Oracle® Database
XStream Guide

18c
E83767-02
February 2018

ORACLE"

Oracle Database XStream Guide, 18c

E83767-02

Copyright © 2009, 2018, Oracle and/or its affiliates. All rights reserved.
Primary Author: Roopesh Ashok Kumar

Contributors: Randy Urbano, Lance Ashdown, Alan Downing, Thuvan Hoang, Richard Huang, Joydip Kundu,
Belinda Leung, Tianshu Li, Edwina Lu, Rui Mao, Pat McElroy, Valarie Moore, Srikanth Nalla, Partha
Raghunathan, Ashish Ray, Jim Stamos, Byron Wang, Rod Ward, Lik Wong, Haobo Xu, Kevin Xu, Jun Yuan,
Lei Zheng, Volker Kuhr, Jing Liu, Lewis Kaplan, Hung Tran, Mahesh Subramaniam, Vincent Gerard,
Fernando Gutierrez Mendez, Qingin Wang, Jorge Rivera, Susana Garduno, Roberto Morales

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience XV
Documentation Accessibility XV
Related Documents Y
Conventions XVi
Changes in This Release for Oracle Database XStream Guide
Changes in Oracle Database Release 18c, Version 18.1 XVil
Changes in Oracle Database 12c Release 2 (12.2.0.1) XVii
Changes in Oracle Database 12c Release 1 (12.1) XiX
Part | XStream General Concepts and Use Cases
1 Introduction to XStream
1.1 About XStream 1-1
1.2 Purpose of XStream 1-3
1.3 XStream Use Cases 1-4
1.3.1 Replicating Data Changes with Non-Oracle Databases 1-5
1.3.2 Using Files to Store Data Changes 1-5
1.3.2.1 XStream Demo That Replicates Database Changes Using Files 1-6
1.3.3 Sharing Data Changes with a Client-Side Memory Cache 1-6
1.4 Prerequisites for XStream 1-7
1.5 XStream Security Models 1-8
1.6 Tasks and Tools for XStream 1-9
1.6.1 XStream Tasks 1-9
1.6.2 XStream Tools 1-10
2 General XStream Concepts
2.1 Logical Change Records (LCRs) 2-1

ORACLE"

2.1.1 RowLCRs 2-2

2.1.1.1 Row LCR Subtypes 2-4

2.1.2 DDLLCRs 2-4
2.1.3 Extra Information in Row LCRs and DDL LCRs 2-6
2.1.4 Sequence LCRs 2-7
2.1.5 Position Order in an LCR Stream 2-7
2.1.6 LCRIDs and the Position of LCRs 2-8

2.2 Rules and Rule Sets 2-9
2.2.1 Rules and Rule Sets Defined 2-9
2.2.2 Rule Sets and XStream Components 2-10
2.2.3 System-Created Rules and XStream 2-10
2.2.3.1 XStream System-Created Rule Procedures 2-11

2.2.3.2 Global Rules 2-12

2.2.3.3 Schema Rules 2-13

2.2.3.4 Table Rules 2-14

2.2.3.5 Subset Rules 2-15

2.2.3.6 System-Created Rules and a Multitenant Environment 2-16

2.3 Rule-Based Transformations 2-20
2.3.1 Declarative Rule-Based Transformations 2-20
2.3.2 Declarative Rule-Based Transformation Ordering 2-21
2.3.3 Evaluating Transformation Ordering 2-22
2.3.3.1 Row Migration Transformation Ordering 2-23

2.3.3.2 User-Specified Declarative Transformation Ordering 2-23

2.3.3.3 Considerations for Rule-Based Transformations 2-23

2.4 XStream and the Oracle Streams Performance Advisor 2-24
2.4.1 XStream Components 2-24
2411 XStream Out Apply Subcomponents 2-25

2.4.1.2 XStream In Apply Subcomponents 2-25

2.4.2 Topology and Stream Paths 2-26
2.4.3 XStream and Component-Level Statistics 2-26
2.4.4 The UTL_SPADV Package 2-27
2.4.4.1 Collecting XStream Statistics Using the UTL_SPADV Package 2-27

2.4.4.2 Showing XStream Statistics on the Command Line 2-29

2.4.4.3 Interpreting SHOW_STATS Output 2-30

2.4.4.4 Showing XStream Statistics in an HTML Report 2-32

2.4.45 Interpreting the HTML Report From SHOW_STATS_HTML 2-33

2.5 XStream and SQL Generation 2-34
2.5.1 Interfaces for Performing SQL Generation 2-35
2.5.2 SQL Generation Formats 2-35
2.5.3 SQL Generation and Data Types 2-36
2.5.3.1 SQL Generation and Automatic Data Type Conversion 2-37

ORACLE iv

2.5.3.2 SQL Generation and LOB, LONG, LONG RAW, and XMLType

Data Types 2-38

2.5.4 SQL Generation and Character Sets 2-39

2.5.5 Sample Generated SQL Statements 2-39

2.5.5.1 Sample Generated SQL Statements for the hr.employees Table 2-39
2.5.5.2 Sample Generated SQL Statements for a Table With LOB

Columns 2-41

2.5.6 SQL Generation Demo 2-42

Part Il XStream Out

3 XStream Out Concepts

3.1 Introduction to XStream Out 3-1
3.2 Capture Processes 3-2
3.2.1 Capture Process Overview 3-2
3.2.2 Data Types Captured by a Capture Process 3-3
3.2.2.1 IDKeyLCRs 3-5

3.2.2.2 ID Key LCRs Demo 3-6

3.2.3 Types of DML Changes Captured by Capture Processes 3-7
3.2.4 Local Capture and Downstream Capture 3-7
3.2.4.1 Local Capture 3-7

3.2.4.2 Downstream Capture 3-9

3.2.5 Capture Processes and RESTRICTED SESSION 3-15
3.2.6 Capture Process Subcomponents 3-15
3.2.7 Capture Process States 3-16
3.2.8 Capture Process Parameters 3-16
3.2.9 Capture Process Checkpoints and XStream Out 3-17
3.2.9.1 Required Checkpoint SCN 3-17

3.2.9.2 Maximum Checkpoint SCN 3-17

3.2.9.3 Checkpoint Retention Time 3-17

3.2.10 SCN Values Related to a Capture Process 3-18
3.2.10.1 Captured SCN and Applied SCN 3-18
3.2.10.2 First SCN and Start SCN 3-18

3.3 Outbound Servers 3-20
3.3.1 Overview of Outbound Servers 3-20
3.3.2 Data Types Supported by Outbound Servers 3-22
3.3.3 Apply User for an Outbound Server 3-22
3.3.4 Outbound Servers and RESTRICTED SESSION 3-22
3.3.5 Outbound Server Subcomponents 3-22
3.3.6 Considerations for Outbound Servers 3-23

ORACLE Y

3.3.7 Outbound Servers and Apply Parameters 3-24
3.4 Position of LCRs and XStream Out 3-25
3.4.1 Additional LCR Attributes Related to Position in XStream Out 3-25
3.4.2 The Processed Low Position and Restartability for XStream Out 3-26
3.4.3 Streaming Network Transmission 3-27
3.5 XStream Out and Distributed Transactions 3-27
3.6 XStream Out and Security 3-28
3.6.1 The XStream Out Client Application and Security 3-28
3.6.2 XStream Out Component-Level Security 3-29
3.6.3 Privileges Required by the Capture User for a Capture Process 3-30
3.6.4 Privileges Required by the Connect User for an Outbound Server 3-30
3.7 XStream Out and Other Oracle Database Components 3-31
3.7.1 XStream Out and Oracle Real Application Clusters 3-31
3.7.1.1 Capture Processes and Oracle Real Application Clusters 3-32
3.7.1.2 Queues and Oracle Real Application Clusters 3-33
3.7.1.3 Propagations and Oracle Real Application Clusters 3-34
3.7.1.4 Outbound Servers and Oracle Real Application Clusters 3-35
3.7.2 XStream Out and Transparent Data Encryption 3-35
3.7.2.1 Capture Processes and Transparent Data Encryption 3-36
3.7.2.2 Propagations and Transparent Data Encryption 3-36
3.7.2.3 Outbound Servers and Transparent Data Encryption 3-37
3.7.3 XStream Out and Flashback Data Archive 3-38
3.7.4 XStream Out and Recovery Manager 3-38
3.7.4.1 RMAN and Local Capture Processes 3-39
3.7.4.2 RMAN and Downstream Capture Processes 3-39
3.7.5 XStream and Distributed Transactions 3-41
3.7.6 XStream Out and a Multitenant Environment 3-42
4 Configuring XStream Out

4.1 Preparing for XStream Out 4-1
4.1.1 Decide How to Configure XStream Out 4-1
4.1.2 Prerequisites for Configuring XStream Out 4-6
4.1.2.1 Configure an XStream Administrator on All Databases 4-7
4.1.2.2 Granting Additional Privileges to the XStream Administrator 4-11
4.1.2.3 If Required, Configure Network Connectivity and Database Links 4-12
4.1.2.4 Ensure That Each Source Database Is in ARCHIVELOG Mode 4-13
4.1.2.5 Setthe Relevant Initialization Parameters 4-14
4.1.2.6 Configure the Streams pool 4-14
4.1.2.7 If Required, Configure Supplemental Logging 4-15

4.1.2.8 If Required, Configure Log File Transfer to a Downstream
Database 4-21

ORACLE

Vi

4.1.2.9 If Required, Add Standby Redo Logs for Real-Time Downstream

Capture 4-24
4.2 Configuring XStream Out 4-27
4.2.1 Configuring an Outbound Server Using CREATE_OUTBOUND 4-28
4.2.2 Adding an Additional Outbound Server to a Capture Process Stream 4-32
4.2.3 Configuring an Outbound Server Using ADD_OUTBOUND 4-35
4.2.4 Configuring XStream Out in a CDB 4-39
4.2.4.1 Configuring XStream Out with Local Capture in a CDB 4-40
4.2.4.2 Configuring XStream Out with Downstream Capture in CDBs 4-43
5 Managing XStream Out
5.1 About Managing XStream Out 5-1
5.2 Managing an Outbound Server 5-2
5.2.1 Starting an Outbound Server 5-3
5.2.2 Stopping an Outbound Server 5-4
5.2.3 Setting an Apply Parameter for an Outbound Server 5-4
5.2.4 Changing the Connect User for an Outbound Server 5-5
5.3 Managing the Capture Process for an Outbound Server 5-6
5.3.1 Checking Whether the DBMS_XSTREAM_ADM Package Can Manage
a Capture Process 5-7
5.3.2 Starting a Capture Process 5-8
5.3.3 Stopping a Capture Process 5-9
5.3.4 Setting a Capture Process Parameter 5-10
5.3.5 Changing the Capture User of an Outbound Server's Capture Process 5-11
5.3.6 Changing the Start SCN or Start Time of an Outbound Server's Capture
Process 5-12
5.3.6.1 Changing the Start SCN of an Outbound Server's Capture
Process 5-13
5.3.6.2 Changing the Start Time of an Outbound Server's Capture
Process 5-14
5.3.7 Setting the First SCN for a Capture Process 5-15
5.4 Managing Rules for an XStream Out Configuration 5-17
5.4.1 Adding Rules to an XStream Out Configuration 5-17
5.4.1.1 Adding Schema Rules and Table Rules to an XStream Out
Configuration 5-18
5.4.1.2 Adding Subset Rules to an Outbound Server's Positive Rule Set 5-19
5.4.1.3 Adding Rules With Custom Conditions to XStream Out
Components 5-21
5.4.2 Removing Rules from an XStream Out Configuration 5-22
5.4.2.1 Removing Schema Rules and Table Rules From an XStream Out
Configuration 5-22
5.4.2.2 Removing Subset Rules from an Outbound Server's Positive Rule
Set 5-24

ORACLE

Vii

5.4.2.3 Removing Rules Using the REMOVE_RULE Procedure 5-25
5.5 Managing Declarative Rule-Based Transformations 5-26
5.5.1 Adding Declarative Rule-Based Transformations 5-26
5.5.1.1 Adding a Declarative Rule-Based Transformation That Renames
a Table 5-27
5.5.1.2 Adding a Declarative Rule-Based Transformation That Adds a
Column 5-27
5.5.2 Overwriting Existing Declarative Rule-Based Transformations 5-28
5.5.3 Removing Declarative Rule-Based Transformations 5-30
5.6 Dropping Components in an XStream Out Configuration 5-31
5.7 Removing an XStream Out Configuration 5-32
6 Monitoring XStream Out
6.1 About Monitoring XStream Out 6-2
6.2 Monitoring Session Information About XStream Out Components 6-2
6.3 Monitoring the History of Events for XStream Out Components 6-3
6.4 Monitoring an Outbound Server 6-4
6.4.1 Displaying General Information About an Outbound Server 6-5
6.4.2 Displaying Status and Error Information for an Outbound Server 6-7
6.4.3 Displaying Information About an Outbound Server's Current Transaction
6-8
6.4.4 Displaying Statistics for an Outbound Server 6-9
6.4.5 Displaying the Processed Low Position for an Outbound Server 6-10
6.4.6 Determining the Process Information for an Outbound Server 6-11
6.4.7 Displaying the Apply Parameter Settings for an Outbound Server 6-12
6.5 Monitoring the Capture Process for an Outbound Server 6-14
6.5.1 Displaying Change Capture Information About Each Capture Process 6-15
6.5.2 Displaying the Registered Redo Log Files for Each Capture Process 6-16
6.5.3 Displaying Redo Log Files That Are Required by Each Capture Process 6-17
6.5.4 Displaying SCN Values for Each Redo Log File Used by Each Capture
Process 6-18
6.5.5 Listing the Parameter Settings for Each Capture Process 6-19
6.5.6 Determining the Applied SCN for Each Capture Process 6-21
6.5.7 Displaying the Redo Log Scanning Latency for Each Capture Process 6-21
6.5.8 Displaying the Extra Attributes Captured by a Capture Process 6-22
6.6 Monitoring XStream Rules 6-23
6.7 Monitoring Declarative Rule-Based Transformations 6-24
6.7.1 Displaying Information About ADD COLUMN Transformations 6-26
6.7.2 Displaying Information About RENAME TABLE Transformations 6-27
ORACLE viii

7 Troubleshooting XStream Out

7.1 Diagnosing Problems with XStream Out 7-1
7.1.1 Viewing Alerts 7-1
7.1.2 Using the Streams Configuration Report and Health Check Script 7-3
7.1.3 Checking the Trace File and Alert Log for Problems 7-3

7.1.3.1 Capture Process Trace Files 7-4
7.1.3.2 Logminer Trace Files 7-5
7.1.3.3 Outbound Server Trace File 7-5
7.1.3.4 Client Application Trace Files 7-5

7.2 Problems and Solutions for XStream Out 7-6
7.2.1 An OCI Client Application Cannot Attach to the Outbound Server 7-6
7.2.2 Changes Are Failing to Reach the Client Application in XStream Out 7-7
7.2.3 The Capture Process Is Missing Required Redo Log Files 7-10
7.2.4 LCRs Streaming from an Outbound Server Are Missing Extra Attributes 7-11
7.2.5 The XStream Out Client Application Is Unresponsive 7-13

7.3 How to Get More Help with XStream Out 7-15

Part lll XStream In
8 XStream In Concepts

8.1 Introduction to XStream In 8-1

8.2 The Inbound Server 8-2
8.2.1 Overview of Inbound Servers 8-2
8.2.2 Data Types Applied by Inbound Servers 8-3
8.2.3 LCR Processing Options for Inbound Servers 8-5

8.2.3.1 DML Handlers 8-6
8.2.3.2 Error Handlers 8-7
8.2.3.3 DDL Handlers 8-8
8.2.3.4 Precommit Handlers 8-8
8.2.4 Inbound Servers and RESTRICTED SESSION 8-9
8.2.5 Inbound Server Components 8-9
8.2.6 Considerations for Inbound Servers 8-10
8.2.7 The Error Queue for an Inbound Server 8-10

8.3 Position of LCRs and XStream In 8-11

8.4 XStream In and Performance Considerations 8-14
8.4.1 Optimizing XStream In Performance for Large Transactions 8-14
8.4.2 Avoiding Potential Bottlenecks in Transaction Tracking 8-15
8.4.3 Optimizing Transaction Apply Scheduling 8-15

8.5 XStream In and Security 8-16

ORACLE

8.5.1 The XStream In Client Application and Security 8-16
8.5.2 XStream In Component-Level Security 8-17
8.5.3 Privileges Required by the Apply User for an Inbound Server 8-17
8.6 XStream In and Other Oracle Database Components 8-18
8.6.1 XStream In and Oracle Real Application Clusters 8-18
8.6.2 XStream In and Flashback Data Archive 8-19
8.6.3 XStream In and Transportable Tablespaces 8-19
8.6.4 XStream In and a Multitenant Environment 8-20
0 Configuring XStream In
9.1 Preparing for XStream In 9-1
9.1.1 Configure an XStream Administrator 9-2
9.1.1.1 Granting Additional Privileges to the XStream Administrator 9-6
9.1.2 Set the Relevant Initialization Parameters 9-7
9.1.3 Configure the Streams pool 9-8
9.1.4 If Required, Specify Supplemental Logging at the Source Database 9-9
9.2 Configuring XStream In 9-9
10 Managing XStream In

10.1 About Managing XStream In 10-2
10.2 Starting an Inbound Server 10-3
10.3 Stopping an Inbound Server 10-3
10.4 Setting an Apply Parameter for an Inbound Server 10-4
10.5 Changing the Apply User for an Inbound Server 10-5
10.6 Managing XStream In Conflict Detection and Resolution 10-6
10.6.1 About DML Conflicts in an XStream Environment 10-6
10.6.2 Conflict Types in an XStream Environment 10-7
10.6.2.1 Update Conflicts in an XStream Environment 10-7
10.6.2.2 Uniqueness Conflicts in an XStream Environment 10-8
10.6.2.3 Delete Conflicts in an XStream Environment 10-8
10.6.2.4 Foreign Key Conflicts in an XStream Environment 10-8
10.6.3 Conflicts and Transaction Ordering in an XStream Environment 10-8
10.6.4 Conflict Detection in an XStream Environment 10-9
10.6.4.1 About Conflict Detection in an XStream Environment 10-9
10.6.4.2 Control Over Conflict Detection for Non-Key Columns 10-10

10.6.4.3 Rows ldentification During Conflict Detection in an XStream
Environment 10-10
10.6.5 Conflict Avoidance in an XStream Environment 10-10
10.6.5.1 Use a Primary Database Ownership Model 10-11
10.6.5.2 Avoid Specific Types of Conflicts 10-11

ORACLE

10.6.6 Conflict Resolution in an XStream Environment 10-12
10.6.6.1 About Conflict Resolution in an XStream Environment 10-13
10.6.6.2 Prebuilt DML Conflict Handlers 10-13
10.6.6.3 Types of Prebuilt DML Conflict Handlers 10-14
10.6.6.4 Column Lists 10-17
10.6.6.5 Resolution Columns 10-18
10.6.6.6 Data Convergence 10-19
10.6.6.7 Collision Handling Without a DML Conflict Handler 10-19
10.6.6.8 Custom Conflict Handlers 10-20

10.6.7 Managing DML Conflict Handlers 10-21
10.6.7.1 Setting a DML Conflict Handler 10-21
10.6.7.2 Removing a DML Conflict Handler 10-23

10.6.8 Stopping Conflict Detection for Non-Key Columns 10-24

10.7 Managing Apply Errors 10-25

10.7.1 Inbound Server Error Handling 10-26
10.7.1.1 About Error Handlers 10-26
10.7.1.2 Setting and Unsetting an Error Handler 10-27

10.7.2 Retrying Apply Error Transactions 10-28
10.7.2.1 Retrying a Specific Apply Error Transaction 10-28
10.7.2.2 Retrying All Error Transactions for an Inbound Server 10-31

10.7.3 Deleting Apply Error Transactions 10-32
10.7.3.1 Deleting a Specific Apply Error Transaction 10-32
10.7.3.2 Deleting All Error Transactions for an Inbound Server 10-33

10.7.4 Managing Eager Errors Encountered by an Inbound Server 10-33

10.8 Conflict and Error Handling Precedence 10-38
10.9 Dropping Components in an XStream In Configuration 10-38
11 Monitoring XStream In
11.1 Displaying Session Information for Inbound Servers 11-2
11.2 Displaying General Information About an Inbound Server 11-3
11.3 Monitoring the History of Events for XStream In Components 11-4
11.4 Displaying the Status and Error Information for an Inbound Server 11-5
11.5 Displaying Apply Parameter Settings for an Inbound Server 11-6
11.6 Displaying the Position Information for an Inbound Server 11-7
11.7 Displaying Information About DML Conflict Handlers 11-8
11.8 Displaying Information About Error Handlers 11-9
11.9 Checking for Apply Errors 11-10
11.10 Displaying Detailed Information About Apply Errors 11-11
11.10.1 Step 1: Grant Explicit SELECT Privilege on the ALL_APPLY_ERROR
View 11-12
ORACLE Xi

11.10.2 Step 2: Create a Procedure that Prints the Value in an ANYDATA

Object 11-12
11.10.3 Step 3: Create a Procedure that Prints a Specified LCR 11-13
11.10.4 Step 4: Create a Procedure that Prints All the LCRs in the Error

Queue 11-15
11.10.5 Step 5: Create a Procedure that Prints All the Error LCRs for a

Transaction 11-16

12 Troubleshooting XStream In

12.1 Diagnosing Problems with XStream In 12-1
12.1.1 Viewing Alerts 12-1
12.1.2 Checking the Trace File and Alert Log for Problems 12-3

12.2 Problems and Solutions for XStream In 12-4
12.2.1 XStream In Cannot Identify an Inbound Server 12-4
12.2.2 Inbound Server Encounters an ORA-03135 Error 12-5
12.2.3 Changes Are Failing to Reach the Client Application in XStream In 12-5

12.3 How to Get More Help with XStream In 12-6

Part I\VV Oracle GoldenGate Capabilities in Oracle Database

13 Oracle GoldenGate Automatic Conflict Detection and Resolution

13.1 About Oracle GoldenGate 13-1
13.2 About Automatic Conflict Detection and Resolution 13-2
13.2.1 Automatic Conflict Detection and Resolution 13-3
13.2.2 Latest Timestamp Conflict Detection and Resolution 13-3
13.2.3 Delta Conflict Detection and Resolution 13-5
13.2.4 Column Groups 13-7
13.3 Configuring Automatic Conflict Detection and Resolution 13-9
13.3.1 Configuring Latest Timestamp Conflict Detection and Resolution 13-9
13.3.2 Configuring Delta Conflict Detection and Resolution 13-11
13.4 Managing Automatic Conflict Detection and Resolution 13-12
13.4.1 Altering Conflict Detection and Resolution for a Table 13-12
13.4.2 Altering a Column Group 13-13
13.4.3 Purging Tombstone Rows 13-14
13.4.4 Removing Conflict Detection and Resolution From a Table 13-14
13.4.5 Removing a Column Group 13-15
13.4.6 Removing Delta Conflict Detection and Resolution 13-15
13.5 Monitoring Automatic Conflict Detection and Resolution 13-16
13.5.1 Displaying Information About the Tables Configured for Conflicts 13-16

ORACLE Xii

13.5.2 Displaying Information About Conflict Resolution Columns 13-17
13.5.3 Displaying Information About Column Groups 13-19
14 Oracle GoldenGate Procedural Replication
14.1 About Oracle GoldenGate Procedural Replication 14-1
14.2 Determining Whether Procedural Replication Is On 14-2
14.3 Excluding Objects from Procedural Replication 14-2
14.4 Monitoring Oracle GoldenGate Procedural Replication 14-3
14.4.1 Displaying the Packages Supported for Oracle GoldenGate Procedural
Replication 14-4
14.4.2 Listing the Procedures Supported for Oracle GoldenGate Procedural
Replication 14-5
14.4.3 Displaying Information About Database Objects Excluded from Oracle
GoldenGate Procedural Replication 14-6
Part V. Appendixes
A Sample XStream Client Application
A.1 About the Sample XStream Client Application A-1
A.2 Sample XStream Client Application for the Oracle Call Interface API A-3
A.3 Sample XStream Client Application for the Java API A-17
B XStream Out Restrictions
B.1 Capture Process Restrictions B-1
B.1.1 Unsupported Data Types for Capture Processes B-1
B.1.2 Unsupported Changes for Capture Processes B-3
B.1.3 Supplemental Logging Data Type Restrictions B-8
B.1.4 Operational Requirements for Downstream Capture with XStream
Out B-8
B.1.5 Capture Processes Do Not Support Oracle Label Security B-9
B.2 Propagation Restrictions B-9
B.2.1 Connection Qualifiers and Propagations B-9
B.3 Outbound Server Restrictions B-9
B.3.1 Unsupported Data Types for Outbound Servers B-9
B.3.2 Types of DDL Changes Ignored by an Outbound Server B-10
B.3.3 Apply Process Features That Are Not Applicable to Outbound
Servers B-11
B.4 XStream Out Rule Restrictions B-13
B.4.1 Restrictions for Subset Rules B-13

ORACLE

Xiii

B.5 XStream Out Rule-Based Transformation Restrictions B-14

B.5.1 Unsupported Data Types for Declarative Rule-Based
Transformations B-14

B.6 XStream Out Limitations for Extended Data Types B-15

C XStream In Restrictions

C.1 Inbound Server Restrictions C-1
C.1.1 Unsupported Data Types for Inbound Servers C-1
C.1.2 Unsupported Data Types for Apply Handlers C-2
C.1.3 Types of DDL Changes Ignored by an Inbound Server C-3
C.1.4 Current Schema User Must Exist at Destination Database C-4
C.1.5 Inbound Servers Do Not Support Oracle Label Security Cc-4

C.2 XStream In Rule Restrictions C-4
C.2.1 Restrictions for Subset Rules C-4

C.3 XStream In Rule-Based Transformation Restrictions C-5
C.3.1 Unsupported Data Types for Declarative Rule-Based

Transformations C-5

C.4 XStream In Limitations for Extended Data Types C-5

Index

ORACLE Xiv

Preface

Oracle Database XStream Guide describes the features and functionality of XStream.

This document contains conceptual information about XStream, along with information
about configuring and managing an XStream environment. In addition, this document

contains reference information related to XStream.

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Audience

This guide is intended for database administrators who configure and manage
XStream environments. To use this document, database administrators must be
familiar with relational database concepts, SQL, distributed database administration,
Oracle Streams concepts, PL/SQL, and the operating systems under which they run
an XStream environment.

This guide is also intended for programmers who develop applications that use
XStream. To use this document, programmers need knowledge of an application
development language and relational database concepts.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see the following documents:

* Oracle Database XStream Java APl Reference

e Oracle Streams Concepts and Administration

ORACLE v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

* Oracle Streams Replication Administrator's Guide

e Oracle Call Interface Programmer's Guide

e Oracle Database 2 Day + Java Developer's Guide

* Oracle Database Java Developer's Guide

* Oracle Database Concepts

* Oracle Database Administrator's Guide

* Oracle Database SQL Language Reference

e Oracle Database PL/SQL Packages and Types Reference
* Oracle Database PL/SQL Language Reference

* Oracle Database Advanced Queuing User's Guide

Many of the examples in this book use the sample schemas. See Oracle Database
Sample Schemas for information about these schemas.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE XVi

Changes in This Release for Oracle
Database XStream Guide

There are changes in this document for recent releases of Oracle Database.

e Changes in Oracle Database Release 18c, Version 18.1
e Changes in Oracle Database 12c Release 2 (12.2.0.1)
e Changes in Oracle Database 12c Release 1 (12.1)

Changes in Oracle Database Release 18c, Version 18.1

The following are changes in Oracle Database XStream Guide for Oracle Database
release 18c, version 18.1.

* New Features

New Features

The following feature is new in this release:

e Support of Tables with UROWID Columns

XStream now supports replication of changes to UROWID columns.

¢ See Also:

— Data Types Captured by a Capture Process
— Data Types Applied by Inbound Servers

Changes in Oracle Database 12c Release 2 (12.2.0.1)

The following are changes in Oracle Database XStream Guide for Oracle Database
12c Release 2 (12.2.0.1).

* New Features

New Features

The following features are new in this release:

DML conflict handlers

ORACLE' Vi

ORACLE

Changes in This Release for Oracle Database XStream Guide

XStream provides prebuilt DML conflict handlers.
See "Managing XStream In Conflict Detection and Resolution".

Support for application containers and application common objects in a multitenant
environment

XStream can replicate changes made to application roots and application PDBs.

See "XStream Out and a Multitenant Environment" and "XStream In and a
Multitenant Environment".

Improved support for user-defined types
XStream now supports object types, REFs, and varrays.

See "Data Types Captured by a Capture Process" and "Data Types Applied by
Inbound Servers".

LCRID versions

An LCRID is the raw value used to specify the position of an LCR for XStream
Out. Starting with Oracle Database 12¢ Release 2 (12.2.0.1), the LCRID is
versioned.

See "LCRIDs and the Position of LCRs".

XStream support for different character sets in a multitenant container database
(CDB)

When the character set of the root of a CDB is AL32UTF8, any pluggable
database (PDB) in the CDB can use a character set that is different from the root
and other PDBs.

XStream supports long identifiers for database objects

In this release, identifiers for some database objects can be up to 128 bytes in
length. XStream outbound servers can capture changes made to database objects
with long identifiers, and XStream inbound servers can apply changes to database
objects with long identifiers.

LCR tracking

You can track an LCR through a stream using the nessage_t racki ng_f r equency
apply parameter or the SET_MESSAGE_TRACKI NG procedure in the DBVMS_XSTREAM ADM
package.

See "Changes Are Failing to Reach the Client Application in XStream In".
New capture process parameters

The following new capture process parameter is added for XStream Out
configurations:

— annot at eddl si ze

See Oracle Database PL/SQL Packages and Types Reference for information
about these apply parameters.

New apply parameters

The following new apply parameters are added for XStream inbound servers:
— batchsqgl _node

— cdgranularity

— message_tracking_frequency

XViii

Changes in This Release for Oracle Database XStream Guide

See Oracle Database PL/SQL Packages and Types Reference for information
about these apply parameters.

View the history of events for XStream components

The DBA_REPLI CATI ON_PROCESS_EVENTS view displays the history of events for
XStream components.

See "Monitoring the History of Events for XStream Out Components" and
"Monitoring the History of Events for XStream In Components".

Changes in Oracle Database 12c Release 1 (12.1)

The following are changes in Oracle Database XStream Guide for Oracle Database
12c Release 1 (12.1).

New Features

ORACLE

New Features

The following features are new in this release:

Support for Oracle Multitenant option

Oracle Multitenant option enables an Oracle database to contain a portable set of

schemas, objects, and related structures that appears logically to an application as
a separate database. This self-contained collection is called a pluggable database
(PDB). A multitenant container database (CDB) contains PDBs. You can configure
an XStream Out or XStream In environment that includes CDBs and PDBs.

See "XStream Out and a Multitenant Environment" and "XStream In and a
Multitenant Environment".

Eager apply of large transactions with XStream In

As a performance optimization, an XStream inbound server can use eager apply
to begin to apply large transactions before it receives the commit logical change
record (LCR).

See "Optimizing XStream In Performance for Large Transactions".
Ability to eliminate apply progress tables with XStream In

You can configure XStream In to use the redo log to track its progress instead of
an apply progress table to avoid potential bottlenecks in transaction processing.

See "Avoiding Potential Bottlenecks in Transaction Tracking".
Optimized transaction apply scheduling with XStream In

When the constraints on the target tables match the constraints on the source
tables, you can optimize dependency computation by setting the
conpute_| cr_dep_on_arrival apply parameter for an inbound server to Y.

See "Optimizing Transaction Apply Scheduling”.

New apply parameters

The following new apply parameters are added for XStream outbound servers:
— excludetag

— excludetrans

XiX

Changes in This Release for Oracle Database XStream Guide

— excl udeuser

— excludeuserid

— getappl ops

— getreplicates

The following new apply parameters are added for XStream inbound servers:
— conpute_lcr_dep_on_arrival
— eager_size

— enable_xstreamtable_stats
— handl ecol |'i sions

— max_parallelism

— optinize_progress_table

— optimze_self_updates

— suppresstriggers

See Oracle Database PL/SQL Packages and Types Reference for information
about these apply parameters.

« New capture process parameters

The following new capture process parameters are added for XStream Out
configurations:

excl udet ag

i ncl ude_obj ect's
— inline_lob_optimzation
— use_rac_service

See Oracle Database PL/SQL Packages and Types Reference for information
about these apply parameters.

e Trusted and untrusted security models

You can implement the XStream security model that best fits with your
organization's requirements.

See "XStream Security Models".
e Support for the increased size limit for VARCHAR2, NVARCHAR2, and RAWdata types

XStream Out and XStream In support the increased size limit for the VARCHAR?,
NVARCHAR?, and RAWdata types.

See "Data Types Captured by a Capture Process" and "Data Types Applied by
Inbound Servers".

e Support for XM.Type stored object relationally or as binary XML

XStream Out and XStream In support XM.Type stored object relationally or as
binary XML.

See "Data Types Captured by a Capture Process" and "Data Types Applied by
Inbound Servers".

e Support SecureFiles LOB columns stored using Advanced LOB Deduplication

ORACLE XX

ORACLE

Changes in This Release for Oracle Database XStream Guide

XStream supports changes to SecureFiles LOB columns stored using Advanced
LOB Deduplication.

HTML reports generated by the UTL_SPADV package

The SHOW STATS HTM. procedure in the UTL_SPADV package generates HTML output
that includes the statistics gathered by the COLLECT_STATS and START_MONI TORI NG
procedures in the same package.

See "The UTL_SPADV Package" and Oracle Database PL/SQL Packages and
Types Reference.

XXi

XStream General Concepts and Use
Cases

Database administrators who configure and manage XStream environments must
understand XStream concepts and use cases.

e Introduction to XStream
XStream enables information sharing with outstanding performance and usability.

e General XStream Concepts
General XStream concepts apply to both XStream Out and XStream In.

ORACLE

Introduction to XStream

XStream enables information sharing with outstanding performance and usability.

e About XStream
XStream consists of Oracle Database components and application programming
interfaces (APIs) that enable client applications to receive data changes from an
Oracle database and send data changes to an Oracle database.

e Purpose of XStream
Some customers, especially Independent Software Vendors (ISVs) and partners,
need access to the Oracle database as a platform for their own information
sharing products, such as file-level replication, middle-tier caches or even to
support replication between Oracle and non-Oracle data stores. XStream provides
these customers with fast, real-time access to changes made in the Oracle
database.

e XStream Use Cases
There are several common XStream use cases.

e Prerequisites for XStream
Meet prerequisites before using XStream.

e XStream Security Models
With XStream, you can implement the security model that best fits with your
organization's requirements.

e Tasks and Tools for XStream
You perform common tasks with XStream and use a set of tools to complete these
tasks.

1.1 About XStream

ORACLE

XStream consists of Oracle Database components and application programming
interfaces (APIs) that enable client applications to receive data changes from an
Oracle database and send data changes to an Oracle database.

These data changes can be shared between Oracle databases and other systems.
The other systems include non-Oracle databases, non-RDBMS Oracle products, file
systems, third party software applications, and so on. A client application is designed
by the user for specific purposes and use cases.

XStream consists of two major features: XStream Out and XStream In. XStream Out
provides Oracle Database components and APIs that enable you to share data
changes made to an Oracle database with other systems. XStream Out can retrieve
both data manipulation language (DML) and data definition language (DDL) changes
from the redo log and send these changes to a client application that uses the APIs, as
shown in the following figure.

1-1

Figure 1-1 XStream Out

About XStream

XStream
Out
Interface
|
P Connect '
Outbound Data Stream Client
Server ~ Application
- —__1__ACK ___
f
Queue

XStream In provides Oracle Database components and APIs that enable you to share
data changes made to other systems with an Oracle database. XStream In can apply
these changes to database objects in the Oracle database, as shown in the following
figure.

Figure 1-2 XStream In

.

XStream

In Interfaccle
' Connect
Client Data Stream > Inbound
Application - Ack | Server

XStream uses the capture and apply features of the Oracle database. These features
enable the following functionality for XStream:

ORACLE 1-2

Chapter 1
Purpose of XStream

» The logical change record (LCR) format for streaming database changes

An LCR is a message with a specific format that describes a database change. If
the change was a data manipulation language (DML) operation, then a row LCR
encapsulates each row change resulting from the DML operation. One DML
operation might result in multiple row changes, and so one DML operation might
result in multiple row LCRs. If the change was a data definition language (DDL)
operation, then a single DDL LCR encapsulates the DDL change.

* Rules and rule sets that control behavior, including inclusion and exclusion rules

Rules enable the filtering of database changes at the database level, schema
level, table level, and row/column level.

* Rule-based transformations that modify captured data changes

* Support for most data types in the database, including LOBs, LONG, LONG RAW and
XM.Type

* Customized configurations, including multiple inbound streams to a single
database instance, multiple outbound streams from a single database instance,
multiple outbound streams from a single capture process, and so on

* Full-featured apply for XStream In, including apply parallelism for optimal
performance, SQL generation, conflict detection and resolution, error handling,
and customized apply with apply handlers

" Note:

In both XStream Out and XStream In configurations, the client application must
use a dedicated server connection.

Related Topics

* Configuring XStream In
You can configure the Oracle Database components that are used by XStream.

* Logical Change Records (LCRS)
An LCR is a message with a specific format that describes a database change.

* Rules and Rule Sets
XStream uses rules and rule sets.

e Oracle Database PL/SQL Packages and Types Reference

1.2 Purpose of XStream

ORACLE

Some customers, especially Independent Software Vendors (ISVs) and partners, need
access to the Oracle database as a platform for their own information sharing
products, such as file-level replication, middle-tier caches or even to support
replication between Oracle and non-Oracle data stores. XStream provides these
customers with fast, real-time access to changes made in the Oracle database.

XStream is a programmatic interface that allows client applications to connect to the
Oracle database and attach directly into the database capture or apply process. A
client application can take advantage of a high performing capture mechanism by
attaching to the XStream outbound server to directly access the stream of changes

1-3

Chapter 1
XStream Use Cases

from an Oracle database. XStream Out streams logical change records (LCRs) to the
client application in committed transaction order.

To apply changes to the Oracle database, a client application can hook directly into
the XStream inbound server. The application provides the inbound server with LCRs in
transactional order and can take advantage of the high performance of the database
apply engine to apply the changes to the Oracle database.

1.3 XStream Use Cases

ORACLE

There are several common XStream use cases.

XStream provides a flexible infrastructure for sharing information between Oracle data
sources and non-Oracle data sources. You can use XStream to meet the data and
informational sharing needs of various organizations.

Each XStream use case in this section contains three main elements:

* A general description of the use case as it applies to both XStream Out and
XStream In

* A specific scenario for XStream Out
» A specific scenario for XStream In

In each XStream Out use case, the following components and actions send Oracle
Database changes to a client application:

e A capture process captures data changes made to an Oracle database.

e XStream Out sends these changes, in the form of logical change records (LCRS),
to an outbound server.

e The outbound server sends the LCRs to a client application.

How the client application processes the LCRs is different for each use case.

In each XStream In use case, the following components and actions send Oracle
Database changes to an inbound server:

* Aclient application gathers data changes from an external data source and sends
them to an inbound server in the form of LCRs.

* The inbound server receives the LCRs from a client application.

* The inbound server can apply the data changes to database objects in an Oracle
database. The inbound server can also process the LCRs in a customized way.

How the client application gathers the data changes is different for each use case.

* Replicating Data Changes with Non-Oracle Databases
Replication is generally used to improve availability and to improve performance
by spreading the network load over multiple regions and servers.

e Using Files to Store Data Changes
Some environments use files to store data changes.

* Sharing Data Changes with a Client-Side Memory Cache
Some environments cache data in memory to improve performance.

1-4

Chapter 1
XStream Use Cases

¢ See Also:

e "Introduction to XStream Out"

¢ "Introduction to XStream In"

1.3.1 Replicating Data Changes with Non-Oracle Databases

Replication is generally used to improve availability and to improve performance by
spreading the network load over multiple regions and servers.

XStream enables you replicate data changes made to an Oracle database with other
Oracle databases and with non-Oracle data sources.

You can configure a heterogeneous replication environment with XStream. Replication
is generally used to improve availability and to improve performance by spreading the
network load over multiple regions and servers. In a heterogeneous replication
environment, data is replicated between databases from different vendors.

XStream Out can send data changes made to an Oracle database to a non-Oracle
database. Specifically, the client application connects to the outbound server and
receives changes made to tables within the Oracle database. The client application
then applies the data changes in the LCRs to the non-Oracle database. The client
application can process the LCRs in any customized way before applying them.

XStream In can receive data changes made to a non-Oracle database. Specifically,
the client application gathers the data changes made to the non-Oracle database,
formats these changes into LCRs, and sends these LCRs to an inbound server. The
inbound server applies the changes in the LCRs to the Oracle database.

Note:

Oracle GoldenGate is a complete solution for replicating data between Oracle
and non-Oracle databases. Oracle GoldenGate documentation for more
information.

1.3.2 Using Files to Store Data Changes

ORACLE

Some environments use files to store data changes.
Typically, files store data changes for the following reasons:

* To process data changes in an environment that has no physical network or a
limited physical network. For example, some locations do not have a physical
network for security reasons.

* To process data changes in an environment that uses disconnected computing.
For example, a salesperson might fill orders on a laptop at various locations
without a network connection, and then update a primary database over the
network once a day.

1-5

Chapter 1
XStream Use Cases

* To process data changes in an environment that uses satellite communications. In
this case, a bulk transfer of files is more efficient than incremental changes over
the network.

XStream Out can send Oracle Database changes to a file in a file system.
Specifically, the client application writes the data changes in LCRs to the file. The
client application can process the LCRs in any customized way before writing
them to the file, and the file can reside on the computer system running the client
application or on a different computer system. Using SQL generation, the client
application can also write the SQL statement required to perform the change
encapsulated in a row LCR to a file.

XStream In can send data changes from a file to an Oracle database. Specifically,
the client application reads the data changes from the file and sends the changes,
in the form of LCRs, to an inbound server.

See Also:

"XStream and SQL Generation"

» XStream Demo That Replicates Database Changes Using Files
A demo is available that creates sample client applications that perform file-based
replication using the XStream APIs.

1.3.2.1 XStream Demo That Replicates Database Changes Using Files

A demo is available that creates sample client applications that perform file-based
replication using the XStream APIs.

Specifically, at one database, the demo creates an XStream Out configuration that
captures database changes and sends the LCRs to an outbound server. A client
application attaches to the outbound server and writes the database changes to a file.

At a different database, the demo creates an XStream In client application that
attaches to an inbound server, reads the changes in the file, and sends them in the
form of LCRs to the inbound server. The inbound server applies the changes to the
database objects at the destination database.

This demo is available in the following location:

$ORACLE_HOVE/ r dbrs/ deno/ xst reant f br

1.3.3 Sharing Data Changes with a Client-Side Memory Cache

ORACLE

Some environments cache data in memory to improve performance.

Cached data can provide low response times and high throughput for systems that
require the best possible performance. XStream can share data changes incrementally
with a client side memory cache.

XStream Out can incrementally refresh a client-side memory cache by sending Oracle
database changes to a memory cache. Specifically, the client application applies the
data changes in the LCRs to the memory cache. The client application can process
the LCRs in any customized way before applying them, and the memory cache can

1-6

Chapter 1
Prerequisites for XStream

reside on the computer system running the client application or on a different computer
system.

XStream In can incrementally retrieve data changes from a memory cache.
Specifically, the client application retrieves the data changes and sends the changes,
in the form of LCRs, to an inbound server. The memory cache can reside on the
computer system running the client application or on a different computer system.

1.4 Prerequisites for XStream

ORACLE

Meet prerequisites before using XStream.
This document assumes that you have the following skills:

* Knowledge of relational database concepts and Oracle Database concepts

XStream includes components that run in an Oracle database. To use XStream
successfully, you must be able to administer an Oracle Database.

See Also:

Oracle Database Concepts for information about this topic

* Knowledge of distributed databases

An XStream environment can include multiple data sources, including Oracle
databases and non-Oracle data sources. You should understand distributed
database concepts before using XStream.

¢ See Also:

Oracle Database Administrator’s Guide for information about this topic

* Knowledge of SQL and PL/SQL

To administer an Oracle database and the XStream components running in an
Oracle database, you must know how to use SQL and PL/SQL.

¢ See Also:

Oracle Database SQL Language Reference, Oracle Database PL/SQL
Language Reference, and Oracle Database PL/SQL Packages and Types
Reference for information about this topic

* Knowledge of application programming

XStream Out sends data changes to a client application for processing. XStream
In receives data changes from a client application. You use the Oracle Call
Interface (OCI) API or the Java API to create a client application that
communicates with XStream.

1-7

Chapter 1
XStream Security Models

¢ See Also:
— Oracle Call Interface Programmer's Guide for information about the
OCI API

— Oracle Database 2 Day + Java Developer's Guide and Oracle
Database Java Developer’s Guide for information about the Java API

Note:

Using the XStream APIs requires purchasing a license for the Oracle
GoldenGate product. See the Oracle GoldenGate documentation for more
information.

1.5 XStream Security Models

With XStream, you can implement the security model that best fits with your
organization's requirements.

ORACLE

XStream supports two modes of security:

XStream Trusted User Model

An XStream administrator configured with the trusted user model can manage any
XStream configuration, has more database privileges than an untrusted
counterpart, and can monitor XStream with DBA_ views.

The trusted user model is easier to implement than the untrusted user model,
especially in an environment with multiple XStream configurations.

XStream Untrusted User Model

An XStream administrator configured with the untrusted user model (also referred
to as the minimum privilege model) can only manage XStream configurations
owned by the untrusted user administrator. This model offers fine-grained
administrative security because you can designate different untrusted user
administrators to access different resources in the XStream environment. You can
configure one or more XStream untrusted users and each of these users only has
the minimum privileges required for the tasks that they are assigned. This strategy
gives you the ability to isolate access and privileges to certain XStream resources.
The untrusted administrator can monitor XStream with ALL_ views

For example, you might want to use the untrusted user model for situations where
the capture process requires more privileges than the client process. You can then
assign a different user for the client process that only has the privileges it requires.

Government and commercial organizations implement a variety of software and
hardware security architectures to protect and control access to data and
applications. Compliance with industry-specific service level agreements (SLAS),
audits, security laws and regulations may require a separation of duties and
responsibilities, and controlled access to data. These types of security criteria and
restrictions suit the untrusted user model where you can designate different users
and privileges to secure resources.

1-8

Chapter 1
Tasks and Tools for XStream

" SeeAlso:

e "XStream Out and Security"
e "XStream In and Security"
e "Configure an XStream Administrator on All Databases"

e "Configure an XStream Administrator"

1.6 Tasks and Tools for XStream

You perform common tasks with XStream and use a set of tools to complete these
tasks.

XStream Tasks
You complete common tasks with XStream.

XStream Tools
You use a set of tools to complete tasks with XStream.

1.6.1 XStream Tasks

You complete common tasks with XStream.

The common tasks for XStream are the following:

ORACLE

Configure XStream

Configuring XStream involves preparing an Oracle Database for XStream, creating
the Oracle Database components used by XStream, and creating one or more
client applications that communicate with the Oracle Database.

" See Also:

Configuring XStream Out and Configuring XStream In for information about
this task

Administer XStream

Administering XStream involves managing the Oracle Database components used
by XStream. It also involves managing the rules and rule sets used by these
components. It might also require modifications to a client application.

¢ See Also:

Managing XStream Out and Managing XStream In for information about
this task

Monitor XStream

1-9

Chapter 1
Tasks and Tools for XStream

Monitoring XStream involves viewing Oracle Enterprise Manager Cloud Control
pages related to XStream and querying data dictionary views related to XStream.

" See Also:

The Oracle Enterprise Manager Cloud Control online help, Monitoring
XStream Out and Monitoring XStream In for information about this task

1.6.2 XStream Tools

You use a set of tools to complete tasks with XStream.
Use the following tools to complete the tasks for XStream:

e SQL and PL/SQL

You can use SQL and PL/SQL to configure, administer, and monitor XStream.
SQL enables you to create an XStream administrator and monitor XStream using
data dictionary views. Several Oracle-supplied PL/SQL packages enable you to
configure and manage XStream.

¢ See Also:

Oracle Database SQL Language Reference, Oracle Database Reference,
Oracle Database PL/SQL Language Reference, and Oracle Database
PL/SQL Packages and Types Reference for information about this topic

e Oracle Enterprise Manager Cloud Control

You can use Oracle Enterprise Manager Cloud Control to manage and monitor
XStream components. You can also use Oracle Enterprise Manager Cloud Control
to view information about the LCRs that are streaming in an XStream
configuration.

See the Oracle Enterprise Manager Cloud Control online help for more information
about this topic.

e The OCI API and Java API

You can use the XStream OCI API and XStream Java API to create client
application that communicate with XStream. These applications can work with
XStream Out to stream LCRs out of an Oracle Database, and these applications
can work with XStream In to stream LCRs into an Oracle Database.

ORACLE 1-10

Chapter 1
Tasks and Tools for XStream

" See Also:

— Oracle Call Interface Programmer's Guide for information about the
OCI API

— Oracle Database XStream Java APl Reference for information about
the XStream Java API

— Oracle Database 2 Day + Java Developer's Guide and Oracle
Database Java Developer’s Guide for information about the Java API

ORACLE 111

General XStream Concepts

General XStream concepts apply to both XStream Out and XStream In.

Logical Change Records (LCRS)
An LCR is a message with a specific format that describes a database change.

Rules and Rule Sets
XStream uses rules and rule sets.

Rule-Based Transformations
In XStream, a rule-based transformation is any modification to a logical change
record (LCR) when a rule in a positive rule set evaluates to TRUE.

XStream and the Oracle Streams Performance Advisor

The Oracle Streams Performance Advisor consists of the

DBMS_STREAMS_ADVI SOR_ADMPL/SQL package and a collection of data dictionary
views.

XStream and SQL Generation
SQL generation is the ability to generate the SQL statement required to perform
the change encapsulated in a row LCR.

" See Also:

e XStream Out Concepts

e XStream In Concepts

2.1 Logical Change Records (LCRS)

ORACLE

An LCR is a message with a specific format that describes a database change.

There are three types of LCRs: row LCRs, DDL LCRs, and sequence LCRs. In
XStream, an LCR is the basic unit of information that describes a database change.

In an XStream Out configuration, a capture process can capture LCRs and send them
to an outbound server. The outbound server can send the LCRs to the XStream client
application.

In an XStream In configuration, an XStream client application can construct LCRs and
send them to an inbound server. The inbound server can apply the database changes
directly to the database object in the database, or the inbound server can process the
LCRs in a customized way.

Row LCRs
A row LCR describes a change to the data in a single row or a change to a single
LOB column, LONG column, LONG RAWcolumn, or XM.Type column in a row.

2-1

Chapter 2
Logical Change Records (LCRs)

- DDLLCRs
A DDL LCR describes a data definition language (DDL) change.

* Extra Information in Row LCRs and DDL LCRs
In addition to the information discussed in the previous sections, row LCRs and
DDL LCRs optionally can include extra information (or LCR attributes).

e Sequence LCRs
A sequence LCR is a row LCR that includes information about sequence values.
Sequence database objects generate sequence values.

e Position Order in an LCR Stream
Each LCR has a position attribute. The position of an LCR identifies its placement
in the stream of LCRs in a transaction.

* LCRIDs and the Position of LCRs
An LCRID is the raw value that specifies the position of an LCR for XStream Out.
It is strictly increasing, uniquely identifies an LCR, and is persistent across restart.
XStream uses LCRID values for ordering logical change records (LCRs) and for
determining which LCRs and transactions have been received and applied.

2.1.1 Row LCRs

A row LCR describes a change to the data in a single row or a change to a single LOB
column, LONG column, LONG RAWcolumn, or XM.Type column in a row.

The change results from a data manipulation language (DML) statement or a
piecewise operation. It may help to think of a row LCR as a DML LCR. For example, a
single DML statement can insert or merge multiple rows into a table, can update
multiple rows in a table, or can delete multiple rows from a table.

Since a single DML statement can affect more than one row, the capture process
creates a row LCR for each row that is changed by the DML statement. Row LCRs
represent the data changes made by a SQL or PL/SQL procedure invocation.

Each row LCR is encapsulated in an object of LCR$_ROW RECORD type. The following
table describes the attributes that are present in each row LCR.

Table 2-1 Attributes Present in All Row LCRs

Attribute

Description

sour ce_dat abase_nane The name of the source database where the row change occurred.

comand_t ype

obj ect _owner
obj ect _name
tag
transaction_id

scn

ORACLE

If the LCRs originated in a multitenant container database (CDB), then this attribute
specifies the global name container where the row change occurred.

The type of DML statement that produced the change, either | NSERT, UPDATE, DELETE,
LOB ERASE, LOBWRI TE, or LOB TRI M

The schema name that contains the table with the changed row.

The name of the table that contains the changed row.

A raw tag that you can use to track the LCR.

The identifier of the transaction in which the DML statement was run.

The system change number (SCN) at the time when the change was made.

2-2

Chapter 2
Logical Change Records (LCRs)

Table 2-1 (Cont.) Attributes Present in All Row LCRs

__|]
Attribute Description

ol d_val ues The old column values related to the change. These are the column values for the row
before the DML change. If the type of the DML statement is UPDATE or DELETE, then
these old values include some or all of the columns in the changed row before the
DML statement. If the type of the DML statement is | NSERT, then there are no old
values. For UPDATE and DELETE statements, row LCRs created by a capture process
can include some or all of the old column values in the row.

new val ues The new column values related to the change. These are the column values for the
row after the DML change. If the type of the DML statement is UPDATE or | NSERT, then
these new values include some or all of the columns in the changed row after the
DML statement. If the type of the DML statement is DELETE, then there are no new
values. For UPDATE and | NSERT statements, row LCRs created by a capture process
can include some or all of the new column values in the row.

posi tion A unique identifier of RAWdata type for each LCR. The position is strictly increasing
within a transaction and across transactions.
LCR position is commonly used in XStream configurations.
See "Position Order in an LCR Stream".

root _name If the LCR originated in a CDB, then this attribute specifies the global name of the root
in the CDB.

If the LCR originated in a non-CDB, then this attribute is the same as the
sour ce_dat abase_nane attribute.

Row LCRs that were captured by a capture process in an XStream Out configuration
contain additional attributes. The following table describes these additional attributes.
These attributes are not present in row LCRs constructed by an XStream client
application in an XStream In configuration.

Table 2-2 Additional Attributes in LCRs Captured by a Capture Process
]

Attribute Description

comit_scn The commit system change number (SCN) of the transaction to which the LCR
belongs.

comit_scn_frompositio The commit system change number (SCN) of a transaction determined by the input

n position, which is generated by an XStream outbound server.

commt_time The commit time of the transaction to which the LCR belongs.

compati bl e The minimal database compatibility required to support the LCR.

i nst ance_nunber The instance number of the database instance that made the change that is

encapsulated in the LCR. Typically, the instance number is relevant in an Oracle Real
Application Clusters (Oracle RAC) configuration.

| ob_information The LOB information for the column, such as NOT_A LOB or LOB_CHUNK.

| ob_of f set The LOB offset for the specified column in the number of characters for CLOB columns
and the number of bytes for BLOB columns.

| ob_operation_si ze The operation size for the LOB column in the number of characters for CLOB columns
and the number of bytes for BLOB columns.

[ong_i nformation The LONG information for the column, such as NOT_A_LONG or LONG_CHUNK.

row_t ext The SQL statement for the change that is encapsulated in the row LCR.

ORACLE 2-3

Chapter 2
Logical Change Records (LCRs)

Table 2-2 (Cont.) Additional Attributes in LCRs Captured by a Capture Process
]

Attribute

Description

scn_fromposition

source_tinme

xm _information

The SCN of the LCR.

The time when the change in an LCR captured by a capture process was generated
in the redo log of the source database, or the time when a persistent LCR was
created.

The XML information for the column, such as NOT_XM., XM._DCC, or XM._DI FF.

Row LCR Subtypes
A row LCR can also contain transaction control statements. These row LCRs
contain transaction control directives such as COWM T and ROLLBACK.

2.1.1.1 Row LCR Subtypes

A row LCR can also contain transaction control statements. These row LCRs contain
transaction control directives such as COWM T and ROLLBACK.

Such row LCRs are internal and can be used by outbound servers, inbound servers,
and XStream client applications to maintain transaction consistency.

¢ See Also:

2.1.2 DDL LCRs

Oracle Database PL/SQL Packages and Types Reference

A DDL LCR describes a data definition language (DDL) change.

A DDL statement changes the structure of the database. For example, a DDL
statement can create, alter, or drop a database object.

Each DDL LCR is encapsulated in an object of LCR$_DDL_RECORD type. The following
table describes the attributes that are present in each DDL LCR.

Table 2-3 Attributes Present in All DDL LCRs
]

Attribute

Description

sour ce_dat abase_nane

comand_t ype

obj ect _owner

obj ect _name

obj ect _type

ORACLE

The name of the source database where the DDL change occurred.

If the LCRs originated in a CDB, then this attribute specifies the global name of the
container where the DDL change occurred.

The type of DDL statement that produced the change, for example ALTER TABLE or
CREATE | NDEX.

The schema name of the user who owns the database object on which the DDL
statement was run.

The name of the database object on which the DDL statement was run.

The type of database object on which the DDL statement was run, for example TABLE
or PACKAGE.

2-4

Chapter 2
Logical Change Records (LCRs)

Table 2-3 (Cont.) Attributes Present in All DDL LCRs
]

Attribute Description

ddl _text The text of the DDL statement.

| ogon_user The logon user, which is the user whose session executed the DDL statement.

current _schema The schema that is used if no schema is specified for an object in the DDL text.

base_t abl e_owner The base table owner. If the DDL statement is dependent on a table, then the base
table owner is the owner of the table on which it is dependent.

base_t abl e_nare The base table name. If the DDL statement is dependent on a table, then the base
table name is the name of the table on which it is dependent.

tag A raw tag that you can use to track the LCR.

transaction_id The identifier of the transaction in which the DDL statement was run.

scn The system change number (SCN) at the time when the change was made.

posi tion A unique identifier of RAWdata type for each LCR. The position is strictly increasing

within a transaction and across transactions.
LCR position is commonly used in XStream configurations.
See "Position Order in an LCR Stream".

edi ti on_name The name of the edition in which the DDL statement was executed.
root _name If the LCR originated in a CDB, then this attribute specifies the global name of the root
in the CDB.

If the LCR originated in a non-CDB, then this attribute is the same as the
sour ce_dat abase_nane attribute.

DDL LCRs that were captured by a capture process contain additional attributes. The
following table describes these additional attributes. These attributes are not present in
DDL LCRs constructed by an XStream client application in an XStream In
configuration.

Table 2-4 Additional Attributes in DDL LCRs Captured by a Capture Process
]

Attribute Description

comit_scn The commit system change number (SCN) of the transaction to which the LCR
belongs.

comit_scn_frompositio The commit SCN of a transaction determined by the input position, which is generated

n by an XStream outbound server.

comit _time The commit time of the transaction to which the LCR belongs.

compati bl e The minimal database compatibility required to support the LCR.

i nst ance_nunber The instance number of the database instance that made the change that is

encapsulated in the LCR. Typically, the instance number is relevant in an Oracle Real
Application Clusters (Oracle RAC) configuration.

scn_from position The SCN of the LCR.

source_tine The time when the change in an LCR captured by a capture process was generated
in the redo log of the source database, or the time when a persistent LCR was
created.

ORACLE 2-5

Chapter 2
Logical Change Records (LCRs)

Note:

Both row LCRs and DDL LCRs contain the source database name of the
database where a change originated. To avoid problems, Oracle recommends
that you do not change the global name of the source database after a capture
process has started capturing changes.

¢ See Also:

e Oracle Call Interface Programmer's Guide for a complete list of the types of
DDL statements in the "SQL Command Codes" table

e Oracle Database PL/SQL Packages and Types Reference

2.1.3 Extra Information in Row LCRs and DDL LCRs

In addition to the information discussed in the previous sections, row LCRs and DDL
LCRs optionally can include extra information (or LCR attributes).

The extra attributes in LCRs are described in the following table.

Table 2-5 Extra Attributes in LCRs
]

Attribute Description

row id The rowid of the row changed in a row LCR. This attribute is not included in DDL
LCRs or row LCRs for index-organized tables.

serial # The serial number of the session that performed the change captured in the LCR.

sessi on# The identifier of the session that performed the change captured in the LCR.

t hread# The thread number of the instance in which the change captured in the LCR was

performed. Typically, the thread number is relevant only in an Oracle Real Application
Clusters (Oracle RAC) environment.

tX_nane The name of the transaction that includes the LCR.

user nane The name of the current user who performed the change captured in the LCR.

You can use the | NCLUDE_EXTRA ATTRI BUTE procedure in the DBVM5_CAPTURE_ADM package
to instruct a capture process to capture one or more extra attributes.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for more
information about the | NCLUDE_EXTRA ATTRI BUTE procedure

e Oracle Database PL/SQL Language Reference for more information about
the current user

ORACLE 2-6

Chapter 2
Logical Change Records (LCRs)

2.1.4 Sequence LCRs

A sequence LCR is a row LCR that includes information about sequence values.
Sequence database objects generate sequence values.

You can stream sequence LCRs in the following ways:

e To capture sequence LCRs using a capture process, set the capture process
parameter capt ure_sequence_nextval to V.

* To construct sequence LCRs using the OCI interface, use the OCI LCRNew function
and the OCl LCRHeader Set function with the 0CI_ROALCR SEQ LCRflag.

* To construct sequence LCRs using the Java interface, use the Def aul t RowLCR
constructor and set SequenceLCRFl ag method.

An XStream inbound server or an Oracle Streams apply process can use sequence
LCRs to ensure that the sequence values at a destination database use the
appropriate values. For increasing sequences, the sequence values at the destination
are equal to or greater than the sequence values at the source database. For
decreasing sequences, the sequence values at the destination are less than or equal
to the sequence values at the source database. To instruct an inbound server or apply
process to use sequence LCRs, set the appl y_sequence_nextval apply parameter to V.

Note:

Sequence LCRs are intended for one-way replication configurations. Sequence
LCRs cannot be used in bidirectional replication configurations.

See Also:

e "Setting a Capture Process Parameter"

e Oracle Call Interface Programmer's Guide for more information about the
OCl interface

* Oracle Database XStream Java API Reference for more information about
the Java interface

e Oracle Database Administrator’s Guide for information about sequences

2.1.5 Position Order in an LCR Stream

ORACLE

Each LCR has a position attribute. The position of an LCR identifies its placement in
the stream of LCRs in a transaction.

Both XStream Out and XStream In use LCR streams to share transactions. XStream
Out sends LCR streams to a client application. XStream In receives LCR streams from
a client application.

Each LCR position has the following properties:

2-7

Chapter 2
Logical Change Records (LCRs)

e The position is unique for each LCR.
* The position is of RAWdata type.

e The position is strictly increasing within the LCR stream, within a transaction, and
across transactions.

e The position is byte-comparable, and the comparison results for multiple positions
determines the ordering of the LCRs in the stream.

e The position of an LCR remains identical when the database, the client
application, or an XStream component restarts.

e The position is not affected by any rule changes that might reduce or increase the
number of LCRs in the stream.

XStream Out only sends committed data, and XStream In only receives committed
data.

The following are the properties related to an LCR stream:

* An LCR stream must be repeatable.

* An LCR stream must contain a list of assembled, committed transactions. LCRs
from one transaction are contiguous. There is no interleaving of transactions in an
LCR stream.

» Each transaction within an LCR stream must have an ordered list of LCRs and a
transaction ID.

e The last LCR in each transaction must be a commit LCR.
e Each LCR must have a unique position.

e The position of all LCRs within a single transaction and across transactions must
be strictly increasing.

An LCR stream can batch LCRs from multiple transactions and arrange them in
increasing position order. LCRs from one transaction are contiguous, and the position
must be increasing in the transaction. Also, the position must be nonzero for all LCRs.

¢ See Also:

¢ "Position of LCRs and XStream Out"

« "Position of LCRs and XStream In"

2.1.6 LCRIDs and the Position of LCRsS

ORACLE

An LCRID is the raw value that specifies the position of an LCR for XStream Out. It is
strictly increasing, uniquely identifies an LCR, and is persistent across restart.
XStream uses LCRID values for ordering logical change records (LCRs) and for
determining which LCRs and transactions have been received and applied.

Starting with Oracle Database 12c Release 2 (12.2.0.1), the LCRID is versioned.
When you create or add an outbound server, you can choose the LCRID version it
uses. To specify version 2, the database compatibility level must be at 12.2.0 or
higher. By default, an outbound server created or added when database compatibility
is lower than 12.2.0 uses LCRID version 1, and an outbound server created or added

2-8

2.2 Rules

Chapter 2
Rules and Rule Sets

when database compatibility is at 12.2.0 or higher uses LCRID version 2. You might
choose to use LCRID version 1 for an outbound server if, for example, the outbound
server captures LCRs that will be applied at a database that is at a lower compatibility
level.

After an outbound server is created or added, its LCRID version cannot be changed.
To change the LCRID version, you must drop and re-create the outbound server. If the
outbound server was sending LCRs to an inbound server, then you must drop and re-
create the inbound server.

The same database change has different LCRID values for version 1 and version 2.
New functions in the DBVMS_XSTREAM ADM package enable you to compare any stored
LCRID values in different versions and convert LCRID values from one version to
another. Specifically, the COMPARE_POSI Tl ON function compares two LCRID values, and
the CONVERT_POSI TI ON function converts LCRID values from one version to another.

Related Topics

e Configuring XStream Out
An outbound server in an XStream Out configuration streams Oracle database
changes to a client application.

and Rule Sets

XStream uses rules and rule sets.

* Rules and Rule Sets Defined
A rule is a database object that enables a client to perform an action when an
event occurs and a condition is satisfied. In an XStream configuration, rules
identify which LCRs to stream from one component to another.

* Rule Sets and XStream Components
An XStream component performs its task if a database change satisfies its rule
sets.

» System-Created Rules and XStream
An XStream component performs its task for an LCR if the LCR satisfies its rule
sets. A system-created rule is created by the DBVS_XSTREAM ADM package.

" See Also:

* "Managing Rules for an XStream Out Configuration"

e "Monitoring XStream Rules"

2.2.1 Rules and Rule Sets Defined

ORACLE

A rule is a database object that enables a client to perform an action when an event
occurs and a condition is satisfied. In an XStream configuration, rules identify which
LCRs to stream from one component to another.

Capture processes, propagations, outbound servers and inbound servers can use
rules. You can configure rules for each XStream component independently, and the
rules for different XStream components do not need to match.

2-9

Chapter 2
Rules and Rule Sets

A rule set is a collection of rules. The behavior of each XStream component is
determined by the rules in the rule sets that are associated with it. You can associate a
positive rule set and a negative rule set with each XStream component.

In addition, a single rule pertains to either the results of data manipulation language
(DML) changes or data definition language (DDL) changes. So, for example, you must
use at least two rules to include all of the changes to a particular table: one rule for the
results of DML changes and another rule for DDL changes.

The results of a DML change are row changes, and an LCR that encapsulates a row
change is called a row LCR. A single DML change can result in multiple row changes.
Therefore, a single DML change can result in multiple row LCRs. An LCR that
encapsulates a DDL change is called a DDL LCR.

2.2.2 Rule Sets and XStream Components

An XStream component performs its task if a database change satisfies its rule sets.

In general, a change satisfies the rule sets when no rules in the negative rule set
evaluate to TRUE for the change and at least one rule in the positive rule set evaluates
to TRUE for the change. The negative rule set is always evaluated first.

You use rule sets in an XStream configuration to specify the following:

e Changes that a capture process captures from the redo log or discards. If a
change found in the redo log satisfies the rule sets for a capture process, then the
capture process captures the change. If a change found in the redo log does not
satisfy the rule sets for a capture process, then the capture process discards the
change.

In XStream Out configurations that share one capture process among several
outbound servers, the rules for the capture process must pass the LCRs that are
needed by any of the outbound servers that share the capture process.

e The LCRs that a propagation sends from one queue to another or discards. If an
LCR in a queue satisfies the rule sets for a propagation, then the propagation
sends the LCR. If an LCR in a queue does not satisfy the rule sets for a
propagation, then the propagation discards the LCR.

e The LCRs that an outbound server sends to an XStream client application or
discards. If an LCR satisfies the rule sets for an outbound server, then the
outbound server sends the LCR to the XStream client application. If an LCR does
not satisfy the rule sets for an outbound server, then the outbound server discards
the LCR.

e The LCRs that an inbound server applies or discards. If an LCR satisfies the rule
sets for an inbound server, then the inbound server applies the LCR. If an LCR in
not satisfy the rule sets for an inbound server, then the inbound server discards
the LCR.

When an XStream component has no rule sets, the component performs its task for all
database changes. For example, if an inbound server has no rule sets, then it applies
all of the LCRs sent to it by an XStream client application.

2.2.3 System-Created Rules and XStream

An XStream component performs its task for an LCR if the LCR satisfies its rule sets.
A system-created rule is created by the DBVMS_XSTREAM ADM package.

ORACLE 2-10

Chapter 2
Rules and Rule Sets

A system-created rule can specify one of the following levels of granularity: table,
schema, or global.

e XStream System-Created Rule Procedures
Several PL/SQL procedures in the DBVS_XSTREAM ADM package can create system-
generated rules.

* Global Rules
When you use a rule to specify a task that is relevant to an entire database, you
are specifying a global rule.

* Schema Rules
When you use a rule to specify a task that is relevant to a schema, you are
specifying a schema rule.

e Table Rules
When you use a rule to specify a task that is relevant to a table, you are specifying
a table rule.

e Subset Rules
A subset rule is a special type of table rule for DML changes that is relevant only
to a subset of the rows in a table.

» System-Created Rules and a Multitenant Environment
A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as
a separate database. This self-contained collection is called a pluggable database
(PDB). A CDB contains PDBs.

¢ See Also:

e "Managing Rules for an XStream Out Configuration”
e "Monitoring XStream Rules"

e Oracle Database PL/SQL Packages and Types Reference

2.2.3.1 XStream System-Created Rule Procedures

ORACLE

Several PL/SQL procedures in the DBVS_XSTREAM ADM package can create system-
generated rules.

There are three types of procedures that create system-created rules:

* Procedures that create or alter an outbound server and the rules for the outbound
server

These procedures include CREATE_OUTBOUND, ADD_QUTBOUND, and ALTER OUTBOUND.
These procedures make it easy to configure XStream Out quickly. If they meet
your needs, then you should use these procedures to simplify XStream Out
configuration. The CREATE_QUTBOUND procedure creates the queue and capture
process used by the outbound server in addition to the outbound server.

* Procedures that create a propagation or add rules to an existing propagation

These procedures include the ADD * _PROPAGATI ON_RULES procedures. If the specified
propagation does not exist, then these procedures create the propagation and add

2-11

Chapter 2
Rules and Rule Sets

rules to the propagation's rule sets. If the specified propagation exists, then these
procedures add rules to the existing propagation's rule sets.

* Procedures that add rules to an existing XStream component, such as a capture
process, outbound server, or inbound server

These procedures include the ADD * RULES procedures. These procedure provide
more flexibility and fine-grained control over the system-created rules. You should
use these procedures when necessary to add rules to your XStream configuration.

The following table describes which procedures can create rules for which XStream
components.

Table 2-6 XStream System-Created Rule Procedures

Procedure Capture Process Propagation Outbound Server Inbound Server
CREATE_OUTBOUND Yes No Yes No
ADD_OUTBOUND No No Yes No
ALTER_QUTBOUND Yes No Yes No
ADD_GLOBAL_RULES Yes No Yes Yes
ADD_GLOBAL_PROPAGATI ON_RUL No Yes No No
ES
ADD_SCHEMA RULES Yes No Yes Yes
ADD_SCHEMA PROPAGATI ON_RUL No Yes No No
ES
ADD GLOBAL_RULES Yes No Yes Yes
ADD_SUBSET_QUTBOUND_RULES No No Yes No
ADD_SUBSET_RULES Yes No Yes Yes
ADD _SUBSET_PROPAGATI ON_RUL No Yes No No
ES
ADD TABLE RULES Yes No Yes Yes
ADD TABLE_PROPAGATI ON_RULE No Yes No No
S

" See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about these procedures

2.2.3.2 Global Rules

ORACLE

When you use a rule to specify a task that is relevant to an entire database, you are
specifying a global rule.

You can specify a global rule for DML changes, a global rule for DDL changes, or a
global rule for each type of change (two rules total).

A single global rule in the positive rule set for a capture process means that the
capture process captures the results of either all DML changes or all DDL changes to

2-12

Chapter 2
Rules and Rule Sets

the source database. A single global rule in the negative rule set for a capture process
means that the capture process discards the results of either all DML changes or all
DDL changes to the source database.

A single global rule in the positive rule set for a propagation means that the
propagation rule controls the set of LCRs that are applicable to a specific outbound
server. If a single capture services multiple outbound servers, the set of changes
distributed to each outbound server is controlled by the propagation rules (the capture
rules are the superset of all changes). A single global rule in the negative rule set for a
propagation means that the propagation discards either all row LCRs or all DDL LCRs
from the capture process.

A single global rule in the positive rule set for an outbound server means that the
outbound server sends either all row LCRs or all DDL LCRs that it receives to an
XStream client application. A single global rule in the negative rule set for an outbound
server means that the outbound server discards either all row LCRs or all DDL LCRs
that it receives.

A single global rule in the positive rule set for an inbound server means that the
inbound server applies either all row LCRs or all DDL LCRs sent to it by the XStream
client application. A single global rule in the negative rule set for an inbound server
means that the inbound server discards either all row LCRs or all DDL LCRs sent to it
by the XStream client application.

When an inbound server should apply all of the LCRs it receives from its client
application, you can configure the inbound server with no rule sets instead of using
global rules. Also, for an inbound server to perform best, it should not receive LCRs
that it should not apply.

To specify global rules for an outbound server, use the ALTER_OQUTBOUND procedure or,
for specifying a greater level of detail, the ADD_GLOBAL_RULES procedure in the
DBMS_XSTREAM ADM package.

To specify global rules for an inbound server, use the ALTER | NBOUND procedure or, for
specifying a greater level of detail, the ADD_GLOBAL_RULES procedure in the
DBMS_XSTREAM ADM package.

¢ See Also:

e "Managing Rules for an XStream Out Configuration”
e "Monitoring XStream Rules”

e Oracle Database PL/SQL Packages and Types Reference

2.2.3.3 Schema Rules

ORACLE

When you use a rule to specify a task that is relevant to a schema, you are specifying
a schema rule.

You can specify a schema rule for DML changes, a schema rule for DDL changes, or
a schema rule for each type of change to the schema (two rules total).

A single schema rule in the positive rule set for a capture process means that the
capture process captures either the DML changes or the DDL changes to the schema.

2-13

Chapter 2
Rules and Rule Sets

A single schema rule in the negative rule set for a capture process means that the
capture process discards either the DML changes or the DDL changes to the schema.

A single schema rule in the positive rule set for a propagation means that the
propagation propagates either the row LCRs or the DDL LCRs in the source queue
that contain changes to the schema. A single schema rule in the negative rule set for a
propagation means that the propagation discards either the row LCRs or the DDL
LCRs in the source queue that contain changes to the schema.

A single schema rule in the positive rule set for an outbound server means that the
outbound server sends either the row LCRs or the DDL LCRs that it receives that
contain changes to the schema to an XStream client application. A single schema rule
in the negative rule set for an outbound server means that the outbound server
discards either the row LCRs or the DDL LCRs that it receives that contain changes to
the schema.

A single schema rule in the positive rule set for an inbound server means that the
inbound server applies either the row LCRs or the DDL LCRs that it receives from an
XStream client application that contain changes to the schema. A single schema rule
in the negative rule set for an inbound server means that the inbound server discards
either the row LCRs or the DDL LCRs that it receives from an XStream client
application that contain changes to the schema.

To specify schema rules for either an outbound server or an inbound server, use the
ALTER_OUTBOUND procedure or the ADD_SCHEMA RULES procedure in the DBVS_XSTREAM ADM
package.

" See Also:

e "Managing Rules for an XStream Out Configuration”
e "Monitoring XStream Rules"

e Oracle Database PL/SQL Packages and Types Reference

2.2.3.4 Table Rules

ORACLE

When you use a rule to specify a task that is relevant to a table, you are specifying a
table rule.

You can specify a table rule for DML changes, a table rule for DDL changes, or a table
rule for each type of change to the table (two rules total).

A single table rule in the positive rule set for a capture process means that the capture
process captures either the DML changes or the DDL changes to the table. A single
table rule in the negative rule set for a capture process means that the capture
process discards either the DML changes or the DDL changes to the table.

A single table rule in the positive rule set for a propagation means that the propagation
propagates either the row LCRs or the DDL LCRs in the source queue that contain
changes to the table. A single table rule in the negative rule set for a propagation
means that the propagation discards either the row LCRs or the DDL LCRs in the
source queue that contain changes to the table.

2-14

Chapter 2
Rules and Rule Sets

A single table rule in the positive rule set for an outbound server means that the
outbound server sends either the row LCRs or the DDL LCRs that it receives that
contain changes to the table to an XStream client application. A single table rule in the
negative rule set for an outbound server means that the outbound server discards
either the row LCRs or the DDL LCRs that it receives that contain changes to the
table.

A single table rule in the positive rule set for an inbound server means that the inbound
server applies either the row LCRs or the DDL LCRs that it receives from an XStream
client application that contain changes to the table. A single table rule in the negative
rule set for an inbound server means that the inbound server discards either the row
LCRs or the DDL LCRs that it receives from an XStream client application that contain
changes to the table.

To specify table rules for an outbound server or inbound server, use either the
ALTER _QUTBOUND procedure or ADD TABLE RULES in the DBMS_XSTREAM ADM package.

2.2.3.5 Subset Rules

A subset rule is a special type of table rule for DML changes that is relevant only to a
subset of the rows in a table.

When you create a subset rule, you use a condition similar to a WHERE clause in a
SELECT statement to specify the following:

* That a capture process only captures a subset of the row changes resulting from
DML changes to a particular table

* That a propagation only propagates a subset of the row LCRs relating to a
particular table

* That an outbound server only sends a subset of the row LCRs relating to a
particular table to an XStream client application

* That an inbound server only applies a subset of the row LCRs relating to a
particular table

Supplemental logging is required when you specify the following types of subset rules:

e Subset rules for a capture process

e Subset rules for a propagation that will propagate LCRs captured by a capture
process

* Subset rules for an outbound server that will send LCRs captured by a capture
process to an XStream client application

In any of these cases, an unconditional supplemental log group must be specified at
the source database for all the columns in the subset condition. In some cases, when
a subset rule is specified, an update can be converted to an insert, and, in these
cases, supplemental information might be needed for some or all of the columns.

To specify subset rules for an outbound server, use the ADD_SUBSET_OUTBOUND_RULES,
ADD_SUBSET_RULES, or the REMOVE_SUBSET_QUTBOUND RULES procedures in the
DBMS_XSTREAM ADM package.

ORACLE 2-15

Chapter 2
Rules and Rule Sets

¢ See Also:

e "If Required, Configure Supplemental Logging"
e "Adding Subset Rules to an Outbound Server's Positive Rule Set"
e "Removing Subset Rules from an Outbound Server's Positive Rule Set"

e "Monitoring XStream Rules"

2.2.3.6 System-Created Rules and a Multitenant Environment

A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as a
separate database. This self-contained collection is called a pluggable database
(PDB). A CDB contains PDBs.

It can also contain application containers. An application container is an optional
component of a CDB that consists of an application root and the application PDBs
associated with it. An application container stores data for one or more applications.
An application container shares application metadata and common data. In a CDB,
each of the following is a container: the CDB root, each PDB, each application root,
and each application PDB.

In a CDB, LCRs can contain the global name of the container where the change
originated in the sour ce_dat abase_nane attribute and the global name of the CDB root in
the root _nane attribute. The rules for XStream components can consider these
attributes.

e System-Created Rules in a CDB and XStream Out
In a CDB, XStream Out must be configured in the CDB root. Therefore, the
PL/SQL procedures in the DBVMS_XSTREAM ADMpackage that create system-created
rules must be run in the CDB root while connected as a common user.

e System-Created Rules in a CDB and XStream In
You can configure XStream In in the root or in any container in a CDB.

Related Topics

* QOracle Multitenant Administrator's Guide

2.2.3.6.1 System-Created Rules in a CDB and XStream Out

In a CDB, XStream Out must be configured in the CDB root. Therefore, the PL/SQL
procedures in the DBMS_XSTREAM ADM package that create system-created rules must be
run in the CDB root while connected as a common user.

Excluding the procedures that create rules for propagations, the procedures that
create system-created rules for XStream Out, such as the ADD GLOBAL_RULES procedure,
include the key parameters in the following table:

ORACLE 2-16

Chapter 2
Rules and Rule Sets

Table 2-7 Key Procedure Parameters for System-Created Rules in a CDB

___|
Parameter Description

sour ce_dat abase The global name of the source database. In a CDB, specify the
global name of the container to which the rules pertain. The
container can be the CDB root, a PDB, an application root, or an
application PDB. The following are examples: nycdb. exanpl e. comor
hr pdb. exanpl e. com

sour ce_r oot _name The global name of the CDB root in the source CDB. The following
are examples: mycdb. exanpl e. com

source_contai ner_name The short name of the source container. The container can be the
CDB root, a PDB, an application root, or an application PDB. The
following are examples: CDB$ROOT or hr pdb.

If you do not include the domain name when you specify sour ce_dat abase or
source_r oot _name, then the procedure appends it to the name automatically. For
example, if you specify DBS1 and the domain is . EXAMPLE. COM then the procedure
specifies DBS1. EXAVPLE. COMautomatically.

The combination of these key parameters determines which containers' changes
XStream Out captures and streams to the client application, based on the rules
generated by the procedures. Regardless of the settings for these parameters,
system-generated rules can still limit the changes captured and streamed to specific
schemas and tables.

Local capture means that a capture process runs on the source CDB. In a local
capture configuration, the sour ce_r oot _name parameter specifies the global name of the
CDB root in the local CDB. If this parameter is NULL, then the global name of the CDB
root in the local CDB is specified automatically. The resulting rules include a condition
for the global name of the CDB root in the current CDB.

Downstream capture means that a capture process runs on a CDB other than the
source CDB. In a downstream capture configuration, the sour ce_r oot _nanme parameter
must be non-NULL, and it must specify the global name of the CDB root in the remote
source CDB. The resulting rules include a condition for the global name of the CDB
root in the remote CDB. If this parameter is NULL, then local capture is assumed.

The following table describes the rule conditions for various sour ce_dat abase and
source_cont ai ner_nane parameter settings in a local capture configuration.

Table 2-8 Local Capture and XStream Out Container Rule Conditions
|

source_database source_container_name Description
Parameter Setting Parameter Setting
NULL NULL XStream Out captures and streams

changes made in any container in the
local CDB, including the CDB root, all
PDBs, all application roots, and all
application PDBs.

ORACLE 2-17

Chapter 2
Rules and Rule Sets

Table 2-8 (Cont.) Local Capture and XStream Out Container Rule Conditions

source_database source_container_name Description
Parameter Setting Parameter Setting

non-NULL NULL XStream Out captures and streams
changes made in the specified source
container of the local CDB. The source
container can be the CDB root, a PDB,
an application root, or an application
PDB. The DBVS_XSTREAM ADM procedure
queries the CDB_PDBS view and
CDB_PROPERTI ES view to determine the
sour ce_cont ai ner _nane value.

NULL non-NULL XStream Out captures and streams
changes made in the specified source
container of the local CDB. The source
container can be the CDB root, a PDB,
an application root, or an application
PDB. The DBVS_XSTREAM ADMprocedure
gueries the CDB_PDBS view and
CDB_PROPERTI ES view to determine the
sour ce_dat abase value.

non-NULL non-NULL XStream Out captures and streams
changes made in the specified source
container of the local CDB. The source
container can be the CDB root, a PDB,
an application root, or an application
PDB.

If the prefix of the sour ce_dat abase
value is different from the

sour ce_cont ai ner _nane value, then the
resulting rules include a condition for the
sour ce_dat abase value, and an internal
table maps the sour ce_dat abase value
to the sour ce_cont ai ner _nane value.

The following table describes the rule conditions for various sour ce_dat abase and
sour ce_cont ai ner _nanme parameter settings in a downstream capture configuration.

Table 2-9 Downstream Capture and XStream Out Container Rule Conditions

source_database source_container_name Description
Parameter Setting Parameter Setting

NULL NULL XStream Out captures and streams
changes made in any container in the
remote source CDB, including the CDB
root, all PDBs, all application roots, and
all application PDBs.

ORACLE 2-18

Chapter 2
Rules and Rule Sets

Table 2-9 (Cont.) Downstream Capture and XStream Out Container Rule
Conditions

source_database source_container_name Description
Parameter Setting Parameter Setting

non-NULL NULL XStream Out captures and streams
changes made in the specified source
container of the remote source CDB.
The source container can be the CDB
root, a PDB, an application root, or an
application PDB. The DBMS_XSTREAM ADM
procedure derives the
sour ce_cont ai ner _nane value from the
prefix of sour ce_dat abase value.

NULL non-NULL The DBMS_XSTREAM ADMprocedure raises
an error.
non-NULL non-NULL XStream Out captures and streams

changes made in the specified source
container of the remote source CDB.
The source container can be the CDB
root, a PDB, an application root, or an
application PDB.

If the prefix of the sour ce_dat abase
value is different from the

sour ce_cont ai ner _name value, then the
resulting rules include a condition for the
sour ce_dat abase value, and an internal
table maps the sour ce_dat abase value
to the sour ce_cont ai ner _name value.

Related Topics

e Local Capture and Downstream Capture
You can configure a capture process to run locally on a source database or
remotely on a downstream database.

e Oracle Database PL/SQL Packages and Types Reference

2.2.3.6.2 System-Created Rules in a CDB and XStream In

ORACLE

You can configure XStream In in the root or in any container in a CDB.

Typically, an inbound server does not use rule sets or rules. Instead, it usually
processes all of the LCRs that it receives from its client application. An inbound server
can apply changes to the current container only. Therefore, if an inbound server is
configured in the CDB root, then it can apply changes only to the CDB root. If an
inbound server is configured in a PDB, then it can apply changes only to that PDB. If
an inbound server is configured in an application root, then it can apply changes only
to that application root, and if an inbound server is configured in an application PDB,
then it can apply changes only to that application PDB.

Related Topics

» QOracle Multitenant Administrator's Guide

2-19

Chapter 2
Rule-Based Transformations

2.3 Rule-Based Transformations

In XStream, a rule-based transformation is any modification to a logical change record
(LCR) when a rule in a positive rule set evaluates to TRUE.

In general, it is best for the client application to perform transformations of the data. If
this is not possible, then the database can perform some simple transformations on
DML LCRs.

» Declarative Rule-Based Transformations
Declarative rule-based transformations cover a set of common transformation
scenarios for row LCRs.

* Declarative Rule-Based Transformation Ordering
The order in which different types of rule-based transformations is evaluated is
important as results will vary.

» Evaluating Transformation Ordering
You can evaluate transformation ordering.

2.3.1 Declarative Rule-Based Transformations

ORACLE

Declarative rule-based transformations cover a set of common transformation
scenarios for row LCRs.

You specify (or declare) such a transformation using one of the following procedures in
the DBMS_XSTREAM ADM package:

e ADD COLUW either adds or removes a declarative transformation that adds a column
to arow LCR.

» DELETE_COLUW either adds or removes a declarative transformation that deletes a
column from a row LCR.

e KEEP_COLUMW\S either adds or removes a declarative transformation that keeps a list
of columns in a row LCR. The transformation removes columns that are not in the
list from the row LCR.

* RENAME_COLUW either adds or removes a declarative transformation that renames a
column in a row LCR.

e RENAME_SCHEMA either adds or removes a declarative transformation that renames
the schema in a row LCR.

* RENAME_TABLE either adds or removes a declarative transformation that renames the
table in a row LCR.

When you specify a declarative rule-based transformation, you specify the rule that is
associated with it. When the specified rule evaluates to TRUE for a row LCR, XStream
performs the declarative transformation internally on the row LCR, without invoking PL/
SQL.

Declarative rule-based transformations provide the following advantages:

» Performance is improved because the transformations are run internally without
using PL/SQL.

e Complexity is reduced because custom PL/SQL functions are not required.

2-20

Chapter 2
Rule-Based Transformations

Declarative rule-based transformations can transform row LCRs only. Therefore, a
DML rule must be specified when you run one of the procedures to add a declarative
transformation. If a DDL rule is specified, then an error is raised.

2.3.2 Declarative Rule-Based Transformation Ordering

ORACLE

The order in which different types of rule-based transformations is evaluated is
important as results will vary.

By default, Oracle Database performs declarative transformations in the following
order when the rule evaluates to TRUE:

1. Keep columns

2. Delete column

3. Rename column
4. Add column

5. Rename table

6. Rename schema

The results of a declarative transformation are used in each subsequent declarative
transformation. For example, suppose the following declarative transformations are
specified for a single rule:

e Delete column address
e Add column address

Assuming column address exists in a row LCR, both declarative transformations
should be performed in this case because the column address is deleted from the row
LCR before column address is added back to the row LCR. The following table shows
the transformation ordering for this example.

Step Transformation Transformation Details Transformation
Number Type Performed?

1 Keep columns - -

2 Delete column Delete column addr ess from row LCR Yes

3 Rename column - -

4 Add column Add column addr ess to row LCR Yes

5 Rename table - -

6 Rename schema - -

Another scenario might rename a table and then rename a schema. For example,
suppose the following declarative transformations are specified for a single rule:

* Rename table j ohn. cust oners to sue. clients
* Rename schema sue to mary

Notice that the rename table transformation also renames the schema for the table. In
this case, both transformations should be performed and, after both transformations,
the table name becomes mary. cli ents. The following table shows the transformation
ordering for this example.

2-21

Chapter 2
Rule-Based Transformations

Step Transformation Transformation Details Transformation

Number Type Performed?

1 Keep columns - -

2 Delete column - -

3 Rename column - -

4 Add column - -

5 Rename table Rename table j ohn. cust orer s to Yes
sue.clients

6 Rename schema Rename schema sue to mary Yes

Consider a similar scenario in which the following declarative transformations are
specified for a single rule:

* Rename table j ohn. cust oners to sue. clients
* Rename schema j ohn to mary

In this case, the first transformation is performed, but the second one is not. After the
first transformation, the table name is sue. cl i ents. The second transformation is not
performed because the schema of the table is now sue, not j ohn. The following table
shows the transformation ordering for this example.

Step Transformation Transformation Details Transformation

Number Type Performed?

1 Keep columns - -

2 Delete column - -

3 Rename column - -

4 Add column - -

5 Rename table Rename table j ohn. cust orer s to Yes
sue.clients

6 Rename schema Rename schema j ohn to mary No

The rename schema transformation is not performed, but it does not result in an error.
In this case, the row LCR is transformed by the rename table transformation, and a
row LCR with the table name sue. cl i ents is returned.

2.3.3 Evaluating Transformation Ordering

You can evaluate transformation ordering.

* Row Migration Transformation Ordering
In addition to declarative rule-based transformations, a row migration is an internal
transformation that takes place when a subset rule evaluates to TRUE.

» User-Specified Declarative Transformation Ordering
If you do not want to use the default declarative rule-based transformation ordering
for a particular rule, then you can specify step numbers for each declarative
transformation specified for the rule.

» Considerations for Rule-Based Transformations
Several considerations apply to declarative rule-based transformations.

ORACLE 2-22

Chapter 2
Rule-Based Transformations

2.3.3.1 Row Migration Transformation Ordering

In addition to declarative rule-based transformations, a row migration is an internal
transformation that takes place when a subset rule evaluates to TRUE.

You can use the DBMS_XSTREAM ADM ADD SUBSET_RULES procedure to add subset rules. If
both types of transformations are specified for a single rule, then Oracle Database
performs the transformations in the following order when the rule evaluates to TRUE:

1. Row migration

2. Declarative rule-based transformation

2.3.3.2 User-Specified Declarative Transformation Ordering

If you do not want to use the default declarative rule-based transformation ordering for
a particular rule, then you can specify step numbers for each declarative
transformation specified for the rule.

If you specify a step number for one or more declarative transformations for a
particular rule, then the declarative transformations for the rule behave in the following
way:

» Declarative transformations are performed in order of increasing step number.

* The default step number for a declarative transformation is O (zero). A declarative
transformation uses this default if no step number is explicitly specified for it.

» If two or more declarative transformations have the same step number, then these
declarative transformations follow the default ordering described in "Declarative
Rule-Based Transformation Ordering".

For example, you can reverse the default ordering for declarative transformations by
specifying the following step numbers for transformations associated with a particular
rule:

* Keep columns with step humber 6

* Delete column with step number 5

* Rename column with step humber 4
e Add column with step number 3

* Rename table with step number 2

* Rename schema with step humber 1

With this ordering specified, rename schema transformations are performed first, and
delete column transformations are performed last.

2.3.3.3 Considerations for Rule-Based Transformations

ORACLE

Several considerations apply to declarative rule-based transformations.
These considerations include the following:

* For a rule-based transformation to be performed by an XStream component, the
rule must be in the positive rule set for the XStream component. If the rule is in the
negative rule set for the XStream component, then the XStream component
ignores the rule-based transformation.

2-23

Chapter 2
XStream and the Oracle Streams Performance Advisor

* Rule-based transformations are different from transformations performed using the
DBMS_TRANSFORM package. This document does not discuss transformations
performed with the DBMS_TRANSFORM package.

» If alarge percentage of row LCRs will be transformed in an XStream In
configuration, you can use DML handlers with XStream In. Be aware that this
method may not perform as well as making the changes in the XStream In client
application. If you are performing multiple or complex transformations on row
LCRs in an XStream In configuration, then consider reducing the XStream In
processing time by making these modifications in the client application prior to
sending the changes to XStream In.

2.4 XStream and the Oracle Streams Performance Advisor

The Oracle Streams Performance Advisor consists of the DBVS_STREAMS_ADVI SOR_ADM
PL/SQL package and a collection of data dictionary views.

The Performance Advisor enables you to monitor the topology and performance of an
XStream environment. The XStream topology includes information about the
components in an XStream environment, the links between the components, and the
way information flows from capture to consumption. The Performance Advisor also
provides information about how Oracle Streams components are performing.

Apply processes function as XStream outbound servers and inbound servers. In
general, the Performance Advisor works the same way for an Oracle Streams
environment with apply processes and an XStream environment with outbound
servers or inbound servers. This section describes important considerations about
using the Performance Advisor in an XStream environment.

e XStream Components
The Performance Advisor tracks several XStream components.

* Topology and Stream Paths
In the Oracle Streams topology, a stream path is a flow of LCRs from a source to a
destination.

e XStream and Component-Level Statistics
The Performance Advisor tracks component-level statistics.

 The UTL_SPADV Package
The UTL_SPADV package automates the collection of statistics associated with
XStream performance.

¢ See Also:

Oracle Streams Concepts and Administration for detailed information about
using the Oracle Streams Performance Advisor

2.4.1 XStream Components

The Performance Advisor tracks several XStream components.

The Performance Advisor tracks the following types of components in an XStream
environment:

ORACLE 2-24

Chapter 2
XStream and the Oracle Streams Performance Advisor

QUEUE
CAPTURE

PROPAGATI ON SENDER
PROPAGATI ON RECEI VER
APPLY

The preceding types are the same in an Oracle Streams environment and an XStream
environment, except for APPLY. The APPLY component type can be an XStream
outbound server or inbound server.

In addition, the Performance Advisor identifies a bottleneck component as the busiest
component or the component with the least amount of idle time. In an XStream
configuration, the XStream client application might be the bottleneck when EXTERNAL
appears in the ACTI ON_NAME column of the DBA_STREAMS_TP_PATH BOTTLENECK view.

XStream Out Apply Subcomponents
There are several XStream Out apply subcomponents types.

XStream In Apply Subcomponents
There are several XStream In apply subcomponents types.

2.4.1.1 XStream Out Apply Subcomponents

There are several XStream Out apply subcomponents types.

The following subcomponent types are possible:

PROPAGATI ON SENDER+RECEI VER for sending LCRs from a capture process to an
outbound server where the capture process and outbound server are in different
databases.

APPLY READER for a reader server. APPLY READER receives LCRs from the capture
process, organizes them into transactions, does dependency calculations, and
passes the LCRs to the apply coordinator.

APPLY COORDI NATCR for a coordinator process. It takes the transactions from the
capture process, uses the dependency information to determine how to schedule
the transactions and sends the LCRs to the apply server.

APPLY SERVER for an apply server. It delivers the LCRs to the client application.

2.4.1.2 XStream In Apply Subcomponents

ORACLE

There are several XStream In apply subcomponents types.

The following subcomponent types are possible:

APPLY READER for a reader server. It takes the LCRs from client application converts
them into transactions, checks the transactional order and does dependency
calculations.

APPLY COORDI NATCR for a coordinator process. It takes the transactions from the
reader server, uses the dependency information to determine how to schedule the
transactions and sends the LCRs to the apply server.

APPLY SERVER for an apply server. It applies the LCRs to an apply handler. If the
LCR cannot be applied, it is placed into an error queue.

2-25

Chapter 2
XStream and the Oracle Streams Performance Advisor

2.4.2 Topology and Stream Paths

In the Oracle Streams topology, a stream path is a flow of LCRs from a source to a
destination.

A stream path begins with a capture process or XStream In client application. A
stream path ends where an apply process, outbound server, or inbound server
receives the LCRs. The stream path might flow through multiple source and
destination components before it reaches an apply process, outbound server, or
inbound server. Therefore, a single stream path can consist of multiple source/
destination component pairs before it reaches last component.

The Oracle Streams topology only gathers information about a stream path if the
stream path ends with an apply process, an outbound server, or an inbound server.

2.4.3 XStream and Component-Level Statistics

ORACLE

The Performance Advisor tracks component-level statistics.
The Performance Advisor tracks the following component-level statistics:

* The MESSAGE APPLY RATE is the average number of LCRs applied each second by the
apply process, outbound server, or inbound server.

e The TRANSACTI ON APPLY RATE is the average number of transactions applied by the
apply process, outbound server, or inbound server each second. Transactions
typically include multiple LCRs.

An LCR can be applied in one of the following ways:

e An apply process or inbound server makes the change encapsulated in the LCR to
a database object.

e An apply process or inbound server passes the LCR to an apply handler.

e Ifthe LCR raises an error, then an apply process or inbound server sends the LCR
to the error queue.

e An outbound server passes the LCR to an XStream client application. If the LCR
raises an error, then the outbound server also reports the error to the client
application.

Also, the Performance Advisor tracks the LATENCY component-level statistics. LATENCY is
defined in the following ways:

e For apply processes, the LATENCY is the amount of time between when the LCR
was created at a source database and when the LCR was applied by the apply
process at the destination database.

* For outbound servers, the apply LATENCY is amount of time between when the LCR
was created at a source database and when the LCR was sent to the XStream
client application.

e For inbound servers, the apply LATENCY is amount of time between when the LCR
was created by the XStream client application and when the LCR was applied by
the apply process.

When a capture process creates an LCR, the message creation time is the time when
the redo entry for the database change was recorded. When an XStream client

2-26

Chapter 2
XStream and the Oracle Streams Performance Advisor

application creates an LCR, the message creation time is the time when the LCR was
constructed.

" See Also:

Oracle Streams Concepts and Administration for more information about
component-level statistics

2.4.4 The UTL_SPADV Package

The UTL_SPADV package automates the collection of statistics associated with XStream
performance.

UTL_SPADV provides a series of subprograms that collect and analyze statistics for the
XStream components in a distributed database environment. The package uses the
Performance Advisor and the COLLECT STATS procedure to automate the collection of
statistics.

The output is formatted so that it can be imported into a spreadsheet easily and
analyzed. You can examine XStream performance statistics output with the
UTL_SPADV. SHOW STATS procedure or view the same information in an HTML-formatted
report with the UTL_SPADV. SHOW STATS_HTM. procedure.

The UTL_SPADV package works essentially the same way for an Oracle Streams
environment with apply processes as it does for an XStream environment with
outbound servers or inbound servers. Since XStream is concerned with data changes
to or from a client application, the output of the SHOW STATS procedure is different for
XStream than for Oracle Streams.

* Collecting XStream Statistics Using the UTL_SPADV Package
You can collect XStream statistics with the UTL_SPADV package.

e Showing XStream Statistics on the Command Line
The SHOW STATS procedure in the UTL_SPADV package displays the statistics that the
Performance Advisor gathered and stored.

e Interpreting SHOW_STATS Output
There are differences between the output for apply processes and the output for
XStream outbound servers and inbound servers.

e Showing XStream Statistics in an HTML Report
The SHOW STATS _HTM. procedure in the UTL_SPADV package creates an HTML report
that contains the statistics that the Performance Advisor gathered and stored.

e Interpreting the HTML Report From SHOW_STATS_HTML
The SHOW STATS_HTM. procedure in the UTL_SPADV package can generate the same
output as the SHOW STATS procedure, but it formats the output as HTML in HTML
files.

2.4.4.1 Collecting XStream Statistics Using the UTL_SPADV Package

You can collect XStream statistics with the UTL_SPADV package.

To collect XStream statistics using the UTL_SPADV package, complete the following
steps:

ORACLE 2-27

ORACLE

1.

Chapter 2
XStream and the Oracle Streams Performance Advisor

Identify the database that you will use to gather the information. An administrative
user at this database must meet the following requirements:

» If you want to gather XStream statistics for more than one database, the user
must have access to a database link to each database that contains XStream
components to monitor.

* The user must have been granted privileges using the
DBMS_XSTREAM AUTH. GRANT_ADM N_PRI VI LEGE procedure. If you want to gather
XStream statistics for more than one database, each database link must
connect to a user at the remote database that has been granted privileges
using the DBMS_XSTREAM AUTH. GRANT_ADM N_PRI VI LEGE procedure.

If you configure an XStream administrator at each database with XStream
components, then the XStream administrator has the necessary privileges.

* The user must have the necessary privileges to create tables and procedures.
If you want to gather XStream statistics for more than one database, each
database link must connect to a user at the remote database that has the
necessary privileges to create tables and procedures.

If no database in your environment meets these requirements, then choose a
database, configure the necessary database links, and grant the necessary
privileges to the users before proceeding.

In SQL*Plus, connect to the database you identified in Step 1 as a user that meets
the requirements listed in Step 1.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

Run the utl spadv. sgl script in the rdbms/admin directory in ORACLE_HOME to load the
UTL_SPADV package. For example:

@it | spadv. sql

Either collect the current XStream performance statistics once, or create a job that
continually monitors XStream performance:

* To collect the current XStream performance statistics once, run the
COLLECT_STATS procedure:

exec UTL_SPADV. COLLECT_STATS

This example uses the default values for the parameters in the COLLECT_STATS
procedure. Therefore, this example runs the Performance Advisor 10 times
with 60 seconds between each run. These values correspond with the default
values for the num runs and i nterval parameters, respectively, in the
COLLECT_STATS procedure.

* To create a job that continually monitors XStream performance:

exec UTL_SPADV. START_MONI TCRI NG

This example creates a monitoring job, and the monitoring job gathers
performance statistics continually at set intervals. This example uses the
default values for the parameters in the START_MONI TORI NG procedure.
Therefore, this example runs the Performance Advisor every 60 seconds. This
value corresponds with the default value for the i nterval parameter in the
START_MONI TORI NG procedure. If an interval is specified in the START_MONI TORI NG
procedure, then the specified interval is used for the i nterval parameter in the
COLLECT_STATS procedure.

2-28

Chapter 2
XStream and the Oracle Streams Performance Advisor

These procedures include several parameters that you can use to adjust the way
performance statistics are gathered. See Oracle Database PL/SQL Packages and
Types Reference for more information.

You can show the statistics by running the SHOW STATS procedure. See "Showing
XStream Statistics on the Command Line".

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
about the UTL_SPADV package

2.4.4.2 Showing XStream Statistics on the Command Line

The SHOW STATS procedure in the UTL_SPADV package displays the statistics that the
Performance Advisor gathered and stored.

Use the pat h_st at _t abl e parameter to specify the table that contains the statistics.

When you gather statistics using the COLLECT_STATS procedure, this table is specified in
the path_stat_tabl e parameter in the COLLECT_STATS procedure. By default, the table
name is STREAVB$_ADVI SOR_PATH_STAT.

When you gather statistics using the START_MONI TORI NG procedure, you can determine
the name for this table by querying the SHOW STATS_TABLE column in the
STREAMS$_PA_MONI TORI NG view. The default table for a monitoring job is
STREAMSS_PA_SHOW PATH_STAT.

To show statistics collected using the UTL_SPADV package and stored in the
STREAMS$_ADVI SOR_PATH_STAT table, complete the following steps:

1. Collect statistics by completing the steps described in "Collecting XStream
Statistics Using the UTL_SPADV Package".

2. Connect to the database as the user who collected the statistics.

3. If you are using a monitoring job, then query the SHOW STATS_TABLE column in the
STREAMS$_PA MONI TORI NG view to determine the name of this table that stores the
statistics:

SELECT SHOW STATS TABLE FROM STREAMS$_PA MONI TORI NG
4. Run the SHOW STATS procedure.

For example, if you are using a monitoring job and the default storage table, then
run the following procedure:

SET SERVERQUTPUT ON SI ZE 50000
BEG N
UTL_SPADV. SHOW STATS(
path_stat _table => " STREAMS$_PA SHOW PATH_STAT');
END;
/

ORACLE 2-29

Chapter 2
XStream and the Oracle Streams Performance Advisor

2.4.4.3 Interpreting SHOW_STATS Output

There are differences between the output for apply processes and the output for
XStream outbound servers and inbound servers.

" Note:

The rest of this section assumes that you are familiar with the UTL_SPADV
package and the SHOW STATS output for apply processes.

e Sample Output When an Outbound Server Is the Last Component in a Path
Here is sample output for when an outbound server is the last component in a
path.

e Sample Output When an Inbound Server Is the Last Component in a Path
Here is sample output for when an inbound server is the last component in a path.

¢ See Also:

Oracle Streams Concepts and Administration and Oracle Database PL/SQL
Packages and Types Reference for detailed information about using the
UTL_SPADV package

2.4.4.3.1 Sample Output When an Outbound Server Is the Last Component in a Path

ORACLE

Here is sample output for when an outbound server is the last component in a path.

LEGEND
<statistics>=<capture> [<queue> <psender> <preceiver> <queue>]<apply>
<bot t | eneck>
<capt ure> = '|<C' <nanme> <msgs captured/sec> <msgs enqueued/ sec> <l atency>
"LMR <idl % <flwctrl% <topevt% <topevt>
"LMP (<parallelisnp)<idl % <flwctrl% <topevt% <topevt>
"LMB <idl % <flwctrl % <topevt% <topevt>
"CAP <idl % <flwctrl% <topevt% <topevt>
' CAP+PS' <msgs sent/sec> <bytes sent/sec> <latency> <idl %
<flwetrl % <topevt% <topevt>
<appl y> = "| <A>' <name> <nsgs applied/sec> <txns applied/ sec> <latency>
"PStPR <idl % <flwctrl % <topevt% <topevt>
"APR <idl % <flwctrl% <topevt% <topevt>
"APC <idl % <flwctrl% <topevt% <topevt>
"APS (<parallelisnp)<idl % <flwctrl% <topevt% <topevt>

<queue> = '|<Q' <nanme> <megs enqueued/ sec> <megs spilled/sec> <msgs in
queue>

<psender > = '| <PS>' <name> <nsgs sent/sec> <bytes sent/sec> <latency> <idl %
<flwetrl % <topevt% <topevt>

<preceiver> = '|<PR>' <name> <idl % <flwtrl% <topevt% <topevt>

<bottleneck>= '| <name> <sub_name> <sessionid> <serial#> <topevt% <topevt>

QUTPUT

2-30

Chapter 2
XStream and the Oracle Streams Performance Advisor

PATH 1 RUN_ID 2 RUN_TIME 2009- MAY- 15 12: 20: 55 CCA Y
| <C> CAP$_XOUT 1 2733 2730 3392 LMR 8.3% 91.7%0%"" LMP (1) 8.3% 91.7% 0%""

LVB 8.3% 91. 7% 0% ™" CAP 8.3% 91.7% 0%"" | <Q> "XSTRVADM N'. " Q6_XOUT 2" 2730 0.01
4109 | <A> XOUT 2329 2.73 0 -1 PS+PR 8.3%91.7% 0% "" APR 8.3% 91.7% 0%"" APC
100% 0% 0% """ APS (1) 8.3%83.3%8.3%"" | "EXTERNAL"

Note:

This output is for illustrative purposes only. Actual performance characteristics
vary depending on individual configurations and conditions.

In this output, the A component is the outbound server XoUT. The output for when an
outbound server is the last component in a path is similar to the output for when an
apply process is the last component in a path. However, the apply server (APS) is not
the last component because the outbound server connects to a client application.
Statistics are not collected for the client application.

In an XStream Out configuration, the output can indicate flow control for the network
because the "SQL*Net more data to client" performance metric for an apply server is
measured like a flow control event. If the output indicates flow control for an apply
server, then either the network or the client application is considered the bottleneck
component. In the previous output, EXTERNAL indicates that either the network or the
client application is the bottleneck.

Other than these differences, you can interpret the statistics in the same way that you
would for a path that ends with an apply process. Use the legend and the
abbreviations to determine the statistics in the output.

2.4.4.3.2 Sample Output When an Inbound Server Is the Last Component in a Path

Here is sample output for when an inbound server is the last component in a path.

QUTPUT

PATH 1 RUN_ID 2 RUN_TI ME 2009- MAY-16 10:11:38 CCA N

| <PR> "clientcap"=> 75% 0% 8.3%"CPU + Wit for CPU' |<Q "XSTRVADM N'."QUEUE2" 467 0.01 1

| <A> XIN 476 4.71 0 APR 100% 0% 0% "" APC 100% 0% 0% "" APS (4) 366.7% 0% 33.3% "CPU + Wit for
CcPU'

| " EXTERNAL"

" Note:

This output is for illustrative purposes only. Actual performance characteristics
vary depending on individual configurations and conditions.

In this output, the A component is the inbound server Xi N. When an inbound server is
the last component in a path, the XStream client application connects to the inbound

ORACLE 2-31

Chapter 2
XStream and the Oracle Streams Performance Advisor

server, and the inbound server applies the changes in the LCRs. The client application
is not shown in the output.

The propagation receiver receives the LCRs from the client application. So, the
propagation receiver is the first component shown in the output. In the previous
sample output, the propagation receiver is named cl i ent cap. In this case, clientcap is
the source name given by the client application when it attaches to the inbound server.

If the propagation receiver is idle for a significant percentage of time, then either the
network or the client application is considered a bottleneck component. In the previous
output, EXTERNAL indicates that either the network or the client application is the
bottleneck.

Other than these differences, you can interpret the statistics in the same way that you
would for a path that ends with an apply process. If you and the abbreviations to
determine the statistics in the output.

2.4.4.4 Showing XStream Statistics in an HTML Report

ORACLE

The SHOW STATS_HTM. procedure in the UTL_SPADV package creates an HTML report that
contains the statistics that the Performance Advisor gathered and stored.

Use the conp_st at _t abl e parameter to specify the table that contains the statistics.

When you gather statistics using the COLLECT _STATS procedure, this table is specified in
the conp_st at _t abl e parameter in the COLLECT_STATS procedure. By default, the table
name is STREAVB$_ADVI SOR_COMP_STAT.

When you gather statistics using the START_MONI TORI NG procedure, you can determine
the name for this table by querying the SHOW STATS_TABLE column in the
STREAMS$_PA MONI TORI NG view. The default table for a monitoring job is

STREANS$_ADVI SOR_COVP_STAT.

The default for the conp_st at _t abl e parameter is STREAMS$_ADVI SOR_COVP_STAT. Ensure
that you specify the correct table when you run the SHOW STATS HTM. procedure.

The SHOW STATS HTM. procedure must store the HTML report in a directory. Use the
di rect ory parameter to specify a directory object.

To show statistics collected using the UTL_SPADV package and stored in the
STREAMS$_ADVI SOR_COMP_STAT table, complete the following steps:

1. Collect statistics by completing the steps described in "Collecting XStream
Statistics Using the UTL_SPADV Package".

2. Connect to the database as the user who collected the statistics.

3. If you are using a monitoring job, then query the SHOW STATS_TABLE column in the
STREAMS$_PA_MONI TORI NG view to determine the name of this table that stores the
statistics:

SELECT SHOW STATS_TABLE FROM STREAMS$_PA MONI TORI NG

4. Create a directory object for the directory that will contain the files in the HTML
report.

For example, to create a directory object named XSTREAM STATS_HTM. for the /usr/
xstream/reports directory, run the following SQL statement:

CREATE DI RECTORY XSTREAM STATS HTM. AS '/usr/xstreanireports';

2-32

Chapter 2
XStream and the Oracle Streams Performance Advisor

Run the SHON STATS_HTM. procedure.

For example, if you are using a monitoring job and the default storage table, then
run the following procedure:

BEG N
UTL_SPADV. SHOW STATS _HTM.(
directory => ' XSTREAM STATS HTM.',
report name => 'xstreamstats.htm"',
conp_stat_table => ' STREAMS$_ADVI SOR_COVP_STAT') ;
END;
/

2.4.4.5 Interpreting the HTML Report From SHOW _STATS HTML

The SHOW STATS HTM. procedure in the UTL_SPADV package can generate the same
output as the SHOW STATS procedure, but it formats the output as HTML in HTML files.

ORACLE

The SHOW STATS_HTM. output is easier to read than the SHOW STATS output. For example,
the procedure generates multiple files, and each file begins with the report name. The
report includes tables with the performance statistics. Statistics for different paths are
in different rows in these tables, and you can click on a path for more detailed statistics
about the path. The report _nanme parameter indicates the master HTML file with links to
the other HTML files.

The following are considerations for using the SHOW STATS_HTM. procedure:

The default table that stores the statistics is STREAMS$_ADVI SOR_COMP_STAT. The
SHOW STATS procedure uses a different default table (STREAMS$_ADVI SOR_PATH_STAT).

You must specify a directory object in the direct ory parameter of the procedure.
This directory stores the HTML files generated by the procedure.

The specified directory object must be created using the SQL statement CREATE
DI RECTORY, and the user who invokes the procedure must have READ and WRI TE
privilege on the directory.

Figure 2-1 shows a portion of an HTML report generated by the SHOW STATS _HTM.
procedure.

2-33

Chapter 2
XStream and SQL Generation

Figure 2-1 HTML Report Generated by the SHOW_STATS_HTML Procedure

[6] SPADV Report | %

Contents
Legend

Event Metrics
Paths

Path Summary

Path Level Event Summary
Rate Level Stats

Legend

[Acronym [Component [Throughput | Rate 2
[CAPTURE [Capture Component [msgs enqueued/sec [msgs captured/sec
LMR [Log Miner Reader [n/a [n/a

[Lmp [Log Miner Preparer [n/a [n/a

Lme [Log Miner Builder [n/a [n/a

lcp [Capture Process [ra [ra

Q [Queue lenqueued/sec [no of msgs in queue
Ps [Propagation Sender [msgs/sec [oytes/sec

PR [Propagation Receiver n/a [n/a

[2PPLY [Apply component [msgs applied/sec [xns applied/sec
[APR [Apply Reader [n/a [n/a

[apC [2pply Coordinater [n/a [n/a

=3 [Apply Slave [n/a [n/a

Event Metrics

[Metric | Description

IDLE%% [Percent of time in the run, spent waiting on upstream component

[FLWCTRL% [Percent of time in the run, spent waiting on downstream component
[TOPEVENT [Non-idle Non-flwctrl Event which occupies most of run time
[TOPEVENTS [Percent of time in the run, spent on Topevent

PATHS

Path 1

[component]| Name [Database
[CAPTURE [CAP$ XOUT 1

[Q ['XSTRMADMIN" "Q$_XOUT_2"

[APPLY [xouT

PATH LEVEL SUMMARY
[Path 1d [Avg CAPTURE msgsisec [Avg CAPTURE latency [Avg APPLY txnsisec|[Avg APPLY msgs/sec [Avg APPLY latency
[[0464 64 125 [85.37 [g221.91 156

¢ See Also:
"Interpreting SHOW_STATS Output”

2.5 XStream and SQL Generation

SQL generation is the ability to generate the SQL statement required to perform the
change encapsulated in a row LCR.

XStream outbound servers and XStream inbound servers can use SQL generation to
generate the SQL statement necessary to perform the insert, update, or delete
operation in a row LCR.

* Interfaces for Performing SQL Generation
You can use different interfaces for SQL generation.

ORACLE 2-34

Chapter 2
XStream and SQL Generation

* SQL Generation Formats
SQL statements can be generated in one of two formats: inline values or bind
variables.

* SQL Generation and Data Types
SQL generation supports most data types.

e SQL Generation and Character Sets
When you use the LCR methods, the generated SQL is in the database character
set.

e Sample Generated SQL Statements
Examples illustrate generated SQL statements.

* SQL Generation Demo
A demo that performs SQL generation is available.

2.5.1 Interfaces for Performing SQL Generation

You can use different interfaces for SQL generation.
You can use the following interfaces to perform SQL generation:

e The PL/SQL interface, which uses the GET_ROW TEXT and GET_WHERE CLAUSE member
procedures for row LCRs

The OCI for XStream
* The Java interface for XStream

The PL/SQL interface generates SQL in a CLOB data type, while the OCI and Java
interfaces generate SQL in plain text. In the Java interface, the size of the text is
limited by the size of Stri ng data type.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for information
about the GET_ROW TEXT and GET_WHERE_CLAUSE row LCR member procedures

e Oracle Call Interface Programmer's Guide

e Oracle Database XStream Java API Reference for information about the
Java interface for XStream

2.5.2 SQL Generation Formats

ORACLE

SQL statements can be generated in one of two formats: inline values or bind
variables.

Use inline values when the returned SQL statement is relatively small. For larger SQL
statements, use bind variables. In this case, the bind variables are passed to the client
application in a separate list that includes pointers to both old and new column values.

For information about using bind variables with each interface, refer to the following
documentation:

2-35

Chapter 2
XStream and SQL Generation

e The documentation for the GET_ROW TEXT and GET_WHERE CLAUSE row LCR member
procedures in Oracle Database PL/SQL Packages and Types Reference

e Oracle Call Interface Programmer's Guide

e The documentation for Def aul t RowLCR. get Bi nds() in Oracle Database XStream
Java API Reference

" Note:

For generated SQL statements with the values inline, SQL injection is possible.
SQL injection is a technique for maliciously exploiting applications that use
client-supplied data in SQL statements, thereby gaining unauthorized access to
a database to view or manipulate restricted data. Oracle strongly recommends
using bind variables if you plan to execute the generated SQL statement.

" See Also:

e Oracle Streams Concepts and Administration for an example that uses the
GET_ROW TEXT procedure for SQL generation

e Oracle Database PL/SQL Language Reference for more information about
SQL injection

2.5.3 SQL Generation and Data Types

ORACLE

SQL generation supports most data types.

SQL generation supports the following data types:

* VARCHAR2
* NVARCHAR2
* NUMBER

* FLOAT

e DATE

* BINARY_FLOAT

* Bl NARY_DQUBLE

* LONG

e TI MESTAWP

e TIMESTAVP W TH TI ME ZONE

e TI MESTAMP W TH LOCAL TI ME ZONE
e | NTERVAL YEAR TO MONTH

* | NTERVAL DAY TO SECOND

* RAW

2-36

Chapter 2
XStream and SQL Generation

LONG RAW

CHAR

NCHAR

CLOB with BASI CFI LE storage

NCLCB with BASI CFI LE storage

BLOB with BASI CFI LE storage

XM.Type stored as CLOB, object relational, or as binary XML

Note:

e The maximum size of the VARCHAR2, NVARCHAR2, and RAWdata types has been
increased in Oracle Database 12c¢ when the COVPATI BLE initialization
parameter is set to 12. 0. 0 and the MAX_STRI NG _SI ZE initialization parameter
is set to EXTENDED.

e XM.Type stored as a CLOB is deprecated in Oracle Database 12c Release 1
(12.1).

SQL Generation and Automatic Data Type Conversion

An XStream outbound server or inbound server performs implicit data type
conversion where it is possible, and the generated SQL follows ANSI standards
where it is possible.

SQL Generation and LOB, LONG, LONG RAW, and XMLType Data Types
For | NSERT and UPDATE operations on LOB columns, an outbound server
automatically assembles the LOB chunks using LOB assembly.

¢ See Also:

Oracle Database SQL Language Reference for information about data types

2.5.3.1 SQL Generation and Automatic Data Type Conversion

ORACLE

An XStream outbound server or inbound server performs implicit data type conversion
where it is possible, and the generated SQL follows ANSI standards where it is
possible.

The following are considerations for automatic data type conversions:

NULL is specified as "NULL".

Single quotation marks are converted into double quotation marks for the following
data types when they are inline values: CHAR, VARCHAR?, NVARCHAR2, NCHAR, CLOB, and
NCLOB.

LONG data is converted into CLOB data.
LONG RAWdata is converted into BLOB data.

2-37

Chapter 2
XStream and SQL Generation

2.5.3.2 SQL Generation and LOB, LONG, LONG RAW, and XMLType Data

Types

ORACLE

For I NSERT and UPDATE operations on LOB columns, an outbound server automatically
assembles the LOB chunks using LOB assembly.

For these operations, the generated SQL includes a non-NULL empty value. The actual
values of the chunked columns arrive in subsequent LCRs. For each chunk, you must
perform the correct SQL operation on the correct column.

Similarly, for LONG, LONG RAW and XM.Type data types, an outbound server generates a
non-NULL empty value, and the actual values of the column arrive in chunks in
subsequent LCRs. For each chunk, you must perform the correct SQL operation on
the correct column.

In the inline version of the generated SQL, for LOB, LONG, LONG RAW and XM.Type data
type columns, the following SQL is generated for inserts and updates:

* For CLOB, NCLCB, and LONG data type columns:
EMPTY_CLOB()

e For BLOB and LONG RAWdata type columns:
EMPTY_BLOB()

e For XM.Type columns:

XMLTYPE. CREATEXM.(' xm /")

where xm [is the XML chunk.

After the LCR that contains the DML statement arrives, the data for these changes
arrive in separate chunks. You can generate the WHERE clause for such a change and
use the generated WHERE clause to identify the row for the modifications contained in
the chunks. For example, in PL/SQL you can use the GET_WHERE_CLAUSE row LCR
member procedure to generate the WHERE clause for a row change.

For | NSERT and UPDATE operations, the generated WHERE clause identifies the row after
the insert or update. For example, consider the following update to the hr. depart nent s
table:

UPDATE hr. departnents SET departnent _nanme=' Managenent'
VHERE depart ment _name=' Adni ni stration';

The generated WHERE clause for this change is the following:

VWHERE " DEPARTMENT_NAME" =' Managenent '

For piecewise LOB operation performed by subprograms in the DBVS_LOB package
(including the WRI TE, TRI M, and ERASE procedures), the generated SQL includes a SELECT
FOR UPDATE statement.

For example, a LOB_WRI TE operation on a cl ob_col results in generated SQL similar to
the following:

SELECT "CLOB_COL" FROM "HR'."LOB_TAB' WHERE "N1"=2 FCR UPDATE

The selected cl ob_col must be defined. You can use the LOB locator to perform
piecewise LOB operations with the LOB chunks that follow the row LCR.

2-38

Chapter 2
XStream and SQL Generation

" See Also:

e "Sample Generated SQL Statements"

e Oracle Streams Replication Administrator's Guide for information about
LOB assembly

2.5.4 SQL Generation and Character Sets

When you use the LCR methods, the generated SQL is in the database character set.

SQL keywords, such as | NSERT, UPDATE, and | NTO, do not change with the character set.

" See Also:

e Oracle Database Globalization Support Guide for information about data
conversion in JDBC

e Oracle Database SQL Language Reference for information about SQL
keywords

2.5.5 Sample Generated SQL Statements

Examples illustrate generated SQL statements.

e Sample Generated SQL Statements for the hr.employees Table
Examples illustrate SQL statements generated by an outbound server for changes
made to the hr. enpl oyees table.

* Sample Generated SQL Statements for a Table With LOB Columns
Examples illustrate SQL statements generated by an outbound server for changes
made ti a table with LOB columns.

2.5.5.1 Sample Generated SQL Statements for the hr.employees Table

ORACLE

Examples illustrate SQL statements generated by an outbound server for changes
made to the hr. enpl oyees table.

< Note:

Generated SQL is in a single line and is not formatted.

Example 2-1 Generated Insert
Assume the following insert is executed:

I NSERT | NTO hr. enpl oyees (enpl oyee_id,
| ast _nane,

2-39

ORACLE

Chapter 2
XStream and SQL Generation

email,

hire_date,

job_id,

sal ary,

commi ssi on_pct)
VALUES (207,

"Gregory',

' pgregory@xanpl e. cont ,

SYSDATE,

"PU_CLERK',

9000,

NULL);

The following is the generated SQL with inline values:

I NSERT | NTO "HR'."EMPLOYEES" ("EMPLOYEE | D', " FI RST_NAME", "LAST_NAME",
"EMAIL", " PHONE_NUMBER', " HI RE_DATE", "JOB_I D", " SALARY", " COW SSI ON_PCT",
"MANAGER | D', "DEPARTMENT I D') VALUES (207, NULL,' Gregory',

' pgregory@xanpl e.com, NULL , TO DATE(' 2009-04-15','syyyy-mmdd'),
"PU_CLERK', 9000, NULL , NULL , NULL)

The following is the generated SQL with bind variables:

I NSERT | NTO "HR'."EMPLOYEES" (" EMPLOYEE | D', " FI RST_NAME", " LAST_NAME",
"EMAIL", " PHONE_NUMBER', "Hl RE_DATE", "JOB_I D', " SALARY",

"COW SSI ON_PCT", "MANAGER | D', "DEPARTMENT ID") VALUES (:1 ,:2 ,:3
o4 05 6 07,28 .29 ;110 ,:11)

Example 2-2 Generated Update
Assume the following update is executed:

UPDATE hr. enpl oyees SET sal ary=10000 WHERE enpl oyee_i d=207;

The following is the generated SQL with inline values:

UPDATE "HR'. " EMPLOYEES" SET "SALARY"=10000 WHERE "EMPLOYEE_| D" =207
AND " SALARY" =9000

The following is the generated SQL with bind variables:

UPDATE "HR'. "EMPLOYEES" SET "SALARY"=:1 VWHERE "EMPLOYEE_I D'=: 2
AND " SALARY"=: 3

Example 2-3 Generated Delete

Assume the following delete is executed:

DELETE FROM hr. enpl oyees WHERE enpl oyee_i d=207;

The following is the generated SQL with inline values:

DELETE FROM "HR'."EMPLOYEES' WHERE "EMPLOYEE | D'=207 AND "FI RST_NAME" |S NULL
AND "LAST_NAME"'=' Gregory' AND "EMAIL"='pgregory@xanpl e. com AND
"PHONE_NUMBER" |'S NULL AND "HI RE_DATE"'= TO DATE(' 2009-04-15',' syyyy-mmdd')
AND "JOB_I D'=' PU_CLERK' AND " SALARY"=10000 AND "COWM SSI ON_PCT" | S NULL

AND "MANAGER_ID" IS NULL AND "DEPARTMENT_ID" IS NULL

The following is the generated SQL with bind variables:

DELETE FROM "HR'."EMPLOYEES" WHERE "EMPLOYEE | D'=:1 AND " FI RST_NAME"=: 2
AND " LAST_NAME"=: 3 AND "EMAIL"=: 4 AND " PHONE_NUMBER'=: 5 AND

2-40

Chapter 2
XStream and SQL Generation

"H RE_DATE"=: 6 AND "JOB_ID'=:7 AND " SALARY"=: 8 AND
"COW SSI ON_PCT"=:9 AND "MANAGER | D'=:10 AND " DEPARTMENT_I D'=: 11

2.5.5.2 Sample Generated SQL Statements for a Table With LOB Columns

ORACLE

Examples illustrate SQL statements generated by an outbound server for changes
made ti a table with LOB columns.

Examples illustrate SQL statements generated by an outbound server for changes
made to the following table:

CREATE TABLE hr. 1 ob_t ah(
nl nunber primry key,
clob_col CLOB,
ncl ob_col NCLOB,
bl ob_col BLOB);

Note:

Generated SQL is in a single line and is not formatted.

The GET_WHERE_CLAUSE member procedure generates the following WHERE clause for this
insert:

* Inline:
WHERE "N1"=2

* Bind variables:
WHERE "N1"=:1

You can use the WHERE clause to identify the row that was inserted when the
subsequent chunks arrive for the LOB column change.

Example 2-4 Generated Insert for a Table with LOB Columns
Assume the following insert is executed:

INSERT I NTO hr.lob_tab VALUES (2, 'test insert', NULL, NULL);

The following is the generated SQL with inline values:

I NSERT | NTO "HR'."LOB_TAB"("N1","BLOB COL"," CLOB_COL", "NCLOB_COL")
VALUES (2,, EMPTY_CLOB() ,)

The following is the generated SQL with bind variables:

I NSERT | NTO "HR'."LOB_TAB"("NL","BLOB_COL","CLOB_COL", "NCLOB COL")
VALUES (:1 ,:2 ,:3 ,:4)

Example 2-5 Generated Update for a Table with LOB Columns
Assume the following update is executed:

UPDATE hr.lob_tab SET clob_col ='test update’ WHERE nl=2;

The following is the generated SQL with inline values:

UPDATE "HR'."LOB_TAB" SET "CLOB_COL"= EMPTY_CLOB() WHERE "N1"=2

2-41

Chapter 2
XStream and SQL Generation

The following is the generated SQL with bind variables:

UPDATE "HR'."LOB_TAB" SET "CLOB_COL"=:1 VHERE "N1"=:2

Example 2-6 Generated Delete for a Table with LOB Columns
Assume the following delete is executed:

DELETE FROM hr. | ob_tab WHERE nl1=2;

The following is the generated SQL with inline values:

DELETE FROM "HR'."LOB_TAB" WHERE "N1"=2

The following is the generated SQL with bind variables:

DELETE FROM "HR'."LOB_TAB" WHERE "N1"=:1

2.5.6 SQL Generation Demo

ORACLE

A demo that performs SQL generation is available.

The demo uses the DBVS_XSTREAM ADMPL/SQL package to configure an XStream Out
environment, and it uses an OCI client application to perform SQL generation.

The demo uses SQL generation to replicate DML changes from a source database to
a destination database. Specifically, the demo creates the xsdenosg schema in both the
source database and the destination database. It creates various types of tables in the
xsdenosg schema at each database, including tables with LOB columns. It executes a
set of DML statements on the tables in xsdenbsg schema in the source database.
Oracle Streams components, such as a capture process and a queue, send the
changes in the form of LCRs to an XStream outbound server that is also running on
the source database. The outbound server makes the LCRs available to the demo
client application.

The demo client application, when run, uses the OCI API to connect to the outbound
server and receive the LCRs. The demo client application uses SQL generation to
execute the changes that are encapsulated in the LCRs. Therefore, the client
application replicates the changes made to xsdempsg schema in the source database to
the xsdenosg in the destination database.

You can modify the demo to replicate changes to any schema. Both the schema and
the replicated tables must exist on both the source database and the destination
database. SQL generation is only possible for DML changes. Therefore, this demo
cannot be used to replicate DDL changes.

This demo is available in the following location:

$ORACLE_HOVE/ r dbns/ deno/ xst r eant sql gen

Note:

The SQL generation demo is not available for the XStream Java API.

2-42

XStream Out

ORACLE

You can configure and manage an XStream Out environment.

XStream Out Concepts
Become familiar with concepts related to XStream Out.

Configuring XStream Out
You can configure the Oracle Database components that are used by XStream
Out.

Managing XStream Out
You can manage XStream Out components and their rules.

Monitoring XStream Out
You can monitor an XStream Out configuration.

Troubleshooting XStream Out
You can diagnose and correct problems with an XStream Out configuration.

XStream Out Concepts

Become familiar with concepts related to XStream Out.

* Introduction to XStream Out
XStream Out can capture transactions from the redo log of an Oracle database
and send them efficiently to a client application.

* Capture Processes
Become familiar with concepts related to capture processes.

e Outbound Servers
With XStream Out, an outbound server sends database changes to a client
application.

* Position of LCRs and XStream Out
An XStream Out outbound server streams LCRs that were captured by a capture
process to a client application. The position of an LCR identifies its placement in
the stream of LCRs in a transaction.

e XStream Out and Distributed Transactions
There are considerations for XStream Out and distributed transactions.

e XStream Out and Security
Understand security related to the client application and XStream components, as
well as the privileges required by the capture user and the connect user.

e XStream Out and Other Oracle Database Components
XStream Out can work with other Oracle Database components.

" See Also:

Configuring XStream Out

3.1 Introduction to XStream Out

ORACLE

XStream Out can capture transactions from the redo log of an Oracle database and
send them efficiently to a client application.

XStream Out provides a transaction-based interface for streaming these changes to
client applications. The client application can interact with other systems, including
non-Oracle systems, such as non-Oracle databases or file systems.

In an XStream Out configuration, a capture process captures database changes and
sends these changes to an outbound server. This section describes capture processes
and outbound servers in detail.

XStream Out has both OCI and Java interfaces and supports most of the data types
that are supported by Oracle Database, including LOBs, LONG, LONG RAW and XM.Type.

3-1

Chapter 3
Capture Processes

" See Also:

e Oracle Call Interface Programmer's Guide

e Oracle Database XStream Java APl Reference

3.2 Capture Processes

Become familiar with concepts related to capture processes.

e Capture Process Overview
A capture process is an optional Oracle background process that scans the
database redo log to capture DML and DDL changes made to database objects.

» Data Types Captured by a Capture Process
A capture process can capture changes made to columns of most data types.

* Types of DML Changes Captured by Capture Processes
A capture process can capture different types of DML changes.

» Local Capture and Downstream Capture
You can configure a capture process to run locally on a source database or
remotely on a downstream database.

e Capture Processes and RESTRICTED SESSION
Enabling and disabling restricted session affects capture processes.

e Capture Process Subcomponents
The capture process subcomponents are a reader server, one or more preparer
servers, and a builder server.

e Capture Process States
The state of a capture process describes what the capture process is doing
currently.

e Capture Process Parameters
Capture process parameters control the way a capture process operates.

e Capture Process Checkpoints and XStream Out
A checkpoint is information about the current state of a capture process that is
stored persistently in the data dictionary of the database running the capture
process.

e SCN Values Related to a Capture Process
Specific system change number (SCN) values are important for a capture process.

3.2.1 Capture Process Overview

ORACLE

A capture process is an optional Oracle background process that scans the database
redo log to capture DML and DDL changes made to database objects.

The primary function of the redo log is to record all of the changes made to the
database. A capture process captures database changes from the redo log, and the
database where the changes were generated is called the source database for the
capture process.

3-2

Chapter 3
Capture Processes

When a capture process captures a database change, it converts it into a specific
message format called a logical change record (LCR). In an XStream Out
configuration, the capture process sends these LCRs to an outbound server.

Figure 3-1 shows a capture process.

Figure 3-1 Capture Process

Enqueue
LCRs
Capture > Queue
Process CR
LCR
LCR
LCR
LCR
LCR
LCR
Log
Changes

| Database Objects

-

&7 G

User Changes

A capture process can run on its source database or on a remote database. When a
capture process runs on its source database, the capture process is a local capture
process.

You can also capture changes for the source database by running the capture process
on different server. When a capture process runs on a remote database, the capture
process is called a downstream capture process, and the remote database is called
the downstream database. The log files are written to the remote database and to the
source database. In this configuration, the source logfiles must be available at the
downstream capture database. The capture process on the remote database mines
the logs from the source database and stages them locally. This configuration can be
helpful when you want to offload the processing of capture changes from a production
database to different, remote database.

3.2.2 Data Types Captured by a Capture Process

ORACLE

A capture process can capture changes made to columns of most data types.

When capturing the row changes resulting from DML changes made to tables, a
capture process can capture changes made to columns of the following data types:

* VARCHAR2
* NVARCHAR2
* NUMBER

3-3

Chapter 3
Capture Processes

e FLOAT
e LONG
e DATE

* BINARY_FLOAT

* Bl NARY_DQUBLE

e TI MESTAWP

e TIMESTAVP W TH TI ME ZONE

e TIMESTAVP W TH LOCAL TI ME ZONE
* | NTERVAL YEAR TO MONTH

e | NTERVAL DAY TO SECOND

° RAW

e LONGRAW
e UROWD

e CHAR

* NCHAR

e CLOB with BASI CFI LE or SECUREFI LE storage

e NCLOB with BASI CFI LE or SECUREFI LE storage

e BLOB with BASI CFI LE or SECUREFI LE storage

* XM.Type stored as CLOB, object relational, or as binary XML

* Object types

* Varrays

* REF data types

* The following Oracle-supplied types: ANYDATA, SDO GEOVETRY, and media types

If XStream is replicating data for an object type, then the replication must be
unidirectional, and all replication sites must agree on the names and data types of the
attributes in the object type. You establish the names and data types of the attributes
when you create the object type. For example, consider the following object type:

CREATE TYPE cust _address_typ AS OBJECT
(street_address VARCHAR2(40) ,

postal _code VARCHAR2(10) ,
city VARCHAR2(30) ,
state_province VARCHAR2(10) ,
country_id CHAR(2));

/

At all replication sites, street _address must be VARCHAR2(40) , post al _code must be
VARCHAR2(10) , ¢i ty must be VARCHAR2(30), and so on.

ORACLE 3-4

Chapter 3
Capture Processes

Note:

e The maximum size of the VARCHAR2, NVARCHAR2, and RAWdata types has been
increased in Oracle Database 12c¢ when the COVPATI BLE initialization
parameter is set to 12. 0. 0 and the MAX_STRI NG_SI ZE initialization parameter
is set to EXTENDED.

e XM.Type stored as a CLOB is deprecated in Oracle Database 12c Release 1
(12.1).

 IDKey LCRs
An ID key LCR is a special type of row LCR. ID key LCRs enable an XStream
client application to process changes to rows that include unsupported data types.

 |D Key LCRs Demo
A demo is available that creates a sample client application that processes ID key
LCRs.

" See Also:

Oracle Database SQL Language Reference for information about data types

3.2.2.11D Key LCRs

ORACLE

An ID key LCR is a special type of row LCR. ID key LCRs enable an XStream client
application to process changes to rows that include unsupported data types.

XStream Out does not fully support the following data types in row LCRs:

. BFI LE
. ROW D
¢ Nested tables

* The following Oracle-supplied types: ANYTYPE, ANYDATASET, URI types,
SDO TOPO_GEQVETRY, SDO_GEORASTER, and Expr essi on.

These data type restrictions pertain to both ordinary (heap-organized) tables and
index-organized tables.

ID key LCRs do not contain all of the columns for a row change. Instead, they contain
the rowid of the changed row, a group of key columns to identify the row in the table,
and the data for the scalar columns of the table that are supported by XStream Out. ID
key LCRs do not contain data for columns of unsupported data types.

XStream Out can capture changes for tables that are not fully supported by setting the
CAPTURE_| DKEY_OBJECTS capture process parameter to Y. An XStream client application
can use ID key LCRs in the following ways:

» If the application does not require the data in the unsupported columns, then the
application can process the values of the supported columns in the ID key LCRs
normally.

3-5

Chapter 3
Capture Processes

« If the application requires the data in the unsupported columns, then the
application can use the information in an ID key LCR to query the correct row in
the database and consume the unsupported data for the row.

You can use the DBA XSTREAM QUT_SUPPORT_MXDE view to display a list of local tables
supported by ID key LCRs. This view shows the following types of XStream Out
support for tables in the SUPPORT_MODE column:

e FULL for tables that are fully supported by XStream Out (without using ID key
LCRs)

* | DKEY for tables that are supported only by using ID key LCRs
* NONE for tables that are not supported by XStream Out.

Even ID key LCRs cannot be used to process changes to rows in tables that show
NONE in the DBA_XSTREAM OUT_SUPPORT_MCDE view.

For example, run the following query to show XStream Out support for all of the tables
in the database:

COLUW OMER FORMAT A30
COLUMN OBJECT_NAME FORMAT A30
COLUWN SUPPORT_MODE FCRVAT Al12

SELECT OMRER, OBJECT NAME, SUPPORT MODE
FROM DBA_XSTREAM OUT_SUPPORT MODE
ORDER BY OBJECT NAME;

Your output is similar to the following:

O/MER CBJECT_NAVE SUPPCRT_MODE
I X ORDERS_QUEUETABLE NONE
o3 ORDER_| TEMB FULL
SH PLAN_TABLE FULL
PM PRI NT_MEDI A ID KEY
¢ See Also:

e Oracle Database Reference
« "Row LCRs"

e "Setting a Capture Process Parameter"

3.2.2.2 ID Key LCRs Demo

A demo is available that creates a sample client application that processes ID key
LCRs.

ORACLE 3-6

Chapter 3
Capture Processes

Specifically, the client application attaches to an XStream outbound server and waits
for LCRs from the outbound server. When the client application receives an ID key
LCR, it can query the appropriate source database table using the rowid in the ID
key LCR.

The demo is available in the following location in both OCI and Java code:

$ORACLE_HOVE/ r dbns/ deno/ xst r eam i dkey

3.2.3 Types of DML Changes Captured by Capture Processes

A capture process can capture different types of DML changes.

When you specify that DML changes made to certain tables should be captured, a
capture process captures the following types of DML changes made to these tables:

e |INSERT
* UPDATE
e DELETE
e MERCGE

» Piecewise operations

A capture process converts each MERGE change into an | NSERT or UPDATE change. MERGE
is not a valid command type in a row LCR.

3.2.4 Local Capture and Downstream Capture

You can configure a capture process to run locally on a source database or remotely
on a downstream database.

A single database can have one or more capture processes that capture local changes
and other capture processes that capture changes from a remote source database.
That is, you can configure a single database to perform both local capture and
downstream capture.

e Local Capture
Local capture means that a capture process runs on the source database.

* Downstream Capture
Downstream capture means that a capture process runs on a database other than
the source database.

3.2.4.1 Local Capture

ORACLE

Local capture means that a capture process runs on the source database.
Figure 3-1 shows a database using local capture.

* The Source Database Performs All Change Capture Actions
With local capture, the capture actions are performed at the source database.

* Advantages of Local Capture
Local capture has several advantages.

3-7

Chapter 3
Capture Processes

3.2.4.1.1 The Source Database Performs All Change Capture Actions

With local capture, the capture actions are performed at the source database.

If you configure local capture, then the following actions are performed at the source
database:

e The DBVS_CAPTURE_ADM BUI LD procedure is run to extract (or build) the data
dictionary to the redo log.

» Supplemental logging at the source database places additional information in the
redo log. This information might be needed when captured changes are processed
by an XStream client application. See "If Required, Configure Supplemental
Logging".

* The first time a capture process is started at the database, Oracle Database uses
the extracted data dictionary information in the redo log to create a LogMiner data
dictionary, which is separate from the primary data dictionary for the source
database. Additional capture processes can use this existing LogMiner data
dictionary, or they can create new LogMiner data dictionaries.

* A capture process scans the redo log for changes using LogMiner.

* The rules engine evaluates changes based on the rules in one or more of the
capture process rule sets.

e The capture process enqueues changes that satisfy the rules in its rule sets into a
local ANYDATA queue.

e If the captured changes are shared with one or more outbound servers on other
databases, then one or more propagations propagate these changes from the
source database to the other databases.

3.2.4.1.2 Advantages of Local Capture

ORACLE

Local capture has several advantages.
The following are the advantages of using local capture:

» Configuration and administration of the capture process is simpler than when
downstream capture is used. When you use local capture, you do not need to
configure redo data copying to a downstream database, and you administer the
capture process locally at the database where the captured changes originated.

* Alocal capture process can scan changes in the online redo log before the
database writes these changes to an archived redo log file. When you use an
archived-log downstream capture process, archived redo log files are copied to the
downstream database after the source database has finished writing changes to
them, and some time is required to copy the redo log files to the downstream
database. However, a real-time downstream capture process can capture changes
in the online redo log sent from the source database.

» The amount of data being sent over the network is reduced, because the redo
data is not copied to the downstream database. Even if captured LCRs are
propagated to other databases, the captured LCRs can be a subset of the total
changes made to the database, and only the LCRs that satisfy the rules in the rule
sets for a propagation are propagated.

» Security might be improved because only the source (local) database can access
the redo data. For example, if the capture process captures changes in the hr

3-8

Chapter 3
Capture Processes

schema only, then, when you use local capture, only the source database can
access the redo data to enqueue changes to the hr schema into the capture
process queue. However, when you use downstream capture, the redo data is
copied to the downstream database, and the redo data contains all of the changes
made to the database, not just the changes made to a specific object or schema.

3.2.4.2 Downstream Capture

ORACLE

Downstream capture means that a capture process runs on a database other than the
source database.

The following types of downstream capture configurations are possible: real-time
downstream capture and archived-log downstream capture. The

downst ream real _time_ni ne capture process parameter controls whether a downstream
capture process performs real-time downstream capture or archived-log downstream
capture. A real-time downstream capture process and one or more archived-log
downstream capture processes can coexist at a downstream database. With
downstream capture, the redo log files of the source database must be available at the
downstream database.

Note:

< References to "downstream capture processes" in this document apply to
both real-time downstream capture processes and archived-log
downstream capture processes. This document distinguishes between the
two types of downstream capture processes when necessary.

« A downstream capture process only can capture changes from a single
source database. However, multiple downstream capture processes at a
single downstream database can capture changes from a single source
database or multiple source databases.

e To configure XStream Out downstream capture, the source database must
be an Oracle Database 10g Release 2 (10.2) or later and the capture
database must be an Oracle Database 11g Release 2 (11.2.0.3) or later

* Real-Time Downstream Capture
The advantage of real-time downstream capture over archived-log downstream
capture is that real-time downstream capture reduces the amount of time required
to capture changes made at the source database.

e Archived-Log Downstream Capture
The advantage of archived-log downstream capture over real-time downstream
capture is that archived-log downstream capture allows downstream capture
processes from multiple source databases at a downstream database.

e The Downstream Database Performs Most Change Capture Actions
With downstream capture, most capture actions are performed at the downstream
database.

» Advantages of Downstream Capture
Downstream capture provides several advantages.

3-9

Chapter 3
Capture Processes

Optional Database Link From the Downstream Database to the Source Database
When you create or alter a downstream capture process, you optionally can
specify the use of a database link from the downstream database to the source
database.

Operational Requirements for Downstream Capture with XStream Out
Some operational requirements apply to downstream capture.

3.2.4.2.1 Real-Time Downstream Capture

ORACLE

The advantage of real-time downstream capture over archived-log downstream
capture is that real-time downstream capture reduces the amount of time required to
capture changes made at the source database.

The time is reduced because the real-time downstream capture process does not
need to wait for the redo log file to be archived before it can capture data from it.

A real-time downstream capture configuration works in the following way:

Redo transport services sends redo data to the downstream database either
synchronously or asynchronously. At the same time, the log writer process
(LGWR) records redo data in the online redo log at the source database.

A remote file server process (RFS) at the downstream database receives the redo
data over the network and stores the redo data in the standby redo log.

A log switch at the source database causes a log switch at the downstream
database, and the ARCHn process at the downstream database archives the current
standby redo log file.

The real-time downstream capture process captures changes from the standby
redo log whenever possible and from the archived standby redo log files whenever
necessary. A capture process can capture changes in the archived standby redo
log files if it falls behind. When it catches up, it resumes capturing changes from
the standby redo log.

3-10

Chapter 3
Capture Processes

Figure 3-2 Real-Time Downstream Capture

Source Database Downstream Database
RFS Capture
Send Redo —> Process
Redo Data
Record | Transport Enqueue
Changes | Services LCRs
Queue
Record LCR
Changes Read Redo LCR
Data LCR
LCR

LCR

| Database Objects

User Changes

Note:

You can configure more than one real-time downstream capture process that
captures changes from the same source database, but you cannot configure
real-time downstream capture for multiple source databases at one
downstream database.

3.2.4.2.2 Archived-Log Downstream Capture

The advantage of archived-log downstream capture over real-time downstream
capture is that archived-log downstream capture allows downstream capture
processes from multiple source databases at a downstream database.

An archived-log downstream capture configuration means that archived redo log files
from the source database are copied to the downstream database, and the capture
process captures changes in these archived redo log files. You can copy the archived
redo log files to the downstream database using redo transport services, the

DBMS_FI LE_TRANSFER package, file transfer protocol (FTP), or some other mechanism.

ORACLE 3-11

Chapter 3
Capture Processes

Figure 3-3 Archived-Log Downstream Capture

Source Database Downstream Database

Capture
Changes

Read Redo

Copy Redo
Data

Capt
Log Files e

Process

Enqueue
LCRs
Queue

LCR
LCR
LCR
LCR
Changes tgg

| Database Objects

&7 &

User Changes

You can copy redo log files from multiple source databases to a single downstream
database and configure multiple archived-log downstream capture processes to
capture changes in these redo log files.

" See Also:

Oracle Data Guard Concepts and Administration for more information about
redo transport services

3.2.4.2.3 The Downstream Database Performs Most Change Capture Actions

ORACLE

With downstream capture, most capture actions are performed at the downstream
database.

If you configure either real-time or archived-log downstream capture, then the following
actions are performed at the downstream database:

e The first time a downstream capture process is started at the downstream
database, Oracle Database uses data dictionary information in the redo data from
the source database to create a LogMiner data dictionary at the downstream
database. The DBMS_CAPTURE_ADM BUI LD procedure is run at the source database to
extract the source data dictionary information to the redo log at the source
database. Next, the redo data is copied to the downstream database from the
source database. Additional downstream capture processes for the same source
database can use this existing LogMiner data dictionary, or they can create new
LogMiner data dictionaries. Also, a real-time downstream capture process can

3-12

Chapter 3
Capture Processes

share a LogMiner data dictionary with one or more archived-log downstream
capture processes.

* A capture process scans the redo data from the source database for changes
using LogMiner.

* The rules engine evaluates changes based on the rules in one or more of the
capture process rule sets.

* The capture process enqueues changes that satisfy the rules in its rule sets into a
local ANYDATA queue. The capture process formats the changes as LCRs.

In a downstream capture configuration, the following actions are performed at the
source database:

e The DBVS_CAPTURE_ADM BUI LD procedure is run at the source database to extract the
data dictionary to the redo log.

» Supplemental logging at the source database places additional information that
might be needed for apply in the redo log. See "If Required, Configure
Supplemental Logging".

In addition, the redo data must be copied from the computer system running the

source database to the computer system running the downstream database. In a real-
time downstream capture configuration, redo transport services sends redo data to the
downstream database. Typically, in an archived-log downstream capture configuration,
redo transport services copies the archived redo log files to the downstream database.

3.2.4.2.4 Advantages of Downstream Capture

Downstream capture provides several advantages.
The following are the advantages of using downstream capture:

e Capturing changes uses fewer resources at the source database because the
downstream database performs most of the required work.

* If you plan to capture changes originating at multiple source databases, then
capture process administration can be simplified by running multiple archived-log
downstream capture processes with different source databases at one
downstream database. That is, one downstream database can act as the central
location for change capture from multiple sources. In such a configuration, one
real-time downstream capture process can run at the downstream database in
addition to the archived-log downstream capture processes.

* Copying redo data to one or more downstream databases provides improved
protection against data loss. For example, redo log files at the downstream
database can be used for recovery of the source database in some situations.

* The ability to configure at one or more downstream databases multiple capture
processes that capture changes from a single source database provides more
flexibility and can improve scalability.

3.2.4.2.5 Optional Database Link From the Downstream Database to the Source Database

ORACLE

When you create or alter a downstream capture process, you optionally can specify
the use of a database link from the downstream database to the source database.

This database link must have the same name as the global nhame of the source
database. Such a database link simplifies the creation and administration of a
downstream capture process. You specify that a downstream capture process uses a

3-13

Chapter 3
Capture Processes

database link by setting the use_dat abase_| i nk parameter to TRUE when you run the
CREATE_CAPTURE or ALTER CAPTURE procedure on the downstream capture process. The
name of the database link must match the global name of the source database.

When a downstream capture process uses a database link to the source database, the
capture process connects to the source database to perform the following
administrative actions automatically:

e In certain situations, runs the DBMS_CAPTURE_ADM BUI LD procedure at the source
database to extract the data dictionary at the source database to the redo log
when a capture process is created.

» Obtains the first SCN for the downstream capture process if the first system
change number (SCN) is not specified during capture process creation. The first
SCN is needed to create a capture process.

If a downstream capture process does not use a database link, then you must perform
these actions manually.

" Note:

During the creation of a downstream capture process, if the first_scn
parameter is set to NULL in the CREATE_CAPTURE procedure, then the
use_database_link parameter must be set to TRUE. Otherwise, an error is
raised.

¢ See Also:

Oracle Streams Replication Administrator's Guide for information about when
the DBMS_CAPTURE_ADM BUI LD procedure is run automatically during capture
process creation if the downstream capture process uses a database link

3.2.4.2.6 Operational Requirements for Downstream Capture with XStream Out

ORACLE

Some operational requirements apply to downstream capture.
The following are operational requirements for using downstream capture:

* The source database must be running at least Oracle Database 10g Release 2
(10.2).

e The XStream Out downstream capture database must be running Oracle
Database 11g Release 2 (11.2.0.3) or later and the source database must be
running Oracle Database 10g Release 2 (10.2) or later.

* The operating system on the source and downstream capture sites must be the
same, but the operating system release does not need to be the same. In addition,
the downstream sites can use a directory structure that is different from the source
site.

* The hardware architecture on the source and downstream capture sites must be
the same. For example, a downstream capture configuration with a source
database on a 64-bit Sun system must have a downstream database that is
configured on a 64-bit Sun system. Other hardware elements, such as the number

3-14

Chapter 3
Capture Processes

of CPUs, memory size, and storage configuration, can differ in the source and
downstream sites.

3.2.5 Capture Processes and RESTRICTED SESSION

Enabling and disabling restricted session affects capture processes.

When you enable restricted session during system startup by issuing a STARTUP
RESTRI CT statement, capture processes do not start, even if they were running when
the database shut down. When restricted session is disabled with an ALTER SYSTEM
statement, each capture process that was running when the database shut down is
started.

When restricted session is enabled in a running database by the SQL statement ALTER
SYSTEMENABLE RESTRI CTED SESSI ON clause, it does not affect any running capture
processes. These capture processes continue to run and capture changes. If a
stopped capture process is started in a restricted session, then the capture process
does not actually start until the restricted session is disabled.

3.2.6 Capture Process Subcomponents

ORACLE

The capture process subcomponents are a reader server, one or more preparer
servers, and a builder server.

A capture process is an optional Oracle background process whose process name is
CPnn, where nn can include letters and numbers. A capture process captures changes
from the redo log by using the infrastructure of LogMiner. XStream configures
LogMiner automatically. You can create, alter, start, stop, and drop a capture process,
and you can define capture process rules that control which changes a capture
process captures.

The paral | el i smcapture process parameter controls capture process parallelism.
When capture process parallelism is O (zero), the default for XStream Out, the capture
process does not use subcomponents to perform its work. Instead, the CPnn process
completes all of the tasks required to capture database changes.

When capture process parallelism is greater than 0, the capture process uses the
underlying LogMiner process name is Msnn, where nn can include letters and numbers.
When capture process parallelism is 0 (zero), the capture process does not use this
process.

When capture process parallelism is greater than 0, the capture process consists of
the following subcomponents:

* One reader server that reads the redo log and divides the redo log into regions.

* One or more preparer servers that scan the regions defined by the reader server
in parallel and perform prefiltering of changes found in the redo log. Prefiltering
involves sending partial information about changes, such as schema and object
name for a change, to the rules engine for evaluation, and receiving the results of
the evaluation. You can control the number of preparer servers using the
parallelism capture process parameter.

* One builder server that merges redo records from the preparer servers. These
redo records either evaluated to TRUE during partial evaluation or partial evaluation
was inconclusive for them. The builder server preserves the system change

3-15

Chapter 3
Capture Processes

number (SCN) order of these redo records and passes the merged redo records to
the capture process.

* The capture process (CPnn) performs the following actions for each change when it
receives merged redo records from the builder server:

— Formats the change into an LCR

— If the partial evaluation performed by a preparer server was inconclusive for
the change in the LCR, then sends the LCR to the rules engine for full
evaluation

— Receives the results of the full evaluation of the LCR if it was performed

— Discards the LCR if it satisfies the rules in the negative rule set for the capture
process or if it does not satisfy the rules in the positive rule set

— Enqueues the LCR into the queue associated with the capture process if the
LCR satisfies the rules in the positive rule set for the capture process

Each reader server, preparer server, and builder server is a process.

3.2.7 Capture Process States

The state of a capture process describes what the capture process is doing currently.

You can view the state of a capture process by querying the STATE column in the
V$XSTREAM CAPTURE dynamic performance view.

¢ See Also:

Oracle Database Reference

3.2.8 Capture Process Parameters

Capture process parameters control the way a capture process operates.

For example, the parallelism capture process parameter controls the number of
preparer servers used by a capture process, and the tine_lint capture process
parameter specifies the amount of time a capture process runs before it is shut down
automatically. You set capture process parameters using the

DBMS_CAPTURE_ADM SET_PARAMETER procedure. After creation, a capture process is
disabled so that you can set the capture process parameters for your environment
before starting it for the first time.

" See Also:

Oracle Database PL/SQL Packages and Types Reference

ORACLE 3-16

Chapter 3
Capture Processes

3.2.9 Capture Process Checkpoints and XStream Out

A checkpoint is information about the current state of a capture process that is stored
persistently in the data dictionary of the database running the capture process.

A capture process tries to record a checkpoint at regular intervals called checkpoint
intervals.

* Required Checkpoint SCN
The system change number (SCN) that corresponds to the lowest checkpoint for
which a capture process requires redo data is the required checkpoint SCN.

e Maximum Checkpoint SCN
The SCN that corresponds to the last physical checkpoint recorded by a capture
process is the maximum checkpoint SCN.

e Checkpoint Retention Time
The checkpoint retention time is the amount of time, in number of days, that a
capture process retains checkpoints before purging them automatically.

3.2.9.1 Required Checkpoint SCN

The system change number (SCN) that corresponds to the lowest checkpoint for
which a capture process requires redo data is the required checkpoint SCN.

The redo log file that contains the required checkpoint SCN, and all subsequent redo
log files, must be available to the capture process. If a capture process is stopped and
restarted, then it starts scanning the redo log from the SCN that corresponds to its
required checkpoint SCN. The required checkpoint SCN is important for recovery if a
database stops unexpectedly. Also, if the first SCN is reset for a capture process, then
it must be set to a value that is less than or equal to the required checkpoint SCN for
the captured process. You can determine the required checkpoint SCN for a capture
process by querying the REQUI RED_CHECKPQOI NT_SCN column in the ALL_CAPTURE data
dictionary view.

3.2.9.2 Maximum Checkpoint SCN

The SCN that corresponds to the last physical checkpoint recorded by a capture
process is the maximum checkpoint SCN.

The maximum checkpoint SCN can be lower than or higher than the required
checkpoint SCN for a capture process. The maximum checkpoint SCN can also be 0
(zero) if the capture process is new and has not yet recorded a physical checkpoint.

3.2.9.3 Checkpoint Retention Time

ORACLE

The checkpoint retention time is the amount of time, in number of days, that a capture
process retains checkpoints before purging them automatically.

A capture process periodically computes the age of a checkpoint by subtracting the
NEXT_TI ME of the archived redo log file that corresponds to the checkpoint from

FI RST_TI ME of the archived redo log file containing the required checkpoint SCN for the
capture process. If the resulting value is greater than the checkpoint retention time,
then the capture process automatically purges the checkpoint by advancing its first
SCN value. Otherwise, the checkpoint is retained.

3-17

Chapter 3
Capture Processes

You can use the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package to set the
checkpoint retention time for a capture process. The DBA REG STERED ARCHI VED LOG view
displays the FI RST_TI ME and NEXT_TI Mt for archived redo log files, and the

REQUI RED_CHECKPOI NT_SCN column in the ALL_CAPTURE view displays the required
checkpoint SCN for a capture process.

¢ See Also:
Oracle Database PL/SQL Packages and Types Reference

3.2.10 SCN Values Related to a Capture Process

Specific system change number (SCN) values are important for a capture process.

You can query the ALL_CAPTURE data dictionary view to display these values for one or
more capture processes.

e Captured SCN and Applied SCN
The captured SCN is the SCN that corresponds to the most recent change
scanned in the redo log by a capture process. The applied SCN for a capture
process is the SCN of the most recent LCR processed by the relevant outbound
server.

* First SCN and Start SCN
The first SCN and start SCN are important for a capture process.

3.2.10.1 Captured SCN and Applied SCN

The captured SCN is the SCN that corresponds to the most recent change scanned in
the redo log by a capture process. The applied SCN for a capture process is the SCN
of the most recent LCR processed by the relevant outbound server.

All LCRs lower than the applied SCN have been processed by all outbound servers
that process changes captured by the capture process. The applied SCN for a capture
process is equivalent to the low-watermark SCN for an outbound server that
processes changes captured by the capture process.

3.2.10.2 First SCN and Start SCN

ORACLE

The first SCN and start SCN are important for a capture process.

e First SCN
The first SCN is the lowest SCN in the redo log from which a capture process can
capture changes.

» Start SCN
The start SCN is the SCN from which a capture process begins to capture
changes.

e Start SCN Must Be Greater Than or Equal to First SCN
If you specify a start SCN when you create or alter a capture process, then the
start SCN specified must be greater than or equal to the first SCN for the capture
process.

3-18

Chapter 3
Capture Processes

3.2.10.2.1 First SCN

The first SCN is the lowest SCN in the redo log from which a capture process can
capture changes.

If you specify a first SCN during capture process creation, then the database must be
able to access redo data from the SCN specified and higher.

The DBVS_CAPTURE_ADM BUI LD procedure extracts the source database data dictionary to
the redo log. When you create a capture process, you can specify a first SCN that
corresponds to this data dictionary build in the redo log. Specifically, the first SCN for
the capture process being created can be set to any value returned by the following

query:

COLUWN FI RST_CHANGE# HEADING ' First SCN FORMAT 999999999
COLUWN NAME HEADI NG ' Log File Name' FORMAT A50

SELECT DI STINCT FI RST_CHANGE#, NAME FROM V$ARCH VED LOG
VHERE DI CTI ONARY_BEG N = ' YES';

The value returned for the NAVE column is the name of the redo log file that contains
the SCN corresponding to the first SCN. This redo log file, and all subsequent redo log
files, must be available to the capture process. If this query returns multiple distinct
values for FI RST_CHANGE#, then the DBMS_CAPTURE_ADM BUI LD procedure has been run
more than once on the source database. In this case, choose the first SCN value that
is most appropriate for the capture process you are creating.

In some cases, the DBMS_CAPTURE_ADM BUI LD procedure is run automatically when a
capture process is created. When this happens, the first SCN for the capture process
corresponds to this data dictionary build.

3.2.10.2.2 Start SCN

The start SCN is the SCN from which a capture process begins to capture changes.

The start SCN is the SCN from which a capture process begins to capture changes.
You can specify a start SCN that is different than the first SCN during capture process
creation, or you can alter a capture process to set its start SCN. The start SCN does
not need to be modified for normal operation of a capture process. Typically, you reset
the start SCN for a capture process if point-in-time recovery must be performed on one
of the destination databases that receive changes from the capture process. In these
cases, the capture process can capture the changes made at the source database
after the point-in-time of the recovery.

¢ Note:

An existing capture process must be stopped before setting its start SCN.

3.2.10.2.3 Start SCN Must Be Greater Than or Equal to First SCN

If you specify a start SCN when you create or alter a capture process, then the start
SCN specified must be greater than or equal to the first SCN for the capture process.

ORACLE 3-19

Chapter 3
Outbound Servers

A capture process always scans any unscanned redo log records that have higher
SCN values than the first SCN, even if the redo log records have lower SCN values
than the start SCN. So, if you specify a start SCN that is greater than the first SCN,
then the capture process might scan redo log records for which it cannot capture
changes, because these redo log records have a lower SCN than the start SCN.

Scanning redo log records before the start SCN should be avoided if possible because
it can take some time. Therefore, Oracle recommends that the difference between the
first SCN and start SCN be as small as possible during capture process creation to
keep the initial capture process startup time to a minimum.

" Note:

When a capture process is started or restarted, it might need to scan redo log
files with a FI RST_CHANGE# value that is lower than start SCN. Removing required
redo log files before they are scanned by a capture process causes the capture
process to abort. You can query the ALL_CAPTURE data dictionary view to
determine the first SCN, start SCN, and required checkpoint SCN. A capture
process needs the redo log file that includes the required checkpoint SCN, and
all subsequent redo log files.

3.3 Outbound Servers

With XStream Out, an outbound server sends database changes to a client
application.

e Overview of Outbound Servers
An outbound server is an optional Oracle background process that sends
database changes to a client application.

» Data Types Supported by Outbound Servers
Outbound servers support all of the data types that are supported by capture
processes.

* Apply User for an Outbound Server
The apply user for an outbound server is the user who receives LCRs from the
outbound server's capture process.

e Outbound Servers and RESTRICTED SESSION
Enabling and disabling restricted session affects outbound servers.

e Outbound Server Subcomponents
An outbound server consists of a reader server, a coordinator process, and an
apply server.

e Considerations for Outbound Servers
There are several considerations for XStream outbound servers.

e Outbound Servers and Apply Parameters
Apply parameters control the behavior of outbound servers.

3.3.1 Overview of Outbound Servers

An outbound server is an optional Oracle background process that sends database
changes to a client application.

ORACLE 3-20

Chapter 3
Outbound Servers

Specifically, a client application can attach to an outbound server and extract database
changes from LCRs. A client application attaches to the outbound server using OCI or
Java interfaces.

A client application can create multiple sessions. Each session can attach to only one
outbound server, and each outbound server can serve only one session at a time.
However, different client application sessions can connect to different outbound
servers or inbound servers.

Change capture can be performed on the same database as the outbound server or
on a different database. When change capture is performed on a different database
from the one that contains the outbound server, a propagation sends the changes
from the change capture database to the outbound server database. Downstream
capture is also a supported mode to reduce the load on the source database.

When both the outbound server and its capture process are enabled, data changes,
encapsulated in row LCRs and DDL LCRs, are sent to the outbound server. The
outbound server can publish LCRs in various formats, such as OCI and Java. The
client application can process LCRs that are passed to it from the outbound server or
wait for LCRs from the outbound server by using a loop.

An outbound server sends LOB, LONG, LONG RAW and XM_Type data to the client
application in chunks. Several chunks comprise a single column value of LOB, LONG,
LONG RAW or XM_Type data type.

Figure 3-4 shows an outbound server configuration.

Figure 3-4 XStream Out Outbound Server

Oracle Database

Record
Changes

Capture
Changes

Database Objects

Capture
Process
Enqueue
Changes
Queue
Connect -
Dequeue < Client
Changes Outbound Events > Apﬁl;ci::;lon
Server Acknowledgement | XStream Out
« 3 Interface

ORACLE

The client application can detach from the outbound server whenever necessary.
When the client application re-attaches, the outbound server automatically determines
where in the stream of LCRs the client application was when it detached. The
outbound server starts sending LCRs from this point forward.

3-21

Chapter 3
Outbound Servers

" See Also:

"Capture Processes" for detailed information about capture processes

3.3.2 Data Types Supported by Outbound Servers

Outbound servers support all of the data types that are supported by capture
processes.

Outbound servers can send LCRs that include changes to columns of these data types
to XStream client applications.

¢ See Also:

"Data Types Captured by a Capture Process"

3.3.3 Apply User for an Outbound Server

The apply user for an outbound server is the user who receives LCRs from the
outbound server's capture process.

The apply user for an outbound server must match the capture user for the outbound
server's capture process.

¢ See Also:

"Privileges Required by the Capture User for a Capture Process"

3.3.4 Outbound Servers and RESTRICTED SESSION

Enabling and disabling restricted session affects outbound servers.

When restricted session is enabled during system startup by issuing a STARTUP

RESTRI CT statement, outbound servers do not start, even if they were running when the
database shut down. When the restricted session is disabled, each outbound server
that was not stopped is started.

When restricted session is enabled in a running database by the SQL statement ALTER
SYSTEMENABLE RESTRI CTED SESSI ON, it does not affect any running outbound servers.
These outbound servers continue to run and send LCRs to an XStream client
application. If a stopped outbound server is started in a restricted session, then the
outbound server does not actually start until the restricted session is disabled.

3.3.5 Outbound Server Subcomponents

An outbound server consists of a reader server, a coordinator process, and an apply
server.

ORACLE 3-22

Chapter 3
Outbound Servers

A reader server that receives LCRs from the outbound server's capture process.
The reader server is a process that computes dependencies between LCRs and
assembles LCRs into transactions. The reader server then returns the assembled
transactions to the coordinator process.

You can view the state of the reader server for an outbound server by querying the
V$XSTREAM APPLY_READER dynamic performance view.

A coordinator process that gets transactions from the reader server and passes
them to apply servers. The coordinator process name is APnn, where nn can
include letters and numbers. The coordinator process is an Oracle background
process.

You can view the state of a coordinator process by querying the
V$XSTREAM APPLY_COORDI NATOR dynamic performance view.

An apply server that sends LCRs to an XStream client application. The apply
server is a process. If the apply server encounters an error, then it then it records
information about the error in the ALL_APPLY view.

You can view the state of the apply server for an outbound server by querying the
V$XSTREAM APPLY_SERVER dynamic performance view.

The reader server and the apply server process names are ASnn, where nn can include
letters and numbers.

¢ See Also:

* Oracle Database Reference for more information on
V$XSTREAM APPLY_READER dynamic performance view

e Oracle Database Reference for more information on
V$XSTREAM APPLY_COORDI NATOR dynamic performance view

e Oracle Database Reference for more information on
V$XSTREAM APPLY SERVER dynamic performance view

3.3.6 Considerations for Outbound Servers

There are several considerations for XStream outbound servers.

ORACLE

The following are considerations for outbound servers:

LCRs processed by an outbound server must be LCRs that were captured by a
capture process. An outbound server does not support LCRs that were
constructed by applications.

A single outbound server can process captured LCRs from only one source
database. The source database is the database where the changes encapsulated
in the LCRs were generated in the redo log.

The source database for the changes captured by a capture process must be at
10.2.0 or higher compatibility level for these changes to be processed by an
outbound server.

The capture process for an outbound server must be running on an Oracle
Database 11g Release 2 (11.2) or later database.

3-23

Chapter 3
Outbound Servers

A single capture process cannot capture changes for both an outbound server and
an apply process. However, a single capture process can capture changes for
multiple outbound servers.

Automatic split and merge of a stream is possible when the capture process and
the outbound server for the stream run on different databases. However, when the
capture process and outbound server for a stream run on the same database,
automatic split and merge of the stream is not possible.

An outbound server's LCRs can spill from memory to hard disk if they have been
in the buffered queue for a period of time without being processed, if there are a
large number of LCRs in a transaction, or if there is not enough space in memory
to hold all of the LCRs. An outbound server performs best when a minimum of
LCRs spill from memory. You can control an outbound server's behavior regarding
spilled LCRs using the txn_age_spi || _threshol d and t xn_| cr _spi | | _t hreshol d apply
parameters.

Instantiation SCNs are not required for database objects processed by an
outbound server. If an instantiation SCN is set for a database object, then the
outbound server only sends the LCRs for the database object with SCN values
that are greater than the instantiation SCN value. If a database object does not
have an instantiation SCN set, then the outbound server skips the instantiation
SCN check and sends all LCRs for that database object. In both cases, the
outbound server only sends LCRs that satisfy its rule sets.

¢ See Also:

e Oracle Streams Replication Administrator's Guide for information about
automatic split and merge

e Oracle Database PL/SQL Packages and Types Reference for information
about apply parameters

e Oracle Streams Replication Administrator's Guide

3.3.7 Outbound Servers and Apply Parameters

Apply parameters control the behavior of outbound servers.

ORACLE

You can use the following apply parameters with outbound servers:

appl y_sequence_next val
disable on_|init
grouptransops

i gnore_transaction
max_sga_si ze

maxi mum scn
startup_seconds
time_limt

trace_| evel

3-24

Chapter 3
Position of LCRs and XStream Out

e transaction_limt
* txn_age_spill _threshold
e txn_lcr_spill_threshold

° wite alert_log

¢ See Also:
Oracle Database PL/SQL Packages and Types Reference

3.4 Position of LCRs and XStream Out

An XStream Out outbound server streams LCRs that were captured by a capture
process to a client application. The position of an LCR identifies its placement in the
stream of LCRs in a transaction.

e Additional LCR Attributes Related to Position in XStream Out
In LCRs that were captured by a capture process, there is additional information
related to LCR position.

* The Processed Low Position and Restartability for XStream Out
The processed low position is a position below which all transactions have been
processed by the client application.

* Streaming Network Transmission
To minimize network latency, the outbound server streams LCRs to the client
application with time-based acknowledgments. For example, the outbound server
might send an acknowledgment every 30 seconds.

¢ See Also:

"Position Order in an LCR Stream"

3.4.1 Additional LCR Attributes Related to Position in XStream Out

In LCRs that were captured by a capture process, there is additional information
related to LCR position.

LCRs that were captured by a capture process contain the following additional
attributes related to LCR position:

e The scn_from position attribute contains the SCN of the LCR.

e Thecomit_scn_from position attribute contains the commit SCN of the transaction
to which the LCR belongs.

ORACLE 3-25

Chapter 3
Position of LCRs and XStream Out

Note:

The scn_from position and commit_scn_from position attributes are not present
in explicitly captured row LCRs.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference

3.4.2 The Processed Low Position and Restartability for XStream Out

ORACLE

The processed low position is a position below which all transactions have been
processed by the client application.

If the outbound server or the client application stops abnormally, then the connection
between the two is broken automatically. In this case, the client application must roll
back all incomplete transactions.

The client application must maintain its processed low position to recover properly
after either it or the outbound server (or both) are restarted. The processed low
position indicates that the client application has processed all LCRs that are less than
or equal to this value. The client application can update the processed low position for
each transaction that it consumes.

When the client application attaches to the outbound server, the following conditions
related to the processed low position are possible:

e The client application can pass a processed low position to the outbound server
that is equal to or greater than the outbound server's processed low position. In
this case, the outbound server resumes streaming LCRs from the first LCR that
has a position greater than the client application's processed low position.

e The client application can pass a processed low position to the outbound server
that is less than the outbound server's processed low position. In this case, the
outbound server raises an error.

e The client application can pass NULL to the outbound server. In this case, the
outbound server determines the processed low position automatically and starts
streaming LCRs from the LCR that has a position greater than this processed low
position. When this happens, the client application must suppress or discard each
LCR with a position less than or equal to the client application's processed low
position.

¢ See Also:

"Displaying the Processed Low Position for an Outbound Server"

3-26

Chapter 3
XStream Out and Distributed Transactions

3.4.3 Streaming Network Transmission

To minimize network latency, the outbound server streams LCRs to the client
application with time-based acknowledgments. For example, the outbound server
might send an acknowledgment every 30 seconds.

This streaming protocol fully utilizes the available network bandwidth, and the
performance is unaffected by the presence of a wide area network (WAN) separating
the sender and the receiver. The outbound server extends the underlying Oracle
Streams infrastructure, and the outbound server maintains the streaming performance
rate.

Using OCI, you can control the time period of the interval by setting the
OCl _ATTR XSTREAM ACK_| NTERVAL attribute through the OCI client application. The default
is 30 seconds.

Using Java, you can control the time period of the interval by setting the bat chi nt erval
parameter in the att ach method in the XStreantut class. The client application can
specify this interval when it invokes the att ach method.

If the interval is large, then the outbound server can stream out more LCRs for each
acknowledgment interval. However, a longer interval delays how often the client
application can send the processed low position to the outbound server. Therefore, a
longer interval might mean that the processed low position maintained by the
outbound server is not current. In this case, when the outbound server restarts, it must
start processing LCRs at an earlier position than the one that corresponds to the
processed low position maintained by the client application. Therefore, more LCRs
might be retransmitted, and the client application must discard the ones that have
been applied.

3.5 XStream Out and Distributed Transactions

ORACLE

There are considerations for XStream Out and distributed transactions.
You can perform distributed transactions using either of the following methods:

* Modify tables in multiple databases in a coordinated manner using database links.

» Use the XA interface, as exposed by the DBM5_XA supplied PL/SQL package or by
the OCI or JDBC libraries. The XA interface implements X/Open Distributed
Transaction Processing (DTP) architecture.

In an XStream Out configuration, changes made to the source database during a
distributed transaction using either of the preceding methods are streamed to an
XStream outbound server. The outbound server sends the changes in a transaction to
the XStream client application after the transaction has committed.

However, the distributed transaction state is not replicated or sent. The client
application does not inherit the in-doubt or prepared state of such a transaction. Also,
XStream does not replicate or send the changes using the same global transaction
identifier used at the source database for XA transactions.

XA transactions can be performed in two ways:

e Tightly coupled, where different XA branches share locks

e Loosely coupled, where different XA branches do not share locks

3-27

Chapter 3
XStream Out and Security

XStream supports replication of changes made by loosely coupled XA branches
regardless of the COVPATI BLE initialization parameter value. XStream supports
replication of changes made by tightly coupled branches on an Oracle RAC source
database only if the COVPATI BLE initialization parameter is set to 11. 2. 0. 0 or higher.

¢ See Also:

e Oracle Database Administrator’s Guide for more information about
distributed transactions

e Oracle Database Development Guide for more information about Oracle
XA

3.6 XStream Out and Security

Understand security related to the client application and XStream components, as well
as the privileges required by the capture user and the connect user.

* The XStream Out Client Application and Security
There are security considerations for the client application because XStream Out
allows it to receive LCRs.

e XStream Out Component-Level Security
All the components of the XStream Out configuration run as the same XStream
administrator. This user can be either a trusted user with a high level of privileges,
or it can be an untrusted user that has only the privileges necessary for performing
certain tasks.

» Privileges Required by the Capture User for a Capture Process
Changes are captured in the security domain of the capture user for a capture
process. The capture user captures all changes that satisfy the capture process
rule sets. The capture user must have the necessary privileges to perform these
actions.

* Privileges Required by the Connect User for an Outbound Server
An outbound server sends LCRs to an XStream client application in the security
domain of its connect user.

¢ See Also:

e "XStream Security Models"

e Oracle Database PL/SQL Packages and Types Reference

3.6.1 The XStream Out Client Application and Security

There are security considerations for the client application because XStream Out
allows it to receive LCRs.

ORACLE 3-28

Chapter 3
XStream Out and Security

After an XStream Out application receives LCRs, the application might save the
contents of LCRs to a file or generate the SQL statements to execute the LCRs on a
non-Oracle database.

Java and OCI client applications must connect to an Oracle database before attaching
to an XStream outbound server created on that database. The connected user must
be the same as the connect _user configured for the outbound server. Otherwise, an
error is raised. XStream does not assume that the connected user to the outbound
server is trusted.

The XStream Java layer API relies on Oracle JDBC security because XStream
accepts the Oracle JDBC connection instance created by client application in the
XStream att ach method in the XSt reantut class. The connected user is validated as an
XStream user.

¢ See Also:

e Oracle Call Interface Programmer's Guide for information about the OCI
interface for XStream

e Oracle Database XStream Java API Reference for information about the
Java interface for XStream

3.6.2 XStream Out Component-Level Security

All the components of the XStream Out configuration run as the same XStream
administrator. This user can be either a trusted user with a high level of privileges, or it
can be an untrusted user that has only the privileges necessary for performing certain
tasks.

The security model of the XStream administrator also determines the data dictionary
views that this user can query to monitor the XStream configuration. The trusted
administrator can monitor XStream with DBA_ views. The untrusted administrator can
monitor XStream with ALL_ views.

You create an XStream administrator using the GRANT_ADM N_PRI VI LEGE procedure in the
DBMS_XSTREAM AUTH package. When you run this procedure to create an XStream
administrator for XStream Out, the pri vi | ege_t ype parameter determines the type of
privileges granted to the user:

e Specify CAPTURE for the pri vi | ege_t ype parameter if the XStream administrator
manages only an XStream Out configuration on the database.

» Specify * for the privil ege_t ype parameter if the XStream administrator manages
both an XStream Out and an XStream In configuration on the database.

The GRANT_ADM N_PRI VI LEGE procedure grants privileges for Oracle-supplied views and
packages that are required to run components in an XStream Out or XStream In
configuration. This procedure does not grant privileges on database objects owned by
users. If such privileges are required, then they must be granted separately.

ORACLE 3-29

Chapter 3
XStream Out and Security

¢ See Also:

"Configure an XStream Administrator on All Databases" for detailed information
about configuring an XStream administrator

3.6.3 Privileges Required by the Capture User for a Capture Process

Changes are captured in the security domain of the capture user for a capture
process. The capture user captures all changes that satisfy the capture process rule
sets. The capture user must have the necessary privileges to perform these actions.

The capture user must have the following privileges:

e EXECUTE privilege on the rule sets used by the capture process

e EXECUTE privilege on all custom rule-based transformation functions specified for
rules in the positive rule set

e Privileges to enqueue LCRs into the capture process queue

A capture process can be associated with only one user, but one user can be
associated with many capture processes.

Grant privileges to the capture user with the DBVS_XSTREAM AUTH package by specifying
CAPTURE for the privi |l ege_t ype parameter in the GRANT_ADM N_PRI VI LEGE procedure.

See Also:

e "Configure an XStream Administrator on All Databases"
e "Changing the Capture User of an Outbound Server's Capture Process"

e Oracle Database PL/SQL Packages and Types Reference for more
information about the GRANT_ADM N_PRI VI LEGE procedure

3.6.4 Privileges Required by the Connect User for an Outbound Server

ORACLE

An outbound server sends LCRs to an XStream client application in the security
domain of its connect user.

The connect user sends LCRs that satisfy the outbound server's rule sets to the
XStream client application. In addition, the connect user runs all custom rule-based
transformations specified by the rules in these rule sets.

The connect user must have the following privileges:

e EXECUTE privilege on the rule sets used by the outbound server

e EXECUTE privilege on all custom rule-based transformation functions specified for
rules in the positive rule set

A outbound server can be associated with only one user, but one user can be
associated with many outbound servers.

3-30

Chapter 3
XStream Out and Other Oracle Database Components

" See Also:

e "XStream Security Models"
e "Changing the Connect User for an Outbound Server"

e Oracle Database PL/SQL Packages and Types Reference
DBMS_XSTREAM ADM package "Security Model" for information about the
security requirements for configuring and managing XStream

e Oracle Call Interface Programmer's Guide for information about the OCI
interface for XStream

3.7 XStream Out and Other Oracle Database Components

XStream Out can work with other Oracle Database components.

XStream Out and Oracle Real Application Clusters
XStream Out can work with Oracle Real Application Clusters (Oracle RAC).

XStream Out and Transparent Data Encryption
XStream Out can work with Transparent Data Encryption.

XStream Out and Flashback Data Archive
XStream Out supports tables in a flashback data archive.

XStream Out and Recovery Manager
RMAN deletion policies can affect capture processes.

XStream and Distributed Transactions
XStream Out supports distributed transactions.

XStream Out and a Multitenant Environment

A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as
a separate database. This self-contained collection is called a pluggable database
(PDB). A multitenant container database (CDB) contains PDBs. In a CDB,
XStream Out functions much the same as it does in a non-CDB.

3.7.1 XStream Out and Oracle Real Application Clusters

XStream Out can work with Oracle Real Application Clusters (Oracle RAC).

ORACLE

Capture Processes and Oracle Real Application Clusters
A capture process can capture changes in an Oracle Real Application Clusters
(Oracle RAC) environment.

Queues and Oracle Real Application Clusters
You can configure queues in an Oracle Real Application Clusters (Oracle RAC)
environment.

Propagations and Oracle Real Application Clusters

A propagation can propagate LCRs from one queue to another in an Oracle Real
Application Clusters (Oracle RAC) environment. A propagation job running on an
instance propagates logical change records (LCRs) from any queue owned by that
instance to destination queues.

3-31

Chapter 3
XStream Out and Other Oracle Database Components

* Outbound Servers and Oracle Real Application Clusters
You can configure an outbound server in an Oracle Real Application Clusters
(Oracle RAC) environment provided you have set use_rac_service to Y in the
procedure DBMS_CAPTURE_ADM SET_PARAMETER.

3.7.1.1 Capture Processes and Oracle Real Application Clusters

ORACLE

A capture process can capture changes in an Oracle Real Application Clusters (Oracle
RAC) environment.

If you use one or more capture processes and Oracle RAC in the same environment,
then all archived logs that contain changes to be captured by a capture process must
be available for all instances in the Oracle RAC environment. In an Oracle RAC
environment, a capture process reads changes made by all instances. Multiple
outbound server processes that use the same capture process must run in the same
Oracle RAC instance as the capture process.

You ensure that the capture process runs in the same Oracle RAC instance as its
gueue by setting the parameter use_rac_servi ce to Y in the procedure
DBVB_CAPTURE_ADM SET_PARAMETER.

If the value for the capture process parameter use_rac_servi ce is set to Y, then each
capture process is started and stopped on the owner instance for its ANYDATA queue,
even if the start or stop procedure is run on a different instance. Also, a capture
process follows its queue to a different instance if the current owner instance becomes
unavailable. The queue itself follows the rules for primary instance and secondary
instance ownership.

If the value for the capture process parameter use_rac_servi ce is set to N, then the
capture process is started on the instance to which the client application connects.
Stopping the capture process must be performed on the same instance where the
capture process was started.

If the owner instance for a queue table containing a queue used by a capture process
becomes unavailable, then queue ownership is transferred automatically to another
instance in the cluster. In addition, if the capture process was enabled when the owner
instance became unavailable, then the capture process is restarted automatically on
the new owner instance. If the capture process was disabled when the owner instance
became unavailable, then the capture process remains disabled on the new owner
instance.

LogMiner supports the LOG_ARCHI VE_DEST _n initialization parameter, and capture
processes use LogMiner to capture changes from the redo log. If an archived log file is
inaccessible from one destination, then a local capture process can read it from
another accessible destination. On an Oracle RAC database, this ability also enables
you to use cross instance archival (CIA) such that each instance archives its files to all
other instances. This solution cannot detect or resolve gaps caused by missing
archived log files. Hence, it can be used only to complement an existing solution to
have the archived files shared between all instances.

In a downstream capture process environment, the source database can be a single
instance database or a multi-instance Oracle RAC database. The downstream
database can be a single instance database or a multi-instance Oracle RAC database,
regardless of whether the source database is single instance or multi-instance.

3-32

Chapter 3
XStream Out and Other Oracle Database Components

¢ See Also:

e "Capture Processes"

e Oracle Database Reference for more information about the
ALL_QUEUE_TABLES data dictionary view

e Oracle Real Application Clusters Administration and Deployment Guide for
more information about configuring archived logs to be shared between
instances

3.7.1.2 Queues and Oracle Real Application Clusters

You can configure queues in an Oracle Real Application Clusters (Oracle RAC)
environment.

In an Oracle RAC environment, only the owner instance can have a buffer for a queue,
but different instances can have buffers for different queues. A buffered queue is
System Global Area (SGA) memory associated with a queue.

You set the capture process parameter use_rac_servi ce to Y to specify ownership of
the queue table or the primary and secondary instance for a given queue table.

XStream Out processes and jobs support primary instance and secondary instance
specifications for queue tables. If use_rac_servi ce is set to Y, you can use the
specifications for queue tables and the secondary instance assumes ownership of a
gueue table when the primary instance becomes unavailable. The queue ownership is
transferred back to the primary instance when it becomes available again.

If the owner instance for a queue table containing a destination queue for a
propagation becomes unavailable, then queue ownership is transferred automatically
to another instance in the cluster. If both the primary and secondary instance for a
gueue table containing a destination queue become unavailable, then queue
ownership is transferred automatically to another instance in the cluster. In this case, if
the primary or secondary instance becomes available again, then ownership is
transferred back to one of them accordingly.

You can set primary and secondary instance specifications using the

ALTER QUEUE_TABLE procedure in the DBVS_AQADM package. The ALL_QUEUE_TABLES data
dictionary view contains information about the owner instance for a queue table. A
gueue table can contain multiple queues. In this case, each queue in a queue table
has the same owner instance as the queue table.

The NETWORK_NAME column in the ALL_QUEUES data dictionary view contains the network
name for a queue service. Do not manage the services for queues in any way. Oracle
manages them automatically.

ORACLE 3-33

Chapter 3
XStream Out and Other Oracle Database Components

¢ See Also:

e Oracle Database Reference for more information about the
ALL_QUEUE_TABLES data dictionary view

e Oracle Database Advanced Queuing User's Guide for more information
about queues and Oracle RAC

e Oracle Database PL/SQL Packages and Types Reference for more
information about the ALTER_QUEUE_TABLE procedure

3.7.1.3 Propagations and Oracle Real Application Clusters

A propagation can propagate LCRs from one queue to another in an Oracle Real
Application Clusters (Oracle RAC) environment. A propagation job running on an
instance propagates logical change records (LCRs) from any queue owned by that
instance to destination queues.

The information in this section only applies to XStream configurations that include
propagations. In a typical XStream configuration, an outbound server and its capture
process are configured on the same database, and propagation is not required. The
information in this section does not apply to configurations that do not include
propagation. However, it is possible to configure a capture process on one database
and an outbound server on another database. In this case, a propagation sends LCRs
from the capture process's queue to the outbound server's queue.

Before you can propagate LCRs in an Oracle RAC environment, you must set
use_rac_service to Y in the procedure DBVS_CAPTURE ADM SET_PARAMETER.

Any propagation to an Oracle RAC database is made over database links. The
database links must be configured to connect to the destination instance that owns the
gueue that will receive the LCRs.

A queue-to-queue propagation to a buffered destination queue uses a service to
provide transparent failover in an Oracle RAC environment. That is, a propagation job
for a queue-to-queue propagation automatically connects to the instance that owns the
destination queue. The service used by a queue-to-queue propagation always runs on
the owner instance of the destination queue. This service is created only for buffered
gueues in an Oracle RAC database. If you plan to use buffered messaging with an
Oracle RAC database, then LCRs can be enqueued into a buffered queue on any
instance. If LCRs are enqueued on an instance that does not own the queue, then the
LCRs are sent to the correct instance, but it is more efficient to enqueue LCRs on the
instance that owns the queue. You can use the service to connect to the owner
instance of the queue before enqueuing LCRs into a buffered queue.

Because the queue service always runs on the owner instance of the queue,
transparent failover can occur when Oracle RAC instances fail. When multiple queue-
to-queue propagations use a single database link, the connect description for each
gueue-to-queue propagation changes automatically to propagate LCRs to the correct
destination queue.

ORACLE 3-34

Chapter 3
XStream Out and Other Oracle Database Components

Note:

If a queue contains or will contain captured LCRs in an Oracle RAC
environment, then use queue-to-queue propagations to propagate LCRs to an
Oracle RAC destination database.

3.7.1.4 Outbound Servers and Oracle Real Application Clusters

You can configure an outbound server in an Oracle Real Application Clusters (Oracle
RAC) environment provided you have set use_rac_servi ce to Y in the procedure
DBMS_CAPTURE_ADM SET_PARANETER.

Each outbound server is started and stopped on the owner instance for its ANYDATA
gueue, even if the start or stop procedure is run on a different instance. A coordinator
process, its corresponding apply reader server, and its apply server run on a single
instance. Multiple XStream Out processes that use the same capture process must
run in the same Oracle RAC instance as the capture process.

If the owner instance for a queue table containing a queue used by an outbound
server becomes unavailable, then queue ownership is transferred automatically to
another instance in the cluster. Also, an outbound server will follow its queue to a
different instance if the current owner instance becomes unavailable. The queue itself
follows the rules for primary instance and secondary instance ownership. In addition, if
the outbound server was enabled when the owner instance became unavailable, then
the outbound server is restarted automatically on the new owner instance. If the
outbound server was disabled when the owner instance became unavailable, then the
outbound server remains disabled on the new owner instance.

¢ See Also:

e "Qutbound Servers"

* Oracle Database Reference for more information about the
ALL_QUEUE_TABLES data dictionary view

3.7.2 XStream Out and Transparent Data Encryption

ORACLE

XStream Out can work with Transparent Data Encryption.

» Capture Processes and Transparent Data Encryption
Capture processes can capture changes to columns that have been encrypted
using Transparent Data Encryption.

* Propagations and Transparent Data Encryption
A propagation can propagate row logical change records (row LCRs) that contain
changes to columns that were encrypted using Transparent Data Encryption.

e Outbound Servers and Transparent Data Encryption
An outbound server can process implicitly captured row logical change records
(row LCRs) that contain columns encrypted using Transparent Data Encryption.

3-35

Chapter 3
XStream Out and Other Oracle Database Components

¢ See Also:

Oracle Database Advanced Security Guide for information about Transparent
Data Encryption

3.7.2.1 Capture Processes and Transparent Data Encryption

Capture processes can capture changes to columns that have been encrypted using
Transparent Data Encryption.

A local capture process can capture changes to columns that have been encrypted
using Transparent Data Encryption. A downstream capture process can capture
changes to columns that have been encrypted only if the downstream database
shares an encryption keystore (container for authentication and signing credentials)
with the source database. A keystore can be shared through a network file system
(NFS), or it can be copied from one computer system to another manually. When a
keystore is shared with a downstream database, ensure that the

ENCRYPTI ON_WALLET_LOCATI ON parameter in the sql net . or a file at the downstream
database specifies the keystore location.

If you copy a keystore to a downstream database, then ensure that you copy the
keystore from the source database to the downstream database whenever the
keystore at the source database changes. Do not perform any operations on the
keystore at the downstream database, such as changing the encryption key for a
replicated table.

Encrypted columns in row logical change records (row LCRs) captured by a local or
downstream capture process are decrypted when the row LCRs are staged in a
buffered queue.

Note:

A capture process only supports encrypted columns if the redo logs used by
the capture process were generated by a database with a compatibility level of
11.0.0 or higher. The compatibility level is controlled by the COVPATI BLE
initialization parameter.

" See Also:

"Capture Processes"

3.7.2.2 Propagations and Transparent Data Encryption

ORACLE

A propagation can propagate row logical change records (row LCRSs) that contain
changes to columns that were encrypted using Transparent Data Encryption.

The information in this section only applies to XStream configurations that include
propagations. In a typical XStream configuration, an outbound server and its capture

3-36

Chapter 3
XStream Out and Other Oracle Database Components

process are configured on the same database, and propagation is not required. The
information in this section does not apply to configurations that do not include
propagation. However, it is possible to configure a capture process on one database
and an outbound server on another database. In this case, a propagation sends LCRs
from the capture process's queue to the outbound server's queue.

When a propagation propagates row LCRs with encrypted columns, the encrypted
columns are decrypted while the row LCRs are transferred over the network. You can
use the features of Oracle Advanced Security to encrypt data transfers over the
network if necessary.

¢ See Also:

Oracle Database Security Guide for information about configuring network data
encryption

3.7.2.3 Outbound Servers and Transparent Data Encryption

ORACLE

An outbound server can process implicitly captured row logical change records (row
LCRs) that contain columns encrypted using Transparent Data Encryption.

When row LCRs with encrypted columns are processed by an outbound server, the
encrypted columns are decrypted. These row LCRs with decrypted columns are sent
to the XStream client application.

When row LCRs with encrypted columns are stored in buffered queues, the columns
are decrypted. When row LCRs spill to disk, XStream transparently encrypts any
encrypted columns while the row LCRs are stored on disk.

" Note:

For XStream Out to encrypt columns transparently, the encryption master key
must be stored in the keystore on the local database, and the keystore must be
open. The following statements set the master key and open the keystore:

ALTER SYSTEM SET ENCRYPTI ON KEY | DENTI FI ED BY key- passwor d;
ALTER SYSTEM SET ENCRYPTI ON WALLET OPEN | DENTI FI ED BY key- passwor d;

Because the same keystore needs to be available and open in any instance
where columns are encrypted, make sure you copy the keystore to the
downstream capture database. In the case of a downstream capture, you must
also run the above commands on the downstream instance.

See Also:

"Outbound Servers"

3-37

Chapter 3
XStream Out and Other Oracle Database Components

3.7.3 XStream Out and Flashback Data Archive

XStream Out supports tables in a flashback data archive.

Capture processes can capture data manipulation language (DML) and data definition
language (DDL) changes made to these tables. Outbound servers can process the
captured LCRs.

XStream Out also support the following DDL statements:
* CREATE FLASHBACK ARCHI VE

* ALTER FLASHBACK ARCHI VE

* DROP FLASHBACK ARCHI VE

e CREATE TABLE with a FLASHBACK ARCHI VE clause

e ALTER TABLE with a FLASHBACK ARCHI VE clause

Note:

XStream Out does not capture changes made to internal tables used by a
flashback data archive.

¢ See Also:

e Oracle Database Development Guide for information about flashback data
archive

e "Capture Processes"

e "Qutbound Servers"

3.7.4 XStream Out and Recovery Manager

ORACLE

RMAN deletion policies can affect capture processes.

Some RMAN deletion policies and commands delete archived redo log files. If one of
these RMAN policies or commands is used on a database that generates redo log files
for one or more capture processes, then ensure that the RMAN commands do not
delete archived redo log files that are required by a capture process.

« RMAN and Local Capture Processes
When a local capture process is configured, RMAN does not delete archived redo
log files that are required by the local capture process unless there is space
pressure in the fast recovery area.

« RMAN and Downstream Capture Processes
When a downstream capture process captures database changes made at a
source database, ensure that no RMAN deletion policy or command deletes an

3-38

Chapter 3
XStream Out and Other Oracle Database Components

archived redo log file until after it is transferred from the source database to the
downstream capture process database.

2 See Also:

e "Capture Processes"

e "The Capture Process Is Missing Required Redo Log Files" for information
about determining whether a capture process is missing required archived
redo log files and for information correcting this problem

e "Checking the Trace File and Alert Log for Problems"

e Oracle Database Backup and Recovery User’s Guide and Oracle Database
Backup and Recovery Reference for more information about RMAN

3.7.4.1 RMAN and Local Capture Processes

When a local capture process is configured, RMAN does not delete archived redo log
files that are required by the local capture process unless there is space pressure in
the fast recovery area.

Specifically, RMAN does not delete archived redo log files that contain changes with
system change number (SCN) values that are equal to or greater than the required
checkpoint SCN for the local capture process. This is the default RMAN behavior for
all RMAN deletion policies and DELETE commands, including DELETE ARCH VELOG and
DELETE OBSOLETE.

When there is not enough space in the fast recovery area to write a new log file,
RMAN automatically deletes one or more archived redo log files. Oracle Database
writes warnings to the alert log when RMAN automatically deletes an archived redo log
file that is required by a local capture process.

When backups of the archived redo log files are taken on the local capture process
database, Oracle recommends the following RMAN deletion policy:

CONFI GURE ARCHI VELOG DELETI ON PCOLI CY TO BACKED UP integer TIMES
TO DEVI CE TYPE devi ceSpecifier;

This deletion policy requires that a log file be backed up i nt eger times before it is
considered for deletion.

When no backups of the archived redo log files are taken on the local capture process
database, no specific deletion policy is recommended. By default, RMAN does not
delete archived redo log files that are required by a local capture process.

3.7.4.2 RMAN and Downstream Capture Processes

ORACLE

When a downstream capture process captures database changes made at a source
database, ensure that no RMAN deletion policy or command deletes an archived redo
log file until after it is transferred from the source database to the downstream capture
process database.

The following are considerations for specific RMAN deletion policies and commands
that delete archived redo log files:

3-39

ORACLE

Chapter 3
XStream Out and Other Oracle Database Components

The RMAN command CONFI GURE ARCHI VELOG DELETI ON POLI CY sets a deletion policy
that determines when archived redo log files in the fast recovery area are eligible
for deletion. The deletion policy also applies to all RMAN DELETE commands,
including DELETE ARCHI VELOG and DELETE OBSOLETE.

The following settings determine the behavior at the source database:

— A deletion policy set TO SH PPED TO STANDBY does not delete a log file until after it
is transferred to a downstream capture process database that requires the file.
These log files might or might not have been processed by the downstream
capture process. Automatic deletion occurs when there is not enough space in
the fast recovery area to write a new log file.

— A deletion policy set TOAPPLI ED ON STANDBY does not delete a log file until after it
is transferred to a downstream capture process database that requires the file
and the source database marks the log file as applied. The source database
marks a log file as applied when the minimum required checkpoint SCN of all
of the downstream capture processes for the source database is greater than
the highest SCN in the log file.

— A deletion policy set to BACKED UP i nt eger TI MES TODEVI CE TYPE requires that a
log file be backed up i nt eger times before it is considered for deletion. A log
file can be deleted even if the log file has not been processed by a
downstream capture process that requires it.

— A deletion policy set TONONE means that a log file can be deleted when there is
space pressure on the fast recovery area, even if the log file has not been
processed by a downstream capture process that requires it.

The RMAN command DELETE ARCH VELOG deletes archived redo log files that meet
all of the following conditions:

— The log files satisfy the condition specified in the DELETE ARCHI VELOG command.

— The log files can be deleted according to the CONFI GURE ARCHI VELOG DELETI ON
POLI CY. For example, if the policy is set TO SH PPED TO STANDBY, then this
command does not delete a log file until after it is transferred to any
downstream capture process database that requires it.

This behavior applies when the database is mounted or open.

If archived redo log files are not deleted because they contain changes required by
a downstream capture process, then RMAN displays a warning message about
skipping the delete operation for these files.

The RMAN command DELETE OBSOLETE permanently purges the archived redo log
files that meet all of the following conditions:

— Thelog files are obsolete according to the retention policy.

— The log files can be deleted according to the CONFI GURE ARCHI VELOG DELETI ON
POLI CY. For example, if the policy is set TO SH PPED TO STANDBY, then this
command does not delete a log file until after it is transferred to any
downstream capture process database that requires it.

This behavior applies when the database is mounted or open.

The RMAN command BACKUP ARCHI VELOG ALL DELETE | NPUT copies the archived redo
log files and deletes the original files after completing the backup. This command
does not delete the log file until after it is transferred to a downstream capture
process database when the following conditions are met:

— The database is mounted or open.

3-40

Chapter 3
XStream Out and Other Oracle Database Components

— Thelog file is required by a downstream capture process.
— The deletion policy is set TO SH PPED TO STANDBY.

If archived redo log files are not deleted because they contain changes required by
a downstream capture process, then RMAN displays a warning message about
skipping the delete operation for these files.

Oracle recommends one of the following RMAN deletion policies at the source
database for a downstream capture process:

* When backups of the archived redo log files are taken on the source database, set
the deletion policy to the following:

CONFI GURE ARCHI VELOG DELETI ON PCLI CY TO SH PPED TO STANDBY
BACKED UP integer TIMES TO DEVI CE TYPE devi ceSpecifier;

* When no backups of the archived redo log files are taken on the source database,
set the deletion policy to the following:

CONFI GURE ARCHI VELOG DELETI ON PCLI CY TO SHI PPED TO STANDBY;

Note:

At a downstream capture process database, archived redo log files transferred
from a source database are not managed by RMAN.

3.7.5 XStream and Distributed Transactions

ORACLE

XStream Out supports distributed transactions.
You can perform distributed transactions using either of the following methods:

* Modify tables in multiple databases in a coordinated manner using database links.

* Use the XA interface, as exposed by the DBM5_XA supplied PL/SQL package or by
the OCI or JDBC libraries. The XA interface implements X/Open Distributed
Transaction Processing (DTP) architecture.

A capture process captures changes made to the source database during a distributed
transaction using either of these two methods and sends the changes to an outbound
server. An outbound server sends the changes in a transaction to a client application
after the transaction has committed.

However, the distributed transaction state is not sent. The client application does not
inherit the in-doubt or prepared state of such a transaction. Also, the outbound server
does not send the changes using the same global transaction identifier used at the
source database for XA transactions.

XA transactions can be performed in two ways:

* Tightly coupled, where different XA branches share locks
» Loosely coupled, where different XA branches do not share locks

XStream Out supports changes made by loosely coupled XA branches regardless of
the COVPATI BLE initialization parameter value. XStream Out supports replication of
changes made by tightly coupled branches on an Oracle RAC source database only if
the COWPATI BLE initialization parameter set to 11. 2. 0. 0 or higher.

3-41

Chapter 3
XStream Out and Other Oracle Database Components

¢ See Also:

* Oracle Database Administrator’s Guide for more information about
distributed transactions

e Oracle Database Development Guide for more information about Oracle
XA

3.7.6 XStream Out and a Multitenant Environment

ORACLE

A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as a
separate database. This self-contained collection is called a pluggable database
(PDB). A multitenant container database (CDB) contains PDBs. In a CDB, XStream
Out functions much the same as it does in a non-CDB.

It can also contain application containers. An application container is an optional
component of a CDB that consists of an application root and all of the application
PDBs associated with it. An application container stores data for one or more
applications. An application container shares application metadata and common data.
In a CDB, each of the following is a container: the CDB root, each PDB, each
application root, and each application PDB.

The main differences in the way XStream Out functions in a CDB and non-CDB are:

e XStream Out must be configured only in the CDB root.
e XStream Out can see changes made to any container within the CDB.

e XStream Out capture rules can limit the LCRs to those that are needed for the
client application. The system-generated capture rules select the appropriate
LCRs based on the parameters that were passed to the ADD_OUTBOUND and
CREATE_OUTBOUND procedures in the DBMS_XSTREAM ADM package. You can use the
ADD _*_RULES procedures in the same package for more fine-grained control over
the rules used by the XStream Out components.

e The user who performs XStream Out tasks must be a common user.

Unplug and Plug Operations in an XStream Environment

When a PDB, application root, or application PDB involved with XStream Out is
unplugged from its CDB and plugged into another CDB, any capture process or
outbound server is not considered part of the container. You must configure the
capture process and outbound server again in the other CDB.

If an outbound server is configured in a different database than the capture process,
then unplug and plug operations have additional considerations.

For this example, assume the following:

e A CDB named CDB1 contains PDB PDBL.

* A capture process is configured in CDB1, and it sends LCRs from PDB1 to an
outbound server in a CDB named CDB2.

* You unplug PDB1 from CDB1, and then plug it into a CDB named CDB3.

3-42

ORACLE

Chapter 3
XStream Out and Other Oracle Database Components

To continue delivering LCRs from PDB1 to the outbound server in CDB2, you must
configure a new capture process in CDB3 to capture and send LCRs to CDB2.

The rules used by the outbound server in database B must be altered to change
references to the root of CDBL to the root of CDB3. In addition, if PDB1 was given a
different name in CDB3, then the rules must be altered to reflect the new PDB name.

Application Containers in an XStream Environment

When a CDB has one or more application containers, XStream Out must be
configured in the CDB root, and XStream Out can capture changes made in any
container in the CDB, including the application roots and application PDBs. Changes
captured in an application container can be sent to containers of any type, including
PDBs, application roots, and application PDBs.

When replicating changes from one application root to another application root,
XStream can replicate ALTER PLUGGABLE DATABASE APPLI CATI ON statements. To avoid
errors, the target application root that applies the statements must have the same
application installed as the source application root, and the application name must be
identical in both application roots.

To avoid errors when replicating changes from an application root to a container that is
not an application root, you must ensure that ALTER PLUGGABLE DATABASE APPLI CATI ON
statements are not replicated.

With the XStream OCI API, you can control whether ALTER PLUGGABLE DATABASE

APPL| CATI ON statements are replicated using the OCI XSt r eanQut At t ach function and the
OCl LCRHeader Get function. With the XStream Java API, you can control this behavior
using the node parameter in the XSt reantut . at t ach method.

Related Topics

» System-Created Rules and a Multitenant Environment
A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as
a separate database. This self-contained collection is called a pluggable database
(PDB). A CDB contains PDBs.

e Configuring XStream Out in a CDB
When you configure XStream Out in a CDB, you must decide which database
changes will be captured by XStream Out and sent to the client application.
XStream Out can stream all of the database changes for all containers, including
the CDB root and all of the PDBs, application roots, and application PDBs, or
XStream Out can stream the changes from specific containers.

e Oracle Multitenant Administrator's Guide

3-43

Configuring XStream Out

You can configure the Oracle Database components that are used by XStream Out.

* Preparing for XStream Out
There are decisions to make and tasks to complete to prepare for an XStream Out
configuration.

e Configuring XStream Out
An outbound server in an XStream Out configuration streams Oracle database
changes to a client application.

" See Also:

e "XStream Out Concepts"
e "XStream Use Cases"
e Oracle Call Interface Programmer's Guide

e Oracle Database XStream Java APl Reference

4.1 Preparing for XStream Out

There are decisions to make and tasks to complete to prepare for an XStream Out
configuration.

» Decide How to Configure XStream Out
When you configure XStream Out, you must configure XStream components to
capture database changes and send these changes to the outbound server in the
form of logical change records (LCRS).

» Prerequisites for Configuring XStream Out
Preparing for an XStream Out outbound server is similar to preparing for an Oracle
Streams replication environment.

4.1.1 Decide How to Configure XStream Out

ORACLE

When you configure XStream Out, you must configure XStream components to
capture database changes and send these changes to the outbound server in the form
of logical change records (LCRS).

These components include a capture process and at least one queue. The capture
process can be a local capture process or a downstream capture process. For some
configurations, you must also configure a propagation.

Local capture means that a capture process runs on the source database. The source
database is the database where the changes were generated. Downstream capture

4-1

Chapter 4
Preparing for XStream Out

means that a capture process runs on a database other than the source database.
The primary reason to use downstream capture is to reduce the load on the source
database, thereby improving its performance. The primary reason to use a local
capture is because it is easier to configure and maintain.

The database that captures changes made to the source database is called the
capture database. One of the following databases can be the capture database:

e Source database (local capture)
e Destination database (downstream capture)
e Athird database (downstream capture)

If the database running the outbound server is not the capture database, then a
propagation sends changes from the capture database to the database running the
outbound server. If the database running the outbound server is the capture database,
then this propagation between databases is not needed because the capture process
and outbound server use the same queue.

You can configure the components in the following ways:

* Local capture and outbound server in the same database: The database
objects, capture process, and outbound server are all in the same database. This
configuration is the easiest to configure and maintain because all of the
components are contained in one database. See Figure 4-1 for an overview of this
configuration.

* Local capture and outbound server in different databases: The database
objects and capture process are in one database, and the outbound server is in
another database. A propagation sends LCRs from the source database to the
outbound server database. This configuration is best when you want easy
configuration and maintenance and when you want to optimize the performance of
the outbound server database. See Figure 4-2 for an overview of this
configuration.

» Downstream capture and outbound server in the same database: The
database objects are in one database, and the capture process and outbound
server are in another database. This configuration is best when you want to
optimize the performance of the database with the database objects and want to
offload change capture to another database. With this configuration, most of the
components run on the database with the outbound server. See Figure 4-3 for an
overview of this configuration.

* Downstream capture and outbound server in different databases: The
database objects are in one database, the outbound server is in another database,
and the capture process is in a third database. This configuration is best when you
want to optimize the performance of both the database with the database objects
and the database with the outbound server. With this configuration, the capture
process runs on a third database, and a propagation sends LCRs from the capture
database to the outbound server database. See Figure 4-4 for an overview of this
configuration.

The following figures illustrate these different configurations.

ORACLE 4-2

Figure 4-1 Local Capture and Outbound Server in the Same Database

Oracle Database

Capture
LCRs Capture
Process
E
Record l LS%“seue
Changes
Queue
Dequeue
LCRs
—)

Database Objects

Outbound
Server

Receive LCRs
from committed
transactions

Figure 4-2 Local Capture and Outbound Server in Different Databases

Oracle Database

Capture
LCRs Capture
Process
E
Record l LS‘,";“se“e
Changes
Queue
Database Objects
Propagate
LCRs
Oracle Database
Queue
Dequeue
LCRs
—

Outbound
Server

Receive LCRs
from committed
transactions

Chapter 4

Preparing for XStream Out

Client
Application

Client

ORACLE

Application

4-3

ORACLE

Chapter 4

Preparing for XStream Out

Figure 4-3 Downstream Capture and Outbound Server in the Same Database

Oracle Database

Database Objects [m——)| “por

Oracle Database

Record
Changes
Log
Send Redo
Data

Capture
LCRs Capture
Process
From Enqueue
Source LCRs
Queue

Dequeue
LCRs

Outbound

Receive LCRs
from committed
transactions

Server

Client
Application

4-4

ORACLE

Chapter 4

Preparing for XStream Out

Figure 4-4 Downstream Capture and Outbound Server in Different Databases

Oracle Database

Record

h
Database Objects Im}

Oracle Database

Send Redo
Data

Capture
LCRs

Capture
Process

Enqueue
LCRs

From
Source
Queue
Propagate
LCRs
Oracle Database
Queue

Dequeue

LCRs
Receive LCRs
from committed

Outbound transactions Client
Server Application

If you decide to configure a downstream capture process, then you must decide which
type of downstream capture process you want to configure. The following types are

available:

e Areal-time downstream capture process configuration means that redo
transport services at the source database sends redo data to the downstream
database, and a remote file server process (RFS) at the downstream database
receives the redo data over the network and stores the redo data in the standby
redo log, where the capture process captures changes in real-time.

* An archived-log downstream capture process configuration means that
archived redo log files from the source database are copied to the downstream
database, and the capture process captures changes in these archived redo log
files. These log files can be transferred automatically using redo transport

services, or they can be transferred manually using a method such as FTP.

4-5

Chapter 4
Preparing for XStream Out

The advantage of real-time downstream capture over archived-log downstream
capture is that real-time downstream capture reduces the amount of time required to
capture changes made to the source database. The time is reduced because the real-
time downstream capture process does not need to wait for the redo log file to be
archived before it can capture changes from it. You can configure multiple real-time
downstream capture processes that capture changes from the same source database,
but you cannot configure real-time downstream capture for multiple source databases
at one downstream database.

The advantage of archived-log downstream capture over real-time downstream
capture is that archived-log downstream capture allows downstream capture
processes for multiple source databases at a downstream database. You can copy
redo log files from multiple source databases to a single downstream database and
configure multiple archived-log downstream capture processes to capture changes in
these redo log files.

See Also:

"Local Capture and Downstream Capture"

4.1.2 Prerequisites for Configuring XStream Out

ORACLE

Preparing for an XStream Out outbound server is similar to preparing for an Oracle
Streams replication environment.

The components used in an Oracle Streams replication environment to capture
changes and send them to an apply process are the same components used to
capture changes and send them to an outbound server. These components include a
capture process and one or more queues. If the capture process runs on a different
database than the outbound server, then a propagation is also required.

Several of the tasks described in this section are described in more detail in Oracle
Streams Replication Administrator's Guide. This section provides an overview of each
task and specific information about completing the task for an XStream Out
configuration.

e Configure an XStream Administrator on All Databases
An XStream administrator configures and manages XStream components in an
XStream Out environment.

e Granting Additional Privileges to the XStream Administrator
Additional privileges might be required for the XStream administrator.

e If Required, Configure Network Connectivity and Database Links
Network connectivity and database links are required when an XStream Out
configuration includes multiple databases.

* Ensure That Each Source Database Is in ARCHIVELOG Mode
Each source database that generates changes that will be captured by a capture
process must be in ARCH VELOG mode.

* Set the Relevant Initialization Parameters
Some initialization parameters are important for the configuration, operation,
reliability, and performance of the components in an XStream configuration. Set
these parameters appropriately.

4-6

Chapter 4
Preparing for XStream Out

Configure the Streams pool
The Streams pool is a portion of memory in the System Global Area (SGA) that is
used by both Oracle Streams and XStream components.

If Required, Configure Supplemental Logging

When you use a capture process to capture changes, supplemental logging must
be specified for certain columns at a source database for changes to the columns
to be applied successfully at a destination database.

If Required, Configure Log File Transfer to a Downstream Database

If you decided to use a local capture process, then log file transfer is not required.
However, if you decided to use downstream capture that uses redo transport
services to transfer archived redo log files to the downstream database
automatically, then configure log file transfer from the source database to the
capture database.

If Required, Add Standby Redo Logs for Real-Time Downstream Capture
If you decided to configure real-time downstream capture, then add standby redo
logs to the capture database.

4.1.2.1 Configure an XStream Administrator on All Databases

ORACLE

An XStream administrator configures and manages XStream components in an
XStream Out environment.

You can configure an XStream administrator by granting a user the appropriate
privileges. You must configure an XStream administrator in each Oracle database
included in the XStream configuration.

Prerequisites

Before configuring an XStream administrator, ensure that the following prerequisites
are met:

Ensure that you can log in to each database in the XStream configuration as an
administrative user who can create users, grant privileges, and create
tablespaces.

Decide between the trusted user model and untrusted user model for security. See
"XStream Security Models" for more information.

Identify a user who will be the XStream administrator. Either create a new user
with the appropriate privileges or grant these privileges to an existing user.

Do not use the SYS or SYSTEMuser as an XStream administrator, and ensure that
the XStream administrator does not use the SYSTEMtablespace as its default
tablespace.

If a new tablespace is required for the XStream administrator, then ensure that
there is enough disk space on each computer system in the XStream configuration
for the tablespace. The recommended size of the tablespace is 25 MB.

The user executing the subprograms in the DBM5_XSTREAM AUTH package must have
SYSDBA administrative privilege, and the user must exercise the privilege using AS
SYSDBA at connect time.

Assumptions

This section makes the following assumptions:

4-7

ORACLE

Chapter 4
Preparing for XStream Out

The user name of the XStream administrator is xst r madni n for a non-CDB. The
user name of the XStream administrator is c##xst r madni n for a multitenant
container database (CDB).

The tablespace used by the XStream administrator is xst ream t bs.

To configure an XStream administrator:

1.

In SQL*Plus, connect as an administrative user who can create users, grant
privileges, and create tablespaces. Remain connected as this administrative user
for all subsequent steps.

If you are configuring an XStream administrator for XStream Out in a CDB, then
connect to the root and configure the XStream administrator in the CDB root.

¢ See Also:

e QOracle Database Administrator’'s Guide for information about
connecting to a database in SQL*Plus

* "XStream Out and a Multitenant Environment" for more information
about XStream Out and CDBs

Either create a tablespace for the XStream administrator or use an existing
tablespace.

This tablespace stores any objects created in the XStream administrator's
schema.

For example, the following statement creates a new tablespace for the XStream
administrator:

CREATE TABLESPACE xstreamths DATAFILE '/usr/oracl e/ dbs/xstreamthbs. dbf"
SI ZE 25M REUSE AUTCEXTEND ON MAXSI ZE UNLI M TED;

If you are creating an XStream administrator in a CDB, then you must create the
tablespace in all of the containers in the CDB, including the CDB root, all
pluggable databases (PDBs), all application roots, and all application containers.
The tablespace is required in all containers because the XStream administrator
must be a common user and so must have access to the tablespace in any
container.

Create a new user to act as the XStream administrator or identify an existing user.

For example, to create a user named xst r radni n and specify that this user uses
the xstream t bs tablespace, run the following statement:

CREATE USER xstrmadnin | DENTI FI ED BY password
DEFAULT TABLESPACE xstreamths
QUOTA UNLI M TED ON xstream tbs;

If you are creating an XStream administrator in a CDB, then the XStream
administrator must be a common user. Therefore, include the CONTAI NER=ALL clause
in the CREATE USER statement:

CREATE USER c##xstrmadni n | DENTI FI ED BY password
DEFAULT TABLESPACE xstream tbs
QUOTA UNLI M TED ON xstream tbs
CONTAI NER=ALL;

4-8

Chapter 4
Preparing for XStream Out

Note:

Enter an appropriate password for the administrative user.

¢ See Also:

Oracle Database Security Guide for guidelines about choosing passwords

4. Grant CREATE SESSI ON privilege to the XStream administrator.

If you created a new user to act as the XStream administrator, then grant this user
CREATE SESSI ON privilege.

For example, to grant CREATE SESSI ON privilege to user xst r nadni n, run the following
statement:

GRANT CREATE SESSI ON TO xstrmadmi n;

If you are creating an XStream administrator in a CDB, then grant CREATE SESSI ON
privilege and SET CONTAI NER privilege to the XStream administrator, and include the
CONTAI NER=ALL clause in the statement.

For example, to grant these privileges to user c##xst rmadni n in a CDB, run the
following statement:

GRANT CREATE SESSI ON, SET CONTAI NER TO c##xstrmadm n CONTAI NER=ALL;
5. Run the GRANT_ADM N_PRI VI LEGE procedure in the DBVS_XSTREAM AUTH package.

A user must have been explicitly granted EXECUTE privilege on a package to
execute a subprogram in the package inside of a user-created subprogram, and a
user must have explicit READ or SELECT privilege on a data dictionary view to query
the view inside of a user-created subprogram. These privileges cannot be granted
through a role. You can run the GRANT_ADM N_PRI VI LEGE procedure to grant such
privileges to the XStream administrator, or you can grant them directly.

Depending on the parameter settings for the GRANT_ADM N_PRI VI LEGE procedure, it
can grant the appropriate privileges for a trusted or untrusted XStream
administrator, and it can grant privileges in a non-CDB or a CDB. Table 4-1
describes key parameter settings for each case.

Table 4-1 Key Parameter Settings for GRANT_ADMIN_PRIVILEGE
]

Type of XStream grant_select_privileges container Parameter
Administrator Parameter Setting Setting

Trusted in a non-CDB TRUE CURRENT (default)
Untrusted in a non-CDB FALSE (default) CURRENT (default)
Trusted in a CDB TRUE ALL

Untrusted in a CDB FALSE (default) ALL

ORACLE 4.9

ORACLE

Chapter 4
Preparing for XStream Out

Note:

e For any scenario, when the XStream administrator must manage both
an XStream Out and an XStream In configuration on the database,
specify * for the privil ege_t ype parameter.

e Ina CDB, when ALL is specified for the cont ai ner parameter, the
current container must be the CDB root (CDB$ROCT).

" See Also:
Oracle Database PL/SQL Packages and Types Reference

6. If necessary, grant additional privileges to the XStream administrator.
See "Granting Additional Privileges to the XStream Administrator".

7. Repeat all of the previous steps at each Oracle database in the environment that
will use XStream.

Example 4-1 Granting Privileges to a Trusted XStream Administrator in a Non-
CDB Without Generating a Script

BEG N
DBMS_XSTREAM AUTH. GRANT_ADM N_PRI VI LEGE(
grantee => "xstrmadnin',
privilege_type => ' CAPTURE ,

grant _sel ect _privileges => TRUE);
END;
/

Example 4-2 Granting Privileges to a Trusted XStream Administrator in a Non-
CDB and Generating a Script

The directory specified in the di rect ory_name parameter must exist and must be
accessible to the current user.

BEG N
DBMS_XSTREAM AUTH. GRANT_ADM N_PRI VI LEGE(

grantee => "xstrmadnin',
privilege_type => ' CAPTURE ,
grant _sel ect _privileges => TRUE,
do_grants => TRUE,
file_name => 'grant_xstrmprivs.sql",
directory_name => 'xstrmdir');

END;

/

Example 4-3 Granting Privileges to an Untrusted XStream Administrator in a
Non-CDB Without Generating a Script

BEG N
DBMS_XSTREAM AUTH. GRANT_ADM N_PRI VI LEGE(
grantee => 'xstrmadmin',
privilege_type => ' CAPTURE ,
grant _sel ect _privileges => FALSE);

4-10

Chapter 4
Preparing for XStream Out

END;
/

Example 4-4 Granting Privileges to a Trusted XStream Administrator in a CDB
Without Generating a Script

BEG N
DBMS_XSTREAM AUTH. GRANT_ADM N_PRI VI LEGE(
grantee => ' c##xstrmdmin',
privilege_type => ' CAPTURE
grant _sel ect _privileges => TRUE,
cont ai ner = "ALL");
END;
/

4.1.2.2 Granting Additional Privileges to the XStream Administrator

ORACLE

Additional privileges might be required for the XStream administrator.

Grant any of the following additional privileges to the XStream administrator if
necessary:

* If you plan to use Oracle Enterprise Manager Cloud Control to manage databases
with XStream components, then the XStream administrator must be a trusted user
and must be granted DBA role. You must also configure the XStream administrator
to be an Oracle Enterprise Manager administrative user. Doing so grants
additional privileges required by Oracle Enterprise Manager Cloud Control, such
as the privileges required to run Oracle Enterprise Manager Cloud Control jobs.
See the Oracle Enterprise Manager Cloud Control online help for information
about creating Oracle Enterprise Manager administrative users.

e Grant the privileges for a remote XStream administrator to perform actions in the
local database. Grant these privileges using the GRANT_REMOTE_ADM N_ACCESS
procedure in the DBMS_XSTREAM AUTH package. Grant this privilege if a remote
XStream administrator will use a database link that connects to the local XStream
administrator to perform administrative actions. Specifically, grant these privileges
if either of the following conditions is true:

— You plan to configure a downstream capture process at a remote downstream
database that captures changes originating at the local source database, and
the downstream capture process will use a database link to perform
administrative actions at the source database.

— You plan to use a remote XStream administrator to set the instantiation
system change number (SCN) values for replicated database objects at the
local database.

e Grant the XStream administrator EXECUTE privilege on any PL/SQL function owned
by another user that is specified in a custom rule-based transformation for a rule
used by a capture process, propagation, or outbound server. For a capture
process, if a capture user is specified, then the capture user must have these
privileges. These privileges must be granted directly. They cannot be granted
through a role.

* Grant the XStream administrator privileges to alter database objects where
appropriate. For example, if the XStream administrator must create a
supplemental log group for a table in another schema, then the XStream
administrator must have the necessary privileges to alter the table. These
privileges can be granted directly or through a role.

4-11

Chapter 4
Preparing for XStream Out

» If the XStream administrator does not own the queue used by a capture process,
propagation, or outbound server, and is not specified as the queue user for the
gueue when the queue is created, then the XStream administrator must be
configured as a secure queue user of the queue if you want the XStream
administrator to be able to enqueue LCRs into or dequeue LCRs from the queue.
The XStream administrator might also need ENQUEUE or DEQUEUE privileges on the
gueue, or both. See Oracle Streams Concepts and Administration for information
about managing queues.

e Grant the XStream administrator EXECUTE privilege on any object types that the
XStream administrator might need to access. These privileges can be granted
directly or through a role.

* If you are using Oracle Database Vault, then the XStream administrator must be
granted the DV_XSTREAM ADM N role to perform the following tasks: create a capture
process, create an outbound server, and modify the capture user for a capture
process. When the XStream administrator is not performing these tasks, you can
revoke DV_XSTREAM ADM N role from the XStream administrator.

In addition, the user who performs the following actions must be granted the
BECOME USER system privilege:

— Creates or alters a capture process
— Creates or alters an outbound server

Granting the BECOVE USER system privilege to the user who performs these actions
is not required if Oracle Database Vault is not installed. You can revoke the BECOVE
USER system privilege from the user after the completing one of these actions, if
necessary.

See Oracle Database Vault Administrator’s Guide.

4.1.2.3 If Required, Configure Network Connectivity and Database Links

ORACLE

Network connectivity and database links are required when an XStream Out
configuration includes multiple databases.

Network connectivity and database links are not required when all of the components
run on the same database. These components include the capture process, queue,
and outbound server.

You must configure network connectivity and database links if you decided to
configure XStream in either of the following ways:

e The capture process and the outbound server will run on different databases.
* Downstream capture will be used.

See "Decide How to Configure XStream Out" for more information about these
decisions.

If network connectivity is required, then configure your network and Oracle Net so that
the databases can communicate with each other.

The following database links are required:

* When the capture process runs on a different database from the outbound server,
create a database link from the capture database to the outbound server
database. A propagation uses this database link to send changes from the capture
database to the outbound server database.

4-12

Chapter 4
Preparing for XStream Out

* When you use downstream capture, create a database link from the capture
database to the source database. The source database is the database that
generates the redo data that the capture process uses to capture changes. The
capture process uses this database link to perform administrative tasks at the
source database.

The name of each database link must match the global name of the destination
database, and each database link should be created in the XStream administrator's
schema.

For example, assume that you want to create a database link in a configuration with
the following characteristics:

e The global name of the source database is dbs1. exanpl e. com
* The global name of the destination database is dbs2. exanpl e. com
* The XStream administrator is xst r nadni n at each database.

Given these assumptions, the following statement creates a database link from
dbs1. exanpl e. comto dbs2. exanpl e. com

CONNECT xst rmadni n@bs1. exanpl e. com
Enter password: password

CREATE DATABASE LI NK dbs2. exanpl e. com CONNECT TO xstrmadnin
| DENTI FI ED BY password USING ' dbs2. exanpl e. cont ;

¢ See Also:

e Oracle Database 2 Day DBA

e Oracle Database Administrator’s Guide for more information about
database links

4.1.2.4 Ensure That Each Source Database Is in ARCHIVELOG Mode

Each source database that generates changes that will be captured by a capture
process must be in ARCHI VELOG mode.

For downstream capture processes, the downstream database also must be in

ARCH VELOG mode if you plan to configure a real-time downstream capture process. The
downstream database does not need to be in ARCHI VELOG mode if you plan to run only
archived-log downstream capture processes on it.

If you are configuring XStream in an Oracle Real Application Clusters (Oracle RAC)
environment, then the archived redo log files of all threads from all instances must be
available to any instance running a capture process. This requirement pertains to both
local and downstream capture processes.

¢ See Also:

Oracle Database Administrator’s Guidefor instructions about running a
database in ARCH VELOG mode

ORACLE 4-13

Chapter 4
Preparing for XStream Out

4.1.2.5 Set the Relevant Initialization Parameters

Some initialization parameters are important for the configuration, operation, reliability,
and performance of the components in an XStream configuration. Set these
parameters appropriately.

The following requirements apply to XStream outbound servers:

e Ensure that the PROCESSES initialization parameter is set to a value large enough to
accommodate the outbound server background processes and all of the other
Oracle Database background processes.

» Ensure that the SESSI ONS initialization parameter is set to a value large enough to
accommodate the sessions used by the outbound server background processes
and all of the other Oracle Database sessions.

4.1.2.6 Configure the Streams pool

ORACLE

The Streams pool is a portion of memory in the System Global Area (SGA) that is
used by both Oracle Streams and XStream components.

The Streams pool stores buffered queue LCRs in memory, and it provides memory for
capture processes and outbound servers.

The following are considerations for configuring the Streams pool:

e Atleast 300 MB of memory is required for the Streams pool.

e After XStream Out is configured, you can use the max_sga_si ze capture process
parameter to control the amount of system global area (SGA) memory allocated
specifically to a capture process.

The sum of system global area (SGA) memory allocated for all components on a
database must be less than the value set for the STREAMS_POOL_SI ZE initialization
parameter.

» After XStream Out is configured, you can use the max_sga_si ze apply parameter to
control the amount of SGA memory allocated specifically to an outbound server.

» Ensure that there is enough space in the Streams pool at each database to run
XStream components and to store LCRs and run the components properly.

* The Streams pool is initialized the first time an outbound server is started.

* The best practice is to set the STREAMS_POOL_SI ZE initialization parameter explicitly
to the desired Streams pool size.

The Automatic Shared Memory Management feature automatically manages the size
of the Streams pool when the following conditions are met:

e The MEMORY_TARGET and MEMORY_MAX_TARGET initialization parameters are both set to 0
(zero).

e The SGA TARGET initialization parameter is set to a nonzero value.

The Streams pool size is the value specified by the STREAVS_PCOOL_SI ZE parameter, in
bytes, if the following conditions are met:

e The MEMORY_TARGET, MENMORY_MAX_TARGET, and SGA_TARGET initialization parameters are
all set to 0 (zero).

4-14

Chapter 4
Preparing for XStream Out

* The STREAMS_POOL_SI ZE initialization parameter is set to a nonzero value.

If you are using Automatic Shared Memory Management, and if the STREAMS_PQOOL_SI ZE
initialization parameter also is set to a nonzero value, then Automatic Shared Memory
Management uses this value as a minimum for the Oracle Streams pool. If your
environment needs a minimum amount of memory in the Oracle Streams pool to
function properly, then you can set a minimum size. To view the current memory
allocated to Oracle Streams pool by Automatic Shared Memory Management, query
the VESGA_DYNAM C_COMPONENTS view. In addition, you can query the
V$STREAMS_POOL_STATI STI CS view to view the current usage of the Oracle Streams pool.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for more
information about the nax_sga_si ze capture process parameter

e Oracle Database Administrator’'s Guide

e QOracle Database Reference

4.1.2.7 If Required, Configure Supplemental Logging

ORACLE

When you use a capture process to capture changes, supplemental logging must be
specified for certain columns at a source database for changes to the columns to be
applied successfully at a destination database.

Supplemental logging places additional information in the redo log for these columns.
A capture process captures this additional information and places it in logical change
records (LCRs), and an XStream inbound server or client application might need this

additional information to process changes properly.

Required Supplemental Logging in an XStream Environment
There are two types of supplemental logging: database supplemental logging and
table supplemental logging.

Specifying Table Supplemental Logging Using Unconditional Log Groups
You can specify supplemental logging using unconditional log groups.

Specifying Table Supplemental Logging Using Conditional Log Groups
You can specify table supplemental logging using conditional log groups.

Dropping a Supplemental Log Group
To drop a conditional or unconditional supplemental log group, use the DROP
SUPPLEMENTAL LOG GROUP clause in the ALTER TABLE statement.

Specifying Database Supplemental Logging of Key Columns
You have the option of specifying supplemental logging for all primary key, unique
key, bitmap index, and foreign key columns in a source database.

Dropping Database Supplemental Logging of Key Columns

To drop supplemental logging for all primary key, unique key, bitmap index, and
foreign key columns in a source database, issue the ALTER DATABASE DROP
SUPPLEMENTAL LOG DATA statement.

Procedures That Automatically Specify Supplemental Logging
Some procedures in the DBMS_CAPTURE_ADM package automatically specify
supplemental logging.

4-15

Chapter 4
Preparing for XStream Out

4.1.2.7.1 Required Supplemental Logging in an XStream Environment

ORACLE

There are two types of supplemental logging: database supplemental logging and
table supplemental logging.

Database supplemental logging specifies supplemental logging for an entire database,
while table supplemental logging enables you to specify log groups for supplemental
logging of a particular table. If you use table supplemental logging, then you can
choose between two types of log groups: unconditional log groups and conditional log
groups.

Unconditional log groups log the before images of specified columns when the table is
changed, regardless of whether the change affected any of the specified columns.
Unconditional log groups are sometimes referred to as "always log groups.”
Conditional log groups log the before images of all specified columns only if at least
one of the columns in the log group is changed.

Supplementing logging at the database level, unconditional log groups at the table
level, and conditional log groups at the table level determine which old values are
logged for a change.

If you plan to use one or more XStream inbound servers to apply LCRs captured by a
capture process, then you must enable supplemental logging at the source database
for the following types of columns in tables at the destination database:

* Any columns at the source database that are used in a primary key in tables for
which changes are applied at a destination database must be unconditionally
logged in a log group or by database supplemental logging of primary key
columns.

« If the parallelism of any inbound server that will apply the changes is greater
than 1, then any unique constraint column at a destination database that comes
from multiple columns at the source database must be conditionally logged.
Supplemental logging does not need to be specified if a unique constraint column
comes from a single column at the source database.

« If the parallelism of any inbound server that will apply the changes is greater
than 1, then any foreign key column at a destination database that comes from
multiple columns at the source database must be conditionally logged.
Supplemental logging does not need to be specified if the foreign key column
comes from a single column at the source database.

« If the parallelism of any inbound server that will apply the changes is greater
than 1, then any bitmap index column at a destination database that comes from
multiple columns at the source database must be conditionally logged.
Supplemental logging does not need to be specified if the bitmap index column
comes from a single column at the source database.

* Any columns at the source database that are used as substitute key columns for
an inbound server at a destination database must be unconditionally logged. You
specify substitute key columns for a table using the SET_KEY_COLUWNS procedure in
the DBVS_APPLY_ADM package.

e The columns specified in a column list for conflict resolution during apply must be
conditionally logged if multiple columns at the source database are used in the
column list at the destination database.

4-16

Chapter 4
Preparing for XStream Out

* Any columns at the source database that are used by a statement DML handler,
change handler, procedure DML handler, or error handler at a destination
database must be unconditionally logged.

* Any columns at the source database that are used by a rule or a rule-based
transformation must be unconditionally logged.

* Any columns at the source database that are specified in a value dependency
virtual dependency definition at a destination database must be unconditionally
logged.

» If you specify row subsetting for a table at a destination database, then any
columns at the source database that are in the destination table or columns at the
source database that are in the subset condition must be unconditionally logged.
You specify a row subsetting condition for an inbound server using the
dm _condi ti on parameter in the ADD_SUBSET_RULES procedure in the DBVS_XSTREAM ADM
package.

If you do not use supplemental logging for these types of columns at a source
database, then changes involving these columns might not apply properly at a
destination database.

Note:

Columns of the following data types cannot be part of a supplemental log
group: LOB, LONG, LONG RAW user-defined types (including object types, REFs,
varrays, nested tables), and Oracle-supplied types (including Any types, XML
types, spatial types, and media types).

4.1.2.7.2 Specifying Table Supplemental Logging Using Unconditional Log Groups

ORACLE

You can specify supplemental logging using unconditional log groups.

To specify an unconditional supplemental log group that only includes the primary key
column(s) for a table, use an ALTER TABLE statement with the PRI MARY KEY option in the
ADD SUPPLEMENTAL LOG DATA clause. For example, the following statement adds the
primary key column of the hr. regi ons table to an unconditional log group with a
system-generated name:

ALTER TABLE hr. regi ons ADD SUPPLEMENTAL LOG DATA (PRI MARY KEY) COLUWNS;

To specify an unconditional supplemental log group that includes all of the columns in
a table, use an ALTER TABLE statement with the ALL option in the ADD SUPPLEMENTAL LOG
DATA clause. For example, the following statement adds all of the columns in the

hr. regi ons table to an unconditional log group with a system-generated name:

ALTER TABLE hr.regi ons ADD SUPPLEMENTAL LOG DATA (ALL) COLUWNS;

To specify an unconditional supplemental log group that contains columns that you
select, use an ALTER TABLE statement with the ALWAYS specification for the ADD
SUPPLEMENTAL LOG GROUP clause. These log groups can include key columns,

if necessary.

For example, the following statement adds the depart nent _i d column and the
manager _i d column of the hr. depart nent s table to an unconditional log group named
| og_group_dep_pk:

4-17

Chapter 4
Preparing for XStream Out

ALTER TABLE hr. departnents ADD SUPPLEMENTAL LOG GROUP | og_group_dep_pk
(departnent _id, manager_id) ALWAYS,

The ALWAYS specification makes this log group an unconditional log group.

4.1.2.7.3 Specifying Table Supplemental Logging Using Conditional Log Groups

You can specify table supplemental logging using conditional log groups.

You can use the following options in the ADD SUPPLEMENTAL LOG DATA clause of an ALTER
TABLE statement:

* The FOREI GN KEY option creates a conditional log group that includes the foreign key
column(s) in the table.

* The UNI QUE option creates a conditional log group that includes the unique key
column(s) and bitmap index column(s) in the table.

If you specify multiple options in a single ALTER TABLE statement, then a separate
conditional log group is created for each option.

For example, the following statement creates two conditional log groups:

ALTER TABLE hr. enpl oyees ADD SUPPLEMENTAL LOG DATA
(UNI QUE, FOREIGN KEY) COLUWNS;

One conditional log group includes the unique key columns and bitmap index columns
for the table, and the other conditional log group includes the foreign key columns for
the table. Both log groups have a system-generated name.

Note:

Specifying the UNI QUE option does not enable supplemental logging of bitmap
join index columns.

To specify a conditional supplemental log group that includes any columns you choose
to add, you can use the ADD SUPPLEMENTAL LOG GROUP clause in the ALTER TABLE statement.
To make the log group conditional, do not include the ALWAYS specification.

For example, suppose the nin_sal ary and nax_sal ary columns in the hr. j obs table are
included in a column list for conflict resolution at a destination database. The following
statement adds the ni n_sal ary and max_sal ary columns to a conditional log group
named | og_group_j obs_cr:

ALTER TABLE hr.jobs ADD SUPPLEMENTAL LOG GROUP | og_group_j obs_cr
(min_salary, max_salary);

4.1.2.7.4 Dropping a Supplemental Log Group

ORACLE

To drop a conditional or unconditional supplemental log group, use the DROP
SUPPLEMENTAL LOG GROUP clause in the ALTER TABLE statement.

For example, to drop a supplemental log group named | og_gr oup_j obs_cr, run the
following statement:

ALTER TABLE hr.jobs DROP SUPPLEMENTAL LOG GROUP | og_group_j obs_cr;

4-18

Chapter 4
Preparing for XStream Out

4.1.2.7.5 Specifying Database Supplemental Logging of Key Columns

You have the option of specifying supplemental logging for all primary key, unique key,
bitmap index, and foreign key columns in a source database.

You might choose this option if you configure a capture process to capture changes to
an entire database. To specify supplemental logging for all primary key, unique key,
bitmap index, and foreign key columns in a source database, issue the following SQL
statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
(PRI MARY KEY, UNI QUE, FOREIGN KEY) COLUWNS;

If your primary key, unique key, bitmap index, and foreign key columns are the same
at all source and destination databases, then running this command at the source
database provides the supplemental logging needed for primary key, unique key,
bitmap index, and foreign key columns at all destination databases. When you specify
the PRI MARY KEY option, all columns of a row's primary key are placed in the redo log file
any time the table is modified (unconditional logging). When you specify the UNI QUE
option, any columns in a row's unique key and bitmap index are placed in the redo log
file if any column belonging to the unique key or bitmap index is modified (conditional
logging). When you specify the FOREI GN KEY option, all columns of a row's foreign key
are placed in the redo log file if any column belonging to the foreign key is modified
(conditional logging).

You can omit one or more of these options. For example, if you do not want to
supplementally log all of the foreign key columns in the database, then you can omit
the FOREI GN KEY option, as in the following example:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
(PRI MARY KEY, UN QUE) COLUWNS;

In addition to PRI MARY KEY, UNI QUE, and FOREI GN KEY, you can also use the ALL option. The
ALL option specifies that, when a row is changed, all the columns of that row (except
for LOB, LONG, LONG RAW user-defined type, and Oracle-supplied type columns) are
placed in the redo log file (unconditional logging).

Supplemental logging statements are cumulative. If you issue two consecutive ALTER
DATABASE ADD SUPPLEMENTAL LOG DATA statements, each with a different identification key,
then both keys are supplementally logged.

Note:

Specifying the UNI QUE option does not enable supplemental logging of bitmap
join index columns.

" See Also:

Oracle Database SQL Language Reference for information about data types

ORACLE 4-19

Chapter 4
Preparing for XStream Out

4.1.2.7.6 Dropping Database Supplemental Logging of Key Columns

To drop supplemental logging for all primary key, unique key, bitmap index, and
foreign key columns in a source database, issue the ALTER DATABASE DROP SUPPLEMENTAL
LOG DATA statement.

For example, to drop database supplemental logging for all primary key, unique key,
bitmap index, and foreign key columns, issue the following SQL statement:

ALTER DATABASE DRCP SUPPLEMENTAL LOG DATA
(PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUWNS,

¢ Note:

Dropping database supplemental logging of key columns does not affect any
existing table-level supplemental log groups.

4.1.2.7.7 Procedures That Automatically Specify Supplemental Logging
Some procedures in the DBMS_CAPTURE_ADM package automatically specify supplemental
logging.

The following procedures in the DBMS_CAPTURE_ADM package automatically specify
supplemental logging:

e BULD

* PREPARE_GLOBAL_| NSTANTI ATI ON
e PREPARE_SCHENA | NSTANTI ATI ON
* PREPARE_TABLE_I NSTANTI ATI ON

The BUI LD procedure automatically specifies database supplemental logging by
running the ALTER DATABASE ADD SUPPLEMENTAL LOG DATA statement. In most cases, the
BUI LD procedure is run automatically when a capture process is created.

The PREPARE_GLOBAL_| NSTANTI ATI ON, PREPARE_SCHEMA | NSTANTI ATl ON, and

PREPARE_TABLE_| NSTANTI ATl ON procedures automatically specify supplemental logging of
the primary key, unigue key, bitmap index, and foreign key columns in the tables
prepared for instantiation.

Certain procedures in the DBVM5_XSTREAM ADM package automatically run a procedure
listed previously, including the ADD_SUBSET_RULES, ADD_TABLE RULES, ADD_SCHEMA_RULES,
and ADD_GLOBAL_RULES procedures.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
about these procedures

ORACLE 4-20

Chapter 4
Preparing for XStream Out

4.1.2.8 If Required, Configure Log File Transfer to a Downstream Database

ORACLE

If you decided to use a local capture process, then log file transfer is not required.
However, if you decided to use downstream capture that uses redo transport services
to transfer archived redo log files to the downstream database automatically, then
configure log file transfer from the source database to the capture database.

See "Decide How to Configure XStream Out" for information about this decision.

Tip:

You can use Oracle Enterprise Manager Cloud Control to configure log file
transfer and a downstream capture process. See the Oracle Enterprise
Manager Cloud Control online help for instructions.

The steps in this section configure the source database to transfer its redo log files to
the capture database and configure the capture database to accept these redo log
files.

To configure log file transfer to a downstream database:

1.

2.

3.

Configure Oracle Net so that the source database can communicate with the
downstream database.

" See Also:

Oracle Database Net Services Administrator's Guide

Configure authentication at both databases to support the transfer of redo data.

Redo transport sessions are authenticated using either the Secure Sockets Layer
(SSL) protocol or a remote login password file. If the source database has a
remote login password file, then copy it to the appropriate directory on the
downstream capture database system. The password file must be the same at the
source database and the downstream capture database.

¢ See Also:

Oracle Data Guard Concepts and Administration for detailed information
about authentication requirements for redo transport

At the source database, set the following initialization parameters to configure redo
transport services to transmit redo data from the source database to the
downstream database:

e LOG ARCHI VE_DEST n - Configure at least one LOG_ARCH VE_DEST n initialization
parameter to transmit redo data to the downstream database. Set the following
attributes of this parameter in the following way:

— SERVI CE - Specify the network service name of the downstream database.

4-21

Chapter 4
Preparing for XStream Out

— ASYNC or SYNC - Specify a redo transport mode.

The advantage of specifying ASYNC is that it results in little or no effect on
the performance of the source database. ASYNC is recommended to avoid
affecting source database performance if the downstream database or
network is performing poorly.

The advantage of specifying SYNC is that redo data is sent to the
downstream database faster than when ASYNC is specified. Also, specifying
SYNC AFFI RMresults in behavior that is similar to MAXI MUMAVAI LABI LI TY
standby protection mode. Note that specifying an ALTER DATABASE STANDBY
DATABASE TO MAXI M ZE AVAI LABI LI TY SQL statement has no effect on an
XStream capture process.

— NOREG STER - Specify this attribute so that the location of the archived redo
log files is not recorded in the downstream database control file.

— VALID FCR - Specify either (ONLI NE_LOGFI LE, PRI MARY_ROLE) or
(ONLI NE_LOGFI LE, ALL_ROLES).

— TEMPLATE - If you are configuring an archived-log downstream capture
process, then specify a directory and format template for archived redo
logs at the downstream database. The TEMPLATE attribute overrides the
LOG_ARCH VE_FORMAT initialization parameter settings at the downstream
database. The TEMPLATE attribute is valid only with remote destinations.
Ensure that the format uses all of the following variables at each source
database: %, %, and % .

Do not specify the TEMPLATE attribute if you are configuring a real-time
downstream capture process.

— DB_UNI QUE_NAME - The unique name of the downstream database. Use the
name specified for the DB_UNI QUE_NAME initialization parameter at the
downstream database.

The following example is a LOG_ARCH VE_DEST_n setting that specifies the
downstream database dbs2 for a real-time downstream capture process:

LOG_ARCH VE_DEST_2=' SERVI CE=DBS2. EXANPLE. COM ASYNC NOREG STER
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE)
DB_UNI QUE_NAME=dbs2'

The following example is a LOG_ARCH VE_DEST_n setting that specifies the
downstream database dbs2 for an archived-log downstream capture process:

LOG_ARCHI VE_DEST_2=' SERVI CE=DBS2. EXAMPLE. COM ASYNC NOREG STER
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE)
TEMPLATE=/ usr/oracl e/l og_f or _dbs1/dbsl_arch_% % % .| og
DB_UNI QUE_NAME=dbs?2'

See "Decide How to Configure XStream Out" for information about the
differences between real-time and archived-log downstream capture.

ORACLE 4-22

ORACLE

Chapter 4
Preparing for XStream Out

Tip:

If you are configuring an archived-log downstream capture process,
then specify a value for the TEMPLATE attribute that keeps log files from a
remote source database separate from local database log files. In
addition, if the downstream database contains log files from multiple
source databases, then the log files from each source database should
be kept separate from each other.

e LOG ARCHI VE_DEST _STATE n - Set this initialization parameter that corresponds
with the LOG_ARCHI VE_DEST_n parameter for the downstream database to ENABLE.

For example, if the LOG_ARCHI VE_DEST 2 initialization parameter is set for the
downstream database, then set the LOG ARCHI VE_DEST_STATE_2 parameter in the
following way:

LOG_ARCHI VE_DEST_STATE_2=ENABLE

* LOG ARCHI VE_CONFI G - Set the DB_CONFI G attribute in this initialization parameter
to include the DB_UNI QUE_NAME of the source database and the downstream
database.

For example, if the DB_UNI QUE_NAME of the source database is dbs1, and the
DB_UNI QUE_NAME of the downstream database is dbs2, then specify the following
parameter:

LOG_ARCHI VE_CONFI G=' DG_CONFI G=(dbs1, dbs2)'

By default, the LOG_ARCH VE_CONFI G parameter enables a database to both send
and receive redo.

¢ See Also:

Oracle Database Reference and Oracle Data Guard Concepts and
Administration for more information about these initialization parameters

At the downstream database, set the DB_CONFI G attribute in the LOG_ARCH VE_CONFI G
initialization parameter to include the DB_UNI QUE_NAME of the source database and
the downstream database.

For example, if the DB_UNI QUE_NAME of the source database is dbs1, and the
DB_UNI QUE_NAME of the downstream database is dbs2, then specify the following
parameter:

LOG_ARCHI VE_CONFI G=' DG_CONFI G=(dbs1, dbs2)"
By default, the LOG_ARCH VE_CONFI G parameter enables a database to both send
and receive redo.

If you reset any initialization parameters while the instance was running at a
database in Step 3 or Step 4, then you might want to reset them in the initialization
parameter file as well, so that the new values are retained when the database is
restarted.

If you did not reset the initialization parameters while the instance was running, but
instead reset them in the initialization parameter file in Step 3 or Step 4, then

4-23

Chapter 4
Preparing for XStream Out

restart the database. The source database must be open when it sends redo log
files to the downstream database, because the global name of the source
database is sent to the downstream database only if the source database is open.

When these steps are complete, you can add standby redo logs files at the
downstream database if you want to configure a real-time downstream capture
process. In this case, see the instructions in "If Required, Add Standby Redo Logs for
Real-Time Downstream Capture".

4.1.2.9 If Required, Add Standby Redo Logs for Real-Time Downstream

Capture

ORACLE

If you decided to configure real-time downstream capture, then add standby redo logs
to the capture database.

See "Decide How to Configure XStream Out" for information about this decision.

The example in this section adds standby redo logs at a downstream database.
Standby redo logs are required to configure a real-time downstream capture process.
In the example, the source database is dbs1. exanpl e. comand the downstream
database is dbs2. exanpl e. com

The steps in this section are required only if you are configuring real-time downstream
capture. If you are configuring archived-log downstream capture, then do not complete
the steps in this section.

To add standby redo logs for real-time downstream capture:

1. Complete the steps in "If Required, Configure Log File Transfer to a Downstream
Database".

2. Atthe downstream database, set the following initialization parameters to
configure archiving of the redo data generated locally:

* Set at least one archive log destination in the LOG_ARCH VE_DEST_n initialization
parameter either to a directory or to the fast recovery area on the computer
system running the downstream database. Set the following attributes of this
parameter in the following way:

— LOCATI ON - Specify either a valid path name for a disk directory or, to use a
fast recovery area, specify USE_DB_RECOVERY_FI LE_DEST. This location is the
local destination for archived redo log files written from the standby redo
logs. Log files from a remote source database should be kept separate
from local database log files. See Oracle Database Backup and Recovery
User’s Guide for information about configuring a fast recovery area.

— VALID_FCR - Specify either (ONLI NE_LOGFI LE, PRI MARY_ROLE) or
(ONLI NE_LOGFI LE, ALL_ROLES).

The following example is a LOG_ARCH VE_DEST_n setting for the locally generated
redo data at the real-time downstream capture database:

LOG _ARCHI VE_DEST_1=" LOCATI ON=/ hone/ arc_dest/l ocal _rl _dbs2
VALI D_FOR=(ONLI NE_LOGFI LE, PRI MARY_ROLE) "

A real-time downstream capture configuration should keep archived standby
redo log files separate from archived online redo log files generated by the
downstream database. Specify ONLI NE_LOGFI LE instead of ALL_LOGFI LES for the
redo log type in the VALI D_FCR attribute to accomplish this.

4-24

Chapter 4
Preparing for XStream Out

You can specify other attributes in the LOG_ARCH VE_DEST_n initialization
parameter if necessary.

e Set the LOG ARCH VE_DEST_STATE n initialization parameter that corresponds with
the LOG_ARCH VE_DEST_n parameter previously set in this step to ENABLE.

For example, if the LOG_ARCH VE_DEST 1 initialization parameter is set, then set
the LOG_ARCH VE_DEST_STATE_1 parameter in the following way:

LOG_ ARCHI VE_DEST_STATE_1=ENABLE

3. Atthe downstream database, set the following initialization parameters to
configure the downstream database to receive redo data from the source
database and write the redo data to the standby redo log at the downstream
database:

e Set at least one archive log destination in the LOG_ARCH VE_DEST n initialization
parameter either to a directory or to the fast recovery area on the computer
system running the downstream database. Set the following attributes of this
parameter in the following way:

— LOCATI ON - Specify either a valid path name for a disk directory or, to use a
fast recovery area, specify USE_DB_RECOVERY_FI LE_DEST. This location is the
local destination for archived redo log files written from the standby redo
logs. Log files from a remote source database should be kept separate
from local database log files. See Oracle Database Backup and Recovery
User’s Guide for information about configuring a fast recovery area.

— VALID_FCR - Specify either (STANDBY_LOGFI LE, PRI MARY_ROLE) or
(STANDBY_LOGFI LE, ALL_ROLES) .

The following example is a LOG_ARCH VE_DEST_n setting for the redo data
received from the source database at the real-time downstream capture
database:

LOG_ARCHI VE_DEST_2=' LOCATI ON=/ home/ ar c_dest / srl _dbs1

VALI D_FOR=(STANDBY_LOGF! LE, PRI MARY_ROLE)"
You can specify other attributes in the LOG_ARCH VE_DEST_n initialization
parameter if necessary.

e Set the LOG ARCH VE_DEST_STATE n initialization parameter that corresponds with
the LOG_ARCH VE_DEST_n parameter previously set in this step to ENABLE.

For example, if the LOG_ARCHI VE_DEST 2 initialization parameter is set for the
downstream database, then set the LOG ARCHI VE_DEST_STATE_2 parameter in the
following way:

LOG_ ARCHI VE_DEST_STATE_2=ENABLE

" See Also:

Oracle Database ReferenceandOracle Data Guard Concepts and
Administrationfor more information about these initialization parameters

4. If you reset any initialization parameters while an instance was running at a
database in Step 2 or Step 3, then you might want to reset them in the relevant
initialization parameter file as well, so that the new values are retained when the
database is restarted.

ORACLE 4-25

ORACLE

Chapter 4
Preparing for XStream Out

If you did not reset the initialization parameters while an instance was running, but
instead reset them in the initialization parameter file in Step 2 or Step 3, then
restart the database. The source database must be open when it sends redo data
to the downstream database, because the global name of the source database is
sent to the downstream database only if the source database is open.

Create the standby redo log files.

Note:

The following steps outline the general procedure for adding standby redo
log files to the downstream database. The specific steps and SQL
statements used to add standby redo log files depend on your environment.
For example, in an Oracle Real Application Clusters (Oracle RAC)
environment, the steps are different. See Oracle Data Guard Concepts and
Administration for detailed instructions about adding standby redo log files
to a database.

a. In SQL*Plus, connect to the source database dbs1. exanpl e. comas an
administrative user.

See Oracle Database Administrator’s Guide for information about connecting
to a database in SQL*Plus.

b. Determine the log file size used on the source database. The standby log file
size must exactly match (or be larger than) the source database log file size.
For example, if the source database log file size is 500 MB, then the standby
log file size must be 500 MB or larger. You can determine the size of the redo
log files at the source database (in bytes) by querying the V$LOG view at the
source database.

For example, query the V$LOG view:
SELECT BYTES FROM V$LOG

c. Determine the number of standby log file groups required on the downstream
database.

The number of standby log file groups must be at least one more than the
number of online log file groups on the source database. For example, if the
source database has two online log file groups, then the downstream
database must have at least three standby log file groups.

You can determine the number of source database online log file groups by
querying the V$LOG view of the source database for a single instance database
or by querying the GV$LOG view for a database cluster.

For example, query the GV$LOG view:
SELECT COUNT(GROUP#) FROM GV$LOG,

d. In SQL*Plus, connect to the downstream database dbs2. exanpl e. comas an
administrative user.

e. Use the SQL statement ALTER DATABASE ADD STANDBY LOGFI LE to add the standby
log file groups to the downstream database.

4-26

Chapter 4
Configuring XStream Out

For example, assume that the source database has two online redo log file
groups and is using a log file size of 500 MB. In this case, use the following
statements to create the appropriate standby log file groups:

ALTER DATABASE ADD STANDBY LOGFI LE GROUP 3
("/oracle/dbs/slog3a.rdo', '/oraclel/dbs/slog3b.rdo') SIZE 500M

ALTER DATABASE ADD STANDBY LOGFI LE GROUP 4
("/oracle/dbs/slog4.rdo', '/oraclel/dbs/slogdb.rdo') SIZE 500M

ALTER DATABASE ADD STANDBY LOGFI LE GROUP 5
("/oracle/dbs/slog5.rdo', '/oraclel/dbs/slog5h.rdo') SIZE 500M

Ensure that the standby log file groups were added successfully by running
the following query:

SELECT GROUP#, THREADH, SEQUENCE#, ARCHI VED, STATUS
FROM V$STANDBY LOG;

You output should be similar to the following:

GROUPH THREAD# SEQUENCE# ARC STATUS

3 0 0 YES UNASSI GNED
4 0 0 YES UNASSI GNED
5 0 0 YES UNASSI GNED

Ensure that log files from the source database are appearing in the location
specified in the LOCATI ON attribute in Step 3. You might need to switch the log
file at the source database to see files in the directory.

When these steps are complete, you are ready to configure a real-time downstream
capture process.

Tip:

You can use Oracle Enterprise Manager Cloud Control to configure real-time
downstream capture. See the Oracle Enterprise Manager Cloud Control online
help for instructions.

4.2 Configuring XStream Out

ORACLE

An outbound server in an XStream Out configuration streams Oracle database
changes to a client application.

The client application attaches to the outbound server using the Oracle Call Interface
(OCI) or Java interface to receive these changes.

Configuring an outbound server involves creating the components that send captured
database changes to the outbound server. It also involves configuring the outbound
server itself, which includes specifying the connect user that the client application will
use to attach to the outbound server.

You can create an outbound server using the following procedures in the
DBMS_XSTREAM ADM package:

The CREATE_OUTBOUND procedure creates an outbound server, a queue, and a
capture process in a single database with one procedure call.

4-27

Chapter 4
Configuring XStream Out

» The ADD OUTBOUND procedure can create an outbound server, or it can add an
outbound server to an existing XStream Out configuration. When you use this
procedure on a database without an existing XStream Out configuration, it only
creates an outbound server. You must create the capture process and queue
separately, and they must exist before you run the ADD_OUTBOUND procedure. You
can configure the capture process on the same database as the outbound server
or on a different database.

In both cases, you must create the client application that communicates with the
outbound server and receives LCRs from the outbound server.

If you require multiple outbound servers, then you can use the CREATE_OUTBOUND
procedure to create the capture process that captures database changes for the first
outbound server. Next, you can run the ADD_OUTBOUND procedure to add additional
outbound servers that receive the same captured changes. The capture process can
reside on the same database as the outbound servers or on a different database.

In addition, there are special considerations when you are configuring XStream Out in
a CDB. This section provides instructions for creating outbound servers in a CDB.

Tip:

In an XStream Out configuration with multiple outbound servers, the best
practice is to create one capture process that captures changes for all of the
outbound servers.

» Configuring an Outbound Server Using CREATE_OUTBOUND
The CREATE_OUTBOUND procedure in the DBVS_XSTREAM ADM package creates a capture
process, queue, and outbound server in a single database.

* Adding an Additional Outbound Server to a Capture Process Stream
XStream Out configurations often require multiple outbound servers that process a
stream of LCRs from a single capture process. You can add an additional
outbound server to a database that already includes at least one outbound server.

* Configuring an Outbound Server Using ADD_OUTBOUND
The ADD_QUTBOUND procedure in the DBVS_XSTREAM ADM package creates an outbound
server.

e Configuring XStream Out in a CDB
When you configure XStream Out in a CDB, you must decide which database
changes will be captured by XStream Out and sent to the client application.
XStream Out can stream all of the database changes for all containers, including
the CDB root and all of the PDBs, application roots, and application PDBs, or
XStream Out can stream the changes from specific containers.

4.2.1 Configuring an Outbound Server Using CREATE_OUTBOUND

ORACLE

The CREATE_QUTBOUND procedure in the DBVS_XSTREAM ADM package creates a capture
process, queue, and outbound server in a single database.

Both the capture process and the outbound server use the queue created by the
procedure. When you run the procedure, you provide the name of the new outbound
server, while the procedure generates a hame for the capture process and queue. If

4-28

ORACLE

Chapter 4
Configuring XStream Out

you want all of the components to run on the same database, then the CREATE_OUTBOUND
procedure is the fastest and easiest way to create an outbound server.

Prerequisites
Before configuring XStream Out, ensure that the following prerequisites are met;

» Complete the tasks described in "Prerequisites for Configuring XStream Out".

Assumptions
This section makes the following assumptions:

e The capture process will be a local capture process, and it will run on the same
database as the outbound server.

The instructions in this section can only set up the local capture and outbound
server on the same database configuration described in "Decide How to Configure
XStream Out".

* The name of the outbound server is xout .

* Data manipulation language (DML) and data definition language (DDL) changes
made to the oe. orders and oe. order _i t ens tables are sent to the outbound server.

DML and DDL changes made to the hr schema are sent to the outbound server.

Figure 4-5 provides an overview of this XStream Out configuration.

4-29

ORACLE

Chapter 4

Configuring XStream Out

Figure 4-5 Sample XStream Out Configuration Created Using

CREATE_OUTBOUND

Oracle Database

Capture DML and DDL Changes to hr Schema, Capture
oe.orders Table, and oe.order_items Table p P
Redo p| Process
Log
Enqueue
LCRs
Record
Changes Queue
hr oe.orders Table
il —I' oe.order_items Table
|
I
Dequeue
LCRs
Outbound
Server
xout

To create an outbound server using the CREATE_OUTBOUND procedure:

1. In SQL*Plus, connect to the database as the XStream administrator.

Receive LCRs
from committed
transactions

Client
Application

See Oracle Database Administrator’s Guide for information about connecting to a

database in SQL*Plus.
2. Run the CREATE_QUTBOUND procedure.

Given the assumptions for this section, run the following CREATE_OUTBOUND

procedure:

DECLARE
tables DBVS_UTI LI TY. UNCL_ARRAY;
schemas DBVS_UTI LI TY. UNCL_ARRAY;

BEG N
tables(1l) := 'oe.orders';
tables(2) :='oe.order_itens';
schemas(1) :="'hr';

DBVS_XSTREAM ADM CREATE_OUTBOUND(

server_name = 'xout',
tabl e_nanes => tables,
schema_nanes => schemas);

END,

/

4-30

Chapter 4
Configuring XStream Out

Running this procedure performs the following actions:

Configures supplemental logging for the oe. or ders and oe. order _i t ems tables
and for all of the tables in the hr schema.

Creates a queue with a system-generated name that is used by the capture
process and the outbound server.

Creates and starts a capture process with a system-generated name with rule
sets that instruct it to capture DML and DDL changes to the oe. or der s table,
the oe. order _i tens table, and the hr schema.

Creates and starts an outbound server named xout with rule sets that instruct
it to send DML and DDL changes to the oe. or der s table, the oe. order _i t ens
table, and the hr schema to the client application.

Sets the current user as the connect user for the outbound server. In this
example, the current user is the XStream administrator. The client application
must connect to the database as the connect user to interact with the
outbound server.

¢ Note:

The server_nane value cannot exceed 30 bytes.

Tip:

To capture and send all database changes to the outbound server, specify
NULL (the default) for the tabl e_nanes and schena_nanes parameters.

3. Create and run the client application that will connect to the outbound server and
receive the LCRs. See Sample XStream Client Application for a sample
application.

4. To add one or more additional outbound servers that receive LCRs from the
capture process created in Step 2, follow the instructions in "Adding an Additional
Outbound Server to a Capture Process Stream".

When you run the client application, the outbound server is started automatically.

" See Also:

ORACLE

Oracle Database PL/SQL Packages and Types Reference

4-31

Chapter 4
Configuring XStream Out

4.2.2 Adding an Additional Outbound Server to a Capture Process

Stream

ORACLE

XStream Out configurations often require multiple outbound servers that process a
stream of LCRs from a single capture process. You can add an additional outbound
server to a database that already includes at least one outbound server.

The additional outbound server uses the same queue as another outbound server to
receive the LCRs from the capture process. When an XStream Out environment
exists, use the ADD_OUTBOUND procedure in the DBVS_XSTREAM ADM package to add another
outbound server to a capture process stream.

Prerequisites

Before completing the steps in this section, configure an XStream Out environment
that includes at least one outbound server. The following sections describe configuring
and XStream Out environment:

* "Configuring an Outbound Server Using CREATE_OUTBOUND"
* "Configuring an Outbound Server Using ADD_OUTBOUND"

Assumptions
This section makes the following assumptions:
* The name of the outbound server is xout 2.

* The queue used by the outbound server is xst r madni n. xst r eam queue.

e DML and DDL changes made to the oe. orders and oe. order _i t ens tables are sent
to the outbound server.

DML and DDL changes made to the hr schema are sent to the outbound server.
* The source database for the database changes is dbl. exanpl e. com

Figure 4-6 provides an overview of this XStream Out configuration.

4-32

Chapter 4
Configuring XStream Out

Figure 4-6 Sample XStream Out Configuration With an Additional Outbound Server

Oracle Database

Capture DML and DDL Changes to hr Schema,

oe.orders Table, and oe.order_items Table Capture

Process

Redo
Log

Record
Changes

>

Enqueue
LCRs

Queue

hr
Schema

ORACLE

xstrmadmin.xstream_queue

oe.order_items Table

Ij.orders Table
e

Dequeue
LCRs

Dequeue
LCRs

Outbound
Server
xout

Outbound
Server
xout2

Receive LCRs
from committed
transactions

Receive LCRs
from committed
transactions

Client
Application

Client
Application

To add another outbound server to a capture process stream using the
ADD_QOUTBOUND procedure:

1.

In SQL*Plus, connect to the database that will run the additional outbound server
as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

Determine the name of the queue used by an existing outbound server that
receives LCRs from the capture process.

Run the query in "Displaying General Information About an Outbound Server" to
determine the owner and name of the queue. This query also shows the name of
the capture process and the source database name.

Run the ADD_OUTBOUND procedure.
Given the assumptions for this section, run the following ADD_OUTBOUND procedure:

DECLARE
tabl es DBMS_UTI LI TY. UNCL_ARRAY;
schemas DBVS_UTI LI TY. UNCL_ARRAY;

BEG N

tabl es(1)
tabl es(2)

'oe.orders';
"oe.order_itens';

4-33

Chapter 4
Configuring XStream Out

schemas(1) :="'hr';
DBVS_XSTREAM ADM ADD_OUTBOUND(
server_nane => 'xout2',
queue_nane => ' xstrmadm n. xstream queue',
sour ce_dat abase => 'dbl. exanple.con,
tabl e_nanes => tables,
schema_nanes => schemas);

END;
/

Running this procedure performs the following actions:

* Creates an outbound server named xout 2. The outbound server has rule sets
that instruct it to send DML and DDL changes to the oe. or der s table, the
oe. order_i t ens table, and the hr schema to the client application. The rules
specify that these changes must have originated at the db1. exanpl e. com
database. The outbound server dequeues LCRs from the queue
xst rmadm n. xstream queue.

e Sets the current user as the connect user for the outbound server. In this
example, the current user is the XStream administrator. The client application
must connect to the database as the connect user to interact with the
outbound server.

¢ Note:

The server_nane value cannot exceed 30 bytes.

Tip:

For the outbound server to receive all of the LCRs sent by the capture
process, specify NULL (the default) for the t abl e_names and schema_nanes
parameters.

4. If a client application does not exist, then create and run the client application that
will connect to the outbound server and receive the LCRs. See Sample XStream
Client Application for a sample application.

When you run the client application, the outbound server is started automatically.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference

ORACLE 4-34

Chapter 4
Configuring XStream Out

4.2.3 Configuring an Outbound Server Using ADD_OUTBOUND

The ADD_QUTBOUND procedure in the DBVMS_XSTREAM ADM package creates an outbound
server.

This procedure does not create the capture process or the queue. In a database
without an existing XStream Out configuration, you must configure these components
manually.

You can use the ADD_OUTBOUND procedure to set up any of the configurations described
in "Decide How to Configure XStream Out". However, if you chose to configure local
capture and outbound server on the same database, then it is usually easier to use the
CREATE_OUTBOUND procedure to configure all of the components simultaneously. See
"Configuring an Outbound Server Using CREATE_OUTBOUND".

This section includes an example that configures downstream capture and the
outbound server in the same database.

Prerequisites
Before configuring XStream Out, ensure that the following prerequisites are met;

» Complete the tasks described in "Prerequisites for Configuring XStream Out".

If you decide to use downstream capture, then you must configure log file transfer
from the source database to a downstream database. See "If Required, Configure
Log File Transfer to a Downstream Database".

If you want to use real-time downstream capture, then you must also add the
required standby redo logs. See "If Required, Add Standby Redo Logs for Real-
Time Downstream Capture”.

The example in this section uses downstream capture. Therefore, log file transfer
must be configured to complete the example.

Assumptions
This section makes the following assumptions:

e The name of the outbound server is xout .
* The queue used by the outbound server is xst r madni n. xst r eam queue.
e The source database is dbl. exanpl e. com

* The capture process and outbound server run on a different database than the
source database. Therefore, downstream capture is configured.

DML and DDL changes made to the oe. orders and oe. or der _i t ens tables are sent
to the outbound server.

DML and DDL changes made to the hr schema are sent to the outbound server.

Figure 4-7 provides an overview of this XStream Out configuration.

ORACLE 4-35

ORACLE

Chapter 4
Configuring XStream Out

Figure 4-7 Sample XStream Out Configuration Created Using
ADD_OUTBOUND

Oracle Database

Record
Changes

Database Objects [m——)| “por

Log

Send Redo
Data

Oracle Database

Capture

LCRs Capture
Process

From Enqueue
Source LCRs

Queue

Dequeue

LCRs
Receive LCRs
from committed

Outbound transactions > Client
Server Application

To create an outbound server using the ADD_OUTBOUND procedure:

1. In SQL*Plus, connect to the database that will run the capture process (the
capture database) as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Create the queue that will be used by the capture process.
For example, run the following procedure:

BEG N
DBNVS_XSTREAM ADM SET_UP_QUEUE(
queue_tabl e => ' xstrmadm n. xstream queue_table',
queue_nanme => 'xstrmadm n. xstream queue');
END,
/

3. Create the database link from the downstream capture database to the source
database.

4-36

ORACLE

Chapter 4
Configuring XStream Out

In this example, create a database link from the downstream capture database to
dbl. exanpl e. com For example, if the user xst r madni n is the XStream administrator
on both databases, then create the following database link:

CREATE DATABASE LI NK dbl. exanpl e. com CONNECT TO xstrmadmi n
| DENTI FI ED BY password USING ' dbl. exanpl e. com ;

See "If Required, Configure Network Connectivity and Database Links".

If you do not create the database link, then you must complete the following steps
in source database:

a. Connect to the source database as the XStream administrator.
b. Run the DBMS_CAPTURE_ADM BU LD procedure. For example:

SET SERVEROQUTPUT ON
DECLARE

scn NUMBER;
BEG N

DBMS_CAPTURE_ADM BUI LD

first_scn => scn);

DBVS_QUTPUT. PUT_LINE(' First SCN Value ="' || scn);
END,
/
First SCN Val ue = 409391

This procedure displays the valid first SCN value for the capture process that
will be created in the downstream capture database. Make a note of the SCN
value returned because you will use it when you create the capture process in
Step 4.

c. Ensure that required supplemental logging is specified for the database
objects at the source database.

For this example, ensure that supplemental logging is configured for the hr
schema, the oe. order s table, and the oe. order _i t ens table in the
dbl. exanpl e. comdatabase.

See "If Required, Configure Supplemental Logging" for instructions about
specifying supplemental logging.

These steps are not required if you create the database link.

While connected to the downstream capture database, create the capture process
and add rules to it.

For example, run the following procedure to create the capture process:

BEG N
DBVS_CAPTURE_ADM CREATE_CAPTURE(
queue_nane => ' xstrmadni n. xstream queue',
capt ure_name => ' xout _capture',
capture_cl ass => 'xstrean);
END;

/

Add rules to the capture process's rule sets to capture changes to the hr schema,
the oe. order s table, and the oe. order _i t ens table.

For example, run the following procedures to create the rules:

BEG N
DBMVS_XSTREAM ADM ADD_SCHEMA RULES(

4-37

ORACLE

Chapter 4
Configuring XStream Out

schema_nane = 'hr',
streams_type => 'capture',
streams_name => 'xout_capture',
queue_nane => 'xstrmadm n. xstream queue',
i ncl ude_dn => TRUE,
i ncl ude_ddl => TRUE,
sour ce_dat abase => ' dbl. exanpl e.coni);
END;
/
BEG N
DBVS_XSTREAM ADM ADD TABLE_RULES(
tabl e_nane => 'oe.orders',
streams_type => 'capture',
streams_name => 'xout_capture',
queue_nane => 'xstrmadm n. xstream queue',
i ncl ude_dn => TRUE,
i ncl ude_ddl => TRUE,
sour ce_dat abase => ' dbl. exanpl e.coni);
END;
/
BEG N
DBVS_XSTREAM ADM ADD TABLE_RULES(
tabl e_nane => 'oe.order_itens',
streams_type => 'capture',
streams_name => 'xout_capture',
queue_nane => 'xstrmadm n. xstream queue',
i ncl ude_dn => TRUE,
i ncl ude_ddl => TRUE,
sour ce_dat abase => ' dbl. exanpl e.coni);
END;

/

Do not start the capture process.
Run the ADD_OUTBOUND procedure.
Given the assumption for this section, run the following ADD_OUTBOUND procedure:

DECLARE
tables DBVS_UTI LI TY. UNCL_ARRAY;
schemas DBMVS_UTI LI TY. UNCL_ARRAY;

BEG N
tables(1l) := 'oe.orders';
tables(2) :='oe.order_itens';
schemas(1) :="'hr';

DBNVS_XSTREAM ADM ADD_OUTBOUND(

server_name = 'xout',
queue_nane => ' xstrmadm n. xstream queue',
source_dat abase => 'dbl. exanpl e.coni,
tabl e_nanes => tables,
schema_nanes => schemas);

END,

/

Running this procedure performs the following actions:

» Creates an outbound server named xout . The outbound server has rule sets
that instruct it to send DML and DDL changes to the oe. or der s table, the
oe. order_i t ens table, and the hr schema to the client application. The rules
specify that these changes must have originated at the db1. exanpl e. com

4-38

Chapter 4
Configuring XStream Out

database. The outbound server dequeues LCRs from the queue
xst rmadm n. xstream queue.

e Sets the current user as the connect user for the outbound server. In this
example, the current user is the XStream administrator. The client application
must connect to the database as the connect user to interact with the
outbound server.

Note:

The server_nane value cannot exceed 30 bytes.

Tip:

For the outbound server to receive all of the LCRs sent by the capture
process, specify NULL (the default) for the t abl e_names and schema_nanes
parameters.

6. Create and run the client application that will connect to the outbound server and
receive the LCRs. See Sample XStream Client Application for a sample
application.

When you run the client application, the outbound server is started automatically.

7. To add one or more additional outbound servers that receive LCRs from the
capture process created in Step 4, follow the instructions in "Adding an Additional
Outbound Server to a Capture Process Stream".

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference

4.2.4 Configuring XStream Out in a CDB

ORACLE

When you configure XStream Out in a CDB, you must decide which database changes
will be captured by XStream Out and sent to the client application. XStream Out can
stream all of the database changes for all containers, including the CDB root and all of
the PDBSs, application roots, and application PDBs, or XStream Out can stream the
changes from specific containers.

In addition, you can configure XStream Out with local capture, or you can configure it
with downstream capture to offload the work required to capture changes from the
source database.

The following restrictions apply when you configure XStream Out in a CDB:

e The capture process and outbound server must be in the CDB root.
e The capture process and outbound server must be in the same CDB.

e Each container in the CDB must be open during XStream Out configuration.

4-39

Chapter 4
Configuring XStream Out

When changes made to an application root are captured, you must ensure that
ALTER PLUGGABLE DATABASE APPLI CATI ON statements are replicated only to other
application roots.

In addition, ensure that you create the XStream administrator properly for a CDB.

Note:

When a container is created using a non-CDB, any XStream Out components
from the non-CDB cannot be used in the container. You must drop and
recreate the XStream Out components, including the capture process and
outbound servers, in the CDB root.

Configuring XStream Out with Local Capture in a CDB
An example illustrates configuring XStream Out with local capture in a CDB.

Configuring XStream Out with Downstream Capture in CDBs

Using downstream capture, the XStream Out components can reside in databases
other than the source database. When you have multiple CDBs, the source
database can be in one CDB, and you can use downstream capture to capture the
changes in another CDB.

Related Topics

XStream Out and a Multitenant Environment

A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as
a separate database. This self-contained collection is called a pluggable database
(PDB). A multitenant container database (CDB) contains PDBs. In a CDB,
XStream Out functions much the same as it does in a non-CDB.

System-Created Rules in a CDB and XStream Out

In a CDB, XStream Out must be configured in the CDB root. Therefore, the
PL/SQL procedures in the DBMS_XSTREAM ADM package that create system-created
rules must be run in the CDB root while connected as a common user.

Configure an XStream Administrator on All Databases
An XStream administrator configures and manages XStream components in an
XStream Out environment.

Oracle Multitenant Administrator's Guide

4.2.4.1 Configuring XStream Out with Local Capture in a CDB

ORACLE

An example illustrates configuring XStream Out with local capture in a CDB.

Prerequisites

Before configuring XStream Out, ensure that all of the containers in the CDB are in
open read/write mode during XStream Out configuration.

Assumptions

This section makes the following assumptions:

The capture process will be a local capture process, and it will run on the same
database as the outbound server.

4-40

Chapter 4
Configuring XStream Out

* The name of the outbound server is xout .

e Data manipulation language (DML) and data definition language (DDL) changes
made to the oe. orders and oe. order _i t ens tables in PDB pdbl. exanpl e. comare sent
to the outbound server.

DML and DDL changes made to the hr schema in the PDB pdbl. exanpl e. comare
sent to the outbound server.

Figure 4-8 provides an overview of this XStream Out configuration.

Figure 4-8 Sample XStream Out Configuration Created Using CREATE_OUTBOUND for a PDB

CDB
Root (CDB$ROQT)
Receive LCRs
Capture | Enqueue | Queue Dequeue Outbound from committed Client
Process | LCRs _ LCRs | S%‘L’Jf" transactions | application

Capture DML
and DDL Changes
from pdb1.example.com

Record
Changes

|

SENE

pdb6.example.com
pdb5.example.com
pdb4.example.com
pdb3.example.com
pdb2.example.com
pdb1.example.com

Seed (PDB$SEED)

[oe.orders Table
il oe.order_items Table

To create an outbound server using the CREATE_OUTBOUND procedure:

1. In SQL*Plus, connect to the root in the CDB (not to the PDB pdb1. exanpl e. com) as
the XStream administrator.

2. Create the outbound server and other XStream components.

a. Ensure that all of the containers in the source CDB are in open read/write
mode.

ORACLE 4-41

ORACLE

b.

C.

Chapter 4
Configuring XStream Out

Run the CREATE_CQUTBOUND procedure.

Given the assumptions for this example, run the following CREATE_QUTBOUND
procedure:

DECLARE
tables DBVS_UTI LI TY. UNCL_ARRAY;
schemas DBMVS_UTI LI TY. UNCL_ARRAY;

BEG N
tables(1l) := 'oe.orders';
tables(2) :='oe.order_itens';
schemas(1) :="'hr';

DBVS_XSTREAM ADM CREATE_OUTBOUND(

server_name = 'xout',
source_dat abase => ' pdbl. exanpl e.con,
tabl e_nanes => tables,
schema_nanes => schemas);

END,

/
" Note:

To capture changes in all containers in a CDB, including the CDB root,
all PDBs, all application roots, and all application PDBs, and send
those changes to the XStream client application, you can omit the

sour ce_dat abase parameter when you run the CREATE_OUTBOUND
procedure.

After the CREATE_OUTBOUND procedure completes successfully, optionally change
the open mode of one or more containers if necessary.

Running the procedure in Step 2.b performs the following actions:

Configures supplemental logging for the oe. orders and oe. order _i t ens tables
and for all of the tables in the hr schema in the pdb1. exanpl e. comPDB.

Creates a queue with a system-generated name that is used by the capture
process and the outbound server.

Creates and starts a capture process with a system-generated name with rule
sets that instruct it to capture DML and DDL changes to the oe. or der s table,
the oe. order _i t ems table, and the hr schema from the pdbl. exanpl e. comPDB.

Creates and starts an outbound server named xout with rule sets that instruct
it to send DML and DDL changes to the oe. or der s table, the oe. order _i t ens
table, and the hr schema to the client application.

Sets the current user as the connect user for the outbound server. In this
example, the current user is the XStream administrator. The client application
must connect to the database as the connect user to interact with the
outbound server.

Note:

The server_nane value cannot exceed 30 bytes.

4-42

Chapter 4
Configuring XStream Out

Tip:

To capture and send all database changes from the pdb1. exanpl e. com
database to the outbound server, specify NULL (the default) for the
tabl e_nanes and schema_nanes parameters.

3. Create and run the client application that will connect to the outbound server in the
root of the CDB and receive the LCRs.

When you run the client application, the outbound server is started automatically.

Related Topics

» Prerequisites for Configuring XStream Out
Preparing for an XStream Out outbound server is similar to preparing for an Oracle
Streams replication environment.

e Sample XStream Client Application
Examples illustrate how to configure the Oracle Database components that are
used by XStream. The examples configure sample client applications that
communicate with an XStream outbound server and inbound server.

4.2.4.2 Configuring XStream Out with Downstream Capture in CDBs

ORACLE

Using downstream capture, the XStream Out components can reside in databases
other than the source database. When you have multiple CDBs, the source database
can be in one CDB, and you can use downstream capture to capture the changes in
another CDB.

Prerequisites
Before configuring XStream Out, the following prerequisites must be met:

e Ensure that all of the containers in the CDB are in open read/write mode during
XStream Out configuration.

e This example uses downstream capture. Therefore, you must configure log file
transfer from the source database to a downstream database.

e If you want to use real-time downstream capture, then you must also add the
required standby redo logs.

Assumptions

This section makes the following assumptions:

* The name of the outbound server is xout .

* The queue used by the outbound server is c##xst r madni n. xst r eam queue.

* The source database is the PDB pdb1. exanpl e. comin the CDB dat a. exanpl e. com
e The capture process runs in the CDB capt ur e. exanpl e. com

e The outbound server runs in the CDB capt ure. exanpl e. com

e DML and DDL changes made to the oe. or ders and oe. or der _i t ens tables from the
PDB pdbl. exanpl e. comare sent to the outbound server.

4-43

Chapter 4
Configuring XStream Out

DML and DDL changes made to the hr schema from the PDB pdb1. exanpl e. com
are sent to the outbound server.

Figure 4-9 provides an overview of this XStream Out configuration.

ORACLE 4-44

Chapter 4

Configuring XStream Out

Figure 4-9 Sample XStream Out Configuration Using Multiple CDBs and Downstream Capture

CDB:
capture.example.com

Root (CDB$ROOT)

Capture | Enqueue
Process | LCRs

Receive LCRs
from committed
transactions

Capture DML
and DDL Changes

from pdb1.example.com

Redo Log from
data.example.com

Queue Dequeue Outbound
— | LCRs Server
> xout
— | Local
Redo Log

Seed (PDB$SEED)

CDB:
data.example.com

—
=2
o

A p

[(B [

pdbe.example.com

&

pdbf.example.com

pdbd.example.com

pdbc.example.com

pdbb.example.com
pdba.example.com

Root (CDB$ROOT)

Redo ([1Record
Log J«—|/Changes
=3

(4

——t..:g

Seed (PDB$SEED)

pdb3.example.com

pdb2.example.com
pdb1.example.com

b

pdb6.example.com

pdb5.example.com
pdb4.example.com

iZihrSchema [oe.orders Table

il oe.order_items Table

ORACLE

Client
Application

4-45

ORACLE

Chapter 4
Configuring XStream Out

To configure XStream Out with downstream capture in CDBs:

1.

In SQL*Plus, connect to the root of the downstream capture CDB as the XStream
administrator.

In this example. the downstream capture CDB is capt ur e. exanpl e. com
Create the queue that will be used by the capture process.
For example, run the following procedure:

BEG N
DBMS_XSTREAM ADM SET_UP_QUEUE(
queue_tabl e => ' c##xstrmdni n. xstream queue_tabl e',
queue_name => 'c##xstrmadni n. xstream queue');
END;
/

Optionally, create the database link from the root in the downstream capture CDB
to the root in the source CDB.

In this example, create a database link from the root in capt ur e. exanpl e. comto the
root in dat a. exanpl e. com For example, if the user c##xst r madni n is the XStream
administrator on both databases, then create the following database link:

CREATE DATABASE LI NK dat a. exanpl e. com CONNECT TO c##xst r madni n
| DENTI FI ED BY password USING ' dat a. exanpl e. coni ;

Ensure that all of the containers in the source CDB are in open read/write mode.

If you did not create the database link in Step 3, then you must complete additional
steps in the root of the source CDB.

These steps are not required if you created the database link in Step 3.

Run the BU LD procedure and ensure that required supplemental logging is
specified for the database objects in the source CDB:

a. Connect to the root in the source CDB as the XStream administrator.
b. Run the DBVS_CAPTURE_ADM BU LD procedure. For example:

SET SERVERQUTPUT ON
DECLARE

scn NUMBER,
BEG N

DBVB_CAPTURE_ADM BUI LD

first_scn => scn);

DBMS_QUTPUT. PUT_LINE(' First SCN Value ="' || scn);
END;
/
First SCN Val ue = 409391

This procedure displays the valid first SCN value for the capture process that
will be created in the root in the capt ur e. exanpl e. comCDB. Make a note of the
SCN value returned because you will use it when you create the capture
process in Step 6.

c. Ensure that required supplemental logging is specified for the database
objects in the source CDB.

For this example, ensure that supplemental logging is configured for the hr
schema, the oe. or der s table, and the oe. order _i t ens table in the
pdbl. exanpl e. comPDB.

4-46

ORACLE

Chapter 4
Configuring XStream Out

While connected to the root in the downstream capture CDB, create the capture
process.

For example, run the following procedure to create the capture process while
connected as the XStream administrator to capt ur e. exanpl e. com

BEG N
DBVS_CAPTURE_ADM CREATE_CAPTURE(

queue_nane => ' c##xst rmadm n. xstream queue',
capt ure_nane => 'real _tinme_capture',

rul e_set _name => NULL,

start_scn => NULL,

sour ce_dat abase => NULL,

use_database |ink => TRUE,

first_scn => NULL,

logfile_assignment => "inplicit",
source_root_name => 'data.exanple.con,
capture_cl ass => 'xstrean);

END;

/

If you did not create a database link in Step 3, then specify the SCN value
returned by the DBVS_CAPTURE_ADM BUI LD procedure for the first_scn parameter.
Do not start the capture process.

After the capture process is created, optionally change the open mode of one or
more PDBs if necessary.

Run the ADD_OUTBOUND procedure.
Given the assumption for this section, run the following ADD_OUTBOUND procedure:

DECLARE
tables DBMS_UTI LI TY. UNCL_ARRAY;
schemas DBMS_UTI LI TY. UNCL_ARRAY;

BEG N
tables(1l) := 'oe.orders';
tables(2) := 'oe.order_itens';
schemas(1) :="'hr';
DBNVS_XSTREAM ADM ADD_OUTBOUND(
server_name = ‘'xout',
queue_nane => ' c##xstrmadm n. xstream queue',
sour ce_dat abase => 'pdbl. exanpl e. coni,
tabl e_nanes => tables,
schema_nanes => schenss,
source_r oot _nane => 'data. exanpl e. coni,
source_contai ner_nane => 'pdbl');
END,

/

Running this procedure performs the following actions:

* Creates an outbound server named xout . The outbound server has rule sets
that instruct it to send DML and DDL changes to the oe. or der s table, the
oe. order_i t ens table, and the hr schema to the client application. The rules
specify that these changes must have originated at the PDB pdb1. exanpl e. com
in the CDB dat a. exanpl e. com The outbound server dequeues LCRs from the
queue c##xst rmadni n. xst ream queue.

e Sets the current user as the connect _user for the outbound server. In this
example, the current _user is the XStream administrator. The client application

4-47

ORACLE

Chapter 4
Configuring XStream Out

must connect to the database as the connect _user to interact with the
outbound server.

Note:

The server_nane value cannot exceed 30 bytes.

9. Create and run the client application that will connect to the outbound server and
receive the LCRs.

When you run the client application, the outbound server is started automatically at the
downstream capture CDB.

Related Topics

* Prerequisites for Configuring XStream Out

Preparing for an XStream Out outbound server is similar to preparing for an Oracle
Streams replication environment.

4-48

Managing XStream Out

You can manage XStream Out components and their rules.

e About Managing XStream Out
You can modify the database components that are part of an XStream Out
configuration, such as outbound servers, capture processes, and rules.

e Managing an Outbound Server
You can manage an outbound server by starting it, stopping it, setting an apply
parameter for it, and changing its connect user.

e Managing the Capture Process for an Outbound Server
You can manage the capture process for an outbound server. The capture
process captures database changes and sends them to an outbound server.

e Managing Rules for an XStream Out Configuration
You can manage the rules for an XStream Out configuration. Rules control which
database changes are streamed to the outbound server and which database
changes the outbound server streams to the client application.

e Managing Declarative Rule-Based Transformations
Declarative rule-based transformations cover a set of common transformation
scenarios for row LCRs.

e Dropping Components in an XStream Out Configuration
To drop an outbound server, use the DROP_OUTBOUND procedure in the
DBMS_XSTREAM ADM package.

e Removing an XStream Out Configuration
You run the REMOVE_XSTREAM CONFI GURATI ON procedure in the DBVS_XSTREAM ADM
package to remove an XStream Out configuration in a multitenant container
database (CDB) or non-CDB.

5.1 About Managing XStream Out

ORACLE

You can modify the database components that are part of an XStream Out
configuration, such as outbound servers, capture processes, and rules.

The main interface for managing XStream Out database components is PL/SQL.
Specifically, use the following Oracle supplied PL/SQL packages to manage XStream
Out:

+ DBVB_XSTREAM ADM

The DBVS_XSTREAM ADM package is the main package for managing XStream Out.
This package includes subprograms that enable you to configure, modify, or drop
outbound servers. This package also enables you modify the rules used by
capture processes and outbound servers.

5-1

Chapter 5
Managing an Outbound Server

¢ Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about this package

DBMVS_XSTREAM AUTH

The DBVS_XSTREAM AUTH package enables you to configure and modify XStream
administrators.

¢ See Also:

"Configure an XStream Administrator on All Databases" for information
about using this package to create an XStream administrator

— Oracle Database PL/SQL Packages and Types Reference for detailed
information about this package

DBMS_APPLY ADM
The DBVS_APPLY_ADMpackage enables you modify outbound servers.

" See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about this package

DBMS_CAPTURE_ADM

The DBVS_CAPTURE_ADM package enables you configure and modify capture
processes.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about this package

5.2 Managing an Outbound Server

You can manage an outbound server by starting it, stopping it, setting an apply
parameter for it, and changing its connect user.

ORACLE

Starting an Outbound Server

A outbound server must be enabled for it to send logical change records (LCRS) to
an XStream client application. You run the START_OUTBOUND procedure in the
DBMS_QUTBOUND _ADM package to start an existing outbound server.

5-2

Chapter 5
Managing an Outbound Server

e Stopping an Outbound Server
You run the STOP_SERVER procedure in the DBMS_XSTREAM ADM package to stop an
existing outbound server. You might stop an outbound server when you are
troubleshooting a problem in an XStream configuration.

e Setting an Apply Parameter for an Outbound Server
You set an apply parameter for an outbound server using the SET_PARAMETER
procedure in the DBVMS_XSTREAM ADM package. Apply parameters control the way an
outbound server operates.

e Changing the Connect User for an Outbound Server
A client application connects to an outbound server as the connect user. You can
change the connect user for an outbound server using the ALTER_OUTBOUND
procedure in the DBVS_XSTREAM ADM package.

5.2.1 Starting an Outbound Server

ORACLE

A outbound server must be enabled for it to send logical change records (LCRS) to an
XStream client application. You run the START_CUTBOUND procedure in the
DBMS_QUTBOUND_ADM package to start an existing outbound server.

To start an outbound server:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

2. Run the START_OUTBOUND procedure in the DBVS_XSTREAM ADM package, and specify
the outbound server for the server _name parameter.

The following example starts an outbound server named xout .

Example 5-1 Starting an Outbound Server Named xout

BEG N
DBVS_XSTREAM ADM START OUTBOUND(
server_nanme => 'xout');

END,
/
" Note:
When an XStream client application attaches to an outbound server, it starts
the outbound server and the outbound server's capture process automatically if
either of these components are disabled.
" See Also:
The Oracle Enterprise Manager Cloud Control online help for instructions about
starting an apply process or an outbound server with Oracle Enterprise
Manager Cloud Control

5-3

Chapter 5
Managing an Outbound Server

5.2.2 Stopping an Outbound Server

You run the STOP_SERVER procedure in the DBMS_XSTREAM ADM package to stop an existing
outbound server. You might stop an outbound server when you are troubleshooting a
problem in an XStream configuration.

To stop an outbound server:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the STOP_SERVER procedure in the DBMS_XSTREAM ADM package, and specify the
outbound server for the server _nane parameter.

The following example stops an outbound server named xout .

Example 5-2 Stopping an Outbound Server Named xout

BEG N
DBVB_XSTREAM ADM STOP_QUTBOUND
server_nane => 'xout');
END;
/

See Also:

The Oracle Enterprise Manager Cloud Control online help for instructions about
stopping an apply process or an outbound server with Oracle Enterprise
Manager Cloud Control

5.2.3 Setting an Apply Parameter for an Outbound Server

ORACLE

You set an apply parameter for an outbound server using the SET_PARAMETER procedure
in the DBVS_XSTREAM ADM package. Apply parameters control the way an outbound
server operates.

To set an outbound server parameter:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the SET_PARAMETER procedure in the DBVS_XSTREAM ADM package.

Example 5-3 Setting an Outbound Server Parameter

The following example sets the di sabl e_on_error parameter for an outbound server
named xout to N.

BEG N
DBMS_XSTREAM ADM SET_PARAMETER(
streams_nanme => 'xout',
streans_type => "apply',

5-4

Chapter 5
Managing an Outbound Server

par amet er => 'disable_on_error',
val ue = 'N);

END;

/

Example 5-4 Setting an Outbound Server Parameter to Its Default Value

If the val ue parameter is set to NULL or is not specified, then the parameter is set to its
default value. The following example sets the MAX_SGA_SI ZE apply parameter to NULL:

BEG N
DBMS_XSTREAM ADM SET_PARAMETER(
streams_name => 'xout',
streans_type => "apply',

par amet er => 'max_sga_si ze',
val ue => NULL);
END;
/
< Note:
e The value parameter is always entered as a VARCHAR2 value, even if the
parameter value is a number.
e If the val ue parameter is set to NULL or is not specified, then the parameter
is set to its default value.
¢ See Also:
e The Oracle Enterprise Manager Cloud Control online help for instructions
about setting an apply parameter with Oracle Enterprise Manager Cloud
Control
e Oracle Database PL/SQL Packages and Types Reference for information
about apply parameters

5.2.4 Changing the Connect User for an Outbound Server

ORACLE

A client application connects to an outbound server as the connect user. You can
change the connect user for an outbound server using the ALTER_OUTBOUND procedure in
the DBMS_XSTREAM ADM package.

The connect user is the user who can attach to the outbound server to retrieve the
LCR stream. The client application must attach to the outbound server as the connect
user.

You can change the connect _user when a client application must connect to an
outbound server as a different user. Ensure that the connect user is granted the
required privileges.

5-5

Chapter 5
Managing the Capture Process for an Outbound Server

Note:

The default connect _user is the user that configured the outbound server. If you
want to run the client application as a different user, follow the steps outlined
below.

To change the connect_user for an outbound server:

1. Connect to the outbound server database as the XStream administrator.

The XStream administrator must be granted the DBA role to change the connect
user for an outbound server.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the ALTER OUTBOUND procedure, and specify the following parameters:
e server_nane - Specify the name of the outbound server.
e connect _user - Specify the new connect user.

Example 5-5 Changing the Connect User for an Outbound Server

To change the connect user to hr for an outbound server named xout , run the following
procedure:

BEG N
DBVS_XSTREAM ADM ALTER OUTBOUND(
server_nane => 'xout',
connect _user => "hr');
END;
/

" See Also:

e "Privileges Required by the Connect User for an Outbound Server"

e Oracle Database PL/SQL Packages and Types Reference

5.3 Managing the Capture Process for an Outbound Server

ORACLE

You can manage the capture process for an outbound server. The capture process
captures database changes and sends them to an outbound server.

e Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture
Process
In some XStream Out configurations, you can use the DBMS_XSTREAM ADM package
to manage the capture process that captures changes for an outbound server.

e Starting a Capture Process
A capture process must be enabled for it to capture database changes and send
the changes to an XStream outbound server. You run the START_CAPTURE procedure
in the DBVS_CAPTURE_ADM package to start an existing capture process.

5-6

Chapter 5
Managing the Capture Process for an Outbound Server

* Stopping a Capture Process
You run the STOP_CAPTURE procedure in the DBVS_CAPTURE_ADM package to stop an
existing capture process. You might stop a capture process when you are
troubleshooting a problem in an XStream configuration.

e Setting a Capture Process Parameter
Capture process parameters control the way a capture process operates. You set
a capture process parameter using the SET_PARAMETER procedure in the
DBMS_CAPTURE_ADM package.

e Changing the Capture User of an Outbound Server's Capture Process
A capture user is the user in whose security domain a capture process captures
changes from the redo log.

e Changing the Start SCN or Start Time of an Outbound Server's Capture Process
You can change the start system change number (SCN) or start time for a capture
process that captures changes for an outbound server using the ALTER_OUTBOUND
procedure in the DBVS_XSTREAM ADM package.

e Setting the First SCN for a Capture Process
You can set the first system change number (SCN) for an existing capture
process. The first SCN is the SCN in the redo log from which a capture process
can capture changes.

5.3.1 Checking Whether the DBMS_XSTREAM_ADM Package Can
Manage a Capture Process

ORACLE

In some XStream Out configurations, you can use the DBMS_XSTREAM ADM package to
manage the capture process that captures changes for an outbound server.

Even when you cannot use the DBMS_XSTREAM ADM package, you can always use the
DBMVS_CAPTURE_ADM package to manage the capture process.

The DBVS_XSTREAM ADM package can manage an outbound server's capture process if
either of the following conditions are met:

* The capture process was created by the CREATE_OUTBOUND procedure in the
DBMS_XSTREAM ADM package.

* The queue used by the capture process was created by the CREATE_OUTBOUND
procedure.

If either of these conditions are met, then the DBMS_XSTREAM ADM package can manage
an outbound server's capture process in the following ways:

* Add rules to and remove rules from the capture process's rule sets
» Change the capture user for the capture process

e Set the start system change number (SCN) or start time

« Drop the capture process

The DBVS_CAPTURE_ADM package can manage a capture process in the following ways:

e Start and stop the capture process

» Alter the capture process, which includes changing the capture process's rule sets,
capture user, first SCN, start SCN, and start time

« Set capture process parameters

5-7

Chapter 5
Managing the Capture Process for an Outbound Server

Drop the capture process

To check whether an outbound server's capture process can be managed by the
DBMS_XSTREAM ADM package:

1.

Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

Run the following query:

COLUWN SERVER NAME HEADI NG ' Qut bound Server Nanme' FORMAT A30
COLUWN CAPTURE_NAME HEADI NG ' Capture Process Name' FORMAT A30

SELECT SERVER NAME,
CAPTURE_NAME
FROM ALL_XSTREAM OUTBOUND,

Your output looks similar to the following:

Qut bound Server Nane Capture Process Nanme

If the Capt ure Process Nane for an outbound server is non-NULL, then the
DBMS_XSTREAM ADM package can manage the capture process. In this case, you can
also manage the capture process using the DBM5_CAPTURE_ADMpackage. However, it
is usually better to manage the capture process for an outbound server using the
DBMS_XSTREAM ADM package when it is possible.

If the Capt ure Process Name for an outbound server is NULL, then the
DBMS_XSTREAM ADMpackage cannot manage the capture process. In this case, you
must manage the capture process using the DBVS_CAPTURE_ADM package.

" See Also:

e "Managing Rules for an XStream Out Configuration”
e "Changing the Capture User of an Outbound Server's Capture Process"
e Oracle Database Reference

e Oracle Database PL/SQL Packages and Types Reference

5.3.2 Starting a Capture Process

ORACLE

A capture process must be enabled for it to capture database changes and send the

changes to an XStream outbound server. You run the START_CAPTURE procedure in the
DBMS_CAPTURE_ADMpackage to start an existing capture process.

1.

To start a capture process:

Connect to the capture process database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

5-8

Chapter 5
Managing the Capture Process for an Outbound Server

2. Run the START_CAPTURE procedure in the DBVS_CAPTURE_ADM package, and specify the
capture process for the capt ure_nanme parameter.

The following example starts a capture process named xst ream capt ure.

Example 5-6 Starting a Capture Process Named xstream_capture

BEG N
DBMS_CAPTURE_ADM START CAPTURE(
capture_nanme => 'xstreamcapture');

END;
/
" Note:
When an XStream client application attaches to an outbound server, it starts
the outbound server's capture process automatically if the capture process is
disabled.
¢ See Also:
The Oracle Enterprise Manager Cloud Control online help for instructions about
starting a capture process with Oracle Enterprise Manager Cloud Control

5.3.3 Stopping a Capture Process

You run the STOP_CAPTURE procedure in the DBVS_CAPTURE_ADM package to stop an
existing capture process. You might stop a capture process when you are
troubleshooting a problem in an XStream configuration.

To stop a capture process:

1. Connect to the capture process database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package, and specify the
capture process for the capt ure_nanme parameter.

The following example starts a capture process named xst r eam capt ure.

Example 5-7 Stopping a Capture Process Named xstream_capture

BEG N
DBMS_CAPTURE_ADM STOP_CAPTURE(
capture_name => 'xstream capture');
END;
/

ORACLE 5-9

Chapter 5
Managing the Capture Process for an Outbound Server

¢ See Also:

The Oracle Enterprise Manager Cloud Control online help for instructions about
stopping a capture process with Oracle Enterprise Manager Cloud Control

5.3.4 Setting a Capture Process Parameter

Capture process parameters control the way a capture process operates. You set a
capture process parameter using the SET_PARAMETER procedure in the DBMS_CAPTURE_ADM
package.

To set a capture process parameter:

1. Connect to the capture process database as the XStream administrator.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

2. Run the SET_PARAMETER procedure in the DBMS_CAPTURE_ADM package.

The following example sets the paral | el i smparameter for a capture process named
xstream capt ure to 1 from the default value of 0. The parallelism parameter controls the
number of processes that concurrently mine the redo log for changes. It is a good idea
to monitor the effect of increasing the parallelism for the capture process since
additional processes are started.

Example 5-8 Setting a Capture Process Parameter

BEG N
DBVS_CAPTURE_ADM SET_PARAMETER(
capture_name => 'xstreamcapture',

par anet er => 'parallelisn,
val ue ='1");

END;

/
¢ Note:

e Setting the parallelism parameter automatically stops and restarts a
capture process.

e The value parameter is always entered as a VARCHAR? value, even if the
parameter value is a number.

e If the value parameter is set to NULL or is not specified, then the parameter
is set to its default value.

ORACLE 5-10

Chapter 5
Managing the Capture Process for an Outbound Server

¢ See Also:

e The Oracle Enterprise Manager Cloud Control online help for instructions
about setting a capture process parameter with Oracle Enterprise Manager
Cloud Control

e Oracle Database PL/SQL Packages and Types Reference for information
about capture process parameters

5.3.5 Changing the Capture User of an Outbound Server's Capture

Process

ORACLE

A capture user is the user in whose security domain a capture process captures
changes from the redo log.

You can change the capture user for a capture process that captures changes for an
outbound server using the ALTER_OUTBOUND procedure in the DBMS_XSTREAM ADM package.

You can change the capture user when the capture process must capture changes in
a different security domain. Only a user granted DBA role can change the capture user
for a capture process. Ensure that the capture user is granted the required privileges.
When you change the capture user, the ALTER_ OUTBOUND procedure grants the new
capture user enqueue privilege on the queue used by the capture process and
configures the user as a secure queue user.

Note:

If Oracle Database Vault is installed, then the user who changes the capture
user must be granted the BECOME USER system privilege. Granting this privilege to
the user is not required if Oracle Database Vault is not installed. You can
revoke the BECOVE USER system privilege from the user after capture user is
changed, if necessary.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the privileges required by a capture user

To change the capture user of the capture process for an outbound server:

1. Determine whether the DBM5_XSTREAM ADM package can manage the capture
process. See "Checking Whether the DBMS_XSTREAM_ADM Package Can
Manage a Capture Process".

Based on the check, follow the appropriate instructions:

e If the capture process can be managed using the DBVMS_XSTREAM ADM package,
then proceed to Step 2.

5-11

Chapter 5
Managing the Capture Process for an Outhound Server

» If the capture process cannot be managed using the DBVS_XSTREAM ADM
package, then follow the instructions in Oracle Streams Concepts and
Administration.

2. Connect to the outbound server database as the XStream administrator.

To change the capture user, the user who invokes the ALTER QUTBOUND procedure
must be granted DBA role. Only the SYS user can set the capture user to SYS.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

3. Run the ALTER OUTBOUND procedure, and specify the following parameters:
* server_nane - Specify the name of the outbound server.
e capture_user - Specify the new capture user.

Example 5-9 Changing the Capture User of the Capture Process for an
Outbound Server

To change the capture user to hqg_adni n for an outbound server named xout , run the
following procedure:

BEG N
DBVS_XSTREAM ADM ALTER_QUTBOUND(
server_name =>'xout',
capture_user => "hg_admin');
END;
/

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference

5.3.6 Changing the Start SCN or Start Time of an Outbound Server's
Capture Process

You can change the start system change number (SCN) or start time for a capture
process that captures changes for an outbound server using the ALTER_ OQUTBOUND
procedure in the DBVS_XSTREAM ADM package.

The start SCN is the SCN from which a capture process begins to capture changes.
The start time is the time from which a capture process begins to capture changes.
When you reset a start SCN or start time for a capture process, ensure that the
required redo log files are available to the capture process.

Typically, you reset the start SCN or start time for a capture process if point-in-time
recovery was performed on one of the destination databases that receive changes
from the capture process.

ORACLE 5-12

Chapter 5
Managing the Capture Process for an Outbound Server

Note:

e Thestart_scnandstart_time parameters in the ALTER_ QUTBOUND procedure
are mutually exclusive.

e You do not need to set the start SCN for a capture process after a normal
restart of the database.

Changing the Start SCN of an Outbound Server's Capture Process
You can change the start SCN of the capture process for an outbound server.

Changing the Start Time of an Outbound Server's Capture Process
You can change the start time of the capture process for an outbound server.

5.3.6.1 Changing the Start SCN of an Outbound Server's Capture Process

You can change the start SCN of the capture process for an outbound server.

ORACLE

To change the start SCN for a capture process:

1.

Determine whether the DBVM5_XSTREAM ADM package can manage the capture
process. See "Checking Whether the DBMS_XSTREAM_ADM Package Can
Manage a Capture Process".

Based on the check, follow the appropriate instructions:

e If the capture process can be managed using the DBMS_XSTREAM ADM package,
then proceed to Step 2.

» If the capture process cannot be managed using the DBVS_XSTREAM ADM
package, then follow the instructions in Oracle Streams Concepts and
Administration.

Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

Check the first SCN of the capture process:

COLUMN CAPTURE_PROCESS HEADI NG ' Capture Process Nane' FORMAT A30
COLUWN FI RST_SCN HEADI NG ' First SCN FORMAT 99999999999999

SELECT CAPTURE_NAME, FI RST_SCN FROM ALL_CAPTURE;

CAPTURE_NAME First SCN

CAP$_XOUT_1 604426

When you reset the start SCN, the specified start SCN must be equal to or greater
than the first SCN for the capture process.

Run the ALTER_OQUTBOUND procedure, and specify the following parameters:
* server_nane - Specify the name of the outbound server.

e start_scn - Specify the SCN from which the capture process begins to capture
changes.

5-13

Chapter 5
Managing the Capture Process for an Outbound Server

If the capture process is enabled, then the ALTER_OUTBOUND procedure automatically
stops and restarts the capture process when the start _scn parameter is non-NULL.

If the capture process is disabled, then the ALTER OUTBOUND procedure automatically
starts the capture process when the start_scn parameter is non-NULL.

Example 5-10 Setting the Start SCN of the Capture Process for an Outbound
Server

Run the following procedure to set the start SCN to 650000 for the capture process
used by the xout outbound server:

BEG N
DBMS_XSTREAM ADM ALTER_OUTBOUND
server_nanme => 'xout',
start_scn => 650000) ;
END,
/

" See Also:

e Oracle Database PL/SQL Packages and Types Reference

e "SCN Values Related to a Capture Process"

5.3.6.2 Changing the Start Time of an Outbound Server's Capture Process

ORACLE

You can change the start time of the capture process for an outbound server.

To change the start time for a capture process:

1. Determine whether the DBM5_XSTREAM ADM package can manage the capture
process. See "Checking Whether the DBMS_XSTREAM_ADM Package Can
Manage a Capture Process".

Based on the check, follow the appropriate instructions:

e If the capture process can be managed using the DBMS_XSTREAM ADM package,
then proceed to Step 2.

» If the capture process cannot be managed using the DBVMS_XSTREAM ADM
package, then follow the instructions in Oracle Streams Concepts and
Administration.

2. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

3. Check the time that corresponds with the first SCN of the capture process:

COLUWN CAPTURE_PROCESS HEADI NG ' Capt ure Process Nane' FORMAT A30
COLUWN FI RST_SCN HEADI NG ' First SCN FORVAT A40

SELECT CAPTURE NAME, SCN_TO TI MESTAMP(FIRST SCN) FI RST_SCN FROM ALL_CAPTURE;
CAPTURE_NAME First SON

CAP$_XQUT_1 05- MAY-10 08.11.17.000000000 AM

5-14

Chapter 5
Managing the Capture Process for an Outbound Server

When you reset the start time, the specified start time must be greater than or
equal to the time that corresponds with the first SCN for the capture process.

4. Run the ALTER OUTBOUND procedure, and specify the following parameters:
e server_nane - Specify the name of the outbound server.

e start_tinme - Specify the time from which the capture process begins to capture
changes.

If the capture process is enabled, then the ALTER QUTBOUND procedure automatically
stops and restarts the capture process when the start _ti ne parameter is non-NULL.

If the capture process is disabled, then the ALTER QUTBOUND procedure automatically
starts the capture process when the start _ti me parameter is non-NULL.

The following examples set the start _ti ne parameter for the capture process that
captures changes for an outbound server named xout .

Example 5-11 Set the Start Time to a Specific Time

Run the following procedure to set the start time to 05- MAY- 10 11.11.17 AMfor the
capture process used by the xout outbound server:

BEG N
DBMS_XSTREAM ADM ALTER QUTBOUND(
server_nanme => 'xout',
start_time =>'05-MAY-10 11.11.17 AM);
END;
/

Example 5-12 Set the Start Time Using the NUMTODSINTERVAL SQL Function

Run the following procedure to set the start time to four hours earlier than the current
time for the capture process used by the xout outbound server:

DECLARE
ts TI MESTAWP,
BEG N
ts := SYSTI MESTAMP - NUMTODSI NTERVAL(4, 'HOUR);
DBVS_XSTREAM ADM ALTER OUTBOUND(
server_nanme => 'xout',
start_time =>ts);
END;
/

" See Also:

e Oracle Database PL/SQL Packages and Types Reference

e "SCN Values Related to a Capture Process"

5.3.7 Setting the First SCN for a Capture Process

ORACLE

You can set the first system change number (SCN) for an existing capture process.
The first SCN is the SCN in the redo log from which a capture process can capture
changes.

The specified first SCN must meet the following requirements:

5-15

ORACLE

Chapter 5
Managing the Capture Process for an Outhound Server

* It must be greater than the current first SCN for the capture process.

* It must be less than or equal to the current applied SCN for the capture process.
However, this requirement does not apply if the current applied SCN for the
capture process is zero.

* It must be less than or equal to the required checkpoint SCN for the capture
process.

You can determine the current first SCN, applied SCN, and required checkpoint SCN
for each capture process in a database using the following query:

SELECT CAPTURE_NAME, FIRST SCN, APPLIED SCN, REQUI RED CHECKPOINT_SCN FROM
ALL_CAPTURE;

When you reset a first SCN for a capture process, information below the new first SCN
setting is purged from the LogMiner data dictionary for the capture process
automatically. Therefore, after the first SCN is reset for a capture process, the start
SCN for the capture process cannot be set lower than the new first SCN. Also, redo
log files that contain information before the new first SCN setting will never be needed
by the capture process.

You set the first SCN for a capture process using the ALTER CAPTURE procedure in the
DBMS_CAPTURE_ADM package.

To set the first SCN for a capture process:

1. Connect to the capture process database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the ALTER CAPTURE procedure in the DBVMS_CAPTURE _ADMpackage, and specify the
new first SCN in the first_scn parameter.

The following example sets the first SCN to 351232 for the xst r eam capt ur e capture
process.

Example 5-13 Setting the First SCN for a Capture Process

BEG N
DBVS_CAPTURE_ADM ALTER CAPTURE(
capture_name => 'xstreamcapture',
first_scn => 351232);
END;
/

5-16

Chapter 5
Managing Rules for an XStream Out Configuration

Note:

e If the specified first SCN is higher than the current start SCN for the capture
process, then the start SCN is set automatically to the new value of the first
SCN.

* If you must capture changes in the redo log from a point in time in the past,
then you can create a capture process and specify a first SCN that
corresponds to a previous data dictionary build in the redo log. The BUI LD
procedure in the DBVS_CAPTURE_ADM package performs a data dictionary build
in the redo log.

e You can query the DBA LOGWR_PURGED_LOG data dictionary view to determine
which redo log files will never be needed by any capture process.

¢ See Also:

"SCN Values Related to a Capture Process"

5.4 Managing Rules for an XStream Out Configuration

You can manage the rules for an XStream Out configuration. Rules control which
database changes are streamed to the outbound server and which database changes
the outbound server streams to the client application.

e Adding Rules to an XStream Out Configuration
You can add schema rules, table rules, and subset rules to an XStream Out
configuration.

e Removing Rules from an XStream Out Configuration
You can remove rules from an XStream Out configuration.

5.4.1 Adding Rules to an XStream Out Configuration

You can add schema rules, table rules, and subset rules to an XStream Out
configuration.

* Adding Schema Rules and Table Rules to an XStream Out Configuration
You can add schema rules and table rules to an XStream Out configuration using
the ALTER_OUTBOUND procedure in the DBMS_XSTREAM ADM package.

e Adding Subset Rules to an Outbound Server's Positive Rule Set
You can add subset rules to an outbound server's positive rule set using the
ADD_SUBSET_QUTBOUND_RULES procedure in the DBMS_XSTREAM ADM package.

* Adding Rules With Custom Conditions to XStream Out Components
Some of the procedures that create rules in the DBVS_XSTREAM ADM package include
an and_condi ti on parameter. This parameter enables you to add conditions to
system-created rules.

ORACLE 5-17

Chapter 5
Managing Rules for an XStream Out Configuration

5.4.1.1 Adding Schema Rules and Table Rules to an XStream Out
Configuration

You can add schema rules and table rules to an XStream Out configuration using the
ALTER_QUTBOUND procedure in the DBMS_XSTREAM ADM package.

The ALTER OUTBOUND procedure adds rules for both data manipulation language (DML)
and data definition language (DDL) changes.

When you follow the instructions in this section, the ALTER OQUTBOUND procedure always
adds rules for the specified schemas and tables to one of the outbound server's rule
sets. If the DBVMS_XSTREAM ADM package can manage the outbound server's capture
process, then the ALTER OUTBOUND procedure also adds rules for the specified schemas
and tables to one of the rule sets used by this capture process.

To determine whether the DBVMS_XSTREAM ADMpackage can manage the outbound
server's capture process, see "Checking Whether the DBMS_XSTREAM_ADM
Package Can Manage a Capture Process". If the DBMS_XSTREAM ADM package cannot
manage the outbound server's capture process, then the ALTER OUTBOUND procedure
adds rules to the outbound server's rule set only. In this case, if rules for same
schemas and tables should be added to the capture process's rule set as well, then
use the ADD_*_RULES procedures in the DBMS_XSTREAM ADM package to add them.

In addition, if the capture process is running on a different database than the outbound
server, then add schema and table rules to the propagation that sends logical change
records (LCRs) to the outbound server's database. Use the ADD * _PROPAGATI ON_RULES
procedures in the DBMS_XSTREAM ADM package to add them.

To add schema rules and table rules to an XStream Out configuration:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the ALTER OUTBOUND procedure, and specify the following parameters:
e server_nane - Specify the name of the outbound server.

e tabl e_nanes - Specify the tables for which to add rules, or specify NULL to add
no table rules.

* schenma_nane - Specify the schemas for which to add rules, or specify NULL to
add no schema rules.

e add - Specify TRUE so that the rules are added. (Rules are removed if you
specify FALSE.)

e inclusion_rul e - Specify TRUE to add rules to the positive rule set of the
outbound server, or specify FALSE to add rules to the negative rule set of the
outbound server. If the DBVMS_XSTREAM ADMpackage can manage the outbound
server's capture process, then rules are also added to this capture process's
rule set.

The following examples add rules to the configuration of an outbound server named
xout .

ORACLE 5-18

Chapter 5
Managing Rules for an XStream Out Configuration

Example 5-14 Adding Rules for the hr Schema, oe.orders Table, and
oe.order_items Table to the Positive Rule Set

BEG N
DBVS_XSTREAM ADM ALTER_OUTBOUND(
server_name => 'xout"',
tabl e_nanes => 'oe.orders, oe.order_itens',
schema_nanes => 'hr',
add => TRUE,
inclusion_rule => TRUE);
END;

/

Example 5-15 Adding Rules for the hr Schema to the Negative Rule Set

BEG N
DBMS_XSTREAM ADM ALTER QUTBOUND(

server_nane => 'xout"',
tabl e_nanes => NULL,
schema_nanmes => 'hr',
add => TRUE,
inclusion_rule => FALSE);

END;

/
¢ See Also:

* "Rules and Rule Sets"
e Oracle Database PL/SQL Packages and Types Reference

e Oracle Streams Concepts and Administration for more information about
managing rules for a capture process

5.4.1.2 Adding Subset Rules to an Outbound Server's Positive Rule Set

ORACLE

You can add subset rules to an outbound server's positive rule set using the
ADD_SUBSET_QUTBOUND_RULES procedure in the DBMS_XSTREAM ADM package.

The ADD_SUBSET_OUTBOUND_RULES procedure only adds rules for DML changes to an
outbound server's positive rule set. It does not add rules for DDL changes, and it does
not add rules to a capture process's rule set.

To add subset rules to an outbound server's positive rule set:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the ADD_SUBSET_OUTBOUND_RULES procedure, and specify the following
parameters:

e server_nane - Specify the name of the outbound server.

* tabl e_nane - Specify the table for which you want to capture and stream a
subset of data.

5-19

ORACLE

Chapter 5
Managing Rules for an XStream Out Configuration

e condition - Specify the subset condition, which is similar to the WHERE clause in
a SQL statement, to stream changes to a subset of rows in the table.

e colum_list - Specify the subset of columns to keep or discard, or specify NULL
to keep all of the columns.

* keep - Specify TRUE to keep the columns listed in the col um_l i st parameter, or
specify FALSE to discard the columns in the col um_| i st parameter.

When col um_l i st is non-NULL and keep is set to TRUE, the procedure creates a
keep columns declarative rule-based transformation for the columns listed in
colum_list.

When col um_| i st is non-NULL and keep is set to FALSE, the procedure creates a
delete column declarative rule-based transformation for each column listed in
colum_list.

If subset rules should also be added to the rule set of a capture process or
propagation that streams row LCRs to the outbound server, then use the
ADD _*_RULES procedures in the DBMS_XSTREAM ADM package to add them.

Example 5-16 Adding Rules That Stream Changes to a Subset of Rows in a
Table

The following procedure creates rules that only evaluate to TRUE for row changes
where the departnent _i d value is 40 in the hr. enpl oyees table:

DECLARE
col s DBVS_UTI LI TY. LNAVE_ARRAY;

BEG N
cols(1) := "enployee_id;
cols(2) :="first_name';
cols(3) :="'last_nane';
cols(4) :="emil";
col s(5) := 'phone_nunmber";
cols(6) := "hire_date';
cols(7) :="job_id";
cols(8) :="'salary';
col s(9) := 'commission_pct';
col s(10) := 'manager_id';
col s(11) := "departnent_id';

DBMS_XSTREAM ADM ADD _SUBSET OUTBOUND_RULES(

END;
/

server_nanme => 'xout',

table_name =>'hr.enpl oyees',
condition =>'departnent_id=40",
colum_list => cols);

Example 5-17 Adding Rules That Stream Changes to a Subset of Rows and
Columns in a Table

The following procedure creates rules that only evaluate to TRUE for row changes
where the depart nent _i d value is 40 for the hr. enpl oyees table. The procedure also
creates delete column declarative rule-based transformations for the sal ary and
commi ssi on_pct columns.

BEG N
DBMS_XSTREAM ADM ADD_SUBSET_QUTBCOUND_RULES(
server_name => 'xout"',
tabl e_name => 'hr.enpl oyees',
condition =>'departnent_id=40",

5-20

Chapter 5
Managing Rules for an XStream Out Configuration

colum_list => 'salary, comission_pct',
keep => FALSE);

END;

/

" See Also:

* "Rules and Rule Sets"
e Oracle Database PL/SQL Packages and Types Reference

« "Declarative Rule-Based Transformations"

5.4.1.3 Adding Rules With Custom Conditions to XStream Out Components

ORACLE

Some of the procedures that create rules in the DBMS_XSTREAM ADM package include an
and_condi ti on parameter. This parameter enables you to add conditions to system-
created rules.

The condition specified by the and_condi ti on parameter is appended to the system-
created rule condition using an AND clause in the following way:

(systemcondition) AND (and_condition)
The variable in the specified condition must be : I cr.

To add a rule with a custom condition to an XStream Out component:

1. Connect to the database running the XStream Out component as the XStream
administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run an ADD *_RULES procedure and specify the custom condition in the
and_condi ti on parameter.

See "System-Created Rules and XStream" for information about these
procedures.

If you are specifying an LCR member subprogram that is dependent on the LCR type
(row or DDL), then ensure that this procedure only generates the appropriate rule.
Specifically, if you specify an LCR member subprogram that is valid only for row LCRs,
then specify TRUE for the i ncl ude_dm parameter and FALSE for the i ncl ude_ddl
parameter. If you specify an LCR member subprogram that is valid only for DDL LCRs,
then specify FALSE for the i ncl ude_dm parameter and TRUE for the i ncl ude_ddl
parameter.

For example, the GET_OBJECT_TYPE member function only applies to DDL LCRs.
Therefore, if you use this member function in an and_condi ti on, then specify FALSE for
the i ncl ude_dm parameter and TRUE for the i ncl ude_ddl parameter.

Example 5-18 Adding a Table Rule With a Custom Condition

This example specifies that the table rules generated by the ADD TABLE_RULES
procedure evaluate to TRUE only if the table is hr. depart nent s, the source database is
dbs1. exanpl e. com and the tag value is the hexadecimal equivalent of ' 02 .

5-21

Chapter 5
Managing Rules for an XStream Out Configuration

BEG N
DBVS_XSTREAM ADM ADD TABLE_RULES(
tabl e_nane => 'hr.departnents',
streams_type => 'capture',
streams_name => 'xout_capture',
queue_nane => 'xstream queue',
i ncl ude_dn => TRUE,
i ncl ude_ddl => TRUE,
include_tagged_lcr => TRUE,
sour ce_dat abase => 'dbsl. exanpl e.coni,
inclusion_rule => TRUE,
and_condi tion => ‘':lcr.get_tag() = HEXTORAW''02'')");
END;
/
2 See Also:

e Oracle Database PL/SQL Packages and Types Reference for more
information about LCR member subprograms

e Oracle Streams Replication Administrator's Guide for information about
tags

5.4.2 Removing Rules from an XStream Out Configuration

You can remove rules from an XStream Out configuration.

Removing Schema Rules and Table Rules From an XStream Out Configuration
You can remove schema rules and table rules from an XStream Out configuration
using the ALTER_QUTBOUND procedure in the DBMS_XSTREAM ADM package. The
ALTER_OUTBOUND procedure removes rules for both DML and DDL changes.

Removing Subset Rules from an Outbound Server's Positive Rule Set
You can remove subset rules from an outbound server's positive rule set using the
REMOVE_SUBSET_QUTBOUND_RULES procedure in the DBMS_XSTREAM ADM package.

Removing Rules Using the REMOVE_RULE Procedure

You can remove a single rule from an XStream Out component's rule set or all
rules from the rule set using the REMOVE_RULE procedure in the DBMS_XSTREAM ADM
package.

5.4.2.1 Removing Schema Rules and Table Rules From an XStream Out

Configuration

ORACLE

You can remove schema rules and table rules from an XStream Out configuration
using the ALTER_QUTBOUND procedure in the DBMS_XSTREAM ADM package. The
ALTER_OUTBOUND procedure removes rules for both DML and DDL changes.

When you follow the instructions in this section, the ALTER_OUTBOUND procedure always
removes rules for the specified schemas and tables from one of the outbound server's
rule sets. If the DBMS_XSTREAM ADM package can manage the outbound server's capture
process, then the ALTER OUTBOUND procedure also removes rules for the specified
schemas and tables from one of the rule sets used by this capture process.

5-22

ORACLE

Chapter 5
Managing Rules for an XStream Out Configuration

To determine whether the DBM5_XSTREAM ADM package can manage the outbound
server's capture process, see "Checking Whether the DBMS_XSTREAM_ADM
Package Can Manage a Capture Process". If the DBVM5S_XSTREAM ADM package cannot
manage the outbound server's capture process, then the ALTER_ OUTBOUND procedure
removes rules from the outbound server's rule set only. In this case, if you must
remove the rules for same schemas and tables from the capture process's rule set as
well, then see "Removing Rules Using the REMOVE_RULE Procedure" for
instructions.

In addition, if the capture process is running on a different database than the outbound
server, then remove the schema and table rules from the propagation that sends LCRs
to the outbound server's database. See "Removing Rules Using the REMOVE_RULE
Procedure" for instructions.

To remove schema rules and table rules from an XStream Out configuration:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

2. Run the ALTER OUTBOUND procedure, and specify the following parameters:
e server_nane - Specify the name of the outbound server.

* tabl e_nanes - Specify the tables for which to remove rules, or specify NULL to
remove no table rules.

e schena_nane - Specify the schemas for which to remove rules, or specify NULL to
remove no schema rules.

* add - Specify FALSE so that the rules are removed. (Rules are added if you
specify TRUE.)

e inclusion_rul e - Specify TRUE to remove rules from the positive rule set of the
outbound server, or specify FALSE to remove rules from the negative rule set of
the outbound server. If the DBMS_XSTREAM ADM package can manage the
outbound server's capture process, then rules are also removed from this
capture process's rule set.

The following examples remove rules from the configuration of an outbound server
named xout .

Example 5-19 Removing Rules for the hr Schema, oe.orders Table, and
oe.order_items Table from the Positive Rule Set

BEG N
DBMS_XSTREAM ADM ALTER_OUTBOUND(
server_nane = 'xout",
tabl e_nanes => 'oe.orders, oe.order_itens',
schema_nanes => 'hr',
add => FALSE,

inclusion_rule => TRUE);
END;
/

Example 5-20 Removing Rules for the hr Schema from the Negative Rule Set

BEG N
DBVS_XSTREAM ADM ALTER_OUTBOUND(
server_name => 'xout"',
tabl e_nanes => NULL,

5-23

Chapter 5
Managing Rules for an XStream Out Configuration

schema_nanes => 'hr',

add => FALSE,
inclusion_rule => FALSE);
END;
/
¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference

* "Declarative Rule-Based Transformations"

5.4.2.2 Removing Subset Rules from an Outbound Server's Positive Rule Set

ORACLE

You can remove subset rules from an outbound server's positive rule set using the
REMOVE_SUBSET_QUTBOUND_RULES procedure in the DBMS_XSTREAM ADM package.

The REMOVE_SUBSET_QUTBOUND_RULES procedure only removes rules for DML changes. It
does not remove rules for DDL changes, and it does not remove rules from a capture
process's rule set.

To remove subset rules from an outbound server's positive rule set:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Determine the rule names for the subset rules by running the following query:

SELECT RULE_OMWNER, SUBSETTI NG _OPERATI ON, RULE_NAME
FROM ALL_XSTREAM RULES
VHERE SUBSETTI NG_CPERATI ON |'S NOT NULL,;

3. Run the REMOVE_SUBSET_QUTBOUND RULES procedure, and specify the rules to remove
from the list of rules displayed in Step 2.

For example, assume that Step 2 returned the following results:

RULE_OMNER SUBSET RULE_NAME

XSTRVADM N | NSERT EMPLOYEES71
XSTRVADM N UPDATE EMPLOYEES72
XSTRVADM N DELETE EMPLOYEES73

4. If subset rules should also be removed from the rule set of a capture process and
propagation that streams row LCRs to the outbound server, then see "Removing
Rules Using the REMOVE_RULE Procedure" for information about removing
rules.

Example 5-21 Removing Subset Rules From an Outbound Server's Positive
Rule Set

To remove these rules from the positive rule set of the xout outbound server, run the
following procedure:

BEG N
DBVS_XSTREAM ADM REMOVE_SUBSET_OUTBOUND RULES(
server_name => ' xout',

5-24

Chapter 5
Managing Rules for an XStream Out Configuration

insert_rule_name => 'xstrmadnn. enpl oyees71',
updat e_rul e_nane => ' xstrmadni n. enpl oyees72',
del ete_rul e_name => 'xstrmadm n. enpl oyees73");
END;
/

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference

5.4.2.3 Removing Rules Using the REMOVE_RULE Procedure

ORACLE

You can remove a single rule from an XStream Out component's rule set or all rules
from the rule set using the REMOVE_RULE procedure in the DBVS_XSTREAM ADM package.

The XStream Out component can be a capture process, propagation, or outbound
server.

The REMOVE_RULE procedure only can remove rules for both DML and DDL changes,
and it can remove rules from either the component's positive rule set or negative rule
set.

To remove a single rule or all rules from an outbound server's rule set:

1. Connect to the database running the XStream Out component as the XStream
administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Determine the rule name and XStream component name.
See "Monitoring XStream Rules" for a query that displays this information.
3. Run the REMOVE_RULE procedure.

The i ncl usi on_rul e parameter is set to TRUE to indicate the positive rule set.

The rul e_nane parameter is set to NULL to specify that all of the rules are removed from
the rule set, and the i ncl usi on_rul e parameter is set to FALSE to indicate the negative
rule set.

Example 5-22 Removing a Rule From an Outbound Server's Rule Set

This example removes a rule named or der s12 from positive rule set of the xout
outbound server.

BEG N
DBVS_XSTREAM ADM REMOVE_RULE(
rul e_nane => 'ordersl12',

streans_type => 'APPLY',
streans_nanme => 'xout',
inclusion_rule => TRUE);

/

Example 5-23 Removing All of the Rules From an Outbound Server's Rule Set

This example removes all of the rules from the negative rule set of the xout outbound
server.

5-25

Chapter 5
Managing Declarative Rule-Based Transformations

BEG N
DBVS_XSTREAM ADM REMOVE_RULE(
rul e_nane => NULL,

streams_type => 'APPLY',
streans_name => 'xout',
inclusion_rule => FALSE);

See Also:

Oracle Database PL/SQL Packages and Types Reference

5.5 Managing Declarative Rule-Based Transformations

Declarative rule-based transformations cover a set of common transformation
scenarios for row LCRs.

You can use the following procedures in the DBVMS_XSTREAM ADM package to manage
declarative rule-based transformations: ADD_COLUWN, DELETE_COLUWN, KEEP_COLUMNS,
RENAME_COLUWN, RENAMVE_SCHEMA, and RENAVE_TABLE.

* Adding Declarative Rule-Based Transformations
Examples illustrate adding declarative rule-based transformations to DML rules.

* Overwriting Existing Declarative Rule-Based Transformations
You can overwrite existing declarative rule-based transformations using the
DBMS_XSTREAM ADM package.

* Removing Declarative Rule-Based Transformations
To remove a declarative rule-based transformation from a rule, use the same
procedure used to add the transformation, but specify REMOVE for the operati on
parameter.

2 See Also:

"Declarative Rule-Based Transformations"

5.5.1 Adding Declarative Rule-Based Transformations

Examples illustrate adding declarative rule-based transformations to DML rules.

" Note:

Declarative rule-based transformations can be specified for DML rules only.
They cannot be specified for DDL rules.

ORACLE 5-26

Chapter 5
Managing Declarative Rule-Based Transformations

* Adding a Declarative Rule-Based Transformation That Renames a Table
Use the RENAME_TABLE procedure in the DBM5_XSTREAM ADMpackage to add a
declarative rule-based transformation that renames a table in a row LCR.

e Adding a Declarative Rule-Based Transformation That Adds a Column
Use the ADD COLUWN procedure in the DBMS_XSTREAM ADM package to add a
declarative rule-based transformation that adds a column to a row in a row LCR.

5.5.1.1 Adding a Declarative Rule-Based Transformation That Renames a

Table

Use the RENAME_TABLE procedure in the DBMS_XSTREAM ADM package to add a declarative
rule-based transformation that renames a table in a row LCR.

The example in this section adds a declarative rule-based transformation to the j obs12
rule in the xst rmadm n schema.

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following procedure:

BEG N
DBMS_XSTREAM ADM RENAME_TABLE(
rul e_nane => ' xstrmadmin. j obs12',

fromtable_name => 'hr.jobs',
to_table_name => 'hr.assignnents’,
st ep_nunber = 0,
operation => "ADD);

END;

/

The declarative rule-based transformation added by this procedure renames the table
hr.jobs to hr. assi gnnent s in a row LCR when the rule j obs12 evaluates to TRUE for the
row LCR. If more than one declarative rule-based transformation is specified for the

j obs12 rule, then this transformation follows default transformation ordering because
the step_nunber parameter is set to 0 (zero). In addition, the oper ati on parameter is set
to ADD to indicate that the transformation is being added to the rule, not removed from
it.

The RENAME_TABLE procedure can also add a transformation that renames the schema
in addition to the table. For example, in the previous example, to specify that the
schema should be renamed to oe, specify oe. assi gnnent s for the to_t abl e_nane
parameter.

5.5.1.2 Adding a Declarative Rule-Based Transformation That Adds a Column

ORACLE

Use the ADD COLUMWN procedure in the DBVS_XSTREAM ADMpackage to add a declarative
rule-based transformation that adds a column to a row in a row LCR.

The example in this section adds a declarative rule-based transformation to the
enpl oyees35 rule in the xst rmadni n schema.

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

5-27

Chapter 5
Managing Declarative Rule-Based Transformations

2. Run the following procedure:

BEG N
DBVS_XSTREAM ADM ADD_COLUM\(
rul e_nane => ' xstrmadni n. enpl oyees35',

table _name => 'hr.enpl oyees',
colum_nane => 'birth_date',
col um_val ue => ANYDATA. Convert Dat e(NULL),
val ue_type =>"'NEW,
step_nunber => 0,
operation => 'ADD);

END;

/

The declarative rule-based transformation added by this procedure adds a birth_date
column of data type DATE to an hr. enpl oyees table row in a row LCR when the rule
enpl oyees35 evaluates to TRUE for the row LCR.

Notice that the ANYDATA. Conver t Dat e function specifies the column type and the column
value. In this example, the added column value is NULL, but a valid date can also be
specified. Use the appropriate ANYDATA function for the column being added. For
example, if the data type of the column being added is NUMBER, then use the

ANYDATA. Convert Number function.

The val ue_t ype parameter is set to NEWto indicate that the column is added to the new
values in a row LCR. You can also specify OLD to add the column to the old values.

If more than one declarative rule-based transformation is specified for the enpl oyees35
rule, then the transformation follows default transformation ordering because the

st ep_nunber parameter is set to 0 (zero). In addition, the oper ati on parameter is set to
ADD to indicate that the transformation is being added, not removed.

Note:

The ADD_COLUWN procedure is overloaded. A col um_f uncti on parameter can
specify that the current system date or time stamp is the value for the added
column. The col urm_val ue and col um_f uncti on parameters are mutually
exclusive.

" See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
about AnyDat a type functions

5.5.2 Overwriting Existing Declarative Rule-Based Transformations

ORACLE

You can overwrite existing declarative rule-based transformations using the
DBMS_XSTREAM ADM package.

When the oper ati on parameter is set to ADD in a procedure that adds a declarative rule-
based transformation, an existing declarative rule-based transformation is overwritten
if the parameters in the following list match the existing transformation parameters:

5-28

Chapter 5
Managing Declarative Rule-Based Transformations

e ADD COLUMN procedure: rul e_nane, t abl e_nane, col um_nane, and st ep_nunber
parameters

e DELETE_COLUWN procedure: rul e_nane, t abl e_nane, col um_nane, and st ep_nunber
parameters

e KEEP_COLUWNS procedure: rul e_nane, t abl e_nane, col um_l i st, and st ep_nunber
parameters, or rul e_name, t abl e_nane, col um_t abl e, and st ep_nunber parameters
(The col um_l i st and col umm_t abl e parameters are mutually exclusive.)

e RENAME COLUWN procedure: rul e_nane, t abl e_nane, from col urm_nane, and st ep_nunber
parameters

° RENAME_SCHEMA procedure: rul e_nane, from schema_nane, and st ep_nunber parameters

* RENAME_TABLE procedure: rul e_nane, from t abl e_nane, and st ep_nunber parameters

To overwrite an existing rule-based transformation:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the appropriate procedure in the DBMS_XSTREAM ADM package, and specify the
appropriate parameters.

Example 5-24 Overwriting a RENAME_COLUMN Declarative Rule-Based
Transformation

Suppose an existing declarative rule-based transformation was creating by running the
following procedure:

BEG N
DBVS_XSTREAM ADM RENAME_COLUMN(
rul e_nane => 'departnents33',
tabl e_nane => 'hr.departnents’,
fromcolum_name => 'manager_id',
to_col um_nanme => "|ead id",
val ue_type => ' NEW,
st ep_nunber = 0,
operation => "ADD);
END;

/

Running the following procedure overwrites this existing declarative rule-based
transformation:

BEG N
DBVS_XSTREAM ADM RENAME_COLUMN(
rul e_nane => 'departnents33',
tabl e_nane => "hr.departnents',
from.col um_name =>'manager_id",
to_col utm_nane => 'lead_id',
val ue_type = F
st ep_nunber = 0,
operation => 'ADD);
END;

/

In this case, the val ue_t ype parameter in the declarative rule-based transformation was
changed from NEwto *. That is, in the original transformation, only new values were

ORACLE 5-29

Chapter 5
Managing Declarative Rule-Based Transformations

renamed in row LCRs, but, in the new transformation, both old and new values are
renamed in row LCRs.

5.5.3 Removing Declarative Rule-Based Transformations

To remove a declarative rule-based transformation from a rule, use the same
procedure used to add the transformation, but specify REMOVE for the operati on
parameter.

To remove a declarative rule-based transformation:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the appropriate procedure in the DBVS_XSTREAM ADM package and specify REMOVE
for the operati on parameter.

When the oper ati on parameter is set to REMOVE in any of the declarative transformation
procedures listed in "Managing Declarative Rule-Based Transformations", the other
parameters in the procedure are optional, excluding the rul e_nane parameter. If these
optional parameters are set to NULL, then they become wildcards.

The RENAME TABLE procedure in the previous example behaves in the following way
when one or more of the optional parameters are set to NULL:

Table 5-1 Behavior of Optional Parameters in the RENAME_TABLE Procedure
|

from_table_nam to_table_name step_number Result

e Parameter Parameter Parameter

NULL NULL NULL Remove all rename table
transformations for the specified
rule

non-NULL NULL NULL Remove all rename table

transformations with the specified
from tabl e_name for the specified
rule

NULL non-NULL NULL Remove all rename table
transformations with the specified
t o_t abl e_name for the specified rule

NULL NULL non-NULL Remove all rename table
transformations with the specified
st ep_nunber for the specified rule

non-NULL non-NULL NULL Remove all rename table
transformations with the specified
fromtabl e_name and
t o_t abl e_name for the specified rule

NULL non-NULL non-NULL Remove all rename table
transformations with the specified
to_tabl e_name and st ep_nunber for
the specified rule

ORACLE 5-30

Chapter 5
Dropping Components in an XStream Out Configuration

Table 5-1 (Cont.) Behavior of Optional Parameters in the RENAME_TABLE
Procedure

from_table_nam to_table name step_number Result
e Parameter Parameter Parameter
non-NULL NULL non-NULL Remove all rename table

transformations with the specified
from tabl e_name and st ep_nunber
for the specified rule

The other declarative transformation procedures work in a similar way when optional
parameters are set to NULL and the operation parameter is set to REMOVE.

Example 5-25 Removing a RENAME_TABLE Declarative Rule-Based
Transformation

To remove the transformation added in "Adding a Declarative Rule-Based
Transformation That Renames a Table", run the following procedure:

BEG N
DBVS_XSTREAM ADM RENAME_TABLE(
rul e_nane => "strmadmn.jobsl2",

fromtable_name => 'hr.jobs',
to_table_name => 'hr.assignnents’,
st ep_nunber = 0,
operation => 'REMOVE);

END;

5.6 Dropping Components in an XStream Out Configuration

ORACLE

To drop an outbound server, use the DROP_QUTBOUND procedure in the DBVS_XSTREAM ADM
package.

This procedure always drops the specified outbound server. This procedure also drops
the queue used by the outbound server if both of the following conditions are met:

e The queue was created by the ADD_QUTBOUND or CREATE_OUTBOUND procedure in the
DBMS_XSTREAM ADM package.

e The outbound server is the only subscriber to the queue.

If either one of the preceding conditions is not met, then the DROP_OUTBOUND procedure
only drops the outbound server. It does not drop the queue.

This procedure also drops the capture process for the outbound server if both of the
following conditions are met:

* The procedure can drop the outbound server's queue.

* The DBM5_XSTREAM ADMpackage can manage the outbound server's capture
process. See "Checking Whether the DBMS_XSTREAM_ADM Package Can
Manage a Capture Process".

If the procedure can drop the queue but cannot manage the capture process, then it
drops the queue without dropping the capture process.

5-31

Chapter 5
Removing an XStream Out Configuration

To drop an outbound server:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the DROP_QUTBOUND procedure.
Example 5-26 Dropping an Outbound Server
To drop an outbound server named xout , run the following procedure:

exec DBMS_XSTREAM ADM DROP_CQUTBOUND(' xout');

" See Also:

e Oracle Database PL/SQL Packages and Types Reference for information
about the DROP_QUTBOUND procedure

e Oracle Streams Concepts and Administration for information about
dropping a queue or a capture process

5.7 Removing an XStream Out Configuration

ORACLE

You run the REMOVE_XSTREAM CONFI GURATI ON procedure in the DBVS_XSTREAM ADM package
to remove an XStream Out configuration in a multitenant container database (CDB) or
non-CDB.

" Note:

Run this procedure only if you are sure you want to remove the entire XStream
Out configuration at a database. This procedure also removes all XStream In
components, Oracle GoldenGate components, and Oracle Streams
components from the database.

To remove the XStream Out configuration:
1. Connect to the outbound server database as the XStream administrator.
In a CDB, connect to the CDB root.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the REMOVE_XSTREAM CONFI GURATI ON procedure.
In a non-CDB, run the following procedure:

EXEC DBMS_XSTREAM ADM REMOVE_XSTREAM CONFI GURATI ON() ;

In a CDB, ensure that all containers are open in read/write mode and run the
following procedure:

5-32

Chapter 5
Removing an XStream Out Configuration

EXEC DBMS_XSTREAM ADM REMOVE_XSTREAM CONFI GURATI ON(cont ai ner => "ALL');

Setting the cont ai ner parameter to ALL removes the XStream configuration from all
containers in the CDB.

3. Drop the XStream administrator at the database, if possible.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about the actions performed by the REMOVE_XSTREAM CONFI GURATI ON
procedure

ORACLE 5-33

Monitoring XStream Out

ORACLE

You can monitor an XStream Out configuration.

X4

Note:

Whenever possible, this chapter uses ALL_ static data dictionary views for query
examples. In some cases, information in the ALL_ views is more limited than the
information in the DBA views.

e About Monitoring XStream Out
You can query data dictionary views related to XStream for information about
XStream components and statistics related to XStream.

* Monitoring Session Information About XStream Out Components
An example illustrates monitoring session information about XStream Out
components.

* Monitoring the History of Events for XStream Out Components
An example illustrates monitoring the history of events for XStream components
by querying the DBA_REPLI CATI ON_PROCESS_EVENTS view.

e Monitoring an Outbound Server
Sample queries illustrate how to monitor an outbound server.

Monitoring the Capture Process for an Outbound Server

Sample queries illustrate how to monitor the capture process for an outbound
server.

Monitoring XStream Rules

A sample query illustrates how to monitor XStream rules.

Monitoring Declarative Rule-Based Transformations

A sample query illustrates how to monitor declarative rule-based transformations.

4

See Also:

e "XStream Out Concepts"
e "XStream Use Cases"
e "Configuring XStream Out"

e "Troubleshooting XStream Out"

6-1

Chapter 6
About Monitoring XStream Out

6.1 About Monitoring XStream Out

You can query data dictionary views related to XStream for information about XStream
components and statistics related to XStream.

The main interface for monitoring XStream database components is SQL*PIlus,
although you can monitor some aspects of an XStream configuring using Oracle
Enterprise Manager Cloud Control. For example, you can view information about
capture processes, outbound servers, inbound servers, and rules in Oracle Enterprise
Manager Cloud Control.

In SQL*Plus, trusted XStream administrators can query the ALL_ and DBA_ views.
Untrusted XStream administrators can query the ALL_ views only.

This chapter also describes using the Oracle Streams Performance Advisor to monitor
an XStream configuration. The Oracle Streams Performance Advisor consists of the
DBMS_STREAMS_ADVI SOR_ADM package and a collection of data dictionary views. The
Oracle Streams Performance Advisor enables you to monitor the topology and
performance of an XStream environment.

6.2 Monitoring Session Information About XStream Out
Components

ORACLE

An example illustrates monitoring session information about XStream Out
components.

The query in this section displays the following session information about each
XStream component in a database:

* The XStream component name

* The session identifier

e The serial number

* The operating system process identification number
e The XStream program name

This query is especially useful for determining the session information for specific
XStream components when there are multiple XStream Out components configured in
a database.

To display this information for each XStream component in a database:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN ACTI ON HEADI NG ' XSt ream Conponent' FORMAT A30

COLUWN SI D HEADI NG ' Session | D FORMAT 99999

COLUWN SERI AL# HEADI NG ' Sessi on| Seri al | Nunber' FORMAT 99999999
COLUWN PROCESS HEADI NG ' Operating Systen| Process |D FORVAT Al7
COLUWN PROCESS_NAME HEADI NG ' XStrean Progran Nane' FORMAT A7

6-2

Chapter 6
Monitoring the History of Events for XStream Out Components

SELECT /*+PARAM ' _nmodul e_action_ol d_length',0)*/ ACTION,
SID,
SERI AL#,
PROCESS,
SUBSTR(PROGRAM | NSTR(PROGRAM ' (') +1, 4) PROCESS_NAMVE
FROM V$SESSI ON
WHERE MODULE =' XStrean ;

Your output for an XStream Out configuration looks similar to the following:

Sessi on XStream

Serial Operating System Program
XSt ream Conponent Session ID Nurber Process ID Narme
XQUT - Apply Coordi nat or 21 9 27222 APO1
CAP$_XOUT_18 - Capture 28 33 27248 CPO1
XOUT - Apply Server 97 43 27226 AS00
XOUT - Apply Reader 105 5 27224 AS01
XOUT - Apply Server 112 27 27342 TNS
XQUT - Propagation Send/ Rev 117 5 27250 Cs00

The row that shows TNS for the XStream program name contains information about the
session for the XStream client application that is attached to the outbound server.

" See Also:

Oracle Database Reference for more information about the V$SESSI ON view

6.3 Monitoring the History of Events for XStream Out
Components

ORACLE

An example illustrates monitoring the history of events for XStream components by
guerying the DBA REPLI CATI ON_PROCESS EVENTS view.

For example, the view can display when a component was created or started. It can
also display when a component parameter was changed. If the component
encountered an error, the view can display information about the error.

The query in this topic displays the following information about XStream Out
component events:

e The XStream component name
e The component type

* The event name

* The description of the event

* The event time

To display this information for each XStream Out component in a database:

1. Connect to the database as the XStream administrator.

6-3

Chapter 6
Monitoring an Outbound Server

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN STREAMS_NAVE FORMAT A12
COLUMN PROCESS_TYPE FORMAT Al7
COLUMN EVENT_NAME FORMAT AL0
COLUMN DESCRI PTI ON FORMAT A20
COLUWN EVENT TI ME FORMAT Al5

SELECT STREANS_NAME,
PROCESS_TYPE,
EVENT_NAME,
DESCRI PTI ON,
EVENT_TI ME
FROM DBA_REPLI CATI ON_PROCESS_EVENTS;

Your output for an XStream Out configuration looks similar to the following:

STREAVS_NAME PROCESS_TYPE EVENT_NAME DESCRI PTI ON

CAP$_XQUT_7 CAPTURE CREATE SUCCESS 10-NOv-15 12. 30
. 13. 845080 PM
xout APPLY COCRDI NATOR CREATE SUCCESS 10-NOv-15 12. 30

.16. 841110 PM

" CAP$_XQUT_7 CAPTURE ALTER

" xoutr” APPLY COCRDI NATOR ALTER

RULE_SET_NAME =>
S'. "RULESETS$_12"
RULE_SET_NAME =>

"SY 10-NOv-15 12.30

.17.373285 PM

"SY 10-NOv-15 12.30

S". "RULESET$_19" .18.817718 PM

" CAP$_XOUT_7 CAPTURE PARAMETER Change paraneter 'XO 10- NOV-15 12.30
" CHANGE UT_CLI ENT_EXI STS' to .19.100361 PM
value 'Y
CAP$_XQUT_7 CAPTURE START SUCCESS 10- NOv- 15 12.30
.19. 434029 PM
Xout APPLY COORDI NATOR START SUCCESS 10- NOv- 15 12.30
.19. 543379 PM
Xout APPLY READER START SUCCESS 10- NOv- 15 12.30
. 20. 584332 PM
Xout APPLY SERVER START SUCCESS 10- NOv- 15 12.30
.20. 593923 PM
CAP$_XOUT_7 CAPTURE SERVER START SUCCESS 10- NOv- 15 12.30

.20. 926374 PM

Related Topics

e Oracle Database Reference

6.4 Monitoring an Outbound Server

ORACLE

Sample queries illustrate how to monitor an outbound server.

With XStream Out, an Oracle Streams apply process functions as an outbound server.
Therefore, you can also use the data dictionary views for apply processes to monitor
outbound servers. In addition, an XStream Out environment includes capture
processes and queues, and might include other components, such as propagations,
rules, and rule-based transformations.

6-4

Chapter 6
Monitoring an Outbound Server

Displaying General Information About an Outbound Server
A sample query illustrates how to display general information about an outbound
server.

Displaying Status and Error Information for an Outbound Server
A sample query illustrates how to display status and error information for an
outbound server.

Displaying Information About an Outbound Server's Current Transaction
A sample query illustrates how to display information about an outbound server’s
current transaction.

Displaying Statistics for an Outbound Server
An example illustrates how to display statistics for an outbound server.

Displaying the Processed Low Position for an Outbound Server
A sample query illustrates how to display the processed low position for an
outbound server.

Determining the Process Information for an Outbound Server
A sample query illustrates how to determine the process information for an
outbound server.

Displaying the Apply Parameter Settings for an Outbound Server
A sample query illustrates how to display the apply parameter settings for an
outbound server.

2 See Also:

Oracle Streams Concepts and Administration

6.4.1 Displaying General Information About an Outbound Server

A sample query illustrates how to display general information about an outbound
server.

ORACLE

You can display the following information for an outbound server by running the query
in this section:

The outbound server name
The name of the connect user for the outbound server

The connect user is the user who can attach to the outbound server to retrieve the
logical change record (LCR) stream. The client application must attach to the
outbound server as the specified connect user.

The name of the capture user for the capture process that captures changes for
the outbound server to process

The name of the capture process that captures changes for the outbound server to
process

The name of the source database for the captured changes
The owner of the queue used by the outbound server

The name of the queue used by the outbound server

6-5

ORACLE

Chapter 6
Monitoring an Outbound Server

The ALL_XSTREAM QUTBOUND view contains information about the capture user, the
capture process, and the source database in either of the following cases:

The outbound server was created using the CREATE_OUTBOUND procedure in the
DBMS_XSTREAM ADM package.

The outbound server was created using the ADD_OUTBOUND procedure in the
DBMS_XSTREAM ADM package, and the capture process for the outbound server runs
on the same database as the outbound server.

If the outbound server was created using the ADD _OUTBOUND procedure, and the capture
process for the outbound server is on a different database, then the

ALL_XSTREAM OUTBOUND view does not contain information about the capture user, the
capture process, or the source database.

To display this general information about an outbound server:

1.

Connect to the database as the XStream administrator.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

Run the following query:

COLUWN SERVER_NAME HEADI NG ' Qut bound| Ser ver | Name' FORMAT Al10
COLUWMN CONNECT_USER HEADI NG ' Connect | User' FORMAT A10

COLUWN CAPTURE_USER HEADI NG ' Capt ure| User' FORMAT A10

COLUWN CAPTURE_NAME HEADI NG ' Capt ure| Process| Name' FORMAT Al2
COLUWN SOURCE_DATABASE HEADI NG ' Sour ce| Dat abase' FORMAT All
COLUMN QUEUE_OWNER HEADI NG ' Queue| Oaner' FORMAT A10

COLUMN QUEUE_NAME HEADI NG ' Queue| Name' FORMAT A10

SELECT SERVER NAME,
CONNECT_USER
CAPTURE_USER
CAPTURE_NAME,
SOURCE_DATABASE,
QUEUE_OWKER
QUEUE_NAME

FROM ALL_XSTREAM OUTBOUND,

Your output looks similar to the following:

Qut bound Capture
Server Connect Capture Process Sour ce Queue Queue
Nane User User Nane Dat abase Owner Nane
xaur XSTRVADM N XSTRMADM N CAP$_XOUT_18 XOUT. EXAMPL XSTRMADM N QF_XOUT_19
E. COM
¢ See Also:

Oracle Database Reference

6-6

Chapter 6
Monitoring an Outhound Server

6.4.2 Displaying Status and Error Information for an Outbound Server

A sample query illustrates how to display status and error information for an outbound
server.

The DBA_APPLY view shows XSt reamQut in the PURPGSE column for an apply process that
is functioning as an outbound server.

To display detailed information about an outbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN APPLY_NAME HEADI NG ' Qut bound Server| Name' FORMAT Al5
COLUMN STATUS HEADI NG ' Status' FORMAT A8

COLUWN ERROR_NUMBER HEADI NG ' Error Number' FORMAT 9999999
COLUWN ERROR_MESSAGE HEADI NG ' Error Message' FORVAT A40

SELECT APPLY_NAME,
STATLUS,
ERROR_NUMBER,
ERROR_MESSAGE
FROM DBA_APPLY
WHERE PURPCSE = ' XStream Qut';

Your output looks similar to the following:

Qut bound Server
Nane Status Error Number Error Message

Xout ENABLED

This output shows that XQUT is an apply process that is functioning as an outbound
server.

< Note:

This example queries the DBA_APPLY view. This view enables trusted users to
see information for all apply users in the database. Untrusted users must query
the ALL_APPLY view, which limits information to the current user.

" See Also:

Oracle Database Reference

ORACLE 6-7

Chapter 6
Monitoring an Outbound Server

6.4.3 Displaying Information About an Outbound Server's Current

Transaction

ORACLE

A sample query illustrates how to display information about an outbound server’s
current transaction.

The V$XSTREAM OUTBOUND_SERVER view contains the following information about the
transaction currently being processed by an XStream outbound server:

* The name of the outbound server
* The transaction ID of the transaction currently being processed

e Commit system change number (SCN) of the transaction currently being
processed

« Commit position of the transaction currently being processed

* The position of the last LCR sent to the XStream client application

* The message number of the current LCR being processed by the outbound server

Run this query to determine how many LCRs an outbound server has processed in a

specific transaction. You can query the TOTAL_MESSAGE_COUNT column in the
V$XSTREAM TRANSACTI ON view to determine the total number of LCRs in a transaction.

To display information about an outbound server's current transaction:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a

database in SQL*Plus.
2. Run the following query:

COLUWN SERVER_NAME HEADI NG ' Qut bound| Ser ver | Name' FORMAT A10
COLUW ' Transaction ID HEADI NG ' Transaction| 1D FORMAT All
COLUWN COWM TSCN HEADI NG ' Commit SCN FORMAT 9999999999999

COLUWN COWM T_POSI TI ON HEADI NG ' Conmi't Position' FORMAT Al5
COLUWN LAST_SENT_POSI TI ON HEADI NG ' Last Sent| Position" FORMAT Al5
COLUWN MESSAGE_SEQUENCE HEADI NG ' Message| Nunber' FORMAT 999999999

SELECT SERVER_ NAME,
XIDUSN | ["."]|
XIDSLT [|"."]
XIDSQN "Transaction 1D",
COWM TSCN,
COW T_PCSI TI ON,
LAST_SENT_PGSI TI ON,
MESSAGE_SEQUENCE

FROM V$XSTREAM OUTBOUND_SERVER,

Your output looks similar to the following:

Qut bound

Server Transaction Last Sent Message
Nare ID Conmit SCN Commit Position Position Nunber
xout 2.22.304 820023 0000000C32E4000 0000000C8337000 616

000010000000100 000010000000100

6-8

Chapter 6
Monitoring an Outbound Server

00000C82E400000 00000C833700000
0010000000101 0010000000101

Note:

The COW TSCN and COW T_PGCsI TI ON values are populated only if the
COWM TTED_DATA ONLY value is YES in V$XSTREAM OUTBOUND SERVER.

" See Also:

Oracle Database Reference

6.4.4 Displaying Statistics for an Outbound Server

An example illustrates how to display statistics for an outbound server.

ORACLE

The V$XSTREAM OUTBOUND_SERVER view contains the following statistics about the
database changes processed by an XStream outbound server:

The name of the outbound server

The number of transactions sent from the outbound server to the XStream client
application since the last time the client application attached to the outbound
server

The number of LCRs sent from the outbound server to the XStream client
application since the last time the client application attached to the outbound
server

The number of megabytes sent from the outbound server to the XStream client
application since the last time the client application attached to the outbound
server

The amount of time the outbound server spent sending LCRs to the XStream
client application since the last time the client application attached to the outbound
server

The message number of the last LCR sent by the outbound server to the XStream
client application

Creation time at the source database of the last LCR sent by the outbound server
to the client application

To display statistics for an outbound server:

1.

Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

Run the following query:

COLUWN SERVER_NAME HEADI NG ' Qut bound| Server | Name' FORMVAT A8
COLUWN TOTAL_TRANSACTI ONS_SENT HEADI NG ' Tot al | Trans| Sent' FORMAT 9999999
COLUWN TOTAL_MESSAGES_SENT HEADI NG ' Tot al | LCRs| Sent' FORMAT 9999999999

6-9

Chapter 6
Monitoring an Outbound Server

COLUWN BYTES_SENT HEADI NG ' Tot al | MB| Sent' FORMAT 99999999999999

COLUWN ELAPSED SEND_TI ME HEADI NG ' Ti ne| Sendi ng| LCRs| (i n seconds)' FORMAT 99999999
COLUWN LAST_SENT_MESSAGE_NUMBER HEADI NG ' Last | Sent | Message| Number' FORMAT
99999999

COLUWN LAST_SENT_MESSAGE_CREATE_TI ME HEADI NG ' Last | Sent | Message| Creat i on| Ti ng'
FORMAT A9

SELECT SERVER NAME,
TOTAL_TRANSACTI ONS_SENT,
TOTAL_MESSAGES_SENT,
(BYTES_SENT/ 1024) / 1024 BYTES_SENT,
(ELAPSED_SEND TI ME/ 100) ELAPSED_SEND TI ME,
LAST SENT_MESSAGE_NUMVBER
TO_CHAR(LAST_SENT_MESSAGE_CREATE_TI ME, ' HH24: M : SS MM DD/ YY')
LAST_SENT_MESSAGE_CREATE TI ME
FROM V$XSTREAM OUTBOUND_SERVER;

Your output looks similar to the following:

Last

Tinme Last Sent
Qut bound Tot al Tot al Tot al Sendi ng Sent Message
Server Trans LCRs VB LCRs Message Creation

Name Sent Sent Sent (in seconds) Nurber Ti me
Xout 4028 256632 67 1 820023 10:11: 00
02/ 28/ 11

" Note:

The TOTAL_TRANSACTI ONS_SENT value is populated only if the COW TTED DATA ONLY
value is YES in VEXSTREAM QUTBOUND_SERVER.

¢ See Also:

Oracle Database Reference

6.4.5 Displaying the Processed Low Position for an Outbound Server

ORACLE

A sample query illustrates how to display the processed low position for an outbound
server.

For an outbound server, the processed low position is the position below which all
transactions have been committed and logged by the client application. The processed
low position is important when the outbound server or the client application is
restarted.

You can display the following information about the processed low position for an
outbound server by running the query in this section:

e The outbound server name

* The name of the source database for the captured changes

6-10

Chapter 6
Monitoring an Outbound Server

* The processed low position, which indicates the low watermark position processed
by the client application

* The time when the processed low position was last updated by the outbound
server

To display the processed low position for an outbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN SERVER _NAME HEADI NG ' Qut bound| Server | Nane' FORMAT A10

COLUWN SOURCE_DATABASE HEADI NG ' Sour ce| Dat abase' FORMAT A20

COLUWN PROCESSED LOW PGCSI TI ON HEADI NG ' Processed| Low LCR| Position' FORMAT A30
COLUWN PROCESSED LOW TI ME HEADI NG ' Processed| Low Ti me' FORMAT A9

SELECT SERVER NAME,

SOURCE_DATABASE,

PROCESSED_LOW POSI TI ON,

TO CHAR(PROCESSED_LOW TI ME, ' HH24: M : SS MV DY YY') PROCESSED _LOW TI ME
FROM ALL_XSTREAM OUTBOUND PROGRESS;

Your output looks similar to the following:

Qut bound Processed Processed
Server Sour ce Low LCR Low

Narre Dat abase Posi tion Tine
Xout XOUT. EXAMPLE. COM 0000000C84EA000000000000000000 10: 18: 37

00000C34EA000000000000000001 02/ 28/ 11

¢ See Also:

e Oracle Database Reference

e "The Processed Low Position and Restartability for XStream Out"

6.4.6 Determining the Process Information for an Outbound Server

ORACLE

A sample query illustrates how to determine the process information for an outbound
server.

An outbound server is an Oracle background process. This background process runs
only when an XStream client application attaches to the outbound server. The
V$XSTREAM OUTBOUND_SERVER view contains information about this background process.

You can display the following information for an outbound server by running the query
in this section:

e The outbound server name
 The session ID of the outbound server's session

e The serial number of the outbound server's session

6-11

Chapter 6
Monitoring an Outbound Server

The process identification number of the operating-system process that sends
LCRs to the client application

To display the process information for an outbound server:

1.

Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

Run the following query:

COLUWN SERVER NAME HEADI NG ' Qut bound Server Nanme' FORMAT A20
COLUWN SI D HEADI NG ' Session | D FORMAT 9999999999

COLUWN SERI AL# HEADI NG ' Serial Nunber' FORMAT 9999999999
COLUWN SPI D HEADI NG ' Oper ati ng- System Process' FORMAT A25

SELECT SERVER NAME,
SI D,
SER! AL#,
SPID
FROM V$XSTREAM OUTBOUND_SERVER;

Your output looks similar to the following:

Qut bound Server Nane Session ID Serial Number Operating-System Process

xaur 18 19 15906

Note:

The VSXSTREAM APPLY_SERVER view provides additional information about the
outbound server process, and information about the apply server background
processes used by the outbound server.

" See Also:

Oracle Database Reference

6.4.7 Displaying the Apply Parameter Settings for an Outbound Server

A sample query illustrates how to display the apply parameter settings for an outbound
server.

ORACLE

Apply parameters determine how an outbound server operates.

To display the apply parameter settings for an outbound server:

1.

Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

Run the following query:

6-12

ORACLE

Chapter 6
Monitoring an Outbound Server

COLUWN APPLY_NAME HEADI NG ' Qut bound Server| Name' FORMAT Al5

COLUWN PARAMETER HEADI NG ' Par anet er'

COLUWN VALUE HEADI NG ' Val ue' FORMAT A22

COLUMN SET_BY_USER HEADI NG ' Set by| User?' FORVAT AL0

SELECT APPLY_NAME,

PARAVETER,

VALUE,

SET_BY_USER
FROM ALL_APPLY PARAVETERS a, ALL_XSTREAM OUTBOUND o
WHERE a. APPLY_NAME=0. SERVER NAVE
ORDER BY a. PARAVETER;

Your output looks similar to the following:

Qut bound Server

Narme

Par anet er

FORMAT A30

Outbound servers ignore some apply parameter settings.

ALLOW DUPLI CATE_ROVS
APPLY_SEQUENCE_NEXTVAL
COVWM T_SERI ALI ZATI ON
COVPARE_KEY_ONLY
COVPUTE_LCR DEP_ON_ARRI VAL
DI SABLE_ON_ERROR

DI SABLE ON LIM T
EAGER S| ZE
ENABLE_XSTREAM TABLE_STATS
EXCLUDETAG

EXCLUDETRANS
EXCLUDEUSER

EXCLUDEUSER D
GETAPPLOPS

GETREPLI CATES
GROUPTRANSOPS
HANDLECOLLI SI ONS

| GNORE_TRANSACTI ON

NVAXI MUM SCN
VAX_PARALLELI SM
MAX_SGA SI ZE

OPTI M ZE_PROGRESS_TABLE
OPTI M ZE_SELF_UPDATES
PARALLELI SM
PRESERVE_ENCRYPTI ON

RTRI M ON_| MPLI CI T_CONVERSI ON

STARTUP_SECONDS
SUPPRESSTRI GGERS
TIMELIMT

TRACE_LEVEL

TRANSACTI ON_LIM T
TXN_AGE_SPI LL_THRESHOLD
TXN_LCR_SPI LL_THRESHOLD
WRI TE_ALERT_LOG

Y
N
10000
N

I NFINI'TE
1
I NFINI'TE

<O <<k <<

I NFINI'TE
0

I NFINI'TE
900
10000

Y

6666656565666656568666665656866666566866868686858

6-13

Chapter 6
Monitoring the Capture Process for an Outbound Server

< Note:

If the Set by User ? column is NOfor a parameter, then the parameter is set to its
default value. If the Set by User ? column is YES for a parameter, then the
parameter was set by a user and might or might not be set to its default value.

¢ See Also:

e "Setting an Apply Parameter for an Outbound Server"

e Oracle Database PL/SQL Packages and Types Reference for information
about apply parameters

6.5 Monitoring the Capture Process for an Outbound Server

ORACLE

Sample queries illustrate how to monitor the capture process for an outbound server.

Displaying Change Capture Information About Each Capture Process
A sample query illustrates how to display change capture information about each
capture process.

Displaying the Registered Redo Log Files for Each Capture Process
A sample query illustrates how to display information about the archived redo log
files that are registered for each capture process in a database.

Displaying Redo Log Files That Are Required by Each Capture Process
A sample query illustrates how to display redo log files that are required by each
capture process.

Displaying SCN Values for Each Redo Log File Used by Each Capture Process
A sample query illustrates how to display information about the SCN values for
archived redo log files that are registered for each capture process in a database.

Listing the Parameter Settings for Each Capture Process
A sample query illustrates how to list the parameter settings for each capture
process.

Determining the Applied SCN for Each Capture Process
A sample query illustrates how to determine the applied SCN for each capture
process.

Displaying the Redo Log Scanning Latency for Each Capture Process
A sample query illustrates how to display the redo log scanning latency for each
capture process.

Displaying the Extra Attributes Captured by a Capture Process
A sample query illustrates how to display the extra attributes captured by a capture
process.

6-14

Chapter 6
Monitoring the Capture Process for an Outbound Server

" See Also:

Oracle Streams Concepts and Administration includes more queries that you
can use to monitor a capture process

6.5.1 Displaying Change Capture Information About Each Capture

Process

ORACLE

A sample query illustrates how to display change capture information about each
capture process.

The query in this section displays the following information about each capture
process in a database:

The name of the capture process.
The current state of the capture process
See "Capture Process States".

The total number of redo entries passed by LogMiner to the capture process for
detailed rule evaluation. A capture process converts a redo entry into an LCR and
performs detailed rule evaluation on the LCR when capture process prefiltering
cannot discard the change.

The total number LCRs enqueued since the capture process was last started.

To display this change capture information about each capture process in a
database:

1.

Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

Run the following query:

COLUWN CAPTURE_NAME HEADI NG ' Capt ur e| Nane' FORMAT Al5

COLUWN STATE HEADING ' State' FORMAT A25

COLUWN TOTAL_MESSAGES_CAPTURED HEADI NG ' Redo| Entri es| Eval uated| I n Detail' FORMAT
99999999999999

COLUWN TOTAL_MESSAGES_ENQUEUED HEADI NG ' Tot al | LCRs| Enqueued’ FORVAT
99999999999999

SELECT CAPTURE_NAME,
STATE,
TOTAL_MESSAGES_CAPTURED,
TOTAL_MESSAGES_ENQUEUED
FROM V$XSTREAM CAPTURE;

Your output looks similar to the following:

Redo
Entries Tot al
Capture Eval uat ed LCRs
Nare State In Detail Enqueued
CAP$_XQUT_1 WAI TING FOR TRANSACTI ON 297666 261798

6-15

Chapter 6
Monitoring the Capture Process for an Outbound Server

The number of redo entries scanned can be higher than the number of DML and DDL
redo entries captured by a capture process. Only DML and DDL redo entries that
satisfy the rule sets of a capture process are captured and sent to an outbound server.
Also, the total LCRs enqueued includes LCRs that contain transaction control
statements. These row LCRs contain directives such as COM T and ROLLBACK.
Therefore, the total LCRs enqueued is a number higher than the number of row
changes and DDL changes enqueued by a capture process.

¢ See Also:

"Row LCRs" for more information about transaction control statements

6.5.2 Displaying the Registered Redo Log Files for Each Capture

Process

ORACLE

A sample query illustrates how to display information about the archived redo log files
that are registered for each capture process in a database.

The sample query displays information about these files for both local capture
processes and downstream capture processes.

The query displays the following information for each registered archived redo log file:

* The name of a capture process that uses the file

* The source database of the file

* The sequence number of the file

* The name and location of the file at the local site

* Whether the file contains the beginning of a data dictionary build

* Whether the file contains the end of a data dictionary build

To display the registered redo log files for each capture process:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN CONSUMER_NAME HEADI NG ' Capt ure| Process| Name' FORMAT Al5
COLUWN SOURCE_DATABASE HEADI NG ' Sour ce| Dat abase' FORMAT Al10

COLUWN SEQUENCE# HEADI NG ' Sequence| Nunber' FORMAT 99999

COLUWN NAME HEADI NG ' Archived Redo Log| File Name' FORMAT A20

COLUWN DI CTI ONARY_BEG N HEADI NG ' Di cti onary| Bui | d| Begi n' FORMAT A10
COLUWN DI CTI ONARY_END HEADI NG ' Di cti onary| Bui | d| End" FORMAT A10

SELECT . CONSUVER_NAME,
r . SOURCE_DATABASE,

. SEQUENCEH,

. NAME,

. DI CTI ONARY_BEGI N,

r
r
r
r. DI CTI ONARY_END

6-16

Chapter 6
Monitoring the Capture Process for an Outbound Server

FROM DBA_REGI STERED_ARCHI VED LOG r, ALL_CAPTURE c
WHERE r. CONSUVER NAME = c. CAPTURE_NAME;

Your output looks similar to the following:

Capture Dictionary Dictionary

Process Sour ce Sequence Archived Redo Log Bui I d Bui I d

Name Dat abase Nurber File Nane Begin End

CAP$_XaUT_1 DBS2. EXAMP 15 /orc/dbs/ I og/arch2_1 NO NO
LE. OOM 15 _478347508. ar ¢

CAP$_XaUT_1 DBS2. EXAMP 16 /orc/dbs/log/arch2_1 NO NO
LE. OOM _16_478347508. ar ¢

CAP$_XQUT_2 DBS1. EXAMP 45 /remote_l ogs/archl_1 YES YES
LE. OOM 45 478347335. arc

CAP$_XQUT_2 DBS1. EXAMP 46 /renmote_|l ogs/archl_1 NO NO
LE. OOM _46_478347335. arc

CAP$_XQUT_2 DBS1. EXAMP 47 [renmote_l ogs/archl_1 NO NO
LE. OOM 47 478347335. arc

Assume that this query was run at the dbs2. exanpl e. comdatabase, and that cap$_xout _1
is a local capture process, and cap$_xout _2 is a downstream capture process. The
source database for the cap$_xout _2 downstream capture process is dbs1. exanpl e. com
This query shows that there are two registered archived redo log files for cap$_xout _1
and three registered archived redo log files for cap$_xout _2. This query shows the
name and location of each of these files in the local file system.

" See Also:

e "Capture Process Overview"
e "Local Capture and Downstream Capture"

e "SCN Values Related to a Capture Process" for information about
dictionary builds

6.5.3 Displaying Redo Log Files That Are Required by Each Capture

Process

ORACLE

A sample query illustrates how to display redo log files that are required by each
capture process.

A capture process needs the redo log file that includes the required checkpoint SCN,
and all subsequent redo log files. You can query the REQUI RED_CHECKPO NT_SCN column
in the ALL_CAPTURE data dictionary view to determine the required checkpoint SCN for a
capture process. Redo log files before the redo log file that contains the required
checkpoint SCN are no longer needed by the capture process. These redo log files
can be stored offline if they are no longer needed for any other purpose. If you reset
the start SCN for a capture process to a lower value in the future, then these redo log
files might be needed.

The query displays the following information for each required archived redo log file:

* The name of a capture process that uses the file

* The source database of the file

6-17

Chapter 6
Monitoring the Capture Process for an Outbound Server

* The sequence number of the file
* The name and location of the required redo log file at the local site

To display this information about each required archive redo log file in a database, run
the following query:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN CONSUMER_NAME HEADI NG ' Capt ur | Process| Nane' FORMAT Al5
COLUWN SOURCE_DATABASE HEADI NG ' Sour ce| Dat abase' FORMAT Al10

COLUWN SEQUENCE# HEADI NG ' Sequence| Number' FORMAT 99999

COLUWN NAME HEADI NG ' Requi red| Archived Redo Log| File Name' FORMAT A40

SELECT r. CONSUVER NAME,
r . SOURCE_DATABASE,
r . SEQUENCE#,
r. NAMVE
FROM DBA_REG STERED_ARCHI VED LOG r, ALL_CAPTURE c
WHERE 1. CONSUMER NAMVE = c. CAPTURE_NAME AND
r. NEXT_SCN >= ¢. REQUI RED_CHECKPOI NT_SCN;

Your output looks similar to the following:

Capture Requi r ed

Process Sour ce Sequence Archived Redo Log

Nare Dat abase Nurber File Nane

CAP$_XQUT_1 DBS2. EXAVP 16 /orc/dbs/1og/arch2_1_16_478347508. arc
LE. COM

CAP$_XQUT_2 DBS1. EXAVP 47 /remote_l ogs/archl_1_47_478347335.arc
LE. COM

¢ See Also:

"Capture Process Overview"

6.5.4 Displaying SCN Values for Each Redo Log File Used by Each
Capture Process

ORACLE

A sample query illustrates how to display information about the SCN values for
archived redo log files that are registered for each capture process in a database.

This query displays the SCN values for these files for both local capture processes
and downstream capture processes. This query also identifies redo log files that are
no longer needed by any capture process at the local database.

The query displays the following information for each registered archived redo log file:

* The capture process name of a capture process that uses the file
* The name and location of the file at the local site

* The lowest SCN value for the information contained in the redo log file

6-18

Chapter 6
Monitoring the Capture Process for an Outbound Server

* The lowest SCN value for the next redo log file in the sequence

* Whether the redo log file is purgeable

To display SCN values for each redo log file used by each capture process:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN CONSUMER_NAME HEADI NG ' Capt ure| Process| Name' FORMAT Al5
COLUWN NAME HEADI NG ' Archived Redo Log| File Nanme' FORMAT A25
COLUWN FI RST_SCN HEADI NG ' First SCN FORMAT 99999999999
COLUWN NEXT_SCN HEADI NG ' Next SCN FORMAT 99999999999

COLUWN PURGEABLE HEADI NG ' Pur geabl e?' FORMAT A10

SELECT r. CONSUVER NAME,

. NAME,

. FIRST_SCN,

. NEXT_SCN,

. PURGEABLE

FROM DBA_REGI STERED ARCHI VED LOG r, ALL_CAPTURE ¢
WHERE . CONSUVER NAME = c. CAPTURE_NAME;

r
r
r
r

Your output looks similar to the following:

Capture

Process Archived Redo Log

Nare File Nane First SCN Next SCN Pur geabl e?

CAP$_XQUT_1 [privatel/ ARCH VE_LOGS/ 1_ 509686 549100 YES
3.502628294. dbf

CAP$_XQUT_1 [privatel/ ARCH VE_LOGS/ 1_ 549100 587296 YES
4502628294 dbf

CAP$_XQUT_1 privatel/ ARCH VE_LOGS/ 1_ 587296 623107 NO

5_502628294. dbf

The redo log files with YES for Pur geabl e? for all capture processes will never be needed
by any capture process at the local database. These redo log files can be removed
without affecting any existing capture process at the local database. The redo log files
with NOfor Pur geabl e? for one or more capture processes must be retained.

6.5.5 Listing the Parameter Settings for Each Capture Process

ORACLE

A sample query illustrates how to list the parameter settings for each capture process.

Capture process parameters determine how a capture process operates.

To list the parameter settings for each capture process:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

6-19

Chapter 6
Monitoring the Capture Process for an Outbound Server

COLUWN CAPTURE_NAME HEADI NG ' Capt ur e| Process| Nane' FORMAT A25
COLUWN PARAMETER HEADI NG ' Parameter' FORVAT A30

COLUWN VALUE HEADI NG ' Val ue' FORMAT A10

COLUWN SET_BY_USER HEADI NG ' Set by| User?' FORMAT Al0

SELECT c. CAPTURE_NAME,
PARAVETER,
VALUE,
SET_BY_USER
FROM ALL_CAPTURE_PARAMETERS ¢, ALL_XSTREAM CUTBOUND o
WHERE c. CAPTURE_NAME=0. CAPTURE_NAVE
ORDER BY PARAMETER;

Your output looks similar to the following:

ORACLE

Capture
Process Set by
Nane Par anet er Val ue User ?
CAP$_XQUT 1 CAPTURE_| DKEY_OBJECTS N NO
CAP$_XQUT 1 CAPTURE_SEQUENCE_NEXTVAL N NO
CAP$_XQUT 1 DI SABLE ON LIMT N NO
CAP$_XQUT 1 DOANSTREAM REAL_TI NE_M NE Y NO
CAP$_XauT 1 EXCLUDETAG NO
CAP$_XQUT 1 EXCLUDETRANS NO
CAP$_XQUT 1 EXCLUDEUSER NO
CAP$_XQUT 1 EXCLUDEUSERI D NO
CAP$_XQUT 1 GETAPPLOPS Y NO
CAP$_XQUT 1 GETREPLI CATES N NO
CAP$_XQUT 1 | GNORE_TRANSACTI ON NO
CAP$_XQUT 1 | GNORE_UNSUPPORTED TABLE * NO
CAP$_XQUT 1 | NCLUDE_OBJECTS NO
CAP$_XQUT 1 I NLI NE_LOB_OPTI M ZATI ON N NO
CAP$_XQUT 1 MAXI MUM_SCN INFINTE NO
CAP$_XQUT 1 MAX_SGA SI ZE INFINTE NO
CAP$_XQUT 1 VERGE_THRESHOLD 60 NO
CAP$_XQUT 1 NESSAGE LIM T INFINTE NO
CAP$_XQUT 1 MESSAGE_TRACKI NG_FREQUENCY 2000000 NO
CAP$_XQUT 1 PARALLELI SM 0 NO
CAP$_XQUT 1 SKI P_AUTOFI LTERED TABLE_ DDL Y NO
CAP$_XQUT 1 SPLI T_THRESHOLD 1800 NO
CAP$_XQuT 1 STARTUP_SECONDS 0 NO
CAP$_XQUT 1 TINELIMT INFINTE NO
CAP$_XQUT 1 TRACE_LEVEL 0 NO
CAP$_XQUT 1 USE_RAC_SERVI CE N NO
CAP$_XQUT 1 VR TE_ALERT_LOG Y NO
CAP$_XQUT 1 XOUT_CLI ENT_EXI STS Y NO
" Note:

If the Set by User ? column is NOfor a parameter, then the parameter is set to its
default value. If the Set by User ? column is YES for a parameter, then the
parameter was set by a user and might or might not be set to its default value.

6-20

Chapter 6
Monitoring the Capture Process for an Outbound Server

" See Also:

e "Capture Process Subcomponents"
e "Setting a Capture Process Parameter"

e Oracle Database PL/SQL Packages and Types Reference for information
about capture process parameters

6.5.6 Determining the Applied SCN for Each Capture Process

A sample query illustrates how to determine the applied SCN for each capture
process.

The applied system change number (SCN) for a capture process is the SCN of the
most recent logical change record (LCR) dequeued by the relevant outbound servers.
All changes below this applied SCN have been processed by all outbound servers that
process changes captured by the capture process.

To determine the applied SCN for each capture process:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN CAPTURE_NAME HEADI NG ' Capture Process Name' FORMAT A30
COLUWN APPLI ED_SCN HEADI NG ' Applied SCN FORMAT 99999999999

SELECT CAPTURE_NAME, APPLIED_SCN FROM ALL_CAPTURE;
Your output looks similar to the following:

Capture Process Name Applied SCN

CAP$_XOUT 1 824825

6.5.7 Displaying the Redo Log Scanning Latency for Each Capture

Process

ORACLE

A sample query illustrates how to display the redo log scanning latency for each
capture process.

You can find the following information about each capture process by running the
query in this section:

» The redo log scanning latency, which specifies the number of seconds between
the creation time of the most recent redo log entry scanned by a capture process
and the current time. This number might be relatively large immediately after you
start a capture process.

* The seconds since last recorded status, which is the number of seconds since a
capture process last recorded its status.

6-21

Chapter 6
Monitoring the Capture Process for an Outbound Server

* The current capture process time, which is the latest time when the capture
process recorded its status.

* The logical change record (LCR) creation time, which is the time when the data
manipulation language (DML) or data definition language (DDL) change generated
the redo data at the source database for the most recently captured LCR.

The information displayed by this query is valid only for an enabled capture process.

To display the redo log scanning latency for each capture process:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN CAPTURE_NAME HEADI NG ' Capt ur e| Process| Name' FORMAT Al2
COLUWN LATENCY_SECONDS HEADI NG ' Lat ency|in| Seconds' FORMAT 999999
COLUWN LAST_STATUS HEADI NG ' Seconds Since|Last Status' FORMAT 999999
COLUWN CAPTURE_TI ME HEADI NG ' Current | Process| Ti me'

COLUWN CREATE_TI ME HEADI NG ' Message| Creation Tinme' FORMAT 999999

SELECT CAPTURE_NAME,
((SYSDATE - CAPTURE_MESSAGE_CREATE TI ME) *86400) LATENCY SECONDS,
((SYSDATE - CAPTURE_TI ME) *86400) LAST STATUS,
TO_CHAR(CAPTURE_TI ME, ' HH24: M : SS MM DD/ YY') CAPTURE_ TI ME,
TO_CHAR(CAPTURE_MESSAGE_CREATE TIME, ' HH24: M :SS MV DD/ YY') CREATE TI ME
FROM V$XSTREAM CAPTURE;

Your output looks similar to the following:

Capture Lat ency Current

Process in Seconds Since Process Message

Name Seconds Last Status Time Creation Tine
CAP$_XQUT_1 1 1 10:32:52 02/28/11 10:32:52 02/28/ 11

The "Latency i n Seconds" returned by this query is the difference between the current
time (SYSDATE) and the "Message Creation Time." The "Seconds Si nce Last Stat us"
returned by this query is the difference between the current time (SYSDATE) and the
"Current Process Tine."

6.5.8 Displaying the Extra Attributes Captured by a Capture Process

ORACLE

A sample query illustrates how to display the extra attributes captured by a capture
process.

You can use the | NCLUDE_EXTRA ATTRI BUTE procedure in the DBMS_CAPTURE_ADM package
to instruct a capture process to capture one or more extra attributes and include the
extra attributes in logical change records (LCRS).

To display extra attributes captured by a capture process:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

6-22

Chapter 6
Monitoring XStream Rules

COLUWN CAPTURE_NAME HEADI NG ' Capture Process' FORVAT A20
COLUWN ATTRI BUTE_NAME HEADI NG ' Attribute Name' FORMAT Al5
COLUWN | NCLUDE HEADI NG ' Include Attribute in LCRs?" FORMAT A30

SELECT CAPTURE_NAME, ATTRI BUTE_NAME, | NCLUDE
FROM ALL_CAPTURE_EXTRA ATTRI BUTES
ORDER BY CAPTURE_NAME;

Your output looks similar to the following:

Capture Process Attribute Nanme Include Attribute in LCRs?
CAP$_XQUT 1 ROWID NO
CAP$_XQUT 1 SERI AL# NO
CAP$_XQUT_1 SESS| ON# NO
CAP$_XQUT 1 THREAD# NO
CAP$_XQUT 1 TX_NAMVE YES
CAP$_XQUT 1 USERNAMVE NO

Based on this output, the capture process named xcapt ur e includes the transaction
name (t x_nane) in the LCRs that it captures, but this capture process does not include
any other extra attributes in the LCRs that it captures.

¢ See Also:

e "Extra Information in Row LCRs and DDL LCRs"

e Oracle Database PL/SQL Packages and Types Referencefor more
information about the | NCLUDE_EXTRA_ATTRI BUTE procedure

6.6 Monitoring XStream Rules

ORACLE

A sample query illustrates how to monitor XStream rules.

The ALL_XSTREAM RULES view contains information about the rules used by outbound
servers and inbound servers. If an outbound server was created using the
CREATE_QUTBOUND procedure in the DBMS_XSTREAM ADM package, then these views also
contain information about the rules used by the capture process that sends changes to
the outbound server. However, if an outbound server was created using the
ADD_OUTBOUND procedure, then these views do not contain information about the capture
process rules. Also, these views do not contain information about the rules used by
any propagation in the stream from a capture process to an outbound server.

To display information about the rules used by XStream components:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN STREAMS_NAVE HEADI NG ' XSt r ean Component | Name' FORVAT A9
COLUWN STREAMS_TYPE HEADI NG ' XSt r eani Component | Type' FORVAT A9
COLUWN RULE_NAME HEADI NG ' Rul e Name' FORVAT A13

COLUWN RULE_SET_TYPE HEADI NG ' Rul e Set| Type' FORMAT A8

OOLUMN STREAMS_RULE_TYPE HEADI NG ' Rul €| Level ' FORMAT A7

6-23

Chapter 6
Monitoring Declarative Rule-Based Transformations

COLUWN SCHEMA NAME HEADI NG ' Schera| Nane' FORVAT A6
COLUWN OBJECT NAME HEADI NG ' Obj ect | Nane' FORVAT All
COLUWN RULE_TYPE HEADI NG ' Rul e| Type' FORMAT A4

SELECT STREANS_NAME,
STREAMS_TYPE,
RULE_NAME,
RULE_SET_TYPE,
STREAMS_RULE_TYPE,
SCHEMA_NAME,
OBJECT_NAME,
RULE_TYPE

FROM ALL_XSTREAM RULES;

Your output looks similar to the following:

XStream XStream

Cormponent Conponent Rul e Rul e Set Rule Schema (bj ect Rul e
Name Type Name Type Level Name Nane Type
xaur APPLY ORDERS11 PCSI TIVE TABLE CE ORDERS DML
xaur APPLY ORDERS12 PCSI TIVE TABLE CE ORDERS DDL
xaur APPLY ORDER_| TEMS14 PCSI TI VE TABLE CE ORDER_I TEMS DM
xaur APPLY ORDER_I TEMS15 PCSI TI VE TABLE CE ORDER_I TEMS DDL
xaur APPLY HR16 POSI TI VE SCHEMA HR DML
xaur APPLY HRL7 POSI TIVE SCHEMA HR DDL

Notice that the STREAMS_TYPE is APPLY even though the rules are in the positive rule set
for the outbound server xout . You can determine the purpose of an apply component
by querying the PURPCSE column in the ALL_APPLY view.

The ALL_XSTREAM RULES view contains more information about the rules used in an
XStream configuration than what is shown in this example. For example, you can
guery this view to show information about the rule sets used by XStream components.

To view information about the rules used by all components, including capture
processes, propagations, apply processes, outbound servers, and inbound servers,
you can query the ALL_XSTREAM RULES view. See Oracle Streams Concepts and
Administration for sample queries that enable you to monitor rules.

" See Also:

Oracle Database Reference

6.7 Monitoring Declarative Rule-Based Transformations

ORACLE

A sample query illustrates how to monitor declarative rule-based transformations.

A declarative rule-based transformations is a rule-based transformation that covers
one of a common set of transformation scenarios for row LCRs. Declarative rule-based
transformations are run internally without using PL/SQL.

The query in this section displays the following information about each declarative
rule-based transformation in a database:

6-24

ORACLE

Chapter 6
Monitoring Declarative Rule-Based Transformations

* The owner of the rule for which a declarative rule-based transformation is
specified.

* The name of the rule for which a declarative rule-based transformation is
specified.

* The type of declarative rule-based transformation specified. The following types
are possible: ADD COLUWN, DELETE COLUMN, KEEP COLUWNS, RENAME COLUWN, RENAME SCHEMA,
and RENAVE TABLE.

* The precedence of the declarative rule-based transformation. The precedence is
the execution order of a transformation in relation to other transformations with the
same step number specified for the same rule. For transformations with the same
step number, the transformation with the lowest precedence is executed first.

e The step number of the declarative rule-based transformation. If more than one
declarative rule-based transformation is specified for the same rule, then the
transformation with the lowest step number is executed first. You can specify the
step number for a declarative rule-based transformation when you create the
transformation.

You must have DBA role in order to access the DBA XSTREAM TRANSFORMATI ONS view.

Run the following query to display this information for the declarative rule-based
transformations in a database:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUW RULE_OMNER HEADI NG ' Rul e Owner' FORMAT Al5

COLUWN RULE_NAME HEADI NG ' Rul e Nane' FORMAT Al5

COLUWN DECLARATI VE_TYPE HEADI NG ' Decl arati ve| Type' FORMAT Al5
COLUWN PRECEDENCE HEADI NG ' Precedence' FORMAT 99999

COLUWN STEP_NUVBER HEADI NG ' Step Nunmber' FORMAT 99999

SELECT RULE_OWRER,
RULE_NAME,
DECLARATI VE_TYPE,
PRECEDENCE,
STEP_NUMBER
FROM DBA_XSTREAM TRANSFORMATI ONS
WHERE TRANSFORM TYPE = ' DECLARATI VE TRANSFORMATI ON ;

Your output looks similar to the following:

Decl arative
Rul e Oaner Rul e Nane Type Precedence Step Nunber
XSTRVADM N JOBS26 RENAME TABLE 4 0
XSTRVADM N EMPLOYEES22 ADD COLUWN 3 0

Based on this output, the ADD COLUW transformation executes before the RENAME TABLE
transformation because the step number is the same (zero) for both transformations
and the ADD COLUWN transformation has the lower precedence.

The DBA_XSTREAM TRANSFORMATI ONS view can display more detailed information about
each transformation based on the declarative type of the transformation. Include a
WHERE clause in the query with the DECLARATI VE_TYPE equal to the type of transformation,
such as ADD COLUWN, DELETE COLUMN, and so on.

6-25

Chapter 6
Monitoring Declarative Rule-Based Transformations

For example, the previous query listed an ADD COLUW transformation and a RENAVE TABLE
transformation.

Note:

Precedence and step number pertain only to declarative rule-based
transformations. They do not pertain to subset rule transformations or custom
rule-based transformations.

* Displaying Information About ADD COLUMN Transformations
A sample query illustrates how to display detailed information about the ADD COLUWN
declarative rule-based transformations in a database.

» Displaying Information About RENAME TABLE Transformations
A sample query illustrates how to display detailed information about the RENAME
TABLE declarative rule-based transformations in a database.

¢ See Also:

¢ "Rule-Based Transformations"

e "Managing Declarative Rule-Based Transformations"

6.7.1 Displaying Information About ADD COLUMN Transformations

ORACLE

A sample query illustrates how to display detailed information about the ADD COLUWN
declarative rule-based transformations in a database.

You use the view DBA XTREAM TRANSFORMATI ONS to display information about the columns
that are added to row LCRs with the declarative rule-based transformation procedure
DBNVS_XSTREAM ADM

To display information about ADD COLUW transformations:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN RULE_OANER HEADI NG ' Rul €] Oaner' FORVAT AL0
COLUMN RULE_NAME HEADI NG ' Rul €| Nane' FORMAT All
COLUMN SCHEMA NAVE HEADI NG ' Schens| Nane' FORVAT A6
COLUMN TABLE NAVE HEADI NG ' Tabl ¢| Name' FORVAT A9
COLUMN COLUMN_NAME HEADI NG ' Col unm| Nane' FORVAT AL0
COLUMN COLUMN_VALUE HEADI NG ' Col umm| Val ue' FORVAT AL0
COLUMN COLUMN_TYPE HEADI NG ' Col unm| Type' FORVAT A8

SELECT RULE_OMNER,

RULE_NAME,
SCHEMA_NAME,

6-26

Chapter 6
Monitoring Declarative Rule-Based Transformations

TABLE_NAME,
COLUWN_NAME,
ANYDATA. AccessDat e(COLUMN_VALUE) "Val ue",
COLUMN_TYPE
FROM DBA_XSTREAM TRANSFORMATI ONS
VWHERE DECLARATI VE_TYPE = ' ADD COLUWN ;

Your output looks similar to the following:

Rul e Rul e Schema Table Col um Col um Col um
Onner Name Name Name Nare Val ue Type
XSTRVADM N EMPLOYEES22 HR EMPLOYEES Bl RTH_DATE SYS. DATE

This output show the following information about the ADD COLUWN declarative rule-based
transformation:

* ltis specified on the enpl oyees22 rule in the xst r madni n schema.
e |t adds a column to row LCRs that involve the enpl oyees table in the hr schema.
e The column name of the added column is Bl RTH_DATE.

e The value of the added column is NULL. The COLUMN_VALUE column in the
ALL_XSTREAM TRANSFORMATI ONS view is type ANYDATA. In this example, because the
column type is DATE, the ANYDATA. AccessDat e member function is used to display the
value. Use the appropriate member function to display values of other types.

e The column type of the added column is DATE.

6.7.2 Displaying Information About RENAME TABLE Transformations

A sample query illustrates how to display detailed information about the RENAVE TABLE
declarative rule-based transformations in a database.

You use the view DBA XSTREAM TRANSFORMATI ONS to display information about declarative
rule-based transformations that rename a table in a row logical change record (LCR).

To display information about RENAVE TABLE transformations:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUW RULE_OAMNER HEADI NG ' Rul €| Onner' FORMAT A10

COLUW RULE_NAME HEADI NG ' Rul e| Nane' FORVAT A10

COLUWN FROM SCHEMA NAME HEADI NG ' From Schema| Name' FORMAT Al10
COLUW TO_SCHEMA_NAME HEADI NG ' To| Schema| Nane' FORMAT A10
COLUW FROM TABLE_NAME HEADI NG ' Fromj Tabl e| Name' FORMAT Al15
COLUWN TO TABLE_NAME HEADI NG ' To| Tabl e| Nane' FORVAT Al5

SELECT RULE_OWRER,

RULE_NAME,
FROM SCHEMA_NAME,
TO_SCHEMA_NAME,
FROM TABLE_NAME,
TO TABLE_NAVE

FROM DBA_XSTREAM TRANSFORMATI ONS

WHERE DECLARATI VE_TYPE = ' RENAME TABLE ;

ORACLE 6-27

ORACLE

Chapter 6
Monitoring Declarative Rule-Based Transformations

Your output looks similar to the following:

From To From To
Rul e Rul e Schema Schema Tabl e Tabl e
Owner Name Narme Narre Narre Narre
XSTRVADM N JOBS26 HR HR HR. JOBS HR. ASS| GNVENTS

This output show the following information about the RENAMVE TABLE declarative rule-
based transformation:

* ltis specified on the j obs26 rule in the xst r madni n schema.

e Itrenames the hr.jobs table in row LCRs to the hr. assi gnnent s table.

6-28

Troubleshooting XStream Out

You can diagnose and correct problems with an XStream Out configuration.

Diagnosing Problems with XStream Out
You can diagnose problems with XStream Out by using several different
techniques.

Problems and Solutions for XStream Out
You can implement solutions for common problems with XStream Out.

How to Get More Help with XStream Out
Oracle Support can provide more help with XStream Out.

" See Also:

e "XStream Out Concepts"
e "XStream Use Cases"

e "Configuring XStream Out"

7.1 Diagnosing Problems with XStream Out

You can diagnose problems with XStream Out by using several different techniques.

Viewing Alerts
An alert is a warning about a potential problem or an indication that a critical
threshold has been crossed.

Using the Streams Configuration Report and Health Check Script

The Streams Configuration Report and Health Check Script was designed for
Oracle Streams, but it can provide important information about the XStream
components in an XStream Out configuration. The report is useful to confirm that
the prerequisites for XStream are met and to identify the database objects of
interest for XStream.

Checking the Trace File and Alert Log for Problems
Messages about each capture process and outbound server are recorded in trace
files for the database in which the process is running.

7.1.1 Viewing Alerts

An alert is a warning about a potential problem or an indication that a critical threshold
has been crossed.

ORACLE

There are two types of alerts:

7-1

ORACLE

Chapter 7
Diagnosing Problems with XStream Out

» Stateless: Alerts that indicate single events that are not necessarily tied to the
system state. For example, an alert that indicates that a capture aborted with a
specific error is a stateless alert.

» Stateful: Alerts that are associated with a specific system state. Stateful alerts are
usually based on a numeric value, with thresholds defined at warning and critical
levels. For example, an alert on the current Streams pool memory usage
percentage, with the warning level at 85% and the critical level at 95%, is a stateful
alert.

An Oracle database generates a stateless alert under the following conditions:

e A capture process aborts.
e An outbound server aborts.

An Oracle database generates a stateful XStream alert when the Streams pool
memory usage exceeds the percentage specified by the STREAMS_POOL_USED_PCT metric.
You can manage this metric with the SET_THRESHOLD procedure in the DBMS_SERVER ALERT
package.

You can view alerts in Oracle Enterprise Manager Cloud Control, or you can query the
following data dictionary views:

e The DBA OUTSTANDI NG _ALERTS view records current stateful alerts. The
DBA_ALERT H STCRY view records stateless alerts and stateful alerts that have been
cleared. For example, if the memory usage in the Streams pool exceeds the
specified threshold, then a stateful alert is recorded in the DBA_OUTSTANDI NG_ALERTS
view.

e The DBA ALERT HI STCRY data dictionary view shows alerts that have been cleared
from the DBA_OUTSTANDI NG ALERTS view. For example, if the memory usage in the
streams pool falls below the specified threshold, then the alert recorded in the
DBA_OUTSTANDI NG ALERTS view is cleared and moved to the DBA ALERT_HI STORY view.

For example, to list the current stateful alerts, run the following query on the
DBA_OUTSTANDI NG ALERTS view:

COLUWN REASON HEADI NG ' Reason for Alert' FORMAT A35
COLUWN SUGGESTED _ACTI ON HEADI NG ' Suggest ed Response' FORMAT A35

SELECT REASON, SUGGESTED ACTI ON
FROM DBA_OUTSTANDI NG_ALERTS
VWHERE MODULE_| D LI KE ' %XSTREAM% ;

To list the stateless alerts and cleared XStream stateful alerts, run the following query
on the DBA_ALERT _H STCORY view:

COLUWN REASON HEADI NG ' Reason for Alert' FORMAT A35
COLUWN SUGGESTED_ACTI ON HEADI NG ' Suggest ed Response' FORMAT A35

SELECT REASON, SUGGESTED ACTI ON
FROM DBA_ALERT_HI STORY
VWHERE MODULE_| D LI KE ' %XSTREAM% ;

Most alerts are cleared automatically when the cause of the problem disappears or is
acknowledged by the database administrator.

7-2

Chapter 7
Diagnosing Problems with XStream Out

¢ See Also:

e Oracle Database Administrator’s Guide for information about alerts and for
information about subscribing to the ALERT_QUE queue to receive
notifications when new alerts are generated

e Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_SERVER ALERT package

e "Configure the Streams pool"

e Oracle Database 2 Day + Performance Tuning Guide for more information
on clearing and purging alerts with Oracle Enterprise Manager Cloud
Control

7.1.2 Using the Streams Configuration Report and Health Check Script

The Streams Configuration Report and Health Check Script was designed for Oracle
Streams, but it can provide important information about the XStream components in an
XStream Out configuration. The report is useful to confirm that the prerequisites for
XStream are met and to identify the database objects of interest for XStream.

The report also analyzes the rules in the database to identify common problems with
XStream rules.

The Streams Configuration Report and Health Check Script is available on the My
Oracle Support (formerly Oracle MetalLink) Web site. To run the script, complete the
following steps:

1. Using a Web browser, go to the My Oracle Support Web site:
http://support.oracle.cont
2. Log into My Oracle Support.

" Note:

If you are not a My Oracle Support registered user, then click Register
Here and register.

3. Find the database bulletin with the following title:
Streams Configuration Report and Heal th Check Scri pt

The doc ID for this bulletin is 273674.1.

4. Follow the instructions to download the script for your release, run the script, and
analyze the results.

7.1.3 Checking the Trace File and Alert Log for Problems

Messages about each capture process and outbound server are recorded in trace files
for the database in which the process is running.

ORACLE a

http://support.oracle.com/

Chapter 7
Diagnosing Problems with XStream Out

A local capture process runs on a source database and a downstream capture
process runs on a downstream database. These trace file messages can help you to
identify and resolve problems in an XStream Out configuration.

All trace files for background processes are written to the Automatic Diagnostic
Repository. The names of trace files are operating system specific, but each file
usually includes the name of the process writing the file.

For example, on some operating systems, the trace file name for a process is

e sid is the system identifier for the database

e xxxx is the name of the process

e jiiii isthe operating system process number

Also, you can setthe wite_al ert _| og parameter to y for both a capture process and
an outbound server. When this parameter is set to y, which is the default setting, the
alert log for the database contains messages about why the capture process or
outbound server stopped.

You can control the information in the trace files by setting the trace_| evel capture
process or outbound server apply parameter using the SET_PARAMETER procedure in the
DBMS_XSTREAM ADM package.

e Capture Process Trace Files
A capture process is an Oracle background process named CPnn, where nn can
include letters and numbers.

* Logminer Trace Files
Logminer trace files are useful in understanding issues with XStream Out.

e Qutbound Server Trace File
An outbound server is an Oracle background process named APnn, where nn can
include letters and numbers.

* Client Application Trace Files
Client application trace files can help to isolate a problem with XStream Out.

See Also:

e Oracle Database Administrator’s Guidefor more information about trace
files and the alert log, and for more information about their names and
locations

e Oracle Database PL/SQL Packages and Types Referencefor more
information about setting the trace_| evel capture process parameter and
the trace_| evel apply parameter

e Your operating system specific Oracle documentation for more information
about the names and locations of trace files

7.1.3.1 Capture Process Trace Files

A capture process is an Oracle background process named CPnn, where nn can include
letters and numbers.

ORACLE 7-4

Chapter 7
Diagnosing Problems with XStream Out

For example, on some operating systems, if the system identifier for a database
running a capture process is hqdb and the capture process number is 01, then the trace
file for the capture process starts with hqdb_CPO01.

¢ See Also:

"Displaying Change Capture Information About Each Capture Process" for a
query that displays the capture process number of a capture process

7.1.3.2 Logminer Trace Files

Logminer trace files are useful in understanding issues with XStream Out.

The logminer trace files are created when the parallelism capture process parameter is
set to a value greater than 0. There are at least 3 logminer trace files that are
generated and written to the Automated Diagnostic Repository.

7.1.3.3 Outbound Server Trace File

An outbound server is an Oracle background process named APnn, where nn can
include letters and numbers.

For example, on some operating systems, if the system identifier for a database
running an outbound server is hqdb and the outbound server number is 01, then the
trace file for the outbound server starts with hqdb_ap01_xxxx. trc.

An outbound server also uses other processes. Information about an outbound server
might be recorded in the trace file for one or more of these processes. The process
name of the reader server and apply servers is ASnn, where nn can include letters and
numbers. So, on some operating systems, if the system identifier for a database
running an outbound server is hqdb and the process number is 01, then the trace file
that contains information about a process used by an outbound server starts with
hqdb_AS01.

¢ See Also:

"Monitoring Session Information About XStream Out Components"

7.1.3.4 Client Application Trace Files

ORACLE

Client application trace files can help to isolate a problem with XStream Out.

When troubleshooting errors, isolating a problem to a key component, or identifying
potential performance issues, it is a good idea to examine the trace files from all of the
key sources in your XStream environment. One key source to check is the client
application trace files. The client trace files are located in the directory: $ORACLE_HOVE/
diag/clients/.

7-5

Chapter 7
Problems and Solutions for XStream Out

7.2 Problems and Solutions for XStream Out

You can implement solutions for common problems with XStream Out.

In general, you can troubleshoot XStream outbound servers in the same way that you
troubleshoot Oracle Streams apply processes. In addition, an XStream Out
environment includes capture processes and queues, and might include other
components, such as propagations, rules, and rule-based transformations. To
troubleshoot these components, see the troubleshooting documentation in Oracle
Streams Concepts and Administration.

e An OCI Client Application Cannot Attach to the Outbound Server
An XStream client application cannot attach to an outbound server using the
Oracle Call Interface (OCI) OCI XSt r eanQut At t ach() function.

* Changes Are Failing to Reach the Client Application in XStream Out
In an XStream Out configuration, database changes that should be captured and
streamed to the XStream client application are not reaching the client application.

* The Capture Process Is Missing Required Redo Log Files
When a capture process is started or stopped and restarted, it might need to scan
redo log files that were generated before the log file that contains the SCN that
corresponds to the required checkpoint SCN, and these files might have been
removed.

* LCRs Streaming from an Outbound Server Are Missing Extra Attributes
LCRs streaming from an outbound server are expected to include extra attributes,
but these attributes are not included in the LCRs.

e The XStream Out Client Application Is Unresponsive
The XStream client application in an XStream Out configuration is unresponsive.

7.2.1 An OCI Client Application Cannot Attach to the Outbound Server

ORACLE

An XStream client application cannot attach to an outbound server using the Oracle
Call Interface (OCI) OCl XSt reanQut At t ach() function.

The following sections describe possible problems and their solutions.

Problem 1: Client Application Not Connected as Connect User

The client application is not connected as the outbound server's connect user to the
outbound server's database. The client application connected to the database as a
different user.

To display information about the XStream Out servers that are accessible to the
connect user:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query to determine the connect user:

SELECT SERVER NAME,
CONNECT_USER
CAPTURE_NAME,

7-6

Chapter 7
Problems and Solutions for XStream Out

SOURCE_DATABASE,
CAPTURE_USER
QUEUE_OWKER

FROM ALL_XSTREAM OUTBOUND;

This query displays the name of the user (connect _user) who can connect to the
outbound server and process the outbound LCRs.

Solution 1

To correct problem 1:

* Modify the client application to connect to the database as the connect user before
attaching to the outbound server.

Problem 2: Client Application Not Passing Service Handle

The client application is not passing a service handle to the outbound server.
Solution 2

To correct problem 2:

* Modify the client application so that it passes a service handle using 0Cl SvcCt x and
not OCl Server.
¢ See Also:

e "XStream Out and Security"

e Oracle Call Interface Programmer's Guide

7.2.2 Changes Are Failing to Reach the Client Application in XStream

Out

ORACLE

In an XStream Out configuration, database changes that should be captured and
streamed to the XStream client application are not reaching the client application.

The following sections describe possible problems and their solutions.

Problem 1: Capture Process Has Fallen Behind

The capture process has fallen behind.

To determine whether the capture process has fallen behind:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN CAPTURE_NAME HEADI NG ' Capt ur e| Name' FORMAT Al5
COLUWN STATE HEADI NG ' State' FORVAT Al5
COLUWN CREATE_MESSAGE HEADI NG ' Last LCR| Create Time'

7-7

ORACLE

Chapter 7
Problems and Solutions for XStream Out

COLUWN ENQUEUE_MESSAGE HEADI NG ' Last | Enqueue Ti e’

SELECT CAPTURE_NAME, STATE,
TO_CHAR(CAPTURE_MESSAGE_CREATE_TIME, ' HH24: M : SS MV DD/ YY)
CREATE_MESSAGE,
TO_CHAR(ENQUEUE_MESSAGE_CREATE_TIME, ' HH24: M : SS MV DD/ YY)
ENQUEUE_MESSAGE
FROM V$XSTREAM CAPTURE;

This query shows the current state of the capture process. This query also
displays the time when the capture process last created a logical change record
(LCR) and the time when the capture process last enqueued an LCR. If the times
returned are before the time when the database changes were made, then the
capture process must catch up and capture the changes.

Solution 1

No action is required. Normally, the capture process will catch up on its own without
the need for intervention.

¢ See Also:

e Oracle Database Reference

e Oracle Streams Replication Administrator's Guide

Problem 2: Rules or Rule-Based Transformation Excluding Changes

Rules or rule-based transformations are excluding the changes that should be
captured.

Rules determine which LCRs are captured by a capture process, sent from a source
gueue to a destination queue by a propagation, and sent to an XStream client
application by an outbound server. If the rules are not configured properly, then the
client application might not receive the LCRs it should receive. The client application
might also receive LCRs that it should not receive.

Rule-based transformations modify the contents of LCRs. Therefore, if the expected
change data is not reaching the client application, it might be because a rule-based

transformation modified the data or deleted the data. For example, a DELETE_COLUWN

declarative rule-based transformation removes a column from an LCR.

Solution 2

To correct problem 2:

* Check the rules and rule-based transformations that are configured for each
component in the stream from the capture process to the client application, and
correct any problems.

¢ See Also:

Oracle Streams Concepts and Administration

7-8

Chapter 7
Problems and Solutions for XStream Out

Problem 3: LCRs Blocked in the Stream

If the capture process has not fallen behind, and there are no problems with rules or
rule-based transformations, then LCRs might be blocked in the stream for some other
reason. For example, a propagation or outbound server might be disabled, a database
link might be broken, or there might be another problem.

You can track an LCR through a stream using one of the following methods:

e Setting the nessage_t racki ng_frequency capture process parameter to 1 or another
relatively low value

To disable LCR tracking when you use this method, set the
message_t racki ng_f requency capture process parameter to NULL or exit the session.

e Running the SET_MESSAGE_TRACKI NG procedure in the DBMS_XSTREAM ADM package

To disable LCR tracking when you use this method, set the tracki ng_| abel
parameter to NULL in the SET_MESSAGE_TRACKI NG procedure or exit the session.

After using one of these methods, use the V$XSTREAM MESSAGE_TRACKI NG view to monitor
the progress of LCRs through a stream. By tracking an LCR through the stream, you
can determine where the LCR is blocked.

In addition, if a propagation is used to send LCRs in the configuration, then you can
check the current state of the propagation sender by running the following query:

SELECT STATE FROM V$PROPAGATI ON_SENDER,

You can check the current state of an outbound server by running the following query:

SELECT SERVER NAME, STATE FROM V$XSTREAM OUTBOUND SERVER;

You can verify that the client application is attached to the outbound server by running
the following query:

COLUWN SERVER NAME HEADI NG ' Capt ure| Nane' FORMAT A30
COLUWN STATUS HEADI NG ' Status' FORMAT A8

SELECT SERVER_NAME, STATUS FROM ALL_XSTREAM OUTBOUND;

The STATUS column shows ATTACHED when the client application is attached to the
outbound server.

Solution 3

To correct problem 3:

* Take the appropriate action based on the reason that the LCR is blocked. For
example, if a propagation is disabled, then enable it.

ORACLE 7-9

Chapter 7
Problems and Solutions for XStream Out

¢ See Also:

e Oracle Streams Replication Administrator's Guide for more information
about tracking LCRs through a stream

e Oracle Database PL/SQL Packages and Types Reference for information
about the nmessage_t racki ng_f requency capture process parameter

e Oracle Streams Concepts and Administration about troubleshooting Oracle
Streams components

7.2.3 The Capture Process Is Missing Required Redo Log Files

ORACLE

When a capture process is started or stopped and restarted, it might need to scan
redo log files that were generated before the log file that contains the SCN that
corresponds to the required checkpoint SCN, and these files might have been
removed.

You can query the ALL_CAPTURE data dictionary view to determine the required
checkpoint SCN for a capture process. It is also helpful to query the V$XSTREAM CAPTURE
and check the STATE column. The state of a capture process describes what the
capture process is doing currently. In this case, you can gain additional insight as to
why the capture process is missing or waiting for redo log files.

COLUWN CAPTURE_NAME HEADING ' Capture Name' FORMAT A30
COLUWN STATE HEADING ' State' FORMAT A30

SELECT CAPTURE_NAME, STATE FROM V$XSTREAM CAPTURE;

CAPTURE_NAME STATE

XOUT_SRC_CAPTURE VWAI TI NG FOR REDO

Additional information might be displayed along with the state information when you
query the V$XSTREAM CAPTURE view. The additional information can help you to
determine why the capture process is waiting for redo. For example, a statement
similar to the following might appear for the STATE column when you query the view:

VWAI TING FOR REDO LAST SCN M NED 6700345

In this case, the output shows the last system change number (SCN) scanned by the
capture process. In other cases, the output might display the redo log file name
explicitly. Either way, the additional information can help you identify the redo log file
for which the capture process is waiting. To correct the problem, make any missing
redo log files available to the capture process.

Problem: Required Redo Log Files Were Removed

Removing required redo log files before they are scanned by a capture process
causes the capture process to abort and results in the following error in a capture
process trace file:

ORA-01291: nissing logfile

7-10

Chapter 7
Problems and Solutions for XStream Out

Solution: Restore Missing Redo Log Files and Prevent Future Problems

If you see this error, then try restoring any missing redo log files and restarting the
capture process. You can check the VELOGWR_LOGS dynamic performance view to
determine the missing SCN range, and add the relevant redo log files. A capture
process needs the redo log file that includes the required checkpoint SCN and all
subsequent redo log files. You can query the REQUI RED_CHECKPOI NT_SCN column in the
ALL_CAPTURE data dictionary view to determine the required checkpoint SCN for a
capture process.

If the capture process is disabled for longer than the amount of time specified in the
CONTROL_FI LE_RECORD KEEP_TI ME initialization parameter, then information about the
missing redo log files might have been replaced in the control file. You can query the
V$ARCH VE_LOG view to see if the log file names are listed. If they are not listed, then you
can register them with a ALTER DATABASE REG STER OR REPLACE LOGFI LE SQL statement.

If you are using the fast recovery area feature of Recovery Manager (RMAN) on a
source database in an XStream environment, then RMAN might delete archived redo
log files that are required by a capture process. RMAN might delete these files when
the disk space used by the recovery-related files is nearing the specified disk quota for
the fast recovery area. To prevent this problem in the future, complete one or more of
the following actions:

* Increase the disk quota for the fast recovery area. Increasing the disk quota
makes it less likely that RMAN will delete a required archived redo log file, but it
will not always prevent the problem.

» Configure the source database to store archived redo log files in a location other
than the fast recovery area. A local capture process will be able to use the log files
in the other location if the required log files are missing in the fast recovery area. In
this case, a database administrator must manage the log files manually in the
other location.

RMAN always ensures that archived redo log files are backed up before it deletes
them. If RMAN deletes an archived redo log file that is required by a capture process,
then RMAN records this action in the alert log.

¢ See Also:

e "Capture Processes"
e "XStream Out and Recovery Manager"

e "Displaying Redo Log Files That Are Required by Each Capture Process"

7.2.4 LCRs Streaming from an Outbound Server Are Missing Extra

Attributes

ORACLE

LCRs streaming from an outbound server are expected to include extra attributes, but
these attributes are not included in the LCRs.

LCRs can contain the following extra attributes related to database changes:

e row.id

7-11

ORACLE

Chapter 7
Problems and Solutions for XStream Out

e serial#
° session#
°* thread#
° tx_name
° usernane

By default, a capture process does not capture these extra attributes. If you want extra
attributes to be included in LCRs streamed from an outbound server to an XStream
client application, but the LCRs do not contain values for extra attributes, then make
sure the capture process that captures changes for the outbound server is configured
to capture values for the extra attributes.

The following sections describe the possible problem and its solution.

Problem: Capture Process Not Configured to Capture Extra Attributes

The capture process is not configured to capture the required extra attributes.

To display the extra attributes currently being captured by the capture
processes in a database:

1. Connect to the database running the capture process as the XStream
administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN CAPTURE_NAME HEADI NG ' Capture Process' FORVAT A30
COLUWN ATTRI BUTE_NAME HEADI NG ' Attribute Name' FORMAT A30

SELECT CAPTURE_NAME, ATTRI BUTE_NAME
FROM ALL_CAPTURE_EXTRA_ATTRI BUTES
WHERE | NCLUDE = ' YES
ORDER BY CAPTURE_NAME;

If an extra attribute is not displayed by this query, then it is not being captured.
Solution

To solve the problem, configure the capture process to capture the required
extra attributes:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

2. Run the | NCLUDE_EXTRA_ATTRI BUTE procedure in the DBMS_CAPTURE_ADM package.
Example 7-1 Including the tx_name Attribute for the Capture Process xcapture

BEG N
DBVS_CAPTURE_ADM | NCLUDE_EXTRA_ATTRI BUTE(
capture_name => 'xcapture',
attribute_name => 'tx_name',
i ncl ude => TRUE);
END;
/

7-12

Chapter 7
Problems and Solutions for XStream Out

" See Also:

Oracle Streams Concepts and Administration

7.2.5 The XStream Out Client Application Is Unresponsive

The XStream client application in an XStream Out configuration is unresponsive.

The following sections describe the possible problem and its solution.

Problem 1: Streams Pool Size Is Too Small

The Streams pool size might be too small.

To determine whether the Streams pool size is too small:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following queries at the database that contains the outbound server:
* Query the VSPROPAGATI ON_RECEI VER view.:
SELECT STATE FROM V$PROPAGATI ON_RECEI VER;

If the state is WAI TI NG FOR MEMORY, then consider increasing the Streams pool
size.

e Query the V$STREAMS_PQOL_STATI STI CS view.:
SELECT TOTAL_MEMORY_ALLOCATEDY CURRENT S| ZE FROM VSSTREAMS_POOL_STATI STI CS;

If the value returned is.90 or greater, then consider increasing the Streams
pool size.

Solution 1

To correct problem 1:

* Increase the Streams pool size by modifying the STREAMS_POOL_SI ZE initialization
parameter or by modifying other initialization parameters related to memory.

¢ See Also:

e Oracle Database Reference
e Oracle Streams Replication Administrator's Guide

* Oracle Database Administrator’'s Guide for information about setting
initialization parameters

ORACLE 7-13

ORACLE

Chapter 7
Problems and Solutions for XStream Out

Problem 2: The Maximum SGA Size for the Capture Process Is Too Small

The max_sga_si ze capture process parameter controls the amount of system global
area (SGA) memory allocated specifically to the capture process, in megabytes.

To determine whether the maximum SGA size for the capture process is too
small:

1. Connect to the database running the XStream component as the XStream
administrator.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following queries at the database:
* Query the V$XSTREAM CAPTURE view:

SELECT CAPTURE NAME AS CAP,
SGA USED/ (1024*1024) AS USED,
SGA ALLOCATED/ (1024*1024) AS ALLOCATED,
TOTAL_MESSAGES_CAPTURED AS CAPTURED,
TOTAL_MESSAGES_ENQUEUED AS ENQUEUED
FROM V$XSTREAM CAPTURE;

If the USED field is equal to or almost equal to the ALLOCATED field in the output,
then you might need to increase the maximum SGA size for the capture
process.

* Query the V$LOGWR_SESSI ON view:

SELECT SESSI ON NAME AS CAP,
VAX_MEMORY_SI ZE/ (1024*1024) AS LMVAX,
USED_MEMORY_S| ZE/ (1024*1024) AS LMJSED,
USED_MEMORY_SI ZE/ MAX_MEMORY_SI ZE AS PCT
FROM V$LOGWNR_SESSI ON;

If the PCT field is equal to or almost equal to 1 in the output, then you might
need to increase the maximum SGA size for the capture process.

Solution 2

To correct problem 2:

e Increase the maximum SGA size for the capture process by modifying the
max_sga_si ze capture process parameter.

¢ See Also:

"Setting a Capture Process Parameter"

Problem 3: Programming Errors

If there is enough memory in the Streams pool and the MAX_SGA_SI ZE capture process
parameter and apply parameter are set correctly, then check your client application for
programming errors.

7-14

Chapter 7
How to Get More Help with XStream Out

Solution 3

To correct problem 3:

» Correct the programming errors.

7.3 How to Get More Help with XStream Out

ORACLE

Oracle Support can provide more help with XStream Ouit.

You can check My Oracle Support at http://support. oracl e. comfor more solutions to
your problem.

You can visit htt p: / / www. or acl e. cont support/contact. ht i for more information about
Oracle Support.

7-15

http://support.oracle.com
http://www.oracle.com/support/contact.html

XStream In

ORACLE

You can configure and manage an XStream In environment.

e XStream In Concepts
Become familiar with the concepts related to XStream In.

e Configuring XStream In
You can configure the Oracle Database components that are used by XStream.

e Managing XStream In
You can manage an XStream In configuration.

e Monitoring XStream In
You can monitor an XStream In configuration by querying data dictionary views.

e Troubleshooting XStream In
You can diagnose and correct problems with an XStream In configuration.

XStream In Concepts

Become familiar with the concepts related to XStream In.

e Introduction to XStream In
XStream In enables a remote client application to send information into an Oracle
database from another system, such as a non-Oracle database or a file system.

e The Inbound Server
With XStream In, an inbound server receives database changes from a client
application.

e Position of LCRs and XStream In
A client application streams LCRs to an XStream In inbound server.

e XStream In and Performance Considerations
There are considerations for XStream In and performance.

e XStream In and Security
Understand security related to the client application and XStream components, as
well as the privileges required by the apply user for an inbound server.

e XStream In and Other Oracle Database Components
XStream In can work with other Oracle Database components.

8.1 Introduction to XStream In

XStream In enables a remote client application to send information into an Oracle
database from another system, such as a non-Oracle database or a file system.

XStream In provides an efficient, transaction-based interface for sending information to
an Oracle database from client applications. XStream In can consume the information
coming into the Oracle database in several ways, including data replication, auditing,
and change data capture. XStream In supports both OCI and Java interfaces.

When compared with OCI client applications that make DML changes to an Oracle
database directly, XStream In is more efficient for near real-time, transaction-based,
heterogeneous DML changes to Oracle databases.

XStream In uses the following features of Oracle Streams:

e High performance processing of DML changes, optionally with parallelism

e Apply process features such as SQL generation, conflict detection and resolution,
error handling, and customized processing with apply handlers

e Streaming network transmission of information with minimal network round-trips
* Rules, rule sets, and rule-based transformations

When a custom rule-based transformation is specified on a rule used by an
inbound server, the user who calls the transformation function is the apply user for
the inbound server.

ORACLE 8-1

Chapter 8
The Inbound Server

XStream In supports all of the data types that are supported by Oracle Streams,
including LOBs, LONG, LONG RAW and XM.Type. A client application sends LOB and
XM.Type data to the inbound server in chunks. Several chunks comprise a single
column value of LOB, LONG, LONG RAW or XM.Type data type.

¢ See Also:

e Oracle Call Interface Programmer's Guide

e Oracle Database XStream Java APl Reference

8.2 The Inbound Server

With XStream In, an inbound server receives database changes from a client
application.

e Overview of Inbound Servers
An inbound server is an optional Oracle background process that receives LCRs
from a client application.

» Data Types Applied by Inbound Servers
An inbound server supports most data types.

* LCR Processing Options for Inbound Servers
An inbound server can either apply LCRs directly or send LCRs to an apply
handler for processing. Your options for LCR processing depend on whether the
LCR received by an inbound server is a row LCR or a DDL LCR.

* Inbound Servers and RESTRICTED SESSION
Enabling and disabling restricted session affects inbound servers.

e Inbound Server Components
An inbound server consists of the following subcomponents: a reader server, a
coordinator process, and one or more apply servers.

* Considerations for Inbound Servers
There are several considerations for inbound servers.

e The Error Queue for an Inbound Server
The error queue contains all of the current apply errors for a database. If there are
multiple inbound servers in a database, then the error queue contains the apply
errors for each inbound server.

8.2.1 Overview of Inbound Servers

ORACLE

An inbound server is an optional Oracle background process that receives LCRs
from a client application.

Specifically, a client application can attach to an inbound server and send row
changes, DDL changes, and procedure calls encapsulated in LCRs.

An external client application connects to the inbound server using the OCI or the Java
interface. After the connection is established, the client application acts as the capture
agent for the inbound server by streaming LCRs to it.

8-2

Chapter 8
The Inbound Server

A client application can create multiple sessions. Each session can attach to only one
inbound server, and each inbound server can serve only one session at a time.
However, different client application sessions can connect to different inbound servers
or outbound servers. A client application can detach from the inbound server
whenever necessary.

Figure 8-1 shows an inbound server configuration.

Figure 8-1 XStream In Inbound Server

External Data
Source

Oracle Database

- Connect
Send Client >
Changes Application Events Inbound
ngzlgr% In Acknowledgement P| server
Interface | «¢
Apply
Changes

Database Objects

Note:

An inbound server uses a queue that is not shown in Figure 8-1. An inbound
server's queue is only used to store error transactions.

8.2.2 Data Types Applied by Inbound Servers

ORACLE

An inbound server supports most data types.

When applying row LCRs resulting from DML changes to tables, an inbound server
applies changes made to columns of the following data types:

* VARCHAR2
* NVARCHAR2
* NUMBER

e FLOAT

* LONG

e DATE

* Bl NARY_FLOAT
* BINARY_DOUBLE
e Tl MESTAWP

8-3

ORACLE

e TIMESTAVP W TH TI ME ZONE

e TIMESTAMP W TH LOCAL TI ME ZONE
* | NTERVAL YEAR TO MONTH

* | NTERVAL DAY TO SECOND

* RAW

e LONGRAW
e UROWD

* CHAR

* NCHAR

e CLOB with BASI CFI LE or SECUREFI LE storage
e NCLOB with BASI CFI LE or SECUREFI LE storage
e BLOB with BASI CFI LE or SECUREFI LE storage

¢ XM.Type stored as CLOB, object relational, or as binary XML

* Object types
* Varrays

* REF data types

Chapter 8
The Inbound Server

e The following Oracle-supplied types: ANYDATA, SDO GEOVETRY, and media types

If XStream is replicating data for an object type, then the replication must be
unidirectional, and all replication sites must agree on the names and data types of the
attributes in the object type. You establish the names and data types of the attributes
when you create the object type. For example, consider the following object type:

CREATE TYPE cust _address_typ AS OBJECT

(street_address VARCHAR2(40) ,

post al _code VARCHAR2(10) ,
city VARCHAR2(30) ,
state_province VARCHAR2(10) ,
country_id CHAR(2));

/

At all replication sites, street _address must be VARCHAR2(40) , post al _code must be

VARCHAR2(10) , ci ty must be VARCHAR2(30), and so on.

Note:

is set to EXTENDED.

(12.1).

e The maximum size of the VARCHAR?, NVARCHAR2, and RAWdata types has been
increased in Oracle Database 12c when the COVPATI BLE initialization
parameter is set to 12. 0. 0 and the MAX_STRI NG_SI ZE initialization parameter

¢ XM.Type stored as a CLOB is deprecated in Oracle Database 12c Release 1

8-4

Chapter 8
The Inbound Server

¢ See Also:

Oracle Database SQL Language Reference for information about data types

8.2.3 LCR Processing Options for Inbound Servers

An inbound server can either apply LCRs directly or send LCRs to an apply handler for
processing. Your options for LCR processing depend on whether the LCR received by
an inbound server is a row LCR or a DDL LCR.

By default, an inbound server applies LCRs directly. The inbound server executes the
change in the LCR on the database object identified in the LCR. The inbound server
either successfully applies the change in the LCR or, if a conflict or an apply error is
encountered, tries to resolve the error with a conflict handler or a user-specified
procedure called an error handler.

If a conflict handler can resolve the conflict, then it either applies the LCR or it discards
the change in the LCR. If an error handler can resolve the error, then it should apply
the LCR, if appropriate. An error handler can resolve an error by modifying the LCR
before applying it. If the conflict handler or error handler cannot resolve the error, then
the inbound server places the transaction, and all LCRs associated with the
transaction, into the error queue.

Instead of applying LCRs directly, you can process LCRs in a customized way with
apply handlers. When you use an apply handler, an inbound server passes an LCR to
a collection of SQL statements or to a user-defined PL/SQL procedure for processing.
An apply handler can process the LCR in a customized way.

There are several types of apply handlers. This section uses the following categories
to describe apply handlers:

Table 8-1 Characteristics of Apply Handlers

__|
Category Description

Mechanism The means by which the apply handler processes LCRs. The
mechanism for an apply handler is either SQL statements or a
user-defined PL/SQL procedure.

Type of LCR The type of LCR processed by the apply handler. The LCR type
is either row LCR, DDL LCR, or transaction control directive.

Scope The level at which the apply handler is set. The scope is either
one operation on one table or all operations on all database
objects.

Number allowed for each The number of apply handlers of a specific type allowed for each

inbound server inbound server. The number allowed is either one or many.

Note:

Oracle Streams Concepts and Administration for more information about these
handlers and for instructions about using them

ORACLE 8-5

Chapter 8
The Inbound Server

DML Handlers
DML handlers process row LCRs received by an inbound server.

* Error Handlers
An error handler is similar to a procedure DML handler. The difference between
the two is that an error handler is invoked only if an apply error results when an
inbound server tries to apply a row LCR for the specified operation on the
specified table.

 DDL Handlers
A DDL handler uses a PL/SQL procedure to process DDL LCRs.

e Precommit Handlers
A precommit handler uses a PL/SQL procedure to process commit directive for
transactions that include row LCRs.

8.2.3.1 DML Handlers

DML handlers process row LCRs received by an inbound server.

There are two types of DML handlers: statement DML handlers and procedure DML
handlers. A statement DML handler uses a collection of SQL statements to process
row LCRs, while a procedure DML handler uses a PL/SQL procedure to process row
LCRs.

e Statement DML Handlers
A statement DML handler uses a collection of SQL statements to process row
LCRs.

* Procedure DML Handlers
A procedure DML handler uses a PL/SQL procedure to process row LCRs.

8.2.3.1.1 Statement DML Handlers

ORACLE

A statement DML handler uses a collection of SQL statements to process row LCRs.
A statement DML handler has the following characteristics:

e Mechanism: A collection of SQL statements
* Type of LCR: Row LCR
e Scope: One operation on one table

* Number allowed for each inbound server: Many, and many can be specified for the
same operation on the same table

Each SQL statement included in a statement DML handler has a unique execution
sequence number. When a statement DML handler is invoked, it executes its
statements in order from the statement with the lowest execution sequence number to
the statement with the highest execution sequence number. An execution sequence
number can be a positive number, a negative number, or a decimal nhumber.

For each table associated with an inbound server, you can set a separate statement
DML handler to process each of the following types of operations in row LCRs:

* INSERT
* UPDATE
e DELETE

8-6

Chapter 8
The Inbound Server

A statement DML handler is invoked when the inbound server receives a row LCR that
performs the specified operation on the specified table. For example, the hr. enpl oyees
table can have one statement DML handler to process | NSERT operations and a
different statement DML handler to process UPDATE operations. Alternatively, the

hr. enpl oyees table can use the same statement DML handler for each type of
operation.

You can specify multiple statement DML handlers for the same operation on the same
table. In this case, these statement DML handlers can execute in any order, and each
statement DML handler receives a copy of the original row LCR that was received by
the inbound server.

8.2.3.1.2 Procedure DML Handlers

A procedure DML handler uses a PL/SQL procedure to process row LCRs.
A procedure DML handler has the following characteristics:

e Mechanism: A user-defined PL/SQL procedure

* Type of LCR: Row LCR

e Scope: One operation on one table

* Number allowed for each inbound server: Many, but only one can be specified for
the same operation on the same table

For each table associated with an inbound server, you can set a separate procedure
DML handler to process each of the following types of operations in row LCRs:

* |INSERT
* UPDATE
e DELETE

e LOB_UPDATE

A procedure DML handler is invoked when the inbound server receives a row LCR that
performs the specified operation on the specified table. For example, the hr. enpl oyees
table can have one procedure DML handler to process | NSERT operations and a
different procedure DML handler to process UPDATE operations. Alternatively, the

hr. enpl oyees table can use the same procedure DML handler for each type of
operation.

The PL/SQL procedure can perform any customized processing of row LCRs. For
example, if you want each insert into a particular table at the source database to result
in inserts into multiple tables at the destination database, then you can create a user-
defined PL/SQL procedure that processes | NSERT operations on the table to
accomplish this. Unlike statement DML handlers, procedure DML handlers can modify
the column values in row LCRs.

8.2.3.2 Error Handlers

ORACLE

An error handler is similar to a procedure DML handler. The difference between the
two is that an error handler is invoked only if an apply error results when an inbound
server tries to apply a row LCR for the specified operation on the specified table.

An error handler has the following characteristics:

* Mechanism: A user-defined PL/SQL procedure

8-7

Chapter 8
The Inbound Server

* Type of LCR: Row LCR
e Scope: One operation on one table

* Number allowed for each inbound server: Many, but only one can be specified for
the same operation on the same table

Note:

Statement DML handlers cannot be used as error handlers.

" See Also:

"Procedure DML Handlers"

8.2.3.3 DDL Handlers

A DDL handler uses a PL/SQL procedure to process DDL LCRs.
A DDL handler has the following characteristics:

* Mechanism: A user-defined PL/SQL procedure

* Type of LCR: DDL LCR

* Scope: All DDL LCRs received by the inbound server

* Number allowed for each inbound server: One

The user-defined PL/SQL procedure can perform any customized processing of DDL
LCRs. For example, to log DDL changes before applying them, you can create a
procedure that processes DDL operations to accomplish this.

8.2.3.4 Precommit Handlers

ORACLE

A precommit handler uses a PL/SQL procedure to process commit directive for
transactions that include row LCRs.

A precommit handler has the following characteristics:

* Mechanism: A user-defined PL/SQL procedure

* Type of LCR: Commit directive for transactions that include row LCRs

* Scope: All row LCRs with commit directives received by the inbound server
* Number allowed for each inbound server: One

You can use a precommit handler to audit commit directives for LCRs. A commit
directive is a transaction control directive that contains a COW T. A precommit handler
is a user-defined PL/SQL procedure that can receive the commit information for a
transaction and process the commit information in any customized way. A precommit
handler can work with a statement DML handler or procedure DML handler.

For example, a precommit handler can improve performance by caching data for the
length of a transaction. This data can include cursors, temporary LOBs, data from a

8-8

Chapter 8
The Inbound Server

message, and so on. The precommit handler can release or execute the objects
cached by the handler when a transaction completes.

8.2.4 Inbound Servers and RESTRICTED SESSION

Enabling and disabling restricted session affects inbound servers.

When restricted session is enabled during system startup by issuing a STARTUP

RESTRI CT statement, inbound servers do not start, even if they were running when the
database shut down. When the restricted session is disabled, each inbound server
that was not stopped is started.

When restricted session is enabled in a running database by the SQL statement ALTER
SYSTEMENABLE RESTRI CTED SESSI ON, it does not affect any running inbound servers.
These inbound servers continue to run and send LCRs to an XStream client
application. If a stopped inbound server is started in a restricted session, then the
inbound server does not actually start until the restricted session is disabled.

8.2.5 Inbound Server Components

An inbound server consists of the following subcomponents: a reader server, a
coordinator process, and one or more apply servers.

An inbound server consists of the following subcomponents:

e Areader server that receives LCRs from an XStream client application. The
reader server is a process that computes dependencies between logical change
records (LCRs) and assembles LCRs into transactions. The reader server then
returns the assembled transactions to the coordinator process.

You can view the state of the reader server for an inbound server by querying the
V$XSTREAM APPLY_READER dynamic performance view.

* A coordinator process that gets transactions from the reader server and passes
them to apply servers. The coordinator process name is APnn, where nn can
include letters and numbers. The coordinator process is an Oracle background
process.

You can view the state of a coordinator process by querying the
V$XSTREAM APPLY_COORDI NATOR dynamic performance view.

* One or more apply servers that apply LCRs to database objects as DML or DDL
statements or that pass the LCRs to their appropriate apply handlers. Apply
servers can also enqueue LCRs into the persistent queue portion of a queue
specified by the DBVS_APPLY_ADM SET_ENQUEUE_DESTI NATI ON procedure. Each apply
server is a process. If an apply server encounters an error, then it then tries to
resolve the error with a user-specified conflict handler or error handler. If an apply
server cannot resolve an error, then it rolls back the transaction and places the
entire transaction, including all of its LCRs, in the error queue.

When an apply server commits a completed transaction, this transaction has been
applied. When an apply server places a transaction in the error queue and
commits, this transaction also has been applied.

You can view the state of each apply server for an inbound server by querying the
V$XSTREAM APPLY_SERVER dynamic performance view.

The reader server and the apply server process names are ASnn, where nn can include
letters and numbers. If a transaction being handled by an apply server has a

ORACLE 8-9

Chapter 8
The Inbound Server

dependency on another transaction that is not known to have been applied, then the
apply server contacts the coordinator process and waits for instructions. The
coordinator process monitors all of the apply servers to ensure that transactions are
applied and committed in the correct order.

2 See Also:

* Oracle Database Reference for more information about
V$XSTREAM APPLY_READER dynamic performance view

e Oracle Database Reference for more information about
V$XSTREAM APPLY_COORDI NATOR dynamic performance view

e Oracle Database Reference for more information about
V$XSTREAM APPLY_SERVER dynamic performance view

8.2.6 Considerations for Inbound Servers

There are several considerations for inbound servers.

The following are considerations for XStream inbound servers:

You can control a DML or DDL trigger's firing property using the

SET_TRI GGER_FI RI NG_PROPERTY procedure in the DBVS_DDL package. This procedure
lets you specify whether a trigger always fires, fires once, or fires for inbound
server changes only. When a trigger is set to fire once, it fires for changes made
by a user process, but it does not fire for changes made by an inbound server. A
trigger's firing property works the same for apply processes and inbound servers.

An inbound server ignores the setting for the i gnore_t ransacti on apply parameter
because LCRs sent to the inbound server by the client application might not have
transaction ID values.

An inbound server ignores the setting for the naxi rum scn apply parameter
because LCRs sent to the inbound server by the client application might not have
SCN values.

" See Also:

— Oracle Streams Concepts and Administration

— Oracle Database PL/SQL Packages and Types Reference for more
information about apply parameters

8.2.7 The Error Queue for an Inbound Server

The error queue contains all of the current apply errors for a database. If there are
multiple inbound servers in a database, then the error queue contains the apply errors
for each inbound server.

ORACLE

Trusted users can view apply errors by querying the DBA APPLY_ERRCR data dictionary
view or by using Oracle Enterprise Manager Cloud Control. The DBA APPLY_ERRCR data

8-10

Chapter 8
Position of LCRs and XStream In

dictionary view enables the trusted user to see information about apply errors for other
users. Untrusted users can view apply errors by querying the ALL_APPLY_ERROR data
dictionary view. This view shows only apply errors for the untrusted user.

Also, trusted users can view more detailed information about apply errors by querying
the DBA_APPLY_ERROR MESSAGES data dictionary view. Untrusted users can view more
detailed information about apply errors by querying the ALL_APPLY_ERROR MESSAGES data
dictionary view. These views include information about the row that caused the error in
an error transaction.

The error queue stores information about transactions that could not be applied
successfully by the inbound server running in a database. A transaction can include
many LCRs. When an unhandled error occurs during apply, an inbound server
automatically moves all of the LCRs in the transaction that satisfy the inbound server's
rule sets to the error queue.

You can correct the condition that caused an error and then reexecute the transaction
that caused the error. For example, you might modify a row in a table to correct the
condition that caused an error.

When the condition that caused the error has been corrected, you can either
reexecute the transaction in the error queue using the EXECUTE_ERRCR or
EXECUTE_ALL_ERRCRS procedure, or you can delete the transaction from the error queue
using the DELETE_ERROR or DELETE ALL_ERRCRS procedure. These procedures are in the
DBMS_APPLY_ADMpackage.

When you reexecute a transaction in the error queue, you can specify that the
transaction be executed either by the user who originally placed the error in the error
gueue or by the user who is reexecuting the transaction. Also, the current tag for the
inbound server is used when you reexecute a transaction in the error queue.

A reexecuted transaction uses any relevant apply handlers and conflict resolution
handlers. If, to resolve the error, a row LCR in an error queue must be modified before
it is executed, then you can configure a procedure DML handler to process the row
LCR that caused the error in the error queue. In this case, the DML handler can modify
the row LCR to avoid a repetition of the same error. The row LCR is passed to the
DML handler when you reexecute the error containing the row LCR. For example, a
statement DML handler might insert different values than the ones present in an insert
row LCR, while a procedure DML handler might modify one or more columns in the
row LCR to avoid a repetition of the same error.

8.3 Position of LCRs and XStream In

ORACLE

A client application streams LCRs to an XStream In inbound server.
This section describes concepts related to the LCR positions for an inbound server.

Each position must be encoded in a format (such as base-16 encoding) that supports
byte comparison. The position is essential to the total order of the transaction stream
sent by client applications using the XStream In interface.

The following positions are important for inbound servers:

* The applied low position indicates that the LCRs less than or equal to this value
have been applied.

An LCR is applied by an inbound server when the LCR has either been executed,
sent to an apply handler, or moved to the error queue.

8-11

ORACLE

Chapter 8
Position of LCRs and XStream In

* The spill position indicates that the LCRs with positions less than or equal to this
value have either been applied or spilled from memory to hard disk.

* The applied high position indicates the highest position of an LCR that has been
applied.

When the commi t _seri al i zati on apply parameter is set to DEPENDENT_TRANSACTI ONS
for an inbound server, an LCR with a higher commit position might be applied
before an LCR with a lower commit position. When this happens, the applied high
position is different from the applied low paosition.

e The processed low position is the higher value of either the applied low position or
the spill position.

The processed low paosition is the position below which the inbound server no
longer requires any LCRs. This position corresponds with the oldest SCN for an
Oracle Streams apply process that applies changes captured by a capture
process.

The processed low position indicates that the LCRs with positions less than or
equal to this position have been processed by the inbound server. If the client re-
attaches to the inbound server, then it must send only LCRs with positions greater
than the processed low position because the inbound server discards any LCRs
with positions less than or equal to the processed low position.

If the client application stops abnormally, then the connection between the client
application and the inbound server is automatically broken. Upon restart, the client
application retrieves the processed low position from the inbound server and instructs
its capture agent to retrieve changes starting from this processed low position.

To limit the recovery time of a client application using the XStream In interface, the
client application can send activity, such as empty transactions, periodically to the
inbound server. Row LCRs can include commit transaction control directives. When
there are no LCRs to send to the server, the client application can send a row LCR
with a commit directive to advance the inbound server's processed low position. This
activity acts as an acknowledgment so that the inbound server's processed low
position is advanced.

After position 3, there are no relevant changes to send to the inbound server. If the
inbound server restarts when the client application has processed all the changes up
to position 101, then, after restarting, the client application must recheck all of the
external database changes from position 4 forward. The rechecks are required
because the inbound server's processed low position is 3.

Instead, assume that the client application sends commits to the inbound server
periodically, even when there are no relevant changes to the hr. enpl oyees table:

Position Change Client Application Activity

1 Insert into the hr. enpl oyees Send row LCR including the change to
table the inbound server

2 Insert into the oe. or der s table None

3 Commit Send a row LCR with a commit directive

to inbound server
4 Insert into the oe. or der s table None
Update the oe. or der s table None

Commit None

8-12

ORACLE

Chapter 8
Position of LCRs and XStream In

Position Change Client Application Activity
7 Commit None
... (Activity on the external Send several row LCRs, each one with a

data source, but no changes commit directive, to the inbound server
to the hr. enpl oyees table)

100 Insert into the oe. or der s table None

101 Commit Send a row LCR with a commit directive
to the inbound server

In this case, the inbound server moves its processed low position to 101 when it has
processed all of the row LCRs sent by the client application. If the inbound server
restarts, its processed low position is 101, and the client application does not need to
check all of the changes back to position 3.

The sample applications in Sample XStream Client Application include code that
sends a row LCR with a commit directive to an inbound server. These commit
directives are sometimes called "ping LCRs." Search for the word "ping" in the sample
XStream client applications to find the parts of the applications that include this code.

Example 8-1 Advancing the Processed Low Position of an Inbound Server

Consider a client application and an external data source. The client application sends
changes made to the hr. enpl oyees table to the inbound server for processing, but the
external data source includes many other tables, including the oe. or der s table.

Assume that the following changes are made to the external data source:

Position Change Client Application Activity

1 Insert into the hr. enpl oyees Send row LCR including the change to
table the inbound server

2 Insert into the oe. or der s table None

3 Commit Send a row LCR with a commit directive

to inbound server

4 Insert into the oe. or der s table None
5 Update the oe. or der s table None
6 Commit None
7 Commit None
... (Activity on the external None
data source, but no changes
to the hr. enpl oyees table)
100 Insert into the oe. or der s table None
101 Commit None

The client application gets the changes from the external data source, generates
appropriate LCRs, and sends the LCRs to the inbound server. Therefore, the inbound
server receives the following LCRs:

* Row LCR for position 1

8-13

Chapter 8
XStream In and Performance Considerations

* Row LCR for position 3

" See Also:

e "Position Order in an LCR Stream"

* "Displaying the Position Information for an Inbound Server"

8.4 XStream In and Performance Considerations

There are considerations for XStream In and performance.

e Optimizing XStream In Performance for Large Transactions
For small transactions, XStream In does not begin to apply the logical change
records (LCRs) until the inbound server receives a commit LCR for the transaction
from the source. As a performance optimization, an inbound server can use eager
apply to begin to apply large transactions before it receives the commit LCR.

* Avoiding Potential Bottlenecks in Transaction Tracking
XStream In keeps track of the changes it is applying to the database to avoid
reapplying transactions when an inbound server is restarted.

e Optimizing Transaction Apply Scheduling
When the constraints on the target tables match the constraints on the source
tables, you can optimize dependency computation by setting the
conpute_| cr_dep_on_arrival apply parameter for an inbound server to Y.

8.4.1 Optimizing XStream In Performance for Large Transactions

ORACLE

For small transactions, XStream In does not begin to apply the logical change records
(LCRs) until the inbound server receives a commit LCR for the transaction from the
source. As a performance optimization, an inbound server can use eager apply to
begin to apply large transactions before it receives the commit LCR.

The eager _si ze apply parameter controls the minimum number of LCRs received by
the inbound server before eager apply begins. When the number of LCRs in a
transaction exceeds the value of the eager _si ze apply parameter, the inbound server
begins to apply the LCRs. The default value for this parameter is 9500. You can
modify the parameter value to optimize XStream In performance in your environment.

Large transactions may require additional apply servers to apply the LCRs. After eager
apply starts for a transaction, an inbound server can automatically create additional
apply servers to apply the LCRs. The nax_paral | el i smapply parameter controls the
maximum number of apply servers for an inbound server.

If an inbound server automatically creates additional apply servers, and some of them
are idle for a period of time, then XStream In determines that they are no longer
necessary and removes them automatically. However, the number of apply servers
never goes below the value specified by the paral | el i smapply parameter. Any
statistics for these apply servers are aggregated as apply server 0 (zero).

For an inbound server to use eager apply for large transactions, the value of the
eager _si ze apply parameter must be less than the value of the t xn_I cr_spi || _t hreshol d
apply parameter. When the value of t xn_| cr_spi | | _t hreshol d is lower than eager _si ze,

8-14

Chapter 8
XStream In and Performance Considerations

a transaction spills to disk before eager apply begins, and a an inbound server cannot
use eager apply for a transaction that has spilled to disk.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference

e "Managing Eager Errors Encountered by an Inbound Server"

8.4.2 Avoiding Potential Bottlenecks in Transaction Tracking

XStream In keeps track of the changes it is applying to the database to avoid
reapplying transactions when an inbound server is restarted.

When the opt i ni ze_progress_tabl e apply parameter is set to TRUE, the default, XStream
In tracks its progress in the redo log. Use of the redo log avoids the potential
bottleneck and contention caused by DML changes in the progress table.

When the opti ni ze_progress_tabl e parameter is set to FALSE, XStream In uses a table
for tracking. In high volume environments, this table can be a potential bottleneck.

The apply database must be in archive log mode before apply tracking can be done in
the redo log. If the opti ni ze_progress_tabl e parameter is set to TRUE but the apply
database is not in archive log mode, then the setting of opti ni ze_progress_tabl e is
ignored and XStream In uses a table for tracking.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference

8.4.3 Optimizing Transaction Apply Scheduling

ORACLE

When the constraints on the target tables match the constraints on the source tables,
you can optimize dependency computation by setting the conpute_| cr _dep_on_arri val
apply parameter for an inbound server to Y.

If the constraints do not match, then set this apply parameter to N, the default.

If this apply parameter is set to v, then the dependencies are computed as the LCRs
for the transaction are received. If this apply parameter is set to N, then the
dependencies are computed only after all the LCRs for a committed transaction are
received.

Regardless of compute_I| cr _dep_on_arrival apply parameter setting, the before image
of the key columns must be available in the LCRs received by the inbound server. Key
columns include primary key columns, foreign key column, and unique constraint
columns. In an XStream configuration in which an inbound server applies changes
captured by a capture process in an XStream Out configuration, supplemental logging
ensures that the required information is in the LCRs.

8-15

Chapter 8
XStream In and Security

" See Also:

e "If Required, Configure Supplemental Logging"
e Oracle Database PL/SQL Packages and Types Reference

8.5 XStream In and Security

Understand security related to the client application and XStream components, as well
as the privileges required by the apply user for an inbound server.

e The XStream In Client Application and Security
XStream In allows an application to send LCRs to an inbound server, and an
inbound server can apply the database changes in the LCRs to the database.

e XStream In Component-Level Security
All the components of the XStream In configuration run as the same user. This
user is the apply user for the inbound server. This user can be either a trusted
user with a high level of privileges or it can be an untrusted user that has only the
privileges necessary for performing certain tasks.

e Privileges Required by the Apply User for an Inbound Server
An inbound server applies LCRs in the security domain of its apply user.

" See Also:

e "XStream Security Models"

e Oracle Database PL/SQL Packages and Types Reference

8.5.1 The XStream In Client Application and Security

XStream In allows an application to send LCRs to an inbound server, and an inbound
server can apply the database changes in the LCRs to the database.

Java and OCI client applications must connect to an Oracle database before attaching
to an XStream inbound server created on that database. The connected user must be
the same as the apply user configured for the inbound server. Otherwise, an error is
raised.

The XStream Java layer API relies on Oracle JDBC security because XStream
accepts the Oracle JDBC connection instance created by client applications in the
XStream at t ach method in the XSt reani n class. The connected user is validated as an
XStream user.

ORACLE 8-16

Chapter 8
XStream In and Security

¢ See Also:

e Oracle Call Interface Programmer's Guide for information about the OCI
interface for XStream

e Oracle Database XStream Java API Reference for information about the
Java interface for XStream

8.5.2 XStream In Component-Level Security

All the components of the XStream In configuration run as the same user. This user is
the apply user for the inbound server. This user can be either a trusted user with a
high level of privileges or it can be an untrusted user that has only the privileges
necessary for performing certain tasks.

The security model of the XStream administrator also determines the data dictionary
views that this user can query to monitor the XStream configuration. The trusted
administrator can monitor XStream with DBA_views. The untrusted administrator can
monitor XStream with ALL_ views.

You create an XStream administrator using the GRANT_ADM N_PRI VI LEGE procedure in the
DBMS_XSTREAM AUTH package. When you run this procedure to create an XStream
administrator for XStream In, the privil ege_t ype parameter determines the type of
privileges granted to the user:

e Specify APPLY for the pri vi | ege_t ype parameter if the XStream administrator
manages only an XStream In configuration on the database.

» Specify * for the privil ege_t ype parameter if the XStream administrator manages
both an XStream Out and an XStream In configuration on the database.

The GRANT_ADM N_PRI VI LEGE procedure grants privileges for Oracle-supplied views and
packages that are required to run components in an XStream In or XStream Out
configuration. This procedure does not grant privileges on database objects owned by
users. If such privileges are required, then they must be granted separately.

" See Also:

"Configure an XStream Administrator" for detailed information about configuring
an XStream administrator

8.5.3 Privileges Required by the Apply User for an Inbound Server

ORACLE

An inbound server applies LCRs in the security domain of its apply user.

The inbound server receives LCRs from an XStream client application and applies the
LCRs that satisfy the inbound server's rule sets. The apply user can apply LCRs
directly to database objects. In addition, the apply user runs all custom rule-based
transformations specified by the rules in these rule sets. The apply user also runs
user-defined apply handlers. XStream In does not assume that the apply user for the
inbound server is trusted.

8-17

Chapter 8
XStream In and Other Oracle Database Components

The apply user must have the necessary privileges to apply changes, including the
following privileges:

The required privileges to apply data manipulation language (DML) changes to
tables in other schemas (when the inbound server receives DML changes to
tables in other schemas)

The required privileges to apply data definition language (DDL) changes to the
database (when the inbound server receives DDL changes)

EXECUTE privilege on the rule sets used by the inbound server

EXECUTE privilege on all custom rule-based transformation functions specified for
rules in the positive rule set

EXECUTE privilege on any apply handlers

An inbound server can be associated with only one user, but one user can be
associated with many inbound servers.

Grant privileges to the apply user with the DBVS_XSTREAM AUTH package by specifying
APPLY for the privil ege_t ype parameter in the GRANT_ADM N_PRI VI LEGE procedure.

¢ See Also:

e "Configure an XStream Administrator"
e "Changing the Apply User for an Inbound Server"

e Oracle Database PL/SQL Packages and Types Reference for more
information about the GRANT_ADM N_PRI VI LEGE procedure

8.6 XStream In and Other Oracle Database Components

XStream In can work with other Oracle Database components.

XStream In and Oracle Real Application Clusters
You can configure an inbound server to apply changes in an Oracle Real
Application Clusters (Oracle RAC) environment.

XStream In and Flashback Data Archive
Inbound servers can apply changes encapsulated in logical change records
(LCRs) to tables in a flashback data archive.

XStream In and Transportable Tablespaces
You can import data into databases involved in an XStream replication
environment using transportable tablespaces.

XStream In and a Multitenant Environment

A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as
a separate database.

8.6.1 XStream In and Oracle Real Application Clusters

You can configure an inbound server to apply changes in an Oracle Real Application
Clusters (Oracle RAC) environment.

ORACLE

8-18

Chapter 8
XStream In and Other Oracle Database Components

The inbound server runs in the Oracle RAC instance where you connected. In the
event that this instance fails, you can connect to a surviving instance and start the
inbound server again.

" See Also:

e The Inbound Server

e Oracle Real Application Clusters Administration and Deployment Guide

8.6.2 XStream In and Flashback Data Archive

Inbound servers can apply changes encapsulated in logical change records (LCRs) to
tables in a flashback data archive.

Inbound servers also support the following DDL statements:
° CREATE FLASHBACK ARCHI VE

* ALTER FLASHBACK ARCHI VE

* DROP FLASHBACK ARCHI VE

e CREATE TABLE with a FLASHBACK ARCHI VE clause

e ALTER TABLE with a FLASHBACK ARCHI VE clause

¢ See Also:

¢ The Inbound Server

e Oracle Database Development Guide for information about flashback data
archive

8.6.3 XStream In and Transportable Tablespaces

ORACLE

You can import data into databases involved in an XStream replication environment
using transportable tablespaces.

The instructions in this section apply when the following conditions are met:

* The replication configuration is one in which an inbound server applies changes
captured by a capture process in an XStream Out configuration.

* The data being imported with transportable tablespaces must be included in each
database in the replication environment.

» After the import operation is complete, changes to the imported data will be
replicated.

In addition, the rules should instruct the replication environment to avoid replicating
tagged LCRs.

When these conditions are met, complete the following steps:

8-19

Chapter 8
XStream In and Other Oracle Database Components

1. Stop replication.

2. Use transportable tablespaces to import the data into each database in the
replication environment.

3. Restart replication.

" See Also:

e Oracle Database Administrator’s Guide for more information about
transportable tablespaces

e Oracle Streams Replication Administrator's Guide for information about
tagged LCRs

8.6.4 XStream In and a Multitenant Environment

A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as a
separate database.

This self-contained collection is called a pluggable database (PDB). A multitenant
container database (CDB) contains PDBs. It can also contain application containers.
An application container is an optional component of a CDB that consists of an
application root and all of the application PDBs associated with it. An application
container stores data for one or more applications. An application container shares
application metadata and common data. In a CDB, each of the following is a container:
the CDB root, each PDB, each application root, and each application PDB.

In a CDB, the inbound server is restricted to receiving LCRs from one source database
and only executing changes in the current container (one PDB, one application root,
one application PDB, or the CDB root). A single inbound server cannot apply changes
to more than one container in a CDB.

When the inbound server is in the CDB root, the apply user must be a common user.
When the inbound server is in an application root, the apply user must be a common
user or an application common user. When the inbound server is in a PDB or
application PDB, the apply user can be a common user or a local user.

Note:

XStream does not synchronize changes done in the application root container.
Do not use the XStream In replication to replicate operations done in the
application root container. You can manually apply these changes in the
application root containers in the target. Note that the operations done in the
PDBs can still be replicated.

Related Topics

* System-Created Rules and a Multitenant Environment
A multitenant environment enables an Oracle database to contain a portable set of
schemas, objects, and related structures that appears logically to an application as

ORACLE 8-20

Chapter 8
XStream In and Other Oracle Database Components

a separate database. This self-contained collection is called a pluggable database
(PDB). A CDB contains PDBs.

e Oracle Multitenant Administrator's Guide

ORACLE' 8-21

Configuring XStream In

You can configure the Oracle Database components that are used by XStream.

Preparing for XStream In
Prerequisites must be met before configuring XStream In.

Configuring XStream In

The CREATE_| NBOUND procedure in the DBMS_XSTREAM ADM package creates an inbound
server. You must create the client application that communicates with the inbound
server and sends LCRs to the inbound server.

¢ See Also:

e "XStream Out Concepts"
e "XStream Use Cases"
e Oracle Call Interface Programmer's Guide

e Oracle Database XStream Java APl Reference

9.1 Preparing for XStream In

Prerequisites must be met before configuring XStream In.

ORACLE

Configure an XStream Administrator
An XStream administrator configures and manages XStream components in an
XStream In environment.

Set the Relevant Initialization Parameters

Some initialization parameters are important for the configuration, operation,
reliability, and performance of XStream inbound servers. Set these parameters
appropriately.

Configure the Streams pool

The Streams pool is a portion of memory in the System Global Area (SGA) that is
used by both Oracle Streams and XStream components. The Streams pool stores
buffered queue LCRs in memory, and it provides memory for inbound servers.

If Required, Specify Supplemental Logging at the Source Database

In an XStream configuration in which an inbound server applies changes captured
by a capture process in an XStream Out configuration, supplemental logging might
be required at the source database on columns in the tables for which an inbound

server applies changes.

9-1

Chapter 9
Preparing for XStream In

9.1.1 Configure an XStream Administrator

ORACLE

An XStream administrator configures and manages XStream components in an
XStream In environment.

You can configure an XStream administrator by granting a user the appropriate
privileges. You must configure an XStream administrator in each Oracle database
included in the XStream configuration.

If you are configuring XStream In in a multitenant container database (CDB), then
configure the XStream administrator in the container that will run the inbound server.
This container can be the CDB root, a pluggable database (PDB), an application root,
or an application PDB. See "XStream In and a Multitenant Environment" for
information about using XStream In in a CDB.

Prerequisites

Before configuring an XStream administrator, ensure that the following prerequisites
are met:

» Ensure that you can log in to each database in the XStream configuration as an
administrative user who can create users, grant privileges, and create
tablespaces.

» Decide between the trusted user model and untrusted user model for security. See
"XStream Security Models" for more information.

* ldentify a user who will be the XStream administrator. Either create a new user
with the appropriate privileges or grant these privileges to an existing user.

Do not use the SYS or SYSTEMuser as an XStream administrator, and ensure that
the XStream administrator does not use the SYSTEMtablespace as its default
tablespace.

« If a new tablespace is required for the XStream administrator, then ensure that
there is enough disk space on each computer system in the XStream configuration
for the tablespace. The recommended size of the tablespace is 25 MB.

e The user executing the subprograms in the DBMS_XSTREAM AUTH package must have
SYSDBA administrative privilege, and the user must exercise the privilege using AS
SYSDBA at connect time.

Assumptions
This section makes the following assumptions:

e The user name of the XStream administrator is xst r madni n for a non-CDB. In a
CDB, when the XStream administrator is a common user, the user name of the
XStream administrator is c##xst r madni n. When the XStream administrator in a
CDB is a local user in a container, the user name of the XStream administrator is
xstrmadm n.

e The tablespace used by the XStream administrator is xstream t bs.

To configure an XStream administrator:

1. In SQL*Plus, connect as an administrative user who can create users, grant
privileges, and create tablespaces. Remain connected as this administrative user
for all subsequent steps.

9-2

Chapter 9
Preparing for XStream In

¢ See Also:

Oracle Database Administrator’s Guide for information about connecting to
a database in SQL*Plus

2. Either create a tablespace for the XStream administrator or use an existing
tablespace.

This tablespace stores any objects created in the XStream administrator's
schema.

For example, the following statement creates a new tablespace for the XStream
administrator:

CREATE TABLESPACE xstreamths DATAFILE '/usr/oracl e/ dbs/xstreamthbs. dbf"
SI ZE 25M REUSE AUTCEXTEND ON MAXSI ZE UNLI M TED;

If you are creating an XStream administrator as a common user in a CDB, then
you must create the tablespace in the CDB root and in all containers. The
tablespace is required in all containers because a common user must have access
to the tablespace in any container.

3. Create a new user to act as the XStream administrator or identify an existing user.

For example, to create a user named xst r radni n and specify that this user uses
the xstream t bs tablespace, run the following statement:

CREATE USER xstrmadnin | DENTI FI ED BY password
DEFAULT TABLESPACE xstreamths
QUOTA UNLI M TED ON xstream tbs;

If you are creating an XStream administrator in a CDB and the inbound server is in
the CDB root, then the XStream administrator must be a common user.

If you are creating an XStream administrator in a CDB and the inbound server is in
a PDB, application root, or application PDB, then the XStream administrator can
be a common user or a local user. Oracle recommends configuring a common
user as the XStream administrator even when the inbound server is in a container
other than the CDB root.

To create a common user, include the CONTAI NER=ALL clause in the CREATE USER
statement when the current container is the CDB root:

CREATE USER c##xstrmadm n | DENTI FI ED BY password
DEFAULT TABLESPACE xstreamtbs
QUOTA UNLI M TED ON xstream t bs
CONTAI NER=ALL;

¢ Note:

Enter an appropriate password for the administrative user.

ORACLE 9-3

Chapter 9
Preparing for XStream In

¢ See Also:

Oracle Database Security Guide for guidelines about choosing passwords

4. Grant CREATE SESSI ON privilege to the XStream administrator.

If you created a new user to act as the XStream administrator, then grant this user
CREATE SESSI ON privilege.

For example, to grant CREATE SESSI ON privilege to user xst r madni n, run the following
statement:

GRANT CREATE SESSI ON TO xst rmadni n;

If you are creating an XStream administrator as a common user in a CDB, then
grant CREATE SESSI ON privilege and SET CONTAI NER privilege to the XStream
administrator, and include the CONTAI NER=ALL clause in the statement.

For example, to grant these privileges to user xstrnadni n in a CDB, run the
following statement:

GRANT CREATE SESSI ON, SET CONTAI NER TO c##xstrmadni n CONTAI NER=ALL;
5. Run the GRANT_ADM N_PRI VI LEGE procedure in the DBMS_XSTREAM AUTH package.

A user must have been explicitly granted EXECUTE privilege on a package to
execute a subprogram in the package inside of a user-created subprogram, and a
user must have explicit READ or SELECT privilege on a data dictionary view to query
the view inside of a user-created subprogram. These privileges cannot be granted
through a role. You can run the GRANT_ADM N_PRI VI LEGE procedure to grant such
privileges to the XStream administrator, or you can grant them directly.

Depending on the parameter settings for the GRANT_ADM N_PRI VI LEGE procedure, it
can grant the appropriate privileges for a trusted or untrusted XStream
administrator, and it can grant privileges in a non-CDB or a CDB. Table 9-1
describes key parameter settings for each case.

Table 9-1 Key Parameter Settings for GRANT_ADMIN_PRIVILEGE
]

Type of XStream grant_select_privileges container Parameter
Administrator Parameter Setting Setting

Trusted in a non-CDB TRUE CURRENT (default)
Untrusted in a non-CDB FALSE (default) CURRENT (default)
Trusted in a CDB TRUE ALL or CURRENT
Untrusted in a CDB FALSE (default) ALL or CURRENT

ORACLE 9-4

ORACLE

Chapter 9
Preparing for XStream In

Note:

e For any scenario, when the XStream administrator must manage both
an XStream Out and an XStream In configuration on the database,
specify * for the privil ege_t ype parameter.

e Ina CDB, when ALL is specified for the cont ai ner parameter, the
current container must be the CDB root (CDB$ROOT).

" See Also:
Oracle Database PL/SQL Packages and Types Reference

6. If necessary, grant additional privileges to the XStream administrator.
See "Granting Additional Privileges to the XStream Administrator".

7. Repeat all of the previous steps at each Oracle database in the environment that
will use XStream.

Example 9-1 Granting Privileges to a Trusted XStream Administrator in a Non-
CDB Without Generating a Script

BEG N
DBMS_XSTREAM AUTH. GRANT_ADM N_PRI VI LEGE(
grantee => "xstrmadnin',
privilege_type => " APPLY",

grant _sel ect _privileges => TRUE);
END;
/

Example 9-2 Granting Privileges to a Trusted XStream Administrator in a Non-
CDB and Generating a Script

The directory specified in the di rect ory_name parameter must exist and must be
accessible to the current user.

BEG N
DBMS_XSTREAM AUTH. GRANT_ADM N_PRI VI LEGE(

grantee => "xstrmadnin',
privilege_type => ' APPLY",
grant _sel ect _privileges => TRUE,
do_grants => TRUE,
file_name => 'grant_xstrmprivs.sql",
directory_name => 'xstrmdir');

END;

/

Example 9-3 Granting Privileges to an Untrusted XStream Administrator in a
Non-CDB Without Generating a Script

BEG N
DBMS_XSTREAM AUTH. GRANT_ADM N_PRI VI LEGE(
grantee => 'xstrmadmin',
privilege_type => " APPLY",

grant _sel ect _privileges => FALSE);

9-5

Chapter 9
Preparing for XStream In

END;
/

Example 9-4 Granting Privileges to a Trusted XStream Administrator in a CDB
Without Generating a Script

In this example, the XStream administrator is a common user.

BEG N
DBMS_XSTREAM AUTH. GRANT_ADM N_PRI VI LEGE(
grantee => ' c##txstrmadmin',
privilege_type => ' APPLY",
grant _sel ect _privileges => TRUE,
cont ai ner = "AL");
END;
/

e Granting Additional Privileges to the XStream Administrator
Additional privileges might be required for the XStream administrator.

9.1.1.1 Granting Additional Privileges to the XStream Administrator

ORACLE

Additional privileges might be required for the XStream administrator.

Grant any of the following additional privileges to the XStream Administrator if
necessary:

* If you plan to use Oracle Enterprise Manager Cloud Control to manage databases
with XStream components, then the XStream administrator must be trusted and
must be granted DBA role. You must also configure the XStream administrator to be
an Oracle Enterprise Manager administrative user. Doing so grants additional
privileges required by Oracle Enterprise Manager Cloud Control, such as the
privileges required to run Oracle Enterprise Manager Cloud Control jobs. See the
Oracle Enterprise Manager Cloud Control online help for information about
creating Oracle Enterprise Manager administrative users.

* If no apply user is specified for an inbound server, then grant the XStream
administrator the necessary privileges to perform DML and DDL changes on the
apply objects owned by other users. If an apply user is specified, then the apply
user must have these privileges. These privileges can be granted directly or
through a role.

* If no apply user is specified for an inbound server, then grant the XStream
administrator EXECUTE privilege on any PL/SQL subprogram owned by another user
that is executed by an inbound server. These subprograms can be used in apply
handlers or error handlers. If an apply user is specified, then the apply user must
have these privileges. These privileges must be granted directly. They cannot be
granted through a role.

» Grant the XStream administrator EXECUTE privilege on any PL/SQL function owned
by another user that is specified in a custom rule-based transformation for a rule
used by an inbound server. For an inbound server, if an apply user is specified,
then the apply user must have these privileges. These privileges must be granted
directly. They cannot be granted through a role.

» If the XStream administrator does not own the queue used by an inbound server
and is not specified as the queue user for the queue when the queue is created,
then the XStream administrator must be configured as a secure queue user of the
gueue if you want the XStream administrator to be able to enqueue LCRs into or

9-6

Chapter 9
Preparing for XStream In

dequeue LCRs from the queue. The XStream administrator might also need
ENQUEUE or DEQUEUE privileges on the queue, or both.

Grant the XStream administrator EXECUTE privilege on any object types that the
XStream administrator might need to access. These privileges can be granted
directly or through a role.

If you are using Oracle Database Vault, then the following additional privileges are
required:

— The apply user for an inbound server must be authorized to apply changes to
realms that include replicated database objects. The replicated database
objects are the objects to which the inbound server applies changes.

To authorize an apply user for a realm, run the

DVSYS. DBM5_MACADM ADD_AUTH TO REALMprocedure and specify the realm and the
apply user. For example, to authorize apply user xstrmadni n for the sal es
realm, run the following procedure:

BEG N
DVSYS. DBMS_MACADM ADD_AUTH TO REALM
real mname => 'sales',
grant ee => 'xstrmadnin');
END,
/

— The user who creates or alters an inbound server must be granted the BECOVE
USER system privilege.

Granting the BECOVE USER system privilege to the user who performs these
actions is not required if Oracle Database Vault is not installed. You can
revoke the BECOME USER system privilege from the user after the completing one
of these actions, if necessary.

¢ See Also:

e Oracle Streams Concepts and Administration for information about
managing queues

e Oracle Database Vault Administrator’'s Guide

0.1.2 Set the Relevant Initialization Parameters

ORACLE

Some initialization parameters are important for the configuration, operation, reliability,
and performance of XStream inbound servers. Set these parameters appropriately.

The following requirements apply to XStream inbound servers:

Ensure that the PROCESSES initialization parameter is set to a value large enough to
accommodate the inbound server background processes and all of the other
Oracle Database background processes.

Ensure that the SESSI ONS initialization parameter is set to a value large enough to
accommodate the sessions used by the inbound server background processes
and all of the other Oracle Database sessions.

9-7

Chapter 9
Preparing for XStream In

9.1.3 Configure the Streams pool

The Streams pool is a portion of memory in the System Global Area (SGA) that is
used by both Oracle Streams and XStream components. The Streams pool stores
buffered queue LCRs in memory, and it provides memory for inbound servers.

The following are considerations for configuring the Streams pool:

e Atleast 300 MB of memory is required for the Streams pool.

e The best practice is to set the STREAMS_POOL_SI ZE initialization parameter explicitly
to the desired Streams pool size.

» After XStream In is configured, you can use the nax_sga_si ze apply parameter to
control the amount of SGA memory allocated specifically to an inbound server.

e Ensure that there is enough space in the Streams pool at each database to run
XStream components and to store LCRs and run the components properly.

e The Streams pool is initialized the first time an inbound server is started.

The Streams pool size is the value specified by the STREAVS_POOL_SI ZE parameter, in
bytes, if the following conditions are met:

e The MEMORY_TARGET, MEMORY_MAX_TARGET, and SGA TARGET initialization parameters are
all set to 0 (zero).

e The STREAMS_POCOL_SI ZE initialization parameter is set to a nonzero value.

The Automatic Shared Memory Management feature automatically manages the size
of the Streams pool when the following conditions are met:

e The MEMORY_TARGET and MEMORY_MAX_TARGET initialization parameters are both set to 0
(zero).

e The SGA TARGET initialization parameter is set to a nonzero value.

If you are using Automatic Shared Memory Management, and if the STREAMS_PQOOL_SI ZE
initialization parameter also is set to a nonzero value, then Automatic Shared Memory
Management uses this value as a minimum for the Oracle Streams pool. If your
environment needs a minimum amount of memory in the Oracle Streams pool to
function properly, then you can set a minimum size. To view the current memory
allocated to Oracle Streams pool by Automatic Shared Memory Management, query
the VESGA_DYNAM C_COMPONENTS view. In addition, you can query the
V$STREAMS_POOL_STATI STI CS view to view the current usage of the Oracle Streams pool.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for more
information about the nax_sga_si ze apply parameter

e Oracle Database Administrator's Guide

e QOracle Database Reference

ORACLE 9-8

Chapter 9
Configuring XStream In

9.1.4 If Required, Specify Supplemental Logging at the Source

Database

In an XStream configuration in which an inbound server applies changes captured by
a capture process in an XStream Out configuration, supplemental logging might be
required at the source database on columns in the tables for which an inbound server
applies changes.

The required supplemental logging depends on the configuration of the inbound server
you create.

¢ See Also:
"If Required, Configure Supplemental Logging”

9.2 Configuring XStream In

ORACLE

The CREATE | NBOUND procedure in the DBMS_XSTREAM ADMpackage creates an inbound
server. You must create the client application that communicates with the inbound
server and sends LCRs to the inbound server.

An inbound server in an XStream In configuration receives a stream of changes from a
client application. The inbound server can apply these changes to database objects in
an Oracle database, or it can process the changes in a customized way. A client
application can attach to an inbound server and send row changes and DDL changes
encapsulated in LCRs using the OCI or Java interface.

Prerequisites
Before configuring XStream In, ensure that the following prerequisite is met:

e Complete the tasks described in "Preparing for XStream In".

Assumptions for the Sample XStream In Configuration
This section makes the following assumptions:

* The name of the inbound server is xi n.

* The inbound server applies all of the changes it receives from the XStream client
application.

* The queue used by the inbound server is xst rmadni n. xi n_gueue.

Figure 9-1 provides an overview of this XStream In configuration.

9-9

ORACLE

Figure 9-1 Sample XStream In Configuration

Oracle Database

Database Objects

T Apply
Changes
Inbound
Server
Xxin Send Error
Transactions

Send
LCRs

Client
Application

To create an inbound server:

1.

XStream administrator.

Queue

xstrmadmin.xin_queue

Chapter 9
Configuring XStream In

In SQL*Plus, connect to the database that will run the inbound server as the

If you are configuring XStream In in a CDB, then connect to the container to which
the inbound server will apply changes. The container can be the CDB root, a PDB,
an application root, or an application PDB. An inbound server can apply changes

only in its own container.

¢ See Also:

Run the CREATE_| NBOUND procedure.

* Oracle Database Administrator’s Guide for information about
connecting to a database in SQL*Plus

* Oracle Multitenant Administrator's Guide for information about
connecting to a container in a CDB in SQL*Plus

e "XStream In and a Multitenant Environment" for information about
using XStream In in a CDB

For example, the following CREATE_| NBOUND procedure configures an inbound server

named xi n:

BEG N

DBNMS_XSTREAM ADM CREATE. | NBOUND(
server_nanme => 'xin',

queue_name => 'Xxin_queue');

END;
/

9-10

ORACLE

Chapter 9
Configuring XStream In

Running this procedure performs the following actions:

Creates an inbound server named xi n.

Sets the queue with the name xi n_queue as the inbound server's queue, and
creates this queue if it does not exist. This queue does not store LCRs sent by
the client application. Instead, the queue stores error transactions if an LCR
raises an error. The current user is the queue owner. In this example, the
current user is the XStream administrator.

Sets the current user as the apply user for the inbound server. In this example,
the current user is the XStream administrator. The client application must
connect to the database as the apply user to interact with the inbound server.

Tip:

By default, an inbound server does not use rules or rule sets. Therefore, it
processes all LCRs sent to it by the client application. To add rules and rule
sets, use the DBM5_XSTREAM ADMpackage or the DBVMS_RULE_ADMpackage. See
Oracle Database PL/SQL Packages and Types Reference.

If necessary, create apply handlers for the inbound server.

Apply handlers are optional. Apply handlers process LCRs sent to an inbound
server in a customized way.

¢ See Also:

"LCR Processing Options for Inbound Servers"

Create and run the client application that will connect to the inbound server and
send LCRs to it.

" See Also:

"Sample XStream Client Application" for a sample application

If the inbound server is disabled, then start the inbound server.

For example, enter the following:

exec DBMS_APPLY ADM START APPLY('xin');

¢ See Also:
Oracle Database PL/SQL Packages and Types Reference

9-11

Managing XStream In

ORACLE

You can manage an XStream In configuration.

This chapter does not cover using rules, rule sets, or rule-based transformations with

inbound servers. By default, an inbound server does not use rules or rule sets.

Therefore, an inbound server applies all of the logical change records (LCRs) sent to it

by an XStream client application. However, to filter the LCRs sent to an inbound
server, you can add rules and rule sets to an inbound server using the
DBMS_XSTREAM ADMand DBMS_RULE_ADMpackages. You can also specify rule-based
transformations using the DBVS_XSTREAM ADM package.

About Managing XStream In
You can modify the database components that are part of an XStream In
configuration, such as inbound servers.

Starting an Inbound Server

A inbound server must be enabled for it to receive logical change records (LCRS)
from an XStream client application and apply the LCRs. You run the START_APPLY
procedure in the DBVMS_APPLY ADMpackage to start an existing inbound server.

Stopping an Inbound Server

You run the STOP_APPLY procedure in the DBMS_APPLY_ADM package to stop an
existing inbound server. You might stop an inbound server when you are
troubleshooting a problem in an XStream configuration.

Setting an Apply Parameter for an Inbound Server

Apply parameters control the way an inbound server operates. You set an apply
parameter for an inbound server using the SET_PARAMETER procedure in the
DBMS_XSTREAM ADM package.

Changing the Apply User for an Inbound Server

An inbound server applies LCRs in the security domain of its apply user, and the
client application must attach to the inbound server as the apply user. You can
change the apply user for an inbound server with the ALTER_| NBOUND procedure in
the DBMS_XSTREAM ADM package.

Managing XStream In Conflict Detection and Resolution

When more than one client modifies the same table row at approximately the
same time, conflicts are possible. XStream In detects conflicts and provides
methods for resolving conflicts.

Managing Apply Errors
Apply errors result when an inbound server tries to apply an LCR, and an error is
raised.

Conflict and Error Handling Precedence
To resolve a conflict or error, an inbound server tries to find conflict handlers and
error handlers.

Dropping Components in an XStream In Configuration
You can drop an inbound server with the DROP_I NBOUND procedure in the
DBMS_XSTREAM ADM package.

10-1

Chapter 10
About Managing XStream In

" See Also:

Oracle Streams Concepts and Administration for information about using rules,
rule sets, and rule-based transformations

10.1 About Managing XStream In

ORACLE

You can modify the database components that are part of an XStream In
configuration, such as inbound servers.

The main interface for managing XStream In database components is PL/SQL.
Specifically, use the following Oracle supplied PL/SQL packages to manage XStream
In:

+ DBMB_XSTREAM ADM

The DBMS_XSTREAM ADM package is the main package for managing XStream In. This
package includes subprograms that enable you to configure, modify, or drop
inbound servers. This package also enables you modify the rules, rule sets, and
rule-based transformations used by inbound servers.

" See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about this package

* DBVB_XSTREAM AUTH

The DBVS_XSTREAM AUTH package enables you to configure and modify XStream
administrators.

¢ See Also:

— "Configure an XStream Administrator" for information about using this
package to create an XStream administrator

— Oracle Database PL/SQL Packages and Types Reference for detailed
information about this package

e DBMS_APPLY_ADM
The DBVS_APPLY_ADMpackage enables you modify inbound servers.

" See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about this package

10-2

Chapter 10
Starting an Inbound Server

10.2 Starting an Inbound Server

A inbound server must be enabled for it to receive logical change records (LCRs) from
an XStream client application and apply the LCRs. You run the START_APPLY procedure
in the DBVMS_APPLY_ADMpackage to start an existing inbound server.

To start an inbound server:

1. Connect to the inbound server database as the XStream administrator.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

2. Run the START_APPLY procedure in the DBMS_APPLY_ADMpackage, and specify the
inbound server for the appl y_nane parameter.

The following example starts an inbound server named xi n.

Example 10-1 Starting an Outbound Server Named xout

BEG N
DBMVS_APPLY_ADM START_APPLY(
appl y_name => 'xin');
END;
/

¢ See Also:

The Oracle Enterprise Manager Cloud Control online help for instructions about
starting an apply process or an inbound server with Oracle Enterprise Manager
Cloud Control

10.3 Stopping an Inbound Server

ORACLE

You run the STOP_APPLY procedure in the DBMS_APPLY _ADMpackage to stop an existing
inbound server. You might stop an inbound server when you are troubleshooting a
problem in an XStream configuration.

To stop an inbound server:

1. Connect to the inbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the STOP_APPLY procedure in the DBMS_APPLY_ADMpackage, and specify the
inbound server for the appl y_nane parameter.

The following example stops an inbound server named xi n.
Example 10-2 Stopping an Inbound Server Named xout

BEG N
DBMVS_APPLY_ADM STOP_APPLY(
appl y_name => 'xin');

10-3

Chapter 10
Setting an Apply Parameter for an Inbound Server

END;

See Also:

The Oracle Enterprise Manager Cloud Control online help for instructions about
stopping an apply process or an inbound server with Oracle Enterprise
Manager Cloud Control

10.4 Setting an Apply Parameter for an Inbound Server

ORACLE

Apply parameters control the way an inbound server operates. You set an apply
parameter for an inbound server using the SET_PARAMETER procedure in the
DBMS_XSTREAM ADM package.

To set an inbound server apply parameter:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the SET_PARAMETER procedure in the DBVMS_XSTREAM ADM package, and specify the
following parameters:

* streans_nane - Specify the name of the inbound server.
e streans_type - Specify appl y.

* paraneter - Specify the name of the apply parameter.

e val ue - Specify the value for the apply parameter.

The following example sets the paral | el i smparameter for an inbound server named
Xin to 4.

Example 10-3 Setting an Outbound Server Parameter

BEG N
DBMS_XSTREAM ADM SET_PARAMETER(
streans_nane => 'xin',
streans_type => "apply',

par anet er => 'parallelisn,
val ue = "4");

END;

/
Note:

e The val ue parameter is always entered as a VARCHAR2 value, even if the
parameter value is a number.

e If the val ue parameter is set to NULL or is not specified, then the parameter
is set to its default value.

10-4

Chapter 10
Changing the Apply User for an Inbound Server

" See Also:

e The Oracle Enterprise Manager Cloud Control online help for instructions
about setting an apply parameter with Oracle Enterprise Manager Cloud
Control

e Oracle Database PL/SQL Packages and Types Reference for information
about apply parameters

10.5 Changing the Apply User for an Inbound Server

ORACLE

An inbound server applies LCRs in the security domain of its apply user, and the client
application must attach to the inbound server as the apply user. You can change the
apply user for an inbound server with the ALTER | NBOUND procedure in the
DBMS_XSTREAM ADM package.

You can change the apply user when a client application must connect to an inbound
server as a different user or when you want to apply changes using the privileges
associated with a different user. Ensure that the apply user is granted the required
privileges.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the privileges required by an apply user.

To change the apply user for an inbound server:

1. Connect to the inbound server database as the XStream administrator.

The XStream administrator must be granted the DBA role to change the apply user
for an inbound server.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

2. Run the ALTER | NBOUND procedure in the DBVS_XSTREAM ADM package, and specify the
following parameters:

e server_nane - Specify the name of the inbound server.
» apply_user - Specify the new apply user.
Example 10-4 Changing the Apply User for an Inbound Server

To change the apply user to hr for an inbound server named xi n, run the following
procedure:

BEG N
DBMS_XSTREAM ADM ALTER_| NBOUND(
server_nane => 'xin',
apply_user => "hr");
END;
/

10-5

Chapter 10
Managing XStream In Conflict Detection and Resolution

" See Also:

e "XStream In and Security"

e Oracle Database PL/SQL Packages and Types Reference

10.6 Managing XStream In Conflict Detection and
Resolution

When more than one client modifies the same table row at approximately the same
time, conflicts are possible. XStream In detects conflicts and provides methods for
resolving conflicts.

e About DML Conflicts in an XStream Environment
A conflict is a mismatch between the old values in an LCR and the data in a table.

e Conflict Types in an XStream Environment
You can encounter several different types of conflicts when you share data at
multiple databases.

» Conflicts and Transaction Ordering in an XStream Environment
Ordering conflicts can occur in an XStream environment when three or more
databases share data and the data is updated at two or more of these databases.

* Conflict Detection in an XStream Environment
An inbound server detects conflicts automatically.

e Conflict Avoidance in an XStream Environment
There are several ways to avoid data conflicts.

* Conflict Resolution in an XStream Environment
After an update conflict has been detected, a conflict handler can attempt to
resolve it.

* Managing DML Conflict Handlers
You can set and remove a DML conflict handler. To modify an existing DML
conflict handler, you must remove it and reset it.

* Stopping Conflict Detection for Non-Key Columns
You can stop conflict detection for non-key columns by using the
COVPARE_QOLD _VALUES procedure in the DBVS_APPLY_ADMpackage.

10.6.1 About DML Conflicts in an XStream Environment

ORACLE

A conflict is a mismatch between the old values in an LCR and the data in a table.

Conflicts can occur in an XStream environment that permits concurrent data
manipulation language (DML) operations on the same data at multiple databases. In
an XStream environment, DML conflicts can occur only when an inbound server is
applying a row LCR that contains a row change resulting from a DML operation. An
inbound server automatically detects conflicts caused by row LCRs.

For example, when two transactions originating at different databases update the
same row at nearly the same time, a conflict can occur. When you configure an
XStream environment, you must consider whether conflicts can occur. You can

10-6

Chapter 10
Managing XStream In Conflict Detection and Resolution

configure conflict resolution to resolve conflicts automatically, if your system design
permits conflicts.

In general, it is best practice to design an XStream environment that avoids the
possibility of conflicts. Using the conflict avoidance techniques discussed later in this
chapter, most system designs can avoid conflicts in all or a large percentage of the
shared data. However, many applications require that some percentage of the shared
data be updatable at multiple databases at any time. If this is the case, then you must
address the possibility of conflicts.

" Note:

An inbound server does not detect DDL conflicts. Ensure that your environment
avoids these types of conflicts.

Related Topics

* RowLCRs
A row LCR describes a change to the data in a single row or a change to a single
LOB column, LONG column, LONG RAWcolumn, or XM.Type column in a row.

10.6.2 Conflict Types in an XStream Environment

You can encounter several different types of conflicts when you share data at multiple
databases.

» Update Conflicts in an XStream Environment
An update conflict occurs when an inbound server applies a row LCR containing
an update to a row that conflicts with another update to the same row.

* Uniqueness Conflicts in an XStream Environment
A uniqueness conflict occurs when an inbound server applies a row LCR
containing a change to a row that violates a uniqueness integrity constraint, such
as a PRI MARY KEY or UNI QUE constraint.

» Delete Conflicts in an XStream Environment
A delete conflict occurs when two transactions originate at different databases,
with one transaction deleting a row and another transaction updating or deleting
the same row.

* Foreign Key Conflicts in an XStream Environment
A foreign key conflict occurs when an inbound server applies a row LCR
containing a change to a row that violates a foreign key constraint.

10.6.2.1 Update Conflicts in an XStream Environment

ORACLE

An update conflict occurs when an inbound server applies a row LCR containing an
update to a row that conflicts with another update to the same row.

Update conflicts can happen when two transactions originating from different
databases update the same row at nearly the same time.

10-7

Chapter 10
Managing XStream In Conflict Detection and Resolution

10.6.2.2 Uniqueness Conflicts in an XStream Environment

A uniqueness conflict occurs when an inbound server applies a row LCR containing
a change to a row that violates a uniqueness integrity constraint, such as a PRI MARY KEY
or UNI QUE constraint.

For example, consider what happens when two transactions originate from two
different databases, each inserting a row into a table with the same primary key value.
In this case, the transactions cause a uniqueness conflict.

10.6.2.3 Delete Conflicts in an XStream Environment

A delete conflict occurs when two transactions originate at different databases, with
one transaction deleting a row and another transaction updating or deleting the same
row.

In this case, the row referenced in the row LCR does not exist and therefore cannot be
updated or deleted.

10.6.2.4 Foreign Key Conflicts in an XStream Environment

A foreign key conflict occurs when an inbound server applies a row LCR containing
a change to a row that violates a foreign key constraint.

For example, in the hr schema, the departnent _i d column in the enpl oyees table is a
foreign key of the department _i d column in the depart nent s table. Consider what can
happen when the following changes originate at two different databases (A and B) and
are propagated to a third database (C):

e At database A, a row is inserted into the depart nent s table with a department _i d of
271. This change is propagated to database B and applied there.

e Atdatabase B, a row is inserted into the enpl oyees table with an enpl oyee_i d of 206
and a department _i d of 271.

If the change that originated at database B is applied at database C before the change
that originated at database A, then a foreign key conflict results because the row for
the department with a depart ment _i d of 271 does not yet exist in the depart nent s table
at database C.

10.6.3 Conflicts and Transaction Ordering in an XStream Environment

ORACLE

Ordering conflicts can occur in an XStream environment when three or more
databases share data and the data is updated at two or more of these databases.

For example, consider a scenario in which three databases share information in the
hr. departnent s table. The database names are nul t 1. exanpl e. com nul t 2. exanpl e. com
and mul t 3. exanpl e. com Suppose a change is made to a row in the hr. depart nent s table
at nul t 1. exanpl e. comthat will be propagated to both mul t 2. exanpl e. comand

mul t 3. exanpl e. com The following series of actions might occur:

1. The change is propagated to mul t 2. exanpl e. com

2. Aninbound server at mil t 2. exanpl e. comapplies the change from
mul t 1. exanpl e. com

3. A different change to the same row is made at mul t 2. exanpl e. com

10-8

Chapter 10
Managing XStream In Conflict Detection and Resolution

4. The change at nul t 2. exanpl e. comis propagated to mul t 3. exanpl e. com

5. Aninbound server at mil t 3. exanpl e. comattempts to apply the change from
mul t 2. exanpl e. combefore another inbound server at mul t 3. exanpl e. comapplies the
change from nul t 1. exanpl e. com

In this case, a conflict occurs because a column value for the row at mul t 3. exanpl e. com
does not match the corresponding old value in the row LCR propagated from
mul t 2. exanpl e. com

In addition to causing a data conflict, transactions that are applied out of order might
experience referential integrity problems at a remote database if supporting data has
not been successfully propagated to that database. Consider the scenario where a
new customer calls an order department. A customer record is created and an order is
placed. If the order data is applied at a remote database before the customer data,
then a referential integrity error is raised because the customer that the order
references does not exist at the remote database.

If an ordering conflict is encountered, then you can resolve the conflict by reexecuting
the transaction in the error queue after the required data has been propagated to the
remote database and applied.

10.6.4 Conflict Detection in an XStream Environment

An inbound server detects conflicts automatically.

» About Conflict Detection in an XStream Environment
An inbound server detects update, uniqueness, delete, and foreign key conflicts.

» Control Over Conflict Detection for Non-Key Columns
By default, an inbound server compares old values for all columns during conflict
detection, but you can stop conflict detection for non-key columns using the
COVPARE_QOLD VALUES procedure in the DBVS_APPLY_ADMpackage.

* Rows Identification During Conflict Detection in an XStream Environment
To detect conflicts accurately, Oracle Database must be able to identify and match
corresponding rows at different databases uniquely.

10.6.4.1 About Conflict Detection in an XStream Environment

ORACLE

An inbound server detects update, uniqueness, delete, and foreign key conflicts.
An inbound server detects these conflicts as follows:

* Aninbound server detects an update conflict if there is any difference between the
old values for a row in a row LCR and the current values of the same row at the
destination database.

* Aninbound server detects a uniqueness conflict if a uniqueness constraint
violation occurs when applying an LCR that contains an insert or update operation.

* Aninbound server detects a delete conflict if it cannot find a row when applying an
LCR that contains an update or delete operation, because the primary key of the
row does not exist.

* Aninbound server detects a foreign key conflict if a foreign key constraint violation
occurs when applying an LCR.

A conflict can be detected when an inbound server attempts to apply an LCR directly
or when an inbound server handler, such as a DML conflict handler, runs the EXECUTE

10-9

Chapter 10
Managing XStream In Conflict Detection and Resolution

member procedure for an LCR. A conflict can also be detected when either the
EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure in the DBMS_APPLY_ADM package is run.

Note:

e If a column is updated and the column's old value equals its new value,
then Oracle Database never detects a conflict for this column update.

e Any old LOB values in update LCRs, delete LCRs, and LCRs dealing with
piecewise updates to LOB columns are not used by conflict detection.

10.6.4.2 Control Over Conflict Detection for Non-Key Columns

By default, an inbound server compares old values for all columns during conflict
detection, but you can stop conflict detection for non-key columns using the
COVPARE_QOLD VALUES procedure in the DBVS_APPLY_ADM package.

Conflict detection might not be needed for some non-key columns.

" See Also:

"Stopping Conflict Detection for Non-Key Columns"

10.6.4.3 Rows Identification During Conflict Detection in an XStream
Environment

To detect conflicts accurately, Oracle Database must be able to identify and match
corresponding rows at different databases uniquely.

By default, Oracle Database uses the primary key of a table to identify rows in a table
uniquely. When a table does not have a primary key, it is best practice to designate a
substitute key. A substitute key is a column or set of columns that Oracle Database
can use to identify uniquely rows in the table.

10.6.5 Conflict Avoidance in an XStream Environment

There are several ways to avoid data conflicts.

e Use a Primary Database Ownership Model
You can avoid the possibility of conflicts by limiting the number of databases that
have simultaneous update access to the tables containing shared data.

* Avoid Specific Types of Conflicts
If a primary database ownership model is too restrictive for your application
requirements, then you can use a shared ownership data model, which means that
conflicts might be possible. Even so, typically you can use some simple strategies
to avoid specific types of conflicts.

ORACLE 10-10

Chapter 10
Managing XStream In Conflict Detection and Resolution

10.6.5.1 Use a Primary Database Ownership Model

You can avoid the possibility of conflicts by limiting the number of databases that have
simultaneous update access to the tables containing shared data.

Primary ownership prevents all conflicts, because only a single database permits
updates to a set of shared data. Applications can even use row and column subsetting
to establish more granular ownership of data than at the table level. For example,
applications might have update access to specific columns or rows in a shared table
on a database-by-database basis.

10.6.5.2 Avoid Specific Types of Conflicts

If a primary database ownership model is too restrictive for your application
requirements, then you can use a shared ownership data model, which means that
conflicts might be possible. Even so, typically you can use some simple strategies to
avoid specific types of conflicts.

* Avoid Uniqueness Conflicts in an XStream Environment
You can avoid uniqueness conflicts by ensuring that each database uses unique
identifiers for shared data.

* Avoid Delete Conflicts in an Oracle Streams Environment
Always avoid delete conflicts in shared data environments.

* Avoid Update Conflicts in an XStream Environment
After trying to eliminate the possibility of uniqueness and delete conflicts, you
should also try to limit the number of possible update conflicts.

10.6.5.2.1 Avoid Uniqueness Conflicts in an XStream Environment

ORACLE

You can avoid uniqueness conflicts by ensuring that each database uses unique
identifiers for shared data.

There are three ways to ensure unique identifiers at all databases in an XStream
environment.

* One way is to construct a unique identifier by executing the following select
statement:

SELECT SYS GQUID() O D FROM DUAL;

This SQL operator returns a 16-byte globally unique identifier. The globally unique
identifier appears in a format similar to the following:

A741C791252B3EAOE034080020AE3EOA

Another way to avoid unigueness conflicts is to create a sequence at each of the
databases that shares data and concatenate the database name (or other globally
unique value) with the local sequence. This approach helps to avoid any duplicate
sequence values and helps to prevent uniqueness conflicts.

Finally, you can create a customized sequence at each of the databases that
shares data so that no two databases can generate the same value. You can
accomplish this by using a combination of starting, incrementing, and maximum
values in the CREATE SEQUENCE statement. For example, you might configure the
following sequences:

10-11

Chapter 10
Managing XStream In Conflict Detection and Resolution

Table 10-1 Customized Sequences

Parameter Database A Database B Database C
START W TH 1 3 5

| NCREMENT BY 10 10 10

Range Example 1,11, 21, 31, 41,... 3,13, 23, 33, 43,... 5, 15, 25, 35, 45,...

Using a similar approach, you can define different ranges for each database by
specifying a START W TH and MAXVALUE that would produce a unique range for each
database.

10.6.5.2.2 Avoid Delete Conflicts in an Oracle Streams Environment

Always avoid delete conflicts in shared data environments.

In general, it is best practice for applications that operate within a shared ownership

data model to avoid deleting rows using DELETE statements. Instead, applications can
mark rows for deletion and then configure the system to purge logically deleted rows
periodically.

10.6.5.2.3 Avoid Update Conflicts in an XStream Environment

After trying to eliminate the possibility of uniqueness and delete conflicts, you should
also try to limit the number of possible update conflicts.

However, in a shared ownership data model, update conflicts cannot be avoided in all
cases. If you cannot avoid all update conflicts, then you must understand the types of
conflicts possible and configure the system to resolve them if they occur.

10.6.6 Conflict Resolution in an XStream Environment

After an update conflict has been detected, a conflict handler can attempt to resolve it.

ORACLE

About Conflict Resolution in an XStream Environment
XStream provides prebuilt conflict handlers to resolve insert and update conflicts.

Prebuilt DML Conflict Handlers
There are several types of prebuilt DML conflict handlers available. Column lists
and resolution columns are used in prebuilt DML conflict handlers.

Types of Prebuilt DML Conflict Handlers
Oracle provides the following types of prebuilt DML conflict handlers for an Oracle
Streams environment: RECORD, | GNORE, OVERWRI TE, MAXI MUM, M NI MUM, and DELTA.

Column Lists
Each time you specify a prebuilt DML conflict handler for a table, you must specify
a column list.

Resolution Columns
The resolution column is the column used to identify a prebuilt DML conflict
handler.

Data Convergence

When you share data between multiple databases, and you want the data to be
the same at all of these databases, ensure that you use conflict resolution
handlers that cause the data to converge at all databases.

10-12

Chapter 10
Managing XStream In Conflict Detection and Resolution

e Collision Handling Without a DML Conflict Handler
In the absence of a DML conflict handler for a table, you can enable basic collision
handling using the HANDLE_COLLI SI ONS procedure in the DBMS_APPLY_ADM package.

e Custom Conflict Handlers
You can create a PL/SQL procedure to use as a custom conflict handler.

10.6.6.1 About Conflict Resolution in an XStream Environment

XStream provides prebuilt conflict handlers to resolve insert and update conflicts.

There are no prebuilt conflict handlers for delete, foreign key, or ordering conflicts.
However, you can build your own custom conflict handler to resolve data conflicts
specific to your business rules. Such a conflict handler can be part of a procedure
DML handler or an error handler.

Whether you use prebuilt or custom conflict handlers, a conflict handler is applied as
soon as a conflict is detected. If neither the specified conflict handler nor the relevant
apply handler can resolve the conflict, then the conflict is logged in the error queue.
You might want to use the relevant apply handler to notify the database administrator
when a conflict occurs.

When a conflict causes a transaction to be moved to the error queue, sometimes it is
possible to correct the condition that caused the conflict. In these cases, you can
reexecute a transaction using the EXECUTE_ERRCR procedure in the DBVS_APPLY_ADM
package.

¢ See Also:

Oracle Database PL/SQL Packages and Types Referencefor more information
about the EXECUTE_ERRCR procedure in the DBVMS_APPLY_ADM package

10.6.6.2 Prebuilt DML Conflict Handlers

There are several types of prebuilt DML conflict handlers available. Column lists and
resolution columns are used in prebuilt DML conflict handlers.

A column list is a list of columns for which the DML conflict handler is called when
there is an insert or update conflict. The resolution column identifies a DML conflict
handler. If you use a MAXI MUMor M NI MUM prebuilt DML conflict handler, then the
resolution column is also the column used to resolve the conflict. The resolution
column must be one of the columns in the column list for the handler.

Use the SET_DM._CONFLI CT_HANDLER procedure in the DBMS_APPLY_ADM package to specify
one or more DML conflict handlers for a particular table. There are no prebuilt DML
conflict handlers for delete or foreign key conflicts.

ORACLE 10-13

Chapter 10
Managing XStream In Conflict Detection and Resolution

¢ See Also:

e "Managing DML Conflict Handlers" for instructions on setting and removing
an DML conflict handler

e Oracle Database PL/SQL Packages and Types Reference for more
information about the SET_DM._CONFLI CT_HANDLER procedure

e "Column Lists"

¢ "Resolution Columns"

10.6.6.3 Types of Prebuilt DML Conflict Handlers

ORACLE

Oracle provides the following types of prebuilt DML conflict handlers for an Oracle
Streams environment: RECORD, | GNORE, OVERWRI TE, MAXI MUM M Nl MUM, and DELTA.

The description for each type of handler later in this topic refers to the following conflict
scenario:

1. The following update is made at the dbs1. exanpl e. comsource database:

UPDATE hr. enpl oyees SET sal ary = 4900 WHERE enpl oyee_id = 200;
COWM T,

This update changes the salary for employee 200 from 4400 to 4900.

2. At nearly the same time, the following update is made at the dbs2. exanpl e. com
destination database:

UPDATE hr. enpl oyees SET sal ary = 5000 WHERE enpl oyee_id = 200;
COWM T,

3. A capture process captures the update at the dbs1. exanpl e. comsource database
and puts the resulting row LCR in a queue.

4. A propagation propagates the row LCR from the queue at dbs1. exanpl e. comto a
queue at dbs2. exanpl e. com

5. An apply process at dbs2. exanpl e. comattempts to apply the row LCR to the
hr. enpl oyees table but encounters a conflict because the salary value at
dbs2. exanpl e. comis 5000, which does not match the old value for the salary in the
row LCR (4400).

The following sections describe each prebuilt conflict handler and explain how the
handler resolves this conflict.

RECORD

When a conflict occurs, the RECORD handler places the LCR into the error queue. The
RECORD handler can be used for all conflict types, but it can only be specified for a
column group that contains all the columns in the table.

If the RECORD handler is used for the hr. enpl oyees table at the dbs2. exanpl e. com
destination database in the conflict example, then the row LCR from dbs1. exanpl e. com
is placed in the error queue at dbs1. exanpl e. com and its changes are not applied.
Therefore, after the conflict is resolved, the salary for employee 200 is 5000 at

dbs2. exanpl e. com

10-14

ORACLE

Chapter 10
Managing XStream In Conflict Detection and Resolution

IGNORE

When a conflict occurs, the | GNORE handler ignores the values in the LCR from the
source database and retains the value at the destination database.

If the | GNORE handler is used for the hr. enpl oyees table at the dbs2. exanpl e. com
destination database in the conflict example, then the new value in the row LCR is
discarded. Therefore, after the conflict is resolved, the salary for employee 200 is 5000
at dbs2. exanpl e. com

OVERWRITE

When a conflict occurs, the OVERWRI TE handler replaces the current value at the
destination database with the new value in the LCR from the source database.

If the OVERWRI TE handler is used for the hr. enpl oyees table at the dbs2. exanpl e. com
destination database in the conflict example, then the new value in the row LCR
overwrites the value at dbs2. exanpl e. com Therefore, after the conflict is resolved, the
salary for employee 200 is 4900.

MAXIMUM

When a conflict occurs, the MAXI MUM conflict handler compares the new value in the
LCR from the source database with the current value in the destination database for a
designated resolution column. If the new value of the resolution column in the LCR is
greater than the current value of the column at the destination database, then the
apply process resolves the conflict in favor of the LCR. If the new value of the
resolution column in the LCR is less than the current value of the column at the
destination database, then the apply process resolves the conflict in favor of the
destination database.

If the MaXI MUM handler is used for the sal ary column in the hr. enpl oyees table at the
dbs2. exanpl e. comdestination database in the conflict example, then the apply process
does not apply the row LCR, because the salary in the row LCR is less than the
current salary in the table. Therefore, after the conflict is resolved, the salary for
employee 200 is 5000 at dbs2. exanpl e. com

If you want to resolve conflicts based on the time of the transactions involved, then
one way to do this is to add a column to a shared table that automatically records the
transaction time with a trigger. You can designate this column as a resolution column
for a MAXI MMM conflict handler, and the transaction with the latest (or greater) time would
be used automatically.

The following is an example of a trigger that records the time of a transaction for the
hr. enpl oyees table. Assume that the job_i d, sal ary, and comni ssi on_pct columns are
part of the column list for the conflict resolution handler. The trigger should fire only
when an UPDATE is performed on the columns in the column list or when an | NSERT is
performed.

ALTER TABLE hr. enpl oyees ADD (time TI MESTAV® WTH TI ME ZONE) ;

CREATE OR REPLACE TRIGGER hr.insert_time_enpl oyees
BEFORE
I NSERT OR UPDATE OF job_id, salary, commssion_pct ON hr.enployees
FOR EACH ROV
BEG N
- Consider tinme synchronization problenms. The previous update to this
- row mght have originated froma site with a clock tinme ahead of the

10-15

ORACLE

Chapter 10
Managing XStream In Conflict Detection and Resolution

- local clock tine.
IF :OLD.TIME IS NULL OR : OLD. TI ME < SYSTI MESTAMP THEN
NEW TI ME : = SYSTI MESTAMP,
ELSE
:NEWTIME := :QLD.TIME + 1 / 86400;
END | F;
END;
/

If you use such a trigger for conflict resolution, then ensure that the trigger's firing
property is “fire once,” which is the default. Otherwise, a new time might be marked
when transactions are applied by an apply process, resulting in the loss of the actual
time of the transaction.

MINIMUM

When a conflict occurs, the M Nl MUM conflict handler compares the new value in the
LCR from the source database with the current value in the destination database for a
designated resolution column. If the new value of the resolution column in the LCR is
less than the current value of the column at the destination database, then the apply
process resolves the conflict in favor of the LCR. If the new value of the resolution
column in the LCR is greater than the current value of the column at the destination
database, then the apply process resolves the conflict in favor of the destination
database.

If the M NlMUMhandler is used for the sal ary column in the hr. enpl oyees table at the
dbs2. exanpl e. comdestination database in the conflict example, then the apply process
resolves the conflict in favor of the row LCR, because the salary in the row LCR is less
than the current salary in the table. Therefore, after the conflict is resolved, the salary
for employee 200 is 4900.

DELTA

When a conflict occurs, the DELTA conflict handler calculates the difference between the
old value for the column and the new value for the column and adds the difference to
the current value of the column. The DELTA conflict handler can only be used when the
conflict_type is set to ROW EXI STS and all of the columns in the column group are
numbers.

If the DELTA handler is used for the sal ary column in the hr. enpl oyees table at the

dbs2. exanpl e. comdestination database in the conflict example, then the apply process
resolves the conflict by calculating the difference between the old value for the column
and the new value for the column (4900 — 4400 = 500) and adding it to the current
value of the column (5000 + 500 = 5500). Therefore, after the conflict is resolved, the
salary for employee 200 is 5500.

MAX_AND_EQUALS

When a conflict occurs, apply the column list from in the LCR if the value of resolution
column is greater than or equal to the value of the column in the database. Otherwise,
discard the LCR.

If the MAX_AND EQUALS handler is used for the sal ary column in the hr. enpl oyees table at
the dbs2. exanpl e. comdestination database in the conflict example, then the apply
process resolves the conflict by discarding the LCR. Therefore, after the conflict is
resolved, the salary for employee 200 is 5000.

10-16

Chapter 10
Managing XStream In Conflict Detection and Resolution

MIN_AND_EQUALS

When a conflict occurs, apply the column list from the LCR if the value of resolution
column is less than or equal to the value of the column in the database. Otherwise,
discard the LCR.

If the M N_AND_EQUALS handler is used for the sal ary column in the hr. enpl oyees table at
the dbs2. exanpl e. comdestination database in the conflict example, then the apply
process resolves the conflict by applying the LCR. Therefore, after the conflict is
resolved, the salary for employee 200 is 4900.

10.6.6.4 Column Lists

ORACLE

Each time you specify a prebuilt DML conflict handler for a table, you must specify a
column list.

A column list is a list of columns for which the DML conflict handler is called. If an
update conflict occurs for one or more of the columns in the list when an inbound
server tries to apply a row LCR, then the DML conflict handler is called to resolve the
conflict. The DML conflict handler is not called if a conflict occurs only in columns that
are not in the list. The scope of conflict resolution is a single column list on a single
row LCR.

You can specify multiple DML conflict handlers for a particular table, but the same
column cannot be in more than one column list. For example, suppose you specify two
prebuilt DML conflict handlers on hr. enpl oyees table:

e The first DML conflict handler has the following columns in its column list; sal ary
and conmi ssi on_pct .

e The second DML conflict handler has the following columns in its column list;
job_idand department _id.

Also, assume that no other conflict handlers exist for this table. In this case, the
following examples illustrate the outcomes for different scenarios:

» If a conflict occurs for the sal ary column when an inbound server tries to apply a
row LCR, then the first DML conflict handler is called to resolve the conflict.

» If a conflict occurs for the depart nent _i d column, then the second DML conflict
handler is called to resolve the conflict.

« If a conflict occurs for a column that is not in a column list for any conflict handler,
then no conflict handler is called, and an error results. For instance, if a conflict
occurs for the manager _i d column in the hr. enpl oyees table, then an error results.

* If conflicts occur in more than one column list when a row LCR is being applied,
and there are no conflicts in any columns that are not in a column list, then the
appropriate DML conflict handler is invoked for each column list with a conflict.

Column lists enable you to use different handlers to resolve conflicts for different types
of data. For example, numeric data is often suited for a maximum or minimum conflict
handler, while an overwrite or discard conflict handler might be preferred for character
data.

If a conflict occurs in a column that is not in a column list, then the error handler for the
specific operation on the table attempts to resolve the conflict. If the error handler
cannot resolve the conflict, or if there is no such error handler, then the transaction
that caused the conflict is moved to the error queue.

10-17

Chapter 10
Managing XStream In Conflict Detection and Resolution

Also, if a conflict occurs for a column in a column list that uses either the OVERWRI TE,
MAXI MUM, or M NI MUM prebuilt handler, and if the row LCR does not contain all of the
columns in this column list, then the conflict cannot be resolved because all of the
values are not available. In this case, the transaction that caused the conflict is moved
to the error queue. If the column list uses the DI SCARD prebuilt method, then the row
LCR is discarded and no error results, even if the row LCR does not contain all of the
columns in this column list.

If more than one column at the source database affects the column list at the
destination database, then a conditional supplemental log group must be specified for
the columns specified in a column list. Supplemental logging is specified at the source
database and adds additional information to the LCR, which is needed to resolve
conflicts properly. Typically, a conditional supplemental log group must be specified for
the columns in a column list if there are multiple columns in the column list, but not if
there is only one column in the column list.

However, in some cases, a conditional supplemental log group is required even if
there is only one column in a column list. That is, an apply handler or custom rule-
based transformation can combine multiple columns from the source database into a
single column in the column list at the destination database. For example, a custom
rule-based transformation can take three columns that store street, state, and postal
code data from a source database and combine the data into a single address column
at a destination database.

Also, in some cases, no conditional supplemental log group is required even if there
are multiple columns in a column list. For example, an apply handler or custom rule-
based transformation can separate one address column from the source database into
multiple columns that are in a column list at the destination database. A custom rule-
based transformation can take an address that includes street, state, and postal code
data in one address column at a source database and separate the data into three
columns at a destination database.

Note:

Prebuilt DML conflict handlers do not support LOB, LONG, LONG RAW user-defined
type, and Oracle-supplied type columns. Therefore, you should not include
these types of columns in the col um_| i st parameter when running the
SET_DM._CONFLI CT_HANDLER procedure.

" See Also:

« "If Required, Specify Supplemental Logging at the Source Database"

e Oracle Database SQL Language Reference for information about data
types

10.6.6.5 Resolution Columns

The resolution column is the column used to identify a prebuilt DML conflict handler.

ORACLE 10-18

Chapter 10
Managing XStream In Conflict Detection and Resolution

If you use a MAXI MUMMor M NI MUM prebuilt DML conflict handler, then the resolution
column is also the column used to resolve the conflict. The resolution column must be
one of the columns in the column list for the handler.

For example, if the sal ary column in the hr. enpl oyees table is specified as the
resolution column for a maximum or minimum conflict handler, then the sal ary column
is evaluated to determine whether column list values in the row LCR are applied or the
destination database values for the column list are retained.

In either of the following situations involving a resolution column for a conflict, the
apply process moves the transaction containing the row LCR that caused the conflict
to the error queue, if the error handler cannot resolve the problem. In these cases, the
conflict cannot be resolved and the values of the columns at the destination database
remain unchanged:

e The new LCR value and the destination row value for the resolution column are
the same (for example, if the resolution column was not the column causing the
conflict).

« Either the new LCR value of the resolution column or the current value of the
resolution column at the destination database is NULL.

" Note:

Although the resolution column is not used for OVERWRI TE and DI SCARD conflict
handlers, you must specify a resolution column for these conflict handlers.

10.6.6.6 Data Convergence

When you share data between multiple databases, and you want the data to be the
same at all of these databases, ensure that you use conflict resolution handlers that
cause the data to converge at all databases.

If you allow changes to shared data at all of your databases, then data convergence
for a table is possible only if all databases that are sharing data capture changes to the
shared data and propagate these changes to all of the other databases that are
sharing the data.

In such an environment, the MAXI MUM conflict resolution method can guarantee
convergence only if the values in the resolution column are always increasing. If
successive time stamps on a row are distinct, then a time-based resolution column
meets this requirement. The M Nl MUMconflict resolution method can guarantee
convergence in such an environment only if the values in the resolution column are
always decreasing.

10.6.6.7 Collision Handling Without a DML Conflict Handler

ORACLE

In the absence of a DML conflict handler for a table, you can enable basic collision
handling using the HANDLE_COLLI SI ONS procedure in the DBMS_APPLY_ADMpackage.

When you enable basic collision handling for an inbound server and a table, conflicts
are resolved in the following ways:

« When a conflict is detected for a row that exists in the table, the data in the row
LCR overwrites the data in the table.

10-19

Chapter 10
Managing XStream In Conflict Detection and Resolution

For example, if a row LCR contains an insert, but the row already exists in the
table. The data in the row LCR overwrites the existing data in the table. If a row
LCR contains an update, and an old value in the row does not match an old value
in the row LCR, the data in the row LCR overwrites the data in the table.

When a conflict is detected for a row that does not exist in the table, the data in the
row LCR is ignored.

For example, if a row LCR contains an update to a row, but the row does not exist
in the table, the row LCR is ignored.

Example 10-5 Enabling Basic Collision Handling for a Table

app_enphr. enpl oyees

BEG N
DBVB_APPLY_ADM HANDLE_COLLI SI ONS(
appl y_name => "app_enp',
enabl e => TRUE,
obj ect => 'hr.enpl oyees');
END;
/

To disable basic collision handling for this table, run the same procedure, but set the
enabl e parameter to FALSE.

10.6.6.8 Custom Conflict Handlers

ORACLE

You can create a PL/SQL procedure to use as a custom conflict handler.

You use the SET_DM._HANDLER procedure in the DBVS_APPLY ADMpackage to designate
one or more custom conflict handlers for a particular table. Specifically, set the
following parameters when you run this procedure to specify a custom conflict handler:

e Set the obj ect _name parameter to the fully qualified name of the table for which you
want to perform conflict resolution.

e Set the obj ect _t ype parameter to TABLE.

e Set the operation_nane parameter to the type of operation for which the custom
conflict handler is called. The possible operations are the following: | NSERT, UPDATE,
DELETE, and LOB_UPDATE. You can also set the operati on_nane parameter to DEFAULT
so that the handler is the default handler for all operations.

» If you want an error handler to perform conflict resolution when an error is raised,
then set the error_handl er parameter to TRUE. Or, if you want to include conflict
resolution in your procedure DML handler, then set the error _handl er parameter to
FALSE.

If you specify FALSE for this parameter, then, when you execute a row LCR using
the EXECUTE member procedure for the LCR, the conflict resolution within the
procedure DML handler is performed for the specified object and operation(s).

» Specify the procedure to resolve a conflict by setting the user _procedure
parameter. This user procedure is called to resolve any conflicts on the specified
table resulting from the specified type of operation.

If the custom conflict handler cannot resolve the conflict, then the inbound server
moves the transaction containing the conflict to the error queue and does not apply the
transaction.

10-20

Chapter 10
Managing XStream In Conflict Detection and Resolution

If both a prebuilt DML conflict handler and a custom conflict handler exist for a
particular object, then the prebuilt DML conflict handler is invoked only if both of the
following conditions are met:

e The custom conflict handler executes the row LCR using the EXECUTE member
procedure for the LCR.

e Theconflict_resol uti on parameter in the EXECUTE member procedure for the row
LCR is set to TRUE.

¢ See Also:

Oracle Database PL/SQL Packages and Types Referencefor more information
about the SET_DM._HANDLER procedure

10.6.7 Managing DML Conflict Handlers

You can set and remove a DML conflict handler. To modify an existing DML conflict
handler, you must remove it and reset it.

e Setting a DML Conflict Handler
Set a DML conflict handler using the SET_DM__CONFLI CT_HANDLER procedure in the
DBMS_APPLY_ADMpackage.

* Removing a DML Conflict Handler
You can remove an existing DML conflict handler by running the
SET_DM._CONFLI CT_HANDLER procedure in the DBVS_APPLY_ADM package.

10.6.7.1 Setting a DML Conflict Handler

ORACLE

Set a DML conflict handler using the SET_DM__CONFLI CT_HANDLER procedure in the
DBMS_APPLY_ADMpackage.

You can use one of the following prebuilt methods when you create a DML conflict
resolution handler:

* RECORD

* |G\NCRE

e OVERWRITE
e MAXI MM

e MNMM

e DELTA

° MAX_AND EQUALS

* MN_AND_EQUALS

To set a DML conflict handler:

1. Connect to the inbound server database as the XStream administrator.

2. Run the SET_DM._CONFLI CT_HANDLER procedure in the DBMS_APPLY_ADM package.

10-21

ORACLE

Chapter 10
Managing XStream In Conflict Detection and Resolution

Example 10-6 Setting DML Conflict Handlers

Suppose an XStream In client receives changes to be applied to the hr.j obs table at
dbs1. exanpl e. com In this environment, conflicts can occur because the changes from
the external database that the client receives may not be coordinated with the changes
to the target database dbs1. exanpl e. com If there is a conflict for a particular DML insert
or update, then the change from the external database must always overwrite the
change at the target database. In this environment, you can accomplish this goal by
specifying an OVERAR TE handler at the dbs1. exanpl e. comdatabase. If there is a conflict
because the row for a DML delete does not exist, then the row LCR is ignored.

This example specifies DML conflict handlers for the hr. j obs table at the
dbs1. exanpl e. comdatabase.

DECLARE
col s DBMS_UTI LI TY. LNAVE_ARRAY;
BEG N

cols(1l) :="job_title';

cols(2) :='mn_salary';

cols(3) := "max_salary';

DBMS_APPLY ADM SET_DM._CONFLI CT_HANDLER(
appl y_name => "app_j obs',
conflict_handl er_name => 'jobs_handl er _insert',
obj ect => "hr.jobs',
operati on_name => " | NSERT",
conflict_type => 'RON EXI STS',
met hod_name = ' OVERWRI TE',
colum_tabl e => cols);

DBMS_APPLY ADM SET_DM._CONFLI CT_HANDLER(
appl y_name => "app_j obs',
conflict_handl er_name => 'jobs_handl er _update',
obj ect => "hr.jobs',
operati on_name => ' UPDATE' ,
conflict_type => 'RON EXI STS',
met hod_name = ' OVERWRI TE',
colum_tabl e => cols);

DBMS_APPLY ADM SET_DM._CONFLI CT_HANDLER(
appl y_name => "app_j obs',
conflict_handl er_name => 'jobs_handl er _delete',
obj ect => "hr.jobs',
operati on_name => ' DELETE',
conflict_type => "RONM SSING ,
met hod_name => '| GNORE,
col um_Ii st = "*');

END,

/

The apply process app_j obs uses the specified DML conflict handlers.

10-22

Chapter 10
Managing XStream In Conflict Detection and Resolution

Note:

e For thejobs_handl er _del ete DML conflict handler, the col um_| i st
parameter is setto ' *' because all columns must be specified when the
operation_nane is set to DELETE.

e If the client is obtaining data from an Oracle database using XStream Out,
then you must specify a conditional supplemental log group at the source
database for all of the columns in the col um_| i st at the destination
database. In this example, you would specify a conditional supplemental
log group including the job_title, m n_sal ary, and max_sal ary columns in
the hr. j obs table at the external database.

e Prebuilt DML conflict handlers do not support LOB, LONG, LONG RAW user-
defined type, and Oracle-supplied type columns. Therefore, do not include
these types of columns in the col um_| i st parameter when running the
procedure SET_DM._CONFLI CT_HANDLER.

2 See Also:

Oracle Database SQL Language Reference for information about data types

10.6.7.2 Removing a DML Conflict Handler

ORACLE

You can remove an existing DML conflict handler by running the
SET_DM._CONFLI CT_HANDLER procedure in the DBVS_APPLY_ADM package.

To remove an existing DML conflict handler, specify NULL for the method, and specify
the same apply name and DML conflict handler name as the existing DML conflict
handler.

To remove a DML conflict handler:

1. Connect to the inbound server database as the XStream administrator.

2. Run the SET_DM._CONFLI CT_HANDLER procedure in the DBMS_APPLY_ADM package with
NULL specified for the method, and specify the same apply name, DML conflict
handler name, object name, conflict type, and resolution column as the existing
DML conflict handler.

Example 10-7 Removing a DML Conflict Handler

To remove the DML conflict handler created in "Setting a DML Conflict Handler", run
the following procedure:

BEG N

DBVS_APPLY_ADM SET_DM._CONFLI CT_HANDLER(
appl y_nane => 'app_j obs',
conflict_handl er_name => "jobs_handl er_insert"',
met hod_narme => NULL);

DBVS_APPLY_ADM SET_DM._CONFLI CT_HANDLER(
appl y_nane => 'app_j obs',
conflict_handl er_name => 'jobs_handl er _update',
met hod_narme => NULL);

DBVS_APPLY_ADM SET_DM._CONFLI CT_HANDLER(

10-23

Chapter 10
Managing XStream In Conflict Detection and Resolution

appl y_name => 'app_j obs',
conflict_handl er_name => 'jobs_handl er _del ete',
met hod_name => NULL);

END;
/

10.6.8 Stopping Conflict Detection for Non-Key Columns

ORACLE

You can stop conflict detection for non-key columns by using the COWARE_OLD_VALUES
procedure in the DBVS_APPLY_ADMpackage.

To stop conflict detection for non-key columns:

1. Connect to the inbound server database as the XStream administrator.

2. Run the COWPARE OLD VALUES procedure in the DBVMS_APPLY_ADMpackage, and specify
the non-key columns and FALSE for the conpar e parameter.

Example 10-8 Stopping Conflict Detection for Non-Key Columns

Suppose you configure a ti me column for conflict resolution for the hr. enpl oyees table.
A trigger records the current time in this column for each change to the table. In this
case, you can decide to stop conflict detection for the other non-key columns in the
table. Add the columns in the hr. enpl oyees table to the column list for an update
conflict handler:

DECLARE
cols DBMS_UTI LI TY. NAVE_ARRAY;
BEG N

cols(1) :="'first_name';

cols(2) :="'last_name';

cols(3) :='emil"';

col s(4) := 'phone_nunber"';

cols(5) :="'hire_date';

cols(6) :="job_id";

cols(7) :='salary';

col s(8) := 'commssion_pct';

cols(9) :='manager_id';

col s(10) := "departnent_id';

cols(11) := "tinme';

DBMS_APPLY_ADM SET_DM._CONFLI CT_HANDLER(
appl y_nane => 'app_enpl oyees',
conflict_handl er_name => 'enp_handl er',
obj ect => 'hr.enpl oyees',
oper ation_nane => ' UPDATE',
conflict_type => 'RONEXI STS ,
met hod_nane => " MAXI MM ,
colum_Ii st => col s,
resol ution_col um = 'tine');

END;

/

This example does not include the primary key for the table in the column list because
it assumes that the primary key is never updated. However, other key columns are
included in the column list.

To stop conflict detection for all non-key columns in the table for UPDATE operations,
enter the following:

DECLARE
col s DBMS_UTI LI TY. LNAVE_ARRAY;

10-24

Chapter 10
Managing Apply Errors

BEG N
cols(1) :="'first_name';
cols(2) :="'last_nane';
cols(3) :="emil";
col s(4) := 'phone_nunber';
cols(5) := "hire_date';
cols(6) :="job_id";
cols(7) :="'salary';
col s(8) := 'commssion_pct';

DBMS_APPLY_ADM COMPARE_OLD VALUES(
obj ect _nane => 'hr.enployees',
colum_table => cols,
operation = ¥
conpare => FALSE);

END;
/

The asterisk (*) specified for the operation parameter means that conflict detection is
stopped for UPDATE operations. After you run this procedure, all apply processes
running on the database that apply changes to the specified table locally do not detect
conflicts on the specified columns. Therefore, in this example, the ti ne column is the
only column used for conflict detection.

Note:

The example in this section sets an DML conflict handler before stopping
conflict detection for non-key columns. However, a DML conflict handler is not
required before you stop conflict detection for non-key columns.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
about the COVPARE_OLD VALUES procedure

10.7 Managing Apply Errors

ORACLE

Apply errors result when an inbound server tries to apply an LCR, and an error is
raised.

When an apply error occurs, the LCR that caused the error and all of the other LCRs
in the same transaction are moved to the error queue.

* Inbound Server Error Handling
You can configure error handlers to handle specific types of errors.

* Retrying Apply Error Transactions
You can retry a specific error transaction, or you can retry all error transactions for
an inbound server.

* Deleting Apply Error Transactions
You can delete a specific error transaction, or you can delete all error transactions
for an inbound server.

10-25

Chapter 10
Managing Apply Errors

* Managing Eager Errors Encountered by an Inbound Server
As a performance optimization, an inbound server can use eager apply to begin to
apply large transactions before it receives the commit LCR.

" See Also:

e "The Error Queue for an Inbound Server"

e The Oracle Enterprise Manager Cloud Control online help for instructions
on managing apply errors in Oracle Enterprise Manager Cloud Control

10.7.1 Inbound Server Error Handling

You can configure error handlers to handle specific types of errors.

* About Error Handlers
An error handler specifies a method for handling a specific error during apply.

e Setting and Unsetting an Error Handler
You set an error handler with the SET_REPERROR_HANDLER procedure in the DBMS_APPLY
package.

10.7.1.1 About Error Handlers

ORACLE

An error handler specifies a method for handling a specific error during apply.

When an inbound server applies row LCRs, it can encounter errors. You can configure
an error handler to handle a specific error using a designated method with the
SET_REPERROR_HANDLER procedure in the DBVS_APPLY package. For example, you can set
an error handler that handles ORA-26787 errors that occur when a row LCR tries to
update or delete a row that does not exist in a table. In addition, you can configure a
default error handling method without specifying a particular error.

You set an error handler for a specific apply process. You can set an error handler for
a specific table or for all tables.

The following table describes each error handler method.

Table 10-2 Error Handler Methods

Method Description

ABEND Stop the inbound server when the error is
encountered.

RECORD Move the row LCR that caused the error to the
error queue when the error is encountered.

| GNORE Silently ignore the error, and do not apply the
row LCR, when the error is encountered.

RETRY Retry the row LCR for the specified number of

times when the error is encountered.

If retry fails, then the entire transaction is
moved to the error queue.

10-26

Chapter 10
Managing Apply Errors

Table 10-2 (Cont.) Error Handler Methods

__|
Method Description
RETRY_TRANSACTI ON Retry the transaction for the specified number

of times, with the specified delay before retry,
when the error is encountered.

If retry fails, then the entire transaction is
moved to the error queue.

RECORD_TRANSACTI ON Move the entire transaction to the error queue
when the error is encountered.
RECORD_TRANSACTI ON is the default.

10.7.1.2 Setting and Unsetting an Error Handler

ORACLE

You set an error handler with the SET_REPERROR_HANDLER procedure in the DBMS_APPLY
package.

You can use one of the following methods when you set an error handler:

e ABEND
* RECORD
* |G\NCRE
* RETRY

* RETRY_TRANSACTI ON
* RECORD_TRANSACTI ON

To unset an error handler, set the net hod parameter in the SET_REPERROR_HANDLER
procedure to NULL.

To set or unset an error handler:

1. Connect to the inbound server database as the XStream administrator.
2. Run the SET_REPERROR HANDLER procedure in the DBVS_APPLY_ADMpackage.

Example 10-9 Setting an Error Handler That Stops the Inbound Server for All
Errors on a Specific Table

This example sets an error handler that stops the app_oe inbound server for any errors

on the oe. orders table. The 0 setting for the error_nunber parameter specifies all errors.
The ABEND setting for the net hod parameter specifies that the inbound server is stopped

when an error is encountered.

BEG N
DBVS_APPLY_ADM SET_REPERROR HANDLER(
apply_name => "app_oe',

obj ect => 'oe.orders',

error_nunber => 0,

met hod => ' ABEND);
END;

/

10-27

Chapter 10
Managing Apply Errors

Example 10-10 Setting an Error Handler That Ignores Row LCRs for a Specific
Table and a Specific Error

This example sets an error handler that ignores row LCRs that raise the ORA-1403
error for the app_oe inbound server. The error handler applies to the oe. or der s table.

BEG N
DBVS_APPLY_ADM SET_REPERROR HANDLER(
apply_name => 'app_oe',

obj ect => 'oe.orders',

error_nunber => 1403,

met hod => "| GNORE');
END,

/

Example 10-11 Unsetting an Error Handler

This example unsets an error handler that ignores row LCRs that raise the ORA-1403
error for the app_oe inbound server. The error handler was set for the oe. or der s table.

BEG N
DBVS_APPLY_ADM SET_REPERROR HANDLER(
apply_name => "app_oe',

obj ect => 'oe.orders',
error_nunber => 1403,
met hod => NULL);

END;

/

10.7.2 Retrying Apply Error Transactions

You can retry a specific error transaction, or you can retry all error transactions for an
inbound server.

Before you retry error transactions, you might need to make DML or DDL changes to
database objects to correct the conditions that caused one or more apply errors.

* Retrying a Specific Apply Error Transaction
When you retry an error transaction, you can execute it immediately or send the
error transaction to a user procedure for modifications before executing it.

* Retrying All Error Transactions for an Inbound Server
After you correct the conditions that caused all of the apply errors for an inbound
server, you can retry all of the error transactions by running the EXECUTE_ALL_ERRORS
procedure in the DBVS_APPLY_ADMpackage.

¢ See Also:

Oracle Streams Replication Administrator's Guidefor more information about
setting tag values generated by the current session

10.7.2.1 Retrying a Specific Apply Error Transaction

When you retry an error transaction, you can execute it immediately or send the error
transaction to a user procedure for modifications before executing it.

ORACLE 10-28

Chapter 10
Managing Apply Errors

* Retrying a Specific Apply Error Transaction Without a User Procedure
After you correct the conditions that caused an apply error, you can retry the
transaction by running the EXECUTE_ERROR procedure in the DBVS_APPLY_ADMpackage
without specifying a user procedure. In this case, the transaction executes without
any custom processing.

* Retrying a Specific Apply Error Transaction With a User Procedure
You can retry an error transaction by running the EXECUTE_ERROR procedure in the
DBMS_APPLY_ADMpackage and specify a user procedure to modify one or more LCRs
in the transaction before the transaction is executed.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
about the EXECUTE_ERRCR procedure

10.7.2.1.1 Retrying a Specific Apply Error Transaction Without a User Procedure

ORACLE

After you correct the conditions that caused an apply error, you can retry the
transaction by running the EXECUTE_ERROR procedure in the DBVS_APPLY_ADMpackage
without specifying a user procedure. In this case, the transaction executes without any
custom processing.

When there are multiple error transactions, transaction ordering might be important
when you execute them. In general, it is best practice to execute the oldest transaction
first, and then each later transaction in order until you reach the newest transaction.
The SOURCE_COWM T_POSI TI ON column in the DBA_APPLY_ERRCR view shows the transaction
time.

To retry a specific apply error transaction without a user procedure:

1. In SQL*Plus, connect to the database as the XStream administrator.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

2. Run the EXECUTE_ERRCR procedure in the DBMS_APPLY_ADMpackage, and specify the
transaction identifier.

To retry a transaction with the transaction identifier 5. 4. 312, run the following
procedure:

BEG N
DBVS_APPLY_ADM EXECUTE_ERROR(
| ocal transaction_ id =>"'5.4,312",
execut e_as_user => FALSE,
user _procedure => NULL);
END;
/

If execute_as_user is TRUE, then the inbound server executes the transaction in the
security context of the current user. If execut e_as_user is FALSE, then the inbound server
executes the transaction in the security context of the original receiver of the
transaction. The original receiver is the user who was processing the transaction when
the error was raised.

10-29

Chapter 10
Managing Apply Errors

In either case, the user who executes the transaction must have privileges to perform
DML and DDL changes on the apply objects and to run any apply handlers.

10.7.2.1.2 Retrying a Specific Apply Error Transaction With a User Procedure

ORACLE

You can retry an error transaction by running the EXECUTE_ERROR procedure in the
DBMS_APPLY_ADMpackage and specify a user procedure to modify one or more LCRs in
the transaction before the transaction is executed.

The modifications should enable successful execution of the transaction.

For example, consider a case in which a conflict caused an apply error. Examination of
the error transaction reveals that the old value for the sal ary column in a row LCR
contained the wrong value. Specifically, the current value of the salary of the employee
with enpl oyee_i d of 197 in the hr. enpl oyees table did not match the old value of the
salary for this employee in the row LCR. Assume that the current value for this
employee is 3250 in the hr. enpl oyees table. The example in this section creates a
procedure to resolve the error.

To retry a specific apply error transaction with a user procedure:

1. In SQL*Plus, connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Given this scenario described previously, create the following user procedure to
modify the salary in the row LCR that caused the error:

CREATE OR REPLACE PROCEDURE xstrmadmi n. modi fy_enp_sal ary(

i n_any I'N ANYDATA,
error_record I'N ALL_APPLY ERRORYROMYPE,
error_nessage_nunber I'N NUMBER,
messagi ng_defaul t _processing | N OUT BOCLEAN,
out _any aut ANYDATA)
AS
row |cr SYS. LCR$_ROW RECORD,
row_| cr_changed BOOLEAN := FALSE
res NUVBER;
ob_owner VARCHAR2(32) ;
ob_nane VARCHAR2(32) ;
cnd_type VARCHAR2(30) ;
enpl oyee_id NUVBER,
BEG N

I'F in_any. get TypeName() = 'SYS. LCR$_ROW RECORD THEN
- Access the LCR
res :=in_any. GETOBJECT(row | cr);
- Determine the owner of the database object for the LCR
ob_owner :=row_|cr.GET_OBJECT OMER,
- Determine the nane of the database object for the LCR
ob_name := row | cr. GET_OBJECT_NAME;
- Determine the type of DM change
cnd_type := row_| cr. GET_COWAND_TYPE;
IF (ob_owner = "HR AND ob_nane = 'EMPLOYEES' AND cnd_type = ' UPDATE) THEN
- Determne the enmployee_id of the row change
I'F rowlcr.GET_VALUE('old', 'enployee_id) IS NOT NULL THEN
enployee_id := row_|cr. GET_VALUE(' ol d', 'enployee_id').ACCESSNUMBER();
IF (enployee_id = 197) THEN
- error_record. message_nunber should equal error_nessage_nunber
row_| cr. SET_VALUE(
val ue_type => 'OLD ,

10-30

Chapter 10
Managing Apply Errors

col um_nane => 'salary',
col um_val ue => ANYDATA. Convert Nunber (3250)) ;
row_| cr_changed : = TRUE
END | F;
END | F;
END | F;
END | F;
- Specify that the inbound server continues to process the current nmessage
messagi ng_defaul t _processing := TRUE;
- assign out_any appropriately
I'F row_| cr_changed THEN
out _any := ANYDATA. Convert Qbj ect(row_lcr);
ELSE
out _any : = in_any;
END | F;
END;
/

Run the EXECUTE_ERRCR procedure in the DBMS_APPLY_ADM package, and specify the
transaction identifier and the user procedure.

To retry a transaction with the transaction identifier 5. 6. 924 and process the
transaction with the nodi fy_enp_sal ary procedure in the xst r madmi n schema before
execution, run the following procedure:

BEG N
DBMS_APPLY_ADM EXECUTE_ERROR(
local _transaction_id =>"'5.6.924",

execut e_as_user => FALSE,

user _procedure => 'xstrmadm n. modi fy_enp_sal ary');
END;
/
Note:

The user who runs the procedure must have SELECT privilege on the
ALL_APPLY_ERRCR data dictionary view.

10.7.2.2 Retrying All Error Transactions for an Inbound Server

ORACLE

After you correct the conditions that caused all of the apply errors for an inbound
server, you can retry all of the error transactions by running the EXECUTE_ALL_ERRORS
procedure in the DBVS_APPLY ADMpackage.

When there are multiple error transactions, the EXECUTE_ALL_ERRCRS procedure executes
the oldest transaction first, and then executes each later transaction in order up to the
newest transaction.

To retry all error transactions for an inbound server:

1.

In SQL*Plus, connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

Run the EXECUTE_ALL_ERRCRS procedure in the DBMS_APPLY_ADMpackage, and specify
the name of the inbound server.

10-31

Chapter 10
Managing Apply Errors

To retry all of the error transactions for an inbound server named xi n, run the
following procedure:

BEG N
DBVS_APPLY_ADM EXECUTE_ALL_ERRORS(
appl y_nane = 'xin',
execute_as_user => FALSE);
END;
/
Note:

If you specify NULL for the appl y_nane parameter, and you have multiple inbound
servers, then all of the apply errors are retried for all of the inbound servers.

10.7.3 Deleting Apply Error Transactions

You can delete a specific error transaction, or you can delete all error transactions for
an inbound server.

Deleting a Specific Apply Error Transaction

If an error transaction should not be applied, then you can delete the transaction
from the error queue using the DELETE_ERROR procedure in the DBVMS_APPLY_ADM
package.

Deleting All Error Transactions for an Inbound Server

If none of the error transactions should be applied, then you can delete all of the
error transactions by running the DELETE_ALL_ERRORS procedure in the
DBMS_APPLY_ADMpackage.

10.7.3.1 Deleting a Specific Apply Error Transaction

If an error transaction should not be applied, then you can delete the transaction from
the error queue using the DELETE_ERRCR procedure in the DBVS_APPLY_ADM package.

ORACLE

To delete a specific apply error transaction:

1.

In SQL*Plus, connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

Identify the transaction ID of the error transaction you want to delete.
For example, run the following query to list the local apply error transactions:

COLUWN APPLY_NAME FORMAT All

COLUWN SOURCE_DATABASE' FORMAT A10
COLUWN LOCAL_TRANSACTI ON_I D FORVAT A1l
COLUWN ERROR_NUMBER FORVAT 99999999
COLUWN ERROR_MESSAGE FORMAT A20
COLUMN MESSAGE_COUNT FORMAT 99999999

SELECT APPLY_NAME,
SOURCE_DATABASE,
LOCAL_TRANSACTI ON_I D,
ERROR_NUMBER,

10-32

Chapter 10
Managing Apply Errors

ERROR_MESSAGE,
MESSAGE_COUNT
FROM DBA_APPLY_ERROR;

3. Run the DELETE_ERROR procedure in the DBMS_APPLY_ADMpackage, and specify the
transaction identifier.

To delete a transaction with the transaction identifier 5. 4. 312, run the following
procedure:

EXEC DBMS_APPLY_ADM DELETE_ERROR(| ocal _transaction_id => '5.4.312");

10.7.3.2 Deleting All Error Transactions for an Inbound Server

If none of the error transactions should be applied, then you can delete all of the error
transactions by running the DELETE_ALL_ERRORS procedure in the DBVMS_APPLY_ADM
package.

To delete all error transactions for an inbound server:

1. In SQL*Plus, connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the DELETE ALL_ERRCRS procedure in the DBVS_APPLY_ADMpackage, and specify
the name of the inbound server.

To delete all of the error transactions for an inbound server named xi n, run the
following procedure:

EXEC DBMS_APPLY ADM DELETE ALL_ERRORS(apply_name => 'xin');

Note:

If you specify NULL for the appl y_nane parameter, and you have multiple inbound
servers, then all of the apply errors are deleted for all of the inbound servers.

10.7.4 Managing Eager Errors Encountered by an Inbound Server

ORACLE

As a performance optimization, an inbound server can use eager apply to begin to
apply large transactions before it receives the commit LCR.

See "Optimizing XStream In Performance for Large Transactions” for information
about eager apply.

An inbound server can encounter an error while eagerly applying a transaction.
Because all of the LCRs are not available for the transaction, an EAGER ERRCR is
recorded for this failed transaction. In this case, an entry in the ALL_APPLY_ERROR view
shows an eager error for the transaction, but the LCRs are not recorded in the error
gueue. If an error transaction is not an eager error transaction, then it is referred to as
a normal error transaction.

Normal error transactions and eager error transactions must be managed differently.
An inbound server moves a normal error transaction, including all of its LCRs, to the
error queue, but an inbound server does not move an eager error transaction to the

error queue.

10-33

ORACLE

Chapter 10
Managing Apply Errors

An eager error causes the inbound server to stop. When it restarts, if the error queue
has an EAGER ERRCR for the restarting transaction, then the transaction is started as a
normal transaction. That is, the LCRs in the large transaction spill to disk, and the
inbound server begins to apply them only after the commit LCR is received.

The following statements apply to both normal error transactions and eager error

transactions:

e The ALL_APPLY_ERROR and ALL_APPLY_ERROR_MESSAGES views contain information
(metadata) about the error transaction.

e The inbound server does not apply the error transaction.

Table 10-3 explains the options for managing a normal error transaction.

Table 10-3 Options Available for Managing a Normal Error Transaction
|

Action

Mechanisms

Description

Delete the error
transaction

Execute the error
transaction

Retain the error
transaction

DBVS_APPLY ADM DELETE_ERROR

DBMS_APPLY ADM DELETE_ALL_ERRORS

Oracle Enterprise Manager Cloud
Control

DBMS_APPLY_ADM EXECUTE_ERRCR

DBMS_APPLY_ADM EXECUTE_ALL_ERROR

S

Oracle Enterprise Manager Cloud
Control

None. (The error transaction is
retained automatically.)

The error transaction is deleted
from the error queue, and the
metadata about the error
transaction is deleted. An
inbound server does not try to
reexecute the transaction when
the inbound server is restarted.
The transaction is not applied.

The error transaction in the error
queue is executed. If there are
no errors during execution, then
the transaction is applied. If an
LCR raises an error during
execution, then the normal error
transaction is moved back to the
error queue.

The error transaction remains in
the error queue even if the
inbound server is restarted. The
metadata about the error
transaction is also retained. The
transaction is not applied.

Table 10-4 explains the options for managing an eager error transaction.

10-34

ORACLE

Chapter 10
Managing Apply Errors

Table 10-4 Options Available for Managing an Eager Error Transaction

Action

Mechanisms

Description

Delete error
transaction

Retain error
transaction

DBVS_APPLY_ADM DELETE_ERROR

DBVS_APPLY_ADM DELETE_ALL_ERROR

S

Oracle Enterprise Manager Cloud
Control

None. (The metadata about the
error transaction is retained
automatically.)

The metadata about the eager
error transaction is deleted.
When the inbound server is
restarted, it attempts to execute
the transaction as an eager
transaction. If the inbound server
does not encounter an error
during execution, then the
transaction is applied
successfully. If the inbound
server encounters an error during
execution, then the eager error
transaction is recorded.

The metadata about the eager
error transaction is retained.
When the inbound server is
restarted, it attempts to execute
the transaction as a normal
transaction.

Specifically, the inbound server
spills the transaction to disk and
attempts to execute the
transaction. If the inbound server
does not encounter an error
during execution, then the
transaction is applied
successfully. If the inbound
server encounters an error during
execution, then the transaction
becomes a normal error
transaction. In this case, the LCR
that raised the error and all of the
other LCRs in the transaction are
moved to the error queue. After
the normal error transaction is
moved to the error queue, you
must manage the error
transaction as a normal error
transaction (not an eager error
transaction).

" Note:

ORA-26909:

cannot reexecute an eager error

If you attempt to execute an eager error transaction manually using the
DBMS_APPLY_ADMpackage or Oracle Enterprise Manager Cloud Control, then the
following error is raised:

An eager error transaction cannot be executed manually. Instead, it is executed
automatically when the inbound server is enabled.

10-35

Chapter 10
Managing Apply Errors

To manage an eager error transaction encountered by an inbound server:

1. Connect to the inbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Query the ERROR_TYPE column in the ALL_APPLY_ERRCR data dictionary view:
SELECT APPLY_NAME, ERROR_TYPE FROM ALL_APPLY_ERRCR;

Follow the appropriate instructions based on the error type:
e If the ERROR_TYPE column shows EAGER ERRCR, then proceed to Step 3.

» If the ERROR_TYPE column shows NULL, then the apply error is not an eager error,
and you cannot use the instructions in this section to manage it. Instead, use
the instructions in "Retrying Apply Error Transactions" and "Deleting Apply
Error Transactions".

3. Examine the error message raised by the LCR, and determine the cause of the
error.

¢ See Also:

e "Checking for Apply Errors" and "Displaying Detailed Information About
Apply Errors" for information about checking for apply errors using data
dictionary views

e Oracle Enterprise Manager Cloud Control online help for information
about checking for apply errors using Oracle Enterprise Manager Cloud
Control

4. |If possible, determine how to avoid the error, and make any changes necessary to
avoid the error.

¢ See Also:

"Troubleshooting XStream In" for information about common apply errors
and solutions for them

5. Either retain the error transaction or delete the error transaction:

» Delete the error transaction only if you have corrected the problem. The
inbound server reexecutes the transaction when it is enabled.

For example, to delete a transaction with the transaction identifier 5. 4. 312, run
the following procedure:

EXEC DBVS_APPLY_ADM DELETE_ERROR(I ocal _transaction_id => '5.4.312");

* Retain the error transaction if you cannot correct the problem now or if you
plan to reexecute it in the future. No action is necessary to retain the error
transaction. It remains in the error queue until it is reexecuted or deleted.

See Table 10-4 for more information about these choices.

ORACLE 10-36

ORACLE

Chapter 10
Managing Apply Errors

Note:

It might not be possible to recover a normal error transaction that is
deleted. Before deleting the error transaction, ensure that the error type is
EAGER ERRCR.

¢ See Also:

* "Deleting Apply Error Transactions" for more information about deleting
an error transaction using the DBV5_APPLY_ADM package

e See the Oracle Enterprise Manager Cloud Control online help for
information about deleting an error transaction using Oracle Enterprise
Manager Cloud Control.

If the inbound server is disabled, then start the inbound server.

Query the STATUS column in the ALL_APPLY_ERRCR view to determine whether the
inbound server is enabled or disabled.

If the di sabl e_on_error apply parameter is set to Y for the inbound server, then the
inbound server becomes disabled when it encounters the error and remains
disabled.

If the di sabl e_on_error apply parameter is set to N for the inbound server, then the
inbound server stops and restarts automatically when it encounters the error.

See Table 10-4 for information about how the inbound server handles the error
transaction based on your choice in Step 5.

¢ See Also:

e "Starting an Inbound Server" for information about starting an inbound
server or apply process using the DBMS_APPLY_ADM package

e Oracle Enterprise Manager Cloud Control online help for information
about starting an inbound server or apply process using Oracle
Enterprise Manager Cloud Control

" Note:

If you have both purchased a license for the Oracle GoldenGate product and
have enabled the XStream optimizations for Oracle Streams by running the
DBMS_XSTREAM ADM ENABLE_GG XSTREAM FOR_STREAMS procedure, then an apply
process in an Oracle Streams configuration can encounter errors of the EAGER
ERRCR type. Use the instructions in this section to manage eager apply process
errors. When the XStream optimizations for Oracle Streams are not enabled,
apply processes cannot encounter eager errors.

10-37

Chapter 10
Conflict and Error Handling Precedence

" See Also:

e Oracle Database Reference

e Oracle Database PL/SQL Packages and Types Reference

10.8 Conflict and Error Handling Precedence

To resolve a conflict or error, an inbound server tries to find conflict handlers and error
handlers.

When an inbound server encounters a conflict or an error, it tries to resolve the
problem by checking for the following types of handlers that apply to the error in the
specified order:

An update conflict handler set with the SET_UPDATE_CONFLI CT_HANDLER procedure
A custom conflict handler set with the SET_DM._CONFLI CT_HANDLER procedure

1.

2.

3. A collision handler set with the HANDLE_COLLI SI ONS procedure

4. An error handler set with the SET_REPERROR_HANDLER procedure

5. A custom conflict handler set with the SET_DM._HANDLER procedure

All of the procedures are in the DBM5_APPLY_ADMpackage.

If no handler applies to the conflict or error, then the transaction that caused the error
is moved to the error queue.

10.9 Dropping Components in an XStream In Configuration

ORACLE

You can drop an inbound server with the DROP_I NBOUND procedure in the
DBMS_XSTREAM ADM package.

This procedure always drops the specified inbound server. This procedure also drops
the queue for the inbound server if both of the following conditions are met:

e One call to the CREATE | NBOUND procedure created the inbound server and the
queue.

e The inbound server is the only subscriber to the queue.
If either one of the preceding conditions is not met, then the DROP_I NBOUND procedure
only drops the inbound server. It does not drop the queue.

To drop an inbound server:

1. Connect to the inbound server database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the DROP_I NBOUND procedure.

If the inbound server's queue is not dropped automatically, then run the REMOVE_QUEUE
procedure to drop it.

10-38

Chapter 10
Dropping Components in an XStream In Configuration

Example 10-12 Dropping an Inbound Server

To drop an inbound server named xi n, run the following procedure:
exec DBMS_XSTREAM ADM DROP_I NBOUND(' xi n');

Example 10-13 Dropping an Inbound Server's Queue

To drop a queue named xi n_queue, run the following procedure:

exec DBMS_XSTREAM ADM REMOVE_QUEUE(' xi n_queue');

¢ See Also:
Oracle Database PL/SQL Packages and Types Reference

ORACLE 10-39

Monitoring XStream In

ORACLE

You can monitor an XStream In configuration by querying data dictionary views.
This chapter provides instructions for monitoring XStream.

With XStream In, an Oracle Streams apply process functions as an inbound server.
Therefore, you can also use the data dictionary views for apply processes to monitor
inbound servers.

< Note:

Whenever possible, this chapter uses ALL_ static data dictionary views for query
examples. In some cases, information in the ALL_ views is more limited than the
information in the DBA_views.

In SQL*Plus, trusted XStream administrators can query the ALL_ and DBA_
views. Untrusted XStream administrators can query the ALL_ views only.

» Displaying Session Information for Inbound Servers
An example illustrates displaying session information for inbound servers.

» Displaying General Information About an Inbound Server
An example illustrates displaying general information about an inbound server.

* Monitoring the History of Events for XStream In Components
An example illustrates monitoring the history of events for XStream In components
by querying the DBA_REPLI CATI ON_PROCESS_EVENTS view.

e Displaying the Status and Error Information for an Inbound Server
An example illustrates displaying the status and error information for an inbound
server.

e Displaying Apply Parameter Settings for an Inbound Server
An example illustrates displaying apply parameter settings for an inbound server.

e Displaying the Position Information for an Inbound Server
An example illustrates displaying the position information for an inbound server.

e Displaying Information About DML Conflict Handlers
The DBA APPLY DM._CONF_HANDLERS view displays information about DML conflict
handlers.

» Displaying Information About Error Handlers
The DBA_APPLY_ REPERRCR_HANDLERS view displays information about DML conflict
handlers.

* Checking for Apply Errors
An example illustrates checking for apply errors.

11-1

Chapter 11
Displaying Session Information for Inbound Servers

Displaying Detailed Information About Apply Errors
SQL scripts display detailed information about the error transactions in the error
gueue in a database.

2 See Also:

"XStream Out Concepts"

"XStream Use Cases"
e "Troubleshooting XStream In"

e Oracle Streams Concepts and Administration

11.1 Displaying Session Information for Inbound Servers

An example illustrates displaying session information for inbound servers.

The query in this section displays the following session information about each
XStream component in a database:

The XStream component hame

The session identifier

The serial number

The operating system process identification number

The XStream process number

This query is especially useful for determining the session information for specific
XStream components when there are multiple XStream In components configured in a
database.

To display this information for each XStream component in a database:

1.

Connect to the database as the XStream administrator.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

Run the following query:

COLUWN ACTI ON HEADI NG ' XSt ream Conponent' FORVAT A30

COLUW SI D HEADI NG ' Session ID FORMAT 99999

COLUWN SERI AL# HEADI NG ' Sessi on| Seri al | Nunber' FORMAT 99999999
COLUWN PROCESS HEADI NG ' Operating SystenjProcess Nunmber' FORMAT Al7
COLUWN PROCESS_NAME HEADI NG ' XStreanj Process| Nunber' FORMAT A7

SELECT /*+PARAM ' _nmodul e_action_ol d_l ength',0)*/ ACTION,
SID,
SERI AL#,
PROCESS,
SUBSTR(PROGRAM | NSTR(PROGRAM ' (') +1, 4) PROCESS_NAMVE
FROM V$SESSI ON
VHERE MODULE =' XSt reant ;

Your output for an XStream In configuration looks similar to the following:

ORACLE

11-2

Chapter 11
Displaying General Information About an Inbound Server

Session XSt ream

Serial Operating System Process
XSt ream Conponent Session ID Nunber Process Nunber Nunber
XIN - Apply Reader 19 9 27304 AS01
XIN - Apply Server 22 5 27308 AS03
XIN - Apply Server 25 31 27313 AS05
XIN - Apply Coordinator 112 7 27302 APO1
XIN - Apply Server 113 5 27306 AS02
XIN - Propagation Receiver 114 17 27342 TNS
XIN - Apply Server 115 39 27311 AS04

The row that shows TNS for the XStream process number contains information about
the session for the XStream client application that is attached to the inbound server.

Note:

To run this query, a user must have the necessary privileges to query the
V$SESSI ON view.

" See Also:

Oracle Database Reference for more information about the V$SESSI ON view

11.2 Displaying General Information About an Inbound

Server

ORACLE

An example illustrates displaying general information about an inbound server.

You can display the following information for an inbound server by running the query in
this section:

e The inbound server name
* The owner of the queue used by the inbound server
* The name of the queue used by the inbound server

» The apply user for the inbound server

To display general information about an inbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN SERVER NAME HEADI NG ' I nbound Server Name' FORMAT A20
COLUW QUEUE_OANER HEADI NG ' Queue Omner' FORMAT Al5

COLUW QUEUE_NAME HEADI NG ' Queue Nanme' FORMAT Al5

COLUWN APPLY_USER HEADI NG ' Apply User' FORMAT Al5

11-3

Chapter 11
Monitoring the History of Events for XStream In Components

SELECT SERVER NAME,
QUEUE_OARER,
QUEUE_NAME,
APPLY_USER

FROM ALL_XSTREAM | NBOUND;

Your output looks similar to the following:

I nbound Server Nanme Queue Oaner Queue Name Apply User

XSTRVADM N XI'N_QUEUE XSTRVADM N

" See Also:

Oracle Database Reference

11.3 Monitoring the History of Events for XStream In
Components

An example illustrates monitoring the history of events for XStream In components by
querying the DBA REPLI CATI ON_PROCESS EVENTS view.

ORACLE

For example, this view can display when a component was created or started. It can
also display when a component parameter was changed. If the component
encountered an error, then it can display information about the error.

The query in this topic displays the following information about XStream Out
component events:

The XStream component name
The component type

The event name

The description of the event

The event time

To display this information for each XStream In component in a database:

1.

Connect to the database as the XStream administrator.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

Run the following query:

COLUWN STREAVS_NAME FCRVAT A12
COLUWN PROCESS_TYPE FCRVAT Al7
COLUWN EVENT_NAME FORMAT A10
COLUWN DESCRI PTI ON FORMAT A20
COLUWN EVENT_TI ME FORMAT Al5

SELECT STREAVS NAME,
PROCESS_TYPE,
EVENT_NAME,
DESCRI PTI ON,

11-4

Chapter 11
Displaying the Status and Error Information for an Inbound Server

EVENT_TI ME
FROM DBA_REPLI CATI ON_PROCESS_EVENTS;

Your output for an XStream In configuration looks similar to the following:

STREAMS_NAME PROCESS TYPE EVENT_NAME DESCRI PTI ON EVENT_TI ME
APP_JOBS APPLY COORDI NATOR CREATE ~ SUCCESS 03-NOv- 15 07.19
.27.238151 AM
APP_JOBS APPLY COORDI NATOR START SUCCESS 03-NOv-15 07. 21
.50. 812534 AM
APP_JOBS APPLY READER START SUCCESS 03-NOv- 15 07. 21
.51.713367 AM
APP_JOBS APPLY SERVER START SUCCESS 03-NOv-15 07. 21

.51.895019 AM

Related Topics

* Oracle Database Reference

11.4 Displaying the Status and Error Information for an
Inbound Server

ORACLE

An example illustrates displaying the status and error information for an inbound
server.

The DBA_APPLY view shows XSt reaml n in the PURPGSE column for an apply process that is
functioning as an inbound server.

To display the status of an inbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN APPLY_NAME HEADI NG ' I nbound Server| Name' FORMAT Al15
COLUWN STATUS HEADI NG ' Status' FORMAT A8

COLUWN ERROR_NUMBER HEADI NG ' Error Number' FORMAT 9999999
COLUWN ERROR_MESSAGE HEADI NG ' Error Message' FORMAT A40

SELECT APPLY_NAME,
STATUS,
ERROR_NUMBER,
ERROR_MESSAGE
FROM DBA_APPLY
WHERE PURPOSE = ' XStreamIn';

Your output looks similar to the following:

I nbound Server
Name Status Error Number Error Message

XI'N ENABLED

This output shows that XI Nis an apply process that is functioning as an inbound
server.

11-5

Chapter 11
Displaying Apply Parameter Settings for an Inbound Server

< Note:

This example queries the DBA _APPLY view. This view enables trusted users to
see information for all apply users in the database. Untrusted users must query
the ALL_APPLY view, which limits information to the current user.

¢ See Also:

Oracle Database Reference

11.5 Displaying Apply Parameter Settings for an Inbound

Server

ORACLE

An example illustrates displaying apply parameter settings for an inbound server.

Apply parameters determine how an inbound server operates.

To display the apply parameter settings for an inbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’'s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN APPLY_NAME HEADI NG ' I nbound Server| Name' FORMAT Al15
COLUWN PARAMETER HEADI NG ' Par ameter’ FORMAT A30

COLUWN VALUE HEADI NG ' Val ue' FORMAT A22

COLUWN SET_BY_USER HEADI NG ' Set by| User?" FORMAT A10

SELECT APPLY_NAME,
PARAVETER,
VALUE,
SET_BY_USER
FROM ALL_APPLY PARAMETERS a, ALL_XSTREAM | NBOUND i
WHERE a. APPLY_NAME=i . SERVER NAVE
ORDER BY a. PARAVETER;

Your output looks similar to the following:

I nbound Server Set by
Narre Par anet er Val ue User ?
XN ALLOW DUPLI CATE_ROAS N NO
XN APPLY_SEQUENCE NEXTVAL Y NO
XN COW T_SERI ALI ZATI ON DEPENDENT _TRANSACTI ONS NO
XN COVPARE_KEY_ONLY Y NO
XI'N COWPUTE_LCR DEP_ON ARRI VAL N NO
XN DI SABLE_ON_ERRCR Y NO
XN DISABLE ON LIMT N NO
XN EAGER SI ZE 9500 NO
XN ENABLE XSTREAM TABLE STATS Y NO
XN EXCLUDETAG NO

11-6

11.6 Displaying the Position Information for an Inbound

Server

ORACLE

XN
XN
XI'N
XI'N
XN
XN
XN
XI'N
XI'N
XN
XN
XN
XI'N
XN
XN
XN
XN
XI'N
XN
XI'N
XI'N
XI'N
XI'N
XN

Chapter 11

Displaying the Position Information for an Inbound Server

EXCLUDETRANS
EXCLUDEUSER

EXCLUDEUSERI D
GETAPPLOPS

CGETREPLI CATES
GROUPTRANSOPS
HANDLECOLLI SI ONS

| GNORE_TRANSACTI ON

MAXI MUM_SCN
MAX_PARALLELI SM
MAX_SGA_SI ZE

OPTI' M ZE_PROGRESS_TABLE
OPTI M ZE_SELF_UPDATES
PARALLELI SM
PRESERVE_ENCRYPTI ON

RTRI M _ON_| MPLI CI T_CONVERSI ON
STARTUP_SECONDS
SUPPRESSTRI GGERS
TIMELIMT

TRACE_LEVEL

TRANSACTI ON_LIM T
TXN_AGE_SPI LL_THRESHOLD
TXN_LCR_SPI LL_THRESHOLD
WRI TE_ALERT_LOG

I NFINITE
50
I NFINITE
Y

<o < <<

I NFINITE
0

I NFINITE
900
10000

Y

Inbound servers ignore some apply parameter settings.

Note:

66666556566665656866666568686868656

If the Set by User ? column is NOfor a parameter, then the parameter is set to its

default value. If the Set by User ? column is YES for a parameter, then the

parameter was set by a user and might or might not be set to its default value.

See Also:

e "Setting an Apply Parameter for an Inbound Server"

e Oracle Database PL/SQL Packages and Types Reference for information
about apply parameters

An example illustrates displaying the position information for an inbound server.

For an inbound server, you can view position information by querying the
ALL_XSTREAM | NBOUND_PROGRESS view. Specifically, you can display the following position

information by running the query in this section:

The inbound server name

The applied low position for the inbound server

11-7

Chapter 11
Displaying Information About DML Conflict Handlers

* The spill position for the inbound server
* The applied high position for the inbound server

* The processed low position for the inbound server

To display the position information for an inbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN SERVER _NAME HEADI NG ' | nbound| Server | Nane' FORMAT A10

COLUWMN APPLI ED_LOW PCSI TI ON HEADI NG ' Appl i ed Low| Position' FORMAT Al5
COLUWN SPI LL_PCSI TI ON HEADI NG ' Spi || Position' FORMAT Al5

COLUWN APPLI ED_HI GH_POSI TI ON HEADI NG ' Appl i ed Hi gh| Position' FORMAT Al5
COLUWN PROCESSED _LOW PGCSI TI ON HEADI NG ' Processed Low Position' FORMAT Al5

SELECT SERVER NAME,
APPLI ED_LOW PCSI T ON,
SPI LL_POSI TI ON,
APPLI ED_HI GH_PCSI TI ON,
PROCESSED_LOW POSI TI ON
FROM ALL_XSTREAM | NBOUND_PROGRESS;

Your output looks similar to the following:

I nbound

Server Applied Low Applied H gh Processed Low
Nane Posi tion Spill Position Position Posi tion

XIN C10A C11D C10A C11D

The values of the positions shown in the output were set by the client application that
attaches to the inbound server. However, the inbound server determines which values
are the current applied low position, spill position, applied high position, and processed
low position.

¢ See Also:

e Oracle Database Reference
¢ "Position Order in an LCR Stream"

¢ "Position of LCRs and XStream In"

11.7 Displaying Information About DML Conflict Handlers

ORACLE

The DBA_APPLY DM._CONF_HANDLERS view displays information about DML conflict
handlers.

You can configure DML conflict handlers using the SET_DM._CONFLI CT_HANDLER
procedure in the DBVS_APPLY_ADMpackage.

1. Connect to the database as the XStream administrator.

11-8

Chapter 11
Displaying Information About Error Handlers

2. Query the DBA APPLY_DM._CONF_HANDLERS view.
Example 11-1 Displaying Information About DML Conflict Handlers

COLUWN APPLY_NAME FORMAT A8

COLUMN OBJECT OANER FORMAT A5

COLUMN OBJECT NAVE FORMAT Al2

COLUMN COWAND_TYPE FORVAT A6

COLUWN CONFLI CT_TYPE FORMAT All

COLUMN METHOD NAVE FORMAT A12

COLUWN CONFLI CT_HANDLER NAVE FORMAT A20

SELECT APPLY_NAME,

OBJECT OMER
OBJECT_NAME,
COVMAND TYPE,
CONFLI CT_TYPE,
NETHOD_NAWME,
CONFLI CT_HANDLER NAME

FROM DBA_APPLY DM._CONF_HANDLERS

ORDER BY OBJECT OANER, OBJECT NAME, CONFLICT HANDLER NAME;

Your output looks similar to the following:

APPLY_NA OBJEC OBJECT NAME COMMAN CONFLICT_TY METHOD NAME CONFLI CT_HANDLER NAM

APP_JOBS HR JOBS DELETE ROW.M SSI NG | GNORE JOBS_HANDLER DELETE
APP_JOBS HR JOBS | NSERT ROW EXI STS OVERWRI TE JOBS_HANDLER | NSERT
APP_JOBS HR JOBS UPDATE ROWEXI STS OVERWRI TE JOBS HANDLER UPDATE

Related Topics

e Setting a DML Conflict Handler
Set a DML conflict handler using the SET_DM__CONFLI CT_HANDLER procedure in the
DBVS_APPLY_ ADMpackage.

11.8 Displaying Information About Error Handlers

ORACLE

The DBA_APPLY REPERRCR_HANDLERS view displays information about DML conflict
handlers.

You can configure error handlers using the SET_REPERROR_HANDLER procedure in the
DBMS_APPLY_ ADMpackage.

1. Connect to the database as the XStream administrator.
2. Query the DBA _APPLY_REPERROR HANDLERS view.
Example 11-2 Displaying Information About DML Conflict Handlers

COLUWN APPLY_NAME FORMAT Al5
COLUW OBJECT_OMER FCRVAT A15
COLUWN OBJECT_NAME FORMAT A15
COLUWN ERROR_NUMBER 999999999
COLUW METHCD FORMAT Al5

SELECT APPLY_NAME,
OBJECT OMER
OBJECT_NAME,
ERROR_NUMBER
NETHOD

11-9

Chapter 11

Checking for Apply Errors
FROM DBA_APPLY_REPERROR_HANDLERS
CRDER BY OBJECT OWNER, OBJECT NAME
Your output looks similar to the following:
APPLY NAME OBJECT OMER OBJECT NAME ERROR_NUMBER METHOD
wPCE ;OERS 26787 INRE

Related Topics

e Setting and Unsetting an Error Handler
You set an error handler with the SET_REPERROR_HANDLER procedure in the DBMS_APPLY
package.

11.9 Checking for Apply Errors

An example illustrates checking for apply errors.

Trusted users can check for apply errors by querying the DBA_APPLY_ERROR data
dictionary view or by using Oracle Enterprise Manager Cloud Control. Untrusted users
can check for apply errors by querying the ALL_APPLY_ERRCR data dictionary view.

To check for apply errors:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUWN APPLY_NAME HEADI NG ' I nbound| Server | Name' FORMAT A7

COLUWN SOURCE_DATABASE HEADI NG ' Sour ce| Dat abase' FORMAT A8

COLUWN SOURCE_TRANSACTI ON_I D HEADI NG ' Sour ce| Transaction| I D FORMAT All
COLUWN MESSAGE_NUMBER HEADI NG ' Fai | ed Message|in Error|Transacti on' FORMAT
99999999

COLUWN ERROR_NUMBER HEADI NG ' Error Number' FORMAT 99999999

COLUWN ERROR_MESSAGE HEADI NG ' Error Message' FORMAT A10

COLUWN MESSAGE_COUNT HEADI NG ' Messages in|Error| Transacti on' FORMAT 99999999

SELECT APPLY_NAME,
SOURCE_DATABASE,
SOURCE_TRANSACTI ON_I D,
MESSAGE_NUVBER,
ERROR_NUMBER,

ERROR MESSAGE,
VESSAGE_COUNT
FROM ALL_APPLY_ERRCR;

" Note:

Trusted users should replace ALL_APPLY ERROR with DBA APPLY ERRCRin the
query.

If there are any apply errors, then your output looks similar to the following:

ORACLE 11-10

Chapter 11
Displaying Detailed Information About Apply Errors

I nbound Sour ce Fail ed Message Messages in
Server Source Transaction in Error Error
Name Dat abase 1D Transaction Error Nunber Error Mess Transaction
XIN QUTX. EXA 19. 20. 215 1 1031 ORA-01031: 1
MPLE. COM insuffic
ent privi
eges
XIN QUTX. EXA 11.21.158 1 1031 ORA-01031: 1
MPLE. COM insuffic
ent privi
eges

If there are apply errors, then you can either try to reexecute the transactions that
encountered the errors, or you can delete the transactions. To reexecute a transaction
that encountered an error, first correct the condition that caused the transaction to
raise an error.

If you want to delete a transaction that encountered an error, and if you are sharing
data between multiple databases, then you might need to resynchronize data
manually. Remember to set an appropriate session tag, if necessary, when you
resynchronize data manually.

¢ See Also:

e "The Error Queue for an Inbound Server"

e "Managing Apply Errors"

11.10 Displaying Detailed Information About Apply Errors

ORACLE

SQL scripts display detailed information about the error transactions in the error queue
in a database.

e Step 1: Grant Explicit SELECT Privilege on the ALL_APPLY_ERROR View
Running the GRANT_ADM N_PRI VI LEGE procedure in the DBVS_XSTREAM AUTH package on
a user grants the SELECT privilege on the ALL_APPLY_ERRCR view to the user.

» Step 2: Create a Procedure that Prints the Value in an ANYDATA Object
Create a procedure that prints the value in a specified ANYDATA object for some
selected data types. Optionally, you can add more data types to this procedure.

e Step 3: Create a Procedure that Prints a Specified LCR
Create a procedure that prints a specified LCR.

e Step 4: Create a Procedure that Prints All the LCRs in the Error Queue
Create a procedure that prints all of the LCRs in all of the error queues.

e Step 5: Create a Procedure that Prints All the Error LCRs for a Transaction
Create a procedure that prints all the LCRs in the error queue for a particular
transaction.

11-11

Chapter 11
Displaying Detailed Information About Apply Errors

" See Also:

e "The Error Queue for an Inbound Server"

e "Managing Apply Errors"

11.10.1 Step 1: Grant Explicit SELECT Privilege on the
ALL_APPLY _ERROR View

Running the GRANT_ADM N PRI VI LEGE procedure in the DBVMS_XSTREAM AUTH package on a
user grants the SELECT privilege on the ALL_APPLY_ERRCR view to the user.

The user who creates and runs the print_errors and print_transacti on procedures
described in the following sections must be granted explicit SELECT privilege on the
ALL_APPLY_ERRCR data dictionary view. This privilege cannot be granted through a role.

To grant explicit SELECT privilege on the ALL_APPLY_ERRCR view:

1. In SQL*Plus, connect as an administrative user who can grant privileges.

See Oracle Database Administrator’s Guide for information about connecting to a
database in SQL*Plus.

2. Grant SELECT privilege on the ALL_APPLY_ERRCR data dictionary view to the
appropriate user. For example, to grant this privilege to the xst r madni n user, run
the following statement:

GRANT SELECT ON ALL_APPLY_ERROR TO xstrmadmi n;

3. Grant EXECUTE privilege on the DBVS_APPLY_ADMpackage. For example, to grant this
privilege to the xst r madni n user, run the following statement:

GRANT EXECUTE ON DBMS_APPLY_ADM TO xstrmadmi n;

4. Connect to the database as the user to whom you granted the privilege in Step 2
and 3.

11.10.2 Step 2: Create a Procedure that Prints the Value in an
ANYDATA Object

ORACLE

Create a procedure that prints the value in a specified ANYDATA object for some selected
data types. Optionally, you can add more data types to this procedure.

CREATE OR REPLACE PROCEDURE print_any(data I N ANYDATA) IS
tn VARCHAR2(61);
str VARCHAR2(4000);
chr VARCHAR2(1000) ;
num NUVBER;
dat DATE;
rw RAW4000);
res NUMBER
BEG N
|F data |'S NULL THEN
DBMS_QUTPUT. PUT_LI NE(' NULL val ue');
RETURN,

11-12

END | F;
tn := data. GETTYPENAME();
IF tn = 'SYS. VARCHAR2' THEN
res := data. GETVARCHAR2(str);
DBMS_OUTPUT. PUT_LI NE(SUBSTR(str, 0, 253));
ELSIF tn = ' SYS.CHAR then
res := data. GETCHAR(chr);
DBMS_OUTPUT. PUT_LI NE(SUBSTR(chr, 0, 253));
ELSIF tn = ' SYS. VARCHAR THEN
res := data. GETVARCHAR(chr);
DBNMS_OUTPUT. PUT_LI NE(chr);
ELSIF tn = ' SYS. NUMBER THEN
res := data. GETNUMBER(num ;
DBNMS_OUTPUT. PUT_LI NE(numj ;
ELSIF tn = ' SYS. DATE' THEN
res := data. GETDATE(dat);
DBMS_OUTPUT. PUT_LI NE(dat) ;
ELSIF tn= ' SYS. TI MESTAMP' THEN
res : = data. GETTI MESTAMP(dat) ;

Chapter 11
Displaying Detailed Information About Apply Errors

DBMS_OUTPUT. PUT_LI NE(TO CHAR(dat , ' DD- MON- RR HH. M . SSXFF AM)):

ELSIF tn= "' SYS. TI MESTAMPTZ' THEN
res : = data. GETTI MESTAMPTZ(dat);

DBMS_OUTPUT. PUT_LI NE(TO CHAR(dat , ' DD- MON- RR HH. M . SSXFF AM)):

ELSIF tn= ' SYS. TI MESTAMPLTZ' THEN
res := data. GETTI MESTAMPLTZ(dat) ;

DBMS_OUTPUT. PUT_LI NE(TO CHAR(dat , ' DD- MON- RR HH. M . SSXFF AM)):

ELSIF tn = ' SYS. RAW THEN
- res := data. GETRAWrw);

- DBMB_OUTPUT. PUT_LI NE(SUBSTR(DBMS_LOB. SUBSTR(W), 0, 253)) ;

DBNMS_OUTPUT. PUT_LI NE(' BLOB Val ue');
ELSIF tn = 'SYS.BLOB' THEN
DBNMS_OUTPUT. PUT_LI NE(' BLOB Found');
ELSE
DBMS_QUTPUT. PUT_LI NE(' typenane is '
END | F;
END print _any;
/

[l tn);

11.10.3 Step 3: Create a Procedure that Prints a Specified LCR

Create a procedure that prints a specified LCR.

The procedure calls the print _any procedure created in "Step 2: Create a Procedure
that Prints the Value in an ANYDATA Object".

CREATE OR REPLACE PROCEDURE print_lcr(lcr IN ANYDATA) IS

typenm VARCHAR2(61);
ddllcr SYS. LCR$_DDL_RECORD;
proclcr SYS. LCR$_PROCEDURE_RECORD;
row cr SYS. LCR$_ROW RECORD;
res NUMBER,
new i st SYS. LCR$_ROWLI ST;
oldlist SYS. LCR$_ROWLIST;
ddl text CLOB;
ext_attr ANYDATA;
BEG N

typenm : = | cr. GETTYPENAME() ;

DBMS_QUTPUT. PUT_LI NE(' type name: ' || typenn);

IF (typenm = ' SYS. LCR$_DDL_RECORD') THEN
res .= lcr. GETOBJECT(ddl Il cr);
DBMS_QUTPUT. PUT_LI NE(' source dat abase:

ORACLE

11-13

ORACLE

Chapter 11
Displaying Detailed Information About Apply Errors

ddl | cr. GET_SOURCE_DATABASE_NAME) ;

DBMS_OUTPUT. PUT_LI NE(" owner: ' || ddllcr.GET_OBJECT_OMER);
DBMS_QUTPUT. PUT_LINE(' object: ' || ddllcr.GET_OBJECT_NAME);
DBMS_OUTPUT. PUT_LINE("is tag null: ' || ddllcr.IS_NULL_TAG;

DBMS_LOB. CREATETEMPORARY(dd| _text, TRUE);
ddl I cr. GET_DDL_TEXT(ddl _text);
DBMS_OQUTPUT. PUT_LINE(' ddl: * || ddl _text);
- Print extra attributes in DDL LCR
ext_attr := ddllcr. GET_EXTRA_ATTRI BUTE(' serial #');
IF (ext_attr I'S NOT NULL) THEN
DBMS_OQUTPUT. PUT_LI NE(" serial #: ' || ext_attr. ACCESSNUMBER());
END | F;
ext_attr := ddllcr.GET_EXTRA_ATTRI BUTE(' sessi on#');
IF (ext_attr I'S NOT NULL) THEN
DBMS_OUTPUT. PUT_LI NE(' session#: ' || ext_attr. ACCESSNUMBER());
END | F;
ext_attr := ddllcr.GET_EXTRA_ATTRI BUTE(' t hread#');
IF (ext_attr I'S NOT NULL) THEN
DBMS_OQUTPUT. PUT_LI NE(' thread#: ' || ext_attr. ACCESSNUMBER());
END | F;
ext_attr := ddllcr.GET_EXTRA_ATTRI BUTE(' tx_nane');
IF (ext_attr I'S NOT NULL) THEN
DBMS_OQUTPUT. PUT_LI NE(' transaction nanme: ' || ext_attr. ACCESSVARCHAR2());
END | F;
ext_attr := ddllcr.GET_EXTRA_ATTRI BUTE(' user nane');
IF (ext_attr I'S NOT NULL) THEN
DBMS_QUTPUT. PUT_LI NE(" usernane: ' || ext_attr. ACCESSVARCHAR2());
END | F;
DBMS_LOB. FREETEMPORARY(dd| _t ext);

ELSIF (typenm = ' SYS. LCR$_ROW RECORD) THEN

res := lcr. GETOBJECT(row cr);
DBMS_OUTPUT. PUT_LI NE(' source dat abase: ' ||
row cr. GET_SOURCE_DATABASE_NAME) ;

DBMS_OUTPUT. PUT_LI NE(' owner: ' || row cr.GET_OBJECT_OMER);
DBMS_QUTPUT. PUT_LI NE(' object: ' || row cr.GET_OBJECT_NAME);
DBMS_OUTPUT. PUT_LINE("is tag null: ' || rowcr.IS_ NULL_TAG;
DBMS_QUTPUT. PUT_LI NE(' conmand_type: ' || row cr. GET_COMWAND_TYPE) ;

oldlist :=rowcr.CGET_VALUES('old");
FORi IN 1..oldlist.COUNT LOOP
IF oldlist(i) I'SNOT NULL THEN

DBMS_OQUTPUT. PUT_LINE(" ol d(* || i || "): " || oldlist(i).colum_nane);
print_any(oldlist(i).data);
END | F;
END LOOP;

new ist := rowcr.GET_VALUES('new, 'n');
FORi in 1..newist.count LOOP
IF newlist(i) I'SNOT NULL THEN

DBMS_OQUTPUT. PUT_LINE(" new(" || i || "): " || newist(i).colum_nane);
print_any(newist(i).data);
END I F;
END LOOP;

- Print extra attributes in row LCR
ext_attr := row cr. GET_EXTRA_ATTRI BUTE(' row_id');
IF (ext_attr 1S NOT NULL) THEN
DBMS_OUTPUT. PUT_LINE("row_id: " || ext_attr. ACCESSURONIX));
END I F;
ext_attr := row cr. GET_EXTRA_ATTRI BUTE(' serial #');
IF (ext_attr 1S NOT NULL) THEN
DBMS_OQUTPUT. PUT_LI NE(" serial #: ' || ext_attr. ACCESSNUMBER());
END | F;
ext_attr := row cr. GET_EXTRA_ATTRI BUTE(' sessi on#');

11-14

Chapter 11
Displaying Detailed Information About Apply Errors

IF (ext_attr IS NOT NULL) THEN
DBMS_QUTPUT. PUT_LI NE(' session#: ' || ext_attr. ACCESSNUMBER());
END | F;
ext_attr := row cr. GET_EXTRA_ATTRI BUTE(' t hread#');
IF (ext_attr IS NOT NULL) THEN
DBVS_CQUTPUT. PUT_LI NE(' thread#: ' || ext_attr. ACCESSNUMBER());
END | F;
ext_attr := row cr. GET_EXTRA_ATTRI BUTE(' t x_nane');
IF (ext_attr IS NOT NULL) THEN
DBMS_QUTPUT. PUT_LI NE(' transaction name: ' || ext_attr. ACCESSVARCHAR2());
END | F;
ext_attr := row cr.GET_EXTRA_ATTRI BUTE(' user nane');
IF (ext_attr 1S NOT NULL) THEN

DBVS_QUTPUT. PUT_LI NE(' username: ' || ext_attr. ACCESSVARCHAR2());
END | F;
ELSE
DBVS_QUTPUT. PUT_LI NE(' Non- LCR Message with type ' || typenm;
END | F;
END print_lcr;

/

11.10.4 Step 4: Create a Procedure that Prints All the LCRs in the
Error Queue

Create a procedure that prints all of the LCRs in all of the error queues.

The procedure calls the print _| cr procedure created in "Step 3: Create a Procedure
that Prints a Specified LCR".

CREATE OR REPLACE PROCEDURE print_errors IS
CURSCR ¢ IS
SELECT LOCAL_TRANSACTI ON_I D,
SOURCE_DATABASE,
MESSAGE_NUMBER,
MESSAGE_COUNT,
ERROR_NUMBER,
ERROR_MESSAGE
FROM ALL_APPLY_ERROR
ORDER BY SOURCE_DATABASE, SOURCE_COWM T_SCN,
i NUMVBER;
txnid VARCHAR2(30);
sour ce VARCHAR2(128);
msgno NUMBER;
msgent NUMBER;
errnum NUMBER : = 0;
errno NUMBER;
errnsg VARCHAR2(2000);
lcr ANYDATA,
r NUMBER;
BEG N
FORTr INc LOOP
errnum: = errnum+ 1,
msgent . MESSAGE_COUNT;
txnid . LOCAL_TRANSACTI ON_I D;

r
r
source : = r. SOURCE_DATABASE;
msgno r. MESSAGE_NUMBER;
errno r. ERROR_NUMBER,
errnsg : = r. ERROR_MESSAGE;
mNB_QJTPUT PUT_LI NE(‘***');
DBMS_QUTPUT. PUT_LI NE(" ----- ERROR #' || errnum;

ORACLE 11-15

Chapter 11
Displaying Detailed Information About Apply Errors

DBMS_OUTPUT. PUT_LI NE(" ----- Local Transaction ID: " || txnid);
DBMS_QUTPUT. PUT_LI NE(" ----- Source Database: ' || source);
DBMS_OQUTPUT. PUT_LINE("----Error in Message: '|| msgno);
DBMS_OQUTPUT. PUT_LI NE(" ----Error Nunber: '||errno);
DBMS_QUTPUT. PUT_LI NE(' ----Message Text: '||errnsg);
FORi IN 1..msgcnt LOOP

DBMS_QUTPUT. PUT_LI NE(' - - message: ' || i);

lcr := DBVB_APPLY_ADM GET_ERRCR MESSAGE(i, txnid);
print_lcr(lcr);
END LOOP;
END LOOP;
END print_errors;
/

To run this procedure after you create it, enter the following:

SET SERVERQUTPUT ON SI ZE 1000000

EXEC print _errors

11.10.5 Step 5: Create a Procedure that Prints All the Error LCRs for a
Transaction

Create a procedure that prints all the LCRs in the error queue for a particular
transaction.

The procedure calls the print | cr procedure created in "Step 3: Create a Procedure
that Prints a Specified LCR".

CREATE OR REPLACE PROCEDURE print _transaction(ltxnid IN VARCHAR2) IS
i NUMBER;
txnid VARCHAR2(30);
source VARCHAR2(128);
msgno NUMBER;
msgcnt NUMBER;
errno NUMBER
errmsg VARCHAR2(2000);
lcr ANYDATA;
BEG N
SELECT LOCAL_TRANSACTI ON_I D,
SOURCE_DATABASE,
MESSAGE_NUMBER,
MESSAGE_COUNT,
ERROR_NUMBER,
ERROR_MESSAGE
INTO txni d, source, nmsgno, msgcnt, errno, errnsg
FROM ALL_APPLY ERRCR
VWHERE LOCAL_TRANSACTION ID = Itxnid;

DBMS_QUTPUT. PUT_LI NE(" ----- Local Transaction ID: ' || txnid);
DBMS_QUTPUT. PUT_LI NE(" ----- Source Database: ' || source);
DBVS_QUTPUT. PUT_LINE(' ----Error in Message: '|| nmsgno);
DBVS_QUTPUT. PUT_LI NE(" ----Error Nunber: '||errno);
DBMS_QUTPUT. PUT_LI NE(' - ---Message Text: '||errmsg);
FORi IN 1..msgcnt LOOP
DBVS_QUTPUT. PUT_LI NE(' - -nessage: ' || i);
Icr := DBVS_APPLY_ADM GET_ERROR MESSAGE(i, txnid); -- gets the LCR
print_lcr(lcr);
END LOCOP;

END print_transaction;
/

ORACLE 11-16

Chapter 11
Displaying Detailed Information About Apply Errors

To run this procedure after you create it, pass to it the local transaction identifier of an
error transaction. For example, if the local transaction identifier is 1. 17. 2485, then enter
the following:

SET SERVERQUTPUT ON SI ZE 1000000

EXEC print_transaction('1.17.2485")

ORACLE 11-17

Troubleshooting XStream In

You can diagnose and correct problems with an XStream In configuration.

» Diagnosing Problems with XStream In
You can diagnose problems with XStream In by using several different techniques.

* Problems and Solutions for XStream In
You can implement solutions for common problems with XStream In.

* How to Get More Help with XStream In
Oracle Support can provide more help with XStream In.

" See Also:

e "XStream Out Concepts"
e "XStream Use Cases"

e "Configuring XStream Out"

12.1 Diagnosing Problems with XStream In

You can diagnose problems with XStream In by using several different techniques.

* Viewing Alerts
An alert is a warning about a potential problem or an indication that a critical
threshold has been crossed.

» Checking the Trace File and Alert Log for Problems
Messages about inbound server are recorded in trace files for the database in
which the process is running.

12.1.1 Viewing Alerts

ORACLE

An alert is a warning about a potential problem or an indication that a critical threshold
has been crossed.

There are two types of alerts:

» Stateless: Alerts that indicate single events that are not necessarily tied to the
system state. For example, an alert that indicates that a capture aborted with a
specific error is a stateless alert.

» Stateful: Alerts that are associated with a specific system state. Stateful alerts are
usually based on a numeric value, with thresholds defined at warning and critical
levels. For example, an alert on the current Streams pool memory usage
percentage, with the warning level at 85% and the critical level at 95%, is a stateful
alert.

12-1

Chapter 12
Diagnosing Problems with XStream In

An Oracle database generates a stateless alert when an inbound server aborts.

An Oracle database generates a stateful XStream alert when the Streams pool
memory usage exceeds the percentage specified by the STREAMS_POOL_USED_PCT metric.
You can manage this metric with the SET_THRESHOLD procedure in the DBMS_SERVER ALERT
package.

You can view alerts in Oracle Enterprise Manager Cloud Control, or you can query the
following data dictionary views:

e The DBA OUTSTANDI NG _ALERTS view records current stateful alerts. The
DBA_ALERT H STCRY view records stateless alerts and stateful alerts that have been
cleared. For example, if the memory usage in the Streams pool exceeds the
specified threshold, then a stateful alert is recorded in the DBA_OUTSTANDI NG_ALERTS
view.

e The DBA ALERT HI STCRY data dictionary view shows alerts that have been cleared
from the DBA_OUTSTANDI NG ALERTS view. For example, if the memory usage in the
Streams pool falls below the specified threshold, then the alert recorded in the
DBA_OUTSTANDI NG ALERTS view is cleared and moved to the DBA ALERT_HI STORY view.

For example, to list the current stateful alerts, run the following query on the
DBA_OUTSTANDI NG ALERTS view:

COLUWN REASON HEADI NG ' Reason for Alert' FORMAT A35
COLUWN SUGGESTED _ACTI ON HEADI NG ' Suggest ed Response' FORMAT A35

SELECT REASON, SUGGESTED ACTI ON
FROM DBA_OUTSTANDI NG_ALERTS
VWHERE MODULE_| D LI KE ' %XSTREAM% ;

To list the stateless alerts and cleared XStream stateful alerts, run the following query
on the DBA_ALERT _H STCRY view:

COLUWN REASON HEADI NG ' Reason for Alert' FORMAT A35
COLUWN SUGGESTED_ACTI ON HEADI NG ' Suggest ed Response' FORMAT A35

SELECT REASON, SUGGESTED ACTI ON
FROM DBA_ALERT_HI STORY
VWHERE MODULE_| D LI KE ' %XSTREAM ;

" See Also:

e Oracle Database 2 Day + Performance Tuning Guide for information about
managing alerts and metric thresholds

e Oracle Database Administrator’s Guide for information about alerts and for
information about subscribing to the ALERT_QUE queue to receive
notifications when new alerts are generated

e Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_SERVER ALERT package

e "Configure the Streams pool"

ORACLE 12-2

Chapter 12
Diagnosing Problems with XStream In

12.1.2 Checking the Trace File and Alert Log for Problems

ORACLE

Messages about inbound server are recorded in trace files for the database in which
the process is running.

These trace file messages can help you to identify and resolve problems in an
XStream In configuration.

All trace files for background processes are written to the Automatic Diagnostic
Repository. The names of trace files are operating system specific, but each file
usually includes the name of the process writing the file.

For example, on some operating systems, the trace file name for a process is

* sidis the system identifier for the database

e xxxx is the name of the process

e jiiii isthe operating system process number

Also, you can setthe wite_al ert _| og parameter to y for both a capture process and
an outbound server. When this parameter is set to y, which is the default setting, the
alert log for the database contains messages about why the capture process or
outbound server stopped.

You can control the information in the trace files by setting the trace_| evel inbound
server apply parameter using the SET_PARAVETER procedure in the DBMS_XSTREAM ADM
package.

An inbound server is an Oracle background process named APnn, where nn can include
letters and numbers. For example, on some operating systems, if the system identifier
for a database running an inbound server is hgdb and the inbound server number is 01,
then the trace file for the inbound server starts with hgdb_AP01.

An inbound server also uses other processes. Information about an inbound server
might be recorded in the trace file for one or more of these processes. The process
name of the reader server and apply servers is ASnn, where nn can include letters and
numbers. So, on some operating systems, if the system identifier for a database
running an inbound server is hqdb and the process number is 01, then the trace file that
contains information about a process used by an inbound server starts with hqdb_AS01.

" See Also:

e "Displaying Session Information for Inbound Servers"

e Oracle Database Administrator’s Guidefor more information about trace
files and the alert log, and for more information about their names and
locations

e Oracle Database PL/SQL Packages and Types Referencefor more
information about setting the trace_| evel apply parameter

e Your operating system specific Oracle documentation for more information
about the names and locations of trace files

12-3

Chapter 12
Problems and Solutions for XStream In

12.2 Problems and Solutions for XStream In

You can implement solutions for common problems with XStream In.

In general, you can troubleshoot XStream inbound servers in the same way that you
troubleshoot Oracle Streams apply processes.

e XStream In Cannot Identify an Inbound Server
When an XStream In configuration cannot identify an inbound server, then there
might be multiple subscribers to the inbound server’s queue.

e Inbound Server Encounters an ORA-03135 Error
If the connection is broken between the inbound server and the XStream client
application, restart the client application.

* Changes Are Failing to Reach the Client Application in XStream In
In an XStream In configuration, database changes that should be streamed to
apply handlers or to the XStream client application are not reaching the apply
handler or client application.

" See Also:

Oracle Streams Concepts and Administration for more information

12.2.1 XStream In Cannot Identify an Inbound Server

ORACLE

When an XStream In configuration cannot identify an inbound server, then there might
be multiple subscribers to the inbound server’s queue.

If an XStream In configuration cannot identify an inbound server, then the following
error is returned:

ORA- 26840: STREAMS unable to identify an apply for the source database "%"
The following sections describe the possible problem and its solution.

Problem: Multiple Subscribers to the Inbound Server's Queue

The ORA- 26840 error indicates that there are multiple subscribers to the queue used by
the inbound server. Subscribers can include inbound servers, outbound servers, apply
processes, and propagations.

To determine whether there are multiple subscribers to the inbound server's
queue:

1. Connect to the inbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

SELECT OMER, QUEUE_NAME, CONSUMER NAME, ADDRESS
FROM DBA_QUEUE_SUBSCRI BERS;

12-4

Chapter 12
Problems and Solutions for XStream In

You can add a WHERE clause to the query to limit the output to the inbound server's
queue.

Solution

To correct the problem:

* If the query returns multiple subscribers to the inbound server's queue, then
reconfigure the subscribers so that the inbound server is the only subscriber.

¢ See Also:

"Configuring XStream In"

12.2.2 Inbound Server Encounters an ORA-03135 Error

If the connection is broken between the inbound server and the XStream client
application, restart the client application.

An inbound server encounters the following error:

ORA-03135: connection | ost contact

Problem: Connection Broken Between the Inbound Server and the Client
Application

The ORA-03135 error indicates that the connection between the inbound server and the
XStream client application was broken.

Solution

To correct the problem:

e Restart the XStream client application.

" See Also:

"Sample XStream Client Application"

12.2.3 Changes Are Failing to Reach the Client Application in XStream

In

ORACLE

In an XStream In configuration, database changes that should be streamed to apply
handlers or to the XStream client application are not reaching the apply handler or
client application.

The following sections describe possible problems and their solutions.

12-5

Chapter 12
How to Get More Help with XStream In

Problem: LCRs Blocked in the Stream

LCRs might be blocked after reaching the inbound server. For example, the inbound
server might be encountering errors and moving transactions to the error queue, or
there might be another problem.

You can track an LCR through a stream using one of the following methods:

e Setting the nessage_t racki ng_frequency apply parameter to 1 or another relatively
low value

To disable LCR tracking when you use this method, set the
message_t racki ng_frequency apply parameter to NULL or exit the session.

e Running the SET_MESSAGE_TRACKI NG procedure in the DBMS_XSTREAM ADM package

To disable LCR tracking when you use this method, set the tracki ng_| abel
parameter to NULL in the SET_MESSAGE_TRACKI NG procedure or exit the session.

After using one of these methods, use the V$XSTREAM MESSAGE_TRACKI NG view to monitor
the progress of LCRs through a stream. If you are using Oracle GoldenGate to
process the LCR, then you can use the V$GOLDENGATE_MESSAGE_TRACKI NG view to monitor
the progress of LCRs through Oracle GoldenGate components. By tracking an LCR
through the stream, you can determine where the LCR is blocked.

Solution

To correct problem:

» Take the appropriate action based on the reason that the LCR is blocked. For
example, the following actions might correct the problem:

— If an inbound server is encountering errors, then correct the problem that is
causing the errors.

— If an apply handler is not processing LCRs correctly, then correct the apply
handler.

— If an Oracle GoldenGate component is not processing LCRs correctly, then
correct the Oracle GoldenGate component.

¢ See Also:

e Oracle Streams Concepts and Administration for more information about
tracking LCRs through a stream

e Oracle Database PL/SQL Packages and Types Reference for information
about the message_t racki ng_f requency apply parameter

* The Oracle GoldenGate documentation for more information about Oracle
GoldenGate

12.3 How to Get More Help with XStream In

Oracle Support can provide more help with XStream In.

ORACLE 12-6

Chapter 12
How to Get More Help with XStream In

You can check My Oracle Support at http: // support . oracl e. comfor more solutions to
your problem.

You can visit htt p: / / www. or acl e. cont support/contact. ht i for more information about
Oracle Support.

ORACLE 12-7

http://support.oracle.com
http://www.oracle.com/support/contact.html

Oracle GoldenGate Capabilities in Oracle
Database

You can manage Oracle GoldenGate capabilities, such as conflict detection and
resolution and procedural replication, in Oracle Database.

¢ Oracle GoldenGate Automatic Conflict Detection and Resolution
You can configure and manage Oracle GoldenGate automatic conflict detection
and resolution in Oracle Database.

e Oracle GoldenGate Procedural Replication
Procedural replication is configured mainly within Oracle GoldenGate. However,
you can display the procedural replication configuration and complete some
configuration tasks within the database.

ORACLE

Oracle GoldenGate Automatic Conflict
Detection and Resolution

You can configure and manage Oracle GoldenGate automatic conflict detection and
resolution in Oracle Database.

* About Oracle GoldenGate
Oracle GoldenGate is a heterogeneous replication system with integrated support
for replication between Oracle and other databases.

e About Automatic Conflict Detection and Resolution
When Oracle GoldenGate replicates changes between Oracle databases, you can
configure and manage Oracle GoldenGate automatic conflict detection and
resolution in the Oracle databases.

* Configuring Automatic Conflict Detection and Resolution
You can configure Oracle GoldenGate automatic conflict detection and resolution
in Oracle Database with the DBM5_GOLDENGATE_ADM package. This is specific to
Oracle GoldenGate version 12.3 and later. No CDR configuration parameters
need to be specified in the Golden Gate replicat file, other than a MAP statement
that includes the table to be replicated.

* Managing Automatic Conflict Detection and Resolution
You can manage Oracle GoldenGate automatic conflict detection and resolution in
Oracle Database with the DBM5_GOLDENGATE_ADM package.

* Monitoring Automatic Conflict Detection and Resolution
You can monitor Oracle GoldenGate automatic conflict detection and resolution in
an Oracle database by querying data dictionary views.

13.1 About Oracle GoldenGate

Oracle GoldenGate is a heterogeneous replication system with integrated support for
replication between Oracle and other databases.

Oracle GoldenGate is integrated with Oracle Database to capture DML and DDL
changes from the redo logs and apply the changes at the target. Oracle GoldenGate
provides capture, routing, transformation, and delivery of transactional data across
Oracle databases or heterogeneous databases in real time.

When Oracle GoldenGate captures changes that originated at an Oracle database,
each change is encapsulated in a row logical change record (LCR). Arow LCR is a
structured representation of a DML row change. Each row LCR includes the operation
type, old column values, and new column values. Multiple row LCRs can be part of a
single database transaction.

ORACLE 13-1

Chapter 13
About Automatic Conflict Detection and Resolution

" See Also:

¢ "Row LCRs"

* The Oracle GoldenGate documentation for more information about Oracle
GoldenGate

13.2 About Automatic Conflict Detection and Resolution

ORACLE

When Oracle GoldenGate replicates changes between Oracle databases, you can
configure and manage Oracle GoldenGate automatic conflict detection and resolution
in the Oracle databases.

Note:

The documentation in this book is for the automatic conflict detection and
resolution feature that is specific to Oracle Database 12c Release 2 (12.2) and
later, which is configured in an Oracle database. It also requires Oracle
GoldenGate version 12.3 and later. There is also a general Oracle GoldenGate
feature for conflict detection and resolution, which is called Oracle GoldenGate
conflict detection and resolution (CDR). Oracle GoldenGate CDR is configured
in the Replicat parameter file, and it is documented in the Oracle GoldenGate
documentation.

You can configure only one of the following types of automatic conflict detection
and resolution for a single table:

e The automatic conflict detection and resolution feature that is specific to
Oracle Database 12c Release 2 (12.2)

e Oracle GoldenGate CDR

» Automatic Conflict Detection and Resolution
You can configure automatic conflict detection and resolution in an Oracle
GoldenGate configuration that replicates tables between Oracle databases. To
configure conflict detection and resolution for a table, call the ADD_AUTO CDR
procedure in the DBVMS_GOLDENGATE_ADM package.

» Latest Timestamp Conflict Detection and Resolution
With timestamp conflict detection, a conflict occurs when the timestamp in the old
column list of the row logical change record (row LCR) differs from the timestamp
for the corresponding row in the table.

* Delta Conflict Detection and Resolution
With delta conflict detection, a conflict occurs when a value in the old column list of
the row logical change record (row LCR) differs from the value for the
corresponding row in the table.

e Column Groups
A column group is a logical grouping of one or more columns in a replicated table.
When you add a column group, conflict detection and resolution is performed on
the columns in the column group separately from the other columns in the table.

13-2

Chapter 13
About Automatic Conflict Detection and Resolution

13.2.1 Automatic Conflict Detection and Resolution

You can configure automatic conflict detection and resolution in an Oracle GoldenGate
configuration that replicates tables between Oracle databases. To configure conflict
detection and resolution for a table, call the ADD_AUTO_CDR procedure in the
DBMS_GOLDENGATE_ADM package.

Automatic conflict detection and resolution does not require application changes for
the following reasons:

e Oracle Database automatically creates and maintains invisible timestamp
columns.

e Inserts, updates, and deletes use the delete tombstone log table to determine if a
row was deleted.

» LOB column conflicts can be detected.

e Oracle Database automatically configures supplemental logging on required
columns.

Supplemental logging is required to ensure that each row LCR has the information
required to detect and resolve a conflict. Supplemental logging places additional
information in the redo log for the columns of a table when a DML operation is
performed on the table. When you configure a table for Oracle GoldenGate conflict
detection and resolution, supplemental logging is configured automatically for all of the
columns in the table.

" See Also:

e Oracle Database Utilities for information about supplemental logging

¢ The Oracle GoldenGate documentation for more information about Oracle
GoldenGate

13.2.2 Latest Timestamp Conflict Detection and Resolution

ORACLE

With timestamp conflict detection, a conflict occurs when the timestamp in the old
column list of the row logical change record (row LCR) differs from the timestamp for
the corresponding row in the table.

When you run the ADD AUTO CDR procedure in the DBMS_GOLDENGATE_ADM package to
configure a table for automatic Oracle GoldenGate conflict detection and resolution, a
hidden timestamp column is added to the table. This hidden timestamp column
records the time of a row change, and this information is used to detect and resolve
conflicts.

When a row LCR is applied, a conflict can occur for an | NSERT, UPDATE, or DELETE
operation. The following table describes each type of conflict and how it is resolved
with latest timestamp conflict detection and resolution.

13-3

ORACLE

Chapter 13

About Automatic Conflict Detection and Resolution

Table 13-1 Latest Timestamp Conflict Detection and Resolution

Operation

Conflict Detection

Conflict Resolution

| NSERT

UPDATE

A conflict is detected when the
table has the same value for a
key column as the new value
in the row LCR.

A conflict is detected in each
of the following cases:

* There is a mismatch
between the timestamp
value in the row LCR and
the timestamp value of
the corresponding row in
the table.

e There is a mismatch
between an old value in a
column group in the row
LCR does not match the
column value in the
corresponding table row.
A column group is a
logical grouping of one or
more columns in a
replicated table.

e The table row does not
exist. If the row is in the
tombstone table, then this
is referred to as an
update-delete conflict.

If the timestamp of the row
LCR is later than the
timestamp in the table row,
then the values in the row
LCR replace the values in the
table.

If the timestamp of the row
LCR is earlier than the
timestamp in the table row,
then the row LCR is
discarded, and the table
values are retained.

If there is a value mismatch
and the timestamp of the row
LCR is later than the
timestamp in the table row,
then the values in the row
LCR replace the values in the
table.

If there is a value mismatch
and the timestamp of the row
LCR is earlier than the
timestamp in the table row,
then the row LCR is
discarded, and the table
values are retained.

If the table row does not exist
and the timestamp of the row
LCR is later than the
timestamp in the tombstone
table row, then the row LCR is
converted from an UPDATE
operation to an | NSERT
operation and inserted into the
table.

If the table row does not exist
and the timestamp of the row
LCR is earlier than the
timestamp in the tombstone
table row, then the row LCR is
discarded.

If the table row does not exist
and there is no corresponding
row in the tombstone table,
then the row LCR is converted
from an UPDATE operation to
an | NSERT operation and
inserted into the table.

13-4

Chapter 13
About Automatic Conflict Detection and Resolution

Table 13-1 (Cont.) Latest Timestamp Conflict Detection and Resolution

Operation Conflict Detection Conflict Resolution
DELETE A conflict is detected in each I the timestamp of the row
of the following cases: LCR is later than the
« There is a mismatch timestamp in the table, then

between the timestamp ~ delete the row from the table.

value in the row LCR and If the timestamp of the row
the timestamp value of LCR is earlier than the
the corresponding row in timestamp in the table, then

the table. the row LCR is discarded, and
« The table row does not the table values are retained.
exist. If the delete is successful,

then log the row LCR by
inserting it into the tombstone
table.

If the table row does not exist,
then log the row LCR by
inserting it into the tombstone
table.

¢ See Also:

"Column Groups"

13.2.3 Delta Conflict Detection and Resolution

With delta conflict detection, a conflict occurs when a value in the old column list of the
row logical change record (row LCR) differs from the value for the corresponding row
in the table.

To configure delta conflict detection and resolution for a table, run the
ADD_AUTO CDR DELTA RES procedure in the DBMS_GOLDENGATE_ADM package. The delta
resolution method does not depend on a timestamp or an extra resolution column.
With delta conflict resolution, the conflict is resolved by adding the difference between
the new and old values in the row LCR to the value in the table. This resolution
method is generally used for financial data such as an account balance. For example,
if a bank balance is updated at two sites concurrently, then the converged value
accounts for all debits and credits.

The following figure provides an example that illustrates delta conflict detection and
resolution.

ORACLE 13-5

ORACLE

Chapter 13
About Automatic Conflict Detection and Resolution

Figure 13-1 Delta Conflict Detection and Resolution

Database A
Name & RowTS @ BankName ' Balance TSH
Scott @T10 Chase 100 @T10
Increase balance by 10
Name | RowTS @ BankName ' |Balance TS1 &——
Scott @T20 Chase 110 @T20
Apply Delta of 20
Name | RowTS @ BankName | |Balance TS1 |
Scott @T22 Chase 130 @T22
Database B
Name & RowTS @ BankName ' Balance TSH
Scott @T10 | Chase 100 @T10
Increase balance by 20
Name & RowTS @ BankName | |Balance TS1 o&——|—
Scott @T22 Chase 120 @T22
¢ Apply Delta of 10
Name & RowTS @ BankName | |Balance TS
Scott @T22 Chase 130 @T22

Invisible Column

This example shows a row being replicated at database A and database B. The

Bal ance column is designated as the column on which delta conflict resolution is
performed, and the TS1 column is the invisible timestamp column to track the time of
each change to the Bal ance column. A change is made to the Bal ance value in the row
in both databases at nearly the same time (@20 in database A and @22 in database
B). These changes result in a conflict, and delta conflict resolution is used to resolve
the conflict in the following way:

e Atdatabase A, the value of Bal ance was changed from 100 to 110. Therefore, the
value was increased by 10.

* At database B, the value of Bal ance was changed from 100 to 120. Therefore, the
value was increased by 20.

e To resolve the conflict at database A, the value of the difference between the new
and old values in the row LCR to the value in the table. The difference between
the new and old values in the LCR is 20 (120-100=20). Therefore, the current
value in the table (110) is increased by 20 so that the value after conflict resolution

is 130.

13-6

Chapter 13
About Automatic Conflict Detection and Resolution

* To resolve the conflict at database B, the value of the difference between the new
and old values in the row LCR to the value in the table. The difference between
the new and old values in the LCR is 10 (110-100=10). Therefore, the current
value in the table (120) is increased by 10 so that the value after conflict resolution
is 130.

After delta conflict resolution, the value of the Bal ance column is the same for the row
at database A and database B.

13.2.4 Column Groups

ORACLE

A column group is a logical grouping of one or more columns in a replicated table.
When you add a column group, conflict detection and resolution is performed on the
columns in the column group separately from the other columns in the table.

When you configure a table for Oracle GoldenGate conflict detection and resolution
with the ADD_AUTO CDR procedure, all of the scalar columns in the table are added to a
default column group. To define other column groups for the table, run the

ADD_AUTO CDR_COLUWN_GROUP procedure. Any columns in the table that are not part of a
user-defined column group remain in the default column group for the table.

Column groups enable different databases to update different columns in the same
row at nearly the same time without causing a conflict. When column groups are
configured for a table, conflicts can be avoided even if different databases update the
same row in the table. A conflict is not detected if the updates change the values of
columns in different column groups. The following figure provides an example that
illustrates column groups.

13-7

ORACLE

Figure 13-2 Column Groups

Name

Scott

Name

Scott

Name

Scott

Name

Scott

Name

Scott

Name

Scott

RowTS

@T10

RowTS
@T22

RowTS

@T22

RowTS

@T10

RowTS

@T20

RowTS

@T22

Chapter 13

About Automatic Conflict Detection and Resolution

Database A
Office | TSH Title Salary = TS2
1080 @T10| [MTS 1 | 100 @T10
Update column group (Office)
Office | TS1 Title Salary | TS2
1103 @T22| MTS1 | 100 @T10
\
Office | TS1 Title Salary | TS2
-«
1103 @T22 |MTS2 | 100 @T20
Database B
Office | TSt Title Salary | TS2
1080 @T10| [MTS 1 | 100 @T10
Update column group (Title, Salary)
Office | TS1 Title Salary | TS2
1080 @T10 |MTS2 | 100 @T20
Office | TS1 Title Salary | TS2
1103 @T22| MTS2 100 @T20

Invisible Column

This example shows a row being replicated at database A and database B. The
following two column groups are configured for the replicated table at each database:

e One column group includes the O fi ce column. The invisible timestamp column for
this column group is TS1.

e Another column group includes the Titl e and Sal ary columns. The invisible
timestamp column for this column group is TS2.

These column groups enable database A and database B to update the same row at
nearly the same time without causing a conflict. Specifically, the following changes are

made:

* At database A, the value of O fi ce was changed from 1080 to 1030.

* At database B, the value of Tit| e was changed from MI'SL to Mrs2.

Because the O fi ce column and the Titl e column are in different column groups, the
changes are replicated without a conflict being detected. The result is that values in

the row are same at both databases after each change has been replicated.

13-8

Chapter 13
Configuring Automatic Conflict Detection and Resolution

Piecewise LOB Updates

A set of lob operations composed of LOB WRI TE, LOB ERASE, and LOB TRI Mis a piecewise
LOB update. When a table that contains LOB columns is configured for conflict
detection and resolution, each LOB column is placed in its own column group, and the
column group has its own hidden timestamp column. The timestamp column is
updated on the first piecewise LOB operation.

For a LOB column, a conflict is detected and resolved in the following ways:

» If the timestamp for the LOB’s column group is later than the corresponding LOB
column group in the row, then the piecewise LOB update is applied.

e If the timestamp for the LOB’s column group is earlier than the corresponding LOB
column group in the row, then the LOB in the table row is retained.

» |f the row does not exist in the table, then an error is raised.

13.3 Configuring Automatic Conflict Detection and
Resolution

You can configure Oracle GoldenGate automatic conflict detection and resolution in
Oracle Database with the DBM5_GOLDENGATE_ADM package. This is specific to Oracle
GoldenGate version 12.3 and later. No CDR configuration parameters need to be
specified in the Golden Gate replicat file, other than a MAP statement that includes the
table to be replicated.

» Configuring Latest Timestamp Conflict Detection and Resolution
The ADD_AUTO CDR procedure in the DBVS_GOLDENGATE_ADM package configures latest
timestamp conflict detection and resolution. The ADD_AUTO CDR_COLUWN_GROUP
procedure adds optional column groups.

* Configuring Delta Conflict Detection and Resolution
The ADD_AUTO CDR DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package
configures delta conflict detection and resolution.

13.3.1 Configuring Latest Timestamp Conflict Detection and

Resolution

ORACLE

The ADD_AUTO CDR procedure in the DBVMS_GOLDENGATE_ADM package configures latest
timestamp conflict detection and resolution. The ADD_AUTO CDR_COLUMN_GROUP procedure
adds optional column groups.

With latest timestamp conflict detection and resolution, a conflict is detected when the
timestamp column of the row LCR does not match the timestamp of the corresponding
table row. The row LCR is applied if its timestamp is later. Otherwise, the row LCR is
discarded, and the table row is not changed. When you run the ADD AUTO CDR
procedure, it adds an invisible timestamp column for each row in the specified table
and configures timestamp conflict detection and resolution. When you use the
ADD_AUTO CDR_COLUWMN GROUP procedure to add one or more column groups, it adds a
timestamp for the column group and configures timestamp conflict detection and
resolution for the column group.

13-9

Chapter 13
Configuring Automatic Conflict Detection and Resolution

You can configure an Oracle GoldenGate administrator using the
GRANT_ADM N_PRI VI LEGE procedure in the DBVS_GOLDENGATE_ADM package.

1. Connect to each database as the Oracle GoldenGate administrator.

2. Run the ADD_AUTO CDR procedure and specify the table to configure for latest
timestamp conflict detection and resolution.

3. Optional: Run the ADD_AUTO CDR_COLUWN_GROUP procedure and specify one or more
column groups in the table.

4. Repeat the previous steps in each Oracle database that replicates the table.

Example 13-1 Configuring Latest Timestamp Conflict Detection and Resolution
for a Table

This example configures latest timestamp conflict detection and resolution for the
hr. enpl oyees table.

BEG N
DBVS_GOLDENGATE_ADM ADD_AUTO_CDR(
schema_nane => 'hr',
tabl e_nane => 'enployees');
END;
/

Example 13-2 Configuring Column Groups

This example configures the following column groups for timestamp conflict resolution
on the hr. enpl oyees table:

* Thejob_identifier_cg column group includes the j ob_i d, depart nent _i d, and
manager _i d columns.

e The compensation_cg column group includes the sal ary and conmi ssi on_pct

columns.
BEG N
DBMVS_GOLDENGATE_ADM ADD_AUTO CDR_COLUMN_GROUP(
schema_nane = 'hr',
tabl e_nane => 'enpl oyees',
colum_Ii st => 'job_id, department _id, manager _id',
col um_group_name => 'job_identifier_cg');
END;
/
BEG N
DBMVS_GOLDENGATE_ADM ADD_AUTO CDR_COLUMN_GROUP(
schema_nane = '"hr',
tabl e_nane => 'enpl oyees',
colum_|i st => 'sal ary, commi ssi on_pct",
col urm_group_name => ' conpensation_cg');
END;

/

ORACLE 13-10

Chapter 13
Configuring Automatic Conflict Detection and Resolution

¢ See Also:

e "Automatic Conflict Detection and Resolution”
e "Latest Timestamp Conflict Detection and Resolution"
e "Column Groups"

¢ The Oracle GoldenGate documentation for more information about Oracle
GoldenGate replication and configuring an Oracle GoldenGate
administrator

13.3.2 Configuring Delta Conflict Detection and Resolution

ORACLE

The ADD AUTO CDR DELTA RES procedure in the DBMS_GOLDENGATE ADMpackage configures
delta conflict detection and resolution.

With delta conflict resolution, you specify one column for which conflicts are detected
and resolved. The conflict is detected if the value of the column in the row LCR does
not match the corresponding value in the table. The conflict is resolved by adding the
difference between the new and old values in the row LCR to the value in the table.

You can configure an Oracle GoldenGate administrator using the
GRANT_ADM N_PRI VI LEGE procedure in the DBVMS_GOLDENGATE_ADM package.

1. Connect to each database as the Oracle GoldenGate administrator.

2. Run the ADD_AUTO CDR procedure and specify the table to configure for latest
timestamp conflict detection and resolution.

3. Run the ADD AUTO CDR DELTA RES procedure and specify the column on which delta
conflict detection and resolution is performed.

4. Repeat the previous steps in each Oracle database that replicates the table.

Example 13-3 Configuring Delta Conflict Detection and Resolution for a Table

This example configures delta conflict detection and resolution for the or der _t ot al
column in the oe. or der s table.

BEG N
DBVS_GOLDENGATE_ADM ADD_AUTO_CDR(
schema_nane => 'oe',
table_nane => 'orders');
END;
/

BEG N
DBVB_GOLDENGATE_ADM ADD_AUTO CDR DELTA RES(
schema_nane => 'oe',
table_nane =>"orders',
col um_name => "order_total');
END;
/

13-11

Chapter 13
Managing Automatic Conflict Detection and Resolution

" See Also:

« "Automatic Conflict Detection and Resolution”
+ "Delta Conflict Detection and Resolution”

¢ The Oracle GoldenGate documentation for more information about Oracle
GoldenGate replication and configuring an Oracle GoldenGate
administrator

13.4 Managing Automatic Conflict Detection and Resolution

You can manage Oracle GoldenGate automatic conflict detection and resolution in
Oracle Database with the DBMS_GOLDENGATE_ADM package.

Altering Conflict Detection and Resolution for a Table
The ALTER _AUTO CDR procedure in the DBMS_GOLDENGATE_ADM package alters conflict
detection and resolution for a table.

Altering a Column Group
The ALTER AUTO CDR_COLUWMN_GROUP procedure alters a column group.

Purging Tombstone Rows

The PURGE_TOMBSTONES procedure removes tombstone rows that were recorded
before a specified date and time. This procedure removes the tombstone rows for
all tables configured for conflict resolution in the database.

Removing Conflict Detection and Resolution From a Table

The REMOVE_AUTO CDR procedure in the DBMS_GOLDENGATE_ADM package removes
automatic conflict detection and resolution from a table. This procedure also
removes any column groups and delta conflict detection and resolution configured
for the table.

Removing a Column Group
The REMOVE_AUTO CDR_COLUWMN_GROUP procedure removes a column group.

Removing Delta Conflict Detection and Resolution
The REMOVE_AUTO CDR DELTA RES procedure in the DBVS_GOLDENGATE ADM package
removes delta conflict detection and resolution for a column.

13.4.1 Altering Conflict Detection and Resolution for a Table

The ALTER _AUTO CDR procedure in the DBMS_GOLDENGATE_ADM package alters conflict
detection and resolution for a table.

ORACLE

Oracle GoldenGate automatic conflict detection and resolution must be configured for

the table.

1. Connectto each database as the Oracle GoldenGate administrator.

2. Run the ALTER AUTO CDR procedure and specify the table to configure for latest
timestamp conflict detection and resolution.

3. Repeat all of the previous steps in each Oracle database that replicates the table.

13-12

Chapter 13
Managing Automatic Conflict Detection and Resolution

Example 13-4 Altering Conflict Detection and Resolution for a Table

This example alters conflict detection and resolution for the hr. enpl oyees table to
specify that delete conflicts are tracked in a tombstone table.

BEG N
DBNMS_GOLDENGATE_ADM ALTER AUTO CDR(
schema_nane = 'hr',
tabl e_nane => 'enpl oyees',
tonmbst one_del etes => TRUE);
END,
/
¢ See Also:

e "Automatic Conflict Detection and Resolution"
e "Configuring Automatic Conflict Detection and Resolution"
e "Column Groups"

* The Oracle GoldenGate documentation for more information about Oracle
GoldenGate

13.4.2 Altering a Column Group

ORACLE

The ALTER AUTO CDR_COLUWMN_GROUP procedure alters a column group.

1. Connect to the inbound server database as the Oracle GoldenGate administrator.

2. Run the ALTER AUTO CDR COLUWMN_GROUP procedure and specify one or more column
groups in the table.

3. Repeat all of the previous steps in each Oracle database that replicates the table.

Example 13-5 Altering a Column Group

This example removes the nanager _i d column from the j ob_i denti fier_cg column
group for the hr. enpl oyees table.

BEG N
DBMS_GOLDENGATE._ADM ALTER AUTO CDR_COLUMN_GROUP(
schema_nane = 'hr',
tabl e_nane => ' enpl oyees',

colum_group_name => 'job_identifier_cg',
renove_colum_list => 'nmanager id');

END;

/

" Note:

If there is more than one column, then use a comma-separated list.

13-13

Chapter 13
Managing Automatic Conflict Detection and Resolution

¢ See Also:

e "Column Groups"
e "Configuring Latest Timestamp Conflict Detection and Resolution"

* The Oracle GoldenGate documentation for more information about Oracle
GoldenGate.

13.4.3 Purging Tombstone Rows

The PURGE_TOMBSTONES procedure removes tombstone rows that were recorded before a
specified date and time. This procedure removes the tombstone rows for all tables
configured for conflict resolution in the database.

It might be necessary to purge tombstone rows periodically to keep the tombstone log
from growing too large over time.

1. Connect to each database as the Oracle GoldenGate administrator.
2. Run the PURGE_TOMBSTONES procedure and specify the date and time.

Example 13-6 Purging Tombstone Rows

This example purges all tombstone rows recorded before 3PM on December, 1, 2015
Eastern Standard Time. The timestamp must be entered in TI MESTAMP W TH Tl NE ZONE
format.

EXEC DBMS_GOLDENGATE_ADM PURGE_TOVBSTONES(® 2015- 12-01 15: 00; 00. 000000 EST');

¢ See Also:

e "Configuring Latest Timestamp Conflict Detection and Resolution"

* The Oracle GoldenGate documentation for more information about Oracle
GoldenGate

13.4.4 Removing Conflict Detection and Resolution From a Table

ORACLE

The REMOVE_AUTO _CDR procedure in the DBVS_GOLDENGATE_ADM package removes automatic
conflict detection and resolution from a table. This procedure also removes any
column groups and delta conflict detection and resolution configured for the table.

1. Connect to each database as the Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO CDR procedure and specify the table.

3. Repeat all of the previous steps in each Oracle database that replicates the table.
Example 13-7 Removing Conflict Detection and Resolution for a Table

This example removes conflict detection and resolution for the hr. enpl oyees table.

BEG N
DBMS_GOLDENGATE_ADM REMOVE_AUTO_CDR(

13-14

Chapter 13
Managing Automatic Conflict Detection and Resolution

schema_nane => 'hr',

tabl e_nane => 'enployees');
END;
/

" See Also:

« "Automatic Conflict Detection and Resolution"

¢ The Oracle GoldenGate documentation for more information about Oracle
GoldenGate.

13.4.5 Removing a Column Group

The REMOVE_AUTO_CDR_COLUMN_GROUP procedure removes a column group.

1. Connect to each database as the Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO CDR_COLUMN_GROUP procedure and specify the name of the
column group.

3. Repeat all of the previous steps in each Oracle database that replicates the table.

Example 13-8 Removing a Column Group

This example removes the conpensati on_cg column group from the hr. enpl oyees table.

BEG N
DBMS_GOLDENGATE_ADM REMOVE_AUTO_CDR_COLUMN_GROUP(
schema_nane = 'hr',
tabl e_nane => 'enpl oyees',
col urm_group_name => ' conpensation_cg');
END;
/
¢ See Also:

e "Column Groups"
e "Configuring Latest Timestamp Conflict Detection and Resolution"

« The Oracle GoldenGate documentation for more information about Oracle
GoldenGate.

13.4.6 Removing Delta Conflict Detection and Resolution

ORACLE

The REMOVE_AUTO CDR DELTA RES procedure in the DBMS_GOLDENGATE_ADM package removes
delta conflict detection and resolution for a column.

Delta conflict detection and resolution must be configured for the specified column.
1. Connect to the inbound server database as the Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO CDR DELTA RES procedure and specify the column.

13-15

Chapter 13
Monitoring Automatic Conflict Detection and Resolution

3. Repeat all of the previous steps in each Oracle database that replicates the table.

Example 13-9 Removing Delta Conflict Detection and Resolution for a Table

This example removes delta conflict detection and resolution for the or der _t ot al
column in the oe. or der s table.

BEG N
DBVS_GOLDENGATE_ADM REMOVE_AUTO_CDR_DELTA RES(
schema_nane => 'oe',
table_name => 'orders',
col um_nanme => 'order_total');
END;
/

" See Also:

e "Delta Conflict Detection and Resolution"”
e "Configuring Delta Conflict Detection and Resolution”

« The Oracle GoldenGate documentation for more information about Oracle
GoldenGate.

13.5 Monitoring Automatic Conflict Detection and Resolution

You can monitor Oracle GoldenGate automatic conflict detection and resolution in an
Oracle database by querying data dictionary views.

» Displaying Information About the Tables Configured for Conflicts
The ALL_GG AUTO CDR_TABLES view displays information about the tables configured
for Oracle GoldenGate automatic conflict detection and resolution.

» Displaying Information About Conflict Resolution Columns
The ALL_GG AUTO CDR_COLUMWNS view displays information about the columns
configured for Oracle GoldenGate automatic conflict detection and resolution.

e Displaying Information About Column Groups
The ALL_GG AUTO CDR_COLUWN_GROUPS view displays information about the column
groups configured for Oracle GoldenGate automatic conflict detection and
resolution.

13.5.1 Displaying Information About the Tables Configured for
Conflicts

The ALL_GG AUTO CDR TABLES view displays information about the tables configured for
Oracle GoldenGate automatic conflict detection and resolution.

1. Connect to the database.

2. Query the ALL_GG AUTO CDR TABLES view.

ORACLE 13-16

Chapter 13
Monitoring Automatic Conflict Detection and Resolution

Example 13-10 Displaying Information About the Tables Configured for
Conflict Detection and Resolution

This query displays the following information about the tables that are configured for
conflict detection and resolution:

* The table owner for each table
e The table name for each table

e The tombstone table used to store rows deleted for update-delete conflicts, if a
tombstone table is configured for the table

e The hidden timestamp column used for conflict resolution for each table

COLUWN TABLE_OWNER FORMAT A15

COLUWN TABLE_NAME FORMAT Al5

COLUWN TOMBSTONE_TABLE FORMAT A15
COLUWN ROW RESCLUTI ON_COLUWN FORMAT A25

SELECT TABLE O/MER
TABLE_NAME,
TOVBSTONE_TABLE,
ROW RESOLUTI ON_COLUMN
FROM ALL_GG AUTO CDR TABLES
ORDER BY TABLE OANER TABLE NAME;

Your output looks similar to the following:

TABLE OMER TABLE_NAME TOVBSTONE_TABLE ROW RESOLUTI ON_COLUWN
HR EMPLOYEES DT$_EMPLOYEES ~ CDRTS$ROW
CE ORDERS DT$_ORDERS CDRTS$ROW

Related Topics

» Configuring Automatic Conflict Detection and Resolution
You can configure Oracle GoldenGate automatic conflict detection and resolution
in Oracle Database with the DBM5_GOLDENGATE_ADM package. This is specific to
Oracle GoldenGate version 12.3 and later. No CDR configuration parameters
need to be specified in the Golden Gate replicat file, other than a MAP statement
that includes the table to be replicated.

13.5.2 Displaying Information About Conflict Resolution Columns

ORACLE

The ALL_GG AUTO CDR_COLUMWNS view displays information about the columns configured
for Oracle GoldenGate automatic conflict detection and resolution.

The columns can be configured for row or column automatic conflict detection and
resolution. The columns can be configured for latest timestamp conflict resolution in a
column group. In addition, a column can be configured for delta conflict resolution.

1. Connect to the database as the Oracle GoldenGate administrator.
2. Query the ALL_GG AUTO CDR_COLUNNS view.

Example 13-11 Displaying Information About Column Groups

This query displays the following information about the tables that are configured for
conflict detection and resolution:

* The table owner for each table

13-17

ORACLE

Chapter 13
Monitoring Automatic Conflict Detection and Resolution

* The table name for each table
e If the column is in a column group, then the name of the column group
e The column name

» If the column is configured for latest timestamp conflict resolution, then the name
of the hidden timestamp column for the column

COLUMN TABLE OANER FORMAT A10
COLUWN TABLE_NAVE FORVAT AL0
COLUWN COLUWN_GROUP_NAME FORMAT A17
COLUWN COLUWN_NAVE FORMAT A15
COLUWN RESCLUTI ON_COLUWN FORMAT A23

SELECT TABLE OMER
TABLE_NAME,
COLUWN_GROUP_NAME,
COLUMN_NAME,

RESOLUTI ON_COLUMN
FROM ALL_GG AUTO CDR_COLUWNS
ORDER BY TABLE OMER, TABLE NAME;

Your output looks similar to the following:

TABLE_OWKE TABLE_NAME COLUMN_GROUP_NAME COLUWN NAVE RESOLUTI ON_COLUWN

HR EMPLOYEES COVPENSATI ON.CG COMM SSI ON_PCT CDRTS$COVPENSATI ON_CG
HR EMPLOYEES COVPENSATI ON G SALARY CDRTS$COVPENSATI ON_CG
HR EMPLOYEES JOB_| DENTI FI ER CG MANAGER | D CDRTS$JOB_| DENTI FI ER_CG
HR EMPLOYEES JOB_| DENTI FI ER CG JOB | D CDRTS$JOB_| DENTI FI ER_CG
HR EMPLOYEES JOB_| DENTI FI ER_CG DEPARTMENT | D CDRTS$JOB_| DENTI FI ER_OG
HR EMPLOYEES | MPLICI T_COLUWNS$ PHONE NUMBER CDRTS$SROW

HR EMPLOYEES | MPLI CI T_COLUWNS$ LAST NAVE CDRTS$ROW

HR EMPLOYEES | MPLI CI T_COLUWNS$ Hi RE_DATE CDRTS$ROW

HR EMPLOYEES | MPLI CI' T_COLUWNS$ FI RST_NAME CDRTS$ROW

HR EMPLOYEES | MPLI CI T_COLUMNS$ EMAI L CDRTS$ROW

HR EMPLOYEES | MPLICIT_COLUWNS$ EMPLOYEE ID CDRTSSROW

CE ORDERS I MPLI O T_COLUMNS$ ORDER MODE CDRTS$ROW

CE ORDERS I MPLI CI T_COLUMNS$ ORDER | D CDRTS$ROW

CE ORDERS I MPLI CI T_COLUMNS$ ORDER DATE CDRTS$ROW

CE ORDERS I MPLI CI T_COLUMNS$ CUSTOMER D CDRTS$ROW

CE ORDERS DELTA$ ORDER TOTAL

CE ORDERS I MPLI CI T_COLUMNS$ PROMOTION ID CDRTS$ROW

CE ORDERS I MPLI O T_COLUMNS$ ORDER STATUS ~ CDRTS$ROW

CE ORDERS I MPLI Ol T_COLUMNS$ SALES REP D CDRTS$ROW

In this output, the columns with | MPLI CI T_COLUWNSS$ for the column group name are
configured for row conflict detection and resolution, but they are not part of a column
group. The columns with DELTA$ for the column group name are configured for delta
conflict detection and resolution, and these columns do not have a resolution column.

Related Topics

» Configuring Automatic Conflict Detection and Resolution
You can configure Oracle GoldenGate automatic conflict detection and resolution
in Oracle Database with the DBMS_GOLDENGATE_ADM package. This is specific to
Oracle GoldenGate version 12.3 and later. No CDR configuration parameters
need to be specified in the Golden Gate replicat file, other than a MAP statement
that includes the table to be replicated.

13-18

Chapter 13
Monitoring Automatic Conflict Detection and Resolution

13.5.3 Displaying Information About Column Groups

The ALL_GG AUTO CDR_COLUWMN_GROUPS view displays information about the column groups
configured for Oracle GoldenGate automatic conflict detection and resolution.

You can configure Oracle GoldenGate automatic conflict detection and resolution
using the ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package. You can
configure column groups using the ADD_AUTO CDR_COLUMN_GROUP procedure in the
DBMS_GOLDENGATE_ADM package.

1. Connect to the database as the Oracle GoldenGate administrator.
2. Query the ALL_GG AUTO CDR_COLUMN_GROUPS view.

Example 13-12 Displaying Information About Column Groups

This query displays the following information about the tables that are configured for
conflict detection and resolution:

e The table owner

e The table name

e The name of the column group

e The hidden timestamp column used for conflict resolution for each column group

COLUWN TABLE_OWNER FORMAT A15
COLUWN TABLE_NAME FORMAT Al5
COLUWN COLUMN_GROUP_NAME FORMAT A20
COLUWN RESCLUTI ON_COLUMN FORMAT A25

SELECT TABLE OMER
TABLE_NAME,
COLUMN_GROUP_NAME,
RESOLUTI ON_COLUMN
FROM ALL_GG AUTO CDR COLUWN GROUPS
ORDER BY TABLE OANER TABLE NAME;

Your output looks similar to the following:

TABLE_OANER TABLE_NAVE COLUWN_GROUP_NAME ~ RESOLUTI ON_COLUMN
HR EMPLOYEES COVPENSATI ON_CG CDRTS$COMPENSATI ON_CG
HR EMPLOYEES JOB_IDENTIFIER OG CDRTS$JOB_| DENTI FI ER CG

Related Topics

* Configuring Latest Timestamp Conflict Detection and Resolution
The ADD_AUTO CDR procedure in the DBVS_GOLDENGATE_ADM package configures latest
timestamp conflict detection and resolution. The ADD_AUTO CDR_COLUWN_GROUP
procedure adds optional column groups.

ORACLE 13-19

Oracle GoldenGate Procedural Replication

Procedural replication is configured mainly within Oracle GoldenGate. However, you
can display the procedural replication configuration and complete some configuration
tasks within the database.

* About Oracle GoldenGate Procedural Replication
Oracle GoldenGate supports the replication of procedure calls in Oracle-supplied
packages. You can monitor Oracle GoldenGate procedural replication in an Oracle
database.

* Determining Whether Procedural Replication Is On
Use the GG_PROCEDURE_REPLI CATI ON_ON function in the DBMS_GOLDENGATE_ADM package
to determine whether Oracle GoldenGate procedural replication is on or off.

e Excluding Objects from Procedural Replication
Use the | NSERT_PROCREP_EXCLUSI ON_0BJ procedure in the DBVS_GOLDENGATE_ADM
package to exclude an object from Oracle GoldenGate procedural replication.

* Monitoring Oracle GoldenGate Procedural Replication
A set of data dictionary views enable you to monitor Oracle GoldenGate
procedural replication.

¢ See Also:

The Oracle GoldenGate documentation for information about configuring
procedural replication with Oracle GoldenGate.

14.1 About Oracle GoldenGate Procedural Replication

ORACLE

Oracle GoldenGate supports the replication of procedure calls in Oracle-supplied
packages. You can monitor Oracle GoldenGate procedural replication in an Oracle
database.

Oracle GoldenGate administrators optionally can enable and disable procedural
replication. With procedural replication, calls to procedures in Oracle-supplied
packages at one database are replicated to one or more other databases and then
executed at those databases.

For example, a call to subprograms in the DBMS_REDEFI NI TI ON package can perform an
online redefinition of a table. If the table is replicated at several databases, and if you
want the same online redefinition to be performed on the table at each database, then
you can make the calls to the subprograms in the DBVS_REDEFI NI TI ON package at one
database, and Oracle GoldenGate can replicate those calls to the other databases.

In addition, you can exclude specific database objects from procedural replication
under the guidance of Oracle Support. To do so, use the | NSERT_PROCREP_EXCLUS| ON_OBJ
procedure in the DBVS_GOLDENGATE _ADM package.

14-1

Chapter 14
Determining Whether Procedural Replication Is On

Data dictionary views enable you to monitor Oracle GoldenGate procedural replication
in an Oracle database. For example, you can query these views to list the packages
and procedures supported by Oracle GoldenGate procedural replication. You can also
list the database objects that have been excluded from procedural replication.

¢ See Also:

The Oracle GoldenGate documentation for information about enabling and
using procedural replication

14.2 Determining Whether Procedural Replication Is On

Use the GG_PROCEDURE_REPLI CATI ON_ON function in the DBMS_GOLDENGATE_ADM package to
determine whether Oracle GoldenGate procedural replication is on or off.

1. Connect to the database as sys (sql pl us, sqgl cl, sql devel oper) not as an Oracle
GoldenGate administrator.

2. Run the GG_PROCEDURE_REPLI CATI ON_ON function.
Example 14-1 Running the GG _PROCEDURE_REPLI CATI ON_ON Function

SET SERVERCUTPUT ON
DECLARE
on_or_off NUMBER
BEG N
on_or_off := DBMS_GOLDENGATE ADM GG PROCEDURE_REPLI CATI ON_ON;
I F on_or_off=1 THEN
DBMS_QUTPUT. PUT_LI NE(' Oracl e Col denGate procedural replicationis ON.');
ELSE
DBMS_QUTPUT. PUT_LI NE(' Oracl e Gol denGate procedural replicationis OFF.");
END | F;
END;
/

14.3 Excluding Objects from Procedural Replication

ORACLE

Use the | NSERT_PROCREP_EXCLUSI ON_0BJ procedure in the DBVS_GOLDENGATE_ADM package
to exclude an object from Oracle GoldenGate procedural replication.

When a database object is on the exclusion list for Oracle GoldenGate procedural
replication, execution of a subprogram in the package is not replicated if the
subprogram operates on the excluded object.

" Note:

Run the | NSERT_PROCREP_EXCLUSI ON_0BJ procedure only under the direction of
Oracle Support.

1. Connect to the database as sys (sql pl us, sql cl, sgl devel oper) not as an Oracle
GoldenGate administrator.

14-2

Chapter 14
Monitoring Oracle GoldenGate Procedural Replication

2. Run the | NSERT_PROCREP_EXCLUSI ON_0BJ procedure and specify the database object
to exclude.

The specified database object is placed on the exclusion list for Oracle GoldenGate
procedural replication. To remove a database object from the exclusion list, run the
DELETE_PROCREP_EXCLUSI ON_0BJ procedure.

Example 14-2 Excluding an Object from Oracle GoldenGate Procedural
Replication

Assume you want to ensure that calls to the DBVS_REDEFI NI TI ON. START_REDEF_TABLE
procedure for the hr. enpl oyees table are not replicated. This example adds the

hr. enpl oyees table as an excluded database object for the DBMS_REDEFI NI TI ON package
to accomplish this goal.

BEG N
DBNMS_GOLDENGATE_ADM | NSERT_PROCREP_EXCLUSI ON_OBJ(
package_owner => 'SYS',
package_nane => ' DBMS_REDEFI NI TION ,
obj ect _owner => 'hr'",
object _nane => 'enpl oyees');
END,
/

14.4 Monitoring Oracle GoldenGate Procedural Replication

ORACLE

A set of data dictionary views enable you to monitor Oracle GoldenGate procedural
replication.

You can use the following views to monitor Oracle GoldenGate procedural replication:

Table 14-1 Oracle GoldenGate Procedural Replication Views

View Description

DBA_GG_SUPPORTED_PACKAGES Provides details about supported packages for
Oracle GoldenGate procedural replication.

When a package is supported and Oracle
GoldenGate procedural replication is on, calls
to subprograms in the package are replicated.

DBA GG_SUPPORTED_PROCEDURES Provides details about the procedures that are
supported for Oracle GoldenGate procedural
replication.

DBA_GG_PROC_OBJECT_EXCLUSI ON Provides details about all database objects

that are on the exclusion list for Oracle
GoldenGate procedural replication.

A database object is added to the exclusion
list using the | NSERT_PROCREP_EXCLUSI ON_0BJ
procedure in the DBMS_GOLDENGATE_ADM
package. When a database object is on the
exclusion list, execution of a subprogram n the
package is not replicated if the subprogram
operates on the excluded object.

1. Connect to the database as sys (sql pl us, sql cl, sql devel oper) not as an Oracle
GoldenGate administrator.

2. Query the views related to Oracle GoldenGate procedural replication.

14-3

Chapter 14
Monitoring Oracle GoldenGate Procedural Replication

» Displaying the Packages Supported for Oracle GoldenGate Procedural Replication
The DBA_GG_SUPPORTED_PACKAGES view displays information about the supported
packages for Oracle GoldenGate procedural replication.

e Listing the Procedures Supported for Oracle GoldenGate Procedural Replication
The DBA GG SUPPORTED_PROCEDURES view displays information about the supported
packages for Oracle GoldenGate procedural replication.

» Displaying Information About Database Objects Excluded from Oracle GoldenGate
Procedural Replication
The DBA_GG PROC_OBJECT_EXCLUSI ON view provides details about all database objects
that are on the exclusion list for Oracle GoldenGate procedural replication.

Related Topics

e Excluding Objects from Procedural Replication
Use the | NSERT_PROCREP_EXCLUSI ON_0BJ procedure in the DBVS_GOLDENGATE_ADM
package to exclude an object from Oracle GoldenGate procedural replication.

14.4.1 Displaying the Packages Supported for Oracle GoldenGate
Procedural Replication

ORACLE

The DBA_GG_SUPPORTED_PACKAGES view displays information about the supported
packages for Oracle GoldenGate procedural replication.

When a package is supported and Oracle GoldenGate procedural replication is on,
calls to subprograms in the package are replicated, unless the package is excluded
specifically.

1. Connect to the database as sys (sqgl pl us, sql cl, sgl devel oper) not as an Oracle
GoldenGate administrator.

2. Query the DBA_GG_SUPPORTED_PACKAGES view.

Example 14-3 Displaying Information About the Packages Supported for
Oracle GoldenGate Procedural Replication

This query displays the following information about the packages:

* The owner of each package

e The name of each package

e The name of the feature to which the supported package belongs

e The minimum database release from which the package is supported

COLUMW OMER FORMAT A10

COLUWN NAME FCRMAT A20

COLUWN FEATURE FORMAT A20
COLUWN M N_DB_VERSI ON FORMAT Al4

SELECT OMRER
NAME,
FEATURE,
M N_DB_VERSI ON
FROM DBA_GG_SUPPORTED PACKAGES;

Your output looks similar to the following:

OMER NAVE FEATURE M N_DB_VERSI ON

14-4

Chapter 14
Monitoring Oracle GoldenGate Procedural Replication

SYS DBMS_REDEFI NI TI ON REDEFI NI TI ON 12.2
SYS DBMVS_FGA FGA 12.2

SYS DBMS_RLS RLS 12.2

Related Topics

e Oracle Database Reference

14.4.2 Listing the Procedures Supported for Oracle GoldenGate
Procedural Replication

ORACLE

The DBA_GG_SUPPORTED_PROCEDURES view displays information about the supported
packages for Oracle GoldenGate procedural replication.

When a procedure is supported and Oracle GoldenGate procedural replication is on,
calls to the procedure are replicated, unless the procedure is excluded specifically.

1. Connect to the database as sys (sqgl pl us, sql cl, sgl devel oper) not as an Oracle
GoldenGate administrator.

2. Query the DBA GG _SUPPORTED PROCEDURES view.

Example 14-4 Displaying Information About the Packages Supported for
Oracle GoldenGate Procedural Replication

This query displays the following information about the packages:

e The owner of each package

e The name of each package

e The name of each procedure

e The minimum database release from which the procedure is supported

e Whether there is an exclusion rule that prevents the procedure from being
replicated for some database objects

COLUW OMER FORMVAT A10

COLUWN PACKAGE_NAME FORMAT Al5

COLUWN PROCEDURE_NAME FORMAT Al5
COLUWN M N_DB_VERSI ON FORMAT Al4
COLUWN EXCLUSI ON_RULE_EXI STS FORMAT Al4

SELECT OWKER
PACKAGE_NAME,
PROCEDURE_NAME,

M N_DB_VERSI O\,
EXCLUSI ON_RULE_EXI STS
FROM DBA_GG_SUPPORTED_PROCEDURES;

Your output looks similar to the following:

OMER PACKAGE_NAME PROCEDURE_NAME M N_DB_VERSI ON EXCLUSI ON_RULE
XDB DBM5_XDB_CONFI G ADDTRUSTMAPPI NG 12. 2 NO
CTXSYS CTX_DDL ALTER | NDEX 12.2 NO
SYS DBVS_FGA DROP_PQLI CY 12.2 NO
SYS XS_ACL DELETE_ACL 12.2 NO

14-5

Chapter 14
Monitoring Oracle GoldenGate Procedural Replication

Related Topics

e Oracle Database Reference

14.4.3 Displaying Information About Database Objects Excluded from
Oracle GoldenGate Procedural Replication

ORACLE

The DBA_GG PROC_OBJECT_EXCLUSI ON view provides details about all database objects that
are on the exclusion list for Oracle GoldenGate procedural replication.

A database object is added to the exclusion list using the

| NSERT_PROCREP_EXCLUSI ON_0BJ procedure in the DBMS_GOLDENGATE_ADM package. When a
database object is on the exclusion list, execution of a subprogram in the package is
not replicated if the subprogram operates on the excluded object.

1. Connect to the database as sys (sql pl us, sql cl, sql devel oper) not as an Oracle
GoldenGate administrator.

2. Query the DBA_GG_PROC_OBJECT_EXCLUSI ON view.

Example 14-5 Displaying Information About Database Objects Excluded from
Oracle GoldenGate Procedural Replication

This query displays the following information about the packages:

e The owner of each package
* The name of each package
* The owner of each excluded database object
* The name of each excluded database object

COLUWN PACKAGE_OMER FORMAT A15
COLUWN PACKAGE_NAME FCRVAT A20
COLUW OBJECT_OMER FCRVAT A15
COLUWN OBJECT_NAME FORMAT A15

SELECT PACKAGE_OMER,
PACKAGE_NAME,
OBJECT_OMER
OBJECT_NAME
FROM DBA_GG_PROC_OBJECT EXCLUSI ON;

Your output looks similar to the following:

PACKAGE_OMER PACKAGE_NAME OBJECT_OMWNER OBJECT_NAME

SYS DBMS_REDEFI NI TI ON HR EMPLOYEES

Related Topics

* Excluding Objects from Procedural Replication
Use the | NSERT_PROCREP_EXCLUSI ON_0BJ procedure in the DBVS_GOLDENGATE_ADM
package to exclude an object from Oracle GoldenGate procedural replication.

e Oracle Database Reference

14-6

Appendixes

Appendixes include information about XStream client applications and XStream
restrictions.

* Sample XStream Client Application
Examples illustrate how to configure the Oracle Database components that are
used by XStream. The examples configure sample client applications that
communicate with an XStream outbound server and inbound server.

e XStream Out Restrictions
Restrictions apply to XStream Out.

e XStream In Restrictions
Restrictions apply to XStream In.

Sample XStream Client Application

Examples illustrate how to configure the Oracle Database components that are used
by XStream. The examples configure sample client applications that communicate with
an XStream outbound server and inbound server.

e About the Sample XStream Client Application
A sample XStream client application illustrates the basic tasks that are required of
an XStream Out and XStream In application.

e Sample XStream Client Application for the Oracle Call Interface API
To run the sample XStream client application for the OCI API, compile and link the
application file.

« Sample XStream Client Application for the Java API
To run the sample XStream client application for the Java API, compile and link
the application file.

" See Also:

e "XStream Out Concepts"
e "XStream Use Cases"
e Oracle Call Interface Programmer's Guide

e Oracle Database XStream Java APl Reference

A.1 About the Sample XStream Client Application

A sample XStream client application illustrates the basic tasks that are required of an
XStream Out and XStream In application.

The application performs the following tasks:

e |t attaches to an XStream outbound server and inbound server and waits for LCRs
from the outbound server. The outbound server and inbound server are in two
different databases.

* When it receives an LCR from the outbound server, it immediately sends the LCR
to the inbound server.

e |t periodically gets the processed low position from the inbound server and sends
this value to the outbound server.

e |t periodically sends a "ping" LCR from the outbound server to the inbound server
to move the inbound server's processed low position forward in times of low
activity.

In an XStream Out configuration that does not send LCRs to an inbound server, the
client application must obtain the processed low position in another way.

ORACLE A-1

This application waits indefinitely for transactions from the outbound server. To
interrupt the application, enter the interrupt command for your operating system. For
example, the interrupt command on some operating systems is control - C. If the
program is restarted, then the outbound server starts sending LCRs from the
processed low position that was set during the previous run.

Figure A-1 provides an overview of the XStream environment configured in this
section.

Figure A-1 Sample XStream Configuration

Oracle Database

Process | LCRs

Capture | Equeue | Queue

Oracle Database

>

Capture
LCRs

Record
Changes
Database
Objects

ORACLE

Set Get
Dequeue , Processed Processed
LCRs Low Position Low Position
Outbound < Client Inbound
SEIVEl |rm—| Application > Server
Receive Send
LCRs LCRs

Before running the sample application, ensure that the following components exist:
e Two Oracle databases with network connectivity between them
* An XStream administrator on both databases

» An outbound server configuration on one database, including a capture process,
gueue, and outbound server

e Aninbound server configuration on another database

If you are running the sample application with a multitenant container database (CDB),
then ensure that the client application connects to the correct container:

* When the client application connects to the outbound server, it must connect to the
root.

* When the client application connects to the inbound server, it must connect to the
container in which the inbound server was created.

The sample applications in the following sections perform the same tasks. One sample
application uses the OCI API, and the other uses the Java API.

» Sample XStream Client Application for the Oracle Call Interface API
e Sample XStream Client Application for the Java API

A-2

Note:

An Oracle Database installation includes several XStream demos. These
demos are in the following location:

$ORACLE_HOVE/ r dbirs/ demo/ xst r eam

See Also:

e "Position Order in an LCR Stream"
e "Configuring XStream Out"
e "Configuring XStream In"

e Oracle Database PL/SQL Packages and Types Reference

A.2 Sample XStream Client Application for the Oracle Call Interface

AP]

ORACLE

To run the sample XStream client application for the OCI API, compile and link the
application file.

Next, enter the following on a command line:

xi 0 -ob_svr xout_nanme -ob_db sn_xout _db -ob_usr xout_cu -ob_pwd xout_cu_pass

ib_svr xin_name -ib_db sn_xin_db -ib_usr xin_au -ib_pwd xi n_au_pass

Substitute the appropriate values for the following placeholders:

xout_name is the name of the outbound server.

sn_xout_db is the service name for the outbound server's database.
xout_cu is the outbound server's connect user.

xout_cu_pass is the password for the outbound server's connect user.
xin_name is the name of the inbound server.

sn_xin_db is the service name for the inbound server's database.
xin_au is the inbound server's apply user.

Xin_au_pass is the password for the inbound server's apply user.

When the sample client application is running, it prints information about the row LCRs
it is processing. The output looks similar to the following:

----------- ROVLCR Header ----------cmmnn--
src_db_name=DB. EXAMPLE. COM
cnd_t ype=UPDATE t xi d=17. 0. 74
owner =HR oname=COUNTRI ES

----------- ROVLCR Header ----------cmmnn--

src_db_name=DB. EXAMPLE. COM
cnd_type=COWM T txi d=17.0. 74

A-3

ORACLE

---------- ROWLCR Header -----------------
src_db_name=DB. EXAMPLE. COM

cmul_t ype=UPDATE t xi d=12. 25. 77

owner =CE oname=0RDERS

---------- ROWVLCR Header -----------------
src_db_name=DB. EXAMPLE. COM

cmul_t ype=UPDATE t xi d=12. 25. 77

owner =CE oname=0RDERS

This output contains the following information for each row LCR:

src_db_nanme shows the source database for the change encapsulated in the row
LCR.

cmd_t ype shows the type of SQL statement that made the change.
txi d shows the transaction ID of the transaction that includes the row LCR.
owner shows the owner of the database object that was changed.

onane shows the name of the database object that was changed.

This demo is available in the following location:

$ORACLE_HOVE/ r dbrs/ deno/ xst r eant oci

The file name for the demo is xi 0. c. See the README. t xt file in the demo directory for
more information about compiling and running the application.

The code for the sample application that uses the OCI API follows:

#i fndef OCl _ORACLE

#i ncl ude <oci . h>

#endi f

#ifndef STDIOH

#incl ude <stdio. h>

#endi f

#ifndef _STDLIB H

#include <stdlib.h>

#endi f

#ifndef _STRING H

#include <string. h>

#endi f

#ifndef _MALLOCC H

#include <mall oc. h>

#endi f

o
* Internal structures
K o o o e, e, */

#define M DBNAME LEN (128)

typedef struct conn_info /* connect info */

{

oratext * user
ub4 userl en

A-4

ORACLE

*/
*/

*/

*/
*/
*/
*/

oratext * passw
ub4 passw en;
oratext * dbnaneg;
ub4 dbnanel en;
oratext * svrnm
ub4 svrnn en
} conn_info_t;
typedef struct parans
{
conn_info_t xout; /* outbound info
conn_info_t xin; /* inbound info
} params_t;
typedef struct oci [* OCl handl es
{
OCl Env *envp; [* Environnent handle
OCl Error *errp; /* Error handl e
CCl Server *srvp; [* Server handl e
OCl SveCtx *svep; /* Service handl e
OCl Session *aut hp;
oCl St nt *stntp;
bool ean attached,
bool ean out bound,;
} oci_t;
static void connect_db(conn_info_t *opt_parans_p, oci _t ** ocip, ub2 char_csid,
ub2 nchar _csid);
static void disconnect_db(oci_t * ocip);
static void ocierror(oci_t * ocip, char * nsg);
static void attach(oci _t * ocip, conn_info_t *conn, bool ean outbound);
static void detach(oci_t *ocip);
static void get_lcrs(oci_t *xin_ocip, oci_t *xout_ocip);
static void get_chunks(oci _t *xin_ocip, oci_t *xout_ocip);
static void print_lcr(oci_t *ocip, void *lcrp, ubl Icrtype,
oratext **src_db_nane, ub2 *src_db_nanel);
static void print_chunk (ubl *chunk_ptr, ub4 chunk_len, ub2 dty);
static void get_inputs(conn_info_t *xout_params, conn_info_t *xin_parans,
int argc, char ** argv)
static void get_db_charsets(conn_info_t *paranms_p, ub2 *char_csid,
ub2 *nchar_csid);
static void set_client_charset(oci_t *outbound_ocip);

#define OCI CALL(ocip, function) do {\

sword status

=function;\

if (OCl _SUCCESS==status) break;\

else if (OC
{ocierror(oc
exit(1);]\
el se {printf
exit(1);]\
} while(0)

main(int arg

/* Qut boun

_ERROR==st at us) \
ip, (char *)"0OC _ERROR');\

("Error encountered %\ n", status);\

c, char **argv)

d and inbound connection info */

conn_info_t xout_parans;
conn_info_t xin_parans;

A-5

ORACLE

oci _t *xout _ocip = (oci_t *)NULL;

oci _t *xin_ocip = (oci_t *)NULL;
ub2 obdb_char_csid = 0; /* outbound db char csid */
ub2 obdb_nchar _csid = 0; /* outbound db nchar csid */

/* parse command |ine argunents */
get _i nput s(&xout _paranms, &xin_params, argc, argv);

/* Get the outbound database CHAR and NCHAR character set info */
get _db_charset s(&out _parans, &obdb_char_csid, &obdb_nchar _csid);

/* Connect to the outbound db and set the client env to the outbound charsets
* to mininmze character conversion when transferring LCRs from out bound
* directly to inbound server.
*
/
connect _db(&xout _params, &xout_ocip, obdb_char_csid, obdb_nchar_csid);

/* Attach to outbound server */
attach(xout _ocip, &xout_parans, TRUE);

/* connect to inbound db and set the client charsets the sane as the
* out bound db charsets.

*/

connect _db(&xi n_parans, &xin_ocip, obdb_char_csid, obdb_nchar_csid);

/* Attach to inbound server */
attach(xin_ocip, &xin_params, FALSE);

/* Get lcrs fromoutbound server and send to inbound server */
get I crs(xin_ocip, xout_ocip);

/* Detach from XStream servers */
det ach(xout _ocip);
det ach(xin_ocip);

/* Disconnect fromboth databases */
di sconnect _db(xout _oci p);
di sconnect _db(xi n_oci p);

free(xout_ocip);
free(xin_ocip);
exit (0);

* connect _db - Connect to the database and set the env to the given
* char and nchar character set ids.

static void connect_db(conn_info_t *parans_p, oci _t **ociptr, ub2 char_csid,

{

ub2 nchar _csi d)
oci _t *oci p;
printf ("Connect to Oracle as %*s@o*s ",
par ans_p- >user | en, parans_p- >user,

par ans_p- >dbnanel en, parans_p- >dbname) ;

if (char_csid && nchar_csid)
printf ("using char csid=%l and nchar csid=%l", char_csid, nchar_csid);

printf("\n");

A-6

ORACLE

ocip = (oci _t *)malloc(sizeof(oci_t));

if (OCIEnvN sCreat e(&oci p->envp, OCl_OBJECT, (dvoid *)O0,

(dvoid * (*)(dvoid *, size_t)) O,

(dvoid * (*)(dvoid *, dvoid *, size_t))O0,

(void (*)(dvoid *, dvoid *)) O,

(size_t) 0, (dvoid **) 0, char_csid, nchar_csid))
{

ocierror(ocip, (char *)"OClEnvCreate() failed");

}

if (OClHandl eAll oc((dvoid *) ocip->envp, (dvoid **) &ocip->errp,
(ub4) OCI _HTYPE_ERROR, (size_t) 0, (dvoid **) 0))
{
ocierror(ocip, (char *)"0OC Handl eAl | oc(OCl _HTYPE_ERROR) failed");

}

/* Logon to database */
OCl CALL(oci p,
OCl Logon(oci p->envp, ocip->errp, &ocip->svep,
par ams_p- >uUser, params_p- >user | en,
par ans_p- >passw, par ans_p- >passw en,
par ans_p- >dbnane, parans_p- >dbnanel en));

/* allocate the server handle */
OCl CALL(oci p,
OCl Handl eAl | oc((dvoid *) ocip->envp, (dvoid **) &ocip->srvp,
OCl _HTYPE_SERVER, (size_t) 0, (dvoid **) 0));

OCl CALL(oci p,
OCl Handl eAl | oc((dvoid *) ocip->envp, (dvoid **) &ocip->stntp,
(ub4) OCI _HTYPE_STM, (size_t) 0, (dvoid **) 0));

if (*ociptr == (oci_t *)NULL)
{

*ociptr = ocip;

static const oratext GET_DB CHARSETS[] = \

"sel ect paraneter, value fromnls_database_paraneters where paraneter =\

NLS_CHARACTERSET' or paraneter = 'NLS_NCHAR CHARACTERSET' ";

#defi ne PARM BUFLEN (30)

static void get_db_charsets(conn_info_t *parans_p, ub2 *char_csid,

{

ub2 *nchar_csid)

OCl Define *defnpl = (OC Define *) NULL;
OCl Define *defnp2 = (OCl Define *) NULL;

or at ext par n{ PARM BUFLEN] ;

orat ext val ue[OCl _NLS_MAXBUFSZ] ;
ub2 parmlen = 0;

ub2 val ue_|l en = 0;

oci _t oci struct;

oci _t *ocip = &ocistruct;

A-7

*char_csid = 0;
*nchar _csid = 0;
menset (ocip, 0, sizeof(ocistruct));

if (OCEnvCreate(&ocip->envp, OCl _OBJECT, (dvoid *)O,
(dvoid * (*)(dvoid *, size_t)) O,
(dvoid * (*)(dvoid *, dvoid *, size_t))O0,
(void (*)(dvoid *, dvoid *)) O,
(size_t) 0, (dvoid **) 0))
{
ocierror(ocip, (char *)"OClEnvCreate() failed");

}

if (OClHandl eAll oc((dvoid *) ocip->envp, (dvoid **) &ocip->errp,
(ub4) OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0))
{

ocierror(ocip, (char *)"OC Handl eAl | oc(OCl _HTYPE_ERROR) failed");
1

OCl CALL(oci p,
OCl Logon(oci p->envp, ocip->errp, &ocip->svep,
par ams_p- >uUser, params_p- >user | en,
par ans_p- >passw, par ans_p- >passw en,
par ans_p- >dbnane, parans_p- >dbnanel en));

OCl CALL(oci p,
OCl Handl eAl | oc((dvoid *) ocip->envp, (dvoid **) &ocip->stntp,
(ub4) OCI _HTYPE_STMI, (size_t) 0, (dvoid **) 0));

/* Execute stnt to select the db nls char and nchar character set */
OCl CALL(oci p,
OCl St nt Prepar e(oci p->stntp, ocip->errp,
(CONST text *)GET_DB_CHARSETS,
(ub4)strlen((char *)GET_DB_CHARSETS),
(ub4) OCI _NTV_SYNTAX, (ub4)QCl _DEFAULT));

OCl CALL(oci p,
OClI Def i neByPos(oci p->stntp, &defnpl,
oci p->errp, (ub4) 1, parm
PARM BUFLEN, SQLT CHR, (void*) 0,
&uarmlen, (ub2 *)0, OC _DEFAULT));

OCl CALL(oci p,
OCl Def i neByPos(oci p->stntp, &defnp2,
ocip->errp, (ub4) 2, val ue,
OCl _NLS_MAXBUFSZ, SQLT _CHR (void*) 0,
&al ue_len, (ub2 *)0, OC _DEFAULT));

OCl CALL(oci p,
OClI St nt Execut e(oci p->svep, oci p->stntp,
ocip->errp, (ub4)0, (ub4)O0,
(const OCl Snapshot *)O0,
(OCl Snapshot *)0, (ub4)OCl _DEFAULT));

whi | e (OCl Stnt Fet ch(oci p->stntp, ocip->errp, 1,
OCl _FETCH_NEXT, OCl _DEFAULT) == OCl _SUCCESS)

{
val ue[value_len] = "\0";
if (parmlen == strlen("NLS_CHARACTERSET") &&
I'mencnp(parm "NLS_CHARACTERSET", parm.len))
{

ORACLE

ORACLE

*char _csid = OCI Nl sChar Set NameTol d(oci p->envp, val ue);
printf("Qutbound database NLS CHARACTERSET = %*s (csid = %) \n",
val ue_l en, value, *char_csid);
}
else if (parmlen == strlen("NLS_NCHAR CHARACTERSET") &&
I'mencnp(parm "NLS_NCHAR CHARACTERSET", parm.|en))
{
*nchar _csid = OCI Nl sChar Set NaneTol d(oci p- >envp, val ue);
printf("Qutbound database NLS_NCHAR CHARACTERSET = % *s (csid = %l) \n",
val ue_l en, value, *nchar_csid);
}
1

di sconnect _db(ocip);

static void attach(oci _t * ocip, conn_info_t *conn, bool ean out bound)

{

swor d err;

printf ("Attach to XStream % server '%*s'\n",
out bound ? "outbound" : "inbound",
conn->svrnni en, conn->svrnnj;

i f (outbound)

{
OCl CALL(oci p,
OCl XSt reamut At t ach(oci p- >svcp, oci p->errp, conn->svrnm
(ub2) conn->svrnm en, (ubl *)0, 0, OCl _DEFAULT));
1
el se
{
OCl CALL(oci p,
OCl XSt reant nAttach(oci p->svcp, ocip->errp, conn->svrnm
(ub2) conn->svrnni en,
(oratext *)"From XOUT", 9,
(ubl *)0, 0, OCI _DEFAULT));
1
oci p->attached = TRUE;
oci p- >out bound = out bound;

static void ping_svr(oci_t *xin_ocip, void *comit _|cr,

ubl *cntpos, ub2 cntpos_|en,
oratext *source_db, ub2 source_db_| en)

OCl Dat e src_tine;
or at ext txid[128];

OCI CALL(xi n_oci p, OCl DateSysDate(xin_ocip->errp, &src_tine));
sprintf((char *)txid, "Ping %d: %d: %2d",

src_tine. OCl Dat eTi me. OCl Ti meHH,

src_time. OCl DateTi me. OCI Ti neM ,

src_tine. OCl Dat eTi ne. OCl Ti meSS) ;

A-9

ORACLE

/* Initialize LCRwith new txid and conmit position */
OCl CALL(xi n_oci p,
OCl LCRHeader Set (xi n_oci p- >svcp, Xin_oci p->errp,
source_db, source_db_|en,
(oratext *)OCI _LCR_ROWCMD COWM T,
(ub2)strlen(0Cl _LCR_ROWCMD_COW T),

(oratext *)0, 0, [* null owner */
(oratext *)0, 0, /* null object */
(ubl *)0, 0, [* null tag */

txid, (ub2)strlen((char *)txid),
&rc_tinme, cntpos, cntpos_|en,
0, commt_lcr, OCI_DEFAULT));
/* Send commit lcr to inbound server. */
i f (OCI XStream nLCRSend(xi n_oci p->svcp, Xxin_ocip->errp, comit_|cr,
OCl _LCR XROW 0, OCl _DEFAULT) == OCl _ERRCR)
{

ocierror(xin_ocip, (char *)"OCl XStream nLCRSend failed in ping_svr()");

static void get_|lcrs(oci_t *xin_ocip, oci_t *xout_ocip)

{

swor d status = OCl _SUCCESS;

voi d *ler;

ubl lcrtype;

oraub8 flag;

ubl proclwn] OCl _LCR_MAX_POSI TI ON_LEN] ;
ub2 proclwmlen = 0;

ubl sv_pi ngpos[OCl _LCR_MAX_POSI TI ON_LEN] ;
ub2 sv_pingpos_l en = 0;

ubl fetchl wif OO _LCR_MAX_POSI TI ON_LEN|;
ub2 fetchhwnlen = 0;

voi d *commit_lcr = (void *)0;

or at ext *lcr_srcdb = (oratext *)O;

ub2 lcr_srcdb_len = 0;

orat ext sour ce_db[M DBNAME_LEN] ;

ub2 source_db_len = 0;

ub4 lcrent = 0;

/* create an lcr to ping the inbound server periodically by sending a
* commit lcr.
*|
commt_lcr = (void*)O0;
OCl CALL(xi n_oci p,
OCl LCRNew(Xi n_oci p->svcp, xin_ocip->errp, OCl_DURATI ON_SESSI ON,
OCl _LCR XRON &commit |cr, OCl _DEFAULT)):

whil e (status == OCl _SUCCESS)
{

lcrent = 0; /* reset lcr count before each batch */

while ((status =
OCl XSt r eamOut LCRRecei ve(xout _oci p- >svcp, xout _oci p->errp,
&cr, &crtype, &flag,

fetchlwm &f etchlwmlen, OCl _DEFAULT))

== OCl _STI LL_EXECUTI NG)

A-10

| crent ++;

/* print header of LCR just received */
print_lcr(xout_ocip, lcr, lcrtype, & cr_srcdb, & cr_srcdb_len);

/* save the source db to construct ping lcr later */
if (!source_db_len & Icr_srcdb_|en)
{
mentpy(source_db, |cr_srcdb, lcr_srcdb_|en);
source_db_len = Icr_srcdb_len;

}

/* send the LCR just received */
i f (OCI XStream nLCRSend(xi n_oci p->svcp, Xin_ocip->errp,

lcr, lcrtype, flag, OCI_DEFAULT) == OCl _ERROR)
{

}

/* 1f LCR has chunked colums (i.e, has LOB/ Long/ XM.Type colums) */
if (flag & OCI _XSTREAM MORE_ROW DATA)
{

ocierror(xin_ocip, (char *)"QOC XStream nLCRSend failed");

/* receive and send chunked col ums */
get _chunks(xi n_oci p, xout_ocip);
1
}

if (status == OCl _ERROR)
oci error(xout_ocip, (char *)"OC XStreamOut LCRRecei ve failed");

/* clear the saved ping position if we just received sone new lcrs */
if (lcrent)
{

}

/* 1f no lcrs received during previous WH LE | oop and got a new fetch
* L[WMthen send a commit lcr to ping the inbound server with the new
* fetch LWM position.
*/
else if (fetchhwnlen > 0 && source_db_len > 0 &

(fetchlwmlen !'= sv_pingpos_len ||

mentnp(sv_pi ngpos, fetchlwm fetchlwmlen)))

sv_pi ngpos_l en = 0;

{
/* To ensure we don't send nultiple Icrs with duplicate position, send
* anewping only if we have saved the last ping position.
*/
if (sv_pingpos_len > 0)
ping_svr(xin_ocip, commt _lcr, fetchlwn fetchlwnmlen,
source_dbh, source_db_|en);
1
/* save the position just sent to inbound server */
mentpy(sv_pi ngpos, fetchlwm fetchlwmlen);
sv_pingpos_l en = fetchlwmlen;
}

/* flush inbound network to flush all lcrs to inbound server */
OCl CALL(xi n_oci p,

ORACLE A-11

ORACLE

OCl XSt ream nFl ush(xi n_oci p->svcp, xin_ocip->errp, OCl_DEFAULT));

/* get processed LWM of inbound server */
OCl CALL(xi n_oci p,
OCl XSt ream nProcessedLWMGet (xi n_oci p->svcp, Xin_ocip->errp,
proclwm &proclwm|en, OC _DEFAULT));

if (proclwmlen > 0)
{

/* Set processed LWM for outbound server */

OCl CALL(xout _oci p,

OCl XSt r eamut ProcessedLWBet (xout _oci p->svcp, xout _oci p->errp,
proclwm proclwnm|en, OC _DEFAULT));
}
1

if (status !'= OCl _SUCCESS)
ocierror(xout_ocip, (char *)"get_lcrs() encounters error");

get _chunks - Get each chunk for the current LCR and send it to
the inbound server.

static void get_chunks(oci _t *xin_ocip, oci_t *xout_ocip)

{

oratext *col naneg;

ub?2 col nane_| en;
ub2 col dty;
oraub8 col _flags;
ub2 col _csid,;
ub4 chunk_| en;
ubl *chunk_ptr;
oraub8 row flag;
swor d err;

sh4 rtncode;
do

{

/* Get a chunk from outbound server */
OCl CALL(xout _oci p,
OCl XSt r eamut ChunkRecei ve(xout _oci p->svcp, xout _oci p->errp,
&col nane, é&col name_| en, &col dty,
&col _flags, &col csid, &chunk_|en,
&hunk_ptr, &row flag, OCl_DEFAULT));

[* print chunked colum info */
printf(
Chunked col um name=% *s DTY=%l
col nane_| en, col nane, coldty, chunk_len, col _csid, col _flags);

[* print chunk data */
print_chunk(chunk_ptr, chunk_len, coldty);

/* Send the chunk just received to inbound server */
OCl CALL(xi n_oci p,
OCl XSt r eam nChunkSend(xi n_oci p->svcp, xin_ocip->errp, col nane,
col nane_l en, coldty, col _flags,
col _csid, chunk_len, chunk_ptr,
row flag, OCI_DEFAULT));

chunk len=% csid=% col _flag=0x% x\n",

A-12

ORACLE

} while (r

ow flag & OCI_XSTREAM MORE_ROW DATA) ;

* print_chunk - Print chunked colum information. Only print the first

50 bytes for each chunk.

static void print_chunk (ubl *chunk_ptr, ub4 chunk_|en, ub2 dty)

{

#define MAX_PRINT_BYTES (50)

ub4 print

if (chunk_

return;

_bytes;

len == 0)

print_bytes = chunk_| en > MAX_PRI NT_BYTES ? MAX_PRI NT_BYTES : chunk_| en;

printf("

if (dty ==

Data = ");
SQLT_CHR)

printf("%*s", print_bytes, chunk_ptr);

el se

{

ub2 idx;

for (idx
printf
}

printf("\n

= 0; idx < print_bytes; idx++)
("%02x", chunk_ptr[idx]);

"),

static void print_lcr(oci_t *ocip, void *lcrp, ubl lcrtype,
oratext **src_db_name, ub2 *src_db_nanel)

{

or at ext
ub?2

or at ext
ub?

or at ext
ub?2

or at ext
ub?2
sword

printf("\n

*cnd_t ype;
cnd_type_l en;
*owner

owner| ;
*onanme;

onanel ;
*tXid;

txidl;

ret;

----------- % LCR Header --------------

lcrtype == OCI_LCR XDDL ? "DDL" : "ROW);

[* Get LCR Header information */
ret = OCl LCRHeader Get (oci p->svcp, ocip->errp,

src_db_nane, src_db_nanel,
&cnd_type, &cnd_type_len,
&owner, &ownerl,

&onane, &onarel ,

(ubl **)0, (ub2 *)O,

&xid, &xidl, (OClDate *)O0,
(ub2 *)0, (ub2 *)O0,

(ubl **)0, (ub2 *)O,

/* source db

/* command type

/* owner nane

/* object nane

/* lcr tag

/* txnid &srctine
/* OLD/NEWcol cnts
/* LCR position

/* print max of 50 bytes per chunk */

*/
*/
*/
*/
*/
*/
*/
*/

A-13

ORACLE

(oraub8*)0, lcrp, OC _DEFAULT);

if (ret !'= OCl _SUCCESS)
ocierror(ocip, (char *)"OC LCRHeader Get failed");
el se
{
printf(" src_db_nane=%*s\n cnd_type=%*s txid=%*s\n",
*src_db_nanel, *src_db_name, cnd_type_len, cnd_type, txidl, txid);

if (ownerl > 0)
printf(" owner=%*s oname=%*s \n", ownerl, owner, onanmel, onane);

1
}
¥ o o e e e e eiieeeaiaaoo
* detach - Detach from XStream server
K o o o o o e m e —— .. */
static void detach(oci_t * ocip)
{
sword err = OCl _SUCCESS;
printf ("Detach from XStream % server\n",
oci p- >out bound ? "outbound" : "inbound");
i f (ocip->out bound)
{
OCl CALL(ocip, OCI XStreanut Det ach(oci p->svep, ocip->errp, OCl_DEFAULT));
1
el se
{
OCl CALL(ocip, OClXStream nDetach(ocip->svcp, ocip->errp,
(ubl *)0, (ub2 *)O, /* processed LW/ */
OCl _DEFAULT));
1
}
¥ o e e e e eiieieaiaao.
* di sconnect _db Logoff fromthe database
K o o o o o e m e — .. */
static void disconnect_db(oci_t * ocip)
{
i f (OCl Logof f (oci p->svcp, ocip->errp))
{
ocierror(ocip, (char *)"OC Logoff() failed");
1
if (ocip->errp)
OCl Handl eFree((dvoid *) ocip->errp, (ub4) OCl _HTYPE ERROR);
if (ocip->envp)
OCl Handl eFree((dvoid *) ocip->envp, (ub4) OCl _HTYPE ENV);
}
¥ o e e e eiieeeaiaaoo

static void ocierror(oci _t * ocip, char * nsgQ)

{

sb4 errcode=0;
text bufp[4096];

A-14

if (ocip->errp)
{
OClErrorGet((dvoid *) ocip->errp, (ub4) 1, (text *) NULL, &errcode,
bufp, (ub4) 4096, (ub4) OCl _HTYPE_ERROR);
printf("%\n%", nmsg, bufp);

1
el se
puts(nsg);
printf ("\n");
exit(l);
}
/52
* print_usage - Print command usage
K o o o o o e m e —— .. */
static void print_usage(int exitcode)
{

puts("\nUsage: xio -ob_svr <outbound_svr> -ob_db <outbound_db>\n"
" -ob_usr <conn_user> -ob_pwd <conn_user_pwd>\n"
-ib_svr <inbound_svr> -ib_db <inbound_db>\n"
-ib_usr <apply_user> -ib_pwd <apply_user_pwd>\n");

puts(" ob_svr : outbound server name\n"

" ob_db : database nane of outbound server\n"
ob_usr : connect user to outbound server\n"
ob_pwd : password of outbound's connect user\n"
ib_svr : inbound server nanme\n"
ib_db : database nanme of inbound server\n"

ib_usr : apply user for inbound server\n"
ib_pwd : password of inbound's apply user\n");

exit(exitcode);

static void get_inputs(conn_info_t *xout_parans, conn_info_t *xin_parans,
int argc, char ** argv)
{

char * option;
char * val ue;

menset (xout_parans, 0, sizeof(*xout_parans));
menset (xin_paranms, 0, sizeof(*xin_parans));
whi | e(--argc)
{

/* get the option nane */

ar gv++;

option = *argv;

/* check that the option begins with a "-" */
if (!strncnp(option, (char *)"-", 1))

option ++;

}

el se

{
printf("Error: bad argument '%'\n", option);
print_usage(1);

}

ORACLE A-15

/* get the value of the option */
--argc;
ar gv++;

val ue = *argy;

if (!strncnp(option, (char *)"ob_db", 5))
{

xout _par ans->dbname = (oratext *)val ue;

xout _par ans- >dbnanel en = (ub4)strlen(val ue);
}
else if (!strncnp(option, (char *)"ob_usr", 6))
{

xout _parans->user = (oratext *)val ue;

xout _parans->userlen = (ub4)strlen(val ue);
}
else if (!strncnp(option, (char *)"ob_pwd", 6))
{

xout _par ans- >passw = (oratext *)val ue;

xout _par ans- >passwl en = (ub4)strlen(val ue);
}
else if (!strncnp(option, (char *)"ob_svr", 6))
{

xout _paranms->svrnm = (oratext *)val ue;

xout _parans->svrnnl en = (ub4)strlen(val ue);
}
else if (!strncnp(option, (char *)"ib_db", 5))
{

xi n_par ams- >dbname = (oratext *)val ue;

Xi n_par ans- >dbnanel en = (ub4)strlen(val ue);
}
else if (!strncnp(option, (char *)"ib_usr", 6))
{

xi n_params->user = (oratext *)val ue;

Xi n_parans->userlen = (ub4)strlen(val ue);
}
else if (!strncnp(option, (char *)"ib_pwd", 6))
{

Xi n_par ams- >passw = (oratext *)val ue;

Xi n_par ans- >passw en = (ub4)strlen(val ue);
}
else if (!strncnp(option, (char *)"ib_svr", 6))
{

Xi n_params->svrnm = (oratext *)val ue;

Xi n_parans->svrnm en = (ub4)strlen(val ue);

}

el se

{
printf("Error: unknown option '9%'.\n", option);
print_usage(1);

}

1

/* print usage and exit if any argunent is not specified */

if (!xout_params->svrnmen || !xout_params->passw en ||
I xout _parans->userlen || !xout_params->dbnamel en | |
Ixin_params->svrnm en || !xin_parans->passw en ||
Ixi n_parans->userlen || !xin_parans->dbnanel en)

{

printf("Error: missing command argunents. \n");

ORACLE A-16

print_usage(1);
1
}

A.3 Sample XStream Client Application for the Java API

ORACLE

To run the sample XStream client application for the Java API, compile and link the
application file.

Next, enter the following on a command line:

java xi o xsin_oracl esid xsin_host xsin_port xsin_usernane
xsin_passwd xi n_servernanme xsout_oracl esid xsout_host xsout_port
Xsout _username xsout_passwd xsout_servername

Substitute the appropriate values for the following placeholders:

* xsin_oraclesid is the Oracle SID of the inbound server's database.

* xsin_host is the host name of the computer system running the inbound server.
* xsin_port is the port number of the listener for the inbound server's database.

e xsin_username is the inbound server's apply user.

* xsin_passwd is the password for the inbound server's apply user.

* xin_servername is the name of the inbound server.

» xsout oraclesid is the Oracle SID of the outbound server's database.

e xsout_host is the host name of the computer system running the outbound server.
* xsout_port is the port number of the listener for the outbound server's database.
* xsout_username is the outbound server's connect user.

* xsout_passwd is the password for the outbound server's connect user.

e xsout_servername is the name of the outbound server.

When the sample client application is running, it prints information about attaching to
the inbound server and outbound server, along with the last position for each server.
The output looks similar to the following:

xsin_host = server2. exanpl e. com

xsin_port = 1482

xsin_ora_sid = dh2

xsin connection url: jdbc:oracle:oci:@erver2. exanpl e. com 1482: db2
xsout _host = server1. exanpl e. com

xsout _port = 1481

xsout_ora_sid = dbl

xsout connection url: jdbc:oracle:oci: @erverl. exanpl e. com 1481: dbl
Attached to inbound server:xin

I nbound Server Last Position is
0000000920250000000100000001000000092025000000010000000101

Attached to outbound server: xout

Last Position is: 0000000920250000000100000001000000092025000000010000000101

This demo is available in the following location:

$ORACLE_HOME/ r dbns/ deno/ xst reant j ava

The file name for the demo is xi 0. j ava. See the README. t xt file in the demo directory
for more information about compiling and running the application.

A-17

The code for the sample application that uses the Java API follows:

i mport oracle. streans. *;

i mport oracle.jdbc.internal. O acl eConnection;
i mport oracle.jdbc.*;

i mport oracle.sql.*;

import java.sql.*;

import java.util.*;

public class xio

{
public static String xsinusernane = null;
public static String xsinpasswd = null;
public static String xsinName = nul|;
public static String xsoutusernane = null;
public static String xsoutpasswd = null;
public static String xsoutNane = null;
public static String in_url = null;
public static String out_url = null;
public static Connection in_conn = null;
public static Connection out_conn = null;
public static XStreamn xsin = null;
public static XStreamut xsQut = null;
public static byte[] lastPosition = null;
public static byte[] processedLowPosition = null;

public static void main(String args[])

{
/1 get connection url to inbound and outbound server
in_url = parseXSlnArgunents(args);
out _url = parseXSQut Argunent s(args);

/1 create connection to inbound and outbound server
in_conn = createConnection(in_url, xsinusername, xsinpasswd);
out _conn = createConnection(out_url, xsoutusernane, xsoutpasswd);

/1l attach to inbound and outbound server
xsln = attachl nbound(in_conn);
xsQut = attachQut bound(out _conn);

/1 main loop to get lcrs
get _lcrs(xsln, xsQut);

/1 detach frominbound and outbound server
det achl nbound(xsl n);
det achQut bound(xsQut);

}

Il parse the argunents to get the conncetion url to inbound db
public static String parseXSlInArguments(String args[])

{
String trace, pref;
String orasid, host, port;

if (args.length = 12)
{
print Usage();
Systemexit(0);
}

orasid = args[0];

ORACLE A-18

host = args[1];

port = args[2];
xsinusernane = args[3];
xsinpasswd = args[4];
xsinNane = args[5];

Systemout. println("xsin_host = "+host);
Systemout. println("xsin_port = "+port);
Systemout.printIn("xsin_ora_sid = "+orasid);

String in_url = "jdbc:oracle:oci: @ +host+":"+port+":"+orasid,
Systemout. println("xsin connection url: "+ in_url);

return in_url;

}

Il parse the argunents to get the conncetion url to outbound db
public static String parseXSQut Arguments(String args[])
{

String trace, pref;

String orasid, host, port;

if (args.length != 12)
{
print Usage();
Systemexit(0);
}

orasid = args[6];

host = args[7];

port = args[8];

xsout username = args[9];
xsout passwd = args[10] ;
xsout Name = args[11];

System out. println("xsout_host = "+host);
Systemout. println("xsout_port = "+port);
Systemout. println("xsout_ora_sid = "+orasid);

String out_url = "jdbc:oracl e: oci: @ +host+": "+port+":"+orasid,
System out. println("xsout connection url: "+ out_url);

return out _url;

}

/1l print out sanple program usage nessage
public static void printUsage()
{
Systemout.printin("");
Systemout. println("Usage: java xio "+"<xsin_oraclesid> " + "<xsin_host> "
+ "<xsin_port>");

System out. println(" "+"<xsin_usernanme> " + "<xsin_passwd> "
+ "<xsin_servername> ");

System out. println(" "+"<xsout _oraclesid> " + "<xsout_host> "
+ "<xsout_port> ");

System out. println(" "+"<xsout _username> " + "<xsout_passwd> "

+ "<xsout_servernanme> ");

}

/] create a connection to an Oracl e Database

ORACLE A-19

ORACLE

public static Connection createConnection(String url,

String usernane,
String passwd)

{
try
{
Driver Manager . regi sterDriver(new oracl e.jdbc. Oracl eDriver());
return DriverManager. get Connection(url, usernane, passwd);
}

cat ch(Exception e)

{

}

}

Systemout.printin("fail to establish DB connection to: " +url);

e.printStackTrace();
return null;

Il attach to the XStream I nbound Server
public static XStream n attachl nbound(Connection in_conn)

{

XStream n xsln = null;
try

{

}

xsln = XStreani n. attach((Oracl eConnection)in_conn, xsinNane,
" XSDEMOI NCLI ENT" , XSt ream n. DEFAULT_MODE) ;

Il use last position to decide where should we start sending LCRs

| ast Position = xsln. getLastPosition();
Systemout. printIn("Attached to inbound server:"+xsi nName);
Systemout. print("lnbound Server Last Positionis: ");

if (null == 1lastPosition)
{
Systemout. printIn("null");
1
el se
{
print Hex(!| astPosition);
1
return xsln;

cat ch(Exception e)

{

}
}

Systemout. printIn("cannot attach to inbound server: "+xsinNane);

Systemout. println(e.get Message());
e.printStackTrace();
return null;

Il attach to the XStream Qutbound Server
public static XStreamOut attachQutbound(Connection out_conn)

{

XStreanQut xsQut = null;

try

{

/1 when attach to an outbound server, client needs to tell
Il server the last position.
xsQut = XStreamQut.attach((Oracl eConnection)out_conn, xsout

| ast Position, XStreamOut.DEFAULT_

out bound

Nane,
MODE) ;

Systemout. printin("Attached to outbound server:"+xsout Nane);

A-20

Systemout. print("Last Positionis: ");
if (lastPosition != null)

{
}

el se

{
}

return xsQut;
}

cat ch(Exception e)
{

print Hex(| astPosition);

System out. println("NULL");

Systemout. println("cannot attach to outbound server: "+xsoutName);
Systemout. println(e.get Message());
e.printStackTrace();
return null;
}
1

Il detach fromthe XStream | nbound Server
public static void detachl nbound(XStream n xsln)

{

byte[] processedLowPosition = null;

try

{
processedLowPosi tion = xsln. detach(XSt reanl n. DEFAULT_MODE) ;
Systemout. print("Inbound server processed |low Position is: ");
if (processedLowPosition !'= null)
{

print Hex(processedLowPosition);
1
el se
{
System out. println("NULL");

1

}

cat ch(Exception e)

{
Systemout. println("cannot detach fromthe inbound server: "+xsinNane);
Systemout. println(e.get Message());
e.printStackTrace();

}

1

/] detach fromthe XStream Qut bound Server
public static void detachQutbound(XStreamlut xsQut)

{
try
{
xsQut . det ach(XSt r eamOut . DEFAULT_MODE) ;
}
cat ch(Exception e)
{
Systemout. println("cannot detach fromthe outbound server: "+xsoutName);
Systemout. println(e.get Message());
e.printStackTrace();
}
1

public static void get_lcrs(XStream n xsln, XStreamOut xsQut)

ORACLE A-21

if (null == xsln)

{
Systemout. printin("xstreamn is null");
Systemexit(0);

}

if (null == xsQut)

{
Systemout. printin("xstreamut is null");
Systemexit(0);

}
try
{
while(true)
{
/'l receive an LCR from outbound server
LCR al cr = xsQut.recei veLCR(XSt r eamQut . DEFAULT_MODE) ;
if (xsQut.getBatchStatus() == XStreanQut.EXECUTING // batch is active
{
assert alcr !'=null;
Il send the LCR to the inbound server
xsln.sendLCR(al cr, XStream n. DEFAULT_MODE);
Il also get chunk data for this LCRif any
if (alcr instanceof RowLCR)
{
/'l receive chunk from outbound then send to inbound
if (((RowLCR)al cr).hasChunkData())
{
ChunkCol umVal ue chunk = nul | ;
do
{
chunk = xsQut.recei veChunk(XSt r eamOut . DEFAULT_MODE) ;
xsl n. sendChunk(chunk, XStreanl n. DEFAULT_MODE) ;
} while (!chunk.isEndO'Row());
}
1
processedLowPosi tion = al cr. getPosition();
else // batch is end
{
assert alcr == null;
/1 flush the network
xsln. flush(XSt reanl n. DEFAULT_MODE) ;
/1 get the processed_| ow position frominbound server
processedLowPosi tion =
xsl n. get ProcessedLowat er mar k() ;
/'l update the processed_| ow position at oubound server
if (null !'= processedLowPosition)
xsQut . set ProcessedLowWat er mar k(pr ocessedLowPosi ti on,
XSt r eanQut . DEFAULT_MODE) ;
}
1
}
cat ch(Exception e)
{

Systemout. println("exception when processing LCRs");
Systemout. println(e.get Message());

ORACLE A-22

e.printStackTrace();

}
1
public static void printHex(byte[] b)
{
for (int i =0; i <b.length; ++)
{
Systemout. print (
I nteger.toHexString((b[i]&xFF) | 0x100).substring(1,3));
}
Systemout.printIn("");
1

ORACLE' A-23

XStream Out Restrictions

Restrictions apply to XStream Out.

Capture Process Restrictions
Restrictions apply to capture processes.

Propagation Restrictions
Restrictions apply to propagations.

Outbound Server Restrictions
Restrictions apply to outbound servers.

XStream Out Rule Restrictions
Restrictions apply to rules.

XStream Out Rule-Based Transformation Restrictions
Restrictions apply to rule-based transformations in XStream Out.

XStream Out Limitations for Extended Data Types
Some restrictions apply to extended data types in XStream Out.

B.1 Capture Process Restrictions

Restrictions apply to capture processes.

Unsupported Data Types for Capture Processes
Capture processes do not support some data types.

Unsupported Changes for Capture Processes
Capture processes do not support some changes.

Supplemental Logging Data Type Restrictions
Some types of columns cannot be part of a supplemental log group.

Operational Requirements for Downstream Capture with XStream Out
There are operational requirements for downstream capture with XStream Out.

Capture Processes Do Not Support Oracle Label Security
Capture processes do not support database objects that use Oracle Label Security
(OLS).

B.1.1 Unsupported Data Types for Capture Processes

ORACLE

Capture processes do not support some data types.

A capture process does not capture the results of DML changes to columns of the
following data types:

BFI LE
RON D

Nested tables

B-1

ORACLE

* The following Oracle-supplied types: ANYTYPE, ANYDATASET, URI types,
SDO TOPO _GEQVETRY, SDO_GEORASTER, and Expr essi on

These data type restrictions pertain to both ordinary (heap-organized) tables and
index-organized tables.

" Note:

XStream does not support LONG columns in databases with varying width
multibyte character sets.

¢ See Also:

"Data Types Captured by a Capture Process"

Capture processes can capture changes to SecureFiles LOB columns only if the
source database compatibility level is set to 11.2.0.0 or higher. Also, capture
processes do not support capturing changes resulting from fragment-based operations
on SecureFiles LOB columns or capturing changes resulting from SecureFiles archive
manager operations.

When a capture process tries to create a row LCR for a DML change to a column of an
unsupported data type, the capture process can either ignore the change to the table
or raise an error. The behavior of the capture process depends on the setting for the

i gnor e_unsupport ed_t abl e capture process parameter.

When the capture process ignores the change to the table, it does not capture the
change, and it records the table name in the alert log. When the capture process
raises an error, it writes the LCR that caused the error into its trace file, raises an
ORA-26744 error, and becomes disabled. In either case, modify the rules used by the
capture process to avoid recording messages in the alert log or capture process
errors. After modifying the capture process's rules, restart the capture process.

Note:

e You can add rules to a negative rule set for a capture process that instruct
the capture process to discard changes to tables with columns of
unsupported data types.

e Capture processes do not support primary keys that contain object type
attributes.

e A capture process raises an error if it attempts to capture an | NSERT
operation with an APPEND hint if the | NSERT operation includes a column of
either of the following types: XMLType stored as object relational or
XMLType stored as binary XML

B-2

" See Also:

¢ "Rules and Rule Sets"

e Oracle Database PL/SQL Packages and Types Reference for more
information about the i gnor e_unsupport ed_t abl e capture process parameter

e Oracle Database Ultilities for more information about LogMiner restrictions
for SecureFiles LOB columns

e Oracle Database Upgrade Guide for information about database
compatibility

B.1.2 Unsupported Changes for Capture Processes

Capture processes do not support some changes.

Unsupported Schemas for Capture Processes
Capture processes do not support some schemas.

Unsupported Table Types for Capture Processes
Capture processes do not support some table types.

Unsupported DDL Changes for Capture Processes
Capture processes do not support some data definition language (DDL) changes.

Changes Ignored by a Capture Process
Capture processes ignore some types of changes.

NOLOGGING and UNRECOVERABLE Keywords for SQL Operations

If you use the NOLOGG NG or UNRECOVERABLE keyword for a SQL operation, then the
changes resulting from the SQL operation cannot be captured by a capture
process.

UNRECOVERABLE Clause for Direct Path Loads

If you use the UNRECOVERABLE clause in the SQL*Loader control file for a direct path
load, then a capture process cannot capture the changes resulting from the direct
path load.

B.1.2.1 Unsupported Schemas for Capture Processes

ORACLE

Capture processes do not support some schemas.

By default, a capture process does not capture changes made to the following
schemas:

CTXSYS
DBSNWVP
DVBYS
DVSYS
EXFSYS
LBACSYS
VDDATA

B-3

e MDSYS

e CLAPSYS

e CRDDATA

* ORDPLUG NS
e CORDSYS

e CQUTLN

¢ SI_I NFORMIN_SCHEMA

e SYS

e SYSMAN
e SYSTEM
e WWBYS

e XDB

If the i ncl ude_obj ect s capture process parameter specifies one or more of these
schemas, then the capture process captures changes made to the specified schemas.
If the i ncl ude_obj ect s capture process parameter specifies one or more tables in these
schemas, then the capture process captures changes made to the specified tables.

By default, the i ncl ude_obj ect s capture process parameter is set to NULL. Therefore,
the capture process does not capture changes made to these schemas.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
about the i ncl ude_obj ect s capture process parameter

B.1.2.2 Unsupported Table Types for Capture Processes
Capture processes do not support some table types.
A capture process cannot capture DML changes made to the following types of tables:

e Temporary tables

* Object tables that include the unsupported data types described in "Unsupported
Data Types for Capture Processes"

ORACLE B-4

Note:

e A capture process can capture changes to tables compressed with basic
table compression and OLTP table compression only if the compatibility
level at both the source database and the capture database is set to
11.2.0.0.0 or higher.

e A capture process can capture changes to tables compressed with hybrid
columnar compression if all of the following conditions are met: both the
source database and the capture database must be running Oracle
Database 11g Release 2 (11.2.0.2), and the compatibility level at both the
source database and the capture database is set to 11.2.0.0.0 or higher.

¢ See Also:

e "Data Types Captured by a Capture Process"

e Oracle Database Administrator’s Guide for information about compressed
tables

B.1.2.3 Unsupported DDL Changes for Capture Processes

ORACLE

Capture processes do not support some data definition language (DDL) changes.

A capture process captures the DDL changes that satisfy its rule sets, except for the
following types of DDL changes:

* ALTER DATABASE

* CREATE CONTROLFI LE
e CREATE DATABASE

e CREATE PFI LE

e CREATE SPFI LE

A capture process can capture DDL statements, but not the results of DDL statements,
unless the DDL statement is a CREATE TABLE AS SELECT statement. For example, when a
capture process captures an ANALYZE statement, it does not capture the statistics
generated by the ANALYZE statement. However, when a capture process captures a
CREATE TABLE AS SELECT statement, it captures the statement itself and all of the rows
selected (as | NSERT row LCRS).

Some types of DDL changes that are captured by a capture process cannot be applied
by an outbound server. If an outbound server receives a DDL LCR that specifies an
operation that cannot be processed, then the outbound server ignores the DDL LCR
and records information about it in its trace file.

B-5

¢ See Also:

"Rules and Rule Sets"

B.1.2.4 Changes Ignored by a Capture Process

Capture processes ignore some types of changes.

A capture process ignores the following types of changes:

ORACLE

The session control statements ALTER SESSI ON and SET ROLE.
The system control statement ALTER SYSTEM

CALL, EXPLAI N PLAN, and LOCK TABLE statements.

GRANT statements on views.

Changes made to a table or schema by online redefinition using the

DBMS_REDEFI NI TI ON package. Online table redefinition is supported on a table for
which a capture process captures changes, but the logical structure of the table
before online redefinition must be the same as the logical structure after online

redefinition.

Changes to sequence values. For example, if a user references a NEXTVAL or sets
the sequence, then a capture process does not capture changes resulting from
these operations. Also, if you share a sequence at multiple databases, then
sequence values used for individual rows at these databases might vary.

Invocations of PL/SQL procedures, which means that a call to a PL/SQL
procedure is not captured. However, if a call to a PL/SQL procedure causes
changes to database objects, then these changes can be captured by a capture
process if the changes satisfy the capture process rule sets.

Note:

e If an Oracle-supplied package related to XML makes changes to database
objects, then these changes are not captured by capture processes.

< If an Oracle-supplied package related to Oracle Text makes changes to
database objects, then these changes are not captured by capture
processes.

B-6

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for information
about packages related to XML

e Oracle Text Reference for information about packages related to Oracle
Text

e Oracle Streams Replication Administrator's Guide for information about
strategies to avoid having the same sequence-generated value for two
different rows at different databases

B.1.2.5 NOLOGGING and UNRECOVERABLE Keywords for SQL Operations

If you use the NOLOGG NG or UNRECOVERABLE keyword for a SQL operation, then the
changes resulting from the SQL operation cannot be captured by a capture process.

Therefore, do not use these keywords to capture the changes that result from a SQL
operation.

If the object for which you are specifying the logging attributes resides in a database or
tablespace in FORCE LOGA NG mode, then Oracle Database ignores any NOLOGA NG or
UNRECOVERABLE setting until the database or tablespace is taken out of FORCE LOGG NG
mode. You can determine the current logging mode for a database by querying the
FORCE_LOGG NG column in the V$DATABASE dynamic performance view. You can determine
the current logging mode for a tablespace by querying the FORCE_LOGA NG column in the
ALL_TABLESPACES static data dictionary view.

Note:

The UNRECOVERABLE keyword is deprecated and has been replaced with the
NOLOGE NG keyword in the | oggi ng_cl ause. Although UNRECOVERABLE is supported
for backward compatibility, Oracle strongly recommends that you use the
NOLOGG NG keyword, when appropriate.

" See Also:

Oracle Database SQL Language Referencefor more information about the
NOLOGG NG and UNRECOVERABLE keywords, FORCE LOGA NG mode, and the
| oggi ng_cl ause

B.1.2.6 UNRECOVERABLE Clause for Direct Path Loads

ORACLE

If you use the UNRECOVERABLE clause in the SQL*Loader control file for a direct path
load, then a capture process cannot capture the changes resulting from the direct path
load.

Therefore, if the changes resulting from a direct path load should be captured by a
capture process, then do not use the UNRECOVERABLE clause.

B-7

If you load objects into a database or tablespace that is in FORCE LOGE NG mode, then
Oracle Database ignores any UNRECOVERABLE clause during a direct path load, and the
loaded changes are logged. You can determine the current logging mode for a
database by querying the FORCE_LOGGE NG column in the V$DATABASE dynamic
performance view. You can determine the current logging mode for a tablespace by
guerying the FORCE_LOGG NG column in the DBA_TABLESPACES static data dictionary view.

¢ See Also:

Oracle Database Utilities for information about direct path loads and
SQL*Loader

B.1.3 Supplemental Logging Data Type Restrictions

Some types of columns cannot be part of a supplemental log group.

Columns of the following data types cannot be part of a supplemental log group: LOB,
LONG, LONG RAW user-defined types (including object types, REFs, varrays, nested tables),
and Oracle-supplied types (including Any types, XML types, spatial types, and media

types).

See Also:

e "If Required, Configure Supplemental Logging"

e Oracle Database SQL Language Reference for information about data
types

B.1.4 Operational Requirements for Downstream Capture with XStream Out

There are operational requirements for downstream capture with XStream Out.
The following are operational requirements for using downstream capture:

e The source database must be running at least Oracle Database 10g Release 2
(10.2).

e The downstream database must be running Oracle Database 11g Release 2
(11.2.0.3) or later and the source database must be running Oracle Database 10g
Release 2 (10.2) or later.

e The operating system on the source and downstream capture sites must be the
same, but the operating system release does not need to be the same. In addition,
the downstream sites can use a different directory structure than the source site.

e The hardware architecture on the source and downstream capture sites must be
the same. For example, a downstream capture configuration with a source
database on a 64-bit Sun system must have a downstream database that is
configured on a 64-bit Sun system. Other hardware elements, such as the number
of CPUs, memory size, and storage configuration, can be different between the
source and downstream sites.

ORACLE B-8

" See Also:

"Local Capture and Downstream Capture"

B.1.5 Capture Processes Do Not Support Oracle Label Security

Capture processes do not support database objects that use Oracle Label Security
(OLS).

¢ See Also:

Oracle Label Security Administrator’s Guide

B.2 Propagation Restrictions

Restrictions apply to propagations.

e Connection Qualifiers and Propagations
Connection qualifiers cannot be specified in the database links that are used by
propagations.

B.2.1 Connection Qualifiers and Propagations

Connection qualifiers cannot be specified in the database links that are used by
propagations.

B.3 Outbound Server Restrictions

Restrictions apply to outbound servers.

* Unsupported Data Types for Outbound Servers
Outbound servers do not support some data types.

» Types of DDL Changes Ignored by an Outbound Server
Outbound servers do not support some types of DDL changes.

* Apply Process Features That Are Not Applicable to Outbound Servers
Some features cannot be used with outbound servers.

B.3.1 Unsupported Data Types for Outbound Servers

Outbound servers do not support some data types.

An outbound server does not process row LCRs containing the results of DML
changes in columns of the following data types:

e BFILE
* ROWD

* Nested tables

ORACLE B-9

* The following Oracle-supplied types: ANYTYPE, ANYDATASET, URI types,
SDO TOPO _GEQVETRY, SDO_GEORASTER, and Expr essi on

" Note:

XStream does not support LONG columns in databases with varying width
multibyte character sets.

An outbound server raises an error if it attempts to process a row LCR that contains
information about a column of an unsupported data type. In addition, an outbound
server cannot process DML changes to the following types of tables:

e Temporary tables
* Object tables that include unsupported data types

An outbound server raises an error if it attempts to process such changes. When an
outbound server raises an error for an LCR, it moves the transaction that includes the
LCR into the error queue.

See Also:

e "Data Types Supported by Outbound Servers"

e Oracle Database SQL Language Reference for information about data
types

B.3.2 Types of DDL Changes Ignored by an Outbound Server

ORACLE

Outbound servers do not support some types of DDL changes.
The following types of DDL changes are not supported by an outbound server:

e ALTER MATERI ALI ZED VI EW

* ALTER MATERI ALI ZED VI EWLOG
* CREATE DATABASE LI NK

e CREATE SCHEMA AUTHCRI ZATI ON
e CREATE MATERI ALI ZED VI EW

e CREATE MATERI ALI ZED VI EWLOG
e DROP DATABASE LI NK

e DROP MATERI ALI ZED VI EW

e DROP MATERI ALI ZED VI EWLOG

* FLASHBACK DATABASE

* RENAME

B-10

If an outbound server receives a DDL LCR that specifies an operation that cannot be
processed, then the outbound server ignores the DDL LCR and records the following
message in the outbound server trace file, followed by the DDL text that was ignored:

Apply process ignored the following DDL:

An outbound server applies all other types of DDL changes if the DDL LCRs
containing the changes should be applied according to the outbound server rule sets.

" Note:

e An outbound server processes ALTER obj ect _t ype obj ect _nane RENAVE
changes, such as ALTER TABLE j obs RENAME. Therefore, if you want DDL
changes that rename objects to be processed, then use ALTER obj ect _t ype
obj ect _nane RENAME statements instead of RENAME statements.

e The name "materialized view" is synonymous with the name "snapshot".
Snapshot equivalents of the statements on materialized views are ignored
by an outbound server.

" See Also:

"Rules and Rule Sets"

B.3.3 Apply Process Features That Are Not Applicable to Outbound Servers

Some features cannot be used with outbound servers.
The following apply process features cannot be used with outbound servers:

* Apply handlers

You cannot specify an apply handler for an outbound server. The client application
can perform custom processing of the LCRs instead if necessary. However, if
apply processes are configured in the same database as the outbound server,
then you can specify apply handlers for these apply processes. In addition, you
can configure general apply handlers for the database. An outbound server
ignores general apply handlers.

" See Also:

Oracle Streams Concepts and Administration

e The following apply parameters:
— allow_duplicate_rows
— commt _serialization
— conpare_key_only

— disable _on_error

ORACLE B-11

— parallelism

— preserve_encryption

— rtrimon_inplicit_conversion

Outbound servers ignore the settings for these apply parameters.

The commi t _seri al i zati on parameter is always set to FULL for an outbound server,
and the paral | el i smparameter is always set to 1 for an outbound server.

" See Also:

Oracle Database PL/SQL Packages and Types Reference

e Apply tags
An outbound server cannot set an apply tag for the changes it processes.

¢ See Also:
Oracle Streams Replication Administrator's Guide

e Apply database links

Outbound servers cannot use database links.
¢ See Also:
Oracle Streams Replication Administrator's Guide
* Conflict detection and resolution

An outbound server does not detect conflicts, and conflict resolution cannot be set
for an outbound server.

¢ See Also:
Oracle Streams Replication Administrator's Guide

» Dependency scheduling

An outbound server does not evaluate dependencies because its parallelism must
be 1.

¢ See Also:

Oracle Streams Concepts and Administration

e Substitute key column settings

ORACLE B-12

An outbound server ignores substitute key column settings.

2 See Also:

Oracle Streams Concepts and Administration

* Enqueue directives specified by the SET_ENQUEUE_DESTI NATI ON procedure in the
DBVB_APPLY_ADM package

An outbound server cannot enqueue changes into an Oracle database queue
automatically using the SET_ENQUEUE_DESTI NATI ON procedure.

¢ See Also:
Oracle Database PL/SQL Packages and Types Reference

e Execute directives specified by the SET_EXECUTE procedure in the DBVS_APPLY_ADM
package

An outbound server ignores execute directives.

" See Also:

Oracle Database PL/SQL Packages and Types Reference

e Error creation and execution

An outbound server does not create an error transaction when it encounters an
error. It records information about errors in the ALL_APPLY view, but it does not
enqueue the transaction into an error queue.

¢ See Also:

Oracle Streams Concepts and Administration

B.4 XStream Out Rule Restrictions

Restrictions apply to rules.

* Restrictions for Subset Rules
Restrictions apply to subset rules.

B.4.1 Restrictions for Subset Rules

Restrictions apply to subset rules.

The following restrictions apply to subset rules:

ORACLE B-13

« A table with the table name referenced in the subset rule must exist in the same
database as the subset rule, and this table must be in the same schema
referenced for the table in the subset rule.

» If the subset rule is in the positive rule set for a capture process, then the table
must contain the columns specified in the subset condition, and the data type of
each of these columns must match the data type of the corresponding column at
the source database.

» If the subset rule is in the positive rule set for a propagation, then the table must
contain the columns specified in the subset condition, and the data type of each
column must match the data type of the corresponding column in row LCRs that
evaluate to TRUE for the subset rule.

e Creating subset rules for tables that have one or more columns of the following
data types is not supported: LOB, LONG, LONG RAW nested tables, and Oracle-
supplied types (including Any types, XML types, spatial types, and media types).

¢ See Also:

¢ "Subset Rules"

e Oracle Database SQL Language Reference for more information about
data types

B.5 XStream Out Rule-Based Transformation Restrictions

Restrictions apply to rule-based transformations in XStream Out.

» Unsupported Data Types for Declarative Rule-Based Transformations
Except for add column transformations, declarative rule-based transformations
that operate on columns support the same data types that are supported by
capture processes.

¢ See Also:

"Rule-Based Transformations"

B.5.1 Unsupported Data Types for Declarative Rule-Based Transformations

Except for add column transformations, declarative rule-based transformations that
operate on columns support the same data types that are supported by capture
processes.

Add column transformations cannot add columns of the following data types: BLOB,
CLOB, NCLOB, BFI LE, LONG, LONG RAW ROW D, nested tables, and Oracle-supplied types
(including Any types, XML types, spatial types, and media types).

Extended data type columns cannot be used in the following types of declarative rule-
based transformations:

ORACLE B-14

e Add column

* Keep columns

¢ See Also:

e "Data Types Captured by a Capture Process"
e "Unsupported Data Types for Capture Processes"
e "XStream Out Limitations for Extended Data Types"

e Oracle Database SQL Language Reference for information about data
types

B.6 XStream Out Limitations for Extended Data Types

Some restrictions apply to extended data types in XStream Out.

The maximum size of the VARCHAR2, NVARCHAR2, and RAWdata types has been increased
in Oracle Database 12c when the COVPATI BLE initialization parameter is set to 12. 0.0
and the MAX_STRI NG _SI ZE initialization parameter is set to EXTENDED. XStream Out
supports these extended data types.

However, the following limitations apply to the extended data type:

e Information about an extended data type column might not be contained in the
original LCR for a data manipulation language (DML) operation. Instead, XStream
Out might treat the extended data type column similar to the way it treats LOB
columns. Specifically, additional LCRs might contain the information for the
extended data type column.

e XStream rules cannot access data in LCRs for extended data type columns.
e Extended data type columns cannot be specified in a subset rule clause.

e Extended data type columns cannot be used in the following types of declarative
rule-based transformations:

— Add column

— Keep columns

¢ See Also:

Oracle Database SQL Language Reference for more information about
extended data types

ORACLE B-15

XStream In Restrictions

Restrictions apply to XStream In.

Inbound Server Restrictions
Restrictions apply to inbound servers.

XStream In Rule Restrictions
Restrictions apply to rules.

XStream In Rule-Based Transformation Restrictions
Restrictions apply to rule-based transformations in XStream In.

XStream In Limitations for Extended Data Types
Limitations apply to extended data types in XStream In.

C.1 Inbound Server Restrictions

Restrictions apply to inbound servers.

Unsupported Data Types for Inbound Servers
Inbound servers do not support some data types.

Unsupported Data Types for Apply Handlers
Apply handlers do not support some data types.

Types of DDL Changes Ignored by an Inbound Server
Inbound servers ignore some types of DDL changes.

Current Schema User Must Exist at Destination Database

For a DDL LCR to be applied at a destination database successfully, the user
specified as the current _schema in the DDL LCR must exist at the destination
database.

Inbound Servers Do Not Support Oracle Label Security
Inbound servers do not support database objects that use Oracle Label Security
(OLS).

C.1.1 Unsupported Data Types for Inbound Servers

ORACLE

Inbound servers do not support some data types.

An inbound server does not apply row LCRs containing the results of DML changes in
columns of the following data types:

BFI LE
ROW D
Nested tables

The following Oracle-supplied types: ANYTYPE, ANYDATASET, URI types,
SDO_TOPO_GEOVETRY, SDO_GECRASTER, and Expr essi on

C-1

Note:

XStream does not support LONG columns in databases with varying width
multibyte character sets.

An inbound server raises an error if it attempts to apply a row LCR that contains
information about a column of an unsupported data type. In addition, an inbound
server cannot apply DML changes to the following types of tables:

e Temporary tables
e Object tables that include unsupported data types

An inbound server raises an error if it attempts to apply such changes. When an
inbound server raises an error for an LCR, it moves the transaction that includes the
LCR into the error queue.

These data type restrictions pertain to both ordinary (heap-organized) tables and
index-organized tables.

" See Also:

e "Data Types Applied by Inbound Servers"

e Oracle Database SQL Language Reference for information about data
types

C.1.2 Unsupported Data Types for Apply Handlers

Apply handlers do not support some data types.

Statement DML handlers cannot process LONG, LONG RAW or nonassembled LOB column
data in row LCRs. However, statement DML handlers can process LOB column data in
row LCRs that have been constructed by LOB assembly. LOB assembly is enabled by
default for statement DML handlers.

Procedure DML handlers and error handlers cannot process LONG or LONG RAWcolumn
data in row LCRs. However, procedure DML handlers and error handlers can process
both nonassembled and assembled LOB column data in row LCRs, but these handlers
cannot modify nonassembled LOB column data.

¢ See Also:

e "LCR Processing Options for Inbound Servers"

e Oracle Streams Replication Administrator's Guide for information about
LOB assembly

e Oracle Database SQL Language Reference for more information about
data types

ORACLE C-2

C.1.3 Types of DDL Changes Ignored by an Inbound Server

Inbound servers ignore some types of DDL changes.

The following types of DDL changes are not supported by an inbound server. These
types of DDL changes are not applied:

e ALTER MATERI ALI ZED VI EW

* ALTER MATERI ALI ZED VI EWLOG
e CREATE DATABASE LI NK

e CREATE SCHEMA AUTHCRI ZATI ON
e CREATE MATERI ALI ZED VI EW

e CREATE MATERI ALI ZED VI EWLOG
e DROP DATABASE LI NK

* DROP MATERI ALI ZED VI EW

e DROP MATERI ALI ZED VI EWLOG

* FLASHBACK DATABASE

* RENAME

If an inbound server receives a DDL LCR that specifies an operation that cannot be
applied, then the inbound server ignores the DDL LCR and records the following
message in the inbound server trace file, followed by the DDL text that was ignored:

I nbound server ignored the follow ng DDL:

An inbound server applies all other types of DDL changes if the DDL LCRs containing
the changes should be applied according to the inbound server rule sets.

Note:

e Aninbound server applies ALTER obj ect _t ype obj ect _name RENAME changes,
such as ALTER TABLE j obs RENAME. Therefore, if you want DDL changes that
rename objects to be applied, then use ALTER obj ect _t ype obj ect _nane
RENAME statements instead of RENAME statements. After changing the name of
a database object, new rules that specify the new database object name
might be needed to replicate changes to the database object.

e The name "materialized view" is synonymous with the name "snapshot".
Snapshot equivalents of the statements on materialized views are ignored
by an inbound server.

¢ See Also:

"Rules and Rule Sets"

ORACLE C-3

C.1.4 Current Schema User Must Exist at Destination Database

For a DDL LCR to be applied at a destination database successfully, the user
specified as the current _schema in the DDL LCR must exist at the destination database.

The current schema is the schema that is used if no schema is specified for an object
in the DDL text.

" See Also:

e Oracle Database Conceptsfor more information about database structures

e Oracle Database PL/SQL Packages and Types Referencefor more
information about the current _schema attribute in DDL LCRs

C.1.5 Inbound Servers Do Not Support Oracle Label Security

Inbound servers do not support database objects that use Oracle Label Security
(OLS).

¢ See Also:

Oracle Label Security Administrator’s Guide

C.2 XStream In Rule Restrictions

Restrictions apply to rules.

* Restrictions for Subset Rules
Restrictions apply to subset rules.

C.2.1 Restrictions for Subset Rules

ORACLE

Restrictions apply to subset rules.
The following restrictions apply to subset rules:

« A table with the table name referenced in the subset rule must exist in the same
database as the subset rule, and this table must be in the same schema
referenced for the table in the subset rule.

» If the subset rule is in the positive rule set for an inbound server, then the table
must contain the columns specified in the subset condition, and the data type of
each column must match the data type of the corresponding column in row LCRs
that evaluate to TRUE for the subset rule.

* Creating subset rules for tables that have one or more columns of the following
data types is not supported: LOB, LONG, LONG RAW user-defined types (including
object types, REFs, varrays, nested tables), and Oracle-supplied types (including
Any types, XML types, spatial types, and media types).

C-4

" See Also:

e "Subset Rules"

e Oracle Database SQL Language Reference for more information about
data types

C.3 XStream In Rule-Based Transformation Restrictions

Restrictions apply to rule-based transformations in XStream In.

» Unsupported Data Types for Declarative Rule-Based Transformations
Except for add column transformations, declarative rule-based transformations
that operate on columns support the same data types that are supported by
inbound servers.

¢ See Also:

"Rule-Based Transformations”

C.3.1 Unsupported Data Types for Declarative Rule-Based Transformations

Except for add column transformations, declarative rule-based transformations that
operate on columns support the same data types that are supported by inbound
servers.

Add column transformations cannot add columns of the following data types: BLOB,
CLOB, NCLOB, BFI LE, LONG, LONG RAW ROW D, user-defined types (including object types,
REFs, varrays, nested tables), and Oracle-supplied types (including Any types, XML
types, spatial types, and media types).

" See Also:

e "Data Types Applied by Inbound Servers"
* "Unsupported Data Types for Inbound Servers"

e Oracle Database SQL Language Reference for information about data
types

C.4 XStream In Limitations for Extended Data Types

ORACLE

Limitations apply to extended data types in XStream In.

The maximum size of the VARCHAR?, NVARCHAR?, and RAWdata types has been increased
in Oracle Database 12c when the COVPATI BLE initialization parameter is set to 12.0.0

C-5

ORACLE

and the MAX_STRI NG _SI ZE initialization parameter is set to EXTENDED. XStream In supports
these extended data types.

However, the following limitations apply to the extended data types:

Information about an extended data type column might not be contained in the
original LCR for a data manipulation language (DML) operation. Instead, XStream
In might treat the extended data type column similar to the way it treats LOB
columns. Specifically, additional LCRs might contain the information for the
extended data type column.

XStream rules cannot access data in LCRs for extended data type columns.
Extended data type columns cannot be specified in a subset rule clause.
Extended data type columns cannot be used for conflict detection.

Extended data type columns cannot be used for a substitute primary key for apply
purposes with the DBMS_APPLY_ADM SET_KEY_COLUWNS procedure.

Extended data type columns cannot be used in the following types of declarative
rule-based transformations:

— Add column

— Keep columns

¢ See Also:

Oracle Database SQL Language Reference for more information about
extended data types

C-6

Index

A

ADD SUPPLEMENTAL LOG, 4-17
ADD SUPPLEMENTAL LOG DATA clause of
ALTER DATABASE, 4-19
ADD SUPPLEMENTAL LOG GROUP clause of
ALTER TABLE
conditional log groups, 4-18
unconditional log groups, 4-17
ADD_AUTO_CDR procedure, 13-9
ADD_AUTO_CDR_COLUMN_GROUP
procedure, 13-9
ADD_AUTO_CDR_DELTA_RES procedure,
13-11
ADD_OUTBOUND procedure, 4-35, 4-43
ADD_SUBSET_OUTBOUND_RULES procedure,
5-19
ADD_TABLE_RULES procedure, 5-21
ALL_APPLY view, 6-7, 11-5
ALL_APPLY_ERROR view, 11-15, 11-16
ALL_CAPTURE_EXTRA_ATTRIBUTES view,
7-11
ALL_GG_AUTO_CDR_COLUMN_GROUPS
view, 13-19
ALL_GG_AUTO_CDR_COLUMNS view, 13-17
ALL_GG_AUTO_CDR_TABLES view, 13-16
ALL_PROPAGATION view, 12-4
ALL_XSTREAM_INBOUND view, 11-3
ALL_XSTREAM_INBOUND_PROGRESS view,
11-7
ALL_XSTREAM_OUTBOUND view, 5-7, 6-5
ALL_XSTREAM_OUTBOUND_PROGRESS
view, 6-10
ALTER DATABASE statement
ADD SUPPLEMENTAL LOG DATA clause,
4-19
DROP SUPPLEMENTAL LOG DATA clause,
4-20
ALTER TABLE statement
ADD SUPPLEMENTAL LOG DATA clause
conditional log groups, 4-18
unconditional log groups, 4-17
ADD SUPPLEMENTAL LOG GROUP clause
conditional log groups, 4-18
unconditional log groups, 4-17

ORACLE

ALTER TABLE statement (continued)
DROP SUPPLEMENTAL LOG GROUP
clause, 4-18
ALTER_AUTO_CDR procedure, 13-12
ALTER_AUTO_CDR_COLUMN_GROUP
procedure, 13-13
ALTER_INBOUND procedure, 10-5
ALTER_OUTBOUND procedure, 5-5, 5-18, 5-22
apply handlers, 8-1
outbound servers, B-11
apply process
Oracle Real Application Clusters, 3-35
trace files, 7-5
apply user, 3-22
XStream In, 10-5
ARCHIVELOG mode
capture process
Recovery Manager, 3-38
XStream Out, 4-13

B

buffered queues
Transparent Data Encryption, 3-37

C

capture process, 3-20
changes captured
DDL changes, B-5
NOLOGGING keyword, B-7
UNRECOVERABLE clause for
SQL*Loader, B-7
UNRECOVERABLE SQL keyword, B-7
checkpoint retention time, 3-17
checkpoints, 3-17
fast recovery area, 3-38
maximum checkpoint SCN, 3-17
online redefinition, B-6
Oracle Label Security (OLS), B-9
Oracle Real Application Clusters, 3-32
Recovery Manager, 3-38
required checkpoint SCN, 3-17
schema restrictions, B-3
supplemental logging, 4-15

Index-1

capture process (continued)
table type restrictions, B-4
trace files, 7-4
Transparent Data Encryption, 3-36
CDBs
XStream In, 8-20
XStream Out, 3-42
configuring, 4-40
configuring multiple, 4-43
character sets
SQL generation, 2-36
checkpoint retention time, 3-17
checkpoints, 3-17
client applications
XStream
example, A-1
column groups, 13-7
column lists, 10-17
commit_scn_from_position LCR attribute, 3-25
COMPARE_OLD_VALUES procedure, 10-10
conflict resolution, 8-1
collision handling, 10-19
column lists, 10-17
conflict handlers, 10-8-10-10, 10-12
custom, 10-20
prebuilt, 10-13
removing, 10-23
setting, 10-21
data convergence, 10-19
IGNORE handler, 10-14
MAX_AND_EQUALS handler, 10-14
MAXIMUM handler, 10-14
MIN_AND_EQUALS handler, 10-14
MINIMUM handler, 10-14
outbound server, B-11
OVERWRITE handler, 10-14
resolution columns, 10-18
conflicts, 10-6
avoidance, 10-10
delete, 10-12
primary database ownership, 10-11
sequences, 10-11
uniqueness, 10-11
update, 10-12
delete, 10-8
detection, 10-9
identifying rows, 10-10
stopping, 10-10, 10-24
DML conflicts, 10-6
foreign key, 10-8
transaction ordering, 10-8
types of, 10-7
unigueness, 10-8
update, 10-7, 10-8
connect user, 3-30

ORACLE

Index

CREATE_INBOUND procedure, 9-9
CREATE_OUTBOUND procedure, 4-28

D

data types
SQL generation, 2-36
database links
XStream Out, 4-12
DBA_APPLY_DML_CONF_HANDLERS view,
11-8
DBA_APPLY_REPERROR_HANDLERS view,
11-9
DBA_GG_PROC_OBJECT_EXCLUSION view,
14-3, 14-6
DBA_GG_PROCEDURE_ANNOTATION view,
14-3
DBA_GG_SUPPORTED_PACKAGES view,
14-3, 14-4
DBA_GG_SUPPORTED_PROCEDURES view,
14-3, 14-5
DBA_REPLICATION_PROCESS EVENTS view,
6-3,11-4
DBMS_XSTREAM_ADM package, 5-7
demos
file-based replication, 1-6
ID key LCRs, 3-6
SQL generation, 2-42
XStream, A-1
dependency scheduling
outbound servers, B-11
direct path load
capture processes, B-7
distributed transactions
XStream Out, 3-27
DML conflict handlers, 10-21, 10-23
displaying information about, 11-8
DROP SUPPLEMENTAL LOG DATA clause of
ALTER DATABASE, 4-20
DROP SUPPLEMENTAL LOG GROUP clause,
4-18
DROP_INBOUND procedure, 10-38
DROP_OUTBOUND procedure, 5-31

E

eager errors, 10-33
eager_size apply parameter, 8-14
error handlers

displaying information about, 11-9
error handling, 10-26

Index-2

F

fast recovery area
capture processes, 3-38
flashback data archive
XStream In, 8-19
XStream Out, 3-38

G

GET_COMMA, 11-13

GET_DDL_TEXT member function, 11-13

GET_ERROR_MESSAGE function, 11-15, 11-16

GET_OBJECT_NAME member function, 11-13

GET_OBJECT_OWNER member function, 11-13

GET_SOURCE_DATABASE_NAME member
function, 11-13

GET_VALUES member function, 11-13

GG_PROCEDURE_REPLICATION_ON
procedure, 14-2

H

HANDLE_COLLISIONS procedure, 10-19

ID key LCRs, 3-5
demo, 3-6
IGNORE conflict resolution handler, 10-14
inbound servers, 8-2
applied high position, 8-11
applied low position, 8-11
apply user, 8-16
changing, 10-5
configuring, 9-9
data types, C-1
DDL changes
current schema, C-4
ignored, C-3
dropping, 10-38
eager errors, 10-33
large transactions, 8-14
Oracle Label Security (OLS), C-4
positions, 8-11
monitoring, 11-7
preparing for, 9-1
processed low position, 8-11
spill position, 8-11
INCLUDE_EXTRA_ATTRIBUTE procedure, 7-11
initialization parameters
XStream In, 9-7
XStream Out, 4-14
INSERT_PROCREP_EXCLUSION_OBJ
procedure, 14-2

ORACLE

Index

instantiation system change number, 3-23
IS NULL_TAG member function, 11-13

K

keystores
XStream Out, 3-37

L

last sent position
monitoring, 6-8

LCRIDs, 2-8

logical change records (LCRSs), 1-1
commit_scn_from_position attribute, 3-25
DDL LCRs

current_schema, C-4

getting information about, 11-13
ID key LCRs, 3-5
missing, 7-7, 12-5
missing attributes, 7-11
scn_from_position attribute, 3-25
sequence LCRs, 2-7

M

MAX_AND_EQUALS conflict resolution handler,
10-14
max_parallelism apply parameter, 8-14
maximum checkpoint SCN, 3-17
MAXIMUM conflict resolution handler, 10-14
message_tracking_frequency apply parameter,
12-5
MIN_AND_EQUALS conflict resolution handler,
10-14
MINIMUM conflict resolution handler, 10-14
multitenant architecture
XStream In, 8-20
XStream Out, 3-42

N

NOLOGGING mode
capture process, B-7

O

OCIXStreamOutAttach(), 7-6
online redefinition
capture process, B-6
ORA-03135 error, 12-5
Oracle GoldenGate, 13-1
conflict detection and resolution, 13-3
column groups, 13-7, 13-17, 13-19

Oracle GoldenGate (continued)

conflict detection and resolution (continued)

delta, 13-5
latest timestamp, 13-3
piecewise LOB updates, 13-7
tables configured for, 13-16
procedural replication, 14-1, 14-2
excluding objects, 14-2
supported packages, 14-4
supported procedures, 14-5, 14-6
Oracle Label Security (OLS)
capture processes, B-9
inbound servers, C-4
Oracle Real Application Clusters
interoperation with Oracle Streams, 3-32
interoperation with XStream In, 8-18
interoperation with XStream Out, 3-33, 3-35
queues, 3-33
Oracle Streams, 1-1
queues
Oracle Real Application Clusters, 3-33
Oracle Streams Performance Advisor
XStream, 2-24
outbound servers, 3-20
apply handlers, B-11
apply user, 3-22
capture processes, 3-20
configuration options, 4-1
configuring, 4-27
conflict resolution, B-11
connect user, 3-28, 3-30
changing, 5-5
data types, B-9
DDL changes
ignored, B-10
dependency scheduling, B-11
dropping, 5-31
monitoring, 6-4
preparing for, 4-1
processed low position, 3-26
monitoring, 6-10
rules
adding, 5-17
removing, 5-22
SET_ENQUEUE_DESTINATION procedure,
B-11
SET_EXECUTE procedure, B-11
statistics
monitoring, 6-9
streaming network transmission, 3-27
substitute key columns, B-11
tags, B-11
transactions
monitoring, 6-8
OVERWRITE conflict resolution handler, 10-14

ORACLE

Index

P

PDBs
XStream In, 8-20
XStream Out, 3-42
configuring, 4-40
positions
applied high position, 8-11, 11-7
applied low position, 8-11, 11-7
processed low position, 3-26, 6-10, 8-11,
11-7
spill position, 8-11, 11-7
XStream, 2-7
XStream In, 8-11
monitoring, 11-7
XStream Out, 3-25
processed low position, 3-26
monitoring, 6-10
propagations, 3-20
gueue-to-queue
Oracle Real Application Clusters, 3-33
Transparent Data Encryption, 3-36
PURGE_TOMBSTONES procedure, 13-14

Q

queues
Oracle Real Application Clusters, 3-33

R

Recovery Manager
capture processes
archived redo log files, 3-38
REMOVE_AUTO_CDR procedure, 13-14
REMOVE_AUTO_CDR_COLUMN_GROUP
procedure, 13-15
REMOVE_AUTO_CDR_DELTA_RES procedure,
13-15
REMOVE_RULE procedure, 5-25
REMOVE_SUBSET_OUTBOUND_RULES
procedure, 5-24
REMOVE_XSTREAM_ADM procedure, 5-32
replication
configuring
supplemental logging, 4-15
sequences, 10-11
XStream, 1-5
required checkpoint SCN, 3-17
resolution columns, 10-18
restrictions
XStream In, C-1
XStream Out, B-1
rule-based transformations, 1-1, 7-7, 8-1, 12-5
restrictions, B-14

Index-4

rules, 1-1, 8-1
restrictions, B-13
XStream
monitoring, 6-23
XStream Out, 5-17
custom conditions, 5-21

S

scn_from_position LCR attribute, 3-25
security
trusted user model, 1-8
untrusted user model, 1-8
XStream In, 8-16
component-level, 8-17
XStream Out, 3-28
client, 3-28
component-level, 3-29
sequence LCRs, 2-7
sequences, 10-11
replication, 10-11
SET_DML_CONFLICT_HANDLER procedure,
10-13
SET_DML_HANDLER procedure, 10-20
SET_ENQUEUE_DESTINATION procedure
outbound servers, B-11
SET_EXECUTE procedure
outbound servers, B-11
SET_MESSAGE_TRACKING procedure, 7-7,
12-5
SET_REPERROR_HANDLER procedure, 10-26
SET_TRIGGER_FIRING_PROPERTY
procedure, 8-10
source database, 3-20
split and merge, 3-23
SQL generation
character sets, 2-39
data types, 2-36
examples, 2-39
XStream, 2-34
character sets, 2-36
demo, 2-42
formats, 2-35
interfaces, 2-35
SQL*Loader
capture processes, B-7
statistics
XStream Out, 6-9
Streams pool, 7-13
XStream In, 9-8
XStream Out, 4-14
substitute key columns
outbound servers, B-11
supplemental logging, 4-15
column lists, 10-17

ORACLE

Index

T

tags
outbound server, B-11
Transparent Data Encryption
buffered queues, 3-37
capture processes, 3-36
propagations, 3-36
transportable tablespaces
interoperation with XStream In, 8-19
triggers
XStream In, 8-10
troubleshooting
XStream, 7-1, 12-1

U

UNRECOVERABLE clause
SQL*Loader
capture process, B-7
UNRECOVERABLE SQL keyword
capture process, B-7
UTL_SPADV package
XStream, 2-27

V

V$PROPAGATION_RECEIVER view, 7-13

V$SESSION view, 6-2

V$STREAMS CAPTURE view, 7-13

V$STREAMS POOL_STATISTICS view, 7-13

V$XSTREAM_CAPTURE view, 7-7, 12-5

V$XSTREAM_OUTBOUND_SERVER view, 6-8,
6-9, 6-11

X

XA interface, 3-27
XStream
client applications
example, A-1
configuring, 4-1, 9-1, A-1
demos, A-1
diagnosing problems, 7-1, 12-1
event history, 6-3, 11-4
LCRIDs, 2-8
managing, 5-1, 10-1
overview, 5-1
monitoring, 6-1, 11-1
outbound servers, 6-4
rules, 6-23
Oracle Streams Performance Advisor, 2-24
positions, 2-7
replication

XStream (continued)
replication (continued)
sequences, 10-11
security, 3-28, 8-16
sequences, 10-11
session information, 6-2
SQL generation, 2-34
troubleshooting, 7-1, 12-1
client application, 7-6, 7-13
inbound servers, 12-4
missing LCR attributes, 7-11
missing LCRs, 7-7, 12-5
ORA-03135 error, 12-5
use cases, 1-4
replication, 1-5
sharing data in files, 1-5
UTL_SPADV package, 2-27
XStream In
applied high position, 8-11
applied low position, 8-11
apply user, 10-5
configuring, 9-9
conflicts, 10-6
eager errors, 10-33
inbound servers, 8-2
initialization parameters, 9-7
position, 11-7
positions, 8-11
preparing for, 9-1
processed low position, 8-11
spill position, 8-11
Streams pool, 9-8
triggers, 8-10
XStream Out, 3-1
ARCHIVELOG mode, 4-13
configuration options, 4-1
configuring, 4-27
database links, 4-12

ORACLE

Index

XStream (continued)

XStream Out (continued)
distributed transactions, 3-27
dropping components, 5-31, 10-38
ID key LCRs, 3-5

initialization parameters, 4-14
monitoring, 6-4

outbound servers, 3-20

positions, 3-25

preparing for, 4-1

process, 6-11

processed low position, 3-26, 6-10
rules, 5-17

sequence LCRs, 2-7

statistics, 6-9

streaming network transmission, 3-27
Streams pool, 4-14

transactions, 6-8

XStream In, 8-1

conflicts, 10-6

flashback data archive, 8-19

interoperation with Oracle Real Application
Clusters, 8-18

interoperation with transportable
tablespaces, 8-19

large transactions, 8-14

restrictions, C-1

XStream Out, 3-1

flashback data archive, 3-38
propagation

Oracle Real Application Clusters, 3-33
removing configuration, 5-32
restrictions, B-1
rule restrictions, B-13
rule-based transformation restrictions, B-14
staging

Oracle Real Application Clusters, 3-33
Transparent Data Encryption, 3-37

Index-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database XStream Guide
	Changes in Oracle Database Release 18c, Version 18.1
	New Features

	Changes in Oracle Database 12c Release 2 (12.2.0.1)
	New Features

	Changes in Oracle Database 12c Release 1 (12.1)
	New Features

	Part I XStream General Concepts and Use Cases
	1 Introduction to XStream
	1.1 About XStream
	1.2 Purpose of XStream
	1.3 XStream Use Cases
	1.3.1 Replicating Data Changes with Non-Oracle Databases
	1.3.2 Using Files to Store Data Changes
	1.3.2.1 XStream Demo That Replicates Database Changes Using Files

	1.3.3 Sharing Data Changes with a Client-Side Memory Cache

	1.4 Prerequisites for XStream
	1.5 XStream Security Models
	1.6 Tasks and Tools for XStream
	1.6.1 XStream Tasks
	1.6.2 XStream Tools

	2 General XStream Concepts
	2.1 Logical Change Records (LCRs)
	2.1.1 Row LCRs
	2.1.1.1 Row LCR Subtypes

	2.1.2 DDL LCRs
	2.1.3 Extra Information in Row LCRs and DDL LCRs
	2.1.4 Sequence LCRs
	2.1.5 Position Order in an LCR Stream
	2.1.6 LCRIDs and the Position of LCRs

	2.2 Rules and Rule Sets
	2.2.1 Rules and Rule Sets Defined
	2.2.2 Rule Sets and XStream Components
	2.2.3 System-Created Rules and XStream
	2.2.3.1 XStream System-Created Rule Procedures
	2.2.3.2 Global Rules
	2.2.3.3 Schema Rules
	2.2.3.4 Table Rules
	2.2.3.5 Subset Rules
	2.2.3.6 System-Created Rules and a Multitenant Environment
	2.2.3.6.1 System-Created Rules in a CDB and XStream Out
	2.2.3.6.2 System-Created Rules in a CDB and XStream In

	2.3 Rule-Based Transformations
	2.3.1 Declarative Rule-Based Transformations
	2.3.2 Declarative Rule-Based Transformation Ordering
	2.3.3 Evaluating Transformation Ordering
	2.3.3.1 Row Migration Transformation Ordering
	2.3.3.2 User-Specified Declarative Transformation Ordering
	2.3.3.3 Considerations for Rule-Based Transformations

	2.4 XStream and the Oracle Streams Performance Advisor
	2.4.1 XStream Components
	2.4.1.1 XStream Out Apply Subcomponents
	2.4.1.2 XStream In Apply Subcomponents

	2.4.2 Topology and Stream Paths
	2.4.3 XStream and Component-Level Statistics
	2.4.4 The UTL_SPADV Package
	2.4.4.1 Collecting XStream Statistics Using the UTL_SPADV Package
	2.4.4.2 Showing XStream Statistics on the Command Line
	2.4.4.3 Interpreting SHOW_STATS Output
	2.4.4.3.1 Sample Output When an Outbound Server Is the Last Component in a Path
	2.4.4.3.2 Sample Output When an Inbound Server Is the Last Component in a Path

	2.4.4.4 Showing XStream Statistics in an HTML Report
	2.4.4.5 Interpreting the HTML Report From SHOW_STATS_HTML

	2.5 XStream and SQL Generation
	2.5.1 Interfaces for Performing SQL Generation
	2.5.2 SQL Generation Formats
	2.5.3 SQL Generation and Data Types
	2.5.3.1 SQL Generation and Automatic Data Type Conversion
	2.5.3.2 SQL Generation and LOB, LONG, LONG RAW, and XMLType Data Types

	2.5.4 SQL Generation and Character Sets
	2.5.5 Sample Generated SQL Statements
	2.5.5.1 Sample Generated SQL Statements for the hr.employees Table
	2.5.5.2 Sample Generated SQL Statements for a Table With LOB Columns

	2.5.6 SQL Generation Demo

	Part II XStream Out
	3 XStream Out Concepts
	3.1 Introduction to XStream Out
	3.2 Capture Processes
	3.2.1 Capture Process Overview
	3.2.2 Data Types Captured by a Capture Process
	3.2.2.1 ID Key LCRs
	3.2.2.2 ID Key LCRs Demo

	3.2.3 Types of DML Changes Captured by Capture Processes
	3.2.4 Local Capture and Downstream Capture
	3.2.4.1 Local Capture
	3.2.4.1.1 The Source Database Performs All Change Capture Actions
	3.2.4.1.2 Advantages of Local Capture

	3.2.4.2 Downstream Capture
	3.2.4.2.1 Real-Time Downstream Capture
	3.2.4.2.2 Archived-Log Downstream Capture
	3.2.4.2.3 The Downstream Database Performs Most Change Capture Actions
	3.2.4.2.4 Advantages of Downstream Capture
	3.2.4.2.5 Optional Database Link From the Downstream Database to the Source Database
	3.2.4.2.6 Operational Requirements for Downstream Capture with XStream Out

	3.2.5 Capture Processes and RESTRICTED SESSION
	3.2.6 Capture Process Subcomponents
	3.2.7 Capture Process States
	3.2.8 Capture Process Parameters
	3.2.9 Capture Process Checkpoints and XStream Out
	3.2.9.1 Required Checkpoint SCN
	3.2.9.2 Maximum Checkpoint SCN
	3.2.9.3 Checkpoint Retention Time

	3.2.10 SCN Values Related to a Capture Process
	3.2.10.1 Captured SCN and Applied SCN
	3.2.10.2 First SCN and Start SCN
	3.2.10.2.1 First SCN
	3.2.10.2.2 Start SCN
	3.2.10.2.3 Start SCN Must Be Greater Than or Equal to First SCN

	3.3 Outbound Servers
	3.3.1 Overview of Outbound Servers
	3.3.2 Data Types Supported by Outbound Servers
	3.3.3 Apply User for an Outbound Server
	3.3.4 Outbound Servers and RESTRICTED SESSION
	3.3.5 Outbound Server Subcomponents
	3.3.6 Considerations for Outbound Servers
	3.3.7 Outbound Servers and Apply Parameters

	3.4 Position of LCRs and XStream Out
	3.4.1 Additional LCR Attributes Related to Position in XStream Out
	3.4.2 The Processed Low Position and Restartability for XStream Out
	3.4.3 Streaming Network Transmission

	3.5 XStream Out and Distributed Transactions
	3.6 XStream Out and Security
	3.6.1 The XStream Out Client Application and Security
	3.6.2 XStream Out Component-Level Security
	3.6.3 Privileges Required by the Capture User for a Capture Process
	3.6.4 Privileges Required by the Connect User for an Outbound Server

	3.7 XStream Out and Other Oracle Database Components
	3.7.1 XStream Out and Oracle Real Application Clusters
	3.7.1.1 Capture Processes and Oracle Real Application Clusters
	3.7.1.2 Queues and Oracle Real Application Clusters
	3.7.1.3 Propagations and Oracle Real Application Clusters
	3.7.1.4 Outbound Servers and Oracle Real Application Clusters

	3.7.2 XStream Out and Transparent Data Encryption
	3.7.2.1 Capture Processes and Transparent Data Encryption
	3.7.2.2 Propagations and Transparent Data Encryption
	3.7.2.3 Outbound Servers and Transparent Data Encryption

	3.7.3 XStream Out and Flashback Data Archive
	3.7.4 XStream Out and Recovery Manager
	3.7.4.1 RMAN and Local Capture Processes
	3.7.4.2 RMAN and Downstream Capture Processes

	3.7.5 XStream and Distributed Transactions
	3.7.6 XStream Out and a Multitenant Environment

	4 Configuring XStream Out
	4.1 Preparing for XStream Out
	4.1.1 Decide How to Configure XStream Out
	4.1.2 Prerequisites for Configuring XStream Out
	4.1.2.1 Configure an XStream Administrator on All Databases
	4.1.2.2 Granting Additional Privileges to the XStream Administrator
	4.1.2.3 If Required, Configure Network Connectivity and Database Links
	4.1.2.4 Ensure That Each Source Database Is in ARCHIVELOG Mode
	4.1.2.5 Set the Relevant Initialization Parameters
	4.1.2.6 Configure the Streams pool
	4.1.2.7 If Required, Configure Supplemental Logging
	4.1.2.7.1 Required Supplemental Logging in an XStream Environment
	4.1.2.7.2 Specifying Table Supplemental Logging Using Unconditional Log Groups
	4.1.2.7.3 Specifying Table Supplemental Logging Using Conditional Log Groups
	4.1.2.7.4 Dropping a Supplemental Log Group
	4.1.2.7.5 Specifying Database Supplemental Logging of Key Columns
	4.1.2.7.6 Dropping Database Supplemental Logging of Key Columns
	4.1.2.7.7 Procedures That Automatically Specify Supplemental Logging

	4.1.2.8 If Required, Configure Log File Transfer to a Downstream Database
	4.1.2.9 If Required, Add Standby Redo Logs for Real-Time Downstream Capture

	4.2 Configuring XStream Out
	4.2.1 Configuring an Outbound Server Using CREATE_OUTBOUND
	4.2.2 Adding an Additional Outbound Server to a Capture Process Stream
	4.2.3 Configuring an Outbound Server Using ADD_OUTBOUND
	4.2.4 Configuring XStream Out in a CDB
	4.2.4.1 Configuring XStream Out with Local Capture in a CDB
	4.2.4.2 Configuring XStream Out with Downstream Capture in CDBs

	5 Managing XStream Out
	5.1 About Managing XStream Out
	5.2 Managing an Outbound Server
	5.2.1 Starting an Outbound Server
	5.2.2 Stopping an Outbound Server
	5.2.3 Setting an Apply Parameter for an Outbound Server
	5.2.4 Changing the Connect User for an Outbound Server

	5.3 Managing the Capture Process for an Outbound Server
	5.3.1 Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture Process
	5.3.2 Starting a Capture Process
	5.3.3 Stopping a Capture Process
	5.3.4 Setting a Capture Process Parameter
	5.3.5 Changing the Capture User of an Outbound Server's Capture Process
	5.3.6 Changing the Start SCN or Start Time of an Outbound Server's Capture Process
	5.3.6.1 Changing the Start SCN of an Outbound Server's Capture Process
	5.3.6.2 Changing the Start Time of an Outbound Server's Capture Process

	5.3.7 Setting the First SCN for a Capture Process

	5.4 Managing Rules for an XStream Out Configuration
	5.4.1 Adding Rules to an XStream Out Configuration
	5.4.1.1 Adding Schema Rules and Table Rules to an XStream Out Configuration
	5.4.1.2 Adding Subset Rules to an Outbound Server's Positive Rule Set
	5.4.1.3 Adding Rules With Custom Conditions to XStream Out Components

	5.4.2 Removing Rules from an XStream Out Configuration
	5.4.2.1 Removing Schema Rules and Table Rules From an XStream Out Configuration
	5.4.2.2 Removing Subset Rules from an Outbound Server's Positive Rule Set
	5.4.2.3 Removing Rules Using the REMOVE_RULE Procedure

	5.5 Managing Declarative Rule-Based Transformations
	5.5.1 Adding Declarative Rule-Based Transformations
	5.5.1.1 Adding a Declarative Rule-Based Transformation That Renames a Table
	5.5.1.2 Adding a Declarative Rule-Based Transformation That Adds a Column

	5.5.2 Overwriting Existing Declarative Rule-Based Transformations
	5.5.3 Removing Declarative Rule-Based Transformations

	5.6 Dropping Components in an XStream Out Configuration
	5.7 Removing an XStream Out Configuration

	6 Monitoring XStream Out
	6.1 About Monitoring XStream Out
	6.2 Monitoring Session Information About XStream Out Components
	6.3 Monitoring the History of Events for XStream Out Components
	6.4 Monitoring an Outbound Server
	6.4.1 Displaying General Information About an Outbound Server
	6.4.2 Displaying Status and Error Information for an Outbound Server
	6.4.3 Displaying Information About an Outbound Server's Current Transaction
	6.4.4 Displaying Statistics for an Outbound Server
	6.4.5 Displaying the Processed Low Position for an Outbound Server
	6.4.6 Determining the Process Information for an Outbound Server
	6.4.7 Displaying the Apply Parameter Settings for an Outbound Server

	6.5 Monitoring the Capture Process for an Outbound Server
	6.5.1 Displaying Change Capture Information About Each Capture Process
	6.5.2 Displaying the Registered Redo Log Files for Each Capture Process
	6.5.3 Displaying Redo Log Files That Are Required by Each Capture Process
	6.5.4 Displaying SCN Values for Each Redo Log File Used by Each Capture Process
	6.5.5 Listing the Parameter Settings for Each Capture Process
	6.5.6 Determining the Applied SCN for Each Capture Process
	6.5.7 Displaying the Redo Log Scanning Latency for Each Capture Process
	6.5.8 Displaying the Extra Attributes Captured by a Capture Process

	6.6 Monitoring XStream Rules
	6.7 Monitoring Declarative Rule-Based Transformations
	6.7.1 Displaying Information About ADD COLUMN Transformations
	6.7.2 Displaying Information About RENAME TABLE Transformations

	7 Troubleshooting XStream Out
	7.1 Diagnosing Problems with XStream Out
	7.1.1 Viewing Alerts
	7.1.2 Using the Streams Configuration Report and Health Check Script
	7.1.3 Checking the Trace File and Alert Log for Problems
	7.1.3.1 Capture Process Trace Files
	7.1.3.2 Logminer Trace Files
	7.1.3.3 Outbound Server Trace File
	7.1.3.4 Client Application Trace Files

	7.2 Problems and Solutions for XStream Out
	7.2.1 An OCI Client Application Cannot Attach to the Outbound Server
	7.2.2 Changes Are Failing to Reach the Client Application in XStream Out
	7.2.3 The Capture Process Is Missing Required Redo Log Files
	7.2.4 LCRs Streaming from an Outbound Server Are Missing Extra Attributes
	7.2.5 The XStream Out Client Application Is Unresponsive

	7.3 How to Get More Help with XStream Out

	Part III XStream In
	8 XStream In Concepts
	8.1 Introduction to XStream In
	8.2 The Inbound Server
	8.2.1 Overview of Inbound Servers
	8.2.2 Data Types Applied by Inbound Servers
	8.2.3 LCR Processing Options for Inbound Servers
	8.2.3.1 DML Handlers
	8.2.3.1.1 Statement DML Handlers
	8.2.3.1.2 Procedure DML Handlers

	8.2.3.2 Error Handlers
	8.2.3.3 DDL Handlers
	8.2.3.4 Precommit Handlers

	8.2.4 Inbound Servers and RESTRICTED SESSION
	8.2.5 Inbound Server Components
	8.2.6 Considerations for Inbound Servers
	8.2.7 The Error Queue for an Inbound Server

	8.3 Position of LCRs and XStream In
	8.4 XStream In and Performance Considerations
	8.4.1 Optimizing XStream In Performance for Large Transactions
	8.4.2 Avoiding Potential Bottlenecks in Transaction Tracking
	8.4.3 Optimizing Transaction Apply Scheduling

	8.5 XStream In and Security
	8.5.1 The XStream In Client Application and Security
	8.5.2 XStream In Component-Level Security
	8.5.3 Privileges Required by the Apply User for an Inbound Server

	8.6 XStream In and Other Oracle Database Components
	8.6.1 XStream In and Oracle Real Application Clusters
	8.6.2 XStream In and Flashback Data Archive
	8.6.3 XStream In and Transportable Tablespaces
	8.6.4 XStream In and a Multitenant Environment

	9 Configuring XStream In
	9.1 Preparing for XStream In
	9.1.1 Configure an XStream Administrator
	9.1.1.1 Granting Additional Privileges to the XStream Administrator

	9.1.2 Set the Relevant Initialization Parameters
	9.1.3 Configure the Streams pool
	9.1.4 If Required, Specify Supplemental Logging at the Source Database

	9.2 Configuring XStream In

	10 Managing XStream In
	10.1 About Managing XStream In
	10.2 Starting an Inbound Server
	10.3 Stopping an Inbound Server
	10.4 Setting an Apply Parameter for an Inbound Server
	10.5 Changing the Apply User for an Inbound Server
	10.6 Managing XStream In Conflict Detection and Resolution
	10.6.1 About DML Conflicts in an XStream Environment
	10.6.2 Conflict Types in an XStream Environment
	10.6.2.1 Update Conflicts in an XStream Environment
	10.6.2.2 Uniqueness Conflicts in an XStream Environment
	10.6.2.3 Delete Conflicts in an XStream Environment
	10.6.2.4 Foreign Key Conflicts in an XStream Environment

	10.6.3 Conflicts and Transaction Ordering in an XStream Environment
	10.6.4 Conflict Detection in an XStream Environment
	10.6.4.1 About Conflict Detection in an XStream Environment
	10.6.4.2 Control Over Conflict Detection for Non-Key Columns
	10.6.4.3 Rows Identification During Conflict Detection in an XStream Environment

	10.6.5 Conflict Avoidance in an XStream Environment
	10.6.5.1 Use a Primary Database Ownership Model
	10.6.5.2 Avoid Specific Types of Conflicts
	10.6.5.2.1 Avoid Uniqueness Conflicts in an XStream Environment
	10.6.5.2.2 Avoid Delete Conflicts in an Oracle Streams Environment
	10.6.5.2.3 Avoid Update Conflicts in an XStream Environment

	10.6.6 Conflict Resolution in an XStream Environment
	10.6.6.1 About Conflict Resolution in an XStream Environment
	10.6.6.2 Prebuilt DML Conflict Handlers
	10.6.6.3 Types of Prebuilt DML Conflict Handlers
	10.6.6.4 Column Lists
	10.6.6.5 Resolution Columns
	10.6.6.6 Data Convergence
	10.6.6.7 Collision Handling Without a DML Conflict Handler
	10.6.6.8 Custom Conflict Handlers

	10.6.7 Managing DML Conflict Handlers
	10.6.7.1 Setting a DML Conflict Handler
	10.6.7.2 Removing a DML Conflict Handler

	10.6.8 Stopping Conflict Detection for Non-Key Columns

	10.7 Managing Apply Errors
	10.7.1 Inbound Server Error Handling
	10.7.1.1 About Error Handlers
	10.7.1.2 Setting and Unsetting an Error Handler

	10.7.2 Retrying Apply Error Transactions
	10.7.2.1 Retrying a Specific Apply Error Transaction
	10.7.2.1.1 Retrying a Specific Apply Error Transaction Without a User Procedure
	10.7.2.1.2 Retrying a Specific Apply Error Transaction With a User Procedure

	10.7.2.2 Retrying All Error Transactions for an Inbound Server

	10.7.3 Deleting Apply Error Transactions
	10.7.3.1 Deleting a Specific Apply Error Transaction
	10.7.3.2 Deleting All Error Transactions for an Inbound Server

	10.7.4 Managing Eager Errors Encountered by an Inbound Server

	10.8 Conflict and Error Handling Precedence
	10.9 Dropping Components in an XStream In Configuration

	11 Monitoring XStream In
	11.1 Displaying Session Information for Inbound Servers
	11.2 Displaying General Information About an Inbound Server
	11.3 Monitoring the History of Events for XStream In Components
	11.4 Displaying the Status and Error Information for an Inbound Server
	11.5 Displaying Apply Parameter Settings for an Inbound Server
	11.6 Displaying the Position Information for an Inbound Server
	11.7 Displaying Information About DML Conflict Handlers
	11.8 Displaying Information About Error Handlers
	11.9 Checking for Apply Errors
	11.10 Displaying Detailed Information About Apply Errors
	11.10.1 Step 1: Grant Explicit SELECT Privilege on the ALL_APPLY_ERROR View
	11.10.2 Step 2: Create a Procedure that Prints the Value in an ANYDATA Object
	11.10.3 Step 3: Create a Procedure that Prints a Specified LCR
	11.10.4 Step 4: Create a Procedure that Prints All the LCRs in the Error Queue
	11.10.5 Step 5: Create a Procedure that Prints All the Error LCRs for a Transaction

	12 Troubleshooting XStream In
	12.1 Diagnosing Problems with XStream In
	12.1.1 Viewing Alerts
	12.1.2 Checking the Trace File and Alert Log for Problems

	12.2 Problems and Solutions for XStream In
	12.2.1 XStream In Cannot Identify an Inbound Server
	12.2.2 Inbound Server Encounters an ORA-03135 Error
	12.2.3 Changes Are Failing to Reach the Client Application in XStream In

	12.3 How to Get More Help with XStream In

	Part IV Oracle GoldenGate Capabilities in Oracle Database
	13 Oracle GoldenGate Automatic Conflict Detection and Resolution
	13.1 About Oracle GoldenGate
	13.2 About Automatic Conflict Detection and Resolution
	13.2.1 Automatic Conflict Detection and Resolution
	13.2.2 Latest Timestamp Conflict Detection and Resolution
	13.2.3 Delta Conflict Detection and Resolution
	13.2.4 Column Groups

	13.3 Configuring Automatic Conflict Detection and Resolution
	13.3.1 Configuring Latest Timestamp Conflict Detection and Resolution
	13.3.2 Configuring Delta Conflict Detection and Resolution

	13.4 Managing Automatic Conflict Detection and Resolution
	13.4.1 Altering Conflict Detection and Resolution for a Table
	13.4.2 Altering a Column Group
	13.4.3 Purging Tombstone Rows
	13.4.4 Removing Conflict Detection and Resolution From a Table
	13.4.5 Removing a Column Group
	13.4.6 Removing Delta Conflict Detection and Resolution

	13.5 Monitoring Automatic Conflict Detection and Resolution
	13.5.1 Displaying Information About the Tables Configured for Conflicts
	13.5.2 Displaying Information About Conflict Resolution Columns
	13.5.3 Displaying Information About Column Groups

	14 Oracle GoldenGate Procedural Replication
	14.1 About Oracle GoldenGate Procedural Replication
	14.2 Determining Whether Procedural Replication Is On
	14.3 Excluding Objects from Procedural Replication
	14.4 Monitoring Oracle GoldenGate Procedural Replication
	14.4.1 Displaying the Packages Supported for Oracle GoldenGate Procedural Replication
	14.4.2 Listing the Procedures Supported for Oracle GoldenGate Procedural Replication
	14.4.3 Displaying Information About Database Objects Excluded from Oracle GoldenGate Procedural Replication

	Part V Appendixes
	A Sample XStream Client Application
	A.1 About the Sample XStream Client Application
	A.2 Sample XStream Client Application for the Oracle Call Interface API
	A.3 Sample XStream Client Application for the Java API

	B XStream Out Restrictions
	B.1 Capture Process Restrictions
	B.1.1 Unsupported Data Types for Capture Processes
	B.1.2 Unsupported Changes for Capture Processes
	B.1.2.1 Unsupported Schemas for Capture Processes
	B.1.2.2 Unsupported Table Types for Capture Processes
	B.1.2.3 Unsupported DDL Changes for Capture Processes
	B.1.2.4 Changes Ignored by a Capture Process
	B.1.2.5 NOLOGGING and UNRECOVERABLE Keywords for SQL Operations
	B.1.2.6 UNRECOVERABLE Clause for Direct Path Loads

	B.1.3 Supplemental Logging Data Type Restrictions
	B.1.4 Operational Requirements for Downstream Capture with XStream Out
	B.1.5 Capture Processes Do Not Support Oracle Label Security

	B.2 Propagation Restrictions
	B.2.1 Connection Qualifiers and Propagations

	B.3 Outbound Server Restrictions
	B.3.1 Unsupported Data Types for Outbound Servers
	B.3.2 Types of DDL Changes Ignored by an Outbound Server
	B.3.3 Apply Process Features That Are Not Applicable to Outbound Servers

	B.4 XStream Out Rule Restrictions
	B.4.1 Restrictions for Subset Rules

	B.5 XStream Out Rule-Based Transformation Restrictions
	B.5.1 Unsupported Data Types for Declarative Rule-Based Transformations

	B.6 XStream Out Limitations for Extended Data Types

	C XStream In Restrictions
	C.1 Inbound Server Restrictions
	C.1.1 Unsupported Data Types for Inbound Servers
	C.1.2 Unsupported Data Types for Apply Handlers
	C.1.3 Types of DDL Changes Ignored by an Inbound Server
	C.1.4 Current Schema User Must Exist at Destination Database
	C.1.5 Inbound Servers Do Not Support Oracle Label Security

	C.2 XStream In Rule Restrictions
	C.2.1 Restrictions for Subset Rules

	C.3 XStream In Rule-Based Transformation Restrictions
	C.3.1 Unsupported Data Types for Declarative Rule-Based Transformations

	C.4 XStream In Limitations for Extended Data Types

	Index

