
Oracle® Data Mining
User's Guide

18c
E83731-03
November 2020

Oracle Data Mining User's Guide, 18c

E83731-03

Copyright © 2005, 2020, Oracle and/or its affiliates.

Primary Author: Sarika Surampudi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xii

Documentation Accessibility xii

Related Documentation xii

Conventions xiv

 Changes in This Release for Oracle Data Mining User's Guide

Oracle Data Mining User's Guide is New in This Release xv

Changes in Oracle Data Mining 18c xv

1 Data Mining With SQL

1.1 Highlights of the Data Mining API 1-1

1.2 Example: Targeting Likely Candidates for a Sales Promotion 1-2

1.3 Example: Analyzing Preferred Customers 1-3

1.4 Example: Segmenting Customer Data 1-5

1.5 Example : Building an ESA Model with a Wiki Dataset 1-6

2 About the Data Mining API

2.1 About Mining Models 2-1

2.2 Data Mining Data Dictionary Views 2-2

2.2.1 ALL_MINING_MODELS 2-2

2.2.2 ALL_MINING_MODEL_ATTRIBUTES 2-3

2.2.3 ALL_MINING_MODEL_PARTITIONS 2-4

2.2.4 ALL_MINING_MODEL_SETTINGS 2-5

2.2.5 ALL_MINING_MODEL_VIEWS 2-6

2.2.6 ALL_MINING_MODEL_XFORMS 2-7

2.3 Data Mining PL/SQL Packages 2-7

2.3.1 DBMS_DATA_MINING 2-8

2.3.2 DBMS_DATA_MINING_TRANSFORM 2-8

2.3.2.1 Transformation Methods in DBMS_DATA_MINING_TRANSFORM 2-9

iii

2.3.3 DBMS_PREDICTIVE_ANALYTICS 2-9

2.4 Data Mining SQL Scoring Functions 2-10

3 Preparing the Data

3.1 Data Requirements 3-1

3.1.1 Column Data Types 3-2

3.1.2 Data Sets for Classification and Regression 3-2

3.1.3 Scoring Requirements 3-2

3.2 About Attributes 3-3

3.2.1 Data Attributes and Model Attributes 3-3

3.2.2 Target Attribute 3-4

3.2.3 Numericals, Categoricals, and Unstructured Text 3-5

3.2.4 Model Signature 3-5

3.2.5 Scoping of Model Attribute Name 3-6

3.2.6 Model Details 3-6

3.3 Using Nested Data 3-7

3.3.1 Nested Object Types 3-7

3.3.2 Example: Transforming Transactional Data for Mining 3-8

3.4 Using Market Basket Data 3-10

3.4.1 Example: Creating a Nested Column for Market Basket Analysis 3-10

3.5 Using Retail Analysis Data 3-11

3.5.1 Example: Calculating Aggregates 3-12

3.6 Handling Missing Values 3-12

3.6.1 Examples: Missing Values or Sparse Data? 3-13

3.6.1.1 Sparsity in a Sales Table 3-13

3.6.1.2 Missing Values in a Table of Customer Data 3-13

3.6.2 Missing Value Treatment in Oracle Data Mining 3-13

3.6.3 Changing the Missing Value Treatment 3-15

4 Transforming the Data

4.1 About Transformations 4-1

4.2 Preparing the Case Table 4-2

4.2.1 Creating Nested Columns 4-2

4.2.2 Converting Column Data Types 4-2

4.2.3 Text Transformation 4-2

4.2.4 About Business and Domain-Sensitive Transformations 4-3

4.3 Understanding Automatic Data Preparation 4-3

4.3.1 Binning 4-3

4.3.2 Normalization 4-4

iv

4.3.3 How ADP Transforms the Data 4-4

4.4 Embedding Transformations in a Model 4-5

4.4.1 Specifying Transformation Instructions for an Attribute 4-5

4.4.1.1 Expression Records 4-6

4.4.1.2 Attribute Specifications 4-6

4.4.2 Building a Transformation List 4-7

4.4.2.1 SET_TRANSFORM 4-7

4.4.2.2 The STACK Interface 4-7

4.4.2.3 GET_MODEL_TRANSFORMATIONS and
GET_TRANSFORM_LIST 4-8

4.4.3 Transformation Lists and Automatic Data Preparation 4-9

4.4.4 Oracle Data Mining Transformation Routines 4-9

4.4.4.1 Binning Routines 4-9

4.4.4.2 Normalization Routines 4-10

4.4.4.3 Outlier Treatment 4-11

4.4.4.4 Routines for Outlier Treatment 4-11

4.5 Understanding Reverse Transformations 4-11

5 Creating a Model

5.1 Before Creating a Model 5-1

5.2 The CREATE_MODEL Procedure 5-1

5.2.1 Choosing the Mining Function 5-2

5.2.2 Choosing the Algorithm 5-3

5.2.3 Supplying Transformations 5-4

5.2.3.1 Creating a Transformation List 5-4

5.2.3.2 Transformation List and Automatic Data Preparation 5-5

5.2.4 About Partitioned Model 5-5

5.2.4.1 Partitioned Model Build Process 5-6

5.2.4.2 DDL in Partitioned model 5-6

5.2.4.3 Partitioned Model scoring 5-7

5.3 Specifying Model Settings 5-7

5.3.1 Specifying Costs 5-9

5.3.2 Specifying Prior Probabilities 5-10

5.3.3 Specifying Class Weights 5-10

5.3.4 Model Settings in the Data Dictionary 5-11

5.3.5 Specifying Mining Model Settings for R Model 5-12

5.3.5.1 ALGO_EXTENSIBLE_LANG 5-12

5.3.5.2 RALG_BUILD_FUNCTION 5-13

5.3.5.3 RALG_DETAILS_FUNCTION 5-15

5.3.5.4 RALG_SCORE_FUNCTION 5-16

5.3.5.5 RALG_WEIGHT_FUNCTION 5-19

v

5.3.5.6 Registered R Scripts 5-20

5.3.5.7 R Model Demonstration Scripts 5-20

5.3.5.8 Algorithm Meta Data Registration 5-20

5.4 Model Detail Views 5-21

5.4.1 Model Detail Views for Association Rules 5-22

5.4.2 Model Detail View for Frequent Itemsets 5-27

5.4.3 Model Detail View for Transactional Itemsets 5-27

5.4.4 Model Detail View for Transactional Rule 5-28

5.4.5 Model Detail Views for Classification Algorithms 5-29

5.4.6 Model Detail Views for CUR Matrix Decomposition 5-30

5.4.7 Model Detail Views for Decision Tree 5-32

5.4.8 Model Detail Views for Generalized Linear Model 5-34

5.4.9 Model Detail Views for Naive Bayes 5-42

5.4.10 Model Detail Views for Neural Network 5-43

5.4.11 Model Detail Views for Random Forest 5-44

5.4.12 Model Detail View for Support Vector Machine 5-45

5.4.13 Model Detail Views for Clustering Algorithms 5-46

5.4.14 Model Detail Views for Expectation Maximization 5-49

5.4.15 Model Detail Views for k-Means 5-53

5.4.16 Model Detail Views for O-Cluster 5-54

5.4.17 Model Detail Views for Explicit Semantic Analysis 5-56

5.4.18 Model Detail Views for Non-Negative Matrix Factorization 5-58

5.4.19 Model Detail Views for Singular Value Decomposition 5-60

5.4.20 Model Detail View for Minimum Description Length 5-63

5.4.21 Model Detail View for Binning 5-63

5.4.22 Model Detail Views for Global Information 5-64

5.4.23 Model Detail View for Normalization and Missing Value Handling 5-65

5.4.24 Model Detail Views for Exponential Smoothing Models 5-66

6 Scoring and Deployment

6.1 About Scoring and Deployment 6-1

6.2 Using the Data Mining SQL Functions 6-2

6.2.1 Choosing the Predictors 6-2

6.2.2 Single-Record Scoring 6-3

6.3 Prediction Details 6-4

6.3.1 Cluster Details 6-4

6.3.2 Feature Details 6-5

6.3.3 Prediction Details 6-5

6.3.4 GROUPING Hint 6-7

6.4 Real-Time Scoring 6-8

vi

6.5 Dynamic Scoring 6-8

6.6 Cost-Sensitive Decision Making 6-10

6.7 DBMS_DATA_MINING.Apply 6-12

7 Mining Unstructured Text

7.1 About Unstructured Text 7-1

7.2 About Text Mining and Oracle Text 7-1

7.3 Data Preparation for Text Features 7-2

7.4 Creating a Model that Includes Text Mining 7-2

7.5 Creating a Text Policy 7-4

7.6 Configuring a Text Attribute 7-5

8 Administrative Tasks for Oracle Data Mining

8.1 Installing and Configuring a Database for Data Mining 8-1

8.1.1 About Installation 8-1

8.1.2 Enabling or Disabling a Database Option 8-2

8.1.3 Database Tuning Considerations for Data Mining 8-2

8.2 Upgrading or Downgrading Oracle Data Mining 8-3

8.2.1 Pre-Upgrade Steps 8-3

8.2.1.1 Dropping Models Created in Java 8-3

8.2.1.2 Dropping Mining Activities Created in Oracle Data Miner Classic 8-3

8.2.2 Upgrading Oracle Data Mining 8-4

8.2.2.1 Using Database Upgrade Assistant to Upgrade Oracle Data
Mining 8-4

8.2.2.2 Using Export/Import to Upgrade Data Mining Models 8-5

8.2.3 Post Upgrade Steps 8-6

8.2.4 Downgrading Oracle Data Mining 8-7

8.3 Exporting and Importing Mining Models 8-7

8.3.1 About Oracle Data Pump 8-7

8.3.2 Options for Exporting and Importing Mining Models 8-8

8.3.3 Directory Objects for EXPORT_MODEL and IMPORT_MODEL 8-9

8.3.4 Using EXPORT_MODEL and IMPORT_MODEL 8-9

8.3.5 EXPORT and IMPORT Serialized Models 8-11

8.3.6 Importing From PMML 8-11

8.4 Controlling Access to Mining Models and Data 8-12

8.4.1 Creating a Data Mining User 8-12

8.4.1.1 Granting Privileges for Data Mining 8-13

8.4.2 System Privileges for Data Mining 8-14

8.4.3 Object Privileges for Mining Models 8-15

8.5 Auditing and Adding Comments to Mining Models 8-15

vii

8.5.1 Adding a Comment to a Mining Model 8-15

8.5.2 Auditing Mining Models 8-16

A The Data Mining Sample Programs

A.1 About the Data Mining Sample Programs A-1

A.2 Installing the Data Mining Sample Programs A-2

A.3 The Data Mining Sample Data A-3

Index

viii

List of Tables

2-1 Data Dictionary Views for Oracle Data Mining 2-2

2-2 Data Mining PL/SQL Packages 2-8

2-3 DBMS_DATA_MINING_TRANSFORM Transformation Methods 2-9

2-4 Data Mining SQL Functions 2-10

3-1 Target Data Types 3-4

3-2 Grocery Store Data 3-12

3-3 Missing Value Treatment by Algorithm 3-14

4-1 Oracle Data Mining Algorithms With ADP 4-4

4-2 Fields in a Transformation Record for an Attribute 4-5

4-3 Binning Methods in DBMS_DATA_MINING_TRANSFORM 4-10

4-4 Normalization Methods in DBMS_DATA_MINING_TRANSFORM 4-10

4-5 Outlier Treatment Methods in DBMS_DATA_MINING_TRANSFORM 4-11

5-1 Preparation for Creating a Mining Model 5-1

5-2 Mining Model Functions 5-2

5-3 Data Mining Algorithms 5-3

5-4 Settings Table Required Columns 5-8

5-5 General Model Settings 5-8

5-6 Algorithm-Specific Model Settings 5-8

5-7 Cost Matrix Table Required Columns 5-9

5-8 Priors Table Required Columns 5-10

5-9 Class Weights Table Required Columns 5-10

5-10 ALL_MINING_MODEL_SETTINGS 5-11

5-11 Rule View Columns for Transactional Inputs 5-23

5-12 Rule View for 2-Dimensional Input 5-26

5-13 Global Detail for Association Rules 5-27

5-14 Frequent Itemsets View 5-27

5-15 Transactional Itemsets View 5-28

5-16 Transactional Rule View 5-29

5-17 Target Map View 5-29

5-18 Scoring Cost View 5-30

5-19 Attribute Importance and Rank View 5-30

5-20 Row Importance and Rank View 5-31

5-21 CUR Matrix Decomposition Statistics Information In Model Global View. 5-31

5-22 Split Information View 5-32

5-23 Node Statistics View 5-33

ix

5-24 Node Description View 5-33

5-25 Cost Matrix View 5-34

5-26 Decision Tree Statistics Information In Model Global View 5-34

5-27 Model View for Linear and Logistic Regression Models 5-35

5-28 Row Diagnostic View for Linear Regression 5-37

5-29 Row Diagnostic View for Logistic Regression 5-38

5-30 Global Details for Linear Regression 5-39

5-31 Global Details for Logistic Regression 5-40

5-32 Prior View for Naive Bayes 5-42

5-33 Result View for Naive Bayes 5-42

5-34 Naive Bayes Statistics Information In Model Global View 5-43

5-35 Weights View 5-44

5-36 Neural Networks Statistics Information In Model Global View 5-44

5-37 Variable Importance Model View 5-45

5-38 Random Forest Statistics Information In Model Global View 5-45

5-39 Linear Coefficient View for Support Vector Machine 5-46

5-40 Support Vector Statistics Information In Model Global View 5-46

5-41 Cluster Description View for Clustering Algorithm 5-47

5-42 Attribute View for Clustering Algorithm 5-47

5-43 Histogram View for Clustering Algorithm 5-48

5-44 Rule View for Clustering Algorithm 5-49

5-45 Component View 5-50

5-46 Frequency Component View 5-50

5-47 2–Dimensional Attribute Ranking for Expectation Maximization 5-51

5-48 Kullback-Leibler Divergence for Expectation Maximization 5-51

5-49 Projection table for Expectation Maximization 5-52

5-50 Global Details for Expectation Maximization 5-52

5-51 Cluster Description for k-Means 5-53

5-52 Scoring View for k-Means 5-54

5-53 k–Means Statistics Information In Model Global View 5-54

5-54 Description View 5-55

5-55 Histogram Component View 5-55

5-56 O-Cluster Statistics Information In Model Global View 5-56

5-57 Explicit Semantic Analysis Matrix for Feature Extraction 5-56

5-58 Explicit Semantic Analysis Matrix for Classification 5-57

5-59 Explicit Semantic Analysis Features for Explicit Semantic Analysis 5-58

5-60 Explicit Semantic Analysis Statistics Information In Model Global View 5-58

x

5-61 Encoding H Matrix View for Non-Negative Matrix Factorization 5-58

5-62 Inverse H Matrix View for Non-Negative Matrix Factorization 5-59

5-63 Non-Negative Matrix Factorization Statistics Information In Model Global View 5-59

5-64 S Matrix View 5-60

5-65 Right-singular Vectors of Singular Value Decomposition 5-61

5-66 Left-singular Vectors of Singular Value Decomposition or Projection Data in Principal

Components 5-62

5-67 Global Details for Singular Value Decomposition 5-62

5-68 Attribute Importance View for Minimum Description Length 5-63

5-69 Minimum Description Length Statistics Information In Model Global View 5-63

5-70 Model Details View for Binning 5-64

5-71 Global Statistics View 5-64

5-72 Alert View 5-65

5-73 Computed Settings View 5-65

5-74 Normalization and Missing Value Handling View 5-66

5-75 Exponential Smoothing Model Statistics Information In Model Global View 5-66

6-1 Sample Cost Matrix 6-10

6-2 APPLY Output Table 6-12

7-1 Text Feature View for Extracted Text Features 7-2

7-2 Column Data Types That May Contain Unstructured Text 7-2

7-3 Model Settings for Text 7-3

7-4 CTX_DDL.CREATE_POLICY Procedure Parameters 7-4

7-5 Attribute-Specific Text Transformation Instructions 7-5

8-1 Export and Import Options for Oracle Data Mining 8-8

8-2 System Privileges for Data Mining 8-14

8-3 Object Privileges for Mining Models 8-15

A-1 System Privileges Granted by dmshgrants.sql to the Data Mining User A-3

A-2 The Data Mining Sample Data A-3

xi

Preface

This guide explains how to use the programmatic interfaces to Oracle Data Mining and
how to use features of Oracle Database to administer Oracle Data Mining. This guide
presents the tools and procedures for implementing the concepts that are presented in
Oracle Data Mining Concepts.

This preface contains these topics:

• Audience

• Documentation Accessibility

• Related Documentation

• Conventions

Audience
This guide is intended for application developers and database administrators who are
familiar with SQL programming and Oracle Database administration and who have a
basic understanding of data mining concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documentation
Oracle Data Mining, a component of Oracle Advanced Analytics, is documented on
the Data Warehousing and Business Intelligence page of the Oracle Database online
documentation library:

Oracle Database Data Warehousing

The following manuals document Oracle Data Mining:

• Oracle Data Mining Concepts

• Oracle Data Mining User’s Guide (this guide)

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Data Mining API Guide

Note:

The virtual book combines key passages from the two Data Mining
manuals with related reference documentation in Oracle Database
PL/SQL Packages and Types Reference, Oracle Database SQL
Language Reference, and Oracle Database Reference.

• Oracle Database PL/SQL Packages and Types Reference (PL/SQL packages)

– DBMS_DATA_MINING

– DBMS_DATA_MINING_TRANSFORM

– DBMS_PREDICTIVE_ANALYTICS

• Oracle Database Reference (data dictionary views for ALL_, USER_, and DBA_)

– ALL_MINING_MODELS

– ALL_MINING_MODEL_ATTRIBUTES

– ALL_MINING_MODEL_SETTINGS

• Oracle Database SQL Language Reference (Data Mining functions)

– CLUSTER_DETAILS, CLUSTER_DISTANCE, CLUSTER_ID, CLUSTER_PROBABILITY,
CLUSTER_SET

– FEATURE_DETAILS, FEATURE_ID, FEATURE_SET, FEATURE_VALUE

– PREDICTION, PREDICTION_BOUNDS, PREDICTION_COST, PREDICTION_DETAILS,
PREDICTION_PROBABILITY, PREDICTION_SET

Oracle Data Mining Resources on the Oracle Technology Network
The Oracle Data Mining page on the Oracle Technology Network (OTN) provides
a wealth of information, including white papers, demonstrations, blogs, discussion
forums, and Oracle By Example tutorials:

Oracle Data Mining

You can download Oracle Data Miner, the graphical user interface to Oracle Data
Mining, from this site:

Oracle Data Miner

Application Development and Database Administration Documentation
For documentation to assist you in developing database applications and in
administering Oracle Database, refer to the following:

• Oracle Database Concepts

• Oracle Database Administrator’s Guide

• Oracle Database Development Guide

Preface

xiii

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xiv

Changes in This Release for Oracle Data
Mining User's Guide

Changes in this release for Oracle Data Mining User’s Guide.

Oracle Data Mining User's Guide is New in This Release
• This guide is new in release 12c. Oracle Data Mining User's Guide replaces

two manuals that were provided in previous releases: Oracle Data Mining
Administrator's Guide and Oracle Data Mining Application Developer's Guide.

• Information about database administration for Oracle Data Mining is now
consolidated in Administrative Tasks for Oracle Data Mining . The remaining
chapters of this guide are devoted to application development.

• Information about the Data Mining sample programs is now in The Data Mining
Sample Programs.

Changes in Oracle Data Mining 18c
The following changes are documented in Oracle Data Mining User’s Guide for 18c.

New Features in 18c
The following content is new in this release:

Model Views

• Added the following new Model Detail Views. Model Detail Views are preferred
over GET* functions.

– Random Forest. See Model Detail Views for Random Forest.

– Neural Network. See Model Detail Views for Neural Network.

– CUR Matrix Decomposition . See Model Detail Views for CUR Matrix
Decomposition.

– Exponential Smoothing. See Model Detail Views for Exponential Smoothing
Models.

• Moved information from “GET_MODEL_DETAILS_GLOBAL Function” topic in Oracle
Database PL/SQL Packages and Types Reference to the respective algorithms
under Model Detail Views.

The following Model Detail Views are modified:

– Model Detail Views for Association Rules

xv

– Model Detail Views for Explicit Semantic Analysis

– Model Detail Views for Generalized Linear Model

– Model Detail Views for k-Means

– Model Detail Views for Non-Negative Matrix Factorization

– Model Detail Views for Singular Value Decomposition

– Model Detail View for Support Vector Machine

Export and Import Serialized Models

Newly added EXPORT_SERMODEL and IMPORT_SERMODEL procedures.

See EXPORT and IMPORT Serialized Models.

Related Topics

• Oracle Data Mining Concepts

Deprecated Features
The following features are deprecated in this release, and may be desupported
in another release. See Oracle Database Upgrade Guide for a complete list of
deprecated features in this release.

• *GET_MODEL_DETAILS are deprecated and are replaced with Model Detail Views.
See Model Detail Views.

Desupported Features
See Oracle Database Upgrade Guide for a complete list of desupported features in
this release.

Other Changes
The following is an additional change in Oracle Data Mining User’s Guide for 18c:

• Moved information from “GET_MODEL_DETAILS_GLOBAL Function” topic in Oracle
Database PL/SQL Packages and Types Reference to the respective algorithms
under Model Detail Views.

• Moved "Outlier Treatment" topic under "Oracle Data Mining Transformation
Routines".

Changes in This Release for Oracle Data Mining User's Guide

xvi

1
Data Mining With SQL

Learn how to solve business problems using the Oracle Data Mining application
programming interface (API).

• Highlights of the Data Mining API

• Example: Targeting Likely Candidates for a Sales Promotion

• Example: Analyzing Preferred Customers

• Example: Segmenting Customer Data

• Example : Building an ESA Model with a Wiki Dataset

1.1 Highlights of the Data Mining API
Learn about the advantages of Data Mining application programming interface (API).

Data mining is a valuable technology in many application domains. It has become
increasingly indispensable in the private sector as a tool for optimizing operations and
maintaining a competitive edge. Data mining also has critical applications in the public
sector and in scientific research. However, the complexities of data mining application
development and the complexities inherent in managing and securing large stores of
data can limit the adoption of data mining technology.

Oracle Data Mining is uniquely suited to addressing these challenges. The data
mining engine is implemented in the Database kernel, and the robust administrative
features of Oracle Database are available for managing and securing the data. While
supporting a full range of data mining algorithms and procedures, the API also has
features that simplify the development of data mining applications.

The Oracle Data Mining API consists of extensions to Oracle SQL, the native
language of the Database. The API offers the following advantages:

• Scoring in the context of SQL queries. Scoring can be performed dynamically or
by applying data mining models.

• Automatic Data Preparation (ADP) and embedded transformations.

• Model transparency. Algorithm-specific queries return details about the attributes
that were used to create the model.

• Scoring transparency. Details about the prediction, clustering, or feature extraction
operation can be returned with the score.

• Simple routines for predictive analytics.

• A workflow-based graphical user interface (GUI) within Oracle SQL Developer.
You can download SQL Developer free of charge from the following site:

Oracle Data Miner

1-1

Note:

A set of sample data mining programs ship with Oracle Database. The
examples in this manual are taken from these samples.

Related Topics

• The Data Mining Sample Programs
Describes the data mining sample programs that ship with Oracle Database.

• Oracle Data Mining Concepts

1.2 Example: Targeting Likely Candidates for a Sales
Promotion

This example targets customers in Brazil for a special promotion that offers coupons
and an affinity card.

The query uses data on marital status, education, and income to predict the customers
who are most likely to take advantage of the incentives. The query applies a decision
tree model called dt_sh_clas_sample to score the customer data.

Example 1-1 Predict Best Candidates for an Affinity Card

SELECT cust_id
 FROM mining_data_apply_v
 WHERE
 PREDICTION(dt_sh_clas_sample
 USING cust_marital_status, education, cust_income_level) = 1
 AND country_name IN 'Brazil';

 CUST_ID

 100404
 100607
 101113

The same query, but with a bias to favor false positives over false negatives, is shown
here.

SELECT cust_id
 FROM mining_data_apply_v
 WHERE
 PREDICTION(dt_sh_clas_sample COST MODEL
 USING cust_marital_status, education, cust_income_level) = 1
 AND country_name IN 'Brazil';

 CUST_ID

 100139
 100163
 100275
 100404
 100607
 101113

Chapter 1
Example: Targeting Likely Candidates for a Sales Promotion

1-2

 101170
 101463

The COST MODEL keywords cause the cost matrix associated with the model to be used
in making the prediction. The cost matrix, stored in a table called dt_sh_sample_costs,
specifies that a false negative is eight times more costly than a false positive.
Overlooking a likely candidate for the promotion is far more costly than including an
unlikely candidate.

SELECT * FROM dt_sh_sample_cost;

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 1
 1 0 8
 1 1 0

1.3 Example: Analyzing Preferred Customers
The examples in this section reveal information about customers who use affinity cards
or are likely to use affinity cards.

Example 1-2 Find Demographic Information About Preferred Customers

This query returns the gender, age, and length of residence of typical affinity card
holders. The anomaly detection model, SVMO_SH_Clas_sample, returns 1 for typical
cases and 0 for anomalies. The demographics are predicted for typical customers
only; outliers are not included in the sample.

SELECT cust_gender, round(avg(age)) age,
 round(avg(yrs_residence)) yrs_residence,
 count(*) cnt
FROM mining_data_one_class_v
WHERE PREDICTION(SVMO_SH_Clas_sample using *) = 1
GROUP BY cust_gender
ORDER BY cust_gender;

CUST_GENDER AGE YRS_RESIDENCE CNT
------------ ---------- ------------- ----------
F 40 4 36
M 45 5 304

Example 1-3 Dynamically Identify Customers Who Resemble Preferred
Customers

This query identifies customers who do not currently have an affinity card, but
who share many of the characteristics of affinity card holders. The PREDICTION and
PREDICTION_PROBABILITY functions use an OVER clause instead of a predefined model
to classify the customers. The predictions and probabilities are computed dynamically.

SELECT cust_id, pred_prob
 FROM
 (SELECT cust_id, affinity_card,
 PREDICTION(FOR TO_CHAR(affinity_card) USING *) OVER () pred_card,
 PREDICTION_PROBABILITY(FOR TO_CHAR(affinity_card),1 USING *) OVER ()
pred_prob
 FROM mining_data_build_v)
 WHERE affinity_card = 0

Chapter 1
Example: Analyzing Preferred Customers

1-3

 AND pred_card = 1
 ORDER BY pred_prob DESC;

 CUST_ID PRED_PROB
---------- ---------
 102434 .96
 102365 .96
 102330 .96
 101733 .95
 102615 .94
 102686 .94
 102749 .93
.
.
.
.
 102580 .52
 102269 .52
 102533 .51
 101604 .51
 101656 .51

226 rows selected.

Example 1-4 Predict the Likelihood that a New Customer Becomes a Preferred
Customer

This query computes the probability of a first-time customer becoming a preferred
customer (an affinity card holder). This query can be executed in real time at the point
of sale.

The new customer is a 44-year-old American executive who has a bachelors degree
and earns more than $300,000/year. He is married, lives in a household of 3, and
has lived in the same residence for the past 6 years. The probability of this customer
becoming a typical affinity card holder is only 5.8%.

SELECT PREDICTION_PROBABILITY(SVMO_SH_Clas_sample, 1 USING
 44 AS age,
 6 AS yrs_residence,
 'Bach.' AS education,
 'Married' AS cust_marital_status,
 'Exec.' AS occupation,
 'United States of America' AS country_name,
 'M' AS cust_gender,
 'L: 300,000 and above' AS cust_income_level,
 '3' AS houshold_size
) prob_typical
FROM DUAL;

PROB_TYPICAL

 5.8

Example 1-5 Use Predictive Analytics to Find Top Predictors

The DBMS_PREDICTIVE_ANALYTICS PL/SQL package contains routines that perform
simple data mining operations without a predefined model. In this example, the
EXPLAIN routine computes the top predictors for affinity card ownership. The results
show that household size, marital status, and age are the top three predictors.

Chapter 1
Example: Analyzing Preferred Customers

1-4

BEGIN
 DBMS_PREDICTIVE_ANALYTICS.EXPLAIN(
 data_table_name => 'mining_data_test_v',
 explain_column_name => 'affinity_card',
 result_table_name => 'cust_explain_result');
END;
/

SELECT * FROM cust_explain_result
 WHERE rank < 4;

ATTRIBUTE_NAME ATTRIBUTE_SUBNAME EXPLANATORY_VALUE RANK
------------------------ -------------------- ----------------- ----------
HOUSEHOLD_SIZE .209628541 1
CUST_MARITAL_STATUS .199794636 2
AGE .111683067 3

1.4 Example: Segmenting Customer Data
The examples in this section use an Expectation Maximization clustering model to
segment the customer data based on common characteristics.

Example 1-6 Compute Customer Segments

This query computes natural groupings of customers and returns the number of
customers in each group.

SELECT CLUSTER_ID(em_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 FROM mining_data_apply_v
GROUP BY CLUSTER_ID(em_sh_clus_sample USING *)
ORDER BY cnt DESC;

 CLUS CNT
---------- ----------
 9 311
 3 294
 7 215
 12 201
 17 123
 16 114
 14 86
 19 64
 15 56
 18 36

Example 1-7 Find the Customers Who Are Most Likely To Be in the Largest
Segment

The query in Example 1-6 shows that segment 9 has the most members. The following
query lists the five customers who are most likely to be in segment 9.

SELECT cust_id
FROM (SELECT cust_id, RANK() over (ORDER BY prob DESC, cust_id) rnk_clus2
 FROM (SELECT cust_id,
 ROUND(CLUSTER_PROBABILITY(em_sh_clus_sample, 9 USING *),3) prob
 FROM mining_data_apply_v))
WHERE rnk_clus2 <= 5
ORDER BY rnk_clus2;

 CUST_ID

Chapter 1
Example: Segmenting Customer Data

1-5

 100002
 100012
 100016
 100019
 100021

Example 1-8 Find Key Characteristics of the Most Representative Customer in the Largest
Cluster

The query in Example 1-7 lists customer 100002 first in the list of likely customers for
segment 9. The following query returns the five characteristics that are most significant
in determining the assignment of customer 100002 to segments with probability > 20%
(only segment 9 for this customer).

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 using T.*) det
 FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset
 FROM mining_data_apply_v v
 WHERE cust_id = 100002) T,
 TABLE(T.pset) S
 ORDER BY 2 desc;

CLUSTER_ID PROB DET
---------- -------
--
 9 1.0000 <Details algorithm="Expectation Maximization" cluster="9">
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight="1" rank="1"/>
 <Attribute name="EDUCATION" actualValue="Bach." weight="0" rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight="0" rank="3"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight="0"
rank="4"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight="0" rank="5"/>
 </Details>

1.5 Example : Building an ESA Model with a Wiki Dataset
The examples shows FEATURE_COMPARE function with Explicit Semantic Analysis (ESA)
model, which compares a similar set of texts and then a dissimilar set of texts.

The example shows an ESA model built against a 2005 Wiki dataset rendering over
200,000 features. The documents are mined as text and the document titles are given
as the feature IDs.

Similar Texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA tour
golfers from South Africa' text AND USING 'Nick Price won the 2002
Mastercard Colonial Open' text) similarity FROM DUAL;

SIMILARITY

 .258

The output metric shows distance calculation. Therefore, smaller number represent
more similar texts. So, 1 minus the distance in the queries result in similarity.

Chapter 1
Example : Building an ESA Model with a Wiki Dataset

1-6

Dissimilar Texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA
tour golfers from South Africa' text AND USING 'John Elway played
quarterback for the Denver Broncos' text) similarity FROM DUAL;

SIMILARITY

 .007

Chapter 1
Example : Building an ESA Model with a Wiki Dataset

1-7

2
About the Data Mining API

Overview of the Oracle Data Mining application programming interface (API)
components.

• About Mining Models

• Data Mining Data Dictionary Views

• Data Mining PL/SQL Packages

• Data Mining SQL Scoring Functions

2.1 About Mining Models
Mining models are database schema objects that perform data mining.

As with all schema objects, access to mining models is controlled by database
privileges. Models can be exported and imported. They support comments, and they
can be tracked in the Database auditing system.

Mining models are created by the CREATE_MODEL procedure in the DBMS_DATA_MINING
PL/SQL package. Models are created for a specific mining function, and they use
a specific algorithm to perform that function. Mining function is a data mining term
that refers to a class of mining problems to be solved. Examples of mining functions
are: regression, classification, attribute importance, clustering, anomaly detection, and
feature extraction. Oracle Data Mining supports one or more algorithms for each
mining function.

Note:

Most types of mining models can be used to score data. However, it is
possible to score data without applying a model. Dynamic scoring and
predictive analytics return scoring results without a user-supplied model.
They create and apply transient models that are not visible to you.

Related Topics

• Dynamic Scoring

• DBMS_PREDICTIVE_ANALYTICS
Understand the routines of DBMS_PREDICTIVE_ANALYTICS package.

• Creating a Model
Explains how to create data mining models and query model details.

• Administrative Tasks for Oracle Data Mining
Explains how to perform administrative tasks related to Oracle Data Mining.

2-1

2.2 Data Mining Data Dictionary Views
Lists Oracle Data Mining data dictionary views.

The data dictionary views for Oracle Data Mining are listed in the following table. A
database administrator (DBA) and USER versions of the views are also available.

Table 2-1 Data Dictionary Views for Oracle Data Mining

View Name Description

ALL_MINING_MODELS Provides information about all accessible mining models

ALL_MINING_MODEL_ATTRIBU
TES

Provides information about the attributes of all accessible
mining models

ALL_MINING_MODEL_PARTITI
ONS

Provides information about the partitions of all accessible
partitioned mining models

ALL_MINING_MODEL_SETTING
S

Provides information about the configuration settings for all
accessible mining models

ALL_MINING_MODEL_VIEWS Provides information about the model views for all accessible
mining models

ALL_MINING_MODEL_XFORMS Provides the user-specified transformations embedded in all
accessible mining models.

2.2.1 ALL_MINING_MODELS
Describes an example of ALL_MINING_MODELS and shows a sample query.

The following example describes ALL_MINING_MODELS and shows a sample query.

Example 2-1 ALL_MINING_MODELS

 describe ALL_MINING_MODELS
 Name Null? Type
 --- --------

 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 MINING_FUNCTION VARCHAR2(30)
 ALGORITHM VARCHAR2(30)
 CREATION_DATE NOT NULL DATE
 BUILD_DURATION NUMBER
 MODEL_SIZE NUMBER
 PARTITIONED VARCHAR2(3)
 COMMENTS VARCHAR2(4000)

The following query returns the models accessible to you that use the Support Vector
Machine algorithm.

SELECT mining_function, model_name
 FROM all_mining_models
 WHERE algorithm = 'SUPPORT_VECTOR_MACHINES'
 ORDER BY mining_function, model_name;

Chapter 2
Data Mining Data Dictionary Views

2-2

MINING_FUNCTION MODEL_NAME
------------------------- --------------------
CLASSIFICATION PART2_CLAS_SAMPLE
CLASSIFICATION PART_CLAS_SAMPLE
CLASSIFICATION SVMC_SH_CLAS_SAMPLE
CLASSIFICATION SVMO_SH_CLAS_SAMPLE
CLASSIFICATION T_SVM_CLAS_SAMPLE
REGRESSION SVMR_SH_REGR_SAMPLE

Related Topics

• Creating a Model
Explains how to create data mining models and query model details.

• Oracle Database Reference

2.2.2 ALL_MINING_MODEL_ATTRIBUTES
Describes an example of ALL_MINING_MODEL_ATTRIBUTES and shows a sample query.

The following example describes ALL_MINING_MODEL_ATTRIBUTES and shows a sample
query. Attributes are the predictors or conditions that are used to create models and
score data.

Example 2-2 ALL_MINING_MODEL_ATTRIBUTES

describe ALL_MINING_MODEL_ATTRIBUTES
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 ATTRIBUTE_NAME NOT NULL VARCHAR2(128)
 ATTRIBUTE_TYPE VARCHAR2(11)
 DATA_TYPE VARCHAR2(106)
 DATA_LENGTH NUMBER
 DATA_PRECISION NUMBER
 DATA_SCALE NUMBER
 USAGE_TYPE VARCHAR2(8)
 TARGET VARCHAR2(3)
 ATTRIBUTE_SPEC VARCHAR2(4000)

The following query returns the attributes of an SVM classification model named
T_SVM_CLAS_SAMPLE. The model has both categorical and numerical attributes and
includes one attribute that is unstructured text.

SELECT attribute_name, attribute_type, target
 FROM all_mining_model_attributes
 WHERE model_name = 'T_SVM_CLAS_SAMPLE'
 ORDER BY attribute_name;

ATTRIBUTE_NAME ATTRIBUTE_TYPE TAR
------------------------- -------------------- ---
AFFINITY_CARD CATEGORICAL YES
AGE NUMERICAL NO
BOOKKEEPING_APPLICATION NUMERICAL NO
BULK_PACK_DISKETTES NUMERICAL NO
COMMENTS TEXT NO
COUNTRY_NAME CATEGORICAL NO
CUST_GENDER CATEGORICAL NO
CUST_INCOME_LEVEL CATEGORICAL NO

Chapter 2
Data Mining Data Dictionary Views

2-3

CUST_MARITAL_STATUS CATEGORICAL NO
EDUCATION CATEGORICAL NO
FLAT_PANEL_MONITOR NUMERICAL NO
HOME_THEATER_PACKAGE NUMERICAL NO
HOUSEHOLD_SIZE CATEGORICAL NO
OCCUPATION CATEGORICAL NO
OS_DOC_SET_KANJI NUMERICAL NO
PRINTER_SUPPLIES NUMERICAL NO
YRS_RESIDENCE NUMERICAL NO
Y_BOX_GAMES NUMERICAL NO

Related Topics

• About the Data Mining API
Overview of the Oracle Data Mining application programming interface (API)
components.

• Oracle Database Reference

2.2.3 ALL_MINING_MODEL_PARTITIONS
Describes an example of ALL_MINING_MODEL_PARTITIONS and shows a sample query.

The following example describes ALL_MINING_MODEL_PARTITIONS and shows a sample
query.

Example 2-3 ALL_MINING_MODEL_PARTITIONS

describe ALL_MINING_MODEL_PARTITIONS
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 PARTITION_NAME VARCHAR2(128)
 POSITION NUMBER
 COLUMN_NAME NOT NULL VARCHAR2(128)
 COLUMN_VALUE VARCHAR2(4000)

The following query returns the partition names and partition key values for two
partitioned models. Model PART2_CLAS_SAMPLE has a two column partition key with
system-generated partition names.

SELECT model_name, partition_name, position, column_name, column_value
 FROM all_mining_model_partitions
 ORDER BY model_name, partition_name, position;

MODEL_NAME PARTITION_ POSITION COLUMN_NAME
COLUMN_VALUE
-------------------- ---------- -------- --------------------

PART2_CLAS_SAMPLE DM$$_P0 1 CUST_GENDER
F
PART2_CLAS_SAMPLE DM$$_P0 2 CUST_INCOME_LEVEL
HIGH
PART2_CLAS_SAMPLE DM$$_P1 1 CUST_GENDER
F
PART2_CLAS_SAMPLE DM$$_P1 2 CUST_INCOME_LEVEL
LOW

Chapter 2
Data Mining Data Dictionary Views

2-4

PART2_CLAS_SAMPLE DM$$_P2 1 CUST_GENDER
F
PART2_CLAS_SAMPLE DM$$_P2 2 CUST_INCOME_LEVEL
MEDIUM
PART2_CLAS_SAMPLE DM$$_P3 1 CUST_GENDER
M
PART2_CLAS_SAMPLE DM$$_P3 2 CUST_INCOME_LEVEL
HIGH
PART2_CLAS_SAMPLE DM$$_P4 1 CUST_GENDER
M
PART2_CLAS_SAMPLE DM$$_P4 2 CUST_INCOME_LEVEL
LOW
PART2_CLAS_SAMPLE DM$$_P5 1 CUST_GENDER
M
PART2_CLAS_SAMPLE DM$$_P5 2 CUST_INCOME_LEVEL
MEDIUM
PART_CLAS_SAMPLE F 1 CUST_GENDER
F
PART_CLAS_SAMPLE M 1 CUST_GENDER
M
PART_CLAS_SAMPLE U 1 CUST_GENDER U

Related Topics

• Oracle Database Reference

2.2.4 ALL_MINING_MODEL_SETTINGS
Describes an example of ALL_MINING_MODEL_SETTINGS and shows a sample query.

The following example describes ALL_MINING_MODEL_SETTINGS and shows a sample
query. Settings influence model behavior. Settings may be specific to an algorithm or
to a mining function, or they may be general.

Example 2-4 ALL_MINING_MODEL_SETTINGS

 describe ALL_MINING_MODEL_SETTINGS
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 SETTING_NAME NOT NULL VARCHAR2(30)
 SETTING_VALUE VARCHAR2(4000)
 SETTING_TYPE VARCHAR2(7)

The following query returns the settings for a model named SVD_SH_SAMPLE. The model
uses the Singular Value Decomposition algorithm for feature extraction.

SELECT setting_name, setting_value, setting_type
 FROM all_mining_model_settings
 WHERE model_name = 'SVD_SH_SAMPLE'
 ORDER BY setting_name;

SETTING_NAME SETTING_VALUE SETTING
------------------------------ ------------------------------ -------
ALGO_NAME ALGO_SINGULAR_VALUE_DECOMP INPUT
ODMS_MISSING_VALUE_TREATMENT ODMS_MISSING_VALUE_AUTO DEFAULT
ODMS_SAMPLING ODMS_SAMPLING_DISABLE DEFAULT

Chapter 2
Data Mining Data Dictionary Views

2-5

PREP_AUTO OFF INPUT
SVDS_SCORING_MODE SVDS_SCORING_SVD DEFAULT
SVDS_U_MATRIX_OUTPUT SVDS_U_MATRIX_ENABLE INPUT

Related Topics

• Specifying Model Settings
Understand how to configure data mining models at build time.

• Oracle Database Reference

2.2.5 ALL_MINING_MODEL_VIEWS
Describes an example of ALL_MINING_MODEL_VIEWS and shows a sample query.

The following example describes ALL_MINING_MODEL_VIEWS and shows a sample
query. Model views provide details on the models.

Example 2-5 ALL_MINING_MODEL_VIEWS

describe ALL_MINING_MODEL_VIEWS
 Name Null? Type
 --- --------

 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 VIEW_NAME NOT NULL VARCHAR2(128)
 VIEW_TYPE VARCHAR2(128)

The following query returns the model views for a model SVD_SH_SAMPLE. The model
uses the Singular Value Decomposition algorithm for feature extraction.

SELECT view_name, view_type
 FROM all_mining_model_views
 WHERE model_name = 'SVD_SH_SAMPLE'
 ORDER BY view_name;

VIEW_NAME
VIEW_TYPE

--
DM$VESVD_SH_SAMPLE Singular Value Decomposition S
Matrix
DM$VGSVD_SH_SAMPLE Global Name-Value
Pairs
DM$VNSVD_SH_SAMPLE Normalization and Missing Value
Handling
DM$VSSVD_SH_SAMPLE Computed
Settings
DM$VUSVD_SH_SAMPLE Singular Value Decomposition U
Matrix
DM$VVSVD_SH_SAMPLE Singular Value Decomposition V
Matrix
DM$VWSVD_SH_SAMPLE Model Build Alerts

Chapter 2
Data Mining Data Dictionary Views

2-6

Related Topics

• Oracle Database Reference

2.2.6 ALL_MINING_MODEL_XFORMS
Describes an example of ALL_MINING_MODEL_XFORMS and provides a sample query.

The following example describes ALL_MINING_MODEL_XFORMS and provides a sample
query.

Example 2-6 ALL_MINING_MODEL_XFORMS

describe ALL_MINING_MODEL_XFORMS
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_SPEC VARCHAR2(4000)
 EXPRESSION CLOB
 REVERSE VARCHAR2(3)

The following query returns the embedded transformations for a model
PART2_CLAS_SAMPLE.

SELECT attribute_name, expression
 FROM all_mining_model_xforms
 WHERE model_name = 'PART2_CLAS_SAMPLE'
 ORDER BY attribute_name;

ATTRIBUTE_NAME

EXPRESSION

--

CUST_INCOME_LEVEL

CASE CUST_INCOME_LEVEL WHEN 'A: Below 30,000' THEN
'LOW'
 WHEN 'L: 300,000 and above' THEN
'HIGH'
 ELSE 'MEDIUM' END

Related Topics

• Oracle Database Reference

2.3 Data Mining PL/SQL Packages
The PL/SQL interface to Oracle Data Mining is implemented in three packages.

The following table displays the PL/SQL packages.

Chapter 2
Data Mining PL/SQL Packages

2-7

Table 2-2 Data Mining PL/SQL Packages

Package Name Description

DBMS_DATA_MINING Routines for creating and managing mining models

DBMS_DATA_MINING_TRANSFORM Routines for transforming the data for mining

DBMS_PREDICTIVE_ANALYTICS Routines that perform predictive analytics

Related Topics

• DBMS_DATA_MINING

• DBMS_DATA_MINING_TRANSFORM

• DBMS_PREDICTIVE_ANALYTICS

2.3.1 DBMS_DATA_MINING
Understand the routines of DBMS_DATA_MINING package.

The DBMS_DATA_MINING package contains routines for creating mining models, for
performing operations on mining models, and for querying mining models. The
package includes routines for:

• Creating, dropping, and performing other DDL operations on mining models

• Obtaining detailed information about model attributes, rules, and other information
internal to the model (model details)

• Computing test metrics for classification models

• Specifying costs for classification models

• Exporting and importing models

• Building models using Oracle's native algorithms as well as algorithms written in R

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

2.3.2 DBMS_DATA_MINING_TRANSFORM
Understand the routines of DBMS_DATA_MINING_TRANSFORM package.

The DBMS_DATA_MINING_TRANSFORM package contains routines that perform data
transformations such as binning, normalization, and outlier treatment. The package
includes routines for:

• Specifying transformations in a format that can be embedded in a mining model.

• Specifying transformations as relational views (external to mining model objects).

• Specifying distinct properties for columns in the build data. For example, you
can specify that the column must be interpreted as unstructured text, or that the
column must be excluded from Automatic Data Preparation.

Chapter 2
Data Mining PL/SQL Packages

2-8

Related Topics

• Transforming the Data
Understand how to transform data for building a model or for scoring.

• Oracle Database PL/SQL Packages and Types Reference

2.3.2.1 Transformation Methods in DBMS_DATA_MINING_TRANSFORM
Summarizes the methods for transforming data in
DBMS_DATA_MINING_TRANSFORM package.

Table 2-3 DBMS_DATA_MINING_TRANSFORM Transformation Methods

Transformation Method Description

XFORM interface CREATE, INSERT, and XFORM routines specify transformations in
external views

STACK interface CREATE, INSERT, and XFORM routines specify transformations for
embedding in a model

SET_TRANSFORM Specifies transformations for embedding in a model

The statements in the following example create an Support Vector Machine (SVM)
Classification model called T_SVM_Clas_sample with an embedded transformation that
causes the comments attribute to be treated as unstructured text data.

Example 2-7 Sample Embedded Transformation

DECLARE
 xformlist dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.SET_TRANSFORM(
 xformlist, 'comments', null, 'comments', null, 'TEXT');
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'T_SVM_Clas_sample',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_build_text',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => 't_svmc_sample_settings',
 xform_list => xformlist);
END;
/

2.3.3 DBMS_PREDICTIVE_ANALYTICS
Understand the routines of DBMS_PREDICTIVE_ANALYTICS package.

The DBMS_PREDICTIVE_ANALYTICS package contains routines that perform an
automated form of data mining known as predictive analytics. With predictive analytics,
you do not need to be aware of model building or scoring. All mining activities
are handled internally by the procedure. The DBMS_PREDICTIVE_ANALYTICS package
includes these routines:

• EXPLAIN ranks attributes in order of influence in explaining a target column.

• PREDICT predicts the value of a target column based on values in the input data.

Chapter 2
Data Mining PL/SQL Packages

2-9

• PROFILE generates rules that describe the cases from the input data.

The EXPLAIN statement in the following example lists attributes in the view
mining_data_build_v in order of their importance in predicting affinity_card.

Example 2-8 Sample EXPLAIN Statement

BEGIN
 DBMS_PREDICTIVE_ANALYTICS.EXPLAIN(
 data_table_name => 'mining_data_build_v',
 explain_column_name => 'affinity_card',
 result_table_name => 'explain_results');
END;
/

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

2.4 Data Mining SQL Scoring Functions
Understand the different data mining SQL scoring functions.

The Data Mining SQL language functions use Oracle Data Mining to score data. The
functions can apply a mining model schema object to the data, or they can dynamically
mine the data by executing an analytic clause. SQL functions are available for all
the data mining algorithms that support the scoring operation. All Data Mining SQL
functions, as listed in the following table can operate on R Mining Model with the
corresponding mining function. However, the functions are not limited to the ones
listed here.

Table 2-4 Data Mining SQL Functions

Function Description

CLUSTER_ID Returns the ID of the predicted cluster

CLUSTER_DETAILS Returns detailed information about the predicted cluster

CLUSTER_DISTANCE Returns the distance from the centroid of the predicted cluster

CLUSTER_PROBABIL
ITY

Returns the probability of a case belonging to a given cluster

CLUSTER_SET Returns a list of all possible clusters to which a given case belongs along
with the associated probability of inclusion

FEATURE_COMPARE Compares two similar and dissimilar set of texts from two different
documents or keyword phrases or a combination of both

FEATURE_ID Returns the ID of the feature with the highest coefficient value

FEATURE_DETAILS Returns detailed information about the predicted feature

FEATURE_SET Returns a list of objects containing all possible features along with the
associated coefficients

FEATURE_VALUE Returns the value of the predicted feature

ORA_DM_PARTITION
_NAME

Returns the partition names for a partitioned model

PREDICTION Returns the best prediction for the target

Chapter 2
Data Mining SQL Scoring Functions

2-10

Table 2-4 (Cont.) Data Mining SQL Functions

Function Description

PREDICTION_BOUND
S

(GLM only) Returns the upper and lower bounds of the interval
wherein the predicted values (linear regression) or probabilities (logistic
regression) lie.

PREDICTION_COST Returns a measure of the cost of incorrect predictions

PREDICTION_DETAI
LS

Returns detailed information about the prediction

PREDICTION_PROBA
BILITY

Returns the probability of the prediction

PREDICTION_SET Returns the results of a classification model, including the predictions
and associated probabilities for each case

The following example shows a query that returns the results of the CLUSTER_ID
function. The query applies the model em_sh_clus_sample, which finds groups of
customers that share certain characteristics. The query returns the identifiers of the
clusters and the number of customers in each cluster.

Example 2-9 CLUSTER_ID Function

-- -List the clusters into which the customers in this
-- -data set have been grouped.
--
SELECT CLUSTER_ID(em_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 FROM mining_data_apply_v
GROUP BY CLUSTER_ID(em_sh_clus_sample USING *)
ORDER BY cnt DESC;

SQL> -- List the clusters into which the customers in this
SQL> -- data set have been grouped.
SQL> --
SQL> SELECT CLUSTER_ID(em_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 2 FROM mining_data_apply_v
 3 GROUP BY CLUSTER_ID(em_sh_clus_sample USING *)
 4 ORDER BY cnt DESC;

 CLUS CNT
---------- ----------
 9 311
 3 294
 7 215
 12 201
 17 123
 16 114
 14 86
 19 64
 15 56
 18 36

Related Topics

• Scoring and Deployment
Explains the scoring and deployment features of Oracle Data Mining.

Chapter 2
Data Mining SQL Scoring Functions

2-11

• Oracle Database SQL Language Reference

Chapter 2
Data Mining SQL Scoring Functions

2-12

3
Preparing the Data

Learn how to create a table or view that can be used to build a model.

• Data Requirements

• About Attributes

• Using Nested Data

• Using Market Basket Data

• Using Retail Analysis Data

• Handling Missing Values

3.1 Data Requirements
Understand how data is stored and viewed for data mining.

Data mining activities require data that is defined within a single table or view. The
information for each record must be stored in a separate row. The data records are
commonly called cases. Each case can optionally be identified by a unique case ID.
The table or view itself can be referred to as a case table.

The CUSTOMERS table in the SH schema is an example of a table that could be used for
mining. All the information for each customer is contained in a single row. The case
ID is the CUST_ID column. The rows listed in the following example are selected from
SH.CUSTOMERS.

Note:

Oracle Data Mining requires single-record case data for all types of models
except association models, which can be built on native transactional data.

Example 3-1 Sample Case Table

SQL> select cust_id, cust_gender, cust_year_of_birth,
 cust_main_phone_number from sh.customers where cust_id < 11;

CUST_ID CUST_GENDER CUST_YEAR_OF_BIRTH CUST_MAIN_PHONE_NUMBER
------- ----------- ---- ------------- -------------------------
1 M 1946 127-379-8954
2 F 1957 680-327-1419
3 M 1939 115-509-3391
4 M 1934 577-104-2792
5 M 1969 563-667-7731
6 F 1925 682-732-7260
7 F 1986 648-272-6181
8 F 1964 234-693-8728

3-1

9 F 1936 697-702-2618
10 F 1947 601-207-4099

Related Topics

• Using Market Basket Data

3.1.1 Column Data Types
Understand the different types of column data in a case table.

The columns of the case table hold the attributes that describe each case.
In Example 3-1, the attributes are: CUST_GENDER, CUST_YEAR_OF_BIRTH, and
CUST_MAIN_PHONE_NUMBER. The attributes are the predictors in a supervised model or
the descriptors in an unsupervised model. The case ID, CUST_ID, can be viewed as a
special attribute; it is not a predictor or a descriptor.

Oracle Data Mining supports standard Oracle data types as well as the following
collection types:

DM_NESTED_CATEGORICALS

DM_NESTED_NUMERICALS

DM_NESTED_BINARY_DOUBLES

DM_NESTED_BINARY_FLOATS

Related Topics

• Using Nested Data
A join between the tables for one-to-many relationship is represented through
nested columns.

• Mining Unstructured Text
Explains how to use Oracle Data Mining to mine unstructured text.

• Oracle Database SQL Language Reference

3.1.2 Data Sets for Classification and Regression
Understand how data sets are used for training and testing the model.

You need two case tables to build and validate classification and regression models.
One set of rows is used for training the model, another set of rows is used for testing
the model. It is often convenient to derive the build data and test data from the same
data set. For example, you could randomly select 60% of the rows for training the
model; the remaining 40% could be used for testing the model.

Models that implement other mining functions, such as attribute importance, clustering,
association, or feature extraction, do not use separate test data.

3.1.3 Scoring Requirements
Most data mining models can be applied to separate data in a process known
as scoring. Oracle Data Mining supports the scoring operation for classification,
regression, anomaly detection, clustering, and feature extraction.

The scoring process matches column names in the scoring data with the names of
the columns that were used to build the model. The scoring process does not require
all the columns to be present in the scoring data. If the data types do not match,

Chapter 3
Data Requirements

3-2

Oracle Data Mining attempts to perform type coercion. For example, if a column called
PRODUCT_RATING is VARCHAR2 in the training data but NUMBER in the scoring data, Oracle
Data Mining effectively applies a TO_CHAR() function to convert it.

The column in the test or scoring data must undergo the same transformations as the
corresponding column in the build data. For example, if the AGE column in the build
data was transformed from numbers to the values CHILD, ADULT, and SENIOR, then
the AGE column in the scoring data must undergo the same transformation so that the
model can properly evaluate it.

Note:

Oracle Data Mining can embed user-specified transformation instructions
in the model and reapply them whenever the model is applied. When the
transformation instructions are embedded in the model, you do not need to
specify them for the test or scoring data sets.

Oracle Data Mining also supports Automatic Data Preparation (ADP). When
ADP is enabled, the transformations required by the algorithm are performed
automatically and embedded in the model along with any user-specified
transformations.

See Also:

Transforming the Data for more information on automatic and embedded
data transformations

3.2 About Attributes
Attributes are the items of data that are used in data mining. In predictive models,
attributes are the predictors that affect a given outcome. In descriptive models,
attributes are the items of information being analyzed for natural groupings or
associations. For example, a table of employee data that contains attributes such as
job title, date of hire, salary, age, gender, and so on.

3.2.1 Data Attributes and Model Attributes
Data attributes are columns in the data set used to build, test, or score a model.
Model attributes are the data representations used internally by the model.

Data attributes and model attributes can be the same. For example, a column called
SIZE, with values S, M, and L, are attributes used by an algorithm to build a model.
Internally, the model attribute SIZE is most likely be the same as the data attribute from
which it was derived.

On the other hand, a nested column SALES_PROD, containing the sales figures for a
group of products, does not correspond to a model attribute. The data attribute can
be SALES_PROD, but each product with its corresponding sales figure (each row in the
nested column) is a model attribute.

Chapter 3
About Attributes

3-3

Transformations also cause a discrepancy between data attributes and model
attributes. For example, a transformation can apply a calculation to two data attributes
and store the result in a new attribute. The new attribute is a model attribute that has
no corresponding data attribute. Other transformations such as binning, normalization,
and outlier treatment, cause the model's representation of an attribute to be different
from the data attribute in the case table.

Related Topics

• Using Nested Data
A join between the tables for one-to-many relationship is represented through
nested columns.

• Transforming the Data
Understand how to transform data for building a model or for scoring.

See Also:

3.2.2 Target Attribute
Understand what a target means in data mining and understand the different target
data types.

The target of a supervised model is a special kind of attribute. The target column
in the training data contains the historical values used to train the model. The target
column in the test data contains the historical values to which the predictions are
compared. The act of scoring produces a prediction for the target.

Clustering, Feature Extraction, Association, and Anomaly Detection models do not use
a target.

Nested columns and columns of unstructured data (such as BFILE, CLOB, or BLOB)
cannot be used as targets.

Table 3-1 Target Data Types

Mining Function Target Data Types

Classification VARCHAR2, CHAR

NUMBER, FLOAT

BINARY_DOUBLE, BINARY_FLOAT, ORA_MINING_VARCHAR2_NT

Regression NUMBER, FLOAT

BINARY_DOUBLE, BINARY_FLOAT

You can query the *_MINING_MODEL_ATTRIBUTES view to find the target for a given
model.

Related Topics

• ALL_MINING_MODEL_ATTRIBUTES
Describes an example of ALL_MINING_MODEL_ATTRIBUTES and shows a sample
query.

Chapter 3
About Attributes

3-4

• Oracle Database PL/SQL Packages and Types Reference

3.2.3 Numericals, Categoricals, and Unstructured Text
Explains numeric, categorical, and unstructured text attributes.

Model attributes are numerical, categorical, or unstructured (text). Data attributes,
which are columns in a case table, have Oracle data types, as described in "Column
Data Types".

Numerical attributes can theoretically have an infinite number of values. The
values have an implicit order, and the differences between them are also
ordered. Oracle Data Mining interprets NUMBER, FLOAT, BINARY_DOUBLE, BINARY_FLOAT,
DM_NESTED_NUMERICALS, DM_NESTED_BINARY_DOUBLES, and DM_NESTED_BINARY_FLOATS
as numerical.

Categorical attributes have values that identify a finite number of discrete categories
or classes. There is no implicit order associated with the values. Some categoricals
are binary: they have only two possible values, such as yes or no, or male or female.
Other categoricals are multi-class: they have more than two values, such as small,
medium, and large.

Oracle Data Mining interprets CHAR and VARCHAR2 as categorical by default, however
these columns may also be identified as columns of unstructured data (text). Oracle
Data Mining interprets columns of DM_NESTED_CATEGORICALS as categorical. Columns
of CLOB, BLOB, and BFILE always contain unstructured data.

The target of a classification model is categorical. (If the target of a classification
model is numeric, it is interpreted as categorical.) The target of a regression model
is numerical. The target of an attribute importance model is either categorical or
numerical.

Related Topics

• Column Data Types
Understand the different types of column data in a case table.

• Mining Unstructured Text
Explains how to use Oracle Data Mining to mine unstructured text.

3.2.4 Model Signature
The model signature is the set of data attributes that are used to build a model.
Some or all of the attributes in the signature must be present for scoring. The model
accounts for any missing columns on a best-effort basis. If columns with the same
names but different data types are present, the model attempts to convert the data
type. If extra, unused columns are present, they are disregarded.

The model signature does not necessarily include all the columns in the build data.
Algorithm-specific criteria can cause the model to ignore certain columns. Other
columns can be eliminated by transformations. Only the data attributes actually used
to build the model are included in the signature.

The target and case ID columns are not included in the signature.

Chapter 3
About Attributes

3-5

3.2.5 Scoping of Model Attribute Name
The model attribute name consists of two parts: a column name, and a subcolumn
name.

column_name[.subcolumn_name]

The column_name component is the name of the data attribute. It is present in all model
attribute names. Nested attributes and text attributes also have a subcolumn_name
component as shown in the following example.

Example 3-2 Model Attributes Derived from a Nested Column

The nested column SALESPROD has three rows.

SALESPROD(ATTRIBUTE_NAME, VALUE)

((PROD1, 300),
 (PROD2, 245),
 (PROD3, 679))

The name of the data attribute is SALESPROD. Its associated model attributes are:

SALESPROD.PROD1
SALESPROD.PROD2
SALESPROD.PROD3

3.2.6 Model Details
Model details reveal information about model attributes and their treatment by the
algorithm. Oracle recommends that users leverage the model detail views for the
respective algorithm.

Transformation and reverse transformation expressions are associated with model
attributes. Transformations are applied to the data attributes before the algorithmic
processing that creates the model. Reverse transformations are applied to the model
attributes after the model has been built, so that the model details are expressed in the
form of the original data attributes, or as close to it as possible.

Reverse transformations support model transparency. They provide a view of the data
that the algorithm is working with internally but in a format that is meaningful to a user.

Deprecated GET_MODEL_DETAILS

There is a separate GET_MODEL_DETAILS routine for each algorithm. Starting from
Oracle Database 12c Release 2, the GET_MODEL_DETAILS are deprecated. Oracle
recommends to use Model Detail Views for the respective algorithms.

Related Topics

• Model Detail Views
The GET_* interfaces are replaced by model views, and Oracle recommends that
users leverage the views instead.

Chapter 3
About Attributes

3-6

3.3 Using Nested Data
A join between the tables for one-to-many relationship is represented through nested
columns.

Oracle Data Mining requires a case table in single-record case format, with each
record in a separate row. What if some or all of your data is in multi-record case
format, with each record in several rows? What if you want one attribute to represent
a series or collection of values, such as a student's test scores or the products
purchased by a customer?

This kind of one-to-many relationship is usually implemented as a join between tables.
For example, you can join your customer table to a sales table and thus associate a
list of products purchased with each customer.

Oracle Data Mining supports dimensioned data through nested columns. To include
dimensioned data in your case table, create a view and cast the joined data to one
of the Data Mining nested table types. Each row in the nested column consists of an
attribute name/value pair. Oracle Data Mining internally processes each nested row as
a separate attribute.

Note:

O-Cluster is the only algorithm that does not support nested data.

Related Topics

• Example: Creating a Nested Column for Market Basket Analysis
The example shows how to define a nested column for market basket analysis.

3.3.1 Nested Object Types
Nested tables are object data types that can be used in place of other data types.

Oracle Database supports user-defined data types that make it possible to model
real-world entities as objects in the database. Collection types are object data types
for modeling multi-valued attributes. Nested tables are collection types. Nested tables
can be used anywhere that other data types can be used.

Oracle Data Mining supports the following nested object types:

DM_NESTED_BINARY_DOUBLES

DM_NESTED_BINARY_FLOATS

DM_NESTED_NUMERICALS

DM_NESTED_CATEGORICALS

Descriptions of the nested types are provided in this example.

Example 3-3 Oracle Data Mining Nested Data Types

describe dm_nested_binary_double
 Name Null? Type
 --- -------- ----------------------------

Chapter 3
Using Nested Data

3-7

 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE BINARY_DOUBLE

describe dm_nested_binary_doubles
 DM_NESTED_BINARY_DOUBLES TABLE OF SYS.DM_NESTED_BINARY_DOUBLE
 Name Null? Type
 -- -------- ---------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE BINARY_DOUBLE

describe dm_nested_binary_float
 Name Null? Type
 --- -------- ---------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE BINARY_FLOAT

describe dm_nested_binary_floats
 DM_NESTED_BINARY_FLOATS TABLE OF SYS.DM_NESTED_BINARY_FLOAT
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE BINARY_FLOAT

describe dm_nested_numerical
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE NUMBER

describe dm_nested_numericals
 DM_NESTED_NUMERICALS TABLE OF SYS.DM_NESTED_NUMERICAL
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE NUMBER

describe dm_nested_categorical
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE VARCHAR2(4000)

describe dm_nested_categoricals
 DM_NESTED_CATEGORICALS TABLE OF SYS.DM_NESTED_CATEGORICAL
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE VARCHAR2(4000)

Related Topics

• Oracle Database Object-Relational Developer's Guide

3.3.2 Example: Transforming Transactional Data for Mining
Example 3-4 shows data from a view of a sales table. It includes sales for three of the
many products sold in four regions. This data is not suitable for mining at the product
level because sales for each case (product), is stored in several rows.

Chapter 3
Using Nested Data

3-8

Example 3-5 shows how this data can be transformed for mining. The case ID column
is PRODUCT. SALES_PER_REGION, a nested column of type DM_NESTED_NUMERICALS, is a
data attribute. This table is suitable for mining at the product case level, because the
information for each case is stored in a single row.

Oracle Data Mining treats each nested row as a separate model attribute, as shown in
Example 3-6.

Note:

The presentation in this example is conceptual only. The data is not actually
pivoted before being processed.

Example 3-4 Product Sales per Region in Multi-Record Case Format

PRODUCT REGION SALES
------- -------- ----------
Prod1 NE 556432
Prod2 NE 670155
Prod3 NE 3111
.
.
Prod1 NW 90887
Prod2 NW 100999
Prod3 NW 750437
.
.
Prod1 SE 82153
Prod2 SE 57322
Prod3 SE 28938
.
.
Prod1 SW 3297551
Prod2 SW 4972019
Prod3 SW 884923
.
.

Example 3-5 Product Sales per Region in Single-Record Case Format

PRODUCT SALES_PER_REGION
 (ATTRIBUTE_NAME, VALUE)
------ --------------------------
Prod1 ('NE' , 556432)
 ('NW' , 90887)
 ('SE' , 82153)
 ('SW' , 3297551)
Prod2 ('NE' , 670155)
 ('NW' , 100999)
 ('SE' , 57322)
 ('SW' , 4972019)
Prod3 ('NE' , 3111)
 ('NW' , 750437)
 ('SE' , 28938)
 ('SW' , 884923)
.
.

Chapter 3
Using Nested Data

3-9

Example 3-6 Model Attributes Derived From SALES_PER_REGION

PRODUCT SALES_PER_REGION.NE SALES_PER_REGION.NW SALES_PER_REGION.SE
SALES_PER_REGION.SW
------- ------------------ ------------------- ------------------ -------------------
Prod1 556432 90887 82153 3297551
Prod2 670155 100999 57322 4972019
Prod3 3111 750437 28938 884923
.
.

3.4 Using Market Basket Data
Market basket data identifies the items sold in a set of baskets or transactions. Oracle
Data Mining provides the association mining function for market basket analysis.

Association models use the Apriori algorithm to generate association rules that
describe how items tend to be purchased in groups. For example, an association rule
can assert that people who buy peanut butter are 80% likely to also buy jelly.

Market basket data is usually transactional. In transactional data, a case is a
transaction and the data for a transaction is stored in multiple rows. Oracle Data
Mining association models can be built on transactional data or on single-record case
data. The ODMS_ITEM_ID_COLUMN_NAME and ODMS_ITEM_VALUE_COLUMN_NAME settings
specify whether the data for association rules is in transactional format.

Note:

Association models are the only type of model that can be built on native
transactional data. For all other types of models, Oracle Data Mining requires
that the data be presented in single-record case format.

The Apriori algorithm assumes that the data is transactional and that it has many
missing values. Apriori interprets all missing values as sparse data, and it has its own
native mechanisms for handling sparse data.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
on the ODMS_ITEM_ID_COLUMN_NAME and ODMS_ITEM_VALUE_COLUMN_NAME
settings.

3.4.1 Example: Creating a Nested Column for Market Basket Analysis
The example shows how to define a nested column for market basket analysis.

Association models can be built on native transactional data or on nested data. The
following example shows how to define a nested column for market basket analysis.

Chapter 3
Using Market Basket Data

3-10

The following SQL statement transforms this data to a column of type
DM_NESTED_NUMERICALS in a view called SALES_TRANS_CUST_NESTED. This view can be
used as a case table for mining.

CREATE VIEW sales_trans_cust_nested AS
 SELECT trans_id,
 CAST(COLLECT(DM_NESTED_NUMERICAL(
 prod_name, 1))
 AS DM_NESTED_NUMERICALS) custprods
 FROM sales_trans_cust
 GROUP BY trans_id;

This query returns two rows from the transformed data.

SELECT * FROM sales_trans_cust_nested
 WHERE trans_id < 101000
 AND trans_id > 100997;

TRANS_ID CUSTPRODS(ATTRIBUTE_NAME, VALUE)
------- --
100998 DM_NESTED_NUMERICALS
 (DM_NESTED_NUMERICAL('O/S Documentation Set - English', 1)
100999 DM_NESTED_NUMERICALS
 (DM_NESTED_NUMERICAL('CD-RW, High Speed Pack of 5', 1),
 DM_NESTED_NUMERICAL('External 8X CD-ROM', 1),
 DM_NESTED_NUMERICAL('SIMM- 16MB PCMCIAII card', 1))

Example 3-7 Convert to a Nested Column

The view SALES_TRANS_CUST provides a list of transaction IDs to identify each market
basket and a list of the products in each basket.

describe sales_trans_cust
 Name Null? Type
 --- -------- ----------------
 TRANS_ID NOT NULL NUMBER
 PROD_NAME NOT NULL VARCHAR2(50)
 QUANTITY NUMBER

Related Topics

• Handling Missing Values

3.5 Using Retail Analysis Data
Retail analysis often makes use of Association Rules and Association models.

The Association Rules are enhanced to calculate aggregates along with rules or
itemsets.

Related Topics

• Oracle Data Mining Concepts

Chapter 3
Using Retail Analysis Data

3-11

3.5.1 Example: Calculating Aggregates
The following example shows the concept of Aggregates.

Calculating Aggregates for Grocery Store Data

Assume a grocery store has the following data:

Table 3-2 Grocery Store Data

Customer Item A Item B Item C Item D

Customer 1 Buys
(Profit $5.00)

Buys
(Profit $3.20)

Buys
(Profit $12.00)

NA

Customer 2 Buys
(Profit $4.00)

NA Buys
(Profit $4.20)

NA

Customer 3 Buys
(Profit $3.00)

Buys
(Profit $10.00)

Buys
(Profit $14.00)

Buys
(Profit $8.00)

Customer 4 Buys
(Profit $2.00)

NA NA Buys
(Profit $1.00)

The basket of each customer can be viewed as a transaction. The manager of the
store is interested in not only the existence of certain association rules, but also in the
aggregated profit if such rules exist.

In this example, one of the association rules can be (A, B)=>C for customer 1 and
customer 3. Together with this rule, the store manager may want to know the following:

• The total profit of item A appearing in this rule

• The total profit of item B appearing in this rule

• The total profit for consequent C appearing in this rule

• The total profit of all items appearing in the rule

For this rule, the profit for item A is $5.00 + $3.00 = $8.00, for item B the profit is $3.20
+ $10.00 = $13.20, for consequent C, the profit is $12.00 + $14.00 = $26.00, for the
antecedent itemset (A, B) is $8.00 + $13.20 = $21.20. For the whole rule, the profit
is $21.20 + $26.00 = $47.40.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

3.6 Handling Missing Values
Oracle Data Mining distinguishes between sparse data and data that contains
random missing values. The latter means that some attribute values are unknown.
Sparse data, on the other hand, contains values that are assumed to be known,
although they are not represented in the data.

A typical example of sparse data is market basket data. Out of hundreds or thousands
of available items, only a few are present in an individual case (the basket or
transaction). All the item values are known, but they are not all included in the basket.
Present values have a quantity, while the items that are not represented are sparse
(with a known quantity of zero).

Chapter 3
Handling Missing Values

3-12

Oracle Data Mining interprets missing data as follows:

• Missing at random: Missing values in columns with a simple data type (not nested)
are assumed to be missing at random.

• Sparse: Missing values in nested columns indicate sparsity.

3.6.1 Examples: Missing Values or Sparse Data?
The examples in this section illustrate how Oracle Data Mining identifies data as either
sparse or missing at random.

3.6.1.1 Sparsity in a Sales Table
A sales table contains point-of-sale data for a group of products that are sold in
several stores to different customers over a period of time. A particular customer buys
only a few of the products. The products that the customer does not buy do not appear
as rows in the sales table.

If you were to figure out the amount of money a customer has spent for each product,
the unpurchased products have an inferred amount of zero. The value is not random
or unknown; it is zero, even though no row appears in the table.

Note that the sales data is dimensioned (by product, stores, customers, and time) and
are often represented as nested data for mining.

Since missing values in a nested column always indicate sparsity, you must ensure
that this interpretation is appropriate for the data that you want to mine. For example,
when trying to mine a multi-record case data set containing movie ratings from users
of a large movie database, the missing ratings are unknown (missing at random), but
Oracle Data Mining treats the data as sparse and infer a rating of zero for the missing
value.

3.6.1.2 Missing Values in a Table of Customer Data
A table of customer data contains demographic data about customers. The case ID
column is the customer ID. The attributes are age, education, profession, gender,
house-hold size, and so on. Not all the data is available for each customer. Any
missing values are considered to be missing at random. For example, if the age
of customer 1 and the profession of customer 2 are not present in the data, that
information is simply unknown. It does not indicate sparsity.

Note that the customer data is not dimensioned. There is a one-to-one mapping
between the case and each of its attributes. None of the attributes are nested.

3.6.2 Missing Value Treatment in Oracle Data Mining
Missing value treatment depends on the algorithm and on the nature of the data
(categorical or numerical, sparse or missing at random). Missing value treatment is
summarized in the following table.

Chapter 3
Handling Missing Values

3-13

Note:

Oracle Data Mining performs the same missing value treatment whether or
not Automatic Data Preparation is being used.

Table 3-3 Missing Value Treatment by Algorithm

Missing
Data

EM, GLM, NMF, k-Means, SVD,
SVM

DT, MDL, NB, OC Apriori

NUMERICAL
missing at
random

The algorithm replaces missing
numerical values with the mean.

For Expectation Maximization
(EM), the replacement only
occurs in columns that
are modeled with Gaussian
distributions.

The algorithm handles
missing values naturally
as missing at random.

The algorithm
interprets all
missing data as
sparse.

CATEGORIC
AL missing at
random

Genelized Linear Models
(GLM), Non-Negative Matrix
Factorization (NMF), k-Means,
and Support Vector Machine
(SVM) replaces missing
categorical values with the mode.

Singular Value Decomposition
(SVD) does not support
categorical data.

EM does not replace missing
categorical values. EM treats
NULLs as a distinct value with its
own frequency count.

The algorithm handles
missing values naturally
as missing random.

The algorithm
interprets all
missing data as
sparse.

NUMERICAL
sparse

The algorithm replaces sparse
numerical data with zeros.

O-Cluster does not
support nested data
and therefore does not
support sparse data.
Decision Tree (DT),
Minimum Description
Length (MDL), and Naive
Bayes (NB) and replace
sparse numerical data
with zeros.

The algorithm
handles sparse
data.

CATEGORIC
AL sparse

All algorithms except SVD
replace sparse categorical data
with zero vectors. SVD does not
support categorical data.

O-Cluster does not
support nested data
and therefore does not
support sparse data. DT,
MDL, and NB replace
sparse categorical data
with the special value
DM$SPARSE.

The algorithm
handles sparse
data.

Chapter 3
Handling Missing Values

3-14

3.6.3 Changing the Missing Value Treatment
Transform the missing data as sparse or missing at random.

If you want Oracle Data Mining to treat missing data as sparse instead of missing at
random or missing at random instead of sparse, transform it before building the model.

If you want missing values to be treated as sparse, but Oracle Data Mining interprets
them as missing at random, you can use a SQL function like NVL to replace the
nulls with a value such as "NA". Oracle Data Mining does not perform missing value
treatment when there is a specified value.

If you want missing nested attributes to be treated as missing at random, you can
transform the nested rows into physical attributes in separate columns — as long as
the case table stays within the 1000 column limitation imposed by the Database. Fill in
all of the possible attribute names, and specify them as null. Alternatively, insert rows
in the nested column for all the items that are not present and assign a value such as
the mean or mode to each one.

Related Topics

• Oracle Database SQL Language Reference

Chapter 3
Handling Missing Values

3-15

4
Transforming the Data

Understand how to transform data for building a model or for scoring.

• About Transformations

• Preparing the Case Table

• Understanding Automatic Data Preparation

• Embedding Transformations in a Model

• Understanding Reverse Transformations

4.1 About Transformations
Understand how you can transform data by using Automatic Data Preparation (ADP)
and embedded data transformation.

A transformation is a SQL expression that modifies the data in one or more columns.
Data must typically undergo certain transformations before it can be used to build
a model. Many data mining algorithms have specific transformation requirements.
Before data can be scored, it must be transformed in the same way that the training
data was transformed.

Oracle Data Mining supports Automatic Data Preparation (ADP), which automatically
implements the transformations required by the algorithm. The transformations are
embedded in the model and automatically executed whenever the model is applied.

If additional transformations are required, you can specify them as SQL expressions
and supply them as input when you create the model. These transformations are
embedded in the model just as they are with ADP.

With automatic and embedded data transformation, most of the work of data
preparation is handled for you. You can create a model and score multiple data sets in
just a few steps:

1. Identify the columns to include in the case table.

2. Create nested columns if you want to include transactional data.

3. Write SQL expressions for any transformations not handled by ADP.

4. Create the model, supplying the SQL expressions (if specified) and identifying any
columns that contain text data.

5. Ensure that some or all of the columns in the scoring data have the same name
and type as the columns used to train the model.

Related Topics

• Scoring Requirements

4-1

4.2 Preparing the Case Table
Understand why you have to prepare a case table.

The first step in preparing data for mining is the creation of a case table. If all the
data resides in a single table and all the information for each case (record) is included
in a single row (single-record case), this process is already taken care of. If the data
resides in several tables, creating the data source involves the creation of a view. For
the sake of simplicity, the term "case table" is used here to refer to either a table or a
view.

Related Topics

• Preparing the Data
Learn how to create a table or view that can be used to build a model.

4.2.1 Creating Nested Columns
Learn when to create nested columns.

When the data source includes transactional data (multi-record case), the transactions
must be aggregated to the case level in nested columns. In transactional data, the
information for each case is contained in multiple rows. An example is sales data in
a star schema when mining at the product level. Sales is stored in many rows for a
single product (the case) since the product is sold in many stores to many customers
over a period of time.

See Also:

Using Nested Data for information about converting transactional data to
nested columns

4.2.2 Converting Column Data Types
You must convert the data type of a column if its type causes Oracle Data Mining to
interpret it incorrectly. For example, zip codes identify different postal zones; they do
not imply order. If the zip codes are stored in a numeric column, they are interpreted
as a numeric attribute. You must convert the data type so that the column data can
be used as a categorical attribute by the model. You can do this using the TO_CHAR
function to convert the digits 1-9 and the LPAD function to retain the leading 0, if there
is one.

LPAD(TO_CHAR(ZIPCODE),5,'0')

4.2.3 Text Transformation
You can use Oracle Data Mining to mine text. Columns of text in the case table can be
mined once they have undergone the proper transformation.

The text column must be in a table, not a view. The transformation process uses
several features of Oracle Text; it treats the text in each row of the table as a separate

Chapter 4
Preparing the Case Table

4-2

document. Each document is transformed to a set of text tokens known as terms,
which have a numeric value and a text label. The text column is transformed to a
nested column of DM_NESTED_NUMERICALS.

4.2.4 About Business and Domain-Sensitive Transformations
Understand why you need to transform data according to business problems.

Some transformations are dictated by the definition of the business problem. For
example, you want to build a model to predict high-revenue customers. Since your
revenue data for current customers is in dollars you need to define what "high-
revenue" means. Using some formula that you have developed from past experience,
you can recode the revenue attribute into ranges Low, Medium, and High before
building the model.

Another common business transformation is the conversion of date information into
elapsed time. For example, date of birth can be converted to age.

Domain knowledge can be very important in deciding how to prepare the data. For
example, some algorithms produce unreliable results if the data contains values that
fall far outside of the normal range. In some cases, these values represent errors or
abnormalities. In others, they provide meaningful information.

Related Topics

• Outlier Treatment

4.3 Understanding Automatic Data Preparation
Understand data transformation using Automatic Data Preparation (ADP).

Most algorithms require some form of data transformation. During the model build
process, Oracle Data Mining can automatically perform the transformations required
by the algorithm. You can choose to supplement the automatic transformations
with additional transformations of your own, or you can choose to manage all the
transformations yourself.

In calculating automatic transformations, Oracle Data Mining uses heuristics that
address the common requirements of a given algorithm. This process results in
reasonable model quality in most cases.

Binning and normalization are transformations that are commonly needed by data
mining algorithms.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

4.3.1 Binning
Binning, also called discretization, is a technique for reducing the cardinality of
continuous and discrete data. Binning groups related values together in bins to reduce
the number of distinct values.

Binning can improve resource utilization and model build response time dramatically
without significant loss in model quality. Binning can improve model quality by
strengthening the relationship between attributes.

Chapter 4
Understanding Automatic Data Preparation

4-3

Supervised binning is a form of intelligent binning in which important characteristics
of the data are used to determine the bin boundaries. In supervised binning, the bin
boundaries are identified by a single-predictor decision tree that takes into account the
joint distribution with the target. Supervised binning can be used for both numerical
and categorical attributes.

4.3.2 Normalization
Normalization is the most common technique for reducing the range of numerical data.
Most normalization methods map the range of a single variable to another range (often
0,1).

4.3.3 How ADP Transforms the Data
The following table shows how ADP prepares the data for each algorithm.

Table 4-1 Oracle Data Mining Algorithms With ADP

Algorithm Mining Function Treatment by ADP

Apriori Association Rules ADP has no effect on association rules.

Decision
Tree

Classification ADP has no effect on Decision Tree. Data preparation is handled by the
algorithm.

Expectation
Maximizatio
n

Clustering Single-column (not nested) numerical columns that are modeled with
Gaussian distributions are normalized. ADP has no effect on the other
types of columns.

GLM Classification and
Regression

Numerical attributes are normalized.

k-Means Clustering Numerical attributes are normalized.

MDL Attribute Importance All attributes are binned with supervised binning.

Naive Bayes Classification All attributes are binned with supervised binning.

NMF Feature Extraction Numerical attributes are normalized.

O-Cluster Clustering Numerical attributes are binned with a specialized form of equi-width
binning, which computes the number of bins per attribute automatically.
Numerical columns with all nulls or a single value are removed.

SVD Feature Extraction Numerical attributes are normalized.

SVM Classification, Anomaly
Detection, and
Regression

Numerical attributes are normalized.

See Also:

• Oracle Database PL/SQL Packages and Types Reference

• Part III of Oracle Data Mining Concepts for more information about
algorithm-specific data preparation

Chapter 4
Understanding Automatic Data Preparation

4-4

4.4 Embedding Transformations in a Model
You can specify your own transformations and embed them in a model by creating a
transformation list and passing it to DBMS_DATA_MINING.CREATE_MODEL.

PROCEDURE create_model(
 model_name IN VARCHAR2,
 mining_function IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2 DEFAULT NULL,
 settings_table_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 settings_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_list IN TRANSFORM_LIST DEFAULT NULL);

4.4.1 Specifying Transformation Instructions for an Attribute
Learn what is a transformation instruction for an attribute and learn about the fields in
a transformation record.

A transformation list is defined as a table of transformation records. Each record
(transform_rec) specifies the transformation instructions for an attribute.

TYPE transform_rec IS RECORD (
 attribute_name VARCHAR2(30),
 attribute_subname VARCHAR2(4000),
 expression EXPRESSION_REC,
 reverse_expression EXPRESSION_REC,
 attribute_spec VARCHAR2(4000));

The fields in a transformation record are described in this table.

Table 4-2 Fields in a Transformation Record for an Attribute

Field Description

attribute_name and
attribute_subname

These fields identify the attribute, as described in "Scoping of Model
Attribute Name"

expression A SQL expression for transforming the attribute. For example, this
expression transforms the age attribute into two categories: child and
adult:[0,19) for 'child' and [19,) for adult

CASE WHEN age < 19 THEN 'child' ELSE 'adult'

Expression and reverse expressions are stored in expression_rec
objects. See "Expression Records" for details.

reverse_expression A SQL expression for reversing the transformation. For example, this
expression reverses the transformation of the age attribute:

DECODE(age,'child','(-Inf,19)','[19,Inf)')

Chapter 4
Embedding Transformations in a Model

4-5

Table 4-2 (Cont.) Fields in a Transformation Record for an Attribute

Field Description

attribute_spec Specifies special treatment for the attribute. The attribute_spec
field can be null or it can have one or more of these values:

• FORCE_IN — For GLM, forces the inclusion of the attribute in
the model build when the ftr_selection_enable setting is
enabled. (ftr_selection_enable is disabled by default.) If the
model is not using GLM, this value has no effect. FORCE_IN
cannot be specified for nested attributes or text.

• NOPREP — When ADP is on, prevents automatic transformation
of the attribute. If ADP is not on, this value has no effect. You
can specify NOPREP for a nested attribute, but not for an individual
subname (row) in the nested attribute.

• TEXT — Indicates that the attribute contains unstructured text.
ADP has no effect on this setting. TEXT may optionally include
subsettings POLICY_NAME, TOKEN_TYPE, and MAX_FEATURES.

See Example 4-1 and Example 4-2.

Related Topics

• Scoping of Model Attribute Name

• Expression Records

4.4.1.1 Expression Records
The transformation expressions in a transformation record are expression_rec
objects.

TYPE expression_rec IS RECORD (
 lstmt DBMS_SQL.VARCHAR2A,
 lb BINARY_INTEGER DEFAULT 1,
 ub BINARY_INTEGER DEFAULT 0);

TYPE varchar2a IS TABLE OF VARCHAR2(32767)
INDEX BY BINARY_INTEGER;

The lstmt field stores a VARCHAR2A, which allows transformation expressions to
be very long, as they can be broken up across multiple rows of VARCHAR2.
Use the DBMS_DATA_MINING_TRANSFORM.SET_EXPRESSION procedure to create an
expression_rec.

4.4.1.2 Attribute Specifications
Learn how to define the characteristics specific to an attribute through attribute
specification.

The attribute specification in a transformation record defines characteristics that are
specific to this attribute. If not null, the attribute specification can include values
FORCE_IN, NOPREP, or TEXT, as described in Table 4-2.

Example 4-1 An Attribute Specification with Multiple Keywords

If more than one attribute specification keyword is applicable, you can provide them
in a comma-delimited list. The following expression is the specification for an attribute

Chapter 4
Embedding Transformations in a Model

4-6

in a GLM model. Assuming that the ftr_selection_enable setting is enabled, this
expression forces the attribute to be included in the model. If ADP is on, automatic
transformation of the attribute is not performed.

"FORCE_IN,NOPREP"

Example 4-2 A Text Attribute Specification

For text attributes, you can optionally specify subsettings POLICY_NAME, TOKEN_TYPE,
and MAX_FEATURES. The subsettings provide configuration information that is specific to
text transformation. In this example, the transformation instructions for the text content
are defined in a text policy named my_policy with token type is THEME. The maximum
number of extracted features is 3000.

"TEXT(POLICY_NAME:my_policy)(TOKEN_TYPE:THEME)(MAX_FEATURES:3000)"

Related Topics

• Configuring a Text Attribute
Learn how to identify a column as a text attribute and provide transformation
instructions for any text attribute.

4.4.2 Building a Transformation List
A transformation list is a collection of transformation records. When a new
transformation record is added, it is appended to the top of the transformation list.
You can use any of the following methods to build a transformation list:

• The SET_TRANFORM procedure in DBMS_DATA_MINING_TRANSFORM

• The STACK interface in DBMS_DATA_MINING_TRANSFORM

• The GET_MODEL_TRANSFORMATIONS and GET_TRANSFORM_LIST functions in
DBMS_DATA_MINING

4.4.2.1 SET_TRANSFORM
The SET_TRANSFORM procedure adds a single transformation record to a transformation
list.

DBMS_DATA_MINING_TRANSFORM.SET_TRANSFORM (
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 attribute_name VARCHAR2,
 attribute_subname VARCHAR2,
 expression VARCHAR2,
 reverse_expression VARCHAR2,
 attribute_spec VARCHAR2 DEFAULT NULL);

SQL expressions that you specify with SET_TRANSFORM must fit within a VARCHAR2. To
specify a longer expression, you can use the SET_EXPRESSION procedure, which builds
an expression by appending rows to a VARCHAR2 array.

4.4.2.2 The STACK Interface
The STACK interface creates transformation records from a table of transformation
instructions and adds them to a transformation list.

Chapter 4
Embedding Transformations in a Model

4-7

The STACK interface specifies that all or some of the attributes of a given type must
be transformed in the same way. For example, STACK_BIN_CAT appends binning
instructions for categorical attributes to a transformation list. The STACK interface
consists of three steps:

1. A CREATE procedure creates a transformation definition table. For example,
CREATE_BIN_CAT creates a table to hold categorical binning instructions. The table
has columns for storing the name of the attribute, the value of the attribute, and
the bin assignment for the value.

2. An INSERT procedure computes the bin boundaries for one or more attributes
and populates the definition table. For example, INSERT_BIN_CAT_FREQ performs
frequency-based binning on some or all of the categorical attributes in the data
source and populates a table created by CREATE_BIN_CAT.

3. A STACK procedure creates transformation records from the information in the
definition table and appends the transformation records to a transformation list.
For example, STACK_BIN_CAT creates transformation records for the information
stored in a categorical binning definition table and appends the transformation
records to a transformation list.

4.4.2.3 GET_MODEL_TRANSFORMATIONS and GET_TRANSFORM_LIST
Use the functions to create a new transformation list.

These two functions can be used to create a new transformation list from the
transformations embedded in an existing model.

The GET_MODEL_TRANSFORMATIONS function returns a list of embedded transformations.

DBMS_DATA_MINING.GET_MODEL_TRANSFORMATIONS (
 model_name IN VARCHAR2)
RETURN DM_TRANSFORMS PIPELINED;

GET_MODEL_TRANSFORMATIONS returns a table of dm_transform objects. Each
dm_transform has these fields

attribute_name VARCHAR2(4000)
attribute_subname VARCHAR2(4000)
expression CLOB
reverse_expression CLOB

The components of a transformation list are transform_rec, not dm_transform.
The fields of a transform_rec are described in Table 4-2. You can call
GET_MODEL_TRANSFORMATIONS to convert a list of dm_transform objects to
transform_rec objects and append each transform_rec to a transformation list.

DBMS_DATA_MINING.GET_TRANSFORM_LIST (
 xform_list OUT NOCOPY TRANSFORM_LIST,
 model_xforms IN DM_TRANSFORMS);

Chapter 4
Embedding Transformations in a Model

4-8

See Also:

"DBMS_DATA_MINING_TRANSFORM Operational Notes",
"SET_TRANSFORM Procedure", "CREATE_MODEL Procedure", and
"GET_MODEL_TRANSFORMATIONS Function" in Oracle Database
PL/SQL Packages and Types Reference

4.4.3 Transformation Lists and Automatic Data Preparation
If you enable ADP and you specify a transformation list, the transformation list is
embedded with the automatic, system-generated transformations. The transformation
list is executed before the automatic transformations.

If you enable ADP and do not specify a transformation list, only the automatic
transformations are embedded in the model.

If ADP is disabled (the default) and you specify a transformation list, your custom
transformations are embedded in the model. No automatic transformations are
performed.

If ADP is disabled (the default) and you do not specify a transformation list, no
transformations is embedded in the model. You have to transform the training, test,
and scoring data sets yourself if necessary. You must take care to apply the same
transformations to each data set.

4.4.4 Oracle Data Mining Transformation Routines
Learn about transformation routines.

Oracle Data Mining provides routines that implement various transformation
techniques in the DBMS_DATA_MINING_TRANSFORM package.

Related Topics

• Oracle Database SQL Language Reference

4.4.4.1 Binning Routines
Explains Binning techniques in Oracle Data Mining.

A number of factors go into deciding a binning strategy. Having fewer values typically
leads to a more compact model and one that builds faster, but it can also lead to some
loss in accuracy.

Model quality can improve significantly with well-chosen bin boundaries. For example,
an appropriate way to bin ages is to separate them into groups of interest, such as
children 0-13, teenagers 13-19, youth 19-24, working adults 24-35, and so on.

The following table lists the binning techniques provided by Oracle Data Mining:

Chapter 4
Embedding Transformations in a Model

4-9

Table 4-3 Binning Methods in DBMS_DATA_MINING_TRANSFORM

Binning Method Description

Top-N Most Frequent Items You can use this technique to bin categorical attributes. You
specify the number of bins. The value that occurs most
frequently is labeled as the first bin, the value that appears with
the next frequency is labeled as the second bin, and so on. All
remaining values are in an additional bin.

Supervised Binning Supervised binning is a form of intelligent binning, where bin
boundaries are derived from important characteristics of the
data. Supervised binning builds a single-predictor decision tree
to find the interesting bin boundaries with respect to a target. It
can be used for numerical or categorical attributes.

Equi-Width Binning You can use equi-width binning for numerical attributes. The
range of values is computed by subtracting the minimum value
from the maximum value, then the range of values is divided
into equal intervals. You can specify the number of bins or it can
be calculated automatically. Equi-width binning must usually be
used with outlier treatment.

Quantile Binning Quantile binning is a numerical binning technique. Quantiles
are computed using the SQL analytic function NTILE. The bin
boundaries are based on the minimum values for each quantile.
Bins with equal left and right boundaries are collapsed, possibly
resulting in fewer bins than requested.

Related Topics

• Routines for Outlier Treatment

4.4.4.2 Normalization Routines
Learn about Normalization routines in Oracle Data Mining.

Most normalization methods map the range of a single attribute to another range,
typically 0 to 1 or -1 to +1.

Normalization is very sensitive to outliers. Without outlier treatment, most values are
mapped to a tiny range, resulting in a significant loss of information.

Table 4-4 Normalization Methods in DBMS_DATA_MINING_TRANSFORM

Transformation Description

Min-Max Normalization This technique computes the normalization of an attribute using
the minimum and maximum values. The shift is the minimum
value, and the scale is the difference between the maximum and
minimum values.

Scale Normalization This normalization technique also uses the minimum and
maximum values. For scale normalization, shift = 0, and scale
= max{abs(max), abs(min)}.

Z-Score Normalization This technique computes the normalization of an attribute using
the mean and the standard deviation. Shift is the mean, and
scale is the standard deviation.

Chapter 4
Embedding Transformations in a Model

4-10

Related Topics

• Routines for Outlier Treatment

4.4.4.3 Outlier Treatment
A value is considered an outlier if it deviates significantly from most other values in
the column. The presence of outliers can have a skewing effect on the data and can
interfere with the effectiveness of transformations such as normalization or binning.

Outlier treatment methods such as trimming or clipping can be implemented to
minimize the effect of outliers.

Outliers represent problematic data, for example, a bad reading due to the abnormal
condition of an instrument. However, in some cases, especially in the business arena,
outliers are perfectly valid. For example, in census data, the earnings for some of the
richest individuals can vary significantly from the general population. Do not treat this
information as an outlier, since it is an important part of the data. You need domain
knowledge to determine outlier handling.

4.4.4.4 Routines for Outlier Treatment
Outliers are extreme values, typically several standard deviations from the mean. To
minimize the effect of outliers, you can Winsorize or trim the data.

Winsorizing involves setting the tail values of an attribute to some specified value.
For example, for a 90% Winsorization, the bottom 5% of values are set equal to the
minimum value in the 5th percentile, while the upper 5% of values are set equal to the
maximum value in the 95th percentile.

Trimming sets the tail values to NULL. The algorithm treats them as missing values.

Outliers affect the different algorithms in different ways. In general, outliers cause
distortion with equi-width binning and min-max normalization.

Table 4-5 Outlier Treatment Methods in DBMS_DATA_MINING_TRANSFORM

Transformation Description

Trimming This technique trims the outliers in numeric columns by sorting
the non-null values, computing the tail values based on some
fraction, and replacing the tail values with nulls.

Windsorizing This technique trims the outliers in numeric columns by sorting
the non-null values, computing the tail values based on some
fraction, and replacing the tail values with some specified value.

4.5 Understanding Reverse Transformations
Understand why you need reverse transformations.

Reverse transformations ensure that information returned by the model is expressed in
a format that is similar to or the same as the format of the data that was used to train
the model. Internal transformation are reversed in the model details and in the results
of scoring.

Chapter 4
Understanding Reverse Transformations

4-11

Some of the attributes used by the model correspond to columns in the build data.
However, because of logic specific to the algorithm, nested data, and transformations,
some attributes donot correspond to columns.

For example, a nested column in the training data is not interpreted as an attribute by
the model. During the model build, Oracle Data Mining explodes nested columns, and
each row (an attribute name/value pair) becomes an attribute.

Some algorithms, for example Support Vector Machines (SVM) and Generalized
Linear Models (GLM), only operate on numeric attributes. Any non-numeric column
in the build data is exploded into binary attributes, one for each distinct value in the
column (SVM). GLM does not generate a new attribute for the most frequent value in
the original column. These binary attributes are set to one only if the column value for
the case is equal to the value associated with the binary attribute.

Algorithms that generate coefficients present challenges in regards to interpretability
of results. Examples are SVM and Non-Negative Matrix Factorization (NMF). These
algorithms produce coefficients that are used in combination with the transformed
attributes. The coefficients are relevant to the data on the transformed scale, not the
original data scale.

For all these reasons, the attributes listed in the model details donot resemble the
columns of data used to train the model. However, attributes that undergo embedded
transformations, whether initiated by Automatic Data Preparation (ADP) or by a user-
specified transformation list, appear in the model details in their pre-transformed
state, as close as possible to the original column values. Although the attributes are
transformed when they are used by the model, they are visible in the model details in a
form that can be interpreted by a user.

Related Topics

• ALTER_REVERSE_EXPRESSION Procedure

• GET_MODEL_TRANSFORMATIONS Function

• Model Detail Views
The GET_* interfaces are replaced by model views, and Oracle recommends that
users leverage the views instead.

Chapter 4
Understanding Reverse Transformations

4-12

5
Creating a Model

Explains how to create data mining models and query model details.

• Before Creating a Model

• The CREATE_MODEL Procedure

• Specifying Model Settings

• Model Detail Views

5.1 Before Creating a Model
Explains the preparation steps before creating a model.

Models are database schema objects that perform data mining. The
DBMS_DATA_MINING PL/SQL package is the API for creating, configuring, evaluating,
and querying mining models (model details).

Before you create a model, you must decide what you want the model to do. You
must identify the training data and determine if transformations are required. You
can specify model settings to influence the behavior of the model behavior. The
preparation steps are summarized in the following table.

Table 5-1 Preparation for Creating a Mining Model

Preparation Step Description

Choose the mining function See "Choosing the Mining Function"

Choose the algorithm See "Choosing the Algorithm"

Identify the build (training) data See "Preparing the Data"

For classification models, identify the test data See "Data Sets for Classification and Regression"

Determine your data transformation strategy See " Transforming the Data"

Create and populate a settings tables (if needed) See "Specifying Model Settings"

Related Topics

• About Mining Models
Mining models are database schema objects that perform data mining.

• DBMS_DATA_MINING
Understand the routines of DBMS_DATA_MINING package.

5.2 The CREATE_MODEL Procedure
The CREATE_MODEL procedure in the DBMS_DATA_MINING package uses the specified
data to create a mining model with the specified name and mining function. The model
can be created with configuration settings and user-specified transformations.

5-1

PROCEDURE CREATE_MODEL(
 model_name IN VARCHAR2,
 mining_function IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2 DEFAULT NULL,
 settings_table_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 settings_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_list IN TRANSFORM_LIST DEFAULT NULL);

5.2.1 Choosing the Mining Function
Explains about providing mining function to CREATE_MODEL.

The mining function is a required argument to the CREATE_MODEL procedure. A data
mining function specifies a class of problems that can be modeled and solved.

Data mining functions implement either supervised or unsupervised learning.
Supervised learning uses a set of independent attributes to predict the value
of a dependent attribute or target. Unsupervised learning does not distinguish
between dependent and independent attributes. Supervised functions are predictive.
Unsupervised functions are descriptive.

Note:

In data mining terminology, a function is a general type of problem to be
solved by a given approach to data mining. In SQL language terminology, a
function is an operator that returns a value.

In Oracle Data Mining documentation, the term function, or mining
function refers to a data mining function; the term SQL function or SQL
Data Mining function refers to a SQL function for scoring (applying data
mining models).

You can specify any of the values in the following table for the mining_function
parameter to CREATE_MODEL.

Table 5-2 Mining Model Functions

Mining_Function Value Description

ASSOCIATION Association is a descriptive mining function. An association
model identifies relationships and the probability of their
occurrence within a data set. (association rules)

Association models use the Apriori algorithm.

ATTRIBUTE_IMPORTANCE Attribute Importance is a predictive mining function. An attribute
importance model identifies the relative importance of attributes
in predicting a given outcome.

Attribute Importance models use the Minimum Description
Length algorithm and CUR Matrix Decomposition.

Chapter 5
The CREATE_MODEL Procedure

5-2

Table 5-2 (Cont.) Mining Model Functions

Mining_Function Value Description

CLASSIFICATION Classification is a predictive mining function. A classification
model uses historical data to predict a categorical target.

Classification models can use Naive Bayes, Neural Network,
Decision Tree, Logistic Regression, Random Forest, Support
Vector Machines, or Explicit Semantic Analysis. The default is
Naive Bayes.

The classification function can also be used for anomaly
detection. In this case, the SVM algorithm with a null target is
used (One-Class SVM).

CLUSTERING Clustering is a descriptive mining function. A clustering model
identifies natural groupings within a data set.

Clustering models can use k-Means, O-Cluster, or Expectation
Maximization. The default is k-Means.

FEATURE_EXTRACTION Feature Extraction is a descriptive mining function. A feature
extraction model creates a set of optimized attributes.

Feature extraction models can use Non-Negative Matrix
Factorization, Singular Value Decomposition (which can also
be used for Principal Component Analysis) or Explicit Semantic
Analysis. The default is Non-Negative Matrix Factorization.

REGRESSION Regression is a predictive mining function. A regression model
uses historical data to predict a numerical target.

Regression models can use Support Vector Machines or Linear
Regression. The default is Support Vector Machine.

TIME_SERIES Time series is a predictive mining function. A time series model
forecasts the future values of a time-ordered series of historical
numeric data over a user-specified time window. Time series
models use the Exponential Smoothing algorithm. The default is
Exponential Smoothing.

Related Topics

• Oracle Data Mining Concepts

5.2.2 Choosing the Algorithm
Learn about providing the algorithm settings for a model.

The ALGO_NAME setting specifies the algorithm for a model. If you use the default
algorithm for the mining function, or if there is only one algorithm available for the
mining function, you do not need to specify the ALGO_NAME setting. Instructions for
specifying model settings are in "Specifying Model Settings".

Table 5-3 Data Mining Algorithms

ALGO_NAME Value Algorithm Default? Mining Model Function

ALGO_AI_MDL Minimum Description Length — attribute importance

ALGO_APRIORI_ASSOCIATION_RU
LES

Apriori — association

Chapter 5
The CREATE_MODEL Procedure

5-3

Table 5-3 (Cont.) Data Mining Algorithms

ALGO_NAME Value Algorithm Default? Mining Model Function

ALGO_CUR_DECOMPOSITION CUR Decomposition Attribute Importance

ALGO_DECISION_TREE Decision Tree — classification

ALGO_EXPECTATION_MAXIMIZATI
ON

Expectation Maximization

ALGO_EXPLICIT_SEMANTIC_ANAL
YS

Explicit Semantic Analysis — feature extraction

classification

ALGO_EXPONENTIAL_SMOOTHING Exponential Smoothing — time series

ALGO_EXTENSIBLE_LANG Language used for extensible
algorithm

— All mining functions are
supported

ALGO_GENERALIZED_LINEAR_MOD
EL

Generalized Linear Model — classification and regression

ALGO_KMEANS k-Means yes clustering

ALGO_NAIVE_BAYES Naive Bayes yes classification

ALGO_NEURAL_NETWORK Neural Network — classification

ALGO_NONNEGATIVE_MATRIX_FAC
TOR

Non-Negative Matrix Factorization yes feature extraction

ALGO_O_CLUSTER O-Cluster — clustering

ALGO_RANDOM_FOREST Random Forest — classification

ALGO_SINGULAR_VALUE_DECOMP Singular Value Decomposition (can
also be used for Principal
Component Analysis)

— feature extraction

ALGO_SUPPORT_VECTOR_MACHINE
S

Support Vector Machine yes default regression algorithm

regression, classification,
and anomaly detection
(classification with no target)

Related Topics

• Specifying Model Settings
Understand how to configure data mining models at build time.

• Oracle Data Mining Concepts

5.2.3 Supplying Transformations
You can optionally specify transformations for the build data in the xform_list
parameter to CREATE_MODEL. The transformation instructions are embedded in the
model and reapplied whenever the model is applied to new data.

5.2.3.1 Creating a Transformation List
The following are the ways to create a transformation list:

• The STACK interface in DBMS_DATA_MINING_TRANSFORM.

Chapter 5
The CREATE_MODEL Procedure

5-4

The STACK interface offers a set of pre-defined transformations that you can apply
to an attribute or to a group of attributes. For example, you can specify supervised
binning for all categorical attributes.

• The SET_TRANSFORM procedure in DBMS_DATA_MINING_TRANSFORM.

The SET_TRANSFORM procedure applies a specified SQL expression to a specified
attribute. For example, the following statement appends a transformation
instruction for country_id to a list of transformations called my_xforms. The
transformation instruction divides country_id by 10 before algorithmic processing
begins. The reverse transformation multiplies country_id by 10.

 dbms_data_mining_transform.SET_TRANSFORM (my_xforms,
 'country_id', NULL, 'country_id/10', 'country_id*10');

The reverse transformation is applied in the model details. If country_id is the
target of a supervised model, the reverse transformation is also applied to the
scored target.

5.2.3.2 Transformation List and Automatic Data Preparation
Understand the interaction between transformation list and Automatic Data
Preparation (ADP).

The transformation list argument to CREATE_MODEL interacts with the PREP_AUTO setting,
which controls ADP:

• When ADP is on and you specify a transformation list, your transformations
are applied with the automatic transformations and embedded in the model.
The transformations that you specify are executed before the automatic
transformations.

• When ADP is off and you specify a transformation list, your transformations are
applied and embedded in the model, but no system-generated transformations are
performed.

• When ADP is on and you do not specify a transformation list, the system-
generated transformations are applied and embedded in the model.

• When ADP is off and you do not specify a transformation list, no transformations
are embedded in the model; you must separately prepare the data sets you use
for building, testing, and scoring the model.

Related Topics

• Embedding Transformations in a Model

• Oracle Database PL/SQL Packages and Types Reference

5.2.4 About Partitioned Model
Introduces partitioned model to organise and represent multiple models.

Oracle Data Mining supports building of a persistent Oracle Data Mining partitioned
model. A partitioned model organizes and represents multiple models as partitions in
a single model entity, enabling a user to easily build and manage models tailored to
independent slices of data. Persistent means that the partitioned model has an on-disk
representation. The product manages the organization of the partitioned model and
simplifies the process of scoring the partitioned model. You must include the partition
columns as part of the USING clause when scoring.

Chapter 5
The CREATE_MODEL Procedure

5-5

The partition names, key values, and the structure of the partitioned model are visible
in the ALL_MINING_MODEL_PARTITIONS view.

Related Topics

• Oracle Database Reference

• Oracle Data Mining User’s Guide

5.2.4.1 Partitioned Model Build Process
To build a Partitioned Model, Oracle Data Mining requires a partitioning key. The
partition key is set through a build setting in the settings table.

The partitioning key is a comma-separated list of one or more columns (up to 16)
from the input data set. The partitioning key horizontally slices the input data based
on discrete values of the partitioning key. That is, partitioning is performed as list
values as opposed to range partitioning against a continuous value. The partitioning
key supports only columns of the data type NUMBER and VARCHAR2.

During the build process the input data set is partitioned based on the distinct values
of the specified key. Each data slice (unique key value) results in its own model
partition. This resultant model partition is not separate and is not visible to you as
a standalone model. The default value of the maximum number of partitions for
partitioned models is 1000 partitions. You can also set a different maximum partitions
value. If the number of partitions in the input data set exceed the defined maximum,
Oracle Data Mining throws an exception.

The Partitioned Model organizes features common to all partitions and the partition
specific features. The common features consist of the following metadata:

• The model name

• The mining function

• The mining algorithm

• A super set of all mining model attributes referenced by all partitions (signature)

• A common set of user-defined column transformations

• Any user-specified or default build settings that are interpreted as global. For
example, the Auto Data Preparation (ADP) setting

5.2.4.2 DDL in Partitioned model
Partitioned models are maintained through the following DDL operations:

• Drop model or drop partition

• Add partition

5.2.4.2.1 Drop Model or Drop Partition
Oracle Data Mining supports dropping a single model partition for a given partition
name.

If only a single partition remains, you cannot explicitly drop that partition. Instead,
you must either add additional partitions prior to dropping the partition or you may
choose to drop the model itself. When dropping a partitioned model, all partitions
are dropped in a single atomic operation. From a performance perspective, Oracle

Chapter 5
The CREATE_MODEL Procedure

5-6

recommends DROP_PARTITION followed by an ADD_PARTITION instead of leveraging the
REPLACE option due to the efficient behavior of the DROP_PARTITION option.

5.2.4.2.2 Add Partition
Oracle Data Mining supports adding a single partition or multiple partitions to an
existing partitioned model.

The addition occurs based on the input data set and the name of the existing
partitioned model. The operation takes the input data set and the existing partitioned
model as parameters. The partition keys are extracted from the input data set and the
model partitions are built against the input data set. These partitions are added to the
partitioned model. In the case where partition keys for new partitions conflict with the
existing partitions in the model, you can select from the following three approaches to
resolve the conflicts:

• ERROR: Terminates the ADD operation without adding any partitions.

• REPLACE: Replaces the existing partition for which the conflicting keys are found.

• IGNORE: Eliminates the rows having the conflicting keys.

If the input data set contains multiple keys, then the operation creates multiple
partitions. If the total number of partitions in the model increases to more than the
user-defined maximum specified when the model was created, then you get an error.
The default threshold value for the number of partitions is 1000.

5.2.4.3 Partitioned Model scoring
Learn about scoring of a partitioned model.

The scoring of the partitioned model is the same as that of the non-partitioned model.
The syntax of the data mining function remains the same but is extended to provide
an optional hint to you. The optional hint can impact the performance of a query which
involves scoring a partitioned model.

For scoring a partitioned model, the signature columns used during the build for the
partitioning key must be present in the scoring data set. These columns are combined
to form a unique partition key. The unique key is then mapped to a specific underlying
model partition, and the identified model partition is used to score that row.

The partitioned objects that are necessary for scoring are loaded on demand during
the query execution and are aged out depending on the System Global Area (SGA)
memory.

Related Topics

• Oracle Database SQL Language Reference

5.3 Specifying Model Settings
Understand how to configure data mining models at build time.

Numerous configuration settings are available for configuring data mining models at
build time. To specify settings, create a settings table with the columns shown in the
following table and pass the table to CREATE_MODEL.

Chapter 5
Specifying Model Settings

5-7

Table 5-4 Settings Table Required Columns

Column Name Data Type

setting_name VARCHAR2(30)

setting_value VARCHAR2(4000)

Example 5-1 creates a settings table for an Support Vector Machine (SVM)
Classification model. Since SVM is not the default classifier, the ALGO_NAME setting
is used to specify the algorithm. Setting the SVMS_KERNEL_FUNCTION to SVMS_LINEAR
causes the model to be built with a linear kernel. If you do not specify the kernel
function, the algorithm chooses the kernel based on the number of attributes in the
data.

Some settings apply generally to the model, others are specific to an algorithm. Model
settings are referenced in Table 5-5 and Table 5-6.

Table 5-5 General Model Settings

Settings Description

Mining function settings See "Mining Function Settings" in Oracle Database PL/SQL Packages and Types
Reference

Algorithm names See "Algorithm Names" in Oracle Database PL/SQL Packages and Types
Reference

Global model characteristics See "Global Settings" in Oracle Database PL/SQL Packages and Types Reference

Automatic Data Preparation See "Automatic Data Preparation" in Oracle Database PL/SQL Packages and
Types Reference

Table 5-6 Algorithm-Specific Model Settings

Algorithm Description

CUR Matrix Decomposition See "DBMS_DATA_MINING —Algorithm Settings: CUR Matrix Decomposition"in
Oracle Database PL/SQL Packages and Types Reference

Decision Tree See "DBMS_DATA_MINING —Algorithm Settings: Decision Tree" in Oracle
Database PL/SQL Packages and Types Reference

Expectation Maximization See "DBMS_DATA_MINING —Algorithm Settings: Expectation Maximization" in
Oracle Database PL/SQL Packages and Types Reference

Explicit Semantic Analysis See “DBMS_DATA_MINING —Algorithm Settings: Explicit Semantic Analysis” in
Oracle Database PL/SQL Packages and Types Reference

Exponential Smoothing See "DBMS_DATA_MINING —Algorithm Settings: Exponential Smoothing Models"
in Oracle Database PL/SQL Packages and Types Reference

Generalized Linear Models See "DBMS_DATA_MINING —Algorithm Settings: Generalized Linear Models" in
Oracle Database PL/SQL Packages and Types Reference

k-Means See "DBMS_DATA_MINING —Algorithm Settings: k-Means" in Oracle Database
PL/SQL Packages and Types Reference

Naive Bayes See "Algorithm Settings: Naive Bayes" in Oracle Database PL/SQL Packages and
Types Reference

Neural Network See "DBMS_DATA_MINING —Algorithm Settings: Neural Network" in Oracle
Database PL/SQL Packages and Types Reference

Chapter 5
Specifying Model Settings

5-8

Table 5-6 (Cont.) Algorithm-Specific Model Settings

Algorithm Description

Non-Negative Matrix
Factorization

See "DBMS_DATA_MINING —Algorithm Settings: Non-Negative Matrix
Factorization" in Oracle Database PL/SQL Packages and Types Reference

O-Cluster See "Algorithm Settings: O-Cluster" in Oracle Database PL/SQL Packages and
Types Reference

Random Forest See "DBMS_DATA_MINING — Algorithm Settings: Random Forest" in Oracle
Database PL/SQL Packages and Types Reference

Singular Value Decomposition See "DBMS_DATA_MINING —Algorithm Settings: Singular Value Decomposition"
in Oracle Database PL/SQL Packages and Types Reference

Support Vector Machine See "DBMS_DATA_MINING —Algorithm Settings: Support Vector Machine" in
Oracle Database PL/SQL Packages and Types Reference

Example 5-1 Creating a Settings Table for an SVM Classification Model

CREATE TABLE svmc_sh_sample_settings (
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(4000));

BEGIN
 INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name, dbms_data_mining.algo_support_vector_machines);
 INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.svms_kernel_function, dbms_data_mining.svms_linear);
 COMMIT;
END;
/

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

5.3.1 Specifying Costs
Specify a cost matrix table to build a Decision Tree model.

The CLAS_COST_TABLE_NAME setting specifies the name of a cost matrix table to be
used in building a Decision Tree model. A cost matrix biases a classification model to
minimize costly misclassifications. The cost matrix table must have the columns shown
in the following table:

Table 5-7 Cost Matrix Table Required Columns

Column Name Data Type

actual_target_value valid target data type

predicted_target_value valid target data type

cost NUMBER

Decision Tree is the only algorithm that supports a cost matrix at build time. However,
you can create a cost matrix and associate it with any classification model for scoring.

Chapter 5
Specifying Model Settings

5-9

If you want to use costs for scoring, create a table with the columns shown in
Table 5-7, and use the DBMS_DATA_MINING.ADD_COST_MATRIX procedure to add the cost
matrix table to the model. You can also specify a cost matrix inline when invoking a
PREDICTION function. Table 3-1 has details for valid target data types.

Related Topics

• Oracle Data Mining Concepts

5.3.2 Specifying Prior Probabilities
Prior probabilities can be used to offset differences in distribution between the build
data and the actual population.

The CLAS_PRIORS_TABLE_NAME setting specifies the name of a table of prior
probabilities to be used in building a Naive Bayes model. The priors table must have
the columns shown in the following table.

Table 5-8 Priors Table Required Columns

Column Name Data Type

target_value valid target data type

prior_probability NUMBER

Related Topics

• Target Attribute
Understand what a target means in data mining and understand the different
target data types.

• Oracle Data Mining Concepts

5.3.3 Specifying Class Weights
Specify class weights table settings in Logistic Regression or Support Vector Machine
(SVM) Classification to favour higher weighted classes.

The CLAS_WEIGHTS_TABLE_NAME setting specifies the name of a table of class weights
to be used to bias a logistic regression (Generalized Linear Model Classification) or
SVM Classification model to favor higher weighted classes. The weights table must
have the columns shown in the following table.

Table 5-9 Class Weights Table Required Columns

Column Name Data Type

target_value valid target data type

class_weight NUMBER

Related Topics

• Target Attribute
Understand what a target means in data mining and understand the different
target data types.

Chapter 5
Specifying Model Settings

5-10

• Oracle Data Mining Concepts

5.3.4 Model Settings in the Data Dictionary
Explains about ALL/USER/DBA_MINING_MODEL_SETTINGS in data dictionary view.

Information about mining model settings can be obtained from the data dictionary
view ALL/USER/DBA_MINING_MODEL_SETTINGS. When used with the ALL prefix, this view
returns information about the settings for the models accessible to the current user.
When used with the USER prefix, it returns information about the settings for the models
in the user's schema. The DBA prefix is only available for DBAs.

The columns of ALL_MINING_MODEL_SETTINGS are described as follows and explained
in the following table.

SQL> describe all_mining_model_settings
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(30)
 MODEL_NAME NOT NULL VARCHAR2(30)
 SETTING_NAME NOT NULL VARCHAR2(30)
 SETTING_VALUE VARCHAR2(4000)
 SETTING_TYPE VARCHAR2(7)

Table 5-10 ALL_MINING_MODEL_SETTINGS

Column Description

owner Owner of the mining model.

model_name Name of the mining model.

setting_name Name of the setting.

setting_value Value of the setting.

setting_type INPUT if the value is specified by a user. DEFAULT if the value is system-
generated.

The following query lists the settings for the Support Vector
Machine (SVM) Classification model SVMC_SH_CLAS_SAMPLE. The ALGO_NAME,
CLAS_WEIGHTS_TABLE_NAME, and SVMS_KERNEL_FUNCTION settings are user-specified.
These settings have been specified in a settings table for the model.

Example 5-2 ALL_MINING_MODEL_SETTINGS

SQL> COLUMN setting_value FORMAT A35
SQL> SELECT setting_name, setting_value, setting_type
 FROM all_mining_model_settings
 WHERE model_name in 'SVMC_SH_CLAS_SAMPLE';

SETTING_NAME SETTING_VALUE SETTING
------------------------------ ----------------------------------- -------
SVMS_ACTIVE_LEARNING SVMS_AL_ENABLE DEFAULT
PREP_AUTO OFF DEFAULT
SVMS_COMPLEXITY_FACTOR 0.244212 DEFAULT
SVMS_KERNEL_FUNCTION SVMS_LINEAR INPUT
CLAS_WEIGHTS_TABLE_NAME svmc_sh_sample_class_wt INPUT
SVMS_CONV_TOLERANCE .001 DEFAULT
ALGO_NAME ALGO_SUPPORT_VECTOR_MACHINES INPUT

Chapter 5
Specifying Model Settings

5-11

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

5.3.5 Specifying Mining Model Settings for R Model
The mining model settings for R model determine the characteristics of the model. You
can specify the mining model settings in the mining_model_table.

You can build R models with the mining model settings by combining together generic
settings that do not require an algorithm, such as ODMS_PARTITION_COLUMNS and
ODMS_SAMPLING. The following settings are exclusive to R mining model, and they allow
you to specify the R Mining model:

• ALGO_EXTENSIBLE_LANG

• RALG_BUILD_FUNCTION

• RALG_BUILD_PARAMETER

• RALG_DETAILS_FORMAT

• RALG_DETAILS_FUNCTION

• RALG_SCORE_FUNCTION

• RALG_WEIGHT_FUNCTION

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

5.3.5.1 ALGO_EXTENSIBLE_LANG
Use the ALGO_EXTENSIBLE_LANG setting to specify the Oracle Data Mining framework
with extensible algorithms.

Currently, R is the only valid value for ALGO_EXTENSIBLE_LANG. When the value for
ALGO_EXTENSIBLE_LANG is set to R, the mining models are built using the R language.
You can use the following settings in the model_setting_table to specify the build,
score, and view of the R model.

• RALG_BUILD_FUNCTION

• RALG_BUILD_PARAMETER

• RALG_DETAILS_FUNCTION

• RALG_DETAILS_FORMAT

• RALG_SCORE_FUNCTION

• RALG_WEIGHT_FUNCTION

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

Chapter 5
Specifying Model Settings

5-12

5.3.5.2 RALG_BUILD_FUNCTION
Use the RALG_BUILD_FUNCTION to specify the name of an existing registered R script
for R algorithm mining model build.

You must specify both RALG_BUILD_FUNCTION and ALGO_EXTENSIBLE_LANG in the
model_setting_table. The R script defines an R function that has the first input
argument of data.frame for training data, and it returns an R model object. The first
data argument is mandatory. The RALG_BUILD_FUNCTION can accept additional model
build parameters.

Note:

The valid inputs for input parameters are numeric and string scalar data
types.

Example 5-3 Example of RALG_BUILD_FUNCTION

This example shows how to specify the name of the R script MY_LM_BUILD_SCRIPT that
is used to build the model in the model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_build_function,'MY_LM_BUILD_SCRIPT');
End;
/

The R script MY_LM_BUILD_SCRIPT defines an R function that builds the LM model.
You must register the script MY_LM_BUILD_SCRIPT in the R script repository which
uses the existing ORE security restrictions. You can use Oracle R Enterprise API
sys.rqScriptCreate to register the script. Oracle R Enterprise requires the RQADMIN
role to register R scripts.

For example:

Begin
sys.rqScriptCreate('MY_LM_BUILD_SCRIPT', 'function(data, formula,
model.frame) {lm(formula = formula, data=data, model =
as.logical(model.frame)}');
End;
/

For Clustering and Feature Extraction mining function model build, the R attributes
dm$nclus and dm$nfeat must be set on the return R model to indicate the number of
clusters and features respectively.

Chapter 5
Specifying Model Settings

5-13

The R script MY_KM_BUILD_SCRIPT defines an R function that builds the k-Means model
for Clustering. R attribute dm$nclus is set with the number of clusters for the return
Clustering model.

'function(dat) {dat.scaled <- scale(dat)
 set.seed(6543); mod <- list()
 fit <- kmeans(dat.scaled, centers = 3L)
 mod[[1L]] <- fit
 mod[[2L]] <- attr(dat.scaled, "scaled:center")
 mod[[3L]] <- attr(dat.scaled, "scaled:scale")
 attr(mod, "dm$nclus") <- nrow(fit$centers)
 mod}'

The R script MY_PCA_BUILD_SCRIPT defines an R function that builds the PCA model.
R attribute dm$nfeat is set with the number of features for the return feature extraction
model.

'function(dat) {
 mod <- prcomp(dat, retx = FALSE)
 attr(mod, "dm$nfeat") <- ncol(mod$rotation)
 mod}'

Related Topics

• RALG_BUILD_PARAMETER
The RALG_BUILD_FUNCTION input parameter specifies a list of numeric and string
scalar values in SQL SELECT query statement format.

• Registered R Scripts
The RALG_*_FUNCTION must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

5.3.5.2.1 RALG_BUILD_PARAMETER
The RALG_BUILD_FUNCTION input parameter specifies a list of numeric and string scalar
values in SQL SELECT query statement format.

Example 5-4 Example of RALG_BUILD_PARAMETER

The RALG_BUILD_FUNCTION input parameters must be a list of numeric and string scalar
values. The input parameters are optional.

The syntax of the parameter is:

'SELECT value parameter name ...FROM dual'

This example shows how to specify a formula for the input argument
'formula' and a numeric value zero for input argument 'model.frame' using
the RALG_BUILD_PARAMETER. These input arguments must match with the function
signature of the R script used in RALG_BUILD_FUNCTION Parameter.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_build_parameter, 'select ''AGE ~ .'' as

Chapter 5
Specifying Model Settings

5-14

"formula", 0 as "model.frame" from dual');
End;
/

Related Topics

• RALG_BUILD_FUNCTION
Use the RALG_BUILD_FUNCTION to specify the name of an existing registered R
script for R algorithm mining model build.

5.3.5.3 RALG_DETAILS_FUNCTION
The RALG_DETAILS_FUNCTION specifies the R model metadata that is returned in the
data.frame.

Use the RALG_DETAILS_FUNCTION to specify an existing registered R script that
generates model information. The specified R script defines an R function that
contains the first input argument for the R model object. The output of the R
function must be a data.frame. The columns of the data.frame are defined by
RALG_DETAILS_FORMAT, and can contain only numeric or string scalar types.

Example 5-5 Example of RALG_DETAILS_FUNCTION

This example shows how to specify the name of the R script MY_LM_DETAILS_SCRIPT in
the model_setting_table. This script defines the R function that is used to provide the
model information.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_details_function, 'MY_LM_DETAILS_SCRIPT');
End;
/

In the R script repository, the script MY_LM_DETAILS_SCRIPT is registered as:

 'function(mod) data.frame(name=names(mod$coefficients),
 coef=mod$coefficients)'

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

• RALG_DETAILS_FORMAT
Use the RALG_DETAILS_FORMAT parameter to specify the names and column types
in the model view. It is a string that contains a SELECT query to specify a list of
numeric and string scalar data types for the name and type of the model view
columns.

Chapter 5
Specifying Model Settings

5-15

5.3.5.3.1 RALG_DETAILS_FORMAT
Use the RALG_DETAILS_FORMAT parameter to specify the names and column types in
the model view. It is a string that contains a SELECT query to specify a list of numeric
and string scalar data types for the name and type of the model view columns.

When RALG_DETAILS_FORMAT and RALG_DETAILS_FUNCTION are both specified, a model
view by the name DM$VD <model_name> is created along with an R model in the current
schema. The first column of the model view is PARTITION_NAME. It has NULL value
for non-partitioned models. The other columns of the model view are defined by
RALG_DETATLS_FORMAT.

Example 5-6 Example of RALG_DETAILS_FORMAT

This example shows how to specify the name and type of the columns for the
generated model view. The model view contains varchar2 column attr_name and
number column coef_value after the first column partition_name.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_details_format, 'select cast(''a'' as
varchar2(20)) as attr_name, 0 as coef_value from dual');
End;
/

Related Topics

• RALG_DETAILS_FUNCTION
The RALG_DETAILS_FUNCTION specifies the R model metadata that is returned in
the data.frame.

5.3.5.4 RALG_SCORE_FUNCTION
Use the RALG_SCORE_FUNCTION to specify an existing registered R script for R algorithm
mining model score in the mining_model_table.

The specified R script defines an R function. The first input argument defines the
model object. The second input argument defines the data.frame that is used for
scoring data.

Example 5-7 Example of RALG_SCORE_FUNCTION

This example shows how the function takes the R model and scores the data in
the data.frame. The argument object is the R Linear Model. The argument newdata
contains scoring data in the data.frame.

function(object, newdata) {res <- predict.lm(object, newdata =
newdata, se.fit = TRUE); data.frame(fit=res$fit, se=res$se.fit,
df=summary(object)$df[1L])}

In this example,

• object indicates the LM model

• newdata indicates the scoring data.frame

Chapter 5
Specifying Model Settings

5-16

The output of the specified R function must be a data.frame. Each row represents the
prediction for the corresponding scoring data from the input data.frame. The columns
of the data.frame are specific to mining functions, such as:

Regression: A single numeric column for predicted target value, with two optional
columns containing standard error of model fit, and the degrees of freedom number.
The optional columns are needed for query function PREDICTION_BOUNDS to work.

Example 5-8 Example of RALG_SCORE_FUNCTION for Regression

This example shows how to specify the name of the R script MY_LM_PREDICT_SCRIPT
that is used to score the model in the model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_LM_PREDICT_SCRIPT');
End;
/

In the R script repository, the script MY_LM_PREDICT_SCRIPT is registered as:

function(object, newdata) {data.frame(pre = predict(object, newdata =
newdata))}

Classification: Each column represents the predicted probability of one target class.
The column name is the target class name.

Example 5-9 Example of RALG_SCORE_FUNCTION for Classification

This example shows how to specify the name of the R script
MY_LOGITGLM_PREDICT_SCRIPT that is used to score the logit Classification model in
the model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_LOGITGLM_PREDICT_SCRIPT');
End;
/

In the R script repository, MY_LOGITGLM_PREDICT_SCRIPT is registered as follows. It is a
logit Classification with two target class "0" and "1".

'function(object, newdata) {
 pred <- predict(object, newdata = newdata, type="response");
 res <- data.frame(1-pred, pred);
 names(res) <- c("0", "1");
 res}'

Clustering: Each column represents the predicted probability of one cluster. The
columns are arranged in order of cluster ID. Each cluster is assigned a cluster ID,
and they are consecutive values starting from 1. To support CLUSTER_DISTANCE in the
R model, the output of R score function returns extra column containing the value of
the distance to each cluster in order of cluster ID after the columns for the predicted
probability.

Chapter 5
Specifying Model Settings

5-17

Example 5-10 Example of RALG_SCORE_FUNCTION for Clustering

This example shows how to specify the name of the R script
MY_CLUSTER_PREDICT_SCRIPT that is used to score the model in the
model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_CLUSTER_PREDICT_SCRIPT');
End;
/

In the R script repository, the script MY_CLUSTER_PREDICT_SCRIPT is registered as:

'function(object, dat){
 mod <- object[[1L]]; ce <- object[[2L]]; sc <- object[[3L]];
 newdata = scale(dat, center = ce, scale = sc);
 centers <- mod$centers;
 ss <- sapply(as.data.frame(t(centers)),
 function(v) rowSums(scale(newdata, center=v, scale=FALSE)^2));
 if (!is.matrix(ss)) ss <- matrix(ss, ncol=length(ss));
 disp <- -1 / (2* mod$tot.withinss/length(mod$cluster));
 distr <- exp(disp*ss);
 prob <- distr / rowSums(distr);
 as.data.frame(cbind(prob, sqrt(ss)))}'

Feature Extraction: Each column represents the coefficient value of one feature. The
columns are arranged in order of feature ID. Each feature is assigned a feature ID,
and they are consecutive values starting from 1.

Example 5-11 Example of RALG_SCORE_FUNCTION for Feature Extraction

This example shows how to specify the name of the R script
MY_FEATURE_EXTRACTION_SCRIPT that is used to score the model in the
model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_FEATURE_EXTRACTION_SCRIPT');
End;
/

In the R script repository, the script MY_FEATURE_EXTRACTION_SCRIPT is registered as:

 'function(object, dat) { as.data.frame(predict(object, dat)) }'

The function fetches the centers of the features from the R model, and computes
the feature coefficient based on the distance of the score data to the corresponding
feature center.

Chapter 5
Specifying Model Settings

5-18

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

5.3.5.5 RALG_WEIGHT_FUNCTION
Use the RALG_WEIGHT_FUNCTION to specify the name of an existing registered R script
that computes weight or contribution for each attribute in scoring. The specified
R script is used in the query function PREDICTION_DETAILS to evaluate attribute
contribution.

The specified R script defines an R function containing the first input argument for
model object, and the second input argument of data.frame for scoring data. When
the mining function is Classification, Clustering, or Feature Extraction, the target class
name or cluster ID or feature ID is passed by the third input argument to compute the
weight for that particular class or cluster or feature. The script returns a data.frame
containing the contributing weight for each attribute in a row. Each row corresponds to
that input scoring data.frame.

Example 5-12 Example of RALG_WEIGHT_FUNCTION

This example shows how to specify the name of the R script
MY_PREDICT_WEIGHT_SCRIPT that computes weight or contribution of R model attributes
in the model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_weight_function, 'MY_PREDICT_WEIGHT_SCRIPT');
End;
/

In the R script repository, the script MY_PREDICT_WEIGHT_SCRIPT for Regression is
registered as:

'function(mod, data) { coef(mod)[-1L]*data }'

In the R script repository, the script MY_PREDICT_WEIGHT_SCRIPT for logit Classification
is registered as:

'function(mod, dat, clas) {
 v <- predict(mod, newdata=dat, type = "response");
 v0 <- data.frame(v, 1-v); names(v0) <- c("0", "1");
 res <- data.frame(lapply(seq_along(dat),
 function(x, dat) {
 if(is.numeric(dat[[x]])) dat[,x] <- as.numeric(0)
 else dat[,x] <- as.factor(NA);
 vv <- predict(mod, newdata = dat, type = "response");
 vv = data.frame(vv, 1-vv); names(vv) <- c("0", "1");
 v0[[clas]] / vv[[clas]]}, dat = dat));
 names(res) <- names(dat);
 res}'

Chapter 5
Specifying Model Settings

5-19

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

5.3.5.6 Registered R Scripts
The RALG_*_FUNCTION must specify R scripts that exist in the R script repository. You
can register the R scripts using Oracle R Enterprise.

The RALG_*_FUNCTION includes the following functions:

• RALG_BUILD_FUNCTION

• RALG_DETAILS_FUNCTION

• RALG_SCORE_FUNCTION

• RALG_WEIGHT_FUNCTION

Note:

The R scripts must exist in the R script repository for an R model to function.

You can register the R scripts through Oracle Enterprise R (ORE). To register R
scripts, you must have the RQADMIN role. After an R model is built, the names of these
specified R scripts become model settings. These R scripts must exist in the R script
repository for an R model to remain functional.

You can manage the R memory that is used to build, score, and view the R models
through Oracle Enterprise R as well.

5.3.5.7 R Model Demonstration Scripts
You can access R model demonstration scripts under rdbms/demo

dmraidemo.sql dmrglmdemo.sql dmrpcademo.sql
dmrardemo.sql dmrkmdemo.sql dmrrfdemo.sql
dmrdtdemo.sql dmrnndemo.sql

5.3.5.8 Algorithm Meta Data Registration
Algorithm Meta Data Registration allows for a uniform and consistent approach of
registering new algorithm functions and their settings.

User have the ability to add new algorithms through the registration process. The
new algorithms can appear as available within Oracle Data Mining R within their
appropriate mining functions. Based on the registration meta data, the settings page
is dynamically rendered. Algorithm meta data registration extends the mining model
capability of Oracle Data Mining.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 5
Specifying Model Settings

5-20

• FETCH_JSON_SCHEMA Procedure

• REGISTER_ALGORITHM Procedure

• JSON Schema for R Extensible Algorithm

5.4 Model Detail Views
The GET_* interfaces are replaced by model views, and Oracle recommends that users
leverage the views instead.

The following are the new model views:

Association:

• Model Detail Views for Association Rules

• Model Detail View for Frequent Itemsets

• Model Detail View for Transactional Itemsets

• Model Detail View for Transactional Rule

Classification, Regression, and Anomaly Detection:

• Model Detail Views for Classification Algorithms

• Model Detail Views for CUR Matrix Decomposition

• Model Detail Views for Decision Tree

• Model Detail Views for Generalized Linear Model

• Model Detail Views for Naive Bayes

• Model Detail Views for Neural Network

• Model Detail Views for Random Forest

• Model Detail View for Support Vector Machine

Clustering:

• Model Detail Views for Clustering Algorithms

• Model Detail Views for Expectation Maximization

• Model Detail Views for k-Means

• Model Detail Views for O-Cluster

Feature Extraction:

• Model Detail Views for Explicit Semantic Analysis

• Model Detail Views for Non-Negative Matrix Factorization

• Model Detail Views for Singular Value Decomposition

Feature Selection:

• Model Detail View for Minimum Description Length

Data Preparation and Other:

• Model Detail View for Binning

• Model Detail Views for Global Information

Chapter 5
Model Detail Views

5-21

• Model Detail View for Normalization and Missing Value Handling

Time Series:

Model Detail Views for Exponential Smoothing Models

5.4.1 Model Detail Views for Association Rules
Model detail views for Association Rules describe the rule view for Association Rules.
Oracle recommends that users leverage the model details views instead of the
GET_ASSOCIATION_RULES function.

The rule view DM$VRmodel_name describes the generated rules for Association Rules.
Depending on the settings of the model, the rule view has different set of columns.
Settings ODMS_ITEM_ID_COLUMN_NAME and ODMS_ITEM_VALUE_COLUMN_NAME determine
how each item is defined. If ODMS_ITEM_ID_COLUMN_NAME is set, the input format
is called transactional input, otherwise, the input format is called 2-Dimensional
input. With transactional input, if setting ODMS_ITEM_VALUE_COLUMN_NAME is not set,
each item is defined by ITEM_NAME, otherwise, each item is defined by ITEM_NAME
and ITEM_VALUE. With 2-Dimensional input, each item is defined by ITEM_NAME,
ITEM_SUBNAME and ITEM_VALUE. Setting ASSO_AGGREGATES specifies the columns to
aggregate, which is displayed in the view.

Note:

Setting ASSO_AGGREGATES is not allowed for 2-dimensional input.

The following shows the views with different settings.

Transactional Input Without ASSO_AGGREGATES Setting

When setting ITEM_NAME (ODMS_ITEM_ID_COLUMN_NAME) is set and ITEM_VALUE
(ODMS_ITEM_VALUE_COLUMN_NAME) is not set, the following is the view. Here the
consequent item is defined with only name field. If ITEM_VALUE setting is also set,
the view will have one extra column CONSEQUENT_VALUE to specify the value field.

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 RULE_ID NUMBER
 RULE_SUPPORT NUMBER
 RULE_CONFIDENCE NUMBER
 RULE_LIFT NUMBER
 RULE_REVCONFIDENCE NUMBER
 ANTECEDENT_SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 CONSEQUENT_SUPPORT NUMBER
 CONSEQUENT_NAME VARCHAR2(4000)
 ANTECEDENT SYS.XMLTYPE

Chapter 5
Model Detail Views

5-22

Table 5-11 Rule View Columns for Transactional Inputs

Column Name Description

PARTITION_NAME A partition in a partitioned model to retrieve details

RULE_ID Identifier of the rule

RULE_SUPPORT The number of transactions that satisfy the rule.

RULE_CONFIDENCE The likelihood of a transaction satisfying the rule.

RULE_LIFT The degree of improvement in the prediction over random chance when the
rule is satisfied.

RULE_REVCONFIDENCE The number of transactions in which the rule occurs divided by the number of
transactions in which the consequent occurs.

ANTECEDENT_SUPPORT The ratio of the number of transactions that satisfy the antecedent to the total
number of transactions.

NUMBER_OF_ITEMS The total number of attributes referenced in the antecedent and consequent of
the rule.

CONSEQUENT_SUPPORT The ratio of the number of transactions that satisfy the consequent to the total
number of transactions.

CONSEQUENT_NAME Name of the consequent

CONSEQUENT_VALUE Value of the consequent when setting Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as numerical, the view
has a CONSEQUENT_VALUE column.

When setting Item_value (ODMS_ITEM_VALUE_COLUMN_NAME) is set with
TYPE as categorical, the view has a CONSEQUENT_VALUE column.

ANTECEDENT The antecedent is described as an itemset. At the itemset level, it specifies
the number of aggregates, and if not zero, the names of the columns to be
aggregated (as well as the mapping to ASSO_AGG*). The itemset contains >=
1 items.

• When setting ODMS_ITEM_VALUE_COLUMN_NAME is not set, each item is
defined by item_name. As an example, assume the antecedent contains
one item B, it is represented as follows:

<itemset NUMAGGR="0"><item><item_name>B</item_name></
item></itemset>

As another example, assume the antecedent contains two items, A and
C, it is represented as follows:

<itemset NUMAGGR="0"><item><item_name>A</item_name></
item><item><item_name>C</item_name></item></itemset>

• When setting ODMS_ITEM_VALUE_COLUMN_NAME is set, each item is
defined by item_name and item_value. As an example, assume the
antecedent contains two items, (name A, value 1) and (name C, value 1),
then it is represented as follows:

<itemset NUMAGGR="0"><item><item_name>A</
item_name><item_value>1</item_value></
item><item><item_name>C</item_name><item_value>1</
item_value></item></itemset>

Chapter 5
Model Detail Views

5-23

Transactional Input With ASSO_AGGREGATES Setting

Similar to the view without aggregates setting, there are three cases:

• Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is not set.

• Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as numerical, the view has a
CONSEQUENT_VALUE column.

• Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as categorical, the view has a
CONSEQUENT_VALUE column.

For example, refer “Example: Calculating Aggregates” in Oracle Data Mining
Concepts.

The view reports two sets of aggregates results:

1. ANT_RULE_PROFIT refers to the total profit for the antecedent itemset with respect
to the rule, the profit for each individual item of the antecedent itemset is shown
in the ANTECEDENT(XMLtype) column, CON_RULE_PROFIT refers to the total profit for
the consequent item with respect to the rule.

In the example, for rule (A, B) => C, the rule itemset (A, B, C) occurs in the
transactions of customer 1 and customer 3. The ANT_RULE_PROFIT is $21.20,
The ANTECEDENT is shown as follow, which tells that item A has profit 5.00 +
3.00 = $8.00 and item B has profit 3.20 + 10.00 = $13.20, which sum up to
ANT_RULE_PROFIT.

<itemset NUMAGGR="1" ASSO_AGG0="profit"><item><item_name>A</
item_name><ASSO_AGG0>8.0E+000</ASSO_AGG0></item><item><item_name>B</
item_name><ASSO_AGG0>1.32E+001</ASSO_AGG0></item></itemset>
The CON_RULE_PROFIT is 12.00 + 14.00 = $26.00

2. ANT_PROFIT refers to the total profit for the antecedent itemset, while CON_PROFIT
refers to the total profit for the consequent item. The difference between
CON_PROFIT and CON_RULE_PROFIT (the same applies to ANT_PROFIT and
ANT_RULE_PROFIT) is that CON_PROFIT counts all profit for the consequent item
across all transactions where the consequent occurs, while CON_RULE_PROFIT only
counts across transactions where the rule itemset occurs.

For example, item C occurs in transactions for customer 1, 2 and 3, CON_PROFIT
is 12.00 + 4.20 + 14.00 = $30.20, while CON_RULE_PROFIT only counts transactions
for customer 1 and 3 where the rule itemset (A, B, C) occurs.

Similarly, ANT_PROFIT counts all transactions where itemset (A, B) occurs, while
ANT_RULE_PROFIT counts only transactions where the rule itemset (A, B, C) occurs.
In this example, by coincidence, both count transactions for customer 1 and 3, and
have the same value.

Chapter 5
Model Detail Views

5-24

Example 5-13 Examples

The following example shows the view when setting ASSO_AGGREGATES specifies
column profit and column sales to be aggregated. In this example, ITEM_VALUE column
is not specified.

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 RULE_ID NUMBER
 RULE_SUPPORT NUMBER
 RULE_CONFIDENCE NUMBER
 RULE_LIFT NUMBER
 RULE_REVCONFIDENCE NUMBER
 ANTECEDENT_SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 CONSEQUENT_SUPPORT NUMBER
 CONSEQUENT_NAME VARCHAR2(4000)
 ANTECEDENT SYS.XMLTYPE
 ANT_RULE_PROFIT BINARY_DOUBLE
 CON_RULE_PROFIT BINARY_DOUBLE
 ANT_PROFIT BINARY_DOUBLE
 CON_PROFIT BINARY_DOUBLE
 ANT_RULE_SALES BINARY_DOUBLE
 CON_RULE_SALES BINARY_DOUBLE
 ANT_SALES BINARY_DOUBLE
 CON_SALES BINARY_DOUBLE

Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as numerical, the view has a
CONSEQUENT_VALUE column.

Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as categorical, the view has a
CONSEQUENT_VALUE column.

2-Dimensional Inputs

In Oracle Data Mining, association models can be built using either transactional or
two-dimensional data formats. For two-dimensional input, each item is defined by
three fields: NAME, VALUE and SUBNAME. The NAME field is the name of the column.
The VALUE field is the content of the column. The SUBNAME field is used when input
data table contains nested table. In such case, the SUBNAME is the name of the
nested table's column. See, Example: Creating a Nested Column for Market Basket
Analysis. In this example, there is a nested column. The CONSEQUENT_SUBNAME is
the ATTRIBUTE_NAME part of the nested column. That is, 'O/S Documentation Set -
English' and CONSEQUENT_VALUE is the value part of the nested column, which is, 1.

The view uses three columns for consequent. The rule view has the following columns:

Name Type
 ----------------------- ---------------------
 PARTITION_NAME VARCHAR2(128)
 RULE_ID NUMBER
 RULE_SUPPORT NUMBER

Chapter 5
Model Detail Views

5-25

 RULE_CONFIDENCE NUMBER
 RULE_LIFT NUMBER
 RULE_REVCONFIDENCE NUMBER
 ANTECEDENT_SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 CONSEQUENT_SUPPORT NUMBER
 CONSEQUENT_NAME VARCHAR2(4000)
 CONSEQUENT_SUBNAME VARCHAR2(4000)
 CONSEQUENT_VALUE VARCHAR2(4000)
 ANTECEDENT SYS.XMLTYPE

Note:

All the types for three parts are VARCHAR2. ASSO_AGGREGATES is not applicable
for 2-Dimensional input format.

The following table displays rule view columns for 2-Dimensional input with the
descriptions of only the fields which are specific to 2-D inputs.

Table 5-12 Rule View for 2-Dimensional Input

Column Name Description

CONSEQUENT_SUBNAME For two-dimensional inputs, CONSEQUENT_SUBNAME is used for
nested column in the input data table.

CONSEQUENT_VALUE Value of the consequent when setting Item_value is set with
TYPE as numerical, the view has a CONSEQUENT_VALUE column.

When setting Item_value is set with TYPE as categorical, the
view has a CONSEQUENT_VALUE column.

ANTECEDENT The antecedent is described as an itemset. The itemset
contains >= 1 items. Each item is defined using ITEM_NAME,
ITEM_SUBNAME, and ITEM_VALUE:

As an example, assuming that this is not a nested table input, and
the antecedent contains one item: (name ADDR, value MA). The
antecedent (XMLtype) is as follows:

<itemset NUMAGGR="0"><item><item_name>ADDR</
item_name><item_subname></item_subna
me><item_value>MA</item_value></item></itemset>

For 2-Dimensional input with nested table, the subname field is
filled.

Global Detail for Association Rules

A single global detail is produced by an Association model. The following table
describes a global detail returned for Association Rules model.

Chapter 5
Model Detail Views

5-26

Table 5-13 Global Detail for Association Rules

Name Description

ITEMSET_COUNT The number of itemsets generated

MAX_SUPPORT The maximum support

NUM_ROWS The total number of rows used in the build

RULE_COUNT The number of association rules in the model generated

TRANSACTION_COUNT The number of the transactions in input data

5.4.2 Model Detail View for Frequent Itemsets
Model detail view for Frequent Itemsets describes the frequent itemsets view.
Oracle recommends that you leverage model details view instead of the
GET_FREQUENT_ITEMSETS function.

The frequent itemsets view DM$VImodel_name has the following schema:

Name Type
 ------------- ------------------
 PARTITION_NAME VARCHAR2 (128)
 ITEMSET_ID NUMBER
 SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 ITEMSET SYS.XMLTYPE

Table 5-14 Frequent Itemsets View

Column Name Description

PARTITION_NAME A partition in a partitioned model

ITEMSET_ID Itemset identifier

SUPPORT Support of the itemset

NUMBER_OF_ITEMS Number of items in the itemset

ITEMSET Frequent itemset

The structure of the SYS.XMLTYPE column itemset is the
same as the corresponding Antecedent column of the
rule view.

5.4.3 Model Detail View for Transactional Itemsets
Model detail view for Transactional Itemsets describes the transactional itemsets view.
Oracle recommends that users leverage the model details views.

For the very common case of transactional data without aggregates,
DM$VTmodel_name view provides the itemsets information in transactional format. This

Chapter 5
Model Detail Views

5-27

view can help improve performance for some queries as compared to the view with the
XML column. The transactional itemsets view has the following schema:

Name Type
 ----------------- -----------------
 PARTITION_NAME VARCHAR2(128)
 ITEMSET_ID NUMBER
 ITEM_ID NUMBER
 SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 ITEM_NAME VARCHAR2(4000)

Table 5-15 Transactional Itemsets View

Column Name Description

PARTITION_NAME A partition in a partitioned model

ITEMSET_ID Itemset identifier

ITEM_ID Item identifier

SUPPORT Support of the itemset

NUMBER_OF_ITEMS Number of items in the itemset

ITEM_NAME The name of the item

5.4.4 Model Detail View for Transactional Rule
Model detail view for Transactional Rule describes the transactional rule view and
transactional itemsets view. Oracle recommends that you leverage model details
views.

Transactional data without aggregates also has a transactional rule view
DM$VAmodel_name. This view can improve performance for some queries as
compared to the view with the XML column. The transactional rule view has the
following schema:

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 RULE_ID NUMBER
 ANTECEDENT_PREDICATE VARCHAR2(4000)
 CONSEQUENT_PREDICATE VARCHAR2(4000)
 RULE_SUPPORT NUMBER
 RULE_CONFIDENCE NUMBER
 RULE_LIFT NUMBER
 RULE_REVCONFIDENCE NUMBER
 RULE_ITEMSET_ID NUMBER
 ANTECEDENT_SUPPORT NUMBER
 CONSEQUENT_SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER

Chapter 5
Model Detail Views

5-28

Table 5-16 Transactional Rule View

Column Name Description

PARTITION_NAME A partition in a partitioned model

RULE_ID Rule identifier

ANTECEDENT_PREDICATE Name of the Antecedent item.

CONSEQUENT_PREDICATE Name of the Consequent item

RULE_SUPPORT Support of the rule

RULE_CONFIDENCE The likelihood a transaction satisfies the rule when it
contains the Antecedent.

RULE_LIFT The degree of improvement in the prediction over random
chance when the rule is satisfied

RULE_REVCONFIDENCE The number of transactions in which the rule occurs
divided by the number of transactions in which the
consequent occurs

RULE_ITEMSET_ID Itemset identifier

ANTECEDENT_SUPPORT The ratio of the number of transactions that satisfy the
antecedent to the total number of transactions

CONSEQUENT_SUPPORT The ratio of the number of transactions that satisfy the
consequent to the total number of transactions

NUMBER_OF_ITEMS Number of items in the rule

5.4.5 Model Detail Views for Classification Algorithms
Model detail view for Classification algorithms describe target map view and scoring
cost view which are applicable to all Classification algorithms. Oracle recommends
that users leverage the model details views instead of the GET_* function.

The target map view DM$VTmodel_name describes the target distribution for
Classification models. The view has the following schema:

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 TARGET_VALUE NUMBER/VARCHAR2
 TARGET_COUNT NUMBER
 TARGET_WEIGHT NUMBER

Table 5-17 Target Map View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

TARGET_VALUE Target value, numerical or categorical

TARGET_COUNT Number of rows for a given TARGET_VALUE

TARGET_WEIGHT Weight for a given TARGET_VALUE

Chapter 5
Model Detail Views

5-29

The scoring cost view DM$VCmodel_name describes the scoring cost matrix for
Classification models. The view has the following schema:

Name Type

 PARTITION_NAME VARCHAR2(128)
 ACTUAL_TARGET_VALUE NUMBER/VARCHAR2
 PREDICTED_TARGET_VALUE NUMBER/VARCHAR2
 COST NUMBER

Table 5-18 Scoring Cost View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ACTUAL_TARGET_VALUE A valid target value

PREDICTED_TARGET_VALUE Predicted target value

COST Associated cost for the actual and predicted target value
pair

5.4.6 Model Detail Views for CUR Matrix Decomposition
Model Detail Views for CUR matrix decomposition describe scores and ranks of
attributes and rows.

CUR matrix decomposition algorithm has the following views:

Attribute importance and rank: DM$VCmodel_name

Row importance and rank: DM$VRmodel_name

Global statistics: DM$VG

The Attribute Importance and Rank view DM$VCmodel_name has the following schema:

Name Type
----------------- -----------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
ATTRIBUTE_IMPORTANCE NUMBER
ATTRIBUTE_RANK NUMBER

Table 5-19 Attribute Importance and Rank View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Attribute name

ATTRIBUTE_SUBNAME Attribute subname. The value is null for non-nested
columns.

Chapter 5
Model Detail Views

5-30

Table 5-19 (Cont.) Attribute Importance and Rank View

Column Name Description

ATTRIBUTE_VALUE Value of the attribute

ATTRIBUTE_IMPORTANCE Attribute leverage score

ATTRIBUTE_RANK Attribute rank based on leverage score

The view DM$VRmodel_name exposes the leverage scores and ranks of all selected
rows through a view. This view is created when users decide to perform row
importance and the CASE_ID column is present. The view has the following schema:

Name Type
--------------------- ------------------------
PARTITION_NAME VARCHAR2(128)
CASE_ID Original cid data types,
 including NUMBER, VARCHAR2,
 DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
ROW_IMPORTANCE NUMBER
ROW_RANK NUMBER

Table 5-20 Row Importance and Rank View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Case ID. The supported case ID types are the same as
that supported for GLM, SVD, and ESA algorithms.

ROW_IMPORTANCE Row leverage score

ROW_RANK Row rank based on leverage score

The following table describes global statistics for CUR Matrix Decomposition.

Table 5-21 CUR Matrix Decomposition Statistics Information In Model Global
View.

Name Description

NUM_COMPONENTS Number of SVD components (SVD rank)

NUM_ROWS Number of rows used in the model build

Chapter 5
Model Detail Views

5-31

5.4.7 Model Detail Views for Decision Tree
Model detail view for Decision Tree describes the split information view, node statistics
view, node description view, and the cost matrix view. Oracle recommends that users
leverage the model details views instead of GET_MODEL_DETAILS_XML function.

The split information view DM$VPmodel_name describes the decision tree hierarchy
and the split information for each level in the Decision Tree. The view has the following
schema:

Name Type
 ---------------------------------- ---------------------------
 PARTITION_NAME VARCHAR2(128)
 PARENT NUMBER
 SPLIT_TYPE VARCHAR2
 NODE NUMBER
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 OPERATOR VARCHAR2
 VALUE SYS.XMLTYPE

Table 5-22 Split Information View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

PARENT Node ID of the parent

SPLIT_TYPE The main or surrogate split

NODE The node ID

ATTRIBUTE_NAME The attribute used as the splitting criterion at the parent
node to produce this node.

ATTRIBUTE_SUBNAME Split attribute subname. The value is null for non-nested
columns.

OPERATOR Split operator

VALUE Value used as the splitting criterion. This is an XML
element described using the <Element> tag.

For example, <Element>Windy</
Element><Element>Hot</Element>.

The node statistics view DM$VImodel_name describes the statistics associated with
individual tree nodes. The statistics include a target histogram for the data in the node.
The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 NODE NUMBER
 NODE_SUPPORT NUMBER
 PREDICTED_TARGET_VALUE NUMBER/VARCHAR2

Chapter 5
Model Detail Views

5-32

 TARGET_VALUE NUMBER/VARCHAR2
 TARGET_SUPPORT NUMBER

Table 5-23 Node Statistics View

Parameter Description

PARTITION_NAME Partition name in a partitioned model

NODE The node ID

NODE_SUPPORT Number of records in the training set that belong to the
node

PREDICTED_TARGET_VALUE Predicted Target value

TARGET_VALUE A target value seen in the training data

TARGET_SUPPORT The number of records that belong to the node and have
the value specified in the TARGET_VALUE column

Higher level node description can be found in DM$VOmodel_name view. The
DM$VOmodel_name has the following schema:

ame Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 NODE NUMBER
 NODE_SUPPORT NUMBER
 PREDICTED_TARGET_VALUE NUMBER/VARCHAR2
 PARENT NUMBER
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 OPERATOR VARCHAR2
 VALUE SYS.XMLTYPE

Table 5-24 Node Description View

Parameter Description

PARTITION_NAME Partition name in a partitioned model

NODE The node ID

NODE_SUPPORT Number of records in the training set that belong to the
node

PREDICTED_TARGET_VALUE Predicted Target value

PARENT The ID of the parent

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

OPERATOR Attribute predicate operator - a conditional operator
taking the following values:

IN, = , <>, < , >, <=, and >=

Chapter 5
Model Detail Views

5-33

Table 5-24 (Cont.) Node Description View

Parameter Description

VALUE Value used as the description criterion. This is an XML
element described using the <Element> tag.

For example, <Element>Windy</
Element><Element>Hot</Element>.

The DM$VMmodel_name view describes the cost matrix used by the Decision Tree
build. The DM$VMmodel_name view has the following schema:

Name Type

 PARTITION_NAME VARCHAR2(128)
 ACTUAL_TARGET_VALUE NUMBER/VARCHAR2
 PREDICTED_TARGET_VALUE NUMBER/VARCHAR2
 COST NUMBER

Table 5-25 Cost Matrix View

Parameter Description

PARTITION_NAME Partition name in a partitioned model

ACTUAL_TARGET_VALUE Valid target value

PREDICTED_TARGET_VALUE Predicted Target value

COST Associated cost for the actual and predicted target value
pair

The following table describes the global view for Decision Tree.

Table 5-26 Decision Tree Statistics Information In Model Global View

Name Description

NUM_ROWS The total number of rows used in the build

5.4.8 Model Detail Views for Generalized Linear Model
Model details views for Generalized Linear Model (GLM) describes the model details
view and row diagnostic view for Linear and Logistic Regression. Oracle recommends
that users leverage model details views than the GET_MODEL_DETAILS_GLM function.

The model details view DM$VDmodel_name describes the final model information for
both Linear Regression models and Logistic Regression models.

For Linear Regression, the view DM$VDmodel_name has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)

Chapter 5
Model Detail Views

5-34

 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 FEATURE_EXPRESSION VARCHAR2(4000)
 COEFFICIENT BINARY_DOUBLE
 STD_ERROR BINARY_DOUBLE
 TEST_STATISTIC BINARY_DOUBLE
 P_VALUE BINARY_DOUBLE
 VIF BINARY_DOUBLE
 STD_COEFFICIENT BINARY_DOUBLE
 LOWER_COEFF_LIMIT BINARY_DOUBLE
 UPPER_COEFF_LIMIT BINARY_DOUBLE

For Logistic Regression, the view DM$VDmodel_name has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 TARGET_VALUE NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 FEATURE_EXPRESSION VARCHAR2(4000)
 COEFFICIENT BINARY_DOUBLE
 STD_ERROR BINARY_DOUBLE
 TEST_STATISTIC BINARY_DOUBLE
 P_VALUE BINARY_DOUBLE
 STD_COEFFICIENT BINARY_DOUBLE
 LOWER_COEFF_LIMIT BINARY_DOUBLE
 UPPER_COEFF_LIMIT BINARY_DOUBLE
 EXP_COEFFICIENT BINARY_DOUBLE
 EXP_LOWER_COEFF_LIMIT BINARY_DOUBLE
 EXP_UPPER_COEFF_LIMIT BINARY_DOUBLE

Table 5-27 Model View for Linear and Logistic Regression Models

Column Name Description

PARTITION_NAME The name of a feature in the model

TARGET_VALUE Valid target value

ATTRIBUTE_NAME The attribute name when there is no subname, or first part of the
attribute name when there is a subname. ATTRIBUTE_NAME is the
name of a column in the source table or view. If the column is a
non-nested, numeric column, then ATTRIBUTE_NAME is the name
of the mining attribute. For the intercept, ATTRIBUTE_NAME is null.
Intercepts are equivalent to the bias term in SVM models.

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested columns.

When the nested column is numeric, the mining attribute is identified
by the combination ATTRIBUTE_NAME - ATTRIBUTE_SUBNAME.
If the column is not nested, ATTRIBUTE_SUBNAME is null. If
the attribute is an intercept, both the ATTRIBUTE_NAME and the
ATTRIBUTE_SUBNAME are null.

Chapter 5
Model Detail Views

5-35

Table 5-27 (Cont.) Model View for Linear and Logistic Regression Models

Column Name Description

ATTRIBUTE_VALUE A unique value that can be assumed by a categorical
column or nested categorical column. For categorical
columns, a mining attribute is identified by a unique
ATTRIBUTE_NAME.ATTRIBUTE_VALUE pair. For nested categorical
columns, a mining attribute is identified by the combination:
ATTRIBUTE_NAME.ATTRIBUTE_SUBNAME.ATTRIBUTE_VALUE. For
numerical attributes, ATTRIBUTE_VALUE is null.

FEATURE_EXPRESSION The feature name constructed by the algorithm when feature
selection is enabled. If feature selection is not enabled,
the feature name is simply the fully-qualified attribute name
(attribute_name.attribute_subname if the attribute is in a nested
column). For categorical attributes, the algorithm constructs a feature
name that has the following form:

fully-qualified_attribute_name.attribute_value

When feature generation is enabled, a term in the model can be a
single mining attribute or the product of up to 3 mining attributes.
Component mining attributes can be repeated within a single term. If
feature generation is not enabled or, if feature generation is enabled,
but no multiple component terms are discovered by the CREATE
model process, then FEATURE_EXPRESSION is null.

Note:

In 12c Release 2, the algorithm does
not subtract the mean from numerical
components.

COEFFICIENT The estimated coefficient.

STD_ERROR Standard error of the coefficient estimate.

TEST_STATISTIC For Linear Regression, the t-value of the coefficient estimate.

For Logistic Regression, the Wald chi-square value of the coefficient
estimate.

P_VALUE Probability of the TEST_STATISTIC under the (NULL) hypothesis
that the term in the model is not statistically significant. A low
probability indicates that the term is significant, while a high
probability indicates that the term can be better discarded. Used to
analyze the significance of specific attributes in the model.

VIF Variance Inflation Factor. The value is zero for the intercept. For
Logistic Regression, VIF is null.

STD_COEFFICIENT Standardized estimate of the coefficient.

LOWER_COEFF_LIMIT Lower confidence bound of the coefficient.

UPPER_COEFF_LIMIT Upper confidence bound of the coefficient.

EXP_COEFFICIENT Exponentiated coefficient for Logistic Regression. For linear

regression, EXP_COEFFICIENT is null.

Chapter 5
Model Detail Views

5-36

Table 5-27 (Cont.) Model View for Linear and Logistic Regression Models

Column Name Description

EXP_LOWER_COEFF_LIMIT Exponentiated coefficient for lower confidence bound of the
coefficient for Logistic Regression. For Linear Regression,
EXP_LOWER_COEFF_LIMIT is null.

EXP_UPPER_COEFF_LIMIT Exponentiated coefficient for upper confidence bound of the
coefficient for Logistic Regression. For Linear Regression,
EXP_UPPER_COEFF_LIMIT is null.

The row diagnostic view DM$VAmodel_name describes row level information for both
Linear Regression models and Logistic Regression models. For Linear Regression,
the view DM$VAmodel_name has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CASE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
 TARGET_VALUE BINARY_DOUBLE
 PREDICTED_TARGET_VALUE BINARY_DOUBLE
 Hat BINARY_DOUBLE
 RESIDUAL BINARY_DOUBLE
 STD_ERR_RESIDUAL BINARY_DOUBLE
 STUDENTIZED_RESIDUAL BINARY_DOUBLE
 PRED_RES BINARY_DOUBLE
 COOKS_D BINARY_DOUBLE

Table 5-28 Row Diagnostic View for Linear Regression

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Name of the case identifier

TARGET_VALUE The actual target value as taken from the input row

PREDICTED_TARGET_VALUE The model predicted target value for the row

HAT The diagonal element of the n*n (n=number of rows) that the Hat
matrix identifies with a specific input row. The model predictions
for the input data are the product of the Hat matrix and vector of
input target values. The diagonal elements (Hat values) represent
the influence of the ith row on the ith fitted value. Large Hat values
are indicators that the ith row is a point of high leverage, a potential
outlier.

RESIDUAL The difference between the predicted and actual target value for a
specific input row.

Chapter 5
Model Detail Views

5-37

Table 5-28 (Cont.) Row Diagnostic View for Linear Regression

Column Name Description

STD_ERR_RESIDUAL The standard error residual, sometimes called the Studentized
residual, re-scales the residual to have constant variance across all
input rows in an effort to make the input row residuals comparable.
The process multiplies the residual by square root of the row weight
divided by the product of the model mean square error and 1 minus
the Hat value.

STUDENTIZED_RESIDUAL Studentized deletion residual adjusts the standard error residual for
the influence of the current row.

PRED_RES The predictive residual is the weighted square of the deletion
residuals, computed as the row weight multiplied by the square of
the residual divided by 1 minus the Hat value.

COOKS_D Cook's distance is a measure of the combined impact of the ith case
on all of the estimated regression coefficients.

For Logistic Regression, the view DM$VAmodel_name has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CASE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
 TARGET_VALUE NUMBER/VARCHAR2
 TARGET_VALUE_PROB BINARY_DOUBLE
 Hat BINARY_DOUBLE
 WORKING_RESIDUAL BINARY_DOUBLE
 PEARSON_RESIDUAL BINARY_DOUBLE
 DEVIANCE_RESIDUAL BINARY_DOUBLE
 C BINARY_DOUBLE
 CBAR BINARY_DOUBLE
 DIFDEV BINARY_DOUBLE
 DIFCHISQ BINARY_DOUBLE

Table 5-29 Row Diagnostic View for Logistic Regression

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Name of the case identifier

TARGET_VALUE The actual target value as taken from the input row

TARGET_VALUE_PROB Model estimate of the probability of the predicted target value.

Hat The Hat value concept from Linear Regression is extended to
Logistic Regression by multiplying the Linear Regression Hat value
by the variance function for Logistic Regression, the predicted
probability multiplied by 1 minus the predicted probability.

Chapter 5
Model Detail Views

5-38

Table 5-29 (Cont.) Row Diagnostic View for Logistic Regression

Column Name Description

WORKING_RESIDUAL The working residual is the residual of the working response. The
working response is the response on the linearized scale. For
Logistic Regression it has the form: the ith row residual divided by the
variance of the ith row prediction. The variance of the prediction is the
predicted probability multiplied by 1 minus the predicted probability.

WORKING_RESIDUAL is the difference between the working response
and the linear predictor at convergence.

PEARSON_RESIDUAL The Pearson residual is a re-scaled version of the working residual,
accounting for the weight. For Logistic Regression, the Pearson
residual multiplies the residual by a factor that is computed as square
root of the weight divided by the variance of the predicted probability
for the ith row.

RESIDUAL is 1 minus the predicted probability of the actual target
value for the row.

DEVIANCE_RESIDUAL The DEVIANCE_RESIDUAL is the contribution to the model deviance
of the ith observation. For Logistic Regression it has the form the
square root of 2 times the log(1 + e^eta) - eta for the non-
reference class and -square root of 2 time the log (1 + eta) for
the reference class, where eta is the linear prediction (the prediction
as if the model were a Linear Regression).

C Measures the overall change in the fitted logits due to the deletion
of the ith observation for all points including the one deleted (the ith

point). It is computed as the square of the Pearson residual multiplied
by the Hat value divided by the square of 1 minus the Hat value.

Confidence interval displacement diagnostics that provides scalar
measure of the influence of individual observations.

CBAR C and CBAR are extensions of Cooks’ distance for Logistic
Regression. CBAR measures the overall change in the fitted logits due
to the deletion of the ith observation for all points excluding the one
deleted (the ith point). It is computed as the square of the Pearson
residual multiplied by the Hat value divided by (1 minus the Hat
value)
Confidence interval displacement diagnostic which measures the
influence of deleting an individual observation.

DIFDEV A statistic that measures the change in deviance that occurs when an
observation is deleted from the input. It is computed as the square of
the deviance residual plus CBAR.

DIFCHISQ A statistic that measures the change in the Pearson chi-square
statistic that occurs when an observation is deleted from the input.
It is computed as CBAR divided by the Hat value.

Global Details for GLM: Linear Regression

The following table describes global details returned by a Linear Regression model.

Table 5-30 Global Details for Linear Regression

Name Description

ADJUSTED_R_SQUARE Adjusted R-Square

Chapter 5
Model Detail Views

5-39

Table 5-30 (Cont.) Global Details for Linear Regression

Name Description

AIC Akaike's information criterion

COEFF_VAR Coefficient of variation

CONVERGED Indicates whether the model build process has converged to
specified tolerance. The following are the possible values:
• YES
• NO

CORRECTED_TOTAL_DF Corrected total degrees of freedom

CORRECTED_TOT_SS Corrected total sum of squares

DEPENDENT_MEAN Dependent mean

ERROR_DF Error degrees of freedom

ERROR_MEAN_SQUARE Error mean square

ERROR_SUM_SQUARES Error sum of squares

F_VALUE Model F value statistic

GMSEP Estimated mean square error of the prediction, assuming
multivariate normality

HOCKING_SP Hocking Sp statistic

ITERATIONS Tracks the number of SGD iterations. Applicable only when
the solver is SGD.

J_P JP statistic (the final prediction error)

MODEL_DF Model degrees of freedom

MODEL_F_P_VALUE Model F value probability

MODEL_MEAN_SQUARE Model mean square error

MODEL_SUM_SQUARES Model sum of square errors

NUM_PARAMS Number of parameters (the number of coefficients, including
the intercept)

NUM_ROWS Number of rows

R_SQ R-Square

RANK_DEFICIENCY The number of predictors excluded from the model due to
multi-collinearity

ROOT_MEAN_SQ Root mean square error

SBIC Schwarz's Bayesian information criterion

Global Details for GLM: Logistic Regression

The following table returns global details returned by a Logistic Regression model.

Table 5-31 Global Details for Logistic Regression

Name Description

AIC_INTERCEPT Akaike's criterion for the fit of the baseline, intercept-only,
model

Chapter 5
Model Detail Views

5-40

Table 5-31 (Cont.) Global Details for Logistic Regression

Name Description

AIC_MODEL Akaike's criterion for the fit of the intercept and the
covariates (predictors) mode

CONVERGED Indicates whether the model build process has converged to
specified tolerance. The following are the possible values:
• YES
• NO

DEPENDENT_MEAN Dependent mean

ITERATIONS Tracks the number of SGD iterations (number of IRLS
iterations). Applicable only when the solver is SGD.

LR_DF Likelihood ratio degrees of freedom

LR_CHI_SQ Likelihood ratio chi-square value

LR_CHI_SQ_P_VALUE Likelihood ratio chi-square probability value

NEG2_LL_INTERCEPT -2 log likelihood of the baseline, intercept-only, model

NEG2_LL_MODEL -2 log likelihood of the model

NUM_PARAMS Number of parameters (the number of coefficients, including
the intercept)

NUM_ROWS Number of rows

PCT_CORRECT Percent of correct predictions

PCT_INCORRECT Percent of incorrectly predicted rows

PCT_TIED Percent of cases where the estimated probabilities are equal
for both target classes

PSEUDO_R_SQ_CS Pseudo R-square Cox and Snell

PSEUDO_R_SQ_N Pseudo R-square Nagelkerke

RANK_DEFICIENCY The number of predictors excluded from the model due to
multi-collinearity

SC_INTERCEPT Schwarz's Criterion for the fit of the baseline, intercept-only,
model

SC_MODEL Schwarz's Criterion for the fit of the intercept and the
covariates (predictors) model

Note:

• When Ridge Regression is enabled, fewer global details are returned.
For information about ridge, see Oracle Data Mining Concepts.

• When the value is NULL for a partitioned model, an exception is thrown.
When the value is not null, it must contain the desired partition name.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 5
Model Detail Views

5-41

• Model Detail Views for Global Information
Model detail views for Global Information describes global statistics view, alert
view, and computed settings view. Oracle recommends that users leverage the
model details views instead of GET_MODEL_DETAILS_GLOBAL function.

5.4.9 Model Detail Views for Naive Bayes
Model Detail Views for Naive Bayes describes prior view and result view.
Oracle recommends that users leverage the model details views instead of the
GET_MODEL_DETAILS_NB function.

The prior view DM$VPmodel_name describes the priors of the targets for Naïve Bayes.
The view has the following schema:

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 TARGET_NAME VARCHAR2(128)
 TARGET_VALUE NUMBER/VARCHAR2
 PRIOR_PROBABILITY BINARY_DOUBLE
 COUNT NUMBER

Table 5-32 Prior View for Naive Bayes

Column Name Description

PARTITION_NAME The name of a feature in the model

TARGET_NAME Name of the target column

TARGET_VALUE Target value, numerical or categorical

PRIOR_PROBABILITY Prior probability for a given TARGET_VALUE

COUNT Number of rows for a given TARGET_VALUE

The Naïve Bayes result view DM$VVmodel_view describes the conditional probabilities
of the Naïve Bayes model. The view has the following schema:

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 TARGET_NAME VARCHAR2(128)
 TARGET_VALUE NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 CONDITIONAL_PROBABILITY BINARY_DOUBLE
 COUNT NUMBER

Table 5-33 Result View for Naive Bayes

Column Name Description

PARTITION_NAME The name of a feature in the model

Chapter 5
Model Detail Views

5-42

Table 5-33 (Cont.) Result View for Naive Bayes

Column Name Description

TARGET_NAME Name of the target column

TARGET_VALUE Target value, numerical or categorical

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Mining attribute value for the column ATTRIBUTE_NAME
or the nested column ATTRIBUTE_SUBNAME (if any).

CONDITIONAL_PROBABILITY Conditional probability of a mining attribute for a given
target

COUNT Number of rows for a given mining attribute and a given
target

The following table describes the global view for Naive Bayes.

Table 5-34 Naive Bayes Statistics Information In Model Global View

Name Description

NUM_ROWS The total number of rows used in the build

5.4.10 Model Detail Views for Neural Network
Model Detail Views for Neural Network describes the weights of the neurons: input
layer and hidden layers. Oracle recommends that users leverage the model details
views.

Neural Network algorithm has the following views:

Weights: DM$VAmodel_name

The view DM$VAmodel_name has the following schema:

Name
Type
---------------------- -----------------------
PARTITION_NAME VARCHAR2(128)
LAYER NUMBER
IDX_FROM NUMBER
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
IDX_TO NUMBER
TARGET_VALUE NUMBER/VARCHAR2
WEIGHT BINARY_DOUBLE

Chapter 5
Model Detail Views

5-43

Table 5-35 Weights View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

LAYER Layer ID, 0 as an input layer

IDX_FROM Node index that the weight connects from (attribute id for
input layer)

ATTRIBUTE_NAME Attribute name (only for the input layer)

ATTRIBUTE_SUBNAME Attribute subname. The value is null for non-nested
columns.

ATTRIBUTE_VALUE Categorical attribute value

IDX_TO Node index that the weights connects to

TARGET_VALUE Target value. The value is null for regression.

WEIGHT Value of the weight

The view DM$VGmodel_name is a pre-existing view. The following name-value pairs are
added to the view.

Table 5-36 Neural Networks Statistics Information In Model Global View

Name Description

CONVERGED Indicates whether the model build process has
converged to specified tolerance. The following are the
possible values:

• YES
• NO

ITERATIONS Number of iterations

LOSS_VALUE Loss function value (if it is with
NNET_REGULARIZER_HELDASIDE regularization, it is the
loss function value on test data)

NUM_ROWS Number of rows in the model (or partitioned model)

5.4.11 Model Detail Views for Random Forest
Model Detail Views for Random Forest describes variable importance measures and
statistics in global view. Oracle recommends that users leverage the model details
views.

Random Forest algorithm has the following statistics views:

• Variable importance statistics DM$VAmodel_name

• Random Forest statistics in model global view DM$VGmodel_name

Chapter 5
Model Detail Views

5-44

One of the important outputs from the Random Forest model build is a ranking of
attributes based on their relative importance. This is measured using Mean Decrease
Gini. The view DM$VAmodel_name has the following schema:

Name Type
------------------------ ---------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(128)
ATTRIBUTE_IMPORTANCE BINARY_DOUBLE

Table 5-37 Variable Importance Model View

Column Name Description

PARTITION_NAME Partition name. The value is null for models which are not
partitioned.

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_IMPORTANCE Measure of importance for an attribute in the forest
(mean Decrease Gini value)

The view DM$VGmodel_name is a pre-existing view. The following name-value pairs are
added to the view.

Table 5-38 Random Forest Statistics Information In Model Global View

Name Description

AVG_DEPTH Average depth of the trees in the forest

AVG_NODECOUNT Average number of nodes per tree

MAX_DEPTH Maximum depth of the trees in the forest

MAX_NODECOUNT Maximum number of nodes per tree

MIN_DEPTH Minimum depth of the trees in the forest

MIN_NODECOUNT Minimum number of nodes per tree

NUM_ROWS The total number of rows used in the build

5.4.12 Model Detail View for Support Vector Machine
Model Detail View for Support Vector Machine describes linear coefficient view.
Oracle recommends that users leverage the model details views instead of the
GET_MODEL_DETAILS_SVM function.

The linear coefficient view DM$VLmodel_name describes the coefficients of a linear
SVM algorithm. The target_value field in the view is present only for Classification and
has the type of the target. Regression models do not have a target_value field.

The reversed_coefficient field shows the value of the coefficient after reversing the
automatic data preparation transformations. If data preparation is disabled, then

Chapter 5
Model Detail Views

5-45

coefficient and reversed_coefficient have the same value. The view has the following
schema:

Name Type

 PARTITION_NAME VARCHAR2(128)
 TARGET_VALUE NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 COEFFICIENT BINARY_DOUBLE
 REVERSED_COEFFICIENT BINARY_DOUBLE

Table 5-39 Linear Coefficient View for Support Vector Machine

Column Name Description

PARTITION_NAME Partition name in a partitioned model

TARGET_VALUE Target value, numerical or categorical

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Value of a categorical attribute

COEFFICIENT Projection coefficient value

REVERSED_COEFFICIENT Coefficient transformed on the original scale

The following table describes the Support Vector statistics global view.

Table 5-40 Support Vector Statistics Information In Model Global View

Name Description

CONVERGED Indicates whether the model build process has
converged to specified tolerance:
• YES
• NO

ITERATIONS Number of iterations performed during build

NUM_ROWS Number of rows used for the build

REMOVED_ROWS_ZERO_NORM Number of rows removed due to 0 norm. This
applies to one-class linear models only.

5.4.13 Model Detail Views for Clustering Algorithms
Oracle Data Mining supports these clustering algorithms: Expectation Maximization,
k-Means, and Orthogonal Partitioning Clustering (O-Cluster).

All clustering algorithms share the following views:

• Cluster description DM$VDmodel_name

• Attribute statistics DM$VAmodel_name

Chapter 5
Model Detail Views

5-46

• Histogram statistics DM$VHmodel_name

• Rule statistics DM$VRmodel_name

The cluster description view DM$VDmodel_name describes cluster level information
about a clustering model. The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CLUSTER_ID NUMBER
 CLUSTER_NAME NUMBER/VARCHAR2
 RECORD_COUNT NUMBER
 PARENT NUMBER
 TREE_LEVEL NUMBER
 LEFT_CHILD_ID NUMBER
 RIGHT_CHILD_ID NUMBER

Table 5-41 Cluster Description View for Clustering Algorithm

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

RECORD_COUNT Specifies the number of records

PARENT The ID of the parent

TREE_LEVEL Specifies the number of splits from the root

LEFT_CHILD_ID The ID of the child cluster on the left side of the split

RIGHT_CHILD_ID The ID of the child cluster on the right side of the split

The attribute view DM$VAmodel_name describes attribute level information about a
Clustering model. The values of the mean, variance, and mode for a particular cluster
can be obtained from this view. The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CLUSTER_ID NUMBER
 CLUSTER_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 MEAN BINARY_DOUBLE
 VARIANCE BINARY_DOUBLE
 MODE_VALUE VARCHAR2(4000)

Table 5-42 Attribute View for Clustering Algorithm

Column Name Description

PARTITION_NAME A partition in a partitioned model

Chapter 5
Model Detail Views

5-47

Table 5-42 (Cont.) Attribute View for Clustering Algorithm

Column Name Description

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

MEAN The field returns the average value of a numeric attribute

VARIANCE The variance of a numeric attribute

MODE_VALUE The mode is the most frequent value of a categorical
attribute

The histogram view DM$VHmodel_name describes histogram level information about a
Clustering model. The bin information as well as bin counts can be obtained from this
view. The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CLUSTER_ID NUMBER
 CLUSTER_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 BIN_ID NUMBER
 LOWER_BIN_BOUNDARY BINARY_DOUBLE
 UPPER_BIN_BOUNDARY BINARY_DOUBLE
 ATTRIBUTE_VALUE VARCHAR2(4000)
 COUNT NUMBER

Table 5-43 Histogram View for Clustering Algorithm

Column Name Description

PARTITION_NAME A partition in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

BIN_ID Bin ID

LOWER_BIN_BOUNDARY Numeric lower bin boundary

UPPER_BIN_BOUNDARY Numeric upper bin boundary

ATTRIBUTE_VALUE Categorical attribute value

COUNT Histogram count

Chapter 5
Model Detail Views

5-48

The rule view DM$VRmodel_name describes the rule level information about a
Clustering model. The information is provided at attribute predicate level. The view
has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CLUSTER_ID NUMBER
 CLUSTER_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 OPERATOR VARCHAR2(2)
 NUMERIC_VALUE NUMBER
 ATTRIBUTE_VALUE VARCHAR2(4000)
 SUPPORT NUMBER
 CONFIDENCE BINARY_DOUBLE
 RULE_SUPPORT NUMBER
 RULE_CONFIDENCE BINARY_DOUBLE

Table 5-44 Rule View for Clustering Algorithm

Column Name Description

PARTITION_NAME A partition in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

OPERATOR Attribute predicate operator - a conditional operator
taking the following values: IN, = , <>, < , >, <=, and
>=

NUMERIC_VALUE Numeric lower bin boundary

ATTRIBUTE_VALUE Categorical attribute value

SUPPORT Attribute predicate support

CONFIDENCE Attribute predicate confidence

RULE_SUPPORT Rule level support

RULE_CONFIDENCE Rule level confidence

5.4.14 Model Detail Views for Expectation Maximization
Model detail views for Expectation Maximization (EM) describes the differences in
the views for EM against those of Clustering views. Oracle recommends that user
leverage the model details views instead of the GET_MODEL_DETAILS_EM function.

The following views are the differences in the views for Expectation Maximization
against Clustering views. For an overview of the different Clustering views, refer to
"Model Detail Views for Clustering Algorithms".

Chapter 5
Model Detail Views

5-49

The component view DM$VOmodel_name describes the EM components. The
component view contains information about their prior probabilities and what cluster
they map to. The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 COMPONENT_ID NUMBER
 CLUSTER_ID NUMBER
 PRIOR_PROBABILITY BINARY_DOUBLE

Table 5-45 Component View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

COMPONENT_ID Unique identifier of a component

CLUSTER_ID The ID of a cluster in the model

PRIOR_PROBABILITY Component prior probability

The mean and variance component view DM$VMmodel_name provides information
about the mean and variance parameters for the attributes by Gaussian distribution
models. The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 COMPONENT_ID NUMBER
 ATTRIBUTE_NAME VARCHAR2(4000)
 MEAN BINARY_DOUBLE
 VARIANCE BINARY_DOUBLE

The frequency component view DM$VFmodel_name provides information about the
parameters of the multi-valued Bernoulli distributions used by the EM model. The view
has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 COMPONENT_ID NUMBER
 ATTRIBUTE_NAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 FREQUENCY BINARY_DOUBLE

Table 5-46 Frequency Component View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

COMPONENT_ID Unique identifier of a component

ATTRIBUTE_NAME Column name

Chapter 5
Model Detail Views

5-50

Table 5-46 (Cont.) Frequency Component View

Column Name Description

ATTRIBUTE_VALUE Categorical attribute value

FREQUENCY The frequency of the multivalued Bernoulli distribution
for the attribute/value combination specified by
ATTRIBUTE_NAME and ATTRIBUTE_VALUE.

For 2-Dimensional columns, EM provides an attribute ranking similar to that of
Attribute Importance. This ranking is based on a rank-weighted average over
Kullback–Leibler divergence computed for pairs of columns. This unsupervised
Attribute Importance is shown in the DM$VImodel_name view and has the following
schema:

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_IMPORTANCE_VALUE BINARY_DOUBLE
 ATTRIBUTE_RANK NUMBER

Table 5-47 2–Dimensional Attribute Ranking for Expectation Maximization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Column name

ATTRIBUTE_IMPORTANCE_VALUE Importance value

ATTRIBUTE_RANK An attribute rank based on the importance value

The pairwise Kullback–Leibler divergence is reported in the DM$VBmodel_name
view. This metric evaluates how much the observed joint distribution of two attributes
diverges from the expected distribution under the assumption of independence. That
is, the higher the value, the more dependent the two attributes are. The dependency
value is scaled based on the size of the grid used for each pairwise computation. That
ensures that all values fall within the [0; 1] range and are comparable. The view has
the following schema:

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 ATTRIBUTE_NAME_1 VARCHAR2(128)
 ATTRIBUTE_NAME_2 VARCHAR2(128)
 DEPENDENCY BINARY_DOUBLE

Table 5-48 Kullback-Leibler Divergence for Expectation Maximization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

Chapter 5
Model Detail Views

5-51

Table 5-48 (Cont.) Kullback-Leibler Divergence for Expectation Maximization

Column Name Description

ATTRIBUTE_NAME_1 Name of an attribute 1

ATTRIBUTE_NAME_2 Name of an attribute 2

DEPENDENCY Scaled pairwise Kullback-Leibler divergence

The projection table DM$VPmodel_name shows the coefficients used by random
projections to map nested columns to a lower dimensional space. The view has rows
only when nested or text data is present in the build data. The view has the following
schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 FEATURE_NAME VARCHAR2(4000)
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 COEFFICIENT NUMBER

Table 5-49 Projection table for Expectation Maximization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_NAME Name of feature

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Categorical attribute value

COEFFICIENT Projection coefficient. The representation is sparse; only
the non-zero coefficients are returned.

Global Details for Expectation Maximization

The following table describes global details for Expectation Maximization.

Table 5-50 Global Details for Expectation Maximization

Name Description

CONVERGED Indicates whether the model build process has converged to
specified tolerance. The possible values are:

• YES
• NO

LOGLIKELIHOOD Loglikelihood on the build data

NUM_COMPONENTS Number of components produced by the model

Chapter 5
Model Detail Views

5-52

Table 5-50 (Cont.) Global Details for Expectation Maximization

Name Description

NUM_CLUSTERS Number of clusters produced by the model

NUM_ROWS Number of rows used in the build

RANDOM_SEED The random seed value used for the model build

REMOVED_COMPONENTS The number of empty components excluded from the model

Related Topics

• Model Detail Views for Clustering Algorithms
Oracle Data Mining supports these clustering algorithms: Expectation
Maximization, k-Means, and Orthogonal Partitioning Clustering (O-Cluster).

5.4.15 Model Detail Views for k-Means
Model detail views for k-Means (KM) describes cluster description view and
scoring view. Oracle recommends that you leverage model details view instead of
GET_MODEL_DETAILS_KM function.

This section describes the differences in the views for k-Means against the Clustering
views. For an overview of the different views, refer to "Model Detail Views for
Clustering Algorithms". For k-Means, the cluster description view DM$VDmodel_name
has an additional column:

Name Type
 ---------------------------------- ----------------------------
 DISPERSION BINARY_DOUBLE

Table 5-51 Cluster Description for k-Means

Column Name Description

DISPERSION A measure used to quantify whether a set of observed
occurrences are dispersed compared to a standard
statistical model.

The scoring view DM$VCmodel_name describes the centroid of each leaf clusters:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CLUSTER_ID NUMBER
 CLUSTER_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 VALUE BINARY_DOUBLE

Chapter 5
Model Detail Views

5-53

Table 5-52 Scoring View for k-Means

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Categorical attribute value

VALUE Specifies the centroid value

The following table describes global view for k–Means.

Table 5-53 k–Means Statistics Information In Model Global View

Name Description

CONVERGED Indicates whether the model build process has
converged to specified tolerance. The following
are the possible values:

• YES
• NO

NUM_ROWS Number of rows used in the build

REMOVED_ROWS_ZERO_NORM Number of rows removed due to 0 norm. This
applies only to models using cosine distance.

Related Topics

• Model Detail Views for Clustering Algorithms
Oracle Data Mining supports these clustering algorithms: Expectation
Maximization, k-Means, and Orthogonal Partitioning Clustering (O-Cluster).

5.4.16 Model Detail Views for O-Cluster
Model Detail Views for O-Cluster describes the statistics views. Oracle recommends
that user leverage the model details views instead of the GET_MODEL_DETAILS_OC
function.

The following are the differences in the views for O-Cluster against Clustering views.
For an overview of the different clustering views, refer to "Model Detail Views for
Clustering Algorithms". The OC algorithm uses the same descriptive statistics views
as Expectation Maximization (EM) and k-Means (KM). The following are the statistics
views:

• Cluster description DM$VDmodel_name

• Attribute statistics DM$VAmodel_name

• Rule statistics DM$VRmodel_name

• Histogram statistics DM$VHmodel_name

Chapter 5
Model Detail Views

5-54

The Cluster description view DM$VDmodel_name describes the O-Cluster components.
The cluster description view has additional fields that specify the split predicate. The
view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 OPERATOR VARCHAR2(2)
 VALUE SYS.XMLTYPE

Table 5-54 Description View

Column Name Description

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

OPERATOR Split operator

VALUE List of split values

The structure of the SYS.XMLTYPE is as follows:

<Element>splitval1</Element>

The OC algorithm uses a histogram view DM$VHmodel_name with a different schema
than EM and k-Means (KM). The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITON_NAME VARCHAR2(128)
 CLUSTER_ID NUMBER
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 BIN_ID NUMBER
 LABEL VARCHAR2(4000)
 COUNT NUMBER

Table 5-55 Histogram Component View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CLUSTER_ID Unique identifier of a component

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested
columns.

BIN_ID Unique identifier

LABEL Bin label

Chapter 5
Model Detail Views

5-55

Table 5-55 (Cont.) Histogram Component View

Column Name Description

COUNT Bin histogram count

The following table describes the global view for O-Cluster.

Table 5-56 O-Cluster Statistics Information In Model Global View

Name Description

NUM_ROWS The total number of rows used in the build

Related Topics

• Model Detail Views for Clustering Algorithms
Oracle Data Mining supports these clustering algorithms: Expectation
Maximization, k-Means, and Orthogonal Partitioning Clustering (O-Cluster).

5.4.17 Model Detail Views for Explicit Semantic Analysis
Model Detail Views for Explicit Semantic Analysis (ESA) describes attribute statistics
view and feature view. Oracle recommends that users leverage the model details view.

ESA algorithm has the following views:

• Explicit Semantic Analysis Matrix DM$VAmodel_name: This view has different
schemas for Feature Extraction and Classification. For Feature Extraction, this
view contains model attribute coefficients per feature. For Classification, this view
contains model attribute coefficients per target class.

• Explicit Semantic Analysis Features DM$VFmodel_name: This view is applicable for
only Feature Extraction.

The view DM$VAmodel_name has the following schema for Feature Extraction:

 PARTITION_NAME VARCHAR2(128)
 FEATURE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 COEFFICIENT BINARY_DOUBLE

Table 5-57 Explicit Semantic Analysis Matrix for Feature Extraction

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID Unique identifier of a feature as it appears in the training
data

ATTRIBUTE_NAME Column name

Chapter 5
Model Detail Views

5-56

Table 5-57 (Cont.) Explicit Semantic Analysis Matrix for Feature Extraction

Column Name Description

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Categorical attribute value

COEFFICIENT A measure of the weight of the attribute with respect to
the feature

The DM$VAmodel_name view comprises attribute coefficients for all target classes.

The view DM$VAmodel_name has the following schema for Classification:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
TARGET_VALUE NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE

Table 5-58 Explicit Semantic Analysis Matrix for Classification

Column Name Description

PARTITION_NAME Partition name in a partitioned model

TARGET_VALUE Value of the target

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for
non-nested columns.

ATTRIBUTE_VALUE Categorical attribute value

COEFFICIENT A measure of the weight of the attribute with
respect to the feature

The view DM$VFmodel_name has a unique row for every feature in one view. This
feature is helpful if the model was pre-built and the source training data are not
available. The view has the following schema:

 Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 FEATURE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE

Chapter 5
Model Detail Views

5-57

Table 5-59 Explicit Semantic Analysis Features for Explicit Semantic Analysis

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID Unique identifier of a feature as it appears in the training
data

The following table describes the global view for Explicit Semantic Analysis.

Table 5-60 Explicit Semantic Analysis Statistics Information In Model Global
View

Name Description

NUM_ROWS The total number of input rows

REMOVED_ROWS_BY_FILTERS Number of rows removed by filters

5.4.18 Model Detail Views for Non-Negative Matrix Factorization
Model detail views for Non-Negative Matrix Factorization (NMF) describes encoding H
matrix view and H inverse matrix view. Oracle recommends that users leverage the
model details views instead of the GET_MODEL_DETAILS_NMF function.

The NMF algorithm has two matrix content views:

• Encoding (H) matrix DM$VEmodel_name

• H inverse matrix DM$VImodel_name

The view DM$VEmodel_name describes the encoding (H) matrix of an NMF model.
The FEATURE_NAME column type may be either NUMBER or VARCHAR2. The view has the
following schema definition.

 Name Type
 ------------------- --------------------------
 PARTITION_NAME VARCHAR2(128)
 FEATURE_ID NUMBER
 FEATURE_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 COEFFICIENT BINARY_DOUBLE

Table 5-61 Encoding H Matrix View for Non-Negative Matrix Factorization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

ATTRIBUTE_NAME Column name

Chapter 5
Model Detail Views

5-58

Table 5-61 (Cont.) Encoding H Matrix View for Non-Negative Matrix
Factorization

Column Name Description

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Specifies the value of attribute

COEFFICIENT The attribute encoding that represents its contribution to
the feature

The view DM$VImodel_view describes the inverse H matrix of an NMF model. The
FEATURE_NAME column type may be either NUMBER or VARCHAR2. The view has the
following schema:

 Name Type
 ----------------- ------------------------
 PARTITION_NAME VARCHAR2(128)
 FEATURE_ID NUMBER
 FEATURE_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 COEFFICIENT BINARY_DOUBLE

Table 5-62 Inverse H Matrix View for Non-Negative Matrix Factorization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Specifies the value of attribute

COEFFICIENT The attribute encoding that represents its contribution to
the feature

The following table describes the global statistics for Non-Negative Matrix
Factorization.

Table 5-63 Non-Negative Matrix Factorization Statistics Information In Model
Global View

Name Description

CONV_ERROR Convergence error

Chapter 5
Model Detail Views

5-59

Table 5-63 (Cont.) Non-Negative Matrix Factorization Statistics Information In
Model Global View

Name Description

CONVERGED Indicates whether the model build process has
converged to specified tolerance. The following
are the possible values:
• YES
• NO

ITERATIONS Number of iterations performed during build

NUM_ROWS Number of rows used in the build input dataset

SAMPLE_SIZE Number of rows used by the build

5.4.19 Model Detail Views for Singular Value Decomposition
Model detail views for Singular Value Decomposition (SVD) describes S Matrix
view, right-singular vectors view, and left-singular vector view. Oracle recommends
that users leverage the model details views instead of the GET_MODEL_DETAILS_SVD
function.

The DM$VEmodel_name view leverages the fact that each singular value in the
SVD model has a corresponding principal component in the associated Principal
Components Analysis (PCA) model to relate a common set of information for both
classes of models. For a SVD model, it describes the content of the S matrix. When
PCA scoring is selected as a build setting, the variance and percentage cumulative
variance for the corresponding principal components are shown as well. The view has
the following schema:

 Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 FEATURE_ID NUMBER
 FEATURE_NAME NUMBER/VARCHAR2
 VALUE BINARY_DOUBLE
 VARIANCE BINARY_DOUBLE
 PCT_CUM_VARIANCE BINARY_DOUBLE

Table 5-64 S Matrix View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

VALUE The matrix entry value

Chapter 5
Model Detail Views

5-60

Table 5-64 (Cont.) S Matrix View

Column Name Description

VARIANCE The variance explained by a component. This
column is only present for SVD models with
setting dbms_data_mining.svds_scoring_mode set
to dbms_data_mining.svds_scoring_pca

This column is non-null only if the build data
is centered, either manually or because of the
following setting:dbms_data_mining.prep_auto is set
to dbms_data_mining.prep_auto_on.

PCT_CUM_VARIANCE The percent cumulative variance explained by the
components thus far. The components are ranked by the
explained variance in descending order.

This column is only present for SVD models with
setting dbms_data_mining.svds_scoring_mode set
to dbms_data_mining.svds_scoring_pca

This column is non-null only if the build data
is centered, either manually or because of the
following setting:dbms_data_mining.prep_auto is set
to dbms_data_mining.prep_auto_on.

The SVD DM$VVmodel_view describes the right-singular vectors of SVD model. For a
PCA model it describes the principal components (eigenvectors). The view has the
following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 FEATURE_ID NUMBER
 FEATURE_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 VALUE BINARY_DOUBLE

Table 5-65 Right-singular Vectors of Singular Value Decomposition

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Categorical attribute value. For numerical attributes,
ATTRIBUTE_VALUE is null.

VALUE The matrix entry value

Chapter 5
Model Detail Views

5-61

The view DM$VUmodel_name describes the left-singular vectors of a SVD model. For
a PCA model, it describes the projection of the data in the principal components. This
view does not exist unless the settings dbms_data_mining.svds_u_matrix_output is
set to dbms_data_mining.svds_u_matrix_enable. The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CASE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
 FEATURE_ID NUMBER
 FEATURE_NAME NUMBER/VARCHAR2
 VALUE BINARY_DOUBLE

Table 5-66 Left-singular Vectors of Singular Value Decomposition or Projection
Data in Principal Components

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Unique identifier of the row in the build data described by
the U matrix projection.

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

VALUE The matrix entry value

Global Details for Singular Value Decomposition

The following table describes a global detail for Singular Value Decomposition.

Table 5-67 Global Details for Singular Value Decomposition

Name Description

NUM_COMPONENTS Number of features (components) produced by the model

NUM_ROWS The total number of rows used in the build

SUGGESTED_CUTOFF Suggested cutoff that indicates how many of the top computed
features capture most of the variance in the model. Using only
the features below this cutoff would be a reasonable strategy for
dimensionality reduction.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 5
Model Detail Views

5-62

5.4.20 Model Detail View for Minimum Description Length
Model detail view for Minimum Description Length (for calculating Attribute
Importance) describes Attribute Importance view. Oracle recommends that users
leverage the model details views instead of the GET_MODEL_DETAILS_AI function.

The Attribute Importance view DM$VAmodel_name describes the Attribute Importance
as well as the Attribute Importance rank. The view has the following schema:

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_IMPORTANCE_VALUE BINARY_DOUBLE
 ATTRIBUTE_RANK NUMBER

Table 5-68 Attribute Importance View for Minimum Description Length

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_IMPORTANCE_VALUE Importance value

ATTRIBUTE_RANK Rank based on importance

The following table describes the global view for Minimum Description Length.

Table 5-69 Minimum Description Length Statistics Information In Model Global
View

Name Description

NUM_ROWS The total number of rows used in the build

5.4.21 Model Detail View for Binning
The binning view DM$VB describes the bin boundaries used in the automatic data
preparation.

The view has the following schema:

Name Type
 -------------------- --------------------
 PARTITION_NAME VARCHAR2(128)
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 BIN_ID NUMBER
 LOWER_BIN_BOUNDARY BINARY_DOUBLE

Chapter 5
Model Detail Views

5-63

 UPPER_BIN_BOUNDARY BINARY_DOUBLE
 ATTRIBUTE_VALUE VARCHAR2(4000)

Table 5-70 Model Details View for Binning

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

BIN_ID Bin ID (or bin identifier)

LOWER_BIN_BOUNDARY Numeric lower bin boundary

UPPER_BIN_BOUNDARY Numeric upper bin boundary

ATTRIBUTE_VALUE Categorical value

5.4.22 Model Detail Views for Global Information
Model detail views for Global Information describes global statistics view, alert view,
and computed settings view. Oracle recommends that users leverage the model
details views instead of GET_MODEL_DETAILS_GLOBAL function.

The global statistics view DM$VGmodel_name describes global statistics related to the
model build. Examples include the number of rows used in the build, the convergence
status, and the model quality metrics. The view has the following schema:

Name Type
 ------------------- --------------------
 PARTITION_NAME VARCHAR2(128)
 NAME VARCHAR2(30)
 NUMERIC_VALUE NUMBER
 STRING_VALUE VARCHAR2(4000)

Table 5-71 Global Statistics View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

NAME Name of the statistic

NUMERIC_VALUE Numeric value of the statistic

STRING_VALUE Categorical value of the statistic

The alert view DM$VWmodel_name lists alerts issued during the model build. The view
has the following schema:

Name Type
 ------------------- ----------------------
 PARTITION_NAME VARCHAR2(128)
 ERROR_NUMBER BINARY_DOUBLE
 ERROR_TEXT VARCHAR2(4000)

Chapter 5
Model Detail Views

5-64

Table 5-72 Alert View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ERROR_NUMBER Error number (valid when event is Error)

ERROR_TEXT Error message

The computed settings view DM$VSmodel_name lists the algorithm computed settings.
The view has the following schema:

Name Type
 ----------------- --------------------
 PARTITION_NAME VARCHAR2(128)
 SETTING_NAME VARCHAR2(30)
 SETTING_VALUE VARCHAR2(4000)

Table 5-73 Computed Settings View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

SETTING_NAME Name of the setting

SETTING_VALUE Value of the setting

5.4.23 Model Detail View for Normalization and Missing Value
Handling

The Normalization and Missing Value Handling View DM$VN describes the
normalization parameters used in Automatic Data Preparation (ADP) and the missing
value replacement when a NULL value is encountered. Missing value replacement
applies only to the twodimensional columns and does not apply to the nested columns.

The view has the following schema:

Name Type
 ---------------------- -----------------------
 PARTITION_NAME VARCHAR2(128)
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 NUMERIC_MISSING_VALUE BINARY_DOUBLE
 CATEGORICAL_MISSING_VALUE VARCHAR2(4000)
 NORMALIZATION_SHIFT BINARY_DOUBLE
 NORMALIZATION_SCALE BINARY_DOUBLE

Chapter 5
Model Detail Views

5-65

Table 5-74 Normalization and Missing Value Handling View

Column Name Description

PARTITION_NAME A partition in a partitioned model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

NUMERIC_MISSING_VALUE Numeric missing value replacement

CATEGORICAL_MISSING_VALUE Categorical missing value replacement

NORMALIZATION_SHIFT Normalization shift value

NORMALIZATION_SCALE Normalization scale value

5.4.24 Model Detail Views for Exponential Smoothing Models
Model Detail Views for Exponential Smoothing Model (ESM) describes the views for
model output and global information. Oracle recommends that users leverage the
model details views.

Exponential Smoothing Model algorithm has the following views:

Model output: DM$VPmodel_name

Model global information: DM$VGmodel_name

Model output: This view gives the result of ESM model. The output has a set of
records such as partition, CASE_ID, value, prediction, lower, upper, and so on and
ordered by partition and CASE_ID (time). Each partition has a separate smoothing
model. For a given partition, for each time (CASE_ID) point that the input time series
covers, the value is the observed or accumulated value at the time point, and the
prediction is the one-step-ahead forecast at that time point. For each time point (future
prediction) beyond the range of input time series, the value is NULL, and the prediction
is the model forecast for that time point. Lower and upper are the lower bound and
upper bound of the user specified confidence interval for the prediction.

Model global Information: This view gives the global information of the model
along with the estimated smoothing constants, the estimated initial state, and global
diagnostic measures.

Depending on the type of model, the global diagnostics include some or all of the
following for Exponential Smoothing.

Table 5-75 Exponential Smoothing Model Statistics Information In Model
Global View

Name Description

–2 LOG-LIKELIHOOD Negative log-likelihood of model

ALPHA Smoothing constant

AIC Akaike information criterion

AICC Corrected Akaike information criterion

Chapter 5
Model Detail Views

5-66

Table 5-75 (Cont.) Exponential Smoothing Model Statistics Information In
Model Global View

Name Description

AMSE Average mean square error over user-
specified time window

BETA Trend smoothing constant

BIC Bayesian information criterion

GAMMA Seasonal smoothing constant

INITIAL LEVEL Model estimate of value one time interval prior
to start of observed series

INITIAL SEASON i Model estimate of seasonal effect for season
i one time interval prior to start of observed
series

INITIAL TREND Model estimate of trend one time interval prior
to start of observed series

MAE Model mean absolute error

MSE Model mean square error

PHI Damping parameter

STD Model standard error

SIGMA Model standard deviation of residuals

Chapter 5
Model Detail Views

5-67

6
Scoring and Deployment

Explains the scoring and deployment features of Oracle Data Mining.

• About Scoring and Deployment

• Using the Data Mining SQL Functions

• Prediction Details

• Real-Time Scoring

• Dynamic Scoring

• Cost-Sensitive Decision Making

• DBMS_DATA_MINING.Apply

6.1 About Scoring and Deployment
Scoring is the application of models to new data. In Oracle Data Mining, scoring is
performed by SQL language functions.

Predictive functions perform Classification, Regression, or Anomaly detection.
Clustering functions assign rows to clusters. Feature Extraction functions transform
the input data to a set of higher order predictors. A scoring procedure is also available
in the DBMS_DATA_MINING PL/SQL package.

Deployment refers to the use of models in a target environment. Once the models
have been built, the challenges come in deploying them to obtain the best results, and
in maintaining them within a production environment. Deployment can be any of the
following:

• Scoring data either for batch or real-time results. Scores can include predictions,
probabilities, rules, and other statistics.

• Extracting model details to produce reports. For example: clustering rules,
decision tree rules, or attribute rankings from an Attribute Importance model.

• Extending the business intelligence infrastructure of a data warehouse by
incorporating mining results in applications or operational systems.

• Moving a model from the database where it was built to the database where it
used for scoring (export/import)

Oracle Data Mining supports all of these deployment scenarios.

6-1

Note:

Oracle Data Mining scoring operations support parallel execution. When
parallel execution is enabled, multiple CPU and I/O resources are applied
to the execution of a single database operation.

Parallel execution offers significant performance improvements, especially
for operations that involve complex queries and large databases typically
associated with decision support systems (DSS) and data warehouses.

Related Topics

• Oracle Database VLDB and Partitioning Guide

• Oracle Data Mining Concepts

• Exporting and Importing Mining Models
You can export data mining models to flat files to back up work in progress or to
move models to a different instance of Oracle Database Enterprise Edition (such
as from a development database to a test database).

6.2 Using the Data Mining SQL Functions
Learn about the benefits of SQL functions in data mining.

The data mining SQL functions provide the following benefits:

• Models can be easily deployed within the context of existing SQL applications.

• Scoring operations take advantage of existing query execution functionality. This
provides performance benefits.

• Scoring results are pipelined, enabling the rows to be processed without requiring
materialization.

The data mining functions produce a score for each row in the selection. The functions
can apply a mining model schema object to compute the score, or they can score
dynamically without a pre-defined model, as described in "Dynamic Scoring".

Related Topics

• Dynamic Scoring

• Scoring Requirements

• Table 2-4

• Oracle Database SQL Language Reference

6.2.1 Choosing the Predictors
The data mining functions support a USING clause that specifies which attributes to use
for scoring. You can specify some or all of the attributes in the selection and you can
specify expressions. The following examples all use the PREDICTION function to find
the customers who are likely to use an affinity card, but each example uses a different
set of predictors.

The query in Example 6-1 uses all the predictors.

Chapter 6
Using the Data Mining SQL Functions

6-2

The query in Example 6-2 uses only gender, marital status, occupation, and income as
predictors.

The query in Example 6-3 uses three attributes and an expression as predictors. The
prediction is based on gender, marital status, occupation, and the assumption that all
customers are in the highest income bracket.

Example 6-1 Using All Predictors

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample USING *) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 25 38
M 213 43

Example 6-2 Using Some Predictors

 SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample USING
 cust_gender,cust_marital_status,
 occupation, cust_income_level) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 30 38
M 186 43

Example 6-3 Using Some Predictors and an Expression

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample USING
 cust_gender, cust_marital_status, occupation,
 'L: 300,000 and above' AS cust_income_level) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 30 38
M 186 43

6.2.2 Single-Record Scoring
The data mining functions can produce a score for a single record, as shown in
Example 6-4 and Example 6-5.

Example 6-4 returns a prediction for customer 102001 by applying the classification
model NB_SH_Clas_sample. The resulting score is 0, meaning that this customer is
unlikely to use an affinity card.

Chapter 6
Using the Data Mining SQL Functions

6-3

Example 6-5 returns a prediction for 'Affinity card is great' as the comments attribute
by applying the text mining model T_SVM_Clas_sample. The resulting score is 1,
meaning that this customer is likely to use an affinity card.

Example 6-4 Scoring a Single Customer or a Single Text Expression

SELECT PREDICTION (NB_SH_Clas_Sample USING *)
 FROM sh.customers where cust_id = 102001;

PREDICTION(NB_SH_CLAS_SAMPLEUSING*)

 0

Example 6-5 Scoring a Single Text Expression

SELECT
 PREDICTION(T_SVM_Clas_sample USING 'Affinity card is great' AS comments)
FROM DUAL;

PREDICTION(T_SVM_CLAS_SAMPLEUSING'AFFINITYCARDISGREAT'ASCOMMENTS)

 1

6.3 Prediction Details
Prediction details are XML strings that provide information about the score. Details
are available for all types of scoring: clustering, feature extraction, classification,
regression, and anomaly detection. Details are available whether scoring is dynamic or
the result of model apply.

The details functions, CLUSTER_DETAILS, FEATURE_DETAILS, and PREDICTION_DETAILS
return the actual value of attributes used for scoring and the relative importance of
the attributes in determining the score. By default, the functions return the five most
important attributes in descending order of importance.

6.3.1 Cluster Details
For the most likely cluster assignments of customer 100955 (probability of assignment
> 20%), the query in the following example produces the five attributes that have
the most impact for each of the likely clusters. The clustering functions apply an
Expectation Maximization model named em_sh_clus_sample to the data selected from
mining_data_apply_v. The "5" specified in CLUSTER_DETAILS is not required, because
five attributes are returned by default.

Example 6-6 Cluster Details

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 USING T.*) det
 FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset
 FROM mining_data_apply_v v
 WHERE cust_id = 100955) T,
 TABLE(T.pset) S
 ORDER BY 2 DESC;

CLUSTER_ID PROB DET
---------- ----- --
 14 .6761 <Details algorithm="Expectation Maximization" cluster="14">

Chapter 6
Prediction Details

6-4

 <Attribute name="AGE" actualValue="51" weight=".676" rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".557" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".412" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".171" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION"actualValue="1" weight="-.003"
 rank="5"/>
 </Details>

 3 .3227 <Details algorithm="Expectation Maximization" cluster="3">
 <Attribute name="YRS_RESIDENCE" actualValue="3" weight=".323" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".265" rank="2"/>
 <Attribute name="EDUCATION" actualValue="HS-grad" weight=".172" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".125" rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".055" rank="5"/>
 </Details>

6.3.2 Feature Details
The query in the following example returns the three attributes that have the greatest
impact on the top Principal Components Analysis (PCA) projection for customer
101501. The FEATURE_DETAILS function applies a Singular Value Decomposition model
named svd_sh_sample to the data selected from svd_sh_sample_build_num.

Example 6-7 Feature Details

SELECT FEATURE_DETAILS(svd_sh_sample, 1, 3 USING *) proj1det
 FROM svd_sh_sample_build_num
 WHERE CUST_ID = 101501;

PROJ1DET
--
<Details algorithm="Singular Value Decomposition" feature="1">
<Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".352" rank="1"/>
<Attribute name="Y_BOX_GAMES" actualValue="0" weight=".249" rank="2"/>
<Attribute name="AGE" actualValue="41" weight=".063" rank="3"/>
</Details>

6.3.3 Prediction Details
The query in the following example returns the attributes that are most important in
predicting the age of customer 100010. The prediction functions apply a Generalized
Linear Model Regression model named GLMR_SH_Regr_sample to the data selected
from mining_data_apply_v.

Example 6-8 Prediction Details for Regression

SELECT cust_id,
 PREDICTION(GLMR_SH_Regr_sample USING *) pr,
 PREDICTION_DETAILS(GLMR_SH_Regr_sample USING *) pd
 FROM mining_data_apply_v
 WHERE CUST_ID = 100010;

CUST_ID PR PD
------- ----- -----------
 100010 25.45 <Details algorithm="Generalized Linear Model">
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".025" rank="1"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".019" rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".01" rank="3"/>
 <Attribute name="OS_DOC_SET_KANJI" actualValue="0" weight="0" rank="4"/>

Chapter 6
Prediction Details

6-5

 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight="-.004" rank="5"/>
 </Details>

The query in the following example returns the customers who work in Tech Support
and are likely to use an affinity card (with more than 85% probability). The prediction
functions apply an Support Vector Machine (SVM) Classification model named
svmc_sh_clas_sample. to the data selected from mining_data_apply_v. The query
includes the prediction details, which show that education is the most important
predictor.

Example 6-9 Prediction Details for Classification

SELECT cust_id, PREDICTION_DETAILS(svmc_sh_clas_sample, 1 USING *) PD
 FROM mining_data_apply_v
 WHERE PREDICTION_PROBABILITY(svmc_sh_clas_sample, 1 USING *) > 0.85
 AND occupation = 'TechSup'
 ORDER BY cust_id;

CUST_ID PD
------- ---
 100029 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Assoc-A" weight=".199" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="I: 170\,000 - 189\,999" weight=".044"
 rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".028" rank="3"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".024" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".022" rank="5"/>
 </Details>

 100378 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Assoc-A" weight=".21" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="B: 30\,000 - 49\,999" weight=".047"
 rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".043" rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".03" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".023" rank="5"/>
 </Details>

 100508 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Bach." weight=".19" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above" weight=".046"
 rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".031" rank="3"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".026" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".024" rank="5"/>
 </Details>

 100980 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Assoc-A" weight=".19" rank="1"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".038" rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".026" rank="3"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".022" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".02" rank="5"/>
 </Details>

The query in the following example returns the two customers that differ the most
from the rest of the customers. The prediction functions apply an anomaly detection
model named SVMO_SH_Clas_sample to the data selected from mining_data_apply_v.
Anomaly Detection uses a one-class SVM classifier.

Chapter 6
Prediction Details

6-6

Example 6-10 Prediction Details for Anomaly Detection

SELECT cust_id, pd FROM
 (SELECT cust_id,
 PREDICTION_DETAILS(SVMO_SH_Clas_sample, 0 USING *) pd,
 RANK() OVER (ORDER BY prediction_probability(
 SVMO_SH_Clas_sample, 0 USING *) DESC, cust_id) rnk
 FROM mining_data_one_class_v)
 WHERE rnk <= 2
 ORDER BY rnk;

 CUST_ID PD
---------- ---
 102366 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="United Kingdom" weight=".078" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Divorc." weight=".027" rank="2"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".01" rank="3"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="9+" weight=".009" rank="4"/>
 <Attribute name="AGE" actualValue="28" weight=".006" rank="5"/>
 </Details>

 101790 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="Canada" weight=".068" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="4-5" weight=".018" rank="2"/>
 <Attribute name="EDUCATION" actualValue="7th-8th" weight=".015" rank="3"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".013" rank="4"/>
 <Attribute name="AGE" actualValue="38" weight=".001" rank="5"/>
 </Details>

6.3.4 GROUPING Hint
Data mining functions consist of SQL functions such as PREDICTION*, CLUSTER*,
FEATURE*, and ORA_DM_*. The GROUPING hint is an optional hint which applies to data
mining scoring functions when scoring partitioned models.

This hint results in partitioning the input data set into distinct data slices so that
each partition is scored in its entirety before advancing to the next partition. However,
parallelism by partition is still available. Data slices are determined by the partitioning
key columns used when the model was built. This method can be used with any data
mining function against a partitioned model. The hint may yield a query performance
gain when scoring large data that is associated with many partitions but may
negatively impact performance when scoring large data with few partitions on large
systems. Typically, there is no performance gain if you use the hint for single row
queries.

Enhanced PREDICTION Function Command Format

<prediction function> ::=
 PREDICTION <left paren> /*+ GROUPING */ <prediction model>
 [<comma> <class value> [<comma> <top N>]]
 USING <mining attribute list> <right paren>

The syntax for only the PREDICTION function is given but it is applicable to any Data
mining function where PREDICTION, CLUSTERING, and FEATURE_EXTRACTION scoring
functions occur.

Chapter 6
Prediction Details

6-7

Example 6-11 Example

SELECT PREDICTION(/*+ GROUPING */my_model USING *) pred FROM <input
table>;

Related Topics

• Oracle Database SQL Language Reference

6.4 Real-Time Scoring
Oracle Data Mining SQL functions enable prediction, clustering, and feature extraction
analysis to be easily integrated into live production and operational systems. Because
mining results are returned within SQL queries, mining can occur in real time.

With real-time scoring, point-of-sales database transactions can be mined. Predictions
and rule sets can be generated to help front-line workers make better analytical
decisions. Real-time scoring enables fraud detection, identification of potential
liabilities, and recognition of better marketing and selling opportunities.

The query in the following example uses a Decision Tree model named
dt_sh_clas_sample to predict the probability that customer 101488 uses an affinity
card. A customer representative can retrieve this information in real time when talking
to this customer on the phone. Based on the query result, the representative can offer
an extra-value card, since there is a 73% chance that the customer uses a card.

Example 6-12 Real-Time Query with Prediction Probability

SELECT PREDICTION_PROBABILITY(dt_sh_clas_sample, 1 USING *) cust_card_prob
 FROM mining_data_apply_v
 WHERE cust_id = 101488;

CUST_CARD_PROB

 .72764

6.5 Dynamic Scoring
The Data Mining SQL functions operate in two modes: by applying a pre-defined
model, or by executing an analytic clause. If you supply an analytic clause instead of a
model name, the function builds one or more transient models and uses them to score
the data.

The ability to score data dynamically without a pre-defined model extends the
application of basic embedded data mining techniques into environments where
models are not available. Dynamic scoring, however, has limitations. The transient
models created during dynamic scoring are not available for inspection or fine tuning.
Applications that require model inspection, the correlation of scoring results with the
model, special algorithm settings, or multiple scoring queries that use the same model,
require a predefined model.

The following example shows a dynamic scoring query. The example identifies the
rows in the input data that contain unusual customer age values.

Chapter 6
Real-Time Scoring

6-8

Example 6-13 Dynamic Prediction

SELECT cust_id, age, pred_age, age-pred_age age_diff, pred_det FROM
 (SELECT cust_id, age, pred_age, pred_det,
 RANK() OVER (ORDER BY ABS(age-pred_age) DESC) rnk FROM
 (SELECT cust_id, age,
 PREDICTION(FOR age USING *) OVER () pred_age,
 PREDICTION_DETAILS(FOR age ABS USING *) OVER () pred_det
 FROM mining_data_apply_v))
WHERE rnk <= 5;

CUST_ID AGE PRED_AGE AGE_DIFF PRED_DET
------- ---- ---------- -------- --
 100910 80 40.6686505 39.33 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0"
 weight=".059" rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0"
 weight=".059" rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1"
 weight=".059" rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4"
 weight=".059" rank="5"/>
 </Details>

 101285 79 42.1753571 36.82 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="2"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Mabsent"
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".059"
 rank="5"/>
 </Details>

 100694 77 41.0396722 35.96 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="EDUCATION" actualValue="< Bach."
 weight=".059" rank="2"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="CUST_ID" actualValue="100694" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

 100308 81 45.3252491 35.67 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1"
 weight=".059" rank="4"/>

Chapter 6
Dynamic Scoring

6-9

 <Attribute name="CUST_GENDER" actualValue="F" weight=".059"
 rank="5"/>
 </Details>

 101256 90 54.3862214 35.61 <Details algorithm="Support Vector Machines">
 <Attribute name="YRS_RESIDENCE" actualValue="9" weight=".059"
 rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="2"/>
 <Attribute name="EDUCATION" actualValue="< Bach."
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

6.6 Cost-Sensitive Decision Making
Costs are user-specified numbers that bias Classification. The algorithm uses positive
numbers to penalize more expensive outcomes over less expensive outcomes. Higher
numbers indicate higher costs.

The algorithm uses negative numbers to favor more beneficial outcomes over less
beneficial outcomes. Lower negative numbers indicate higher benefits.

All classification algorithms can use costs for scoring. You can specify the costs in a
cost matrix table, or you can specify the costs inline when scoring. If you specify costs
inline and the model also has an associated cost matrix, only the inline costs are used.
The PREDICTION, PREDICTION_SET, and PREDICTION_COST functions support costs.

Only the Decision Tree algorithm can use costs to bias the model build. If you want
to create a Decision Tree model with costs, create a cost matrix table and provide its
name in the CLAS_COST_TABLE_NAME setting for the model. If you specify costs when
building the model, the cost matrix used to create the model is used when scoring. If
you want to use a different cost matrix table for scoring, first remove the existing cost
matrix table then add the new one.

A sample cost matrix table is shown in the following table. The cost matrix specifies
costs for a binary target. The matrix indicates that the algorithm must treat a
misclassified 0 as twice as costly as a misclassified 1.

Table 6-1 Sample Cost Matrix

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST

0 0 0

0 1 2

1 0 1

1 1 0

Example 6-14 Sample Queries With Costs

The table nbmodel_costs contains the cost matrix described in Table 6-1.

SELECT * from nbmodel_costs;

Chapter 6
Cost-Sensitive Decision Making

6-10

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 2
 1 0 1
 1 1 0

The following statement associates the cost matrix with a Naive Bayes model called
nbmodel.

BEGIN
 dbms_data_mining.add_cost_matrix('nbmodel', 'nbmodel_costs');
END;
/

The following query takes the cost matrix into account when scoring
mining_data_apply_v. The output is restricted to those rows where a prediction of
1 is less costly then a prediction of 0.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION (nbmodel COST MODEL
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 25 38
M 208 43

You can specify costs inline when you invoke the scoring function. If you specify costs
inline and the model also has an associated cost matrix, only the inline costs are used.
The same query is shown below with different costs specified inline. Instead of the "2"
shown in the cost matrix table (Table 6-1), "10" is specified in the inline costs.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION (nbmodel
 COST (0,1) values ((0, 10),
 (1, 0))
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 74 39
M 581 43

The same query based on probability instead of costs is shown below.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION (nbmodel
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------

Chapter 6
Cost-Sensitive Decision Making

6-11

F 73 39
M 577 44

Related Topics

• Example 1-1

6.7 DBMS_DATA_MINING.Apply
The APPLY procedure in DBMS_DATA_MINING is a batch apply operation that writes the
results of scoring directly to a table.

The columns in the table are mining function-dependent.

Scoring with APPLY generates the same results as scoring with the SQL scoring
functions. Classification produces a prediction and a probability for each case;
clustering produces a cluster ID and a probability for each case, and so on. The
difference lies in the way that scoring results are captured and the mechanisms that
can be used for retrieving them.

APPLY creates an output table with the columns shown in the following table:

Table 6-2 APPLY Output Table

Mining Function Output Columns

classification CASE_ID

PREDICTION

PROBABILITY

regression CASE_ID

PREDICTION

anomaly detection CASE_ID

PREDICTION

PROBABILITY

clustering CASE_ID

CLUSTER_ID

PROBABILITY

feature extraction CASE_ID

FEATURE_ID

MATCH_QUALITY

Since APPLY output is stored separately from the scoring data, it must be joined to the
scoring data to support queries that include the scored rows. Thus any model that is
used with APPLY must have a case ID.

A case ID is not required for models that is applied with SQL scoring functions.
Likewise, storage and joins are not required, since scoring results are generated and
consumed in real time within a SQL query.

The following example illustrates Anomaly Detection with APPLY. The query of the
APPLY output table returns the ten first customers in the table. Each has a a probability
for being typical (1) and a probability for being anomalous (0).

Chapter 6
DBMS_DATA_MINING.Apply

6-12

Example 6-15 Anomaly Detection with DBMS_DATA_MINING.APPLY

EXEC dbms_data_mining.apply
 ('SVMO_SH_Clas_sample','svmo_sh_sample_prepared',
 'cust_id', 'one_class_output');

SELECT * from one_class_output where rownum < 11;

 CUST_ID PREDICTION PROBABILITY
---------- ---------- -----------
 101798 1 .567389309
 101798 0 .432610691
 102276 1 .564922469
 102276 0 .435077531
 102404 1 .51213544
 102404 0 .48786456
 101891 1 .563474346
 101891 0 .436525654
 102815 0 .500663683
 102815 1 .499336317

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 6
DBMS_DATA_MINING.Apply

6-13

7
Mining Unstructured Text

Explains how to use Oracle Data Mining to mine unstructured text.

• About Unstructured Text

• About Text Mining and Oracle Text

• Data Preparation for Text Features

• Creating a Model that Includes Text Mining

• Creating a Text Policy

• Configuring a Text Attribute

7.1 About Unstructured Text
Data mining algorithms act on data that is numerical or categorical. Numerical data
is ordered. It is stored in columns that have a numeric data type, such as NUMBER
or FLOAT. Categorical data is identified by category or classification. It is stored in
columns that have a character data type, such as VARCHAR2 or CHAR.

Unstructured text data is neither numerical nor categorical. Unstructured text includes
items such as web pages, document libraries, Power Point presentations, product
specifications, emails, comment fields in reports, and call center notes. It has been
said that unstructured text accounts for more than three quarters of all enterprise data.
Extracting meaningful information from unstructured text can be critical to the success
of a business.

7.2 About Text Mining and Oracle Text
Understand what is text mining and oracle text.

Text mining is the process of applying data mining techniques to text terms, also
called text features or tokens. Text terms are words or groups of words that have
been extracted from text documents and assigned numeric weights. Text terms are the
fundamental unit of text that can be manipulated and analyzed.

Oracle Text is a Database technology that provides term extraction, word and theme
searching, and other utilities for querying text. When columns of text are present in
the training data, Oracle Data Mining uses Oracle Text utilities and term weighting
strategies to transform the text for mining. Oracle Data Mining passes configuration
information supplied by you to Oracle Text and uses the results in the model creation
process.

Related Topics

• Oracle Text Application Developer's Guide

7-1

7.3 Data Preparation for Text Features
The model details view for text features is DM$VXmodel_name.

The text feature view DM$VXmodel_name describes the extracted text features if there
are text attributes present. The view has the following schema:

Name Type
 -------------- ---------------------
 PARTITION_NAME VARCHAR2(128)
 COLUMN_NAME VARCHAR2(128)
 TOKEN VARCHAR2(4000)
 DOCUMENT_FREQUENCY NUMBER

Table 7-1 Text Feature View for Extracted Text Features

Column Name Description

PARTITION_NAME A partition in a partitioned model to retrieve details

COLUMN_NAME Name of the identifier column

TOKEN Text token which is usually a word or stemmed word

DOCUMENT_FREQUENCY A measure of token frequency in the entire training set

7.4 Creating a Model that Includes Text Mining
Learn how to create a model that includes text mining.

Oracle Data Mining supports unstructured text within columns of VARCHAR2, CHAR, CLOB,
BLOB, and BFILE, as described in the following table:

Table 7-2 Column Data Types That May Contain Unstructured Text

Data Type Description

BFILE and
BLOB

Oracle Data Mining interprets BLOB and BFILE as text only if you identify the
columns as text when you create the model. If you do not identify the columns as
text, then CREATE_MODEL returns an error.

CLOB Oracle Data Mining interprets CLOB as text.

CHAR Oracle Data Mining interprets CHAR as categorical by default. You can identify
columns of CHAR as text when you create the model.

VARCHAR2 Oracle Data Mining interprets VARCHAR2 with data length > 4000 as text.

Oracle Data Mining interprets VARCHAR2 with data length <= 4000 as categorical
by default. You can identify these columns as text when you create the model.

Chapter 7
Data Preparation for Text Features

7-2

Note:

Text is not supported in nested columns or as a target in supervised data
mining.

The settings described in the following table control the term extraction process for
text attributes in a model. Instructions for specifying model settings are in "Specifying
Model Settings".

Table 7-3 Model Settings for Text

Setting Name Data Type Setting Value Description

ODMS_TEXT_POLICY_NAM
E

VARCHAR2(40
00)

Name of an Oracle Text
policy object created with
CTX_DDL.CREATE_POLICY

Affects how individual tokens are
extracted from unstructured text. See
"Creating a Text Policy".

ODMS_TEXT_MAX_FEATUR
ES

INTEGER 1 <= value <= 100000 Maximum number of features to use
from the document set (across all
documents of each text column) passed
to CREATE_MODEL.

Default is 3000.

A model can include one or more text attributes. A model with text attributes can also
include categorical and numerical attributes.

To create a model that includes text attributes:

1. Create an Oracle Text policy object..

2. Specify the model configuration settings that are described in "Table 7-3".

3. Specify which columns must be treated as text and, optionally, provide text
transformation instructions for individual attributes.

4. Pass the model settings and text transformation instructions to
DBMS_DATA_MINING.CREATE_MODEL.

Note:

All algorithms except O-Cluster can support columns of unstructured
text.

The use of unstructured text is not recommended for association rules
(Apriori).

Related Topics

• Specifying Model Settings
Understand how to configure data mining models at build time.

• Creating a Text Policy
An Oracle Text policy specifies how text content must be interpreted. You can
provide a text policy to govern a model, an attribute, or both the model and
individual attributes.

Chapter 7
Creating a Model that Includes Text Mining

7-3

• Configuring a Text Attribute
Learn how to identify a column as a text attribute and provide transformation
instructions for any text attribute.

• Embedding Transformations in a Model

7.5 Creating a Text Policy
An Oracle Text policy specifies how text content must be interpreted. You can provide
a text policy to govern a model, an attribute, or both the model and individual
attributes.

If a model-specific policy is present and one or more attributes have their own policies,
Oracle Data Mining uses the attribute policies for the specified attributes and the
model-specific policy for the other attributes.

The CTX_DDL.CREATE_POLICY procedure creates a text policy.

CTX_DDL.CREATE_POLICY(
 policy_name IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 section_group IN VARCHAR2 DEFAULT NULL,
 lexer IN VARCHAR2 DEFAULT NULL,
 stoplist IN VARCHAR2 DEFAULT NULL,
 wordlist IN VARCHAR2 DEFAULT NULL);

The parameters of CTX_DDL.CREATE_POLICY are described in the following table.

Table 7-4 CTX_DDL.CREATE_POLICY Procedure Parameters

Parameter Name Description

policy_name Name of the new policy object. Oracle Text policies and text indexes share
the same namespace.

filter Specifies how the documents must be converted to plain text for indexing.
Examples are: CHARSET_FILTER for character sets and NULL_FILTER for
plain text, HTML and XML.

For filter values, see "Filter Types" in Oracle Text Reference.

section_group Identifies sections within the documents. For example,
HTML_SECTION_GROUP defines sections in HTML documents.

For section_group values, see "Section Group Types" in Oracle Text
Reference.

Note: You can specify any section group that is supported by CONTEXT
indexes.

lexer Identifies the language that is being indexed. For example, BASIC_LEXER is
the lexer for extracting terms from text in languages that use white space
delimited words (such as English and most western European languages).

For lexer values, see "Lexer Types" in Oracle Text Reference.

stoplist Specifies words and themes to exclude from term extraction. For example,
the word "the" is typically in the stoplist for English language documents.

The system-supplied stoplist is used by default.

See "Stoplists" in Oracle Text Reference.

Chapter 7
Creating a Text Policy

7-4

Table 7-4 (Cont.) CTX_DDL.CREATE_POLICY Procedure Parameters

Parameter Name Description

wordlist Specifies how stems and fuzzy queries must be expanded. A stem
defines a root form of a word so that different grammatical forms have a
single representation. A fuzzy query includes common misspellings in the
representation of a word.

See "BASIC_WORDLIST" in Oracle Text Reference.

Related Topics

• Oracle Text Reference

7.6 Configuring a Text Attribute
Learn how to identify a column as a text attribute and provide transformation
instructions for any text attribute.

As shown in Table 7-2, you can identify columns of CHAR,shorter VARCHAR2 (<=4000),
BFILE, and BLOB as text attributes. If CHAR and shorter VARCHAR2 columns are
not explicitly identified as unstructured text, then CREATE_MODEL processes them as
categorical attributes. If BFILE and BLOB columns are not explicitly identified as
unstructured text, then CREATE_MODEL returns an error.

To identify a column as a text attribute, supply the keyword TEXT in an
Attribute specification. The attribute specification is a field (attribute_spec) in a
transformation record (transform_rec). Transformation records are components of
transformation lists (xform_list) that can be passed to CREATE_MODEL.

Note:

An attribute specification can also include information that is not related to
text. Instructions for constructing an attribute specification are in "Embedding
Transformations in a Model".

You can provide transformation instructions for any text attribute by qualifying the TEXT
keyword in the attribute specification with the subsettings described in the following
table.

Table 7-5 Attribute-Specific Text Transformation Instructions

Subsetting
Name

Description Example

BIGRAM A sequence of two adjacent elements from
a string of tokens, which are typically letters,
syllables, or words.

Here, NORMAL tokens are mixed with their
bigrams.

(TOKEN_TYPE:BIGRAM)

Chapter 7
Configuring a Text Attribute

7-5

Table 7-5 (Cont.) Attribute-Specific Text Transformation Instructions

Subsetting
Name

Description Example

POLICY_NAME Name of an Oracle Text policy object created
with CTX_DDL.CREATE_POLICY

(POLICY_NAME:my_polic
y)

STEM_BIGRAM Here, STEM tokens are extracted first and then
stem bigrams are formed.

(TOKEN_TYPE:STEM_BIGR
AM)

SYNONYM Oracle Data Mining supports synonyms. The
following is an optional parameter:

<thesaurus> where <thesaurus> is the
name of the thesaurus defining synonyms. If
SYNONYM is used without this parameter, then
the default thesaurus is used.

(TOKEN_TYPE:SYNONYM)

(TOKEN_TYPE:SYNONYM[N
AMES])

TOKEN_TYPE The following values are supported:

NORMAL (the default)
STEM
THEME

See "Token Types in an Attribute Specification"

(TOKEN_TYPE:THEME)

MAX_FEATURES Maximum number of features to use from the
attribute.

(MAX_FEATURES:3000)

Note:

The TEXT keyword is only required for CLOB and longer VARCHAR2 (>4000)
when you specify transformation instructions. The TEXT keyword is always
required for CHAR, shorter VARCHAR2, BFILE, and BLOB — whether or not you
specify transformation instructions.

Tip:

You can view attribute specifications in the data dictionary view
ALL_MINING_MODEL_ATTRIBUTES, as shown in Oracle Database Reference.

Token Types in an Attribute Specification

When stems or themes are specified as the token type, the lexer preference for the
text policy must support these types of tokens.

The following example adds themes and English stems to BASIC_LEXER.

BEGIN
 CTX_DDL.CREATE_PREFERENCE('my_lexer', 'BASIC_LEXER');
 CTX_DDL.SET_ATTRIBUTE('my_lexer', 'index_stems', 'ENGLISH');
 CTX_DDL.SET_ATTRIBUTE('my_lexer', 'index_themes', 'YES');
END;

Chapter 7
Configuring a Text Attribute

7-6

Example 7-1 A Sample Attribute Specification for Text

This expression specifies that text transformation for the attribute must use the text
policy named my_policy. The token type is THEME, and the maximum number of
features is 3000.

"TEXT(POLICY_NAME:my_policy)(TOKEN_TYPE:THEME)(MAX_FEATURES:3000)"

Related Topics

• Embedding Transformations in a Model

• Specifying Transformation Instructions for an Attribute
Learn what is a transformation instruction for an attribute and learn about the fields
in a transformation record.

• Oracle Database PL/SQL Packages and Types Reference

• ALL_MINING_MODEL_ATTRIBUTES

Chapter 7
Configuring a Text Attribute

7-7

8
Administrative Tasks for Oracle Data
Mining

Explains how to perform administrative tasks related to Oracle Data Mining.

• Installing and Configuring a Database for Data Mining

• Upgrading or Downgrading Oracle Data Mining

• Exporting and Importing Mining Models

• Controlling Access to Mining Models and Data

• Auditing and Adding Comments to Mining Models

8.1 Installing and Configuring a Database for Data Mining
Learn how to install and configure a database for Data Mining.

• About Installation

• Enabling or Disabling a Database Option

• Database Tuning Considerations for Data Mining

8.1.1 About Installation
Oracle Data Mining is a component of the Oracle Advanced Analytics option to Oracle
Database Enterprise Edition.

To install Oracle Database, follow the installation instructions for your platform. Choose
a Data Warehousing configuration during the installation.

Oracle Data Miner, the graphical user interface to Oracle Data Mining, is an extension
to Oracle SQL Developer. Instructions for downloading SQL Developer and installing
the Data Miner repository are available on the Oracle Technology Network.

To perform data mining activities, you must be able to log on to the Oracle database,
and your user ID must have the database privileges described in Example 8-7.

Related Topics

• Oracle Data Miner

See Also:

Install and Upgrade page of the Oracle Database online documentation
library for your platform-specific installation instructions: Oracle Database
18c Release

8-1

unilink:dataminer_wf

8.1.2 Enabling or Disabling a Database Option
Learn how you can enable or disable Oracle Advanced Analytics option after the
installation.

The Oracle Advanced Analytics option is enabled by default during installation of
Oracle Database Enterprise Edition. After installation, you can use the command-line
utility chopt to enable or disable a database option. For instructions, see "Enabling
and Disabling Database Options After Installation" in the installation guide for your
platform.

Related Topics

• Oracle Database Installation Guide for Linux

• Oracle Database Installation Guide for Microsoft Windows

8.1.3 Database Tuning Considerations for Data Mining
Understand the Database tuning considerations for Data Mining.

DBAs managing production databases that support Oracle Data Mining must follow
standard administrative practices as described in Oracle Database Administrator’s
Guide.

Building data mining models and batch scoring of mining models tend to put a DSS-
like workload on the system. Single-row scoring tends to put an OLTP-like workload on
the system.

Database memory management can have a major impact on data mining. The
correct sizing of Program Global Area (PGA) memory is very important for model
building, complex queries, and batch scoring. From a data mining perspective, the
System Global Area (SGA) is generally less of a concern. However, the SGA must
be sized to accommodate real-time scoring, which loads models into the shared
cursor in the SGA. In most cases, you can configure the database to manage
memory automatically. To do so, specify the total maximum memory size in the tuning
parameter MEMORY_TARGET. With automatic memory management, Oracle Database
dynamically exchanges memory between the SGA and the instance PGA as needed
to meet processing demands.

Most data mining algorithms can take advantage of parallel execution when it is
enabled in the database. Parameters in INIT.ORA control the behavior of parallel
execution.

Related Topics

• Oracle Database Administrator’s Guide

• Scoring and Deployment
Explains the scoring and deployment features of Oracle Data Mining.

• Oracle Database Administrator’s Guide

• Part I Database Performance Fundamentals

• Tuning Database Memory

• Oracle Database VLDB and Partitioning Guide

Chapter 8
Installing and Configuring a Database for Data Mining

8-2

8.2 Upgrading or Downgrading Oracle Data Mining
Understand how to upgrade and downgrade Oracle Data Mining.

• Pre-Upgrade Steps

• Upgrading Oracle Data Mining

• Post Upgrade Steps

• Downgrading Oracle Data Mining

8.2.1 Pre-Upgrade Steps
Before upgrading, you must drop any data mining models that were created in Java
and any mining activities that were created in Oracle Data Miner Classic (the earlier
version of Oracle Data Miner).

Caution:

In Oracle Database 12c, Oracle Data Mining does not support a Java API,
and Oracle Data Miner Classic cannot run against Oracle Database 12c .

8.2.1.1 Dropping Models Created in Java
If your 10g or 11g database contains models created in Java, use the
DBMS_DATA_MINING.DROP_MODEL routine to drop the models before upgrading the
database.

8.2.1.2 Dropping Mining Activities Created in Oracle Data Miner Classic
If your database contains mining activities from Oracle Data Miner Classic, delete the
mining activities and drop the repository before upgrading the database. Follow these
steps:

1. Use the Data Miner Classic user interface to delete the mining activities.

2. In SQL*Plus or SQL Developer, drop these tables:

DM4J$ACTIVITIES
DM4J$RESULTS
DM4J$TRANSFORMS

and these views:

DM4J$MODEL_RESULTS_V
DM4J$RESULTS_STATE_V

There must be no tables or views with the prefix DM4J$ in any schema in the database
after you complete these steps.

Chapter 8
Upgrading or Downgrading Oracle Data Mining

8-3

8.2.2 Upgrading Oracle Data Mining
Learn how to upgrade Oracle Data Mining.

After you complete the "Pre-Upgrade Steps", all models and mining metadata are fully
integrated with the Oracle Database upgrade process whether you are upgrading
from 11g or from 10g releases.

Upgraded models continue to work as they did in prior releases. Both upgraded
models and new models that you create in the upgraded environment can make use of
the new mining functionality introduced in the new release.

To upgrade a database, you can use Database Upgrade Assistant (DBUA) or you can
perform a manual upgrade using export/import utilities.

Related Topics

• Pre-Upgrade Steps

• Oracle Database Upgrade Guide

8.2.2.1 Using Database Upgrade Assistant to Upgrade Oracle Data Mining
Oracle Database Upgrade Assistant provides a graphical user interface that guides
you interactively through the upgrade process.

On Windows platforms, follow these steps to start the Upgrade Assistant:

1. Go to the Windows Start menu and choose the Oracle home directory.

2. Choose the Configuration and Migration Tools menu.

3. Launch the Upgrade Assistant.

On Linux platforms, run the DBUA utility to upgrade Oracle Database.

8.2.2.1.1 Upgrading from Release 10g
In Oracle Data Mining 10g, data mining metadata and PL/SQL packages are stored in
the DMSYS schema. In Oracle Data Mining 11g and 12c, DMSYS no longer exists; data
mining metadata objects are stored in SYS.

When Oracle Database 10g is upgraded to 12c, all data mining metadata objects
and PL/SQL packages are migrated from DMSYS to SYS. The DMSYS schema and its
associated objects are removed after a successful migration. When DMSYS is removed,
the SYS.DBA_REGISTRY view no longer lists Oracle Data Mining as a component.

After upgrading to Oracle Database 12c, you can no longer switch to the Data Mining
Scoring Engine (DMSE). The Scoring Engine does not exist in Oracle Database 11g or
12c.

8.2.2.1.2 Upgrading from Release 11g
If you upgrade Oracle Database 11g to Oracle Database 12c, and the database was
previously upgraded from Oracle Database 10g, then theDMSYS schema may still be
present. If the upgrade process detects DMSYS, it displays a warning message and
drops DMSYS during the upgrade.

Chapter 8
Upgrading or Downgrading Oracle Data Mining

8-4

8.2.2.2 Using Export/Import to Upgrade Data Mining Models
If required, you can you can use a less automated approach to upgrading data mining
models. You can export the models created in a previous version of Oracle Database
and import them into an instance of Oracle Database 12c.

Caution:

Do not import data mining models that were created in Java. They are not
supported in Oracle Database 12c.

8.2.2.2.1 Export/Import Release 10g Data Mining Models
Follow the instructions for exporting and importing Data Mining models.

To export models from an instance of Oracle Database 10g to a dump file, follow the
instructions in "Exporting and Importing Mining Models". Before importing the models
from the dump file, run the DMEIDMSYS script to create the DMSYS schema in Oracle
Database 12c.

SQL>CONNECT / as sysdba;
SQL>@ORACLE_HOME\RDBMS\admin\dmeidmsys.sql
SQL>EXIT;

Note:

The TEMP tablespace must already exist in the Oracle Database 12g
database. The DMEIDMSYS script uses the TEMP and SYSAUX tablespaces to
create the DMSYS schema.

To import the dump file into the Oracle Database 12c database:

%ORACLE_HOME\bin\impdp system\<password>
 dumpfile=<dumpfile_name>
 directory=<directory_name>
 logfile=<logfile_name>
SQL>CONNECT / as sysdba;
SQL>EXECUTE dmp_sys.upgrade_models();
SQL>ALTER SYSTEM FLUSH SHARED_POOL;
SQL>ALTER SYSTEM FLUSH BUFFER_CACHE;
SQL>EXIT;

The upgrade_models script migrates all data mining metadata objects and PL/SQL
packages from DMSYS to SYS and then drops DMSYS before upgrading the models.

ALTER SYSTEM Statement

You can flush the Database Smart Flash Cache by issuing an ALTER SYSTEM FLUSH
FLASH_CACHE statement. Flushing the Database Smart Flash Cache can be useful if
you need to measure the performance of rewritten queries or a suite of queries from
identical starting points.

Chapter 8
Upgrading or Downgrading Oracle Data Mining

8-5

Related Topics

• Exporting and Importing Mining Models
You can export data mining models to flat files to back up work in progress or to
move models to a different instance of Oracle Database Enterprise Edition (such
as from a development database to a test database).

8.2.2.2.2 Export/Import Release 11g Data Mining Models
To export models from an instance of Oracle Database 11g to a dump file, follow the
instructions in Exporting and Importing Mining Models.

Caution:

Do not import data mining models that were created in Java. They are not
supported in Oracle Database 12c.

To import the dump file into the Oracle Database 12c database:

%ORACLE_HOME\bin\impdp system\<password>
 dumpfile=<dumpfile_name>
 directory=<directory_name>
 logfile=<logfile_name>
SQL>CONNECT / as sysdba;
SQL>EXECUTE dmp_sys.upgrade_models();
SQL>ALTER SYSTEM flush shared_pool;
SQL>ALTER SYSTEM flush buffer_cache;
SQL>EXIT;

ALTER SYSTEM Statement

You can flush the Database Smart Flash Cache by issuing an ALTER SYSTEM FLUSH
FLASH_CACHE statement. Flushing the Database Smart Flash Cache can be useful if
you need to measure the performance of rewritten queries or a suite of queries from
identical starting points.

8.2.3 Post Upgrade Steps
Perform steps to view the upgraded database.

After upgrading the database, check the DBA_MINING_MODELS view in the upgraded
database. The newly upgraded mining models must be listed in this view.

After you have verified the upgrade and confirmed that there is no need to downgrade,
you must set the initialization parameter COMPATIBLE to 12.1.

Note:

The CREATE MINING MODEL privilege must be granted to Data Mining user
accounts that are used to create mining models.

Chapter 8
Upgrading or Downgrading Oracle Data Mining

8-6

Related Topics

• Creating a Data Mining User
Explains how to create a Data Mining user.

• Controlling Access to Mining Models and Data
Understand how to create a Data Mining user and grant necessary privileges.

8.2.4 Downgrading Oracle Data Mining
Before downgrading the Oracle Database 12c database back to the previous version,
ensure that no Singular Value Decomposition models or Expectation Maximization
models are present. These algorithms are only available in Oracle Database 12c. Use
the DBMS_DATA_MINING.DROP_MODEL routine to drop these models before downgrading.
If you do not do this, the database downgrade process terminates.

Issue the following SQL statement in SYS to verify the downgrade:

SQL>SELECT o.name FROM sys.model$ m, sys.obj$ o
 WHERE m.obj#=o.obj# AND m.version=2;

8.3 Exporting and Importing Mining Models
You can export data mining models to flat files to back up work in progress or to move
models to a different instance of Oracle Database Enterprise Edition (such as from a
development database to a test database).

All methods for exporting and importing models are based on Oracle Data Pump
technology.

The DBMS_DATA_MINING package includes the EXPORT_MODEL and IMPORT_MODEL
procedures for exporting and importing individual mining models. EXPORT_MODEL and
IMPORT_MODEL use the export and import facilities of Oracle Data Pump.

• About Oracle Data Pump

• Options for Exporting and Importing Mining Models

• Directory Objects for EXPORT_MODEL and IMPORT_MODEL

• Using EXPORT_MODEL and IMPORT_MODEL

• EXPORT and IMPORT Serialized Models

• Importing From PMML

Related Topics

• EXPORT_MODEL

• IMPORT_MODEL

8.3.1 About Oracle Data Pump
Oracle Data Pump consists of two command-line clients and two PL/SQL packages.
The command-line clients, expdp and impdp, provide an easy-to-use interface to the
Data Pump export and import utilities. You can use expdp and impdp to export and
import entire schemas or databases.

Chapter 8
Exporting and Importing Mining Models

8-7

The Data Pump export utility writes the schema objects, including the tables and
metadata that constitute mining models, to a dump file set. The Data Pump import
utility retrieves the schema objects, including the model tables and metadata, from the
dump file set and restores them in the target database.

expdp and impdp cannot be used to export/import individual mining models.

See Also:

Oracle Database Utilities for information about Oracle Data Pump and the
expdp and impdp utilities

8.3.2 Options for Exporting and Importing Mining Models
Lists options for exporting and importing mining models.

Options for exporting and importing mining models are described in the following table.

Table 8-1 Export and Import Options for Oracle Data Mining

Task Description

Export or import
a full database

(DBA only) Use expdp to export a full database and impdp to import a full database. All mining
models in the database are included.

Export or import
a schema

Use expdp to export a schema and impdp to import a schema. All mining models in the
schema are included.

Export or import
individual models
within a database

Use DBMS_DATA_MINING.EXPORT_MODEL to export individual models and
DBMS_DATA_MINING.IMPORT_MODEL to import individual models. These procedures can export
and import a single mining model, all mining models, or mining models that match specific
criteria.

By default, IMPORT_MODEL imports models back into the schema from which they were
exported. You can specify the schema_remap parameter to import models into a different
schema. You can specify tablespace_remap with schema_remap to import models into a
schema that uses a different tablespace.

You may need special privileges in the database to import models into a different schema.
These privileges are granted by the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles,
which are only available to privileged users (such as SYS or a user with the DBA role). You do
not need these roles to export or import models within your own schema.

To import models, you must have the same database privileges as the user who created the
dump file set. Otherwise, a DBA with full system privileges must import the models.

Export or import
individual models
to or from a
remote database

Use a database link to export individual models to a remote database or import individual
models from a remote database. A database link is a schema object in one database that
enables access to objects in a different database. The link must be created before you execute
EXPORT_MODEL or IMPORT_MODEL.

To create a private database link, you must have the CREATE DATABASE LINK system
privilege. To create a public database link, you must have the CREATE PUBLIC DATABASE
LINK system privilege. Also, you must have the CREATE SESSION system privilege on the
remote Oracle Database. Oracle Net must be installed on both the local and remote Oracle
Databases.

Related Topics

• IMPORT_MODEL Procedure

Chapter 8
Exporting and Importing Mining Models

8-8

• EXPORT_MODEL Procedure

• Oracle Database SQL Language Reference

8.3.3 Directory Objects for EXPORT_MODEL and IMPORT_MODEL
Learn how to use directory objects to identify the location of the dump file set.

EXPORT_MODEL and IMPORT_MODEL use a directory object to identify the location of the
dump file set. A directory object is a logical name in the database for a physical
directory on the host computer.

To export data mining models, you must have write access to the directory object and
to the file system directory that it represents. To import data mining models, you must
have read access to the directory object and to the file system directory. Also, the
database itself must have access to file system directory. You must have the CREATE
ANY DIRECTORY privilege to create directory objects.

The following SQL command creates a directory object named dmuser_dir. The file
system directory that it represents must already exist and have shared read/write
access rights granted by the operating system.

CREATE OR REPLACE DIRECTORY dmuser_dir AS '/dm_path/dm_mining';

The following SQL command gives user dmuser both read and write access to
dmuser_dir.

GRANT READ,WRITE ON DIRECTORY dmuser_dir TO dmuser;

Related Topics

• Oracle Database SQL Language Reference

8.3.4 Using EXPORT_MODEL and IMPORT_MODEL
The examples illustrate various export and import scenarios with EXPORT_MODEL and
IMPORT_MODEL.

The examples use the directory object dmdir shown in Example 8-1 and two schemas,
dm1 and dm2. Both schemas have data mining privileges. dm1 has two models. dm2 has
one model.

SELECT owner, model_name, mining_function, algorithm FROM all_mining_models;

OWNER MODEL_NAME MINING_FUNCTION ALGORITHM
---------- -------------------- -------------------- --------------------------
DM1 EM_SH_CLUS_SAMPLE CLUSTERING EXPECTATION_MAXIMIZATION
DM1 DT_SH_CLAS_SAMPLE CLASSIFICATION DECISION_TREE
DM2 SVD_SH_SAMPLE FEATURE_EXTRACTION SINGULAR_VALUE_DECOMP

Example 8-1 Creating the Directory Object

-- connect as system user
CREATE OR REPLACE DIRECTORY dmdir AS '/scratch/dmuser/expimp';
GRANT READ,WRITE ON DIRECTORY dmdir TO dm1;
GRANT READ,WRITE ON DIRECTORY dmdir TO dm2;
SELECT * FROM all_directories WHERE directory_name IN 'DMDIR';

OWNER DIRECTORY_NAME DIRECTORY_PATH

Chapter 8
Exporting and Importing Mining Models

8-9

---------- -------------------------- --
SYS DMDIR /scratch/dmuser/expimp

Example 8-2 Exporting All Models From DM1

-- connect as dm1
BEGIN
 dbms_data_mining.export_model (
 filename => 'all_dm1',
 directory => 'dmdir');
END;
/

A log file and a dump file are created in /scratch/dmuser/expimp, the physical
directory associated with dmdir. The name of the log file is dm1_exp_11.log. The name
of the dump file is all_dm101.dmp.

Example 8-3 Importing the Models Back Into DM1

The models that were exported in Example 8-2 still exist in dm1. Since an import does
not overwrite models with the same name, you must drop the models before importing
them back into the same schema.

BEGIN
 dbms_data_mining.drop_model('EM_SH_CLUS_SAMPLE');
 dbms_data_mining.drop_model('DT_SH_CLAS_SAMPLE');
 dbms_data_mining.import_model(
 filename => 'all_dm101.dmp',
 directory => 'DMDIR');
END;
/
SELECT model_name FROM user_mining_models;

MODEL_NAME

DT_SH_CLAS_SAMPLE
EM_SH_CLUS_SAMPLE

Example 8-4 Importing Models Into a Different Schema

In this example, the models that were exported from dm1 in Example 8-2 are imported
into dm2. The dm1 schema uses the example tablespace; the dm2 schema uses the
sysaux tablespace.

-- CONNECT as sysdba
BEGIN
 dbms_data_mining.import_model (
 filename => 'all_d101.dmp',
 directory => 'DMDIR',
 schema_remap => 'DM1:DM2',
 tablespace_remap => 'EXAMPLE:SYSAUX');
END;
/
-- CONNECT as dm2
SELECT model_name from user_mining_models;

MODEL_NAME
--
SVD_SH_SAMPLE

Chapter 8
Exporting and Importing Mining Models

8-10

EM_SH_CLUS_SAMPLE
DT_SH_CLAS_SAMPLE

Example 8-5 Exporting Specific Models

You can export a single model, a list of models, or a group of models that share certain
characteristics.

-- Export the model named dt_sh_clas_sample
EXECUTE dbms_data_mining.export_model (
 filename => 'one_model',
 directory =>'DMDIR',
 model_filter => 'name in (''DT_SH_CLAS_SAMPLE'')');
-- one_model01.dmp and dm1_exp_37.log are created in /scratch/dmuser/expimp

-- Export Decision Tree models
EXECUTE dbms_data_mining.export_model(
 filename => 'algo_models',
 directory => 'DMDIR',
 model_filter => 'ALGORITHM_NAME IN (''DECISION_TREE'')');
-- algo_model01.dmp and dm1_exp_410.log are created in /scratch/dmuser/expimp

-- Export clustering models
EXECUTE dbms_data_mining.export_model(
 filename =>'func_models',
 directory => 'DMDIR',
 model_filter => 'FUNCTION_NAME = ''CLUSTERING''');
-- func_model01.dmp and dm1_exp_513.log are created in /scratch/dmuser/expimp

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

8.3.5 EXPORT and IMPORT Serialized Models
From Oracle Database Release 18c onwards, EXPORT_SERMODEL and IMPORT_SERMODEL
procedures are available to export and import serialized models.

The serialized format allows the models to be moved to another platform (outside the
database) for scoring. The model is exported in a BLOB that can be saved in a BFILE.
The import routine takes the serialized content in the BLOB and the name of the model
to be created with the content.

Related Topics

• EXPORT_SERMODEL Procedure

• IMPORT_SERMODEL Procedure

8.3.6 Importing From PMML
You can import Regression models represented in Predictive Model Markup Language
(PMML).

PMML is an XML-based standard specified by the Data Mining Group (http://
www.dmg.org). Applications that are PMML-compliant can deploy PMML-compliant
models that were created by any vendor. Oracle Data Mining supports the core
features of PMML 3.1 for regression models.

Chapter 8
Exporting and Importing Mining Models

8-11

You can import regression models represented in PMML. The models must be of type
RegressionModel, either linear regression or binary logistic regression.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

8.4 Controlling Access to Mining Models and Data
Understand how to create a Data Mining user and grant necessary privileges.

• Creating a Data Mining User

• System Privileges for Data Mining

• Object Privileges for Mining Models

8.4.1 Creating a Data Mining User
Explains how to create a Data Mining user.

A Data Mining user is a database user account that has privileges for performing data
mining activities. Example 8-6 shows how to create a database user. Example 8-7
shows how to assign data mining privileges to the user.

Note:

To create a user for the Data Mining sample programs, you must run two
configuration scripts as described in "The Data Mining Sample Programs".

Example 8-6 Creating a Database User in SQL*Plus

1. Log in to SQL*Plus with system privileges.

 Enter user-name: sys as sysdba
 Enter password: password

2. To create a user named dmuser, type these commands. Specify a password of
your choosing.

CREATE USER dmuser IDENTIFIED BY password
 DEFAULT TABLESPACE USERS
 TEMPORARY TABLESPACE TEMP
 QUOTA UNLIMITED ON USERS;
Commit;

The USERS and TEMP tablespace are included in the pre-configured database that
Oracle ships with the database media. USERS is used mostly by demo users; it
is appropriate for running the sample programs described in "The Data Mining
Sample Programs". TEMP is the temporary tablespace that is shared by most
database users.

Chapter 8
Controlling Access to Mining Models and Data

8-12

Note:

Tablespaces for Data Mining users must be assigned according to
standard DBA practices, depending on system load and system
resources.

3. To login as dmuser, type the following.

CONNECT dmuser
Enter password: password

Related Topics

• The Data Mining Sample Programs
Describes the data mining sample programs that ship with Oracle Database.

See Also:

Oracle Database SQL Language Reference for the complete syntax of the
CREATE USER statement

8.4.1.1 Granting Privileges for Data Mining
You must have the CREATE MINING MODEL privilege to create models in your own
schema. You can perform any operation on models that you own. This includes
applying the model, adding a cost matrix, renaming the model, and dropping the
model.

The GRANT statements in the following example assign a set of basic data mining
privileges to the dmuser account. Some of these privileges are not required for all
mining activities, however it is prudent to grant them all as a group.

Additional system and object privileges are required for enabling or restricting specific
mining activities.

Example 8-7 Privileges Required for Data Mining

GRANT CREATE MINING MODEL TO dmuser;
GRANT CREATE SESSION TO dmuser;
GRANT CREATE TABLE TO dmuser;
GRANT CREATE VIEW TO dmuser;
GRANT EXECUTE ON CTXSYS.CTX_DDL TO dmuser;

READ or SELECT privileges are required for data that is not in your schema. For
example, the following statement grants SELECT access to the sh.customers table.

GRANT SELECT ON sh.customers TO dmuser;

Chapter 8
Controlling Access to Mining Models and Data

8-13

8.4.2 System Privileges for Data Mining
Learn different privileges to control operations on mining models.

A system privilege confers the right to perform a particular action in the database or to
perform an action on a type of schema objects. For example, the privileges to create
tablespaces and to delete the rows of any table in a database are system privileges.

You can perform specific operations on mining models in other schemas if you have
the appropriate system privileges. For example, CREATE ANY MINING MODEL enables
you to create models in other schemas. SELECT ANY MINING MODEL enables you to
apply models that reside in other schemas. You can add comments to models if you
have the COMMENT ANY MINING MODEL privilege.

To grant a system privilege, you must either have been granted the system privilege
with the ADMIN OPTION or have been granted the GRANT ANY PRIVILEGE system
privilege.

The system privileges listed in the following table control operations on mining models.

Table 8-2 System Privileges for Data Mining

System Privilege Allows you to....

CREATE MINING MODEL Create mining models in your own schema.

CREATE ANY MINING MODEL Create mining models in any schema.

ALTER ANY MINING MODEL Change the name or cost matrix of any mining model in any
schema.

DROP ANY MINING MODEL Drop any mining model in any schema.

SELECT ANY MINING MODEL Apply a mining model in any schema, also view model
details in any schema.

COMMENT ANY MINING MODEL Add a comment to any mining model in any schema.)

AUDIT_ADMIN role Generate an audit trail for any mining model in any schema.
(See Oracle Database Security Guide for details.)

Example 8-8 Grant System Privileges for Data Mining

The following statements allow dmuser to score data and view model details in any
schema as long as SELECT access has been granted to the data. However, dmuser can
only create models in the dmuser schema.

GRANT CREATE MINING MODEL TO dmuser;
GRANT SELECT ANY MINING MODEL TO dmuser;

The following statement revokes the privilege of scoring or viewing model details in
other schemas. When this statement is executed, dmuser can only perform data mining
activities in the dmuser schema.

REVOKE SELECT ANY MINING MODEL FROM dmuser;

Related Topics

• Adding a Comment to a Mining Model

• Oracle Database Security Guide

Chapter 8
Controlling Access to Mining Models and Data

8-14

8.4.3 Object Privileges for Mining Models
An object privilege confers the right to perform a particular action on a specific schema
object. For example, the privilege to delete rows from the SH.PRODUCTS table is an
example of an object privilege.

You automatically have all object privileges for schema objects in your own schema.
You can grant object privilege on objects in your own schema to other users or roles.

The object privileges listed in the following table control operations on specific mining
models.

Table 8-3 Object Privileges for Mining Models

Object Privilege Allows you to....

ALTER MINING MODEL Change the name or cost matrix of the specified mining model object.

SELECT MINING
MODEL

Apply the specified mining model object and view its model details.

Example 8-9 Grant Object Privileges on Mining Models

The following statements allow dmuser to apply the model testmodel to the sales
table, specifying different cost matrixes with each apply. The user dmuser can also
rename the model testmodel. The testmodel model and sales table are in the sh
schema, not in the dmuser schema.

GRANT SELECT ON MINING MODEL sh.testmodel TO dmuser;
GRANT ALTER ON MINING MODEL sh.testmodel TO dmuser;
GRANT SELECT ON sh.sales TO dmuser;

The following statement prevents dmuser from renaming or changing the cost matrix of
testmodel. However, dmuser can still apply testmodel to the sales table.

REVOKE ALTER ON MINING MODEL sh.testmodel FROM dmuser;

8.5 Auditing and Adding Comments to Mining Models
Mining model objects support SQL COMMENT and AUDIT statements.

8.5.1 Adding a Comment to a Mining Model
Comments can be used to associate descriptive information with a database object.
You can associate a comment with a mining model using a SQL COMMENT statement.

COMMENT ON MINING MODEL schema_name.model_name IS string;

Note:

To add a comment to a model in another schema, you must have the
COMMENT ANY MINING MODEL system privilege.

Chapter 8
Auditing and Adding Comments to Mining Models

8-15

To drop a comment, set it to the empty '' string.

The following statement adds a comment to the model DT_SH_CLAS_SAMPLE in your
own schema.

COMMENT ON MINING MODEL dt_sh_clas_sample IS
 'Decision Tree model predicts promotion response';

You can view the comment by querying the catalog view USER_MINING_MODELS.

SELECT model_name, mining_function, algorithm, comments FROM user_mining_models;

MODEL_NAME MINING_FUNCTION ALGORITHM COMMENTS
----------------- ---------------- -------------- ---
DT_SH_CLAS_SAMPLE CLASSIFICATION DECISION_TREE Decision Tree model predicts promotion
response

To drop this comment from the database, issue the following statement:

COMMENT ON MINING MODEL dt_sh_clas_sample '';

See Also:

• Table 8-2

• Oracle Database SQL Language Reference for details about SQL
COMMENT statements

8.5.2 Auditing Mining Models
The Oracle Database auditing system is a powerful, highly configurable tool for
tracking operations on schema objects in a production environment. The auditing
system can be used to track operations on data mining models.

Note:

To audit mining models, you must have the AUDIT_ADMIN role.

Unified auditing is documented in Oracle Database Security Guide. However, the full
unified auditing system is not enabled by default. Instructions for migrating to unified
auditing are provided in Oracle Database Upgrade Guide.

Chapter 8
Auditing and Adding Comments to Mining Models

8-16

See Also:

• "Auditing Oracle Data Mining Events" in Oracle Database Security Guide
for details about auditing mining models

• "Monitoring Database Activity with Auditing" in Oracle Database Security
Guide for a comprehensive discussion of unified auditing in Oracle
Database

• "About the Unified Auditing Migration Process for Oracle Database"
in Oracle Database Upgrade Guide for information about migrating to
unified auditing

• Oracle Database Upgrade Guide

Chapter 8
Auditing and Adding Comments to Mining Models

8-17

A
The Data Mining Sample Programs

Describes the data mining sample programs that ship with Oracle Database.

• About the Data Mining Sample Programs

• Installing the Data Mining Sample Programs

• The Data Mining Sample Data

A.1 About the Data Mining Sample Programs
You can learn a great deal about the Oracle Data Mining application programming
interface (API) from the data mining sample programs. The programs illustrate typical
approaches to data preparation, algorithm selection, algorithm tuning, testing, and
scoring.

The programs are easy to use. They include extensive inline comments to help you
understand the code. They delete all temporary objects on exit; you can run the
programs repeatedly without setup or cleanup.

The data mining sample programs are installed with Oracle Database Examples in the
demo directory under Oracle Home. The demo directory contains sample programs
that illustrate many features of Oracle Database. You can locate the data mining files
by doing a directory listing of dm*.sql. The following example shows this directory
listing on a Linux system.

Note that the directory listing in the following example includes one file, dmhpdemo.sql,
that is not a data mining program.

Example A-1 Directory Listing of the Data Mining Sample Programs

> cd $ORACLE_HOME/rdbms/demo
> ls dm*.sql
dmaidemo.sql dmkmdemo.sql dmsvddemo.sql
dmardemo.sql dmnbdemo.sql dmsvodem.sql
dmdtdemo.sql dmnmdemo.sql dmsvrdem.sql
dmdtxvlddemo.sql dmocdemo.sql dmtxtnmf.sql
dmemdemo.sql dmsh.sql dmtxtsvm.sql
dmglcdem.sql dmshgrants.sql
dmglrdem.sql dmstardemo.sql
dmhpdemo.sql dmsvcdem.sql

The data mining sample programs create a set of mining models in the user's schema.
After executing the programs, you can list the models with a query like the one in the
following example.

Example A-2 Models Created by the Sample Programs

SELECT mining_function, algorithm, model_name FROM user_mining_models
 ORDER BY mining_function;

A-1

MINING_FUNCTION ALGORITHM MODEL_NAME
------------------------------ ------------------------------ -------------------
ASSOCIATION_RULES APRIORI_ASSOCIATION_RULES AR_SH_SAMPLE
CLASSIFICATION GENERALIZED_LINEAR_MODEL GLMC_SH_CLAS_SAMPLE
CLASSIFICATION SUPPORT_VECTOR_MACHINES T_SVM_CLAS_SAMPLE
CLASSIFICATION SUPPORT_VECTOR_MACHINES SVMC_SH_CLAS_SAMPLE
CLASSIFICATION SUPPORT_VECTOR_MACHINES SVMO_SH_CLAS_SAMPLE
CLASSIFICATION NAIVE_BAYES NB_SH_CLAS_SAMPLE
CLASSIFICATION DECISION_TREE DT_SH_CLAS_SAMPLE
CLUSTERING EXPECTATION_MAXIMIZATION EM_SH_CLUS_SAMPLE
CLUSTERING O_CLUSTER OC_SH_CLUS_SAMPLE
CLUSTERING KMEANS KM_SH_CLUS_SAMPLE
CLUSTERING KMEANS DM_STAR_CLUSTER
FEATURE_EXTRACTION SINGULAR_VALUE_DECOMP SVD_SH_SAMPLE
FEATURE_EXTRACTION NONNEGATIVE_MATRIX_FACTOR NMF_SH_SAMPLE
FEATURE_EXTRACTION NONNEGATIVE_MATRIX_FACTOR T_NMF_SAMPLE
REGRESSION SUPPORT_VECTOR_MACHINES SVMR_SH_REGR_SAMPLE
REGRESSION GENERALIZED_LINEAR_MODEL GLMR_SH_REGR_SAMPLE

A.2 Installing the Data Mining Sample Programs
Learn how to install Data Mining sample programs.

The data mining sample programs require:

• Oracle Database Enterprise Edition with the Advanced Analytics option

• Oracle Database sample schemas

• Oracle Database Examples

• A data mining user account

• Execution of dmshgrants.sql by a system administrator

• Execution of dmsh.sql by the data mining user

Follow these steps to install the data mining sample programs:

1. Install or obtain access to Oracle Database 12c Enterprise Edition with the
Advanced Analytics option. To install the Database, see the installation instructions
for your platform at Oracle Database 18c Release.

2. Ensure that the sample schemas are installed in the database. The sample
schemas are installed by default with Oracle Database. See Oracle Database
Sample Schemasfor details about the sample schemas.

3. Verify that Oracle Database Examples has been installed with the database, or
install it locally. Oracle Database Examples loads the Database sample programs
into the rdbms/demo directory under Oracle home. See Oracle Database Examples
Installation Guide for installation instructions.

4. Verify that a data mining user account has been created, or create it yourself if you
have administrative privileges. See "Creating a Data Mining User".

5. Ask your system administrator to run dmshgrants.sql, or run it yourself if you
have administrative privileges. dmshgrants grants the privileges that are required
for running the sample programs. These include SELECT access to tables in the SH
schema as described in "The Data Mining Sample Data" and the system privileges
listed in the following table.

Pass the name of the data mining user to dmshgrants.

Appendix A
Installing the Data Mining Sample Programs

A-2

SQL> CONNECT sys / as sysdba
Enter password: sys_password
Connected.
SQL> @ $ORACLE_HOME/rdbms/demo/dmshgrants dmuser

Table A-1 System Privileges Granted by dmshgrants.sql to the Data Mining
User

Privilege Allows the data mining user to

CREATE SESSION log in to a database session

CREATE TABLE create tables, such as the settings tables for CREATE_MODEL

CREATE VIEW create views, such as the views of tables in the SH schema

CREATE MINING MODEL create data mining models

EXECUTE ON
ctxsys.ctx_ddl

execute procedures in the ctxsys.ctx_ddl PL/SQL
package; required for text mining

6. Connect to the database as the data mining user and run dmsh.sql. This script
creates views of the sample data in the schema of the data mining user.

SQL> CONNECT dmuser
Enter password: dmuser_password
Connected.
SQL> @ $ORACLE_HOME/rdbms/demo/dmsh

Related Topics

• Oracle Database Sample Schemas

• Oracle Database Examples Installation Guide

• Creating a Data Mining User
Explains how to create a Data Mining user.

A.3 The Data Mining Sample Data
The data used by the sample data mining programs is based on these tables in the SH
schema:

SH.CUSTOMERS
SH.SALES
SH.PRODUCTS
SH.SUPPLEMENTARY_DEMOGRAPHICS
SH.COUNTRIES

The dmshgrants script grants SELECT access to the tables in SH. The dmsh.sql script
creates views of the SH tables in the schema of the data mining user. The views are
described in the following table:

Table A-2 The Data Mining Sample Data

View Name Description

MINING_DATA Joins and filters data

MINING_DATA_BUILD_V Data for building models

MINING_DATA_TEST_V Data for testing models

Appendix A
The Data Mining Sample Data

A-3

Table A-2 (Cont.) The Data Mining Sample Data

View Name Description

MINING_DATA_APPLY_V Data to be scored

MINING_BUILD_TEXT Data for building models that include text

MINING_TEST_TEXT Data for testing models that include text

MINING_APPLY_TEXT Data, including text columns, to be scored

MINING_DATA_ONE_CLASS_
V

Data for anomaly detection

The association rules program creates its own transactional data.

Appendix A
The Data Mining Sample Data

A-4

Index

A
ADP, 5-5
Advanced Analytics option, 8-1, A-2
algorithms, 5-1, 5-3

parallel execution, 8-2
Algorithms

About Algorithm Meta Data Registration,
5-20

Algorithm Meta Data Registration, 5-20
ALL_MINING_MODEL_ATTRIBUTES, 2-2
ALL_MINING_MODEL_SETTINGS, 2-2, 5-11
ALL_MINING_MODEL_VIEWS, 2-2
ALL_MINING_MODEL_XFORMS, 2-2
ALL_MINING_MODELS, 2-2
anomaly detection, 2-1, 3-2, 5-3, 5-4, 6-12
APPLY, 6-1
Apriori, 3-10, 4-4, 5-3

example: calculating aggregates, 3-12
association rules, 5-2, 5-3
Association Rules, 5-22
attribute importance, 2-1, 5-2–5-4
attribute specification, 4-6, 7-5, 7-7
attributes, 3-2, 3-3, 7-3

categorical, 3-5, 7-1
data attributes, 3-3
data dictionary, 2-2
model attributes, 3-3, 3-5
nested, 3-2
numerical, 3-5, 7-1
subname, 3-6
target, 3-4
text, 3-5
unstructured text, 7-1

AUDIT, 8-14, 8-16
Automatic Data Preparation, 1-1, 3-3, 4-3

B
binning, 4-3

equi-width, 4-10
quantile, 4-10
supervised, 4-4, 4-10
top-n frequency, 4-10

build data, 3-2

C
case ID, 3-1, 3-2, 3-5, 6-12
case table, 3-1, 4-2
categorical attributes, 7-1
chopt utility, 8-2
class weights, 5-10
classification, 2-1, 3-2, 3-4, 5-3, 5-4
Classification Algorithm, 5-29
clipping, 4-11
CLUSTER_DETAILS, 1-6, 2-10
CLUSTER_DISTANCE, 2-10
CLUSTER_ID, 1-5, 2-10, 2-11
CLUSTER_PROBABILITY, 2-10
CLUSTER_SET, 1-6, 2-10
clustering, 1-5, 2-1, 3-2, 5-4
COMMENT, 8-14
cost matrix, 5-9, 6-10, 8-15
cost-sensitive prediction, 6-10
CUR Decomposition, 5-4
CUR Matrix Decomposition, 5-2

D
data

categorical, 3-5
dimensioned, 3-8
for sample programs, A-3
market basket, 3-10
missing values, 3-12
multi-record case, 3-8
nested, 3-2
numerical, 3-5
preparation, 4-1
READ access, 8-13
SELECT access, 8-13
single-record case, 3-1
sparse, 3-12
transactional, 3-10
unstructured text, 3-5

data mining
applications of, 1-1
database tuning for, 8-2
privileges for, 8-1, 8-12, A-2
sample programs, A-1

Index-1

data mining (continued)
scoring, 5-2, 6-1

Data Mining with SQL
FEATURE_COMPARE

ESA, 1-6
Data preparation

model view
text features, 7-2

data types, 3-2, 4-2
nested, 3-7

Database Upgrade Assistant, 8-4
DBMS_DATA_MINING, 2-8, 5-2
DBMS_DATA_MINING_TRANSFORM, 2-8
DBMS_PREDICTIVE_ANALYTICS, 1-4, 2-8, 2-9
Decision Tree, 4-4, 5-3, 5-4, 6-8
desupported features

Java API, 8-3
directory objects, 8-9
DMEIDMSYS, 8-5
downgrading, 8-7

E
Expectation Maximization, 4-4
EXPLAIN, 2-10
Explicit Semantic Analysis, 5-3, 5-4, 5-56
Exponential Smoothing, 5-4

ESM, 5-3
Export and Import

serialized models, 8-11
exporting, 8-5, 8-7

F
feature extraction, 2-1, 3-2, 5-3, 5-4
FEATURE_COMPARE, 2-10
FEATURE_DETAILS, 2-10
FEATURE_ID, 2-10
FEATURE_SET, 2-10
FEATURE_VALUE, 2-10
Frequent Itemsets, 5-27

G
Generalized Linear Models, 4-4
GLM, 5-4
graphical user interface, 1-1

I
importing, 8-5, 8-7
installation

Oracle Database, 8-1, A-2
Oracle Database Examples, A-2

installation (continued)
sample data mining programs, A-2
sample schemas, A-2

K
k-Means, 4-4, 5-3, 5-4

L
linear regression, 2-11, 5-3
logistic regression, 2-11, 5-3

M
market basket data, 3-10
MDL, 4-4
memory, 8-2
Minimum Description Length, 4-4, 5-3, 5-63
mining functions, 2-1, 5-1, 5-2

supervised, 5-2
unsupervised, 5-2

mining models
adding a comment, 2-1, 8-15
applying, 8-15
auditing, 2-1, 8-16
changing the name, 8-15
created by sample programs, A-1
data dictionary, 2-2
object privileges, 8-15
privileges for, 2-1
upgrading, 8-4
viewing model details, 8-15

missing value treatment, 3-14
model attributes

categorical, 3-5
derived from nested column, 3-6
numerical, 3-5
scoping of name, 3-6
text, 3-5

Model Detail View
model view, 5-22, 5-27, 5-28, 5-42, 5-56,

5-58
Clustering algorithm, 5-46
CUR Matrix Decomposition, 5-30
ESM, 5-66
Exponential Smoothing, 5-66
global, 5-64
MDL, 5-29
Neural Network, 5-43
Random Forest, 5-44

Model Detail Views, 5-21
model view

Decision Tree, 5-32

Index

Index-2

Model Detail Views (continued)
model view (continued)
EM, 5-49
GLM, 5-34
KM, 5-53
MDL, 5-63
OC, 5-54
SVD, 5-60
SVM, 5-45

model details, 3-6
Model details

binning, 5-63
model signature, 3-5
models

algorithms, 5-3
created by sample programs, A-1
deploying, 6-1
partitions, 2-2
privileges for, 8-13
settings, 2-2, 5-11
testing, 3-2
training, 3-2
transparency, 1-1
XFORMS, 2-2

N
Naive Bayes, 4-4, 5-3, 5-4, 5-42
nested data, 3-7, 7-3
Neural Network, 5-3, 5-4
NMF, 5-4
Non-Negative Matrix Factorization, 4-4, 5-3, 5-58
normalization, 4-4

min-max, 4-10
scale, 4-10
z-score, 4-10

Normalization view
model view

missing value handling, 5-65
numerical attributes, 7-1

O
O-Cluster, 3-7, 4-4, 5-3, 5-4
object privileges, 8-15
One-Class SVM, 5-3
ORA_DM_PARTITION_NAME ORA, 2-10
Oracle Data Miner, 1-1, 8-3
Oracle Data Miner Classic, 8-3
Oracle Data Pump, 8-7
Oracle Text, 7-1
outliers, 4-11

P
parallel execution, 6-2, 8-2
Partitioned model, 5-5

partitioned model scoring, 5-7
Partitioned Model

add partition, 5-7
DDL implementation, 5-6
drop model, 5-6
drop partition, 5-6
Partitioned Model Build, 5-6

partitions
data dictionary, 2-2

PGA, 8-2
PL/SQL packages, 2-7
PMML, 8-11
PREDICTION, 1-2, 1-3, 2-10, 6-9

GROUPING hint, 6-7
PREDICTION_BOUNDS, 2-11
PREDICTION_COST, 2-11
PREDICTION_DETAILS, 2-11, 6-9
PREDICTION_PROBABILITY, 1-3, 2-11, 6-8
PREDICTION_SET, 2-11
predictive analytics, 1-1, 1-4, 2-1
Preparing the Data

Using Retail Analysis Data
Aggregates, 3-11

prior probabilities, 5-10
priors table, 5-10
privileges, 8-8, 8-12, 8-13

for creating mining models, 8-6
for data mining, 8-1, 8-8
for data mining sample programs, A-2
for exporting and importing, 8-8
required for data mining, 8-13

R
R Extensible, 5-4
R mining model

settings, 5-12
Random Forest, 5-3, 5-4
regression, 2-1, 3-2, 3-4, 5-3, 5-4
reverse transformations, 3-6

S
sample programs, 1-2, A-1

configuration scripts, 8-12
data used by, A-3
directory listing of, A-1
installing, A-2
models created by, A-1
Oracle Database Examples, A-2
requirements, A-2

Index

Index-3

sample programs (continued)
sample schemas, A-2

scoring, 1-1, 2-1, 6-1, 8-2, 8-15
data, 3-2
dynamic, 1-3, 2-1, 6-8
parallel execution, 6-2
privileges for, 8-14
requirements, 3-2
SQL functions, 2-10
transparency, 1-1

Scoring Engine, 8-4
settings

data dictionary, 2-2
table for specifying, 5-1

SGA, 8-2
Singular Value Decomposition, 4-4, 5-60
sparse data, 3-12
SQL AUDIT, 2-1, 8-16
SQL COMMENT, 2-1, 8-15
SQL data mining functions, 2-10
SQL Developer, 1-1
STACK, 2-9, 4-7
Static Dictionary Views

ALL_MINING_MODEL_VIEWS, 2-6
Support Vector Machine, 4-4, 5-3, 5-4
SVD, 5-4
system privileges, 8-14, A-2

T
target, 3-4, 3-5, 7-3
test data, 3-2, 5-1
text attributes, 7-2, 7-5
text mining, 2-9, 7-1
text policy, 7-4
text terms, 7-1
time series, 5-3, 5-4

training data, 5-1
transactional data, 3-1, 3-8, 3-10
Transactional Itemsets, 5-27
Transactional rule, 5-28
transformations, 2-8, 3-3, 3-4, 3-6, 5-1, 5-4

attribute-specific, 2-8, 2-9
embedded, 2-8, 2-9, 3-3, 4-1
user-specified, 3-3

transparency, 3-6
trimming, 4-11

U
upgrading, 8-4

exporting and importing, 8-5
from Release 10g, 8-4
from Release 11g, 8-4
pre-upgrade steps, 8-3
using Database Upgrade Assistant, 8-4

Usage scripts, 5-20
users, 8-1, 8-8, A-2

assigning data mining privileges to, 8-13
creating, 8-12
privileges for data mining, 8-6, 8-12

W
weights, 5-10
windsorize, 4-11

X
XFORM, 2-9
XFORMS

data dictionary, 2-2

Index

Index-4

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Oracle Data Mining Resources on the Oracle Technology Network
	Application Development and Database Administration Documentation

	Conventions

	Changes in This Release for Oracle Data Mining User's Guide
	Oracle Data Mining User's Guide is New in This Release
	Changes in Oracle Data Mining 18c
	New Features in 18c
	Deprecated Features
	Desupported Features
	Other Changes

	1 Data Mining With SQL
	1.1 Highlights of the Data Mining API
	1.2 Example: Targeting Likely Candidates for a Sales Promotion
	1.3 Example: Analyzing Preferred Customers
	1.4 Example: Segmenting Customer Data
	1.5 Example : Building an ESA Model with a Wiki Dataset

	2 About the Data Mining API
	2.1 About Mining Models
	2.2 Data Mining Data Dictionary Views
	2.2.1 ALL_MINING_MODELS
	2.2.2 ALL_MINING_MODEL_ATTRIBUTES
	2.2.3 ALL_MINING_MODEL_PARTITIONS
	2.2.4 ALL_MINING_MODEL_SETTINGS
	2.2.5 ALL_MINING_MODEL_VIEWS
	2.2.6 ALL_MINING_MODEL_XFORMS

	2.3 Data Mining PL/SQL Packages
	2.3.1 DBMS_DATA_MINING
	2.3.2 DBMS_DATA_MINING_TRANSFORM
	2.3.2.1 Transformation Methods in DBMS_DATA_MINING_TRANSFORM

	2.3.3 DBMS_PREDICTIVE_ANALYTICS

	2.4 Data Mining SQL Scoring Functions

	3 Preparing the Data
	3.1 Data Requirements
	3.1.1 Column Data Types
	3.1.2 Data Sets for Classification and Regression
	3.1.3 Scoring Requirements

	3.2 About Attributes
	3.2.1 Data Attributes and Model Attributes
	3.2.2 Target Attribute
	3.2.3 Numericals, Categoricals, and Unstructured Text
	3.2.4 Model Signature
	3.2.5 Scoping of Model Attribute Name
	3.2.6 Model Details

	3.3 Using Nested Data
	3.3.1 Nested Object Types
	3.3.2 Example: Transforming Transactional Data for Mining

	3.4 Using Market Basket Data
	3.4.1 Example: Creating a Nested Column for Market Basket Analysis

	3.5 Using Retail Analysis Data
	3.5.1 Example: Calculating Aggregates

	3.6 Handling Missing Values
	3.6.1 Examples: Missing Values or Sparse Data?
	3.6.1.1 Sparsity in a Sales Table
	3.6.1.2 Missing Values in a Table of Customer Data

	3.6.2 Missing Value Treatment in Oracle Data Mining
	3.6.3 Changing the Missing Value Treatment

	4 Transforming the Data
	4.1 About Transformations
	4.2 Preparing the Case Table
	4.2.1 Creating Nested Columns
	4.2.2 Converting Column Data Types
	4.2.3 Text Transformation
	4.2.4 About Business and Domain-Sensitive Transformations

	4.3 Understanding Automatic Data Preparation
	4.3.1 Binning
	4.3.2 Normalization
	4.3.3 How ADP Transforms the Data

	4.4 Embedding Transformations in a Model
	4.4.1 Specifying Transformation Instructions for an Attribute
	4.4.1.1 Expression Records
	4.4.1.2 Attribute Specifications

	4.4.2 Building a Transformation List
	4.4.2.1 SET_TRANSFORM
	4.4.2.2 The STACK Interface
	4.4.2.3 GET_MODEL_TRANSFORMATIONS and GET_TRANSFORM_LIST

	4.4.3 Transformation Lists and Automatic Data Preparation
	4.4.4 Oracle Data Mining Transformation Routines
	4.4.4.1 Binning Routines
	4.4.4.2 Normalization Routines
	4.4.4.3 Outlier Treatment
	4.4.4.4 Routines for Outlier Treatment

	4.5 Understanding Reverse Transformations

	5 Creating a Model
	5.1 Before Creating a Model
	5.2 The CREATE_MODEL Procedure
	5.2.1 Choosing the Mining Function
	5.2.2 Choosing the Algorithm
	5.2.3 Supplying Transformations
	5.2.3.1 Creating a Transformation List
	5.2.3.2 Transformation List and Automatic Data Preparation

	5.2.4 About Partitioned Model
	5.2.4.1 Partitioned Model Build Process
	5.2.4.2 DDL in Partitioned model
	5.2.4.2.1 Drop Model or Drop Partition
	5.2.4.2.2 Add Partition

	5.2.4.3 Partitioned Model scoring

	5.3 Specifying Model Settings
	5.3.1 Specifying Costs
	5.3.2 Specifying Prior Probabilities
	5.3.3 Specifying Class Weights
	5.3.4 Model Settings in the Data Dictionary
	5.3.5 Specifying Mining Model Settings for R Model
	5.3.5.1 ALGO_EXTENSIBLE_LANG
	5.3.5.2 RALG_BUILD_FUNCTION
	5.3.5.2.1 RALG_BUILD_PARAMETER

	5.3.5.3 RALG_DETAILS_FUNCTION
	5.3.5.3.1 RALG_DETAILS_FORMAT

	5.3.5.4 RALG_SCORE_FUNCTION
	5.3.5.5 RALG_WEIGHT_FUNCTION
	5.3.5.6 Registered R Scripts
	5.3.5.7 R Model Demonstration Scripts
	5.3.5.8 Algorithm Meta Data Registration

	5.4 Model Detail Views
	5.4.1 Model Detail Views for Association Rules
	5.4.2 Model Detail View for Frequent Itemsets
	5.4.3 Model Detail View for Transactional Itemsets
	5.4.4 Model Detail View for Transactional Rule
	5.4.5 Model Detail Views for Classification Algorithms
	5.4.6 Model Detail Views for CUR Matrix Decomposition
	5.4.7 Model Detail Views for Decision Tree
	5.4.8 Model Detail Views for Generalized Linear Model
	5.4.9 Model Detail Views for Naive Bayes
	5.4.10 Model Detail Views for Neural Network
	5.4.11 Model Detail Views for Random Forest
	5.4.12 Model Detail View for Support Vector Machine
	5.4.13 Model Detail Views for Clustering Algorithms
	5.4.14 Model Detail Views for Expectation Maximization
	5.4.15 Model Detail Views for k-Means
	5.4.16 Model Detail Views for O-Cluster
	5.4.17 Model Detail Views for Explicit Semantic Analysis
	5.4.18 Model Detail Views for Non-Negative Matrix Factorization
	5.4.19 Model Detail Views for Singular Value Decomposition
	5.4.20 Model Detail View for Minimum Description Length
	5.4.21 Model Detail View for Binning
	5.4.22 Model Detail Views for Global Information
	5.4.23 Model Detail View for Normalization and Missing Value Handling
	5.4.24 Model Detail Views for Exponential Smoothing Models

	6 Scoring and Deployment
	6.1 About Scoring and Deployment
	6.2 Using the Data Mining SQL Functions
	6.2.1 Choosing the Predictors
	6.2.2 Single-Record Scoring

	6.3 Prediction Details
	6.3.1 Cluster Details
	6.3.2 Feature Details
	6.3.3 Prediction Details
	6.3.4 GROUPING Hint

	6.4 Real-Time Scoring
	6.5 Dynamic Scoring
	6.6 Cost-Sensitive Decision Making
	6.7 DBMS_DATA_MINING.Apply

	7 Mining Unstructured Text
	7.1 About Unstructured Text
	7.2 About Text Mining and Oracle Text
	7.3 Data Preparation for Text Features
	7.4 Creating a Model that Includes Text Mining
	7.5 Creating a Text Policy
	7.6 Configuring a Text Attribute

	8 Administrative Tasks for Oracle Data Mining
	8.1 Installing and Configuring a Database for Data Mining
	8.1.1 About Installation
	8.1.2 Enabling or Disabling a Database Option
	8.1.3 Database Tuning Considerations for Data Mining

	8.2 Upgrading or Downgrading Oracle Data Mining
	8.2.1 Pre-Upgrade Steps
	8.2.1.1 Dropping Models Created in Java
	8.2.1.2 Dropping Mining Activities Created in Oracle Data Miner Classic

	8.2.2 Upgrading Oracle Data Mining
	8.2.2.1 Using Database Upgrade Assistant to Upgrade Oracle Data Mining
	8.2.2.1.1 Upgrading from Release 10g
	8.2.2.1.2 Upgrading from Release 11g

	8.2.2.2 Using Export/Import to Upgrade Data Mining Models
	8.2.2.2.1 Export/Import Release 10g Data Mining Models
	8.2.2.2.2 Export/Import Release 11g Data Mining Models

	8.2.3 Post Upgrade Steps
	8.2.4 Downgrading Oracle Data Mining

	8.3 Exporting and Importing Mining Models
	8.3.1 About Oracle Data Pump
	8.3.2 Options for Exporting and Importing Mining Models
	8.3.3 Directory Objects for EXPORT_MODEL and IMPORT_MODEL
	8.3.4 Using EXPORT_MODEL and IMPORT_MODEL
	8.3.5 EXPORT and IMPORT Serialized Models
	8.3.6 Importing From PMML

	8.4 Controlling Access to Mining Models and Data
	8.4.1 Creating a Data Mining User
	8.4.1.1 Granting Privileges for Data Mining

	8.4.2 System Privileges for Data Mining
	8.4.3 Object Privileges for Mining Models

	8.5 Auditing and Adding Comments to Mining Models
	8.5.1 Adding a Comment to a Mining Model
	8.5.2 Auditing Mining Models

	A The Data Mining Sample Programs
	A.1 About the Data Mining Sample Programs
	A.2 Installing the Data Mining Sample Programs
	A.3 The Data Mining Sample Data

	Index

