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Preface

This manual describes Oracle Data Mining, a comprehensive, state-of-the-art data mining
capability within Oracle Database. This manual presents the concepts that underlie the
procedural information that is presented in Oracle Data Mining User’s Guide.

The preface contains these topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documentation

• Conventions

Audience
Oracle Data Mining Concepts is intended for anyone who wants to learn about Oracle Data
Mining.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

xiii
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Related Documentation
The related documentation for Oracle Advanced Analytics (OAA) product includes the
manuals and web page:

Oracle Data Mining, a component of Oracle Advanced Analytics, is documented on the
Data Warehousing page of the Oracle Database online documentation library.

The following manuals document Oracle Data Mining:

• Oracle Data Mining Concepts (this manual)

• Oracle Data Mining User’s Guide

• Oracle Data Mining API Reference

Note:

The Oracle Data Mining API Reference combines key passages from the
Data Mining manuals with related reference documentation in Oracle
Database PL/SQL Packages and Types Reference, and Oracle
Database Reference.

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database Reference

• Oracle Database SQL Language Reference

Related Topics

• Oracle Database Data Warehousing

Oracle Data Mining Resources on the Oracle Technology Network
Resources for Oracle Data Mining.

The Oracle Data Mining page on the Oracle Technology Network (OTN) provides a
wealth of information, including white papers, demonstrations, blogs, discussion
forums, and Oracle By Example tutorials.

Oracle Data Miner, the graphical user interface to Oracle Data Mining, is an extension
to Oracle SQL Developer. Instructions for downloading SQL Developer and installing
the Data Miner repository are available on the Oracle Technology Network.

Related Topics

• Oracle Data Mining
• Oracle Data Miner

Application Development and Database Administration Documentation
Refer to the documentation to assist you in developing database applications and in
administering Oracle Database.

Preface
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• Oracle Database Concepts

• Oracle Database Administrator’s Guide

• Oracle Database Development Guide

• Oracle Database Performance Tuning Guide

• Oracle Database VLDB and Partitioning Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface
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Changes in This Release for Oracle Data
Mining Concepts Guide

Changes in this release for Oracle Data Mining Concepts.

Changes in Oracle Data Mining 18c
The following changes are documented in Oracle Data Mining Concepts for 18c.

New Features
The following features are new in this release:

New Mining Function

Time Series

Time series analysis provides forecasts of future values based on past history. For
example, forecasting sales based on the prior sequence of sales.  Forecasting is a
critical component of business and governmental decision making.

See Time Series.

New Algorithms

• Random Forest

Random Forest is a powerful machine learning algorithm. It uses an ensemble
method that combines multiple trees built with random feature selection.
Effectively, individual trees are built in random subspaces and combined using the
bagging ensemble method.

Random forest is a very popular algorithm which has excellent performance on a
number of benchmarks. It is part of Oracle R Enterprise (ORE) but the
implementation is based on a public R package. Implementing it as kernel code
brings significant performance and scalability benefits.

See Random Forest.

• Enhanced Explicit Semantic Analysis Machine Learning Algorithm to Support
Classification

Explicit Semantic Analysis (ESA) is exposed in Oracle Database 12c Release 2,
as a topic model only under FEATURE_EXTRACTION. It typically uses hundreds of
thousands of explicit features. The algorithm can be easily adapted to perform
Classification to address use cases with hundreds of thousands of classes of
challenging Classification problem that is not appropriately addressed by the
current Oracle Advanced Analytics (OAA) algorithms.

Changes in This Release for Oracle Data Mining Concepts Guide

xvi



The task of large text classification is very important in the context of big data. Extending
ESA to Classification significantly enhances our offering in the text classification domain
and allows OAA to address use cases which are currently intractable for the product.

See Explicit Semantic Analysis.

• Neural Network

The Neural Network algorithm is a biologically inspired approach where a collection of
interconnected units (neurons) learn to approximate a function. Neural Networks are
appropriate for nonlinear approximation in both Classification and Regression problems.

Neural networks are powerful algorithms that can learn arbitrary nonlinear functions.
There have been successfully used in a number of hard problems, including non-linear
regression or time series, computer vision, and speech recognition.

See Neural Network.

• CUR Decomposition-based Algorithm for Attribute and Row Importance

The CUR algorithm allows users to find the columns and features that best explain their
data. This algorithm has gained popularity because it allows the user to gain insight into
their data using easily understandable terms. In contrast, decomposition method like
Singular Value Decomposition (SVD) derive implicit features that are hard to interpret.
CUR is tries to use the insights derived from SVD but translate them in terms of the
original rows and columns.

A CUR-based attribute and row importance can be used to provide data insight as well as
a data filter followed by additional analytical processing. This will be the first Oracle
Advanced Analytics (OAA) algorithm that singles out not only important columns but
important rows.

See CUR Matrix Decomposition.

• Exponential Smoothing

Exponential Smoothing (ESM) allows users to make predictions from time series data.
Exponential Smoothing Methods (ESM) are widely used for forecasting from time series
data. Originally, thought to be less flexible and accurate than competitors, such as
ARIMA, ESM has more recently been shown to cover a broader class of models and has
been extended to increase both its descriptive realism and accuracy. Oracle ESM
includes many of these recent extensions, a total of 14 models, including the popular Holt
(trend) and Holt-Winters (trend and seasonality) models, and the ability to handle
irregular time series intervals.

See Exponential Smoothing.

Algorithm Enhancements

• Algorithm Meta Data Registration

The algorithm meta data registration simplifies and streamlines the integration of new
algorithms in the R extensibility framework. This feature allows a uniform consistent
approach of registering new algorithm functions and their settings.

The integration of new algorithms in the extensibility framework will be simplified. The
GUI will be able to seamlessly pick up and support such new algorithms.

See About Algorithm Meta Data Registration.

• Alternating Direction Method of Multipliers (ADMM)

A new Generalized Liner Models (GLM) distributed solver Alternating Direction Method of
Multipliers (ADMM) is introduced.

Changes in This Release for Oracle Data Mining Concepts Guide

xvii



See GLM Solvers.

• Association Rules Sampling

A new specialized sampling approach is introduced for Association Rules.

See Improved Sampling.

New Administrative Tasks

IMPORT and EXPORT Serialized Models

Serialized machine learning models can be exported in a serialized object form.
Serialized models can be moved to another platform for scoring.

See Oracle Data Mining User’s Guide and Oracle Database PL/SQL Packages and
Types Reference.

Deprecated Features
The following features are deprecated in this release, and may be desupported in
another release. See Oracle Database Upgrade Guide for a complete list of
deprecated features in this release.

• *GET_MODEL_DETAILS are deprecated and are replaced with Model Detail Views.
See Oracle Data Mining User’s Guide.

Desupported Features
See Oracle Database Upgrade Guide for a complete list of desupported features in
this release.

Other Changes
The following is an additional change in Oracle Data Mining Concepts for 18c:

• “Oracle Data Mining with R Extensibility” topic is moved from Chapter Introduction
to Oracle Data Mining to a new chapter: R Extensibility.

• Throughout the document, "mining function(s)" were replaced with "mining
technique(s)" to distinguish between a mining methodology and an API or SQL
function.

Changes in This Release for Oracle Data Mining Concepts Guide

xviii



Part I
Introductions

Introduces Oracle Data Mining.

Provides a high-level overview for those who are new to data mining technology.

• What Is Data Mining?

• Introduction to Oracle Data Mining

• Oracle Data Mining Basics



1
What Is Data Mining?

Orientation to data mining technology.

• What Is Data Mining?

• What Can Data Mining Do and Not Do?

• The Data Mining Process

Note:

Information about data mining is widely available. No matter what your level of
expertise, you can find helpful books and articles on data mining.

Related Topics

• http://en.wikipedia.org/wiki/Data_mining

1.1 What Is Data Mining?
Learn about Data Mining.

Data mining is a technique that discovers previously unknown relationships in data. Data
mining is the practice of automatically searching large stores of data to discover patterns and
trends that go beyond simple analysis. Data mining uses sophisticated mathematical
algorithms to segment the data and to predict the likelihood of future events based on past
events. Data mining is also known as Knowledge Discovery in Data (KDD).

The key properties of data mining are:

• Automatic discovery of patterns

• Prediction of likely outcomes

• Creation of actionable information

• Focus on large data sets and databases

Data mining can answer questions that cannot be addressed through simple query and
reporting techniques.

1.1.1 Automatic Discovery
Data mining is performed by a model that uses an algorithm to act on a set of data. Data
mining models can be used to mine the data on which they are built, but most types of
models are generalizable to new data. The process of applying a model to new data is known
as scoring.

1-1
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1.1.2 Prediction
Many forms of data mining are predictive. For example, a model can predict income
based on education and other demographic factors. Predictions have an associated
probability (How likely is this prediction to be true?). Prediction probabilities are also
known as confidence (How confident can I be of this prediction?).

Some forms of predictive data mining generate rules, which are conditions that imply
a given outcome. For example, a rule can specify that a person who has a bachelor's
degree and lives in a certain neighborhood is likely to have an income greater than the
regional average. Rules have an associated support (What percentage of the
population satisfies the rule?).

1.1.3 Grouping
Other forms of data mining identify natural groupings in the data. For example, a
model might identify the segment of the population that has an income within a
specified range, that has a good driving record, and that leases a new car on a yearly
basis.

1.1.4 Actionable Information
Data mining can derive actionable information from large volumes of data. For
example, a town planner might use a model that predicts income based on
demographics to develop a plan for low-income housing. A car leasing agency might
use a model that identifies customer segments to design a promotion targeting high-
value customers.

1.1.5 Data Mining and Statistics
There is a great deal of overlap between data mining and statistics. In fact most of the
techniques used in data mining can be placed in a statistical framework. However,
data mining techniques are not the same as traditional statistical techniques.

Statistical models usually make strong assumptions about the data and, based on
those assumptions, they make strong statements about the results. However, if the
assumptions are flawed, the validity of the model becomes questionable. By contrast,
the machine learning methods used in data mining typically make weak assumptions
about the data. As a result, data mining cannot generally make such strong statements
about the results. Yet data mining can produce very good results regardless of the
data.

Traditional statistical methods, in general, require a great deal of user interaction in
order to validate the correctness of a model. As a result, statistical methods can be
difficult to automate. Statistical methods rely on testing hypotheses or finding
correlations based on smaller, representative samples of a larger population.

Less user interaction and less knowledge of the data is required for data mining. The
user does not need to massage the data to guarantee that a method is valid for a
given data set. Data mining techniques are easier to automate than traditional
statistical techniques.
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1.1.6 Oracle Data Mining and OLAP
On-Line Analytical Processing (OLAP) can be defined as fast analysis of multidimensional
data. OLAP and Oracle Data Mining are different but complementary activities.

OLAP supports activities such as data summarization, cost allocation, time series analysis,
and what-if analysis. However, most OLAP systems do not have inductive inference
capabilities beyond the support for time-series forecast. Inductive inference, the process of
reaching a general conclusion from specific examples, is a characteristic of data mining.
Inductive inference is also known as computational learning.

OLAP systems provide a multidimensional view of the data, including full support for
hierarchies. This view of the data is a natural way to analyze businesses and organizations.

Oracle Data Mining and OLAP can be integrated in a number of ways. OLAP can be used to
analyze data mining results at different levels of granularity. Data mining can help you
construct more interesting and useful cubes. For example, the results of predictive data
mining can be added as custom measures to a cube. Such measures can provide information
such as "likely to default" or "likely to buy" for each customer. OLAP processing can then
aggregate and summarize the probabilities.

1.1.7 Oracle Data Mining and Data Warehousing
Data can be mined whether it is stored in flat files, spreadsheets, database tables, or some
other storage format. The important criteria for the data is not the storage format, but its
applicability to the problem to be solved.

Proper data cleansing and preparation are very important for data mining, and a data
warehouse can facilitate these activities. However, a data warehouse is of no use if it does
not contain the data you need to solve your problem.

1.2 What Can Data Mining Do and Not Do?
Data mining is a powerful tool that can help you find patterns and relationships within your
data. But data mining does not work by itself. It does not eliminate the need to know your
business, to understand your data, or to understand analytical methods. Data mining
discovers hidden information in your data, but it cannot tell you the value of the information to
your organization.

You might already be aware of important patterns as a result of working with your data over
time. Data mining can confirm or qualify such empirical observations in addition to finding
new patterns that are not immediately discernible through simple observation.

It is important to remember that the predictive relationships discovered through data mining
are not causal relationships. For example, data mining might determine that males with
incomes between $50,000 and $65,000 who subscribe to certain magazines are likely to buy
a given product. You can use this information to help you develop a marketing strategy.
However, you must not assume that the population identified through data mining buys the
product because they belong to this population.

Data mining yields probabilities, not exact answers. It is important to keep in mind that rare
events can happen; they do not happen very often.

Chapter 1
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1.2.1 Asking the Right Questions
Data mining does not automatically discover information without guidance. The
patterns you find through data mining are very different depending on how you
formulate the problem.

To obtain meaningful results, you must learn how to ask the right questions. For
example, rather than trying to learn how to "improve the response to a direct mail
solicitation," you might try to find the characteristics of people who have responded to
your solicitations in the past.

1.2.2 Understanding Your Data
To ensure meaningful data mining results, you must understand your data. Data
mining algorithms are often sensitive to specific characteristics of the data: outliers
(data values that are very different from the typical values in your database), irrelevant
columns, columns that vary together (such as age and date of birth), data coding, and
data that you choose to include or exclude. Oracle Data Mining can automatically 
perform much of the data preparation required by the algorithm. But some of the data
preparation is typically specific to the domain or the data mining problem. At any rate,
you need to understand the data that was used to build the model to properly interpret
the results when the model is applied.

1.3 The Oracle Data Mining Process
The following figure illustrates the phases, and the iterative nature, of a data mining
project. The process flow shows that a data mining project does not stop when a
particular solution is deployed. The results trigger new business questions, which in
turn can be used to develop more focused models.
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Figure 1-1    The Oracle Data Mining Process
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1.3.1 Define Business Goals
The first phase of machine learning process is to define business objectives. This initial
phase of a project focuses on understanding the project objectives and requirements.

Once you have specified the problem from a business perspective, you can formulate it as a
data mining problem and develop a preliminary implementation plan. Identify success criteria
to determine if the data mining results meet the business goals defined. For example, your
business problem might be: "How can I sell more of my product to customers?" You might
translate this into a data mining problem such as: "Which customers are most likely to
purchase the product?" A model that predicts who is most likely to purchase the product is
typically built on data that describes the customers who have purchased the product in the
past.

To summarize, in this phase, you will:

• Specify objectives

• Determine machine learning goals
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• Define success criteria

• Produce project plan

1.3.2 Data Gathering and Preparation
Understand how to gather data, prepare data, and engineer features to solve business
problems.

The data understanding phase involves data collection and exploration. As you take a
closer look at the data, you can determine how well it addresses the business
problem. You decide to remove some of the data or add additional data. This is also
the time to identify data quality problems and to scan for patterns in the data.

The data gathering and preparation phase covers all the tasks involved in creating the 
table or view that you use to build the model. Data preparation tasks are likely to be
performed multiple times, and not in any prescribed order. Tasks can include column
selection and the creation of views, as well as data cleansing and transformation. For
example, you can transform a DATE_OF_BIRTH column to AGE; you can insert the
median income in cases where the INCOME column is null.

Additionally you can add new computed attributes in an effort to tease information
closer to the surface of the data oftentimes called Feature Engineering. For example,
rather than using the purchase amount, you can create a new attribute: "Number of
Times Amount Purchase Exceeds $500 in a 12 month time period." Customers who
frequently make large purchases can also be related to customers who respond or
don't respond to an offer.

Thoughtful data preparation and creating new "engineered features" that capture
domain knowledge can significantly improve the patterns discovered through data
mining. Enabling the data analyst to perform data assembly, data preparation, data
transformations, and feature engineering inside the Oracle Database is a significant
distinction for Oracle.

Note:

Oracle Data Mining for SQL supports Automatic Data Preparation (ADP), 
which greatly simplifies the process of data preparation.

Related Topics

• Data Preparation
Preparing the data is a valuable step in solving data mining problems.

1.3.3 Model Building and Evaluation
In this phase, you select and apply various modeling techniques and calibrate the
parameters to optimal values. If the algorithm requires data transformations, then you
need to step back to the previous phase to implement them.

In preliminary model building, it often makes sense to work with a reduced set of data
since the full data set might contain millions or billions of rows. Getting a feel for how a
given algorithm performs on a subset of data can help identify data quality issues and
algorithm setting issues sooner in the process
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At this stage of the project, it is time to evaluate how well the model satisfies the originally-
stated business goal (phase 1). If the model is supposed to predict customers who are likely
to purchase a product, then does it sufficiently differentiate between the two classes? Is there
sufficient lift? Are the trade-offs shown in the confusion matrix acceptable? Can the model be
improved by adding text data? Should transactional data such as purchases (market-basket
data) be included? Should costs associated with false positives or false negatives be
incorporated into the model?

1.3.4 Knowledge Deployment
Knowledge deployment is the use of data mining within a target environment. In the
deployment phase, insight and actionable information can be derived from data.

Deployment can involve scoring (the application of models to new data), the extraction of 
model details (for example the rules of a decision tree), or the integration of data mining
models within applications, data warehouse infrastructure, or query and reporting tools.

Because Oracle Data Mining builds and applies data mining models inside Oracle Database,
the results are immediately available. BI reporting tools and dashboards can easily display
the results of data mining. Additionally, data mining supports scoring single cases or records
at a time as part of a single SQL SELECT statement. Data can be mined and the results
returned within a single database transaction. For example, a sales representative can run a
model that predicts the likelihood of fraud within the context of an online sales transaction.

Chapter 1
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2
Introduction to Oracle Data Mining

Introduces Oracle Data Mining to perform a variety of mining tasks.

• About Oracle Data Mining

• Oracle Data Mining for SQL in the Database Kernel

• Oracle Data Mining with R Extensibility

• Data Mining in Oracle Exadata

• About Partitioned Models

• Interfaces to Oracle Data Mining

• Overview of Database Analytics

2.1 About Oracle Data Mining
Understand the uses of Oracle Data Mining and learn about different mining techniques.

Oracle Data Mining provides a powerful, state-of-the-art data mining capability within Oracle
Database. You can use Oracle Data Mining to build and deploy predictive and descriptive
data mining applications, to add intelligent capabilities to existing applications, and to
generate predictive queries for data exploration.

Oracle Data Mining offers a broad set of in-database algorithms for performing a variety of
machine learning tasks, such as classification, regression, anomaly detection, feature
extraction, clustering, and market basket analysis. The algorithms can work on standard case
data, transactional data, star schemas, and unstructured text data. Oracle Data Mining is
uniquely suited to the analysis of very large data sets.

Oracle Data Mining along with Oracle R Enterprise are components of Oracle Advanced
Analytics Option that provides powerful APIs for in-database data mining, among other
features.

Related Topics

• Oracle R Enterprise Documentation Library

2.2 Oracle Data Mining for SQL in the Database Kernel
Learn about the implementation of Oracle Data Mining for SQL (Oracle Data Mining) in
Oracle Database kernel and its advantages.

Oracle Data Mining is implemented in the Oracle Database kernel. Oracle Data Mining
models are first class database objects. Oracle Data Mining for SQL processes use built-in
features of Oracle Database to maximize scalability and make efficient use of system
resources.

2-1
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Oracle Data Mining within Oracle Database offers many advantages:

• No Data Movement: Some data mining products require that the data be exported
from a corporate database and converted to a specialized format. With Oracle
Data Mining, no data movement or conversion is needed. This makes the entire
process less complex, time-consuming, and error-prone, and it allows for the
analysis of very large data sets.

• Security: Your data is protected by the extensive security mechanisms of Oracle
Database. Moreover, specific database privileges are needed for different data
mining activities. Only users with the appropriate privileges can define, manipulate,
or apply data mining model objects.

• Data Preparation and Administration: Most data must be cleansed, filtered,
normalized, sampled, and transformed in various ways before it can be mined. Up
to 80% of the effort in a data mining project is often devoted to data preparation.
Oracle Data Mining can automatically manage key steps in the data preparation
process. Additionally, Oracle Database provides extensive administrative tools for
preparing and managing data.

• Ease of Data Refresh: Data mining processes within Oracle Database have ready
access to refreshed data. Oracle Data Mining can easily deliver data mining
results based on current data, thereby maximizing its timeliness and relevance.

• Oracle Database Analytics: Oracle Database offers many features for advanced
analytics and business intelligence. You can easily integrate data mining with other
analytical features of the database, such as statistical analysis and OLAP.

• Oracle Technology Stack: You can take advantage of all aspects of Oracle's
technology stack to integrate data mining within a larger framework for business
intelligence or scientific inquiry.

• Domain Environment: Data mining models have to be built, tested, validated,
managed, and deployed in their appropriate application domain environments.
Data mining results may need to be post-processed as part of domain specific
computations (for example, calculating estimated risks and response probabilities)
and then stored into permanent repositories or data warehouses. With Oracle Data
Mining, the pre- and post-data mining activities can all be accomplished within the
same environment.

• Application Programming Interfaces: The PL/SQL API and SQL language
operators provide direct access to Oracle Data Mining functionality in Oracle
Database.

Related Topics

• Overview of Database Analytics
An overview of native analytics supported by Oracle Database.

2.3 Data Mining in Oracle Exadata
Understand scoring in Oracle Exadata.

Scoring refers to the process of applying a data mining model to data to generate
predictions. The scoring process may require significant system resources. Vast
amounts of data may be involved, and algorithmic processing may be very complex.

With Oracle Data Mining, scoring can be off-loaded to intelligent Oracle Exadata
Storage Servers where processing is extremely performant.
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Oracle Exadata Storage Servers combine Oracle's smart storage software and Oracle's
industry-standard hardware to deliver the industry's highest database storage performance.
For more information about Oracle Exadata, visit the Oracle Technology Network.

Related Topics

• http://www.oracle.com/us/products/database/exadata/index.htm

2.4 About Partitioned Models
Introduces partitioned models to organize and represent multiple models.

When you build a model on your data set and apply it to new data, sometimes the prediction
may be generic that performs badly when run on new and evolving data. To overcome this,
the data set can be divided into different parts based on some characteristics. Oracle Data
Mining for SQL supports partitioned model. Partitioned models allow users to build a type of
ensemble model for each data partition. The top-level model has sub models that are
automatically produced. The sub models are based on the attribute options. For example, if
your data set has an attribute called MARITAL with four values and you have defined it as the
partitioned attribute. Then, four sub models are created for this attribute. The sub models are
automatically managed and used as a single model. The partitioned model automates a
typicaldata mining task and can potentially achieve better accuracy through multiple targeted
models.

The partitioned model and its sub models reside as first class, persistent database objects.
Persistent means that the partitioned model has an on-disk representation.

To create a partitioned model, include the ODMS_PARTITION_COLUMNS setting. To define the
number of partitions, include the ODMS_MAX_PARTITIONS setting. When you are making
predictions, you must use the top-level model. The correct sub model is selected
automatically based on the attribute, the attribute options, and the partition setting. You must
include the partition columns as part of the USING clause when scoring. The GROUPING hint is
an optional hint that applies to data mining scoring functions when scoring partitioned
models.

The partition names, key values, and the structure of the partitioned model are available in
the ALL_MINING_MODEL_PARTITIONS view.

Related Topics

• Oracle Database Reference

See Also:

Oracle Database SQL Language Reference on how to use GROUPING hint.
Oracle Data Mining User’s Guide to understand more about partitioned models.

2.5 Interfaces to Oracle Data Mining
The programmatic interfaces to Oracle Data Mining are PL/SQL for building and maintaining
models and a family of SQL functions for scoring. Oracle Data Mining also supports a
graphical user interface, which is implemented as an extension to Oracle SQL Developer.

Chapter 2
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Oracle Predictive Analytics, a set of simplified data mining routines, is built on top of
Oracle Data Mining and is implemented as a PL/SQL package.

2.5.1 PL/SQL API
The Oracle Data Mining PL/SQL API is implemented in the DBMS_DATA_MINING PL/SQL
package, which contains routines for building, testing, and maintaining data mining
models. A batch apply operation is also included in this package.

The following example shows part of a simple PL/SQL script for creating an SVM
classification model called SVMC_SH_Clas_sample. The model build uses weights,
specified in a weights table, and settings, specified in a settings table. The weights
influence the weighting of target classes. The settings override default behavior. The
model uses Automatic Data Preparation (prep_auto_on setting). The model is trained
on the data in mining_data_build_v.

Example 2-1    Creating a Classification Model

-----------------------  CREATE AND POPULATE A CLASS WEIGHTS TABLE  ------------
CREATE TABLE svmc_sh_sample_class_wt (
  target_value NUMBER,
  class_weight NUMBER);
INSERT INTO svmc_sh_sample_class_wt VALUES (0,0.35);
INSERT INTO svmc_sh_sample_class_wt VALUES (1,0.65);
COMMIT;
-----------------------  CREATE AND POPULATE A SETTINGS TABLE ------------------
CREATE TABLE svmc_sh_sample_settings (
  setting_name  VARCHAR2(30),
  setting_value VARCHAR2(4000));
BEGIN
INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
  (dbms_data_mining.algo_name, dbms_data_mining.algo_support_vector_machines);
INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
  (dbms_data_mining.svms_kernel_function, dbms_data_mining.svms_linear);
INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
  (dbms_data_mining.clas_weights_table_name, 'svmc_sh_sample_class_wt');
INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
  (dbms_data_mining.prep_auto, dbms_data_mining.prep_auto_on);
END;
/
------------------------  CREATE THE MODEL -------------------------------------
BEGIN
  DBMS_DATA_MINING.CREATE_MODEL(
    model_name          => 'SVMC_SH_Clas_sample',
    mining_function     => dbms_data_mining.classification,
    data_table_name     => 'mining_data_build_v',
    case_id_column_name => 'cust_id',
    target_column_name  => 'affinity_card',
    settings_table_name => 'svmc_sh_sample_settings');
END;
/

2.5.2 SQL Functions
The Data Mining SQL functions perform prediction, clustering, and feature extraction.

The functions score data by applying a mining model object or by executing an
analytic clause that performs dynamic scoring.
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The following example shows a query that applies the classification model
svmc_sh_clas_sample to the data in the view mining_data_apply_v. The query returns the
average age of customers who are likely to use an affinity card. The results are broken out by
gender.

Example 2-2    The PREDICTION Function

SELECT cust_gender,
       COUNT(*) AS cnt,
       ROUND(AVG(age)) AS avg_age
  FROM mining_data_apply_v
 WHERE PREDICTION(svmc_sh_clas_sample USING *) = 1
GROUP BY cust_gender
ORDER BY cust_gender;

C        CNT    AVG_AGE
- ---------- ----------
F         59         41
M        409         45

Related Topics

• In-Database Scoring
Scoring is the application of a data mining algorithm to new data. In Oracle Data Mining
for SQL scoring engine and the data both reside within the database.

2.5.3 Oracle Data Miner
Oracle Data Mining for SQL supports a graphical interface called Oracle Data Miner.

Oracle Data Miner is a graphical interface to Oracle Data Mining. Oracle Data Miner is an
extension to Oracle SQL Developer, which is available for download free of charge on the
Oracle Technology Network.

Oracle Data Miner uses a work flow paradigm to capture, document, and automate the
process of building, evaluating, and applying Oracle Data Mining models. Within a work flow,
you can specify data transformations, build and evaluate multiple models, and score multiple
data sets. You can then save work flows and share them with other users.
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Figure 2-1    An Oracle Data Miner Workflow
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For information about Oracle Data Miner, including installation instructions, visit Oracle
Technology Network.

Related Topics

• Oracle Data Miner

2.5.4 Predictive Analytics
Predictive analytics is a technology that captures data mining processes in simple
routines.

Sometimes called "one-click data mining," predictive analytics simplifies and
automates the data mining process.

Predictive analytics uses data mining technology, but knowledge of data mining is not
needed to use predictive analytics. You can use predictive analytics simply by
specifying an operation to perform on your data. You do not need to create or use
mining models or understand the mining techniques and algorithms summarized in
"Oracle Data Mining Basics ".

Oracle Data Mining predictive analytics operations are described in the following table:

Table 2-1    Oracle Predictive Analytics Operations

Operation Description

EXPLAIN Explains how individual predictors (columns) affect the variation of values in a
target column
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Table 2-1    (Cont.) Oracle Predictive Analytics Operations

Operation Description

PREDICT For each case (row), predicts the values in a target column

PROFILE Creates a set of rules for cases (rows) that imply the same target value

The Oracle predictive analytics operations are implemented in the
DBMS_PREDICTIVE_ANALYTICS PL/SQL package. They are also available in Oracle Data Miner.

Related Topics

• Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

2.6 Overview of Database Analytics
An overview of native analytics supported by Oracle Database.

Oracle Database supports an array of native analytical features. Since all these features are
part of a common server it is possible to combine them efficiently. The results of analytical
processing can be integrated with Oracle Business Intelligence Suite Enterprise Edition and
other BI tools and applications.

The possibilities for combining different analytics are virtually limitless. Example 2-3 shows
Oracle Data Mining for SQL and text processing within a single SQL query. The query selects
all customers who have a high propensity to attrite (> 80% chance), are valuable customers
(customer value rating > 90), and have had a recent conversation with customer services
regarding a Checking Plus account. The propensity to attrite information is computed using a
Oracle Data Mining model called tree_model. The query uses the Oracle Text CONTAINS
operator to search call center notes for references to Checking Plus accounts.

Some of the native analytics supported by Oracle Database are described in the following
table:

Table 2-2    Oracle Database Native Analytics

Analytical
Feature

Description Documented In...

Complex
data
transformatio
ns

Data transformation is a key aspect of analytical applications
and ETL (extract, transform, and load). You can use SQL
expressions to implement data transformations, or you can
use the DBMS_DATA_MINING_TRANSFORM package.

DBMS_DATA_MINING_TRANSFORM is a flexible data
transformation package that includes a variety of missing
value and outlier treatments, as well as binning and
normalization capabilities.

Oracle Database PL/SQL Packages
and Types Reference

Statistical
functions

Oracle Database provides a long list of SQL statistical
functions with support for: hypothesis testing (such as t-test,
F-test), correlation computation (such as pearson
correlation), cross-tab statistics, and descriptive statistics
(such as median and mode). The DBMS_STAT_FUNCS
package adds distribution fitting procedures and a summary
procedure that returns descriptive statistics for a column.

Oracle Database SQL Language
Reference and Oracle Database
PL/SQL Packages and Types
Reference
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Table 2-2    (Cont.) Oracle Database Native Analytics

Analytical
Feature

Description Documented In...

Window and
analytic SQL
functions

Oracle Database supports analytic and windowing functions
for computing cumulative, moving, and centered aggregates.
With windowing aggregate functions, you can calculate
moving and cumulative versions of SUM, AVERAGE, COUNT,
MAX, MIN, and many more functions.

Oracle Database Data Warehousing
Guide

Linear
algebra

The UTL_NLA package exposes a subset of the popular BLAS
and LAPACK (Version 3.0) libraries for operations on vectors
and matrices represented as VARRAYs. This package
includes procedures to solve systems of linear equations,
invert matrices, and compute eigenvalues and eigenvectors.

Oracle Database PL/SQL Packages
and Types Reference

OLAP Oracle OLAP supports multidimensional analysis and can be
used to improve performance of multidimensional queries.
Oracle OLAP provides functionality previously found only in
specialized OLAP databases. Moving beyond drill-downs and
roll-ups, Oracle OLAP also supports time-series analysis,
modeling, and forecasting.

Oracle OLAP User’s Guide

Spatial
analytics

Oracle Spatial provides advanced spatial features to support
high-end GIS and LBS solutions. Oracle Spatial's analysis
and data mining capabilities include functions for binning,
detection of regional patterns, spatial correlation, colocation
data mining, and spatial clustering.

Oracle Spatial also includes support for topology and network
data models and analytics. The topology data model of
Oracle Spatial allows one to work with data about nodes,
edges, and faces in a topology. It includes network analysis
functions for computing shortest path, minimum cost
spanning tree, nearest-neighbors analysis, traveling
salesman problem, among others.

Oracle Spatial and Graph
Developer's Guide

Graph The Property Graph delivers advanced graph query and
analytics capabilities in Oracle Database. The in-memory
graph server (PGX) provides a machine learning library,
which supports graph-empowered machine learning
algorithms. The machine learning library supports DeepWalk,
supervised GraphWise, and Pg2vec algorithms.

Oracle Database Graph Developer's
Guide for Property Graph

Text Analysis Oracle Text uses standard SQL to index, search, and analyze
text and documents stored in the Oracle database, in files,
and on the web. Oracle Text also supports automatic
classification and clustering of document collections. Many of
the analytical features of Oracle Text are layered on top of
Oracle Data Mining functionality.

Oracle Text Application Developer's
Guide

Example 2-3    SQL Query Combining Oracle Data Mining for SQL and Oracle
Text

SELECT A.cust_name, A.contact_info
  FROM customers A
 WHERE PREDICTION_PROBABILITY(tree_model,
            'attrite' USING A.*) > 0.8
   AND A.cust_value > 90
   AND A.cust_id IN
       (SELECT B.cust_id

Chapter 2
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          FROM call_center B
         WHERE B.call_date BETWEEN '01-Jan-2005'
                               AND '30-Jun-2005'   
         AND CONTAINS(B.notes, 'Checking Plus', 1) > 0);
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3
Oracle Data Mining Basics

Understand the basic concepts of Oracle Data Mining.

• Mining Techniques

• Algorithms

• Data Preparation

• In-Database Scoring

3.1 Mining Techniques
Introduces the concept of data mining techniques.

A basic understanding of data mining techniques and algorithms is required for using Oracle
Data Mining.

Each data mining technique specifies a class of problems that can be modeled and solved.
Data mining techniques fall generally into two categories: supervised and unsupervised.
Notions of supervised and unsupervised learning are derived from the science of machine
learning, which has been called a sub-area of artificial intelligence.

Artificial intelligence refers to the implementation and study of systems that exhibit
autonomous intelligence or behavior of their own. Machine learning deals with techniques
that enable devices to learn from their own performance and modify their own functioning.
Data mining applies machine learning concepts to data.

Related Topics

• Algorithms

3.1.1 Supervised Data Mining
Supervised learning is also known as directed learning. The learning process is directed by a
previously known dependent attribute or target. Directed data mining attempts to explain the
behavior of the target as a function of a set of independent attributes or predictors.

Supervised learning generally results in predictive models. This is in contrast to unsupervised
learning where the goal is pattern detection.

The building of a supervised model involves training, a process whereby the software
analyzes many cases where the target value is already known. In the training process, the
model "learns" the logic for making the prediction. For example, a model that seeks to identify
the customers who are likely to respond to a promotion must be trained by analyzing the
characteristics of many customers who are known to have responded or not responded to a
promotion in the past.
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3.1.1.1 Supervised Learning: Testing
The process of applying the model to test data helps to determine whether the model,
built on one chosen sample, is generalizable to other data. In other words, test data is
used for scoring.

In particular, it helps to avoid the phenomenon of overfitting, which can occur when the
logic of the model fits the build data too well and therefore has little predictive power.

3.1.1.2 Supervised Learning: Scoring
Apply data, also called scoring data, is the actual population to which a model is
applied. For example, you might build a model that identifies the characteristics of
customers who frequently buy a certain product. To obtain a list of customers who
shop at a certain store and are likely to buy a related product, you might apply the
model to the customer data for that store. In this case, the store customer data is the
scoring data.

Most supervised learning can be applied to a population of interest. The principal
supervised mining techniques, Classification and Regression, can both be used for
scoring.

Oracle Data Mining does not support the scoring operation for Attribute Importance,
another supervised technique. Models of this type are built on a population of interest
to obtain information about that population; they cannot be applied to separate data.
An attribute importance model returns and ranks the attributes that are most important
in predicting a target value.

Oracle Data Mining supports the supervised data mining techniques described in the
following table:

Table 3-1    Oracle Data Mining Supervised Techniques

Technique Description Sample Problem

Attribute Importance Identifies the attributes that are most
important in predicting a target attribute

Given customer response to an affinity card
program, find the most significant predictors

Classification Assigns items to discrete classes and
predicts the class to which an item
belongs

Given demographic data about a set of
customers, predict customer response to an
affinity card program

Regression Approximates and forecasts continuous
values

Given demographic and purchasing data
about a set of customers, predict customers'
age

3.1.2 Unsupervised Data Mining
Overview of unsupervised data mining.

Unsupervised learning is non-directed. There is no distinction between dependent and
independent attributes. There is no previously-known result to guide the algorithm in
building the model.

Unsupervised learning can be used for descriptive purposes. It can also be used to
make predictions.
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3.1.2.1 Unsupervised Learning: Scoring
Introduces unsupervised learning, supported scoring operations, and unsupervised Oracle
Data Mining techniques.

Although unsupervised data mining does not specify a target, most unsupervised learning
can be applied to a population of interest. For example, clustering models use descriptive
data mining techniques, but they can be applied to classify cases according to their cluster
assignments. Anomaly detection, although unsupervised, is typically used to predict
whether a data point is typical among a set of cases.

Oracle Data Mining supports the scoring operation for Clustering and Feature Extraction,
both unsupervised mining techniques. Oracle Data Mining does not support the scoring
operation for Association Rules, another unsupervised technique. Association models are
built on a population of interest to obtain information about that population; they cannot be
applied to separate data. An association model returns rules that explain how items or events
are associated with each other. The association rules are returned with statistics that can be
used to rank them according to their probability.

Oracle Data Mining supports the unsupervised techniques described in the following table:

Table 3-2    Oracle Data Mining Unsupervised Techniques

Technique Description Sample Problem

Anomaly Detection Identifies items (outliers) that do not
satisfy the characteristics of "normal"
data

Given demographic data about a set of
customers, identify customer purchasing
behavior that is significantly different from the
norm

Association Rules Finds items that tend to co-occur in the
data and specifies the rules that govern
their co-occurrence

Find the items that tend to be purchased
together and specify their relationship

Clustering Finds natural groupings in the data Segment demographic data into clusters and
rank the probability that an individual belongs to
a given cluster

Feature Extraction Creates new attributes (features) using
linear combinations of the original
attributes

Given demographic data about a set of
customers, group the attributes into general
characteristics of the customers

Related Topics

• Mining Techniques
Part II provides basic conceptual information about the mining techniques that the Oracle
Data Mining supports.

• In-Database Scoring
Scoring is the application of a data mining algorithm to new data. In Oracle Data Mining
for SQL scoring engine and the data both reside within the database.

3.2 Algorithms
An algorithm is a mathematical procedure for solving a specific kind of problem. For some
techniques, you can choose among several algorithms.

Chapter 3
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Each algorithm produces a specific type of model, with different characteristics. Some
data mining problems can best be solved by using more than one algorithm in
combination. For example, you might first use a feature extraction model to create an
optimized set of predictors, then a classification model to make a prediction on the
results.

3.2.1 Oracle Data Mining Supervised Algorithms
Oracle Data Mining supports the supervised data mining algorithms described in the
following table. The algorithm abbreviations are used throughout this manual.

Table 3-3    Oracle Data Mining Algorithms for Supervised Techniques

Algorithm Technique Description

Decision Tree Classification Decision trees extract predictive information in the form of human-
understandable rules. The rules are if-then-else expressions; they
explain the decisions that lead to the prediction.

Explicit Semantic
Analysis

Classification Explicit Semantic Analysis (ESA) is designed to make predictions for text
data. This algorithm can address use cases with hundreds of thousands
of classes. In Oracle Database 12c Release 2, ESA was introduced as
Feature Extraction algorithm.

Exponential
Smoothing

Time Series Exponential Smoothing (ESM) provides forecasts for time series data.
Forecasts are made for each time period within a user-specified forecast
window. ESM provides a total of 14 different time series models,
including all the most popular estimates of trend and seasonal effects.
Choice of model is controlled by user settings. ESM provides confidence
bounds on its forecasts.

Generalized Linear
Models

Classification
and Regression

Generalized Linear Models (GLM) implement logistic regression for
classification of binary targets and linear regression for continuous
targets. GLM classification supports confidence bounds for prediction
probabilities. GLM regression supports confidence bounds for
predictions.

Minimum Description
Length

Attribute
Importance

Minimum Description Length (MDL) is an information theoretic model
selection principle. MDL assumes that the simplest, most compact
representation of data is the best and most probable explanation of the
data.

Naive Bayes Classification Naive Bayes makes predictions using Bayes' Theorem, which derives the
probability of a prediction from the underlying evidence, as observed in
the data.

Neural Network Classification
and Regression

Neural Network in Machine Learning is an artificial algorithm inspired
from biological neural network and is used to estimate or approximate
functions that depend on a large number of generally unknown inputs.
Neural Network is designed for Classification and Regression.

Random Forest Classification Random Forest is a powerful machine learning algorithm.Random Forest
algorithm builds a number of decision tree models and predicts using the
ensemble of trees.

Support Vector
Machines

Classification
and Regression

Distinct versions of Support Vector Machines (SVM) use different kernel
functions to handle different types of data sets. Linear and Gaussian
(nonlinear) kernels are supported.

SVM classification attempts to separate the target classes with the
widest possible margin.

SVM regression tries to find a continuous function such that the
maximum number of data points lie within an epsilon-wide tube around it.
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3.2.2 Oracle Data Mining Unsupervised Algorithms
Learn about unsupervised algorithms that Oracle Data Mining supports.

Oracle Data Mining supports the unsupervised data mining algorithms described in the
following table. The algorithm abbreviations are used throughout this manual.

Table 3-4    Oracle Data Mining Algorithms for Unsupervised Techniques

Algorithm Technique Description

Apriori Association Apriori performs market basket analysis by identifying co-occurring
items (frequent itemsets) within a set. Apriori finds rules with support
greater than a specified minimum support and confidence greater
than a specified minimum confidence.

CUR Matrix
Decomposition

Attribute
Importance

CUR Matrix Decomposition is an alternative to Support Vector
Machines(SVM) and Principal Component Analysis (PCA) and an
important tool for exploratory data analysis. This algorithm performs
analytical processing and singles out important columns and rows.

Expectation
Maximization

Clustering Expectation Maximization (EM) is a density estimation algorithm that
performs probabilistic clustering. In density estimation, the goal is to
construct a density function that captures how a given population is
distributed. The density estimate is based on observed data that
represents a sample of the population.

Oracle Data Mining supports probabilistic clustering and data
frequency estimates and other applications of Expectation
Maximization.

Explicit Semantic
Analysis

Feature Extraction Explicit Semantic Analysis (ESA) uses existing knowledge base as
features. An attribute vector represents each feature or a concept.
ESA creates a reverse index that maps every attribute to the
knowledge base concepts or the concept-attribute association vector
value.

k-Means Clustering k-Means is a distance-based clustering algorithm that partitions the
data into a predetermined number of clusters. Each cluster has a
centroid (center of gravity). Cases (individuals within the population)
that are in a cluster are close to the centroid.

Oracle Data Mining supports an enhanced version of k-Means. It goes
beyond the classical implementation by defining a hierarchical parent-
child relationship of clusters.

Non-Negative Matrix
Factorization

Feature Extraction Non-Negative Matrix Factorization (NMF) generates new attributes
using linear combinations of the original attributes. The coefficients of
the linear combinations are non-negative. During model apply, an
NMF model maps the original data into the new set of attributes
(features) discovered by the model.

One Class Support
Vector Machines

Anomaly Detection One-class SVM builds a profile of one class. When the model is
applied, it identifies cases that are somehow different from that profile.
This allows for the detection of rare cases that are not necessarily
related to each other.

Orthogonal
Partitioning
Clustering

Clustering Orthogonal Partitioning Clustering (o-cluster) creates a hierarchical,
grid-based clustering model. The algorithm creates clusters that
define dense areas in the attribute space. A sensitivity parameter
defines the baseline density level.
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Table 3-4    (Cont.) Oracle Data Mining Algorithms for Unsupervised Techniques

Algorithm Technique Description

Singular Value
Decomposition and 
Principal Component
Analysis

Feature Extraction Singular Value Decomposition (SVD) and Principal Component
Analysis (PCA) are orthogonal linear transformations that are optimal
at capturing the underlying variance of the data. This property is
extremely useful for reducing the dimensionality of high-dimensional
data and for supporting meaningful data visualization.

In addition to dimensionality reduction, SVD and PCA have a number
of other important applications, such as data de-noising (smoothing),
data compression, matrix inversion, and solving a system of linear
equations.

Related Topics

• Algorithms
Part III provides basic conceptual information about the algorithms supported by
Oracle Data Mining. There is at least one algorithm for each of the mining
techniques.

3.3 Data Preparation
Preparing the data is a valuable step in solving data mining problems.

The quality of a model depends to a large extent on the quality of the data used to
build (train) it. Much of the time spent in any given data mining project is devoted to
data preparation. The data must be carefully inspected, cleansed, and transformed,
and algorithm-appropriate data preparation methods must be applied.

The process of data preparation is further complicated by the fact that any data to
which a model is applied, whether for testing or for scoring, must undergo the same
transformations as the data used to train the model.

3.3.1 Oracle Data Mining for SQL Simplifies Data Preparation
Learn about various features of Oracle Data Mining for SQL for data preparation.

Oracle Data Mining offers several features that significantly simplify the process of
data preparation:

• Embedded data preparation: The transformations used in training the model are
embedded in the model and automatically run whenever the model is applied to
new data. If you specify transformations for the model, you only have to specify
them once.

• Automatic Data Preparation (ADP): Oracle Data Mining for SQL supports an
automated data preparation mode. When ADP is active, Oracle Data Mining for
SQL automatically performs the data transformations required by the algorithm.
The transformation instructions are embedded in the model along with any user-
specified transformation instructions.

• Automatic management of missing values and sparse data: Oracle Data Mining for
SQL uses consistent methodology across data mining algorithms to handle
sparsity and missing values.

Chapter 3
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• Transparency: Oracle Data Mining for SQL provides model details, which are a view of
the attributes that are internal to the model. This insight into the inner details of the model
is possible because of reverse transformations, which map the transformed attribute
values to a form that can be interpreted by a user. Where possible, attribute values are
reversed to the original column values. Reverse transformations are also applied to the
target of a supervised model, thus the results of scoring are in the same units as the units
of the original target.

• Tools for custom data preparation: Oracle Data Mining for SQL provides many common
transformation routines in the DBMS_DATA_MINING_TRANSFORM PL/SQL package. You can
use these routines, or develop your own routines in SQL, or both. The SQL language is
well suited for implementing transformations in the database. You can use custom
transformation instructions along with ADP or instead of ADP.

3.3.2 Case Data
Learn the importance of case data in data mining.

Most data mining algorithms act on single-record case data, where the information for each
case is stored in a separate row. The data attributes for the cases are stored in the columns.

When the data is organized in transactions, the data for one case (one transaction) is stored
in many rows. An example of transactional data is market basket data. With the single
exception of Association Rules, which can operate on native transactional data, Oracle Data
Mining for SQL algorithms require single-record case organization.

3.3.2.1 Nested Data
Learn how nested columns are treated in Oracle Data Mining for SQL.

Oracle Data Mining supports attributes in nested columns. A transactional table can be cast
as a nested column and included in a table of single-record case data. Similarly, star
schemas can be cast as nested columns. With nested data transformations, Oracle Data
Mining for SQL can effectively mine data originating from multiple sources and configurations.

3.3.3 Text Data
Prepare and transform unstructured text data for data mining.

Oracle Data Mining for SQL interprets CLOB columns and long VARCHAR2 columns
automatically as unstructured text. Additionally, you can specify columns of short VARCHAR2,
CHAR, BLOB, and BFILE as unstructured text. Unstructured text includes data items such as
web pages, document libraries, Power Point presentations, product specifications, emails,
comment fields in reports, and call center notes.

Oracle Data Mining uses Oracle Text utilities and term weighting strategies to transform
unstructured text for analysis. In text transformation, text terms are extracted and given
numeric values in a text index. The text transformation process is configurable for the model
and for individual attributes. Once transformed, the text can by mined with a Oracle Data
Mining algorithm.

Related Topics

• Prepare the Data

• Data Mining Operations on Unstructured Text
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3.4 In-Database Scoring
Scoring is the application of a data mining algorithm to new data. In Oracle Data
Mining for SQL scoring engine and the data both reside within the database.

In traditional data mining, models are built using specialized software on a remote
system and deployed to another system for scoring. This is a cumbersome, error-
prone process open to security violations and difficulties in data synchronization.

With Oracle Data Mining, scoring is simple and secure. The scoring engine and the
data both reside within the database. Scoring is an extension to the SQL language, so
the results of data mining can easily be incorporated into applications and reporting
systems.

3.4.1 Parallel Execution and Ease of Administration
All Oracle Data Mining for SQL scoring routines support parallel execution for scoring
large data sets.

In-database scoring provides performance advantages. All Oracle Data Mining for
SQL scoring routines support parallel execution, which significantly reduces the time
required for executing complex queries and scoring large data sets.

In-database data mining minimizes the IT effort needed to support Oracle Data Mining
initiatives. Using standard database techniques, models can easily be refreshed (re-
created) on more recent data and redeployed. The deployment is immediate since the
scoring query remains the same; only the underlying model is replaced in the
database.

Related Topics

• Oracle Database VLDB and Partitioning Guide

3.4.2 SQL Functions for Model Apply and Dynamic Scoring
In Oracle Data Mining, scoring is performed by SQL language functions. Understand
the different ways involved in SQL function scoring.

The functions perform prediction, clustering, and feature extraction. The functions can
be invoked in two different ways: By applying a mining model object (Example 3-1), or
by executing an analytic clause that computes the mining analysis dynamically and
applies it to the data (Example 3-2). Dynamic scoring, which eliminates the need for a
model, can supplement, or even replace, the more traditional data mining methodology
described in "The Data Mining Process".

In Example 3-1, the PREDICTION_PROBABILITY function applies the model
svmc_sh_clas_sample, created in Example 2-1, to score the data in
mining_data_apply_v. The function returns the ten customers in Italy who are most
likely to use an affinity card.

In Example 3-2, the functions PREDICTION and PREDICTION_PROBABILITY use the
analytic syntax (the OVER () clause) to dynamically score the data in
mining_data_apply_v. The query returns the customers who currently do not have an
affinity card with the probability that they are likely to use.
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Example 3-1    Applying a Mining Model to Score Data

SELECT cust_id FROM
  (SELECT cust_id, 
        rank() over (order by PREDICTION_PROBABILITY(svmc_sh_clas_sample, 1
                     USING *) DESC, cust_id) rnk
   FROM mining_data_apply_v
   WHERE country_name = 'Italy')
WHERE rnk <= 10
ORDER BY rnk;

   CUST_ID
----------
    101445
    100179
    100662
    100733
    100554
    100081
    100344
    100324
    100185
    101345

Example 3-2    Executing an Analytic Function to Score Data

SELECT cust_id, pred_prob FROM
  (SELECT cust_id, affinity_card, 
    PREDICTION(FOR TO_CHAR(affinity_card) USING *) OVER () pred_card,
    PREDICTION_PROBABILITY(FOR TO_CHAR(affinity_card),1 USING *) OVER () pred_prob
   FROM mining_data_build_v)
WHERE affinity_card = 0
AND pred_card = 1
ORDER BY pred_prob DESC;

   CUST_ID PRED_PROB
---------- ---------
    102434       .96
    102365       .96
    102330       .96
    101733       .95
    102615       .94
    102686       .94
    102749       .93
    .
    .
    .
    101656       .51

Related Topics

• Oracle Database SQL Language Reference

• Oracle Data Mining User’s Guide
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Part II
Mining Techniques

Part II provides basic conceptual information about the mining techniques that the Oracle
Data Mining supports.

Mining techniques represent a class of mining problems that can be solved using data mining
algorithms.

Part II contains these chapters:

• Regression

• Classification

• Anomaly Detection

• Clustering

• Association

• Feature Selection

• Time Series

Note:

The term mining technique has no relationship to a SQL language technique.

Related Topics

• Algorithms
Part III provides basic conceptual information about the algorithms supported by Oracle
Data Mining. There is at least one algorithm for each of the mining techniques.

• Oracle Database SQL Language Reference



4
Regression

Learn how to predict a continuous numerical target through Regression - the supervised
mining technique.

• About Regression

• Testing a Regression Model

• Regression Algorithms

Related Topics

• Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

4.1 About Regression
Regression is an Oracle Data Mining for SQL function that predicts numeric values along a
continuum.

Profit, sales, mortgage rates, house values, square footage, temperature, or distance can be
predicted using Regression techniques. For example, a regression model can be used to
predict the value of a house based on location, number of rooms, lot size, and other factors.

A regression task begins with a data set in which the target values are known. For example, a
regression model that predicts house values can be developed based on observed data for
many houses over a period of time. In addition to the value, the data can track the age of the
house, square footage, number of rooms, taxes, school district, proximity to shopping
centers, and so on. House value can be the target, the other attributes are the predictors, and
the data for each house constitutes a case.

In the model build (training) process, a regression algorithm estimates the value of the target
as a function of the predictors for each case in the build data. These relationships between
predictors and target are summarized in a model, which can then be applied to a different
data set in which the target values are unknown.

Regression models are tested by computing various statistics that measure the difference
between the predicted values and the expected values. The historical data for a regression
project is typically divided into two data sets: one for building the model, the other for testing
the model.

Regression modeling has many applications in trend analysis, business planning, marketing,
financial forecasting, time series prediction, biomedical and drug response modeling, and
environmental modeling.

4.1.1 How Does Regression Work?
Understand regression as a mathematical expression.
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You do not need to understand the mathematics used in regression analysis to
develop and use quality regression models for Oracle Data Mining for SQL. However,
it is helpful to understand a few basic concepts.

Regression analysis seeks to determine the values of parameters for a function that
cause the function to best fit a set of data observations that you provide. The following
equation expresses these relationships in symbols. It shows that regression is the
process of estimating the value of a continuous target (y) as a function (F) of one or
more predictors (x1 , x2 , ..., xn), a set of parameters (θ1 , θ2 , ..., θn), and a measure of
error (e).

y = F(x,θ)  + e 

The predictors can be understood as independent variables and the target as a
dependent variable. The error, also called the residual, is the difference between the
expected and predicted value of the dependent variable. The regression parameters
are also known as regression coefficients. 

The process of training a regression model involves finding the parameter values that
minimize a measure of the error, for example, the sum of squared errors.

There are different families of regression functions and different ways of measuring the
error.

4.1.1.1 Linear Regression
A linear regression technique can be used if the relationship between the predictors
and the target can be approximated with a straight line.

Regression with a single predictor is the easiest to visualize. Simple linear regression
with a single predictor is shown in the following figure:

Figure 4-1    Linear Regression With a Single Predictor
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Linear regression with a single predictor can be expressed with the following equation.

y = θ2x   +  θ1  + e 
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The regression parameters in simple linear regression are:

• The slope of the line (2) — the angle between a data point and the regression line

• The y intercept (1) — the point where x crosses the y axis (x = 0)

4.1.1.2 Multivariate Linear Regression
The term multivariate linear regression refers to linear regression with two or more
predictors (x1, x2, …, xn). When multiple predictors are used, the regression line cannot be
visualized in two-dimensional space. However, the line can be computed by expanding the
equation for single-predictor linear regression to include the parameters for each of the
predictors.

y = θ1 +  θ2x1  +  θ3x2   + .....  θn  xn-1  + e 

4.1.1.3 Regression Coefficients
In multivariate linear regression, the regression parameters are often referred to as
coefficients. When you build a multivariate linear regression model, the algorithm computes a
coefficient for each of the predictors used by the model. The coefficient is a measure of the
impact of the predictor x on the target y. Numerous statistics are available for analyzing the
regression coefficients to evaluate how well the regression line fits the data.

4.1.1.4 Nonlinear Regression
Often the relationship between x and y cannot be approximated with a straight line. In this
case, a nonlinear regression technique can be used. Alternatively, the data can be
preprocessed to make the relationship linear.

Nonlinear regression models define y as a function of x using an equation that is more
complicated than the linear regression equation. In the following figure, x and y have a
nonlinear relationship.

Figure 4-2    Nonlinear Regression With a Single Predictor
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4.1.1.5 Multivariate Nonlinear Regression
The term multivariate nonlinear regression refers to nonlinear regression with two
or more predictors (x1, x2, …, xn). When multiple predictors are used, the nonlinear
relationship cannot be visualized in two-dimensional space.

4.1.1.6 Confidence Bounds
A regression model predicts a numeric target value for each case in the scoring data.
In addition to the predictions, some regression algorithms can identify confidence
bounds, which are the upper and lower boundaries of an interval in which the
predicted value is likely to lie.

When a model is built to make predictions with a given confidence, the confidence
interval is produced along with the predictions. For example, a model predicts the
value of a house to be $500,000 with a 95% confidence that the value is
between $475,000 and $525,000.

4.2 Testing a Regression Model
A regression model is tested by applying it to test data with known target values and
comparing the predicted values with the known values.

The test data must be compatible with the data used to build the model and must be
prepared in the same way that the build data was prepared. Typically the build data
and test data come from the same historical data set. A percentage of the records is
used to build the model; the remaining records are used to test the model.

Test metrics are used to assess how accurately the model predicts these known
values. If the model performs well and meets the business requirements, it can then
be applied to new data to predict the future.

4.2.1 Regression Statistics
The Root Mean Squared Error and the Mean Absolute Error are commonly used 
statistics for evaluating the overall quality of a regression model. Different statistics
may also be available depending on the regression methods used by the algorithm.

4.2.1.1 Root Mean Squared Error
The Root Mean Squared Error (RMSE) is the square root of the average squared
distance of a data point from the fitted line.

This SQL expression calculates the RMSE.

SQRT(AVG((predicted_value - actual_value) * (predicted_value - 
actual_value)))

This formula shows the RMSE in mathematical symbols. The large sigma character
represents summation; j represents the current predictor, and n represents the number
of predictors.
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Figure 4-3    Room Mean Squared Error
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4.2.1.2 Mean Absolute Error
The Mean Absolute Error (MAE) is the average of the absolute value of the residuals (error).
The MAE is very similar to the RMSE but is less sensitive to large errors.

This SQL expression calculates the MAE.

AVG(ABS(predicted_value - actual_value))

This formula shows the MAE in mathematical symbols. The large sigma character represents
summation; j represents the current predictor, and n represents the number of predictors.

Figure 4-4    Mean Absolute Error
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4.3 Regression Algorithms
Oracle Data Mining supports three algorithms for Regression  Generalized Linear Models
(GLM), Neural Network (NN), and Support Vector Machines (SVM).

Generalized Linear Models (GLM) and Support Vector Machines (SVM) algorithms are
particularly suited for mining data sets that have very high dimensionality (many attributes),
including transactional and unstructured data.

• Generalized Linear Models (GLM)

GLM is a popular statistical technique for linear modeling. Oracle Data Mining
implements GLM for Regression and for binary classification. GLM provides extensive
coefficient statistics and model statistics, as well as row diagnostics. GLM also supports
confidence bounds.

• Neural Network

Neural networks are powerful algorithms that can learn arbitrary nonlinear regression
functions.

• Support Vector Machines (SVM)

SVM is a powerful, state-of-the-art algorithm for linear and nonlinear Regression. Oracle
Data Mining implements SVM for Regression, classification, and anomaly detection. SVM
Regression supports two kernels: the Gaussian kernel for nonlinear Regression, and the
linear kernel for Linear Regression.
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Note:

Oracle Data Mining uses linear kernel SVM as the default Regression
algorithm.

Related Topics

• Generalized Linear Model
Learn how to use Generalized Linear Model (GLM) statistical technique for linear
modeling.

• Support Vector Machines
Learn how to use Support Vector Machines, a powerful algorithm based on
statistical learning theory.

• Neural Network
Learn about the Neural Network algorithms for regression and classification data
mining techniques.
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5
Classification

Learn how to predict a categorical target through Classification - the supervised mining
technique.

• About Classification

• Testing a Classification Model

• Biasing a Classification Model

• Classification Algorithms

Related Topics

• Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

5.1 About Classification
Classification is a data mining technique that assigns items in a collection to target categories
or classes.

The goal of classification is to accurately predict the target class for each case in the data.
For example, a classification model can be used to identify loan applicants as low, medium,
or high credit risks.

A classification task begins with a data set in which the class assignments are known. For
example, a classification model that predicts credit risk can be developed based on observed
data for many loan applicants over a period of time. In addition to the historical credit rating,
the data might track employment history, home ownership or rental, years of residence,
number and type of investments, and so on. Credit rating is the target, the other attributes are
the predictors, and the data for each customer constitutes a case.

Classification are discrete and do not imply order. Continuous, floating-point values indicate a 
numerical, rather than a categorical, target. A predictive model with a numerical target uses a
regression algorithm, not a classification algorithm.

The simplest type of classification problem is binary classification. In binary classification, the
target attribute has only two possible values: for example, high credit rating or low credit
rating. Multiclass targets have more than two values: for example, low, medium, high, or
unknown credit rating.

In the model build (training) process, a classification algorithm finds relationships between the
values of the predictors and the values of the target. Different classification algorithms use
different techniques for finding relationships. These relationships are summarized in a model,
which can then be applied to a different data set in which the class assignments are
unknown.

Classification models are tested by comparing the predicted values to known target values in
a set of test data. The historical data for a classification project is typically divided into two
data sets: one for building the model; the other for testing the model.
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Applying a classification model results in class assignments and probabilities for each
case. For example, a model that classifies customers as low, medium, or high value
also predicts the probability of each classification for each customer.

Classification has many applications in customer segmentation, business modeling,
marketing, credit analysis, and biomedical and drug response modeling.

5.2 Testing a Classification Model
A classification model is tested by applying it to test data with known target values and
comparing the predicted values with the known values.

The test data must be compatible with the data used to build the model and must be
prepared in the same way that the build data was prepared. Typically the build data
and test data come from the same historical data set. A percentage of the records is
used to build the model; the remaining records are used to test the model.

Test metrics are used to assess how accurately the model predicts the known values.
If the model performs well and meets the business requirements, it can then be
applied to new data to predict the future.

5.2.1 Confusion Matrix
A confusion matrix displays the number of correct and incorrect predictions made by
the model compared with the actual classifications in the test data. The matrix is n-by-
n, where n is the number of classes.

The following figure shows a confusion matrix for a binary classification model. The
rows present the number of actual classifications in the test data. The columns present
the number of predicted classifications made by the model.

Figure 5-1    Confusion Matrix for a Binary Classification Model

PREDICTED CLASS

ACTUAL CLASS

affinity_card = 1 affinity_card = 0

72510affinity_card = 0

25516affinity_card = 1

In this example, the model correctly predicted the positive class (also called true
positive (TP)) for affinity_card 516 times and incorrectly predicted (also called false
negative (FN)) it 25 times. The model correctly predicted the negative class (also
called true negative (TN)) for affinity_card 725 times and incorrectly predicted (also
called false positive (FP)) it 10 times. The following can be computed from this
confusion matrix:
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• The model made 1241 correct predictions, that is, TP + TN, (516 + 725).

• The model made 35 incorrect predictions, that is, FN + FP, (25 + 10).

• There are 1276 total scored cases, (516 + 25 + 10 + 725).

• The error rate is 35/1276 = 0.0274. (FN+FP/Total)

• The overall accuracy rate is 1241/1276 = 0.9725 (TP+TN)/Total).

Precision and Recall

Consider the same example, the accuracy rate shows 0.97. However, there are cases where
the model has incorrectly predicted. Precision (positive predicted value) is the ability of a
classification model to return only relevant cases. Precision can be calculated as TP/TP+FP.
Recall (sensitivity or true positive rate) is the ability of a classification model to return relevant
cases. Recall can be calculated as TP/TP+FN. The precision in this example is 516/526 =
0.98. The recall in this example is 516/541 = 0.95. Ideally, the model is good when both
precision and recall are 1. This can happen when the numerator and the denominator are
equal. That means, for precision, FP is zero and for recall, FN is zero.

5.2.2 Lift
Lift measures the degree to which the predictions of a classification model are better than
randomly-generated predictions.

Lift applies to binary classification only, and it requires the designation of a positive class. If
the model itself does not have a binary target, you can compute lift by designating one class
as positive and combining all the other classes together as one negative class.

Numerous statistics can be calculated to support the notion of lift. Basically, lift can be
understood as a ratio of two percentages: the percentage of correct positive classifications
made by the model to the percentage of actual positive classifications in the test data. For
example, if 40% of the customers in a marketing survey have responded favorably (the
positive classification) to a promotional campaign in the past and the model accurately
predicts 75% of them, the lift is obtained by dividing .75 by .40. The resulting lift is 1.875.

Lift is computed against quantiles that each contain the same number of cases. The data is
divided into quantiles after it is scored. It is ranked by probability of the positive class from
highest to lowest, so that the highest concentration of positive predictions is in the top
quantiles. A typical number of quantiles is 10.

Lift is commonly used to measure the performance of response models in marketing
applications. The purpose of a response model is to identify segments of the population with
potentially high concentrations of positive responders to a marketing campaign. Lift reveals
how much of the population must be solicited to obtain the highest percentage of potential
responders.

Related Topics

• Positive and Negative Classes
Discusses the importance of positive and negative classes in a confusion matrix.

5.2.2.1 Lift Statistics
Learn the different Lift statistics that Oracle Data Mining for SQL can compute.

Oracle Data Mining for SQL computes the following lift statistics:
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• Probability threshold for a quantile n is the minimum probability for the positive
target to be included in this quantile or any preceding quantiles (quantiles n-1,
n-2,..., 1). If a cost matrix is used, a cost threshold is reported instead. The cost
threshold is the maximum cost for the positive target to be included in this quantile
or any of the preceding quantiles.

• Cumulative gain is the ratio of the cumulative number of positive targets to the
total number of positive targets.

• Target density of a quantile is the number of true positive instances in that
quantile divided by the total number of instances in the quantile.

• Cumulative target density for quantile n is the target density computed over the
first n quantiles.

• Quantile lift is the ratio of the target density for the quantile to the target density
over all the test data.

• Cumulative percentage of records for a quantile is the percentage of all cases
represented by the first n quantiles, starting at the end that is most confidently
positive, up to and including the given quantile.

• Cumulative number of targets for quantile n is the number of true positive
instances in the first n quantiles.

• Cumulative number of nontargets is the number of actually negative instances
in the first n quantiles.

• Cumulative lift for a quantile is the ratio of the cumulative target density to the
target density over all the test data.

Related Topics

• Costs

5.2.3 Receiver Operating Characteristic (ROC)
ROC is a metric for comparing predicted and actual target values in a classification
model.

ROC, like Lift, applies to binary classification and requires the designation of a positive
class.

You can use ROC to gain insight into the decision-making ability of the model. How
likely is the model to accurately predict the negative or the positive class?

ROC measures the impact of changes in the probability threshold. The probability
threshold is the decision point used by the model for classification. The default
probability threshold for binary classification is 0.5. When the probability of a prediction
is 50% or more, the model predicts that class. When the probability is less than 50%,
the other class is predicted. (In multiclass classification, the predicted class is the one
predicted with the highest probability.)

Related Topics

• Positive and Negative Classes
Discusses the importance of positive and negative classes in a confusion matrix.
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5.2.3.1 The ROC Curve
ROC can be plotted as a curve on an X-Y axis. The false positive rate is placed on the X
axis. The true positive rate is placed on the Y axis.

The top left corner is the optimal location on an ROC graph, indicating a high true positive
rate and a low false positive rate.

5.2.3.2 Area Under the Curve
The area under the ROC curve (AUC) measures the discriminating ability of a binary
classification model. The larger the AUC, the higher the likelihood that an actual positive case
is assigned, and a higher probability of being positive than an actual negative case. The AUC
measure is especially useful for data sets with unbalanced target distribution (one target
class dominates the other).

5.2.3.3 ROC and Model Bias
The ROC curve for a model represents all the possible combinations of values in its
confusion matrix.

Changes in the probability threshold affect the predictions made by the model. For instance, if
the threshold for predicting the positive class is changed from 0.5 to 0.6, then fewer positive
predictions are made. This affects the distribution of values in the confusion matrix: the
number of true and false positives and true and false negatives differ.

You can use ROC to find the probability thresholds that yield the highest overall accuracy or
the highest per-class accuracy. For example, if it is important to you to accurately predict the
positive class, but you don't care about prediction errors for the negative class, then you can
lower the threshold for the positive class. This can bias the model in favor of the positive
class.

A cost matrix is a convenient mechanism for changing the probability thresholds for model
scoring.

Related Topics

• Costs

5.2.3.4 ROC Statistics
Oracle Data Mining computes the following ROC statistics:

• Probability threshold: The minimum predicted positive class probability resulting in a
positive class prediction. Different threshold values result in different hit rates and
different false alarm rates.

• True negatives: Negative cases in the test data with predicted probabilities strictly less
than the probability threshold (correctly predicted).

• True positives: Positive cases in the test data with predicted probabilities greater than or
equal to the probability threshold (correctly predicted).

• False negatives: Positive cases in the test data with predicted probabilities strictly less
than the probability threshold (incorrectly predicted).

• False positives: Negative cases in the test data with predicted probabilities greater than
or equal to the probability threshold (incorrectly predicted).
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• True positive fraction: Hit rate. (true positives/(true positives + false negatives))

• False positive fraction: False alarm rate. (false positives/(false positives + true
negatives))

5.3 Biasing a Classification Model
Costs, prior probabilities, and class weights are methods for biasing classification
models.

5.3.1 Costs
A cost matrix is a mechanism for influencing the decision making of a model. A cost
matrix can cause the model to minimize costly misclassifications. It can also cause the
model to maximize beneficial accurate classifications.

For example, if a model classifies a customer with poor credit as low risk, this error is
costly. A cost matrix can bias the model to avoid this type of error. The cost matrix can
also be used to bias the model in favor of the correct classification of customers who
have the worst credit history.

ROC is a useful metric for evaluating how a model behaves with different probability
thresholds. You can use ROC to help you find optimal costs for a given classifier given
different usage scenarios. You can use this information to create cost matrices to
influence the deployment of the model.

5.3.1.1 Costs Versus Accuracy
Compares Cost matrix and Confusion matrix for costs and accuracy to evaluate model
quality.

Like a confusion matrix, a cost matrix is an n-by-n matrix, where n is the number of
classes. Both confusion matrices and cost matrices include each possible combination
of actual and predicted results based on a given set of test data.

A confusion matrix is used to measure accuracy, the ratio of correct predictions to the
total number of predictions. A cost matrix is used to specify the relative importance of
accuracy for different predictions. In most business applications, it is important to
consider costs in addition to accuracy when evaluating model quality.

Related Topics

• Confusion Matrix

5.3.1.2 Positive and Negative Classes
Discusses the importance of positive and negative classes in a confusion matrix.

The positive class is the class that you care the most about. Designation of a positive
class is required for computing Lift and ROC.

In the confusion matrix, in the following figure, the value 1 is designated as the positive
class. This means that the creator of the model has determined that it is more
important to accurately predict customers who increase spending with an affinity card
(affinity_card=1) than to accurately predict non-responders (affinity_card=0). If
you give affinity cards to some customers who are not likely to use them, there is little
loss to the company since the cost of the cards is low. However, if you overlook the

Chapter 5
Biasing a Classification Model

5-6



customers who are likely to respond, you miss the opportunity to increase your revenue.

Figure 5-2    Positive and Negative Predictions

PREDICTED CLASS

ACTUAL CLASS

affinity_card = 1 affinity_card = 0

725

(true negative)

10

(false positive)
affinity_card = 0

25

(false negative)

516

(true positive)
affinity_card = 1

The true and false positive rates in this confusion matrix are:

• False positive rate — 10/(10 + 725) =.01

• True positive rate — 516/(516 + 25) =.95

Related Topics

• Lift
Lift measures the degree to which the predictions of a classification model are better than
randomly-generated predictions.

• Receiver Operating Characteristic (ROC)
ROC is a metric for comparing predicted and actual target values in a classification
model.

5.3.1.3 Assigning Costs and Benefits
In a cost matrix, positive numbers (costs) can be used to influence negative outcomes. Since
negative costs are interpreted as benefits, negative numbers (benefits) can be used to
influence positive outcomes.

Suppose you have calculated that it costs your business $1500 when you do not give an
affinity card to a customer who can increase spending. Using the model with the confusion
matrix shown in Figure 5-2, each false negative (misclassification of a responder)
costs $1500. Misclassifying a non-responder is less expensive to your business. You
estimate that each false positive (misclassification of a non-responder) only costs $300.

You want to keep these costs in mind when you design a promotion campaign. You estimate
that it costs $10 to include a customer in the promotion. For this reason, you associate a
benefit of $10 with each true negative prediction, because you can eliminate those customers
from your promotion. Each customer that you eliminate represents a savings of $10. In your
cost matrix, you specify this benefit as -10, a negative cost.

The following figure shows how you would represent these costs and benefits in a cost
matrix:
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Figure 5-3    Cost Matrix Representing Costs and Benefits

PREDICTED

ACTUAL

affinity_card = 1 affinity_card = 0

-10300affinity_card = 0

15000affinity_card = 1

With Oracle Data Mining for SQL you can specify costs to influence the scoring of any
classification model. Decision Tree models can also use a cost matrix to influence the
model build.

5.3.2 Priors and Class Weights
Learn about Priors and Class Weights in a classification model to produce a useful
result.

With Bayesian models, you can specify Prior probabilities to offset differences in
distribution between the build data and the real population (scoring data). With other
forms of classification, you are able to specify Class Weights, which have the same
biasing effect as priors.

In many problems, one target value dominates in frequency. For example, the positive
responses for a telephone marketing campaign is 2% or less, and the occurrence of
fraud in credit card transactions is less than 1%. A classification model built on historic
data of this type cannot observe enough of the rare class to be able to distinguish the
characteristics of the two classes; the result can be a model that when applied to new
data predicts the frequent class for every case. While such a model can be highly
accurate, it is not be very useful. This illustrates that it is not a good idea to rely solely
on accuracy when judging the quality of a classification model.

To correct for unrealistic distributions in the training data, you can specify priors for the
model build process. Other approaches to compensating for data distribution issues
include stratified sampling and anomaly detection.

Related Topics

• Anomaly Detection
Learn how to detect rare cases in the data through Anomaly Detection - an
unsupervised technique.

5.4 Classification Algorithms
Learn different Classification algorithms used in Oracle Data Mining.
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Oracle Data Mining provides the following algorithms for classification:

• Decision Tree

Decision trees automatically generate rules, which are conditional statements that reveal
the logic used to build the tree.

• Explicit Semantic Analysis

Explicit Semantic Analysis (ESA) is designed to make predictions for text data. This
algorithm can address use cases with hundreds of thousands of classes.

• Naive Bayes

Naive Bayes uses Bayes' Theorem, a formula that calculates a probability by counting
the frequency of values and combinations of values in the historical data.

• Generalized Linear Models (GLM)

GLM is a popular statistical technique for linear modeling. Oracle Data Mining
implements GLM for binary classification and for regression. GLM provides extensive
coefficient statistics and model statistics, as well as row diagnostics. GLM also supports
confidence bounds.

• Random Forest

Random Forest is a powerful and popular machine learning algorithm that brings
significant performance and scalability benefits.

• Support Vector Machines (SVM)

SVM is a powerful, state-of-the-art algorithm based on linear and nonlinear regression.
Oracle Data Mining implements SVM for binary and multiclass classification.

Note:

Oracle Data Mining uses Naive Bayes as the default classification algorithm.

Related Topics

• Decision Tree
Oracle Data Mining for SQL supports Decision Tree as one of the classification
algorithms. This chapter provides an overview of the Decision Tree algorithm.

• Explicit Semantic Analysis
Learn how to use Explicit Semantic Analysis (ESA) as an unsupervised algorithm for
feature extraction function and as a supervised algorithm for classification.

• Naive Bayes
Learn how to use the Naive Bayes classification algorithm.

• Generalized Linear Model
Learn how to use Generalized Linear Model (GLM) statistical technique for linear
modeling.

• Random Forest
Learn how to use Random Forest as a classification algorithm.

• Support Vector Machines
Learn how to use Support Vector Machines, a powerful algorithm based on statistical
learning theory.
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6
Anomaly Detection

Learn how to detect rare cases in the data through Anomaly Detection - an unsupervised
technique.

• About Anomaly Detection

• Anomaly Detection Algorithms

Related Topics

• Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

See Also:

• Campos, M.M., Milenova, B.L., Yarmus, J.S., "Creation and Deployment of
Data Mining-Based Intrusion Detection Systems in Oracle Database 10g"

Oracle Data Mining

6.1 About Anomaly Detection
The goal of anomaly detection is to identify cases that are unusual within data that is
seemingly homogeneous. Anomaly detection is an important tool for detecting fraud, network
intrusion, and other rare events that can have great significance but are hard to find.

Anomaly detection can be used to solve problems like the following:

• A law enforcement agency compiles data about illegal activities, but nothing about
legitimate activities. How can a suspicious activity be flagged?

The law enforcement data is all of one class. There are no counter-examples.

• An insurance agency processes millions of insurance claims, knowing that a very small
number are fraudulent. How can the fraudulent claims be identified?

The claims data contains very few counter-examples. They are outliers.

6.1.1 Anomaly Detection as a form of One-Class Classification
Learn about anomaly detection as one-class classification in training data.

When applied to traditional data, anomaly detection can be viewed as a form of one-class
classification, because ideally only one class is represented in the training data. An anomaly
detection model predicts whether a data point is typical for a given distribution or not. An
atypical data point can be either an outlier or an example of a previously unseen class.

6-1



Normally, a classification model must be trained on data that includes both examples
and counterexamples for each class so that the model can learn to distinguish
between them. For example, a model that predicts the side effects of a medication
must be trained on data that includes a wide range of responses to the medication.

A one-class classifier develops a profile that generally describes a typical case in the
training data. Deviation from the profile is identified as an anomaly. One-class
classifiers are sometimes referred to as positive security models, because they seek to
identify "good" behaviors and assume that all other behaviors are bad.

In single-class data, all the cases have the same classification. Counterexamples,
instances of another class, are hard to specify or expensive to collect. For instance, in
text document classification, it is easy to classify a document under a given topic.
However, the universe of documents outside of this topic can be very large and
diverse. Thus, it is not feasible to specify other types of documents as
counterexamples. Anomaly detection can be used to find unusual instances of a
particular type of document.

Note:

Solving a one-class classification problem can be difficult. The accuracy of
one-class classifiers cannot usually match the accuracy of standard
classifiers built with meaningful counter examples.

The goal of this type of anomaly detection is to provide some useful
information where no information was previously attainable. However, if there
are enough of the "rare" cases so that stratified sampling produces a training
set with enough counterexamples for a standard classification model, then
the classification may be a better solution.

Related Topics

• About Classification
Classification is a data mining technique that assigns items in a collection to target
categories or classes.

6.1.2 Anomaly Detection for Single-Class Data
In single-class data, all the cases have the same classification.

Counter-examples, instances of another class, are hard to specify or expensive to
collect. For instance, in text document classification, you can classify a document
under a given topic. However, the universe of documents outside of this topic can be
very large and diverse. Thus, it is not feasible to specify other types of documents as
counter-examples.

Anomaly detection can be used to find unusual instances of a particular type of
document.

6.1.3 Anomaly Detection for Finding Outliers
Outliers are cases that are unusual because they fall outside the distribution that is
considered normal for the data. For example, census data shows a median household
income of $70,000 and a mean household income of $80,000, but one or two
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households have an income of $200,000. These cases can probably be identified as outliers.

The distance from the center of a normal distribution indicates how typical a given point is
with respect to the distribution of the data. Each case can be ranked according to the
probability that it is either typical or atypical.

The presence of outliers can have a deleterious effect on many forms of data mining. You can
use anomaly detection to identify outliners before analysing the data.

6.2 Anomaly Detection Algorithms
For anomaly detection, Oracle Data Mining for SQL has the following algorithms.

• Multivariate state Estimation Technique - Sequential Probability Ratio Test (MSET-SPRT)

• One-Class Support Vector Machine (SVM)

Anomaly detection is a form of classification. When you create a model using the MSET-
SPRT and One-Class SVM algorithms, specify the classification data mining technique.
These algorithms do not use a target.
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7
Clustering

Learn how to discover natural groupings in the data through clustering - the unsupervised
data mining technique.

• About Clustering

• Evaluating a Clustering Model

• Clustering Algorithms

– Expectation Maximization

– k-Means

– O-Cluster

Related Topics

• Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

7.1 About Clustering
Clustering analysis finds clusters of data objects that are similar to one another.

The members of a cluster are more like each other than they are like members of other
clusters. Different clusters can have members in common. The goal of clustering analysis is
to find high-quality clusters such that the inter-cluster similarity is low and the intra-cluster
similarity is high.

Clustering, like classification, is used to segment the data. Unlike classification, clustering
models segment data into groups that were not previously defined. Classification models
segment data by assigning it to previously-defined classes, which are specified in a target.
Clustering models do not use a target.

Clustering is useful for exploring data. You can use clustering algorithms to find natural
groupings when there are many cases and no obvious groupings.

Clustering can serve as a useful data-preprocessing step to identify homogeneous groups on
which you can build supervised models.

You can also use clustering for anomaly detection. Once you segment the data into clusters,
you find that some cases do not fit well into any clusters. These cases are anomalies or
outliers.

7.1.1 How are Clusters Computed?
There are several different approaches to the computation of clusters. Oracle Data Mining for
SQL supports the methods listed here.
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• Density-based: This type of clustering finds the underlying distribution of the data
and estimates how areas of high density in the data correspond to peaks in the
distribution. High-density areas are interpreted as clusters. Density-based cluster
estimation is probabilistic.

• Distance-based: This type of clustering uses a distance metric to determine
similarity between data objects. The distance metric measures the distance
between actual cases in the cluster and the prototypical case for the cluster. The
prototypical case is known as the centroid.

• Grid-based: This type of clustering divides the input space into hyper-rectangular
cells and identifies adjacent high-density cells to form clusters.

7.1.2 Scoring New Data
Although clustering is an unsupervised mining technique, Oracle Data Mining supports
the scoring operation for clustering. New data is scored probabilistically.

7.1.3 Hierarchical Clustering
Oracle Data Mining for SQL supports clustering algorithms that perform hierarchical
clustering.

The leaf clusters are the final clusters generated by the algorithm. Clusters higher up
in the hierarchy are intermediate clusters.

7.1.3.1 Rules
Rules describe the data in each cluster.

A rule is a conditional statement that captures the logic used to split a parent cluster
into child clusters. A rule describes the conditions for a case to be assigned with some
probability to a cluster.

7.1.3.2 Support and Confidence
Support and confidence are metrics that describe the relationships between
clustering rules and cases.

Support is the percentage of cases for which the rule holds. Confidence is the
probability that a case described by this rule is actually assigned to the cluster.

7.2 Evaluating a Clustering Model
Since known classes are not used in clustering, the interpretation of clusters can
present difficulties. How do you know if the clusters can reliably be used for business
decision making?

Oracle Data Mining for SQL clustering models support a high degree of model 
transparency. You can evaluate the model by examining information generated by the
clustering algorithm: for example, the centroid of a distance-based cluster. Moreover,
because the clustering process is hierarchical, you can evaluate the rules and other
information related to each cluster's position in the hierarchy.
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7.3 Clustering Algorithms
Learn different clustering algorithms used in Oracle Data Mining for SQL.

Oracle Data Mining for SQL supports these clustering algorithms:

• Expectation Maximization

Expectation Maximization is a probabilistic, density-estimation clustering algorithm.

• k-Means

k-Means is a distance-based clustering algorithm. Oracle Data Mining supports an
enhanced version of k-Means.

• Orthogonal Partitioning Clustering (O-Cluster)

O-Cluster is a proprietary, grid-based clustering algorithm.

See Also:

Campos, M.M., Milenova, B.L., "O-Cluster: Scalable Clustering of Large High
Dimensional Data Sets", Oracle Data Mining Technologies, 10 Van De Graaff
Drive, Burlington, MA 01803.

The main characteristics of the two algorithms are compared in the following table.

Table 7-1    Clustering Algorithms Compared

Feature k-Means O-Cluster Expectation Maximization

Clustering methodolgy Distance-based Grid-based Distribution-based

Number of cases Handles data sets of any
size

More appropriate for data sets
that have more than 500 cases.
Handles large tables through
active sampling

Handles data sets of any
size

Number of attributes More appropriate for
data sets with a low
number of attributes

More appropriate for data sets
with a high number of attributes

Appropriate for data sets
with many or few attributes

Number of clusters User-specified Automatically determined Automatically determined

Hierarchical clustering Yes Yes Yes

Probabilistic cluster
assignment

Yes Yes Yes

Note:

Oracle Data Mining uses k-Means as the default clustering algorithm.

Related Topics

• Oracle Data Mining for SQL
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• Expectation Maximization
Learn how to use expectation maximization clustering algorithm.

• k-Means
Oracle Data Mining for SQL supports enhanced k-Means clustering algorithm.
Learn how to use the algorithm.

• O-Cluster
Learn how to use orthogonal partitioning clustering (O-Cluster), an Oracle-
proprietary clustering algorithm.
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8
Association

Learn how to discover association rules through association - an unsupervised data mining
technique.

• About Association

• Transactional Data

• Association Algorithm

– Apriori

Related Topics

• Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

8.1 About Association
Association is a Oracle Data Mining for SQL function that discovers the probability of the co-
occurrence of items in a collection.

The relationships between co-occurring items are expressed as Association Rules.

8.1.1 Association Rules
Identifies the pattern of association within the data.

The results of an association model are the rules that identify patterns of association within
the data. Oracle Data Mining for SQL does not support the scoring operation for association
modeling.

Association rules can be applied as follows:

Support: How often do these items occur together in the data?
Confidence: How frequently the consequent occurs in transactions that contain the
antecedent.
Value: How much business value is connected to item associations

8.1.2 Market-Basket Analysis
Association rules are often used to analyze sales transactions. For example, it is noted that
customers who buy cereal at the grocery store often buy milk at the same time. In fact,
association analysis find that 85% of the checkout sessions that include cereal also include
milk. This relationship can be formulated as the following rule:

Cereal implies milk with 85% confidence 
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This application of association modeling is called market-basket analysis. It is
valuable for direct marketing, sales promotions, and for discovering business trends.
Market-basket analysis can also be used effectively for store layout, catalog design,
and cross-sell.

8.1.3 Association Rules and eCommerce
Learn about application of association rules in other domains.

Association modeling has important applications in other domains as well. For
example, in e-commerce applications, association rules may be used for Web page
personalization. An association model might find that a user who visits pages A and B
is 70% likely to also visit page C in the same session. Based on this rule, a dynamic
link can be created for users who are likely to be interested in page C. The association
rule is expressed as follows:

A and B imply C with 70% confidence 

Related Topics

• Confidence
The confidence of a rule indicates the probability of both the antecedent and the
consequent appearing in the same transaction.

8.2 Transactional Data
Learn about transactional data, also known as market-basket data.

Unlike other data mining functions, association is transaction-based. In transaction
processing, a case includes a collection of items such as the contents of a market
basket at the checkout counter. The collection of items in the transaction is an attribute
of the transaction. Other attributes might be a timestamp or user ID associated with
the transaction.

Transactional data, also known as market-basket data, is said to be in multi-record
case format because a set of records (rows) constitute a case. For example, in the
following figure, case 11 is made up of three rows while cases 12 and 13 are each
made up of four rows.

Figure 8-1    Transactional Data

attribute2

OPER_ID
---------

m5203
m5203
m5203
m5203
m5203
m5203
m5203
q5597
q5597
q5597
q5597

attribute1

ITEM_ID
---------

B
D
E
A
B
C
E
B
C
D
E

case ID

TRANS_ID
---------

11
11
11
12
12
12
12
13
13
13
13
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Non transactional data is said to be in a single-record case format because a single record
(row) constitutes a case. In Oracle Data Mining for SQL, association models can be built
using either transactional or non transactional or two-dimensional data formats. If the data is
non transactional, it is possible to transform to a nested column to make it transactional
before association data mining activities can be performed. Transactional format is the usual
format but, the association rules model does accept two-dimensional input format. For non
transactional input format, each distinct combination of the content in all columns other than
the case ID column is treated as a unique item.

Related Topics

• Oracle Data Mining User’s Guide

• Data Preparation for Apriori

8.3 Association Algorithm
Oracle Data Mining for SQL uses the Apriori algorithm to calculate association rules for items
in frequent itemsets.

Related Topics

• Apriori
Learn how to calculate association rules using the Apriori algorithm.

Chapter 8
Association Algorithm

8-3



9
Feature Selection

Learn how to perform feature selection and attribute importance.

Oracle Data Mining for SQL supports attribute importance as a supervised and unsurpervised
data mining technique .

• Finding the Best Attributes

• About Feature Selection and Attribute Importance

• Algorithms for Attribute Importance

– CUR Matrix Decomposition

– Minimum Description Length

Related Topics

• Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

9.1 Finding the Best Attributes
Sometimes too much information can reduce the effectiveness of data mining. Some of the
columns of data attributes assembled for building and testing a model do not contribute
meaningful information to the model. Some do actually detract from the quality and accuracy
of the model.

For example, you want to collect a great deal of data about a given population because you
want to predict the likelihood of a certain illness within this group. Some of this information,
perhaps much of it, has little or no effect on susceptibility to the illness. It is possible that
attributes such as the number of cars per household do not have effect whatsoever.

Irrelevant attributes add noise to the data and affect model accuracy. Noise increases the
size of the model and the time and system resources needed for model building and scoring.

Data sets with many attributes can contain groups of attributes that are correlated. These
attributes actually measure the same underlying feature. Their presence together in the build
data can skew the logic of the algorithm and affect the accuracy of the model.

Wide data (many attributes) generally presents processing challenges for data mining
algorithms. Model attributes are the dimensions of the processing space used by the
algorithm. The higher the dimensionality of the processing space, the higher the computation
cost involved in algorithmic processing.

To minimize the effects of noise, correlation, and high dimensionality, some form of dimension
reduction is sometimes a desirable preprocessing step for data mining. Feature selection and
extraction are two approaches to dimension reduction.

• Feature selection: Selecting the most relevant attributes

• Feature extraction: Combining attributes into a new reduced set of features
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9.2 About Feature Selection and Attribute Importance
Finding the most significant predictors is the goal of some data mining projects. For
example, a model might seek to find the principal characteristics of clients who pose a
high credit risk.

Oracle Data Mining for SQL supports the attribute importance data mining technique,
which ranks attributes according to their importance. Attribute importance does not
actually select the features, but ranks them as to their relevance to predicting the
result. It is up to the user to review the ranked features and create a data set to include
the desired features.

Feature selection is useful as a preprocessing step to improve computational efficiency
in predictive modeling.

9.2.1 Attribute Importance and Scoring
The results of attribute importance are the attributes of the build data ranked according
to their influence.

The ranking and the measure of importance can be used in selecting training data for
classification and regression models. Also, used for selecting data for unsupervised
algorithm like CUR matrix decomposition. Oracle Data Mining for SQL does not
support the scoring operation for attribute importance.

9.3 About Feature Extraction
Feature Extraction is an attribute reduction process. Unlike feature selection, which
selects and retains the most significant attributes, Feature Extraction actually
transforms the attributes. The transformed attributes, or features, are linear
combinations of the original attributes.

The Feature Extraction process results in a much smaller and richer set of attributes.
The maximum number of features can be user-specified or determined by the
algorithm. By default, the algorithm determines it.

Models built on extracted features can be of higher quality, because fewer and more
meaningful attributes describe the data.

Feature Extraction projects a data set with higher dimensionality onto a smaller
number of dimensions. As such it is useful for data visualization, since a complex data
set can be effectively visualized when it is reduced to two or three dimensions.

Some applications of Feature Extraction are latent semantic analysis, data
compression, data decomposition and projection, and pattern recognition. Feature
Extraction can also be used to enhance the speed and effectiveness of supervised
learning.

Feature Extraction can be used to extract the themes of a document collection, where
documents are represented by a set of key words and their frequencies. Each theme
(feature) is represented by a combination of keywords. The documents in the
collection can then be expressed in terms of the discovered themes.

Chapter 9
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9.3.1 Feature Extraction and Scoring
Oracle Data Mining for SQL supports the scoring operation for feature extraction. As an
unsupervised data mining technique, feature extraction does not involve a target. When
applied, a feature extraction model transforms the input into a set of features.

9.4 Algorithms for Attribute Importance
Understand the algorithms used for attribute importance.

Oracle Data Mining for SQL supports the following algorithms for attribute importance:

• Minimum Description Length

• CUR Matrix Decomposition

Related Topics

• CUR Matrix Decomposition
Learn how to use CUR decomposition based algorithm for attribute importance.

• Minimum Description Length
Learn how to use Minimum Description Length, the supervised technique for calculating
attribute importance.

Chapter 9
Algorithms for Attribute Importance
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10
Time Series

Learn about time series as an Oracle Data Mining for SQL regression function.

• About Time Series

• Choosing a Time Series Model

• Time Series Statistics

• Time Series Algorithm

– Exponential Smoothing

10.1 About Time Series
Time series is a data mining technique that forecasts target value based solely on a known
history of target values. It is a specialized form of regression, known in the literature as auto-
regressive modeling.

The input to time series analysis is a sequence of target values. A case id column specifies
the order of the sequence. The case id can be of type NUMBER or a date type (date, datetime,
timestamp with timezone, or timestamp with local timezone). Regardless of case id type, the
user can request that the model include trend, seasonal effects or both in its forecast
computation. When the case id is a date type, the user must specify a time interval (for
example, month) over which the target values are to be aggregated, along with an
aggregation procedure (for example, sum). Aggregation is performed by the algorithm prior to
constructing the model.

The time series model provide estimates of the target value for each step of a time window
that can include up to 30 steps beyond the historical data. Like other regression models, time
series models compute various statistics that measure the goodness of fit to historical data.

Forecasting is a critical component of business and governmental decision making. It has
applications at the strategic, tactical and operation level. The following are the applications of
forecasting:

• Projecting return on investment, including growth and the strategic effect of innovations

• Addressing tactical issues such as projecting costs, inventory requirements and customer
satisfaction

• Setting operational targets and predicting quality and conformance with standards

Related Topics

• Regression
Learn how to predict a continuous numerical target through Regression - the supervised
mining technique.

10.2 Choosing a Time Series Model
Learn how to select a time series model.
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Time series data may contain patterns that can affect predictive accuracy. For
example, during a period of economic growth, there may be an upward trend in sales.
Sales may increase in specific seasons (bathing suits in summer). To accommodate
such series, it can be useful to choose a model that incorporates trend, seasonal
effects, or both.

Trend can be difficult to estimate, when you must represent trend by a single constant.
For example, if there is a grow rate of 10%, then after 7 steps, the value doubles.
Local growth rates, appropriate to a few time steps can easily approach such levels,
but thereafter drop. Damped trend models can more accurately represent such data,
by reducing cumulative trend effects. Damped trend models can better represent
variability in trend effects over the historical data. Damped trend models are a good
choice when the data have significant, but variable trend.

Since modeling attempts to reduce error, how error is measured can affect model
predictions. For example, data that exhibit a wide range of values may be better
represented by error as fraction of level. An error of a few hundred feet in the
measurement of the height of a mountain may be equivalent to an error of an inch or
two in the measurement of the height of a child. Errors that are measured relative to
value are called multiplicative errors. Errors that are the same across values are
called additive errors. If there are multiplicative effects in the model, then the error
type is multiplicative. If there are no explicit multiplicative effects, error type is left to
user specification. The type need not be the same across individual effects. For
example, trend can be additive while seasonality is multiplicative. This particular mixed
type effect combination defines the popular Holt-Winters model.

Note:

Multiplicative error is not an appropriate choice for data that contain zeros or
negative values. Thus, when the data contains such values, it is best not to
choose a model with multiplicative effects or to set error type to be
multiplicative.

10.3 Time Series Statistics
Learn to evaluate model quality by applying commonly used statistics.

As with other regression functions, there are commonly used statistics for evaluating
the overall model quality. An expert user can also specify one of these figures of merit
as criterion to optimize by the model build process. Choosing an optimization criterion
is not required because model-specific defaults are available.

10.3.1 Conditional Log-Likelihood
Log-likelihood is a figure of merit often used as an optimization criterion for models
that provide probability estimates for predictions which depend on the values of the
model’s parameters.

The model probability estimates for the actual values in the training data then yields an
estimate of the likelihood of the parameter values. Parameter values that yield high
probabilities for the observed target values have high likelihood, and therefore indicate
a good model. The calculation of log-likelihood depends on the form of the model.

Chapter 10
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Conditional log-likelihood breaks the parameters into two groups. One group is assumed to
be correct and the other is assumed the source of any errors. Conditional log-likelihood is the
log-likelihood of the latter group conditioned on the former group. For example, Exponential
Smoothing (ESM) models make an estimate of the initial model state. The conditional log-
likelihood of an ESM model is conditional on that initial model state (assumed to be correct).
The ESM conditional log-likelihood is as follows:

where et is the error at time t and k(x(t-1) ) is 1 for ESM models with additive errors and is
the estimated level at the previous time step in models with multiplicative error.

10.3.2 Mean Square Error (MSE) and Other Error Measures
Another time series figure of merit, that can also be used as an optimization criterion, is Mean
Square Error (MSE).

The mean square error is computed as:

where the error at time t is the difference between the actual and model one step ahead
forecast value at time t for models with additive error and that difference divided by the one-
step ahead forecast for models with multiplicative error.

Note:

These "forecasts" are for over periods already observed and part of the input time
series.

Since time series models can forecast for each of multiple steps ahead, time series can
measure the error associated with such forecasts. Average Mean Square Error (AMSE),
another figure of merit, does exactly that. For each period in the input time series, it computes
a multi-step forecast, computes the error of those forecasts and averages the errors. AMSE
computes the individual errors exactly as MSE does taking cognizance of error type (additive
or multiplicative). The number of steps, k, is determined by the user (default 3). The formula
is as follows:

Chapter 10
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Other figure of merit relatives of MSE include the Residual Standard Error (RMSE),
which is the square root of MSE, and the Mean Absolute Error (MAE) which is the
average of the absolute value of the errors.

10.3.3 Irregular Time Series
Irregular time series are time series data where the time intervals between observed
values are not equally spaced.

One common practice is for the time intervals between adjacent steps to be equally
spaced. However, it is not always convenient or realistic to force such spacing on time
series. Irregular time series do not make the assumption that time series are equally
spaced, but instead use the case id’s date and time values to compute the intervals
between observed values. Models are constructed directly on the observed values
with their observed spacing. Oracle time series analysis handles irregular time series.

10.3.4 Build and Apply
A new time series model is built when new data arrives.

Many of the Oracle Data Mining for SQL functions have separate build and apply
operations, because you can construct and potentially apply a model to many different
sets of input data. However, time series input consists of the target value history only.
Thus, there is only one set of appropriate input data. When new data arrive, good
practice dictates that a new model be built. Since the model is only intended to be
used once, the model statistics and forecasts are produced during model build and are
available through the model views.

10.4 Time Series Algorithm
Oracle Data Mining for SQL uses the Exponential Smoothing algorithm to forecast
from time series data.

Related Topics

• Exponential Smoothing
Learn about the Exponential Smoothing algorithm.

Chapter 10
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Part III
Algorithms

Part III provides basic conceptual information about the algorithms supported by Oracle Data
Mining. There is at least one algorithm for each of the mining techniques.

Part III contains these chapters:

• Apriori

• CUR Matrix Decomposition

• Decision Tree

• Expectation Maximization

• Explicit Semantic Analysis

• Exponential Smoothing

• Generalized Linear Models

• k-Means

• Minimum Description Length

• Naive Bayes

• Neural Network

• Non-Negative Matrix Factorization

• O-Cluster

• R Extensibility

• Random Forest

• Singular Value Decomposition

• Support Vector Machines

Related Topics

• Mining Techniques
Part II provides basic conceptual information about the mining techniques that the Oracle
Data Mining supports.



11
Apriori

Learn how to calculate association rules using the Apriori algorithm.

• About Apriori

• Association Rules and Frequent Itemsets

• Data Preparation for Apriori

• Calculating Association Rules

• Evaluating Association Rules

11.1 About Apriori
Learn about Apriori.

An association mining problem can be decomposed into the following subproblems:

• Find all combinations of items in a set of transactions that occur with a specified minimum
frequency. These combinations are called frequent itemsets.

• Calculate rules that express the probable co-occurrence of items within frequent
itemsets.

Apriori calculates the probability of an item being present in a frequent itemset, given that
another item or items is present.

Association rule mining is not recommended for finding associations involving rare events in
problem domains with a large number of items. Apriori discovers patterns with frequencies
above the minimum support threshold. Therefore, to find associations involving rare events,
the algorithm must run with very low minimum support values. However, doing so potentially
explodes the number of enumerated itemsets, especially in cases with a large number of
items. This increases the execution time significantly. Classification or Anomaly Detection is
more suitable for discovering rare events when the data has a high number of attributes.

The build process for Apriori supports parallel execution.

Related Topics

• Example: Calculating Rules from Frequent Itemsets
Example to calculating rules from frequent itemsets.

• Oracle Database VLDB and Partitioning Guide

11.2 Association Rules and Frequent Itemsets
The Apriori algorithm calculates rules that express probabilistic relationships between items
in frequent itemsets. For example, a rule derived from frequent itemsets containing A, B, and
C might state that if A and B are included in a transaction, then C is likely to also be included.

11-1



An association rule states that an item or group of items implies the presence of
another item with some probability. Unlike decision tree rules, which predict a target,
association rules express correlation.

11.2.1 Antecedent and Consequent
Defines antecedent and consequent in an Apriori algorithm.

The IF component of an association rule is known as the antecedent. The THEN
component is known as the consequent. The antecedent and the consequent are
disjoint; they have no items in common.

Oracle Data Mining for SQL supports association rules that have one or more items in
the antecedent and a single item in the consequent.

11.2.2 Confidence
Rules have an associated confidence, which is the conditional probability that the
consequent occurs given the occurrence of the antecedent. You can specify the
minimum confidence for rules.

11.3 Data Preparation for Apriori
Association models are designed to use transactional data. In transactional data, there
is a one-to-many relationship between the case identifier and the values for each case.
Each case ID/value pair is specified in a separate record (row).

11.3.1 Native Transactional Data and Star Schemas
Learn about storage format of transactional data.

Transactional data may be stored in native transactional format, with a non-unique
case ID column and a values column, or it may be stored in some other configuration,
such as a star schema. If the data is not stored in native transactional format, it must
be transformed to a nested column for processing by the Apriori algorithm.

Related Topics

• Transactional Data
Learn about transactional data, also known as market-basket data.

• Oracle Data Mining User’s Guide

11.3.2 Items and Collections
In transactional data, a collection of items is associated with each case. The collection
theoretically includes all possible members of the collection. For example, all products
can theoretically be purchased in a single market-basket transaction. However, in
actuality, only a tiny subset of all possible items are present in a given transaction; the
items in the market-basket represent only a small fraction of the items available for
sale in the store.

Chapter 11
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11.3.3 Sparse Data
Learn about missing items through sparsity.

Missing items in a collection indicate sparsity. Missing items may be present with a null
value, or they may simply be missing.

Nulls in transactional data are assumed to represent values that are known but not present in
the transaction. For example, three items out of hundreds of possible items might be
purchased in a single transaction. The items that were not purchased are known but not
present in the transaction.

Oracle Data Mining assumes sparsity in transactional data. The Apriori algorithm is optimized
for processing sparse data.

Note:

Apriori is not affected by Automatic Data Preparation.

Related Topics

• Oracle Data Mining User’s Guide

11.3.4 Improved Sampling
Association rules (AR) can use a good sample size with performance guarantee, based on
the work of Riondato and Upfal.

The AR algorithm computes the sample size by the following inputs:

• d-index of the dataset

• Absolute error ε

• Confidence level γ

d-index is defined as the maximum integer d such that the dataset contains at least d
transactions of length d at the minimum. It is the upper bound of Vapnik-Chervonenkis (VC)
dimension. The AR algorithm computes d-index of the dataset by scanning the length of all
transactions in the dataset.

Users specify absolute error ε and confidence level γ parameters. A large d-index, small AR
support, small ε or large γ can cause a large sample size. The sample size theoretically
guarantees that the absolute error of both the support and confidence of the approximated
AR (from sampling) is less than ε compared to the exact AR with probability (or confidence
level) at least γ. In this document this sample size is called AR-specific sample size.

11.3.4.1 Sampling Implementation
The sample size is only computed when users turn on the sampling (ODMS_SAMPLING is set as
ODMS_SAMPLING_ENABLE) and do not specify the sample size (ODMS_SAMPLE_SIZE is
unspecified).

Chapter 11
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Usage Notes

1. If ODMS_SAMPLING is unspecified or set as ODMS_SAMPLING_DISABLE, the sampling is
not performed for AR and the exact AR is obtained.

2. If ODMS_SAMPLING is set as ODMS_SAMPLING_ENABLE and if ODMS_SAMPLE_SIZE is
specified as positive integer number then the user-specified sample size
(ODMS_SAMPLE_SIZE) is utilized. The sampling is performed in the general data
preparation stage before the AR algorithm. The AR-specific sample size is not
computed. The approximated AR is obtained.

3. If ODMS_SAMPLING is set as ODMS_SAMPLING_ENABLE and ODMS_SAMPLE_SIZE is not
specified, the AR-specified sample size is computed and then sampling is
performed in the AR algorithm. The approximated AR is obtained.

Note:

If the computed AR-specific sample size is larger than or equal to the
total transaction size in the dataset, the sampling is not performed and
the exact AR is obtained.

If users do not have a good idea on the choice of sample size for AR, it is suggested to
leave ODMS_SAMPLE_SIZE unspecified, only specify proper values for sampling
parameters and let AR algorithm compute the suitable AR-specific sample size.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

11.4 Calculating Association Rules
The first step in association analysis is the enumeration of itemsets. An itemset is any
combination of two or more items in a transaction.

11.4.1 Itemsets
Learn about itemsets.

The maximum number of items in an itemset is user-specified. If the maximum is two,
then all the item pairs are counted. If the maximum is greater than two, then all the
item pairs, all the item triples, and all the item combinations up to the specified
maximum are counted.

The following table shows the itemsets derived from the transactions shown in the
following example, assuming that maximum number of items in an itemset is set to 3.

Table 11-1    Itemsets

Transaction Itemsets

11 (B,D) (B,E) (D,E) (B,D,E)

12 (A,B) (A,C) (A,E) (B,C) (B,E) (C,E) (A,B,C) (A,B,E) (A,C,E) (B,C,E)
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Table 11-1    (Cont.) Itemsets

Transaction Itemsets

13 (B,C) (B,D) (B,E) (C,D) (C,E) (D,E) (B,C,D) (B,C,E) (B,D,E) (C,D,E)

Example 11-1    Sample Transactional Data

TRANS_ID   ITEM_ID
---------  -------------------
11         B
11         D
11         E
12         A
12         B
12         C
12         E
13         B
13         C
13         D
13         E

11.4.2 Frequent Itemsets
Learn about frequent itemsets and support.

Association rules are calculated from itemsets. If rules are generated from all possible
itemsets, there can be a very high number of rules and the rules may not be very meaningful.
Also, the model can take a long time to build. Typically it is desirable to only generate rules
from itemsets that are well-represented in the data. Frequent itemsets are those that occur
with a minimum frequency specified by the user.

The minimum frequent itemset support is a user-specified percentage that limits the number
of itemsets used for association rules. An itemset must appear in at least this percentage of
all the transactions if it is to be used as a basis for rules.

The following table shows the itemsets from Table 11-1 that are frequent itemsets with
support > 66%.

Table 11-2    Frequent Itemsets

Frequent Itemset Transactions Support

(B,C) 2 of 3 67%

(B,D) 2 of 3 67%

(B,E) 3 of 3 100%

(C,E) 2 of 3 67%

(D,E) 2 of 3 67%

(B,C,E) 2 of 3 67%

(B,D,E) 2 of 3 67%

Related Topics

• Apriori
Learn how to calculate association rules using the Apriori algorithm.
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11.4.3 Example: Calculating Rules from Frequent Itemsets
Example to calculating rules from frequent itemsets.

The following tables show the itemsets and frequent itemsets that were calculated in
"Association". The frequent itemsets are the itemsets that occur with a minimum
support of 67%; at least 2 of the 3 transactions must include the itemset.

Table 11-3    Itemsets

Transaction Itemsets

11 (B,D) (B,E) (D,E) (B,D,E)

12 (A,B) (A,C) (A,E) (B,C) (B,E) (C,E) (A,B,C) (A,B,E) (A,C,E) (B,C,E)

13 (B,C) (B,D) (B,E) (C,D) (C,E) (D,E) (B,C,D) (B,C,E) (B,D,E) (C,D,E)

Table 11-4    Frequent Itemsets with Minimum Support 67%

Itemset Transactions Support

(B,C) 12 and 13 67%

(B,D) 11 and 13 67%

(B,E) 11, 12, and 13 100%

(C,E) 12 and 13 67%

(D,E) 11 and 13 67%

(B,C,E) 12 and 13 67%

(B,D,E) 11 and 13 67%

A rule expresses a conditional probability. Confidence in a rule is calculated by dividing
the probability of the items occurring together by the probability of the occurrence of
the antecedent.

For example, if B (antecedent) is present, what is the chance that C (consequent) is
also present? What is the confidence for the rule "IF B, THEN C"?

As shown in Table 11-3:

• All 3 transactions include B (3/3 or 100%)

• Only 2 transactions include both B and C (2/3 or 67%)

• Therefore, the confidence of the rule "IF B, THEN C" is 67/100 or 67%.

The following table the rules that can be derived from the frequent itemsets in 
Table 11-4.

Table 11-5    Frequent Itemsets and Rules

Frequent Itemset Rules prob(antecedent and
consequent) / prob(antecedent)

Confidence

(B,C) (If B then C)
(If C then B)

67/100
67/67

67%
100%

Chapter 11
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Table 11-5    (Cont.) Frequent Itemsets and Rules

Frequent Itemset Rules prob(antecedent and
consequent) / prob(antecedent)

Confidence

(B,D) (If B then D)
(If D then B)

67/100
67/67

67%
100%

(B,E) (If B then E)
(If E then B)

100/100
100/100

100%
100%

(C,E) (If C then E)
(If E then C)

67/67
67/100

100%
67%

(D,E) (If D then E)
I(f E then D)

67/67
67/100

100%
67%

(B,C,E) (If B and C then
E)
(If B and E then
C)
(If C and E then
B)

67/67
67/100
67/67

100%
67%
100%

(B,D,E) (If B and D then
E)
(If B and E then
D)
(If D and E then
B)

67/67
67/100
67/67

100%
67%
100%

If the minimum confidence is 70%, ten rules are generated for these frequent itemsets. If the
minimum confidence is 60%, sixteen rules are generated.

Tip:

Increase the minimum confidence if you want to decrease the build time for the
model and generate fewer rules.

Related Topics

• Association
Learn how to discover association rules through association - an unsupervised data
mining technique.

11.4.4 Aggregates
Aggregates refer to the quantities associated with each item that the user opts for association
rules model to aggregate.

There can be more than one aggregate. For example, the user can specify the model to
aggregate both profit and quantity.

Chapter 11
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11.4.5 Example: Calculating Aggregates
This example shows how to calculate aggregates using the customer grocery
purchase and profit data.

Calculating Aggregates for Grocery Store Data

Assume a grocery store has the following data:

Table 11-6    Grocery Store Data

Customer Item A Item B Item C Item D

Customer 1 Buys
(Profit $5.00)

Buys
(Profit $3.20)

Buys
(Profit $12.00)

NA

Customer 2 Buys
(Profit $4.00)

NA Buys
(Profit $4.20)

NA

Customer 3 Buys
(Profit $3.00)

Buys
(Profit $10.00)

Buys
(Profit $14.00)

Buys
(Profit $8.00)

Customer 4 Buys
(Profit $2.00)

NA NA Buys
(Profit $1.00)

The basket of each customer can be viewed as a transaction. The manager of the
store is interested in not only the existence of certain association rules, but also in the
aggregated profit if such rules exist.

In this example, one of the association rules can be (A, B)=>C for customer 1 and
customer 3. Together with this rule, the store manager may want to know the following:

• The total profit of item A appearing in this rule

• The total profit of item B appearing in this rule

• The total profit for consequent C appearing in this rule

• The total profit of all items appearing in the rule

For this rule, the profit for item A is $5.00 + $3.00 = $8.00, for item B the profit is $3.20
+ $10.00 = $13.20, for consequent C, the profit is $12.00 + $14.00 = $26.00, for the
antecedent itemset (A, B) is $8.00 + $13.20 = $21.20. For the whole rule, the profit
is $21.20 + $26.00 = $47.40.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

11.4.6 Including and Excluding Rules
Explains including rules and excluding rules used in association.

Including rules enables a user to provide a list of items such that at least one item from
the list must appear in the rules that are returned. Excluding rules enables a user to
provide a list of items such that no item from the list can appear in the rules that are
returned.

Chapter 11
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Note:

Since each association rule includes both antecedent and consequent, a set of
including or excluding rules can be specified for antecedent while another set of
including or excluding rules can be specified for consequent. Including or excluding
rules can also be defined for the association rule.

Related Topics

• Oracle Data Mining User’s Guide

• Oracle Database PL/SQL Packages and Types Reference

11.4.7 Performance Impact for Aggregates
Aggregate function requires more memory usage and longer execution time.

For each item, the user may supply several columns to aggregate. It requires more memory
to buffer the extra data and more time to compute the aggregate values.

11.5 Evaluating Association Rules
Evaluate association rules by using support and confidence.

Minimum support and confidence are used to influence the build of an association model.
Support and confidence are also the primary metrics for evaluating the quality of the rules
generated by the model. Additionally, Oracle Data Mining for SQL supports lift for association
rules. These statistical measures can be used to rank the rules and hence the usefulness of
the predictions.

11.5.1 Support
The support of a rule indicates how frequently the items in the rule occur together. For
example, cereal and milk might appear together in 40% of the transactions. If so, the
following rules each have a support of 40%:

cereal implies milk
milk implies cereal

Support is the ratio of transactions that include all the items in the antecedent and
consequent to the number of total transactions.

Support can be expressed in probability notation as follows:

support(A implies B) = P(A, B)

11.5.2 Minimum Support Count
Minimum support count defines minimum threshold in transactions that each rule must
satisfy.

When the number of transactions is unknown, the support percentage threshold parameter
can be tricky to set appropriately. For this reason, support can also be expressed as a count
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of transactions, with the greater of the two thresholds being used to filter out infrequent
itemsets. The default is 1 indicating that this criterion is not applied.

Related Topics

• Association Rules
Identifies the pattern of association within the data.

• Oracle Data Mining User’s Guide

• Frequent Itemsets
Learn about frequent itemsets and support.

11.5.3 Confidence
The confidence of a rule indicates the probability of both the antecedent and the
consequent appearing in the same transaction.

Confidence is the conditional probability of the consequent given the antecedent. For
example, cereal appears in 50 transactions; 40 of the 50 might also include milk. The
rule confidence is:

cereal implies milk with 80% confidence

Confidence is the ratio of the rule support to the number of transactions that include
the antecedent.

Confidence can be expressed in probability notation as follows.

confidence (A implies B) = P (B/A), which is equal to P(A, B) / P(A)

Related Topics

• Confidence

• Frequent Itemsets
Learn about frequent itemsets and support.

11.5.4 Reverse Confidence
The Reverse Confidence of a rule is defined as the number of transactions in which
the rule occurs divided by the number of transactions in which the consequent occurs.

Reverse Confidence eliminates rules that occur because the consequent is frequent.
The default is 0.

Related Topics

• Confidence

• Example: Calculating Rules from Frequent Itemsets
Example to calculating rules from frequent itemsets.

• Oracle Data Mining User’s Guide

• Oracle Database PL/SQL Packages and Types Reference
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11.5.5 Lift
Both support and confidence must be used to determine if a rule is valid. However, there are
times when both of these measures may be high, and yet still produce a rule that is not
useful. For example:

Convenience store customers who buy orange juice also buy milk with 
a 75% confidence. 
The combination of milk and orange juice has a support of 30%.

This at first sounds like an excellent rule, and in most cases, it would be. It has high
confidence and high support. However, what if convenience store customers in general buy
milk 90% of the time? In that case, orange juice customers are actually less likely to buy milk
than customers in general.

A third measure is needed to evaluate the quality of the rule. Lift indicates the strength of a
rule over the random co-occurrence of the antecedent and the consequent, given their
individual support. It provides information about the improvement, the increase in probability
of the consequent given the antecedent. Lift is defined as follows.

(Rule Support) /(Support(Antecedent) * Support(Consequent))

This can also be defined as the confidence of the combination of items divided by the support
of the consequent. So in our milk example, assuming that 40% of the customers buy orange
juice, the improvement would be:

30% / (40% * 90%)

which is 0.83 – an improvement of less than 1.

Any rule with an improvement of less than 1 does not indicate a real cross-selling opportunity,
no matter how high its support and confidence, because it actually offers less ability to predict
a purchase than does random chance.

Tip:

Decrease the maximum rule length if you want to decrease the build time for the
model and generate simpler rules.

Tip:

Increase the minimum support if you want to decrease the build time for the model
and generate fewer rules.
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12
CUR Matrix Decomposition

Learn how to use CUR decomposition based algorithm for attribute importance.

• About CUR Matrix Decomposition

• Singular Vectors

• Statistical Leverage Score

• Column (Attribute) Selection and Row Selection

• CUR Matrix Decomposition Algorithm Configuration

12.1 About CUR Matrix Decomposition
CUR Matrix Decomposition is a low-rank matrix decomposition algorithm that is explicitly
expressed in a small number of actual columns and/or actual rows of data matrix.

CUR Matrix Decomposition was developed as an alternative to Singular Value Decomposition
(SVD) and Principal Component Analysis (PCA). CUR Matrix Decomposition selects columns
and rows that exhibit high statistical leverage or large influence from the data matrix. By
implementing the CUR Matrix Decomposition algorithm, a small number of most important
attributes and/or rows can be identified from the original data matrix. Therefore, CUR Matrix
Decomposition is an important tool for exploratory data analysis. CUR Matrix Decomposition
can be applied to a variety of areas and facilitates regression, classification, and clustering.

Related Topics

• Data Preparation for SVD
Oracle Data Mining for SQL implements Singular Value Decomposition (SVD) for
numerical data and categorical data.

12.2 Singular Vectors
Singular Value Decomposition (SVD) is the first step in CUR Matrix Decomposition.

SVD returns left and right singular vectors for calculating column and row leverage scores.
Perform SVD on the following matrix:

A ε Rmxn

The matrix is factorized as follows:

A=UΣVT

where U = [u1 u2...um] and V = [v1 v2...vn] are orthogonal matrices.

Σ is a diagonal m × n matrix with non-negative real numbers σ1,...,σρ on the diagonal,
where ρ = min {m,n} and σξ is the ξth singular value of A.
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Let uξ and vξ be the ξth left and right singular vector of A, the jth column of A can thus
be approximated by the top k singular vectors and corresponding singular values as:

where vξ
j is the jth coordinate of the ξth right singular vector.

12.3 Statistical Leverage Score
Leverage scores are statistics that determine which column (or rows) are most
representative with respect to a rank subspace of a matrix. The statistical leverage
scores represent the column (or attribute) and row importance.

The normalized statistical leverage scores for all columns are computed from the top k
right singular vectors as follows:

where k is called rank parameter and j = 1,...,n. Given that πj>=0 and

, these scores form a probability distribution over the n columns.

Similarly, the normalized statistical leverage scores for all rows are computed from the
top k left singular vectors as:

where i = 1,...,m.

12.4 Column (Attribute) Selection and Row Selection
The CUR matrix decomposition in OML4SQL is designed for attribute and/or row
importance. It returns attributes and rows with high importance that are ranked by their
leverage (importance) scores. Column (Attribute) selection and row selection is the
final stage in CUR Matrix Decomposition.
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Attribute selection: Selects attributes with high leverage scores and reports their names,
scores (as importance) and ranks (by importance).

Row selection: Selects rows with high leverage scores and reports their names, scores (as
importance) and ranks (by importance).

1. CUR Matrix Decomposition first selects the jth column (or attribute) of A with probability
pj= min {1,cπj} for all j ε {1,...,n}

2. If users enable row selection, select ith row of A with probability pˊi = min {1,rπˊi} for
all i ε {1,...,m}

3. Report the name (or ID) and leverage score (as importance) for all selected attributes (if
row importance is disabled) or for all selected attributes and rows (if row importance is
enabled).

c is the approximated (or expected) number of columns that users want to select, and r is the
approximated (or expected) number of rows that users want to select.

To realize column and row selections, you need to calculate the probability to select each
column and row.

Calculate the probability for each column as follows:

pj = min {1,cπj}
Calculate the probability for each row as follows:

pˊi = min{1, cπˊi}.

A column or row is selected if the probability is greater than some threshold.

12.5 CUR Matrix Decomposition Algorithm Configuration
Configure the CUR Matrix Decomposition algorithm setting to build your model.

Create a model with the algorithm specific settings. Define the algorithm name as
ALGO_CUR_DECOMPOSITION and mining function as ATTRIBUTE_IMPORTANCE.

See Also:

DBMS_DATA_MINING —Algorithm Settings: CUR Matrix Decomposition for a
listing and explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

Row Selection

To use this feature, specify the row importance setting CURS_ROW_IMPORTANCE to
CURS_ROW_IMP_ENABLE.
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Note:

The row selection is performed only when users specify that row importance
is enabled and the CASE_ID column is present.
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13
Decision Tree

Oracle Data Mining for SQL supports Decision Tree as one of the classification algorithms.
This chapter provides an overview of the Decision Tree algorithm.

• About Decision Tree

• Growing a Decision Tree

• Tuning the Decision Tree Algorithm

• Data Preparation for Decision Tree

13.1 About Decision Tree
The Decision Tree algorithm, like Naive Bayes, is based on conditional probabilities. Unlike
Naive Bayes, decision trees generate rules. A rule is a conditional statement that can be
understood by humans and used within a database to identify a set of records.

In some applications of data mining, the reason for predicting one outcome or another may
not be important in evaluating the overall quality of a model. In others, the ability to explain
the reason for a decision can be crucial. For example, a Marketing professional requires
complete descriptions of customer segments to launch a successful marketing campaign.
The Decision Tree algorithm is ideal for this type of application.

Use Decision Tree rules to validate models. If the rules make sense to a subject matter
expert, then this validates the model.

13.1.1 Decision Tree Rules
Introduces decision tree rules.

Oracle Data Mining for SQL supports several algorithms that provide rules. In addition to
decision trees, clustering algorithms provide rules that describe the conditions shared by the
members of a cluster, and association rules provide rules that describe associations between
attributes.

Rules provide model transparency, a window on the inner workings of the model. Rules
show the basis for the model's predictions. Oracle Data Mining for SQL supports a high level
of model transparency. While some algorithms provide rules, all algorithms provide model
details. You can examine model details to determine how the algorithm handles the attributes
internally, including transformations and reverse transformations. Transparency is discussed
in the context of data preparation and in the context of model building in Oracle Data Mining
User’s Guide.

The following figure shows a rule generated by a Decision Tree model. This rule comes from
a decision tree that predicts the probability that customers increase spending if given a loyalty
card. A target value of 0 means not likely to increase spending; 1 means likely to increase
spending.
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Figure 13-1    Sample Decision Tree Rule

The rule shown in the figure represents the conditional statement:

IF 
          (current residence > 3.5 and has college degree and is single) 
THEN
          predicted target value = 0

This rule is a full rule. A surrogate rule is a related attribute that can be used at apply
time if the attribute needed for the split is missing.

Related Topics

• Understanding Reverse Transformations

• Model Detail Views for Decision Tree

• Clustering
Learn how to discover natural groupings in the data through clustering - the
unsupervised data mining technique.

• Association
Learn how to discover association rules through association - an unsupervised
data mining technique.

13.1.1.1 Confidence and Support
Confidence and support are properties of rules. These statistical measures can be
used to rank the rules and hence the predictions.

Support: The number of records in the training data set that satisfy the rule.

Confidence: The likelihood of the predicted outcome, given that the rule has been
satisfied.

For example, consider a list of 1000 customers (1000 cases). Out of all the customers,
100 satisfy a given rule. Of these 100, 75 are likely to increase spending, and 25 are
not likely to increase spending. The support of the rule is 100/1000 (10%). The
confidence of the prediction (likely to increase spending) for the cases that satisfy
the rule is 75/100 (75%).

13.1.2 Advantages of Decision Trees
Learn about the advantages of the Decision Tree algorithm.
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The Decision Tree algorithm produces accurate and interpretable models with relatively little
user intervention. The algorithm can be used for both binary and multiclass classification
problems.

The algorithm is fast, both at build time and apply time. The build process for Decision Tree
supports parallel execution. (Scoring supports parallel execution irrespective of the
algorithm.)

Decision Tree scoring is especially fast. The tree structure, created in the model build, is used
for a series of simple tests, (typically 2-7). Each test is based on a single predictor. It is a
membership test: either IN or NOT IN a list of values (categorical predictor); or LESS THAN
or EQUAL TO some value (numeric predictor).

Related Topics

• Oracle Database VLDB and Partitioning Guide

13.1.3 XML for Decision Tree Models
Learn about generating XML representation of Decision Tree models.

You can generate XML representing a Decision Tree model; the generated XML satisfies the
definition specified in the Data Mining Group Predictive Model Markup Language (PMML)
version 2.1 specification.

Related Topics

• https://dmg.org/

13.2 Growing a Decision Tree
Predict a target value by a sequence of questions to form or grow a decision tree. A sample
here shows how to grow a decision tree.

A decision tree predicts a target value by asking a sequence of questions. At a given stage in
the sequence, the question that is asked depends upon the answers to the previous
questions. The goal is to ask questions that, taken together, uniquely identify specific target
values. Graphically, this process forms a tree structure.
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Figure 13-2    Sample Decision Tree
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The figure is a decision tree with nine nodes (and nine corresponding rules). The
target attribute is binary: 1 if the customer increases spending, 0 if the customer does
not increase spending. The first split in the tree is based on the CUST_MARITAL_STATUS
attribute. The root of the tree (node 0) is split into nodes 1 and 3. Married customers
are in node 1; single customers are in node 3.

The rule associated with node 1 is:

Node 1 recordCount=712,0 Count=382, 1 Count=330
CUST_MARITAL_STATUS isIN  "Married",surrogate:HOUSEHOLD_SIZE isIn "3""4-5"

Node 1 has 712 records (cases). In all 712 cases, the CUST_MARITAL_STATUS attribute
indicates that the customer is married. Of these, 382 have a target of 0 (not likely to
increase spending), and 330 have a target of 1 (likely to increase spending).

13.2.1 Splitting
During the training process, the Decision Tree algorithm must repeatedly find the most
efficient way to split a set of cases (records) into two child nodes. Oracle Data Mining
offers two homogeneity metrics, gini and entropy, for calculating the splits. The
default metric is gini.

Homogeneity metrics asses the quality of alternative split conditions and select the
one that results in the most homogeneous child nodes. Homogeneity is also called
purity; it refers to the degree to which the resulting child nodes are made up of cases
with the same target value. The objective is to maximize the purity in the child nodes.
For example, if the target can be either yes or no (does or does not increase
spending), the objective is to produce nodes where most of the cases either increase
spending or most of the cases do not increase spending.
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13.2.2 Cost Matrix
Learn about a cost matrix for the Decision Tree algorithm.

All classification algorithms, including Decision Tree, support a cost-benefit matrix at apply
time. You can use the same cost matrix for building and scoring a decision tree model, or you
can specify a different cost/benefit matrix for scoring.

Related Topics

• Costs

• Priors and Class Weights
Learn about Priors and Class Weights in a classification model to produce a useful result.

13.2.3 Preventing Over-Fitting
Understand over-fitting in trees and what can you do to resolve over-fitting.

In principle, the Decision Tree algorithm can grow each branch of the tree deeply enough to
perfectly classify the training examples. While this is sometimes a reasonable strategy, in fact
it can lead to difficulties when there is noise in the data, or when the number of training
examples is too small to produce a representative sample of the true target function. In either
of these cases, this simple algorithm can produce trees that over-fit the training examples.
Over-fit is a condition where a model is able to accurately predict the data used to create the
model, but does poorly on new data presented to it.

To prevent over-fitting, Oracle Data Mining for SQL supports automatic pruning and
configurable limit conditions that control tree growth. Limit conditions prevent further splits
once the conditions have been satisfied. Pruning removes branches that have insignificant
predictive power.

13.3 Tuning the Decision Tree Algorithm
Fine tune the Decision Tree algorithm with various parameters.

The Decision Tree algorithm is implemented with reasonable defaults for splitting and
termination criteria. However several build settings are available for fine tuning.

You can specify a homogeneity metric for finding the optimal split condition for a tree. The
default metric is gini. The entropy metric is also available.

Settings for controlling the growth of the tree are also available. You can specify the
maximum depth of the tree, the minimum number of cases required in a child node, the
minimum number of cases required in a node in order for a further split to be possible, the
minimum number of cases in a child node, and the minimum number of cases required in a
node in order for a further split to be possible.

Note:

The term hyperparameter is also interchangeably used for model setting.
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The training data attributes are binned as part of the algorithm's data preparation. You
can alter the number of bins used by the binning step. There is a trade-off between the
number of bins used and the time required for the build.

See Also:

DBMS_DATA_MINING —Algorithm Settings: Decision Tree for a listing and
description of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

13.4 Data Preparation for Decision Tree
The Decision Tree algorithm manages its own data preparation internally. It does not
require pretreatment of the data.

Decision Tree is not affected by Automatic Data Preparation (ADP).

Related Topics

• Prepare the Data
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14
Expectation Maximization

Learn how to use expectation maximization clustering algorithm.

• About Expectation Maximization

• Algorithm Enhancements

• Configuring the Algorithm

• Data Preparation for Expectation Maximization

14.1 About Expectation Maximization
Expectation maximization (EM) estimation of mixture models is a popular probability density
estimation technique that is used in a variety of applications.

Oracle Data Mining for SQL uses EM to implement a distribution-based clustering algorithm
(EM-clustering).

14.1.1 Expectation Step and Maximization Step
The two steps to compute the likelihood of the current model and to maximize the likelihood
defines the algorithm.

Expectation maximization is an iterative method. It starts with an initial parameter guess. The
parameter values are used to compute the likelihood of the current model. This is the
Expectation step. The parameter values are then recomputed to maximize the likelihood. This
is the Maximization step. The new parameter estimates are used to compute a new
expectation and then they are optimized again to maximize the likelihood. This iterative
process continues until model convergence.

14.1.2 Probability Density Estimation
Compute reliable cluster assignment using probability density.

In density estimation, the goal is to construct a density function that captures how a given
population is distributed. In probability density estimation, the density estimate is based on
observed data that represents a sample of the population. Areas of high data density in the
model correspond to the peaks of the underlying distribution.

Density-based clustering is conceptually different from distance-based clustering (for example
k-Means) where emphasis is placed on minimizing inter-cluster and maximizing the intra-
cluster distances. Due to its probabilistic nature, density-based clustering can compute
reliable probabilities in cluster assignment. It can also handle missing values automatically.

14.2 Algorithm Enhancements
Expectation Maximization (EM) is enhanced to resolve some challenges in it's standard form.
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Although EM is well established as a distribution-based clustering algorithm, it
presents some challenges in its standard form. The Oracle Data Mining for SQL
implementation includes significant enhancements, such as scalable processing of
large volumes of data and automatic parameter initialization. The strategies that
Oracle Data Mining uses to address the inherent limitations of EM clustering are
described further.

Note:

The EM abbreviation is used here to refer to EM-clustering.

Limitations of Standard Expectation Maximization:

• Scalability: EM has linear scalability with the number of records and attributes. The
number of iterations to convergence tends to increase with growing data size (both
rows and columns). EM convergence can be slow for complex problems and can
place a significant load on computational resources.

• High dimensionality: EM has limited capacity for modeling high dimensional (wide)
data. The presence of many attributes slows down model convergence, and the
algorithm becomes less able to distinguish between meaningful attributes and
noise. The algorithm is thus compromised in its ability to find correlations.

• Number of components: EM typically requires the user to specify the number of
components. In most cases, this is not information that the user can know in
advance.

• Parameter initialization: The choice of appropriate initial parameter values can
have a significant effect on the quality of the model. Initialization strategies that
have been used for EM have generally been computationally expensive.

• From components to clusters: EM model components are often treated as
clusters. This approach can be misleading since cohesive clusters are often
modeled by multiple components. Clusters that have a complex shape need to be
modeled by multiple components.

14.2.1 Scalability
Expectation Maximization (EM) in Oracle Data Mining, uses database parallel
processing to achieve excellent scalability.

The Oracle Data Mining implementation of Expectation Maximization (EM) uses
database parallel processing to achieve excellent scalability. EM computations
naturally lend themselves to row parallel processing, and the partial results are easily
aggregated. The parallel implementation efficiently distributes the computationally
intensive work across slave processes and then combines the partial results to
produce the final solution.

Related Topics

• Oracle Database VLDB and Partitioning Guide

14.2.2 High Dimensionality
Process high dimensional data through Expectation Maximization.
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The Oracle Data Mining for SQL implementation of Expectation Maximization (EM) can
efficiently process high-dimensional data with thousands of attributes. This is achieved
through a two-fold process:

• The data space of single-column (not nested) attributes is analyzed for pair-wise
correlations. Only attributes that are significantly correlated with other attributes are
included in the EM mixture model. The algorithm can also be configured to restrict the
dimensionality to the M most correlated attributes.

• High-dimensional (nested) numerical data that measures events of similar type is
projected into a set of low-dimensional features that are modeled by EM. Some examples
of high-dimensional, numerical data are: text, recommendations, gene expressions, and
market basket data.

14.2.3 Number of Components
The number of EM components are automatically determined.

Typical implementations of Expectation Maximization (EM) require the user to specify the
number of model components. This is problematic because users do not generally know the
correct number of components. Choosing too many or too few components can lead to over-
fitting or under-fitting, respectively.

When model search is enabled, the number of EM components is automatically determined.
The algorithm uses a held-aside sample to determine the correct number of components,
except in the cases of very small data sets when Bayesian Information Criterion (BIC)
regularization is used.

14.2.4 Parameter Initialization
Choosing appropriate initial parameter values can have a significant effect on the quality of
the solution.

Expectation maximization (EM) is not guaranteed to converge to the global maximum of the
likelihood function but may instead converge to a local maximum. Therefore different initial
parameter values can lead to different model parameters and different model quality.

In the process of model search, the EM model is grown independently. As new components
are added, their parameters are initialized to areas with poor distribution fit.

14.2.5 From Components to Clusters
Expectation Maximization produces assignment of model components to high-level clusters.

Expectation Maximization (EM) model components are often treated as clusters. However,
this approach can be misleading. Cohesive clusters are often modeled by multiple
components. The shape of the probability density function used in EM effectively
predetermines the shape of the identified clusters. For example, Gaussian density functions
can identify single peak symmetric clusters. Clusters of more complex shape need to be
modeled by multiple components.

Ideally, high density areas of arbitrary shape must be interpreted as single clusters. To
accomplish this, the Oracle Data Mining for SQL implementation of EM builds a component
hierarchy that is based on the overlap of the individual components' distributions. Oracle Data
Mining EM uses agglomerative hierarchical clustering. Component distribution overlap is
measured using the Bhattacharyya distance function. Choosing an appropriate cutoff level in
the hierarchy automatically determines the number of high-level clusters.
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The Oracle Data Mining implementation of EM produces an assignment of the model
components to high-level clusters. Statistics like means, variances, modes,
histograms, and rules additionally describe the high-level clusters. The algorithm can
be configured to either produce clustering assignments at the component level or at
the cluster level.

14.3 Configuring the Algorithm
Configure Expectation Maximization (EM).

In Oracle Data Mining for SQL, EM can effectively model very large data sets (both
rows and columns) without requiring the user to supply initialization parameters or
specify the number of model components. While the algorithm offers reasonable
defaults, it also offers flexibility.

The following list describes some of the configurable aspects of EM:

• Whether or not independent non-nested column attributes are included in the
model. The choice is system-determined by default.

• Whether to use Bernoulli or Gaussian distribution for numerical attributes. By
default, the algorithm chooses the most appropriate distribution, and individual
attributes may use different distributions. When the distribution is user-specified, it
is used for all numerical attributes.

• Whether the convergence criterion is based on a held-aside data set or on
Bayesian Information Criterion (BIC). The convergence criterion is system-
determined by default.

• The percentage improvement in the value of the log likelihood function that is
required to add a new component to the model. The default percentage is 0.001.

• Whether to define clusters as individual components or groups of components.
Clusters are associated to groups of components by default.

• The maximum number of components in the model. If model search is enabled,
the algorithm determines the number of components based on improvements in
the likelihood function or based on regularization (BIC), up to the specified
maximum.

• Whether the linkage function for the agglomerative clustering step uses the
nearest distance within the branch (single linkage), the average distance within the
branch (average linkage), or the maximum distance within the branch (complete
linkage). By default the algorithm uses single linkage.

See Also:

DBMS_DATA_MINING —Algorithm Settings: Expectation Maximization for a
listing and explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.
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Related Topics

• DBMS_DATA_MINING - Global Settings

14.4 Data Preparation for Expectation Maximization
Learn how to prepare data for Expectation Maximization (EM).

If you use Automatic Data Preparation (ADP), you do not need to specify additional data
preparation for Expectation Maximization. ADP normalizes numerical attributes (in non-
nested columns) when they are modeled with Gaussian distributions. ADP applies a topN
binning transformation to categorical attributes.

Missing value treatment is not needed since Oracle Data Mining for SQL algorithms handle
missing values automatically. The EM algorithm replaces missing values with the mean in
single-column numerical attributes that are modeled with Gaussian distributions. In other
single-column attributes (categoricals and numericals modeled with Bernoulli distributions),
NULLs are not replaced; they are treated as a distinct value with its own frequency count. In
nested columns, missing values are treated as zeros.

Related Topics

• Oracle Data Mining User’s Guide
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15
Explicit Semantic Analysis

Learn how to use Explicit Semantic Analysis (ESA) as an unsupervised algorithm for feature
extraction function and as a supervised algorithm for classification.

• About Explicit Semantic Analysis

• Data Preparation for ESA

• Scoring with ESA

• Terminologies in Explicit Semantic Analysis

15.1 About Explicit Semantic Analysis
In Oracle database 12c Release 2, Explicit Semantic Analysis (ESA) was introduced as an
unsupervised algorithm used by Oracle Data Mining for Feature Extraction. Starting from
Oracle Database 18c, ESA is enhanced as a supervised algorithm for Classification.

As a Feature Extraction algorithm, ESA does not discover latent features but instead uses
explicit features represented in an existing knowledge base. As a Feature Extraction
algorithm, ESA is mainly used for calculating semantic similarity of text documents and for
explicit topic modeling. As a Classification algorithm, ESA is primarily used for categorizing
text documents. Both the Feature Extraction and Classification versions of ESA can be
applied to numeric and categorical input data as well.

The input to ESA is a set of attributes vectors. Every attribute vector is associated with a
concept. The concept is a feature in the case of Feature Extraction or a target class in the
case of Classification. For Feature Extraction, only one attribute vector may be associated
with any feature. For Classification, the training set may contain multiple attribute vectors
associated with any given target class. These rows related to one target class are aggregated
into one by the ESA algorithm.

The output of ESA is a sparse attribute-concept matrix that contains the most important
attribute-concept associations. The strength of the association is captured by the weight
value of each attribute-concept pair. The attribute-concept matrix is stored as a reverse index
that lists the most important concepts for each attribute.

Note:

For Feature Extraction the ESA algorithm does not project the original feature
space and does not reduce its dimensionality. ESA algorithm filters out features with
limited or uninformative set of attributes.

The scope of Classification tasks that ESA handles is different than the Classification
algorithms such as Naive Bayes and Support Vector Machines. ESA can perform large scale
Classification with the number of distinct classes up to hundreds of thousands. The large
scale classification requires gigantic training data sets with some classes having significant
number of training samples whereas others are sparsely represented in the training data set.
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15.1.1 Scoring with ESA
Learn to score with Explicit Semantic Analysis (ESA).

A typical Feature Extraction application of ESA is to identify the most relevant features
of a given input and score their relevance. Scoring an ESA model produces data
projections in the concept feature space. If an ESA model is built from an arbitrary
collection of documents, then each one is treated as a feature. It is then easy to
identify the most relevant documents in the collection. The feature extraction functions
are: FEATURE_DETAILS, FEATURE_ID, FEATURE_SET, FEATURE_VALUE, and
FEATURE_COMPARE.

A typical Classification application of ESA is to predict classes of a given document
and estimate the probabilities of the predictions. As a Classification algorithm, ESA
implements the following scoring functions: PREDICTION, PREDICTION_PROBABILITY,
PREDICTION_SET, PREDICTION_DETAILS, PREDICTION_COST.

Related Topics

• Oracle Data Mining User’s Guide

• Oracle Database SQL Language Reference

15.1.2 Scoring Large ESA Models
Building an Explicit Semantic Analysis (ESA) model on a large collection of text
documents can result in a model with many features or titles.

The model information for scoring is loaded into System Global Area (SGA) as a
shared (shared pool size) library cache object. Different SQL predictive queries can
reference this object. When the model size is large, it is necessary to set the SGA
parameter in the database to a sufficient size that accommodates large objects. If the
SGA is too small, the model may need to be re-loaded every time it is referenced
which is likely to lead to performance degradation.

15.2 ESA for Text Mining
Learn how Explicit Semantic Analysis (ESA) can be used for Text mining.

Explicit knowledge often exists in text form. Multiple knowledge bases are available as
collections of text documents. These knowledge bases can be generic, for example,
Wikipedia, or domain-specific. Data preparation transforms the text into vectors that
capture attribute-concept associations. ESA is able to quantify semantic relatedness of
documents even if they do not have any words in common. The function
FEATURE_COMPARE can be used to compute semantic relatedness.

Related Topics

• Oracle Database SQL Language Reference

15.3 Data Preparation for ESA
Automatic Data Preparation normalizes input vectors to a unit length for Explicit
Semantic Analysis (ESA).

Chapter 15
ESA for Text Mining

15-2



When there are missing values in columns with simple data types (not nested), ESA replaces
missing categorical values with the mode and missing numerical values with the mean. When
there are missing values in nested columns, ESA interprets them as sparse. The algorithm
replaces sparse numeric data with zeros and sparse categorical data with zero vectors. The
Oracle Data Mining for SQL data preparation transforms the input text into a vector of real
numbers. These numbers represent the importance of the respective words in the text.

See Also:

DBMS_DATA_MINING —Algorithm Settings: Explicit Semantic Analysis for a listing
and explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

15.4 Terminologies in Explicit Semantic Analysis
Discusses the terms associated with Explicit Semantic Analysis (ESA).

Multi-target Classification

The training items in these large scale classifications belong to several classes. The goal of
classification in such case is to detect possible multiple target classes for one item. This kind
of classification is called multi-target classification. The target column for ESA-based
classification is extended. Collections are allowed as target column values. The collection
type for the target in ESA-based classification is ORA_MINING_VARCHAR2_NT.

Large-scale classification

Large-scale classification applies to ontologies that contain gigantic numbers of categories,
usually ranging in tens or hundreds of thousands. This large-scale classification also requires
gigantic training datasets which are usually unbalanced, that is, some classes may have
significant number of training samples whereas others may be sparsely represented in the
training dataset. Large-scale classification normally results in multiple target class
assignments for a given test case.

Topic modeling

Topic modelling refers to derivation of the most important topics of a document. Topic
modeling can be explicit or latent. Explicit topic modeling results in the selection of the most
relevant topics from a pre-defined set, for a given document. Explicit topics have names and
can be verbalized. Latent topic modeling identifies a set of latent topics characteristic for a
collection of documents. A subset of these latent topics is associated with every document
under examination. Latent topics do not have verbal descriptions or meaningful interpretation.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference
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16
Exponential Smoothing

Learn about the Exponential Smoothing algorithm.

• About Exponential Smoothing

• Data Preparation for Exponential Smoothing Models

16.1 About Exponential Smoothing
Exponential smoothing is a forecasting method for time-series data. It is a moving average
method where exponentially decreasing weights are assigned to past observations.

Exponential smoothing methods have been widely used in forecasting for over half a century.
It has applications at the strategic, tactical, and operation level. For example, at a strategic
level, forecasting is used for projecting return on investment, growth and the effect of
innovations. At a tactical level, forecasting is used for projecting costs, inventory
requirements, and customer satisfaction. At an operational level, forecasting is used for
setting targets and predicting quality and conformance with standards.

In its simplest form, exponential smoothing is a moving average method with a single
parameter which models an exponentially decreasing effect of past levels on future values.
With a variety of extensions, exponential smoothing covers a broader class of models than
competitors, such as the Box-Jenkins auto-regressive integrated moving average (ARIMA)
approach. Oracle Data Mining for SQL implements exponential smoothing using a state of
the art state space method that incorporates a single source of error (SSOE) assumption
which provides theoretical and performance advantages.

Exponential smoothing is extended to the following:

• A matrix of models that mix and match error type (additive or multiplicative), trend
(additive, multiplicative, or none), and seasonality (additive, multiplicative, or none)

• Models with damped trends.

• Models that directly handle irregular time series and time series with missing values.

Note:

For more information, see Ord, J.K., et al, Time Series Forecasting: The Case for
the Single Source of Error State Space Approach, Working Paper, Department of
Econometrics and Business Statistics, Monash University, VIC 3800, Australia, April
2, 2005.

16.1.1 Exponential Smoothing Models
Exponential Smoothing models are a broad class of forecasting models that are intuitive,
flexible, and extensible.
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Members of this class include simple, single parameter models that predict the future
as a linear combination of a previous level and a current shock. Extensions can
include parameters for linear or non-linear trend, trend damping, simple or complex
seasonality, related series, various forms of non-linearity in the forecasting equations,
and handling of irregular time series.

Exponential smoothing assumes that a series extends infinitely into the past, but that
influence of past on future, decays smoothly and exponentially fast. The smooth rate
of decay is expressed by one or more smoothing constants. The smoothing
constants are parameters that the model estimates. The assumption is made
practical for modeling real world data by using an equivalent recursive formulation that
is only expressed in terms of an estimate of the current level based on prior history
and a shock to that estimate dependent on current conditions only.The procedure
requires an estimate for the time period just prior to the first observation, that
encapsulates all prior history. This initial observation is an additional model parameter
whose value is estimated by the modeling procedure.

Components of ESM such as trend and seasonality extensions, can have an additive
or multiplicative form. The simpler additive models assume that shock, trend, and
seasonality are linear effects within the recursive formulation.

16.1.2 Simple Exponential Smoothing
Simple exponential smoothing assumes the data fluctuates around a stationary mean,
with no trend or seasonal pattern.

In a simple Exponential Smoothing model, each forecast (smoothed value) is
computed as the weighted average of the previous observations, where the weights
decrease exponentially depending on the value of smoothing constant α. Values of the
smoothing constant, α, near one, put almost all weight on the most recent
observations. Values of α near zero allows the distant past observations to have a
large influence.

16.1.3 Models with Trend but No Seasonality
The preferred form of additive (linear) trend is sometimes called Holt’s method or
double exponential smoothing.

Models with trend add a smoothing parameter γ and optionally a damping parameter
φ. The damping parameter smoothly dampens the influence of past linear trend on
future estimates of level, often improving accuracy.

16.1.4 Models with Seasonality but No Trend
When the time series average does not change over time (stationary), but is subject to
seasonal fluctuations, the appropriate model has seasonal parameters but no trend.

Seasonal fluctuations are assumed to balance out over periods of length m, where m
is the number of seasons, For example, m=4 might be used when the input data are
aggregated quarterly. For models with additive errors, the seasonal parameters must
sum to zero. For models with multiplicative errors, the product of seasonal parameters
must be one.

Chapter 16
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16.1.5 Models with Trend and Seasonality
Holt and Winters introduced both trend and seasonality in an Exponential Smoothing model.

The original model, also known as Holt-Winters or triple exponential smoothing, considered
an additive trend and multiplicative seasonality. Extensions include models with various
combinations of additive and multiplicative trend, seasonality and error, with and without trend
damping.

16.1.6 Prediction Intervals
To compute prediction intervals, an Exponential Smoothing (ESM) model is divided into three
classes.

The simplest class is the class of linear models, which include, among others, simple ESM,
Holt’s method, and additive Holt-Winters. Class 2 models (multiplicative error, additive
components) make an approximate correction for violations of the Normality assumption.
Class 3 modes use a simple simulation approach to calculate prediction intervals.

16.2 Data Preparation for Exponential Smoothing Models
Learn about preparing the data for an Exponential Smoothing (ESM) model.

To build an ESM model, you must supply the following :

• Input data

• An aggregation level and method, if the case id is a date type

• Partitioning column, if the data are partitioned

In addition, for a greater control over the build process, the user may optionally specify model
build parameters, all of which have defaults:

• Model

• Error type

• Optimization criterion

• Forecast Window

• Confidence level for forecast bounds

• Missing value handling

• Whether the input series is evenly spaced

Related Topics

• Oracle Data Mining User’s Guide

Chapter 16
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See Also:

DBMS_DATA_MINING —Algorithm Settings: Exponential Smoothing Models
for a listing and explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

16.2.1 Input Data
Time series analysis, requires ordered input data. Hence, each data row must consist
of an [index, value] pair, where the index specifies the ordering.

When the CREATE_MODEL procedure is used to initiate an Exponential Smoothing (ESM)
model build, the CASE_ID_COLUMN_NAME specifies the column used to compute the
indices of the input and the TARGET_COLUMN_NAME specifies the column used to
compute the observed time series values. The time column bears Oracle number, or
Oracle date, timestamp, timestamp with time zone, or timestamp with local time zone.
The input time series are sorted according to the values of CASE_ID (time label). The
case id column cannot contain missing values. The value column can contain missing
values indicated as NULL. ESM also supports partitioned models and in such cases,
the input table contains an extra column specifying the partition. All [index, value] pairs
with the same partition ID form one complete time series. The Exponential Smoothing
algorithm constructs models for each partition independently, although all models use
the same model settings.

Properties of the data can result in a warning message or settings are ignored.
Settings are ignored when If the user specifies a model with either multiplicative trend,
multiplicative seasonality or both and the data contains values Yt<= 0, then the model
type is set to the default. If the series contain fewer values than the number of user-
specified seasons, then the seasonality specifications are ignored with a warning.

16.2.2 Accumulation
For the Exponential Smoothing algorithm, the accumulation procedure is applied when
the column is a date type (date, datetime, timestamp, timestamp with timezone, or
timestamp with local timezone).

The case id can be a NUMBER column whose sort index represents the position of the
value in the time series sequence of values. The case id column can also be a date
type. A date type is accumulated in accordance with a user specified accumulation
window. Regardless of type, the case id is used to transform the column into an
equally spaced time series. No accumulation is applied for a case id of type NUMBER. As
an example, consider a time series about promotion events. The time column contains
the date of each event, and the dates can be unequally spaced. The user must specify
the spacing interval, which is the spacing of the accumulated or transformed equally
spaced time series. In the example, if the user specifies the interval to be month, then
an equally spaced time series with profit for each calendar month is generated from
the original time series. Setting EXSM_INTERVAL is used to specify the spacing interval.

Chapter 16
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The user must also specify a value for EXSM_ACCUMULATE, for example, EXSM_ACCU_MAX, in
which case the equally spaced monthly series would contain the maximum profit over all
events that month as the observed time series value.

16.2.3 Missing Value
Input time series can contain missing values. A NULL entry in the target column indicates a
missing value. When the time column is of the type datetime, the accumulation procedure
can also introduce missing values. The setting EXSM_SETMISSING can be used to specify how
to handle missing values. The special value EXSM_MISS_AUTO indicates that, if the series
contains missing values it is to be treated as an irregular time series.

Note:

Missing value handling setting must be compatible with model setting, otherwise an
error is thrown.

16.2.4 Prediction
An Exponential Smoothing (ESM) model can be applied to make predictions by specifying the
prediction window.

Setting EXSM_PREDICTION_STEP can be used to specify the prediction window. The prediction
window is expressed in terms of number of intervals (setting EXSM_INTERVAL), when the time
column is of the type datetime. If the time column is a number then the prediction window is
the number of steps to forecast. Regardless of whether the time series is regular or irregular,
EXSM_PREDICTION_STEP specifies the prediction window.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

16.2.5 Parallellism by Partition
Oracle Data Mining for SQL supports parallellism by partition.

For example, a user can choose PRODUCT_ID as one partition column and can generate
forecasts for different products in a model build. Although a distinct smoothing model is built
for each partition, all partitions share the same model settings. For example, if setting
EXSM_MODEL is set to EXSM_SIMPLE, all partition models will be simple Exponential Smoothing
models. Time series from different partitions can be distributed to different processes and
processed in parallel. The model for each time series is built serially.

Chapter 16
Data Preparation for Exponential Smoothing Models

16-5



17
Generalized Linear Model

Learn how to use Generalized Linear Model (GLM) statistical technique for linear modeling.

Oracle Data Mining for SQL supports GLM for regression and binary classification.

• About Generalized Linear Models

• GLM in Oracle Data Mining for SQL

• Scalable Feature Selection

• Tuning and Diagnostics for GLM

• GLM Solvers

• Data Preparation for GLM

• Linear Regression

• Logistic Regression

17.1 About Generalized Linear Models
Introduces Generalized Linear Models (GLM).

GLM include and extend the class of linear models.

Linear models make a set of restrictive assumptions, most importantly, that the target
(dependent variable y) is normally distributed conditioned on the value of predictors with a
constant variance regardless of the predicted response value. The advantage of linear
models and their restrictions include computational simplicity, an interpretable model form,
and the ability to compute certain diagnostic information about the quality of the fit.

Generalized linear models relax these restrictions, which are often violated in practice. For
example, binary (yes/no or 0/1) responses do not have same variance across classes.
Furthermore, the sum of terms in a linear model typically can have very large ranges
encompassing very negative and very positive values. For the binary response example, we
would like the response to be a probability in the range [0,1].

Generalized linear models accommodate responses that violate the linear model
assumptions through two mechanisms: a link function and a variance function. The link
function transforms the target range to potentially -infinity to +infinity so that the simple form
of linear models can be maintained. The variance function expresses the variance as a
function of the predicted response, thereby accommodating responses with non-constant
variances (such as the binary responses).

Oracle Data Mining includes two of the most popular members of the GLM family of models
with their most popular link and variance functions:

• Linear regression with the identity link and variance function equal to the constant 1
(constant variance over the range of response values).

• Logistic regression with the logit link and binomial variance functions.
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Related Topics

• Linear Regression

• Linear Regression

• Logistic Regression

17.2 GLM in Oracle Data Mining for SQL
Learn how Oracle Data Mining for SQL implements the Generalized Linear Model
(GLM) algorithm.

GLM is a parametric modeling technique. Parametric models make assumptions about
the distribution of the data. When the assumptions are met, parametric models can be
more efficient than non-parametric models.

The challenge in developing models of this type involves assessing the extent to which
the assumptions are met. For this reason, quality diagnostics are key to developing
quality parametric models.

17.2.1 Interpretability and Transparency
Learn how to interpret, and understand data transparency through model details and
global details.

Oracle Data Mining Generalized Linear Models (GLM) are easy to interpret. Each
model build generates many statistics and diagnostics. Transparency is also a key
feature: model details describe key characteristics of the coefficients, and global
details provide high-level statistics.

Related Topics

• Tuning and Diagnostics for GLM

17.2.2 Wide Data
Generalized Linear Model(GLM) in Oracle Data Mining for SQL is uniquely suited for
handling wide data. The algorithm can build and score quality models that use a
virtually limitless number of predictors (attributes). The only constraints are those
imposed by system resources.

17.2.3 Confidence Bounds
Predict confidence bounds through the Generalized Linear Model (GLM) algorithm.

GLM have the ability to predict confidence bounds. In addition to predicting a best
estimate and a probability (classification only) for each row, GLM identifies an interval
wherein the prediction (regression) or probability (classification) lies. The width of the
interval depends upon the precision of the model and a user-specified confidence
level.

The confidence level is a measure of how sure the model is that the true value lies
within a confidence interval computed by the model. A popular choice for confidence
level is 95%. For example, a model might predict that an employee's income is $125K,
and that you can be 95% sure that it lies between $90K and $160K. Oracle Data
Mining for SQL supports 95% confidence by default, but that value can be configured.

Chapter 17
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Note:

Confidence bounds are returned with the coefficient statistics. You can also use the
PREDICTION_BOUNDS SQL function to obtain the confidence bounds of a model
prediction.

Related Topics

• Oracle Database SQL Language Reference

17.2.4 Ridge Regression
Understand the use of Ridge regression for singularity (exact multicollinearity) in data.

The best regression models are those in which the predictors correlate highly with the target,
but there is very little correlation between the predictors themselves. Multicollinearity is the
term used to describe multivariate regression with correlated predictors.

Ridge regression is a technique that compensates for multicollinearity. Oracle Data Mining
supports ridge regression for both Regression and Classification mining techniques. The
algorithm automatically uses ridge if it detects singularity (exact multicollinearity) in the data.

Information about singularity is returned in the global model details.

Related Topics

• Global Model Statistics for Linear Regression

• Global Model Statistics for Logistic Regression

17.2.4.1 Configuring Ridge Regression
Configure ridge regression through build settings.

You can choose to explicitly enable ridge regression by specifying a build setting for the
model. If you explicitly enable ridge, you can use the system-generated ridge parameter or
you can supply your own. If ridge is used automatically, the ridge parameter is also calculated
automatically.

The configuration choices are summarized as follows:

• Whether or not to override the automatic choice made by the algorithm regarding ridge
regression

• The value of the ridge parameter, used only if you specifically enable ridge regression.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Chapter 17
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Note:

The term hyperparameter is also interchangeably used for model setting.

17.2.4.2 Ridge and Confidence Bounds
Models built with ridge regression do not support confidence bounds.

Related Topics

• Confidence Bounds
Predict confidence bounds through the Generalized Linear Model (GLM)
algorithm.

17.2.4.3 Ridge and Data Preparation
Learn about preparing data for ridge regression.

When ridge regression is enabled, different data preparation is likely to produce
different results in terms of model coefficients and diagnostics. Oracle recommends
that you enable Automatic Data Preparation for Generalized Linear Model models,
especially when ridge regression is used.

Related Topics

• Data Preparation for GLM
Learn about preparing data for the Generalized Linear Model (GLM) algorithm.

17.3 Scalable Feature Selection
Oracle Data Mining supports a highly scalable and automated version of feature
selection and generation for Generalized Linear Models. This capability can enhance
the performance of the algorithm and improve accuracy and interpretability. Feature
selection and generation are available for both Linear Regression and binary Logistic
Regression.

17.3.1 Feature Selection
Feature selection is the process of choosing the terms to be included in the model.
The fewer terms in the model, the easier it is for human beings to interpret its
meaning. In addition, some columns may not be relevant to the value that the model is
trying to predict. Removing such columns can enhance model accuracy.

17.3.1.1 Configuring Feature Selection
Feature selection is a build setting for Generalized Linear Model models. It is not
enabled by default. When configured for feature selection, the algorithm automatically
determines appropriate default behavior, but the following configuration options are
available:

• The feature selection criteria can be AIC, SBIC, RIC, or α-investing. When the
feature selection criteria is α-investing, feature acceptance can be either strict or
relaxed.

Chapter 17
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• The maximum number of features can be specified.

• Features can be pruned in the final model. Pruning is based on t-statistics for linear
regression or wald statistics for logistic regression.

17.3.1.2 Feature Selection and Ridge Regression
Feature selection and ridge regression are mutually exclusive. When feature selection is
enabled, the algorithm can not use ridge.

Note:

If you configure the model to use both feature selection and ridge regression, then
you get an error.

17.3.2 Feature Generation
Feature generation is the process of adding transformations of terms into the model. Feature
generation enhances the power of models to fit more complex relationships between target
and predictors.

17.3.2.1 Configuring Feature Generation
Learn about configuring feature generation.

Feature generation is only possible when feature selection is enabled. Feature generation is
a build setting. By default, feature generation is not enabled.

The feature generation method can be either quadratic or cubic. By default, the algorithm
chooses the appropriate method. You can also explicitly specify the feature generation
method.

The following options for feature selection also affect feature generation:

• Maximum number of features

• Model pruning

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

17.4 Tuning and Diagnostics for GLM
The process of developing a Generalized Linear Model model typically involves a number of
model builds. Each build generates many statistics that you can evaluate to determine the
quality of your model. Depending on these diagnostics, you may want to try changing the
model settings or making other modifications.

17.4.1 Build Settings
Specify the build settings for Generalized Linear Model (GLM).

You can use specify build settings.

Chapter 17
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Additional build settings are available to:

• Control the use of ridge regression.

• Specify the handling of missing values in the training data.

• Specify the target value to be used as a reference in a logistic regression model.

See Also:

DBMS_DATA_MINING —Algorithm Settings: Generalized Linear Models for
a listing and explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

Related Topics

• Ridge Regression
Understand the use of Ridge regression for singularity (exact multicollinearity) in
data.

• Data Preparation for GLM
Learn about preparing data for the Generalized Linear Model (GLM) algorithm.

• Logistic Regression

17.4.2 Diagnostics
A Generalized Linear Model model generates many metrics to help you evaluate the
quality of the model.

17.4.2.1 Coefficient Statistics
Learn about coeffficient statistics for linear and logistic regression.

The same set of statistics is returned for both linear and logistic regression, but
statistics that do not apply to the data mining technique are returned as NULL.

Coefficient statistics are returned by the model detail views for a Generalized Linear
Model (GLM) model.

Related Topics

• Coefficient Statistics for Linear Regression

• Coefficient Statistics for Logistic Regression

• Oracle Data Mining User’s Guide

17.4.2.2 Global Model Statistics
Learn about high-level statistics describing the model.

Chapter 17
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Separate high-level statistics describing the model as a whole, are returned for linear and
logistic regression. When ridge regression is enabled, fewer global details are returned.

Global statistics are returned by the model detail views for a Generalized Linear Model
model.

Related Topics

• Global Model Statistics for Linear Regression

• Global Model Statistics for Logistic Regression

• Ridge Regression
Understand the use of Ridge regression for singularity (exact multicollinearity) in data.

• Oracle Data Mining User’s Guide

17.4.2.3 Row Diagnostics
Generate row-statistics by configuring the Generalized Linear Model (GLM) algorithm.

GLM generates per-row statistics if you specify the name of a diagnostics table in the build
setting GLMS_DIAGNOSTICS_TABLE_NAME.

GLM requires a case ID to generate row diagnostics. If you provide the name of a diagnostic
table but the data does not include a case ID column, an exception is raised.

Related Topics

• Row Diagnostics for Linear Regression

• Row Diagnostics for Logistic Regression

17.5 GLM Solvers
Generalized Linear Model (GLM) algorithm applies different solvers. These solvers employ
different approaches for optimization.

The GLM algorithm supports four different solvers: Cholesky, QR, Stochastic Gradient
Descent (SGD),and Alternating Direction Method of Multipliers (ADMM) (on top of L-BFGS).
The Cholesky and QR solvers employ classical decomposition approaches. The Cholesky
solver is faster compared to the QR solver but less stable numerically. The QR solver handles
better rank deficient problems without the help of regularization.

The SGD and ADMM (on top of L-BFGS) solvers are best suited for large scale data. The
SGD solver employs the stochastic gradient descent optimization algorithm while ADMM (on
top of L-BFGS) uses the Broyden-Fletcher-Goldfarb-Shanno optimization algorithm within an
Alternating Direction Method of Multipliers framework. The SGD solver is fast but is sensitive
to parameters and requires suitable scaled data to achieve good convergence. The L-BFGS
algorithm solves unconstrained optimization problems and is more stable and robust than
SGD. Also, L-BFGS uses ADMM in conjunction, which, results in an efficient distributed
optimization approach with low communication cost.

Related Topics

• DBMS_DATA_MINING - Algorithm Settings: Neural Network

• DBMS_DATA_MINING — Algorithm Settings: Generalized Linear Models

• DBMS_DATA_MINING — Algorithm Settings: ADMM

• DBMS_DATA_MINING — Algorithm Settings: LBFGS
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17.6 Data Preparation for GLM
Learn about preparing data for the Generalized Linear Model (GLM) algorithm.

Automatic Data Preparation (ADP) implements suitable data transformations for both
linear and logistic regression.

See Also:

DBMS_DATA_MINING —Algorithm Settings: Generalized Linear Models for
a listing and explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.
Oracle recommends that you use ADP with GLM.

Related Topics

• Oracle Data Mining User’s Guide

17.6.1 Data Preparation for Linear Regression
Learn about Automatic Data Preparation (ADP) for the Generalized Linear Model
(GLM) algorithm.

When ADP is enabled, the algorithm chooses a transformation based on input data
properties and other settings. The transformation can include one or more of the
following for numerical data: subtracting the mean, scaling by the standard deviation,
or performing a correlation transformation (Neter, et. al, 1990). If the correlation
transformation is applied to numeric data, it is also applied to categorical attributes.

Prior to standardization, categorical attributes are exploded into N-1 columns where N
is the attribute cardinality. The most frequent value (mode) is omitted during the
explosion transformation. In the case of highest frequency ties, the attribute values are
sorted alpha-numerically in ascending order, and the first value on the list is omitted
during the explosion. This explosion transformation occurs whether or not ADP is
enabled.

In the case of high cardinality categorical attributes, the described transformations
(explosion followed by standardization) can increase the build data size because the
resulting data representation is dense. To reduce memory, disk space, and processing
requirements, use an alternative approach. Under these circumstances, the VIF
statistic must be used with caution.

Related Topics

• Ridge and Data Preparation
Learn about preparing data for ridge regression.

Chapter 17
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See Also:

• Neter, J., Wasserman, W., and Kutner, M.H., "Applied Statistical Models",
Richard D. Irwin, Inc., Burr Ridge, IL, 1990.

17.6.2 Data Preparation for Logistic Regression
Categorical attributes are exploded into N-1 columns where N is the attribute cardinality. The
most frequent value (mode) is omitted during the explosion transformation. In the case of
highest frequency ties, the attribute values are sorted alpha-numerically in ascending order
and the first value on the list is omitted during the explosion. This explosion transformation
occurs whether or not Automatic Data Preparation (ADP) is enabled.

When ADP is enabled, numerical attributes are scaled by the standard deviation. This
measure of variability is computed as the standard deviation per attribute with respect to the
origin (not the mean) (Marquardt, 1980).

See Also:

Marquardt, D.W., "A Critique of Some Ridge Regression Methods: Comment",
Journal of the American Statistical Association, Vol. 75, No. 369 , 1980, pp. 87-91.

17.6.3 Missing Values
When building or applying a model, Oracle Data Mining for SQL automatically replaces
missing values of numerical attributes with the mean and missing values of categorical
attributes with the mode.

You can configure the Generalized Linear Model algorithm to override the default treatment of
missing values. With the ODMS_MISSING_VALUE_TREATMENT setting, you can cause the
algorithm to delete rows in the training data that have missing values instead of replacing
them with the mean or the mode. However, when the model is applied, Oracle Data Mining
performs the usual mean/mode missing value replacement. As a result, it is possible that the
statistics generated from scoring does not match the statistics generated from building the
model.

If you want to delete rows with missing values in the scoring the model, you must perform the
transformation explicitly. To make build and apply statistics match, you must remove the rows
with NULLs from the scoring data before performing the apply operation. You can do this by
creating a view.

CREATE VIEW viewname AS SELECT * from tablename 
     WHERE column_name1 is NOT NULL 
     AND   column_name2 is NOT NULL 
     AND   column_name3 is NOT NULL ..... 
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Note:

In Oracle Data Mining, missing values in nested data indicate sparsity, not
values missing at random.

The value ODMS_MISSING_VALUE_DELETE_ROW is only valid for tables without
nested columns. If this value is used with nested data, an exception is raised.

17.7 Linear Regression
Linear regression is the Generalized Linear Models’ Regression algorithm supported
by Oracle Data Mining. The algorithm assumes no target transformation and constant
variance over the range of target values.

17.7.1 Coefficient Statistics for Linear Regression
Generalized Linear Model regression models generate the following coefficient
statistics:

• Linear coefficient estimate

• Standard error of the coefficient estimate

• t-value of the coefficient estimate

• Probability of the t-value

• Variance Inflation Factor (VIF)

• Standardized estimate of the coefficient

• Lower and upper confidence bounds of the coefficient

17.7.2 Global Model Statistics for Linear Regression
Generalized Linear Model regression models generate the following statistics that
describe the model as a whole:

• Model degrees of freedom

• Model sum of squares

• Model mean square

• Model F statistic

• Model F value probability

• Error degrees of freedom

• Error sum of squares

• Error mean square

• Corrected total degrees of freedom

• Corrected total sum of squares

• Root mean square error
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• Dependent mean

• Coefficient of variation

• R-Square

• Adjusted R-Square

• Akaike's information criterion

• Schwarz's Baysian information criterion

• Estimated mean square error of the prediction

• Hocking Sp statistic

• JP statistic (the final prediction error)

• Number of parameters (the number of coefficients, including the intercept)

• Number of rows

• Whether or not the model converged

• Whether or not a covariance matrix was computed

17.7.3 Row Diagnostics for Linear Regression
For linear regression, the diagnostics table has the columns described in the following table.
All the columns are NUMBER, except the CASE_ID column, which preserves the type from the
training data.

Table 17-1    Diagnostics Table for GLM Regression Models

Column Description

CASE_ID Value of the case ID column

TARGET_VALUE Value of the target column

PREDICTED_VALUE Value predicted by the model for the target

HAT Value of the diagonal element of the hat matrix

RESIDUAL Measure of error

STD_ERR_RESIDUAL Standard error of the residual

STUDENTIZED_RESIDUAL Studentized residual

PRED_RES Predicted residual

COOKS_D Cook's D influence statistic

17.8 Logistic Regression
Binary Logistic Regression is the Generalized Linear Model Classification algorithm
supported by Oracle Data Mining. The algorithm uses the logit link function and the binomial
variance function.

17.8.1 Reference Class
You can use the build setting GLMS_REFERENCE_CLASS_NAME to specify the target value to be
used as a reference in a binary logistic regression model. Probabilities are produced for the
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other (non-reference) class. By default, the algorithm chooses the value with the
highest prevalence. If there are ties, the attributes are sorted alpha-numerically in an
ascending order.

17.8.2 Class Weights
You can use the build setting CLAS_WEIGHTS_TABLE_NAME to specify the name of a class
weights table. Class weights influence the weighting of target classes during the model
build.

17.8.3 Coefficient Statistics for Logistic Regression
Generalized Linear Model classification models generate the following coefficient
statistics:

• Name of the predictor

• Coefficient estimate

• Standard error of the coefficient estimate

• Wald chi-square value of the coefficient estimate

• Probability of the Wald chi-square value

• Standardized estimate of the coefficient

• Lower and upper confidence bounds of the coefficient

• Exponentiated coefficient

• Exponentiated coefficient for the upper and lower confidence bounds of the
coefficient

17.8.4 Global Model Statistics for Logistic Regression
Generalized Linear Model classification models generate the following statistics that
describe the model as a whole:

• Akaike's criterion for the fit of the intercept only model

• Akaike's criterion for the fit of the intercept and the covariates (predictors) model

• Schwarz's criterion for the fit of the intercept only model

• Schwarz's criterion for the fit of the intercept and the covariates (predictors) model

• -2 log likelihood of the intercept only model

• -2 log likelihood of the model

• Likelihood ratio degrees of freedom

• Likelihood ratio chi-square probability value

• Pseudo R-square Cox an Snell

• Pseudo R-square Nagelkerke

• Dependent mean

• Percent of correct predictions

• Percent of incorrect predictions
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• Percent of ties (probability for two cases is the same)

• Number of parameters (the number of coefficients, including the intercept)

• Number of rows

• Whether or not the model converged

• Whether or not a covariance matrix was computed.

17.8.5 Row Diagnostics for Logistic Regression
For logistic regression, the diagnostics table has the columns described in the following table.
All the columns are NUMBER, except the CASE_ID and TARGET_VALUE columns, which preserve
the type from the training data.

Table 17-2    Row Diagnostics Table for Logistic Regression

Column Description

CASE_ID Value of the case ID column

TARGET_VALUE Value of the target value

TARGET_VALUE_PROB Probability associated with the target value

HAT Value of the diagonal element of the hat matrix

WORKING_RESIDUAL Residual with respect to the adjusted dependent variable

PEARSON_RESIDUAL The raw residual scaled by the estimated standard deviation of the target

DEVIANCE_RESIDUAL Contribution to the overall goodness of fit of the model

C Confidence interval displacement diagnostic

CBAR Confidence interval displacement diagnostic

DIFDEV Change in the deviance due to deleting an individual observation

DIFCHISQ Change in the Pearson chi-square
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18
k-Means

Oracle Data Mining for SQL supports enhanced k-Means clustering algorithm. Learn how to
use the algorithm.

• About k-Means

• k-Means Algorithm Configuration

• Data Preparation for k-Means

18.1 About k-Means
The k-Means algorithm is a distance-based clustering algorithm that partitions the data into a
specified number of clusters.

Distance-based algorithms rely on a distance function to measure the similarity between
cases. Cases are assigned to the nearest cluster according to the distance function used.

18.1.1 Oracle Data Mining for SQL Enhanced k-Means
Implementation of k-Means in Oracle Data Mining for SQL.

Oracle Data Mining implements an enhanced version of the k-Means algorithm with the
following features:

• Distance function: The algorithm supports Euclidean and Cosine distance functions.
The default is Euclidean.

• Scalable Parallel Model build: The algorithm uses a very efficient method of
initialization based on Bahmani, Bahman, et al. "Scalable k-means++." Proceedings of
the VLDB Endowment 5.7 (2012): 622-633.

• Cluster properties: For each cluster, the algorithm returns the centroid, a histogram for
each attribute, and a rule describing the hyperbox that encloses the majority of the data
assigned to the cluster. The centroid reports the mode for categorical attributes and the
mean and variance for numerical attributes.

This approach to k-Means avoids the need for building multiple k-Means models and
provides clustering results that are consistently superior to the traditional k-Means.

18.1.2 Centroid
Defines a centroid in a cluster.

The centroid represents the most typical case in a cluster. For example, in a data set of
customer ages and incomes, the centroid of each cluster would be a customer of average
age and average income in that cluster. The centroid is a prototype. It does not necessarily
describe any given case assigned to the cluster.
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The attribute values for the centroid are the mean of the numerical attributes and the
mode of the categorical attributes.

18.2 k-Means Algorithm Configuration
Learn about configuring the k-Means algorithm.

The Oracle Data Mining for SQL enhanced k-Means algorithm supports several build-
time settings. All the settings have default values. There is no reason to override the
defaults unless you want to influence the behavior of the algorithm in some specific
way.

You can configure k-Means by specifying the following considerations:

• Number of clusters

• Distance Function. The default distance function is Euclidean.

See Also:

DBMS_DATA_MINING —Algorithm Settings: k-Means for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

18.3 Data Preparation for k-Means
Learn about preparing data for k-Means algorithm.

Normalization is typically required by the k-Means algorithm. Automatic Data
Preparation performs normalization for k-Means. If you do not use ADP, you must
normalize numeric attributes before creating or applying the model.

When there are missing values in columns with simple data types (not nested), k-
Means interprets them as missing at random. The algorithm replaces missing
categorical values with the mode and missing numerical values with the mean.

When there are missing values in nested columns, k-Means interprets them as sparse.
The algorithm replaces sparse numerical data with zeros and sparse categorical data
with zero vectors.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

• Prepare the Data
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19
Minimum Description Length

Learn how to use Minimum Description Length, the supervised technique for calculating
attribute importance.

• About MDL

• Data Preparation for MDL

19.1 About MDL
Minimum Description Length (MDL) is an information theoretic model selection principle.

Information theoretic model selection principle is an important concept in information theory
(the study of the quantification of information) and in learning theory (the study of the capacity
for generalization based on empirical data).

MDL assumes that the simplest, most compact representation of the data is the best and
most probable explanation of the data. The MDL principle is used to build Oracle Data Mining
for SQL attribute importance models.

The build process for attribute importance supports parallel execution.

Related Topics

• Oracle Database VLDB and Partitioning Guide

19.1.1 Compression and Entropy
Data compression is the process of encoding information using fewer bits than what the
original representation uses. The MDL Principle is based on the notion that the shortest
description of the data is the most probable. In typical instantiations of this principle, a model
is used to compress the data by reducing the uncertainty (entropy) as discussed below. The
description of the data includes a description of the model and the data as described by the
model.

Entropy is a measure of uncertainty. It quantifies the uncertainty in a random variable as the
information required to specify its value. Information in this sense is defined as the number
of yes/no questions known as bits (encoded as 0 or 1) that must be answered for a complete
specification. Thus, the information depends upon the number of values that variable can
assume.

For example, if the variable represents the sex of an individual, then the number of possible
values is two: female and male. If the variable represents the salary of individuals expressed
in whole dollar amounts, then the values can be in the range $0-$10B, or billions of unique
values. Clearly it takes more information to specify an exact salary than to specify an
individual's sex.
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19.1.1.1 Values of a Random Variable: Statistical Distribution
Information (the number of bits) depends on the statistical distribution of the values of
the variable as well as the number of values of the variable. If we are judicious in the
choice of Yes/No questions, then the amount of information for salary specification
cannot be as much as it first appears. Most people do not have billion dollar salaries. If
most people have salaries in the range $32000-$64000, then most of the time, it
requires only 15 questions to discover their salary, rather than the 30 required, if every
salary from $0-$1000000000 were equally likely. In the former example, if the persons
were known to be pregnant, then their sex is known to be female. There is no
uncertainty, no Yes/No questions need be asked. The entropy is 0.

19.1.1.2 Values of a Random Variable: Significant Predictors
Suppose that for some random variable there is a predictor that when its values are
known reduces the uncertainty of the random variable. For example, knowing whether
a person is pregnant or not, reduces the uncertainty of the random variable sex-of-
individual. This predictor seems like a valuable feature to include in a model. How
about name? Imagine that if you knew the name of the person, you would also know
the person's sex. If so, the name predictor would seemingly reduce the uncertainty to
zero. However, if names are unique, then what was gained? Is the person named
Sally? Is the person named George?... We would have as many Yes/No predictors in
the name model as there are people. Therefore, specifying the name model would
require as many bits as specifying the sex of each person.

19.1.1.3 Total Entropy
For a random variable, X, the total entropy is defined as minus the Probability(X)
multiplied by the log to the base 2 of the Probability(X). This can be shown to be the
variable's most efficient encoding.

19.1.2 Model Size
A Minimum Description Length (MDL) model takes into consideration the size of the
model as well as the reduction in uncertainty due to using the model. Both model size
and entropy are measured in bits. For our purposes, both numeric and categorical
predictors are binned. Thus the size of each single predictor model is the number of
predictor bins. The uncertainty is reduced to the within-bin target distribution.

19.1.3 Model Selection
Minimum Description Length (MDL) considers each attribute as a simple predictive
model of the target class. Model selection refers to the process of comparing and
ranking the single-predictor models.

MDL uses a communication model for solving the model selection problem. In the
communication model there is a sender, a receiver, and data to be transmitted.

These single predictor models are compared and ranked with respect to the MDL
metric, which is the relative compression in bits. MDL penalizes model complexity to
avoid over-fit. It is a principled approach that takes into account the complexity of the
predictors (as models) to make the comparisons fair.
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19.1.4 The MDL Metric
Attribute importance uses a two-part code as the metric for transmitting each unit of data. The
first part (preamble) transmits the model. The parameters of the model are the target
probabilities associated with each value of the prediction.

For a target with j values and a predictor with k values, ni (i= 1,..., k) rows per value, there are
Ci, the combination of j-1 things taken ni-1 at a time possible conditional probabilities. The
size of the preamble in bits can be shown to be Sum(log2(Ci)), where the sum is taken over k.
Computations like this represent the penalties associated with each single prediction model.
The second part of the code transmits the target values using the model.

It is well known that the most compact encoding of a sequence is the encoding that best
matches the probability of the symbols (target class values). Thus, the model that assigns the
highest probability to the sequence has the smallest target class value transmission cost. In
bits, this is the Sum(log2(pi)), where the pi are the predicted probabilities for row i associated
with the model.

The predictor rank is the position in the list of associated description lengths, smallest first.

19.2 Data Preparation for MDL
Learn about preparing data for Minimum Description Length (MDL).

Automatic Data Preparation performs supervised binning for MDL. Supervised binning uses
decision trees to create the optimal bin boundaries. Both categorical and numerical attributes
are binned.

MDL handles missing values naturally as missing at random. The algorithm replaces sparse
numerical data with zeros and sparse categorical data with zero vectors. Missing values in
nested columns are interpreted as sparse. Missing values in columns with simple data types
are interpreted as missing at random.

If you choose to manage your own data preparation, keep in mind that MDL usually benefits
from binning. However, the discriminating power of an attribute importance model can be
significantly reduced when there are outliers in the data and external equal-width binning is
used. This technique can cause most of the data to concentrate in a few bins (a single bin in
extreme cases). In this case, quantile binning is a better solution.

See Also:

DBMS_DATA_MINING — Automatic Data Preparation for a listing and explanation
of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

Related Topics

• Prepare the Data
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20
Naive Bayes

Learn how to use the Naive Bayes classification algorithm.

• About Naive Bayes

• Tuning a Naive Bayes Model

• Data Preparation for Naive Bayes

20.1 About Naive Bayes
Naive Bayes algorithm is based on conditional probabilities. It uses Bayes' theorem, a
formula that calculates a probability by counting the frequency of values and combinations of
values in the historical data.

Bayes' theorem finds the probability of an event occurring given the probability of another
event that has already occurred. If B represents the dependent event and A represents the
prior event, Bayes' theorem can be stated as follows.

Note:

Prob(B given A) = Prob(A and B)/Prob(A)

To calculate the probability of B given A, the algorithm counts the number of cases where A
and B occur together and divides it by the number of cases where A occurs alone.

Example 20-1    Use Bayes' Theorem to Predict an Increase in Spending

Suppose you want to determine the likelihood that a customer under 21 increases spending.
In this case, the prior condition (A) is "under 21," and the dependent condition (B) is "increase
spending."

If there are 100 customers in the training data and 25 of them are customers under 21 who
have increased spending, then:

Prob(A and B) = 25%

If 75 of the 100 customers are under 21, then:

Prob(A) = 75%

Bayes' theorem predicts that 33% of customers under 21 are likely to increase spending
(25/75).

The cases where both conditions occur together are referred to as pairwise. In 
Example 20-1, 25% of all cases are pairwise.
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The cases where only the prior event occurs are referred to as singleton. In 
Example 20-1, 75% of all cases are singleton.

A visual representation of the conditional relationships used in Bayes' theorem is
shown in the following figure.

Figure 20-1    Conditional Probabilities in Bayes' Theorem

A and B

B

A

P(A) = 3/4

P(B) = 2/4

P(A and B) = P(AB) = 1/4

P(A B) = P(AB) / P(B) = (1/4) / (2/4) = 1/2

P(B A) = P(AB) / P(A) = (1/4) / (3/4) = 1/3

For purposes of illustration, Example 20-1 and Figure 20-1 show a dependent event
based on a single independent event. In reality, the Naive Bayes algorithm must
usually take many independent events into account. In Example 20-1, factors such as
income, education, gender, and store location might be considered in addition to age.

Naive Bayes makes the assumption that each predictor is conditionally independent of
the others. For a given target value, the distribution of each predictor is independent of
the other predictors. In practice, this assumption of independence, even when violated,
does not degrade the model's predictive accuracy significantly, and makes the
difference between a fast, computationally feasible algorithm and an intractable one.

Sometimes the distribution of a given predictor is clearly not representative of the
larger population. For example, there might be only a few customers under 21 in the
training data, but in fact there are many customers in this age group in the wider
customer base. To compensate for this, you can specify prior probabilities when
training the model.

Related Topics

• Priors and Class Weights
Learn about Priors and Class Weights in a classification model to produce a useful
result.

20.1.1 Advantages of Naive Bayes
Learn about the advantages of Naive Bayes.

The Naive Bayes algorithm affords fast, highly scalable model building and scoring. It
scales linearly with the number of predictors and rows.

The build process for Naive Bayes supports parallel execution. (Scoring supports
parallel execution irrespective of the algorithm.)
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Naive Bayes can be used for both binary and multiclass classification problems.

Related Topics

• Oracle Database VLDB and Partitioning Guide

20.2 Tuning a Naive Bayes Model
Introduces about probability calculation of pairwise occurrences and percentage of singleton
occurrences.

Naive Bayes calculates a probability by dividing the percentage of pairwise occurrences by
the percentage of singleton occurrences. If these percentages are very small for a given
predictor, they probably do not contribute to the effectiveness of the model. Occurrences
below a certain threshold can usually be ignored.

The following build settings are available for adjusting the probability thresholds. You can
specify:

• The minimum percentage of pairwise occurrences required for including a predictor in the
model.

• The minimum percentage of singleton occurrences required for including a predictor in
the model .

The default thresholds work well for most models, so you need not adjust these settings.

See Also:

DBMS_DATA_MINING — Algorithm Settings: Naive Bayes for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

20.3 Data Preparation for Naive Bayes
Learn about preparing the data for Naive Bayes.

Automatic Data Preparation (ADP) performs supervised binning for Naive Bayes. Supervised
binning uses decision trees to create the optimal bin boundaries. Both categorical and
numeric attributes are binned.

Naive Bayes handles missing values naturally as missing at random. The algorithm replaces
sparse numerical data with zeros and sparse categorical data with zero vectors. Missing
values in nested columns are interpreted as sparse. Missing values in columns with simple
data types are interpreted as missing at random.

If you choose to manage your own data preparation, keep in mind that Naive Bayes usually
requires binning. Naive Bayes relies on counting techniques to calculate probabilities.
Columns must be binned to reduce the cardinality as appropriate. Numerical data can be
binned into ranges of values (for example, low, medium, and high), and categorical data can
be binned into meta-classes (for example, regions instead of cities). Equi-width binning is not
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recommended, since outliers cause most of the data to concentrate in a few bins,
sometimes a single bin. As a result, the discriminating power of the algorithms is
significantly reduced

Related Topics

• Prepare the Data

Chapter 20
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21
Neural Network

Learn about the Neural Network algorithms for regression and classification data mining
techniques.

• About Neural Network

• Data Preparation for Neural Network

• Neural Network Algorithm Configuration

• Scoring with Neural Network

21.1 About Neural Network
Neural Network in Oracle Data Mining is designed for mining techniques like Classification
and Regression.

In machine learning, an artificial neural network is an algorithm inspired from biological neural
network and is used to estimate or approximate functions that depend on a large number of
generally unknown inputs. An artificial neural network is composed of a large number of
interconnected neurons which exchange messages between each other to solve specific
problems. They learn by examples and tune the weights of the connections among the
neurons during the learning process. Neural Network is capable of solving a wide variety of
tasks such as computer vision, speech recognition, and various complex business problems.

Related Topics

• Regression
Learn how to predict a continuous numerical target through Regression - the supervised
mining technique.

• Classification
Learn how to predict a categorical target through Classification - the supervised mining
technique.

21.1.1 Neurons and Activation Functions
Neurons are the building blocks of a neural network.

A neuron takes one or more inputs having different weights and has an output which depends
on the inputs. The output is achieved by adding up inputs of each neuron with weights and
feeding the sum into the activation function.

A Sigmoid function is usually the most common choice for activation function but other non-
linear functions, piecewise linear functions or step functions are also used. The Rectified
Linear Units function NNET_ACTIVATIONS_RELU is a commonly used activation function that
addresses the vanishing gradient problem for larger neural networks.

The following are some examples of activation functions:

• Logistic Sigmoid function

• Linear function
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• Tanh function

• Arctan function

• Bipolar sigmoid function

• Rectified Linear Units

21.1.2 Loss or Cost function
A loss function or cost function is a function that maps an event or values of one or
more variables onto a real number intuitively representing some "cost" associated with
the event.

An optimization problem seeks to minimize a loss function. The form of loss function is
chosen based on the nature of the problem and mathematical needs.

The following are the different loss functions for different scenarios:

• Binary classification: binary cross entropy loss function.

• Multi-class classification: multi cross entropy loss function.

• Regression: squared error function.

21.1.3 Forward-Backward Propagation
Understand forward-backward propagation.

Forward propagation computes the loss function value by weighted summing the
previous layer neuron values and applying activation functions. Backward propagation
calculates the gradient of a loss function with respect to all the weights in the network.
The weights are initialized with a set of random numbers uniformly distributed within a
region specified by user (by setting weights boundaries), or region defined by the
number of nodes in the adjacent layers (data driven). The gradients are fed to an
optimization method which in turn uses them to update the weights, in an attempt to
minimize the loss function.

21.1.4 Optimization Solvers
An optimization solver is a function that searches for the optimal solution of the loss
function to find the extreme value (maximum or minimum) of the loss (cost) function.

Oracle Data Mining implements Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) together with line search and the Adam solver.

Limited-memory Broyden–Fletcher–Goldfarb–Shanno Solver

L-BFGS is a Quasi-Newton method. This method uses rank-one updates specified by
gradient evaluations to approximate a Hessian matrix. This method only needs a
limited amount of memory. L-BFGS is used to find the descent direction and line
search is used to find the appropriate step size. The number of historical copies kept in
the L-BFGS solver is defined by the LBFGS_HISTORY_DEPTH solver setting. When the
number of iterations is smaller than the history depth, the Hessian computed by L-
BFGS is accurate. When the number of iterations is larger than the history depth, the
Hessian computed by L-BFGS is an approximation. Therefore, the history depth
should not be too small or too large to avoid making the computation too slow.
Typically, the value is between 3 and 10.
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Adam Solver

Adam is an extension to stochastic gradient descent that uses mini-batch optimization. The L-
BFGS solver may be a more stable solver whereas the Adam solver can make progress
faster by seeing less data. Adam is computationally efficient, with little memory requirements,
and is well-suited for problems that are large in terms of data or parameters or both.

21.1.5 Regularization
Understand regularization.

Regularization refers to a process of introducing additional information to solve an ill-posed
problem or to prevent over-fitting. Ill-posed or over-fitting can occur when a statistical model
describes random errors or noise instead of the underlying relationship. Typical regularization
techniques include L1-norm regularization, L2-norm regularization, and held-aside.

Held-aside is usually used for large training date sets whereas L1-norm regularization and
L2-norm regularization are mostly used for small training date sets.

21.1.6 Convergence Check
This checks if the optimal solution has been reached and if the iterations of the optimization
has come to an end.

In L-BFGS solver, the convergence criteria includes maximum number of iterations, infinity
norm of gradient, and relative error tolerance. For held-aside regularization, the convergence
criteria checks the loss function value of the test data set, as well as the best model learned
so far. The training is terminated when the model becomes worse for a specific number of
iterations (specified by NNET_HELDASIDE_MAX_FAIL), or the loss function is close to zero, or
the relative error on test data is less than the tolerance.

21.1.7 LBFGS_SCALE_HESSIAN
Defines LBFGS_SCALE_HESSIAN.

It specifies how to set the initial approximation of the inverse Hessian at the beginning of
each iteration. If the value is set to be LBFGS_SCALE_HESSIAN_ENABLE, then we approximate
the initial inverse Hessian with Oren-Luenberger scaling. If it is set to be
LBFGS_SCALE_HESSIAN_DISABLE, then we use identity as the approximation of the inverse
Hessian at the beginning of each iteration.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

21.1.8 NNET_HELDASIDE_MAX_FAIL
Defines NNET_HELDASIDE_MAX_FAIL.

Validation data (held-aside) is used to stop training early if the network performance on the
validation data fails to improve or remains the same for NNET_HELDASIDE_MAX_FAIL epochs in
a row.
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Related Topics

• Oracle Database PL/SQL Packages and Types Reference

21.2 Data Preparation for Neural Network
Learn about preparing data for the Neural Network algorithm.

The algorithm automatically "explodes" categorical data into a set of binary attributes,
one per category value. Oracle Data Mining for SQL algorithms automatically handle
missing values and therefore, missing value treatment is not necessary.

The algorithm automatically replaces missing categorical values with the mode and
missing numerical values with the mean. The algorithm requires the normalization of
numeric input and it uses z-score normalization. The normalization occurs only for two-
dimensional numeric columns (not nested). Normalization places the values of
numeric attributes on the same scale and prevents attributes with a large original scale
from biasing the solution. Neural Network scales the numeric values in nested
columns by the maximum absolute value seen in the corresponding columns.

Related Topics

• Prepare the Data

21.3 Neural Network Algorithm Configuration
Configure the Neural Network algorithm.

Specify Nodes Per Layer

INSERT INTO SETTINGS_TABLE (setting_name, setting_value) VALUES
                   ('NNET_NODES_PER_LAYER', '2,3');

Specify Activation Functions Per Layer

NNET_ACTIVATIONS setting specifies the activation functions or hidden layers.

See Also:

DBMS_DATA_MINING —Algorithm Settings: Neural Network for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

21.4 Scoring with Neural Network
Learn to score with a Neural Network algorithm.
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Scoring with Neural Network is the same as any other classification or regression algorithm.
The following functions are supported: PREDICTION, PREDICTION_PROBABILITY,
PREDICTION_COST, PREDICTION_SET, and PREDICTION_DETAILS.

Related Topics

• Oracle Database SQL Language Reference
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22
Non-Negative Matrix Factorization

Learn how to use Non-Negative Matrix Factorization (NMF), an unsupervised algorithm, that
Oracle Data Mining for SQL uses for feature extraction.

• About NMF

• Tuning the NMF Algorithm

• Data Preparation for NMF

See Also:

Paper "Learning the Parts of Objects by Non-Negative Matrix Factorization" by D.
D. Lee and H. S. Seung in Nature (401, pages 788-791, 1999)

22.1 About NMF
Non-Negative Matrix Factorization is useful when there are many attributes and the attributes
are ambiguous or have weak predictability. By combining attributes, NMF can produce
meaningful patterns, topics, or themes. NMF is a feature extraction algorithm.

Each feature created by NMF is a linear combination of the original attribute set. Each feature
has a set of coefficients, which are a measure of the weight of each attribute on the feature.
There is a separate coefficient for each numerical attribute and for each distinct value of each
categorical attribute. The coefficients are all non-negative.

22.1.1 Matrix Factorization
Non-Negative Matrix Factorization uses techniques from multivariate analysis and linear
algebra. It decomposes the data as a matrix M into the product of two lower ranking matrices
W and H. The sub-matrix W contains the NMF basis; the sub-matrix H contains the
associated coefficients (weights).

The algorithm iteratively modifies of the values of W and H so that their product approaches
M. The technique preserves much of the structure of the original data and guarantees that
both basis and weights are non-negative. The algorithm terminates when the approximation
error converges or a specified number of iterations is reached.

The NMF algorithm must be initialized with a seed to indicate the starting point for the
iterations. Because of the high dimensionality of the processing space and the fact that there
is no global minimization algorithm, the appropriate initialization can be critical in obtaining
meaningful results. Oracle Data Mining for SQL uses a random seed that initializes the
values of W and H based on a uniform distribution. This approach works well in most cases.
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22.1.2 Scoring with NMF
Learn about scoring with Non-Negative Matrix Factorization (NMF).

NMF can be used as a pre-processing step for dimensionality reduction in
Classification, Regression, Clustering, and other mining tasks. Scoring an NMF model
produces data projections in the new feature space. The magnitude of a projection
indicates how strongly a record maps to a feature.

The SQL scoring functions for feature extraction support NMF models. When the
functions are called with the analytical syntax, the functions build and apply a transient
NMF model. The feature extraction functions are: FEATURE_DETAILS, FEATURE_ID,
FEATURE_SET, and FEATURE_VALUE.

Related Topics

• Oracle Data Mining User’s Guide

22.1.3 Text Analysis with NMF
Learn about text analysis with Non-Negative Matrix Factorization (NMF).

NMF is especially well-suited for analyzing text. In a text document, the same word
can occur in different places with different meanings. For example, "hike" can be
applied to the outdoors or to interest rates. By combining attributes, NMF introduces
context, which is essential for explanatory power:

• "hike" + "mountain" -> "outdoor sports"

• "hike" + "interest" -> "interest rates"

Related Topics

• Oracle Data Mining User’s Guide

22.2 Tuning the NMF Algorithm
Learn about configuring parameters for Non-Negative Matrix Factorization (NMF).

Oracle Data Mining for SQL supports five configurable parameters for NMF. All of them
have default values which are appropriate for most applications of the algorithm. The
NMF settings are:

• Number of features. By default, the number of features is determined by the
algorithm.

• Convergence tolerance. The default is .05.

• Number of iterations. The default is 50.

• Random seed. The default is -1.

• Non-negative scoring. You can specify whether negative numbers must be allowed
in scoring results. By default they are allowed.

Chapter 22
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See Also:

DBMS_DATA_MINING —Algorithm Settings: Non-Negative Matrix Factorization for
a listing and explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

22.3 Data Preparation for NMF
You can use Automatic Data Preparation (ADP) or supply your transformation like binning or
normalization to prepare the data for Non-Negative Matrix Factorization (NMF).

ADP normalizes numerical attributes for NMF.

When there are missing values in columns with simple data types (not nested), NMF
interprets them as missing at random. The algorithm replaces missing categorical values with
the mode and missing numerical values with the mean.

When there are missing values in nested columns, NMF interprets them as sparse. The
algorithm replaces sparse numerical data with zeros and sparse categorical data with zero
vectors.

If you choose to manage your own data preparation, keep in mind that outliers can
significantly impact NMF. Use a clipping transformation before binning or normalizing. NMF
typically benefits from normalization. However, outliers with min-max normalization cause
poor matrix factorization. To improve the matrix factorization, you need to decrease the error
tolerance. This in turn leads to longer build times.

Related Topics

• Prepare the Data

Chapter 22
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23
O-Cluster

Learn how to use orthogonal partitioning clustering (O-Cluster), an Oracle-proprietary
clustering algorithm.

• About O-Cluster

• Tuning the O-Cluster Algorithm

• Data Preparation for O-Cluster

See Also:

Campos, M.M., Milenova, B.L., "Clustering Large Databases with Numeric and
Nominal Values Using Orthogonal Projections", Oracle Data Mining Technologies,
Oracle Corporation.

23.1 About O-Cluster
O-Cluster is a fast, scalable grid-based clustering algorithm well-suited for analysing large,
high-dimensional data sets. The algorithm can produce high quality clusters without relying
on user-defined parameters.

The objective of O-Cluster is to identify areas of high density in the data and separate the
dense areas into clusters. It uses axis-parallel uni-dimensional (orthogonal) data projections
to identify the areas of density. The algorithm looks for splitting points that result in distinct
clusters that do not overlap and are balanced in size.

O-Cluster operates recursively by creating a binary tree hierarchy. The number of leaf
clusters is determined automatically. The algorithm can be configured to limit the maximum
number of clusters.

23.1.1 Partitioning Strategy
Partitioning strategy refers to the process of discovering areas of density in the attribute
histograms. The process differs for numerical and categorical data. When both are present in
the data, the algorithm performs the searches separately and then compares the results.

In choosing a partition, the algorithm balances two objectives: finding well separated clusters,
and creating clusters that are balanced in size. The following paragraphs detail how partitions
for numerical and categorical attributes are identified.

23.1.1.1 Partitioning Numerical Attributes
To find the best valid cutting plane, O-Cluster searches the attribute histograms for bins of
low density (valleys) between bins of high density (peaks).
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O-Cluster attempts to find a pair of peaks with a valley between them where the
difference between the peak and valley histogram counts is statistically significant.

A sensitivity level parameter specifies the lowest density that may be considered a
peak. Sensitivity is an optional parameter for numeric data. It may be used to filter the
splitting point candidates.

23.1.1.2 Partitioning Categorical Attributes
Categorical values do not have an intrinsic order associated with them. Therefore it is
impossible to apply the notion of histogram peaks and valleys that is used to partition
numerical values. Instead the counts of individual values form a histogram.

Bins with large counts are interpreted as regions with high density. The clustering
objective is to separate these high-density areas and effectively decrease the entropy
(randomness) of the data.

O-Cluster identifies the histogram with highest entropy along the individual projections.
Entropy is measured as the number of bins above sensitivity level. O-Cluster places
the two largest bins into separate partitions, thereby creating a splitting predicate. The
remainder of the bins are assigned randomly to the two resulting partitions.

23.1.2 Active Sampling
The O-Cluster algorithm operates on a data buffer of a limited size. It uses an active
sampling mechanism to handle data sets that do not fit into memory.

After processing an initial random sample, O-Cluster identifies cases that are of no
further interest. Such cases belong to frozen partitions where further splitting is highly
unlikely. These cases are replaced with examples from ambiguous regions where
further information (additional cases) is needed to find good splitting planes and
continue partitioning. A partition is considered ambiguous if a valid split can only be
found at a lower confidence level.

Cases associated with frozen partitions are marked for deletion from the buffer. They
are replaced with cases belonging to ambiguous partitions. The histograms of the
ambiguous partitions are updated and splitting points are reevaluated.

23.1.3 Process Flow
At a high level, O-Cluster algorithm evaluates, splits the data into new partition, and
searches for cutting planes inside the new partitions.

The O-Cluster algorithm evaluates possible splitting points for all projections in a
partition, selects the best one, and splits the data into two new partitions. The
algorithm proceeds by searching for good cutting planes inside the newly created
partitions. Thus, O-Cluster creates a binary tree structure that divides the input space
into rectangular regions with no overlaps or gaps.

The main processing stages are:

1. Load the buffer. Assign all cases from the initial buffer to a single active root
partition.

2. Compute histograms along the orthogonal uni-dimensional projections for each
active partition.

3. Find the best splitting points for active partitions.

Chapter 23
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4. Flag ambiguous and frozen partitions.

5. When a valid separator exists, split the active partition into two new active partitions and
start over at step 2.

6. Reload the buffer after all recursive partitioning on the current buffer is completed.
Continue loading the buffer until either the buffer is filled again, or the end of the data set
is reached, or until the number of cases is equal to the data buffer size.

Note:

O-Cluster requires at most one pass through the data

23.1.4 Scoring
The clusters discovered by O-Cluster are used to generate a Bayesian probability model that
can be used to score new data.

The generated probability model is a mixture model where the mixture components are
represented by a product of independent normal distributions for numerical attributes and
multinomial distributions for categorical attributes.

23.2 Tuning the O-Cluster Algorithm
You can configure build-time settings for O-Cluster.

The O-Cluster algorithm supports two build-time settings. Both settings have default values.
There is no reason to override the defaults unless you want to influence the behavior of the
algorithm in some specific way.

You can configure O-Cluster by specifying any of the following:

• Buffer size — Size of the processing buffer.

• Sensitivity factor — A fraction that specifies the peak density required for separating a
new cluster.

See Also:

DBMS_DATA_MINING — Algorithm Settings: O-Cluster for a listing and explanation
of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

Related Topics

• Active Sampling
The O-Cluster algorithm operates on a data buffer of a limited size. It uses an active
sampling mechanism to handle data sets that do not fit into memory.

Chapter 23
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• Partitioning Strategy

23.3 Data Preparation for O-Cluster
Use Automatic Data Preparation (ADP) to prepare the data for O-Cluster.

ADP bins numerical attributes for O-Cluster. It uses a specialized form of equi-width
binning that computes the number of bins per attribute automatically. Numerical
columns with all nulls or a single value are removed. O-Cluster handles missing values
naturally as missing at random.

Note:

O-Cluster does not support nested columns, sparse data, or unstructured
text.

Related Topics

• Prepare the Data

23.3.1 User-Specified Data Preparation for O-Cluster
You can prepare the data for O-Cluster by considering the points listed here.

Keep the following in mind if you choose to prepare the data for O-Cluster:

• O-Cluster does not necessarily use all the input data when it builds a model. It
reads the data in batches (the default batch size is 50000). It only reads another
batch if it believes, based on statistical tests, that uncovered clusters can still exist.

• Binary attributes must be declared as categorical.

• Automatic equi-width binning is highly recommended. The bin identifiers are
expected to be positive consecutive integers starting at 1.

• The presence of outliers can significantly impact clustering algorithms. Use a
clipping transformation before binning or normalizing. Outliers with equi-width
binning can prevent O-Cluster from detecting clusters. As a result, the whole
population appears to fall within a single cluster.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 23
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24
R Extensibility

 This topic applies only to Oracle on-premises.

Learn how to build an analytics model and score in R. The R extensible algorithms are
enhanced to support and register additional algorithms for users who use SQL and graphical
user interface.

• Oracle Data Mining with R Extensibility

• Scoring with R

• About Algorithm Meta Data Registration

24.1 Oracle Data Mining with R Extensibility
Learn how you can use Oracle Data Mining to build, score, and view Oracle Data Mining
models as well as R models.

The Oracle Data Mining framework is enhanced extending the data mining algorithm set with
algorithms from the open source R ecosystem. Oracle Data Mining is implemented in the
Oracle Database kernel. The mining models are Database schema objects. With the
extensibility enhancement, the data mining framework can build, score, and view both Oracle
Data Mining models and R models.

Registration of R scripts

The R engine on the database server executes the R scripts to build, score, and view R
models. These R scripts must be registered with the database beforehand by a privileged
user with rqAdmin role. You must first install Oracle R Enterprise to register the R scripts.

Functions of Oracle Data Mining with R Model

The following functions are supported for an R model:

• Oracle Data Mining DBMS_DATA_MINING package is enhanced to support R model. For
example, CREATE_MODEL and DROP_MODEL.

• MODEL VIEW to get the R model details about a single model and a partitioned model.

• Oracle Data Mining SQL functions are enhanced to operate with the R model functions.
For example, PREDICTION and CLUSTER_ID.

R model extensibility supports the following data mining techniques:

• Association

• Attribute Importance

• Regression

• Classification

• Clustering
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• Feature Extraction

24.2 Scoring with R
Learn how to build and score with R Mining model.

For more information, see Oracle Data Mining User’s Guide

24.3 About Algorithm Meta Data Registration
Algorithm Meta Data Registration allows for a uniform and consistent approach of
registering new algorithm techniques and their settings.

Users have the ability to add new R-based algorithms through the registration process.
The new algorithms appear as available within Oracle R Enterprise and within the
appropriate mining techniques. Based on the registration meta data, the settings page
is dynamically rendered. The advantages are as follows:

• Manage R-based algorithms more easily

• Easy to specify R-based algorithm for model build

• Clean individual properties in JSON structure

• Share R-based algorithm across user

Algorithm meta data registration extends the mining model capability of Oracle Data
Mining.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

• FETCH_JSON_SCHEMA Procedure

• REGISTER_ALGORITHM Procedure

• JSON Schema for R Extensible Algorithm

Chapter 24
Scoring with R

24-2



25
Random Forest

Learn how to use Random Forest as a classification algorithm.

• About Random Forest

• Building a Random Forest

• Scoring with Random Forest

25.1 About Random Forest
Random Forest is a classification algorithm that builds an ensemble (also called forest) of
trees.

The algorithm builds a number of Decision Tree models and predicts using the ensemble. An
individual decision tree is built by choosing a random sample from the training data set as the
input. At each node of the tree, only a random sample of predictors is chosen for computing
the split point. This introduces variation in the data used by the different trees in the forest.
The parameters RFOR_SAMPLING_RATIO and RFOR_MTRY are used to specify the sample size
and number of predictors chosen at each node. Users can use ODMS_RANDOM_SEED to set the
random seed value before running the algorithm.

Related Topics

• Decision Tree
Oracle Data Mining for SQL supports Decision Tree as one of the classification
algorithms. This chapter provides an overview of the Decision Tree algorithm.

• Splitting

• Data Preparation for Decision Tree
The Decision Tree algorithm manages its own data preparation internally. It does not
require pretreatment of the data.

25.2 Building a Random Forest
The Random Forest is built upon existing infrastructure and Application Programming
Interfaces (APIs) of Oracle Data Mining for SQL.

Random forest models provide attribute importance ranking of predictors. The model is built
by specifying parameters in the existing APIs. The scoring is performed using the same SQL
queries and APIs as the existing classification algorithms. Oracle Data Mining implements a
variant of classical Random Forest algorithm. This implementation supports big data sets.
The implementation of the algorithm differs in the following ways:

• Oracle Data Mining does not support bagging and instead provides sampling without
replacement

• Users have the ability to specify the depth of the tree. Trees are not built to maximum
depth.
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Note:

The term hyperparameter is also interchangeably used for model setting.

Related Topics

• DBMS_DATA_MINING — Algorithm Settings: Random Forest

25.3 Scoring with Random Forest
Learn to score with the Random Forest algorithm.

Scoring with Random Forest is the same as any other classification algorithm. The
following functions are supported: PREDICTION, PREDICTION_PROBABILITY,
PREDICTION_COST, PREDICTION_SET, and PREDICTION_DETAILS.

Related Topics

• Oracle Database SQL Language Reference

Chapter 25
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26
Singular Value Decomposition

Learn how to use Singular Value Decomposition, an unsupervised algorithm for feature
extraction.

• About Singular Value Decomposition

• Configuring the Algorithm

• Data Preparation for SVD

26.1 About Singular Value Decomposition
SVD and the closely-related PCA are well established feature extraction methods that have a
wide range of applications. Oracle Data Mining for SQL implements Singular Value
Decomposition (SVD) as a feature extraction algorithm and Principal Component Analysis
(PCA) as a special scoring method for SVD models.

SVD and PCA are orthogonal linear transformations that are optimal at capturing the
underlying variance of the data. This property is very useful for reducing the dimensionality of
high-dimensional data and for supporting meaningful data visualization.

SVD and PCA have a number of important applications in addition to dimensionality
reduction. These include matrix inversion, data compression, and the imputation of unknown
data values.

26.1.1 Matrix Manipulation
Singular Value Decomposition (SVD) is a factorization method that decomposes a
rectangular matrix X into the product of three matrices: U, S, and V.

Figure 26-1    Matrix Manipulation

X = USV'

The U matrix consists of a set of 'left' orthonormal bases
The S matrix is a diagonal matrix
The V matrix consists of set of 'right' orthonormal bases

The values in S are called singular values. They are non-negative, and their magnitudes
indicate the importance of the corresponding bases (components). The singular values reflect
the amount of data variance captured by the bases. The first basis (the one with largest
singular value) lies in the direction of the greatest data variance. The second basis captures
the orthogonal direction with the second greatest variance, and so on.

SVD essentially performs a coordinate rotation that aligns the transformed axes with the
directions of maximum variance in the data. This is a useful procedure under the assumption
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that the observed data has a high signal-to-noise ratio and that a large variance
corresponds to interesting data content while a lower variance corresponds to noise.

SVD makes the assumption that the underlying data is Gaussian distributed and can
be well described in terms of means and covariances.

26.1.2 Low Rank Decomposition
Singular Value Decomposition (SVD) keeps lower-order bases (the ones with the
largest singular values) and ignores higher-order bases (the ones with the smallest
singular values) to capture the most important aspects of the data.

To reduce dimensionality, SVD keeps lower-order bases and ignores higher-order
bases. The rationale behind this strategy is that the low-order bases retain the
characteristics of the data that contribute most to its variance and are likely to capture
the most important aspects of the data.

Given a data set X (nxm), where n is the number of rows and m is the number of
attributes, a low-rank SVD uses only k components (k <= min(m, n)). In typical
implementations of SVD, the value of k requires a visual inspection of the ranked
singular values associated with the individual components. In Oracle Data Mining,
SVD automatically estimates the cutoff point, which corresponds to a significant drop
in the explained variance.

SVD produces two sets of orthonormal bases (U and V). Either of these bases can be
used as a new coordinate system. In Oracle Data Mining, SVD, V is the new
coordinate system, and U represents the projection of X in this coordinate system. The
algorithm computes the projection of new data as follows:

Figure 26-2    Computing Projection of New Data

X = XV
k
S

k 
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~

where X (nxk) is the projected data in the reduced data space, defined by the first k
components, and Vk and Sk define the reduced component set.

26.1.3 Scalability
In Oracle Data Mining, Singular Value Decomposition (SVD) can process data sets
with millions of rows and thousands of attributes. Oracle Data Mining automatically
recommends an appropriate number of features, based on the data, for dimensionality
reduction.

SVD has linear scalability with the number of rows and cubic scalability with the
number of attributes when a full decomposition is computed. A low-rank decomposition
is typically linear with the number of rows and linear with the number of columns. The
scalability with the reduced rank depends on how the rank compares to the number of
rows and columns. It can be linear when the rank is significantly smaller or cubic when
it is on the same scale.

Chapter 26
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26.2 Configuring the Algorithm
Several options are available for configuring the Singular Value Decomposition (SVD)
algorithm.

Among several options are: settings to control model size and performance, and whether to
score with SVD projections or Principal Component Analysis (PCA) projections.

See Also:

DBMS_DATA_MINING — Algorithm Constants and Settings: Singular Value
Decomposition for a listing and explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

26.2.1 Model Size
Learn how a model size is decided based on the rows in the build data and algorithm-specific
setting.

The U matrix in Singular Value Decomposition has as many rows as the number of rows in
the build data. To avoid creating a large model, the U matrix persists only when an algorithm-
specific setting is enabled. By default the U matrix does not persist.

26.2.2 Performance
Singular Value Decomposition can use approximate computations to improve performance.

Approximation may be appropriate for data sets with many columns. An approximate low-
rank decomposition provides good solutions at a reasonable computational cost. The quality
of the approximation is dependent on the characteristics of the data.

26.2.3 PCA scoring
Learn about configuring Singular Value Decomposition (SVD) to perform Principal
Component Analysis (PCA) projections.

SVD models can be configured to perform PCA projections. PCA is closely related to SVD.
PCA computes a set of orthonormal bases (principal components) that are ranked by their
corresponding explained variance. The main difference between SVD and PCA is that the
PCA projection is not scaled by the singular values. The PCA projection to the new
coordinate system is given by:

Figure 26-3    PCA Projection Calculation

X = XV
k

~
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where

X

(nxk) is the projected data in the reduced data space, defined by the first k
components, and Vk defines the reduced component set.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

26.3 Data Preparation for SVD
Oracle Data Mining for SQL implements Singular Value Decomposition (SVD) for
numerical data and categorical data.

When the build data is scored with SVD, Automatic Data Preparation does nothing.
When the build data is scored with Principal Component Analysis (PCA), Automatic
Data Preparation shifts the numerical data by mean.

Missing value treatment is not needed, because Oracle Data Mining algorithms handle
missing values automatically. SVD replaces numerical missing values with the mean
and categorical missing values with the mode. For sparse data (missing values in
nested columns), SVD replaces missing values with zeros.

Related Topics

• Prepare the Data

Chapter 26
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27
Support Vector Machines

Learn how to use Support Vector Machines, a powerful algorithm based on statistical learning
theory.

Oracle Data Mining implements Support Vector Machines for Classification, Regression, and
Anomaly Detection.

• About Support Vector Machine

• Tuning an SVM Model

• Data Preparation for SVM

• SVM Classification

• One-Class SVM

• SVM Regression

Related Topics

• Regression
Learn how to predict a continuous numerical target through Regression - the supervised
mining technique.

• Anomaly Detection
Learn how to detect rare cases in the data through Anomaly Detection - an unsupervised
technique.

• Oracle Data Mining

See Also:

Milenova, B.L., Yarmus, J.S., Campos, M.M., "Support Vector Machines in Oracle
Database 10g: Removing the Barriers to Widespread Adoption of Support Vector
Machines", Proceedings of the 31st VLDB Conference, Trondheim, Norway, 2005.

27.1 About Support Vector Machine
Support Vector Machine (SVM) is a powerful, state-of-the-art algorithm with strong theoretical
foundations based on the Vapnik-Chervonenkis theory.

SVM has strong regularization properties. Regularization refers to the generalization of the
model to new data.

27.1.1 Advantages of SVM
Support Vector Machine (SVM) implements solvers for scalability and handling large volumes
of data.
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Oracle Data Mining for SQL SVM implementation includes two types of solvers, an 
Interior Point Method (IPM) solver and a Sub-Gradient Descent (SGD) solver. The IPM
solver provides stable and accurate solutions, however, it may not be able to handle
data of high dimensionality. For high-dimensional and/or large data, for example, text,
ratings, and so on, the SGD solver is a better choice. Both solvers have highly
scalable parallel implementations and can handle large volumes of data.

27.1.2 Advantages of SVM in Oracle Data Mining for SQL
Describes advantages of using the Support Vector Machine (SVM) algorithm.

Oracle Data Mining for SQL has its own proprietary implementation of SVM, which
exploits the many benefits of the algorithm while compensating for some of the
limitations inherent in the SVM framework. Oracle Data Mining SVM provides the
scalability and usability that are needed in a production quality Oracle Data Mining
system.

27.1.2.1 Usability
Explains usability for Support Vector Machine (SVM) in Oracle Data Mining for SQL.

Usability is a major enhancement, because SVM has often been viewed as a tool for
experts. The algorithm typically requires data preparation, tuning, and optimization.
Oracle Data Mining minimizes these requirements. You do not need to be an expert to
build a quality SVM model in Oracle Data Mining. For example:

• Data preparation is not required in most cases.

• Default tuning parameters are generally adequate.

Related Topics

• Data Preparation for SVM
Support Vector Machine (SVM) uses normalization and missing value treatment
for data preparation.

• Tuning an SVM Model
The Support Vector Machine (SVM) algorithm has built-in mechanisms that
automatically choose appropriate settings based on the data.

27.1.2.2 Scalability
Learn how to scale the data for Support Vector Machines (SVM).

When dealing with very large data sets, sampling is often required. However, sampling
is not required with Oracle Data Mining SVM, because the algorithm itself uses
stratified sampling to reduce the size of the training data as needed.

Oracle Data Mining SVM is highly optimized. It builds a model incrementally by
optimizing small working sets toward a global solution. The model is trained until
convergence on the current working set, then the model adapts to the new data. The
process continues iteratively until the convergence conditions are met. The Gaussian
kernel uses caching techniques to manage the working sets.

Chapter 27
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Related Topics

• Kernel-Based Learning
Learn about kernal-based functions to transform the input data for Support Vector
Machine (SVM).

27.1.3 Kernel-Based Learning
Learn about kernal-based functions to transform the input data for Support Vector Machine
(SVM).

SVM is a kernel-based algorithm. A kernel is a function that transforms the input data to a
high-dimensional space where the problem is solved. Kernel functions can be linear or
nonlinear.

Oracle Data Mining for SQL supports linear and Gaussian (nonlinear) kernels.

In Oracle Data Mining, the linear kernel function reduces to a linear equation on the original
attributes in the training data. A linear kernel works well when there are many attributes in the
training data.

The Gaussian kernel transforms each case in the training data to a point in an n-
dimensional space, where n is the number of cases. The algorithm attempts to separate the
points into subsets with homogeneous target values. The Gaussian kernel uses nonlinear
separators, but within the kernel space it constructs a linear equation.

Note:

Active Learning is not relevant in Oracle Database 12c Release 2 and later. A
setting similar to Active Learning is ODMS_SAMPLING.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

27.2 Tuning an SVM Model
The Support Vector Machine (SVM) algorithm has built-in mechanisms that automatically
choose appropriate settings based on the data.

You may need to override the system-determined settings for some domains.

Settings pertain to regression, classification, and anomaly detection unless otherwise
specified.

See Also:

DBMS_DATA_MINING —Algorithm Settings: Support Vector Machine for a listing
and explanation of the available model settings.

Chapter 27
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Note:

The term hyperparameter is also interchangeably used for model setting.

27.3 Data Preparation for SVM
Support Vector Machine (SVM) uses normalization and missing value treatment for
data preparation.

The SVM algorithm operates natively on numeric attributes. SVM uses z-score
normalization on numeric attributes. The normalization occurs only for two-dimensional
numeric columns (not nested). The algorithm automatically "explodes" categorical data
into a set of binary attributes, typically one per category value. For example, a
character column for marital status with values married or single is transformed to
two numeric attributes: married and single. The new attributes can have the value 1
(true) or 0 (false).

When there are missing values in columns with simple data types (not nested), SVM
interprets them as missing at random. The algorithm automatically replaces missing
categorical values with the mode and missing numerical values with the mean.

When there are missing values in the nested columns, SVM interprets them as sparse.
The algorithm automatically replaces sparse numerical data with zeros and sparse
categorical data with zero vectors.

27.3.1 Normalization
Transform data through normalization for Support Vector Machine (SVM).

SVM require the normalization of numeric input. Normalization places the values of
numeric attributes on the same scale and prevents attributes with a large original scale
from biasing the solution. Normalization also minimizes the likelihood of overflows and
underflows.

27.3.2 SVM and Automatic Data Preparation
Learn about treating and transforming data manually or through Automatic Data
Preparation (ADP) for Support Vector Machines (SVM).

The SVM algorithm automatically handles missing value treatment and the
transformation of categorical data, but normalization and outlier detection must be
handled by Automatic Data Preparation (ADP) or prepared manually. ADP performs
min-max normalization for SVM.

Note:

Oracle recommends that you use Automatic Data Preparation with SVM. The
transformations performed by ADP are appropriate for most models.

Chapter 27
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Related Topics

• Oracle Data Mining User’s Guide

27.4 SVM Classification
Support Vector Machine (SVM) classification is based on the concept of decision planes that
define decision boundaries.

A decision plane is one that separates between a set of objects having different class
memberships. SVM finds the vectors ("support vectors") that define the separators giving the
widest separation of classes.

SVM classification supports both binary, multiclass, and multitarget classification. Multitarget
alllows multiple class labels to be associated with a single row. The target type is a collection
of type ORA_MINING_VARCHAR2_NT.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

27.4.1 Class Weights
Learn when to implement class weights to a data in Support Vector Machine (SVM).

In SVM classification, weights are a biasing mechanism for specifying the relative importance
of target values (classes).

SVM models are automatically initialized to achieve the best average prediction across all
classes. However, if the training data does not represent a realistic distribution, you can bias
the model to compensate for class values that are under-represented. If you increase the
weight for a class, then the percent of correct predictions for that class must increase.

Related Topics

• Priors and Class Weights
Learn about Priors and Class Weights in a classification model to produce a useful result.

27.5 One-Class SVM
Support Vector Machine (SVM) as a one-class classifier is used for detecting anomalies.

Oracle Data Mining for SQL uses SVM as the one-class classifier for anomaly detection.
When SVM is used for anomaly detection, it has the classification data mining technique but
no target.

One-class SVM models, when applied, produce a prediction and a probability for each case
in the scoring data. If the prediction is 1, the case is considered typical. If the prediction is 0,
the case is considered anomalous. This behavior reflects the fact that the model is trained
with normal data.

You can specify the percentage of the data that you expect to be anomalous with the
SVMS_OUTLIER_RATE build setting. If you have some knowledge that the number of
"suspicious" cases is a certain percentage of your population, then you can set the outlier
rate to that percentage. The model approximately identifies that many "rare" cases when
applied to the general population.

Chapter 27
SVM Classification
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27.6 SVM Regression
Learn how to use epsilon-insensitivity loss function to solve regression problems in
Support Vector Machine (SVM).

SVM uses an epsilon-insensitive loss function to solve regression problems.

SVM regression tries to find a continuous function such that the maximum number of
data points lie within the epsilon-wide insensitivity tube. Predictions falling within
epsilon distance of the true target value are not interpreted as errors.

The epsilon factor is a regularization setting for SVM regression. It balances the
margin of error with model robustness to achieve the best generalization to new data.

Related Topics

• SVM Model Settings

Chapter 27
SVM Regression
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Glossary

ADP
See Automatic Data Preparation.

aggregation
The process of consolidating data values into a smaller number of values. For example, sales
data collected on a daily basis can be totaled to the week level.

algorithm
A sequence of steps for solving a problem. See data mining algorithm. The Oracle Data
Mining API supports the following algorithms: MDL, Apriori, Decision Tree, k-Means, Naive
Bayes, GLM, O-Cluster, Support Vector Machines, Expectation Maximization, and Singular
Value Decomposition.

algorithm settings
The settings that specify algorithm-specific behavior for model building.

anomaly detection
The detection of outliers or atypical cases. Oracle Data Mining for SQL implements anomaly
detection as one-class SVM.

apply
The data mining operation that scores data. Scoring is the process of applying a model to
new data to predict results.

Apriori
The algorithm that uses frequent itemsets to calculate associations.

association
A machine learning technique that identifies relationships among items.
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association rules
A data mining technique that captures co-occurrence of items among transactions. A
typical rule is an implication of the form A -> B, which means that the presence of
itemset A implies the presence of itemset B with certain support and confidence. The
support of the rule is the ratio of the number of transactions where the itemsets A and
B are present to the total number of transactions. The confidence of the rule is the
ratio of the number of transactions where the itemsets A and B are present to the
number of transactions where itemset A is present. Oracle Data Mining for SQL uses
the Apriori algorithm for association models.

attribute
An attribute is a predictor in a predictive model or an item of descriptive information in
a descriptive model. Data attributes are the columns of data that are used to build a
model. Data attributes undergo transformations so that they can be used as
categoricals or numericals by the model. Categoricals and numericals are model
attributes. See also target.

attribute importance
A data mining technique that provides a measure of the importance of an attribute and
predicts a specified target. The measure of different attributes of a training data table
enables users to select the attributes that are found to be most relevant to a data
mining model. A smaller set of attributes results in a faster model build; the resulting
model could be more accurate. Oracle Data Mining for SQL uses the Minimum
Description Length to discover important attributes. Sometimes referred to as feature
selection or key fields.

Automatic Data Preparation
data mining models can be created with Automatic Data Preparation (ADP), which
transforms the build data according to the requirements of the algorithm and embeds
the transformation instructions in the model. The embedded transformations are
executed whenever the model is applied to new data.

bagging
Combine independently trained models on bootstrap samples (bagging is bootstrap
aggregating).

binning
See discretization.
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build data
Data used to build (train) a model. Also called training data.

case
All the data collected about a specific transaction or related set of values. A data set is a
collection of cases. Cases are also called records or examples. In the simplest situation, a
case corresponds to a row in a table.

case table
A table or view in single-record case format. All the data for each case is contained in a
single row. The case table may include a case ID column that holds a unique identifier for
each row. Mining data must be presented as a case table.

categorical attribute
An attribute whose values correspond to discrete categories. For example, state is a
categorical attribute with discrete values (CA, NY, MA). Categorical attributes are either non-
ordered (nominal) like state or gender, or ordered (ordinal) such as high, medium, or low
temperatures.

centroid
See cluster centroid.

classification
A data mining technique for predicting categorical target values for new records using a
model built from records with known target values. Oracle Data Mining for SQL supports the
following algorithms for classification: Naive Bayes, Decision Tree, Generalized Linear Model,
Explicit Semantic Analysis, Random Forest, Support Vector Machine, and XGBoost.

clipping
See trimming.

cluster centroid
The vector that encodes, for each attribute, either the mean (if the attribute is numerical) or
the mode (if the attribute is categorical) of the cases in the training data assigned to a cluster.
A cluster centroid is often referred to as "the centroid."

clustering
A data mining technique for finding naturally occurring groupings in data. More precisely,
given a set of data points, each having a set of attributes, and a similarity measure among
them, clustering is the process of grouping the data points into different clusters such that
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data points in the same cluster are more similar to one another and data points in
different clusters are less similar to one another. Oracle Data Mining for SQL supports
three algorithms for clustering, k-Means, Orthogonal Partitioning Clustering, and 
Expectation Maximization.

confusion matrix
Measures the correctness of predictions made by a model from a test task. The row
indexes of a confusion matrix correspond to actual values observed and provided in
the test data. The column indexes correspond to predicted values produced by
applying the model to the test data. For any pair of actual/predicted indexes, the value
indicates the number of records classified in that pairing.

When predicted value equals actual value, the model produces correct predictions. All
other entries indicate errors.

cost matrix
An n by n table that defines the cost associated with a prediction versus the actual
value. A cost matrix is typically used in classification models, where n is the number of
distinct values in the target, and the columns and rows are labeled with target values.
The rows are the actual values; the columns are the predicted values.

counterexample
Negative instance of a target. Counterexamples are required for classification models,
except for one-class Support Vector Machines.

data mining
Data mining is the practice of automatically searching large stores of data to discover
patterns and trends from experience that go beyond simple analysis. Data mining uses
sophisticated mathematical algorithms to segment the data and evaluate the
probability of future events. Data mining is also known as Knowledge Discovery in
Data (KDD).

A data mining model implements a data mining algorithm to solve a given type of
problem for a given set of data.

data mining algorithm
A specific technique or procedure for producing a data mining model. An algorithm
uses a specific data representation and a specific mining technique.

The algorithms supported by Oracle Data Mining are Naive Bayes, Support Vector
Machines, Generalized Linear Model, and Decision Tree for classification; Support
Vector Machines and Generalized Linear Model for regression; k-Means, O-Cluster
and Expectation Maximization for clustering; Minimum Description Length for attribute
importance; Non-Negative Matrix Factorization and Singular Value Decomposition for
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feature extraction; Apriori for associations, and one-class Support Vector Machines for
anomaly detection.

data mining server
The component of Oracle Database that implements the data mining engine and persistent
metadata repository. You must connect to a data mining server before performing data mining
tasks.

data set
In general, a collection of data. A data set is a collection of cases.

descriptive model
A descriptive model helps in understanding underlying processes or behavior. For example,
an association model may describe consumer buying patterns. See also mining model.

discretization
Discretization (binning) groups related values together under a single value (or bin). This
reduces the number of distinct values in a column. Fewer bins result in models that build
faster. Many Oracle Data Mining for SQL algorithms (for example NB) may benefit from input
data that is discretized prior to model building, testing, computing lift, and applying (scoring).
Different algorithms may require different types of binning. Oracle Data Mining for SQL
supports supervised binning, top N frequency binning for categorical attributes and equi-width
binning and quantile binning for numerical attributes.

distance-based (clustering algorithm)
Distance-based algorithms rely on a distance metric (function) to measure the similarity
between data points. Data points are assigned to the nearest cluster according to the
distance metric used.

Decision Tree
A decision tree is a representation of a classification system or supervised model. The tree is
structured as a sequence of questions; the answers to the questions trace a path down the
tree to a leaf, which yields the prediction.

Decision trees are a way of representing a series of questions that lead to a class or value.
The top node of a decision tree is called the root node; terminal nodes are called leaf nodes.
Decision trees are grown through an iterative splitting of data into discrete groups, where the
goal is to maximize the distance between groups at each split.

An important characteristic of the Decision Tree models is that they are transparent; that is,
there are rules that explain the classification.
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See also rule .

equi-width binning
Equi-width binning determines bins for numerical attributes by dividing the range of
values into a specified number of bins of equal size.

Expectation Maximization
Expectation Maximization is a probabilistic clustering algorithm that creates a density
model of the data. The density model allows for an improved approach to combining
data originating in different domains (for example, sales transactions and customer
demographics, or structured data and text or other unstructured data).

explode
For a categorical attribute, replace a multi-value categorical column with several binary
categorical columns. To explode the attribute, create a new binary column for each
distinct value that the attribute takes on. In the new columns, 1 indicates that the value
of the attribute takes on the value of the column; 0, that it does not. For example,
suppose that a categorical attribute takes on the values {1, 2, 3}. To explode this
attribute, create three new columns, col_1, col_2, and col_3. If the attribute takes on
the value 1, the value in col_1 is 1; the values in the other two columns is 0.

feature
A combination of attributes in the data that is of special interest and that captures
important characteristics of the data. See feature extraction.

See also text feature.

feature extraction
Creates a new set of features by decomposing the original data. Feature extraction
lets you describe the data with a number of features that is usually far smaller than the
number of original attributes. See also Non-Negative Matrix Factorization and Singular
Value Decomposition.

Generalized Linear Model
A statistical technique for linear modeling. Generalized Linear Model (GLM) models
include and extend the class of simple linear models. Oracle Data Mining for SQL
supports logistic regression for GLM classification and linear regression for GLM
regression.
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GLM
See Generalized Linear Model.

k-Means
A distance-based clustering algorithm that partitions the data into a predetermined number of
clusters (provided there are enough distinct cases). Distance-based algorithms rely on a
distance metric (function) to measure the similarity between data points. Data points are
assigned to the nearest cluster according to the distance metric used. Oracle Data Mining for
SQL provides an enhanced version of k-Means.

lift
A measure of how much better prediction results are using a model than could be obtained
by chance. For example, suppose that 2% of the customers mailed a catalog make a
purchase; suppose also that when you use a model to select catalog recipients, 10% make a
purchase. Then the lift for the model is 10/2 or 5. Lift may also be used as a measure to
compare different data mining models. Since lift is computed using a data table with actual
outcomes, lift compares how well a model performs with respect to this data on predicted
outcomes. Lift indicates how well the model improved the predictions over a random selection
given actual results. Lift allows a user to infer how a model performs on new data.

lineage
The sequence of transformations performed on a data set during the data preparation phase
of the model build process.

linear regression
The GLM regression algorithm supported by Oracle Data Mining for SQL.

logistic regression
The GLM classification algorithm supported by Oracle Data Mining for SQL.

MDL
See Minimum Description Length.

min-max normalization
Normalizes numerical attributes using this transformation:

 x_new = (x_old-min) / (max-min) 

Glossary

Glossary-7



Minimum Description Length
Given a sample of data and an effective enumeration of the appropriate alternative
theories to explain the data, the best theory is the one that minimizes the sum of

• The length, in bits, of the description of the theory

• The length, in bits, of the data when encoded with the help of the theory

The Minimum Description Length principle is used to select the attributes that most
influence target value discrimination in attribute importance.

data mining technique
A major subdomain of Oracle Data Mining for SQL that shares common high level
characteristics. The Oracle Data Mining for SQL API supports the following data
mining techniques: classification , regression, attribute importance, feature extraction, 
clustering, and anomaly detection.

mining model
A first-class schema object that specifies a data mining model in Oracle Database.

missing value
A data value that is missing at random. The value could be missing because it is
unavailable, unknown, or because it was lost. Oracle Data Mining for SQL interprets
missing values in columns with simple data types (not nested) as missing at random.
Oracle Data Mining for SQL interprets missing values in nested columns as sparsity.

Data mining algorithms vary in the way they treat missing values. There are several
typical ways to treat them: ignore them, omit any records containing missing values,
replace missing values with the mode or mean, or infer missing values from existing
values. See also sparse data.

model
A model uses an algorithm to implement a given mining technique. A model can be a 
supervised model or an unsupervised model. A model can be used for direct
inspection, for example, to examine the rules produced from an association model, or
to score data (predict an outcome). In Oracle Database, data mining models are
implemented as mining model schema objects.

multi-record case
Each case in the data table is stored in multiple rows. Also known as transactional
data. See also single-record case.

Naive Bayes
An algorithm for classification that is based on Bayes's theorem. Naive Bayes makes
the assumption that each attribute is conditionally independent of the others: given a
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particular value of the target, the distribution of each predictor is independent of the other
predictors.

nested data
Oracle Data Mining for SQL supports transactional data in nested columns of name/value
pairs. Multidimensional data that expresses a one-to-many relationship can be loaded into a
nested column and mined along with single-record case data in a case table.

NMF
See Non-Negative Matrix Factorization.

Non-Negative Matrix Factorization
A feature extraction algorithm that decomposes multivariate data by creating a user-defined
number of features, which results in a reduced representation of the original data.

normalization
Normalization consists of transforming numerical values into a specific range, such as [–
1.0,1.0] or [0.0,1.0] such that x_new = (x_old-shift)/scale. Normalization applies only to
numerical attributes. Oracle Data Mining for SQL provides transformations that perform min-
max normalization, scale normalization, and z-score normalization.

numerical attribute
An attribute whose values are numbers. The numeric value can be either an integer or a real
number. Numerical attribute values can be manipulated as continuous values. See also 
categorical attribute.

O-Cluster
See Orthogonal Partitioning Clustering.

one-class Support Vector Machine
The version of Support Vector Machines used to solve anomaly detection problems. The
algorithm performs classification without a target.

Orthogonal Partitioning Clustering
An Oracle proprietary clustering algorithm that creates a hierarchical grid-based clustering
model, that is, it creates axis-parallel (orthogonal) partitions in the input attribute space. The
algorithm operates recursively. The resulting hierarchical structure represents an irregular
grid that tessellates the attribute space into clusters.
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outlier
A data value that does not come from the typical population of data or extreme values.
In a normal distribution, outliers are typically at least three standard deviations from
the mean.

positive target value
In binary classification problems, you may designate one of the two classes (target
values) as positive, the other as negative. When Oracle Data Mining for SQL
computes a model's lift, it calculates the density of positive target values among a set
of test instances for which the model predicts positive values with a given degree of
confidence.

predictive model
A predictive model is an equation or set of rules that makes it possible to predict an
unseen or unmeasured value (the dependent variable or output) from other, known
values (independent variables or input). The form of the equation or rules is suggested
by mining data collected from the process under study. Some training or estimation
technique is used to estimate the parameters of the equation or rules. A predictive
model is a supervised model.

predictor
An attribute used as input to a supervised algorithm to build a model.

prepared data
Data that is suitable for model building using a specified algorithm. Data preparation
often accounts for much of the time spent in a data mining project. Automatic Data
Preparation greatly simplifies model development and deployment by automatically
preparing the data for the algorithm.

Principal Component Analysis
Principal Component Analysis is implemented as a special scoring method for the 
Singular Value Decomposition algorithm.

prior probabilities
The set of prior probabilities specifies the distribution of examples of the various
classes in the original source data. Also referred to as priors, these could be different
from the distribution observed in the data set provided for model build.

Glossary

Glossary-10



priors
See prior probabilities.

quantile binning
A numerical attribute is divided into bins such that each bin contains approximately the same
number of cases.

random sample
A sample in which every element of the data set has an equal chance of being selected.

recode
Literally "change or rearrange the code." Recoding can be useful in preparing data according
to the requirements of a given business problem, for example:

• Missing values treatment: Missing values may be indicated by something other than
NULL, such as "0000" or "9999" or "NA" or some other string. One way to treat the
missing value is to recode, for example, "0000" to NULL. Then the Oracle Data Mining
algorithms and the database recognize the value as missing.

• Change data type of variable: For example, change "Y" or "Yes" to 1 and "N" or "No" to 0.

• Establish a cutoff value: For example, recode all incomes less than $20,000 to the same
value.

• Group items: For example, group individual US states into regions. The "New England
region" might consist of ME, VT, NH, MA, CT, and RI; to implement this, recode the five
states to, say, NE (for New England).

record
See case.

regression
A data mining technique for predicting continuous target values for new records using a
model built from records with known target values. Oracle Data Mining supports linear
regression (GLM) and Support Vector Machines algorithms for regression.

rule
An expression of the general form if X, then Y. An output of certain algorithms, such as
clustering, association, and Decision Tree. The predicate X may be a compound predicate.
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sample
See random sample.

scale normalization
Normalize numerical attributes using this transformation:

 x_new = (x_old - 0) / (max(abs(max),abs(min))) 

schema
A collection of objects in an Oracle database, including logical structures such as
tables, views, sequences, stored procedures, synonyms, indexes, clusters, and
database links. A schema is associated with a specific database user.

score
Scoring data means applying a data mining model to data to generate predictions.

settings
See algorithm settings.

single-record case
Each case in the data table is stored in one row. Contrast with multi-record case.

Singular Value Decomposition
A feature extraction algorithm that uses orthogonal linear projections to capture the
underlying variance of the data. Singular Value Decomposition scales well to very
large data sizes (both rows and attributes), and has a powerful data compression
capability.

See Singular Value Decomposition.

sparse data
Data for which only a small fraction of the attributes are non-zero or non-null in any
given case. Market basket data and unstructured text data are typically sparse. Oracle
Data Mining interprets nested data as sparse. See also missing value.

split
Divide a data set into several disjoint subsets. For example, in a classification problem,
a data set is often divided in to a training data set and a test data set.
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stratified sample
Divide the data set into disjoint subsets (strata) and then take a random sample from each of
the subsets. This technique is used when the distribution of target values is skewed greatly.
For example, response to a marketing campaign may have a positive target value 1% of the
time or less. A stratified sample provides the data mining algorithms with enough positive
examples to learn the factors that differentiate positive from negative target values. See also 
random sample.

supervised binning
A form of intelligent binning wherein bin boundaries are derived from important characteristics
of the data. Supervised binning builds a single-predictor decision tree to find the interesting
bin boundaries with respect to a target. Supervised binning can be used for numerical or
categorical attributes.

supervised learning
See supervised model.

supervised model
A data mining model that is built using a known dependent variable, also referred to as the
target. Classification and regression techniques are examples of supervised mining. See 
unsupervised model. Also referred to as predictive model.

Support Vector Machine
An algorithm that uses machine learning theory to maximize predictive accuracy while
automatically avoiding over-fit to the data. Support Vector Machine can make predictions with
sparse data, that is, in domains that have a large number of predictor columns and relatively
few rows, as is the case with bioinformatics data. Support Vector Machine can be used for
classification, regression, and anomaly detection.

SVM
See Support Vector Machines.

target
In supervised learning, the identified attribute that is to be predicted. Sometimes called target
value or target attribute. See also attribute.

text feature
A combination of words that captures important attributes of a document or class of
documents. Text features are usually keywords, frequencies of words, or other document-
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derived features. A document typically contains a large number of words and a much
smaller number of features.

text mining
Conventional data mining done using text features. Text features are usually
keywords, frequencies of words, or other document-derived features. Once you derive
text features, you mine them just as you would any other data. Both Oracle Data
Mining and Oracle Text support text mining.

top N frequency binning
This type of binning bins categorical attributes. The bin definition for each attribute is
computed based on the occurrence frequency of values that are computed from the
data. The user specifies a particular number of bins, say N. Each of the bins bin_1,...,
bin_N corresponds to the values with top frequencies. The bin bin_N+1 corresponds to
all remaining values.

training data
See build data.

transactional data
The data for one case is contained in several rows. An example is market basket data,
in which a case represents one basket that contains multiple items. Oracle Data
Mining for SQL supports transactional data in nested columns of attribute name/value
pairs. See also nested data, multi-record case, and single-record case.

transformation
A function applied to data resulting in a new representation of the data. For example,
discretization and normalization are transformations on data.

trimming
A technique for minimizing the impact of outliers. Trimming removes values in the tails
of a distribution in the sense that trimmed values are ignored in further computations.
Trimming is achieved by setting the tails to NULL.

unstructured data
Images, audio, video, geospatial mapping data, and documents or text data are
collectively known as unstructured data. Oracle Data Mining for SQL supports the
analysis of unstructured text data.
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unsupervised learning
See unsupervised model.

unsupervised model
A data mining model built without the guidance (supervision) of a known, correct result. In
supervised learning, this correct result is provided in the target attribute. Unsupervised
learning has no such target attribute. Clustering and association are examples of
unsupervised data mining techniques. See supervised model.

winsorizing
A technique for minimizing the impact of outliers. Winsorizing involves setting the tail values
of an particular attribute to some specified value. For example, for a 90% Winsorization, the
bottom 5% of values are set equal to the minimum value in the 6th percentile, while the upper
5% are set equal to the maximum value in the 95th percentile.

z-score normalization
Normalize numerical attributes using this transformation:

x_new = (x_old-mean) / standard_deviation 
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