET 15-1
Part V. XML Schema and Object-Relational XMLType
16 Choice of XMLType Storage and Indexing
16.1 Introduction to Choosing an XMLType Storage Model and Indexing
Approaches 16-1
ORACLE Xil



16.2 XMLType Use Case Spectrum: Data-Centric to Document-Centric 16-3
16.3 Common Use Cases for XML Data Stored as XMLType 16-4
16.3.1 XMLType Use Case: No XML Fragment Updating or Querying 16-5
16.3.2 XMLType Use Case: Data Integration from Diverse Sources with
Different XML Schemas 16-5
16.3.3 XMLType Use Case: Staged XML Data for ETL 16-6
16.3.4 XMLType Use Case: Semi-Structured XML Data 16-6
16.3.5 XMLType Use Case: Business Intelligence Queries 16-7
16.3.6 XMLType Use Case: XML Queries Involving Full-Text Search 16-8
16.4 XMLType Storage Model Considerations 16-8
16.5 XMLType Indexing Considerations 16-9
16.6 XMLType Storage Options: Relative Advantages 16-10
17 XML Schema Storage and Query: Basic
17.1  Overview of XML Schema 17-2
17.1.1 XML Schema for Schemas 17-3
17.1.2 XML Schema Features 17-3
17.1.3 XML Instance Documents 17-3
17.1.4 XML Namespaces and XML Schemas 17-3
17.1.5 Overview of Editing XML Schemas 17-3
17.2  Overview of Using XML Schema with Oracle XML DB 17-4
17.2.1 Why Use XML Schema with Oracle XML DB? 17-6
17.2.2 Overview of Annotating an XML Schema to Control Naming, Mapping,
and Storage 17-6
17.2.3 DOM Fidelity 17-8
17.2.4 XMLType Methods Related to XML Schema 17-9
17.3 XML Schema Registration with Oracle XML DB 17-9
17.3.1 XML Schema Registration Actions 17-11
17.3.2 Registering an XML Schema with Oracle XML DB 17-11
17.3.3 SQL Types and Tables Created During XML Schema Registration 17-13
17.3.4 Default Tables for Global Elements 17-14
17.3.5 Database Objects That Depend on Registered XML Schemas 17-15
17.3.6  Local and Global XML Schemas 17-15
17.3.6.1 Local XML Schema 17-16
17.3.6.2 Global XML Schema 17-17
17.3.7  Fully Qualified XML Schema URLs 17-18
17.3.8 Deletion of an XML Schema 17-18
17.3.9 Listing All Registered XML Schemas 17-20
17.4  Creation of XMLType Tables and Columns Based on XML Schemas 17-21
17.4.1 Specification of XMLType Storage Options for XML Schema-Based
Data 17-24
ORACLE Xiii



17.4.1.1 Binary XML Storage of XML Schema-Based Data 17-25
17.4.1.2 Object-Relational Storage of XML Schema-Based Data 17-27
17.5 Ways to ldentify XML Schema Instance Documents 17-29
17.5.1 Attributes noNamespaceSchemalocation and schemalocation 17-30
17.5.2 XML Schema and Multiple Namespaces 17-31
17.6 XML Schema Data Types Are Mapped to Oracle XML DB Storage 17-31
18 XML Schema Storage and Query: Object-Relational Storage
18.1 Object-Relational Storage of XML Documents 18-2
18.1.1 How Collections Are Stored for Object-Relational XMLType Storage 18-3
18.1.2 SQL Types Created during XML Schema Registration for Object-
Relational Storage 18-4
18.1.3 Default Tables Created during XML Schema Registration 18-6
18.1.4 Do Not Use Internal Constructs Generated during XML Schema
Registration 18-6
18.1.5 Generated Names are Case Sensitive 18-6
18.1.6 SYS_XDBPD$ and DOM Fidelity for Object-Relational Storage 18-7
18.2 Oracle XML Schema Annotations 18-8
18.2.1 Common Uses of XML Schema Annotations 18-9
18.2.2 XML Schema Annotation Example 18-10
18.2.3 Annotating an XML Schema Using DBMS_XMLSCHEMA_ ANNOTATE
18-14
18.2.4 Available Oracle XML DB XML Schema Annotations 18-15
18.2.5 XML Schema Annotation Guidelines for Object-Relational Storage 18-18
18.2.5.1 Avoid Creation of Unnecessary Tables for Unused Top-Level
Elements 18-19
18.2.5.2  Provide Your Own Names for Default Tables 18-19
18.2.5.3  Turn Off DOM Fidelity If Not Needed 18-20
18.2.5.4 Annotate Time-Related Elements with a Timestamp Data Type 18-20
18.2.5.5 Add Table and Column Properties 18-20
18.2.5.6  Store Large Collections Out of Line 18-20
18.2.6  Querying a Registered XML Schema to Obtain Annotations 18-21
18.2.6.1 You Can Apply Annotations from One XML Schema to Another 18-22
18.3 Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data
Types 18-23
18.3.1 Example of Mapping XML Schema Data Types to SQL 18-24
18.3.2 XML Schema Attribute Data Types Mapped to SQL 18-25
18.3.2.1 You Can Override the SQLType Value in an XML Schema When
Declaring Attributes 18-25
18.3.3 XML Schema Element Data Types Mapped to SQL 18-26
18.3.3.1 Override of the SQLType Value in an XML Schema When
Declaring Elements 18-26

ORACLE

Xiv



18.3.4 How XML Schema simpleType Is Mapped to SQL

18.3.4.1 NCHAR, NVARCHAR2, and NCLOB SQLType Values Are Not
Supported for SQLType

18.3.4.2 simpleType: How XML Strings Are Mapped to SQL VARCHAR2
Versus CLOB

18.3.4.3 How XML Schema Time Zones Are Mapped to SQL
18.3.5 How XML Schema complexType Is Mapped to SQL

18.3.5.1 Attribute Specification in a complexType XML Schema
Declaration

18.4 complexType Extensions and Restrictions in Oracle XML DB
18.4.1 complexType Declarations in XML Schema: Handling Inheritance

18.4.2 How a complexType Based on simpleContent Is Mapped to an Object
Type

18.4.3 How any and anyAttribute Declarations Are Mapped to Object Type
Attributes

18.5 Creating XML Schema-Based XMLType Columns and Tables

18.6  Overview of Partitioning XMLType Tables and Columns Stored Object-
Relationally

18.6.1 Examples of Partitioning XMLType Data Stored Object-Relationally

18.6.2 Partition Maintenance for XMLType Data Stored Object-Relationally
18.7 Specification of Relational Constraints on XMLType Tables and Columns

18.7.1 Adding Unique Constraints to the Parent Element of an Attribute
18.8 Out-Of-Line Storage of XMLType Data

18.8.1 Setting Annotation Attribute xdb:SQLInline to false for Out-Of-Line
Storage

18.8.2  Storing Collections in Out-Of-Line Tables
18.9 Considerations for Working with Complex or Large XML Schemas
18.9.1 Circular and Cyclical Dependencies Among XML Schemas

18.9.1.1  For Circular XML Schema Dependencies Set Parameter
GENTABLES to TRUE

18.9.1.2 complexType Declarations in XML Schema: Handling Cycles
18.9.1.3 Cyclical References Among XML Schemas

18.9.2  Support for Recursive Schemas
18.9.2.1 defaultTable Shared Among Common Out-Of-Line Elements
18.9.2.2 Query Rewrite when DOCID is Present
18.9.2.3 DOCID Column Creation Disabling

18.9.3 XML Fragments Can Be Mapped to Large Objects (LOBS)

18.9.4 ORA-01792 and ORA-04031: Issues with Large XML Schemas

18.9.5 Considerations for Loading and Retrieving Large Documents with
Collections

18.9.5.1 Guidelines for Configuration Parameters xdbcore-loadableunit-
size and xdbcore-xobmem-bound

ORACLE

18-27

18-30

18-30
18-30
18-31

18-32
18-33
18-33

18-36

18-36
18-37

18-39
18-41
18-42
18-43
18-44
18-46

18-47
18-50
18-52
18-53

18-54
18-54
18-57
18-60
18-61
18-63
18-64
18-64
18-65

18-67

18-68

XV



18.10 Debugging XML Schema Registration for XML Data Stored Object-

Relationally 18-69
19 XPath Rewrite for Object-Relational Storage
19.1 Overview of XPath Rewrite for Object-Relational Storage 19-1
19.2 Common XPath Expressions that Are Rewritten 19-3
19.3 XPath Rewrite for Out-Of-Line Tables 19-4
19.4  Guidelines for Using Execution Plans to Analyze and Optimize XPath
Queries 19-5
19.4.1 Guideline: Look for underlying tables versus XML functions in
execution plans 19-6
19.4.2 Guideline: Name the object-relational tables, so you recognize them in
execution plans 19-7
19.4.3 Guideline: Create an index on a column targeted by a predicate 19-8
19.4.4 Guideline: Create indexes on ordered collection tables 19-10
19.4.5 Guideline: Use XMLOptimizationCheck to determine why a query is
not rewritten 19-11
20 XML Schema Evolution
20.1 Overview of XML Schema Evolution 20-1
20.2 Copy-Based Schema Evolution 20-2
20.2.1 Scenario for Copy-Based Evolution 20-3
20.2.2 COPYEVOLVE Parameters and Errors 20-6
20.2.3 Limitations of Procedure COPYEVOLVE 20-8
20.2.4  Guidelines for Using Procedure COPYEVOLVE 20-9
20.2.4.1 Top-Level Element Name Changes 20-10
20.2.4.2 User-Created Virtual Columns of Tables Other Than Default
Tables 20-10
20.2.4.3 Ensure That the XML Schema and Dependents Are Not Used by
Concurrent Sessions 20-10
20.2.4.4 Rollback When Procedure
DBMS_XMLSCHEMA.COPYEVOLVE Raises an Error 20-10
20.2.4.5 Failed Rollback From Insufficient Privileges 20-11
20.2.4.6  Privileges Needed for XML Schema Evolution 20-11
20.2.5 Update of Existing XML Instance Documents Using an XSLT
Stylesheet 20-12
20.2.6 Examples of Using Procedure COPYEVOLVE 20-14
20.3 In-Place XML Schema Evolution 20-17
20.3.1 Restrictions for In-Place XML Schema Evolution 20-18
20.3.1.1 Backward-Compatibility Restrictions 20-18
20.3.1.2 Other Restrictions on In-Place Evolution 20-20
20.3.2 Supported Operations for In-Place XML Schema Evolution 20-21
ORACLE XVi



20.3.3 Guidelines for Using In-Place XML Schema Evolution 20-23
20.3.4 inPlaceEvolve Parameters 20-23
20.3.5 The diffXML Parameter Document 20-24
20.3.5.1 diffXML Operations and Examples 20-25
Part VI  Oracle XML DB Repository
21  Access to Oracle XML DB Repository Data
21.1 Overview of Oracle XML DB Repository 21-2
21.1.1 Oracle XML DB Provides Name-Level Locking 21-4
21.1.2 Two Ways to Access Oracle XML DB Repository Resources 21-5
21.1.3 Database Schema (User Account) XDB and Oracle XML DB
Repository 21-6
21.2 Repository Terminology and Supplied Resources 21-7
21.2.1 Repository Terminology 21-7
21.2.2 Predefined Repository Files and Folders 21-8
21.3 Oracle XML DB Repository Resources 21-9
21.3.1 Where Is Repository Data Stored? 21-10
21.3.1.1 Names of Generated Tables 21-10
21.3.1.2 How Object-Relational Storage Is Defined for Repository
Resources 21-10
21.3.1.3 Oracle ASM Virtual Folder 21-11
21.3.2 How Documents are Stored in Oracle XML DB Repository 21-11
21.3.3 Repository Data Access Control 21-12
21.3.4 Repository Path-Name Resolution 21-13
21.3.5 Link Types 21-13
21.3.5.1 Repository Links and Document Links 21-14
21.3.5.2 Hard Links and Weak Links 21-14
21.3.5.3 Creating a Weak Link with No Knowledge of Folder Hierarchy 21-16
21.3.5.4 How and When to Prevent Multiple Hard Links 21-17
21.4 Navigational or Path Access to Repository Resources 21-17
21.4.1 Access to Oracle XML DB Resources Using Internet Protocols 21-19
21.4.1.1 Where You Can Use Oracle XML DB Protocol Access 21-20
21.4.1.2 Overview of Protocol Access to Oracle XML DB 21-20
21.4.1.3 Retrieval of Oracle XML DB Resources 21-21
21.4.1.4 Storage of Oracle XML DB Resources 21-21
21.4.1.5 Internet Protocols and XMLType: XMLType Direct Stream Write 21-21
21.4.2 Access to Oracle ASM Files Using Protocols and Resource APIs — For
DBAs 21-21
21.5 Query-Based Access to Repository Resources 21-23

ORACLE

XVii



21.6 Servlet Access to Repository Resources 21-24

21.7 Operations on Repository Resources 21-25
21.8 Accessing the Content of Repository Resources Using SQL 21-32
21.9 Access to the Content of XML Schema-Based Documents 21-33
21.9.1 Accessing Resource Content Using Element XMLRef in Joins 21-33
21.10 Update of the Content of Repository Documents 21-35
21.10.1 Update of Repository Content Using Internet Protocols 21-35
21.10.2 Update of Repository Content Using SQL 21-36
21.10.2.1 Updating a Document in the Repository by Updating Its

Resource Document 21-37

21.10.2.2 Updating an XML Schema-Based Document in the Repository
by Updating the Default Table 21-38
21.11 Querying Resources in RESOURCE_VIEW and PATH_VIEW 21-40
21.12 Oracle XML DB Hierarchical Repository Index 21-44

272  Configuration of Oracle XML DB Repository

22.1 Resource Configuration Files 22-2
22.2 Configuring a Resource 22-3
22.3 Common Configuration Parameters 22-4
22.3.1 Configuration Element ResConfig 22-5
22.3.2 Configuration Elements defaultChildConfig and configuration 22-5
22.3.3 Configuration Element applicationData 22-6

23  Use of XLink and XInclude with Oracle XML DB

23.1  Overview of XLink and XInclude 23-2
23.2  Link Types for XLink and XInclude 23-3
23.2.1 XLink and XlInclude Links Model Document Relationships 23-3
23.2.2 XLink Link Types and XiInclude Link Types 23-3
23.3  XlInclude: Compound Documents 23-4
23.4 Oracle XML DB Support for XLink 23-5
23.5 Oracle XML DB Support for XInclude 23-6
23.5.1 Expanding Compound-Document Inclusions 23-7
23.5.2 Validation of Compound Documents 23-9
23.5.3 Update of a Compound Document 23-9
23.5.4 Compound Document Versioning, Locking, and Access Control 23-9
23.6 Use View DOCUMENT _LINKS to Examine XLink and XlInclude Links 23-10
23.6.1 Querying DOCUMENT _LINKS for XLink Information 23-11
23.6.2 Querying DOCUMENT_LINKS for XInclude Information 23-12
23.7 Configuration of Repository Resources for XLink and XlInclude 23-13

ORACLE Xviii



23.7.1 Configure the Treatment of Unresolved Links: Attribute UnresolvedLink

23-14

23.7.2 Configure the Type of Document Links to Create: Element LinkType 23-15

23.7.3 Configure the Path Format for Retrieval: Element PathFormat 23-16

23.7.4  Configure Conflict-Resolution for XInclude: Element ConflictRule 23-16
23.7.5 Configure the Decomposition of Documents Using XInclude: Element

SectionConfig 23-17

23.7.6  XLink and XInclude Configuration Examples 23-18

23.8 Manage XLink and XInclude Links Using DBMS_XDB_REPQOS.processLinks
23-20

24  Repository Access Using RESOURCE_VIEW and PATH_VIEW

24.1 Overview of Oracle XML DB RESOURCE_VIEW and PATH_VIEW 24-2
24.1.1 RESOURCE_VIEW Definition and Structure 24-4
24.1.2 PATH_VIEW Definition and Structure 24-5
24.1.3 The Difference Between RESOURCE_VIEW and PATH_VIEW 24-5
24.1.4 Operations You Can Perform Using UNDER_PATH and

EQUALS PATH 24-6

24.2 Oracle SQL Functions That Use RESOURCE_VIEW and PATH_VIEW 24-7
24.2.1 UNDER_PATH SQL Function 24-7
24.2.2 EQUALS PATH SQL Function 24-9
24.2.3 PATH SQL Function 24-9
24.2.4 DEPTH SQL Function 24-10

24.3 Accessing Repository Data Paths, Resources and Links: Examples 24-10

24.4  Deleting Repository Resources: Examples 24-18
24.4.1 Deleting Nonempty Folder Resources 24-18

24.5 Updating Repository Resources: Examples 24-20

24.6  Working with Multiple Oracle XML DB Resources 24-23

24.7 Performance Guidelines for Oracle XML DB Repository Operations 24-25

24.8 Searching for Resources Using Oracle Text 24-26

25 Resource Versions

25.1 Overview of Oracle XML DB Repository Resource Versioning 25-1
25.2  Overview of PL/SQL Package DBMS_XDB_VERSION 25-3
25.3 Resource Versions and Resource IDs 25-4
25.4 Resource Versions and ACLs 25-5
25.5 Resource Versioning Examples 25-6

ORACLE XixX



26  PL/SQL Access to Oracle XML DB Repository

26.1 DBMS_XDB_REPOS: Access and Manage Repository Resources 26-1
26.2 DBMS_XDB_REPOS: ACL-Based Security Management 26-3
26.3 DBMS_XDB_CONFIG: Configuration Management 26-8
27 Repository Access Control
27.1 Access Control Concepts 27-2
27.1.1  Authentication and Authorization 27-3
27.1.2 Principal: A User or Role 27-3
27.1.2.1 Database Roles and ACLs Map Privileges to Users 27-4
27.1.2.2 Principal DAV::owner 27-4
27.1.3 Privilege: A Permission 27-4
27.1.4  Access Control Entry (ACE) 27-5
27.1.5 Access Control List (ACL) 27-6
27.2 Database Privileges for Repository Operations 27-6
27.3 Privileges 27-7
27.3.1  Atomic Privileges 27-8
27.3.2 Aggregate Privileges 27-8
27.4 ACLs and ACEs 27-9
27.4.1 System ACLs 27-10
27.4.2 ACL and ACE Evaluation 27-11
27.4.3 ACL Validation 27-12
27.4.4 Element invert: Complement the Principals in an ACE 27-12
27.5 Overview of Working with Access Control Lists (ACLS) 27-12
27.5.1 Creating an ACL Using DBMS_XDB_REPOS.CREATERESOURCE 27-14
27.5.2 Retrieving an ACL Document, Given its Repository Path 27-14
27.5.3 Setting the ACL of a Resource 27-15
27.5.4 Deleting an ACL 27-16
27.5.5 Updating an ACL 27-16
27.5.6 Retrieving the ACL Document that Protects a Given Resource 27-18
27.5.7 Retrieving Privileges Granted to the Current User for a Particular
Resource 27-19
27.5.8 Checking Whether the Current User Has Privileges on a Resource 27-20
27.5.9 Checking Whether a User Has Privileges Using the ACL and Resource
Owner 27-20
27.5.10 Retrieving the Path of the ACL that Protects a Given Resource 27-21
27.5.11 Retrieving the Paths of All Resources Protected by a Given ACL 27-22
27.6  ACL Caching 27-23
27.7 Repository Resources and Database Table Security 27-23
27.7.1 Optimization: Do not enforce ACL-based security if you do not need it 27-24
ORACLE XX



27.8 Integration Of Oracle XML DB with LDAP 27-25
28 Repository Access Using Protocols
28.1 Overview of Oracle XML DB Protocol Server 28-1
28.1.1 Session Pooling 28-2
28.2 Oracle XML DB Protocol Server Configuration Management 28-3
28.2.1 Protocol Server Configuration Parameters 28-4
28.2.2  Configuring Secure HTTP (HTTPS) 28-8
28.2.2.1 Enabling the HTTP Listener to Use SSL 28-9
28.2.2.2 Enabling TCPS Dispatcher 28-10
28.2.3 Using Listener Status to Check Port Configuration 28-10
28.2.4  Configuring Protocol Port Parameters after Database Consolidation 28-11
28.2.5 Configuration and Management of Authentication Mechanisms for
HTTP 28-11
28.2.5.1 Nonces for Digest Authentication 28-13
28.2.6 Oracle XML DB Repository and File-System Resources 28-13
28.2.7  Protocol Server Handles XML Schema-Based or Non-Schema-Based
XML Documents 28-14
28.2.8 Event-Based Logging 28-14
28.3 FTP and the Oracle XML DB Protocol Server 28-14
28.3.1 Oracle XML DB Protocol Server: FTP Features 28-14
28.3.1.1 FTP Features That Are Not Supported 28-16
28.3.1.2 Supported FTP Client Methods 28-16
28.3.1.3 FTP Quote Methods 28-17
28.3.1.4 Uploading Content to Oracle XML DB Repository Using FTP 28-18
28.3.1.5 Using FTP with Oracle ASM Files 28-20
28.3.1.6  Using FTP on the Standard Port Instead of the Oracle XML DB
Default Port 28-21
28.3.1.7 Using IPv6 IP Addresses with FTP 28-22
28.3.1.8 FTP Server Session Management 28-23
28.3.1.9 Handling Error 421. Modifying the Default Timeout Value of an
FTP Session 28-23
28.3.1.10 FTP Client Failure in Passive Mode 28-24
28.4 HTTP(S) and Oracle XML DB Protocol Server 28-24
28.4.1 Oracle XML DB Protocol Server: HTTP(S) Features 28-24
28.4.1.1 Supported HTTP(S) Client Methods 28-25
28.4.1.2 Using HTTP(S) on a Standard Port Instead of an Oracle XML DB
Default Port 28-26
28.4.1.3 Use of IPv6 IP Addresses with HTTP(S) 28-27
28.4.1.4 HTTPS: Support for Secure HTTP 28-27
28.4.1.5 Control of URL Expiration Time 28-28
28.4.1.6  Anonymous Access to Oracle XML DB Repository Using HTTP 28-28

ORACLE

XXi



28.4.1.7 Use of Java Servlets with HTTP(S) 28-29
28.4.1.8 Embedded PL/SQL Gateway 28-29
28.4.1.9 Transmission of Multibyte Data From a Client 28-30
28.4.1.10 Characters That Are Not ASCII in URLs 28-31
28.4.1.11 Character Sets for HTTP(S) 28-31
28.5 WebDAV and Oracle XML DB 28-32
28.5.1 Oracle XML DB WebDAYV Features 28-33
28.5.1.1 WebDAV Features That Are Not Supported by Oracle XML DB 28-33
28.5.1.2 WebDAYV Client Methods Supported by Oracle XML DB 28-34
28.5.2 WebDAV and Microsoft Windows 28-34
28.5.3 Creating a WebFolder in Microsoft Windows For Use With Oracle
XML DB Repository 28-35
28.5.3.1 Use of WebDAV with Windows Explorer to Copy Files into
Oracle XML DB Repository 28-36
29 User-Defined Repository Metadata
29.1 Overview of Metadata and XML 29-1
29.1.1 Kinds of Metadata — Uses of the Term 29-2
29.1.2 User-Defined Resource Metadata 29-3
29.1.3 Scenario: Metadata for a Photo Collection 29-3
29.2 Using XML Schemas to Define Resource Metadata 29-4
29.3  Addition, Modification, and Deletion of Resource Metadata 29-6
29.3.1 Adding Metadata Using APPENDRESOURCEMETADATA 29-7
29.3.2 Deleting Metadata Using DELETERESOURCEMETADATA 29-8
29.3.3 Adding Metadata Using SQL DML 29-9
29.3.4 Adding Metadata Using WebDAV PROPPATCH 29-10
29.4 Querying XML Schema-Based Resource Metadata 29-11
29.5 XML Image Metadata from Binary Image Metadata 29-13
29.6  Adding Non-Schema-Based Resource Metadata 29-13
29.7 PL/SQL Procedures Affecting Resource Metadata 29-15
30 Oracle XML DB Repository Events
30.1 Overview of Repository Events 30-1
30.1.1 Repository Events: Use Cases 30-2
30.1.2 Repository Events and Database Triggers 30-2
30.1.3 Repository Event Listeners and Event Handlers 30-3
30.1.4 Repository Event Configuration 30-3
30.2 Possible Repository Events 30-4
30.3 Repository Operations and Events 30-6
30.4 Repository Event Handler Considerations 30-7
ORACLE XXii



30.5 Configuration of Repository Events 30-10

30.5.1 Configuration Element event-listeners 30-11
30.5.2 Configuration Element listener 30-11
30.5.3 Repository Events Configuration Examples 30-12

31 Guidelines for Oracle XML DB Applications in Java

31.1 Overview of Oracle XML DB Java Applications 31-2
31.2 HTTP(S): Access Java Servlets or Directly Access XMLType Resources 31-2
31.3 Use JDBC XMLType Support to Access Many XMLType Object Elements 31-2
31.4 Use Servlets to Manipulate and Write Out Data Quickly as XML 31-3
31.5 Oracle XML DB Java Servlet Support Restrictions 31-3
31.6  Configuration of Oracle XML DB Servlets 31-3
31.7 HTTP Request Processing for Oracle XML DB Servlets 31-7
31.8 Session Pool and Oracle XML DB Servlets 31-8
31.9 Native XML Stream Support 31-8
31.10 Oracle XML DB Servlet APIs 31-8
31.11 Oracle XML DB Servlet Example 31-9

32 Data Access Using URIs

32.1 Overview of Oracle XML DB URI Features 32-2
32.2 URIs and URLs 32-2
32.3 URIType and its Subtypes 32-3
32.3.1 Overview of DBUris and XDBUris 32-5
32.3.2 URIType PL/SQL Methods 32-5
32.3.2.1 HTTPURIType PL/SQL Method GETCONTENTTYPE() 32-7
32.3.2.2 DBURIType PL/SQL Method GETCONTENTTYPE() 32-7
32.3.2.3 DBURIType PL/SQL Method GETCLOB() 32-8
32.3.2.4 DBURIType PL/SQL Method GETBLOB() 32-8

32.4 Accessing Data Using URIType Instances 32-9
32.5 XDBUris: Pointers to Repository Resources 32-12
32.5.1 XDBUri URI Syntax 32-12
32.5.2 Using XDBUri: Examples 32-13
32.6 DBUris: Pointers to Database Data 32-15
32.6.1 View the Database as XML Data 32-16
32.6.2 DBUri URI Syntax 32-17
32.6.3 DBUris are Scoped to a Database and Session 32-19
32.6.4 Using DBUris —Examples 32-19
32.6.4.1 Targeting a Table Using a DBUri 32-20
32.6.4.2 Targeting a Row in a Table Using a DBUri 32-21

ORACLE XXiii



32.6.4.3 Targeting a Column Using a DBUFri 32-22
32.6.4.4 Retrieving the Text Value of a Column Using a DBUri 32-23
32.6.4.5 Targeting a Collection Using a DBUri 32-24
32.7 Create New Subtypes of URIType Using Package URIFACTORY 32-25
32.7.1 Registering New URIType Subtypes with Package URIFACTORY 32-26
32.8 SYS DBURIGEN SQL Function 32-27
32.8.1 Rules for Passing Columns or Object Attributes to SYS_DBURIGEN 32-28
32.8.2 Using SQL Function SYS_DBURIGEN: Examples 32-29
32.8.2.1 Inserting Database References Using SYS_ DBURIGEN 32-29
32.8.2.2 Returning Partial Results Using SYS__ DBURIGEN 32-30
32.8.2.3 Returning URLs to Inserted Objects Using SYS DBURIGEN 32-31
32.9 DBUriServlet 32-32
32.9.1 Overriding the MIME Type Using a URL 32-34
32.9.2 Customizing DBUriServlet 32-34
32.9.3 Using Roles for DBUriServlet Security 32-36
32.9.4 Configuring Package URIFACTORY to Handle DBUris 32-36
32.9.5 Table or View Access from a Web Browser Using DBUFri Servlet 32-37
33 Native Oracle XML DB Web Services
33.1 Overview of Native Oracle XML DB Web Services 33-1
33.2 Configuring and Enabling Web Services for Oracle XML DB 33-2
33.2.1 Configuring Web Services for Oracle XML DB 33-3
33.2.2 Enabling Web Services for a Specific User 33-4
33.3  Query Oracle XML DB Using a Web Service 334
33.4 Access to PL/SQL Stored Procedures Using a Web Service 33-7
33.4.1 Using a PL/SQL Function with a Web Service: Example 33-8
Part VIl  Oracle Tools that Support Oracle XML DB
34  Administration of Oracle XML DB
34.1 Upgrade or Downgrade of an Existing Oracle XML DB Installation 34-1
34.1.1 Authentication Considerations for Database Installation, Upgrade and
Downgrade 34-2
34.1.1.1 Authentication Considerations for a Database Installation 34-3
34.1.1.2 Authentication Considerations for a Database Upgrade 34-3
34.1.1.3 Authentication Considerations for a Database Downgrade 34-4
34.1.2 Automatic Installation of Oracle XML DB 34-4
34.1.3 Validation of ACL Documents and Configuration File 34-4
34.2 Administration of Oracle XML DB Using Oracle Enterprise Manager 34-5

ORACLE

XXIV



34.3 Configuration of Oracle XML DB Using xdbconfig.xml 34-6
34.3.1 Oracle XML DB Configuration File, xdbconfig.xml 34-6
34.3.1.1 Element xdbconfig (Top-Level) 34-7
34.3.1.2 Element sysconfig (Child of xdbconfig) 34-7
34.3.1.3 Element userconfig (Child of xdbconfig) 34-8
34.3.1.4 Element protocolconfig (Child of sysconfig) 34-8
34.3.1.5 Element httpconfig (Child of protocolconfig) 34-8
34.3.1.6  Element servlet (Descendant of httpconfig) 34-9
34.3.1.7 Oracle XML DB Configuration File Example 34-10
34.3.1.8 Oracle XML DB Configuration API 34-13
34.3.1.9 Configuration of Mappings from Default Namespace to Schema
Location 34-14
34.3.1.10 Configuration of XML File Extensions 34-16
34.4 Oracle XML DB and Database Consolidation 34-16
34.5 Package DBMS_XDB_ADMIN 34-17
35 How to Load XML Data
35.1 Overview of Loading XMLType Data Into Oracle Database 35-1
35.2 Load XMLType Data Using SQL*Loader 35-2
35.2.1 Load XMLType LOB Data Using SQL*Loader 35-3
35.2.1.1 Load LOB Data Using Predetermined Size Fields 35-3
35.2.1.2 Load LOB Data Using Delimited Fields 35-3
35.2.1.3 Load XML Columns Containing LOB Data from LOBFILEs 35-4
35.2.1.4 Specify LOBFILEs 35-4
35.2.2 Load XMLType Data Directly from a Control File Using SQL*Loader 35-4
35.2.3 Loading Large XML Documents Using SQL*Loader 35-5
36 Export and Import of Oracle XML DB Data
36.1 Overview of Exporting and Importing XMLType Tables 36-1
36.2 Export/Import Limitations for Oracle XML DB Repository 36-3
36.3  Export/Import Syntax and Examples 36-3
36.3.1 Performing a Table-Mode Export /Import 36-3
36.3.2 Performing a Schema-Mode Export/Import 36-4
37 XML Data Exchange Using Oracle Database Advanced Queuing
37.1 XML and Oracle Database Advanced Queuing 37-1
37.1.1 Oracle Database Advanced Queuing and XML Message Payloads 37-2
37.1.2 Advantages of Using Oracle Database Advanced Queuing 37-3
37.2 Oracle Database Advanced Queuing 37-3
ORACLE XXV



37.2.1 Message Queuing 37-4
37.3 XMLType Attributes in Object Types 37-4
37.4 Internet Data Access Presentation (iDAP): SOAP for AQ 37-5
37.5 IDAP Architecture 37-5
37.5.1 XMLType Queue Payloads 37-6
37.6  Guidelines for Using XML and Oracle Database Advanced Queuing 37-8
37.6.1 Store AQ XML Messages with Many PDFs as One Record 37-9
37.6.2 Add New Recipients After Messages Are Enqueued 37-9
37.6.3 Enqueue and Dequeue XML Messages 37-10
37.6.4 Parse Messages with XML Content from AQ Queues 37-10
37.6.5 Prevent the Listener from Stopping Until an XML Document Is
Processed 37-10
37.6.6 HTTPS with AQ 37-10
37.6.7 Store XML in Oracle AQ Message Payloads 37-11
37.6.8 IDAP and SOAP 37-11
Part VIII  Appendixes
A Oracle-Supplied XML Schemas and Examples
A.1 XDBResource.xsd: XML Schema for Oracle XML DB Resources A-2
A.2 XDBResConfig.xsd: XML Schema for Resource Configuration A-11
A.3 acl.xsd: XML Schema for ACLs A-15
A.4  xdbconfig.xsd: XML Schema for Configuring Oracle XML DB A-19
A.5 xdiff.xsd: XML Schema for Comparing Schemas for In-Place Evolution A-33
A.6  Purchase-Order XML Schemas A-35
A.7 XSLT Stylesheet Example, PurchaseOrder.xsl A-45
A.8 Loading XML Data Using C (OCI) A-51
A.9 Initializing and Terminating an XML Context (OCI) A-55
B Oracle XML DB Restrictions
C Deprecated Content Repository API for Java
C.1 About the Content Repository API for Java (JCR) C-2
C.2  About Oracle XML DB Content Connector C-3
C.3 How Oracle XML DB Repository Is Exposed in JCR C-3
C.4 CLASSPATH for Oracle XML DB Content Connector C-3
C.5 Obtaining the JCR Repository Object C-3
ORACLE XXVi



C.6 Java Code to Upload a File to the Repository using Oracle XML DB Content

Connector C-4
C.7 Additional JCR Code Examples C-6
C.8 Oracle XML DB Content Connector Uses the Standard Java Logging API C-6
C.9 Supported JCR Compliance Levels C-6
C.10 Oracle XML DB Content Connector Restrictions C-6
C.11 XML Schemas and JCR C-7
Index
ORACLE XXVii



List of Examples

3-1 Creating a Table with an XMLType Column

3-2 Creating a Table of XMLType

3-3 Creating a Virtual Column for an XML Attribute in an XMLType Table
3-4 Creating a Virtual Column for an XML Attribute in an XMLType Column
3-5 Partitioning a Relational Table That Has an XMLType Column

3-6 Partitioning an XMLType Table

3-7 Error From Attempting to Insert an Incorrect XML Document

3-8 Constraining a Binary XML Table Using a Virtual Column

3-9 Constraining a Binary XML Column Using a Virtual Column: Uniqueness
3-10  Constraining a Binary XML Column Using a Virtual Column: Foreign Key
3-11  Enforcing Database Integrity When Loading XML Using FTP

3-12  Creating a Database Directory

3-13 Inserting XML Content into an XMLType Table

3-14  Inserting Content into an XMLType Table Using Java

3-15 Inserting Content into an XMLType Table Using C

3-16  Inserting XML Content into the Repository Using CREATERESOURCE
3-17  PurchaseOrder XML Instance Document

3-18 Retrieving an Entire XML Document Using OBJECT_VALUE

3-19  Accessing XML Fragments Using XMLQUERY

3-20  Accessing a Text Node Value Using XMLCAST and XMLQuery

3-21  Searching XML Content Using XMLEXists, XMLCast, and XMLQuery
3-22  Joining Data from an XMLType Table and a Relational Table

3-23  Accessing Description Nodes Using XMLTABLE

3-24  Counting the Number of Elements in a Collection Using XMLTABLE
3-25  Counting the Number of Child Elements in an Element Using XMLTABLE
3-26  Updating a Text Node

3-27  Replacing an Entire Element Using XQuery Update

3-28 Changing Text Node Values Using XQuery Update

3-29  Generating XML Data Using SQL/XML Functions

3-30 Creating XMLType Views Over Conventional Relational Tables

3-31  Querying XMLType Views

3-32  Generating XML Data from a Relational Table Using DBURIType and getXML()
3-33  Restricting Rows Using an XPath Predicate

3-34  Restricting Rows and Columns Using an XPath Predicate

4-1 Chaining XMLTable Calls

ORACLE

3-2
3-2
3-3
3-4
35
35
3-6
3-8
3-8
3-9
3-9

3-12

3-12

3-12

3-13

3-15

3-17

3-18

3-19

3-20

3-22

3-24

3-25

3-26

3-27

3-28

3-29

3-30

3-32

3-33

3-34

3-36

3-37

3-37

4-17

XXVl



4-2 Finding a Node Using SQL/XML Function XMLEXists

4-3 Extracting the Scalar Value of an XML Fragment Using XMLCAST

4-4 Static Type-Checking of XQuery Expressions: oradb URI scheme

4-5 Static Type-Checking of XQuery Expressions: XML Schema-Based Data
5-1 Creating Resources for Examples

5-2 XMLQuery Applied to a Sequence of Items of Different Types

5-3 FLOWR Expression Using for, let, order by, where, and return

5-4 FLOWR Expression Using Built-In Functions

5-5 Querying Relational Data as XML Using XMLQuery

5-6 Querying Relational Data as XML Using a Nested FLWOR Expression
5-7 Querying Relational Data as XML Using XMLTable

5-8 Querying an XMLType Column Using XMLQuery PASSING Clause
5-9 Using XMLTABLE with XML Schema-Based Data

5-10 Using XMLQUERY with XML Schema-Based Data

5-11  Using XMLTABLE with PASSING and COLUMNS Clauses

5-12  Using XMLTABLE with RETURNING SEQUENCE BY REF

5-13  Using Chained XMLTABLE with Access by Reference

5-14  Using XMLTABLE to Decompose XML Collection Elements into Relational Data
5-15 Using XMLQUERY with a Namespace Declaration

5-16  Using XMLTABLE with the XMLNAMESPACES Clause

5-17  Querying XMLTYPE Data

5-18  Querying Transient XMLTYPE Data Using a PL/SQL Cursor

5-19  Extracting XML Data and Inserting It into a Relational Table Using SQL
5-20  Extracting XML Data and Inserting It into a Table Using PL/SQL

5-21  Searching XML Data Using SQL/XML Functions

5-22  Extracting Fragments Using XMLQUERY

5-23  Using the SQL*Plus XQUERY Command

5-24  Using XQuery with PL/SQL

5-25  Using XQuery with JDBC

5-26  Using XQuery with ODP.NET and C#

5-27  Updating XMLType Data Using SQL UPDATE

5-28  Updating XMLTYPE Data Using SQL UPDATE and XQuery Update
5-29  Updating Multiple Text Nodes and Attribute Nodes

5-30  Updating Selected Nodes within a Collection

5-31  Incorrectly Updating a Node That Occurs Multiple Times in a Collection
5-32  Correctly Updating a Node That Occurs Multiple Times in a Collection
5-33  NULL Updates — Element and Attribute

ORACLE

4-19
4-21
4-29
4-29

5-2

5-3

5-4

5-5

5-7

5-8
5-10
5-13
5-14
5-15
5-15
5-16
5-17
5-17
5-18
5-19
5-21
5-21
5-22
5-23
5-24
5-25
5-25
5-27
5-28
5-28
5-31
5-32
5-33
5-34
5-35
5-36
5-38

XXiX



5-34  NULL Updates — Text Node

5-35 Inserting an Element into a Collection

5-36 Inserting an Element that Uses a Namespace

5-37 Inserting an Element Before an Element

5-38 Inserting an Element as the Last Child Element

5-39 Deleting an Element

5-40 Creating a View Using Updated XML Data

5-41  Optimization of XMLQuery over Relational Data

5-42  Optimization of XMLTable over Relational Data

5-43  Optimization of XMLQuery with Schema-Based XMLType Data

5-44  Optimization of XMLTable with Schema-Based XMLType Data

5-45  Unoptimized Repository Query Using fn:doc

5-46  Optimized Repository Query Using EQUALS PATH

5-47  Repository Query Using Oracle XQuery Pragma ora:defaultTable

6-1 Making Query Data Compatible with Index Data — SQL Cast

6-2 Making Query Data Compatible with Index Data — XQuery Cast

6-3 Exchange-Partitioning Tables That Have an XMLIndex Structured Component
6-4 Exchange-Partitioning Reference-Partitioned Tables That Use XMLIndex

6-5 Data Used in Example of Exchange-Partitioning for Reference-Partitioned Tables
6-6 Path Table Contents for Two Purchase Orders

6-7 Creating an XMLIndex Index

6-8 Obtaining the Name of an XMLIndex Index on a Particular Table

6-9 Renaming and Dropping an XMLIndex Index

6-10  Naming the Path Table of an XMLIndex Index

6-11  Determining the System-Generated Name of an XMLIndex Path Table

6-12  Specifying Storage Options When Creating an XMLIndex Index

6-13  Dropping an XMLIndex Unstructured Component

6-14  Determining the Names of the Secondary Indexes of an XMLIndex Index

6-15 Creating a Function-Based Index on Path-Table Column VALUE

6-16  Trying to Create a Numeric Index on Path-Table Column VALUE Directly

6-17  Creating a Numeric Index on Column VALUE with Procedure createNumberindex
6-18 Creating a Date Index on Column VALUE with Procedure createDatelndex

6-19 Creating an Oracle Text CONTEXT Index on Path-Table Column VALUE

6-20  Showing All Secondary Indexes on an XMLIndex Path Table

6-21  XMLIndex with a Structured Component, Using Namespaces and Storage Options
6-22  XMLIndex with a Structured Component, Specifying TABLESPACE at the Index Level
6-23  XMLIndex Index: Adding a Structured Component

ORACLE

5-39
5-40
5-41
5-41
5-42
5-43
5-44
5-46
5-47
5-48
5-48
5-52
5-52
5-53
6-14
6-15
6-16
6-16
6-16
6-19
6-24
6-24
6-24
6-25
6-25
6-25
6-26
6-26
6-27
6-28
6-28
6-28
6-28
6-28
6-31
6-31
6-32

XXX



6-24  Using DBMS_XMLINDEX.PROCESS_PENDING To Index XML Data

6-25 Dropping an XMLIndex Structured Component

6-26  Creating a B-tree Index on an XMLIndex Index Content Table

6-27  Checking Whether an XMLIndex Unstructured Component Is Used

6-28  Obtaining the Name of an XMLIndex Index from Its Path-Table Name

6-29  Extracting Data from an XML Fragment Using XMLIndex

6-30  Using a Structured XMLIndex Component for a Query with Two Predicates
6-31  Using a Structured XMLIndex Component for a Query with Multilevel Chaining
6-32  Turning Off XMLIndex Using Optimizer Hints

6-33  XMLIndex Path Subsetting with CREATE INDEX

6-34  XMLIndex Path Subsetting with ALTER INDEX

6-35 XMLIndex Path Subsetting Using a Namespace Prefix

6-36  Creating an XMLIndex Index in Parallel

6-37  Using Different PARALLEL Degrees for XMLIndex Internal Objects

6-38  Specifying Deferred Synchronization for XMLIndex

6-39  Manually Synchronizing an XMLIndex Index Using SYNCINDEX

6-40  Automatic Collection of Statistics on XMLIndex Objects

6-41  Creating an XML Search Index

6-42  XQuery Full Text Query

6-43  Execution Plan for XQuery Full Text Query

6-44  XQuery Full Text Query with XML Schema-Based Data: Error ORA-18177
6-45  Using XQuery Pragma ora:no_schema with XML Schema-Based Data
6-46  Full-Text Query with XQuery Pragma ora:use_xmltext_idx

6-47 CREATE INDEX Using XMLCAST and XMLQUERY on a Singleton Element
6-48 CREATE INDEX Using EXTRACTVALUE on a Singleton Element

7-1 XSLT Stylesheet Example: PurchaseOrder.xsl

7-2 Registering an XML Schema and Inserting XML Data

7-3 Using SQL Function XMLTRANSFORM to Apply an XSL Stylesheet

7-4 Using XMLType Method TRANSFORMY() with a Transient XSL Stylesheet
7-5 Using XMLTRANSFORM to Apply an XSL Stylesheet Retrieved Using XDBURIType
7-6 Error When Inserting Incorrect XML Document (Partial Validation)

7-7 Forcing Full XML Schema Validation Using a CHECK Constraint

7-8 Enforcing Full XML Schema Validation Using a BEFORE INSERT Trigger
7-9 Validating XML Using Method ISSCHEMAVALID() in SQL

7-10  Validating XML Using Method ISSCHEMAVALID() in PL/SQL

7-11  Validating XML Using Method SCHEMAVALIDATE() within Triggers

7-12  Checking XML Validity Using XMLISVALID Within CHECK Constraints
ORACLE

6-34
6-35
6-35
6-37
6-38
6-38
6-39
6-40
6-41
6-43
6-43
6-43
6-47
6-47
6-49
6-49
6-51
6-65
6-65
6-66
6-67
6-67
6-68
6-72
6-72

7-2

7-5

7-7

7-8

7-9
7-14
7-15
7-15
7-16
7-17
7-17
7-17

XXXi



8-1 XMLELEMENT: Formatting a Date 8-8

8-2 XMLELEMENT: Generating an Element for Each Employee 8-8
8-3 XMLELEMENT: Generating Nested XML 8-9
8-4 XMLELEMENT: Generating Employee Elements with Attributes ID and Name 8-9
8-5 XMLELEMENT: Characters in Generated XML Data Are Not Escaped 8-9
8-6 Creating a Schema-Based XML Document Using XMLELEMENT with Namespaces 8-10
8-7 XMLELEMENT: Generating an Element from a User-Defined Data-Type Instance 8-10
8-8 XMLFOREST: Generating Elements with Attribute and Child Elements 8-11
8-9 XMLFOREST: Generating an Element from a User-Defined Data-Type Instance 8-12
8-10 XMLCONCAT: Concatenating XMLType Instances from a Sequence 8-13
8-11 XMLCONCAT: Concatenating XML Elements 8-14
8-12 XMLAGG: Generating a Department Element with Child Employee Elements 8-15
8-13 XMLAGG: Using GROUP BY to Generate Multiple Department Elements 8-15
8-14 XMLAGG: Generating Nested Elements 8-16
8-15  Using SQL/XML Function XMLPI 8-18
8-16  Using SQL/XML Function XMLCOMMENT 8-18
8-17  Using SQL/XML Function XMLSERIALIZE 8-20
8-18  Using SQL/XML Function XMLPARSE 8-21
8-19 XMLCOLATTVAL: Generating Elements with Attribute and Child Elements 8-22
8-20  Using Oracle SQL Function XMLCDATA 8-23
8-21 DBMS_XMLGEN: Generating Simple XML 8-33
8-22 DBMS_XMLGEN: Generating Simple XML with Pagination (Fetch) 8-34
8-23 DBMS_XMLGEN: Generating XML Using Object Types 8-36
8-24 DBMS_XMLGEN: Generating XML Using User-Defined Data-Type Instances 8-37
8-25 DBMS_XMLGEN: Generating an XML Purchase Order 8-39
8-26 DBMS_XMLGEN: Generating a New Context Handle from a REF Cursor 8-43
8-27 DBMS_XMLGEN: Specifying NULL Handling 8-44
8-28 DBMS_XMLGEN: Generating Recursive XML with a Hierarchical Query 8-45
8-29 DBMS_XMLGEN: Binding Query Variables Using SETBINDVALUE() 8-47
8-30  Using XMLAGG ORDER BY Clause 8-50
8-31  Returning a Rowset Using XMLTABLE 8-51
9-1 Creating a Relational View of XML Content 9-2
9-2 Accessing Individual Members of a Collection Using a View 9-4
9-3 XMLIndex Index that Matches Relational View Columns 9-5
9-4 XMLTable Expression Returned by PL/SQL Function getSIDXDefFromView 9-5
9-5 Querying Master Relational View of XML Data 9-6
9-6 Querying Master and Detail Relational Views of XML Data 9-6

ORACLE XXXIi



9-7 Business-Intelligence Query of XML Data Using a View

10-1  Creating an XMLType View Using XMLELEMENT

10-2  Registering XML Schema emp_simple.xsd

10-3  Creating an XMLType View Using SQL/XML Publishing Functions
10-4  Querying an XMLType View

10-5  Using Namespace Prefixes with SQL/XML Publishing Functions
10-6 XML Schema with No Target Namespace

10-7  Creating a View for an XML Schema with No Target Namespace
10-8  Using SQL/XML Functions in XML Schema-Based XMLType Views
10-9  Creating Object Types for Schema-Based XMLType Views

10-10 Creating and Registering XML Schema emp_complex.xsd

10-11 Creating XMLType View emp_xml Using Object Type emp_t

10-12 Creating an Object View and an XMLType View Based on the Object View
10-13 Creating Object Types

10-14 Registering XML Schema dept_complex.xsd

10-15 Creating XMLType View dept_xml Using Object Type dept_t

10-16 Creating XMLType View dept_xml Using Relational Data Directly
10-17 Creating an XMLType View by Restricting Rows from an XMLType Table
10-18 Creating an XMLType View by Transforming an XMLType Table
10-19 Determining Whether an XMLType View Is Implicitly Updatable, and Updating It
11-1  Creating and Manipulating a DOM Document

11-2  Creating an Element Node and Obtaining Information About It

11-3  Creating a User-Defined Subtype of SYS.util_BinaryOutputStream()
11-4  Retrieving Node Value with a User-Defined Stream

11-5 Get-Pull of Binary Data

11-6  Get-Pull of Character Data

11-7  Set-Pull of Binary Data

11-8  Set-Push of Binary Data

11-9  Parsing an XML Document

11-10 Transforming an XML Document Using an XSL Stylesheet

12-1  Inserting Data with Specified Columns

12-2  Updating Data with Key Columns

12-3 DBMS_XMLSTORE.DELETEXML Example

13-1  Querying an XMLType Table Using JDBC

13-2  Selecting XMLType Data Using getString() and getCLOB()

13-3  Returning XMLType Data Using getSQLXML()

13-4  Returning XMLType Data Using an Output Parameter
ORACLE

9-7
10-3
10-5
10-6
10-7
10-7
10-8
10-9
10-10
10-13
10-13
10-15
10-16
10-17
10-17
10-19
10-19
10-20
10-20
10-21
11-18
11-19
11-22
11-23
11-24
11-24
11-25
11-26
11-28
11-31

12-2

12-4

12-5

13-3

13-4

13-4

13-4

XXXiii



13-5 Updating an XMLType Column Using SQL Constructor XMLType and Java String
13-6  Updating an XMLType Column Using SQLXML

13-7  Retrieving Metadata About an XMLType Column Using JDBC

13-8  Updating an XMLType Column Using JDBC

13-9  Updated Purchase-Order Document

13-10 Inserting an XMLType column using JDBC

13-11 Converting an XML String to an OracleClob Instance

13-12 Policy File Granting Permissions for Java DOM API

13-13 Creating a DOM Obiject with the Java DOM API

13-14 Using the Java DOM API with a Binary XML Column

14-1  Using OCIXMLDBINITXMLCTX() and OCIXMLDBFREEXMLCTX()

14-2  Using the C API for XML with Binary XML

14-3  Using the Oracle XML DB Pull Parser

14-4  Using the DOM to Count Ordered Parts

15-1 Retrieve XMLType Data to .NET

17-1  Registering an XML Schema Using DBMS_XMLSCHEMA.REGISTERSCHEMA
17-2  Objects Created During XML Schema Registration

17-3  Registering a Local XML Schema

17-4  Registering a Global XML Schema

17-5  Deleting an XML Schema with DBMS_XMLSCHEMA.DELETESCHEMA

17-6  Data Dictionary Table for Registered Schemas

17-7  Creating XML Schema-Based XMLType Tables and Columns

17-8  Creating an Object-Relational XMLType Table with Default Storage

17-9  Specifying Object-Relational Storage Options for XMLType Tables and Columns
17-10 Using STORE ALL VARRAYS AS

18-1  SQL Object Types for Storing XMLType Tables

18-2  Default Table for Global Element PurchaseOrder

18-3  Using Common Schema Annotations

18-4  Registering an Annotated XML Schema

18-5 Using DBMS_XMLSCHEMA_ANNOTATE

18-6  Querying View USER_XML_SCHEMAS for a Registered XML Schema

18-7  Querying Metadata from a Registered XML Schema

18-8  Mapping XML Schema Data Types to SQL Data Types Using Attribute SQLType
18-9 XML Schema Inheritance: complexContent as an Extension of complexTypes
18-10 Inheritance in XML Schema: Restrictions in complexTypes

18-11 XML Schema complexType: Mapping complexType to simpleContent

18-12 XML Schema: Mapping complexType to any/anyAttribute

ORACLE

13-6

13-6

13-6

13-7

13-9
13-10
13-11
13-12
13-12
13-22

14-5

14-9
14-11
14-17

15-2
17-13
17-14
17-16
17-17
17-20
17-20
17-23
17-28
17-28
17-29

18-5

18-6
18-11
18-12
18-15
18-21
18-22
18-24
18-34
18-35
18-36
18-37

XXXIV



18-13
18-14
18-15
18-16
18-17
18-18
18-19
18-20
18-21
18-22
18-23
18-24
18-25
18-26
18-27
18-28
18-29
18-30
18-31
18-32
18-33
18-34
18-35
18-36
18-37
18-38
19-1

19-2

19-3

19-4

19-5

19-6

19-7

19-8

19-9

19-10
19-11

Creating an XMLType Table that Conforms to an XML Schema
Creating an XMLType Table for Nested Collections

Using DESCRIBE with an XML Schema-Based XMLType Table
Specifying Partitioning Information During XML Schema Registration

Specifying Partitioning Information During Table Creation

Integrity Constraints and Triggers for an XMLType Table Stored Object-Relationally

Adding a Unique Constraint to the Parent Element of an Attribute
Setting SQLInline to False for Out-Of-Line Storage

Generated XMLType Tables and Types

Querying an Out-Of-Line Table

Storing a Collection Out of Line

Generated Out-Of-Line Collection Type

Renaming an Intermediate Table of REF Values

XPath Rewrite for an Out-Of-Line Collection

XPath Rewrite for an Out-Of-Line Collection, with Index on REFs

An XML Schema with Circular Dependency

XML Schema: Cycling Between complexTypes

XML Schema: Cycling Between complexTypes, Self-Reference

An XML Schema that Includes a Non-Existent XML Schema

Using the FORCE Option to Register XML Schema xm40.xsd

Trying to Create a Table Using a Cyclic XML Schema

Using the FORCE Option to Register XML Schema xm40a.xsd
Recursive XML Schema

Out-of-line Table

Invalid Default Table Sharing

Oracle XML DB XML Schema: Mapping complexType XML Fragments to LOBs
XPath Rewrite

XPath Rewrite for an Out-Of-Line Table

Using an Index with an Out-Of-Line Table

Execution Plan Generated When XPath Rewrite Does Not Occur
Analyzing an Execution Plan to Determine a Column to Index

Using DBMS_XMLSTORAGE_MANAGE.XPATH2TABCOLMAPPING
Creating an Index on a Column Targeted by a Predicate

Creating a Function-Based Index for a Column Targeted by a Predicate
Execution Plan Showing that Index Is Picked Up

Creating a Function-Based Index for a Column Targeted by a Predicate

Execution Plan for a Selection of Collection Elements

ORACLE

18-39
18-39
18-39
18-41
18-42
18-44
18-45
18-48
18-48
18-49
18-50
18-51
18-51
18-51
18-52
18-53
18-56
18-57
18-58
18-59
18-59
18-59
18-60
18-62
18-62
18-65

19-2

19-5

19-5

19-7

19-9

19-9

19-9

19-9

19-9
19-10
19-11

XXXV



19-12 Creating an Index for Direct Access to an Ordered Collection Table

20-1  Revised Purchase-Order XML Schema

20-2  evolvePurchaseOrder.xsl: XSLT Stylesheet to Update Instance Documents
20-3  Loading Revised XML Schema and XSLT Stylesheet

20-4  Updating an XML Schema Using DBMS_XMLSCHEMA.COPYEVOLVE
20-5  Splitting a Complex Type into Two Complex Types

20-6  diff XML Parameter Document

21-1  Querying PATH_VIEW to Determine Link Type

21-2  Obtaining the OID Path of a Resource

21-3  Creating a Weak Link Using an OID Path

21-4  Accessing a Text Document in the Repository Using XDBURITYPE

21-5  Accessing Resource Content Using RESOURCE_VIEW

21-6  Accessing XML Documents Using Resource and Namespace Prefixes

21-7  Querying Repository Resource Data Using SQL Function REF and Element XMLRef
21-8  Selecting XML Document Fragments Based on Metadata, Path, and Content
21-9  Updating a Text Document Using UPDATE and XQuery Update on the Resource
21-10 Updating an XML Node Using UPDATE and XQuery Update on the Resource
21-11 Updating XML Schema-Based Documents in the Repository

21-12 Accessing Resources Using EQUALS PATH and RESOURCE_VIEW
21-13 Determining the Path to XSLT Stylesheets Stored in the Repository

21-14 Counting Resources Under a Path

21-15 Listing the Folder Contents in a Path

21-16 Listing the Links Contained in a Folder

21-17 Finding Paths to Resources that Contain Purchase-Order XML Documents
21-18 Execution Plan Output for a Folder-Restricted Query

22-1  Resource Configuration File

22-2  applicationData Element

23-1  Xlinclude Used in a Book Document to Include Parts and Chapters

23-2  Expanding Document Inclusions Using XDBURIType

23-3  Querying Document Links Mapped From XLink Links

23-4  Querying Document Links Mapped From XlInclude Links

23-5  Mapping Xlinclude Links to Hard Document Links, with OID Retrieval

23-6  Mapping XLInk Links to Weak Links, with Named-Path Retrieval

23-7  Configuring XInclude Document Decomposition

23-8  Repository Document, Showing Generated xi:include Elements

24-1  Determining Paths Under a Path: Relative

24-2  Determining Paths Under a Path: Absolute

ORACLE

19-11

20-3
20-12
20-16
20-16
20-19
20-26
21-15
21-16
21-17
21-32
21-32
21-33
21-34
21-34
21-37
21-38
21-39
21-41
21-42
21-42
21-42
21-43
21-43
21-44

22-6

22-6

23-5

23-8
23-11
23-12
23-18
23-19
23-19
23-19
24-11
24-11

XXXVi



24-3  Determining Paths Not Under a Path

24-4  Determining Paths Using Multiple Correlations

24-5 Relative Path Names for Three Levels of Resources

24-6  Extracting Resource Metadata Using UNDER_PATH

24-7  Using Functions PATH and DEPTH with PATH_VIEW

24-8  Extracting Link and Resource Information from PATH_VIEW

24-9  All Repository Paths to a Certain Depth Under a Path

24-10 Locating a Repository Path Using EQUALS PATH

24-11 Retrieve RESID of a Given Resource

24-12 Obtaining the Path Name of a Resource from its RESID

24-13 Folders Under a Given Path

24-14 Joining RESOURCE_VIEW with an XMLType Table

24-15 Deleting Resources

24-16 Deleting Links to Resources

24-17 Deleting a Nonempty Folder

24-18 Updating a Resource

24-19 Updating a Path in the PATH_VIEW

24-20 Updating Resources Based on Attributes

24-21 Finding Resources Inside a Folder

24-22 Copying Resources

24-23 Find All Resources Containing "Paper"

24-24 Find All Resources Containing "Paper" that are Under a Specified Path
25-1  Creating a Repository Resource

25-2  Creating a Version-Controlled Resource

25-3  Retrieving Resource Content by Referencing the Resource ID

25-4  Checking Out a Version-Controlled Resource

25-5  Updating Resource Content

25-6  Checking In a Version-Controlled Resource

25-7  Retrieving Resource Version Content Using XDBURITYPE and CREATEOIDPATH
25-8 Retrieving Resource Version Content Using GETCONTENTSCLOBBYRESID
25-9  Retrieving Resource Version Metadata Using GETRESOURCEBYRESID
25-10 Canceling a Check-Out Using UNCHECKOUT

26-1  Managing Resources Using DBMS_XDB_REPOS

26-2  Using DBMS_XDB_REPOS.GETACLDOCUMENT

26-3  Using DBMS_XDB_REPOS.SETACL

26-4  Using DBMS_XDB_REPOS.CHANGEPRIVILEGES

26-5 Using DBMS_XDB_REPOS.GETPRIVILEGES

ORACLE

24-11
24-12
24-12
24-13
24-13
24-14
24-15
24-15
24-16
24-16
24-16
24-17
24-18
24-18
24-19
24-20
24-22
24-23
24-24
24-24
24-26
24-27
25-7
25-8
25-8
25-8
25-8
25-9
25-9
25-10
25-10
25-11
26-3
26-4
26-5
26-6
26-7

XXXVil



26-6

Using DBMS_XDB_CONFIG.CFG_GET

26-7 Using DBMS_XDB_CONFIG.CFG_UPDATE

27-1  Simple Access Control Entry (ACE) that Grants a Privilege

27-2  Simple Access Control List (ACL) that Grants a Privilege

27-3  Complementing a Set of Principals with Element invert

27-4  Creating an ACL Using CREATERESOURCE

27-5 Retrieving an ACL Document, Given its Repository Path

27-6  Setting the ACL of a Resource

27-7  Deleting an ACL

27-8  Updating (Replacing) an Access Control List

27-9  Appending ACEs to an Access Control List

27-10 Deleting an ACE from an Access Control List

27-11 Retrieving the ACL Document for a Resource

27-12 Retrieving Privileges Granted to the Current User for a Particular Resource
27-13 Checking If a User Has a Certain Privileges on a Resource

27-14 Checking User Privileges Using ACLCheckPrivileges

27-15 Retrieving the Path of the ACL that Protects a Given Resource

27-16 Retrieving the Paths of All Resources Protected by a Given ACL

27-17 ACL Referencing an LDAP User

27-18 ACL Referencing an LDAP Group

28-1  Listener Status with FTP and HTTP(S) Protocol Support Enabled

28-2  Uploading Content to the Repository Using FTP

28-3  Navigating Oracle ASM Folders

28-4  Transferring Oracle ASM Files Between Databases with FTP proxy Method
28-5  FTP Connection Using IPv6

28-6  Maodifying the Default Timeout Value of an FTP Session

29-1  Registering an XML Schema for Technical Photo Information

29-2  Registering an XML Schema for Photo Categorization

29-3  Add Metadata to a Resource — Technical Photo Information

29-4  Add Metadata to a Resource — Photo Content Categories

29-5 Delete Specific Metadata from a Resource

29-6  Adding Metadata to a Resource Using DML with RESOURCE_VIEW
29-7  Adding Metadata Using WebDAV PROPPATCH

29-8  Query XML Schema-Based Resource Metadata

29-9  Add Non-Schema-Based Metadata to a Resource

30-1 Resource Configuration File for Java Event Listeners with Preconditions
30-2 Resource Configuration File for PL/SQL Event Listeners with No Preconditions
ORACLE

26-10
26-11

27-5

27-6
27-12
27-14
27-15
27-15
27-16
27-17
27-17
27-17
27-18
27-19
27-20
27-21
27-21
27-22
27-26
27-26
28-10
28-18
28-21
28-21
28-23
28-23

29-5

29-5

29-7

29-7

29-8

29-9
29-10
29-12
29-14
30-13
30-14

XXXVIII



30-3  PL/SQL Code Implementing Event Listeners

30-4 Java Code Implementing Event Listeners

30-5 Invoking Event Handlers

31-1  An Oracle XML DB Servlet

31-2 Registering and Mapping an Oracle XML DB Servlet

32-1  Using HTTPURIType PL/SQL Method GETCONTENTTYPE()
32-2  Creating and Querying a URI Column

32-3  Using Different Kinds of URI, Created in Different Ways

32-4  Access a Repository Resource by URI Using an XDBUFri

32-5  Using PL/SQL Method GETXML with XMLCAST and XMLQUERY
32-6  Targeting a Complete Table Using a DBUFri

32-7  Targeting a Particular Row in a Table Using a DBUFri

32-8 Targeting a Specific Column Using a DBUri

32-9  Targeting an Object Column with Specific Attribute Values Using a DBUFri
32-10 Retrieve Only the Text Value of a Node Using a DBUFri

32-11 Targeting a Collection Using a DBUFri

32-12 URIFACTORY: Registering the ECOM Protocol

32-13 SYS_DBURIGEN: Generating a DBUFri that Targets a Column
32-14 Passing Columns with Single Arguments to SYS_DBURIGEN
32-15 Inserting Database References Using SYS_DBURIGEN

32-16 Creating the Travel Story Table

32-17 A Function that Returns the First 20 Characters

32-18 Creating a Travel View for Use with SYS_DBURIGEN

32-19 Retrieving a URL Using SYS_DBURIGEN in RETURNING Clause
32-20 Changing the Installation Location of DBUriServlet

32-21 Restricting Servlet Access to a Database Role

32-22 Registering a Handler for a DBUTri Prefix

33-1 Adding a Web Services Configuration Servlet

33-2  Verifying Addition of Web Services Configuration Servlet

33-3 XML Schema for Database Queries To Be Processed by Web Service
33-4  Input XML Document for SQL Query Using Query Web Service
33-5  Output XML Document for SQL Query Using Query Web Service
33-6  Definition of PL/SQL Function Used for Web-Service Access

33-7  WSDL Document Corresponding to a Stored PL/SQL Function
33-8  Input XML Document for PL/SQL Query Using Web Service

33-9  Output XML Document for PL/SQL Query Using Web Service
34-1  Oracle XML DB Configuration File

ORACLE

30-15
30-16
30-18

31-9
31-10

32-7

32-9
32-10
32-13
32-14
32-20
32-21
32-22
32-23
32-23
32-24
32-26
32-28
32-29
32-30
32-31
32-31
32-31
32-32
32-35
32-36
32-37

33-3

33-3

33-5

33-6

33-7

33-9

33-9
33-10
33-11
34-10

XXXIX



34-2
35-1
35-2
35-3
36-1
36-2
36-3
36-4
36-5
36-6
37-1
37-2
37-3
37-4

Updating the Configuration File Using CFG_UPDATE and CFG_GET
Data File filelist.dat: List of XML Files to Load

Control File load_datra.ctl, for Loading Purchase-Order XML Documents
Loading XML Data Using Shell Command sqlldr

Exporting XMLType Data in TABLE Mode

Importing XMLType Data in TABLE Mode

Creating Table po2

Exporting XMLType Data in SCHEMA Mode

Importing XMLType Data in SCHEMA Mode

Importing XMLType Data in SCHEMA Mode, Remapping Schema
Creating a Queue Table and Queue

Creating a Transformation to Convert Message Data to XML
Applying a Transformation before Sending Messages Overseas
XMLType and AQ: Dequeuing Messages

Unannotated Purchase-Order XML Schema

Annotated Purchase-Order XML Schema

Revised Annotated Purchase-Order XML Schema
PurchaseOrder.xsl XSLT Stylesheet

Inserting XML Data into an XMLType Table Using C

Using OCIXmIDbInitXmICtx() and OCIXmIDbFreeXmICtx()

Code Fragment Showing How to Get a Repository Object
Uploading a File Using Oracle XML DB Content Connector

Uploading a File Using the Command Line

ORACLE

34-13

35-5
35-6
35-6
36-4
36-4
36-5
36-5
36-5
36-5
37-6
37-7
37-7
37-7
A-35
A-38
A-41
A-46
A-51
A-55

C-5
C-6

x|



List of Figures

1-1 Oracle XML DB Benefits 1-3
1-2 Unifying Data and Content: Some Common XML Architectures 1-4
1-3 XMLType Storage 1-10
1-4 Oracle XML DB Repository Architecture 1-19
2-1 Oracle XML DB Storage Options for XML Data 2-4
3-1 Loading Content into the Repository Using Windows Explorer 3-16
4-1 XMLQUERY Syntax 4-12
4-2 XMLTABLE Syntax 4-14
4-3 XMLEXxists Syntax 4-18
4-4 XMLCast Syntax 4-20
6-1 XML Use Cases and XML Indexing 6-10
7-1 XMLTRANSFORM Syntax 7-4
7-2 Using XMLTRANSFORM 7-4
7-3 Database XSL Transformation of a PurchaseOrder Using DBUri Servlet 7-11
7-4 Database XSL Transformation of Departments Table Using DBUri Servlet 7-12
8-1 XMLELEMENT Syntax 8-4
8-2 XMLAttributes Clause Syntax (XMLATTRIBUTES) 8-5
8-3 XMLFOREST Syntax 8-11
8-4 XMLCONCAT Syntax 8-13
8-5 XMLAGG Syntax 8-14
8-6 XMLPI Syntax 8-17
8-7 XMLComment Syntax 8-18
8-8 XMLSerialize Syntax 8-19
8-9 XMLParse Syntax 8-20
8-10 XMLCOLATTVAL Syntax 8-21
8-11 XMLCDATA Syntax 8-23
8-12  Using PL/SQL Package DBMS_XMLGEN 8-25
8-13 SYS_XMLAGG Syntax 8-50
10-1  Creating XMLType Views Clause: Syntax 10-3
11-1  Using the PL/SQL DOM API for XMLType 11-17
11-2  Using the PL/SQL Parser API for XMLType 11-28
11-3  Using the PL/SQL XSLT Processor for XMLType 11-31
13-1  Using the Java DOM API for XMLType 13-15
16-1 XML Use Cases and XMLType Storage Models 16-3
17-1  XMLSpy Graphical Representation of a Purchase-Order XML Schema 17-4

ORACLE Wi



17-2  XMLSpy Support for Oracle XML DB Schema Annotations

17-3  Creating an XMLType Table — CREATE TABLE Syntax

17-4  Creating an XMLType Table — XMLType_table Syntax

17-5  Creating an XMLType Table — table_properties Syntax

17-6  Creating an XMLType Table — XMLType_virtual_columns Syntax

17-7  How Oracle XML DB Maps XML Schema-Based XMLType Tables

18-1  simpleType Mapping: XML Strings to SQL VARCHAR2 or CLOB

18-2  Mapping complexType to SQL for Out-Of-Line Storage

18-3  Cross Referencing Between Different complexTypes in the Same XML Schema
18-4  Self-Referencing Complex Type within an XML Schema

18-5 Cyclical References Between XML Schemas

18-6  Mapping complexType XML Fragments to CLOB Instances

21-1 A Folder Tree, Showing Hierarchical Structures in the Repository

21-2  Oracle XML DB Folders in Windows Explorer

21-3  Accessing Repository Data Using HTTP(S)/WebDAYV and a Web Browser
21-4  Path-Based Access Using HTTP and a URL

21-5 Oracle ASM Virtual Folder Hierarchy

21-6  Updating and Editing Content Stored in Oracle XML DB Using Microsoft Word
24-1  Accessing Repository Resources Using RESOURCE_VIEW and PATH_VIEW
24-2 RESOURCE_VIEW and PATH_VIEW Structure

24-3  RESOURCE_VIEW and PATH_VIEW Explained

24-4  UNDER_PATH Syntax

24-5 EQUALS_PATH Syntax

24-6  PATH Syntax

28-1  Oracle XML DB Architecture: Protocol Server

28-2  Creating a WebFolder in Microsoft Windows

28-3  Copying Files into Oracle XML DB Repository

32-1 A DBUri Corresponds to an XML Visualization of Relational Data

32-2 SYS_DBURIGEN Syntax

37-1  Oracle Database Advanced Queuing and XML Message Payloads

37-2  IDAP Architecture for Performing AQ Operations Using HTTP(S)
ORACLE

17-8
17-22
17-22
17-22
17-22
17-32
18-27
18-47
18-55
18-56
18-58
18-64

21-3
21-18
21-18
21-19
21-22
21-36

24-3

24-3

24-6

24-7

24-9
24-10

28-3
28-36
28-37
32-16
32-27

37-3

37-6

xlii



List of Tables

1-1 Static Data Dictionary Views Related to XML

3-1 SQL*Loader — Conventional and Direct-Path Load Modes

4-1 Common XPath Constructs

4-2 Predefined Namespaces and Prefixes

4-3 oradb Expressions: Column Types for Comparisons

6-1 Basic XML Indexing Tasks

6-2 Tasks Involving XMLIndex Indexes with a Structured Component

6-3 Tasks Involving XMLIndex Indexes with an Unstructured Component
6-4 Miscellaneous Tasks Involving XMLIndex Indexes

6-5 XML and SQL Data Type Correspondence for XMLIndex

6-6 XMLIndex Path Table

6-7 Index Synchronization

6-8 XMLIndex Static Public Views

6-9 Migrating Oracle-Specific XML Queries to XQuery Full Text

8-1 DBMS_XMLGEN Functions and Procedures

11-1 PL/SQL APIs Related to XML

11-2 XML and HTML DOM Node Types and Their Child Node Types

13-1  Java DOM API for XMLType: Classes

14-1  OCIXmIDbInitXMICtx() Parameters

14-2  Common XMLType Operations in C

16-1  XMLType Storage Model Considerations

16-2  XMLType Indexing Considerations

16-3  XMLType Storage Models: Relative Advantages

17-1  XMLType Methods Related to XML Schema

17-2 CREATE TABLE Encoding Options for Binary XML

18-1  Annotations in Elements

18-2  Annotations in Elements Declaring Global complexType Elements

18-3 XML Schema String Data Types Mapped to SQL

18-4 XML Schema Binary Data Types (hexBinary/base64Binary) Mapped to SQL
18-5  Default Mapping of Numeric XML Schema Primitive Types to SQL

18-6 XML Schema Date and Time Data Types Mapped to SQL

18-7  Default Mapping of Other XML Schema Primitive and Derived Data Types to SQL
19-1  Sample of XPath Expressions that Are Rewritten to Underlying SQL Constructs
20-1  Parameters of Procedure DBMS_XMLSCHEMA.COPYEVOLVE

20-2  Errors Associated with Procedure DBMS_XMLSCHEMA.COPYEVOLVE
ORACLE

1-16
3-14
4-2
4-11
4-23
6-2
6-2
6-2
6-3
6-13
6-18
6-48
6-51
6-69
8-26
11-4
11-14
13-14
14-4
14-16
16-8
16-10
16-10
17-9
17-26
18-16
18-17
18-28
18-28
18-28
18-29
18-29
19-3
20-6
20-7

xliii



20-3 XML Schema Evolution: XMLType Table Temporary Table Columns
20-4 XML Schema Evolution: XMLType Column Temporary Table Columns
20-5 Procedure COPYEVOLVE Mapping Table

20-6  Parameters of Procedure DBMS_XMLSCHEMA.INPLACEEVOLVE
21-1  Synonyms for Oracle XML DB Repository Terms

21-2  Differences Between PATH_VIEW and RESOURCE_VIEW

21-3  Accessing Oracle XML DB Repository: API Options

24-1  Structure of RESOURCE_VIEW

24-2  Structure of PATH_VIEW

24-3  UNDER_PATH SQL Function Signature

25-1  Oracle XML DB Versioning Terms

25-2  PL/SQL Functions and Procedures in Package DBMS_XDB_VERSION
26-1 DBMS_XDB_REPOS Resource Access and Management Subprograms
26-2 DBMS_XDB_REPOS: Security Management Subprograms

26-3 DBMS_XDB_CONFIG: Configuration Management Subprograms

27-1  Database Privileges Needed for Operations on Oracle XML DB Resources
27-2  Atomic Privileges

27-3  Aggregate Privileges

28-1  Common Protocol Configuration Parameters

28-2  Configuration Parameters Specific to FTP

28-3  Configuration Parameters Specific to HTTP(S)/WebDAV (Except Servlet)
30-1 Predefined Repository Events

30-2 Oracle XML DB Repository Operations and Events

31-1 XML Elements Defined for Servlet Deployment Descriptors

31-2 Java Servlet 2.2 Methods that Are Not Implemented

32-1 URIType PL/SQL Methods

32-2 URIFACTORY PL/SQL Methods

32-3  DBUriServlet: Optional Arguments

33-1 Web Service Mapping Between XML and Oracle Database Data Types
34-1 DBMS_XDB_ADMIN Management Procedures

ORACLE

20-15
20-15
20-16
20-24
21-8
21-23
21-26
24-5
24-5
24-8
25-2
25-3
26-2
26-4
26-8
27-7
27-8
27-9
28-5
28-6
28-6
30-4
30-6
31-3
31-9
32-5
32-25
32-33
33-8
34-18

xliv



Preface

Audience

ORACLE

This manual describes Oracle XML DB, and how you can use it to store, generate,
manipulate, manage, and query XML data in the database.

After introducing you to the heart of Oracle XML DB, namely the XM.Type framework
and Oracle XML DB Repository, the manual provides a brief introduction to design
criteria to consider when planning your Oracle XML DB application. It provides
examples of how and where you can use Oracle XML DB.

The manual then describes ways you can store and retrieve XML data using Oracle
XML DB, APIs for manipulating XM_Type data, and ways you can view, generate,
transform, and search on existing XML data. The remainder of the manual discusses
how to use Oracle XML DB Repository, including versioning and security, how to
access and manipulate repository resources using protocols, SQL, PL/SQL, or Java,
and how to manage your Oracle XML DB application using Oracle Enterprise
Manager. It also introduces you to XML messaging and Oracle Database Advanced
Queuing XM_Type support.

e Audience
Oracle XML DB Developer's Guide is intended for developers building XML Oracle
Database applications.

e Documentation Accessibility
* Related Documents
 Conventions

e Code Examples
The code examples in this book are for illustration only. In many cases, however,
you can copy and paste parts of examples and run them in your environment.

*  Syntax Descriptions
Syntax descriptions are provided for various SQL, PL/SQL, or other command-line
constructs in graphic form or Backus Naur Form (BNF).

Oracle XML DB Developer's Guide is intended for developers building XML Oracle
Database applications.

An understanding of XML, XML Schema, XQuery, XPath, and XSL is helpful when
using this manual.

Many examples provided here are in SQL, PL/SQL, Java, or C. A working knowledge
of one of these languages is presumed.

xIv



Preface

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see these Oracle resources:

*  Oracle Database XML Java API Reference

e Oracle XML Developer's Kit Programmer's Guide

e Oracle Database Error Messages

e Oracle Text Application Developer's Guide

*  Oracle Text Reference

e Oracle Database Concepts

e Oracle Database Java Developer's Guide

e Oracle Database Development Guide

e Oracle Database Advanced Queuing User's Guide

e Oracle Database PL/SQL Packages and Types Reference

Many of the examples in this book use the Oracle Database sample schemas. Refer to
Oracle Database Sample Schemas for information about how these database
schemas were created and how you can use them yourself.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at OTN Registration

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN website at OTN Documentation

For additional information, see:

» Extensible Markup Language (XML) 1.0

e XML Schema and XML Schema resources
e XML Schema Part 0: Primer

e XML Schema Part 1: Structures

e XML Schema Part 2: Datatypes

e XML Schemas reference list

ORACLE xIvi


http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

XML and MIME Media-Types

* XML Pointer Language (XPointer)

* XML Path Language (XPath) Version 1.0

XML Path Language (XPath) 2.0

e XPath Tutorial

* Unicode in XML and other Markup Languages, Unicode Technical Report #20
* Namespaces in XML 1.0

e XML Information Set

*  Document Object Model (DOM)

e XSL Transformations (XSLT) Version 1.0

» Extensible Stylesheet Language (XSL) Version 1.1
*  XSL references

e XSLT Tutorial

*  Web Services Activity

*  FTP Protocol Specification, IETF RFC959

* ISO/IEC 13249-2:2000, Information technology - Database languages - SQL
Multimedia and Application Packages - Part 2: Full-Text, International
Organization For Standardization, 2000

# Note:

Throughout this manual, XML Schema refers to the XML Schema 1.0
recommendation.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Code Examples

The code examples in this book are for illustration only. In many cases, however, you
can copy and paste parts of examples and run them in your environment.

ORACLE xIvii



Preface

e Standard Database Schemas
Many of the examples in this book use the standard database schemas that are
included in your database. In particular, database schema CE contains XML
purchase-order documents in XMLType table pur chaseor der, and XML documents
with warehouse information in XM_Type column war ehouse_spec of table
war ehouses.

*  Pretty Printing of XML Data
To promote readability, especially of lengthy or complex XML data, output is
sometimes shown pretty-printed (formatted) in code examples.

*  Execution Plans
Some of the code examples in this book present execution plans. These are for
illustration only. Running examples that are presented here in your environment is
likely to result in different execution plans from those presented here.

* Reminder About Case Sensitivity
SQL is case-insensitive. XML is case-sensitive. Keep this in mind when you mix
SQL and XML.

Standard Database Schemas

Many of the examples in this book use the standard database schemas that are
included in your database. In particular, database schema CE contains XML purchase-
order documents in XM_Type table pur chaseor der, and XML documents with
warehouse information in XMLType column war ehouse_spec of table war ehouses.

The purchase-order documents are also contained in Oracle XML DB Repository,
under the repository path / hone/ OE/ Pur chaseOr der s/ 2002/ . The XML schema that
governs these documents is file pur chaseor der . xsd, at repository location / home/ CE/
pur chaseor der. xsd. An XSLT stylesheet that is used in some examples to transform
purchase-order documents is file pur chaseor der. xsl , at repository location / horme/ OE/
pur chaseor der. xsl . This XML schema and stylesheet can also be found in Oracle-
Supplied XML Schemas and Examples.

¢ See Also:

e Oracle Database Sample Schemas for information about database
schema HR

e Oracle Database Sample Schemas for information about database
schema CE

Pretty Printing of XML Data

To promote readability, especially of lengthy or complex XML data, output is
sometimes shown pretty-printed (formatted) in code examples.

ORACLE xIviii



Preface

Execution Plans

Some of the code examples in this book present execution plans. These are for
illustration only. Running examples that are presented here in your environment is
likely to result in different execution plans from those presented here.

Reminder About Case Sensitivity

SQL is case-insensitive. XML is case-sensitive. Keep this in mind when you mix SQL
and XML.

When examining the examples in this book, keep in mind the following:

e SQL is case-insensitive, but names in SQL code are implicitly uppercase, unless
you enclose them in double quotation marks (*).

e XML is case-sensitive. You must refer to SQL names in XML code using the
correct case: uppercase SQL names must be written as uppercase.

For example, if you create a table named ny_t abl e in SQL without using double
guotation marks, then you must refer to it in XML code as "My_TABLE".

Syntax Descriptions

Syntax descriptions are provided for various SQL, PL/SQL, or other command-line
constructs in graphic form or Backus Naur Form (BNF).

See Oracle Database SQL Language Reference for information about how to interpret
these descriptions.

ORACLE wlix



Changes in This Release for Oracle XML DB Developer's Guide

Changes in This Release for Oracle XML
DB Developer's Guide

This preface contains descriptions of changes in Oracle XML DB for recent releases of
Oracle Database.

e Changes in Oracle Database Release 18c, Version 1, for Oracle XML DB
The changes in Oracle Database Release 18c, Version 1, for Oracle XML DB are
described.

Changes in Oracle Database Release 18c, Version 1, for
Oracle XML DB

The changes in Oracle Database Release 18c, Version 1, for Oracle XML DB are
described.

e New Features
There are no new features for Oracle XML DB in this release.

* Deprecated Features
The following features are deprecated in this release, and may be desupported in
a future release.

*  Desupported Features
The following features are desupported in this release.

New Features

There are no new features for Oracle XML DB in this release.

Deprecated Features

The following features are deprecated in this release, and may be desupported in a
future release.

*  PL/SQL package DBM5_XM_QUERY. Use package DBM5_XM_GEN instead.
* PL/SQL package DBM5_XM_SAVE. Use package DBMS_XM_STORE instead.

¢ See Also:

Oracle Database Upgrade Guide

ORACLE



Changes in This Release for Oracle XML DB Developer's Guide

Desupported Features

The following features are desupported in this release.

e PL/SQL subprograms gener at eSchema and gener at eSchenas in package
DBMS_XM_SCHENA. There are no replacements for these subprograms.

e The following subprograms in package DBVMS _XDB. Use the subprograms with the
same names in package DBM5_XDBCONFI Ginstead.

— addhtt pexpi r emappi ng

— addni nemappi ng

— addschenmal ocrmappi ng

— addservl et

— addservl et mappi ng

— addservletsecrol e

— addxm extension

— cfg_get

— cfg_refresh

— cfg_update

— del etehtt pexpi remappi ng
— del et em memappi ng

— del et eschemal ocmappi ng
— deleteservlet

— del eteservl et mappi ng

— deleteservletsecrole

— del etexm ext ensi on

— getftpport

— gethttpport

— getlistenerendpoint

— setftpport

— sethttpport

— setlistenerendpoint

— setlistener|ocal access

*  The following constants in package DBMS_XDB. Use the constants with the same
name in package DBVS_XDBCONFI Ginstead.

— xdb_endpoint_http
— xdb_endpoi nt_http2
— xdb_protocol _tcp

— xdb_protocol tcps

ORACLE li



ORACLE

Changes in This Release for Oracle XML DB Developer's Guide

All Oracle-specific SQL functions for updating XML data. Use XQuery Update
instead. These are the desupported XML-updating functions:

updat eXML

— insertChildXMm

— insertChil dXM.before
— insertChildXMafter
— insertXMbefore

— insertXM.after
— appendChi | dXM
— del eteXM

Oracle XQuery functions or a: mat ches and or a: r epl ace. Use the corresponding
standard XQuery functions instead, that is, the functions with the same names but
with namespace prefix f n: f n: mat ches and f n: repl ace.

The following Oracle constructs that provide support for XML translations are
desupported. There is no replacement for any of these constructs.

— PL/SQL package DBMS_XMLTRANSLATI ONS
— Oracle XPath function ora: transl ate
— XML Schema annotations xdb: maxCccur s, xdb: srcl ang, and xdb: transl ate

The following XML Schema annotations are desupported. There is no replacement
for any of these annotations.

— xdb: def aul t Tabl eSchema

—  xdb: mai nt ai nOr der

— xdb: mapUnboundedSt ri ngToLob
— xdb: maxQceurs

— xdb: SQLCol | Schema

— xdb: SQLSchema

— xdb: srclang

— xdb:translate

The value xn _cl obs for export parameter dat a_opti ons. There is no replacement
for this parameter.

" See Also:

Oracle Database Upgrade Guide



Oracle XML DB Basics

ORACLE

The basics of Oracle XML DB are introduced.

Introduction to Oracle XML DB
Oracle XML DB provides Oracle Database with native XML support by
encompassing both the SQL and XML data models in an interoperable way.

Getting Started with Oracle XML DB
Some preliminary design criteria are presented for consideration when planning
your Oracle XML DB solution.

Overview of How To Use Oracle XML DB
An overview of the various ways of using Oracle XML DB is presented.



Introduction to Oracle XML DB

Oracle XML DB provides Oracle Database with native XML support by encompassing
both the SQL and XML data models in an interoperable way.

Overview of Oracle XML DB

Oracle XML DB is a set of Oracle Database technologies related to high-
performance handling of XML data: storing, generating, accessing, searching,
validating, transforming, evolving, and indexing. It provides native XML support by
encompassing both the SQL and XML data models in an interoperable way.

Oracle XML DB Benefits

Oracle XML DB supports all major XML, SQL, Java, and Internet standards. It
provides high performance and scalability for XML operations. It brings database
features such as transaction control, data integrity, replication, reliability,
availability, security, and scalability to the world of XML.

Oracle XML DB Architecture

Oracle XML DB gives you protocol and programmatic access to XML data in the
form of local and remote XM_.Type tables and views. It provides a WebDAV
repository with resource versioning and access control.

Oracle XML DB Features

Oracle XML DB provides standard database features such as transaction control,
data integrity, replication, reliability, availability, security, and scalability, while also
allowing for efficient indexing, querying, updating, and searching of XML
documents in an XML-centric manner.

Standards Supported by Oracle XML DB
Oracle XML DB supports all major XML, SQL, Java, and Internet standards.

Oracle XML DB Technical Support

Besides the regular channels of support through your customer representative or
consultant, technical support for Oracle Database XML-enabled technologies is
available free through the discussion forums Oracle Technology Network (OTN).

Oracle XML DB Examples
The examples that illustrate the use of Oracle XML DB and XM.Type are based on
various database schemas, sample XML documents, and sample XML schemas.

Oracle XML DB Case Studies and Demonstrations on OTN
Visit Oracle Technology Network (OTN) to view Oracle XML DB examples, white
papers, case studies, and demonstrations.

1.1 Overview of Oracle XML DB

Oracle XML DB is a set of Oracle Database technologies related to high-performance
handling of XML data: storing, generating, accessing, searching, validating,
transforming, evolving, and indexing. It provides native XML support by encompassing
both the SQL and XML data models in an interoperable way.

ORACLE

Oracle XML DB is included as part of Oracle Database starting with Oracle9i Release
2 (9.2).

1-1



Chapter 1
Oracle XML DB Benefits

Oracle XML DB and the XM_Type abstract data type make Oracle Database XML-
aware. Storing XML data as an XM.Type column or table lets the database perform
XML-specific operations on the content. This includes XML validation and optimization.
XM.Type storage allows highly efficient processing of XML content in the database.

Oracle XML DB includes the following features:

* An abstract SQL data type, XM.Type, for XML data.

» Enterprise-level Oracle Database features for XML content: reliability, availability,
scalability, and security. XML-specific memory management and optimizations.

* Industry-standard ways to access and update XML data. You can use FTP,
HTTP(S), and WebDAYV to move XML content into and out of Oracle Database.
Industry-standard APIs provide programmatic access and manipulation of XML
content using Java, C, and PL/SQL.

* Ways to store, query, update, and transform XML data while accessing it using
SQL and XQuery.

*  Ways to perform XML operations on SQL data.

* Oracle XML DB Repository: a simple, lightweight repository where you can
organize and manage database content, including XML content, using a file/
folder/URL metaphor.

* Ways to access and combine data from disparate systems through gateways,
using a single, common data model. This reduces the complexity of developing
applications that must deal with data from different stores.

* Ways to use Oracle XML DB in conjunction with Oracle XML Developer's Kit
(XDK) to build applications that run in the middle tier in either Oracle Fusion
Middleware or Oracle Database.

Oracle XML DB functionality is partially based on the Oracle XML Developer's Kit C
implementations of the relevant XML standards, such as XML Parser, XSLT Virtual
Machine, XML DOM, and XML Schema Validator.

Related Topics

e XMLType Data Type
Using XM.Type, XML developers can leverage the power of XML standards while
working in the context of a relational database, and SQL developers can leverage
the power of a relational database while working with XML data.

¢ See Also:

e Oracle XML DB on OTN for the latest news and white papers about
Oracle XML DB

e Oracle XML Developer's Kit Programmer's Guide

1.2 Oracle XML DB Benefits

Oracle XML DB supports all major XML, SQL, Java, and Internet standards. It
provides high performance and scalability for XML operations. It brings database

ORACLE 1-2



Chapter 1
Oracle XML DB Benefits

features such as transaction control, data integrity, replication, reliability, availability,
security, and scalability to the world of XML.

Figure 1-1 presents an overview of the standards supported by Oracle XML DB.

Figure 1-1 Oracle XML DB Benefits

Oracle
XML DB

ier Data Duality: Efficient Storage and Helps
g:éﬂggrﬁgm XML and Retrieval of Complex Integrate
Relational XML Documents Applications
— Enhanced native XMLType views of Higher performance XMLType views
database support for relational data of XML operations over local or remote
XML . . . - sources
Relational views of Higher scalability
— Stores and manages XMLType data of XML operations Connectivity to other
structured, unstructured, Facilitates migrating databases, files, ...
nd semi-structuri .
and semi-structured data legacy and non-XML. Uniform SQL / XML
— Transparent XML and data to XML data queries over data
SQL interoperability integrated from

multiple sources
— Exploits database

features:

— indexing, searching
— updating, transaction processing
— manages constraints

— multiple data views
— speeds up XML storage, retrieval

— supports standards for storing,
modifying, retrieving data

— Exploits XML features:

structure and storage independence
facilitates presentation and data display
facilitates B2B data exchange

o Data and Content Unified
With Oracle XML DB, you can store and manage data that is structured,
unstructured, and semi-structured using a standard data model and standard SQL
and XML. You can perform SQL operations on XML documents and XML
operations on object-relational (such as table) data.

e Data Duality: XML and Relational
Oracle XML DB presents a symmetric, dual view of data: as XML and as
relational.

ORACLE 1-3



Chapter 1
Oracle XML DB Benefits

» Efficient Storage and Retrieval of Complex XML Documents
Oracle XML DB provides high performance and scalability for XML operations,
letting you manage the storage and retrieval of complex, large, or many XML
documents.

1.2.1 Data and Content Unified

With Oracle XML DB, you can store and manage data that is structured, unstructured,
and semi-structured using a standard data model and standard SQL and XML. You
can perform SQL operations on XML documents and XML operations on object-
relational (such as table) data.

Most application data and Web content is stored in a relational database, a file system,
or both. XML data is often used for data exchange, and it can be generated from a
relational database or a file system. As the volume of XML data exchanged grows, the
cost of regenerating this data grows, and these storage methods become less
effective at accommodating XML content.

Figure 1-2 Unifying Data and Content: Some Common XML Architectures

Non-Native XML Processing Separate Data and Content Servers Oracle XML DB
Applications Applications Applications
Application Server Application Server Oracle
Application
| Server

XML Processing and
Repository Layer

File
System —
RDBMS XML RDBMS Oracle
Repository XML DB
Multimedia and Structured Data Multimedia, Document Structured Data Multimedia and
Document Content and Metadata Content and XML, Document Content,
Metadata Structured Data,

XML, Metadata

Organizations often manage their structured data and unstructured data differently:

e Unstructured data, stored in tables, makes document access transparent and table
access complex.

e Structured data, often stored in binary large objects (such as in BLOB instances),
makes access more complex and table access transparent.

ORACLE 1-4



Chapter 1
Oracle XML DB Benefits

» Database Capabilities for Working with XML
Oracle Database provides database capabilities for working with XML: indexing
and search; updates and transaction processing; managing relationships using
constraints; multiple data views; high performance and scalability. It supports XML
Schema, XQuery, XPath, and DOM.

* Advantages of Storing Data as XML in the Database
Storing data as XML in the database provides these advantages: storage
independence, ease of presentation, and ease of interchange.

1.2.1.1 Database Capabilities for Working with XML

Oracle Database provides database capabilities for working with XML: indexing and
search; updates and transaction processing; managing relationships using constraints;
multiple data views; high performance and scalability. It supports XML Schema,
XQuery, XPath, and DOM.

* Indexing and search — Just as your database data can be more or less structured,
SO can your queries. One query can look for all product definitions created
between March and April 2014. Another query can look for products whose
descriptions contain the words "wi r el ess" and "r out er " but not the term
"Wirel ess router".

A query such as the former targets structured data, and it is typically supported by
a B-tree index on a date column. A query such as the latter targets unstructured
data, and for Oracle Database it is typically supported by an Oracle Text (full-text)
index. Applications can of course combine structured and unstructured queries,
and targeted data can be a mix of structured and unstructured data.

For XML data the situation is similar. Oracle XML DB provides indexing features
that let you target the gamut of XML possibilities, from data and queries that are
highly structured to those that are highly unstructured.

\J

# See Also:

— Query and Update of XML Data

— Generation of XML Data from Relational Data
— Indexing XML Data for Full-Text Queries

— Oracle Text Application Developer's Guide

— Oracle Text Reference

» Updates and transaction processing — Commercial relational databases use fast
updates of subparts of records, with minimal contention between users trying to
update. As traditionally document-centric data participate in collaborative
environments through XML, this requirement becomes more important. File or
CLOB storage cannot provide the granular concurrency control that Oracle XML DB
does.

ORACLE 1-5



Chapter 1
Oracle XML DB Benefits

" See Also:
Query and Update of XML Data

* Managing relationships — Data with any structure typically has foreign-key
constraints. XML data stores generally lack this feature, so you must implement
any constraints in application code. Oracle XML DB enables you to constrain XML
data according to XML schema definitions, and hence achieve control over
relationships that structured data has always enjoyed.

¢ See Also:

— XML Schema Storage and Query: Basic
— The purchase-order examples in Query and Update of XML Data

e Multiple views of data — Most enterprise applications need to group data together
in different ways for different modules. This is why relational views are necessary
—to allow for these multiple ways to combine data. By allowing views on XML,
Oracle XML DB creates different logical abstractions on XML for, say,
consumption by different types of applications.

¢ See Also:
XMLType Views
» Performance and scalability — Users expect data storage, retrieval, and query to
be fast. Loading a file or CLOB value, and parsing, are typically slower than

relational data access. Oracle XML DB dramatically speeds up XML storage and
retrieval.

¢ See Also:

— Getting Started with Oracle XML DB
— Overview of How To Use Oracle XML DB

» Ease of development — Databases are foremost an application platform that
provides standard, easy ways to manipulate, transform, and modify individual data
elements. While typical XML parsers give standard read access to XML data they
do not provide an easy way to modify and store individual XML elements. Oracle
XML DB supports several standard ways to store, modify, and retrieve data. These
include XML Schema, XQuery, XPath, DOM, and Java.

ORACLE 1-6



Chapter 1
Oracle XML DB Benefits

" See Also:

— XQuery and Oracle XML DB

— Java DOM API for XMLType

— Repository Access Using RESOURCE_VIEW and PATH_VIEW
— PL/SQL Access to Oracle XML DB Repository

1.2.1.2 Advantages of Storing Data as XML in the Database

Storing data as XML in the database provides these advantages: storage
independence, ease of presentation, and ease of interchange.

* Storage independence: When you use relational design, your client programs
must know where your data is stored, in what format, what table, and what the
relationships are among those tables. XM_.Type enables you to write applications
without that knowledge and lets database administrators map structured data to
physical table and column storage.

¢ See Also:

Access to Oracle XML DB Repository Data

» Ease of presentation: XML is understood natively by Web browsers, many popular
desktop applications, and most Internet applications. Relational data is generally
not accessible directly from applications. Additional programming is required to
make relational data accessible to standard clients. Oracle XML DB stores data as
XML and makes it available as XML outside the database. No extra programming
is required to display database content.

¢ See Also:

— Transformation and Validation of XMLType Data.
— Generation of XML Data from Relational Data.
— XMLType Views.

» Ease of interchange — XML is the language of choice in business-to-business
(B2B) data exchange. If you are forced to store XML in an arbitrary table structure,
you are using some kind of proprietary translation. Whenever you translate a
language, information is lost and interchange suffers. By natively understanding
XML and providing DOM fidelity in the storage/retrieval process, Oracle XML DB
enables a clean interchange.

ORACLE r



Chapter 1
Oracle XML DB Benefits

¢ See Also:

— Transformation and Validation of XMLType Data
— XMLType Views

1.2.2 Data Duality: XML and Relational

Oracle XML DB presents a symmetric, dual view of data: as XML and as relational.

A key feature of Oracle XML DB is that it lets you work with XML data as if it were
relational data and relational data as if it were XML data. You can leverage the power
of the relational model when working with XML content, and you can leverage the
flexibility of XML when working with relational content. You can use the most
appropriate tools for different aspects of a particular business problem.

This duality means that the same data can be exposed as rows in a table and
manipulated using SQL or exposed as nodes in an XML document and manipulated
using XQuery, the DOM, or XSL transformation. Access and processing techniques
are independent of the underlying storage method.

These features can provide simple solutions to common business problems:

* You can generate XML data directly from a SQL query. You can transform the
XML data into other formats, such as HTML, using the database-resident XSLT
processor.

* You can access XML content without converting between different data formats,
using SQL queries, on-line analytical processing (OLAP), and business-
intelligence/data warehousing operations.

* You can perform text and spatial data operations on XML content.

e Use XMLType Views If Your Data Is Not XML
XM.Type views provide a way for you to wrap existing relational or object-relational
data in XML format.

1.2.2.1 Use XMLType Views If Your Data Is Not XML

ORACLE

XM.Type views provide a way for you to wrap existing relational or object-relational
data in XML format.

This can be especially useful if your legacy data is not in XML format but you must
migrate it to XML format. Using XM_Type views, you need not alter your application
code or the stored data.

To use XM_Type views, you must first register an XML schema with annotations that
represent a bidirectional mapping between XML Schema data types and either SQL
data types or binary XML encoding types. You can then create an XM.Type view
conforming to this mapping, by providing an underlying query that constructs instances
of the appropriate types.

Related Topics

e XMLType Views
You can create XM.Type views over relational and object-relational data.

1-8



Chapter 1
Oracle XML DB Architecture

1.2.3 Efficient Storage and Retrieval of Complex XML Documents

Oracle XML DB provides high performance and scalability for XML operations, letting
you manage the storage and retrieval of complex, large, or many XML documents.

These are the major performance features of Oracle XML DB:

Native XMLType. Abstract data type XM_Type has two storage models, each
optimized to work efficiently for a particular set of use cases. See Query and
Update of XML Data and Choice of XMLType Storage and Indexing

Optimized processing of XQuery, XPath, and XSLT. See Performance Tuning for
XQuery and Transformation and Validation of XMLType Data.

Indexing XML data for structured or full-text search. See Indexes for XMLType
Data.

A lazily evaluated virtual DOM. See PL/SQL DOM API for XMLType
(DBMS_XMLDOM).

A hierarchical index over Oracle XML DB Repository. See Performance Guidelines
for Oracle XML DB Repository Operations.

Parallelism and Oracle Exadata Smart Scan. Query and update of XML data can
be carried out in parallel. Oracle Exadata Smart Scan is enabled automatically for
XML data.

1.3 Oracle XML DB Architecture

Oracle XML DB gives you protocol and programmatic access to XML data in the form
of local and remote XM_Type tables and views. It provides a WebDAYV repository with
resource versioning and access control.

ORACLE

Figure 1-3 shows the software architecture of Oracle XML DB. The main features are:

Storage of XM.Type tables and views.

— You can index XM.Type tables and views using XM.I ndex, B-tree, and Oracle
Text indexes.

— You can store data that is in XMLType views in local or remote tables. You can
access remote tables using database links.

Support for XQuery, including XQuery Update and XQuery Full Text.

Oracle XML DB Repository. You can store any kind of documents in the
repository, including XML documents that are associated with an XML schema
that is registered with Oracle XML DB. You can access documents in the
repository in any of the following ways:

—  HTTP(S), through the HTTP protocol handler
— WebDAV and FTP, through the WebDAV and FTP protocol handlers

— SQL, through Oracle Net Services, including Java Database Connectivity
(JDBC)

1-9



Chapter 1
Oracle XML DB Features

Figure 1-3 XMLType Storage

JDBC
Direct Oracle WebDAV Access
HTTP Net and
Access Access FTP Access
A A A

Oracle
Database

Oracle XML DB v v v
HTTP XQuery DAV, FTP
Protocol and SQL Protocol
Handler Engine Handlers
.----------------'
. XML Schemas 1
' :
1 1
Indexes: ! XMLType XMLType | & | Repository
+ XMLIndex ' Tables Views [ ]
* B-Tree - : p— p— o
« XML Full P D— — ; = -
Text — — Hierarchical
€ index
- JE— n
— T e m|m - - - m - -I
| Binary XML / ,_\_ S,
Storage Local | | Remote
Tables | | DBLinks | | Acceseed
Obieg;F:gLa;ional | : via DBLinks

1.4 Oracle XML DB Features

ORACLE

Oracle XML DB provides standard database features such as transaction control, data
integrity, replication, reliability, availability, security, and scalability, while also allowing
for efficient indexing, querying, updating, and searching of XML documents in an XML-
centric manner.

The hierarchical nature of XML presents a traditional relational database with some
challenges:

1-10



Chapter 1
Oracle XML DB Features

In a relational database, the table-row metaphor locates content. Primary-Key
Foreign-Key relationships help define the relationships between content. Content
is accessed and updated using the table-row-column metaphor.

XML, on the other hand, uses hierarchical techniques to achieve the same
functionality. A URL is used to locate an XML document. URL-based standards
such as XLink are used to define relationships between XML documents. W3C
Recommendations such as XPath are used to access and update content
contained within XML documents. Both URLs and XPath expressions are based
on hierarchical metaphors. A URL uses a path through a folder hierarchy to
identify a document, whereas XPath uses a path through the node hierarchy of an
XML document to access part of an XML document.

Oracle XML DB addresses these challenges by introducing SQL functions and
methods that allow the use of XML-centric metaphors, such as XQuery and XPath
expressions for querying and updating XML Documents.

XMLType Data Type

Using XM.Type, XML developers can leverage the power of XML standards while
working in the context of a relational database, and SQL developers can leverage
the power of a relational database while working with XML data.

XMLType Storage Models

XM.Type is an abstract data type that provides different storage models to best fit
your data and your use of it. As an abstract data type, your applications and
database queries gain in flexibility: the same interface is available for all XM.Type
operations.

XML Schema Support in Oracle XML DB
Support for the World Wide Web Consortium (W3C) XML Schema
Recommendation is a key feature in Oracle XML DB.

DTD Support in Oracle XML DB

An XML schema is in general a much more powerful way to define XML document
structure than is a DTD. You can nevertheless use DTDs to some extent with
Oracle XML DB.

Static Data Dictionary Views Related to XML
Several static data dictionary views are related to XML.

SQL/XML Standard Functions
Oracle XML DB provides the SQL functions that are defined in the SQL/XML
standard.

Programmatic Access to Oracle XML DB (Java, PL/SQL, and C)
All Oracle XML DB functionality is accessible from C, PL/SQL, and Java.

Oracle XML DB Repository: Overview
Oracle XML DB Repository is a component of Oracle Database that lets you
handle XML data using a file/folder/URL metaphor.

1.4.1 XMLType Data Type

Using XM_Type, XML developers can leverage the power of XML standards while
working in the context of a relational database, and SQL developers can leverage the
power of a relational database while working with XML data.

ORACLE

XMLType is an abstract native SQL data type for XML data. It provides PL/SQL and
Java constructors for creating an XM.Type instance from a VARCHAR2, CLOB, BLOB, or
BFI LE instance. And it provides PL/SQL methods for various XML operations.

1-11



Chapter 1
Oracle XML DB Features

You can use XM_Type as you would any other SQL data type. For example, you can
create an XM.Type table or view, or an XM.Type column in a relational table.

You can use XM.Type in PL/SQL stored procedures for parameters, return values, and
variables.

You can also manipulate XM.Type data using application programming interfaces
(APIs) for the Java and C languages, including Java Database Connectivity (JDBC),
XQuery for Java (XQJ), and Oracle Data Provider for .NET (ODP.NET).

XM.Type is an Oracle Database object type, so you can also create a table of XM_Type
object instances. By default, an XM_Type table or column can contain any well-formed
XML document.

You can constrain XM_Type tables or columns to conform to an XML schema, in which
case the database ensures that only XML data that validates against the XML schema
is stored in the column or table. invalid documents are excluded.

¢ See Also:

e Oracle Database Object-Relational Developer's Guide for information
about Oracle Database object types and object-relational storage

e Oracle XML Developer's Kit Programmer's Guide for information about
using XQJ

e Oracle Database PL/SQL Packages and Types Reference for
information about XM_Type constructors and methods

1.4.2 XMLType Storage Models

ORACLE

XM.Type is an abstract data type that provides different storage models to best fit your
data and your use of it. As an abstract data type, your applications and database
gueries gain in flexibility: the same interface is available for all XM_Type operations.

XM.Type tables and columns can be stored in these ways:

e Binary XML storage (the default) — XM.Type data is stored in a post-parse, binary
format designed specifically for XML data. Binary XML is compact, post-parse,
XML schema-aware XML data. This is also referred to as post-parse
persistence.

» Object-relational storage — XM_Type data is stored as a set of objects. This is also
referred to as structured storage and object-based persistence.

# Note:

Starting with Oracle Database 12¢ Release 1 (12.1.0.1), the unstructured
(CLOB) storage model for XM_Type is deprecated. Use binary XML storage
instead.

1-12



Chapter 1
Oracle XML DB Features

With the use of appropriate indexes, binary XML storage offers good performance for
most use cases. However, some advanced use cases can benefit from using object-
relational storage.

You can change XM_Type storage from one model to another using database import/
export. Your application code need not change. You can change XML storage options
when tuning your application.

For binary XML storage, SecureFiles is the default storage option.* However, if either
of the following is true then it is not possible to use SecureFiles LOB storage. In that
case, BasicFiles is the default option for binary XML data:

e The tablespace for the XMLType table does not use automatic segment space
management.

* Asettinginfileinit.ora prevents SecureFiles LOB storage. For example, see
parameter DB_SECUREFI LE.

Related Topics

e Choice of XMLType Storage and Indexing
Important design choices for your application include what XM.Type storage model
to use and which indexing approaches to use.

*  Export and Import of Oracle XML DB Data
You can use Oracle Data Pump to export and import XM_Type tables for use with
Oracle XML DB.

" See Also:

e Oracle Database SQL Language Reference, section "CREATE TABLE",
clause "LOB_storage_clause"

e Oracle Database SecureFiles and Large Objects Developer's Guide for
information about LOB storage options SecureFiles and BasicFiles

e Oracle Database Administrator’s Guide for information about automatic
segment space management

*  Oracle Database Reference for information about parameter
DB_SECUREFI LE

1.4.3 XML Schema Support in Oracle XML DB

Support for the World Wide Web Consortium (W3C) XML Schema Recommendation is
a key feature in Oracle XML DB.

XML Schema specifies the structure, content, and certain semantics of XML
documents. It is described in detail at ht't p: / / www. w3. or g/ TR/ soap12- part 0/ .

The W3C Schema Working Group publishes a particular XML schema, often referred
to as the schema for schemas, that provides the definition, or vocabulary, of the XML

1 Prior to Oracle Database 11g Release 2 (11.2.0.2) the BasicFiles option was the default for binary XML storage.
Use of the BasicFiles option for binary XML data is deprecated.

ORACLE 1-13



Chapter 1
Oracle XML DB Features

Schema language. An XML schema definition (XSD?), also called an XML schema,
is an XML document that is compliant with the vocabulary defined by the schema for
schemas.

An XML schema uses vocabulary defined by the schema for schemas to create a
collection of XML Schema type definitions and element declarations that comprise a
vocabulary for describing the contents and structure of a new class of XML
documents, the XML instance documents that conform to that XML schema.

" Note:

This manual uses the term "XML schema" (lower-case "s") to reference any
XML schema that conforms to the W3C XML Schema (upper-case "S")
Recommendation. Since an XML schema is used to define a class of XML
documents, the term "instance document" is often used to describe an XML
document that conforms to a particular XML schema.

The XML Schema language provides strong typing of elements and attributes. It
defines numerous scalar data types. This base set of data types can be extended to
define more complex types, using object-oriented techniques such as inheritance and
extension. The XML Schema vocabulary also includes constructs that you can use to
define complex types, substitution groups, repeating sets, nesting, ordering, and so
on. Oracle XML DB supports all of the constructs defined by the XML Schema
Recommendation, except for r edef i nes.

XML schemas are commonly used as a mechanism for checking (validating) whether
XML instance documents conform with their specifications. Oracle XML DB includes
XM.Type methods and SQL functions that you can use to validate XML documents
against an XML schema.

In Oracle XML DB, you can use a standard data model for all of your data, regardless
of how structured it is. You can use XML Schema to automatically create database
tables for storing your XML data. XML schema-based data maintains DOM fidelity and
allows for significant database optimizations.

XML schema-based data can be stored using either Oracle XML DB XM.Type storage
model: binary XML storage or object-relational storage. Non-schema-based XML data
can be stored only using binary XML storage.

You can also wrap existing relational and object-relational data as XM.Type views,
which can optionally be XML schema-based. You can map from incoming XML
documents to XMLType storage, specifying the mapping using a registered XML
schema.

Related Topics

e Choice of XMLType Storage and Indexing
Important design choices for your application include what XM.Type storage model
to use and which indexing approaches to use.

2 xsd is the prefix used in the schema of schemas for the XML Schema namespace, hence it is also the
namespace prefix used for the XML Schema data types, such as xsd: st ri ng. xsd is also used often as the file
extension of XML schema files.

ORACLE 1-14



Chapter 1
Oracle XML DB Features

XML Schema Storage and Query: Basic
XML Schema is a standard for describing the content and structure of XML
documents. You can register, update, and delete an XML schema used with
Oracle XML DB. You can define storage structures to use for your XML schema-
based data and map XML Schema data types to SQL data types.

1.4.4 DTD Support in Oracle XML DB

An XML schema is in general a much more powerful way to define XML document
structure than is a DTD. You can nevertheless use DTDs to some extent with Oracle
XML DB.

Like an XML schema, A DTD is a set of rules that define the allowable structure of an
XML document. DTDs are text files that derive their format from SGML. They can be
associated with an XML document by using DTD element DOCTYPE or by using an
external file through a DOCTYPE reference.

Oracle XML DB uses XML Schema, not DTDs, to define structured mappings to
XM.Type storage, but XML processors can still access and interpret your DTDs.

# Note:

You can use a DTD to obtain the XML entities defined in it. The entities are
the only information used from the DTD. The structural and type information
in the DTD is not used by Oracle XML DB.

Inline DTD Definitions

When an XML instance document has an inline DTD definition, that definition is used
during document parsing. Any DTD validations and entity declaration handling are
done at this point. However, once parsed, the entity references are replaced with
actual values and the original entity reference is lost.

External DTD Definitions

Oracle XML DB supports external DTD definitions if they are stored in Oracle XML DB
Repository. Applications needing to process an XML document containing an external
DTD definition such as / publ i ¢/ flights. dt d must first ensure that the DTD
document is stored in Oracle XML DB at path / publi c/flights. dtd.

Related Topics

e Access to Oracle XML DB Repository Data
There are several ways to access and manipulate data in Oracle XML DB
Repository, including using standard protocols such as FTP and HTTP(S)/
WebDAYV; Oracle XML DB resource Application Program Interfaces (APIs); and
the repository views RESCURCE_VI EWand PATH_VI EW

ORACLE 1-15



Chapter 1
Oracle XML DB Features

1.4.5 Static Data Dictionary Views Related to XML

Several static data dictionary views are related to XML.

Table 1-1 lists these views. Information about a given view can be obtained by using
SQL command DESCRI BE:

DESCRI BE USER_XM._SCHEMAS

Table 1-1 Static Data Dictionary Views Related to XML

________________________________________________________________________|
Schema Description

USER XM._SCHEMAS Registered XML schemas owned by the current user
ALL_XM._SCHEMAS Registered XML schemas usable by the current user
DBA XM._SCHEMAS Registered XML schemas in Oracle XML DB

USER XML_TABLES XM.Type tables owned by the current user
ALL_XM._TABLES = XM.Type tables usable by the current user

DBA XML_TABLES  XM.Type tables in Oracle XML DB

USER_XM._TAB_COL XM.Type table columns owned by the current user
S

ALL_XM__TAB _COLS XM.Type table columns usable by the current user
DBA XML_TAB_COLS XM.Type table columns in Oracle XML DB

USER XM._VIEWs  XM.Type views owned by the current user
ALL_XM._VI EW6 XMLType views usable by the current user

DBA XML_VI EWS XM.Type views in Oracle XML DB

USER XM._VI EW CO XM.Type view columns owned by the current user
LS

ALL_XM__VI EW COL XM.Type view columns usable by the current user
S

DBA XML_VI EW COL XM.Type view columns in Oracle XML DB

S

In addition to the views ALL_XM._TABLES, DBA_XM._TABLES, and USER_XM._TABLES,
views ALL_OBJECT _TABLES, DBA OBJECT_TABLES, and USER_OBJECT TABLES provide
tablespace and other storage information for XM_Type data stored object-relationally.

¢ See Also:

e Oracle Database Reference

e Oracle Database PL/SQL Packages and Types Reference

ORACLE 1-16



Chapter 1
Oracle XML DB Features

1.4.6 SQL/XML Standard Functions

Oracle XML DB provides the SQL functions that are defined in the SQL/XML standard.
SQL/XML functions fall into two groups:

e Functions that you can use to generate XML data from the result of a SQL query.
In this book, these are called SQL/XML publishing functions. They are also
sometimes called SQL/XML generation functions.

e Functions that you can use to query and update XML content as part of normal
SQL operations. In this book, these are called SQL/XML query and update
functions.

Using SQL/XML functions you can address XML content in any part of a SQL
statement. These functions use XQuery or XPath expressions to traverse the XML
structure and identify the nodes on which to operate. The ability to embed XQuery and
XPath expressions in SQL statements greatly simplifies XML access.

" See Also:

Oracle Database SQL Language Reference for information about Oracle
support for the SQL/XML standard

1.4.7 Programmatic Access to Oracle XML DB (Java, PL/SQL, and C)

ORACLE

All Oracle XML DB functionality is accessible from C, PL/SQL, and Java.

You can build Web-based applications that take advantage of Oracle XML DB in
various ways, including these:

* Using servlets and Java Server Pages (JSP). A typical APl accesses data using
Java Database Connectivity (JDBC).

* Using Extensible Stylesheet Language (XSL) plus XML Server Pages (XSP). A
typical API accesses data in the form of XML documents that are processed using
a Document Object Model (DOM) API implementation.

Oracle XML DB supports such styles of application development. It provides Java, PL/
SQL, and C implementations of the DOM API. Applications that use JDBC, such as
those based on servlets, need prior knowledge of the data structure they are
processing. Oracle JDBC drivers allow you to access and update XM_Type tables and
columns, and call PL/SQL procedures that access Oracle XML DB Repository.
Applications that use DOM, such as those based on XSLT transformations, typically
require less knowledge of the data structure. DOM-based applications use string
names to identify pieces of content, and must dynamically walk through the DOM tree
to find the required information. For this, Oracle XML DB supports the use of the DOM
API to access and update XM.Type columns and tables. Programming to a DOM APl is
more flexible than programming through JDBC, but it may require more resources at
run time.

1-17



Chapter 1
Oracle XML DB Features

1.4.8 Oracle XML DB Repository: Overview

Oracle XML DB Repository is a component of Oracle Database that lets you handle
XML data using a file/folder/URL metaphor.

Oracle XML DB Repository contains resources, which can be either folders
(directories, containers) or files.

A resource, whether folder or file, has these properties:

* ltis identified by a path and name.
* It has content (data), which can be XML data but need not be.

* It has a set of system-defined metadata (properties), such as Ower and
Creat i onDat e, in addition to its content. Oracle XML DB uses this information to
manage the resource.

* It might also have user-defined metadata. Like system-defined metadata, this is
information that is not part of the content, but is associated with it.

* |t has an associated access control list that determines who can access the
resource, and for what operations.

Although Oracle XML DB Repository treats XML content specially, you can use the
repository to store other kinds of data besides XML. You can use the repository to
access any data that is stored in Oracle Database.

You can access data in the repository in the following ways:
¢ SQL - Using views RESOURCE_VI EWand PATH VI EW
e Standard protocols — FTP, HTTP(S), and WebDAV
e PL/SQL - Using PL/SQL package DBM5_XDB_ REPCS
» Java - Using the Oracle XML DB resource API for Java

Besides providing APIs for accessing and manipulating repository data, Oracle
XML DB provides APIs for the following repository services, which are based on IETF
WebDAV:

*  Versioning — Using PL/SQL package DBM5_XDB VERSI ON
*  ACL Security — Using access control lists (ACLS)
* Foldering — Using repository path names

Figure 1-4 illustrates the architecture of Oracle XML DB Repository.

ORACLE 1-18



Chapter 1
Standards Supported by Oracle XML DB

Figure 1-4 Oracle XML DB Repository Architecture

Application Logical View of
Oracle XML DB Repository

1
D Table

Name |ACL | Property 1 | Property N | Property N

Oracle Database \

Database View of Oracle XML DB Repository XMLType

Rows
RESOURCE_VIEW (XMLType) Path
Name |ACL Property 1 | Property N | Extra | Content | Parent

< >

FTP

WebDAV
XMLIndex B-Tree XML Hierarchical Tables or
Index Index Search Index Views
Index of XML

Related Topics

e Oracle XML DB Repository
Oracle XML DB Repository lets you version your data, implement and manage
security, and use APIs to access and manipulate repository resources.

1.5 Standards Supported by Oracle XML DB

Oracle XML DB supports all major XML, SQL, Java, and Internet standards.
These include the following:

¢ W3C XML Schema 1.0 Recommendation. You can register XML schemas,
validate stored XML content against XML schemas, or constrain XML stored in the
server to XML schemas.

e W3C XQuery 1.0 Recommendation and W3C XPath 2.0 Recommendation. You
can search or traverse XML stored inside the database using XQuery and XPath,
either from HTTP(S) requests or from SQL.

e ANSI/ISO/IEC 9075-14:2011, Information technology—Database languages—SQL
—Part 14: XML-Related Specifications (SQL/XML).

ORACLE 1-19



Chapter 1
Standards Supported by Oracle XML DB

e W3C DOM Recommendation Levels 1.0 and 2.0 Core. You can retrieve XML
stored in the server as an XML DOM, for dynamic access.

» Java Database Connectivity (JDBC) API. Provides Java access to XML data.
e XQuery API for Java (XQJ). Provides Java access to XML data using XQuery.

e W3C XSL 1.0 Recommendation. You can transform XML documents at the server
using XSLT.

»  Protocol support. You can store or retrieve XML data from Oracle XML DB using
Oracle Net or standard protocols such as HTTP(S), FTP, and IETF WebDAV.

« Java Servlet version 2.2, (except: the servlet WAR file, web. xnl , is not supported
in its entirety; only one Ser vl et Cont ext ; one web- app are currently supported; and
stateful servlets are not supported).

*  Web services: SOAP 1.1. You can access XML stored in the server from SOAP
requests. You can build, publish, or find Web Services using Oracle XML DB and
Oracle Fusion Middleware, using WSDL and UDDI. You can use Oracle Database
Advanced Queuing IDAP, the SOAP specification for queuing operations, on XML
stored in Oracle Database.

*  WB3C XML Linking Language (Xlink) 1.0 Recommendation. You can define various
types of links between XML documents.

*  WB3C XML Pointer Language (XPointer) Recommendation and XPointer
Framework. You can include the content of multiple XML documents or fragments
in a single infoset.

¢ See Also:

e SQL/XML Standard Functions for more information about the SQL/XML
functions

e Oracle XML Developer's Kit Programmer's Guide for information about
using XQJ

e Oracle Database SQL Language Reference for information about Oracle
support for the SQL/XML standard

* Use of XLink and XInclude with Oracle XML DB for more information
about XLink and XPointer support

e Repository Access Using Protocols for more information about protocol
support

e Guidelines for Oracle XML DB Applications in Java for information about
using the Java servlet

e XML Data Exchange Using Oracle Database Advanced Queuing and
Oracle Database Advanced Queuing User's Guide for information about
using SOAP

ORACLE 1-20



Chapter 1
Oracle XML DB Technical Support

1.6 Oracle XML DB Technical Support

Besides the regular channels of support through your customer representative or
consultant, technical support for Oracle Database XML-enabled technologies is
available free through the discussion forums Oracle Technology Network (OTN).

# See Also:

OTN Discussion Forums

1.7 Oracle XML DB Examples

The examples that illustrate the use of Oracle XML DB and XM.Type are based on
various database schemas, sample XML documents, and sample XML schemas.

Related Topics

e Oracle-Supplied XML Schemas and Examples
Full listings are provided here for the Oracle XML DB-supplied XML schemas,
purchase-order XML schemas and an XSLT stylesheet used in various examples,
and C-language (OCI) examples for loading XML content into Oracle XML DB and
initializing and terminating an XML context.

1.8 Oracle XML DB Case Studies and Demonstrations on
OTN

Visit Oracle Technology Network (OTN) to view Oracle XML DB examples, white
papers, case studies, and demonstrations.

Oracle XML DB is presented on OTN at Oracle XML DB on OTN.

Comprehensive XML classes on how to use Oracle XML DB are also available. See
the Oracle University link on OTN.

Detailed Oracle XML DB case studies available on OTN include the following:

e Oracle XML DB Downloadable Demonstration. This detailed demonstration
illustrates how to use many Oracle XML DB features. Parts of this demonstration
are also included in Overview of How To Use Oracle XML DB.

*  SAX Loader Application. This demonstrates an efficient way to break up large files
containing multiple XML documents outside the database and insert them into the
database as a set of separate documents. This is provided as a standalone and a
Web-based application.

ORACLE 1-21



Getting Started with Oracle XML DB

Some preliminary design criteria are presented for consideration when planning your
Oracle XML DB solution.

e Oracle XML DB Installation
Oracle XML DB is installed automatically if Database Configuration Assistant
(DBCA) is used to build Oracle Database using the general-purpose template.

e Oracle XML DB Use Cases
Oracle XML DB is suited for any application where some or all of the data
processed is represented using XML.

e Application Design Considerations for Oracle XML DB
When planning an Oracle XML DB application it can be worthwhile to consider
some preliminary design criteria.

2.1 Oracle XML DB Installation

Oracle XML DB is installed automatically if Database Configuration Assistant (DBCA)
is used to build Oracle Database using the general-purpose template.

You can determine whether or not Oracle XML DB is already installed. If it is installed,
then the following are true:

o Database schema (user account) XDB exists. To check that, run this query:

SELECT * FROM ALL_USERS;

*  View RESOURCE VI EWexists. To check that, use this command:

DESCRI BE RESOURCE_VI EW

" See Also:

e Administration of Oracle XML DB for information about installing Oracle
XML DB manually

e Oracle Database Security Guide

2.2 Oracle XML DB Use Cases

Oracle XML DB is suited for any application where some or all of the data processed is
represented using XML.

ORACLE 2-1



Chapter 2
Application Design Considerations for Oracle XML DB

Oracle XML DB provides for high-performance database ingestion, storage,
processing and retrieval of XML data. It also lets you quickly and easily generate XML
from existing relational data. Applications for which Oracle XML DB is particularly
suited include the following:

*  Business-to-business (B2B) and application-to-application (A2A) integration
* Internet

« Content-management

*  Messaging

*  Web Services

A typical Oracle XML DB application has at least one of the following characteristics:

e Large numbers of XML documents must be ingested or generated
e Large XML documents must be processed or generated

« High-performance searching is needed, both within a document and across large
collections of documents

e High levels of security are needed
e Fine-grained security is needed

e Data processing must use XML documents, and data must be stored in relational
tables

e Programming must support open standards such as SQL, XML, XQuery, XPath,
and XSL

e Information must be accessed using standard Internet protocols such as FTP,
HTTP(S)/WebDAV, and Java Database Connectivity (JDBC)

e XML data must be queried from SQL
e Analytic capabilities must be applied to XML data

e XML documents must be validated against an XML schema

2.3 Application Design Considerations for Oracle XML DB

ORACLE

When planning an Oracle XML DB application it can be worthwhile to consider some
preliminary design criteria.

These include the following:

*  The ways that you intend to store your XML data

e The structure of your XML data

* The languages used to implement your application
*  The ways you intend to process your XML data

However, in general Oracle recommends that you start with the following Oracle
XML DB features. For most use cases they are all that you need to consider.

e Storage model — binary XML
e Indexing — XML search index, XM.I ndex with structured component

» Database language — SQL, with SQL/XML functions

2-2



ORACLE

Chapter 2
Application Design Considerations for Oracle XML DB

XML languages — XQuery and XSLT
Client APIs — OClI, thin JDBC, SQL .NET

XML Data Storage
There are several ways to store XML data in Oracle Database.

The Structure of Your XML Data
How structured your XML data is, and whether it is based on an XML schema, can
influence how you store it.

Languages Used to Implement Your Application
You can program your Oracle XML DB applications in Java (JDBC, Java Servlets)
or PL/SQL.

XML Processing Options
Oracle XML DB offers a full range of XML processing options.

Oracle XML DB Repository Access
Design considerations for applications that use Oracle XML DB Repository include
access method, security needs, and whether you need versioning.

Oracle XML DB Cooperates with Other Database Options and Features
Oracle XML DB is an integrated part of Oracle Database, and works well with
other database options and features.

Related Topics

Choice of XMLType Storage and Indexing
Important design choices for your application include what XM.Type storage model
to use and which indexing approaches to use.

SQL/XML Standard Functions
Oracle XML DB provides the SQL functions that are defined in the SQL/XML
standard.

XQuery and Oracle XML DB

The XQuery language is one of the main ways that you interact with XML data in
Oracle XML DB. Support for the language includes SQL*Plus commandXQUERY
and SQL/XML functions XM_.Query, XM_Tabl e, XMLExi st s, and XM_Cast .

Transformation and Validation of XMLType Data

There are several Oracle SQL functions and XM.Type APIs for transforming
XM.Type data using XSLT stylesheets and for validating XM_Type instances against
an XML schema.

C DOM API for XMLType

The C DOM API for XM.Type lets you operate on XM_Type instances using a DOM
in C.

Java DOM API for XMLType

The Java DOM API for XM_Type lets you operate on XM_Type instances using a

DOM. You can use it to manipulate XML data in Java, including fetching it through
Java Database Connectivity (JDBC).

Oracle XML DB and Oracle Data Provider for .NET

Oracle Data Provider for Microsoft .NET (ODP.NET) is an implementation of a
data provider for Oracle Database. It uses Oracle native APIs to offer fast and
reliable access to Oracle data and features from any .NET application.

2-3



Chapter 2
Application Design Considerations for Oracle XML DB

2.3.1 XML Data Storage

ORACLE

There are several ways to store XML data in Oracle Database.

Storage of XM.Type tables and views is outlined in Figure 2-1.

Figure 2-1 Oracle XML DB Storage Options for XML Data

Oracle XML DB Data
Storage Options

Your Storage Option
Affects Performance
XMLType and Data Fidelity XMLType +— If you have existing
Tables and Views relational data use
Columns XMLType Views
Can define the
views using:
Binary | | obiect-Relational [ |3 36rators S
Storage Storage |
Relational
Tables
Object Object Object
Tables Views Constructors
I
Relational
Tables

If you have existing relational data, you can access it as XML data by creating XM_Type
views over it. You can use the following to define the XM.Type views:

e SQL/XML functions. See Generation of XML Data from Relational Data and
XQuery and Oracle XML DB.

e Object types: object tables, object constructors, and object views.

Regardless of which storage options you choose for your application, Oracle XML DB
provides the same functionality. Though the storage model you use can affect your
application performance and XML data fidelity, it is totally independent of how
frequently you query or update your data and what APIs your application uses.

Related Topics

XMLType Storage Models
XM.Type is an abstract data type that provides different storage models to best fit
your data and your use of it. As an abstract data type, your applications and
database queries gain in flexibility: the same interface is available for all XM.Type
operations.

2-4



Chapter 2
Application Design Considerations for Oracle XML DB

2.3.2 The Structure of Your XML Data

How structured your XML data is, and whether it is based on an XML schema, can
influence how you store it.

If your XML data is not XML Schema-based, then, regardless of how structured it is,
you can store it in an XMLType table or view as binary XML, or you can store it as a file
in an Oracle XML DB Repository folder. You cannot store it object-relationally.

If your XML data is XML Schema-based then you must store it as binary XML or
object-relationally.

Related Topics

e Choice of XMLType Storage and Indexing
Important design choices for your application include what XM.Type storage model
to use and which indexing approaches to use.

2.3.3 Languages Used to Implement Your Application

You can program your Oracle XML DB applications in Java (JDBC, Java Servlets) or
PL/SQL.

Related Topics

e Java DOM API for XMLType
The Java DOM API for XM_Type lets you operate on XM.Type instances using a
DOM. You can use it to manipulate XML data in Java, including fetching it through
Java Database Connectivity (JDBC).

*  Guidelines for Oracle XML DB Applications in Java
Design guidelines are presented for writing Oracle XML DB applications in Java.
This includes guidelines for writing and configuring Java servlets for Oracle
XML DB.

e PL/SQL APIs for XMLType
There are several PL/SQL packages that provide APIs for XMLType.

e PL/SQL Access to Oracle XML DB Repository
PL/SQL packages DBMS_XDB_CONFI Gand DBMS_XDB_REPCS together provide the
Oracle XML DB resource application program interface (API) for PL/SQL. You use
the former to configure Oracle XML DB and its repository. You use the latter to
perform other, non-configuration operations on the repository.

2.3.4 XML Processing Options

ORACLE

Oracle XML DB offers a full range of XML processing options.

The following are available and should be considered when designing your Oracle
XML DB application:

* XML Generation and XM.Type views. Whether you need to generate (or
regenerate) XML data. See Generation of XML Data from Relational Data.

*  Whether your application is data-centric or document-centric, or both. See
Overview of How To Use Oracle XML DB.

2-5



Chapter 2
Application Design Considerations for Oracle XML DB

DOM fidelity, document fidelity. XM_Type storage, whether object-relational or
binary XML, preserves DOM fidelity. That is, A DOM created from an XML
document stored as XM.Type is identical to a DOM created from the original
document. However, there could be differences in insignificant whitespace. See
DOM Fidelity, SYS_XDBPD$ and DOM Fidelity for Object-Relational Storage, and
PL/SQL APIs for XMLType.

If you need to preserve document fidelity (insignificant whitespace) in addition to
DOM fidelity, then store two copies of your original document: one as an XM_Type
instance for database use and XML processing, the other as a CLOB instance to
provide document fidelity.

XPath searching. You can use XPath syntax embedded in a SQL statement to
guery XML content in the database. See Query and Update of XML Data, Access
to Oracle XML DB Repository Data, and Repository Access Using
RESOURCE_VIEW and PATH_VIEW.

How often XML documents are accessed, updated, and manipulated. See Query
and Update of XML Data.

Whether you need to update fragments or whole documents. You can use XPath
expressions to specify individual elements and attributes of your document during
updates, without rewriting the entire document. This is more efficient, especially for
large XML documents. See Updating XML Data.

Which kinds of indexing best suit your application and data. See Indexes for
XMLType Data.

XSLT. Whether you need to transform the XML data to HTML, WML, or other
languages, and, if so, how your application does this. While storing XML
documents in Oracle XML DB, you can optionally ensure that their structure
complies with (validates against) specific XML schemas. See Transformation and
Validation of XMLType Data.

2.3.5 Oracle XML DB Repository Access

Design considerations for applications that use Oracle XML DB Repository include
access method, security needs, and whether you need versioning.

ORACLE

There are two main repository access methods:

Navigation-based access or path-based access. This is suitable for both content/
document and data oriented applications. Oracle XML DB provides the following
languages and access APIs:

— SQL access through resource and path views. See Repository Access Using
RESOURCE_VIEW and PATH_VIEW.

— PL/SQL access using package DBM5_XDB or packages DBMS_XDB_ADM N,
DBVMS_XDB_CONFI Gand DBMS_XDB_REPCS. See PL/SQL Access to Oracle
XML DB Repository .

— Protocol-based access using HTTP(S)/WebDAV or FTP, most suited to
content-oriented applications. See Repository Access Using Protocols.

Query-based access. This can be most suited to data oriented applications. Oracle
XML DB provides access using SQL queries through the following APIs:

— Java access (through JDBC). See Java DOM API for XMLType.
— PL/SQL access. See PL/SQL APIs for XMLType.

2-6



Chapter 2
Application Design Considerations for Oracle XML DB

These options for accessing repository data are also discussed in Access to Oracle
XML DB Repository Data.

You can also consider the following access criteria:

What levels of security you need. See Repository Access Control.

Whether you need to version the data. See Resource Versions.

2.3.6 Oracle XML DB Cooperates with Other Database Options and

Features

Oracle XML DB is an integrated part of Oracle Database, and works well with other
database options and features.

ORACLE

Oracle Database Advanced Queuing (AQ) — merge XML payloads. See XML Data
Exchange Using Oracle Database Advanced Queuing and Oracle Database
Advanced Queuing User's Guide

Oracle GoldenGate and Oracle Active Data Guard — replicate and safeguard XML
data, or perform a rolling upgrade. See Oracle GoldenGate and Oracle Data
Guard Concepts and Administration

Oracle Exadata Storage Server Software — high-performance, scalable, and highly
available use of XML data. See Oracle Exadata Storage Server Software User's
Guide.

Oracle Real Application Clusters (Oracle RAC) — Use XML data with clusters of
database instances. See Oracle Real Application Clusters Administration and
Deployment Guide

Oracle Multitenant option — Use XML data with a multitenant architecture, where
each pluggable database has its own Oracle XML DB Repository. See Oracle
Multitenant Administrator's Guide

Compression and Encryption — You can compress or encrypt binary XML data that
uses SecureFiles LOB storage. For XML data stored object-relationally, you can
compress or encrypt XML elements and attributes individually.

Parallel Execution — Execution of the following operations can be carried out in
parallel:

— A query of XM_Type data
— DML for XM.Type data stored as binary XML using SecureFiles LOBs

— Adirect load for an XM_Type table on which an Oracle Text CONTEXT index is
defined

" See Also:

Oracle Database Concepts

2-7



Overview of How To Use Oracle XML DB

ORACLE

An overview of the various ways of using Oracle XML DB is presented.

This overview illustrates how to do the following: create and partition XM.Type tables
and columns; enforce data integrity, load, query, and update database XML content;
and generate XML data from relational data. It also explains how Oracle XML DB
determines which character sets are used for XML documents.

Purchase Order Documents lllustrate Key XML Schema Features

Many of the examples presented in this chapter illustrate techniques for accessing and
managing XML content in purchase-order documents. Purchase orders are highly
structured documents, but you can also use the techniques shown here to work with
XML documents that have little structure.

The purchase-order documents used for the examples here conform to a purchase-
order XML schema that demonstrates some key features of a typical XML document:

e Global element Pur chaseQr der is an instance of the conpl exType
Pur chaseOr der Type

* PurchaseCOr der Type defines the set of nodes that make up a Pur chaseOr der
element

* Lineltenms element consists of a collection of Li nel t emelements
* Each Li nel t emelement consists of two elements: Descri ption and Part

e Part element has attributes | d, Quantity, and Uni tPrice

e Creating XMLType Tables and Columns
Creating a table or column of XM.Type is straightforward because it is an abstract
data type.

e Creating Virtual Columns on XMLType Data Stored as Binary XML
You can create virtual columns only for XM.Type data that is stored as binary XML.
Such columns are useful for partitioning or constraining the data.

*  Partitioning Tables That Contain XMLType Data Stored as Binary XML
You can partition a table that contains XM_Type data stored as binary XML.

» Enforcing XML Data Integrity Using the Database
You can combine the power of SQL and XML with the ability of the database to
enforce rules.

* Loading XML Content into Oracle XML DB
There are several ways to load XML content into Oracle XML DB.

*  Querying XML Content Stored in Oracle XML DB
There are many ways to query XML content in Oracle XML DB and retrieve it.

e Updating XML Content Stored in Oracle XML DB
You can update XML content, replacing either the entire contents of a document or
only particular parts of a document.

3-1



Chapter 3
Creating XMLType Tables and Columns

* Generating XML Data from Relational Data
You can use Oracle XML DB to generate XML data from relational data.

*  Character Sets of XML Documents
There are a few ways in which Oracle XML DB determines which character sets
are used for XML documents

¢ See Also:

e Application Design Considerations for Oracle XML DB for recommended
Oracle XML DB features for most uses

¢ XMLType APIs, XML Schema and Object-Relational XMLType , and
Oracle XML DB Repository for information about more advanced Oracle
XML DB features

e Purchase-Order XML Schemas for the purchase-order XML schemas
used for examples in this chapter

3.1 Creating XMLType Tables and Columns
Creating a table or column of XM.Type is straightforward because it is an abstract data
type.

The basic CREATE TABLE statement, specifying no storage options and no XML
schema, stores XM_.Type data as binary XML.!

Example 3-1 creates an XM.Type column, and Example 3-2 creates an XM.Type table.

Example 3-1 Creating a Table with an XMLType Column

CREATE TABLE nytabl el (key_col utm VARCHAR2(10) PRI MARY KEY, xml _col um
XMLType) ;

Example 3-2 Creating a Table of XMLType

CREATE TABLE nytabl e2 OF XMLType;

Related Topics

»  Creation of XMLType Tables and Columns Based on XML Schemas
You can create XMLType tables and columns that are constrained to a global
element defined by an XML schema. After an XML.Type column has been
constrained to a particular element and a particular schema, it can only contain
documents that are compliant with the schema definition of that element.

1 The XM_.Type storage model for XML schema-based data is whatever was specified during registration of the
referenced XML schema. If no storage model was specified during registration, then object-relational storage is
used.

ORACLE 3-2



Chapter 3
Creating Virtual Columns on XMLType Data Stored as Binary XML

3.2 Creating Virtual Columns on XMLType Data Stored as
Binary XML

You can create virtual columns only for XML Type data that is stored as binary XML.
Such columns are useful for partitioning or constraining the data.

You create virtual columns for XML data the same way you create them for other data
types, but you use a slightly different syntax. (In particular, you cannot specify
constraints in association with the column definition.)

You create a virtual column based on an XML element or attribute by defining it in
terms of a SQL expression that involves that element or attribute. The column is thus
function-based.

You use SQL/XML functions XM.Cast and XM.Query to do this, as shown in
Example 3-3 and Example 3-4. The XQuery expression argument to function XM.Query
must be a simple XPath expression that uses only the child and attribute axes.

Example 3-3 creates XM_Type table po_bi naryxm , stored as binary XML. It creates
virtual column dat e_col , which represents the XML data in attribute / Pur chaseOr der/
@r der Dat e.

Example 3-4 creates relational table r el _t ab, which has two columns: VARCHAR2
column key_col for the primary key, and XM_Type column xnl _col for the XML data.

Because XM.Type is an abstract data type, if you create virtual columns on an XM.Type
table or column then those columns are hidden. They do not show up in DESCRI BE
statements, for example. This hiding enables tools that use operations such as

DESCRI BE to function normally and not be misled by the virtual columns.

" Note:

If you use a virtual column for interval partitioning then it must have data type
NUMBER or DATE, otherwise an error is raised. Use SQL/XML functions
XM.Cast and XM_Query to cast to the proper data type.

¢ See Also:

Oracle Database SQL Language Reference for information about creating
tables with virtual columns

Example 3-3 Creating a Virtual Column for an XML Attribute in an XMLType
Table

CREATE TABLE po_bi naryxml OF XM.Type
XMLTYPE STORE AS BI NARY XM
VIRTUAL COLUMNS
(date_col AS (XM.Cast (XM.Query('/PurchaseOr der/ @r derDate'

ORACLE 3-3



Chapter 3
Partitioning Tables That Contain XMLType Data Stored as Binary XML

PASSI NG OBJECT VALUE RETURNI NG CONTENT)
AS DATE)));

Example 3-4 Creating a Virtual Column for an XML Attribute in an XMLType
Column

CREATE TABLE reltab (key col VARCHAR2(10) PRI MARY KEY,
xm _col XM.Type)
XM.TYPE xm _col STORE AS Bl NARY XM
VIRTUAL COLUMNS
(date_col AS (XM.Cast (XM.Query("'/PurchaseOr der/ @r der Dat e’
PASSI NG xm _col RETURNI NG CONTENT)
AS DATE)));

Related Topics

» Partitioning Tables That Contain XMLType Data Stored as Binary XML
You can partition a table that contains XM_Type data stored as binary XML.

» Enforcing Referential Integrity Using SQL Constraints
You can use SQL constraints and database triggers to ensure data-integrity
properties such as uniqueness and foreign-key relations.

3.3 Partitioning Tables That Contain XMLType Data Stored
as Binary XML

ORACLE

You can partition a table that contains XM_Type data stored as binary XML.
There are two possibilities:

* The table is relational, with an XM_Type column and a non-XM.Type column.
e The table is of data type XM.Type.

In the case of an XMLType column, you use the non-XM.Type column as the partitioning
key. This is illustrated in Example 3-5.

This case presents nothing new or specific with respect to XML data. The fact that one
of the columns contains XMLType data is irrelevant. Things are different for the other
case: partitioning an XM_Type table.

XML data has its own structure, which (except for object-relational storage of XMLType)
is not reflected directly in database data structure. For XM_.Type data stored as binary
XML, individual XML elements and attributes are not mapped to individual database
columns or tables.

Therefore, to partition binary XML data according to the values of individual elements
or attributes, the standard approach for relational data does not apply. Instead, you
must create virtual columns that represent the XML data of interest, and then use
those virtual columns to define the constraints or partitions that you need.

The technique is as follows:

1. Define virtual columns that correspond to the XML elements or attributes that you
are interested in.

2. Use those columns to partition the XMLType data as a whole.

3-4



ORACLE

Chapter 3
Partitioning Tables That Contain XMLType Data Stored as Binary XML

This is illustrated in Example 3-6: virtual column dat e_col targets the or der Dat e
attribute of element Pur chaseOr der in a purchase-order document. This column is
used as the partitioning key.

For best performance using a partitioned table containing XML data, Oracle
recommends that you use an XM.Type column rather than an XM.Type table, and you
therefore partition using a non-XM.Type column.

# Note:

* You can partition an XM.Type table using a virtual column only if the
storage model is binary XML. Range, hash, and list partitioning are
supported.

e Partitioning of XM_Type tables stored as XML is supported starting with
11g Release 2 (11.2). It is supported only if the database compatibility
(parameter conpati bl e in fileinit.ora)is 11.2 or higher.

* If arelational table has an XM_Type column, you cannot partition the table
using that column to define virtual columns of XML data.

Example 3-5 Partitioning a Relational Table That Has an XMLType Column

CREATE TABLE reltab (key_col VARCHAR2(10) PRI MARY KEY,
xm _col XM.Type)
XMLTYPE xm _col STORE AS BI NARY XM
PARTITION BY RANGE (key_col)
(PARTITION P1 VALUES LESS THAN ("abc"),
PARTITION P2 VALUES LESS THAN (MAXVALUE));

Example 3-6 Partitioning an XMLType Table

CREATE TABLE po_bi naryxm OF XM.Type
XMLTYPE STORE AS BI NARY XML
VIRTUAL COLUMNS
(date_col AS (XM.Cast (XM.Query('/PurchaseOr der/ @r der Dat e’
PASSI NG OBJECT VALUE RETURNI NG CONTENT)
AS DATE)))
PARTITION BY RANGE (date_col)
(PARTITION orders2001 VALUES LESS THAN (to_date("01-JAN-2002%)),
PARTITION orders2002 VALUES LESS THAN (MAXVALUE));

Related Topics

e XMLIndex Partitioning and Parallelism
If you partition an XM_Type table, or a table with an XM_Type column, using range,
list, or hash partitioning, you can also create an XM.I ndex index on the table. You
can optionally ensure that index creation and maintenance are carried out in
parallel.

e Overview of Partitioning XMLType Tables and Columns Stored Object-Relationally
When you partition an object-relational XM_Type table or a table with an XM.Type
column that is stored object-relationally and you use list, range, or hash

3-5



Chapter 3
Enforcing XML Data Integrity Using the Database

partitioning, any ordered collection tables (OCTSs) or out-of-line tables within the
data are automatically partitioned accordingly, by default.

3.4 Enforcing XML Data Integrity Using the Database

ORACLE

You can combine the power of SQL and XML with the ability of the database to
enforce rules.

You can use SQL to supplement the functionality provided by XML schema. Only well-
formed XML documents can be stored in XM.Type tables or columns. A well-formed
XML document is one that conforms to the syntax of the XML version declared in its
XML declaration. This includes having a single root element, properly nested tags, and
so forth. Additionally, if the XM_Type table or column is constrained to an XML schema
then only documents that conform to that XML schema can be stored in that table or
column. Any attempt to store or insert any other kind of XML document in an XML
schema-based XM.Type raises an error. Example 3-7 illustrates this.

Such an error occurs only when content is inserted directly into an XML Type table. It
indicates that Oracle XML DB did not recognize the document as a member of the
class defined by the XML schema. For a document to be recognized as a member of
the class defined by the schema, the following conditions must be true:

e The name of the XML document root element must match the name of global
element used to define the XM_Type table or column.

*  The XML document must include the appropriate attributes from the XM.Schena-
i nst ance namespace, or the XML document must be explicitly associated with the
XML schema using the XM.Type constructor or XM_Type method
creat eSchemaBasedXM.() .

If the constraining XML schema declares at ar get Nanespace, then the instance
documents must contain the appropriate namespace declarations to place the root
element of the document in the t ar get Namespace defined by the XML schema.

# Note:

XML constraints are enforced only within individual XML documents.
Database (SQL) constraints are enforced across sets of XML documents.

Example 3-7 Error From Attempting to Insert an Incorrect XML Document

I NSERT | NTO pur chaseor der
VALUES ( XM.Type(bfi | enanme

nl's_charset id(' AL32UTF8'))
VALUES ( XM.Type(bfi | enanme

nl's_charset id(' AL32UTF8'))

*

ERROR at line 2:

ORA-19007: Schema - does not match expected

http://1 ocal host: 8080/ sour ce/ schenas/ poSour ce/ xsd/ pur chaseCr der . xsd.

"XM.DIR', 'Invoice.xm"),

"XM.DIR', 'Invoice.xm"),

—_— o~ — —~

3-6



Chapter 3
Enforcing XML Data Integrity Using the Database

»  Enforcing Referential Integrity Using SQL Constraints
You can use SQL constraints and database triggers to ensure data-integrity
properties such as uniqueness and foreign-key relations.

Related Topics

* Partial and Full XML Schema Validation
When you insert XML Schema-based documents into the database they can be
validated partially or fully.

3.4.1 Enforcing Referential Integrity Using SQL Constraints

ORACLE

You can use SQL constraints and database triggers to ensure data-integrity properties
such as uniqueness and foreign-key relations.

The W3C XML Schema Recommendation defines a powerful language for defining the
contents of an XML document. However, there are some simple data management
concepts that are not currently addressed by the W3C XML Schema
Recommendation. These include the ability to ensure that the value of an element or
attribute has either of these properties:

e Itis unique across a set of XML documents (a UNI QUE constraint).

e It exists in a particular data source that is outside of the current document
(FOREI GN KEY constraint).

With Oracle XML DB, however, you can enforce such constraints. The mechanisms
that you use to enforce integrity on XML data are the same as those you use to
enforce integrity on relational data. Simple rules, such as uniqueness and foreign-key
relationships, can be enforced by specifying SQL constraints. More complex rules can
be enforced by specifying database triggers.

Oracle XML DB lets you use the database to enforce business rules on XML content,
in addition to enforcing rules that can be specified using XML Schema constructs. The
database enforces these business rules regardless of whether XML is inserted directly
into a table or uploaded using one of the protocols supported by Oracle XML DB
Repository.

XML data has its own structure, which (except for object-relational storage of XM.Type)
is not reflected directly in database data structure. For XM_Type data stored as binary
XML, individual XML elements and attributes are not mapped to individual database
columns or tables.

Therefore, to constrain binary XML data according to the values of individual elements
or attributes, the standard approach for relational data does not apply. Instead, you
must create virtual columns that represent the XML data of interest, and then use
those virtual columns to define the constraints that you need.

The technique is as follows:

1. Define virtual columns that correspond to the XML elements or attributes that you
are interested in.

2. Use those columns to constrain the XM.Type data as a whole.

The binary XML data can be in an XM_Type table or an XM.Type column of a relational
table. In the former case, you can include creation of the constraint as part of the
CREATE TABLE statement, if you like. For the latter case, you must create the constraint
using an ALTER TABLE statement, after the relational table has been created.

3-7



ORACLE

Chapter 3
Enforcing XML Data Integrity Using the Database

¢ See also:

Oracle Database Error Messages Reference

Example 3-8 Constraining a Binary XML Table Using a Virtual Column

This example illustrates the technique for an XM_Type table. It defines virtual column
c_xt abref using the Ref er ence element in a purchase-order document. It defines
uniqueness constraint r ef er ence_i s_uni que on that column, which ensures that the
value of node / Pur chaseOr der/ Ref erence/ t ext () is unique across all documents that
are stored in the table. It fills the table with the data from CE. pur chaseor der . It then
tries to insert a duplicate document, Dupl i cat eRef er ence. xm , which violates the
unigueness constraint, raising an error.

CREATE TABLE po_bi naryxm OF XM.Type
(CONSTRAINT reference_is_uni que UNIQUE (c_xtabref))
XMLTYPE STORE AS BI NARY XM
VIRTUAL COLUMNS
(c_xtabref AS (XM.Cast (XM.Query('/PurchaseOrder/ Ref erence’
PASSI NG OBJECT_VALUE RETURNI NG CONTENT)
AS VARCHAR2(32))));

I NSERT | NTO po_bi naryxm SELECT OBJECT_VALUE FROM CE. pur chaseor der;
132 rows created.

I NSERT | NTO po_bi nar yxm
VALUES (XM.Type(bfilename(' XM.DIR, 'DuplicateReference.xm"),
nl's_charset _id(' AL32UTF8')));
I NSERT | NTO po_bi nar yxm
*

ERROR at line 1:
ORA-00001: unique constraint (OE.REFERENCE_IS_UNIQUE) violated

Example 3-9 Constraining a Binary XML Column Using a Virtual Column:
Uniqueness

This example illustrates the technique for an XM_.Type column of a relational table. It
defines virtual column ¢_xcol ref and uniqueness constraint f k_r ef , which references
the uniqueness constraint defined in Example 3-8. As in Example 3-8, this ensures
that the value of node / Pur chaseOr der/ Ref er ence/ t ext () is unique across all
documents that are stored in XMLType column po_bi nxm _col .

The example fills the XM_Type column with the same data from CE. pur chaseor der . It
then tries to insert duplicate document, Dupl i cat eRef er ence. xn , which violates the
unigueness constraint, raising an error.

CREATE TABLE po_reltab (po_binxm _col XM.Type)
XMLTYPE po_bi nxm _col STORE AS Bl NARY XM
VI RTUAL COLUWNS
(c_xcolref AS (XM.Cast (XM.Query('/PurchaseOr der/Reference’
PASSI NG po_bi nxnl _col RETURNI NG CONTENT)
AS VARCHAR2(32))));

ALTER TABLE po_rel tab ADD CONSTRAINT reference_is_unique UNIQUE (c_xcolref));

3-8



ORACLE

Chapter 3
Enforcing XML Data Integrity Using the Database

I NSERT | NTO po_rel tab SELECT OBJECT_VALUE FROM CE. pur chaseor der;
I NSERT | NTO po_reltab
VALUES (XM.Type(bfilename(' XM.DIR, 'DuplicateReference.xm"),
nl's_charset _id(' AL32UTF8')));
I NSERT | NTO po_reltab
*

ERROR at line 1:
ORA-00001: unique constraint (OE.REFERENCE_IS_UNIQUE) violated

Example 3-10 Constraining a Binary XML Column Using a Virtual Column:
Foreign Key

This example is similar to Example 3-9, but it uses a foreign-key constraint, f k_ref,
which references the column with the uniqueness constraint defined in Example 3-8.
Insertion of the document in file Dupl i cat eRef er ence. xml succeeds here, since that
document is in (virtual) column c_t abr ef of table po_bi naryxni . Insertion of a
document that does not match any document in table po_bi naryxni .

CREATE TABLE po_reltab (po_binxm _col XM.Type)
XMLTYPE po_bi nxmi _col STORE AS BI NARY XM
VI RTUAL COLUWNS
(c_xcolref AS (XM.Cast (XM.Query('/PurchaseOrder/Reference'
PASSI NG po_bi nxml _col RETURNI NG CONTENT)
AS VARCHAR2(132))));

ALTER TABLE po_reltab ADD CONSTRAINT fk_ref FOREIGN KEY (c_xcolref)
REFERENCES po_binaryxml(c_xtabref);

I NSERT | NTO po_reltab
VALUES (XM.Type(bfilename(' XM.DIR , 'DuplicateReference.xm"),
nl's_charset _id(' AL32UTF8')));

I NSERT | NTO po_reltab
VALUES (' <PurchaseOrder><Reference>Not Compliant</Reference></Purchaselrder>');
I NSERT | NTO po_reltab VALUES (' <PurchaseOr der><Ref erence>Not Conpl i ant
</ Ref er ence></ Pur chaseCr der >")
*
ERROR at line 1:
ORA-02291: integrity constraint (OE.FK_REF) violated - parent key not found

Example 3-11 Enforcing Database Integrity When Loading XML Using FTP

Integrity rules defined using constraints and triggers are also enforced when XML
schema-based XML content is loaded into Oracle XML DB Repository. This example
shows that database integrity is also enforced when a protocol, such as FTP, is used
to upload XML schema-based XML content into Oracle XML DB Repository. In this
case, additional constraints, besides uniqueness, were also violated.

$ ftp local host 2100

Connected to |ocal host.

220 mdrake-sun FTP Server (Oracle XM DB/ Oracl e Database 10g Enterprise Edition
Rel ease 10.1.0.0.0 - Beta) ready.
Name (| ocal host: oracl el0): QU NE
331 Password required for QU NE
Password: password

230 QUINE | ogged in

ftp> cd /source/ schemas

250 CWD Cormmand successf ul

ftp> put InvalidReference. xn

200 PORT Command successf ul

150 ASCI| Data Connection

3-9



Chapter 3
Loading XML Content into Oracle XML DB

550- Error Response

ORA-00604: error occurred at recursive SQ level 1

ORA-31154: invalid XM docunent

ORA-19202: Error occurred in XM processing

LSX-00221: "SBELL-20021009" is too short (minimumlength is 18)
ORA-06512: at "SYS. XMLTYPE', line 333

ORA-06512: at " QU NE. VALI DATE_PURCHASEORDER', |ine 3

ORA-04088: error during execution of trigger 'QU NE. VALI DATE_PURCHASEORDER
550 End Error Response

ftp> put InvalidE enent.xn

200 PORT Command successf ul

150 ASCI| Data Connection

550- Error Response

ORA-30937: No schema definition for 'UserName' (namespace '##local') in parent
' Pur chaseOr der'

550 End Error Response

ftp> put DuplicateReference. xn

200 PORT Command successf ul

150 ASCI| Data Connection

550- Error Response

ORA-00604: error occurred at recursive SQ level 1

ORA-00001: uni que constraint (QU NE. REFERENCE_| S_UNI QUE) viol ated
550 End Error Response

ftp> put InvalidUser.xm

200 PORT Command successf ul

150 ASCI| Data Connection

550- Error Response

ORA-00604: error occurred at recursive SQ level 1

ORA-02291: integrity constraint (QU NE USER IS _VALID) violated - parent key not
found

550 End Error Response

When an error occurs while a document is being uploaded using a protocol, Oracle
XML DB provides the client with the full SQL error trace. How the error is interpreted
and reported to you is determined by the error-handling built into the client application.
Some clients, such as a command line FTP tool, report the error returned by Oracle
XML DB, while others, such as Microsoft Windows Explorer, report a generic error
message.

Related Topics

»  Specification of Relational Constraints on XMLType Tables and Columns
For XMLType data stored object-relationally, you can specify typical relational
constraints for elements and attributes that occur only once in an XML document.

*  Creating Virtual Columns on XMLType Data Stored as Binary XML
You can create virtual columns only for XM_.Type data that is stored as binary XML.
Such columns are useful for partitioning or constraining the data.

3.5 Loading XML Content into Oracle XML DB

ORACLE

There are several ways to load XML content into Oracle XML DB.

e Loading XML Content Using SQL or PL/SQL

* Loading XML Content Using Java
With a DOM you can use Java to load a SQLXM. instance.

e Loading XML Content Using C
With a DOM you can use C code to load an XM_Type instance.

3-10



Chapter 3
Loading XML Content into Oracle XML DB

* Loading Large XML Files that Contain Small XML Documents
When loading large XML files consisting of a collection of smaller XML documents,
it is often more efficient to use Simple API for XML (SAX) parsing to break the file
into a set of smaller documents, and then insert those documents.

* Loading Large XML Files Using SQL*Loader
You can use SQL*Loader to load large amounts of XML data into Oracle
Database.

* Loading XML Documents into the Repository Using DBMS_XDB_REPOS
You can use PL/SQL package DBVM5_XDB_REPCS to load XML documents into
Oracle XML DB Repository. You can access repository documents (resources)
using path-based rather than table-based techniques.

e Loading Documents into the Repository Using Protocols
You can load documents, including XML documents, from a local file system into
Oracle XML DB Repository using popular protocols.

3.5.1 Loading XML Content Using SQL or PL/SQL

You can use a simple | NSERT operation in SQL or PL/SQL to load an XML document
into the database.

Before the document can be stored as an XM.Type column or table, you must convert it
into an XMLType instance using one of the XM.Type constructors.

XM.Type constructors allow an XM.Type instance to be created from different sources,
including VARCHAR, CLOB, and BFI LE values. The constructors accept additional
arguments that reduce the amount of processing associated with XM_Type creation.
For example, if you are sure that a given source XML document is valid, you can
provide an argument to the constructor that disables the type-checking that is
otherwise performed.

In addition, if the source data is not encoded in the database character set, an XM_Type
instance can be constructed using a BFI LE or BLOB value. The encoding of the source
data is specified through the character set id (csi d) argument of the constructor.

When you use SQL | NSERT to insert a large document containing collections into
XM.Type tables (but not into XMLType columns), Oracle XML DB optimizes load time
and memory usage.

Example 3-13 shows how to insert XML content into an XM_Type table. Before making
this insertion, you must create a database directory object that points to the directory
containing the file to be processed. To do this, you must have the CREATE ANY

DI RECTORY privilege.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for a
description of the XMLType constructors

e Oracle Database SQL Language Reference, under GRANT

ORACLE 3-11



Chapter 3
Loading XML Content into Oracle XML DB

Example 3-12 Creating a Database Directory

CREATE DI RECTCRY xm dir AS path_to_fol der _containing_XM__file;

Example 3-13 Inserting XML Content into an XMLType Table

I NSERT | NTO nyt abl e2 VALUES (XM.Type(bfilename(' XM.DIR , ' purchaseOrder.xm"),
nls_charset _id(' AL32UTF8')));

The value passed to nl s_char set _i d indicates that the encoding for the file to be read
is UTF-8.

Related Topics

e Query and Update of XML Data
There are many ways for applications to query and update XML data that is in
Oracle Database, both XML schema-based and non-schema-based.

e PL/SQL APIs for XMLType: References
The PL/SQL Application Programming Interfaces (APIs) for XM.Type are
described.

» Considerations for Loading and Retrieving Large Documents with Collections
Oracle XML DB configuration file xdbconfi g. xnl has parameters that control the
amount of memory used by the loading operation: xdbcor e- | oadabl euni t - si ze
and xdbcor e- xobnmem bound.

3.5.2 Loading XML Content Using Java

With a DOM you can use Java to load a SQLXM. instance.

Example 3-14 shows how to load XML content into Oracle XML DB by first creating a
SQLXM. instance in Java, given a Document Object Model (DOM).

A simple bulk loader application is available at Oracle XML DB on OTN. It shows how
to load a directory of XML files into Oracle XML DB using Java Database Connectivity
(JDBC). JDBC is a set of Java interfaces to Oracle Database.

Example 3-14 Inserting Content into an XMLType Table Using Java

public void dolnsert(Connection conn, Docunent doc)
throws Exception
{
String query = "INSERT INTO purchaseorder VALUES (?)";
SQLXM. sx = conn. createSQLXML();
DOVResul t dom = sx. set Resul t (DOVResul t. cl ass);
dom set Node( doc) ;
PreparedSt at ement st atenment = conn. prepareSt at enent (query);
st at ement . setSQLXML(1, sx);
stat ement . execute();

ORACLE 3-12



Chapter 3
Loading XML Content into Oracle XML DB

3.5.3 Loading XML Content Using C

With a DOM you can use C code to load an XM_Type instance.

Example 3-15 shows how to insert XML content into an XM_Type table using C code,
by creating an XM.Type instance given a DOM (see Oracle XML Developer's Kit
Programmer's Guide). See Loading XML Data Using C (OCI) for a complete listing of
this example.

" Note:

For simplicity in demonstrating this feature, this example does not perform
the password management techniques that a deployed system normally
uses. In a production environment, follow the Oracle Database password
management guidelines, and disable any sample accounts. See Oracle
Database Security Guide for password management guidelines and other
security recommendations.

Example 3-15 Inserting Content into an XMLType Table Using C

voi d main()

{
OCl Type *xnl t do;
xnl docnode *doc;
oci xm dbpar am par ans[ 1] ;
xm err err;
xmctx *xctx;
oratext *ins_stnt;
swor d st at us;
xml node *root;
oratext buf[10000];

[* Initialize envhp, svchp, errhp, dur, stnthp */
init_oci_connect();

[* Get an XML context */
parans[ 0] . nane_oci xnl dbparam = XCTXI NI T_OCI DUR,
parans[ 0] . val ue_oci xni dbparam = &dur;
xctx = OCIXmIDbInitXmICtx(envhp, svchp, errhp, parans, 1);
if (!(doc = X LoadDon{xctx, &err, "file", filenang,
"schema_| ocation", schemaloc, NULL)))
{

printf("Parse failed.\n");
return;
}
el se
printf("Parse succeeded.\n");
root = XmlDomGetDocElem(xctx, doc);
printf("The xm docunent is :\n");
Xml SaveDonm{ xctx, &err, (xmnode *)doc, "buffer", buf, "buffer_length", 10000, NULL);
printf("%\n", buf);

/* Insert the docunent into ny_table */

ins_stnt = (oratext *)"insert into purchaseorder values (:1)";

status = OCl TypeByName(envhp, errhp, svchp, (const text *) "SYS',
(ub4) strlen((const char *)"SYS"), (const text *) "XM.TYPE",
(ub4) strlen((const char *)"XM.TYPE"'), (CONST text *) O,
(ub4) 0, OCI _DURATI ON_SESSI ON, OCl _TYPEGET_HEADER,

ORACLE 3-13



Chapter 3
Loading XML Content into Oracle XML DB

(OCl Type **) &xmitdo);

if (status == OCl _SUCCESS)

{

status = exec_bi nd_xm (svchp, errhp, stnthp, (void *)doc,

}

xmtdo, ins_stnt);

if (status == OCl _SUCCESS)
printf ("Insert successful\n");

el se

printf ("Insert failed\n");

/* Free XM instances */

if (doc)

Xm FreeDocunent ((xnl ctx *)xctx, (xndocnode *)doc);

/* Free XM CTX */

OCIXmIDbFreeXmICtx(xct x);

free_oci();

3.5.4 Loading Large XML Files that Contain Small XML Documents

When loading large XML files consisting of a collection of smaller XML documents, it is
often more efficient to use Simple API for XML (SAX) parsing to break the file into a
set of smaller documents, and then insert those documents.

SAX is an XML standard interface provided by XML parsers for event-based
applications. You can use SAX to load a database table from very large XML files in
the order of 30 MB or larger, by creating individual documents from a collection of
nodes. You can also bulk load XML files.

¢ See Also:

e SAX Project for information about SAX

* Oracle XML DB on OTN, for an application example that loads large files
using SAX

3.5.5 Loading Large XML Files Using SQL*Loader

ORACLE

You can use SQL*Loader to load large amounts of XML data into Oracle Database.

SQL*Loader loads in one of two modes, conventional or direct path. Table 3-1
compares these modes.

Table 3-1 SQL*Loader — Conventional and Direct-Path Load Modes

]
Conventional Load Mode Direct-Path Load Mode

Uses SQL to load data into Oracle Database. This Bypasses SQL and streams the data
is the default mode. directly into Oracle Database.

Advantage: Follows SQL semantics. For example Advantage: This loads data much faster
triggers are fired and constraints are checked. than the conventional load mode.

3-14



Chapter 3
Loading XML Content into Oracle XML DB

Table 3-1 (Cont.) SQL*Loader — Conventional and Direct-Path Load Modes

Conventional Load Mode Direct-Path Load Mode

Disadvantage: This loads data slower than with Disadvantage: SQL semantics is not
the direct load mode. obeyed. For example triggers are not fired
and constraints are not checked.

When loading LOBs with SQL*Loader direct-path load, much memory can be used. If
the message SQL*Loader 700 (out of nenory) appears, then itis likely that more
rows are being included in each load call than can be handled by your operating
system and process memory. Workaround: use the ROAS option to read a smaller
number of rows in each data save.

Related Topics

* How to Load XML Data
The main way to load XML data into Oracle XML DB is to use SQL*Loader.

3.5.6 Loading XML Documents into the Repository Using
DBMS XDB REPOS

You can use PL/SQL package DBM5_XDB_REPCS to load XML documents into Oracle
XML DB Repository. You can access repository documents (resources) using path-
based rather than table-based techniques.

To load an XML document into the repository under a given path, use PL/SQL function
DBMS_XDB_REPCS. cr eat eResour ce. Example 3-16 illustrates this.

Many operations for configuring and using Oracle XML DB are based on processing
one or more XML documents. Examples include registering an XML schema and
performing an XSL transformation. The easiest way to make these XML documents
available to Oracle Database is to load them into Oracle XML DB Repository.

Example 3-16 Inserting XML Content into the Repository Using
CREATERESOURCE

DECLARE
res BOOLEAN;
BEG N
res := DBMS_XDB REPCS. creat eResour ce(' / home/ QUI NE/ pur chaseQOrder. xm ',
bfil ename(' XM.DIR,
"purchaseOrder. xm '),
nl's_charset id('AL32UTF8'));
END; /

3.5.7 Loading Documents into the Repository Using Protocols

ORACLE

You can load documents, including XML documents, from a local file system into
Oracle XML DB Repository using popular protocols.

Oracle XML DB Repository can store XML documents that are either XML schema-
based or non-schema-based. It can also store content that is not XML data, such as
HTML files, image files, and Microsoft Word documents.

3-15



Chapter 3
Querying XML Content Stored in Oracle XML DB

You can load XML documents from a local file system into Oracle XML DB Repository
using protocols such as WebDAV, from Windows Explorer or other tools that support
WebDAV. Figure 3-1 shows a simple drag and drop operation for copying the contents
of the SCOTT folder from the local hard drive to folder poSour ce in Oracle XML DB
Repository.

Figure 3-1 Loading Content into the Repository Using Windows Explorer

& C:\oracle\demo¥10.1.0.0. 0%basicDemo\LOCALYconfigurationFiles (=[]

. File Edit Wiew Favorites Tools Help ¥

egack - J lﬁ /":\J Search = Folders '

: Address |@ Crioracleldemol10.1.0.0.0basicDemolLOCAL \configurationFiles V| Go

File and Folder Tasks

Other Places

Details

poSource : :
Copying b10753.pdf to http:/ Alocalhost: 8080/ home /SCOT T/poS ource/doc

File Folder

Date Modified: Yesterday,
Movember 21, 2003, 4:42 FM

Ll Cancel

The copied folder might contain, for example, an XML schema document, an HTML
page, and some XSLT stylesheets.

3.6 Querying XML Content Stored in Oracle XML DB

ORACLE"

There are many ways to query XML content in Oracle XML DB and retrieve it.

¢ Note:

For efficient query performance you typically need to create indexes. For
information about indexing XML data, see Indexes for XMLType Data.

e PurchaseOrder XML Document Used in Examples
An XML schema defines the purchase-order documents used in examples.

e Retrieving the Content of an XML Document Using Pseudocolumn
OBJECT_VALUE
Pseudocolumn OBJECT_VALUE can be used as an alias for the value of an object
table.

» Accessing Fragments or Nodes of an XML Document Using XMLQUERY
You can use SQL/XML function XMLQuer y to extract the nodes that match an
XQuery expression. The result is returned as an instance of XMLType.

e Accessing Text Nodes and Attribute Values Using XMLCAST and XMLQUERY
You can access text node and attribute values using SQL/XML standard functions
XM_.Query and XM.Cast .

3-16



Chapter 3
Querying XML Content Stored in Oracle XML DB

e Searching an XML Document Using XMLEXISTS, XMLCAST, and XMLQUERY
You can use SQL/XML standard functions XM_Exi st s, XM_.Cast , and XM_.Query in a
SQL WHERE clause to limit query results.

*  Performing SQL Operations on XMLType Fragments Using XMLTABLE
You can use SQL/XML function XM_Tabl e to perform SQL operations on a set of
nodes that match an XQuery expression.

3.6.1 PurchaseOrder XML Document Used in Examples

An XML schema defines the purchase-order documents used in examples.

Examples presented here are based on the Pur chaseOr der XML document shown in
Example 3-17.

Example 3-17 PurchaseOrder XML Instance Document

<Pur chaseOr der
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
Xsi : noNamespaceSchenmaLocat i on=
“http://local host: 8080/ sour ce/ schemas/ poSour ce/ xsd/ pur chaseOr der . xsd" >
<Ref er ence>SBELL- 2002100912333601PDT</ Ref er ence>
<Actions>
<Action>
<User >SVOLLMAN</ User >
</ Action>
</ Acti ons>
<Rej ect/>
<Requestor>Sarah J. Bell </ Requestor>
<User >SBELL</ User >
<Cost Cent er >S30</ Cost Cent er >
<Shi ppi ngl nstructions>
<name>Sarah J. Bel | </ nane>
<address>400 Oracl e Parkway
Redwood Shor es
CA
94065
USA</ addr ess>
<t el ephone>650 506 7400</t el ephone>
</ Shi ppi ngl nstructions>
<Speci al Instructions>Air Mil </ Special I nstructions>
<Li nel t ens>
<Lineltem I tem\unber="1">
<Descri ption>A Night to Renember</Description>
<Part |d="715515009058" UnitPrice="39.95" Quantity="2"/>
</Lineltenp
<Lineltem It em\unber ="2">
<Descri pti on>The Unbearabl e Li ghtness O Being</Description>
<Part 1d="37429140222" UnitPrice="29.95" Quantity="2"/>
</Lineltenp
<Lineltem It em\unber ="3">
<Descri ption>Si sters</Description>
<Part 1d="715515011020" UnitPrice="29.95" Quantity="4"/>
</Lineltenp

ORACLE 3-17



</ Li nel t ens>

Chapter 3
Querying XML Content Stored in Oracle XML DB

</ Pur chaseOr der >

3.6.2 Retrieving the Content of an XML Document Using
Pseudocolumn OBJECT VALUE

ORACLE

Pseudocolumn OBJECT_VALUE can be used as an alias for the value of an object table.

For an XM_Type table that consists of a single column of XM_Type, the entire XML
document is retrieved. (OBJECT _VALUE replaces the val ug(x) and SYS_NC_ROW NFC$
aliases used in releases prior to Oracle Database 10g Release 1.)

In Example 3-18, the SQL*Plus settings PAGESI ZE and LONG are used to ensure that
the entire document is printed correctly, without line breaks. (The output has been
formatted for readability.)

Example 3-18 Retrieving an Entire XML Document Using OBJECT_VALUE

SELECT OBJECT_VALUE FROM pur chaseor der;

OBJECT_VALUE
<Pur chaseOrder xm ns:xsi="http://ww:.w3.org/ 2001/ XM_Schena- i nst ance"
Xsi : noNamespaceSchenmaLocat i on="http://| ocal host: 8080/ sour ce/ schemas
/ poSour ce/ xsd/ pur chaseOr der . xsd">
<Ref er ence>SBELL- 2002100912333601PDT</ Ref er ence>
<Actions>
<Action>
<User >SVOLLMAN</ User >
</ Action>
</ Acti ons>
<Rej ect/>
<Request or >Sarah J. Bel | </ Request or>
<User >SBELL</ User >
<Cost Cent er >S30</ Cost Cent er >
<Shi ppi ngl nstructi ons>
<nane>Sarah J. Bell</name>
<address>400 Oracl e Parkway
Redwood Shor es
CA
94065
USA</ addr ess>
<t el ephone>650 506 7400</tel ephone>
</ Shi ppi ngl nst ructi ons>
<Speci al I nstructions>Ai r Mil </ Speci al I nstructions>
<Li nel t ems>
<Lineltem It em\unber ="1">
<Descri ption>A Night to Remember</Description>
<Part |d="715515009058" UnitPrice="39.95" Quantity="2"/>
</Lineltenp
<Lineltem It em\unber ="2">
<Descri ption>The Unbearabl e Lightness O Bei ng</Descri ption>
<Part |d="37429140222" UnitPrice="29.95" Quantity="2"/>
</Lineltenp

3-18



Chapter 3
Querying XML Content Stored in Oracle XML DB

<Lineltem Item\unber="3">
<Descri ption>Si sters</Description>
<Part |d="715515011020" UnitPrice="29.95" Quantity="4"/>
</ Lineltens
</ Lineltens>
</ Pur chaseQOr der >

1 row sel ect ed.

3.6.3 Accessing Fragments or Nodes of an XML Document Using
XMLQUERY

ORACLE

You can use SQL/XML function XML.Quer y to extract the nodes that match an XQuery
expression. The result is returned as an instance of XM_Type.

Example 3-19 illustrates this with several queries.
Example 3-19 Accessing XML Fragments Using XMLQUERY

The following query returns an XM_Type instance containing the Ref er ence element
that matches the XPath expression.

SELECT XM.Query('/PurchaseCOr der/Reference' PASSI NG OBJECT VALUE RETURNI NG
CONTENT)
FROM pur chaseor der ;

XMLQUERY(" / PURCHASEORDER/ REFERENCE' PASSI NGOBJECT_

<Ref er ence>SBELL-2002100912333601PDT</ Ref er ence>

1 row sel ect ed.

The following query returns an XM_Type instance containing the first Li nel t emelement
in the Li nel t ens collection:

SELECT XM.Query("'/PurchaseCrder/Lineltens/Linelten]1]’
PASSI NG OBJECT_VALUE RETURNI NG CONTENT)
FROM pur chaseor der ;

XMLQUERY(" / PURCHASEORDER/ LI NEI TEMS/ LI NEI TEM 1] * PASSI NGOBJECT _

<Lineltem It emNunber ="1">

<Description>A Night to Remenber</Description>

<Part |d="715515009058" UnitPrice="39.95" Quantity="2"/>
</Lineltenp

1 row sel ected.

The following query returns an XMLType instance that contains the three Descri ption
elements that match the XPath expression. These elements are returned as nodes in

3-19



Chapter 3
Querying XML Content Stored in Oracle XML DB

a single XMLType instance. The XM_Type instance does not have a single root node; it is
an XML fragment.

SELECT XM_.Query('/PurchaseCrder/Lineltens/Lineltem Description'
PASSI NG OBJECT_VALUE RETURNI NG CONTENT)
FROM pur chaseor der ;

XMLQUERY( " / PURCHASEORDER/ LI NEI TEMS/ LI NEI TEM DESCRI PTI ON' PASSI NGOBJECT _

<Descri ption>A Night to Remember</Description>
<Descri pti on>The Unbearabl e Li ghtness O Bei ng</Descri ption>
<Descri ption>Si st ers</Description>

1 row sel ect ed.

Related Topics

» Performing SQL Operations on XMLType Fragments Using XMLTABLE
You can use SQL/XML function XM_Tabl e to perform SQL operations on a set of
nodes that match an XQuery expression.

3.6.4 Accessing Text Nodes and Attribute Values Using XMLCAST
and XMLQUERY

You can access text node and attribute values using SQL/XML standard functions
XM_.Query and XM.Cast .

To do this, the XQuery expression passed to XM.Quer y must uniquely identify a single
text node or attribute value within the document — that is, a leaf node. Example 3-20
illustrates this using several queries.

¢ See Also:

XQuery and Oracle XML DB for information on SQL/XML functions XM_Query
and XM_Cast

Example 3-20 Accessing a Text Node Value Using XMLCAST and XMLQuery

The following query returns the value of the text node associated with the Ref er ence
element that matches the target XPath expression. The value is returned as a
VARCHAR? value.

SELECT XM.Cast ( XM_Quer y(' $p/ Pur chaseQOr der/ Ref erence/text ()’
PASSI NG OBJECT_VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2('30))
FROM pur chaseor der ;

XMLCAST( XMLQUERY( ' $P/ PURCHASEO

SBELL-2002100912333601PDT

ORACLE 3-20



Chapter 3
Querying XML Content Stored in Oracle XML DB

1 row sel ect ed.

The following query returns the value of the text node associated with a Descri ption
element contained in a Li nel t emelement. The particular Li nel t emelement is
specified by its | d attribute value. The predicate that identifies the Li nel t emelement is
[Part/ @d="715515011020"] . The at-sign character (@ specifies that | d is an attribute
rather than an element. The value is returned as a VARCHAR? value.

SELECT XM.Cast (
XM_Quer y(" $p/ Pur chaseQr der/ Li nel t ens/ Li nel ten] Part/ @d="715515011020"]/
Description/text()'
PASSI NG OBJECT VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR?2(30))
FROM pur chaseor der ;

XMLCAST( XMLQUERY( ' $P/ PURCHASEO

Sisters

1 row sel ect ed.

The following query returns the value of the text node associated with the Descri pti on
element contained in the first Li nel t emelement. The first Li nel t emelement is
indicated by the position predicate[ 1] .

SELECT XM.Cast ( XM_.Quer y(' $p/ PurchaseOr der/ Li nel t ens/ Li nel t enf 1] / Descri pti on'
PASSI NG OBJECT VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2( 4000) )
FROM pur chaseor der ;

XMLCAST( XM.QUERY("' $P/ PURCHASEORDER/ LI NEI TEMS/ LI NEI TEM 1] /
DESCR! PTI ON' PASSI NGOBJECT VALUEAS' P

A Night to Remenber

1 row sel ect ed.

3.6.5 Searching an XML Document Using XMLEXISTS, XMLCAST,
and XMLQUERY

You can use SQL/XML standard functions XMLExi st s, XMLCast , and XM_.Query in a
SQL WHERE clause to limit query results.

SQL/XML standard function XMLExi st s evaluates whether or not a given document
contains a node that matches a W3C XPath expression. It returns a Boolean value of
t rue if the document contains the node specified by the XPath expression supplied to
the function and a value of f al se if it does not. Since XPath expressions can contain
predicates, XMLExi st s can determine whether or not a given node exists in the
document, and whether or not a node with the specified value exists in the document.

ORACLE 3-21



Chapter 3
Querying XML Content Stored in Oracle XML DB

Similarly, functions XM_.Cast and XM_Query let you limit query results to documents that
satisfy some property. Example 3-21 illustrates the use of XMLExi st s, XM.Cast , and
XM_Query to search for documents.

Example 3-22 performs a join based on the values of a node in an XML document and
data in another, relational table.

¢ See Also:

XQuery and Oracle XML DB for information about SQL/XML functions
XM.Query, XMLExi st's, and XM.Cast

Example 3-21 Searching XML Content Using XMLEXxists, XMLCast, and XMLQuery

ORACLE

The following query uses XMLExi st s to check if the XML document contains an
element named Ref er ence that is a child of the root element Pur chaseOr der :

SELECT count (*) FROM pur chaseor der
WHERE XMLExi sts(' $p/ PurchaseOrder/ Ref erence’ PASSI NG OBJECT_VALUE AS "p");

1 row sel ect ed.

The following query checks if the value of the text node associated with the Ref er ence
element is SBELL-2002100912333601PDT:

SELECT count (*) FROM pur chaseor der
VHERE XMLEXxi sts(' $p/ Pur chaseOr der [Reference=""SBELL-2002100912333601PDT""]'
PASSI NG OBJECT_VALUE AS "p");

1 row sel ect ed.

This query checks whether the XML document contains a root element Pur chaseOr der
that contains a Li nel t ens element that contains a Li nel t emelement that contains a
Part element with an | d attribute.

SELECT count (*) FROM pur chaseor der
VWHERE XMLExi st s(' $p/ PurchaseCr der/Linel tems/Linel tem Part/@ld'
PASSI NG OBJECT VALUE AS "p");

1 row sel ect ed.

The following query checks whether the XML document contains a root element
Pur chaseCOr der that contains a Li nel t ens element that contains a Li nel t emelement
that contains a Part element with | d attribute value 715515009058.

3-22



ORACLE

Chapter 3
Querying XML Content Stored in Oracle XML DB

SELECT count (*) FROM pur chaseor der
WHERE XMLExi st s(' $p/ PurchaseOr der/Li nel t ens/ Lineltem/Part[@1d="715515009058"]
PASSI NG OBJECT VALUE AS "p");

The following query checks whether the XML document contains a root element
Pur chaseOr der that contains a Li nel t ens element whose third Li nel t emelement
contains a Part element with | d attribute value 715515009058.

SELECT count (*) FROM pur chaseor der
WHERE XMLEXi st s(
" $p/ Pur chaseOr der/ Li nel t ems/ Li nel t em[3]/ Part [ @ d="715515009058"]"
PASSI NG OBJECT_VALUE AS "p");

1 row sel ect ed.

The following query limits the results of the SELECT statement to rows where the text
node associated with element User starts with the letter S. XQuery does not include
support for LI KE-based queries.

SELECT XM.Cast ( XM.Quer y(" $p/ Pur chaseCOr der/ Ref erence’ PASSI NG OBJECT_VALUE AS "p"
RETURNI NG CONTENT)
AS VARCHAR2(30))

FROM pur chaseor der

WHERE XM_Cast ( XM_Quer y(' $p/ PurchaseOrder/User' PASSI NG OBJECT_VALUE AS "p"
RETURNI NG CONTENT)

AS VARCHAR2(130))
LIKE "S%";

XMLCAST( XMLQUERY( ' $P/ PURCHASEORDER
SBELL-20021009123336231PDT
SBELL-20021009123336331PDT
SKI'NG-20021009123336321PDT

36 rows selected.

The following query uses XMLExi st s to limit the results of a SELECT statement to rows
where the text node of element User contains the value SBELL.

SELECT XM.Cast (XM.Query(' $p/ PurchaseOr der/ Ref erence’ PASSI NG OBJECT_VALUE AS "p"
RETURNI NG CONTENT)
AS VARCHAR2(30)) "Reference"
FROM pur chaseor der
VHERE XMLExi sts(' $p/ PurchaseOrder [ User="SBELL"]' PASSI NG OBJECT_VALUE AS "p");

Ref erence

SBELL-20021009123336231PDT
SBELL-20021009123336331PDT
SBELL-20021009123337353PDT
SBELL-20021009123338304PDT
SBELL-20021009123338505PDT
SBELL-20021009123335771PDT
SBELL-20021009123335280PDT

3-23



Chapter 3
Querying XML Content Stored in Oracle XML DB

SBELL-2002100912333763PDT
SBELL-2002100912333601PDT
SBELL-20021009123336362PDT
SBELL-20021009123336532PDT
SBELL-20021009123338204PDT
SBELL-20021009123337673PDT

13 rows sel ected.

The following query uses SQL/XML functions XM_.Quer y and XM_Exi st s to find the

Ref er ence element for any Pur chaseOr der element whose first Li nel t emelement
contains an order for the item with | d 715515009058. Function XMLExi st s is used in the
WHERE clause to determine which rows are selected, and XM_Query is used in the
SELECT list to control which part of the selected documents appears in the result.

SELECT XM.Cast ( XM.Quer y("' $p/ Pur chaseOr der/ Ref erence’ PASSI NG OBJECT_VALUE AS "p"
RETURNI NG CONTENT)
AS VARCHAR2(30)) "Reference"
FROM pur chaseor der
WHERE XMLExi st s(' $p/ PurchaseOrder/Linel tens/Linelten{1]/Part[ @d="715515009058"]"
PASSI NG OBJECT VALUE AS "p"):

Ref erence

SBELL-2002100912333601PDT
1 row sel ected.

Example 3-22 Joining Data from an XMLType Table and a Relational Table

SELECT XM.Cast ( XM.Quer y(" $p/ Pur chaseOr der/ Ref erence’ PASSI NG OBJECT_VALUE AS "p"
RETURNI NG CONTENT)
AS VARCHAR2(30))

FROM pur chaseorder p, hr.enployees e

WHERE XM_Cast ( XM_Quer y(' $p/ Pur chaseOrder/User' PASSI NG OBJECT_VALUE AS "p"
RETURNI NG CONTENT)

AS VARCHAR2(30)) = e.email
AND e. enpl oyee_id = 100;

XMLCAST( XMLQUERY( " $P/ PURCHASEOREDER
SKI'NG-20021009123336321PDT
SKI'NG-20021009123337153PDT
SKI'NG-20021009123335560PDT
SKI'NG-20021009123336952PDT
SKI'NG-20021009123336622PDT
SKI'NG-20021009123336822PDT
SKI NG-20021009123336131PDT
SKI' NG-20021009123336392PDT
SKI'NG-20021009123337974PDT
SKI NG-20021009123338294PDT
SKI NG-20021009123337703PDT
SKI'NG-20021009123337383PDT
SKI'NG-20021009123337503PDT

13 rows sel ected.

ORACLE 3-24



Chapter 3
Querying XML Content Stored in Oracle XML DB

3.6.6 Performing SQL Operations on XMLType Fragments Using

XMLTABLE

ORACLE

You can use SQL/XML function XM.Tabl e to perform SQL operations on a set of nodes
that match an XQuery expression.

Example 3-19 demonstrates how to extract an XML.Type instance that contains the
node or nodes that match an XPath expression. When the document contains multiple
nodes that match the supplied XPath expression, such a query returns an XML
fragment that contains all of the matching nodes. Unlike an XML document, an XML
fragment has no single element that is the root element.

This kind of result is common in these cases:

*  When you retrieve the set of elements contained in a collection, in which case all
nodes in the fragment are of the same type — see Example 3-23

*  When the target XPath expression ends in a wildcard, in which case the nodes in
the fragment can be of different types — see Example 3-25

You can use SQL/XML function XM_Tabl e to break up an XML fragment contained in
an XM.Type instance, inserting the collection-element data into a new, virtual table,
which you can then query using SQL —in a join expression, for example. In particular,
converting an XML fragment into a virtual table makes it easier to process the result of
evaluating an XM_Query expression that returns multiple nodes.

" See Also:

XQuery and Oracle XML DB for more information about SQL/XML function
XM.Tabl e

Example 3-23 shows how to access the text nodes for each Descri pti on element in
the Pur chaseOr der document. It breaks up the single XML Fragment output from
Example 3-19 into multiple text nodes.

Example 3-24 counts the number of elements in a collection. It also shows how SQL
keywords such as ORDER BY and GROUP BY can be applied to the virtual table data
created by SQL/XML function XM.Tabl e.

Example 3-25 shows how to use SQL/XML function XM.Tabl e to count the number of
child elements of a given element. The XPath expression passed to XM_Tabl e contains
a wildcard (*) that matches all elements that are direct descendants of a

Pur chaseOr der element. Each row of the virtual table created by XM_Tabl e contains a
node that matches the XPath expression. Counting the number of rows in the virtual
table provides the number of element children of element Pur chaseOr der .

Example 3-23 Accessing Description Nodes Using XMLTABLE

SELECT des. COLUMN_VALUE
FROM pur chaseor der p,
XM.Tabl e(' / Pur chaseOr der/ Li nel t ens/ Li nel t eml Descri ption'
PASSI NG p. OBJECT VALUE) des
VHERE XMLExi sts(' $p/ Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"
PASSI NG OBJECT VALUE AS "p");

3-25



ORACLE

Chapter 3
Querying XML Content Stored in Oracle XML DB

COLUWN_VALUE

<Description>A N ght to Renenber</Description>
<Description>The Unbearabl e Lightness O Being</Description>
<Descri ption>Si st ers</Descri ption>

3 rows selected.

To use SQL to process the contents of the text nodes, the example converts the
collection of Descri pti on nodes into a virtual table, using SQL/XML function XM_Tabl e.
The virtual table has three rows, each of which contains a single XM.Type instance with
a single Descri ption element.

The XPath expression targets the Descri pti on elements. The PASSI NG clause says to
use the contents (OBJECT_VALUE) of XMLType table pur chaseor der as the context for
evaluating the XPath expression.

The XM.Tabl e expression thus depends on the pur chaseor der table. This is a left
lateral join. This correlated join ensures a one-to-many (1:N) relationship between the
pur chaseor der row accessed and the rows generated from it by XM.Tabl e. Because of
this correlated join, the pur chaseor der table must appear before the XM.Tabl e
expression in the FROMIist. This is a general requirement in any situation where the
PASSI NG clause refers to a column of the table.

Each XML.Type instance in the virtual table contains a single Descri pti on element. You
can use the COLUWNS clause of XM_Tabl e to break up the data targeted by the XPath
expression ' Description' into a column named descri ption of SQL data type
VARCHAR2(256) . The ' Descri ption' expression that defines this column is relative to
the context XPath expression, ' / Pur chaseOr der/ Li nel t ens/ Li nel tem .

SELECT des. description
FROM pur chaseor der p,
XM.Tabl e(' / PurchaseOr der/ Li nel t ens/ Li nel tem  PASSI NG p. OBJECT_VALUE
COLUMNS description VARCHAR2(256) PATH "Description®) des
VHERE XMLExi sts(' $p/ Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"
PASSI NG OBJECT VALUE AS "p");

DESCRI PTI ON

A Night to Renenber
The Unbearabl e Lightness O Being
Sisters

3 rows selected.

The COLUMN\S clause lets you specify precise SQL data types, which can make static
type-checking more helpful. This example uses only a single column (descri pti on).
To expose data that is contained at multiple levels in an XM.Type table as individual
rows in a relational view, apply XM.Tabl e to each document level to be broken up and
stored in relational columns. See Example 9-2 for an example.

Example 3-24 Counting the Number of Elements in a Collection Using
XMLTABLE

SELECT reference, count(*)
FROM pur chaseor der,
XM.Tabl e(' / PurchaseOrder' PASSI NG OBJECT_VALUE
COLUWNS reference VARCHAR2(32) PATH ' Reference',

3-26



Chapter 3
Updating XML Content Stored in Oracle XML DB

lineitem XM.Type PATH ' Linel tems/ Lineltem),
XM.Tabl e(' Li nel tem PASSING |ineitem
VHERE XMLExi st s(' $p/ PurchaseOrder [ User =" SBELL"]"
PASSI NG OBJECT_VALUE AS "p")
GROUP BY reference
ORDER BY reference;

REFERENCE COUNT(*)
SBELL- 20021009123335280PDT 20
SBELL- 20021009123335771PDT 21
SBELL- 2002100912333601PDT 3
SBELL- 20021009123336231PDT 25
SBELL- 20021009123336331PDT 10
SBELL- 20021009123336362PDT 15
SBELL- 20021009123336532PDT 14
SBELL- 20021009123337353PDT 10
SBELL- 2002100912333763PDT 21
SBELL- 20021009123337673PDT 10
SBELL- 20021009123338204PDT 14
SBELL- 20021009123338304PDT 24
SBELL- 20021009123338505PDT 20

13 rows sel ected.

The query in this example locates the set of XML documents that match the XPath
expression to SQL/XML function XM_Exi st s. It generates a virtual table with two
columns:

» reference, containing the Ref er ence node for each document selected
e lineitem containing the set of Li nel t emnodes for each document selected

It counts the number of Li nel t emnodes for each document. A correlated join ensures
that the GROUP BY correctly determines which Li nel t emelements belong to which
Pur chaseOr der element.

Example 3-25 Counting the Number of Child Elements in an Element Using
XMLTABLE

SELECT count (*)
FROM pur chaseorder p, XM.Tabl e('/PurchaseCrder/* PASSI NG p. OBJECT_VALUE)
WHERE XMLExi st's(' $p/ Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"
PASSI NG OBJECT_VALUE AS "p");

1 row sel ect ed.

3.7 Updating XML Content Stored in Oracle XML DB

ORACLE

You can update XML content, replacing either the entire contents of a document or
only particular parts of a document.

The ability to perform partial updates on XML documents is very powerful, particularly
when you make small changes to large documents, as it can significantly reduce the
amount of network traffic and disk input-output required to perform the update.

3-27



ORACLE

Chapter 3
Updating XML Content Stored in Oracle XML DB

You can make multiple changes to a document in a single operation. Each change
uses an XQuery expression to identify a node to be updated, and specifies the new
value for that node.

Example 3-26 updates the text node associated with element User .

Example 3-27 replaces an entire element within an XML document. The XQuery
expression references the element, and the replacement value is passed as an
XM.Type object.

You can make multiple changes to a document in one statement. Example 3-28
changes the values of text nodes belonging to elements Cost Cent er and
Speci al I nstructions in a single SQL UPDATE statement.

Example 3-26 Updating a Text Node

SELECT XM.Cast ( XM_Query(' $p/ PurchaseOrder/ User' PASSI NG OBJECT_VALUE AS "p"
RETURNI NG CONTENT)
AS VARCHAR2( 60))
FROM pur chaseor der
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"
PASSI NG OBJECT_VALUE AS "p");

XMLCAST( XMLQUERY( " $P/ PURCHAS

1 row sel ected.

UPDATE pur chaseor der
SET OBJECT_VALUE =
XM.Query(' copy $i := $pl nodify
(for $ in $i/PurchaseCOr der/User
return replace value of node $j with $p2)
return $i'
PASSI NG OBJECT_VALUE AS "pl", 'SKING' AS "p2" RETURN NG
CONTENT)
WHERE XMLExi st s(' $p/
Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"
PASSI NG OBJECT_VALUE AS "p");

1 row updat ed.

SELECT XM.Cast ( XM_Query(' $p/ PurchaseOrder/ User' PASSI NG OBJECT_VALUE AS "p"
RETURNI NG CONTENT)
AS VARCHAR2( 60))
FROM pur chaseor der
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence=" SBELL- 2002100912333601PDT"]"
PASSI NG OBJECT_VALUE AS "p");

XMLCAST( XMLQUERY( " $P/ PURCHAS

1 row sel ect ed.

3-28



ORACLE

Chapter 3
Updating XML Content Stored in Oracle XML DB

Example 3-27 Replacing an Entire Element Using XQuery Update

SELECT XM.Query(' $p/ PurchaseCQrder/Lineltens/Lineltenl]
PASSI NG OBJECT VALUE AS "p" RETURNI NG CONTENT)
FROM pur chaseor der
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL-2002100912333601PDT"]"
PASSI NG OBJECT _VALUE AS "p");

XMLQUERY(" $P/ PURCHAS
<Lineltem Item\unmber="1">

<Description>A Night to Renenber</Description>

<Part |d="715515009058" UnitPrice="39.95" Quantity="2"/>
</Lineltenp

1 row sel ected

UPDATE pur chaseor der
SET OBJECT VALUE =
XM.Query(' copy $i := $pl nodify
(for $j in $i/PurchaseOr der/Lineltens/Linelten1]
return replace node $j with $p2)
return $i
PASSI NG OBJECT_VALUE AS "pl"
XMLType("<Lineltem ItemNumber="1">
<Description>The Lady Vanishes</
Description>
<Part 1d="37429122129"
UnitPrice="39.95"
Quantity="1"/>
</Lineltem>") AS "p2"
RETURNI NG CONTENT)
WHERE XMLEXi st s(" $p/
Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT" ] '
PASSI NG OBJECT VALUE AS "p");

1 row updat ed

SELECT XM.Query(' $p/ PurchaseCQrder/Lineltens/Lineltenl]
PASSI NG OBJECT_VALUE AS "p" RETURNI NG CONTENT)
FROM pur chaseor der
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL-2002100912333601PDT"]"
PASSI NG OBJECT _VALUE AS "p");

XMLQUERY(" $P/ PURCHAS

<Lineltem ItemNumber="1">

<Description>The Lady Vanishes</Description>

<Part 1d="37429122129" UnitPrice="39.95" Quantity="1"/>
</Lineltem>

1 row sel ected

3-29



ORACLE

Chapter 3
Updating XML Content Stored in Oracle XML DB

Example 3-28 Changing Text Node Values Using XQuery Update

SELECT XM.Cast ( XMLQuer y(" $p/ Pur chaseQr der/ Cost Cent er'
PASSI NG OBJECT VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(4)) "Cost Center",
XML.Cast ( XMLQuer y("' $p/ Pur chaseOr der/ Speci al I nstructi ons'
PASSI NG OBJECT VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(2048)) "Instructions"
FROM pur chaseor der
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL-2002100912333601PDT"]"
PASSI NG OBJECT _VALUE AS "p");

Cost Center Instructions

1 row sel ect ed.

UPDATE pur chaseor der
SET OBJECT VALUE =
XM.Query(' copy $i := $pl nodify
((for $ in $i/PurchaseO der/CostCenter
return replace value of node $j with $p2),
(for $ in $i/PurchaseOr der/ Speciallnstructions
return replace value of node $j with $p3))
return $i'
PASSI NG OBJECT_VALUE AS "pl",
"B40" AS "p2",
"Priority Overnight Service® AS "p3"
RETURNI NG CONTENT)
WHERE XMLExi st s(" $p/
Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"] '
PASSI NG OBJECT VALUE AS "p");

1 row updat ed.

SELECT XM.Cast ( XMLQuer y(" $p/ Pur chaseQr der/ Cost Cent er'
PASSI NG OBJECT VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(4)) "Cost Center",
XM.Cast ( XMLQuer y("' $p/ Pur chaseOr der/ Speci al I nstructi ons'
PASSI NG OBJECT VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(2048)) "Instructions"
FROM pur chaseor der
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL-2002100912333601PDT"]"
PASSI NG OBJECT _VALUE AS "p");

Cost Center Instructions

B40 Priority Overnight Service

1 row sel ect ed.

3-30



Chapter 3
Generating XML Data from Relational Data

3.8 Generating XML Data from Relational Data

You can use Oracle XML DB to generate XML data from relational data.

* Generating XML Data from Relational Data Using SQL/XML Functions
You can use standard SQL/XML functions to generate one or more XML
documents.

*  Generating XML Data from Relational Data Using DBURITYPE
You can generate XML data from relational data using SQL function DBURI Type.

Related Topics

e XQuery and Oracle XML DB
The XQuery language is one of the main ways that you interact with XML data in
Oracle XML DB. Support for the language includes SQL*Plus commandXQUERY
and SQL/XML functions XM_.Query, XM_Tabl e, XMLExi st s, and XM_Cast .

*  Generation of XML Data from Relational Data
Oracle XML DB provides features for generating (constructing) XML data from
relational data in the database. There are both SQL/XML standard functions and
Oracle-specific functions and packages for generating XML data from relational
content.

3.8.1 Generating XML Data from Relational Data Using SQL/XML

Functions

ORACLE

You can use standard SQL/XML functions to generate one or more XML documents.

SQL/XML function XM_Quer y is the most general way to do this. Other SQL/XML
functions that you can use for this are the following:

° XM.El enent creates a element

XMAttributes adds attributes to an element

*  XM.Forest creates forest of elements

*  XM.Agg creates a single element from a collection of elements

The query in Example 3-29 uses these functions to generate an XML document that
contains information from the tables depart nent s, | ocati ons, countri es, enpl oyees,
and j obs.

This query generates element Depart ment for each row in the depart nent s table.

* Each Depart nent element contains attribute Depar t nent | D. The value of
Depar t nent | D comes from the depar t ment _i d column. The Depart nent element
contains sub-elements Name, Locat i on, and Enpl oyeeli st.

e The text node associated with the Name element comes from the name column in
the depart ment s table.

e The Locati on element has child elements Address, City, State, Zi p, and
Count ry. These elements are constructed by creating a forest of named elements
from columns in the | ocat i ons and count ri es tables. The values in the columns
become the text node for the named element.

3-31



ORACLE

Chapter 3
Generating XML Data from Relational Data

* The Enpl oyeeli st element contains an aggregation of Enpl oyee Elements. The
content of the Enpl oyeeLi st element is created by a subquery that returns the set
of rows in the enpl oyees table that correspond to the current department. Each
Enpl oyee element contains information about the employee. The contents of the
elements and attributes for each Enpl oyee element is taken from tables enpl oyees
and j obs.

The output generated by SQL/XML functions is generally not pretty-printed. The only
exception is function XM_Ser i al i ze — use XM.Ser i al i ze to pretty-print. This lets the
other SQL/XML functions (1) avoid creating a full DOM when generating the required
output, and (2) reduce the size of the generated document. This lack of pretty-printing
by most SQL/XML functions does not matter to most applications. However, it makes
verifying the generated output manually more difficult.

You can also create and query an XM_Type view that is built using the SQL/XML
generation functions. Example 3-30 and Example 3-31 illustrate this. Such an XM.Type
view has the effect of persisting relational data as XML content. Rows in XM.Type
views can also be persisted as documents in Oracle XML DB Repository.

In Example 3-31, the XPath expression passed to SQL/XML function XMLEXi st s
restricts the query result set to the node that contains the Execut i ve department
information. The result is shown pretty-printed here for clarity.

# Note:

XPath rewrite on XML expressions that operate on XM.Type views is only
supported when nodes referenced in the XPath expression are not
descendants of an element created using SQL function XM_Agg.

Example 3-29 Generating XML Data Using SQL/XML Functions

SELECT XMLEI enent (
"Department ",
XMLAttributes(d. Departnent _id AS "Departmentld"),
XM_For est (d. depart ment _name AS "Name"),

XMLEI ement (
"Location",
XM For est (street _address AS "Address",
city AS"City",

state_province AS "State",
postal code AS "Zip",
country _name AS "Country")),
XMLE! enent (
"Enpl oyeelist",
( SELECT XM.Agg(
XMLE! enent (
" Enpl oyee",
XMLAttributes(e.enployee_ id AS "enpl oyeeNunber"),
XM_For est (
e.first_name AS "FirstName",
e.last_name AS "Last Nane",
e.email AS "Enmmil Address",
e. phone_nunber AS " PHONE_NUMBER',

3-32



ORACLE

Chapter 3
Generating XML Data from Relational Data

e.hire date AS "StartDate",
j.job_title AS "JobTitle",

e.salary AS "Sal ary",

mfirst_name || " ' || mlast_name AS

"Manager"),
XMLE! enent (" Conmi ssion", e.commi ssion_pct)))
FROM hr. enpl oyees e, hr.enployees m hr.jobs j
VWHERE e. department _id = d.departnent _id
AND j.job_id = e.job_id
AND m enpl oyee_id = e. manager _id)))
AS XM

FROM hr. departnents d, hr.countries ¢, hr.locations |
VWHERE departnent _nane = ' Executive'

AND d.location_id =1.location_id
AND | . country_id c.country_id,

The query returns the following XML:

<Depart nment Departnent|d="90"><Nane>Executi ve</ Nane><Locat i on><Addr ess>2004
Char ade Rd</Address><City>Seatt|e</City><State>Washingto
n</ St at e><Zi p>98199</ Zi p><Country>United States of
Amer i ca</ Count ry></ Locat i on><Enpl oyeeli st ><Enpl oyee
enpl oyeeNunber =" 101" ><Fi r st Na
me>Neena</ Fi r st Nane><Last Nanme>Kochhar </ Last Nane><Enai | Addr ess>NKOCHHAR</
Emai | Add
€$5><PHONE_NUMBER>515. 123. 4568</ PHONE_NUMBER><St art
Dat e>2005- 09- 21</ St art Dat e><JobTi t | e>Adni ni stration Vice
Presi dent </ JobTi t| e><Sal ar y>17000</ Sal ar y><Manager >St even Ki ng</
Manager ><Com
m ssi on></ Conmi ssi on></ Enpl oyee><Enpl oyee
enpl oyeeNunber =" 102" ><Fi r st Nane>Lex</ Fi r st Name><Last Nane>De
Haan</ Last Nane><Emai | Addr ess>L
DEHAAN</ Enai | Addr ess><PHONE_NUMBER>515. 123. 4569</ PHONE
NUMBER><St ar t Dat e>2001- 01- 13</ St art Dat e><JobTi t | e>Adni ni stration Vice
Presi den
t </ JobTitl e><Sal ary>17000</ Sal ar y><Manager >St even
Ki ng</ Manager ><Comni ssi on></ Commi ssi on></ Enpl oyee></ Enpl oyeelLi st ></
Depart nent >

Example 3-30 Creating XMLType Views Over Conventional Relational Tables

CREATE OR REPLACE VIEW departnent _xml OF XM.Type
WITH OBJECT ID (substr(
XMLCast(
XMLQuery("$p/Department/Name "
PASSING OBJECT VALUE AS "p" RETURNING
CONTENT)
AS VARCHAR2(30)),
1,
128))
AS

3-33



Chapter 3
Generating XML Data from Relational Data

SELECT XM.El enent (

"Departnment”,

XMLAttributes(d. departnent _id AS "Departnentld"),

XM_For est (d. depart ment _nane AS "Nane"),

XMLE!l ement (" Location", XM.Forest(street_address AS "Address",
city AS"City",
state_province AS "State",
postal _code AS "Zip",
country_name AS "Country")),

XMLE! enent (

" Enpl oyeelist",
( SELECT XM.Agg(
XMLE! enent (
" Enpl oyee",
XMLAttributes(e.enpl oyee_id AS "enpl oyeeNunber"),
XM_Forest (e.first_name AS "FirstNane",
e.last_nane AS "Last Name",
e.emai| AS "Email Address",
e. phone_nunber AS "PHONE_NUMBER',
e.hire date AS "StartDate",
j.job_title AS "JobTitle",
e.salary AS "Sal ary",
mfirst_name || " ' ||
m | ast _name AS "Manager"),
XMLE! ement (" Commi ssion", e.commi ssion_pct)))
FROM hr . enpl oyees e, hr.enployees m hr.jobs j
WHERE e. department _id = d.departnent _id
AND j.job_id = e.job_id
AND m enpl oyee_id = e.manager _id))).extract('/*")

AS XM
FROM hr. departnents d, hr.countries c, hr.locations |
VWHERE d.location_id = 1.location_id

AND | .country_id = c.country_id;

Example 3-31 Querying XMLType Views

SELECT OBJECT VALUE FROM department xm
VWHERE XMLExi st s(' $p/ Depart ment [ Name="Executive"]' PASSI NG OBJECT VALUE
AS n pll) ;

OBJECT_VALUE
<Depart nment Departnent|d="90">
<Name>Execut i ve</ Nane>
<Locati on>
<Addr ess>2004 Charade Rd</Address>
<City>Seattle</City>
<St at e>Washi ngt on</ St at e>
<Zi p>98199</ Zi p>
<Country>United States of America</Country>
</ Location>
<Enpl oyeeli st>
<Enpl oyee enpl oyeeNunber="101">
<Fi r st Name>Neena</ Fi r st Name>

ORACLE 3-34



</
<Ej

</

Chapter 3

Generating XML Data from Relational Data

<Last Name>Kochhar </ Last Nane>

<Enmai | Addr ess>NKOCHHAR</ Emai | Addr ess>
<PHONE_NUMBER>515. 123. 4568</ PHONE_NUVBER>

<St art Dat >2005- 09- 21</ St art Dat e>

<JobTitl e>Admi nistration Vice President</JobTitle>
<Sal ary>17000</ Sal ary>

<Manager >St even Ki ng</ Manager >

<Commi ssi on/ >

Enpl oyee>

mpl oyee enpl oyeeNunber =" 102" >

<Fi r st Name>Lex</ Fi r st Narme>

<Last Name>De Haan</ Last Nane>

<Enmai | Addr ess>LDEHAAN</ Enai | Addr ess>
<PHONE_NUMBER>515. 123. 4569</ PHONE NUMVBER>

<Start Dat e>2001- 01- 13</ St art Dat e>

<JobTitl e>Admi nistration Vice President</JobTitle>
<Sal ary>17000</ Sal ary>

<Manager >St even Ki ng</ Manager >

<Commi ssi on/ >

Enpl oyee>

</ Enpl oyeelLi st >

</ Depa

rtment>

1 row sel ect ed.

As can be seen from the following execution plan output, Oracle XML DB is able to
correctly rewrite the XPath-expression argument in the XM_LExi st s expression into a
SELECT statement on the underlying relational tables.

SELECT OBJECT_VALUE FROM de

part ment _xm

WHERE XMLExi st s(' $p/ Depart nent [ Nane="Executive"]' PASSI NG OBJECT_VALUE AS "p");

PLAN TABLE_OUTPUT

| 1d | Operation | Nane | Rows | Bytes | Cost (%CPU)|
| 0| SELECT STATEMENT | | 1| 80 | 3 (0)]
| 1] SORT AGGREGATE | | 1] 115 |
|* 2] HASHJON | | 10 | 1150 | 7 (15)]
[* 3 HASH JO'N | | 10| 960 | 5 (20)]
| 4] TABLE ACCESS BY | NDEX ROW D BATCHED| EMPLOYEES | 10 | 690 | 2 (0)]
|* 5] I NDEX RANGE SCAN | ENP_DEPARTNENT I X | 10 | | 1 (0)]
| 6| TABLE ACCESS FULL | JOBS | 19| 513 | 2 (0]
| 7] TABLE ACCESS FULL | ENPLOYEES | 107 | 2033 | 2 (0)]
| 8| NESTED LOOPS | | 1] 80 | 3 (0]
| 9| NESTED LOOPS | | 1] 68 | 3 (0]
|* 10 | TABLE ACCESS FULL | DEPARTMENTS | 1] 19 | 2 (0)]
| 11| TABLE ACCESS BY | NDEX ROW D | LOCATI ONS | 1] 49 | 1 (0)]
|* 12 | | NDEX UNI QUE SCAN | LOC ID_PK | 1| | 0 (0)]
|* 13 |  INDEX UNI QUE SCAN | COUNTRY C IDPK | 1] 12 | 0 (0]

oNeoNolloNeloNoloNoNoNoeNe]
e e e e e e g e ==Y

2 - access("M."EMPLOYEE_| D'="E". "MANAGER_| D")
3 - access("J"."JOB_ID'="E'."JOB_ID")

5 - access("E". " DEPARTME

ORACLE

NT | D' =: Bl)

3-35



Chapter 3
Generating XML Data from Relational Data

10 - filter("D"'." DEPARTMENT_NAVE'=' Executive')
12 - access("D'."LOCATION | D'="L"."LOCATION I D")
13 - access("L"."COUNTRY_I D'="C"." COUNTRY_I D")

30 rows sel ected.

3.8.2 Generating XML Data from Relational Data Using DBURITYPE

ORACLE

You can generate XML data from relational data using SQL function DBURI Type.

Function DBURI Type exposes one or more rows in a given table or view as a single
XML document. The name of the root element is derived from the name of the table or
view. The root element contains a set of ROWelements. There is one RONelement for
each row in the table or view. The children of each ROWelement are derived from the
columns in the table or view. Each child element contains a text node with the value of
the column for the given row.

Example 3-32 shows how to use SQL function DBURI Type to access the contents of
table depart nent s in database schema HR. It uses method get XM_() to return the
resulting document as an XM.Type instance.

Example 3-33 shows how to use an XPath predicate to restrict the rows that are
included in an XML document generated using DBURI Type. The XPath expression in
the example restricts the XML document to DEPARTMENT _| D columns with value 10.

SQL function DBURI Type provides a simple way to expose some or all rows in a
relational table as one or more XML documents. The URL passed to function

DBURI Type can be extended to return a single column from the view or table, but in that
case the URL must also include predicates that identify a single row in the target table
or view.

Example 3-34 illustrates this. The predicate [ DEPARTMENT | D="10"] causes the query
to return the value of column depar t ment _nane for the depart nent s row where column
depart nent _i d has the value 10.

SQL function DBURI Type is less flexible than the SQL/XML functions:

* It provides no way to control the shape of the generated document.
* The data can come only from a single table or view.

* The generated document consists of one or more RONelements. Each RONelement
contains a child for each column in the target table.

e The names of the child elements are derived from the column names.

To control the names of the XML elements, to include columns from more than one
table, or to control which columns from a table appear in the generated document,
create a relational view that exposes the desired set of columns as a single row, and
then use function DBURI Type to generate an XML document from the contents of that
view.

Example 3-32 Generating XML Data from a Relational Table Using DBURIType
and getXML()

SELECT DBURI Type(' / HR/ DEPARTMENTS' ). get XM.() FROM DUAL;

DBUR! TYPE(' / HR/ DEPARTMENTS' ) . GETXM.()

3-36



Chapter 3
Generating XML Data from Relational Data

<?xm version="1.0"?>
<DEPARTMENTS>
<ROW
<DEPARTMENT _| D>10</ DEPARTMENT | D>
<DEPARTMENT _NAME>Adni ni st rat i on</ DEPARTMENT _NAMVE>
<MANAGER | D>200</ MANAGER | D>
<LOCATI ON_| D>1700</ LOCATI ON_I D>
</ RO
<ROW
<DEPARTMENT _| D>20</ DEPARTMENT | D>
<DEPARTMVENT _NAME>Mar ket i ng</ DEPARTMVENT _NAME>
<MANAGER | D>201</ MANAGER | D>
<LOCATI ON_| D>1800</ LOCATI ON_I D>
</ RO
</ DEPARTMENTS>

Example 3-33 Restricting Rows Using an XPath Predicate

SELECT DBURI Type(' / HR/ DEPARTVENTS/ ROV DEPARTVENT | D="10"]"). get XM.()
FROM DUAL;

DBURI TYPE(" / HR/ DEPARTMVENTS/ ROW DEPARTVENT | D="10"]"). GETXM.()
<?xm version="1.0"?>
<ROW
<DEPARTNENT _| D>10</ DEPARTMENT | D>
<DEPARTMENT_NAME>Adni ni st rat i on</ DEPARTMENT _NAME>
<MANAGER | D>200</ MANAGER | D>
<LOCATI ON_| D>1700</ LOCATI ON_I D>
</ RO

1 row sel ect ed.

Example 3-34 Restricting Rows and Columns Using an XPath Predicate

SELECT DBURI Type(
" | HR/ DEPARTMENTS/ ROW DEPARTMENT | D="10"]/
DEPARTMENT _NAME' ) . get XML()
FROM DUAL;

DBUR! TYPE(' / HR/ DEPARTMVENTS/ ROW DEPARTMENT | D="10"]/
DEPARTVENT NAME' ) . GETXM.()

<?xm version="1.0"?>
<DEPARTMENT _NAME>Adni ni st rat i on</ DEPARTVENT NAME>

1 row sel ect ed.

ORACLE 3-37



Chapter 3
Character Sets of XML Documents

3.9 Character Sets of XML Documents

There are a few ways in which Oracle XML DB determines which character sets are
used for XML documents

Caution:

AL32UTF8 is the Oracle Database character set that is appropriate for
XM.Type data. It is equivalent to the IANA registered standard UTF-8
encoding, which supports all valid XML characters.

Do not confuse Oracle Database database character set UTF8 (no hyphen)
with database character set AL32UTF8 or with character encoding UTF-8.
Database character set UTF8 has been superseded by AL32UTF8. Do not
use UTF8 for XML data. Character set UTF8 supports only Unicode version
3.1 and earlier. It does not support all valid XML characters. AL32UTF8 has
no such limitation.

Using database character set UTF8 for XML data could potentially stop a
system or affect security negatively. If a character that is not supported by
the database character set appears in an input-document element name, a
replacement character (usually "?") is substituted for it. This terminates
parsing and raises an exception. It can cause an irrecoverable error.

XML Encoding Declaration
You can use an XML encoding declaration to explicitly specify the character
encoding to use for a given XML entity.

Character-Set Determination When Loading XML Documents into the Database
Except for XML data obtained from a CLOB or VARCHAR value, character encoding is
determined by an encoding declaration when a document is loaded into the
database.

Character-Set Determination When Retrieving XML Documents from the Database
Except for XML data stored in a CLOB or VARCHAR value, you can specify the
encoding to be used when it is retrieved from Oracle XML DB using a SQL client,
programmatic APIs, or transfer protocols.

3.9.1 XML Encoding Declaration

ORACLE

You can use an XML encoding declaration to explicitly specify the character encoding
to use for a given XML entity.

Each XML document is composed of units called entities. Each entity in an XML
document can use a different encoding for its characters. Entities that are stored in an
encoding other than UTF-8 or UTF-16 must begin with an XML declaration containing
an encoding specification indicating the character encoding in use. For example:

<?xm version="1.0" encodi ng=' EUC-JP' ?>

3-38



Chapter 3
Character Sets of XML Documents

Entities encoded in UTF-16 must begin with the Byte Order Mark (BOM), as described
in Appendix F of the XML 1.0 Reference. For example, on big-endian platforms, the
BOM required of a UTF-16 data stream is #xFEFF.

In the absence of both the encoding declaration and the BOM, the XML entity is
assumed to be encoded in UTF-8. Because ASCII is a subset of UTF-8, ASCII entities
do not require an encoding declaration.

In many cases, external sources of information are available, besides the XML data, to
provide the character encoding in use. For example, the encoding of the data can be
obtained from the char set parameter of the Cont ent - Type field in an HTTP(S) request
as follows:

Cont ent - Type: text/xm; charset=lSO 8859-4

3.9.2 Character-Set Determination When Loading XML Documents
into the Database

ORACLE

Except for XML data obtained from a CLOB or VARCHAR value, character encoding is
determined by an encoding declaration when a document is loaded into the database.

For XML data obtained from a CLOB or VARCHAR value, any encoding declaration
present is ignored,, because these two data types are always encoded in the database
character set.

In addition, when loading data into Oracle XML DB, either through programmatic APIs
or transfer protocols, you can provide external encoding to override the document
encoding declaration. An error is raised if you try to load a schema-based XML
document that contains characters that are not legal in the determined encoding.

The following examples show different ways to specify external encoding:

e Using PL/SQL function DBMS_XDB_REPCS. cr eat eResour ce to create a file resource
from a BFI LE, you can specify the file encoding with the CSI D argument. If a zero
CSl Dis specified then the file encoding is auto-detected from the document
encoding declaration.

CREATE DI RECTORY xm dir AS '/private/xmdir';
CREATE OR REPLACE PROCEDURE | oadXM.(fil ename VARCHAR2, file_csid

NUMBER) | S
xbfile BFILE;
RET BOOLEAN,
BEG N

xbfile := bfilename(' XM.DIR, filenane);
ret := DBMS_XDB_REPCS. creat eResource('/public/nypurchaseorder.xm "',
xbfile,
file_csid);
END; /

* Use the FTP protocol to load documents into Oracle XML DB. Use the quot e
set _charset FTP command to indicate the encoding of the files to be loaded.

ftp> quote set_charset Shift_JIS
ftp> put nypurchaseorder. xm

3-39



Chapter 3
Character Sets of XML Documents

* Use the HTTP(S) protocol to load documents into Oracle XML DB. Specify the
encoding of the data to be transmitted to Oracle XML DB in the request header.

Content - Type: text/xm; charset= EUC-JP

3.9.3 Character-Set Determination When Retrieving XML Documents
from the Database

ORACLE

Except for XML data stored in a CLOB or VARCHAR value, you can specify the encoding
to be used when it is retrieved from Oracle XML DB using a SQL client, programmatic
APIs, or transfer protocols.

When XML data is stored as a CLOB or VARCHAR2 value, the encoding declaration, if
present, is always ignored for retrieval, just as for storage. The encoding of a retrieved
document can thus be different from the encoding explicitly declared in that document.

The character set for an XML document retrieved from the database is determined in
the following ways:

e SQL client — If a SQL client (such as SQL*PIlus) is used to retrieve XML data, then
the character set is determined by the client-side environment variable NLS_LANG,
In particular, this setting overrides any explicit character-set declarations in the
XML data itself.

For example, if you set the client side NLS_LANG variable to

AMERI CAN_AMERI CA. AL32UTF8 and then retrieve an XML document with encoding
EUC JP provided by declaration <?xm versi on="1. 0" encodi ng="EUC- JP" ?>, the
character set of the retrieved document is AL32UTF8, not EUC JP.

 PL/SQL and APIs — Using PL/SQL or programmatic APIs, you can retrieve XML
data into VARCHAR, CLOB, or XM.Type data types. As for SQL clients, you can control
the encoding of the retrieved data by setting NLS_LANG.

You can also retrieve XML data into a BLOB value using XM.Type and URI Type
methods. These let you specify the character set of the returned BLOB value. Here
is an example:

CREATE OR REPLACE FUNCTI ON get XM_( pat hname VARCHAR2, charset VARCHARZ)
RETURN BLOB |'S
xbl ob BLOB;
BEG N
SELECT XM.SERI ALI ZE( DOCUMENT e. RES AS BLOB ENCODI NG charset) | NTO
xbl ob
FROM RESCURCE_VI EW e WHERE equal s_pat h(e. RES, pathnane) = 1;
RETURN xbl ob;
END;
/

e FTP —Youcan use the FTP quote set_nls_| ocal e command to set the character
set:

ftp> quote set _nls_locale EUCJP
ftp> get nypurchaseorder. xm

3-40



ORACLE

Chapter 3
Character Sets of XML Documents

HTTP(S) — You can use the Accept - Char set parameter in an HTTP(S) request:

[ httptest/ mypurchaseorder.xm 1.1 HTTP/Host: |ocal host: 2345
Accept: text/*
Accept - Charset: is0-8859-1, utf-8

Related Topics

FTP Quote Methods
Oracle Database supports several FTP quot e methods, which provide information

directly to Oracle XML DB.

Character Sets for HTTP(S)
You can control the character sets used for data that is transferred using HTTP(S).

" See Also:

Oracle Database Globalization Support Guide for information about
NLS LANG

3-41



Manipulation of XML Data in Oracle

XML DB

ORACLE

The following are covered here: XQuery, XMLType operations, and indexing of XML
data.

XQuery and Oracle XML DB

The XQuery language is one of the main ways that you interact with XML data in
Oracle XML DB. Support for the language includes SQL*Plus commandXQUERY
and SQL/XML functions XM.Query, XM_Tabl e, XM_Exi st s, and XM.Cast .

Query and Update of XML Data
There are many ways for applications to query and update XML data that is in
Oracle Database, both XML schema-based and non-schema-based.

Indexes for XMLType Data

You can create indexes on your XML data, to focus on particular parts of it that
you query often and thus improve performance. There are various ways that you
can index XMLType data, whether it is XML schema-based or non-schema-based,
and regardless of the XM_Type storage model you use.

Transformation and Validation of XMLType Data

There are several Oracle SQL functions and XM_Type APIs for transforming
XM.Type data using XSLT stylesheets and for validating XMLType instances against
an XML schema.



XQuery and Oracle XML DB

The XQuery language is one of the main ways that you interact with XML data in
Oracle XML DB. Support for the language includes SQL*Plus commandXQUERY and
SQL/XML functions XM_Query, XM.Tabl e, XMLEXi st s, and XM.Cast .

Overview of the XQuery Language
XQuery is the W3C language designed for querying and updating XML data.

Overview of XQuery in Oracle XML DB

Oracle XML DB support for the XQuery language is provided through a native
implementation of SQL/XML functions XM_.Query, XM_Tabl e, XMLExi st s, and
XM_Cast . As a convenience, SQL*Plus command XQUERY is also provided, which
lets you enter XQuery expressions directly —in effect, this command turns
SQL*Plus into an XQuery command-line interpreter.

SQL/XML Functions XMLQUERY, XMLTABLE, XMLEXxists, and XMLCast
SQL/XML functions XM_Quer y, XM_Tabl e, XMLExi st s, and XM_Cast are defined by
the SQL/XML standard as a general interface between the SQL and XQuery
languages.

URI Scheme oradb: Querying Table or View Data with XQuery
You can use XQuery function f n: col | ecti on to query data that is in database
tables and views.

Oracle XQuery Extension Functions

Oracle XML DB adds some XQuery functions to those provided in the W3C
standard. These additional functions are in the Oracle XML DB namespace,
http://xm ns. oracl e. com xdb, which uses the predefined prefix ora.

Oracle XQuery Extension-Expression Pragmas

The W3C XQuery specification lets an implementation provide implementation-
defined extension expressions. An XQuery extension expression is an XQuery
expression that is enclosed in braces ({, } ) and prefixed by an implementation-
defined pragma. The Oracle implementation provides several such pragmas.

XQuery Static Type-Checking in Oracle XML DB
When possible, Oracle XML DB performs static (compile time) type-checking of
queries.

Oracle XML DB Support for XQuery
Oracle XML DB support for the XQuery language includes SQL support and
support for XQuery functions and operators.

4.1 Overview of the XQuery Language

XQuery is the W3C language designed for querying and updating XML data.

ORACLE

Oracle XML DB supports the following W3C XQuery standards:

XQuery 1.0 Recommendation

XQuery Update Facility 1.0 Recommendation

4-1



Chapter 4
Overview of the XQuery Language

e XQuery and XPath Full Text 1.0 Recommendation

This section presents an overview of the XQuery language. For more information,
consult a recent book on the language or refer to the standards documents that define
it, all of which are available at ht t p: / / www. w3c. or g/ .

*  XPath Expressions Are XQuery Expressions
The XPath language is a W3C Recommendation for navigating XML documents. It
is a subset of the XQuery language: an XPath expression is also an XQuery
expression.

e XQuery: A Functional Language Based on Sequences
XQuery is similar to SQL in many ways, but just as SQL is designed for querying
structured, relational data, XQuery is designed especially for querying semi-
structured, XML data from a variety of data sources.

e XQuery Expressions
XQuery expressions are case-sensitive. An XQuery expression is either a simple
expression or an updating expression, the latter being an expression that
represents data modification. More precisely, these are the possible XQuery
expressions:

*  FLWOR Expressions
Just as for XQuery in general, there is a lot to learn about FLWOR expressions in
particular. This section provides a brief overview.

4.1.1 XPath Expressions Are XQuery Expressions

The XPath language is a W3C Recommendation for navigating XML documents. It is a
subset of the XQuery language: an XPath expression is also an XQuery expression.

XPath models an XML document as a tree of nodes. It provides a set of operations
that walk this tree and apply predicates and node-test functions. Applying an XPath
expression to an XML document results in a set of nodes. For example, the
expression / PO’ PONO selects all PONO child elements under the POroot element of a
document.

Table 4-1 lists some common constructs used in XPath.

Table 4-1 Common XPath Constructs

XPath Construct

Description

/

1

ORACLE

Denotes the root of the tree in an XPath expression. For example, / PO refers to the child
of the root node whose name is PO.

Used as a path separator to identify the child element nodes of a given element node. For
example, / Pur chaseOr der / Ref er ence identifies Ref er ence elements that are children
of Pur chaseQr der elements that are children of the root element.

Used to identify all descendants of the current node. For example, Pur chaseOr der/ /
Shi ppi ngl nstruct i ons matches any Shi ppi ngl nstructi ons element under the
Pur chaseOr der element.

Used as a wildcard to match any child node. For example, / PQ/ */ STREET matches any
street element that is a grandchild of the POelement.

4-2



Chapter 4
Overview of the XQuery Language

Table 4-1 (Cont.) Common XPath Constructs

XPath Construct

Description

[]

Functions

Used to denote predicate expressions. XPath supports a rich list of binary operators such
as or, and, and not . For example, / PQ PONO = 20 and PNAME = "POQO 2"]/ SH PADDR
selects the shipping address element of all purchase orders whose purchase-order
number is 20 and whose purchase-order name is PO _2.

Brackets are also used to denote a position (index). For example, / PO’ PONJ 2] identifies
the second purchase-order number element under the POroot element.

XPath and XQuery support a set of built-in functions such as subst ri ng, r ound, and
not . In addition, these languages provide for extension functions through the use of
namespaces. Oracle XQuery extension functions use the namespace prefix or a, for
namespace http://xm ns. oracl e. conl xdb. See Oracle XQuery Extension
Functions .

An XPath expression must identify a single node or a set of element, text, or attribute
nodes. The result of evaluating an XPath expression is never a Boolean expression.

You can select XMLType data using PL/SQL, C, or Java. You can also use XM.Type
method get Nunber Val () to retrieve XML data as a NUMBER value.

# Note:

Oracle SQL functions and XM_Type methods respect the W3C XPath
recommendation, which states that if an XPath expression targets no nodes
when applied to XML data, then an empty sequence must be returned. An
error must not be raised in this case.

4.1.2 XQuery: A Functional Language Based on Sequences

ORACLE

XQuery is similar to SQL in many ways, but just as SQL is designed for querying
structured, relational data, XQuery is designed especially for querying semi-structured,
XML data from a variety of data sources.

You can use XQuery to query XML data wherever it is found, whether it is stored in
database tables, available through Web Services, or otherwise created on the fly. In
addition to querying XML data, XQuery can be used to construct XML data. In this
regard, XQuery can serve as an alternative or a complement to both XSLT and the
other SQL/XML publishing functions, such as XMLEl ement .

XQuery builds on the Post-Schema-Validation Infoset (PSVI) data model, which unites
the XML Information Set (Infoset) data model and the XML Schema type system.
XQuery defines a new data model, the XQuery Data Model (XDM), which is based on
sequences. Another name for an XQuery sequence is an XDM instance.

e XQuery Is About Sequences
XQuery is all about manipulating sequences. This makes XQuery similar to a set-
manipulation language, except that sequences are ordered and can contain
duplicate items. XQuery sequences differ from the sequences in some other
languages in that nested XQuery sequences are always flattened in their effect.

4-3



Chapter 4
Overview of the XQuery Language

e XQuery Is Referentially Transparent
XQuery is a functional language. As such, it consists of a set of possible
expressions that are evaluated and whose evaluation returns values (results).

e XQuery Update Has Side Effects on Your Data
Referential transparency applies to the evaluation of XQuery expressions. It does
not imply that this evaluation never has a side effect on your data. In particular,
you use XQuery Update to modify your data. That modification is a side effect of
evaluating an XQuery updating expression.

*  XQuery Update Snapshots
An XQuery expression (query) can call for more than one update operation.
XQuery Update performs all such operations for the same query as an atomic
operation: either they all succeed or none of them do (if an error is raised).

e XQuery Full Text Provides Full-Text Search
The XQuery and XPath Full Text 1.0 Recommendation (XQuery Full Text) defines
XQuery support for full-text searches in queries. It defines full-text selection
operators that perform the search and return instances of the AllMatches model,
which complements the XQuery Data Model (XDM).

4.1.2.1 XQuery Is About Sequences

XQuery is all about manipulating sequences. This makes XQuery similar to a set-
manipulation language, except that sequences are ordered and can contain duplicate
items. XQuery sequences differ from the sequences in some other languages in that
nested XQuery sequences are always flattened in their effect.

In many cases, sequences can be treated as unordered, to maximize optimization —
where this is available, it is under your control. This unordered mode can be applied
to join order in the treatment of nested iterations (f or ), and it can be applied to the
treatment of XPath expressions (for example, in / a/ b, the matching b elements can be
processed without regard to document order).

An XQuery sequence consists of zero or more items, which can be either atomic
(scalar) values or XML nodes. Items are typed using a rich type system that is based
upon the types of XML Schema. This type system is a major change from that of
XPath 1.0, which is limited to simple scalar types such as Boolean, number, and
string.

4.1.2.2 XQuery Is Referentially Transparent

XQuery is a functional language. As such, it consists of a set of possible expressions
that are evaluated and whose evaluation returns values (results).

The result of evaluating an XQuery expression has two parts, at least one of which is
empty: (a) a sequence (an XDM instance) and (b) a pending update list. Informally,
the sequence is sometimes spoken of as the expression value, especially when the
pending update list is empty, meaning that no data updates are involved.

As a functional language, XQuery is also referentially transparent. This means that
the same expression evaluated in the same context returns the same value.

Exceptions to this desirable mathematical property include the following:

*  XQuery expressions that derive their value from interaction with the external
environment. For example, an expression such asfn: current-tinme(...) or
fn:doc(...) does not necessarily always return the same value, since it depends

ORACLE 4-4



Chapter 4
Overview of the XQuery Language

on external conditions that can change (the time changes; the content of the target
document might change).

In some cases, like that of f n: doc, XQuery is defined to be referentially
transparent within the execution of a single query: within a query, each invocation
of f n; doc with the same argument results in the same document.

*  XQuery expressions that are defined to be dependent on the particular XQuery
language implementation. The result of evaluating such expressions might vary
between implementations. Function f n: doc is an example of a function that is
essentially implementation-defined.

XQuery Update is not in the list; it does not present an exception to referential
transparency. See XQuery Update Has Side Effects on Your Data.

Referential transparency applies also to XQuery variables: the same variable in the
same context has the same value. Functional languages are like mathematics
formalisms in this respect and unlike procedural, or imperative, programming
languages. A variable in a procedural language is really a name for a memory location;
it has a current value, or state, as represented by its content at any time. A variable in
a declarative language such as XQuery is really a name for a static value.

4.1.2.3 XQuery Update Has Side Effects on Your Data

Referential transparency applies to the evaluation of XQuery expressions. It does not
imply that this evaluation never has a side effect on your data. In particular, you use
XQuery Update to modify your data. That modification is a side effect of evaluating an
XQuery updating expression.

The side effect is one thing; the expression value is another. The value returned from
evaluation includes the pending update list that describes the updates to carry out. For
a given XQuery expression, this description is the same regardless of the context in
which evaluation occurs (with the above-mentioned exceptions).

The XQuery Update standard defines how the XDM instances of your data are
updated. How those updates are propagated to persistent data stores (for example
XM.Type tables and columns) is implementation-dependent.

4.1.2.4 XQuery Update Snapshots

ORACLE

An XQuery expression (query) can call for more than one update operation. XQuery
Update performs all such operations for the same query as an atomic operation: either
they all succeed or none of them do (if an error is raised).

The unit of change is thus an entire XQuery query. To effect this atomic update
behavior, before evaluating your query XQuery Update takes a shapshot of the data
(XDM instances) whose modification is called for by the query. It also adds the update
operations called for by the query to the pending update list. The snapshot is an
evaluation context for an XDM instance that is the update target.

As the last step of XQuery expression evaluation, the pending update list is processed,
applying the indicated update operations in an atomic fashion, and terminating the
shapshot.

The atomic nature of snapshot semantics means that a set of update operations used
in a given query are not necessarily applied in the order written. In fact, the order of
applying update operations is fixed and specified by the XQuery Update Feature
standard.

4-5



Chapter 4
Overview of the XQuery Language

This means that an update operation does not see the result of any other update
operation for the same query. There is no notion of an intermediate or interim update
state — all updates for a query are applied together, atomically.

4.1.2.5 XQuery Full Text Provides Full-Text Search

The XQuery and XPath Full Text 1.0 Recommendation (XQuery Full Text) defines
XQuery support for full-text searches in queries. It defines full-text selection operators
that perform the search and return instances of the AllMatches model, which
complements the XQuery Data Model (XDM).

An AllMatches instance describes all possible solutions to a full-text query for a given
search context item. Each solution is described by a Match instance, which contains

the search-context tokens (StringInclude instances) that must be included and those

(StringExclude instances) that must be excluded.

In short, XQuery Full Text adds a full-text contains expression to the XQuery
language. You use such an expression in your query to search the text of element
nodes and their descendent elements (you can also search the text of attribute nodes).

4.1.3 XQuery Expressions

XQuery expressions are case-sensitive. An XQuery expression is either a simple
expression or an updating expression, the latter being an expression that represents
data modification. More precisely, these are the possible XQuery expressions:

» Basic updating expression — aninsert, del et e, repl ace, or r enane expression,
or a call to an updating function (see the XQuery Update Facility 1.0
Recommendation).

e Updating expression — a basic updating expression or an expression (other than
a transform expression) that contains another updating expression (this is a
recursive definition).

e Simple expression — An XQuery 1.0 expression. It does not call for any updating.

The pending update list that results from evaluating a simple expression is empty. The
sequence value that results from evaluating an updating expression is empty.

Simple expressions include the following:

* Primary expression - literal, variable, or function application. A variable name
starts with a dollar-sign ($) — for example, $f 0o. Literals include numerals, strings,
and character or entity references.

*  XPath expression — Any XPath expression. The XPath 2.0 standard is a subset
of XQuery.

*  FLWOR expression — The most important XQuery expression, composed of the
following, in order, from which FLWOR takes its name: for, | et, where, order by,
return.

*  XQuery sequence — The comma (, ) constructor creates sequences. Sequence-
manipulating functions such as uni on and i nt er sect are also available. All
XQuery sequences are effectively flat: a nested sequence is treated as its
flattened equivalent. Thus, for instance, (1, 2, (3, 4, (5), 6), 7) istreated as
(1, 2, 3, 4, 5, 6, 7).Asingleton sequence, such as (42), acts the same in
most XQuery contexts as does its single item, 42. Remember that the result of any
XQuery expression is a sequence.

ORACLE 4-6



Chapter 4
Overview of the XQuery Language

» Direct (literal) constructions — XML element and attribute syntax automatically
constructs elements and attributes: what you see is what you get. For example,
the XQuery expression <a>33</ a> constructs the XML element <a>33</ a>.

e Computed (dynamic) constructions — You can construct XML data at run time
using computed values. For example, the following XQuery expression constructs
this XML data: <foo toto="5"><bar>tata titi</bar> why? </foo>.

<foo>attribute toto {2+3},
el ement bar {"tata", "titi"},
text {" why? "}</foo>

In this example, element f 0o is a direct construction; the other constructions are
computed. In practice, the arguments to computed constructors are not literals
(suchastotoand"tata"), but expressions to be evaluated (such as 2+3). Both
the name and the value arguments of an element or attribute constructor can be
computed. Braces ({, }) are used to mark off an XQuery expression to be
evaluated.

* Conditional expression — As usual, but remember that each part of the
expression is itself an arbitrary expression. For instance, in this conditional
expression, each of these subexpressions can be any XQuery expression:
sonet hi ng, sonet hi ngEl se, expressi onl, and expr essi on2.

if (something < sonethingElse) then expressionl el se expression2

*  Arithmetic, relational expression — As usual, but remember that each relational
expression returns a (Boolean') value. Examples:

2+ 3
42 < $a + 5
(1, 4) =(1, 2

5> 3 eq true()

* Quantifier expression — Universal (ever y) and existential (some) quantifier
functions provide shortcuts to using a FLWOR expression in some cases.
Examples:

every $foo in doc("bar.xm")// Watever satisfies $f oo/ @ar > 42
sone $toto in (42, 5), $titi in (123, 29, 5) satisfies $toto = $titi

* Regular expression — XQuery regular expressions are based on XML Schema
1.0 and Perl. (See Support for XQuery Functions and Operators.)

*  Type expression — An XQuery expression that represents an XQuery type.
Examples:iten(), node(),attribute(), el enent (), document - node(),
namespace(), text (), xs:integer, xs:string.?

Type expressions can have occurrence indicators: ? (optional: zero or one), *
(zero or more), + (one or more). Examples: docunent - node(el ement ())*,item() +,
attribute()?.

1 The value returned is a sequence, as always. However, in XQuery, a sequence of one item is equivalent to that
item itself. In this case, the single item is a Boolean value.
2 Namespace prefix Xs is predefined for the XML Schema namespace, ht t p: / / ww. w3. or g/ 2001/ XM.Schenma.

ORACLE 47



Chapter 4
Overview of the XQuery Language

XQuery also provides operators for working with types. These include cast as,
castable as,treat as,instance of,typesw tch, andvalidate. For example,
"42" cast as xs:integer is an expression whose value is the integer 42. (It is
not, strictly speaking, a type expression, because its value does not represent a
type.)

Full-text contains expression — An XQuery expression that represents a full-text
search. This expression is provided by the XQuery and XPath Full Text 1.0
Recommendation. A full-text contains expression (FTContainsExpr) supported by
Oracle has these parts: a search context that specifies the items to search, and a
full-text selection that filters those items, selecting matches.

The selection part is itself composed of the following:

— Tokens and phrases used for matching.

— Optional match options, such as the use of stemming.

— Optional Boolean operators for combining full-text selections.

— Optional constraint operators, such as positional filters (e.g. or der ed
wi ndow).

See Support for XQuery Full Text.

4.1.4 FLWOR Expressions

Just as for XQuery in general, there is a lot to learn about FLWOR expressions in
particular. This section provides a brief overview.

ORACLE

FLWOR is the most general expression syntax in XQuery. FLWOR (pronounced
"flower") stands for f or, | et, where, order by, and return. A FLWOR expression has
at least one for or | et clause and ar et ur n clause; single wher e and or der by
clauses are optional. Only the r et ur n clause can contain an updating expression; the
other clauses cannot.

for — Bind one or more variables each to any number of values, in turn. That is,
for each variable, iterate, binding the variable to a different value for each iteration.

At each iteration, the variables are bound in the order they appear, so that the
value of a variable $ear | i er that is listed before a variable $l at er in the for list,
can be used in the binding of variable $| at er . For example, during its second
iteration, this expression binds $i to 4 and $j to 6 (2+4):

for $i in (3, 4), $§ in ($i, 2+$i)
let — Bind one or more variables.

Just as with f or, a variable can be bound by | et to a value computed using
another variable that is listed previously in the binding list of the | et (or an
enclosing for or | et). For example, this expression binds $j to 5 (3+2):

let $i (=3, § =8 +2

where — Filter the f or and | et variable bindings according to some condition. This
is similar to a SQL WHERE clause.

order by — Sort the result of wher e filtering.

return — Construct a result from the ordered, filtered values. This is the result of
the FLWOR expression as a whole. It is a flattened sequence.

4-8



Chapter 4
Overview of XQuery in Oracle XML DB

If the r et ur n clause contains an updating expression then that expression is
evaluated for each tuple generated by the other clauses. The pending update lists
from these evaluations are then merged as the result of the FLWOR expression.

Expressions for and | et act similarly to a SQL FROMclause. Expression wher e acts
like a SQL WHERE clause Expression or der by is similar to ORDER BY in SQL.
Expression ret urn is like SELECT in SQL. Except for the two keywords whose names
are the same in both languages (wher e, order by), FLWOR clause order is more or
less opposite to the SQL clause order, but the meanings of the corresponding clauses
are quite similar.

Using a FLWOR expression (with or der by) is the only way to construct an XQuery
sequence in any order other than document order.

4.2 Overview of XQuery in Oracle XML DB

Oracle XML DB support for the XQuery language is provided through a native
implementation of SQL/XML functions XM_Query, XM_Tabl e, XMLExi st s, and XM_Cast .
As a convenience, SQL*Plus command XQUERY is also provided, which lets you enter
XQuery expressions directly — in effect, this command turns SQL*Plus into an XQuery
command-line interpreter.

Oracle XML DB compiles XQuery expressions that are passed as arguments to
SQL/XML functions XM.Quer y, XM_Tabl e, XMLExi st s, and XM_Cast . This compilation
produces SQL query blocks and operator trees that use SQL/XML functions and
XPath functions. A SQL statement that includes XM_Query, XM_Tabl e, XM_Exi st s, or
XM.Cast is compiled and optimized as a whole, leveraging both relational database
and XQuery-specific optimization technologies. Depending on the XML storage and
indexing methods used, XPath functions can be further optimized. The resulting
optimized operator tree is executed in a streaming fashion.

# Note:

Oracle XML Developer's Kit (XDK) supports XQuery on the mid-tier. You do
not need access to Oracle Database to use XQuery. XDK lets you evaluate
XQuery expressions using XQuery API for Java (XQJ).

*  When To Use XQuery
You can use XQuery to do many of the same things that you might do using the
SQL/XML generation functions or XSLT; there is a great deal of overlap. The
decision to use one or the other tool to accomplish a given task can be based on
many considerations, most of which are not specific to Oracle Database. Please
consult external documentation on this general question.

* Predefined XQuery Namespaces and Prefixes
Several namespaces and prefixes are predefined for use with XQuery in Oracle
XML DB.

ORACLE 4.9



Chapter 4
Overview of XQuery in Oracle XML DB

Related Topics

¢ SQL/XML Functions XMLQUERY, XMLTABLE, XMLEXists, and XMLCast
SQL/XML functions XM_Query, XM_Tabl e, XM_Exi st s, and XM_Cast are defined by
the SQL/XML standard as a general interface between the SQL and XQuery
languages.

e Using the SQL*Plus XQUERY Command
You can evaluate an XQuery expression using the SQL*Plus XQUERY command.

*  Query and Update of XML Data
There are many ways for applications to query and update XML data that is in
Oracle Database, both XML schema-based and non-schema-based.

¢ See Also:

e Oracle XQuery Extension Functions for Oracle-specific XQuery functions
that extend the language

e Oracle XML DB Support for XQuery for details about Oracle XML DB
support for XQuery

e Oracle XML Developer's Kit Programmer's Guide for information about
using XQJ

4.2.1 When To Use XQuery

You can use XQuery to do many of the same things that you might do using the
SQL/XML generation functions or XSLT; there is a great deal of overlap. The decision
to use one or the other tool to accomplish a given task can be based on many
considerations, most of which are not specific to Oracle Database. Please consult
external documentation on this general question.

A general pattern of use is that XQuery is often used when the focus is the world of
XML data, and the SQL/XML generation functions (XMLEIl enent , XM_Agg, and so on)
are often used when the focus is the world of relational data.

Other things being equal, if a query constructs an XML document from fragments
extracted from existing XML documents, then it is likely that an XQuery FLOWR
expression is simpler (simplifying code maintenance) than extracting scalar values
from relational data and constructing appropriate XML data using SQL/XML generation
functions. If, instead, a query constructs an XML document from existing relational
data, the SQL/XML generation functions can often be more suitable.

With respect to Oracle XML DB, you can expect the same general level of
performance using the SQL/XML generation functions as with XML.Query and XM.Tabl e
— all are subject to rewrite optimizations.

4.2.2 Predefined XQuery Namespaces and Prefixes

Several namespaces and prefixes are predefined for use with XQuery in Oracle
XML DB.

ORACLE 4-10



Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLEXxists, and XMLCast

Table 4-2 Predefined Namespaces and Prefixes

Prefix Namespace Description

ora http://xnns.oracle.com xdb Oracle XML DB namespace

local http://www w3. org/ 2003/ 11/ xpat h-1 ocal -functions  XPath local function declaration
namespace

fn http://ww. w3. or g/ 2003/ 11/ xpat h-f uncti ons XPath function namespace

xm http://ww. w3. or g/ XM/ 1998/ nanespace XML namespace

XS htt p: // ww. w3. or g/ 2001/ XM_Schema XML Schema namespace

XSi http://ww. w3. org/ 2001/ XM_Schemna- i nst ance XML Schema instance namespace

You can use these prefixes in XQuery expressions without first declaring them in the
XQuery-expression prolog. You can redefine any of them except xm in the prolog. All
of these prefixes except or a are predefined in the XQuery standard.

4.3 SQL/XML Functions XMLQUERY, XMLTABLE,
XMLEXxists, and XMLCast

ORACLE

SQL/XML functions XM.Quer y, XM_Tabl e, XMLExi st s, and XM_Cast are defined by the
SQL/XML standard as a general interface between the SQL and XQuery languages.

They are referred to in this book as SQL/XML query and update functions. As is the
case for the other SQL/XML functions, these functions let you take advantage of the
power and flexibility of both SQL and XML. Using these functions, you can construct
XML data using relational data, query relational data as if it were XML, and construct
relational data from XML data.

SQL functions XMLExi st s and XM_Cast are documented elsewhere in this chapter. This
section presents functions XM.Query and XM.Tabl e, but many of the examples in this
chapter use also XM_Exi st s and XM_Cast . In terms of typical use:

XM Query and XM.Cast are typically used in a SELECT list.
* XM.Tabl e is typically used in a SQL FROMclause.
e XM.Exi st s is typically used in a SQL WHERE clause.

Both XMLQuery and XM.Tabl e evaluate an XQuery expression. In the XQuery
language, an expression always returns a sequence of items. Function XM_Query
aggregates the items in this sequence to return a single XML document or fragment.
Function XMLTabl e returns a SQL table whose rows each contain one item from the
XQuery sequence.

«  XMLQUERY SQL/XML Function in Oracle XML DB
Use SQL/XML function XM_Quer y to construct or query XML data.

e XMLTABLE SQL/XML Function in Oracle XML DB
You use SQL/XML function XM.Tabl e to decompose the result of an XQuery-
expression evaluation into the relational rows and columns of a new, virtual table.
You can insert this data into a pre-existing database table, or you can query it
using SQL — in a join expression, for example.

4-11



Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLEXxists, and XMLCast

«  XMLEXISTS SQL/XML Function in Oracle XML DB
SQL/XML standard function XMLExi st s checks whether a given XQuery
expression returns a non-empty XQuery sequence. If so, the function returns TRUE.
Otherwise, it returns FALSE.

e Using XMLExists to Find a Node
You can use SQL/XML standard function XMLExi st s to find a given node. You can
create function-based indexes using XMLExi st s. You can also create an XM.I ndex
index to help speed up arbitrary XQuery searching.

e XMLCAST SQL/XML Function in Oracle XML DB
You can use SQL/XML function XM_.Cast to cast an XQuery value to a SQL data
type.

e Using XMLCAST to Extract the Scalar Value of an XML Fragment
You can use standard SQL/XML function XM_Cast to extract the scalar value of an
XML fragment.

¢ See Also:

e Oracle Database SQL Language Reference for information about Oracle
support for the SQL/XML standard

e http://ww:. w3. org/ TR xquery- 30/ for information about the XQuery
language

e Generation of XML Data Using SQL Functions for information about
using other SQL/XML functions with Oracle XML DB

4.3.1 XMLQUERY SQL/XML Function in Oracle XML DB

Use SQL/XML function XM_Quer y to construct or query XML data.

The function takes as arguments an XQuery expression, as a string literal, and an
optional XQuery context item, as a SQL expression. The context item establishes the
XPath context in which the XQuery expression is evaluated. Additionally, XM_Query
accepts as arguments any number of SQL expressions whose values are bound to
XQuery variables during the XQuery expression evaluation.

The function returns the result of evaluating the XQuery expression, as an XM.Type
instance.

Figure 4-1 XMLQUERY Syntax

XMLQUERY
XML_passing_clause f_)| NULL |->| ON |->| EMPTY |—\
XQuery_string [ RETURNING | CONTENT | @»

ORACLE 4-12



Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLExists, and XMLCast

XML_passing_clause ::=

()
)
mEL | |
—>| PASSING ( expr }

*  XQuery_stringis acomplete XQuery expression, possibly including a prolog, as a
literal string.

* The XM__passi ng_cl ause is the keyword PASSI NG followed by one or more SQL
expressions (expr) that each return an XM_Type instance or an instance of a SQL
scalar data type (that is, not an object or collection data type). Each expression
(expr) can be a table or view column value, a PL/SQL variable, or a bind variable
with proper casting. All but possibly one of the expressions must each be followed
by the keyword AS and an XQuery i denti fi er. The result of evaluating each expr
is bound to the corresponding i denti fi er for the evaluation of XQuery_string. If
there is an expr that is not followed by an AS clause, then the result of evaluating
that expr is used as the context item for evaluating XQuery_stri ng. Oracle
XML DB supports only passing BY VALUE, not passing BY REFERENCE, so the
clause BY VALUE is implicit and can be omitted.

*  RETURNI NG CONTENT indicates that the value returned by an application of XM_Query
is an instance of parameterized XML type XM_( CONTENT) , not parameterized type
XM_( SEQUENCE) . It is a document fragment that conforms to the extended Infoset
data model. As such, it is a single document node with any number of children.
The children can each be of any XML node type; in particular, they can be text
nodes.

Oracle XML DB supports only the RETURNI NG CONTENT clause of SQL/XML function
XM_Query; it does not support the RETURNI NG SEQUENCE clause.

You can pass an XM.Type column, table, or view as the context-item argument to
function XMLQuer y — see, for example, Example 5-8.

To query a relational table or view as if it were XML data, without having to first create
a SQL/XML view on top of it, use XQuery function f n: col | ecti on within an XQuery
expression, passing as argument a URI that uses the URI-scheme name or adb
together with the database location of the data. See URI Scheme oradb: Querying
Table or View Data with XQuery.

¢ Note:

Prior to Oracle Database 11g Release 2, some users employed Oracle SQL
functions ext ract and ext ract Val ue to do some of what can be done better
using SQL/XML functions XM_Quer y and XM_Cast . SQL functions ext r act
and ext ract Val ue are deprecated in Oracle Database 11g Release 2.

ORACLE 4-13



Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLEXxists, and XMLCast

" See Also:

Oracle Database SQL Language Reference for reference information about
SQL/XML function XM_Query in Oracle Database

4.3.2 XMLTABLE SQL/XML Function in Oracle XML DB

XML_passing_clause f_)| RETURNING |->| SEQUENCE |->| BY |->| REF |-\ f_)| COLUMNS

You use SQL/XML function XM.Tabl e to decompose the result of an XQuery-
expression evaluation into the relational rows and columns of a new, virtual table. You
can insert this data into a pre-existing database table, or you can query it using SQL
— in a join expression, for example.

SeeExample 5-9.
You use XM.Tabl e in a SQL FROMclause.

Figure 4-2 XMLTABLE Syntax

PCXML_namespaces_cIause)-)@d
XMLTABLE |(( (XQuery_string){XMLTABLE_options)s@»

XML_namespaces_clause ::=

XMLNAMESPACES

Note: You can specify at most one DEFAULT string clause.

XMLTABLE_options ::=

XML _table_column

ORACLE

XML_passing_clause ::=

(X
N\

_ |
(expr)

BY -VALUE
—>| PASSING -

4-14



Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLEXxists, and XMLCast

XML _table _column ::=

FOR H ORDINALITY

datatype

XMLTYPE

ORACLE

f—>®9| SEQUENCE F@‘>| BY | REF |_\ |

Wi o N i o N

XQuery_string is sometimes called the row pattern of the XMLTable call. It is a
complete XQuery expression, possibly including a prolog, as a literal string. The
value of the expression serves as input to the XM_Tabl e function; it is this XQuery
result that is decomposed and stored as relational data.

The optional XMLNAMESPACES clause contains XML namespace declarations that
are referenced by XQuery_string and by the XPath expression in the PATH clause
of XML_t abl e_col um.

The XML_passi ng_cl ause is the keyword PASSI NG followed by one or more SQL
expressions (expr) that each return an XM_Type instance or an instance of a SQL
scalar data type (that is, not an object or collection data type). Each expression
(expr) can be a table or view column value, a PL/SQL variable, or a bind variables
with proper casting. All but possibly one of the expressions must each be followed
by the keyword AS and an XQuery i denti fi er. The result of evaluating each expr
is bound to the corresponding i denti fi er for the evaluation of XQuery_string. If
there is an expr that is not followed by an AS clause, then the result of evaluating
that expr is used as the context item for evaluating XQuery_stri ng. Oracle

XML DB supports only passing BY VALUE, not passing BY REFERENCE, so the
clause BY VALUE is implicit and can be omitted.

The optional COLUWS clause defines the columns of the virtual table to be created
by XM_Tabl e.

— If you omit the COLUMNS clause, then XM_Tabl e returns a row with a single
XM.Type pseudo-column, named COLUMN_VALUE.

— FOR ORDI NALI TY specifies that col umm is to be a column of generated row
numbers (SQL data type NUMBER). The row numbers start with 1. There must
be at most one FOR ORDI NALI TY clause.

— For each resulting col urm except the FOR ORDI NALI TY column, you must
specify the column data type, which can be XM_Type or any other SQL data
type (called dat at ype in the syntax description).

— For data type XM_Type, if you also include the specification ( SEQUENCE) BY REF
then a reference to the source data targeted by the PATH expression (st ri ng)
is returned as the col urm content. Otherwise, col uim contains a copy of that
targeted data.

Returning the XM_.Type data by reference lets you specify other columns whose
paths target nodes in the source data that are outside those targeted by the
PATH expression for col um. See Example 5-13.

4-15



ORACLE

4

Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLEXxists, and XMLCast

The optional PATH clause specifies that the portion of the XQuery result that is
addressed by XQuery expression st ri ng is to be used as the col um content.
This XQuery expression is sometimes called the column pattern. You can
use multiple PATH clauses to split the XQuery result into different virtual-table
columns.

If you omit PATH, then the XQuery expression col umm is assumed. For
example, these two expressions are equivalent:

XM.Tabl e(... COLUWNS fo0)
XM.Tabl e(... COLUWNS foo PATH ' FQOO )

The XQuery expression st ri ng must represent a relative path; it is relative to
the path XQuery_string.

The optional DEFAULT clause specifies the value to use when the PATH
expression results in an empty sequence (or NULL). Its expr is an XQuery
expression that is evaluated to produce the default value.

See Also:

Oracle Database SQL Language Reference for reference information about
SQL/XML function XM_Tabl e in Oracle Database

Note:

Prior to Oracle Database 11g Release 2, some users employed Oracle SQL
function XMLSequence within a SQL TABLE collection expression, that is,
TABLE (XM_.Sequence(...)), to do some of what can be done better using
SQL/XML function XM_Tabl e. Function XM.Sequence is deprecated in Oracle
Database 11g Release 2.

See Oracle Database SQL Language Reference for information about the
SQL TABLE collection expression.

Chaining Calls to SQL/XML Function XMLTABLE

When you need to expose data contained at multiple levels in an XM.Type table as
individual rows in a relational table (or view), you use the same general approach
as for breaking up a single level: Use SQL/XML function XM.Tabl e to define the
columns making up the table and map the XML nodes to those columns.

4.3.2.1 Chaining Calls to SQL/XML Function XMLTABLE

When you need to expose data contained at multiple levels in an XM_Type table as
individual rows in a relational table (or view), you use the same general approach as
for breaking up a single level: Use SQL/XML function XM.Tabl e to define the columns
making up the table and map the XML nodes to those columns.

But in this case you apply function XM.Tabl e to each document level that is to be
broken up and stored in relational columns. Use this technique of chaining multiple

4-16



ORACLE

Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLEXxists, and XMLCast

XM.Tabl e calls whenever there is a one-to-many (1:N) relationship between
documents in the XM.Type table and the rows in the relational table.

You pass one level of XM.Type data from one XM.Tabl e call to the next, specifying its
column type as XM.Type.

When you chain two XM_Tabl e calls, the row pattern of each call should target the
deepest node that is a common ancestor to all of the nodes that are referenced in the
column patterns of that call.

This is illustrated in Example 4-1.

Each Pur chaseOr der element in XM_Type table po_bi naryxm contains a Li nel t ens
element, which in turn contains one or more Li nel t emelements. Each Li nel t em
element has child elements, such as Descri ption, and an | t emNunber attribute. To
make such lower-level data accessible as a relational value, you use XM.Tabl e to
project the collection of Li nel t emelements.

When element Pur chaseOr der is decomposed by the first call to XMLTabl e, its
descendant Li nel t emelement is mapped to a column of type XM.Type, which contains
an XML fragment. That column is then passed to a second call to XM_Tabl e to be
broken by it into its various parts as multiple columns of relational values.

The first call to XM_Tabl e uses / Pur chaseOr der as the row pattern, because
Pur chaseOr der is the deepest common ancestor node for the column patterns,
Ref erence and Li nel t ems/ Li nel t em

The second call to XM_Tabl e uses / Li nel t emas its row pattern, because that node is
the deepest common ancestor node for each of its column patterns (@t emNunber ,
Description, Part/ @d, and so on).

The column pattern (Li nel t ens/ Li nel t en) for the column (po. | i nei t en) that is
passed from the first XML.Tabl e call t o the second ends with the repeating element

(Li nel t em) that the second XM_.Tabl e call decomposes. That repeating element, written
with a leading slash (/), is used as the first element of the row pattern for the second
XM.Tabl e call.

The row pattern in each case is thus expressed as an absolute path; that is, it starts

with /. It is the starting point for decomposition by XM_Tabl e. Column patterns, on the
other hand, never start with a slash (/ ); they are always relative to the row pattern of
the same XM_Tabl e call.

Example 4-1 Chaining XMLTable Calls

SELECT po.reference, Ii.*
FROM po_bi naryxm p,
XM.Tabl e(' /PurchaseOrder' PASSI NG p. OBJECT_VALUE

COLUWNS
reference VARCHAR2(30) PATH ' Reference',
lineitem XM.Type PATH ' Lineltems/Lineltem') po,
XM.Tabl e(' /Lineltem' PASSI NG po.lineitem
COLUWNS
itemo NUVBER( 38) PATH ' @t emNunber ',
description VARCHAR2(256) PATH ' Description',
partno VARCHAR2(14) PATH 'Part/@d',

quantity NUMBER(12, 2) PATH 'Part/@uantity',
unitprice NUMBER(8, 4) PATH 'Part/@hnitPrice') li;

4-17



Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLEXxists, and XMLCast

4.3.3 XMLEXISTS SQL/XML Function in Oracle XML DB

SQL/XML standard function XMLExi st s checks whether a given XQuery expression
returns a non-empty XQuery sequence. If so, the function returns TRUE. Otherwise, it
returns FALSE.

Figure 4-3 describes the syntax for function XMLExi st s.

Figure 4-3 XMLEXxists Syntax

ﬁ(XML_passing_clauseh
— XMLEXISTS (()s(XQuery_string) 0%

XML_passing_clause ::=

(X
)
_ |
—>| PASSING ( expr )

e XQuery_stringis acomplete XQuery expression, possibly including a prolog, as a
literal string. It can contain XQuery variables that you bind using the XQuery
PASSI NG clause (XML_passi ng_cl ause in the syntax diagram). The predefined
namespace prefixes recognized for SQL/XML function XM.Query are also
recognized in XQuery_string —see Predefined XQuery Namespaces and
Prefixes.

* The XM__passi ng_cl ause is the keyword PASSI NG followed by one or more SQL
expressions (expr) that each return an XM_Type instance or an instance of a SQL
scalar data type. All but possibly one of the expressions must each be followed by
the keyword AS and an XQuery i denti fi er. The result of evaluating each expr is
bound to the corresponding i denti fi er for the evaluation of XQuery_string. If
there is an expr that is not followed by an AS clause, then the result of evaluating
that expr is used as the context item for evaluating XQuery_stri ng. Oracle
XML DB supports only passing BY VALUE, not passing BY REFERENCE, so the
clause BY VALUE is implicit and can be omitted.

If an XQuery expression such as / Pur chaseQr der / Ref er ence or / Pur chaseOr der /
Ref erence/ t ext () targets a single node, then XM_Exi st s returns t r ue for that
expression. If XMLExi st s is called with an XQuery expression that locates no nodes,
then XMLExi st s returns f al se.

Function XMLExi st s can be used in queries, and it can be used to create function-
based indexes to speed up evaluation of queries.

ORACLE 4-18



# Note:

# Note:

Chapter 4

SQL/XML Functions XMLQUERY, XMLTABLE, XMLEXxists, and XMLCast

4.3.4 Using XMLEXists to Find a Node

You can use SQL/XML standard function XMLExi st s to find a given node. You can
create function-based indexes using XMLExi st s. You can also create an XM.I ndex
index to help speed up arbitrary XQuery searching.

ORACLE

CASE WHEN XMLExists(...) THEN 'TRUE' ELSE ' FALSE' END

Oracle XML DB limits the use of XMLExi st s to a SQL WHERE clause or CASE
expression. If you need to use XMLExi st s in a SELECT list, then wrap it in a
CASE expression:

Prior to Oracle Database 11g Release 2, some users employed Oracle SQL
function exi st sNode to do some of what can be done better using SQL/XML
function XMLExi st s. Function exi st sNode is deprecated in Oracle

Database 11g Release 2. The two functions differ in these important ways:

¢ Function exi st sNode returns 0 or 1. Function XMLExi st s returns a
Boolean value, TRUE or FALSE.

e You can use exi st sNode in a query SELECT list. You cannot use
XMLEXxi st s directly in a SELECT list, but you can use XMLExi st s within a
CASE expression in a SELECT list.

Example 4-2 uses XMLExi st s to select rows with Speci al I nstructi ons set to

Expedite.

Example 4-2 Finding a Node Using SQL/XML Function XMLEXists

SELECT OBJECT_VALUE
FROM pur chaseor der
VWHERE XMLExi sts('/PurchaseOr der[ Speci al I nstructions="Expedite"]"

PASSI NG OBJECT_VALUE) ;

OBJECT_VALUE

<Pur chaseOr der
<Pur chaseOr der
<Pur chaseOr der
<Pur chaseOr der
<Pur chaseOr der
<Pur chaseOr der
<Pur chaseOr der
<Pur chaseOr der
<Pur chaseOr der
<Pur chaseOr der
<Pur chaseOr der

cxsi="http:// wwww. w3.
cxsi="http:// wwww. w3.
cxsi="http:// wwww. w3.
cxsi="http:// wwww. w3.
cxsi="http:// wwww. w3.
cxsi="http:// wwww. w3.
cxsi="http:// wwww. w3.
cxsi="http:// wwww. w3.
cxsi="http:// www. w3.
cxsi="http:// www. w3.
cxsi="http:// www. w3.

or g/ 2001/ XM_.Schema
or g/ 2001/ XM_.Schema
or g/ 2001/ XM_.Schema
or g/ 2001/ XM_.Schema
or g/ 2001/ XM_.Schema
or g/ 2001/ XM_.Schema
or g/ 2001/ XM_.Schema
or g/ 2001/ XM_.Schema
or g/ 2001/ XM_.Schema
or g/ 2001/ XM_.Schema
or g/ 2001/ XM_.Schema

-instance"
-instance"
-instance"
-instance"
-instance"
-instance"
-instance"
-instance"
-instance"
-instance"
-instance"

4-19



Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLEXxists, and XMLCast

<PurchaseOrder xm ns:xsi="http://ww:.w3.org/ 2001/ XM_Schena- i nst ance"
<PurchaseOrder xm ns:xsi="http://ww:.w3.org/ 2001/ XM_Schena- i nst ance"

13 rows sel ect ed.

4.3.5 XMLCAST SQL/XML Function in Oracle XML DB

You can use SQL/XML function XM_Cast to cast an XQuery value to a SQL data type.
Figure 4-4 describes the syntax for SQL/XML standard function XM_Cast .

Figure 4-4 XMLCast Syntax

— XMLCAST »@{value_expression)e AS {datatype)»@»

SQL/XML standard function XM.Cast casts its first argument to the scalar SQL data
type specified by its second argument. The first argument is a SQL expression that is
evaluated. Any of the following SQL data types can be used as the second argument:

*  NUMBER

*  VARCHARZ2
«  CHAR

- CLOB

* BLOB

e REF XM.TYPE
e any SQL date or time data type

¢ Note:

Unlike the SQL/XML standard, Oracle XML DB limits the use of XM_Cast to
cast XML to a SQL scalar data type. Oracle XML DB does not support
casting XML to XML or from a scalar SQL type to XML.

The result of evaluating the first XM_LCast argument is an XML value. It is converted to
the target SQL data type by using the XQuery atomization process and then casting
the XQuery atomic values to the target data type. If this conversion fails, then an error
is raised. If conversion succeeds, the result returned is an instance of the target data

type.

ORACLE 4-20



Chapter 4
SQL/XML Functions XMLQUERY, XMLTABLE, XMLEXxists, and XMLCast

# Note:

e Prior to Oracle Database 11g Release 2, some users employed Oracle
SQL function ext ract Val ue to do some of what can be done better using
SQL/XML functions XM.Query and XM_Cast . Function ext r act Val ue is
deprecated in Oracle Database 11g Release 2.

e Function ext r act Val ue raises an error when its XPath expression
argument matches multiple text nodes. XM.Cast applied to an XM_Query
result returns the concatenation of the text nodes — it does not raise an
error.

Related Topics

* Indexing XMLType Data Stored Object-Relationally
You can effectively index XMLType data that is stored object-relationally by creating
B-tree indexes on the underlying database columns that correspond to XML
nodes.

XMLIndex

4.3.6 Using XMLCAST to Extract the Scalar Value of an XML
Fragment

You can use standard SQL/XML function XM_Cast to extract the scalar value of an
XML fragment.

The query in Example 4-3 extracts the scalar value of node Ref erence.

Example 4-3 Extracting the Scalar Value of an XML Fragment Using XMLCAST

SELECT XM.Cast ( XM_Quer y(' / PurchaseOr der/ Ref erence’ PASSI NG OBJECT_VALUE
RETURNI NG CONTENT)
AS VARCHAR2('100)) " REFERENCE"
FROM pur chaseor der
VWHERE XMLExi sts('/PurchaseOr der[ Speci al I nstructions="Expedite"]"
PASSI NG OBJECT_VALUE) ;

REFERENCE

AMCEVEEN- 20021009123336271PDT
SKI'NG- 20021009123336321PDT
AWALSH-20021009123337303PDT
JCHEN-20021009123337123PDT
AWALSH-20021009123336642PDT
SKI'NG- 20021009123336622PDT
SKI'NG- 20021009123336822PDT
AWALSH-20021009123336101PDT
WSM TH-20021009123336412PDT
AWALSH-20021009123337954PDT
SKI'NG- 20021009123338294PDT
WSM TH-20021009123338154PDT

ORACLE 4-21



Chapter 4
URI Scheme oradb: Querying Table or View Data with XQuery

TFOX-20021009123337463PDT

13 rows sel ect ed.

4.4 URI Scheme oradb: Querying Table or View Data with

XQuery

ORACLE

You can use XQuery function f n: col | ecti on to query data that is in database tables
and views.

Besides using XQuery functions f n: doc and f n: col | ecti on to query resources in
Oracle XML DB Repository (see Querying XML Data in Oracle XML DB Repository
Using XQuery), you can use f n: col | ecti on to query data in database tables and
views.

To do this, you pass function f n: col | ecti on a URI argument that specifies the table
or view to query. The Oracle URI scheme or adb identifies this usage: without it, the
argument is treated as a repository location.

The table or view that is queried can be relational or of type XM_Type. If relational, its
data is converted on the fly and treated as XML. The result returned by f n: col | ecti on
is always an XQuery sequence.

e For an XM.Type table, the root element of each XML document returned by
fn:collectionisthe same as the root element of an XML document in the table.

* For arelational table, the root element of each XML document returned by
fn:collectionis RON The children of the RONelement are elements with the same
names (uppercase) as columns of the table. The content of a child element
corresponds to the column data. That content is an XML element if the column is
of type XML.Type; otherwise (the column is a scalar type), the content is of type
Xs:string.

The format of the URI argument passed to f n: col | ecti on is as follows:
e For an XM.Type or relational table or view, TABLE, in database schema DB- SCHEMA:
oradb:/ DB- SCHEMA/ TABLE/

You can use PUBLIC for DB- SCHEMA if TABLE is a public synonym or TABLE is a table
or view that is accessible to the database user currently logged in.

e For an XM.Type column in a relational table or view:

oradb:/ DB- SCHEMA REL- TABLE/ ROWPREDY X- COL

REL- TABLE is a relational table or view; PRED is an XPath predicate that does not
involve any XM_Type columns; and X- COL is an XMLType column in REL- TABLE. PRED
is optional; DB- SCHEMA, REL- TABLE, and X- CCL are required.

Optional XPath predicate PRED must satisfy the following conditions:

e It does not involve any XM_Type columns.

» Itinvolves only conjunctions (and) and disjunctions (or) of general equality and
inequality comparisons (=, ! =, >, <, >=, and <=).

4-22



Chapter 4
Oracle XQuery Extension Functions

* For each comparison operation: Either both sides hame (nhon-XML) columns in
REL- TABLE or one side names such a column and the other is a value of the proper
type, as specified in Table 4-3. Use of any other type raises an error.

Table 4-3 oradb Expressions: Column Types for Comparisons

|
Relational Column Type XQuery Value Type

VARCHAR?2, CHAR Xs:string or string literal

NUMBER, FLOAT, BI NARY_FLOAT, BI NARY_DOUBLE xs: deci nal , xs: f| oat, xs: doubl e, or
numeric literal

DATE, TI MESTAVP, TI MESTAMP W TH TI MEZONE, xs:date, xs:tine, orxs: dat eTi me
TI MESTAMP W TH LOCAL TI MEZONE

I NTERVAL YEAR TO MONTH Xs: year Mont hDur at i on
| NTERVAL DAY TO SECOND xs: dayTi neDurati on
RAW xs: hexBi nary

ROW D XS: string or string literal

For example, this XQuery expression represents all XML documents in XM.Type
column war ehouse_spec of table oe. war ehouses, for the rows where column
war ehouse_i d has a value less than 6:

fn:collection('oradb:/ O WAREHOUSES/ RON WAREHOUSE | D < 6] / WAREHOUSE_SPEC )

Related Topics

* Querying Relational Data Using XQuery and URI Scheme oradb
Examples are presented that use XQuery to query relational table or view data as
if it were XML data. The examples use XQuery function f n: col | ect i on, passing
as argument a URI that uses the URI-scheme name or adb together with the
database location of the data.

4.5 Oracle XQuery Extension Functions

Oracle XML DB adds some XQuery functions to those provided in the W3C standard.
These additional functions are in the Oracle XML DB namespace, http://
xm ns. oracl e. com xdb, which uses the predefined prefix ora.

# Note:

Oracle XQuery function or a: cont ai ns is deprecated in Oracle Database 12c
Release 2 (12.2.0.1). Use XQuery Full Text instead.

e ora:contains XQuery Function (Deprecated)
Oracle XQuery and XPath function or a: cont ai ns is described. This function is
deprecated in Oracle Database 12c Release 2 (12.2.0.1). Use XQuery Full Text
instead.

ORACLE 4-23



Chapter 4
Oracle XQuery Extension Functions

e ora:sgrt XQuery Function
Oracle XQuery function or a: sqrt returns the square root of its numeric argument,
which can be of XQuery type xs: deci mal , xs: float, or xs: doubl e. The returned
value is of the same XQuery type as the argument.

» ora:tokenize XQuery Function
Oracle XQuery function or a: t okeni ze lets you use a regular expression to split
the input string t ar get _stri ng into a sequence of strings.

4.5.1 ora:contains XQuery Function (Deprecated)

Oracle XQuery and XPath function or a: cont ai ns is described. This function is
deprecated in Oracle Database 12c¢ Release 2 (12.2.0.1). Use XQuery Full Text
instead.

ora:contains Syntax

ora:contains (input_text, text_query [, policy name] [, policy_owner])

Deprecated Oracle XQuery and XPath function or a: cont ai ns can be used in an
XQuery expression in a call to SQL/XML function XM_Query, XM.Tabl e, or XMLExi st s. It
is used to restrict a structural search with a full-text predicate. Function or a: cont ai ns
returns a positive integer when the i nput _t ext matchest ext _query (the higher the
number, the more relevant the match), and zero otherwise. When used in an XQuery
expression (that is not also an XPath expression), the XQuery return type is
xs:integer();when used in an XPath expression outside of an XQuery expression,
the XPath return type is nunber .

Argument i nput _t ext must evaluate to a single text node or an attribute. The syntax
and semantics of t ext _query in or a: cont ai ns are the same as text _query in
cont ai ns, with a few restrictions.

4.5.2 ora:sqrt XQuery Function

Oracle XQuery function or a: sqrt returns the square root of its numeric argument,
which can be of XQuery type xs: deci mal, xs:fl oat, or xs: doubl e. The returned
value is of the same XQuery type as the argument.

ora:sqrt Syntax

ora:sqrt (number)

4.5.3 ora:tokenize XQuery Function

Oracle XQuery function or a: t okeni ze lets you use a regular expression to split the
input string t ar get _stri ng into a sequence of strings.

ora:tokenize Syntax

ora:tokenize (target_string, match_pattern [, match_paraneter])

ORACLE 4-24



Chapter 4
Oracle XQuery Extension-Expression Pragmas

Function or a: t okeni ze treats each substring that matches the regular-expression
mat ch_patt ern as a separator indicating where to split. It returns the sequence of
tokens as an XQuery value of type xs: string* (a sequence of xs: stri ng values). If
target _string is the empty sequence, it is returned. Optional argument

mat ch_par aret er is a code that qualifies matching: case-sensitivity and so on.

The argument types are as follows:
e target_string—xs:string?3
e match_pattern—xs:string

e match_parameter —xs:string

4.6 Oracle XQuery Extension-Expression Pragmas

The W3C XQuery specification lets an implementation provide implementation-defined
extension expressions. An XQuery extension expression is an XQuery expression that
is enclosed in braces ({, }) and prefixed by an implementation-defined pragma. The
Oracle implementation provides several such pragmas.

No other pragmas are recognized than those listed here. Use of any other pragma, or
use of any of these pragmas with incorrect pragma content (for example,
(#ora:view on_null sonething el se #)), raises an error.

In the ora: view_on_nul | examples here, assume that table nul | _t est has columns a
and b of type VARCHAR2( 10) , and that column b (but not a) is empty.

e (#ora:child-el enment - name name #) — Specify the name to use for a child element
that is inserted. In general, without this pragma the name of the element to be
inserted is unknown at compile time. Specifying the name allows for compile-time
optimization, to improve runtime performance.

As an example, the following SQL statement specifies Li nel t emas the name of
the element node that is inserted as a child of element Li nel t ens. The element
data to be inserted is the value of XQuery variable p2, which comes from bind
variable : 1.

UPDATE oe. pur chaseorder p SET p. OBJECT_VALUE =
XM.Quer y(
‘copy $i :=
$pl nodify (for $ in $i/PurchaseOrder/Lineltens
return (#ora:child-element-name Lineltem #)
{insert node $p2 into $j)
return $i'
PASSI NG p. OBJECT_VALUE AS "p1", :1 AS "p2" RETURNI NG CONTENT)
VWHERE XM_Quer y(
"I PurchaseOrder/ Reference/text ()’
PASSI NG p. OBJECT_VALUE RETURNI NG CONTENT) . get StringVal () =
"EMPTY_LINES';

This pragma applies to XM.Type data stored either object-relationally or as binary
XML.

3 The question mark (?) here is a zero-or-one occurrence indicator that indicates that the argument can be the
empty sequence. See XQuery Expressions.

ORACLE 4-25



Chapter 4
Oracle XQuery Extension-Expression Pragmas

e (#ora:defaul t Tabl e #) — Specify the default table used to store repository data.
Use this to improve the performance of repository queries that use Query function
fn:doc orfn;collection. See Using Oracle XQuery Pragma ora:defaultTable.

e (#orarinvalid_path enpty #) — Treat an invalid XPath expression as if its
targeted nodes do not exist. For example:

SELECT XM.Query(' (#ora:invalid_path empty #)
{exi sts($p/ PurchaseOrder// Not | nTheSchema) }'
PASSI NG OBJECT_VALUE AS "p" RETURNI NG CONTENT)
FROM oe. pur chaseor der p;

The XML schema for table oe. pur chaseor der does not allow any such node

Not | nTheSchenma as a descendant of node Pur chaseOr der . Without the pragma,
the use of this invalid XPath expression would raise an error. But with the pragma,
the calling context acts just as if the XPath expression had targeted no nodes.
That calling context in this example is XQuery function exi st s, which returns
XQuery Boolean value f al se when passed an empty node sequence. (XQuery
function exi st s is used in this example only to illustrate the behavior; the pragma
is not especially related to function exi st s.)

e (#ora:view on_null empty #) — XQuery function f n: col | ecti on returns an
empty XML element for each NULL column. For example, the following query
returns <ROW<A>Xx</ A><B></B></ ROWb:

SELECT XM.Query(" (#ora:view_on_null empty #)
{for $i in fn:collection("oradb:/PUBLI C/ NULL_TEST")/
ROW
return $i}'
RETURNI NG CONTENT)
FROM DUAL;

e (#ora:view on null null #) —XQuery function fn: col | ecti on returns no
element for a NULL column. For example, the following query returns
<ROMNE<A>X </ A></ RON:

SELECT XM.Query(" (#ora:view_on_null null #)
{for $i in fn:collection("oradb:/PUBLI C/ NULL_TEST")/
ROW
return $i}'
RETURNI NG CONTENT)
FROM DUAL;

* (#ora:no_xm query_rewite #) —Do not optimize XQuery procedure calls in the
XQuery expression that follows the pragma; use functional evaluation instead.

This has the same effect as the SQL hint/*+ NO XM._QUERY_REWRI TE */, but the
scope of the pragma is only the XQuery expression that follows it (not an entire
SQL statement).

4 Prior to Oracle Database 12c Release 1 (12.1.0.1), pragmas or a: no_xm query_rewite and
ora:xm query_rewite were named or a: xq_proc and or a: xq_qry, respectively. They were renamed for
readability, with no change in meaning.

ORACLE 4-26



ORACLE

Chapter 4
Oracle XQuery Extension-Expression Pragmas

¢ See Also:

Turning Off Use of XMLIndex for information about optimizer hint
NO_XM._QUERY_REVRI TE

(#ora: xm query _rewite #)*—Try to optimize the XQuery expression that
follows the pragma. That is, if possible, do not evaluate it functionally.

As an example of using both ora: no_xm query_rewite and

ora: xm query_rewite, in the following query the XQuery expression argument to
XM_Query will in general be evaluated functionally, but the f n: col | ecti on
subexpressions that are preceded by pragma or a: xm query_rew i te will be
optimized, if possible.

SELECT XM.Query(" (#ora:no_xmlquery rewrite#) (: Do not optim ze
expression :)
{for $i in (#ora:xmlquery_rewrite#) (: Optinize
subexp. :)
{fn:collection("oradb:/HR REG ONS")},
$j in (#ora:xmlquery_rewrite#) (: Optimze
subexpr. :)
{fn:collection("oradb:/HR COUNTRI ES")}
where $i/RONREG ON_ID = $j/RONREG ON_I D
and $i / RON REG ON_NAME = $regi onnane
return $j}'
PASSI NG CAST(' &REG ON' AS VARCHAR2(40)) AS "regi onnanme"
RETURNI NG CONTENT)
AS asi an_countries FROM DUAL;

(#ora:no_schema #) — Do not raise an error if an XQuery Full Text expression is
used with XML Schema-based XM.Type data. Instead, implicitly cast the data to
non XML-Schema-based data. In particular, this means ignore XML Schema data

types.

Oracle supports XQuery Full Text only for XM.Type data stored as binary XML, so
this pragma applies only for the same case.

(#ora:use_xnmtext _idx #) —Use an XML search index, if available, to evaluate
the query. Do not use an XM.| ndex index or streaming evaluation.

An XML search index applies only to XM_.Type data stored as binary XML, so this
pragma does also.

(#ora:transformkeep_schema #) — Retain XML Schema information for the
documents returned by the XQuery expression that follows the pragma. This is
useful for XQuery Update, which uses copy semantics.

Without the pragma, when XML schema-based data is copied during an XQuery
Update operation, the XML schema information is lost. This is the behavior
specified by the XQuery Update standard. If you then try to insert the updated data
into an XML schema-based column or table then an error is raised: the data to be
inserted is untyped, so it does not conform to the XML schema.

4-27



Chapter 4
XQuery Static Type-Checking in Oracle XML DB

If you use the pragma then the data retains its XML schema information,
preventing the insertion error. Here is an example of using the pragma:

SELECT XM.Query(' decl are default el ement namespace
"http://xmns. oracl e. cont xdb/ xdbconfig. xsd"; (: :)
(#ora:transform_keep_ schema#)
{copy SNEWKM. : =
$XM. modify (for $CFG in $NEWKM./ xdbconfig//
httpconfig
return (replace val ue of node
$CFG http-port with
xs:int ($PORTNO) ) )
return $NEWKM.}'
PASSI NG CFG AS "XM.", 81 as "PORTNO' RETURNI NG CONTENT)
FROM DUAL;

4.7 XQuery Static Type-Checking in Oracle XML DB

ORACLE

When possible, Oracle XML DB performs static (compile time) type-checking of
queries.

Oracle XML DB type-checks all XQuery expressions. Doing this at run time can be
costly, however. As an optimization technique, whenever there is sufficient static type
information available for a given query at compile time, Oracle XML DB performs static
(compile time) type-checking of that query. Whenever sufficient static type information
is not available for a given query at compile time, Oracle XML DB uses dynamic (run-
time) type checking for that query.

Static type-checking can save execution time by raising errors at compile time. Static
type-checking errors include both data-type errors and the use of XPath expressions
that are invalid with respect to an XML schema.

Typical ways of providing sufficient static type information at query compile time
include the following:

e Using XQuery with fn: doc or fn: col | ecti on over relational data.

* Using XQuery to query an XM_Type table, column, or view whose XML Schema
information is available at query compile time.

* Using XQuery Update with a transform expression whose input is from an XM.Type
table or column that is based on an XML schema.

This section presents examples that demonstrate the utility of static type-checking and
the use of these two means of communicating type information.

The XML data produced on the fly by f n: col | ecti on together with URI scheme or adb
has ROWas its top-level element, but the query of Example 4-4 incorrectly lacks that
RONMwrapper element. This omission raises a query compile-time error. Forgetting that
fn:coll ection with oradb wraps relational data in this way is an easy mistake to
make, and one that could be difficult to diagnose without static type-checking.
Example 5-5 shows the correct code.

In Example 4-5, XQuery static type-checking finds a mismatch between an XPath
expression and its target XML schema-based data. Element Cost Cent er is misspelled
here as cost cent er (XQuery and XPath are case-sensitive). Example 5-11 shows the
correct code.

4-28



Chapter 4
Oracle XML DB Support for XQuery

Example 4-4 Static Type-Checking of XQuery Expressions: oradb URI scheme

-- This produces a static-type-check error, because "RON is mssing.
SELECT XM.Query('for $i in fn:collection("oradb:/HR REG ONS"),
$j in fn:collection("oradb:/HR COUNTRI ES")

where $i/REGON_ID = $j/REG ON_ID and $i / REG ON_NAME =

"Asia"
return $j'
RETURNI NG CONTENT) AS asi an_countries
FROM DUAL;

SELECT XM.Query('for $i in fn:collection("oradb:/HR REG ONS"),

ERROR at line 1:

ORA-19276: XPST0005 - XPath step specifies an invalid elenent/attribute
nane;

(REG ON_I D)

Example 4-5 Static Type-Checking of XQuery Expressions: XML Schema-
Based Data

-- This results in a static-type-check error: CostCenter is not the right
case.
SELECT xtab. poref, xtab.usr, xtab.requestor
FROM pur chaseor der,
XM.Tabl e(' for $i in /PurchaseOder where $i/costcenter eq "Al0"
return $i'
PASSI NG OBJECT_VALUE
COLUWNS por ef VARCHAR2(20) PATH ' Reference',
usr VARCHAR2(20) PATH ' User' DEFAULT
" Unknown' ,
request or VARCHAR2(20) PATH ' Requestor') xtab;
FROM pur chaseor der,
*

ERROR at line 2:

ORA-19276: XPST0005 - XPath step specifies an invalid elenent/attribute
nane:

(costcenter)

4.8 Oracle XML DB Support for XQuery

ORACLE

Oracle XML DB support for the XQuery language includes SQL support and support
for XQuery functions and operators.

e Support for XQuery and SQL
Support for the XQuery language in Oracle XML DB is designed to provide the
best fit between the worlds of relational storage and querying XML data. Oracle
XML DB is a general XQuery implementation, but it is in addition specifically
designed to make relational and XQuery queries work well together.

*  Support for XQuery Functions and Operators
Oracle XML DB supports all of the XQuery functions and operators included in the
latest XQuery 1.0 and XPath 2.0 Functions and Operators specification, with a few
exceptions.

4-29



Chapter 4
Oracle XML DB Support for XQuery

Support for XQuery Full Text

Oracle XML DB supports XQuery Full Text for XM.Type data that is stored as
binary XML. Oracle Text technology provides the full-text indexing and search that
is the basis of this support.

4.8.1 Support for XQuery and SQL

Support for the XQuery language in Oracle XML DB is designed to provide the best fit
between the worlds of relational storage and querying XML data. Oracle XML DB is a
general XQuery implementation, but it is in addition specifically designed to make
relational and XQuery queries work well together.

The specific properties of the Oracle XML DB XQuery implementation are described in
this section. The XQuery standard explicitly calls out certain aspects of the language
processing as implementation-defined or implementation-dependent. There are also
some features that are specified by the XQuery standard but are not supported by
Oracle XML DB.

Implementation Choices Specified in the XQuery Standards
The XQuery standards specify several aspects of language processing that are to
be defined by the implementation.

XQuery Features Not Supported by Oracle XML DB
The features specified by the XQuery standard that are not supported by Oracle
XML DB are specified.

XQuery Optional Features
The optional XQuery features that are not supported by Oracle XML DB are
specified.

Related Topics

Support for XQuery Full Text

Oracle XML DB supports XQuery Full Text for XM.Type data that is stored as
binary XML. Oracle Text technology provides the full-text indexing and search that
is the basis of this support.

4.8.1.1 Implementation Choices Specified in the XQuery Standards

ORACLE

The XQuery standards specify several aspects of language processing that are to be
defined by the implementation.

Implicit time zone support — In Oracle XML DB, the implicit time zone is always
assumed to be Z, and instances of xs: dat e, xs: ti ne, and xs: dat et i ne that are
missing time zones are automatically converted to UTC.

copy- namespaces default value — The default value for a copy- namespaces
declaration (used in XQuery Update) is i nherit.

Revalidation mode — The default mode for XQuery Update transform expression
revalidation is ski p. However, if the result of a transform expression is an update
to XML schema-based data in an XM_Type table or column, then XML schema
validation is enforced.

4-30



Chapter 4
Oracle XML DB Support for XQuery

4.8.1.2 XQuery Features Not Supported by Oracle XML DB

The features specified by the XQuery standard that are not supported by Oracle
XML DB are specified.

e Copy-namespace mode — Oracle XML DB supports only preserve and i nherit for
a copy- nanespaces declaration. If an existing element node is copied by an
element constructor or a document constructor, all in-scope namespaces of the
original element are retained in the copy. Otherwise, the copied node inherits all
in-scope namespaces of the constructed node. An error is raised if you specify no-
preserve or no-inherit.

e Version encoding — Oracle XML DB does not support an optional encoding
declaration in a version declaration. That is, you cannot include ( encodi ng an-
encodi ng) in a declaration xquery versi on a-versi on; . In particular, you cannot
specify an encoding used in the query. An error is raised if you include an
encoding declaration.

e xml:id — Oracle XML DB does not support use of xn : i d. If you use xnl : i d, then
an error is raised.

e XQuery prolog default-collation declaration.
e XQuery prolog boundary-space declaration.

e XQuery data type xs: dur ati on. Use either xs: year Mont hDur ati on or
xs: DayTi meDur at i on instead.

e XQuery Update function f n: put .

4.8.1.3 XQuery Optional Features

The optional XQuery features that are not supported by Oracle XML DB are specified.

The XQuery standard specifies that some features are optional for a given
implementation. The following optional XQuery features are not supported by Oracle
XML DB:

e Schema Validation Feature
e Module Feature

The following optional XQuery features are supported by Oracle XML DB:

e XQuery Static Typing Feature
»  XQuery Update Static Typing Feature

Related Topics

*  XQuery Static Type-Checking in Oracle XML DB
When possible, Oracle XML DB performs static (compile time) type-checking of
queries.

ORACLE 4-31



Chapter 4
Oracle XML DB Support for XQuery

4.8.2 Support for XQuery Functions and Operators

Oracle XML DB supports all of the XQuery functions and operators included in the
latest XQuery 1.0 and XPath 2.0 Functions and Operators specification, with a few
exceptions.

Oracle XML DB does not support the following XQuery functions and operators:
e Function f n: t okeni ze. Use Oracle XQuery function or a: t okeni ze instead.
* Functionsfn:idandfn:idref.

*  Function f n: col | ecti on without arguments.

e Optional collation parameters for XQuery functions.

e XQuery Functions fn:doc, fn:collection, and fn:doc-available
Oracle XML DB supports XQuery functions f n: doc, fn: col | ecti on, and f n; doc-
avai | abl e for all resources in Oracle XML DB Repository.

4.8.2.1 XQuery Functions fn:doc, fn:collection, and fn:doc-available

Oracle XML DB supports XQuery functions f n: doc, fn: col | ecti on, and f n: doc-
avai | abl e for all resources in Oracle XML DB Repository.

Function f n: doc returns the repository file resource that is targeted by its URI
argument; it must be a file of well-formed XML data. Function f n: col | ecti on is
similar, but works on repository folder resources (each file in the folder must contain
well-formed XML data).

When used with Oracle URI scheme or adb, f n: col | ecti on can return XML data
derived on the fly from existing relational data that is not in the repository.

XQuery function f n: col | ecti on raises an error when used with URI scheme or adb, if
its targeted table or view, or a targeted column, does not exist. Functions f n: doc and
fn:coll ection do not raise an error if the repository resource passed as argument is
not found. Instead, they return an empty sequence.

You can determine whether a given document exists using XQuery function f n: doc-
avai | abl e. It returns t r ue if its document argument exists, f al se if not.

¢ See Also:

XQuery 3.0 Functions and Operators

4.8.3 Support for XQuery Full Text

ORACLE

Oracle XML DB supports XQuery Full Text for XM.Type data that is stored as binary
XML. Oracle Text technology provides the full-text indexing and search that is the
basis of this support.

Refer to the XQuery and XPath Full Text 1.0 Recommendation (hereafter XQuery Full
Text, or XQFT) for information about any terms that are not detailed here.

4-32



Chapter 4
Oracle XML DB Support for XQuery

Oracle supports XQuery Full Text only for XML.Type data that is stored as binary XML.
You can perform a full-text search of XML.Type data that is stored object-relationally
using an Oracle Text index, but not using XQuery Full Text.

A general rule for understanding Oracle support for XQuery Full Text is that the Oracle
implementation of XQFT is based on Oracle Text, which provides full-text indexing and
search for Oracle products and for applications developed using them. The XQFT
support details provided in this section are a consequence of this Oracle Text based
implementation.

e XQuery Full Text, XML Schema-Based Data, and Pragma ora:no_schema
Use Oracle pragma or a: no_schema with XQuery Full Text to query XML Schema-
based XM.Type data that is stored as binary XML. The data is treated as if it were
non XML Schema-based.

* Restrictions on Using XQuery Full Text with XMLEXists
Restrictions are specified for using XQuery Full Text with SQL/XML function
XMLEXi st s.

e Supported XQuery Full Text FTSelection Operators
Oracle XML DB supports a subset of the XQuery Full Text FTSelection operators.

e Supported XQuery Full Text Match Options
Oracle XML DB supports a subset of the XQuery Full Text match options.

* Unsupported XQuery Full Text Features
The XQuery Full Text features that are not supported by Oracle XML DB are
specified.

e XQuery Full Text Errors
Compile-time errors that can be raised when you use XQuery Full Text are
described.

" See Also:

e Oracle Text Application Developer's Guide

* Oracle Text Reference

4.8.3.1 XQuery Full Text, XML Schema-Based Data, and Pragma
ora:no_schema

ORACLE

Use Oracle pragma or a: no_schena with XQuery Full Text to query XML Schema-
based XM.Type data that is stored as binary XML. The data is treated as if it were non
XML Schema-based.

You can use XQuery Full Text to query XM.Type data that is stored as binary XML.
However, if you use it with XML Schema-based data then you must also use the
XQuery extension-expression pragma or a: no_schema in your query, or else an error is
raised.

And if you use or a: no_schena then, for purposes of XQuery Full Text, the XML data is
implicitly cast to non XML Schema-based data. In other words, Oracle support of
XQuery Full Text treats all XML data as if it were not based on an XML schema.

4-33



Chapter 4
Oracle XML DB Support for XQuery

In particular, this means that if you include in your query an XQuery Full Text condition
that makes use of XML Schema data types, such type considerations are ignored. A
comparison of two XML Schema date values, for instance, is handled as a simple
string comparison. Oracle support for XQuery Full Text is hot XML Schema-aware.

Related Topics

*  Pragma ora:no_schema: Using XML Schema-Based Data with XQuery Full Text
Oracle recommends in general that you use non XML Schema-based XM.Type
data when you use XQuery Full Text and an XML search index. But you can in
some circumstances use XML Schema-based XM.Type data that is stored as
binary XML. Oracle XQuery pragma or a: no_schena can be useful in this context.

4.8.3.2 Restrictions on Using XQuery Full Text with XMLEXists

Restrictions are specified for using XQuery Full Text with SQL/XML function
XM_EXi st s.

You can pass only one XM_Type instance as a SQL expression in the PASS| NG clause
of SQL/XML function XM_Exi st s, and each of the other, non-XM_Type SQL expressions
in that clause must be either a compile-time constant of a SQL built-in data type or a
bind variable that is bound to an instance of such a data type. If this restriction is not
respected then compile-time error ORA-18177 is raised.

4.8.3.3 Supported XQuery Full Text FTSelection Operators

ORACLE

Oracle XML DB supports a subset of the XQuery Full Text FTSelection operators.

Oracle XML DB supports only the following XQuery Full Text FTSelection operators.
Any applicable restrictions are noted. Use of the terms "must" and "must not" means
that an error is raised if the specified restriction is not respected. Use of any operators
not listed here raises an error.

FTAnNd (ftand)
«  FTMildNot (not in)

Each operand for operator FTMildNot must be either a term or a phrase, that is, an
instance of FTWords. It must not be an expression. Oracle handles FTMildNot the
same way it handles Oracle Text operator MNOT.

e FTOr (ftor)
e FTOrder (or der ed)

Oracle supports the use of FTOrder only when used in the context of a window
(FTWindow). Otherwise, it is not supported. For example, you can use or der ed
wi ndow 5 wor ds, but you cannot use only or der ed without also wi ndow. Oracle
handles FTOrder the same way it handles Oracle Text operator NEAR with a TRUE
value for option ORDER.

e FTUnaryNot (ft not)

FTUnaryNot must be used with FTAnd. You cannot use FTUnaryNot by itself. For
example, you can use ftand ftnot, but you cannot use only ft not without also
ftand. Oracle handles FTUnaryNot the same way it handles Oracle Text operator
NOT.

*  FTWindow (wi ndow)

4-34



Chapter 4
Oracle XML DB Support for XQuery

Oracle handles FTWindow the same way it handles Oracle Text operator NEAR.
You must specify the window size only in words, not in sentences or paragraphs
(for example, wi ndow 2 par agr aphs), and you must specify it as a numeric
constant that is less than or equal to 100.

«  FTWords

FTWordsValue must be an XQuery literal string or a SQL bind variable whose
value is passed to SQL function XM_Exi st s or XM_Quer y from a SQL expression
whose evaluation returns a non-XM.Type value.

In addition, FTAnyallOption, if present, must be any. That is, FTWords must
correspond to a sequence with only one item.

# Note:

Even though FTWords corresponds to a sequence of only one item, you
can still search for a phrase of multiple words, by using a single string for
the entire phrase. So for example, although Oracle XML DB does not
support using {"found" "neckl ace"} for FTWords, you can use "f ound
neckl ace".

4.8.3.4 Supported XQuery Full Text Match Options

Oracle XML DB supports a subset of the XQuery Full Text match options.

Oracle XML DB supports only the following XQuery Full Text match options. Any
applicable restrictions are noted. Use of the terms "must" and "must not" means that
an error is raised if the specified restriction is not respected. Use of any match options
not listed here raises an error.

*  FTStemOption (st ermi ng, no st emi ng)

The default behavior specified in the XQuery and XPath Full Text 1.0
Recommendation is used for each unsupported match option, with the following
exceptions:

* FTLanguage (unsupported) — The language used is the language defined by the
default lexer, which means the language that was used when the database was
installed.

*  FTStopWordOption (unsupported) — The stoplist used is the stoplist defined for
that language.

¢ See Also:

* Oracle Text Reference for information about the default lexer

e Oracle Text Reference for information about the stoplist used for each
supported language

ORACLE 4-35



Chapter 4
Oracle XML DB Support for XQuery

4.8.3.5 Unsupported XQuery Full Text Features

The XQuery Full Text features that are not supported by Oracle XML DB are specified.

In addition to all FTSelection operators not mentioned in Supported XQuery Full Text
FTSelection Operators and all match options not mentioned in Supported XQuery Full
Text Match Options, Oracle XML DB does not support the following XQuery Full Text
features:

e FTlgnoreOption
e FTWeight (weight declarations, used with FTPrimaryWithOptions)

e FTScoreVar (score variables, used with XQuery ForClause and LetClause or with
XPath 2.0 SimpleForClause)

4.8.3.6 XQuery Full Text Errors

ORACLE

Compile-time errors that can be raised when you use XQuery Full Text are described.

A compile-time error is raised whenever you use an XQuery Full Text (XQFT) feature
that Oracle does not support.

In addition, compile-time error ORA-18177 is raised whenever you use a supported
XQFT expression in a SQL WHERE clause (typically in XMLExi st s), if you did not create
a corresponding XML search index or if that index is not picked up.

Related Topics

e Unsupported XQuery Full Text Features
The XQuery Full Text features that are not supported by Oracle XML DB are
specified.

¢ See Also:

e Indexing XML Data for Full-Text Queries for information about creating
an XML search index and handling error ORA-18177

e Performance Tuning for XQuery for information about axes other than
forward and descendent

e Oracle Database SQL Language Reference for information about SQL
built-in data types

4-36



Query and Update of XML Data

ORACLE

There are many ways for applications to query and update XML data that is in Oracle
Database, both XML schema-based and non-schema-based.

e Using XQuery with Oracle XML DB
XQuery is a very general and expressive language, and SQL/XML functions
XM.Query, XM_Tabl e, XMLExi st's, and XM_Cast combine that power of expression
and computation with the strengths of SQL.

*  Querying XML Data Using SQL and PL/SQL
You can query XML data from XM.Type columns and tables in various ways.

* Using the SQL*Plus XQUERY Command
You can evaluate an XQuery expression using the SQL*Plus XQUERY command.

e Using XQuery with XQJ to Access Database Data
XQuery API for Java (XQJ), also known as JSR-225, provides an industry-
standard way for Java programs to access XML data using XQuery. It lets you
evaluate XQuery expressions against XML data sources and process the results
as XML data.

e Using XQuery with PL/SQL, JDBC, and ODP.NET to Access Database Data
You can use XQuery with the Oracle APIs for PL/SQL, JDBC, and Oracle Data
Provider for .NET (ODP.NET).

e Updating XML Data
There are several ways you can use Oracle XML DB features to update XML data,
whether it is transient or stored in database tables.

e Performance Tuning for XQuery
A SQL query that involves XQuery expressions can often be automatically
rewritten (optimized) in one or more ways. This optimization is referred to as XML
query rewrite or optimization. When this happens, the XQuery expression is, in
effect, evaluated directly against the XML document without constructing a DOM in
memory.

¢ See Also:

e Overview of How To Use Oracle XML DB for XM_Type storage
recommendations

e« XML Schema Storage and Query: Basic for how to work with XML
schema-based XM.Type tables and columns

e XQuery and Oracle XML DB for information about updating XML data
using XQuery Update

5-1



Chapter 5
Using XQuery with Oracle XML DB

5.1 Using XQuery with Oracle XML DB

ORACLE

XQuery is a very general and expressive language, and SQL/XML functions XM_Query,
XM.Tabl e, XMLExi st s, and XM_Cast combine that power of expression and computation
with the strengths of SQL.

You typically use XQuery with Oracle XML DB in the following ways. The examples
here are organized to reflect these different uses.

*  Query XML data in Oracle XML DB Repository.
See Querying XML Data in Oracle XML DB Repository Using XQuery.

* Query a relational table or view as if it were XML data. To do this, you use XQuery
function f n: col | ecti on, passing as argument a URI that uses the URI-scheme
name or adb together with the database location of the data.

See Querying Relational Data Using XQuery and URI Scheme oradb.

*  Query XM_Type data, possibly decomposing the resulting XML into relational data
using function XM.Tabl e.

See Querying XMLType Data Using XQuery.

Example 5-1 creates Oracle XML DB Repository resources that are used in some of
the other examples in this chapter.

Example 5-1 Creating Resources for Examples

DECLARE
res BOOLEAN
enpsxn string VARCHAR2(300): =
"<?xm version="1.0"?>
<enps>
<enp enpno="1" deptno="10" ename="John" sal ary="21000"/>
<enp enpno="2" deptno="10" ename="Jack" sal ary="310000"/>
<enp enpno="3" deptno="20" ename="Jill" sal ary="100001"/>
</ enps>';
enpsxni nsstring VARCHAR2(300): =
"<?xm version="1.0"?>
<enps xm ns="http://exanpl e. cont >
<enp enpno="1" deptno="10" ename="John" sal ary="21000"/>
<enp enpno="2" deptno="10" ename="Jack" sal ary="310000"/>
<enp enpno="3" deptno="20" ename="Jill" sal ary="100001"/>
</ enps>';
dept sxm string VARCHAR2(300): =
"<?xm version="1.0"?>
<dept s>
<dept deptno="10" dname="Adnmi nistration"/>
<dept deptno="20" dname="Marketing"/>
<dept dept no="30" dname="Purchasing"/>

</ depts>';
BEG N
res : = DBMS_XDB_REPCS. creat eResource(' /public/enps.xm ',  enpsxmstring);
res := DBMS_XDB_REPCS. creat eResour ce(' /public/enpsns.xm ', enpsxm nsstring);
res : = DBMS_XDB_REPCS. creat eResource(' /public/depts.xm ', deptsxmstring);
END;

/

5-2



Chapter 5
Using XQuery with Oracle XML DB

*  XQuery Sequences Can Contain Data of Any XQuery Type
XQuery is a general sequence-manipulation language. Its expressions and their
results are not necessarily XML data. An XQuery sequence can contain items of
any XQuery type, which includes numbers, strings, Boolean values, dates, and
various types of XML node (document - node(), el ement (), attribute(), text(),
nanmespace(), and so on).

*  Querying XML Data in Oracle XML DB Repository Using XQuery
Examples are presented that use XQuery with XML data in Oracle XML DB
Repository. You use XQuery functions f n: doc and f n: col | ecti on to query file
and folder resources in the repository, respectively.

*  Querying Relational Data Using XQuery and URI Scheme oradb
Examples are presented that use XQuery to query relational table or view data as
if it were XML data. The examples use XQuery function f n: col | ecti on, passing
as argument a URI that uses the URI-scheme name or adb together with the
database location of the data.

*  Querying XMLType Data Using XQuery
Examples are presented that use XQuery to query XM_Type data.

e Using Namespaces with XQuery
You can use the XQuery decl are namespace declaration in the prolog of an
XQuery expression to define a namespace prefix. You can use decl ar e default
namespace to establish the namespace as the default namespace for the
expression.

5.1.1 XQuery Sequences Can Contain Data of Any XQuery Type

ORACLE

XQuery is a general sequence-manipulation language. Its expressions and their
results are not necessarily XML data. An XQuery sequence can contain items of any
XQuery type, which includes numbers, strings, Boolean values, dates, and various
types of XML node (docunent - node(), el enent (), attribute(), text(), nanespace(),
and so on).

Example 5-2 provides a sampling. It applies SQL/XML function XM.Quer y to an XQuery
sequence that contains items of several different kinds:

* aninteger literal: 1

e aarithmetic expression; 2 + 3

e astring literal: "a"

e asequence of integers: 100 to 102

* aconstructed XML element node: <A>33</ A>

Example 5-2 also shows construction of a sequence using the comma operator (,) and
parentheses ((, )) for grouping.

The sequence expression 100 t o 102 evaluates to the sequence (100, 101, 102),
so the argument to XM_Quer y here is a sequence that contains a nested sequence.
The sequence argument is automatically flattened, as is always the case for XQuery
sequences. The argument is, in effect, (1, 5, "a", 100, 101, 102, <A>33</A>).

Example 5-2 XMLQuery Applied to a Sequence of Items of Different Types

SELECT XM.Query(' (1, 2 + 3, "a", 100 to 102, <A>33</A>)'
RETURNI NG CONTENT) AS out put

5-3



Chapter 5
Using XQuery with Oracle XML DB

15 a 100 101 102<A>33</A>

1 row sel ect ed.

5.1.2 Querying XML Data in Oracle XML DB Repository Using XQuery

ORACLE

Examples are presented that use XQuery with XML data in Oracle XML DB
Repository. You use XQuery functions f n: doc and f n: col I ecti on to query file and
folder resources in the repository, respectively.

The examples here use XQuery function f n: doc to obtain a repository file that contains
XML data, and then bind XQuery variables to parts of that data using f or and | et
FLWOR-expression clauses.

Example 5-3 queries two XML-document resources in Oracle XML DB Repository: /
public/enmps. xm and/public/depts.xn . Itillustrates the use of f n: doc and each of
the possible FLWOR-expression clauses.

Example 5-4 also uses each of the FLWOR-expression clauses. It shows the use of
XQuery functions doc, count , avg, and i nt eger, which are in the namespace for built-
in XQuery functions, htt p: // ww. w3. or g/ 2003/ 11/ xpat h- f unct i ons. This namespace
is bound to the prefix f n.

Example 5-3 FLOWR Expression Using for, let, order by, where, and return

SELECT XM.Query('for $e in doc("/public/enps.xm")/enps/enp

let $d :=

doc("/public/depts.xm")//dept[ @eptno = $e/ @eptno]/

@lnane

where $e/ @al ary > 100000

order by $e/ @npno

return <enp ename="{$e/ @nane}" dept="{$d}"/>'

RETURNI NG CONTENT) FROM DUAL;

XMLQUERY( " FORSEI NDOC( "/ PUBLI G/ EMPS. XM.") / EMPS/ EMPLETS$D: =DOC( "/ PUBLI C/
DEPTS. XM.")

<enp enane="Jack" dept="Adninistration"></enp><enp enane="Jill"
dept =" Mar ket i ng"
></ enp>

1 row sel ect ed.

In this example, the various FLWOR clauses perform these operations:

« for iterates over the enp elements in / publ i ¢/ enps. xm , binding variable $e to the
value of each such element, in turn. That is, it iterates over a general list of
employees, binding $e to each employee.

5-4



ORACLE

Chapter 5
Using XQuery with Oracle XML DB

« let binds variable $d to a sequence consisting of all of the values of dnane
attributes of those dept elements in/ publ i c/ enps. xm whose dept no attributes
have the same value as the dept no attribute of element $e (this is a join
operation). That is, it binds $d to the names of all of the departments that have the
same department number as the department of employee $e. (It so happens that
the dnane value is unique for each dept no value in dept s. xm .) Unlike f or, | et
never iterates over values; $d is bound only once in this example.

e Together, for and | et produce a stream of tuples ($e, $d), where $e represents an
employee and $d represents the names of all of the departments to which that
employee belongs —in this case, the unique name of the employee's unique
department.

« where filters this tuple stream, keeping only tuples with employees whose salary is
greater than 100,000.

e order by sorts the filtered tuple stream by employee number, enpno (in ascending
order, by default).

e return constructs enp elements, one for each tuple. Attributes enane and dept of
these elements are constructed using attribute enarme from the input and $d,
respectively. The element and attribute names enp and enane in the output have
no necessary connection with the same names in the input document enps. xm .

Example 5-4 FLOWR Expression Using Built-In Functions

SELECT XM.Query('for $d in fn:doc("/public/depts.xm")/depts/dept/ @eptno
et $e := fn:doc("/public/enps.xm")/enps/enp[ @eptno

= $d]
where fn:count($e) > 1
order by fn:avg($e/ @al ary) descending
return
<bi g- dept >{ $d,
<headcount >{f n: count ( $e) } </ headcount >,
<avgsal >{xs:integer(fn:avg($e/ @al ary))}</
avgsal >}

</ bi g- dept >'
RETURNI NG CONTENT) FROM DUAL;

XMLQUERY(" FOR$DI NFN: DOC( "/ PUBLI C/ DEPTS. XM.") / DEPTS/ DEPT/
@EPTNCLETS$E: =FN. DOC("/ P

<bi g- dept dept no="10"><headcount >2</ headcount ><avgsal >165500</ avgsal ></ bi g-
dept >

1 row sel ect ed.

In this example, the various FLWOR clauses perform these operations:

« for iterates over dept no attributes in input document / publ i ¢/ dept s. xm , binding
variable $d to the value of each such attribute, in turn.

» let binds variable $e to a sequence consisting of all of the enp elements in input
document / publ i ¢/ enps. xm whose dept no attributes have value $d (this is a join
operation).

5-5



Chapter 5
Using XQuery with Oracle XML DB

e Together, for and | et produce a stream of tuples ($d, $e), where $d represents a
department number and $e represents the set of employees in that department.

» where filters this tuple stream, keeping only tuples with more than one employee.

e order by sorts the filtered tuple stream by average salary in descending order.
The average is computed by applying XQuery function avg (in namespace f n) to
the values of attribute sal ary, which is attached to the enp elements of $e.

e return constructs bi g- dept elements, one for each tuple produced by or der by.
The t ext () node of bi g- dept contains the department number, bound to $d. A
headcount child element contains the number of employees, bound to $e, as
determined by XQuery function count . An avgsal child element contains the
computed average salary.

Related Topics

e XQuery Functions fn:doc, fn:collection, and fn:doc-available
Oracle XML DB supports XQuery functions f n: doc, f n: col | ecti on, and f n: doc-
avai | abl e for all resources in Oracle XML DB Repository.

5.1.3 Querying Relational Data Using XQuery and URI Scheme oradb

ORACLE

Examples are presented that use XQuery to query relational table or view data as if it
were XML data. The examples use XQuery function f n: col | ecti on, passing as
argument a URI that uses the URI-scheme name or adb together with the database
location of the data.

Example 5-5 uses Oracle XQuery function f n: col | ecti on in a FLWOR expression to
query two relational tables, r egi ons and count ri es. Both tables belong to sample
database schema HR. The example also passes scalar SQL value Asi a to XQuery
variable $r egi onnane. Any SQL expression can be evaluated to produce a value
passed to XQuery using PASSI NG. In this case, the value comes from a SQL*Plus
variable, REG ON. You must cast the value to the scalar SQL data type expected, in this
case, VARCHAR2( 40) .

In Example 5-5, the various FLWOR clauses perform these operations:

- for iterates over sequences of XML elements returned by calls to f n: col | ecti on.
In the first call, each element corresponds to a row of relational table hr. r egi ons
and is bound to variable $i . Similarly, in the second call to fn: col | ection, $j is
bound to successive rows of table hr. countri es. Since regi ons and countri es
are not XM_Type tables, the top-level element corresponding to a row in each table
is ROW(a wrapper element). Iteration over the row elements is unordered.

» where filters the rows from both tables, keeping only those pairs of rows whose
regi on_i d is the same for each table (it performs a join on regi on_i d) and whose
regi on_nane is Asi a.

e return returns the filtered rows from table hr. countri es as an XML document
containing XML fragments with ROWas their top-level element.

Example 5-6 uses f n: col | ecti on within nested FLWOR expressions to query
relational data.

In Example 5-6, the various FLWOR clauses perform these operations:

* The outer for iterates over the sequence of XML elements returned by
fn:coll ection: each element corresponds to a row of relational table

5-6



Chapter 5
Using XQuery with Oracle XML DB

oe. war ehouses and is bound to variable $i . Since war ehouses is not an XM.Type
table, the top-level element corresponding to a row is RON The iteration over the
row elements is unordered.

» The inner for iterates, similarly, over a sequence of XML elements returned by
fn:coll ection: each element corresponds to a row of relational table
hr. 1 ocations and is bound to variable $; .

* where filters the tuples ($i , $j ), keeping only those whose | ocati on_i d child is the
same for $i and $j (it performs a join on | ocati on_i d).

e The inner return constructs an XQuery sequence of elements STREET ADDRESS,
CI TY, and STATE_PROVI NCE, all of which are children of locations-table ROV
element $j ; that is, they are the values of the locations-table columns of the same
name.

*  The outer return wraps the result of the innerret urn in a Locat i on element, and
wraps that in a War ehouse element. It provides the War ehouse element with ani d
attribute whose value comes from the war ehouse_i d column of table war ehouses.

Example 5-7 uses SQL/XML function XM_Tabl e to decompose the result of an XQuery
query to produce virtual relational data. The XQuery expression used in this example
is identical to the one used in Example 5-6; the result of evaluating the XQuery
expression is a sequence of War ehouse elements. Function XM_Tabl e produces a
virtual relational table whose rows are those \Wr ehouse elements. More precisely, in
this example the value of pseudocolumn COLUWMN_VALUE for each virtual-table row is an
XML fragment (of type XM_Type) with a single War ehouse element.

¢ See Also:

*  Example 5-41 for the execution plan of Example 5-6

* Example 5-42 for the execution plan of Example 5-7

Example 5-5 Querying Relational Data as XML Using XMLQuery

DEFINE REG ON = ' Asi a'
SELECT XM.Query('for $i in fn:collection(“oradb:/HR/REGIONS™),
$j in fn:collection(*oradb:/HR/COUNTRIES")
where $i/RONVREG ON_ID = $j/ RONREG ON_I D
and $i / RON REG ON_NAME = $regi onnane
return $j'
PASSI NG CAST(' &REG ON' AS VARCHAR2(40)) AS "regi onnang"
RETURNI NG CONTENT) AS asi an_countries
FROM DUAL;

This produces the following result. (The result is shown here pretty-printed, for clarity.)

AS| AN_COUNTR! ES
<RON
<COUNTRY_| D>AU</ COUNTRY._| D>
<COUNTRY_NAME>Aust ral i a</ COUNTRY_NAME>
<REG ON | D>3</ REG ON_| D>

ORACLE .



ORACLE

Chapter 5
Using XQuery with Oracle XML DB

</ RO

<RON
<COUNTRY_| D>CN</ COUNTRY_| D>
<COUNTRY_NAME>Chi na</ COUNTRY_NAME>
<REG ON | D>3</ REG ON | D>

</ RO

<ROMN
<COUNTRY_| D>HK</ COUNTRY_| D>
<COUNTRY_NAME>HongKong</ COUNTRY_NAME>
<REG ON | D>3</ REG ON | D>

</ RO

<ROMN
<COUNTRY_| D>I N</ COUNTRY_| D>
<COUNTRY_NAME>I ndi a</ COUNTRY_NAME>
<REG ON | D>3</ REG ON | D>

</ RO

<ROMN
<COUNTRY_| D>JP</ COUNTRY_| D>
<COUNTRY_NAME>Japan</ COUNTRY_NAME>
<REG ON | D>3</ REG ON | D>

</ RO

<RON
<COUNTRY_| D>SG</ COUNTRY_| D>
<COUNTRY_NAME>Si ngapor e</ COUNTRY_NAME>
<REG ON | D>3</ REG ON | D>

</ RO

1 row sel ect ed.

Example 5-6 Querying Relational Data as XML Using a Nested FLWOR
Expression

CONNECT hr
Enter password: password

Connect ed.

GRANT SELECT ON LOCATI ONS TO CE
/

CONNECT oe

Enter password: password

Connect ed.

SELECT XM.Quer y(
"for $i in fn:collection("oradb:/0E/WAREHOUSES™)/ROW
return <Warehouse id="{$i / WAREHOUSE | D} ">
<Locati on>
{for $j in fn:collection("oradb:/HR/LOCATIONS™)/ROW
where $j/LOCATI ON I D eq $i/LOCATI ON | D
return ($j/ STREET_ADDRESS, $j/CITY, $j/
STATE_PROVI NCE) }
</ Locat i on>

5-8



ORACLE

Chapter 5
Using XQuery with Oracle XML DB

</ \\ar ehouse>'
RETURNI NG CONTENT) FROM DUAL;

This query is an example of using nested FLWOR expressions. It accesses relational
table war ehouses, which is in sample database schema oe, and relational table

| ocati ons, which is in sample database schema HR. To run this example as user oe,

you must first connect as user hr and grant permission to user oe to perform SELECT

operations on table | ocati ons.

This produces the following result. (The result is shown here pretty-printed, for clarity.)

XMLQUERY( " FORS$I | NFN: COLLECTI ON( " ORADB: / OE/ WAREHOUSES") /
ROARETURN<WAREHOUSEI D="{ $

<\War ehouse id="1">
<Locati on>
<STREET_ADDRESS>2014 Jabberwocky Rd</ STREET ADDRESS>
<ClI TY>Sout hl ake</ CI TY>
<STATE_PROVI NCE>Texas</ STATE PROVI NCE>
</ Location>
</ W\r ehouse>
<\War ehouse id="2">
<Locati on>
<STREET_ADDRESS>2011 Interiors Bl vd</ STREET ADDRESS>
<CI TY>South San Francisco</Cl TY>
<STATE_PROVI NCE>Cal i f or ni a</ STATE_PROVI NCE>
</ Location>
</ \W\r ehouse>
<\War ehouse id="3">
<Locati on>
<STREET_ADDRESS>2007 Zagora St </ STREET ADDRESS>
<ClI TY>Sout h Brunswi ck</ClI TY>
<STATE_PROVI NCE>New Jer sey</ STATE_PROVI NCE>
</ Location>
</ \WWr ehouse>
<\War ehouse id="4">
<Locati on>
<STREET_ADDRESS>2004 Charade Rd</ STREET ADDRESS>
<CI TY>Seattl e</CITY>
<STATE_PROVI NCE>Washi ngt on</ STATE_PROVI NCE>
</ Location>
</ \WWr ehouse>
<\War ehouse id="5">
<Locati on>
<STREET_ADDRESS>147 Spadi na Ave</ STREET_ADDRESS>
<CI TY>Toront o</ CI TY>
<STATE_PROVI NCE>Ont ar i o</ STATE_PROVI NCE>
</ Location>
</ \WWr ehouse>
<\War ehouse id="6">
<Locati on>
<STREET_ADDRESS>12-98 Victoria Street</ STREET ADDRESS>
<CI TY>Sydney</ CI TY>
<STATE_PROVI NCE>New Sout h Wl es</ STATE PROVI NCE>

5-9



ORACLE

Chapter 5
Using XQuery with Oracle XML DB

</ Location>
</ W\r ehouse>
<\War ehouse id="7">
<Locati on>
<STREET_ADDRESS>Mar i ano Escobedo 9991</ STREET_ADDRESS>
<CI TY>Mexico Gity</CTY>
<STATE _PROVINCE>Di strito Federal, </ STATE_PROVI NCE>
</ Location>
</ W\r ehouse>
<\War ehouse id="8">
<Locati on>
<STREET_ADDRESS>40- 5- 12 Laogi anggen</ STREET ADDRESS>
<CI TY>Bei jing</CITY>
</ Location>
</ W\r ehouse>
<\War ehouse id="9">
<Location>
<STREET_ADDRESS>1298 Vil eparle (E)</ STREET_ADDRESS>
<Cl TY>Bonbay</ Cl TY>
<STATE_PROVI NCE>Mahar asht r a</ STATE_PROVI NCE>
</ Location>
</ WWr ehouse>

1 row sel ect ed.

Example 5-7 Querying Relational Data as XML Using XMLTable

SELECT *
FROM XM_Tabl e(
"for $i in fn:collection("oradh:/OE WAREHOUSES")/ ROW
return <Warehouse id="{$i / WAREHOUSE_I D} ">
<Locati on>
{for $ in fn:collection("oradb:/HR LOCATI ONS")/ ROW
where $j/LOCATI ON I D eq $i/LOCATI ON | D
return ($j/STREET_ADDRESS, $j/CITY, $j/
STATE_PROVI NCE) }
</ Locat i on>
</ \\r ehouse>' ) ;

This produces the same result as Example 5-6, except that each War ehouse element is
output as a separate row, instead of all War ehouse elements being output together in a
single row.

COLUWN_VALUE
<\War ehouse id="1">
<Location>
<STREET_ADDRESS>2014 Jabberwocky Rd</ STREET ADDRESS>
<Cl TY>Sout hl ake</ CI TY>
<STATE_PROVI NCE>Texas</ STATE_PROVI NCE>
</ Location>
</ Wr ehouse>
<\War ehouse id="2">
<Location>

5-10



Chapter 5
Using XQuery with Oracle XML DB

<STREET_ADDRESS>2011 Interiors Bl vd</ STREET ADDRESS>
<CI TY>South San Francisco</Cl TY>
<STATE_PROVI NCE>Cal i f or ni a</ STATE_PROVI NCE>
</ Location>
</ W\r ehouse>

9 rows selected.

5.1.4 Querying XMLType Data Using XQuery

ORACLE

Examples are presented that use XQuery to query XM_Type data.

The query in Example 5-8 passes an XM.Type column, war ehouse_spec, as context
item to XQuery, using function XM_LQuer y with the PASSI NG clause. It constructs a
Det ai | s element for each of the warehouses whose area is greater than 80,000: /
Vir ehouse/ Area > 80000.

In Example 5-8, function XMLQuery is applied to the war ehouse_spec column in each
row of table war ehouses. The various FLWOR clauses perform these operations:

« for iterates over the War ehouse elements in each row of column war ehouse_spec
(the passed context item): each such element is bound to variable $i , in turn. The
iteration is unordered.

» where filters the War ehouse elements, keeping only those whose Ar ea child has a
value greater than 80,000.

* return constructs an XQuery sequence of Det ai | s elements, each of which
contains a Docks and a Rai | child elements. The numattribute of the constructed
Docks element is set to the t ext () value of the Docks child of War ehouse. The
text () content of Rai | is settotrue orfal se, depending on the value of the
Rai | Access attribute of element \Wr ehouse.

The SELECT statement in Example 5-8 applies to each row in table war ehouses. The
XM.Query expression returns the empty sequence for those rows that do not match the
XQuery expression. Only the warehouses in New Jersey and Seattle satisfy the
XQuery query, so they are the only warehouses for which <Det ai | s>. .. </ Detail s> is
returned.

Example 5-9 uses SQL/XML function XM_Tabl e to query an XM_Type table,

oe. pur chaseor der, which contains XML Schema-based data. It uses the PASSI NG
clause to provide the pur chaseor der table as the context item for the XQuery-
expression argument to XM_Tabl e. Pseudocolumn COLUWN_VALUE of the resulting virtual
table holds a constructed element, A10po, which contains the Ref er ence information
for those purchase orders whose Cost Cent er element has value A10 and whose User
element has value SMCCAI N. The query performs a join between the virtual table and
database table pur chaseor der.

The PASSI NG clause of function XMLTabl e passes the OBJECT_VALUE of XM_Type table
pur chaseor der, to serve as the XPath context. The XM.Tabl e expression thus
depends on the pur chaseor der table. Because of this, table pur chaseor der must
appear before the XM_Tabl e expression in the FROMlist. This is a general requirement
in any situation involving data dependence.

5-11



ORACLE

Chapter 5
Using XQuery with Oracle XML DB

# Note:

Whenever a PASSI NG clause refers to a column of an XM.Type table in a
query, that table must appear before the XM.Tabl e expression in the query
FROMIist. This is because the XM_Tabl e expression depends on the XM.Type
table — a left lateral (correlated) join is needed, to ensure a one-to-many
(1:N) relationship between the XM.Type table row accessed and the rows
generated from it by XM_Tabl e.

Example 5-10 is similar to Example 5-9 in its effect. It uses XM_LQuery, instead of
XM.Tabl e, to query oe. pur chaseor der. These two examples differ in their treatment of
the empty sequences returned by the XQuery expression. In Example 5-9, these
empty sequences are not joined with the pur chaseor der table, so the overall SQL-
query result set has only ten rows. In Example 5-10, these empty sequences are part
of the overall result set of the SQL query, which contains 132 rows, one for each of the
rows in table pur chaseor der . All but ten of those rows are empty, and show up in the
output as empty lines. To save space here, those empty lines have been removed.

2 See Also:

Example 5-43 for the execution plan of Example 5-10

Example 5-11 uses XM.Tabl e clauses PASSI NG and COLUWNS. The XQuery expression
iterates over top-level Pur chaseOr der elements, constructing a PO element for each
purchase order with cost center A10. The resulting PO elements are then passed to
XM.Tabl e for processing.

In Example 5-11, data from the children of Pur chaseQr der is used to construct the
children of PO, which are Ref , Type, and Nane. The content of Type is taken from the
content of / Pur chaseOr der/ Speci al I nstructi ons, but the classes of

Speci al I nstructions are divided up differently for Type.

Function XM.Tabl e breaks up the result of XQuery evaluation, returning it as three
VARCHAR2 columns of a virtual table: poref, priority, and cont act. The DEFAULT
clause is used to supply a default priority of Regul ar.

Example 5-11 does not use the clause RETURNI NG SEQUENCE BY REF, which means
that the XQuery sequence returned and then used by the COLUW\S clause is passed by
value, not by reference. That is, a copy of the targeted nodes is returned, not a
reference to the actual nodes.

When the returned sequence is passed by value, the columns specified in a COLUWNS
clause cannot refer to any data that is not in that returned copy. In particular, they
cannot refer to data that precedes the targeted nodes in the source data.

To be able to refer to an arbitrary part of the source data from column specifications in
a COLUWNS clause, you need to use the clause RETURNI NG SEQUENCE BY REF, which
causes the sequence resulting from the XQuery expression to be returned by
reference.

5-12



Chapter 5
Using XQuery with Oracle XML DB

Example 5-12 shows the use of clause RETURNI NG SEQUENCE BY REF, which allows
column r ef er ence to refer to a node that is outside the nodes targeted by the XQuery
expression. Because the sequence of Li nel t emnodes is returned by reference, the
code has access to the complete tree of nodes, so it can navigate upward and then
back down to node Ref er ence.

Clause RETURNI NG SEQUENCE BY REF lets you specify that the result of evaluating the
top-level XQuery expression used to generate rows for XM_Tabl e be returned by
reference. The same kind of choice is available for the result of evaluating a PATH
expression in a COLUMNS clause. To specify that such a result be returned by reference
you use XM_.Type ( SEQUENCE) BY REF as the column data type.

Example 5-13 illustrates this. It chains together two XM.Tabl e tables,t1 and t 2,
returning XML data from the source document by reference:

*  For column ref erence of the top-level table, t 1, because it corresponds to a node
outside element Li nel t em(just as in Example 5-12)

e For column part of table t 1, because it is passed to table t 2, whose column i t em
targets data outside node Part

In table t 1, the type used for column part is XM_.Type (SEQUENCE) BY REF, so that the
part data is a reference to the source data targeted by its PATH expression, Li nel t enf
Part . This is needed because the PATH expression for column i t emin table t 2 targets
attribute | t emNunber of the parent of element Part, Li nel t em Without specifying that
part is areference, it would be a copy of just the Part element, so that using PATH
expression . . / @t emNunber would raise an error.

Example 5-14 uses SQL/XML function XM_Tabl e to break up the XML data in an
XM.Type collection element, Li nel t em into separate columns of a virtual table.

¢ See Also:

e Example 5-44 for the execution plan of Example 5-14

e Creating a Relational View over XML: Mapping XML Nodes to Columns,
for an example of applying XM_Tabl e to multiple document levels
(multilevel chaining)

Example 5-8 Querying an XMLType Column Using XMLQuery PASSING Clause

SELECT war ehouse_nane,
XM.Quer y(
"for $i in /Warehouse
where $i/Area > 80000
return <Detail s>
<Docks nume"{$i/Docks}"/>
<Rai | >{if ($i/RailAccess = "Y") then "true" else
"fal se"}
</Rail >
</ Detail s>'
PASSI NG war ehouse_spec RETURNI NG CONTENT) bi g_war ehouses
FROM oe. war ehouses;

ORACLE 5-13



Chapter 5
Using XQuery with Oracle XML DB

This produces the following output:

WAREHOUSE_NAVE

Sout hl ake, Texas

San Franci sco

New Jersey
<Det ai | s><Docks nume""></ Docks><Rai | >f al se</ Rai | ></ Det ai | s>

Seattle, Washington
<Det ai | s><Docks nume" 3" ></ Docks><Rai | >t rue</ Rai | ></ Det ai | s>

Toronto

Sydney

Mexico City

Beijing

Bonbay

9 rows sel ected.

Example 5-9 Using XMLTABLE with XML Schema-Based Data

SELECT xt ab. COLUWN_VALUE
FROM pur chaseorder, XM.Table('for $i in /PurchaseCOr der
where $i/CostCenter eq "Al0"
and $i/User eq "SMCCAIN'
return <AlOpo pono="{$i/Reference}"/>'
PASSI NG OBJECT VALUE) xtab;

COLUMN_VALUE

<A10po pono="SMCCAI N-20021009123336151PDT" ></ A10po>
<A10po pono="SMCCAI N-20021009123336341PDT" ></ A10po>
<A10po pono="SMCCAI N-20021009123337173PDT" ></ A10po>
<A10po pono="SMCCAI N-20021009123335681PDT" ></ A10po>
<A10po pono="SMCCAI N-20021009123335470PDT" ></ A10po>
<A10po pono="SMCCAI N-20021009123336972PDT" ></ A10po>
<A10po pono="SMCCAI N-20021009123336842PDT" ></ A10po>
<A10po pono="SMCCAI N-20021009123336512PDT" ></ A10po>

ORACLE 5-14



ORACLE

Chapter 5
Using XQuery with Oracle XML DB

<A10po pono="SMCCAI N- 2002100912333894PDT" ></ A10po>
<A10po pono="SMCCAI N- 20021009123337403PDT" ></ A10po>

10 rows sel ect ed.

Example 5-10 Using XMLQUERY with XML Schema-Based Data

SELECT XM.Query('for $i in /PurchaseO der
where $i/ Cost Center eq "AlQ"
and $i/User eq "SMCCAIN'
return <AlOpo pono="{3$i/Reference}"/>'
PASSI NG OBJECT VALUE
RETURNI NG CONTENT)
FROM pur chaseor der ;

XMLQUERY(' FOR$! | N PURCHASEORDERWHERES| / COSTCENTEREQ' AL0" ANDSI /
USEREQ' SMCCAI N' RET

<A10po pono="SMCCAI N- 20021009123336151PDT" ></ A10po>
<A10po pono="SMCCAI N- 20021009123336341PDT" ></ A10po>
<A10po pono="SMCCAI N- 20021009123337173PDT" ></ A10po>
<A10po pono="SMCCAI N- 20021009123335681PDT" ></ A10po>
<A10po pono="SMCCAI N- 20021009123335470PDT" ></ A10po>
<A10po pono="SMCCAI N- 20021009123336972PDT" ></ A10po>
<A10po pono="SMCCAI N- 20021009123336842PDT" ></ A10po>
<A10po pono="SMCCAI N- 20021009123336512PDT" ></ A10po>
<A10po pono="SMCCAI N- 2002100912333894PDT" ></ A10po>

<A10po pono="SMCCAI N- 20021009123337403PDT" ></ A10po>

132 rows selected.

Example 5-11 Using XMLTABLE with PASSING and COLUMNS Clauses

SELECT xtab. poref, xtab.priority, xtab.contact
FROM pur chaseor der,
XM.Tabl e(" for $i in /PurchaseO der

et $spl := $i/SpecialInstructions
where $i/Cost Center eq "Al0"
return <PC>

<Ref >{ $i / Ref erence} </ Ref >
{if ($spl eq "Next Day Air" or $spl eq
"Expedite") then
<Type>Fast est </ Type>
else if ($spl eq "Air Mail") then
<Type>Fast </ Type>
else O}
<Name>{ $i / Request or } </ Nane>
</ PO>'
PASSING OBJECT_VALUE
COLUMNS poref  VARCHAR2(20) PATH 'Ref',
priority VARCHAR2(8) PATH ' Type' DEFAULT
"Regul ar',
contact VARCHAR2(20) PATH 'Name') xtab;

5-15



ORACLE

Chapter 5
Using XQuery with Oracle XML DB

PRI ORI TY CONTACT

SKI'NG 20021009123336 Fastest Steven A King
SMCCAI N- 200210091233 Regul ar  Sanuel B. MCain
SMCCAI N- 200210091233 Fastest Sanuel B. MCain
JCHEN- 20021009123337 Fastest John Z. Chen
JCHEN- 20021009123337 Regul ar John Z. Chen
SKI'NG 20021009123337 Regul ar Steven A. King
SMCCAI N- 200210091233 Regul ar  Sanuel B. MCain
JCHEN- 20021009123338 Regul ar John Z. Chen
SMCCAI N- 200210091233 Regul ar  Sanuel McCain
SKI'NG 20021009123335 Regul ar  Steven Ki ng
SMCCAI N- 200210091233 Regul ar  Sanuel McCain
SKI'NG 20021009123336 Regul ar  Steven Ki ng
SMCCAI N- 200210091233 Fast Sanuel McCain
SKI'NG- 20021009123336 Fastest Steven Ki ng
SKI'NG 20021009123336 Fastest Steven Ki ng
SMCCAI N- 200210091233 Regul ar  Sanuel B. MCain
JCHEN- 20021009123335 Regul ar John Z. Chen
SKI'NG 20021009123336 Regul ar Steven A. King
JCHEN- 20021009123336 Regul ar John Z. Chen
SKI'NG 20021009123336 Regul ar Steven A. King
SMCCAI N- 200210091233 Regul ar  Sanuel B. MCain
SKI'NG 20021009123337 Regul ar Steven A. King
SKI'NG 20021009123338 Fastest Steven A King
SMCCAI N- 200210091233 Regul ar  Sanuel B. MCain
JCHEN- 20021009123337 Regul ar John Z. Chen
JCHEN- 20021009123337 Regul ar John Z. Chen
JCHEN- 20021009123337 Regul ar John Z. Chen
SKI'NG 20021009123337 Regul ar Steven A. King
JCHEN- 20021009123337 Regul ar John Z. Chen
SKI'NG 20021009123337 Regul ar Steven A. King
SKI'NG 20021009123337 Regul ar Steven A. King
SMCCAI N- 200210091233 Fast Sanuel B. MCain

WEH> WP WX w

32 rows sel ected.

Example 5-12 Using XMLTABLE with RETURNING SEQUENCE BY REF

SELECT t.*
FROM pur chaseor der,
XM.Tabl e(" / PurchaseOrder/ Li nel t ens/ Li nel tem  PASSI NG OBJECT_VALUE
RETURNING SEQUENCE BY REF
COLUWNS reference  VARCHAR2(30) PATH ' ../../Reference',

item VARCHAR2(4) PATH ' @t emNunber ',
description VARCHAR2(45) PATH 'Description') t
WHERE item = 5;
REFERENCE | TEM DESCRI PTI ON

AMCEVEN- 20021009123336171PDT 5 Coup De Torchon (Cean Slate)
AMCEVEN- 20021009123336271PDT 5 The Unbearabl e Lightness O Being
PTUCKER- 20021009123336191PDT 5 The Scarlet Enpress

5-16



Chapter 5
Using XQuery with Oracle XML DB

PTUCKER- 20021009123336291PDT
SBELL-20021009123336231PDT
SBELL-20021009123336331PDT
SKI'NG 20021009123336321PDT
SMCCAI'N-20021009123336151PDT
SMCCAI'N-20021009123336341PDT
VJONES- 20021009123336301PDT

The Unbearabl e Lightness O Being
Bl ack Narcissus

Fishing Wth John 1 -3

The Red Shoes

\Wges of Fear

The Mbst Dangerous Game

Le Trou

o1 o1 o1 o1 o1 o1 Ol

10 rows sel ect ed.

Example 5-13 Using Chained XMLTABLE with Access by Reference

SELECT t1.reference, t2.id, t2.item
FROM pur chaseor der,
XM.Tabl e(" / PurchaseOrder/Linel tems' PASSI NG OBJECT_VALUE
RETURNING SEQUENCE BY REF
COLUWNS part XMLType (SEQUENCE) BY REF PATH 'Lineltenl
Part',
reference VARCHAR2(30) PATH ' ../
Reference') t1,
XM.Tabl e("." PASSING t 1. part
RETURNING SEQUENCE BY REF
COLUWNS id  VARCHAR2(12) PATH' @d',
i t em NUMBER PATH ' ../ @temunber') t2;

Example 5-14 Using XMLTABLE to Decompose XML Collection Elements into
Relational Data

SELECT lines.lineitem lines.description, lines.partid,
lines.unitprice, lines.quantity
FROM pur chaseor der,
XM.Tabl e(" for $i in /PurchaseOr der/Lineltens/Lineltem
where $i/ @temNunber >= 8
and $i/Part/ @hitPrice > 50
and $i/Part/@uantity > 2

return $i'
PASSI NG OBJECT_VALUE
COLUWNS lineitem NUVBER PATH ' @t emNunber ',
description VARCHAR2(30) PATH ' Description',
partid NUVBER PATH ' Part/ @d',
unitprice  NUMBER PATH ' Part/ @i tPrice',
quantity NUVBER PATH ' Part/ @uantity")
l'ines;
LI NEI TEM DESCRI PTI ON PARTI D UNI TPRI CE QUANTI TY
11 Orphic Trilogy 37429148327 80 3
22 Dreyer Box Set 37429158425 80 4
11 Dreyer Box Set 37429158425 80 3
16 Dreyer Box Set 37429158425 80 3
8 Dreyer Box Set 37429158425 80 3
12 Brazil 37429138526 60 3
18 Ei senstein: The Sound Years 37429149126 80 4
24 Dreyer Box Set 37429158425 80 3

ORACLE 5-17



Chapter 5
Using XQuery with Oracle XML DB

14 Dreyer Box Set 37429158425 80 4
10 Brazil 37429138526 60 3
17 Ei senstein: The Sound Years 37429149126 80 3
16 Orphic Trilogy 37429148327 80 4
13 Ophic Trilogy 37429148327 80 4
10 Brazil 37429138526 60 4
12 Eisenstein: The Sound Years 37429149126 80 3
12 Dreyer Box Set 37429158425 80 4
13 Dreyer Box Set 37429158425 80 4

17 rows sel ect ed.

5.1.5 Using Namespaces with XQuery

You can use the XQuery decl are nanmespace declaration in the prolog of an XQuery
expression to define a namespace prefix. You can use decl ar e default namespace to
establish the namespace as the default namespace for the expression.

# Note:

Be aware of the following pitfall, if you use SQL*Plus: If the semicolon (;) at
the end of a namespace declaration terminates a line, SQL*Plus interprets it
as a SQL terminator. To avoid this, you can do one of the following:

e Place the text that follows the semicolon on the same line.
e Place a comment, such as (: :), after the semicolon, on the same line.

e Turn off the recognition of the SQL terminator with SQL*Plus command
SET SQLTERM NATOR.

Example 5-15 illustrates use of a namespace declaration in an XQuery expression.

An XQuery namespace declaration has no effect outside of its XQuery expression. To
declare a namespace prefix for use in an XM.Tabl e expression outside of the XQuery
expression, use the XMLNAMESPACES clause. This clause also covers the XQuery
expression argument to XM_Tabl e, eliminating the need for a separate declaration in
the XQuery prolog.

In Example 5-16, XMLNAMESPACES is used to define the prefix e for the namespace
http://exanpl e. com This namespace is used in the COLUWS clause and the XQuery
expression of the XM_Tabl e expression.

Example 5-15 Using XMLQUERY with a Namespace Declaration

SELECT XM_.Query(' decl are namespace e = "http://exanple.conf;
ERROR:
ORA-01756: quoted string not properly term nated

for $i in doc("/public/enpsns.xm")/e:enps/e:enp
SP2-0734: unknown command beginning "for $i in..." - rest of line ignored.

ORACLE 5-18



Chapter 5
Using XQuery with Oracle XML DB

-- This works - do not end the line with ";".
SELECT XM_.Query(' decl are namespace e = "http://exanple.coni; for
$i in doc("/public/enpsns.xm")/e:enps/e:enp
let $d :=
doc("/ public/depts. xm")//dept[ @ept no=$i / @ept no] / @nane
where $i/ @al ary > 100000
order by $i/@npno
return <enp enanme="{$i/@nane}" dept="{$d}"/>'
RETURNI NG CONTENT) FROM DUAL;

XMLQUERY( " DECLARENAMESPACEE="HTTP: / / EXAMPLE. COM'; FORS$I | NDOC( "/ PUBLI C/ EMPSNS. XM."

<enp enane="Jack" dept=""></enmp><enp ename="Jill" dept=""></enp>

-- This works too - add a comment after the ";"
SELECT XM_.Query(' decl are namespace e = "http://exanmple.cont; (: :)
for $i in doc("/public/enpsns.xm")/e:enps/e:enp
et $d := doc("/public/depts.xm")//dept[ @eptno=$i / @ept no]/ @nane
where $i/ @al ary > 100000
order by $i/@npno
return <enp enanme="{$i/@nane}" dept="{$d}"/>'
RETURNI NG CONTENT) FROM DUAL;

XMLQUERY( " DECLARENAMESPACEE="HTTP: / / EXAMPLE. COM'; (: : ) FOR$I | NDOC( "/ PUBLI C/ EMPSNS.

<enp enane="Jack" dept=""></enp><enp ename="Jill" dept=""></enp>
1 row sel ected.

-- This works too - tell SQL*Plus to ignore the ";"

SET SQLTERMINATOR OFF

SELECT XM_.Query(' decl are namespace e = "http://exanple. conf;
for $i in doc("/public/enpsns.xm")/e:enps/e:enp
let $d :=
doc("/ public/depts. xm")//dept[ @ept no=$i / @ept no] / @nane
where $i/ @al ary > 100000
order by $i/@npno
return <enp ename="{$i/@nane}" dept="{$d}"/>'
RETURNI NG CONTENT) FROM DUAL
/

XMLQUERY( " DECLARENAMESPACEE="HTTP: / / EXAMPLE. COM'; FORS$I | NDOC( "/ PUBLI C/ EMPSNS. XM."

<enp enane="Jack" dept=""></enmp><enp ename="Jill" dept=""></enp>

Example 5-16 Using XMLTABLE with the XMLNAMESPACES Clause

SELECT * FROM XM.Tabl e( XMLNAMESPACES ("http://example.com® AS "e'™),
"for $i in doc("/public/enpsns.xm™")
return $i/e:enps/e:enp'
COLUWS nane VARCHAR2(6) PATH ' @nane',
id NUMBER PATH ' @npno');

ORACLE 5-19



Chapter 5
Querying XML Data Using SQL and PL/SQL

This produces the following result:

NAVE ID
John 1
Jack 2
Jill 3

3 rows selected.

It is the presence of qualified names e: enane and e: enpno in the COLUWNS clause that
necessitates using the XM_LNAMESPACES clause. Otherwise, a prolog namespace
declaration (decl are nanespace e = "http://exanpl e. cont') would suffice for the
XQuery expression itself.

Because the same namespace is used throughout the XM_Tabl e expression, a default
namespace could be used: XMLNAMESPACES ( DEFAULT ' http://exanpl e.com ). The
qualified name $i / e: enps/ e: enp could then be written without an explicit prefix: $i /

enps/ enp.

5.2 Querying XML Data Using SQL and PL/SQL

ORACLE

You can query XML data from XM.Type columns and tables in various ways.

e Select XM.Type data using SQL, PL/SQL, or Java.

*  Query XM_Type data using SQL/XML functions such as XM.Query. See Querying
XMLType Data Using XQuery.

» Perform full-text search using XQuery Full Text. See Support for XQuery Full Text
and Indexes for XMLType Data.

The examples in this section illustrate different ways you can use SQL and PL/SQL to
guery XML data. Example 5-17 inserts two rows into table pur chaseor der, then
gueries data in those rows using SQL/XML functions XM_Cast , XM_Query, and

XM_Exi st s.

Example 5-18 uses a PL/SQL cursor to query XML data. It uses a local XM_Type
instance to store transient data.

Example 5-19 and Example 5-20 both use SQL/XML function XM_Tabl e to extract data
from an XML purchase-order document. They then insert that data into a relational
table. Example 5-19 uses SQL; Example 5-20 uses PL/SQL.

Example 5-20 defines and uses a PL/SQL procedure to extract data from an XML
purchase-order document and insert it into a relational table.

Example 5-21 tabulates the purchase orders whose shipping address contains the
string "Shor es" and which were requested by customers whose names contain the
string "I | " (double L). These purchase orders are grouped by customer and counted.
The example uses XQuery Full Text to perform full-text search.

Example 5-22 extracts the fragments of a document that are identified by an XPath
expression. The XM.Type instance returned by XML.Query can be a set of nodes, a
singleton node, or a text value. Example 5-22 uses XM_Type method i sFragnent () to
determine whether the result is a fragment.

5-20



ORACLE

Chapter 5
Querying XML Data Using SQL and PL/SQL

# Note:

You cannot insert fragments into XMLType columns. You can use SQL/XML
function XMLQuer y to convert a fragment into a well-formed document.

Example 5-17 Querying XMLTYPE Data

I NSERT | NTO pur chaseor der
VALUES (XM.Type(bfilename(' XM.DIR', ' SMCCAI N-2002091213000000PDT. xm '),
nl's _charset id('AL32UTF8")));

I NSERT | NTO pur chaseor der
VALUES ( XM_Type(bfilename(' XM.DIR , ' VJONES-20020916140000000PDT. xm '),
nl's _charset id('AL32UTF8")));

SELECT XM.Cast ( XM.Quer y(" $p/ Pur chaseQr der/ Ref er ence'
PASSI NG po. OBJECT VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(30)) reference,
XM_Cast ( XM_Quer y("' $p/ Pur chaseOrder/*// User'
PASSI NG po. OBJECT VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(30)) userid,
CASE
VWHEN XMLExi st s(' $p/ Pur chaseOr der/ Rej ect/ Dat €'
PASSI NG po. OBJECT VALUE AS "p")
THEN ' Rej ect ed'
ELSE ' Accepted'
END " STATUS",
XM_Cast ( XM.Quer y(' $p/ / Dat ¢'
PASSI NG po. OBJECT _VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(12)) status_date
FROM pur chaseor der po
WHERE XM_Exi sts(' $p//Date' PASSI NG po. OBJECT_VALUE AS "p")
ORDER BY XM_Cast ( XM_Query(' $p//Date' PASSI NG po. OBJECT_VALUE AS "p"
RETURNI NG CONTENT)
AS VARCHAR2(12));

REFERENCE USERID STATUS  STATUS_DATE
VJONES-20020916140000000PDT SVOLLMAN Accepted 2002-10-11
SMCCAI N-2002091213000000PDT SKI'NG Rej ected 2002-10-12

2 rows selected.

Example 5-18 Querying Transient XMLTYPE Data Using a PL/SQL Cursor

DECLARE
xNode XM.Type;
vText VARCHAR2( 256) ;

vRef erence VARCHAR2(32);
CURSCR get PurchaseOrder (reference IN VARCHAR2) 1S

5-21



Chapter 5
Querying XML Data Using SQL and PL/SQL

SELECT OBJECT_VALUE XM
FROM pur chaseor der
WHERE XMLExi st s(" $p/ Pur chaseOr der [ Ref erence=$r]'
PASSI NG OBJECT_VALUE AS "p",
reference AS "r");
BEG N
vRef erence : = ' EABEL- 20021009123335791PDT" ;
FOR ¢ IN get PurchaseOr der (vRef erence) LOOP
XNode := c.XM..extract('//Requestor');
SELECT XM.Seri al i ze( CONTENT
XM.Query('//text()" PASSING xNode RETURNI NG
CONTENT))
I NTO vText FROM DUAL;
DBMS_QUTPUT. put _I'ine(' The Requestor for Reference '
|| vReference || " is '"|| vText);
END LOOP;
vRef erence : = ' PTUCKER- 20021009123335430PDT" ;
FOR ¢ IN get PurchaseOr der (vRef erence) LOOP
XNode := c.XM..extract('//Linelten]f @tem\unber="1"]/Description');
SELECT XM.Seri al i ze( CONTENT
XM.Query('//text()" PASSING xNode RETURNI NG
CONTENT))
I NTO vText FROM DUAL,
DBMS_QUTPUT. put _I'ine(' The Description of Linelten{1] for Reference '
|| vReference || " is '"|| vText);
END LOOP;
END;
/
The Requestor for Reference EABEL-20021009123335791PDT is Ellen S. Abel
The Description of Lineltenf1] for Reference PTUCKER-20021009123335430PDT
is
Picnic at
Hangi ng Rock

PL/ SQL procedure successfully conpl et ed.

Example 5-19 Extracting XML Data and Inserting It into a Relational Table Using SQL

CREATE TABLE purchaseorder _table (reference VARCHAR2(28) PRI MARY KEY,
request or VARCHAR2( 48) ,
actions XM.Type,
userid VARCHAR2( 32) ,
costcenter VARCHAR2( 3) ,
shi pt onane VARCHAR2( 48) ,
address VARCHAR2(512) ,
phone VARCHAR2( 32) ,
rej ect edby VARCHAR2( 32) ,
daterejected DATE,
comment s VARCHAR2(2048) ,

speci al i nstructions VARCHAR2(2048));

CREATE TABLE purchaseorder _lineitem (reference,

ORACLE

FOREI GN KEY (" REFERENCE")
REFERENCES " PURCHASECRDER TABLE" ("REFERENCE') ON DELETE CASCADE,
|'i neno NUMBER(10), PRI MARY KEY ("REFERENCE', "LINENO'),
upc VARCHAR2( 14) ,
description VARCHAR2(128),
quantity NUMBER( 10) ,

5-22



Chapter 5
Querying XML Data Using SQL and PL/SQL

unitprice NUMBER(12,2));

I NSERT | NTO purchaseorder_table (reference, requestor, actions, userid, costcenter, shiptonane, address,
phone, rejectedby, daterejected, coments, specialinstructions)
SELECT t.reference, t.requestor, t.actions, t.userid, t.costcenter, t.shiptoname, t.address,
t.phone, t.rejectedby, t.daterejected, t.comments, t.specialinstructions
FROM pur chaseor der p,
XM.Tabl e(' / PurchaseOrder' PASSI NG p. OBJECT_VALUE

COLUMNS reference VARCHAR2(28)  PATH ' Reference',
request or VARCHAR2(48)  PATH ' Requestor',
actions XM.Type PATH ' Actions',
userid VARCHAR2(32)  PATH ' User',
costcenter VARCHAR2( 3) PATH ' Cost Center',
shi pt onane VARCHAR2(48)  PATH ' Shi ppi ngl nstructi ons/ nane',
address VARCHAR2(512)  PATH ' Shi ppi ngl nstructi ons/ address',
phone VARCHAR2(32)  PATH ' Shi ppi ngl nstructions/tel ephone’,
rej ect edby VARCHAR2(32)  PATH ' Reject/ User',
daterejected DATE PATH ' Rej ect/ Date',
conment s VARCHAR2(2048) PATH ' Rej ect/ Comments',

speci al i nstructions VARCHAR2(2048) PATH ' Speci al I nstructions') t
WHERE t.reference = ' EABEL-20021009123336251PDT" ;

I NSERT | NTO pur chaseorder _|ineitem (reference, lineno, upc, description, quantity, unitprice)
SELECT t.reference, li.lineno, Ii.upc, Ii.description, Ii.quantity, li.unitprice
FROM pur chaseor der p,
XM.Tabl e(' / PurchaseOrder' PASSI NG p. OBJECT_VALUE
COLUMNS reference VARCHAR2(28) PATH ' Reference',
l'ineitem XM.Type PATH 'Lineltens/Lineltem) t,
XM.Tabl e(' Linelteml PASSING t.lineitem
COLUWNS | i neno NUVBER( 10) PATH ' @t emNunber ',
upc VARCHAR2(14) PATH 'Part/@d",
description VARCHAR2(128) PATH ' Description',
quantity NUVBER( 10) PATH ' Part/ @uantity',
unitprice  NUMBER(12,2) PATH'Part/@hnitPrice') li
WHERE t.reference = ' EABEL-20021009123336251PDT" ;

SELECT reference, userid, shiptonane, specialinstructions FROM purchaseorder_tabl e;
REFERENCE USERID  SHI PTONAME SPECI ALI NSTRUCTI ONS

EABEL- 20021009123336251PDT EABEL Ellen S. Abel Counter to Counter

SELECT reference, lineno, upc, description, quantity FROM purchaseorder_|ineitem

REFERENCE LI NENO UPC DESCRI PTI ON QUANTI TY
EABEL-20021009123336251PDT 1 37429125526 Samurai 2: Duel at Ichijoji Tenple 3
EABEL-20021009123336251PDT 2 37429128220 The Red Shoes 4
EABEL- 20021009123336251PDT 3 715515009058 A Night to Remenber 1

Example 5-20 Extracting XML Data and Inserting It into a Table Using PL/SQL

CREATE OR REPLACE PROCEDURE i nsert PurchaseOr der (purchaseorder XM.Type) AS reference VARCHAR2(28);
BEG N
I NSERT | NTO purchaseorder_table (reference, requestor, actions, userid, costcenter, shiptonane, address,
phone, rejectedby, daterejected, comments, specialinstructions)
SELECT * FROM XM.Tabl e(' $p/ Pur chaseOrder' PASSI NG pur chaseorder AS "p"

COLUMNS reference VARCHAR2(28)  PATH ' Reference',
request or VARCHAR2(48)  PATH ' Requestor',
actions XM.Type PATH ' Actions',
userid VARCHAR2(32)  PATH ' User',
costcenter VARCHAR2( 3) PATH ' Cost Center',
shi pt onane VARCHAR2(48)  PATH ' Shi ppi ngl nstructi ons/ nane',

ORACLE 5-23



Chapter 5
Querying XML Data Using SQL and PL/SQL

address VARCHAR2(512)  PATH ' Shi ppi ngl nstructi ons/ address',
phone VARCHAR2(32)  PATH ' Shi ppi ngl nstructions/tel ephone’,
rej ect edby VARCHAR2(32)  PATH ' Reject/User',

daterejected DATE PATH ' Rej ect/ Date',

conment s VARCHAR2(2048) PATH ' Rej ect/ Comments',

speci al i nstructions VARCHAR2(2048) PATH ' Speci al I nstructions');

I NSERT | NTO purchaseorder_|ineitem (reference, lineno, upc, description, quantity, unitprice)
SELECT t.reference, li.lineno, li.upc, |i.description, li.quantity, li.unitprice
FROM XM.Tabl e(" $p/ Pur chaseOrder' PASSI NG pur chaseor der AS "p"

COLUMNS reference VARCHAR2(28) PATH ' Reference',
l'ineitem XM.Type PATH 'Lineltens/Lineltem) t,
XM.Tabl e(' Linelteml PASSING t.lineitem
COLUWNS |ineno NUMBER(10) PATH ' @t em\unber ',
upc VARCHAR2(14) PATH'Part/@d',
description VARCHAR2(128) PATH ' Description',
quantity NUMBER(10) PATH ' Part/ @uantity',
uni tprice NUMBER(12,2) PATH 'Part/ @hitPrice') Ii;
END;

CALL insertPurchaseOrder (XM.Type(bfilename(' XM.DIR, ' purchaseOrder.xm '), nls_charset_id('AL32UTF8")));

SELECT reference, userid, shiptonane, specialinstructions FROM purchaseorder_tabl e;

REFERENCE USERID  SH PTONAVE SPEC!I ALI NSTRUCTI ONS

SBELL-2002100912333601PDT SBELL Sarah J. Bell Air Mil

SELECT reference, lineno, upc, description, quantity FROM purchaseorder_|ineitem

REFERENCE LI NENO UPC DESCR! PTI ON QUANTI TY
SBELL-2002100912333601PDT 1 715515009058 A Night to Remember 2
SBELL-2002100912333601PDT 2 37429140222 The Unbearabl e Lightness O Being 2
SBELL-2002100912333601PDT 3 715515011020 Sisters 4

Example 5-21 Searching XML Data Using SQL/XML Functions

SELECT XMLCast( XMLQuery(' $p/ Pur chaseOr der/ Request or'
PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(128)) nane,
count (*)
FROM pur chaseor der po
WHERE
XMLExists(
" decl are nanmespace ora="http://xn ns.oracle.con xdb"; (: :)
$p/ Pur chaseOr der/ Shi ppi ngl nstruct i ons[ address/text () contains text "Shores"]'
PASSI NG po. OBJECT_VALUE AS "p")
AND XMLCast(XMLQuery("' $p/ PurchaseOr der/ Requestor/text ()"
PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(1128))
LIKE "%l1%"
GROUP BY XMLCast(XMLQuery(' $p/ PurchaseCr der/ Request or'
PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(128));

NAVE COUNT( *)
Allan D. McEwen 9
Ellen S. Abel 4
Sarah J. Bell 13
WlliamM Smith 7

ORACLE 5-24



Chapter 5
Using the SQL*Plus XQUERY Command

Example 5-22 Extracting Fragments Using XMLQUERY

SELECT XM.Cast ( XM.Quer y(' $p/ Pur chaseOr der/ Ref erence’ PASSI NG po. OBJECT_VALUE AS "p"
RETURNI NG CONTENT)
AS VARCHAR2(30)) reference,
count (*)
FROM pur chaseor der po, XM.Tabl e(' $p//LineltenfPart/ @ d="37429148327"]"' PASSI NG OBJECT_VALUE AS "p")
WHERE XMLQuery(' $p/ Pur chaseOr der/ Li nel t ems/ Li nel t enf Part/ @ d="37429148327"]"
PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT). isFragment() = 1
GROUP BY XM.Cast ( XM_.Quer y("' $p/ PurchaseOr der/ Ref erence' PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(30))
ORDER BY XM.Cast ( XM_.Quer y("' $p/ PurchaseOr der/ Ref erence' PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(30));

TFOX-20021009123337784PDT 3

5.3 Using the SQL*Plus XQUERY Command

You can evaluate an XQuery expression using the SQL*Plus XQUERY command.

Example 5-23 shows how you can enter an XQuery expression directly at the
SQL*Plus command line, by preceding the expression with the SQL*Plus command
XQUERY and following it with a slash (/) on a line by itself. Oracle Database treats
XQuery expressions submitted with this command the same way it treats XQuery
expressions in SQL/XML functions XM.Quer y and XM_Tabl e. Execution is identical, with
the same optimizations.

There are also a few SQL*Plus SET commands that you can use for settings that are
specific to XQuery. Use SHOW XQUERY to see the current settings.

e SET XQUERY BASEURI — Set the base URI for XQUERY. URIs in XQuery expressions
are relative to this URI.

e SET XQUERY CONTEXT — Specify a context item for subsequent XQUERY evaluations.

¢ See Also:

SQL*Plus User's Guide and Reference

Example 5-23 Using the SQL*Plus XQUERY Command

SQ.> XQUERY for $i in fn:collection("oradb:/HR DEPARTMENTS")
2 where $i / RON DEPARTMENT I D < 50
3 return $i
4

Result Sequence

<RON<DEPARTMENT_| D>10</ DEPARTMENT_| D><DEPARTMENT_NAVME>Adni ni st r at i on</ DEPARTMVEN
T_NAMVE><MANAGER | D>200</ MANAGER _| D><LOCATI ON_| D>1700</ LOCATI ON_| D></ ROW

<ROWs<DEPARTNMENT | D>20</ DEPARTMENT | D><DEPARTVENT NANVE>Mar ket i ng</ DEPARTVENT NAM
E><MANAGER | D>201</ MANAGER | D><LOCATI ON_| D>1800</ LOCATI ON_| D></ RO

<ROW<DEPARTMENT_| D>30</ DEPARTMENT_| D><DEPARTMENT_NAME>Pur chasi ng</ DEPARTMENT_NA

ORACLE 5-25



5.4 Using

5.5 Using

Chapter 5
Using XQuery with XQJ to Access Database Data

ME><MANAGER_| D>114</ MANAGER | D><LOCATI ON_I D>1700</ LOCATI ON_| D></ ROWs

<RON<DEPARTMENT_| D>40</ DEPARTMENT_| D><DEPARTMENT_NAME>Hunman Resour ces</ DEPARTME
NT_NAME><MANAGER_| D>203</ MANAGER_| D><LOCATI ON_I D>2400</ LOCATI ON_I D></ ROW

XQuery with XQJ to Access Database Data

XQuery API for Java (XQJ), also known as JSR-225, provides an industry-standard
way for Java programs to access XML data using XQuery. It lets you evaluate XQuery
expressions against XML data sources and process the results as XML data.

Oracle provides two XQuery engines for evaluating XQuery expressions: one in Oracle
XML DB, for use with XML data in the database, and one in Oracle XML Developer's
Kit, for use with XML data outside the database.

Similarly, Oracle provides two mid-tier XQJ implementations for accessing these two
XQuery engines. Both implementations are part of Oracle XML Developer's Kit (XDK).
You use XDK to access XML data with XQJ, regardless of whether that data resides in
the database or elsewhere.

In particular, you can use XDK and XQJ to access XML data in Oracle XML DB. A
typical use case for this feature is to access data stored in remote databases from a
local Java program.

¢ See Also:

e XQuery API for Java (XQJ) 1.0 Specification, March 2009

This specification is quite concrete and helpful, with understandable
examples.

e Oracle XML Developer's Kit Programmer's Guide for complete
information about using XQJ with Oracle XML Developer's Kit

e Oracle XML Developer's Kit Programmer's Guide for information,
including examples, about using XQJ with XDK to access XML data in
the database

XQuery with PL/SQL, JDBC, and ODP.NET to

Access Database Data

ORACLE

You can use XQuery with the Oracle APIs for PL/SQL, JDBC, and Oracle Data
Provider for .NET (ODP.NET).

Example 5-24 shows how to use XQuery with PL/SQL, in particular, how to bind
dynamic variables to an XQuery expression using the XM.Quer y PASSI NG clause. The
bind variables : 1 and : 2 are bound to the PL/SQL bind arguments nbi t ens and
partid, respectively. These are then passed to XQuery as XQuery variables i t emno
and i d, respectively.

Example 5-25 shows how to use XQuery with JDBC, binding variables by position with
the PASSI NG clause of SQL/XML function XM.Tabl e.

5-26



ORACLE

Chapter 5
Using XQuery with PL/SQL, JDBC, and ODP.NET to Access Database Data

Example 5-26 shows how to use XQuery with ODP.NET and the C# language. The C#
input parameters : nbi t ens and : parti d are passed to XQuery as XQuery variables
i temo and i d, respectively.

Example 5-24 Using XQuery with PL/SQL

DECLARE
sqgl _stm VARCHAR2(2000); -- Dynamic SQL statenment to execute
nbitems NUI\/BER =3 -- Nunber of itens
partid ARCHAR2(20) : = ' 715515009058' ; -- Part ID
resul t XI\/LType
doc DBVS_XM_DOM DOMDocunent ;
ndoc DBVS_XM_DOM DOWNode;
buf VARCHAR2(20000) ;
BEG N
sgl _stnt :=

" SELECT XM.Quer y(
""for $i in fn:collection("oradb:/OE PURCHASECRDER') ' ||
"where count ($i/PurchaseOrder/Lineltens/Linelten) = $itemno ' ||
"and $i/PurchaseOrder/Lineltenms/Lineltem Part/@d = $id ' ||
‘return $i/PurchaseOrder/Lineltems'" " ||
"PASSING :1 AS "itemno", :2 AS "id" ' ||
" RETURNI NG CONTENT) FROM DUAL' ;

EXECUTE | MVEDI ATE sql _stmt INTO result USING nbitems, partid;
doc := DBMS_XM.DOM newDOMDocument (resul t);
ndoc : = DBMS_XM.DOM makeNode( doc);
DBVS_XM_DOM wr i t eToBuf f er (ndoc, buf);
DBVS_QUTPUT. put _I i ne(buf);
END;
/

This produces the following output:

<Li nel t ems>
<Lineltem It emNunber="1">
<Description>Sanurai 2: Duel at Ichijoji Tenple</Description>
<Part |d="37429125526" UnitPrice="29.95" Quantity="3"/>
</Linelten>
<Lineltem It emNunber ="2">
<Description>The Red Shoes</Description>
<Part |d="37429128220" UnitPrice="39.95" Quantity="4"/>
</Linelten>
<Lineltem It emNunber ="3">
<Description>A Night to Renenber</Description>
<Part |d="715515009058" UnitPrice="39.95" Quantity="1"/>
</Linelten>
</ Li nel t ems>
<Li nel t ems>
<Lineltem It emNunber="1">
<Description>A Night to Renenber</Description>
<Part |d="715515009058" UnitPrice="39.95" Quantity="2"/>
</Linelten»
<Lineltem It emNunber ="2">
<Description>The Unbearabl e Lightness O Being</Description>
<Part |d="37429140222" UnitPrice="29.95" Quantity="2"/>
</Linelten>
<Lineltem It emNunber ="3">
<Descri ption>Si st ers</Descri ption>
<Part |d="715515011020" UnitPrice="29.95" Quantity="4"/>
</Linelten>

5-27



Chapter 5
Using XQuery with PL/SQL, JDBC, and ODP.NET to Access Database Data

</ Linel t ems>

PL/ SQL procedure successful ly conpl eted.

Example 5-25 Using XQuery with JDBC

import java.sql.*;

i mport oracle.sql.*;

i mport oracle.jdbc.*;

i mport oracl e. xdb. XM_Type;
import java.util.*;

public class QueryBi ndByPos

{

public static void main(String[] args) throws Exception, SQLException

{

Systemout. println("*** JDBC Access of XQuery using Bind Variables ***");
Driver Manager . regi sterDriver(new oracl e.jdbc. driver.OracleDriver());
Or acl eConnection conn
= (Oracl eConnecti on)
Dri ver Manager . get Connecti on("j dbc: oracl e: oci 8: @ocal host: 1521: orallgRl", "oe", "oe");
String xgString
= "SELECT COLUWN_VALUE" +
"FROM XM.Tabl e(" for $i in fn:collection(\"oradb:/COE PURCHASECRDER ") " +
“where $i/PurchaseOr der/ Ref erence= $ref " +
"return $i/PurchaseOrder/Lineltems' " +
"PASSING ? AS \"ref\")";
Oracl ePreparedStatenent stnt = (O acl ePreparedSt at ement ) conn. prepar eSt at enent (xqString) ;
String refString = "EABEL-20021009123336251PDT"; // Set the filter val ue
stm.setString(1, refString); // Bind the string
Resul t Set rs = stnt.executeQuery();
while (rs.next())

SQLXML sgl Xml = rs. get SQLXM(1);
Systemout. printIn("Lineltem Description: " + sql Xm.getString());
sgl Xl . free();

rs.close();
stnt.close();

This produces the following output:

*** JDBC Access of Database XQuery with Bind Variables ***
Lineltem Description: Sanurai 2: Duel at Ichijoji Tenple
Li nel tem Description: The Red Shoes

Linel tem Description: A Night to Remenber

Example 5-26 Using XQuery with ODP.NET and C#

using System

usi ng System Dat a;

using System Text;

using System1GQ

using System Xni;

usi ng Oracl e. Dat aAccess. O i ent;
usi ng Oracl e. Dat aAccess. Types;

namespace XQuery

Il <sumary>
/1l Denonstrates how to bind variables for XQuery calls

ORACLE 5-28



Chapter 5
Using XQuery with PL/SQL, JDBC, and ODP.NET to Access Database Data

[ <l summary>
class XQuery

{

[l <summary>
/1] The main entry point for the application.
[ <l summary>
static void Main(string[] args)
{
int rows = 0;
StreanReader sr = null;

/1 Create the connection.
string constr = "User |d=oe;Password=******x****. Dat 3 Source=orallgr2"; // Replace with real password.
O acl eConnection con = new O acl eConnection(constr);

con. Qpen();

/1 Create the conmand.
O acl eCommand cmd = new Oracl eConmand("", con);

/1 Set the XML command type to query.
cnd. CommandType = ConmandType. Text;

/1 Create the SQL query with the XQuery expression.
StringBuilder blr = new StringBuilder();
bl r. Append(" SELECT COLUWMN_VALUE FROM XM.Tabl e");

bl r. Append("(\'for $i in fn:collection(\"oradb:/OE PURCHASEORDER ") ");

bl r. Append("  where count($i/PurchaseOr der/Lineltens/Linelten) = $itemno ");
bl r. Append(" and $i/PurchaseOrder/Lineltens/Linelten Part/@d = $id ");
bl r. Append("  return $i/PurchaseOrder/Lineltems\' ");

bl r. Append(" PASSING :nbitems AS \"itemno\", :partid AS\"id\")");

cnd. CommandText = blr. ToString();

cnd. Paraneters. Add(" :nbitems", Oracl eDbType.Int16, 3, ParaneterDirection.|nput);

cnd. Paranet ers. Add(" :partid”, Oracl eDbType. Varchar2, "715515009058",

/1 Get the XML document as an Xni Reader.
O acl eDat aReader dr = cnd. Execut eReader () ;
dr. Read();

/1 Get the XM.Type colum as an Oracl eXnl Type
Oracl eXm Type xml = dr. Get Oracl eXml Type(0);

/1 Print the XM. data in the OacleXm Type object
Consol e. Wi teLine(xn . Val ue);
xn . Di spose();

/1 Cean up.

cnd. Di spose();

con. 0 ose();

con. Di spose();

}
}
}
This produces the following output:

<Li nel t ems>

<Li neltem It em\unmber="1">
<Description>Samurai 2: Duel at Ichijoji Tenple</Description>
<Part |d="37429125526" UnitPrice="29.95" Quantity="3"/>
</ Linel tenmp
<Lineltem It em\unber="2">
<Description>The Red Shoes</Descri ption>
<Part |d="37429128220" UnitPrice="39.95" Quantity="4"/>
</ Linel tenmp
<Lineltem It em\unber="3">
<Description>A Night to Remenber</Description>
<Part |d="715515009058" UnitPrice="39.95" Quantity="1"/>

ORACLE

Paranet erDi rection. | nput);

5-29



</Lineltenm
</Lineltens>

Chapter 5
Updating XML Data

Related Topics

PL/SQL APIs for XMLType
There are several PL/SQL packages that provide APIs for XMLType.

Java DOM API for XMLType

The Java DOM API for XM_Type lets you operate on XM.Type instances using a
DOM. You can use it to manipulate XML data in Java, including fetching it through
Java Database Connectivity (JDBC).

Oracle XML DB and Oracle Data Provider for .NET

Oracle Data Provider for Microsoft .NET (ODP.NET) is an implementation of a
data provider for Oracle Database. It uses Oracle native APIs to offer fast and
reliable access to Oracle data and features from any .NET application.

5.6 Updating XML Data

There are several ways you can use Oracle XML DB features to update XML data,
whether it is transient or stored in database tables.

Updating an Entire XML Document
To update an entire XML document, use a SQL UPDATE statement.

Replacing XML Nodes

You can use XQuery Update with a SQL UPDATE statement to update an existing
XML document instead of creating a new document. The entire document is
updated, not just the part of it that is selected.

Inserting Child XML Nodes

You can use XQuery Update to insert new children (either a single attribute or one
or more elements of the same type) under parent XML elements. The XML
document that is the target of the insertion can be schema-based or non-schema-
based.

Deleting XML Nodes
An example uses XQuery Update to delete XML nodes.

Creating XML Views of Modified XML Data
You can use XQuery Update to create new views of XML data.

5.6.1 Updating an Entire XML Document

To update an entire XML document, use a SQL UPDATE statement.

ORACLE

The right side of the UPDATE statement SET clause must be an XM.Type instance. This
can be created in any of the following ways:

Use SQL functions or XML constructors that return an XML instance.

Use the PL/SQL DOM APIs for XM_Type that change and bind an existing XML
instance.

Use the Java DOM API that changes and binds an existing XML instance.

Updates for non-schema-based documents stored as binary XML can be made in a
piecewise manner.

5-30



Chapter 5
Updating XML Data

Example 5-27 updates an XM_Type instance using a SQL UPDATE statement.
Example 5-27 Updating XMLType Data Using SQL UPDATE

SELECT t.reference, li.lineno, |i.description
FROM pur chaseor der po,
XM.Tabl e(" $p/ Pur chaseOrder' PASSI NG po. OBJECT VALUE AS "p"
COLUWNS reference VARCHAR2(28) PATH ' Reference',

lineitem XM.Type PATH ' Lineltens/Lineltem) t,
XM.Tabl e(" $I /Lineltem PASSINGt.lineitemAS "|"
COLUWNS [ i neno NUMBER( 10) PATH ' @t em\unber ',

description VARCHAR2(128) PATH 'Description') Ii
WHERE t.reference = ' DAUSTI N-20021009123335811PDT' AND ROWNUM < 6;

REFERENCE LI NENO DESCRI PTI ON
DAUSTI N-20021009123335811PDT 1 Nights of Cabiria
DAUSTI N-20021009123335811PDT 2 For Al'l' Mankind
DAUSTI N-20021009123335811PDT 3 Dead Ringers
DAUSTI N-20021009123335811PDT 4 Hearts and M nds
DAUSTI N-20021009123335811PDT 5 Rushnore

UPDATE pur chaseor der po
SET po. OBJECT VALUE = XM.Type(bfilename(' XM.DI R, ' NEW DAUSTI N-20021009123335811PDT. xnl '),
nl's_charset id('AL32UTF8'))
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="DAUSTI N- 20021009123335811PDT"]"
PASSI NG po. OBJECT VALUE AS "p");

SELECT t.reference, li.lineno, |i.description
FROM pur chaseor der po,
XM.Tabl e(" $p/ Pur chaseOrder' PASSI NG po. OBJECT VALUE AS "p"
COLUWNS reference VARCHAR2(28) PATH ' Reference',

lineitem XM.Type PATH ' Lineltens/Lineltem) t,
XM.Tabl e(" $I /Lineltem PASSINGt.lineitemAS "|"
COLUWNS [ i neno NUMBER( 10) PATH ' @t emNunber ',

description VARCHAR2(128) PATH 'Description') li
WHERE t.reference = ' DAUSTI N-20021009123335811PDT" ;

REFERENCE LI NENO DESCRI PTI ON
DAUSTI N- 20021009123335811PDT 1 Dead Ringers
DAUSTI N- 20021009123335811PDT 2 Getrud

DAUSTI N- 20021009123335811PDT 3 Branded to Kill
5.6.2 Replacing XML Nodes

You can use XQuery Update with a SQL UPDATE statement to update an existing XML
document instead of creating a new document. The entire document is updated, not
just the part of it that is selected.

In Example 5-28 we pass the SQL string literal *SKING" to the XQuery expression as a
variable ($p2). In this simple example, since the value is a string literal, we could have
simply used repl ace val ue of node $j with "SKING". That is, you can just use a
literal XQuery string here, instead of passing a literal string from SQL to XQuery. In

ORACLE 5-31



Chapter 5
Updating XML Data

real-world examples you will typically pass a value that is available only at runtime;
Example 5-28 shows how to do that. This is also true of other examples.

Example 5-29 updates multiple text nodes and attribute nodes.
Example 5-30 updates selected nodes within a collection.

Example 5-31 illustrates the common mistake of using an XQuery Update replace-
value operation to update a node that occurs multiple times in a collection. The UPDATE
statement sets the value of the text node of a Descri ption element to The W zard of
Oz, where the current value of the text node is Si st ers. The statement includes an
XMLEXi st s expression in the WHERE clause that identifies the set of nodes to be
updated.

Instead of updating only the intended node, Example 5-31 updates the values of all
text nodes that belong to the Descri pti on element. This is not what was intended.

A WHERE clause can be used only to identify which documents must be updated, not
which nodes within a document must be updated.

After the document has been selected, the XQuery expression passed to XQuery
Update determines which nodes within the document must be updated. In this case,
the XQuery expression identifies all three Descri pti on nodes, so all three of the
associated text nodes were updated.

To correctly update a node that occurs multiple times within a collection, use the
XQuery expression passed XQuery Update to identify which nodes in the XML
document to update. By introducing the appropriate predicate into the XQuery
expression, you can limit which nodes in the document are updated. Example 5-32
illustrates the correct way to update one node within a collection.

Example 5-28 Updating XMLTYPE Data Using SQL UPDATE and XQuery Update

SELECT XM.Query(' $p/ PurchaseOrder/ Actions/Action[1]" PASSI NG po. CBJECT_VALUE AS "p"
RETURNI NG CONTENT) acti on
FROM pur chaseor der po
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence=" SBELL- 2002100912333601PDT"]"
PASSI NG po. OBJECT_VALUE AS "p");

<Action>
<User >SVOLLMAN</ User >
</ Action>

UPDATE pur chaseor der po
SET po. OBJECT_VALUE =
XM.Query(' copy $i := $pl nodify
(for $ in $i/PurchaseOrder/Actions/Action[1]/User
return replace value of node $j with $p2)
return $i' PASSI NG po. OBJECT_VALUE AS "pl",
"SKING™ AS "p2" RETURNI NG CONTENT)
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"
PASSI NG po. OBJECT VALUE AS "p");

SELECT XM.Query(' $p/ PurchaseOrder/ Actions/Action[1]" PASSI NG po. CBJECT_VALUE AS "p"
RETURNI NG CONTENT) acti on

ORACLE 5-32



Chapter 5
Updating XML Data

FROM pur chaseor der po
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"
PASSI NG po. OBJECT_VALUE AS "p");

<Action>
<User >SKING</ User >
</ Action>

Example 5-29 Updating Multiple Text Nodes and Attribute Nodes

SELECT XM.Cast ( XM.Quer y(" $p/ Pur chaseOr der/ Request or'
PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(130)) nane,
XM.Quer y(" $p/ Pur chaseOr der/ Li nel t ens'

PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT) |ineitens
FROM pur chaseor der po
WHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"

PASSI NG po. OBJECT_VALUE AS "p");

NAME LI NEI TEMS
Sarah J. Bell <Li nel t ens>
<Lineltem It em\unber="1">
<Descri ption>A Night to Remember</Descri ption>
<Part |d="715515009058" UnitPrice="39.95" Quantity="2"/>
</ Linel tem
<Li nel tem It em\unber="2">
<Descri ption>The Unbearabl e Lightness O Being</Description>
<Part |d="37429140222" UnitPrice="29.95" Quantity="2"/>
</ Linel tenm
<Lineltem ItemNumber="3">
<Description>Sisters</Description>
<Part 1d="715515011020" UnitPrice="29.95" Quantity="4"/>
</Lineltem>
</ Linel tems>

UPDATE pur chaseor der
SET OBJECT_VALUE =
XM_Query('copy $i := $pl modify
((for $ in $i/PurchaseO der/Requestor
return replace value of node $j with $p2),
(for $ in $i/PurchaseOrder/Lineltens/Linelten]1]/Part/@ld
return replace value of node $j with $p3),
(for $ in $i/PurchaseOr der/Lineltens/Linelten1]/Description
return replace value of node $j with $p4),
(for $ in $i/PurchaseOr der/Lineltens/Lineltem[3]
return replace node $j with $p5))
return $i'
PASSI NG OBJECT_VALUE AS "pl1",
"Stephen G. King" AS "p2",
"786936150421" AS "p3",
"The Rock®™ AS "p4",
XM.Type( "<Lineltem ItemNumber="99">
<Description>Dead Ringers</Description>
<Part 1d="715515009249" UnitPrice="39.95" Quantity="2"/>
</Lineltem>") AS "p5"
RETURNI NG CONTENT)
WHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"
PASSI NG OBJECT_VALUE AS "p");

SELECT XM.Cast ( XM.Quer y(" $p/ Pur chaseOr der/ Request or'

PASSI NG po. OBJECT VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2(30)) nare,

ORACLE 5-33



Chapter 5
Updating XML Data

XM.Quer y(" $p/ PurchaseOr der/ Li nel t ens'
PASSI NG po. OBJECT_VALUE AS "p" RETURNING CONTENT) |ineitens
FROM pur chaseor der po
WHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"
PASSI NG po. OBJECT_VALUE AS "p");

NAMVE LI NEI TEMS

Stephen G. King <Lineltens>
<Lineltem It em\unber="1">
<Descri ption>The Rock</Descri ption>
<Part |d="786936150421" UnitPrice="39.95" Quantity="2"/>
</ Linel temp
<Li neltem It emNunber ="2">
<Descri ption>The Unbearabl e Lightness O Being</Description>
<Part 1d="37429140222" UnitPrice="29.95" Quantity="2"/>
</ Linel temp
<Lineltem ItemNumber="99">
<Description>Dead Ringers</Description>
<Part 1d="715515009249" UnitPrice="39.95" Quantity="2"/>
</Lineltem>
</Linel tems>

Example 5-30 Updating Selected Nodes within a Collection

SELECT XM.Cast ( XM_.Quer y(' $p/ Pur chaseCr der/ Request or'
PASSI NG po. OBJECT VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(30)) nane,
XM_Quer y(" $p/ Pur chaseOr der/ Li nel t ens'

PASSI NG po. OBJECT VALUE AS "p" RETURNI NG CONTENT) |i neitens
FROM pur chaseor der po
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL-2002100912333601PDT"]"

PASSI NG po. OBJECT_VALUE AS "p");

NAVE LI NEI TEMS
Sarah J. Bell <Li nel t ens>
<Lineltem | temNunber="1">
<Description>A Night to Remenber</Description>
<Part |d="715515009058" UnitPrice="39.95" Quantity="2"/>
</Lineltenmp
<Lineltem ItemNumber="2">
<Description>The Unbearable Lightness Of Being</Description>
<Part 1d="37429140222" UnitPrice="29.95" Quantity="2"/>
</Lineltem>
<Lineltem |t emNunber="3">
<Descri ption>Si st ers</Description>
<Part 1d="715515011020" UnitPrice="29.95" Quantity="4"/>
</Lineltenmp
</Lineltems>

UPDATE pur chaseor der
SET OBJECT VALUE =
XMQuer y(
"copy $i := $pl nodify
((for $j in S$i/PurchaseO der/Requestor
return replace value of node $j with $p2),

(for $ in $i/PurchaseOr der/Lineltens/Linelten Part[@1d="715515009058""]/

@Quantity

ORACLE 5-34



Chapter 5
Updating XML Data

return replace value of node $j with $p3),
(for $j in $i/PurchaseOr der/Lineltens/Lineltem
[Description/text()="The Unbearable Lightness Of Being"]
return replace node $j with $p4))
return $i'
PASSI NG OBJECT_VALUE AS "pl",
"Stephen G. King®™ AS "p2",
25 AS "p3",
XM Type( "<Lineltem ItemNumber="99">
<Part 1d="786936150421" Quantity="5" UnitPrice="29.95"/>
<Description>The Rock</Description>
</Lineltem>") AS "p4"
RETURNI NG CONTENT)
VWHERE XM_Exi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"
PASSI NG OBJECT_VALUE AS "p");

SELECT XM.Cast ( XM.Quer y(' $p/ Pur chaseQr der/ Request or '
PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(30)) nane,
XM_Quer y(" $p/ Pur chaseOr der/ Li nel t ens'

PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT) Iineitens
FROM pur chaseor der po
VWHERE XM_Exi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"

PASSI NG po. OBJECT_VALUE AS "p");

NAME LI NEI TEMS
Stephen G. King <Lineltems>
<Lineltem I tem\unmber="1">
<Description>A Night to Renenber</Description>
<Part |d="715515009058" UnitPrice="39.95" Quantity="25"/>
</Lineltenr
<Lineltem ItemNumber="99">
<Part 1d="786936150421" Quantity="5" UnitPrice="29.95"/>
<Description>The Rock</Description>
</Lineltenr
<Lineltem It em\unmber ="3">
<Descri ption>Si st ers</Description>
<Part |d="715515011020" UnitPrice="29.95" Quantity="4"/>
</Lineltenr
</Lineltems>

Example 5-31 Incorrectly Updating a Node That Occurs Multiple Times in a
Collection

SELECT XM.Cast (des. COLUMWN_VALUE AS VARCHAR?(256))
FROM pur chaseor der,
XML.Tabl e(" $p/ Pur chaseQr der/ Li nel t ems/ Li nel t enf Descri pti on'
PASSI NG OBJECT_VALUE AS "p") des
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL-2002100912333601PDT"]"
PASSI NG OBJECT _VALUE AS "p");

XMLCAST( DES. COLUMN_VALUEASVARCHAR2( 256) )

ORACLE 5-35



ORACLE

Chapter 5
Updating XML Data

The Lady Vani shes
The Unbearabl e Lightness O Being
Sisters

3 rows sel ected.

UPDATE pur chaseor der
SET OBJECT_VALUE =
XM.Query(' copy $i := $pl nodify
(for $j in $i/PurchaseOr der/Lineltens/Linelten
Description
return replace value of node $j with $p2)
return $i'
PASSI NG OBJECT_VALUE AS "pl", "The Wizard of 0z" AS "p2"
RETURNI NG CONTENT)
WHERE XM_Exi st s(' $p/ Pur chaseOr der/ Li nel t ens/
Li nel t enf Descri pti on="Si sters"]’
PASSI NG OBJECT_VALUE AS "p")
AND XMLExi sts(' $p/
Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"
PASSI NG OBJECT_VALUE AS "p");

1 row updat ed.

SELECT XM.Cast (des. COLUMN_VALUE AS VARCHAR2(256))
FROM pur chaseor der,
XM.Tabl e(" $p/ Pur chaseOr der/ Li nel t ens/ Li nel t enf Descri pti on'
PASSI NG OBJECT_VALUE AS "p") des
WHERE XM_Exi st s(' $p/ Pur chaseOr der [ Ref er ence=" SBELL- 2002100912333601PDT"]"
PASSI NG OBJECT_VALUE AS "p");

XMLCAST( DES. COLUMN_VALUEASVARCHAR2( 256) )
The Wizard of 0z
The Wizard of 0z
The Wizard of 0z

3 rows sel ected.

Example 5-32 Correctly Updating a Node That Occurs Multiple Times in a
Collection

SELECT XM.Cast (des. COLUMWN_VALUE AS VARCHAR?(256))
FROM pur chaseor der,
XML.Tabl e(" $p/ Pur chaseQr der/ Li nel t ems/ Li nel t enf Descri pti on'
PASSI NG OBJECT_VALUE AS "p") des
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL-2002100912333601PDT"]"
PASSI NG OBJECT _VALUE AS "p");

XMLCAST( DES. COLUMN_VALUEASVARCHAR2( 256) )

A Night to Remenber
The Unbearabl e Lightness O Being

5-36



Chapter 5
Updating XML Data

Sisters

3 rows sel ected.

UPDATE pur chaseor der
SET OBJECT_VALUE =
XM.Query(' copy $i := $pl nodify
(for $j in $i/PurchaseO der/Lineltens/Linelten
Description
[text()="Sisters"]
return replace value of node $j with $p2)
return $i'
PASSI NG OBJECT_VALUE AS "pl1",
"The Wizard of 0z" AS "p2" RETURNI NG CONTENT)
WHERE XMLEXi st s(' $p/
Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"
PASSI NG OBJECT_VALUE AS "p");

1 row updat ed.

SELECT XM.Cast (des. COLUMN_VALUE AS VARCHAR2(256))
FROM pur chaseor der,
XM_.Tabl e(" $p/ Pur chaseOr der/ Li nel t ens/ Li nel t enf Descri pti on'
PASSI NG OBJECT_VALUE AS "p") des
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"
PASSI NG OBJECT_VALUE AS "p");

XMLCAST( DES. COLUWN_VALUEASVARCHAR?( 256) )

A Night to Renmenber
The Unbearabl e Lightness O Being
The Wizard of 0z

3 rows sel ected.

* Updating XML Data to NULL Values
Certain considerations apply to updating XML data to NULL values.

5.6.2.1 Updating XML Data to NULL Values

Certain considerations apply to updating XML data to NULL values.

e If you update an XML element to NULL, the attributes and children of the element
are removed, and the element becomes empty. The type and namespace
properties of the element are retained. See Example 5-33.

» If you update an attribute value to NULL, the value appears as the empty string.
See Example 5-33.

e If you update the text node of an element to NULL, the content (text) of the element
is removed. The element itself remains, but it is empty. See Example 5-34.

Example 5-33 updates all of the following to NULL:

ORACLE 5-37



Chapter 5
Updating XML Data

e The Description element and the Quanti ty attribute of the Li nel t emelement
whose Part element has attribute | d value 715515009058.

* The Li nel t emelement whose Descri pti on element has the content (text) "The
Unbearable Lightness Of Being".

Example 5-33 shows two different but equivalent ways to remove the value of a node.
For element Descri pti on and attribute Quanti ty, a literal XQuery empty sequence,
Q. replaces the existing value directly. For element Li nel t em SQL NULL is passed
into the XQuery expression to provide the empty node value. Since the value used is
literal, it is simpler not to pass it from SQL to XQuery. But in real-world examples you
will often pass a value that is available only at runtime. Example 5-33 shows how to do
this for an empty XQuery sequence: pass a SQL NULL value.

Example 5-34 updates the text node of a Part element whose Descri pti on attribute
has value "A Night to Remenber"to NULL. The XML data for this example
corresponds to a different, revised purchase-order XML schema — see Scenario for
Copy-Based Evolution. In that XML schema, Descri pti on is an attribute of the Part
element, not a sibling element.

¢ See Also:

Example 3-26

Example 5-33 NULL Updates - Element and Attribute

SELECT XM.Cast ( XM.Quer y("' $p/ Pur chaseOr der/ Request or'

PASSI NG po. OBJECT VALUE AS "p" RETURNI NG CONTENT)

AS VARCHAR2(30)) nane,

XM.Quer y (' $p/ PurchaseCr der/ Li nel t ens'

PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT) | i neitens

FROM pur chaseor der po
VHERE XMLEXxi st s(' $p/ Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"

Sarah J. Bell

PASSI NG po. OBJECT VALUE AS "p");

LI NEI TEMS

<Li nel t ems>
<Lineltem It emNunber ="1">
<Description>A Night to Remember</Descri ption>
<Part |d="715515009058" UnitPrice="39.95" Quantity="2"/>
</Linel tenp
<Lineltem ItemNumber="2">
<Description>The Unbearable Lightness Of Being</Description>
<Part 1d="37429140222" UnitPrice="29.95" Quantity="2"/>
</Lineltem>
<Lineltem It emNunber ="3">
<Descri pti on>Si st ers</Descri ption>
<Part |d="715515011020" UnitPrice="29.95" Quantity="4"/>
</Linel ten
</ Linel t ems>

UPDATE pur chaseor der
SET OBJECT_VALUE =

XM.Quer y(
‘copy Si

:= $pl nodify

((for $j in $i/PurchaseOrder/Lineltens/LineltenfPart/@d="715515009058"]/Description

ORACLE

5-38



Chapter 5
Updating XML Data

return replace value of node $j with () ,
(for $j in $i/PurchaseOrder/Lineltens/Lineltem Part[@d="715515009058"]/@Quantity
return replace value of node $j with () ,
(for $j in $i/PurchaseOr der/Lineltens/Lineltem
[Description/text()= "The Unbearabl e Lightness Of Being"]

return replace node $j with $p2))

return $i'

PASSI NG OBJECT_VALUE AS "pl", NULL AS "p2"

RETURNI NG CONTENT)

VHERE XMLExi sts(' $p/ Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]'
PASSI NG CBJECT_VALUE AS "p");

SELECT XM.Cast ( XM.Quer y("' $p/ Pur chaseOr der/ Request or'
PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(30)) nane,
XM.Query(' $p/ PurchaseCr der/Li nel t ens'

PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT) |ineitens
FROM pur chaseor der po
VHERE XMLExi sts(' $p/ Pur chaseOr der [ Ref er ence="SBELL- 2002100912333601PDT"]"

PASSI NG po. OBJECT_VALUE AS "p");

NAME LI NEI TEMS

Sarah J. Bell <Li nel t ems>
<Lineltem |t emNunber="1">
<Description/>
<Part |d="715515009058" UnitPrice="39.95" Quantity=""/>
</Linelten>
<Lineltem/>
<Lineltem |t emNunber="3">
<Descri pti on>Si st ers</Descri ption>
<Part |d="715515011020" UnitPrice="29.95" Quantity="4"/>
</Linelten>
</ Linel tens>

Example 5-34 NULL Updates - Text Node

SELECT XM.Cast ( XM.Quer y(' $p/ Pur chaseOr der/ Li nel t ems/ Li nel t em Part[ @escription="A Night to Renenber"]'
PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(128)) part
FROM pur chaseor der po
WHERE XMLExi st s(' $p/ Pur chaseOr der [ @Ref er ence="SBELL- 2003030912333601PDT" ] "
PASSI NG po. OBJECT_VALUE AS "p");

PART
<Part Description="A N ght to Renmenber" Unit Cost="39.95">715515009058</ Part >

UPDATE pur chaseor der
SET OBJECT_VALUE =
XMQuer y(
"copy $i := $pl nodify
(for $ in $i/PurchaseOrder/Lineltens/Lineltem Part[@escription="A N ght to Renember"]
return replace value of node $§j with $p2)

return $i

PASSI NG OBJECT_VALUE AS "p1", NULL AS "p2" RETURNI NG CONTENT)
WHERE XMLExi st s(' $p/ Pur chaseOr der [ @Ref er ence="SBELL- 2003030912333601PDT"] "

PASSI NG OBJECT_VALUE AS "p");

SELECT XM.Cast ( XM.Quer y(' $p/ Pur chaseOr der/ Li nel t ems/ Li nel t em Part[ @escription="A Night to Renenber"]'
PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
AS VARCHAR2(1128)) part
FROM pur chaseor der po
WHERE XMLExi st s(' $p/ Pur chaseOr der [ @Ref er ence="SBELL- 2003030912333601PDT"] "

ORACLE 5-39



Chapter 5
Updating XML Data

PASSI NG po. OBJECT VALUE AS "p");
PART

<Part Description="A N ght to Remenber" Unit Cost="39.95"/>

5.6.3 Inserting Child XML Nodes

You can use XQuery Update to insert new children (either a single attribute or one or
more elements of the same type) under parent XML elements. The XML document
that is the target of the insertion can be schema-based or non-schema-based.

Example 5-35 inserts a hew Li nel t emelement as a child of element Li nel t ens. It
uses the Oracle XQuery pragma or a: chi | d- el ement - nane to specify the name of the
inserted child element as Li nel tem

If the XML data to be updated is XML schema-based and it refers to a namespace,
then the data to be inserted must also refer to the same namespace. Otherwise, an
error is raised because the inserted data does not conform to the XML schema.

# Note:

Be aware that using XQuery Update to update XML schema-based data
results in an error being raised if you try to store the updated data back into
an XML schema-based column or table. To prevent this, use XQuery pragma
ora:transform keep_schena. See Oracle XQuery Extension-Expression
Pragmas.

Example 5-36 is the same as Example 5-35, except that the Li nel t emelement to be
inserted refers to a namespace. This assumes that the relevant XML schema requires
a namespace for this element.

Example 5-37 inserts a Li nel t emelement before the first Li nel t emelement.
Example 5-38 inserts a Dat e element as the last child of an Acti on element.
Example 5-35 Inserting an Element into a Collection

SELECT XM.Query(' $p/ PurchaseQrder/Li nel tens/ Li nel t en]f @t emNurber =222]"'
PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
FROM pur chaseor der po
VHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence=" AMCEVEN- 20021009123336171PDT"]"
PASSI NG po. OBJECT VALUE AS "p");

XMLQUERY( ' $P/ PURCHASEORDER/ LI NEI TEMS/ LI NEI TEM @ TEVWNUMBER=222] '

1 row sel ect ed.

UPDATE pur chaseor der
SET OBJECT_VALUE =
XM.Query(" copy $i := $pl nodify
(for $ in $i/PurchaseOrder/Lineltens
return (# ora:child-element-name Lineltem #)
{insert node $p2 into $j})
return $i'
PASSI NG OBJECT VALUE AS "p1",

ORACLE 5-40



Chapter 5
Updating XML Data

XM.Type( "<Lineltem ItemNumber="222">
<Description>The Harder They Come</Description>
<Part 1d="953562951413" UnitPrice="22.95" Quantity="1"/>
</Lineltem>") AS "p2"
RETURNI NG CONTENT)
VHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence=" AMCEVEN- 20021009123336171PDT"]"
PASSI NG OBJECT VALUE AS "p");

SELECT XM.Query(' $p/ PurchaseQrder/Li nel tens/ Li nel ten]f @t emNunmber =222]"'
PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
FROM pur chaseor der po
VHERE XMLExi sts(' $p/ Pur chaseOr der [ Ref er ence=" AMCEVEN- 20021009123336171PDT"]"
PASSI NG po. OBJECT VALUE AS "p");

XM.QUERY( "' $P/ PURCHASEORDER/ LI NEI TEMS/ LI NEI TEM @ TEMNUMBER=222] '
<Lineltem ItemNumber="222">

<Description>The Harder They Come</Description>

<Part 1d="953562951413" UnitPrice="22.95" Quantity="1"/>
</Lineltem>

1 row sel ect ed.

Example 5-36 Inserting an Element that Uses a Namespace

UPDATE pur chaseor der
SET OBJECT_VALUE =
XM.Query(' declare namespace e = "films.xsd"; (: :)
copy $i := $pl nodify
(for $ in $i/PurchaseOrder/Lineltens
return (# ora:child-el enent-nane e:Lineltem #)
{insert node $p2 into $j})
return $i'
PASSI NG OBJECT_VALUE AS "pl",
XM.Type(' <e:Lineltem |tenmNunber="222">
<Descri ption>The Harder They Come</Description>
<Part 1d="953562951413" UnitPrice="22.95" Quantity="1"/>
<le:Lineltem') AS "p2"
RETURNI NG CONTENT)
WHERE XMLEXi st s(' $p/ Pur chaseOr der [ Ref er ence=" AMCEVEN- 20021009123336171PDT"]"
PASSI NG OBJECT_VALUE AS "p");

Example 5-37 Inserting an Element Before an Element

SELECT XM.Query("' $p/ PurchaseCOrder/Linel tems/Lineltenf1]’
PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
FROM pur chaseor der po
WHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence=" AMCEVEN- 20021009123336171PDT"]"
PASSI NG po. OBJECT_VALUE AS "p");

XMLQUERY(" $P/ PURCHASEORDER/ LI NEI TEMS/ LI NEI TEM 1] ' PASSI NGPO. OBJECT _
<Lineltem |t em\unmber="1">

<Descri pti on>Sal esman</ Descri ption>

<Part 1d="37429158920" UnitPrice="39.95" Quantity="2"/>
</Lineltem

UPDATE pur chaseor der
SET OBJECT_VALUE =
XM.Query(' copy $i := $pl nodify
(for $j in $i/PurchaseOrder/Lineltenms/Lineltenfl]

ORACLE 5-41



ORACLE

Chapter 5
Updating XML Data

return insert node $p2 before $j)
return $i'
PASSI NG OBJECT VALUE AS "p1",
XM.Type( "<Lineltem ItemNumber="314">
<Description>Brazil</Description>
<Part 1d="314159265359" UnitPrice="69.95"
Quantity="2"/>
</Lineltem>") AS "p2"
RETURNI NG CONTENT)
VHERE XMLExi sts(' $p/ Pur chaseOr der [ Ref er ence=" AMCEVEN- 20021009123336171PDT"]"
PASSI NG OBJECT VALUE AS "p");

SELECT XM.Query("' $p/ Pur chaseOrder/ Li nel t ens/ Li nel t enf position() <= 2]'
PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
FROM pur chaseor der po
VHERE XMLExi sts(' $p/ Pur chaseOr der [ Ref er ence=" AMCEVEN- 20021009123336171PDT"]"
PASSI NG po. OBJECT VALUE AS "p");

XMLQUERY( "' $P/ PURCHASEORDER/ LI NEI TEMS/ LI NEI TEM PCSI Tl ON() <=2] ' PASSI NGPO. OBJECT _
<Lineltem ItemNumber="314">
<Description>Brazil</Description>
<Part 1d="314159265359" UnitPrice="69.95" Quantity="2"/>
</Lineltem>
<Lineltem |t em\unmber="1">
<Descri pti on>Sal esman</ Descri ption>
<Part |d="37429158920" UnitPrice="39.95" Quantity="2"/>
</Lineltenp

Example 5-38 Inserting an Element as the Last Child Element

SELECT XM.Query(" $p/ PurchaseOrder/ Actions/ Action[1]'
PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
FROM pur chaseor der po
WHERE XMLEXi sts(' $p/ Pur chaseOr der [ Ref er ence=" AVMCEVEN- 20021009123336171PDT"]"
PASSI NG po. OBJECT_VALUE AS "p");

XMLQUERY( " $P/ PURCHASEORDER/ ACTI ONS/ ACTI ON[ 1] ' PASSI NGPO. OBJECT_VALUE
<Action>

<User >KPARTNER</ User >
</ Action>

UPDATE pur chaseor der
SET OBJECT_VALUE =
XMLQuery(' copy $i := $pl nodify
(for $ in $i/PurchaseOr der/Actions/Action[1]
return insert nodes $p2 as last into $j)
return $i'
PASSI NG OBJECT_VALUE AS "pl",
XM.Type( "<Date>2002-11-04</Date>") AS "p2"
RETURNI NG CONTENT)
WHERE XMLEXi st s(' $p/ Pur chaseOr der [ Ref er ence=" AVMCEVEN- 20021009123336171PDT"]"
PASSI NG OBJECT_VALUE AS "p");

SELECT XM.Query(" $p/ PurchaseOrder/Actions/ Action[1]'
PASSI NG po. OBJECT_VALUE AS "p" RETURNI NG CONTENT)
FROM pur chaseor der po
WHERE XMLEXxi st s(' $p/ Pur chaseOr der [ Ref er ence=" AVMCEVEN- 20021009123336171PDT"]"
PASSI NG po. OBJECT_VALUE AS "p");

5-42



Chapter 5
Updating XML Data

XMLQUERY(" $P/ PURCHASEORDER/ ACTI ONS/ ACTI ON[ 1] ' PASSI NGPO. OBJECT_VALUE

<Action>
<User >KPARTNER</ User >
<Date>2002-11-04</Date>
</ Acti on>

5.6.4 Deleting XML Nodes

An example uses XQuery Update to delete XML nodes.

Example 5-39 deletes the Li nel t emelement whose | t emNunber attribute has value
222.

Example 5-39 Deleting an Element

SELECT XM.Query(' $p/ PurchaseQrder/Li neltens/Linelten] @temunber=222]"
PASSI NG po. OBJECT _VALUE AS "p" RETURNI NG CONTENT)
FROM pur chaseor der po
VWHERE XMLExi st s("' $p/ Pur chaseOr der [ Ref er ence=" AMCEWEN- 20021009123336171PDT"]"
PASSI NG po. OBJECT_VALUE AS "p");

XMLQUERY(" $P/ PURCHASEORDER/ LI NEI TEMS/ LI NEI TEM @ TEMNUVBER=222] "' PASSI NGPO
<Li nel tem |t emNunmber =" 222" >

<Descri pti on>The Harder They Come</Description>

<Part 1d="953562951413" UnitPrice="22.95" Quantity="1"/>
</Lineltenmp

UPDATE pur chaseor der
SET OBJECT_VALUE =
XM.Query(' copy $i := $p nodify
delete nodes $i/PurchaseOrder/Lineltens/Lineltenf @temNunber="222"]
return $i'
PASSI NG OBJECT_VALUE AS "p" RETURNI NG CONTENT)
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence=" AMCEVEN- 20021009123336171PDT"]"
PASSI NG OBJECT_VALUE AS "p");

SELECT XM.Query(' $p/ PurchaseQrder/Li neltens/Linelten] @temunber=222]'
PASSI NG po. OBJECT _VALUE AS "p" RETURNI NG CONTENT)
FROM pur chaseor der po
WHERE XMLExi st s("' $p/ Pur chaseOr der [ Ref er ence=" AMCEWEN- 20021009123336171PDT"]"
PASSI NG po. OBJECT_VALUE AS "p");

XMLQUERY(" $P/ PURCHASEORDER/ LI NEI TEMS/ LI NEI TEM @ TEMNUMBER=222] ' PASSI NGPO

1 row sel ect ed.

5.6.5 Creating XML Views of Modified XML Data

You can use XQuery Update to create new views of XML data.

Example 5-40 creates a view of table pur chaseor der .

ORACLE 5-43



Chapter 5
Performance Tuning for XQuery

Example 5-40 Creating a View Using Updated XML Data

CREATE OR REPLACE VI EW pur chaseor der _summary OF XM.Type AS
SELECT XM.Query('copy $i := $pl nodify
((for $ in $i/PurchaseOrder/Actions
return replace value of node $§ with ),
(for $ in $i/PurchaseQr der/ Shippinglnstructions
return replace value of node $j with ),
(for $j in $i/PurchaseOder/Lineltens
return replace value of node $§ with ())
return $i'
PASSI NG OBJECT VALUE AS "pl" RETURNI NG CONTENT)
FROM pur chaseor der p;

SELECT OBJECT VALUE FROM pur chaseorder _summary
VWHERE XMLExi st s(' $p/ Pur chaseOr der [ Ref er ence="DAUSTI N- 20021009123335811PDT"]"
PASSI NG OBJECT _VALUE AS "p");

OBJECT_VALUE
<Pur chaseOr der
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schema- i nst ance"
xsi : noNamespaceSchenmaLocat i on=
"http://local host: 8080/ source/ schemas/ poSour ce/ xsd/ pur chaseOr der . xsd" >
<Ref er ence>DAUSTI N- 20021009123335811PDT</ Ref er ence>
<Actions/>
<Rej ect/>
<Request or>Davi d L. Austin</Requestor>
<User >DAUSTI N</ User >
<Cost Cent er >S30</ Cost Cent er >
<ShippinglInstructions/>
<Speci al I nstructi ons>Couri er</ Speci al I nstructions>
<Lineltems/>
</ Pur chaseCOr der >

5.7 Performance Tuning for XQuery

A SQL query that involves XQuery expressions can often be automatically rewritten
(optimized) in one or more ways. This optimization is referred to as XML query
rewrite or optimization. When this happens, the XQuery expression is, in effect,
evaluated directly against the XML document without constructing a DOM in memory.

XPath expressions are a proper subset of XQuery expressions. XPath rewrite is a
subset of XML query rewrite that involves rewriting queries that involve XPath
expressions.

XPath rewrite includes all of the following:

e Single-pass streaming of XM_Type data stored as binary XML — A set of XPath
expressions is evaluated in a single scan of the data.

e XM.I ndex optimizations — A SQL statement that uses an XPath expression is
rewritten to an equivalent SQL statement that does not use it but which instead
references the relational XM.I ndex tables. The rewritten SQL statement can also
make use of any B-tree indexes on the underlying XM_| ndex tables.

ORACLE 5-44



ORACLE

Chapter 5
Performance Tuning for XQuery

*  Optimizations for XM_Type data stored object-relationally and for XM_Type views — A
SQL statement that uses an XPath expression is rewritten to an equivalent SQL
statement that does not use it but which instead references the object-relational or
relational data structures that underly the XM.Type data. The rewritten SQL
statement can also make use of any B-tree indexes on the underlying data
structures. This can take place for both queries and update operations.

Just as query tuning can improve SQL performance, so it can improve XQuery
performance. You tune XQuery performance by choosing appropriate XML storage
models and indexes.

As with database queries generally, you determine whether tuning is required by
examining the execution plan for a query. If the plan is not optimal, then consult the
following documentation for specific tuning information:

* For object-relational storage: XPath Rewrite for Object-Relational Storage
*  For binary XML storage: Indexes for XMLType Data

In addition, be aware that the following expressions can be expensive to process, so
they might add performance overhead when processing large volumes of data:

»  XQuery expressions that use the following axes (use forward and descendent
axes instead):

— ancestor

— ancestor-or-self
— descendant-or-self
— followng

— follow ng-sibling
— namespace

— parent

— preceding

— preceding-sibling

»  XQuery expressions that involve node identity (for example, using the order-
comparison operators << and >>)

Topics in this section present execution plans for some of the examples shown in
XQuery and Oracle XML DB, to indicate how they are executed.

* Rule-Based and Cost-Based XQuery Optimization
Several competing optimization possibilities can exist for queries with XQuery
expressions, depending on various factors such as the XM.Type storage model and
indexing that are used.

*  XQuery Optimization over Relational Data
Use of SQL/XML functions XM_Query and XM.Tabl e over relational data can be
optimized. Examples are included that use XQuery expressions that target XML
data created on the fly using f n: col | ect i on together with URI scheme or adb.

e XQuery Optimization over XML Schema-Based XMLType Data
Use of SQL/XML functions XM_Query and XM_Tabl e XML Schema-based data can
be optimized. Examples are included that use XQuery expressions that target an
XML schema-based XM.Type table stored object-relationally.

5-45



Chapter 5
Performance Tuning for XQuery

» Diagnosis of XQuery Optimization: XMLOptimizationCheck
You can examine an execution plan for your SQL code to determine whether
XQuery optimization occurs or the plan is instead suboptimal.

» Performance Improvement for fn:doc and fn:collection on Repository Data
You can improve the performance of f n: doc and f n: col | ecti on queries over the
Oracle XML DB Repository, by linking them to the actual database tables that hold
the repository data being queried.

Related Topics

e Oracle XML DB Support for XQuery
Oracle XML DB support for the XQuery language includes SQL support and
support for XQuery functions and operators.

5.7.1 Rule-Based and Cost-Based XQuery Optimization

Several competing optimization possibilities can exist for queries with XQuery
expressions, depending on various factors such as the XM.Type storage model and
indexing that are used.

By default, Oracle XML DB follows a prioritized set of rules to determine which of the
possible optimizations should be used for any given query and context. This behavior
is referred to as rule-based XML query rewrite.

Alternatively, Oracle XML DB can use cost-based XML query rewrite. In this mode,
Oracle XML DB estimates the performance of the various XML optimization
possibilities for a given query and chooses the combination that is expected to be most
performant.

You can impose cost-based optimization for a given SQL statement by using the
optimizer hint / *+ COST_XM._QUERY_REWRI TE */.

5.7.2 XQuery Optimization over Relational Data

Use of SQL/XML functions XM_LQuer y and XM.Tabl e over relational data can be
optimized. Examples are included that use XQuery expressions that target XML data
created on the fly using f n: col | ecti on together with URI scheme or adb.

Example 5-41 shows the optimization of XMLQuery over relational data accessed as
XML. Example 5-42 shows the optimization of XM_Tabl e in the same context.

Example 5-41 Optimization of XMLQuery over Relational Data

ORACLE

Here again is the query of Example 5-6, together with its execution plan, which shows
that the query has been optimized.

SELECT XM.Quer y(
"for $ in fn:collection("oradb:/OE WAREHOUSES") / ROW
return <\Warehouse id="{$i/WAREHOUSE_| O} " >
<Locati on>
{for $ in fn:collection("oradb:/HR LOCATI ONS")/ ROW
where $j/LOCATI ON_I D eq $i/LOCATION I D
return ($j/STREET_ADDRESS, $j/CITY, $j/STATE PROVI NCE)}
</ Locati on>
</ Vr ehouse>'
RETURNI NG CONTENT) FROM DUAL;

5-46



Chapter 5
Performance Tuning for XQuery

PLAN_TABLE_OUTPUT

| 1d | Operation | Nane | Rows | Bytes | Cost (%CPU)| Time |
| 0| SELECT STATEMENT | | 1] | 2 (0)| 00:00:01 |
| 1] SORT AGGREGATE | | 1] 41 | | |
| 2]  TABLE ACCESS BY INDEX ROWID| LOCATIONS | 1] 41 | 1 (0)| 00:00:01 |
|* 3] INDEX UNIQUE SCAN | LOC_ID_PK | 1] | 0 (0)| 00:00:01 |
| 4] SORT AGGREGATE | | 1] 6 | | |
| 5]  TABLE ACCESS FULL | WAREHOUSES | 9 | 54 | 2 (0)| 00:00:01 |
| 6] FAST DUAL | | 1] | 2 (0)| 00:00:01 |

3 - access("LOCATION_| D'=: B1)
18 rows sel ected.

Example 5-42 Optimization of XMLTable over Relational Data

Here again is the query of Example 5-7, together with its execution plan, which shows
that the query has been optimized.

SELECT *
FROM XM_Tabl e(
"for $i in fn:collection("oradb:/OE WAREHOUSES") / ROW
return <\Warehouse id="{$i/WAREHOUSE_ | D} " >
<Locat i on>
{for $ in fn:collection("oradb:/HR LOCATI ONS")/ ROW

where $j/LOCATION_ID eq $i/LOCATION_ID
return ($j/STREET_ADDRESS, $j/CITY, $j/STATE_PROVI NCE)}

</ Locat i on>

</ \\r ehouse>' ) ;

PLAN_TABLE_QUTPUT

| 1d | Operation | Name | Rows | Bytes | Cost (%CPU)| Tine |
| 0| SELECT STATEMENT | | 9| 54 | 2 (0)| 00:00:01 |
| 1| SORT AGGREGATE | | 1] 41 | | |
| 2| TABLE ACCESS BY INDEX ROWID| LOCATIONS | 1] 41 | 1 (0)| 00:00:01 |
[* 3| INDEX UNIQUE SCAN | LOC_ID_PK | 1] | 0 (0)] 00:00:01 |
| 4| TABLE ACCESS FULL | WAREHOUSES | 9| 54 | 2 (0)| 00:00:01 |

3 - access("LOCATIO\N_I D'=: B1)

16 rows sel ected.

ORACLE 5-47



Chapter 5
Performance Tuning for XQuery

5.7.3 XQuery Optimization over XML Schema-Based XMLType Data

Use of SQL/XML functions XM_Query and XM.Tabl e XML Schema-based data can be
optimized. Examples are included that use XQuery expressions that target an XML
schema-based XM.Type table stored object-relationally.

Example 5-43 shows the optimization of XML.Query over an XML schema-based
XM.Type table. Example 5-44 shows the optimization of XM.Tabl e in the same context.

Example 5-43 Optimization of XMLQuery with Schema-Based XMLType Data

Here again is the query of Example 5-10, together with its execution plan, which
shows that the query has been optimized.

SELECT XM.Query('for $i in /PurchaseCrder
where $i/ CostCenter eq "A10"
and $i/User eq "SMCCAIN"
return <AlOpo pono="{$i/Reference}"/>'
PASSI NG OBJECT_VALUE
RETURNI NG CONTENT)
FROM pur chaseor der;

PLAN_TABLE_QUTPUT

| 1d | Operation | Name | Rows | Bytes | Cost (%CPU)| Tine |
| 0| SELECT STATEMENT | | 1] 530 | 5 (0)| 00:00:01 |
| 1| SORT AGGREGATE | | 1] | | |
|* 2| FILTER | | | | | |
| 3] FAST DUAL | | 1] | 2 (0)| 00:00:01 |
[* 4| TABLE ACCESS FULL| PURCHASEORDER | 1] 530 | 5 (0)| 00:00:01 |

2 - filter(:Bl="SMCCAIN' AND :B2='Al0')
4 - filter(SYS_CHECKACL("ACLOD',"OMERI D', xm type(' <privilege
xm ns="http://xm ns. oracl e. conl xdb/ acl . xsd"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schema- i nst ance"
Xsi : schemaLocation="http://xm ns. oracl e. conf xdb/ acl . xsd
http://xm ns.oracl e. com xdb/ acl . xsd DAV: http://xm ns. oracl e. conf xdb/ dav. xsd" >
<read- properties/><read-contents/></privilege>))=1)

22 rows sel ected.

Example 5-44 Optimization of XMLTable with Schema-Based XMLType Data

Here again is the query of Example 5-14, together with its execution plan, which
shows that the query has been optimized. The XQuery result is never materialized.
Instead, the underlying storage columns for the XML collection element Li nel t emare
used to generate the overall result set.

SELECT lines.lineitem lines.description, lines.partid,
lines.unitprice, lines.quantity

ORACLE 5-48



FROM pur chaseor der,

Chapter 5

Performance Tuning for XQuery

XM.Tabl e(' for $i in /PurchaseO der/Lineltenms/Lineltem

where $i/ @temNunber >= 8
and $i/Part/@nitPrice > 50
and $i/Part/@uantity > 2
return $i'
PASSI NG OBJECT_VALUE

COLUWNS [ineitem NUMBER PATH '
description VARCHAR2(30) PATH '
partid NUMVBER PATH '
unitprice  NUMBER PATH '
guantity  NUMBER PATH

| 1d | Operation | Name | Rows | Bytes |
| 0| SELECT STATEMENT | | 4 384 |
| 1| NESTED LOOPS | | | |
| 2| NESTED LOOPS | | 4 384 |
[* 3| TABLE ACCESS FULL | PURCHASECRDER | 1| 37 |
|* 4| INDEX RANGE SCAN | SYS_C005478 | 17 | |
|* 5|  TABLE ACCESS BY | NDEX ROND| LINEI TEM TABLE | 3| 177 |

3 - filter(SYS_CHECKACL("ACLO D', "OMERI D', xm type(' <privil ege
xm ns="http://xm ns. oracl e. com xdb/ acl . xsd"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schema- i nst ance"
xsi : schemalLocation="http://xm ns. oracl e. conf xdb/ acl . xsd
http://xm ns. oracl e. conf xdb/ acl . xsd
DAV: http://xm ns. oracl e. com xdb/ dav. xsd" ><r ead- pr op
erties/><read-contents/></privilege>))=1)

4 - access("NESTED TABLE_| D'="PURCHASEORDER'. " SYS_NC0003400035$")

@t em\unber',
Description',
Part/@d',

Part/ @hnitPrice',

Part/ @uantity') lines;

7 (0)] 00:00:01 |

I I
7 (0)] 00:00:01 |
5 (0)| 00:00:01 |
1 (0)] 00:00:01 |
2 (0)] 00:00:01 |

5 - filter("SYS_NC00013$">50 AND "SYS _NC00012$">2 AND "I TEMNUMBER' >=8 AND

"SYS_NC_TYPEI D§" 1S NOT NULL)

25 rows sel ected.

This example traverses table oe. pur chaseor der completely. The XM_Tabl e expression
is evaluated for each purchase-order document. It is more efficient to have the
XM.Tabl e expression, not the pur chaseor der table, drive the SQL-query execution.

Although the XQuery expression has been rewritten to relational expressions, you can
improve this optimization by creating an index on the underlying relational data — you
can optimize this query in the same way that you would optimize a purely SQL query.

That is always the case with XQuery in Oracle XML DB: the optimization techniques

you use are the same as those you use in SQL.

The Uni t Pri ce attribute of collection element Li nel t emis an appropriate index target.
The governing XML schema specifies that an ordered collection table (OCT) is used to

store the Li nel t emelements.

However, the name of this OCT was generated by Oracle XML DB when the XML
purchase-order documents were decomposed as XML schema-based data. Instead of
using table pur chaseor der from sample database schema HR, you could manually
create a new pur chaseor der table (in a different database schema) with the same
properties and same data, but having OCTs with user-friendly names.

ORACLE

5-49



Chapter 5
Performance Tuning for XQuery

Assuming that this has been done, the following statement creates the appropriate
index:

CREATE | NDEX unitprice_index ON |ineitemtable("PART"."UNI TPRI CE");

With this index defined, the query of Example 5-14 results in the following execution
plan, which shows that the XM_Tabl e expression has driven the overall evaluation.

PLAN_TABLE_QUTPUT

| 1d | Operation | Nane | Rows | Bytes | Cost (%CPU)| Time |
| 0| SELECT STATEMENT | | 3| 624 8 (0)| 00:00:01 |
| 1] NESTED LOOPS | | 3| 624 8 (0)| 00:00:01 |
|* 2 INDEX UNIQUE SCAN| SYS_|OT_TOP_49323 | 3| 564 | 5 (0)| 00:00:01 |
|* 3] INDEX RANGE SCAN| UNITPRICE_INDEX | 20 | | 2 (0)| 00:00:01 |
|* 4] INDEX UNIQUE SCAN| SYS_0004411 | 1] | 0 (0)| 00:00:01 |

2 - access("SYS_NC00013$" >50)
filter("I TEMNUMBER' >=8 AND " SYS_NC00012$">2)
3 - access("SYS_NC00013$" >50)
4 - access("NESTED_TABLE_| D' =" PURCHASECRDER" . " SYS_NC0003400035$")
Not e

- dynami ¢ sanpling used for this statement

23 rows sel ected.

5.7.4 Diagnosis of XQuery Optimization: XMLOptimizationCheck

ORACLE

You can examine an execution plan for your SQL code to determine whether XQuery
optimization occurs or the plan is instead suboptimal.

In the latter case, a note such as the following appears immediately after the plan:

Unoptim zed XM construct detected (enable XM.Optim zati onCheck
for nmore information)

You can also compare the execution plan output with the plan output that you see after
you use the optimizer hint NO_ XM_._QUERY_REWRI TE, which turns off XQuery
optimization.

In addition, you can use the SQL*Plus SET command with system variable
XM.Opt i mi zat i onCheck to turn on an XML diagnosability mode for SQL:

SET XMLOpti ni zationCheck ON

When this mode is on, the plan of execution is automatically checked for XQuery
optimization, and if the plan is suboptimal then an error is raised and diagnostic
information is written to the trace file indicating which operators are not rewritten.

5-50



Chapter 5
Performance Tuning for XQuery

The main advantage of XM_Opt i mi zat i onCheck is that it brings a potential problem to
your attention immediately. For this reason, you might find it preferable to leave it
turned on at all times. Then, if an application change or a database change for some
reason prevents a SQL operation from rewriting, execution is stopped instead of
performance being negatively impacted without your being aware of the cause.

# Note:

e XM.OptimzationCheck was not available prior to Oracle Database 11g
Release 2 (11.2.0.2). Users of older releases directly manipulated event
19201 to obtain XQuery optimization information.

e OCIl users can use OCl St nt Execut e or event 19201. Only the event is
available to Java users.

¢ See Also:

Turning Off Use of XMLIndex for information about optimizer hint
NO_XM__QUERY_REVRI TE

5.7.5 Performance Improvement for fn:doc and fn:collection on
Repository Data

ORACLE

You can improve the performance of f n: doc and f n; col | ecti on queries over the
Oracle XML DB Repository, by linking them to the actual database tables that hold the
repository data being queried.

In Oracle XML DB, you can use XQuery functions f n: doc and f n: col | ecti on to
reference documents and collections in Oracle XML DB Repository.

When repository XML data is stored object-relationally or as binary XML, queries that
use fn: doc and fn: col | ecti on are evaluated functionally; that is, they are not
optimized to access the underlying storage tables directly. To improve the
performance of such queries, you must link them to the actual database tables that
hold the repository data being queried. You can do that in either of the following ways:

* Join view RESOURCE_VI EWwith the XMLType table that holds the data, and then use
the Oracle SQL functions equal s_pat h and under _pat h instead of the XQuery
functions f n: doc and f n: col | ecti on, respectively. These SQL functions reference
repository resources in a performant way.

* Use the Oracle XQuery extension-expression pragma or a: def aul t Tabl e.

Both methods have the same effect. Oracle recommends that you use the
ora: def aul t Tabl e pragma because it lets you continue to use the XQuery standard
functions f n: doc and f n: col | ecti on and it simplifies your code.

These two methods are illustrated in the examples of this section.

5-51



Chapter 5
Performance Tuning for XQuery

* Use EQUALS PATH and UNDER_PATH Instead of fn:doc and fn:collection
Using Oracle SQL functions equal s_pat h and under _pat h instead of XQuery
functions f n; doc and f n: col | ecti on can improve performance.

» Using Oracle XQuery Pragma ora:defaultTable
You can use Oracle XQuery extension-expression pragma or a: def aul t Tabl e to
improve the performance of querying repository data.

5.7.5.1 Use EQUALS_PATH and UNDER_PATH Instead of fn:doc and
fn:collection

Using Oracle SQL functions equal s_pat h and under _pat h instead of XQuery functions
fn:doc and fn: col | ecti on can improve performance.

SQL function equal s_pat h references a resource located at a specified repository
path, and SQL function under _pat h references a resource located under a specified
repository path. Example 5-45 and Example 5-46 illustrate this for functions f n: doc
and equal s_pat h; functions f n: col | ecti on and under _pat h are treated similarly.

Example 5-45 Unoptimized Repository Query Using fn:doc

SELECT XM.Query('let $val :=
fn: doc("/home/ OE/ Pur chaseOr der s/ 2002/ Sep/
VJONES- 20021009123337583PDT. xm ")
 PurchaseOrder/ Li nel t ens/ Li nel teni @t emNunber =19]
return $val' RETURNI NG CONTENT)
FROM DUAL;

Example 5-46 Optimized Repository Query Using EQUALS_PATH

SELECT XM.Query('let $val := $DOC PurchaseOrder/Lineltens/Linelten] @temunber = 19]
return $val' PASSI NG OBJECT_VALUE AS "DOC' RETURNI NG CONTENT)
FROM RESOQURCE_VI EWrv, purchaseorder p
VWHERE ref(p) = XM.Cast (XM.Query(' declare default el ement nanespace
"http://xmns. oracl e. cont xdb/ XDBResour ce. xsd"; (: :)
fn: dat al(/ Resour ce/ XMLRef )' PASSI NG rv. RES RETURNI NG
CONTENT)
AS REF XM.Type)
AND equal s_pat h(rv. RES, '/hone/ OE/ PurchaseQOr der s/ 2002/ Sep/
VJONES- 20021009123337583PDT. xni ')
= 1;

5.7.5.2 Using Oracle XQuery Pragma ora:defaultTable

You can use Oracle XQuery extension-expression pragma or a: def aul t Tabl e to
improve the performance of querying repository data.

Oracle XQuery extension-expression pragma or a: def aul t Tabl e lets you specify the
default table used to store repository data that you query. The query is rewritten to
automatically join the default table to view RESQURCE VI EWand use Oracle SQL
functions equal s_pat h and under _pat h instead of XQuery functions f n: doc and

1 XQuery function f n: dat a is used here to atomize its argument, in this case returning the XM_Ref node's typed
atomic value.

ORACLE 5-52



Chapter 5
Performance Tuning for XQuery

fn:coll ection, respectively. The effect is thus the same as coding the query manually
to use an explicit join and equal s_pat h or under _pat h. Example 5-47 illustrates this;
the query is rewritten automatically to what is shown in Example 5-46.

For clarity of scope Oracle recommends that you apply pragma or a: def aul t Tabl e
directly to the relevant document or collection expression, f n: doc or f n: col | ecti on,
rather than to a larger expression.

Example 5-47 Repository Query Using Oracle XQuery Pragma ora:defaultTable

SELECT XMLQuery('for $doc in (#ora:defaultTable PURCHASEORDER #)
{fn:doc("/home/ OE/ Pur chaseOr der s/ 2002/ Sep/ VJONES- 20021009123337583PDT. xni ") }
et $val := $doc/ PurchaseCOrder/Lineltens/Linelten] @tenm\unber = 19]
return $val }'
RETURNI NG CONTENT)
FROM DUAL;

ORACLE 5-53



Indexes for XMLType Data

You can create indexes on your XML data, to focus on particular parts of it that you
guery often and thus improve performance. There are various ways that you can index
XM.Type data, whether it is XML schema-based or non-schema-based, and regardless
of the XMLType storage model you use.

# Note:

The execution plans shown here are for illustration only. If you run the
examples presented here in your environment then your execution plans
might not be identical.

e Oracle XML DB Tasks Involving Indexes
Common tasks involving indexes for XML data are described.

e Overview of Indexing XMLType Data
Database indexes improve performance by providing faster access to table data.
The use of indexes is particularly recommended for online transaction processing
(OLTP) environments involving few updates.

XMLIndex

e Indexing XML Data for Full-Text Queries
When you need full-text search over XML data, Oracle recommends that you store
your XM.Type data as binary XML and you use XQuery Full Text (XQFT). You use
an XML search index for this. This is the topic of this section.

* Indexing XMLType Data Stored Object-Relationally
You can effectively index XMLType data that is stored object-relationally by creating
B-tree indexes on the underlying database columns that correspond to XML
nodes.

" See Also:

e Oracle Database Concepts for an overview of indexing

e Oracle Database Development Guide for information about using
indexes in application development

6.1 Oracle XML DB Tasks Involving Indexes

Common tasks involving indexes for XML data are described.

ORACLE 6-1



Chapter 6
Oracle XML DB Tasks Involving Indexes

Table 6-1 identifies the documentation for some basic user tasks involving indexes for

XML data.

Table 6-1 Basic XML Indexing Tasks

For information about how to...

See...

Choose an indexing approach

Index XMLType data stored object-relationally

Create, drop, or rename an XM.I ndex index
Obtain the name of an XMLI ndex index for a given table or column

Determine whether a given XML ndex index is used in evaluating a
query
Turn off use of an XMLI ndex index

Overview of Indexing XMLType Data

Indexing XMLType Data Stored Object-
Relationally, Guideline: Create indexes on
ordered collection tables

Example 6-7, Example 6-9
Example 6-8
How to Tell Whether XMLIndex is Used

Turning Off Use of XMLIndex

Table 6-2 identifies the documentation for some user tasks involving XM.I ndex indexes

that have a structured component.

Table 6-2 Tasks Involving XMLIndex Indexes with a Structured Component

For information about how to...

See...

Create an XM.I ndex index with a structured component

Drop the structured component of an XM.I ndex index (drop all
structure groups)

Ensure data type correspondence between a query and an XM.I ndex
index with a structured component

Create a B-tree index on a content table of an XMLI ndex structured
component

Create an Oracle Text CONTEXT index on a content table of an
XM.I ndex structured component

Example 6-23, Example 6-21
Example 6-25

Data Type Considerations for XMLIndex
Structured Component

Example 6-26

Example 6-46

Table 6-3 identifies the documentation for some user tasks involving XM.I ndex indexes

that have an unstructured component.

Table 6-3 Tasks Involving XMLIndex Indexes with an Unstructured Component

For information about how to...

See...

Create an XM_I ndex index with an unstructured component

Drop the unstructured component of an XMLI ndex index (drop the
path table)

Name the path table when creating an XM_I ndex index
Specify storage options when creating an XM.I ndex index

Show all existing secondary indexes on an XMLI ndex path table

ORACLE

Example 6-10, Example 6-12,
Example 6-33, Example 6-35,
Example 6-36, Example 6-37,
Example 6-38

Example 6-13

Example 6-10
Example 6-12
Example 6-14, Example 6-20

6-2



Chapter 6
Oracle XML DB Tasks Involving Indexes

Table 6-3 (Cont.) Tasks Involving XMLIndex Indexes with an Unstructured Component

For information about how to... See...
Obtain the name of a path table for an XM_I ndex index Example 6-11
Obtain the name of an XM_| ndex index with an unstructured Example 6-28

component, given its path table

Create a secondary index on an XM.I ndex path table

Obtain information about all of the secondary indexes on an
XM.I ndex path table

Create a function-based index on a path-table VALUE column

Create a numeric index on a path-table VALUE column

Create a date index on a path-table VALUE column

Create an Oracle Text CONTEXT index on a path-table VALUE column

Exclude or include particular XPath expressions from use by an
XMLI ndex index

Specify namespace prefixes for XPath expressions used for
XMLI ndex

Exclude or include particular XPath expressions from use by an
XM ndex index

Specify namespace prefixes for XPath expressions used for
XM ndex

Using XMLIndex with an Unstructured
Component

Example 6-20

Example 6-15
Example 6-17
Example 6-18
Example 6-19

XMLIndex Path Subsetting: Specifying the
Paths You Want to Index

XMLIndex Path Subsetting: Specifying the
Paths You Want to Index

XMLIndex Path Subsetting: Specifying the
Paths You Want to Index

XMLIndex Path Subsetting: Specifying the
Paths You Want to Index

Table 6-4 identifies the documentation for some other user tasks involving XMLI ndex

indexes.

Table 6-4 Miscellaneous Tasks Involving XMLIndex Indexes

For information about how to...

See...

Specify that an XM.| ndex index should be created and maintained
using parallel processes

Change the parallelism of an XMLI ndex path table to tune index
performance

Schedule maintenance for an XMLI ndex index
Manually synchronize an XM.| ndex index and its base table

Collect statistics on a table or index for the cost-based optimizer
Create an XML search index

Use an XML search index for full-text search of XML data stored as
binary XML

Show whether an XML search index is used in a query

Create an Oracle Text CONTEXT index on a content table of an
XM.I ndex structured component

XMLIndex Partitioning and Parallelism

XMLIndex Partitioning and Parallelism

Asynchronous (Deferred) Maintenance of
XMLIndex Indexes

Asynchronous (Deferred) Maintenance of
XMLIndex Indexes

Example 6-40
Example 6-41
Example 6-42

Example 6-43
Example 6-46

ORACLE

6-3



Chapter 6
Overview of Indexing XMLType Data

6.2 Overview of Indexing XMLType Data

Database indexes improve performance by providing faster access to table data. The
use of indexes is particularly recommended for online transaction processing (OLTP)
environments involving few updates.

The principle way you index XML data is using XM.I ndex. You can also use Oracle
Text CONTEXT indexes to supplement the use of XM.I ndex.

Here is a summary decision tree, as the place to start when choosing ways to index
XM_Type data stored as binary XML:!

If your XML data contains islands of structured, predictable data, and your
queries are known

Use XM.I ndex with a structured component to index the structured islands (even if the
data surrounding these islands is unstructured).

A structured index component reflects the queries you use. You can change this set of
known queries over time, provided you update the index definition accordingly. See
XMLIndex Structured Component.

If you need to query full-text content within your XML data

Use an XML search index. See Oracle Text Indexes for XML Data.

If you need to support ad-hoc XML queries that involve predicates

Use XM.I ndex with an unstructured component — see XMLIndex Unstructured
Component.

Does your XML data contain islands of data that is highly structured and predictable
(even if the surrounding data might be unstructured)?

e Yes. Use XM.I ndex with a structured component to index the islands. See
"XMLIndex Structured Component" on page 6-12.

* No. Do you need to query full-text content within your XML data?

— Yes. Use an XML search index. See "Oracle Text Indexes for XML Data" on
page 6-5.

— No. Do you need to support ad-hoc XML queries that involve predicates? If so,
use XMLIndex with an unstructured component — see "XMLIndex Unstructured
Component" on page 6-16. If not, do not bother to index your XML data.

e XMLIndex Addresses the Fine-Grained Structure of XML Data
You can create indexes on one or more relational columns, or on a functional
expression. XML data, however, has its own, fine-grained structure, which is not
necessarily reflected in the structure of the database tables used to store it. For
this reason, effectively indexing XML data can be a bit different from indexing most
database data.

1 For XM_Type data stored object-relationally, see Indexing XMLType Data Stored Object-Relationally. If your data
is highly structured throughout, or your queries are not known at index creation time, then this approach might be
appropriate.

ORACLE 6-4



Chapter 6
Overview of Indexing XMLType Data

*  Oracle Text Indexes for XML Data
Besides accessing XML nodes such as elements and attributes, it is sometimes
important to provide fast access to particular passages within XML text nodes. To
guery such content within XML data, you can use XQuery Full Text (XQFT) or
Oracle-specific full-text constructs.

*  Optimization Chooses the Right Indexes to Use
Which indexes are used when more than one might apply in a given case? Cost-
based optimization determines the index or indexes to use, so that performance is
maximized.

* Function-Based Indexes Are Deprecated for XMLType
In releases prior to Oracle Database 11g Release 2 (11.2), function-based indexes
were sometimes appropriate for use with XM_Type data when an XPath expression
targeted a singleton node. Oracle recommends that you use the structured
component of XMLI ndex instead.

6.2.1 XMLIndex Addresses the Fine-Grained Structure of XML Data

ORACLE

You can create indexes on one or more relational columns, or on a functional
expression. XML data, however, has its own, fine-grained structure, which is not
necessarily reflected in the structure of the database tables used to store it. For this
reason, effectively indexing XML data can be a bit different from indexing most
database data.

For object-relational XM.Type storage, XML objects such as elements and attributes
correspond to object-relational columns and tables. Creating B-tree indexes on those
columns and tables thus provides an excellent way to effectively index the
corresponding XML objects. Here, the storage model directly reflects the fine-grained
structure of the XML data, so there is no special problem for indexing structured XML
data. See Indexing XMLType Data Stored Object-Relationally.

In object-relational XM_Type storage, an XML document is broken up and stored object-
relationally, but you can choose to store one or more of its XML fragments as
embedded CLOB instances. A typical use case for this is mapping an XML-schema
conpl exType or a complex element to CLOB storage, because you generally access the
entire fragment as a unit.

But such an embedded CLOB fragment also acts as an opaque unit when it comes to
indexing; its parts are not indexed individually.

Similarly, standard indexing is not helpful for binary XML storage. In both of these
cases, indexing a database column using the standard sorts of index (B-tree, bitmap)
is generally not helpful for accessing particular parts of an XML document.

XM.I ndex provides a general, XML-specific index that indexes the internal structure of
XML data. One of its main purposes is to overcome the indexing limitation presented
by binary XML storage.

e An XM.I ndex index with an unstructured component indexes the XML tags of your
document and identifies document fragments based on XPath expressions that
target them. It can also index scalar node values, to provide quick lookup based
on individual values or ranges of values. It also records document hierarchy
information for each node it indexes: relations parent—child, ancestor—descendant,
and sibling. This index component is particularly useful for queries that extract
XML fragments from documents that have little or variable structure.

6-5



Chapter 6
Overview of Indexing XMLType Data

* An XM.I ndex index with a structured component indexes highly structured and
predictable parts of XML data that is nevertheless for the most part unstructured.
This index component is particularly useful for queries that project and use such
islands of structured content.

Related Topics
e XMLIndex

6.2.2 Oracle Text Indexes for XML Data

Besides accessing XML nodes such as elements and attributes, it is sometimes
important to provide fast access to particular passages within XML text nodes. To
guery such content within XML data, you can use XQuery Full Text (XQFT) or Oracle-
specific full-text constructs.

In either case, you create an appropriate Oracle Text (full-text) index. In the case of
XQFT, the index is an XML search index, which is designed specifically for use with
XM.Type data stored as binary XML.

Full-text indexing is particularly useful for document-centric applications, which often
contain a mix of XML elements and text-node content. Full-text searching can often be
made more powerful, more focused, by combining it with structural XML searching,
that is, by restricting it to certain parts of an XML document, which are identified by
using XPath expressions.

Related Topics

e Indexing XML Data for Full-Text Queries
When you need full-text search over XML data, Oracle recommends that you store
your XM.Type data as binary XML and you use XQuery Full Text (XQFT). You use
an XML search index for this. This is the topic of this section.

6.2.3 Optimization Chooses the Right Indexes to Use

Which indexes are used when more than one might apply in a given case? Cost-based
optimization determines the index or indexes to use, so that performance is
maximized.

Oracle Text indexes apply only to text, which for XML data means text nodes.
Whenever text nodes are targeted and a corresponding Oracle Text index is defined, it
is used. If other indexes are also appropriate in a particular context, then they can be
used as well. However, just because an index is defined and it might appear
applicable in a given situation does not mean that it will be used. It will not be used if
the cost-based optimizer deems that its use is not cost-effective.

6.2.4 Function-Based Indexes Are Deprecated for XMLType

ORACLE

In releases prior to Oracle Database 11g Release 2 (11.2), function-based indexes
were sometimes appropriate for use with XMLType data when an XPath expression
targeted a singleton node. Oracle recommends that you use the structured component
of XMLl ndex instead.

Doing so obviates the overhead associated with maintenance operations on function-
based indexes, and it increases the number of situations in which the optimizer can

6-6



Chapter 6
XMLIndex

correctly select the index. No changes to existing DML statements are required as a
result of this.

It continues to be the case that, for object-relational storage of XM.Type, defining an
index for (deprecated) Oracle SQL function ext r act Val ue often leads, by XPath
rewrite, to automatic creation of B-tree indexes on the underlying objects (instead of a
function-based index on extract Val ue). The XPath target here must be a singleton
element or attribute. A similar shortcut exists for XM.Cast applied to XM_Query.

Related Topics

Indexing XMLType Data Stored Object-Relationally

You can effectively index XM_Type data that is stored object-relationally by creating
B-tree indexes on the underlying database columns that correspond to XML
nodes.

XMLIndex Structured Component

You create and use the structured component of an XM.I ndex index for queries
that project fixed, structured islands of XML content, even if the surrounding data
is relatively unstructured.

6.3 XMLIndex

ORACLE

Advantages of XMLIndex

B-tree indexes can be used advantageously with object-relational XM.Type storage
— they provide sharp focus by targeting the underlying objects directly. They are
generally ineffective, however, in addressing the detailed structure (elements and
attributes) of an XML document stored using binary XML. That is the special
domain of XML ndex.

Structured and Unstructured XMLIndex Components

XM.I ndex is used to index XML data that is unstructured or semi-structured, that is,
data that generally has little or no fixed structure. It applies to XM.Type data that is
stored as binary XML.

XMLIndex Structured Component

You create and use the structured component of an XM.I ndex index for queries
that project fixed, structured islands of XML content, even if the surrounding data
is relatively unstructured.

XMLIndex Unstructured Component

Unlike a B-tree index, which you define for a specific database column that
represents an individual XML element or attribute, or the XM.I ndex structured
component, which applies to specific, structured document parts, the unstructured
component of an XM.I ndex index is, by default, very general.

Creating, Dropping, Altering, and Examining an XMLIndex Index
Basic operations on an XM.| ndex index include creating it, dropping it, altering it,
and examining it. Examples are presented.

Using XMLIndex with an Unstructured Component

You can perform various operations on an XM.| ndex index that has an
unstructured component, including manipulating the path table and the secondary
indexes of that component.

Use of XMLIndex with a Structured Component
An XM.I ndex structured component indexes specific islands of structure in your
XML data.

6-7



Chapter 6
XMLIndex

How to Tell Whether XMLIndex is Used
To know whether a particular XMLl ndex index has been used in resolving a query,
you can examine an execution plan for the query.

Turning Off Use of XMLIndex
You can turn off the use of XM.I ndex by using optimizer hint: / *+
NO XM._QUERY_REWRI TE */ or optimizer hint/*+ NO_XM.I NDEX_ REWRI TE */.

XMLIndex Path Subsetting: Specifying the Paths You Want to Index
If you know which XPath expressions you are most likely to query then you can
narrow the focus of XMLl ndex indexing and thus improve performance.

Guidelines for Using XMLIndex with an Unstructured Component
There are several guidelines that can help you use XM.I ndex with an unstructured
component.

Guidelines for Using XMLIndex with a Structured Component
There are several guidelines that can help you use XM.I ndex with a structured
component.

XMLIndex Partitioning and Parallelism

If you partition an XM_Type table, or a table with an XM_Type column, using range,
list, or hash partitioning, you can also create an XM.I ndex index on the table. You
can optionally ensure that index creation and maintenance are carried out in
parallel.

Asynchronous (Deferred) Maintenance of XMLIndex Indexes

You can defer the cost of maintaining an XM.I ndex index that has only an
unstructured component, performing maintenance only at commit time or when
database load is reduced. This can improve DML performance, and it can enable
bulk loading of unsynchronized index rows when an index is synchronized.

Collecting Statistics on XMLIndex Objects for the Cost-Based Optimizer

The Oracle Database cost-based optimizer determines how to most cost-
effectively evaluate a given query, including which indexes, if any, to use. For it to
be able to do this accurately, you must collect statistics on various database
objects.

Data Dictionary Static Public Views Related to XMLIndex

Information about the standard database indexes is available in static public views
USER | NDEXES, ALL_I| NDEXES, and DBA | NDEXES. Similar information about

XM.I ndex indexes is available in static public views USER_XM__| NDEXES,

ALL_XM.__I NDEXES, and DBA_ XM._| NDEXES.

PARAMETERS Clause for CREATE INDEX and ALTER INDEX

Creation or modification of an XM.| ndex index often involves the use of a
PARAMETERS clause with SQL statement CREATE | NDEX or ALTER | NDEX. You can
use it to specify index characteristics in detail.

6.3.1 Advantages of XMLIndex

ORACLE

B-tree indexes can be used advantageously with object-relational XM.Type storage —
they provide sharp focus by targeting the underlying objects directly. They are
generally ineffective, however, in addressing the detailed structure (elements and
attributes) of an XML document stored using binary XML. That is the special domain of
XMLI ndex.

6-8



Chapter 6
XMLIndex

XM.I ndex is a domain index; it is designed specifically for the domain of XML data. It is
a logical index. An XM.I ndex index can be used for SQL/XML functions XM.Query,
XM.Tabl e, XMLExi st s, and XM_Cast .

XMLIndex presents the following advantages over other indexing methods:

» An XM.I ndex index is effective in any part of a query; it is not limited to use in a
VWHERE clause. This is not the case for any of the other kinds of indexes you might
use with XML data.

e An XM.I ndex index with an unstructured component can speed access to both
SELECT list data and FROMlist data, making it useful for XML fragment extraction, in
particular. Function-based indexes, which are deprecated, cannot be used to
extract document fragments.

* You can use an XM.| ndex index with either XML schema-based or non-schema-
based XMLType data stored as binary XML. B-tree indexing is appropriate only for
XML schema-based data that is stored object-relationally.

* You can use an XM.| ndex index for searches with XPath expressions that target
collections, that is, nodes that occur multiple times within a document. This is not
the case for function-based indexes.

* You need no prior knowledge of the XPath expressions that might be used in
gueries. The unstructured component of an XM.I ndex index can be completely
general. This is not the case for function-based indexes.

« If you have prior knowledge of the XPath expressions to be used in queries, then
you can improve performance either by using a structured XM.I ndex component
that targets fixed, structured islands of data that are queried often.

e XM.I ndex indexing — both index creation and index maintenance — can be carried
out in parallel, using multiple database processes. This is not the case for function-
based indexes, which are deprecated.

6.3.2 Structured and Unstructured XMLIndex Components

ORACLE

XM.I ndex is used to index XML data that is unstructured or semi-structured, that is,
data that generally has little or no fixed structure. It applies to XM.Type data that is
stored as binary XML.

Semi-structured XML data can sometimes nevertheless contain islands of predictable,
structured data. An XM.| ndex index can therefore have two components: a structured
component, used to index such islands, and an unstructured component, used to
index data that has little or variable structure.

A structured component can help with queries that project and use islands of
structured content. A typical example is a free-form specification with fixed fields
author, date, and title. An unstructured component can help with queries that extract
XML fragments. Either component can be omitted from a given XM.I ndex index.

Unlike a structured component, an unstructured component is general and relatively
untargeted. It is appropriate for general indexing of document-centric XML data. A
typical example is an XML web document or a book chapter.

You can create an XM.I ndex index with both structured and unstructured components.
A typical use case is supporting queries that extract an XML fragment from a
document whenever some structured data is also present. The unstructured
component is used for the fragment extraction. The structured component is used for a

6-9



Chapter 6
XMLIndex

query predicate that checks for the structured data (for example, in the SQL WHERE
clause).

Though you can restrict an unstructured component to apply only to certain XPath
subsets, its path table indexes node content that can be of different scalar types,
which can require you to create multiple secondary indexes on the VALUE column to
deal with the different data types — see Secondary Indexes on Column VALUE. Using
an unstructured component alone can also lead to inefficiencies involving multiple
probes and self-joins of its path table, for queries that project structured islands.

On the other hand, a structured component is not suited for queries that involve little
structure or queries that extract XML fragments. Use a structured component to index
structured islands of data; use an unstructured component to index data that has little
structure.

The last row indicates the applicability of XMLl ndex for different XML data use cases. It
shows that XMLI ndex is appropriate for semi-structured XML data, however it is stored
(last three columns). And an XM.I ndex index with a structured component is useful for
document-centric data that contains structured islands (fourth column).

Figure 6-1 XML Use Cases and XML Indexing

Data-Centric

Document-Centric

Use Case XML schema-based data, with Variable, free-form data, with Variable, free-form data
little variation and little structural some fixed embedded
change over time structures
Typical Data Employee record Technical article, with author, Web document or book chapter
date, and title fields
Storage Model | Object-Relational Binary XML
(Structured)
Indexing B-tree index - XMLIndex index with structured | - XMLIndex index with
and unstructured components unstructured component
- XML search index - XML search index

ORACLE

Related Topics

e XMLIndex Structured Component

You create and use the structured component of an XM.I ndex index for queries
that project fixed, structured islands of XML content, even if the surrounding data
is relatively unstructured.

e XMLIndex Unstructured Component
Unlike a B-tree index, which you define for a specific database column that
represents an individual XML element or attribute, or the XM.I ndex structured
component, which applies to specific, structured document parts, the unstructured
component of an XM.I ndex index is, by default, very general.

6-10



Chapter 6
XMLIndex

¢ See Also:

Advantages of XMLIndex for a summary of the advantages provided by each
XM.I ndex component type

6.3.3 XMLIndex Structured Component

You create and use the structured component of an XM.I ndex index for queries that
project fixed, structured islands of XML content, even if the surrounding data is
relatively unstructured.

A structured XM.I ndex component organizes such islands in a relational format. In this
it is similar to SQL/XML function XM_Tabl e, and the syntax you use to define the
structured component reflects this similarity. The relational tables used to store the
indexing data are data-type aware, and each column can be of a different scalar data

type.

You can thus think of the act of creating the structured component of an XM.I ndex
index as decomposing a structured portion of your XML data into relational format.
This differs from the object-relational storage model of XMLType in these ways:

e Astructured index component explicitly decomposes particular portions of your
data, which you specify — portions that you commonly query. Object-relational
XM.Type storage involves automatic decomposition of an entire XM.Type table or
column.

*  The structured component of an XM.I ndex index applies to both XML schema-
based and non-schema-based data. Object-relational XM.Type storage applies
only to data that is based on an XML schema.

e The decomposed data for a structured XM.| ndex component is stored in addition to
the XMLType data, as an index, rather than being the storage model for the XM.Type
data itself.

* For a structured XM.| ndex component, the same data can be projected multiple
times, as columns of different data type.

The index content tables used for the structured component of an XM.I ndex index are
part of the index, but because they are normal relational tables you can, in turn, index
them using any standard relational indexes, including indexes that satisfy primary-key
and foreign-key constraints. You can also index them using domain indexes, such as
an Oracle Text CONTEXT index.

Another way to look at the structured component of an XM.I ndex index sees that it acts
as a generalized function-based index. A function-based index is similar to a
structured XMLI ndex component that has only one relational column.

If you find that for a particular application you are creating multiple function-based
indexes, then consider using an XM.I ndex index with a structured component instead.
Create also B-tree indexes on the columns of the structured index component.

ORACLE 6-11



ORACLE

Chapter 6
XMLIndex

# Note:

*  Queries that use SQL/XML function XM_Tabl e can typically be
automatically rewritten to use the relational indexing tables of an
XM.I ndex structured component. In particular, SQL ORDER BY, GROUP BY,
and window constructs operating on columns of an XM.Tabl e virtual table
are rewritten to the same constructs operating on the real columns of the
relational indexing tables of the structured XMLl ndex component.

The relational tables used for XMLI ndex structured indexing also contain
some internal, system-defined columns. These internal columns might
change in the future, so do not write code that depends on any
assumptions about their existence or contents.

e Queries that use Oracle SQL function XM_Sequence within a SQL TABLE
collection expression, that is, TABLE (XM.Sequence(...)), are not
rewritten to use the indexing tables of an XM.| ndex structured
component. Oracle SQL function XM_Sequence is deprecated in Oracle
Database 11g Release 2; use standard SQL/XML function XM.Tabl e
instead.

See Oracle Database SQL Language Reference for information about
the SQL TABLE collection expression.

Ignore the Index Content Tables; They Are Transparent

Although the index content tables of an XM.I ndex structured component are
normal relational tables, they are also read-only: you cannot add or drop their
columns or maodify (insert, update, or delete) their rows.

Data Type Considerations for XMLIndex Structured Component

The relational tables that are used for an XM.I ndex structured component use SQL
data types. XQuery expressions that are used in queries use XML data types
(XML Schema data types and XQuery data types).

Exchange Partitioning and XMLIndex

In exchange partitioning, you exchange a table with a partition of another table.
The first table must have the same structure as the partition of the second table,
with which it is to be exchanged. The two tables must also be similar with respect
to indexing with an XM.I ndex index.

Related Topics

Use of XMLIndex with a Structured Component
An XM.I ndex structured component indexes specific islands of structure in your
XML data.

SQL/XML Functions XMLQUERY, XMLTABLE, XMLEXxists, and XMLCast
SQL/XML functions XM.Query, XM_Tabl e, XMLExi sts, and XM_Cast are defined by
the SQL/XML standard as a general interface between the SQL and XQuery
languages.

Function-Based Indexes Are Deprecated for XMLType
In releases prior to Oracle Database 11g Release 2 (11.2), function-based indexes
were sometimes appropriate for use with XM_Type data when an XPath expression

6-12



Chapter 6
XMLIndex

targeted a singleton node. Oracle recommends that you use the structured
component of XM.I ndex instead.

6.3.3.1 Ignore the Index Content Tables; They Are Transparent

Although the index content tables of an XML ndex structured component are normal
relational tables, they are also read-only: you cannot add or drop their columns or
modify (insert, update, or delete) their rows.

You can thus generally ignore the relational index content tables. You cannot access
them, other than to DESCRI BE them and create (secondary) indexes on them. You need
never explicitly gather statistics on them. You need only collect statistics on the

XM.I ndex index itself or the base table on which the XM_I ndex index is defined;
statistics are collected and maintained on the index content tables transparently.

Related Topics

» Collecting Statistics on XMLIndex Objects for the Cost-Based Optimizer
The Oracle Database cost-based optimizer determines how to most cost-
effectively evaluate a given query, including which indexes, if any, to use. For it to
be able to do this accurately, you must collect statistics on various database
objects.

6.3.3.2 Data Type Considerations for XMLIndex Structured Component

ORACLE

The relational tables that are used for an XM_I ndex structured component use SQL
data types. XQuery expressions that are used in queries use XML data types (XML
Schema data types and XQuery data types).

XQuery typing rules can automatically change the data type of a subexpression, to
ensure coherence and type-checking. For example, if a document that is queried using
XPath expression / Pur chaseOrder/ Li nel ten]f @t em\unber = 25] is not XML schema-
based, then the subexpression @t em\unber is untyped, and it is then automatically
cast to xs: doubl e by the XQuery = comparison operator. To index this data using an
XM.I ndex structured component you must use Bl NARY_DOUBLE as the SQL data type.

This is a general rule. For an XM ndex index with structured component to apply to a
query, the data types must correspond. Table 6-5 shows the data-type
correspondences.

Table 6-5 XML and SQL Data Type Correspondence for XMLIndex

XML Data Type SQL Data Type

xs: deci mal | NTEGER or NUMBER

xs: doubl e Bl NARY_DOUBLE

xs: fl oat Bl NARY_FLOAT

Xs: date DATE, TI MESTAMP W TH TI MEZONE

xs: dat eTi me TI MESTAMP, TI MESTAMP W TH TI MEZONE
xs: dayTi neDur at i on | NTERVAL DAY TO SECOND

Xs: year Mont hDurati on [ NTERVAL YEAR TO MONTH

6-13



Chapter 6
XMLIndex

# Note:

If the XML data type is xs: dat e or xs: dat eTi me, and if you know that the
data that you will query and for which you are creating an index will not
contain a time-zone component, then you can increase performance by
using SQL data type DATE or Tl MESTAMP. If the data might contain a time-
zone component, then you must use SQL data type TI MESTAMP W TH

TI MEZONE.

If the XML and SQL data types involved do not have a built-in one-to-one
correspondence, then you must make them correspond (according to Table 6-5), in
order for the index to be picked up for your query. There are two ways you can do this:

* Make the index correspond to the query — Define (or redefine) the column in the
structured index component, so that it corresponds to the XML data type. For
example, if a query that you want to index uses the XML data type xs: doubl e,
then define the index to use the corresponding SQL data type, Bl NARY_DOUBLE.

e Make the query correspond to the index — In your query, explicitly cast the
relevant parts of an XQuery expression to data types that correspond to the SQL
data types used in the index content table.

Example 6-1 and Example 6-2 show how you can cast an XQuery expression in your
guery to match the SQL data type used in the index content table.

Notice that the number 25 plays a different role in these two examples, even though in
both cases it is the purchase-order item number. In Example 6-1, 25 is a SQL number
of data type | NTEGER; in Example 6-2, 25 is an XQuery number of data type

xs: deci mal .

In Example 6-1, the XMLQuer y result is cast to SQL type | NTEGER, which is compared
with the SQL value 25. In Example 6-2, the value of attribute | t enNunber is cast (in
XQuery) to the XML data type xs: deci nmal , which is compared with the XQuery value
25 and which corresponds to the SQL data type (I NTEGER) used for the index. There
are thus two different kinds of data-type conversion in these examples, but they both
convert query data to make it type-compatible with the index content table.

" See Also:

Use DBMS_XMLSCHEMA to Map XML Schema Data Types to SQL Data
Types for information about the built-in correspondence between XML
Schema data types and SQL data types

Example 6-1 Making Query Data Compatible with Index Data — SQL Cast

SELECT count (*) FROM pur chaseor der
VWHERE XMLCast( XM_Query(" $p/ PurchaseOrder/Li neltem @t emNunber’
PASSI NG OBJECT_VALUE AS "p" RETURNI NG CONTENT)
AS INTEGER)
= 25;

ORACLE 6-14



Chapter 6
XMLIndex

Example 6-2 Making Query Data Compatible with Index Data — XQuery Cast

SELECT count (*) FROM pur chaseor der
WHERE XMLExi st's(' $p/ PurchaseOrder/Li nel t en] xs:decimal( @t emNunber) = 25]°
PASSI NG OBJECT_VALUE AS "p");

6.3.3.3 Exchange Partitioning and XMLIndex

ORACLE

In exchange partitioning, you exchange a table with a partition of another table. The
first table must have the same structure as the partition of the second table, with which
it is to be exchanged. The two tables must also be similar with respect to indexing with
an XM.| ndex index.

One of the following must be true:

* Neither table has an XM.I ndex index.

* Both have an XM.I ndex index, and one of the following is true:
— Neither index has a structured component.
— Both indexes have a structured component.

If none of those conditions holds then you cannot perform exchange partitioning.

If both tables have an XM.I ndex index with a structured component then in the general
case you must perform some preprocessing before invoking ALTER TABLE EXCHANGE
PARTI TI ON, and you must perform some postprocessing after invoking it. Otherwise,
the exchange-partition operation raises an error.

You use PL/SQL procedures exchangePreProc and exchangePostProc in package
DBMS_XMLSTORAGE_MANAGE to perform this preprocessing and postprocessing, as
illustrated in Example 6-3. Each of the XM_.Type tables there, t abl e and
exchange_t abl e, has an XM.I ndex index that has a structured component.

In the special case of reference-partitioned tables there are foreign-key constraints
involved, so things are a bit more complex. In this case, you use PL/SQL procedure
refPartitionExchangeln or refPartitionExchangeOut, to load data into (exchange-
in) or out of (exchange-out) the partitioned tables, respectively.

Example 6-4 illustrates this, loading data from exchange tables parent _ex and
chi | d_ex into base tables parent and chi | d. Example 6-5 shows the table and index
definitions.

¢ See Also:

e Oracle Database SQL Language Reference

e Oracle Database Data Cartridge Developer's Guide for general
information about using ALTER TABLE EXCHANGE PARTI Tl ON with tables
that have domain indexes (XM.I ndex is a domain index)

e Oracle Database PL/SQL Packages and Types Reference for
information about procedures exchangePr ePr oc, exchangePost Proc,
ref PartitionExchangeln, and refPartitionExchangel Qut in package
DBVS_XM_STORAGE_MANAGE.

6-15



Chapter 6
XMLIndex

Example 6-3 Exchange-Partitioning Tables That Have an XMLIndex Structured
Component

EXEC DBMS_XM.STORAGE_MANAGE. exchangePreProc(USER, 'table');
EXEC DBMS_XM.STORAGE_MANAGE. exchangePr eProc( USER, 'exchange_table');

ALTER TABLE tabl e EXCHANGE PARTITION partition WTH TABLE exchange_t abl e
W TH VALI DATI ON UPDATE | NDEXES;

EXEC DBMS_XM.STORAGE_MANAGE. exchangePost Proc( USER, 'table');
EXEC DBMS_XM.STORAGE_MANAGE. exchangePost Proc( USER, ' exchange_table');

Example 6-4 Exchange-Partitioning Reference-Partitioned Tables That Use
XMLIndex

In this example:

» parent is the partitioned base table.
» childis a reference-partitioned child table with XM.Type column xcol .

e child_xidx is an XM.I ndex index with a structured component, defined on column
xcol of table chi | d. This is a local index, which is partitioned.

» parent_ex is the exchange table for base table parent.
« child_ex is the exchange table for child table chi | d.

o child_xidx_ex is an XM.I ndex index with a structured component, defined on
column xcol of table chi | d_ex. This is not a local index (unlike the case for index
chi | d_xi dx).

* USER is the owner (database schema) of the tables.

This example performs an exchange-in operation, loading data from the exchange
tables into the partitioned tables. An exchange-out operations, which loads data out of
the partitioned tables into the exchange tables, would look the same, except that it
would use procedure ref Partiti onExchangeQut instead. The procedure is passed the
relevant tables and the necessary ALTER TABLE ... EXCHANCGE statements.

EXEC DBMS_XM.STORAGE_MANAGE. refPartitionExchangeln(
USER, 'parent', 'child', 'parent_ex', 'child_ex",
" ALTER TABLE parent EXCHANGE PARTI TION part_all WTH TABLE parent_ex
| NCLUDI NG | NDEXES W TH VALI DATI ON UPDATE | NDEXES',
"ALTER TABLE child EXCHANGE PARTI TION part_all WTH TABLE child_ex
| NCLUDI NG | NDEXES W TH VALI DATI ON UPDATE | NDEXES' ) ;

Example 6-5 Data Used in Example of Exchange-Partitioning for Reference-
Partitioned Tables

This example shows the creation operations for the tables and indexes used in
Example 6-4.

CREATE TABLE parent (id NUMBER PRI MARY KEY,
created DATE)
PARTI TI ON BY RANGE (created)
(PARTITION part_2014 VALUES LESS THAN (to_date('01-jan-2015", 'dd- non-

ORACLE 6-16



Chapter 6
XMLIndex

yyyy')),
PARTI TION part_all  VALUES LESS THAN (rmaxval ue));

CREATE TABLE child (parent _id NUVBER NOT NULL,
xcol XM.Type,
CONSTRAINT child_tab_fk FOREI GN KEY (parent _id)
REFERENCES parent (id)
ENABLE VALI DATE)
XM_.Type COLUWMN xcol STORE AS BI NARY XML PARTITION BY REFERENCE
(child_tab_fk);

CREATE | NDEX child_xidx ON child p (xcol) I NDEXTYPE IS XDB. XM.I ndex
PARAMETERS (' XM_Tabl e po_i ndex_tab "' purchaseorder'’
COLUMNS pid NUVBER(4) PATH ''@d''') LOCAL ;

CREATE TABLE parent_ex (id NUMBER PRI MARY KEY,
created DATE);

CREATE TABLE child_ex (parent_id NUVBER NOT NULL,
xcol XM.Type,
CONSTRAINT child_tab_fk1 FOREI GN KEY (parent _id)
REFERENCES parent _ex(id)
ENABLE VALI DATE)
XM_.Type COLUWMN xcol STORE AS BI NARY XM;

CREATE | NDEX child_ex_xidx ON child_ex p (xcol) | NDEXTYPE IS XDB. XM.I ndex
PARAMETERS (' XM_Tabl e po_i ndex_tab_ex "' purchaseorder'’
COLUMNS pid NUMBER(4) PATH ''@d''');

6.3.4 XMLIndex Unstructured Component

ORACLE

Unlike a B-tree index, which you define for a specific database column that represents
an individual XML element or attribute, or the XM.I ndex structured component, which
applies to specific, structured document parts, the unstructured component of an

XM.I ndex index is, by default, very general.

Unless you specify a more narrow focus by detailing specific XPath expressions to use
or not to use in indexing, an unstructured XM.I ndex component applies to all possible
XPath expressions for your XML data.

The unstructured component of an XM.I ndex index has three logical parts:

e A path index — This indexes the XML tags of a document and identifies its various
document fragments.

e Anorder index — This indexes the hierarchical positions of the nodes in an XML
document. It keeps track of parent—child, ancestor—-descendant, and sibling
relations.

6-17



Chapter 6
XMLIndex

* Avalue index — This indexes the values of an XML document. It provides lookup
by either value equality or value range. A value index is used for values in query
predicates (WHERE clause).

The unstructured component of an XM.| ndex index uses a path table and a set of
(local) secondary indexes on the path table, which implement the logical parts
described above. Two secondary indexes are created automatically:

A pikey index, which implements the logical indexes for both path and order.
e Areal value index, which implements the logical value index.

You can modify these two indexes or create additional secondary indexes. The path
table and its secondary indexes are all owned by the owner of the base table upon
which the XMLI ndex index is created.

The pikey index handles paths and order relationships together, which gives the best
performance in most cases. If you find in some particular case that the value index is
not picked up when think it should be, you can replace the pikey index with separate
indexes for the paths and order relationships. Such (optional) indexes are called path
id and order key indexes, respectively. For best results, contact Oracle Support if you
find that the pikey index is not sufficient for your needs in some case.

The path table contains one row for each indexed node in the XML document. For
each indexed node, the path table stores:

*  The corresponding rowid of the table that stores the document.

*  Alocator, which provides fast access to the corresponding document fragment.
For binary XML storage of XML schema-based data, it also stores data-type
information.

* Anorder key, to record the hierarchical position of the node in the document. You
can think of this as a Dewey decimal key like that used in library cataloging and
Internet protocol SNMP. In such a system, the key 3. 21. 5 represents the node
position of the fifth child of the twenty-first child of the third child of the document
root node.

e Anidentifier that represents an XPath path to the node.
» The effective text value of the node.

Table 6-6 shows the main information? that is in the path table.

Table 6-6 XMLIndex Path Table
]

Column Data Type Description

PATH D RAW 8) Unique identifier for the XPath path to the node.
RI D ROWN D Rowid of the table used to store the XML data.
ORDER_KEY RAW 1000) Decimal order key that identifies the hierarchical

position of the node. (Document ordering is
preserved.)

LOCATCR RAW 2000) Fragment-location information. Used for fragment
extraction. For binary XML storage of XML schema-
based data, data-type information is also stored here.

VALUE VARCHAR2( 4000) Effective text value the node.

2 The actual path table implementation may be slightly different.

ORACLE 6-18



Chapter 6
XMLIndex

The pikey index uses path table columns PATH D, RI D, and ORDER_KEY to represent the
path and order indexes. An optional path id index uses columns PATH Dand R Dto
represent the path index. A value index is an index on the VALUE column.

Example 6-6 explores the contents of the path table for two purchase-order
documents.

Example 6-6 Path Table Contents for Two Purchase Orders

<Pur chaseOr der >
<Ref erence>SBELL- 2002100912333601PDT</ Ref er ence>
<Act i ons>
<Acti on>
<User >SVOLLMAN</ User >
</ Action>
</ Actions>

</ Pur chaseQr der >

<Pur chaseOr der >
<Ref erence>ABEL- 20021127121040897PST</ Ref er ence>
<Act i ons>
<Acti on>
<User >ZLOTKEY</ User >
</ Action>
<Acti on>
<User >KI N&/ User >
</ Action>
</ Actions>

</ Pur chaseQr der >

An XM.I ndex index on an XM.Type table or column storing these purchase orders
includes a path table that has one row for each indexed node in the XML documents.
Suppose that the system assigns the following PATH Ds when indexing the nodes
according to their XPath expressions:

PATHID Indexed XPath

1 / Pur chaseOr der

2 / Pur chaseOr der/ Ref erence

3 / Pur chaseOr der/ Acti ons

4 / Pur chaseOr der/ Acti ons/ Acti on

5 / Pur chaseOr der/ Acti ons/ Acti on/ User

The resulting path table would then be something like this (column LOCATCR is not
shown):

PATHID RID ORDER_KEY VALUE
1 RL 1 SBELL-2002100912333601PDTSVOLLNVAN

ORACLE 6-19



Chapter 6
XMLIndex

PATHID RID ORDER_KEY VALUE

g ~ O ~A W DN P OBk~ N

RL 1.1 SBELL-2002100912333601PDT
RL 1.2 SVOLLMAN

RL 1.2.1 SVOLLMAN

RL 1.2.1.1 SVOLLMAN

R 1 ABEL-20021127121040897PSTZLOTKEYKI NG
R 1.1 ABEL-20021127121040897PST
R 1.2 ZLOTKEYKI NG

R 1.2.1 ZLOTKEY

R 1.2.1.1 ZLOTKEY

R 1.2.2 KI NG

R 1.2.21 KI NG

Ignore the Path Table — It Is Transparent
Though you can create secondary indexes on path-table columns, you can
generally ignore the path table itself.

Column VALUE of an XMLIndex Path Table
A secondary index on column VALUE is used with XPath expressions in a WHERE
clause that have predicates involving string matches. For example:

Secondary Indexes on Column VALUE

Even if you do not specify a secondary index for column VALUE when you create an
XM.I ndex index, a default secondary index is created on column VALUE. This
default index has the default properties — in particular, it is an index for text
(string-valued) data only.

XPath Expressions That Are Not Indexed by an XMLIndex Unstructured
Component
A few types of XPath expressions are not indexed by XM.| ndex.

6.3.4.1 Ignore the Path Table - It Is Transparent

ORACLE

Though you can create secondary indexes on path-table columns, you can generally
ignore the path table itself.

You cannot access the path table, other than to DESCRI BE it and create (secondary)
indexes on it. You need never explicitly gather statistics on the path table. You need
only collect statistics on the XM.I ndex index or the base table on which the XM.I ndex
index is defined; statistics are collected and maintained on the path table and its
secondary indexes transparently.

Related Topics

Collecting Statistics on XMLIndex Obijects for the Cost-Based Optimizer

The Oracle Database cost-based optimizer determines how to most cost-
effectively evaluate a given query, including which indexes, if any, to use. For it to
be able to do this accurately, you must collect statistics on various database
objects.

6-20



Chapter 6
XMLIndex

6.3.4.2 Column VALUE of an XMLIndex Path Table

ORACLE

A secondary index on column VALUE is used with XPath expressions in a WHERE clause
that have predicates involving string matches. For example:

/ PurchaseOr der [ Ref erence/ text() = "SBELL-2002100912333601PDT"]

Column VALUE stores the effective text value of an element or an attribute node —
comments and processing instructions are ignored during indexing.

e For an attribute, the effective text value is the attribute value.

* For a simple element (an element that has no children), the effective text value is
the concatenation of all of the text nodes of the element.

* For a complex element (an element that has children), the effective text value is
the concatenation of (1) the text nodes of the element itself and (2) the effective
text values of all of its simple-element descendants. (This is a recursive definition.)

The effective text value is limited (truncated), however, to 4000 bytes for a simple
element or attribute and to 80 bytes for a complex element.

Column VALUE is a fixed size, VARCHAR2( 4000) . Any overflow (beyond 4000 bytes)
during index creation or update is truncated.

In addition to the 4000-byte limit for column VALUE, there is a limit on the size of a key
for the secondary index created on this column. This is the case for B-tree and
function-based indexes as well; it is not an XMLI ndex limitation. The index-key size limit
is a function of the block size for your database. It is this limit that determines how
much of VALUE is indexed.

Thus, only the first 4000 bytes of the effective text value are stored in column VALUE,

and only the first N bytes of column VALUE are indexed, where N is the index-key size
limit (N < 4000). Because of the index-key size limit, the index on column VALUE acts

only as a preliminary filter for the effective text value.

For example, suppose that your database block size requires that the VALUE index be
no larger than 800 bytes, so that only the first 800 bytes of the effective text value is
indexed. The first 800 bytes of the effective text value is first tested, using XM.I ndex,
and only if that text prefix matches the query value is the rest of the effective text value
tested.

The secondary index on column VALUE is an index on SQL function subst r (substring
equality), because that function is used to test the text prefix. This function-based
index is created automatically as part of the implementation of XM_I ndex for column
VALUE.

For example, the XPath expression / Pur chaseOrder [ Reference/text() = :1] ina
guery WHERE clause might, in effect, be rewritten to a test something like this:

substr(VALUE, 1 800) = substr(:1, 1, 800) AND VALUE = :1;

This conjunction contains two parts, which are processed from left to right. The first
test uses the index on function subst r as a preliminary filter, to eliminate text whose
first 800 bytes do not match the first 800 bytes of the value of bind variable : 1.

6-21



Chapter 6
XMLIndex

Only the first test uses an index — the full value of column VALUE is not indexed. After
preliminary filtering by the first test, the second test checks the entire effective text
value — that is, the full value of column VALUE — for full equality with the value of : 1.
This check does not use an index.

Even if only the first 800 bytes of text is indexed, it is important for query performance
that up to 4000 bytes be stored in column VALUE, because that provides quick, direct
access to the data, instead of requiring, for example, extracting it from deep within a
CLOB-instance XML document. If the effective text value is greater than 4000 bytes,
then the second test in the WHERE-clause conjunction requires accessing the base-table
data.

Neither the VALUE column 4000-byte limit nor the index-key size affect query results in
any way; they can affect only performance.

" Note:

Because of the possibility of the VALUE column being truncated, an Oracle
Text CONTEXT index created on the VALUE column might return incorrect
results.

As mentioned, XM.I ndex can be used with XML schema-based data. If an XML
schema specifies a def aul t Val ue value for a given element or attribute, and a
particular document does not specify a value for that element or attribute, then the
def aul t Val ue value is used for the VALUE column.

6.3.4.3 Secondary Indexes on Column VALUE

ORACLE

Even if you do not specify a secondary index for column VALUE when you create an
XM.I ndex index, a default secondary index is created on column VALUE. This default
index has the default properties —in particular, it is an index for text (string-valued)
data only.

You can, however, create a VALUE index of a different type. For example, you can
create a number-valued index if that is appropriate for many of your queries. You can
create multiple secondary indexes on the VALUE column. An index of a particular type
is used only when it is appropriate. For example, a number-valued index is used only
when the VALUE column is a number; it is ignored for other values. Secondary indexes
on path-table columns are treated like any other secondary indexes — you can alter
them, drop them, mark them unusable, and so on.

¢ See Also:

e Using XMLIndex with an Unstructured Component for examples of
creating secondary indexes on column VALUE

«  PARAMETERS Clause for CREATE INDEX and ALTER INDEX for the
syntax of the PARAMETERS clause

6-22



Chapter 6
XMLIndex

6.3.4.4 XPath Expressions That Are Not Indexed by an XMLIndex Unstructured

Component

A few types of XPath expressions are not indexed by XM.| ndex.

»  Applications of XPath functions, except or a: cont ai ns (which is deprecated). In
particular, user-defined XPath functions are not indexed.

e Axes other than chi | d, descendant, and attri but e, that is, axes parent,
ancest or, f ol | owi ng-si bl i ng, precedi ng-si bling, foll owi ng, precedi ng, and
ancestor-or-self.

»  Expressions using the union operator, | (vertical bar).

6.3.5 Creating, Dropping, Altering, and Examining an XMLIndex Index

ORACLE

Basic operations on an XM.I ndex index include creating it, dropping it, altering it, and
examining it. Examples are presented.

You create an XM.I ndex index by declaring the index type to be XDB. XM.I ndex, as
illustrated in Example 6-7.

This creates an XM.I ndex index named po_xml i ndex_i x on XM.Type table po_bi nxni .
The index has only an unstructured component, no structured component.

You specify inclusion of a structured component in an XM.I ndex index by including a
structured_cl ause in the PARAMETERS clause. You specify inclusion of an unstructured
component by including a pat h_t abl e_cl ause in the PARAMETERS clause.

You can do this when you create the XM.I ndex index or when you modify it. If, as in
Example 6-7, you specify neither a st ruct ured_cl ause nor a pat h_tabl e_cl ause,
then only an unstructured component is included.

If an XMLI ndex index has both an unstructured and a structured component, then you
can drop either of these components using ALTER | NDEX.

You can obtain the name of an XM.I ndex index on a particular XMLType table (or
column), as shown in Example 6-8. You can also select | NDEX_NAVE from DBA | NDEXES
or ALL_| NDEXES, as appropriate.

You rename or drop an XM.I ndex index just as you would any other index, as
illustrated in Example 6-9. This renaming changes the name of the XM.I ndex index
only. It does not change the name of the path table — you can rename the path table
separately.

Similarly, you can change other index properties using other ALTER | NDEX options,
such as REBUI LD. XM.I ndex is no different from other index types in this respect.

The RENAME clause of an ALTER | NDEX statement for XM_I ndex applies only to the
XM.I ndex index itself. To rename the path table and secondary indexes, you must
determine the names of these objects and use appropriate ALTER TABLE or ALTER

| NDEX statements on them directly. Similarly, to retrieve the physical properties of the
secondary indexes or alter them in any other way, you must obtain their names, as in
Example 6-14.

6-23



Chapter 6
XMLIndex

¢ See Also:

e structured_clause ::=
e path_table clause ::=
e drop_path_table_clause ::=

e alter_index_group_clause ::=

Example 6-7 Creating an XMLIndex Index

CREATE | NDEX po_xni i ndex_i x ON po_binxm (OBJECT_VALUE) | NDEXTYPE IS
XDB. XML Index;

Example 6-8 Obtaining the Name of an XMLIndex Index on a Particular Table

SELECT | NDEX_NAME FROM USER_INDEXES
VWHERE TABLE_NAME = ' PO _BI NXM.' AND ITYP_NAME = "XMLINDEX";

PO _XMLI NDEX_| X

1 row sel ect ed.

Example 6-9 Renaming and Dropping an XMLIndex Index

ALTER I NDEX po_xm i ndex_i x RENAME TO new_name_ix;

DROP | NDEX new_nane_i X;

Related Topics

*  PARAMETERS Clause Syntax for CREATE INDEX and ALTER INDEX
The syntax for the PARAMETERS clause for CREATE | NDEX and ALTER | NDEX is
defined.

6.3.6 Using XMLIndex with an Unstructured Component

ORACLE

You can perform various operations on an XM.| ndex index that has an unstructured
component, including manipulating the path table and the secondary indexes of that
component.

To include an unstructured component in an XM.I ndex index, you can use a
pat h_t abl e_cl ause in the PARAMETERS clause when you create or modify the XM.I ndex
index — see path_table_clause ::=.

If you do not specify a structured component, then the index will have an unstructured
component, even if you do not specify the path table. It is however generally a good
idea to specify the path table, so that it has a recognizable, user-oriented name that
you can refer to in other XM.I ndex operations.

6-24



ORACLE

Chapter 6
XMLIndex

Example 6-10 shows how to name the path table ("my_path_table") when creating an
XM.I ndex index with an unstructured component.

If you do not name the path table then its name is generated by the system, using the
index name you provide to CREATE | NDEX as a base. Example 6-11 shows this for the
XM.I ndex index created in Example 6-7.

By default, the storage options of a path table and its secondary indexes are derived
from the storage properties of the base table on which the XM.I ndex index is created.
You can specify different storage options by using a PARAVETERS clause when you
create the index, as shown in Example 6-12. The PARAVETERS clause of CREATE | NDEX
(and ALTER | NDEX) must be between single quotation marks (*).

Because XM.I ndex is a logical domain index, not a physical index, all physical
attributes are either zero (0) or NULL.

If an XMLI ndex index has both an unstructured and a structured component, then you
can use ALTER | NDEX to drop the unstructured component. To do this, you drop the
path table. Example 6-13 illustrates this. (This assumes that you also have a
structured component — Example 6-23 results in an index with both structured and
unstructured components.)

In addition to specifying storage options for the path table, Example 6-12 names the
secondary indexes on the path table.

Like the name of the path table, the names of the secondary indexes on the path-table
columns are generated automatically using the index name as a base, unless you
specify them in the PARAMETERS clause. Example 6-14 illustrates this, and shows how
you can determine these names using public view USER | ND_COLUMNS. It also shows
that the pikey index uses three columns.

¢ See Also:

Example 6-20 for a similar, but more complex example

Example 6-10 Naming the Path Table of an XMLIndex Index

CREATE | NDEX po_xm i ndex_i x ON po_bi nxmi (OBJECT_VALUE) | NDEXTYPE | S XDB. XM.I ndex
PARAMETERS ("PATH TABLE my_path_table");

Example 6-11 Determining the System-Generated Name of an XMLIndex Path
Table

SELECT PATH_TABLE_NAME FROM USER_XML_INDEXES
VWHERE TABLE_NAME = ' PO BI NXML' AND | NDEX_NAME = ' PO_XM.I NDEX_I X' ;

PATH TABLE_NANE
SYS67567_PO_XM.I NDE_PATH_TABLE

1 row sel ected.

Example 6-12 Specifying Storage Options When Creating an XMLIndex Index

CREATE | NDEX po_xm index_i x ON po_bi nxmi (OBJECT_VALUE) | NDEXTYPE | S XDB. XMLI ndex
PARAMETERS

6-25



Chapter 6
XMLIndex

(' PATH TABLE po_path_tabl e
(PCTFREE 5 PCTUSED 90 | NI TRANS 5
STORAGE (INITIAL 1k NEXT 2k M NEXTENTS 3 BUFFER POOL KEEP)
NOLOGG NG ENABLE ROW MOVEMENT PARALLEL 3)
PIKEY INDEX po_pikey ix (LOGE NG PCTFREE 1 | NI TRANS 3)
VALUE INDEX po_val ue_i x (LOGG NG PCTFREE 1 | NI TRANS 3)');

Example 6-13 Dropping an XMLIndex Unstructured Component
ALTER | NDEX po_xml index_i x PARAMETERS(' DROP PATH TABLE');

Example 6-14 Determining the Names of the Secondary Indexes of an
XMLIndex Index

SELECT | NDEX_NAVE, COLUWN NAME, COLUWN POSI TI ON FROM USER | ND_COLUWNS
WHERE TABLE_NAME | N (SELECT PATH TABLE NAVE FROM USER XM._| NDEXES
WHERE | NDEX_NAME = ' PO XMLI NDEX_| X')
ORDER BY | NDEX_NAVE, COLUWN NAME;

| NDEX_NAMVE COLUWN_NAME  COLUWN_PCSI TI ON

SYS67563_PO XMLI NDE_PI KEY | X  ORDER KEY 3
SYS67563_PO XMLINDE_PI KEY | X  PATH D 2
SYS67563_PO XMLINDE PIKEY IX RID 1
SYS67563_PO XMLI NDE_VALUE | X SYS_NCD0006$ 1

4 rows selected.

e Creating Additional Secondary Indexes on an XMLIndex Path Table
You can add extra secondary indexes to an XM.| ndex unstructured component.

Related Topics

*  PARAMETERS Clause Syntax for CREATE INDEX and ALTER INDEX
The syntax for the PARAMETERS clause for CREATE | NDEX and ALTER | NDEX is
defined.

6.3.6.1 Creating Additional Secondary Indexes on an XMLIndex Path Table

ORACLE

You can add extra secondary indexes to an XM.I ndex unstructured component.

Examples Example 6-15, Example 6-17, Example 6-18, and Example 6-19 add extra
secondary indexes to the XMLI ndex index created in Example 6-12.

You can create any number of additional secondary indexes on the VALUE column of
the path table of an XM.I ndex index. These can be of different types, including
function-based indexes and Oracle Text indexes.

Whether or not a given index is used for a given element occurrence when processing
a query is determined by whether it is of the appropriate type for that value and
whether it is cost-effective to use it.

Example 6-15 creates a function-based index on column VALUE of the path table using
SQL function subst r. This might be useful if your queries often use subst r applied to
the text nodes of XML elements.

If you have many elements whose text nodes represent numeric values, then it can
make sense to create a numeric index on the column VALUE. However, doing so
directly, in a manner analogous to Example 6-15, raises an ORA-01722 error (invalid

6-26



Chapter 6
XMLIndex

number) if some of the element values are not numbers. This is illustrated in
Example 6-16.

What is needed is an index that is used for numeric-valued elements but is ignored for
element occurrences that do not have numeric values. Procedure cr eat eNurrber | ndex
of package DBM5S_XM.I NDEX exists specifically for this purpose. You pass it the names
of the database schema, the XM.I ndex index, and the numeric index to be created.
Creation of a numeric index is illustrated in Example 6-17.

Because such an index is specifically designed to ignore elements that do not have
numeric values, its use does not detect their presence. If there are non-numeric
elements and, for whatever reason, the XM.I ndex index is not used in some query,
then an ORA- 01722 error is raised. However, if the index is used, no such error is
raised, because the index ignores non-numeric data. As always, the use of an index
never changes the result set — it never gives you different results, but use of an index
can prevent you from detecting erroneous data.

Creating a date-valued index is similar to creating a numeric index; you use procedure
DBMS_XMLI NDEX. cr eat eDat el ndex. Example 6-18 shows this.

Example 6-19 creates an Oracle Text CONTEXT index on column VALUE. This is useful
for full-text queries on text values of XML elements. XPath predicates that use XPath
function or a: cont ai ns (deprecated) are rewritten to applications of Oracle SQL
function cont ai ns on column VALUE. If a CONTEXT index is defined on column VALUE,
then it is used during predicate evaluation. An Oracle Text index is independent of all
other VALUE-column indexes.

The query in Example 6-20 shows all of the secondary indexes created on the path
table of an XMLI ndex index. The indexes created explicitly are in bold. Note in
particular that some indexes, such as the function-based index created on column
VALUE, do not appear as such; the column name listed for such an index is a system-
generated name such as SYS_NC00007$. You cannot see these columns by executing
a query with COLUMN_NAME = ' VALUE' in the WHERE clause.

" See Also:

e Column VALUE of an XMLIndex Path Table for information about the
possibility of an Oracle Text CONTEXT index created on the VALUE column
returning incorrect results

e Oracle Text Reference for information about CREATE | NDEX parameter
TRANSACTI ONAL

e Oracle Database PL/SQL Packages and Types Reference for
information on PL/SQL procedures cr eat eNunber | ndex and
creat eDat el ndex in package DBVS_XM.| NDEX

Example 6-15 Creating a Function-Based Index on Path-Table Column VALUE
CREATE I NDEX fn_based_i x ON po_path_table (substr(VALUE, 1, 100));

ORACLE 6-27



Chapter 6
XMLIndex

Example 6-16 Trying to Create a Numeric Index on Path-Table Column VALUE
Directly

CREATE | NDEX direct_num.ix ON po_path_table (to_binary_doubl e( VALUE));
CREATE | NDEX direct_numix ON po_path_table (to_binary_doubl e( VALUE))

ERROR at |ine 1:
ORA-01722: invalid number

Example 6-17 Creating a Numeric Index on Column VALUE with Procedure
createNumberindex

CALL DBMS_XMLI NDEX. createNumberIndex(' OF , ' PO XMLINDEX X', ' APl _NUMIX);

Example 6-18 Creating a Date Index on Column VALUE with Procedure
createDatelndex

CALL DBNB_XMLI NDEX. createDatelndex(' CE', ' PO XMLINDEX_| X', ‘APl _DATE I X',
"dateTime');

Example 6-19 Creating an Oracle Text CONTEXT Index on Path-Table Column
VALUE

CREATE | NDEX po_otext i x ON po_path_table (VALUE)
| NDEXTYPE |'S CTXSYS.CONTEXT PARAMETERS(' TRANSACTI ONAL' ) ;

Example 6-20 Showing All Secondary Indexes on an XMLIndex Path Table

SELECT c. | NDEX_NAME, c.COLUMN NAME, c.COLUMN_POSI TI ON, e. COLUMN_EXPRESSI ON
FROM USER_IND_COLUMNS ¢ LEFT OUTER JO N USER_IND_EXPRESSIONS e
ON (c. | NDEX_NAME = e. | NDEX_NAME)
WHERE c. TABLE_NAME | N (SELECT PATH TABLE_NAME FROM USER XM._| NDEXES
WHERE | NDEX_NAME = ' PO_XM.I NDEX_| X')
ORDER BY c. | NDEX_NAME, c. COLUMN_NAME;

| NDEX_NAMVE COLUMN_NAME  COLUMN_PGSI TI ON COLUMN_EXPRESSI ON

AP1_DATE_IX SYS_NC00009$ 1 SYS_EXTRACT_UTC( SYS_XMLCONV("V
ALUE', 3,8, 0,0, 181))

AP1_NUM_IX SYS_NC00008$ 1 TO_BI NARY_DOUBLE(" VALUE")
FN_BASED_IX SYS_NC00007$ 1 SUBSTR("VALUE", 1, 100)
PO_OTEXT_IX VALUE 1

PO_PI KEY_| X ORDER_KEY 3

PO _PI KEY_| X PATHI D 2

PO _PI KEY_| X RID 1

PO VALUE_| X SYS_NCD0006$ 1 SUBSTRB("VALUE", 1, 1599)

8 rows selected.

Related Topics

* Indexing XML Data for Full-Text Queries
When you need full-text search over XML data, Oracle recommends that you store
your XM_Type data as binary XML and you use XQuery Full Text (XQFT). You use
an XML search index for this. This is the topic of this section.

6.3.7 Use of XMLIndex with a Structured Component

An XM.I ndex structured component indexes specific islands of structure in your XML
data.

ORACLE 6-28



ORACLE

Chapter 6
XMLIndex

To include a structured component in an XM_I ndex index, you use a
structured_cl ause in the PARAVETERS clause when you create or modify the XMLI ndex
index — see structured_clause ::=.

Astructured_cl ause specifies the structured islands that you want to index. You use
the keyword GROUP to specify each structured island: an island thus corresponds
syntactically to a structure group. If you specify no group explicitly, then the
predefined group DEFAULT_GROUP is used. For ALTER | NDEX, you precede the GROUP
keyword with the modification operation keyword: ADD_GROUP specifies a new group
(island); DROP_GROUP deletes a group.

Why have multiple groups within a single index, instead of simply using multiple
XM.I ndex indexes? The reason is that XM.I ndex is a domain index, and you can create
only one domain index of a given type on a given database column.

The syntax for defining a structure group, that is, indexing a structured island, is similar
to the syntax for invoking SQL/XML function XM_Tabl e: you use keywords XM.Tabl e
and COLUMNS to define relational columns, and you use multilevel chaining of XM.Tabl e
to handle collections. To simplify the creation of such an index, you can use PL/SQL
function DBMS_XMLSTORAGE_MANAGE. get SI DXDef Fr onVi ew to provide exactly the

XM_Tabl e expression needed for creating the index.

e Using Namespaces and Storage Clauses with an XMLIndex Structured
Component
When you create an XM.I ndex index that has a structured component you can
specify XML namespaces and storage options to use.

* Adding a Structured Component to an XMLIndex Index
You can use ALTER | NDEX to add a structured component to an existing XMLI ndex
index.

e Using Non-Blocking ALTER INDEX with an XMLIndex Structured Component
You can prevent ALTER | NDEX from blocking when you add a group or column for
the structured component of an XM.I ndex index, so that queries that use the index
do not need to wait.

* Modifying the Data Type of a Structured XMLIndex Component
If an error is raised because some of your data does not match the data type used
for the corresponding column of the structured XM.I ndex component, you can in
some cases simply modify the index by passing keyword MODI FY_COLUWN_TYPE to
ALTER | NDEX.

e Dropping an XMLIndex Structured Component
If an XMLI ndex index has both an unstructured and a structured component, then
you can use ALTER | NDEX to drop the structured component. You do this by
dropping all of the structure groups that compose the structured component.

* Indexing the Relational Tables of a Structured XMLIndex Component
Because the tables used for the structured component of an XM.I ndex index are
normal relational tables, you can index them using any standard relational
indexes.

Related Topics

» Using a Registered PARAMETERS Clause for XMLIndex
The string value used for the PARAMETERS clause of a CREATE | NDEX or ALTER
| NDEX statement has a 1000-character limit. To get around this limitation, you can

6-29



Chapter 6
XMLIndex

use PL/SQL procedures r egi st er Par anet er and nodi f yPar anet er in package
DBMS_XMLI NDEX.

» Data Type Considerations for XMLIndex Structured Component
The relational tables that are used for an XM_I ndex structured component use SQL
data types. XQuery expressions that are used in queries use XML data types
(XML Schema data types and XQuery data types).

" See Also:

* Indexing Binary XML Data Exposed Using a Relational View for
information about using DBMS_XM_STORAGE_MANAGE. get SI DXDef Fr onVi ew

«  Example 6-30
¢ Indexing XML Data for Full-Text Queries
e Structured_clause ::=

e Usage of XMLIndex_xmltable_clause for information about an XM_Type
column in an XM.Tabl e clause

e Usage of column_clause for information about keywords COLUWNS and
VI RTUAL

6.3.7.1 Using Namespaces and Storage Clauses with an XMLIndex Structured
Component

When you create an XM.I ndex index that has a structured component you can specify
XML namespaces and storage options to use.

Example 6-21 shows the creation of an XM.I ndex index that has only a structured
component (no path-table clause) and that uses the XM_NAMESPACES clause to specify
namespaces. It specifies that the index data be compressed and use tablespace
USERTBSL1. The example assumes a binary XML table po_bi nxm with non XML
schema-based data.

Each of the (identical) TABLESPACE clauses in Example 6-21 applies at the table level
(tables po_ptab and | i _tab).

In general you can specify storage options at both the table level and the partition
level. A specification at the partition level overrides one at the table level. A
TABLESPACE clause can also be specified at the index level, that is, so that it applies to
all of the partitions and tables used for the index. If TABLESPACE is specified at more
than one level, the partition level overrides the table level, which overrides the index
level.

Example 6-22 specifies the same TABLESPACE for each of the tables used in the index.
This commonality can be factored out by specifying the TABLESPACE at the index level,
as shown in Example 6-22.

ORACLE 6-30



Chapter 6
XMLIndex

Example 6-21 XMLIndex with a Structured Component, Using Namespaces and
Storage Options

CREATE | NDEX po_struct ON po_binxm (OBJECT VALUE) | NDEXTYPE IS
XDB. XM.I ndex
PARAMETERS (' XM.Tabl e po_ptab
( TABLESPACE " USERTBS1" COMPRESS FOR COLTP)
XMLNAMESPACES ( DEFAULT ' ' http://www. exanpl e. conl po' '),

"'/ purchaseOrder''

COLUWNS orderdate  DATE PATH '' @rderDate'",
id Bl NARY_DOUBLE PATH '' @d' ',
itens XM.Type PATH '"items/item'

VI RTUAL
XM.Table i _tab
( TABLESPACE " USERTBS1" COMPRESS FOR COLTP)
XMLNAMESPACES ( DEFAULT ''http://ww. exanpl e. conl po' '),
"“"/item' PASSING itens
COLUWNS part num VARCHAR2('15) PATH "' @artNum ',

description CLOB PATH ' ' product Nare' ',
usprice BI NARY_DOUBLE PATH ' ' USPrice'',
shi pdat DATE PATH ' ' shi pDate'""');

Example 6-22 XMLIndex with a Structured Component, Specifying
TABLESPACE at the Index Level

CREATE | NDEX po_struct ON po_binxml (OBJECT_VALUE) | NDEXTYPE IS
XDB. XMLI ndex
PARAMETERS (' XMLTabl e po_pt ab,
XMLNAMESPACES ( DEFAULT ' ' http://www. exanpl e. conlpo' '),

"'/ purchaseCOrder''

COLUWNS orderdate  DATE PATH '' @rderDate'",
id BI NARY_DOUBLE PATH ''@d"",
itens XM.Type PATH ''itenms/item'

VI RTUAL
XM.Tabl e |i _tab,
XMLNAMESPACES ( DEFAULT ' ' http://www. exanpl e. conl po' '),
""litem' PASSING itens
COLUWNS partnum VARCHAR2(15) PATH '' @artNum ',

description CLOB PATH ' ' product Name' ",
usprice BI NARY_DOUBLE PATH ' ' USPrice'"',
shi pdat DATE PATH ' ' shi pDate""

TABLESPACE "USERTBS1" COMPRESS FOR OLTP)');

6.3.7.2 Adding a Structured Component to an XMLIndex Index

ORACLE

You can use ALTER | NDEX to add a structured component to an existing XM.I ndex
index.

Example 6-23 shows the creation of an XM.I ndex index with only an unstructured
component. An unstructured component is created because the PARAMETERS clause
explicitly names the path table.

6-31



ORACLE

Chapter 6
XMLIndex

Example 6-23 then uses ALTER | NDEX to add a structured component (group) named
po_i t em This structure group includes two relational tables, each specified with
keyword XM_.Tabl e.

The top-level table, po_i dx_t ab, has columns r ef er ence, r equest or, user nane, and
|'inei tem Column i neitemis of type XMLType. It represents a collection, so it is
passed to the second XM.Tabl e construct to form the second-level relational table,
po_i ndex_l i nei t em which has columns it emmo, descri pti on, partno, quantity, and
uni tprice.

The keyword VI RTUAL is required for an XM_Type column. It specifies that the XM.Type
column itself is not materialized: its data is stored in the XM_I ndex index only in the
form of the relational columns specified by its corresponding XM.Tabl e table.

You cannot create more than one XM_Type column in a given XM_Tabl e clause. To
achieve that effect, you must instead define an additional group.

Example 6-23 also illustrates the use of a registered parameter string in the
PARANMETERS clause. It uses PL/SQL procedure DBVMS_XM.I NDEX. r egi st er Par anet er to
register the parameters string named nypar am Then it uses ALTER | NDEX to update the
index parameters to include those in the string mypar am

Example 6-23 XMLIndex Index: Adding a Structured Component

CREATE | NDEX po_xnlindex_ix ON po_bi nxm (OBJECT VALUE)
| NDEXTYPE |S XDB. XMLI ndex PARAMETERS (' PATH TABLE path_tab');

BEG N
DBMS_XMLI NDEX. registerParameter(
"nyparant ,
" ADD_GROUP GROUP po_item
XMLTable po_idx tab ''/PurchaseOder''
COLUWNS reference  VARCHAR2(30) PATH '' Reference'',

requestor  VARCHAR2(30) PATH '' Requestor'',
user name VARCHAR2(30) PATH ''User'',

lineitem  XM.Type PATH ' ' Lineltens/ Linel tent'
VIRTUAL
XMLTable po_index lineitem''/Lineltem' PASSING |ineitem
COLUWMNS i temno BI NARY_DOUBLE PATH '' @t emNunber' ",
description VARCHAR2(256) PATH '' Description'',
partno VARCHAR2(14) PATH ''Part/@d'",
quantity Bl NARY_DOUBLE PATH '' Part/ @uantity'"',
unitprice  BINARY _DOUBLE PATH ''Part/ @hitPrice''"');
END;

/

ALTER | NDEX po_xmi i ndex_i x PARAVETERS(' PARAM nyparam );

6-32



Chapter 6
XMLIndex

6.3.7.3 Using Non-Blocking ALTER INDEX with an XMLIndex Structured

Component

ORACLE

You can prevent ALTER | NDEX from blocking when you add a group or column for the
structured component of an XM.I ndex index, so that queries that use the index do not
need to wait.

When you use ALTER | NDEX to add a group or a column for the structured component
of an XMLl ndex index, this index-maintenance operation obtains an exclusive DDL lock
on the base table and the index.

The base table is locked to DML operations, and the index cannot be used for queries
until the ALTER | NDEX operation is finished. This means that during this index
maintenance the index cannot be used by other sessions that query or perform DML
operations on the base table. The duration of the ALTER | NDEX operation and the
attendant locking depends on the volume of data in the base XM_Type column.

You can avoid or work around this problem as follows:

1. Use keyword NONBLOCKING before ADD GROUP or ADD_COLUWN in the PARAMETERS
clause of the ALTER | NDEX statement that creates the structured-component group
or column.

This updates the index as needed, but it does not index any base-table data.
Because it does not depend on the base-table data it is quick regardless of the
base-table size.

2. Invoke PL/SQL procedure DBMS_XM.I NDEX. process_pending.

This procedure indexes rows of the base table and populates tables of the index,
just as if keyword NONBLOCKI NG were absent. However, in this case only a few rows
are locked at a time while they are processed and the changes committed. Rows
that have already been locked for some other purpose are skipped. This can
significantly reduce lock contention and allow indexing of some rows to proceed at
the same time as querying or DML on other rows.

When procedure process_pendi ng finishes it returns, as OUT parameters:

*  The number of rows that it could not index. This is either because they were
locked for another purpose or because an error was raised (this number
includes the number returned as the other OQUT parameter).

After you think those locks have been removed, invoke procedure
process_pendi ng again to try to process those pending rows.

e The number of rows that it could not index because an error was raised. (This
should be rare.)

Check table SYS_AlI XSXI _i ndex_nunber ERRORTAB for information about those
errors, then take action to fix the underlying problems. i ndex_nunber is the
object number of the index.

3. Repeat step 2 as many times as necessary until procedure process_pendi ng
indicates that all rows have been successfully indexed or you encounter an
insurmountable problem and decide to cancel the indexing operation altogether.

You can cancel the indexing at any time (before step 2) by using keywords
NONBLOCKING ABORT in the PARAMETERS clause of a separate ALTER | NDEX
statement for the same XM.I ndex index.

6-33



Chapter 6
XMLIndex

4. If all rows have been successfully indexed then use keywords NONBLOCKING
COMPLETE in the PARAMETERS clause of a separate ALTER | NDEX statement for the
same XM.I ndex index.

Example 6-24 illustrates this.

Just as table SYS_Al XSXI _i ndex_nunber ERRORTAB reports errors, so table

SYS_AlI XSXI _i ndex_nunber PENDINGTAB records the current status of each base-table
row: whether or not it has been indexed. A row might not yet be indexed because it is
locked by for some other purpose or because trying to index it raised an error. In the
latter case, consult SYS_AI XSXI _i ndex_nunber _ERRORTAB for specific information about
the error.

" See Also:

alter_index_group_clause ::=

Example 6-24 Using DBMS_XMLINDEX.PROCESS_PENDING To Index XML Data

CREATE | NDEX po_struct ON po_binxm (OBJECT VALUE) | NDEXTYPE |'S XDB. XMLI ndex
PARAMETERS (' XM.Tabl e po_idx_tab

"'/ PurchaseOrder"’

COLUWNS reference  VARCHAR2(30) PATH ''Reference'',
requestor  VARCHAR2(30) PATH ''Requestor'',
user nane VARCHAR2(30) PATH ''User'',
lineitem XM.Type PATH ' ' Linel tems/Linelten' VIRTUAL

XM.Tabl e po_i ndex_|ineitem
""/Lineltem' PASSING |ineitem

COLUWNS i t emmo Bl NARY_DOUBLE PATH '' @t emNunber' ',
description VARCHAR2(256) PATH ''Description'',
partno VARCHAR2(14) PATH ''Part/@d'"',

quantity Bl NARY_DOUBLE PATH ' ' Part/ @uantity'",
unitprice  BINARY_DOUBLE PATH ''Part/@hnitPrice'"'");

ALTER | NDEX po_st ruct
PARAMVETERS(' NONBLOCKING ADD_GROUP GROUP po_action_group
XMLTABLE po_i dx_tab
"'/ PurchaseOrder""
COLUWNS actions XM.Type PATH ''Actions/Action'"' VIRTUAL
XMLTABLE po_i dx_action
""/Action'"' PASSING actions
COLUWNS actioned_by  VARCHAR2(10) PATH ''User'',
date_acti oned TI MESTAWP PATH ''Date''');

DECLARE

num pendi ng NUMBER : = 0;

num errored NUMBER : = 0;
BEG N

DBVS_XM.I NDEX. process_pending(' oe', 'po_struct', num pendi ng, numerrored);
DBVS_CUTPUT. put _l i ne(' Nunber of rows still pending ="' || numpending);
DBVS_QUTPUT. put _l i ne(' Nunber of rows with errors ="' || numerrored);
END,
/
Nunmber of rows still pending = 0
Nunber of rows with errors =10

PL/ SQL procedure successfully conpl eted.

ORACLE 6-34



Chapter 6
XMLIndex

ALTER | NDEX po_struct PARAMETERS(' NONBLOCKING COMPLETE');

6.3.7.4 Modifying the Data Type of a Structured XMLIndex Component

If an error is raised because some of your data does not match the data type used for
the corresponding column of the structured XM.I ndex component, you can in some
cases simply modify the index by passing keyword MODI FY_COLUWN_TYPE to ALTER

| NDEX.

You can, for example, expand a VARCHAR2( 30) column to, say, VARCHAR2( 40) if it
needs to accommodate data that is up to 40 characters. This is simpler and more
efficient than dropping the column and then adding a new column. The new data type
must be compatible with the old one: the same restrictions apply as apply for ALTER
TABLE MODI FY COLUMN.

¢ See Also:

e Oracle Database SQL Language Reference for information about ALTER
TABLE MODI FY COLUWN

e modify_column_type_clause :==

6.3.7.5 Dropping an XMLIndex Structured Component

If an XMLI ndex index has both an unstructured and a structured component, then you
can use ALTER | NDEX to drop the structured component. You do this by dropping all of
the structure groups that compose the structured component.

Example 6-25 shows how t