Oracle® Database

Database SecureFiles and Large Objects
Developer's Guide

18c
E90894-07
July 2021

ORACLE"

Oracle Database Database SecureFiles and Large Objects Developer's Guide, 18c
E90894-07

Copyright © 1996, 2021, Oracle and/or its affiliates.

Primary Author: Amith Kumar

Contributing Authors: Tulika Das, Tanmay Choudhury

Contributors: Bharath Aleti, Geeta Arora, Thomas H. Chang, Maria Chien, Subramanyam Chitti, Amit
Ganesh, Kevin Jernigan, Vikram Kapoor, Balaji Krishnan, Jean de Lavarene, Geoff Lee, Scott Lynn, Jack
Melnick, Atrayee Mullick, Eric Paapanen, Ravi Rajamani, Kam Shergill, Ed Shirk, Srinivas Vemuri

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience XXiii
Documentation Accessibility XXili
Related Documents XXiii
Conventions XXV
Changes in Oracle Database 18c
New Features XXV
Deprecated Features XXV
Desupported Features XXVi
Part | Getting Started
1 Introduction to Large Objects and SecureFiles
1.1 What Are Large Objects? 1-1
1.2 Why Use Large Objects? 1-1
1.2.1 Data Types that Use Large Objects 1-2
1.2.2 LOBs Used for Semistructured Data 1-2
1.2.3 LOBs Used for Unstructured Data 1-3
1.3 Why Not Use LONGs? 1-3
1.4 Different Kinds of LOBs 1-4
1.4.1 Internal LOBs 1-4
1.4.2 External LOBs and the BFILE Data Type 1-5
1.5 LOB Locators 1-5
1.6 Database Semantics for Internal and External LOBs 1-6
1.7 Large Object Data Types 1-6
1.8 About Object Data Types and LOBs 1-7
1.9 Storage and Creation of Other Data Types with LOBs 1-7
1.9.1 VARRAYs Stored as LOBs 1-8
1.10 BasicFiles and SecureFiles LOBs 1-8

ORACLE

1.11 Database File System (DBFS) 1-8
Working with LOBs
2.1 LOB Column States 2-1
2.2 Locking a Row Containing a LOB 2-2
2.3 LOB Open and Close Operations 2-2
2.4 LOB Locator and LOB Value 2-2
2.4.1 Using the Data Interface for LOBs 2-3
2.4.2 Use the LOB Locator to Access and Modify LOB Values 2-3
2.5 LOB Locators and BFILE Locators 2-3
2.5.1 Table for LOB Examples: The PM Schema print_media Table 2-4
2.5.2 LOB Column Initialization 2-4
2.5.2.1 Initializing a Persistent LOB Column 2-5
2.5.2.2 |Initializing BFILEs 2-6
2.6 LOB Access 2-6
2.6.1 Accessing a LOB Using SQL 2-7
2.6.2 Accessing a LOB Using the Data Interface 2-7
2.6.3 Accessing a LOB Using the Locator Interface 2-7
2.7 LOB Rules and Restrictions 2-8
2.7.1 Rules for LOB Columns 2-8
2.7.2 Restrictions for LOB Operations 2-9
Using Oracle LOB Storage
3.1 LOB Storage 3-1
3.1.1 BasicFiles LOB Storage 3-2
3.1.2 SecureFiles LOB Storage 3-2
3.1.2.1 About Advanced LOB Compression 3-2
3.1.2.2 About Advanced LOB Deduplication 3-2
3.1.2.3 About SecureFiles Encryption 3-3
3.2 CREATE TABLE with LOB Storage 3-3
3.2.1 CREATE TABLE LOB Storage Parameters 3-7
3.2.2 CREATE TABLE and SecureFiles LOB Features 3-10
3.2.2.1 CREATE TABLE with Advanced LOB Compression 3-11
3.2.2.2 CREATE TABLE with Advanced LOB Deduplication 3-12
3.2.2.3 CREATE TABLE with SecureFiles Encryption 3-14
3.3 ALTER TABLE with LOB Storage 3-15
3.3.1 About ALTER TABLE and LOB Storage 3-16
3.3.2 BNF for the ALTER TABLE Statement 3-16
3.3.3 ALTER TABLE LOB Storage Parameters 3-17

ORACLE iv

3.3.4 ALTER TABLE SecureFiles LOB Features 3-18
3.3.4.1 ALTER TABLE with Advanced LOB Compression 3-18
3.3.4.2 ALTER TABLE with Advanced LOB Deduplication 3-19
3.3.4.3 ALTER TABLE with SecureFiles Encryption 3-20
3.4 Initialization, Compatibility, and Upgrading 3-21
3.4.1 Compatibility and Upgrading 3-22
3.4.2 Initialization Parameter for SecureFiles LOBs 3-22
3.5 Migrating Columns from BasicFiles LOBs to SecureFiles LOBs 3-23
3.5.1 Preventing Generation of REDO Data When Migrating to SecureFiles LOBs 3-23
3.5.2 Online Redefinition for BasicFiles LOBs 3-23
3.5.3 Online Redefinition Example for Migrating Tables with BasicFiles LOBs 3-24
3.5.4 Redefining a SecureFiles LOB in Parallel 3-25
3.6 PL/SQL Packages for LOBs and DBFS 3-25
3.6.1 The DBMS_LOB Package Used with SecureFiles LOBs and DBFS 3-25
3.6.2 DBMS_LOB Constants Used with SecureFiles LOBs and DBFS 3-26
3.6.3 DBMS_LOB Subprograms Used with SecureFiles LOBs and DBFS 3-26
3.6.4 DBMS_SPACE Package 3-33
3.6.4.1 DBMS_SPACE.SPACE_USAGE() 3-33
4 Operations Specific to Persistent and Temporary LOBs
4.1 Persistent LOB Operations 4-1
4.1.1 Inserting a LOB into a Table 4-1
4.1.2 Selecting a LOB from a Table 4-1
4.2 Temporary LOB Operations 4-2
4.2.1 Creating and Freeing a Temporary LOB 4-2
4.3 Creating Persistent and Temporary LOBs in PL/SQL 4-3
4.4 Freeing Temporary LOBs in OCI 4-4
5 Distributed LOBs

5.1 Working with Remote LOBs 5-1
5.1.1 Working with Remote LOB Columns 5-1
5.1.1.1 Create table as select or insert as select 5-1
5.1.1.2 Functions on remote LOBs returning scalars 5-2
5.1.1.3 Data Interface for remote LOBs 5-2
5.1.2 Working with Remote Locator 5-2

5.1.2.1 Using Local and Remote locators as bind with queries and DML on
remote tables 5-3
5.1.2.2 Restrictions when using remote LOB locators 5-4
5.2 SQL Semantics with LOBs in Remote Tables 5-4
5.2.1 Built-in Functions for Remote LOBs and BFILEs 5-4

ORACLE

5.2.2 Passing Remote Locator to Built in SQL Functions 5-6
5.3 Working with Remote LOBs in PL/SQL 5-6
5.3.1 PL/SQL Functions for Remote LOBs and BFILEs 5-6
5.3.1.1 Restrictions on Remote User-Defined Functions 5-7
5.3.1.2 Remote Functions in PL/SQL, OCI, and JDBC 5-7
5.3.2 Using Remote Locator in PL/SQL 5-7
5.3.3 Using Remote Locators with DBMS_LOB 5-8
5.3.3.1 Restrictions on Using Remote Locators with DBMS_LOB 5-8
5.4 Using Remote Locators with OCILOB API 5-8
6 DDL and DML Statements with LOBs
6.1 Creating a Table Containing One or More LOB Columns 6-1
6.2 Creating a Nested Table Containing a LOB 6-4
6.3 Inserting a Row by Selecting a LOB From Another Table 6-4
6.4 Inserting a LOB Value Into a Table 6-5
6.5 Inserting a Row by Initializing a LOB Locator Bind Variable 6-6
6.5.1 About Inserting Rows with LOB Locator Bind Variables 6-7
6.5.2 PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable 6-7
6.5.3 C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable 6-7
6.5.4 COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind
Variable 6-8
6.5.5 C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable 6-9
6.5.6 Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable 6-10
6.6 Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB() 6-11
6.7 Updating a Row by Selecting a LOB From Another Table 6-12
Part Il value Semantics LOBs
7 SQL Semantics and LOBs
7.1 About Using LOBs in SQL 7-1
7.2 SQL Functions and Operators Supported for Use with LOBs 7-2
7.2.1 About SQL Functions and Operators for LOBs 7-2
7.2.2 Implicit Conversion of CLOB to CHAR Types 7-3
7.2.3 CLOBs and NCLOBs Do Not Follow Session Collation Settings 7-6
7.2.4 UNICODE Support 7-6
7.2.5 Codepoint Semantics 7-7
7.2.6 Return Values for SQL Semantics on LOBs 7-7
7.2.7 LENGTH Return Value for LOBs 7-8
7.3 Implicit Conversion of LOB Data Types in SQL 7-8
ORACLE Vi

7.3.1 Implicit Conversion Between CLOB and NCLOB Data Types in SQL 7-8
7.4 Unsupported Use of LOBs in SQL 7-10
7.5 VARCHAR2 and RAW Semantics for LOBs 7-10
7.5.1 About VARCHAR2 and RAW Semantics for LOBs 7-10
7.5.2 LOBs Returned from SQL Functions 7-11
7.5.3 IS NULL and IS NOT NULL Usage with VARCHAR2s and CLOBs 7-12
7.5.4 WHERE Clause Usage with LOBs 7-12
7.6 Built-in Functions for Remote LOBs and BFILEs 7-13
8 PL/SQL Semantics for LOBs
8.1 PL/SQL Statements and Variables 8-1
8.2 Implicit Conversions Between CLOB and VARCHAR?2 8-1
8.3 Explicit Conversion Functions 8-2
8.3.1 VARCHAR2 and CLOB in PL/SQL Built-In Functions 8-3
8.4 PL/SQL Functions for Remote LOBs and BFILES 8-5
O Data Interface for Persistent LOBs
9.1 Overview of the Data Interface for Persistent LOBs 9-1
9.2 Benefits of Using the Data Interface for Persistent LOBs 9-2
9.3 Using the Data Interface for Persistent LOBs in PL/SQL 9-2
9.3.1 About Using the Data Interface for Persistent LOBs in PL/SQL 9-3
9.3.2 Guidelines for Accessing LOB Columns Using the Data Interface in SQL and
PL/SQL 9-3
9.3.3 Implicit Assignment and Parameter Passing 9-4
9.3.4 Passing CLOBs to SQL and PL/SQL Built-In Functions 9-5
9.3.5 Explicit Conversion Functions 9-5
9.3.6 Calling PL/SQL and C Procedures from SQL 9-5
9.3.7 Calling PL/SQL and C Procedures from PL/SQL 9-6
9.3.8 Binds of All Sizes in INSERT and UPDATE Operations 9-6
9.3.9 4000 Byte Limit on Results of a SQL Operator 9-7
9.3.10 Example of 4000 Byte Result Limit of a SQL Operator 9-7
9.3.11 Restrictions on Binds of More Than 4000 Bytes 9-7
9.3.12 Performing Parallel DDL, Parallel DML (PDML), and Parallel Query (PQ)
Operations on LOBs 9-8
9.3.13 Example: PL/SQL - Using Binds of More Than 4000 Bytes in INSERT and
UPDATE 9-9
9.3.14 Using the Data Interface for LOBs with INSERT, UPDATE, and SELECT
Operations 9-10
9.3.15 Using the Data Interface for LOBs in Assignments and Parameter Passing 9-10
9.3.16 Using the Data Interface for LOBs with PL/SQL Built-In Functions 9-11
ORACLE Vii

9.4 The Data Interface Used for Persistent LOBs in OCI 9-11
9.4.1 LOB Data Types Bound in OCI 9-12
9.4.2 LOB Data Types Defined in OCI 9-12
9.4.3 Multibyte Character Sets Used in OCI with the Data Interface for LOBs 9-13
9.4.4 OCI Functions Used to Perform INSERT or UPDATE on LOB Columns 9-13

9.4.4.1 Performing Simple INSERTs or UPDATES in One Piece 9-13
9.4.4.2 Using Piecewise INSERTs and UPDATEs with Polling 9-13
9.4.4.3 Performing Piecewise INSERTs and UPDATESs with Callback 9-13
9.4.4.4 Array INSERT and UPDATE Operations 9-14
9.4.5 The Data Interface Used to Fetch LOB Data in OCI 9-14
9.4.5.1 Simple Fetch in One Piece 9-14
9.4.5.2 Performing a Piecewise Fetch with Polling 9-14
9.4.5.3 Performing a Piecewise with Callback 9-15
9.4.5.4 Array Fetch 9-15
9.4.6 PL/SQL and C Binds from OCI 9-15
9.4.7 Example: C (OCI) - Binds of More than 4000 Bytes for INSERT and UPDATE 9-16
9.4.8 Using the Data Interface for LOBs in PL/SQL Binds from OCI on LOBs 9-16
9.4.9 Binding LONG Data for LOB Columns in Binds Greater Than 4000 Bytes 9-17
9.4.10 Binding LONG Data to LOB Columns Using Piecewise INSERT with Polling 9-17
9.4.11 Binding LONG Data to LOB Columns Using Piecewise INSERT with Callback 9-19
9.4.12 Binding LONG Data to LOB Columns Using an Array INSERT 9-20
9.4.13 Selecting a LOB Column into a LONG Buffer Using a Simple Fetch 9-21

9.4.14 Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with
Polling 9-21

9.4.15 Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with
Callback 9-22
9.4.16 Selecting a LOB Column into a LONG Buffer Using an Array Fetch 9-24

9.5 The Data Interface Used with Persistent LOBs in Java 9-24

9.6 The Data Interface Used with Remote LOBs 9-25
9.6.1 About the Data Interface with Remote LOBs 9-25
9.6.2 Non-Supported Syntax 9-25
9.6.3 Remote Data Interface Example in PL/SQL 9-26
9.6.4 Remote Data Interface Example in OCI 9-26
9.6.5 Remote Data Interface Examples in JDBC 9-27

Part Ill Reference Semantics LOBs

10 Overview of Supplied LOB APIs
10.1 Programmatic Environments That Support LOBs 10-1
10.2 Comparing the LOB Interfaces 10-2

ORACLE

viii

10.3 Using PL/SQL (DBMS_LOB Package) to Work With LOBs 10-5

10.3.1 Provide a LOB Locator Before Running the DBMS_LOB Routine 10-5
10.3.2 Guidelines for Offset and Amount Parameters in DBMS_LOB Operations 10-6
10.3.3 Determining Character Set ID 10-6
10.3.4 PL/SQL Functions and Procedures for LOBs 10-7
10.3.5 PL/SQL Functions and Procedures to Modify LOB Values 10-7
10.3.6 PL/SQL Functions and Procedures for Introspection of LOBs 10-8
10.3.7 PL/SQL Operations on Temporary LOBs 10-8
10.3.8 PL/SQL Read-Only Functions and Procedures for BFILES 10-9
10.3.9 PL/SQL Functions and Procedures to Open and Close Internal and External
LOBs 10-9
10.4 Using OCI to Work With LOBs 10-9
10.4.1 Prefetching of LOB Data, Length, and Chunk Size 10-10
10.4.2 Setting the CSID Parameter for OCI LOB APIs 10-10
10.4.3 Fixed-Width and Varying-Width Character Set Rules for OCI 10-10
10.4.3.1 Other Operations 10-11
10.4.3.2 NCLOBs in OCI 10-11
10.4.4 OCILobLoadFromFile2() Amount Parameter 10-11
10.4.5 OCILobRead2() Amount Parameter 10-11
10.4.6 OClILobLocator Pointer Assignment 10-12
10.4.7 LOB Locators in Defines and Out-Bind Variables in OCI 10-12
10.4.8 OCI Functions That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs 10-12
10.4.9 OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values 10-12
10.4.10 OCI Functions to Read or Examine Persistent LOB and External LOB
(BFILE) Values 10-13
10.4.11 OCI Functions for Temporary LOBs 10-13
10.4.12 OCI Read-Only Functions for BFILES 10-14
10.4.13 OCI LOB Locator Functions 10-14
10.4.14 OCI Functions to Open and Close Internal and External LOBs 10-14
10.4.15 OCI LOB Examples 10-14
10.4.16 Further Information About OCI 10-15
10.5 Using C++ (OCCI) to Work With LOBs 10-15
10.5.1 OCCI Classes for LOBs 10-16
10.5.1.1 Clob Class 10-16
10.5.1.2 Blob Class 10-16
10.5.1.3 Bfile Class 10-17
10.5.2 Fixed-Width Character Set Rules 10-17
10.5.3 Varying-Width Character Set Rules 10-17
10.5.4 Offset and Amount Parameters for Other OCCI Operations 10-18
10.5.4.1 NCLOBs in OCCI 10-18
10.5.5 Amount Parameter for OCCI LOB copy() Methods 10-18
10.5.6 Amount Parameter for OCCI read() Operations 10-18

ORACLE iX

10.5.7 Further Information About OCCI 10-19

10.5.8 OCCI Methods That Operate on BLOBs, BLOBs, NCLOBs, and BFILEs 10-19
10.5.9 OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values 10-19
10.5.10 OCCI Methods to Read or Examine Persistent LOB and BFILE Values 10-20
10.5.11 OCCI Read-Only Methods for BFILES 10-20
10.5.12 Other OCCI LOB Methods 10-20
10.5.13 OCCI Methods to Open and Close Internal and External LOBs 10-21
10.6 Using C/C++ (Pro*C) to Work With LOBs 10-21
10.6.1 Providing an Allocated Input Locator Pointer That Represents LOB 10-21
10.6.2 Pro*C/C++ Statements That Operate on BLOBs, CLOBs, NCLOBs, and
BFILEs 10-22
10.6.3 Pro*C/C++ Embedded SQL Statements to Modify Persistent LOB Values 10-22
10.6.4 Pro*C/C++ Embedded SQL Statements for Introspection of LOBs 10-22
10.6.5 Pro*C/C++ Embedded SQL Statements for Temporary LOBs 10-23
10.6.6 Pro*C/C++ Embedded SQL Statements for BFILESs 10-23
10.6.7 Pro*C/C++ Embedded SQL Statements for LOB Locators 10-23
10.6.8 Pro*C/C++ Embedded SQL Statements to Open and Close LOBs 10-23
10.7 Using COBOL (Pro*COBOL) to Work With LOBs 10-23
10.7.1 Providing an Allocated Input Locator Pointer That Represents LOB 10-24
10.7.2 Pro*COBOL Statements That Operate on BLOBs, CLOBs, NCLOBs, and
BFILEs 10-24
10.7.3 Pro*COBOL Embedded SQL Statements to Modify Persistent LOB Values 10-25
10.7.4 Pro*COBOL Embedded SQL Statements for Introspection of LOBs 10-25
10.7.5 Pro*COBOL Embedded SQL Statements for Temporary LOBs 10-25
10.7.6 Pro*COBOL Embedded SQL Statements for BFILES 10-26
10.7.7 Pro*COBOL Embedded SQL Statements for LOB Locators 10-26
10.7.8 Pro*COBOL Embedded SQL Statements for Opening and Closing LOBs and
BFILEs 10-26
10.8 Using Java (JDBC) to Work With LOBs 10-26
10.8.1 Modifying Internal Persistent LOBs Using Java 10-27
10.8.2 Reading Internal Persistent LOBs and External LOBs (BFILEs) With Java 10-27
10.8.2.1 BLOB, CLOB, and BFILE Classes 10-27
10.8.3 Calling DBMS_LOB Package from Java (JDBC) 10-27
10.8.4 Prefetching LOBs to Improve Performance 10-27
10.8.5 Zero-Copy Input/Output for SecureFiles to Improve Performance 10-28
10.8.5.1 Zero-Copy Input/Output on the Server 10-28
10.8.5.2 Zero-Copy Input/Output in the JDBC Thin Driver 10-28
10.8.5.3 JDBC-OCI Driver Considerations 10-29
10.8.6 Referencing LOBs Using Java (JDBC) 10-29
10.8.6.1 Using OracleResultSet: BLOB and CLOB Objects Retrieved 10-29
10.8.7 JDBC Syntax References and Further Information 10-29
10.8.8 JDBC Methods for Operating on LOBs 10-29

ORACLE X

10.8.9 JDBC oracle.sql.BLOB Methods to Modify BLOB Values 10-30
10.8.10 JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values 10-30
10.8.11 JDBC oracle.sql.BLOB Methods and Properties for Streaming BLOB Data 10-31
10.8.12 JDBC oracle.sql.CLOB Methods to Modify CLOB Values 10-31
10.8.13 JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Value 10-31
10.8.14 JDBC oracle.sql.CLOB Methods and Properties for Streaming CLOB Data 10-32
10.8.15 JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE)
Values 10-32
10.8.16 JDBC oracle.sql.BFILE Methods and Properties for Streaming BFILE Data 10-33
10.8.17 JDBC Temporary LOB APIs 10-33
10.8.18 JDBC: Opening and Closing LOBs 10-34
10.8.19 JDBC: Opening and Closing BLOBs 10-34
10.8.19.1 Opening the BLOB Using JDBC 10-34
10.8.19.2 Checking If the BLOB Is Open Using JDBC 10-34
10.8.19.3 Closing the BLOB Using JDBC 10-35
10.8.20 JDBC: Opening and Closing CLOBs 10-35
10.8.20.1 Opening the CLOB Using JDBC 10-35
10.8.20.2 Checking If the CLOB Is Open Using JDBC 10-36
10.8.20.3 Closing the CLOB Using JDBC 10-36
10.8.21 JDBC: Opening and Closing BFILEs 10-36
10.8.21.1 Opening BFILEs 10-36
10.8.21.2 Checking If the BFILE Is Open 10-37
10.8.21.3 Closing the BFILE 10-37
10.8.21.4 Usage Example (OpenCloselLob.java) 10-37
10.8.22 Truncating LOBs Using JDBC 10-39
10.8.22.1 JDBC: Truncating BLOBs 10-39
10.8.22.2 JDBC: Truncating CLOBs 10-40
10.8.23 JDBC BLOB Streaming APIs 10-40
10.8.24 JDBC CLOB Streaming APIs 10-41
10.8.25 BFILE Streaming APIs 10-42
10.8.25.1 JDBC BFILE Streaming Example (NewStreamLob.java) 10-43
10.8.26 JDBC and Empty LOBs 10-46
10.9 Oracle Provider for OLE DB (OraOLEDB) 10-46
10.10 Overview of Oracle Data Provider for .NET (ODP.NET) 10-47
11 LOB APIs for BFILE Operations
11.1 Supported Environments for BFILE APIs 11-2
11.2 About Accessing BFILESs 11-3
11.3 Directory Objects 11-3
11.3.1 Initializing a BFILE Locator 11-3
11.3.2 How to Associate Operating System Files with a BFILE 11-4
ORACLE Xi

11.4 BFILENAME and Initialization 11-5
11.5 Characteristics of the BFILE Data Type 11-5
11.5.1 DIRECTORY Name Specification 11-6
11.5.1.1 On Windows Platforms 11-6

11.6 BFILE Security 11-6
11.6.1 Ownership and Privileges 11-6
11.6.2 Read Permission on a DIRECTORY Object 11-7
11.6.3 SQL DDL for BFILE Security 11-7
11.6.4 SQL DML for BFILE Security 11-8
11.6.5 Catalog Views on Directories 11-8
11.6.6 Guidelines for DIRECTORY Usage 11-8
11.6.7 BFILEs in Shared Server (Multithreaded Server) Mode 11-9
11.6.8 External LOB (BFILE) Locators 11-9
11.6.8.1 When Two Rows in a BFILE Table Refer to the Same File 11-9
11.6.8.2 BFILE Locator Variable 11-9
11.6.8.3 Guidelines for BFILEs 11-10

11.7 About Loading a LOB with BFILE Data 11-10
11.8 About Opening a BFILE with OPEN 11-12
11.9 About Opening a BFILE with FILEOPEN 11-13
11.10 About Determining Whether a BFILE Is Open Using ISOPEN 11-14
11.11 About Determining Whether a BFILE Is Open with FILEISOPEN 11-15
11.12 About Displaying BFILE Data 11-16
11.13 About Reading Data from a BFILE 11-17
11.14 About Reading a Portion of BFILE Data Using SUBSTR 11-19
11.15 Comparing All or Parts of Two BFILES 11-19
11.16 Checking If a Pattern Exists in a BFILE Using INSTR 11-20
11.17 Determining Whether a BFILE Exists 11-21
11.18 Getting the Length of a BFILE 11-21
11.19 About Assigning a BFILE Locator 11-22
11.20 Getting Directory Object Name and File Name of a BFILE 11-23
11.21 About Updating a BFILE by Initializing a BFILE Locator 11-23
11.22 Closing a BFILE with FILECLOSE 11-24
11.23 Closing a BFILE with CLOSE 11-25
11.24 Closing All Open BFILEs with FILECLOSEALL 11-26
11.25 About Inserting a Row Containing a BFILE 11-27

12 Using LOB APIs
12.1 Supported Environments 12-2
12.2 About Appending One LOB to Another 12-3
12.3 About Determining Character Set Form 12-4
ORACLE Xil

12.4 About Determining Character Set ID 12-5

12.5 Loading a LOB with Data from a BFILE 12-5
12.6 About Loading a BLOB with Data from a BFILE 12-7
12.7 Loading a CLOB or NCLOB with Data from a BFILE 12-8
12.7.1 About PL/SQL: Loading Character Data from a BFILE into a LOB 12-9
12.7.2 About PL/SQL: Loading Segments of Character Data into Different LOBs 12-10
12.8 Determining Whether a LOB is Open 12-10
12.8.1 Java (JDBC): Checking If a LOB Is Open 12-11
12.8.1.1 Checking If a CLOB Is Open 12-11
12.8.1.2 Checking If a BLOB Is Open 12-11

12.9 About Displaying LOB Data 12-11
12.10 About Reading Data from a LOB 12-13
12.11 About LOB Array Read 12-14
12.12 Reading a Portion of a LOB (SUBSTR) 12-20
12.13 Comparing All or Part of Two LOBs 12-21
12.14 Patterns: Checking for Patterns in a LOB Using INSTR 12-21
12.15 Length: Determining the Length of a LOB 12-22
12.16 Copying All or Part of One LOB to Another LOB 12-23
12.17 Copying a LOB Locator 12-24
12.18 Equality: Checking If One LOB Locator Is Equal to Another 12-25
12.19 About Determining Whether LOB Locator Is Initialized 12-25
12.20 About Appending to a LOB 12-26
12.21 About Writing Data to a LOB 12-27
12.22 LOB Array Write 12-30
12.23 About Trimming LOB Data 12-35
12.24 About Erasing Part of a LOB 12-36
12.25 Determining Whether a LOB instance Is Temporary 12-37
12.25.1 Java (JDBC): Determining Whether a BLOB Is Temporary 12-38
12.26 Converting a BLOB to a CLOB 12-38
12.27 Converting a CLOB to a BLOB 12-38
12.28 Ensuring Read Consistency 12-39

Part IV Application Design with LOBs

13 LOB Storage with Applications

13.1 Tables That Contain LOBs 13-1
13.1.1 Persistent LOBs Initialized to NULL or Empty 13-1
13.1.1.1 Setting a Persistent LOB to NULL 13-2
13.1.1.2 Setting a Persistent LOB to Empty 13-2

13.1.2 Initializing LOBs 13-2

ORACLE Xiii

13.1.3 Initializing Persistent LOB Columns and Attributes to a Value 13-3

13.1.4 Initializing BFILEs to NULL or a File Name 13-3
13.1.5 Restriction on First Extent of a LOB Segment 13-3
13.2 Data Types for LOB Columns 13-3
13.2.1 LOBs Compared to LONG and LONG RAW Types 13-4
13.2.2 Varying-Width Character Data Storage in LOBs 13-4
13.2.3 Converting Character Sets Implicitly with LOBs 13-4
13.3 LOB Storage Parameters 13-5
13.3.1 Inline and Out-of-Line LOB Storage 13-6
13.3.2 Defining Tablespace and Storage Characteristics for Persistent LOBs 13-7
13.3.2.1 Assigning a LOB Data Segment Name 13-7
13.3.3 LOB Storage Characteristics for LOB Column or Attribute 13-8
13.3.4 TABLESPACE and LOB Index 13-8
13.3.4.1 Tablespace for LOB Index in Non-Partitioned Table 13-8
13.3.5 PCTVERSION 13-9
13.3.6 RETENTION Parameter for BasicFiles LOBs 13-10
13.3.7 RETENTION Parameter for SecureFiles LOBs 13-10
13.3.8 CACHE / NOCACHE / CACHE READS 13-11
13.3.8.1 CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache 13-11
13.3.9 LOGGING / NOLOGGING Parameter for BasicFiles LOBs 13-11
13.3.9.1 LOBs Always Generate Undo for LOB Index Pages 13-12
13.3.9.2 When LOGGING is Set Oracle Generates Full Redo for LOB Data
Pages 13-12
13.3.10 LOGGING/FILESYSTEM_LIKE_LOGGING for SecureFiles LOBs 13-12
13.3.10.1 CACHE Implies LOGGING 13-13
13.3.10.2 SecureFiles and an Efficient Method of Generating REDO and UNDO 13-13
13.3.10.3 FILESYSTEM_LIKE_LOGGING is Useful for Bulk Loads or Inserts 13-13
13.3.11 CHUNK 13-13
13.3.11.1 The Value of CHUNK 13-14
13.3.11.2 Set INITIAL and NEXT to Larger than CHUNK 13-14
13.3.12 ENABLE or DISABLE STORAGE IN ROW Clause 13-15
13.3.13 Guidelines for ENABLE or DISABLE STORAGE IN ROW 13-15
13.4 LOB Columns Indexing 13-15
13.4.1 Domain Indexing on LOB Columns 13-16
13.4.2 Text Indexes on LOB Columns 13-16
13.4.3 Function-Based Indexes on LOBs 13-16
13.4.4 Extensible Indexing on LOB Columns 13-17
13.4.4.1 Extensible Optimizer 13-17
13.4.5 Oracle Text Indexing Support for XML 13-18
13.5 LOB Manipulation in Partitioned Tables 13-18
13.5.1 About Manipulating LOBs in Partitioned Tables 13-18

ORACLE Xiv

13.5.2 Partitioning a Table Containing LOB Columns 13-19

13.5.3 Creating an Index on a Table Containing Partitioned LOB Columns 13-19
13.5.4 Moving Partitions Containing LOBs 13-20
13.5.5 Splitting Partitions Containing LOBs 13-20
13.5.6 Merging Partitions Containing LOBs 13-20
13.6 LOBs in Index Organized Tables 13-20
13.7 Restrictions for LOBs in Partitioned Index-Organized Tables 13-21
13.8 Updating LOBs in Nested Tables 13-22

14 Advanced Design Considerations

14.1 Opening Persistent LOBs with the OPEN and CLOSE Interfaces 14-1
14.1.1 Index Performance Benefits of Explicitly Opening a LOB 14-1
14.1.2 Closing Explicitly Open LOB Instances 14-2

14.2 Read-Consistent Locators 14-2
14.2.1 A Selected Locator Becomes a Read-Consistent Locator 14-3
14.2.2 Example of Updating LOBs and Read-Consistency 14-3
14.2.3 Example of Updating LOBs Through Updated Locators 14-5
14.2.4 Example of Updating a LOB Using SQL DML and DBMS_LOB 14-6
14.2.5 Example of Using One Locator to Update the Same LOB Value 14-8
14.2.6 Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable 14-9
14.2.7 Example of Deleting a LOB Using Locator 14-11

14.3 LOB Locators and Transaction Boundaries 14-12
14.3.1 About LOB Locators and Transaction Boundaries 14-13
14.3.2 Read and Write Operations on a LOB Using Locators 14-13
14.3.3 Selecting the Locator Outside of the Transaction Boundary 14-13
14.3.4 Selecting the Locator Within a Transaction Boundary 14-14
14.3.5 LOB Locators Cannot Span Transactions 14-15
14.3.6 Example of Locator Not Spanning a Transaction 14-15

14.4 LOBs in the Object Cache 14-16

14.5 Terabyte-Size LOB Support 14-17
14.5.1 About Terabyte-Size LOB Support 14-17
14.5.2 Maximum Storage Limit for Terabyte-Size LOBs 14-18
14.5.3 Using Terabyte-Size LOBs with JDBC 14-19
14.5.4 Using Terabyte-Size LOBs with the DBMS_LOB Package 14-19
14.5.5 Using Terabyte-Size LOBs with OCI 14-19

14.6 Guidelines for Creating Gigabyte LOBs 14-20
14.6.1 Creating a Tablespace and Table to Store Gigabyte LOBs 14-20

ORACLE XV

15 Performance Guidelines

15.1 LOB Performance Guidelines 15-1
15.1.1 Al LOBs 15-1
15.1.1.1 Chunk Size 15-1
15.1.1.2 LOB Pre-fetching 15-1
15.1.1.3 Small LOBs 15-2
15.1.1.4 Large LOBs 15-2
15.1.2 Persistent LOBs 15-2
15.1.2.1 Performance Guidelines for Small BasicFiles LOBs 15-2
15.1.2.2 General Performance Guidelines for BasicFiles LOBs 15-2
15.1.3 Temporary LOB Performance Guidelines 15-3
15.2 Moving Data to LOBs in a Threaded Environment 15-5
15.3 LOB Access Statistics 15-6
15.3.1 Example of Retrieving LOB Access Statistics 15-7
Part V' LOB Administration
16 Managing LOBs: Database Administration
16.1 Database Utilities for Loading Data into LOBs 16-1
16.1.1 About Using SQL*Loader to Load LOBs 16-1
16.1.2 About Using SQL*Loader to Populate a BFILE Column 16-3
16.1.3 About Using Oracle Data Pump to Transfer LOB Data 16-5
16.2 Temporary LOB Management 16-6
16.3 BFILEs Management 16-6
16.3.1 Rules for Using Directory Objects and BFILEs 16-6
16.3.2 Setting Maximum Number of Open BFILEs 16-7
16.4 Changing Tablespace Storage for a LOB 16-7
17 Migrating Columns from LONGs to LOBs
17.1 Benefits of Migrating LONG Columns to LOB Columns 17-1
17.2 Preconditions for Migrating LONG Columns to LOB Columns 17-2
17.2.1 Dropping a Domain Index on a LONG Column Before Converting to a LOB 17-2
17.2.2 Preventing Generation of Redo Space on Tables Converted to LOB Data
Types 17-2
17.3 Determining how to Optimize the Application Using utldtree.sql 17-3
17.4 Converting Tables from LONG to LOB Data Types 17-3
17.4.1 Migration Issues 17-3
17.4.2 Using ALTER TABLE to Convert LONG Columns to LOB Columns 17-4

ORACLE

17.4.3 Copying a LONG to a LOB Column Using the TO_LOB Operator 17-4
17.4.4 Online Redefinition of Tables with LONG Columns 17-5
17.4.5 Using Oracle Data Pump to Migrate a Database 17-8
17.5 Migrating Applications from LONGs to LOBs 17-8
17.5.1 About Migrating Applications from Longs to LOBs 17-8
17.5.2 LOB Columns Are Not Allowed in Clustered Tables 17-9
17.5.3 LOB Columns Are Not Allowed in AFTER UPDATE OF Triggers 17-9
17.5.4 Rebuilding Indexes on Columns Converted from LONG to LOB Data Types 17-9
17.5.5 Empty LOBs Compared to NULL and Zero Length LONGs 17-10
17.5.6 Overloading with Anchored Types 17-10
17.5.7 Some Implicit Conversions Are Not Supported for LOB Data Types 17-11
Part VI Oracle File System (OFS) Server
18 Introducing Network File System (NFS)
18.1 Prerequisites to Access Storage Through NFS Server 18-1
18.2 NFS Security 18-1
18.2.1 Kerberos 18-2
18.2.1.1 Configuring Kerberos Server in Linux 18-2
19 Using OFS
19.1 Limitations of using OFS 19-1
19.2 OFS Configuration Parameters 19-1
19.3 OFS Client Interface 19-1
19.3.1 DBMS_FS Package 19-1
19.3.2 Views for OFS 19-2
Part VIl Database File System (DBFS)
20 Introducing the Database File System
20.1 Why a Database File System? 20-1
20.2 What Is Database File System (DBFS)? 20-1
20.2.1 About DBFS 20-1
20.2.2 DBFS Server 20-2
20.2.3 DBFS Client 20-3
20.3 What Is a Content Store? 20-4

ORACLE

XVii

7?1 DBFS SecureFiles Store

21.1 Setting Up a SecureFiles Store 21-1
21.1.1 About Managing Permissions 21-1
21.1.2 Creating or Setting Permissions 21-2
21.1.3 Creating a SecureFiles File System Store 21-2
21.1.4 Accessing Tables that Hold SecureFiles System Store Data 21-4
21.1.5 |Initializing SecureFiles Store File Systems 21-4
21.1.6 Comparison of SecureFiles LOBs to BasicFiles LOBs 21-4

21.2 Using a DBFS SecureFiles Store File System 21-5
21.2.1 DBFS Content API Working Example 21-5
21.2.2 Dropping SecureFiles Store File Systems 21-6

21.3 About DBFS SecureFiles Store Package, DBMS_DBFS_SFS 21-6

21.4 Database File System (DBFS)— POSIX File Locking 21-7
21.4.1 About Advisory Locking 21-7
21.4.2 About Mandatory Locking 21-8
21.4.3 File Locking Support 21-8
21.4.4 Compatibility and Migration Factors of Database Filesystem—TFile Locking 21-8
21.4.5 Examples of Database Filesystem—TFile Locking 21-9
21.4.6 File Locking Behavior 21-10
21.4.7 Scheduling File Locks 21-10

21.4.7.1 Greedy Scheduling 21-11
21.4.7.2 Fair Scheduling 21-11
272 DBFS Hierarchical Store

22.1 About the Hierarchical Store Package, DBMS_DBFS_HS 22-1

22.2 Ways to Use DBFS Hierarchial Store 22-1

22.3 Setting up the Store 22-2
22.3.1 Managing a HS Store Wallet 22-2
22.3.2 Creating, Registering, and Mounting the Store 22-3

22.4 Using the Hierarchical Store 22-3
22.4.1 Using Hierarchical Store as a File System 22-4
22.4.2 Using Hierarchical Store as an Archive Solution For SecureFiles LOBs 22-4
22.4.3 Dropping a Hierarchical Store 22-4
22.4.4 Compression to Use with the Hierarchical Store 22-4
22.45 Program Example Using Tape 22-5
22.4.6 Program Example Using Amazon S3 22-9

22.5 Database File System Links 22-14
22.5.1 About Database File System Links 22-14
22.5.2 Ways to Create Database File System Links 22-15
22.5.3 Database File System Links Copy 22-16

ORACLE XViil

22.5.4 Copying a Linked LOB Between Tables 22-17

22.5,5 Online Redefinition and DBFS Links 22-17
22.5.6 Transparent Read 22-17
22.6 The DBMS_DBFS_HS Package 22-17
22.6.1 Constants for DBMS_DBFS_HS Package 22-17
22.6.2 Methods for DBMS_DBFS_HS Package 22-18
22.7 Views for DBFS Hierarchical Store 22-19
22.7.1 DBA Views 22-19
22.7.2 User Views 22-20

23 DBFS Content API

23.1 Overview of DBFS Content API 23-1
23.2 Stores and DBFS Content API 23-2
23.3 Getting Started with DBMS_DBFS_CONTENT Package 23-3
23.3.1 DBFS Content API Role 23-3
23.3.2 Path Name Constants and Types 23-3
23.3.3 Path Properties 23-3
23.3.4 Content IDs 23-4
23.3.5 Path Name Types 23-4
23.3.6 Store Features 23-4
23.3.7 Lock Types 23-5
23.3.8 Standard Properties 23-5
23.3.9 Optional Properties 23-6
23.3.10 User-Defined Properties 23-6
23.3.11 Property Access Flags 23-6
23.3.12 Exceptions 23-6
23.3.13 Property Bundles 23-7
23.3.14 Store Descriptors 23-7
23.4 Administrative and Query APIs 23-8
23.4.1 Registering a Content Store 23-8
23.4.2 Unregistering a Content Store 23-9
23.4.3 Mounting a Registered Store 23-9
23.4.4 Unmounting a Previously Mounted Store 23-10
23.4.5 Listing all Available Stores and Their Features 23-10
23.4.6 Listing all Available Mount Points 23-10
23.4.7 Looking Up Specific Stores and Their Features 23-11
23.5 Querying DBFS Content API Space Usage 23-11
23.6 DBFS Content API Session Defaults 23-12
23.7 DBFS Content API Interface Versioning 23-12
23.8 Notes on DBFS Content API Path Names 23-12

ORACLE XixX

23.9 DBFS Content API Creation Operations 23-13
23.10 DBFS Content API Deletion Operations 23-14
23.11 DBFS Content API Path Get and Put Operations 23-14
23.12 DBFS Content API Rename and Move Operations 23-15
23.13 Directory Listings 23-16
23.14 DBFS Content API Directory Navigation and Search 23-16
23.15 DBFS Content API Locking Operations 23-17
23.16 DBFS Content APl Access Checks 23-17
23.17 DBFS Content API Abstract Operations 23-17
23.18 DBFS Content API Path Normalization 23-18
23.19 DBFS Content API Statistics Support 23-18
23.20 DBFS Content API Tracing Support 23-19
23.21 Resource and Property Views 23-20
24 Creating Your Own DBFS Store

24.1 Overview of DBFS Store Creation and Use 24-1
24.2 DBFS Content Store Provider Interface (DBFS Content SPI) 24-2
24.3 Creating a Custom Provider 24-3
24.3.1 Mechanics 24-4
24.3.1.1 |Installation and Setup 24-4
24.3.1.2 TBFS Use 24-4
24.3.1.3 TBFS Internals 24-5

24.3.2 TBFS.SQL 24-6
24.3.3 TBL.SQL 24-6
24.3.4 spec.sql 24-6
24.3.5 body.sql 24-15
24.3.6 capi.sql 24-29

25 Using DBFS

25.1 DBFS Installation 25-1
25.2 Creating a DBFS File System 25-1
25.2.1 Privileges Required to Create a DBFS File System 25-1
25.2.2 Advantages of Non-Partitioned Versus Partitioned DBFS File Systems 25-2
25.2.3 Creating a Non-Partitioned File System 25-2
25.2.4 Creating a Partitioned File System 25-2
25.2.5 Dropping a File System 25-3
25.3 DBFS File System Access 25-3
25.3.1 DBFS Client Prerequisites 25-3
25.3.2 DBFS Client Command-Line Interface Operations 25-4

ORACLE

XX

253.2.1
25.3.2.2
25.3.2.3
25.3.2.4
25.3.2.5
25.3.2.6

About the DBFS Client Command-Line Interface
Creating Content Store Paths

Creating a Directory

Listing a Directory

Copying Files and Directories

Removing Files and Directories

25.3.3 DBFS Mounting Interface (Linux and Solaris Only)

25.3.3.1
25.3.3.2
25.3.3.3
25.3.34
25.3.3.5
25.3.3.6
25.3.3.7
25.3.3.8
25.3.3.9

Installing FUSE on Solaris 11 SRU7 and Later

Mounting the DBFS Store

Solaris-Specific Privileges

About the Mount Command for Solaris and Linux

Mounting a File System with a Wallet

Mounting a File System with Password at Command Prompt
Mounting a File System with Password Read from a File
Unmounting a File System

Mounting DBFS Through fstab Utility for Linux

25.3.3.10 Mounting DBFS Through the vfstab Utility for Solaris

253.3.11

Restrictions on Mounted File Systems

25.3.4 File System Security Model

2534.1
25.34.2
25.3.4.3
25.3.4.4

About the File System Security Model
Enabling Shared Root Access
About DBFS Access Among Multiple Database Users

Establishing DBFS Access Sharing Across Multiple Database Users

25.3.5 HTTP, WebDAYV, and FTP Access to DBFS

25351
25.3.5.2
25353
25354

Internet Access to DBFS Through XDB

Web Distributed Authoring and Versioning (WebDAV) Access
FTP Access to DBFS

HTTP Access to DBFS

25.4 DBFS Administration
25.4.1 Using Oracle Wallet with DBFS Client
25.4.2 DBFS Diagnostics
25.4.3 Preventing Data Loss During Failover Events
25.4.4 Bypassing Client-Side Write Caching
25.4.5 Backing up DBFS

25451
25.45.2

DBFS Backup at the Database Level
DBFS Backup Through a File System Utility

25.4.6 Small File Performance of DBFS

25.4.7 Enabling Advanced SecureFiles LOB Features for DBFS
25.5 Shrinking and Reorganizing DBFS Filesystems

25.5.1 About Changing DBFS Filesystems

25.5.2 Advantages of Online Filesystem Reorganization

ORACLE

25-4
25-4
25-5
25-5
25-5
25-6
25-6
25-7
25-7
25-7
25-7
25-8
25-9
25-9
25-9
25-9
25-10
25-11
25-11
25-11
25-12
25-12
25-12
25-16
25-16
25-16
25-17
25-18
25-18
25-18
25-19
25-19
25-20
25-20
25-20
25-20
25-21
25-21
25-21
25-22
25-22

XXi

25.5.3 Determining Availability of Online Filesystem Reorganization

25-23

25.5.4 Invoking Online Filesystem Reorganization 25-23
A LOB Demonstration Files
A.1 PL/SQL LOB Demonstration Files A-1
A.2 OCI LOB Demonstration Files A-2
A.3 Java LOB Demonstration Files A-4

Glossary

Index

ORACLE"

XXii

Preface

This guide describes database features that support application development using
SecureFiles and Large Object (LOB) data types and Database File System (DBFS). The
information in this guide applies to all platforms, and does not include system-specific
information.

Audience

Oracle Database SecureFiles and Large Objects Developer's Guide is intended for
programmers who develop new applications using LOBs and DBFS, and those who have
previously implemented this technology and now want to take advantage of new features.

Efficient and secure storage of multimedia and unstructured data is increasingly important,
and this guide is a key resource for this topic within the Oracle Application Developers
documentation set.

Feature Coverage and Availability

Oracle Database SecureFiles and Large Objects Developer's Guide contains information that
describes the SecureFiles LOB and BasicFiles LOB features and functionality of Oracle
Database 12c Release 2 (12.2).

Prerequisites for Using LOBs

Oracle Database includes all necessary resources for using LOBs in an application; however,
there are some restrictions, described in "LOB Rules and Restrictions" and "Restrictions for
LOBs in Partitioned Index-Organized Tables ".

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following manuals:

e Oracle Database 2 Day Developer's Guide

e Oracle Database Development Guide

ORACLE XXiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

* Oracle Database Utilities

e Oracle XML DB Developer’s Guide

* Oracle Database PL/SQL Packages and Types Reference

* Oracle Database Data Cartridge Developer's Guide

e Oracle Call Interface Programmer's Guide

e Oracle C++ Call Interface Programmer's Guide

* Pro*C/C++ Programmer's Guide

* Pro*COBOL Programmer's Guide

* Oracle Database Programmer's Guide to the Oracle Precompilers
* Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Java
The Oracle Java documentation set includes the following:

e Oracle Database JDBC Developer’s Guide

e Oracle Database Java Developer’s Guide

* Oracle Database JPublisher User's Guide

Oracle Multimedia

To use Oracle Multimedia applications, refer to the following:
* Oracle Multimedia Reference

e Oracle Multimedia User's Guide

Basic References

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN)

http://ww. oracl e. conl t echnet wor k/ i ndex. ht m

For the latest version of the Oracle documentation, including this guide, visit

http://ww. oracl e. com t echnet wor k/ docunent at i on/ i ndex. ht m

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XXIV

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/documentation/index.html

Changes in Oracle Database 18c

The following are changes in Oracle Database SecureFiles and Large Objects Developer's
Guide for Oracle Database 18c .

* New Features
» Deprecated Features

» Desupported Features

New Features

e Performance improvements:

— Oracle Database has improved the performance of Inline LOBs to accelerate the DML
operations, SQL operators used in SELECT clauses with LOB columns, and other
built-in SQL functions that support LOB columns.

— Oracle Database allows LOBs and LOBs related functionality to be used with Oracle
Database In-Memory and Big Data SQL.

— Oracle Database extends Exadata support for LOBs to Compressed LOBs.
— Oracle Database has addressed the overheads of temporary LOBs upto 4k.
— Oracle Database provides IMC support for LOBs that are stored inline.

* Oracle Database lists the best practices to use LOBs in database applications.

Deprecated Features

Oracle Multimedia is deprecated in Oracle Database Release 18c, and may be desupported
in a future release. Oracle recommends that you stop using deprecated features as soon as
possible.

The following list of features is deprecated in Oracle Database 12c Release 2 (12.2), and
may be desupported in a future release.

- DBMS_LOB. LOADFROWFI LE Procedure.
Use DBV5S_LOB. Loadd obFronfi | e or DBMS_LOB. LoadBl obFr onfFi | e instead.
e LOB Buffering subsystem APIs
The following functions are deprecated beginning with Oracle 12¢ Release 2 (12.2):
— OCILobEnableBuffering()
— OClIlLobDisableBuffering()
— OCILobFlushBuffer()

ORACLE v

Changes in Oracle Database 18¢

In place of using these LOB buffering functions, use the LOB prefetch feature
described in Prefetching of LOB Data, Length, and Chuck Size.

e DBMS_XSLPROCESSOR. CLOB2FI LE procedure.
Use DBM5S_LOB. CLOB2FI LE procedure instead.

Security Update for Native Encryption

Oracle provides a patch that you can download to address necessary security
enhancements that affect native network encryption environments in Oracle Database
release 11.2 and later.

This patch is available in My Oracle Support note 2118136.2.

The supported algorithms that have been improved are as follows:

* Encryption algorithms: AES128, AES192 and AES256

e Checksumming algorithms: SHA1, SHA256, SHA384, and SHA512
Algorithms that are deprecated and should not be used are as follows:

e Encryption algorithms: DES, DES40, 3DES112, 3DES168, RC4 40, RC4 56,
RC4 128, and RC4_256

* Checksumming algorithm: MD5

If your site requires the use of network native encryption, then you must download the
patch that is described in My Oracle Support note 2118136.2. To enable a smooth
transition for your Oracle Database installation, this patch provides two parameters
that enable you to disable the weaker algorithms and start using the stronger
algorithms. You will need to install this patch on both servers and clients in your Oracle
Database installation.

An alternative to network native encryption is Transport Layer Security (TLS), which
provides protection against person-in-the-middle attacks.

" See Also:

* Choosing Between Native Network Encryption and Transport Layer
Security in Oracle Database Security Guide

* Improving Native Network Encryption Security in Oracle Database
Security Guide

Desupported Features

ORACLE

List of desupported features in Oracle® Database SecureFiles and Large
Objects 19c

Oracle Multimedia has been desupported in its entirety. Oracle recommends that you
store multimedia content in SecureFiles LOBs and use third-party products.

XXVI

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2118136.2
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2118136.2

ORACLE

Changes in Oracle Database 18¢

¢ See Also:

Oracle Database Upgrade Guide for more information.

List of desupported features in Oracle® Database SecureFiles and Large Objects 18c

The following functions related to LOB Buffering subsystem APIs are desupported in its
entirety:

e OCIlLobEnableBuffering()

e OClLobDisableBuffering()

e OCILobFlushBuffer()

List of desupported features in Oracle® Database SecureFiles and Large Objects 12c,
Release (2) 12.2

e Desupport of Advanced Replication

The Oracle Database Advanced Replication feature is desupported in its entirety.

¢ See Also:

— Oracle Database Upgrade Guide for more information.

XXVii

Getting Started

This part introduces Large Objects (LOBs) and discusses general concepts for using them in
your applications.

This part contains these chapters:

e Introduction to Large Objects and SecureFiles

e Working with LOBs

e Using Oracle LOB Storage

* Operations Specific to Persistent and Temporary LOBs
* Distributed LOBs

 DDL and DML Statements with LOBs

ORACLE

Introduction to Large Objects and SecureFiles

Large Objects (LOBSs), SecureFiles LOBs, and Database File System (DBFS) work together
with various database features to support application development.

Large Objects are used to hold large amounts of data inside Oracle Database, SecureFiles
provides performance equal to or better than file system performance when using Oracle
Database to store and manage Large Objects, and DBFS provides file system access to files
stored in Oracle Database.

Topics:

* What Are Large Objects?

* Why Use Large Objects?

* Why Not Use LONGs?

» Different Kinds of LOBs

* LOB Locators

» Database Semantics for Internal and External LOBs
» Large Object Data Types

* About Object Data Types and LOBs

» Storage and Creation of Other Data Types with LOBs
* BasicFiles and SecureFiles LOBs

* Database File System (DBFS)

1.1 What Are Large Objects?

Large Objects (LOBSs) are a set of data types that are designed to hold large amounts of data.

The maximum size for a single LOB can range from 8 terabytes to 128 terabytes depending
on how your database is configured. Storing data in LOBs enables you to access and
manipulate the data efficiently in your application.

1.2 Why Use Large Objects?

ORACLE

Large objects allow you to store large amounts of data in several types of structures.
Topics:

» Data Types that Use Large Objects

* LOBs Used for Semistructured Data

* LOBs Used for Unstructured Data

1-1

Chapter 1
Why Use Large Objects?

1.2.1 Data Types that Use Large Objects

Large objects are suitable for semistructured and unstructured data.

Large object features allow you to store these kinds of data in the database and in
operating system files that are accessed from the database.

e Semistructured data

Semistructured data has a logical structure that is not typically interpreted by the
database, for example, an XML document that your application or an external
service processes. Oracle Database provides features such as Oracle XML DB,
Oracle Multimedia, and Oracle Spatial and Graph to help your application work
with semistructured data.

Note:

Oracle Multimedia is deprecated in Oracle Database Release 18c, and
may be desupported in a future release. Oracle recommends that you
stop using deprecated features as soon as possible.

e Unstructured data

Unstructured data is easily not broken down into smaller logical structures and is
not typically interpreted by the database or your application, such as a
photographic image stored as a binary file.

When you develop applications, you encounter different types of data, not all of which
are suitable for large objects. For example, there is no need for the following to be
created as large objects:

e Simple structured data

Simple structured data can be organized into relational tables that are structured
based on business rules.

e Complex structured data

Complex structured data is more complex than simple structured data and is
suited for the object-relational features of the Oracle database such as collections,
references, and user-defined types.

With the growth of the Internet and content-rich applications, it has become imperative
for Oracle Database to provide LOB support that:

e Can store unstructured and semistructured data in an efficient manner
e |s optimized for large amounts of data

e Provides a uniform way of accessing data stored within the database or outside
the database

1.2.2 LOBs Used for Semistructured Data

Semistructured data include document files such as XML documents or word
processor files, which contain data in a logical structure that is processed or

ORACLE 1-2

Chapter 1
Why Not Use LONGs?

interpreted by an application, and is not broken down into smaller logical units when stored in
the database.

Applications that use semistructured data often use large amounts of character data. The
Character Large Object (CLOB) and National Character Large Object (NCLOB) data types are
ideal for storing and manipulating this kind of data.

Binary File objects (BFI LE data types) can also store character data. You can use BFI LEs to
load read-only data from operating system files into CLOB or NCLOB instances that you then
manipulate in your application.

1.2.3 LOBs Used for Unstructured Data

Unstructured data is data that cannot be decomposed into standard components.

This is in contrast to structured data, such as data about an employee typically containing
these components: a name, stored as a string; an identifier, such as an ID number; a salary;
and so on.

Unstructured data, such as a photograph, consists of a long stream of 1s and 0s. These bits
are used to switch pixels on or off so that you can see the picture on a display, but the bits
are not broken down into any standard components for database storage.

Also, unstructured data such as text, graphic images, still video clips, full motion video, and
sound waveforms tends to be large in size. A typical employee record may be a few hundred
bytes, while even small amounts of multimedia data can be thousands of times larger.

SQL data types that are ideal for large amounts of unstructured binary data include the BLOB
data type (Binary Large Object) and the BFI LE data type (Binary File object).

1.3 Why Not Use LONGs?

ORACLE

Oracle Database supports LONG and LOB data types. However, LOBs provide added benefits
described below.

Using LOB data types is recommended for storing large amounts of structured and
semistructured data (from Oracle8i and on). Applications developed for use with Oracle7 and
earlier used the LONG or LONG RAWdata type to store large amounts of unstructured data.

You can use LONGto-LOB migration to easily migrate your existing applications that access
LONG columns, to use LOB columns.

Advantages of LOB data types over LONG and LONG RAWtypes:

* LOB Capacity: LOBs can store much larger amounts of data. LOBs can store 4 GB of
data or more depending on your system configuration. LONG and LONG RAWtypes are
limited to 2 GB of data.

e Number of LOB columns in a table: A table can have multiple LOB columns. LOB
columns in a table can be of any LOB type. In Oracle7 Release 7.3 and higher, tables are
limited to a single LONG or LONG RAWcolumn.

* Random piece-wise access: LOBs support random access to data, but LONGs support
only sequential access.

e LOBs can also be object attributes.

1-3

Chapter 1
Different Kinds of LOBSs

¢ See Also:
Migrating Columns from LONGs to LOBs

1.4 Different Kinds of LOBSs

Different kinds of LOBs can be stored in the database or in external files.

LOBs in the database are sometimes also referred to as internal LOBs or internal
persistent LOBs.

LOBs can be internal or external:

* Internal LOBs
» External LOBs and the BFILE Data Type

1.4.1 Internal LOBs

ORACLE

LOBs in the database are stored inside database tablespaces in a way that optimizes
space and provides efficient access.

SQL Data Types for Internal LOBs

The following SQL data types are supported for declaring internal LOBs: BLOB, CLOB,
and NCLCB.

¢ See Also:
Large Object Data Types

Persistent and Temporary LOBs
Persistent and temporary LOBs are both internal LOBs (LOBs in the database).

* A persistent LOB is a LOB instance that exists in a table row in the database.

* Atemporary LOB instance is created when you instantiate a LOB only within the
scope of your local application.

A temporary instance becomes a persistent instance when you insert the instance into
a table row.

Persistent LOBs use copy semantics and participate in database transactions. You can
recover persistent LOBs in the event of transaction or media failure, and any changes
to a persistent LOB value can be committed or rolled back. In other words, all the
Atomicity, Consistency, Isolation, and Durability (ACID) properties that apply to
database objects apply to persistent LOBs.

1-4

Chapter 1
LOB Locators

1.4.2 External LOBs and the BFILE Data Type

External LOBs are data objects stored in operating system files, outside the database
tablespaces.

BFI LE is the SQL data type that the database uses to access external LOBs and is the only
SQL data type available for external LOBs.

BFI LEs are read-only data types. The database allows read-only byte stream access to data
stored in BFI LEs. You cannot write to or update a BFI LE from within your application.

The database uses reference semantics with BFI LE columns. Data stored in a table column of
type BFI LE is physically located in an operating system file, not in the database.

You typically use BFI LEs to hold:

* Binary data that does not change while your application is running, such as graphics

» Data that is loaded into other large object types, such as a BLOB or CLOB, where the data
can then be manipulated

e Data that is appropriate for byte-stream access, such as multimedia

Any storage device accessed by your operating system can hold BFI LE data, including hard
disk drives, CD-ROMs, PhotoCDs, and DVDs. The database can access BFI LEs provided the
operating system supports stream-mode access to the operating system files.

< Note:

External LOBs do not participate in transactions. Any support for integrity and
durability must be provided by the underlying file system as governed by the
operating system.

1.5 LOB Locators

A LOB instance has a locator and a value.

A LOB locator is a reference to where the LOB value is physically stored. The LOB value is
the data stored in the LOB.

When you use a LOB in an operation such as passing a LOB as a parameter, you are
actually passing a LOB locator. For the most part, you can work with a LOB instance in your
application without being concerned with the semantics of LOB locators. There is no
requirement to dereference LOB locators, as is required with pointers in some programming
languages.

ORACLE 1-5

Chapter 1
Database Semantics for Internal and External LOBSs

¢ See Also:

¢ "LOB Locator and LOB Value"
« "LOB Locators and BFILE Locators"

e "LOB Storage Parameters"

1.6 Database Semantics for Internal and External LOBS

In all programmatic environments, database semantics differ between internal LOBs
and external LOBs as follows:

* Internal LOBs use copy semantics

With copy semantics, both the LOB locator and LOB value are logically copied
during insert, update, or assignment operations. This ensures that each table cell
or each variable containing a LOB, holds a unique LOB instance.

» External LOBs use reference semantics

With reference semantics, only the LOB locator is copied during insert operations.
Note that update operations do not apply to external LOBs because external LOBs
are read-only.

¢ See Also:

External LOBs and the BFILE Data Type

1.7 Large Object Data Types

The database provides a set of large object data types as SQL data types where the
term LOB generally refers to the set.

In general, the descriptions given for the data types in this table and related sections
also apply to the corresponding data types provided for other programmatic
environments.

Table 1-1 describes each large object data type that the database supports and
describes the kind of data that uses it.

ORACLE 1-6

Chapter 1
About Object Data Types and LOBs

Table 1-1 Large Object Data Types

SQL Data Type

Description

BLOB

CLOB

BFI LE

Binary Large Object

Stores any kind of data in binary format. Typically used for multimedia data such
as images, audio, and video.

¢ Note:

Oracle Multimedia is deprecated in Oracle
Database Release 18c, and may be desupported in
a future release. Oracle recommends that you stop
using deprecated features as soon as possible.

Character Large Object
Stores string data in the database character set format. Used for large strings or

documents that use the database character set exclusively. Characters in the
database character set are in a fixed width format.

National Character Set Large Object

Stores string data in National Character Set format, typically large strings or
documents. Supports characters of varying width format.

External Binary File

A binary file stored outside of the database in the host operating system file
system, but accessible from database tables. BFI LEs can be accessed from your
application on a read-only basis. Use BFI LEs to store static data, such as image
data, that is not manipulated in applications.

Any kind of data, that is, any operating system file, can be stored in a BFI LE. For
example, you can store character data in a BFI LE and then load the BFI LE data
into a CLOB, specifying the character set upon loading.

1.8 About Object Data Types and LOBs

In general, there is no difference in the use of a LOB instance in a LOB column or as a
member of an object data type. When used in this guide, the term LOB attribute refers to a
LOB instance that is a member of an object data type. Unless otherwise specified,
discussions that apply to LOB columns also apply to LOB attributes.

1.9 Storage and Creation of Other Data Types with LOBs

You can use LOBs to create other user-defined data types or store other data types as LOBs.

ORACLE

These are examples of data types provided with the database that are stored or created with

LOB types.

Topics:

* VARRAYs Stored as LOBs

1-7

Chapter 1
BasicFiles and SecureFiles LOBs

1.9.1 VARRAYSs Stored as LOBs

An instance of type VARRAY in the database is stored as an array of LOBs when you
create a table in the following scenarios:

« If the VARRAY storage clause is not specified, and the declared size of varray data
is more than 4000 bytes: VARRAY varray_item STORE AS

* If the VARRAY column properties are specified using the STORE AS LOB clause:
VARRAY varray_item STORE AS LOB ...

1.10 BasicFiles and SecureFiles LOBs

BasicFiles LOB and SecureFiles LOB are the two storage types used with Oracle
Database 12c.

Certain advanced features can be applied to SecureFiles LOBs, including
compression and deduplication (part of the Advanced Compression Option), and
encryption (part of the Advanced Security Option).

SecureFiles LOBs can only be created in a tablespace managed with Automatic
Segment Space Management (ASSM).

SecureFiles is the default storage mechanism for LOBs starting with Oracle Database
12c¢, and Oracle strongly recommends SecureFiles for storing and managing LOBs,
rather then BasicFiles. BasicFiles will be deprecated in a future release.

¢ See Also:

Using Oracle LOB Storage for a discussion of both storage types

1.11 Database File System (DBFS)

ORACLE

Database File System (DBFS) provides a file system interface to files that are stored in
an Oracle database.

Files stored in an Oracle database are usually stored as SecureFiles LOBs, and
pathnames, directories, and other filesystem information is stored in database tables.
SecureFiles LOBs is the default storage method for DBFS, but BasicFiles LOBs can
be used in some situations.

See Also:

What |s Database File System (DBFS)?

With DBFS, you can make references from SecureFiles LOB locators to files stored
outside the database. These references are called DBFS Links or Database File
System Links.

1-8

Chapter 1
Database File System (DBFS)

See Also:

Database File System Links

ORACLE" 1-9

Working with LOBs

Working with LOBs for application development requires that you understand LOB semantics
and various techniques used with LOBs.

Most of the discussions regarding persistent LOBs assume that you are dealing with existing
LOBs in tables. The task of creating tables with LOB columns is typically performed by your
database administrator.

¢ See Also:

e Using Oracle LOB Storage for creating LOBs using the SecureFiles paradigm

» LOB Storage with Applications for storage parameters used in creating LOBs

Topics:

* LOB Column States

e Locking a Row Containing a LOB
e LOB Open and Close Operations
e LOB Locator and LOB Value

* LOB Locators and BFILE Locators
* LOB Access

 LOB Rules and Restrictions

2.1 LOB Column States

ORACLE

The techniques you use when accessing a cell in a LOB column differ depending on the state
of the given cell.

A cellin a LOB Column can be in one of the following states:

e NULL
The table cell is created, but the cell holds no locator or value.

* Empty
A LOB instance with a locator exists in the cell, but it has no value. The length of the LOB
is zero.

* Populated

A LOB instance with a locator and a value exists in the cell.

2-1

Chapter 2
Locking a Row Containing a LOB

2.2 Locking a Row Containing a LOB

You can lock a row containing a LOB to prevent other database users from writing to
the LOB during a transaction.

* To lock the row, specify the FOR UPDATE clause when you select the row. While the
row is locked, other users cannot lock or update the LOB until you end your
transaction.

2.3 LOB Open and Close Operations

The LOB APIs include operations that enable you to explicitly open and close a LOB
instance.

You can open and close a persistent LOB instance of any type: BLOB, CLOB, NCLOB, or
BFI LE. You open a LOB to achieve one or both of the following results:

e Openthe LOB in read-only mode

This ensures that the LOB (both the LOB locator and LOB value) cannot be
changed in your session until you explicitly close the LOB. For example, you can
open the LOB to ensure that the LOB is not changed by some other part of your
program while you are using the LOB in a critical operation. After you perform the
operation, you can then close the LOB.

e Open the LOB in read write/mode, for persistent BLOB, CLOB, or NCLOB instances
only

Opening a LOB in read/write mode defers any index maintenance on the LOB
column until you close the LOB. Opening a LOB in read/write mode is only useful if
there is an extensible index on the LOB column, and you do not want the database
to perform index maintenance every time you write to the LOB. This technique can
increase the performance of your application if you are doing several write
operations on the LOB while it is open.

If you open a LOB, then you must close the LOB at some point later in your session.
This is the only requirement for an open LOB. While a LOB instance is open, you can
perform as many operations as you want on the LOB—provided the operations are
allowed in the given mode.

¢ See Also:

Opening Persistent LOBs with the OPEN and CLOSE Interfaces for more
information about usage of these APIs

2.4 LOB Locator and LOB Value

You can use two different techniques to access and modify LOB values.
Topics:

* Using the Data Interface for LOBs

ORACLE 2-2

Chapter 2
LOB Locators and BFILE Locators

* Use the LOB Locator to Access and Modify LOB Values

2.4.1 Using the Data Interface for LOBs

You can perform bind and define operations on CLOB and BLOB columns in C applications
using the data interface for LOBs in OCI.

Using the data interface enables you to insert or select out data in a LOB column without
using a LOB locator as follows:

* Use a bind variable associated with a LOB column to insert character data into a CLOB, or
RAWdata into a BLOB.

» Use a define operation to define an output buffer in your application that holds character
data selected from a CLOB or RAWdata selected from a BLOB.

" See Also:

Data Interface for Persistent LOBs for more information on implicit assignment
of LOBs to other data types

2.4.2 Use the LOB Locator to Access and Modify LOB Values

You can use the LOB locator to access and modify LOB values.

A LOB locator, which is a reference to the location of the LOB value, can access the value of
a LOB instanced stored in the database. Database tables store only locators in CLOB, BLOB,
NCLOB and BFI LE columns.

Note the following with respect to LOB locators and values:

- LOB locators are passed to various LOB APIs to access or manipulate a LOB value.
e A LOB locator can be assigned to any LOB instance of the same type.

e LOB instances are characterized as temporary or persistent, but the locator is not.

2.5 LOB Locators and BFILE Locators

ORACLE

There are differences between the semantics of locators for the LOB types BLOB, CLOB, and
NCLOB, and the semantics of locators for the BFI LE type:

* For LOB types BLOB, CLOB, and NCLOB, the LOB column stores a locator to the LOB value.
Each LOB instance has its own distinct LOB locator and also a distinct copy of the LOB
value.

e For initialized BFI LE columns, the row stores a locator to the external operating system
file that holds the value of the BFI LE. Each BFI LE instance in a given row has its own
distinct locator; however, two different rows can contain a BFI LE locator that points to the
same operating system file.

Regardless of where the value of a LOB is stored, a locator is stored in the table row of any
initialized LOB column. Also, when you select a LOB from a table, the LOB returned is always
a temporary LOB.

2-3

Chapter 2
LOB Locators and BFILE Locators

< Note:

When the term locator is used without an identifying prefix term, it refers to
both LOB locators and BFI LE locators.

See Also:

LOBs Returned from SQL Functions for more information on locators for
temporary LOBs

Topics:
e Table for LOB Examples: The PM Schema print_media Table

« LOB Column Initialization

2.5.1 Table for LOB Examples: The PM Schema print_media Table

Many Oracle LOB examples use the pri nt _nedi a table of the Oracle Database
Sample Schema PM

The print _nedi a table is defined as:

CREATE TABLE print_medi a

(product_id NUMBER(6)

, ad_id NUMBER(6)

, ad_conposite BLOB

, ad_sourcet ext CLOB

, ad_final text CLOB

, ad_fltextn NCLOB

, ad_textdocs_ntab textdoc_tab
, ad_photo BLOB

, ad_graphic BFI LE

, ad_header adheader _typ
) NESTED TABLE ad_t extdocs_ntab STORE AS textdocs_nest edt ab;

" See Also:

"Creating a Table Containing One or More LOB Columns" for information
about creating pri nt _nedi a and its associated tables and files

2.5.2 LOB Column Initialization

ORACLE

LOB instances that are NULL do not have a locator.

Before you can pass a LOB instance to any LOB API routine, the instance must
contain a locator. For example, you can select a NULL LOB from a row, but you cannot
pass the instance to the PL/SQL DBMS_LOB. READ procedure. You must initialize a LOB

2-4

Chapter 2
LOB Locators and BFILE Locators

instance, which provides it with a locator, to make it non-NULL. Then you can pass the LOB
instance.

Topics:
* Initializing a Persistent LOB Column

e Initializing BFILES

2.5.2.1 Initializing a Persistent LOB Column

Before you can start writing data to a persistent LOB using supported programmatic
environment interfaces such as PL/SQL, OCI, Visual Basic, or Java, you must make the LOB
column/attribute non-NULL.

You can make a LOB column/attribute non-NULL by initializing the persistent LOB to empty,
using an | NSERT/UPDATE statement with the function EMPTY_BLOB for BLOBs or EMPTY_CLOB for
CLOBs and NCLOBs.

¢ Note:

You can use SQL to populate a LOB column with data even if it contains a NULL
value.

¢ See Also:

e LOB Storage with Applications for more information on initializing LOB columns

e "Programmatic Environments That Support LOBs" for all supported interfaces

Running the EMPTY_BLOB() or EMPTY_CLOB() function in and of itself does not raise an
exception. However, using a LOB locator that was set to empty to access or manipulate the
LOB value in any PL/SQL DBMS_LOB or OCI function raises an exception.

Valid places where empty LOB locators may be used include the VALUES clause of an | NSERT
statement and the SET clause of an UPDATE statement.

¢ See Also:

» "Directory Objects" for details of CREATE DI RECTORY and BFI LENAME usage
e Oracle Database SQL Language Reference, CREATE DI RECTORY statement

Note:

Character strings are inserted using the default character set for the instance.

ORACLE 2-5

Chapter 2
LOB Access

The | NSERT statement in the next example uses the pri nt _nmedi a table described in
"Table for LOB Examples: The PM Schema print_media Table" and does the following:

» Populates ad_sour cet ext with the character string ' ny O acl €'
e Setsad conposite, ad_finaltext, andad fltextntoan empty value
e Sets ad_phot o to NULL

e Initializes ad_gr aphi ¢ to point to the file ny_pi ct ur e located under the logical
directory ny_di rect ory_obj ect

CREATE OR REPLACE DI RECTORY ny_directory_object AS 'oracle/work/tklocal";
I NSERT | NTO print_media VALUES (1726, 1, EMPTY_BLOB(),

"ny Oracle', EMPTY_CLOB(), EMPTY_CLOB(),

NULL, NULL, BFILENAME(' ny_directory_object', 'my_picture'), NULL);

Similarly, the LOB attributes for the ad_header column in print _medi a can be
initialized to NULL, empty, or a character/raw literal, which is shown in the following
statement:

I NSERT | NTO print_nedia (product_id, ad_id, ad_header)
VALUES (1726, 1, adheader _typ(' AD FOR ORACLE , sysdate,
"Have Grid, EMPTY_BLOB()));

¢ See Also:

e "Inserting a Row by Selecting a LOB From Another Table"
e "Inserting a LOB Value Into a Table"
e "Inserting a Row by Initializing a LOB Locator Bind Variable"

e "OCILobLocator Pointer Assignment” for details on LOB locator
semantics in OCI

2.5.2.2 Initializing BFILES

Before you can access BFI LE values using LOB APIs, the BFI LE column or attribute
must be made non-NULL.

You can initialize the BFI LE column to point to an external operating system file by
using the BFI LENAME function.

See Also:

"About Accessing BFILES" for more information on initializing BFILE columns

2.6 LOB Access

You can access a LOB instance with several techniques.

Topics:

ORACLE 2-6

Chapter 2
LOB Access

* Accessing a LOB Using SQL
» Accessing a LOB Using the Data Interface

* Accessing a LOB Using the Locator Interface

2.6.1 Accessing a LOB Using SQL

You can access LOBs using SQL.

The support for columns that use LOB data types that is built into many SQL functions
enables you to use SQL semantics to access LOB columns. In most cases, you can use the
same SQL semantics on a LOB column that you would use on a VARCHAR2 column.

" See Also:

For details on SQL semantics support for LOBs, see SQL Semantics and LOBs

2.6.2 Accessing a LOB Using the Data Interface

You can access LOBs using the data interface.

You can select a LOB directly into CHAR or RAWbuffers using LONG-to-LOB APIs in OCI and
PL/SQL interfaces. In the following PL/SQL example, ad_fi nal t ext is selected into a
VARCHAR2 buffer fi nal _ad.

DECLARE
final _ad VARCHAR2(32767);
BEG N
SELECT ad_finaltext INTO final _ad FROM print_nedi a
WHERE product _id = 2056 and ad_id = 12001 ;
[* PUT_LINE can only output up to 255 characters at a tine */

DBMS_QUTPUT. PUT_LI NE(fi nal _ad) ;
/* more calls to read final _ad */

END;

See Also:

For more details on accessing LOBs using the data interface, see Data Interface for
Persistent LOBs

2.6.3 Accessing a LOB Using the Locator Interface

ORACLE

You can access and manipulate a LOB instance by passing the LOB locator to the LOB APIs
supplied with the database.

To access the LOB instance, use the extensive set of LOB APIs provided with each
supported programmatic environment. In OCI, a LOB locator is mapped to a locator pointer,
which is used to access the LOB value.

2-7

Chapter 2
LOB Rules and Restrictions

< Note:

In all environments, including OCI, the LOB APIs operate on the LOB value
implicitly—there is no requirement to dereference the LOB locator.

¢ See Also:

e Overview of Supplied LOB APIs

e "OCILobLocator Pointer Assignment” for details on LOB locator
semantics in OCI

2.7 LOB Rules and Restrictions

This section provides details on LOB rules and restrictions.

Topics:

Rules for LOB Columns

Restrictions for LOB Operations

2.7.1 Rules for LOB Columns

LOB columns are subject to the following rules and restrictions:

ORACLE

You cannot specify a LOB as a primary key column.

Oracle Database has limited support for remote LOBs and ORA-22992 errors can
occur when remote LOBs are used in ways that are not supported.

Clusters cannot contain LOBSs, either as key or nonkey columns.

Even though compressed VARRAY data types are supported, they are less
performant.

The following data structures are supported only as temporary instances. You
cannot store these instances in database tables:

— VARRAY of any LOB type

— VARRAY of any type containing a LOB type, such as an object type with a LOB
attribute

— ANYDATA of any LOB type
— ANYDATA of any type containing a LOB

You cannot specify LOB columns in the ORDER BY clause of a query, the GROUP BY
clause of a query, or an aggregate function.

You cannot specify a LOB column in a SELECT... DI STI NCT or SELECT... UNI QUE
statement or in a join. However, you can specify a LOB attribute of an object type
column in a SELECT... DI STI NCT statement, a query that uses the UNI ON, or a M NUS

2-8

Chapter 2
LOB Rules and Restrictions

set operator if the object type of the column has a MAP or ORDER function defined on it.
e The first (I NI TI AL) extent of a LOB segment must contain at least three database blocks.

* The minimum extent size is 14 blocks. For an 8K block size (the default), this is
equivalent to 112K.

* When creating an AFTER UPDATE DML trigger, you cannot specify a LOB column in the
UPDATE OF clause.

* You cannot specify a LOB column as part of an index key. However, you can specify a
LOB column in the indextype specification of a domain index. In addition, Oracle Text lets
you define an index on a CLOB column.

* Inan | NSERT... AS SELECT operation, you can bind up to 4000 bytes of data to LOB
columns and attributes. There is no length restriction when you dol NSERT... AS SELECT
from one table to another table using SQL with no bind variables.

* If atable has both LONGand LOB columns, you cannot bind more than 4000 bytes of data
to both the LONG and LOB columns in the same SQL statement. However, you can bind
more than 4000 bytes of data to either the LONG or the LOB column.

¢ Note:

For a table on which you have defined an AFTER UPDATE DML trigger, if you use OCI
functions or the DBM5S_LOB package to change the value of a LOB column or the
LOB attribute of an object type column, the database does not fire the DML trigger.

See Also:

e Using Oracle LOB Storage for SecureFiles capabilities (encryption,
compression, and deduplication)

* Working with Remote LOB Columns for more information about Remote LOBs.
e Restrictions for LOBs in Partitioned Index-Organized Tables

e Migrating Columns from LONGs to LOBs for migration limitations on clustered
tables, domain indexes, and function-based indexes

e Unsupported Use of LOBs in SQL for restrictions on SQL semantics
e Restriction on First Extent of a LOB Segment

* The Data Interface Used with Remote LOBs

2.7.2 Restrictions for LOB Operations

LOB operations have certain restrictions.
General LOB restrictions include the following:

e In SQL Loader, a field read from a LOB cannot be used as an argument to a clause.

e Case-insensitive searches on CLOB columns often do not succeed. For example, to do a
case-insensitive search on a CLOB column:

ORACLE 2-9

ORACLE

Chapter 2
LOB Rules and Restrictions

ALTER SESSI ON SET NLS_COWP=LI NGUI STI C,
ALTER SESSI ON SET NLS_SORT=BI NARY_Cl ;
SELECT * FROM ci _test WHERE LOWER(clob_col) LIKE 'aa%;

The select fails without the LOAER function. You can do case-insensitive searches

with Oracle Text or DBMS_LOB. | NSTR() .

Session migration is not supported for BFI LEs in shared server (multithreaded
server) mode. This implies that operations on open BFI LEs can persist beyond the
end of a call to a shared server. In shared server sessions, BFI LE operations are
bound to one shared server, they cannot migrate from one server to another.

Symbolic links are not allowed in the directory paths or file names when opening
BFILEs. The entire directory path and filename is checked and the following error
is returned if any symbolic link is found:

ORA-22288: file or LOB operation FILEOPEN failed soft link in path

¢ See Also:

e Database Utilities for Loading Data into LOBs
¢ SQL Semantics and LOBs

2-10

Using Oracle LOB Storage

Oracle LOB storage has two types, SecureFiles LOB storage and BasicFiles LOB storage,
which are used with different types of tablespaces.

You design, create, and modify tables with LOB column types.
Topics:

e LOB Storage

 CREATE TABLE with LOB Storage

* ALTER TABLE with LOB Storage

* Initialization_ Compatibility_ and Upgrading

* Migrating Columns from BasicFiles LOBs to SecureFiles LOBs
* PL/SQL Packages for LOBs and DBFS

3.1 LOB Storage

Earlier Oracle database releases supported only one type of LOB storage. In Oracle
Database 11g, SecureFiles LOB storage was introduced; the original storage type was given
the name BasicFiles LOB storage and became the default.

LOBs created using BasicFiles LOB storage became known as BasicFiles LOBs and LOBs
created using SecureFiles LOB storage were named SecureFiles LOBs. The CREATE TABLE
statement added new keywords to indicate the differences: BASI CFl LE specifies BasicFiles
LOB storage and SECUREFI LE specifies SecureFiles LOB storage.

Beginning with Oracle Database 12c¢, SecureFiles LOB storage became the default in the
CREATE TABLE statement. If no storage type is explicitly specified, new LOB columns use
SecureFiles LOB storage.

The term LOB can represent LOBs of either storage type unless the storage type is explicitly
indicated, by name or by reference to archiving or linking (can only apply to the SecureFiles
LOB storage type).

¢ See Also:

Initialization, Compatibility, and Upgrading for more information about Initialization
and compatibility.

The following sections discuss the two storage types in detail:

e BasicFiles LOB Storage
e SecureFiles LOB Storage

ORACLE 3-1

Chapter 3
LOB Storage

3.1.1 BasicFiles LOB Storage

You must use BasicFiles LOB storage for LOB storage in tablespaces that are not
managed with Automatic Segment Space Management (ASSM).

3.1.2 SecureFiles LOB Storage

SecureFiles LOBs can only be created in tablespaces managed with Automatic
Segment Space Management (ASSM), unlike BasicFiles LOB storage.

SecureFiles LOB storage is designed to provide much better performance and
scalability compared to BasicFiles LOBs and to meet or exceed the performance
capabilities of traditional network file systems.

SecureFiles LOB storage supports three features that are not available with the
BasicFiles LOB storage option: compression, deduplication, and encryption.

Oracle recommends that you enable compression, deduplication, and encryption
through the CREATE TABLE statement. If you enable these features through the

ALTER TABLE statement, all SecureFiles LOB data in the table is read, modified, and
written; this can cause the database to lock the table during a potentially lengthy
operation, though there are online capabilities in the ALTER TABLE statement which can
help you avoid this issue.

Topics:
* About Advanced LOB Compression
* About Advanced LOB Deduplication

* About SecureFiles Encryption

3.1.2.1 About Advanced LOB Compression

Advanced LOB Compression transparently analyzes and compresses SecureFiles
LOB data to save disk space and improve performance.

License Requirement: You must have a license for the Oracle Advanced
Compression Option to implement Advanced LOB Compression.
" See Also:

° "CREATE TABLE with Advanced LOB Compression"
e "ALTER TABLE with Advanced LOB Compression”

3.1.2.2 About Advanced LOB Deduplication

Advanced LOB Deduplication enables Oracle Database to automatically detect
duplicate LOB data within a LOB column or partition, and conserve space by storing
only one copy of the data.

ORACLE 3-2

Chapter 3
CREATE TABLE with LOB Storage

License Requirement: You must have a license for the Oracle Advanced Compression
Option to implement Advanced LOB Deduplication.

Note also that Oracle Streams does not support SecureFiles LOBs that are deduplicated.

¢ See Also:

e "CREATE TABLE with Advanced LOB Deduplication"
e "ALTER TABLE with Advanced LOB Deduplication”

3.1.2.3 About SecureFiles Encryption

SecureFiles Encryption introduces a new encryption facility for LOBs. The data is encrypted
using Transparent Data Encryption (TDE), which allows the data to be stored securely, and
still allows for random read and write access.

License Requirement: You must have a license for the Oracle Advanced Security Option to
implement SecureFiles Encryption.
¢ See Also:

° "CREATE TABLE with SecureFiles Encryption"
e "ALTER TABLE with SecureFiles Encryption"

3.2 CREATE TABLE with LOB Storage

ORACLE

The CREATE TABLE statement works with LOB storage using parameters that are specific to
SecureFiles or BasicFiles LOB storage, or both.

Example 3-1 provides the syntax for CREATE TABLE in Backus Naur (BNF) notation, with LOB-
specific parameters in bold.

The SHRI NK option is not supported for SecureFiles LOBs.

¢ See Also:

e CREATE TABLE LOB Storage Parameters for parameter descriptions and the
CREATE TABLE statement

e Oracle Database SQL Language Reference

Example 3-1 BNF for CREATE TABLE

CREATE [GLOBAL TEMPORARY | TABLE
[schema.]table OF
[schema.]object type

3-3

Chapter 3
CREATE TABLE with LOB Storage

[(relational _properties)]
[ONCOWM T { DELETE | PRESERVE } ROWS]
[ODclause]
[OD.index_clause]
[physical properties]
[table_properties | ;
<rel ational _properties> ::=
{ colum_definition
| { out_of Iine_constraint
| out_of line_ref_constraint
| suppl enmental _| oggi ng_props
}
}
[, { colum_definition
| { out_of line_constraint
| out_of line_ref_constraint
| suppl emental _| oggi ng_props
}
l...
<colum_definition> ::=
colum data_type [SORT]
[DEFAULT expr]
[ENCRYPT encryption_spec]
[(inline_constraint [inline_constraint | ...)
| inline_ref_constraint
]
<data_type> ::=
{ Oracle_built_in_datatypes
| ANSI_supported_dat at ypes
| user_defined_types
| Oracle_supplied_types
}
<Oracle_built_in_datatypes> ::=
{ character_datatypes
| nunber_dat at ypes
| l'ong_and_raw dat at ypes
| datetine_datatypes
| l'arge_object datatypes
| rowi d_datatypes
}
<l arge_obj ect _datatypes> ::=
{ BLOB | CLOB | NCLOB| BFILE}
<table_properties> ::=
[colum_properties]
tabl e partitioning_clauses]
CACHE | NOCACHE]
paral | el _cl ause]
ROADEPENDENCI ES | NOROWDEPENDENCI ES]
enabl e_di sabl e_cl ause]
enabl e_di sabl e _clause]...
row_novenent cl ause]
[AS subquery]
<col um_properties> ::=
{ object_type_col _properties

f— — — f— — — —

ORACLE 3-4

Chapter 3
CREATE TABLE with LOB Storage

| nested_table_col _properties
| { varray_col properties | LOB storage_clause }
[(LOB partition_storage
[, LOB partition_storage |...
)
]
| XM.Type_col urm_properties
1
[
nested_tabl e_col _properties
{ varray_col properties | LOB storage_clause }
[(LOB partition_storage
[, LOB partition_storage]...
)
]
| XM.Type_col urm_properties
}
l...
<LOB partition_storage> ::=
PARTI TION partition
{ LOB_storage clause | varray_col _properties }
[LOB storage_clause | varray_col properties]...
[(SUBPARTI TI ON subpartition
{ LOB storage_clause | varray_col _properties }
[LOB storage_cl ause
| varray_col properties
1...
)

{ object_type_col _properties
I
I

]
<LOB storage_clause> ::=
LCB
{ (LOB_item[, LOBitem]...)
STORE AS [SECUREFILE | BASICFILE] (LOB_storage_paraneters)
| (LOB_item
STORE AS [SECUREFI LE | BASI CFI LE]
{ LOB_segname (LOB_storage_paraneters)
| LOB_segnane
| (LOB_storage_paraneters)
}
}

<LOB storage_paraneters> ::=
{ TABLESPACE t abl espace
| { LOB parameters [storage_clause]
}
| storage_clause
}
[TABLESPACE tabl espace
| { LOB parameters [storage_clause]
}
|
<LOB paraneters> ::=
[{ ENABLE | DI SABLE } STORAGE I N ROW
| CHUNK i nteger
| PCTVERSI ON i nt eger
| RETENTION [{ MAX | MN integer | AUTO| NONE }]

ORACLE 3-5

ORACLE

| FREEPOOLS i nt eger

| LOB deduplicate_clause
| LOB_conpression_clause
| LOB encryption_clause

| { CACHE | NOCACHE |
]

<l oggi ng_cl ause> ::=
{ LOGA NG | NOLOGG NG |
<storage_clause> ::=
STORAGE
({ INNTIAL integer [K|
| NEXT integer [K| M]
| M NEXTENTS i nt eger
| MAXEXTENTS { integer |
| PCTI NCREASE i nt eger
| FREELI STS i nt eger
| FREELI ST GROUPS i ntege
| OPTIMAL [integer [K
| NULL

]
| BUFFER POOL { KEEP |

[INNTIAL integer [K
| NEXT integer [K|
| M NEXTENTS i nt eger
| MAXEXTENTS { integer
| MAXSI ZE { { integer
| PCTI NCREASE i nt eger
| FREELI STS int eger
| FREELI ST GROUPS inte
| OPTIMAL [integer [
| NULL
]
| BUFFER_POOL { KEEP |
...
)

<LOB _deduplicate_cl ause> ::
{ DEDUPLI CATE
| KEEP_DUPLI CATES
}

<LOB_conpression_cl ause> ::
{ COWPRESS [HIGH |
| NOCOWPRESS
}

<LOB_ encryption_clause> ::=
{ ENCRYPT [USING "encryp

[| DENTI FI ED BY passwor

| DECRYPT

}

<XM_.Type_col urm_properties> ::

XMLTYPE [COLUWN] col um
[XM.Type_storage]
[XM_.Schena_spec]
<XM.Type_storage> ::=
STORE AS

RECYCLE |

VEDI UM |

Chapter 3
CREATE TABLE with LOB Storage

CACHE READS } [logging_clause] } }

FI LESYSTEM LI KE_LOGG NG }

M]

UNLI M TED }

r
| M]

DEFAULT }

| M]

M]

| UNLIM TED }

{ KI M G| T]

P} } | UNLIMTED}

ger

K| M]

RECYCLE | DEFAULT }

LOW]

t_algorithm]
d]

3-6

Chapter 3
CREATE TABLE with LOB Storage

{ OBJECT RELATI ONAL
| [SECUREFILE | BASICFILE] { CLOB | BINARY XM }
[{ LOB segnanme [(LOB _paraneters)]
| LOB paraneters
}
]

<varray_col _properties> ::=

VARRAY varray_item
{ [substitutable_colum_clause]
STORE AS [SECUREFILE | BASICFILE] LOB
{ [LOB_segname] (LOB_paraneters)
| LOB_ segnane

}

| substitutable colum_clause

}

3.2.1 CREATE TABLE LOB Storage Parameters

The CREATE TABLE statement uses parameters relating to LOB storage, and more specifically
to either BasicFiles LOB or SecureFiles LOB.

Table 3-1 summarizes the parameters of the CREATE TABLE statement that relate to LOB
storage, where necessary noting whether a parameter is specific to BasicFiles LOB or
SecureFiles LOB storage.

Table 3-1 Parameters of CREATE TABLE Statement Related to LOBs
|

Parameter Description
BASI CFI LE Specifies BasicFiles LOB storage, the original architecture for
LOBs.

If you set the compatibility mode to Oracle Database 119, then
BASI CFl LE functionality is enabled by default and specified for
completeness.

Starting with Oracle Database 12c, you must explicitly specify the
parameter BAS| CFI LE to use the BasicFiles LOB storage type.
Otherwise, the CREATE TABLE statement uses SecureFiles LOB,
the current default.

For BasicFiles LOBs, specifying any of the SecureFiles LOB
options results in an error.

See Also:

Initialization, Compatibility, and
Upgrading

SECUREFI LE Specifies SecureFiles LOBs storage.

Starting with Oracle Database 12c, the SecureFiles LOB storage
type, specified by the parameter SECUREFI LE, is the default.

A SecureFiles LOB can only be created in a tablespace managed
with Automatic Segment Space Management (ASSM).

ORACLE .

Chapter 3
CREATE TABLE with LOB Storage

Table 3-1 (Cont.) Parameters of CREATE TABLE Statement Related to LOBs

___|
Parameter Description

CHUNK For BasicFiles LOBs, specifies the chunk size when creating a
table that stores LOBs.
CHUNK is one or more Oracle blocks and corresponds to the data
size used by Oracle Database when accessing or modifying the
LOB.
For SecureFiles LOBs, it is an advisory size provided for backward
compatibility.

RETENTI ON Configures the LOB column to store old versions of LOB data in a
specified manner.

In Oracle Database Release 12c, this parameter specifies the
retention policy.

RETENTI ON has these possible values:

« MAX specifies that the system keep old versions of LOB data
blocks until the space used by the segment has reached the
size specified in the MAXSI ZE parameter. If MAXSI ZE is not
specified, MAX behaves like AUTO.

* M Nspecifies that the system keep old versions of LOB data
blocks for the specified number of seconds.

« NONE specifies that there is no retention period and space can
be reused in any way deemed necessary.

« AUTOspecifies that the system manage the space as
efficiently as possible weighing both time and space needs.

¢ See Also:

RETENTION Parameter for
BasicFiles LOBs for more
information about RETENTI ON
parameter used with BasicFiles
LOBs.

MAXSI ZE Specifies the upper limit of storage space that a LOB may use.
If this amount of space is consumed, new LOB data blocks are

taken from the pool of old versions of LOB data blocks as needed,
regardless of time requirements.

FREEPOOLS Specifies the number of FREELI ST groups for BasicFiles LOBs, if
the database is in automatic undo mode. Under Release 12c
compatibility, this parameter is ignored when SecureFiles LOBs
are created.

ORACLE 3-8

ORACLE

Chapter 3
CREATE TABLE with LOB Storage

Table 3-1 (Cont.) Parameters of CREATE TABLE Statement Related to LOBs
]

Parameter

Description

LOGGE NG NOLOGAE NG, or
FI LESYSTEM LI KE_LOGG NG

Specifies logging options:

« LOGE NGspecifies logging the creation of the LOB and
subsequent inserts into the LOB, in the redo log file. LOGE NG
is the default.

» NOLOGAE NG specifies no logging.

e FILESYSTEM LI KE_LOGA NG specifies that the system only
logs the metadata. This is similar to metadata journaling of file
systems, which reduces mean time to recovery from failures.
FI LESYSTEM LI KE_LOGGE NGensures that data is completely
recoverable (an instance recovery) after a server failure.

This option is invalid for BasicFiles LOBs.
For SecureFiles LOBs, the following applies:

e The NOLOGE NGsetting is converted internally to
FI LESYSTEM LI KE_LOGGE NG

e The LOGE NGsetting is similar to the data journaling of file
systems.

e Both the LOGE NGand FI LESYSTEM LI KE_LOGE NG settings
provide a complete transactional file system.

For a non-partitioned object, the value specified for this clause is

the actual physical attribute of the segment associated with the

object.

For partitioned objects, the value specified for this clause is the
default physical attribute of the segments associated with all
partitions specified in the CREATE statement (and in subsequent
ALTER... ADD PARTI Tl ON statements), unless you specify the
logging attribute in the PARTI Tl ON description.

CAUTION:

For LOB segments with NOLOGGE NG or

FI LESYSTEM LI KE_LOGE NGsettings, it is possible that data can
change on the disk during a backup operation. This results in read
inconsistency. To avoid this situation, ensure that changes to LOB
segments are saved in the redo log file by setting LOGE NG for
LOB storage.

NOLOGE NGand FI LESYSTEM LI KE_LOGE NG SecureFiles are
recoverable after an instance failure, but not after a media failure.
LOGGE NG SecureFiles are recoverable after both instance and
media failures.

See Also:

e Oracle Database Backup and
Recovery User’s Guide for a
discussion of data protection,
media failure, and instance
failure.

» LOGGING / NOLOGGING
Parameter for BasicFiles LOBs

e Ensuring Read Consistency

3-9

Chapter 3
CREATE TABLE with LOB Storage

Table 3-1 (Cont.) Parameters of CREATE TABLE Statement Related to LOBs

___|
Parameter Description

FREELI STS or FREELI ST GROUPS Specifies the number of process freelists or freelist groups,
respectively, allocated to the segment; NULL for partitioned tables.
Under Release 12c¢c compatibility, these parameters are ignored
when SecureFiles LOBs are created.

PCTVERSI ON Specifies the percentage of used BasicFiles LOB data space that
may be occupied by old versions of the LOB data pages.

Under Release 12c compatibility, this parameter is ignored when
SecureFiles LOBs are created.

COVPRESS or NOCOVPRESS The COVPRESS option turns on Advanced LOB Compression, and
NOCOWPRESS turns it off.

Note that setting table or index compression does not affect
Advanced LOB Compression.

DEDUPLI CATE or The DEDUPLI CATE option enables Advanced LOB Deduplication; it

KEEP_DUPLI CATES specifies that SecureFiles LOB data that is identical in two or more
rows in a LOB column, partition or subpartition must share the
same data blocks. The database combines SecureFiles LOBs with
identical content into a single copy, reducing storage and
simplifying storage management. The opposite of this option is
KEEP_DUPLI CATES.

ENCRYPT or DECRYPT The ENCRYPT option turns on SecureFiles Encryption, and
encrypts all SecureFiles LOB data using Oracle Transparent Data
Encryption (TDE). The DECRYPT options turns off SecureFiles
Encryption.

3.2.2 CREATE TABLE and SecureFiles LOB Features

Note usage notes and examples for SecureFiles LOBs used with theCREATE TABLE.

This section provides usage notes and examples for features specific to SecureFiles
LOBs used with CREATE TABLE.

Note:

Clauses in example discussions refer to the Backus Naur (BNF) notation
Example 3-1.

¢ See Also:

CREATE TABLE LOB Storage Parameters for more information about
parameters

Topics:

e CREATE TABLE with Advanced LOB Compression

ORACLE 3-10

Chapter 3
CREATE TABLE with LOB Storage

CREATE TABLE with Advanced LOB Deduplication
CREATE TABLE with SecureFiles Encryption

3.2.2.1 CREATE TABLE with Advanced LOB Compression

You can use Advanced LOB Compression with the CREATE TABLE statement under certain
circumstances.

Topics:

Usage Notes for Advanced LOB Compression
Examples of CREATE TABLE and Advanced LOB Compression

3.2.2.1.1 Usage Notes for Advanced LOB Compression

Consider these issues when using the CREATE TABLE statement and Advanced LOB
Compression.

Advanced LOB Compression is performed on the server and enables random reads and
writes to LOB data. Compression utilities on the client, like ut| _conpress, cannot provide
random access.

Advanced LOB Compression does not enable table or index compression. Conversely,
table and index compression do not enable Advanced LOB Compression.

The LOW MEDI UM and H CGH options provide varying degrees of compression. The higher
the compression, the higher the latency incurred. The H GH setting incurs more work, but
compresses the data better. The default is MEDI UM

The LONcompression option uses an extremely lightweight compression algorithm that
removes the majority of the CPU cost that is typical with file compression. Compressed
SecureFiles LOBs at the LOWlevel provide a very efficient choice for SecureFiles LOB
storage. SecureFiles LOBs compressed at LONgenerally consume less CPU time and
less storage than BasicFiles LOBs, and typically help the application run faster because
of a reduction in disk 1/0.

Compression can be specified at the partition level. The CREATE TABLE
| ob_st orage_cl ause enables specification of compression for partitioned tables on a per-
partition basis.

The DBM5_LOB. SETOPTI ONS procedure can enable and disable compression on individual
SecureFiles LOBs.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
about DBMS_LOB. SETOPTI ONS procedure

3.2.2.1.2 Examples of CREATE TABLE and Advanced LOB Compression

These examples demonstrate how to issue CREATE TABLE statements for specific
compression scenarios.

ORACLE

3-11

Chapter 3
CREATE TABLE with LOB Storage

Example 3-2 Creating a SecureFiles LOB Column with LOW Compression

CREATE TABLE t1 (a CLOB)

LOB(a) STORE AS SECUREFI LE(
COVPRESS LOW

CACHE

NOLOGG NG

);

Example 3-3 Creating a SecureFiles LOB Column with MEDIUM (default)
Compression

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFILE (
COMPRESS
CACHE
NOLOGGH NG

)s
Example 3-4 Creating a SecureFiles LOB Column with HIGH Compression

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFILE (
COVPRESS HI GH
CACHE

);
Example 3-5 Creating a SecureFiles LOB Column with Disabled Compression

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFILE (
NOCOVPRESS
CACHE

)

Example 3-6 Creating a SecureFiles LOB Column with Compression on One
Partition

CREATE TABLE t1 (REG ON VARCHAR2(20), a BLOB)
LOB(a) STORE AS SECUREFI LE (
CACHE

)
PARTI TI ON BY LI ST (REG ON) (

PARTI TI ON p1 VALUES ('x', 'y")
LOB(a) STORE AS SECUREFI LE (
COMPRESS

),
PARTI TI ON p2 VALUES (DEFAULT)

);
3.2.2.2 CREATE TABLE with Advanced LOB Deduplication

You can use Advanced LOB Deduplication with the CREATE TABLE statement.
Topics:

» Usage Notes for Advanced LOB Deduplication

* Examples of CREATE TABLE and Advanced LOB Deduplication

ORACLE 3-12

Chapter 3
CREATE TABLE with LOB Storage

3.2.2.2.1 Usage Notes for Advanced LOB Deduplication

Consider these issues when using CREATE TABLE and Advanced LOB Deduplication.

» ldentical LOBs are good candidates for deduplication. Copy operations can avoid data
duplication by enabling deduplication.

* Duplicate detection happens within a LOB segment. Duplicate detection does not span
partitions or subpartitions for partitioned and subpartitioned LOB columns.

» Deduplication can be specified at a partition level. The CREATE TABLE
| ob_storage_cl ause enables specification for partitioned tables on a per-partition basis.

e The DBM5S_LOB. SETOPTI ONS procedure can enable or disable deduplication on individual
LOBs.

3.2.2.2.2 Examples of CREATE TABLE and Advanced LOB Deduplication

ORACLE

These examples demonstrate how to issue CREATE TABLE statements for specific
deduplication scenarios.

Example 3-7 Creating a SecureFiles LOB Column with Deduplication

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFILE (
DEDUPLI CATE
CACHE

);
Example 3-8 Creating a SecureFiles LOB Column with Disabled Deduplication

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFILE (
KEEP_DUPLI CATES
CACHE

)
Example 3-9 Creating a SecureFiles LOB Column with Deduplication on One Partition

CREATE TABLE t1 (REG ON VARCHAR2(20), a BLOB)
LOB(a) STORE AS SECUREFI LE (
CACHE

)
PARTI TI ON BY LI ST (REG ON) (
PARTI TION p1 VALUES ('Xx', 'y')
LOB(a) STORE AS SECUREFILE (
DEDUPLI CATE

)
PARTI TI ON p2 VALUES (DEFAULT)

)

Example 3-10 Creating a SecureFiles LOB column with Deduplication Disabled on
One Partition

CREATE TABLE t1 (REG ON VARCHAR2(20), | D NUMBER, a BLOB)
LOB(a) STORE AS SECUREFI LE (
DEDUPLI CATE
CACHE

)
PARTI TI ON BY RANGE (REG ON)

3-13

Chapter 3
CREATE TABLE with LOB Storage

SUBPARTI TI ON BY HASH(I D) SUBPARTI TIONS 2 (
PARTI TI ON p1 VALUES LESS THAN (51)
 ob(a) STORE AS a_t2_pl
(SUBPARTI TION t2_pl_ sl lob(a) STORE AS a_t2 pl_si,
SUBPARTI TION t2_pl_s2 lob(a) STORE AS a_t2 pl_s2),
PARTI TI ON p2 VALUES LESS THAN (MAXVALUE)
| ob(a) STORE AS a_t2_p2 (KEEP_DUPLI CATES)
(SUBPARTI TION t2_p2_s1 lob(a) STORE AS a_t2 p2_s1,
SUBPARTI TION t2_p2_s2 | ob(a) STORE AS a_t2 p2_s2)
);

3.2.2.3 CREATE TABLE with SecureFiles Encryption

You can use SecureFiles Encryption with the CREATE TABLE statement.
Topics:

* Usage Notes for SecureFiles Encryption

» Examples of CREATE TABLE and SecureFiles Encryption

3.2.2.3.1 Usage Notes for SecureFiles Encryption
Consider these issues when using CREATE TABLE and SecureFiles Encryptions

» Transparent Data Encryption (TDE) supports encryption of LOB data types.
* Encryption is performed at the block level.

e The encrypt_al gorit hmindicates the name of the encryption algorithm. Valid
algorithms are: AES192 (default), AES128, and AES256.

* The column encryption key is derived from PASSWORD, if specified.
* The default for LOB encryption is SALT. NOSALT is not supported.
e Al LOBs in the LOB column are encrypted.

e DECRYPT keeps the LOBs in clear text.

* LOBs can be encrypted only on a per-column basis, similar to TDE. All partitions
within a LOB column are encrypted.

* Key management controls the ability to encrypt or decrypt.

* TDE is not supported by the traditional i nport and export utilities or by
transportable-tablespace-based export . Use the Data Pump expdb and i npdb
utilities with encrypted columns instead.

¢ See Also:

"Oracle Database Advanced Security Guide for information about using
the ADM NI STER KEY MANAGEMENT statement to create TDE keystores

3.2.2.3.2 Examples of CREATE TABLE and SecureFiles Encryption

These examples demonstrate how to issue CREATE TABLE statements for specific
encryption scenarios.

ORACLE 3-14

Chapter 3
ALTER TABLE with LOB Storage

Example 3-11 Creating a SecureFiles LOB Column with a Specific Encryption
Algorithm

CREATE TABLE t1 (a CLOB ENCRYPT USING ' AES128')
LOB(a) STORE AS SECUREFILE (
CACHE

);
Example 3-12 Creating a SecureFiles LOB column with encryption for all partitions

CREATE TABLE t1 (REG ON VARCHAR2(20), a BLOB)
LOB(a) STORE AS SECUREFI LE (
ENCRYPT USI NG ' AES128'
NOCACHE
FI LESYSTEM LI KE_LOGGI NG
)
PARTI TI ON BY LI ST (REG ON) (
PARTI TION p1 VALUES ('X', 'Yy'),
PARTI TI ON p2 VALUES (DEFAULT)

)

Example 3-13 Creating a SecureFiles LOB Column with Encryption Based on a
Password Key

CREATE TABLE t1 (a CLOB ENCRYPT | DENTI FI ED BY f00)
LOB(a) STORE AS SECUREFILE (
CACHE

)

The following example has the same result because the encryption option can be set in the
LOB_dedupl i cat e_cl ause section of the statement:

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFILE (
CACHE
ENCRYPT
| DENTI FI ED BY f o0

)s
Example 3-14 Creating a SecureFiles LOB Column with Disabled Encryption

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFI LE (
CACHE DECRYPT
)

3.3 ALTER TABLE with LOB Storage

ORACLE

You can modify LOB storage with an ALTER TABLE statement and specific LOB-related
parameters.

Topics:

About ALTER TABLE and LOB Storage
BNF for the ALTER TABLE Statement
ALTER TABLE LOB Storage Parameters
ALTER TABLE SecureFiles LOB Features

3-15

Chapter 3
ALTER TABLE with LOB Storage

3.3.1 About ALTER TABLE and LOB Storage

You can use ALTER TABLE to enable compression, deduplication, or encryption features
for a LOB column.

The ALTER TABLE statement supports online operations and Oracle Database supports
parallel operations on SecureFiles LOBs columns, making this a resource-efficient
approach.

As an alternative to ALTER TABLE, you can use online redefinition to enable one or
more of these features. As with ALTER TABLE, online redefinition of SecureFiles LOB
columns can be executed in parallel.

Note that the SHRI NK option is not supported for SecureFiles LOBs.

See Also:

e Oracle Database SQL Language Reference for more information about
ALTER TABLE statement

e Migrating Columns from BasicFiles LOBs to SecureFiles LOBs for more
information about online redefinition

e Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_REDEFI NI TI ON package

3.3.2 BNF for the ALTER TABLE Statement

ORACLE

This Backus Naur (BNF) notation provides the syntax for ALTER TABLE with LOB-
specific parameters in bold.

¢ See Also:

e CREATE TABLE LOB Storage Parameters for parameter descriptions

e Oracle Database SQL Language Reference for more information about ALTER
TABLE statement

ALTER TABLE [schena.]table
alter_table_properties

col um_cl auses

constraint_cl auses
alter_table_partitioning
alter_external table clauses
nove_t abl e_cl ause

enabl e_di sabl e_cl ause
{ ENABLE | DI SABLE }

[
|
|
|
|
]
|
{ TABLE LOCK | ALL TRI GGERS }

3-16

Chapter 3
ALTER TABLE with LOB Storage

[enabl e_disable_clause
| { ENABLE | DI SABLE }
{ TABLE LOCK | ALL TRI GGERS }

l...

1

<col um_cl auses> :: =

{ { add_col um_cl ause
modi fy_col um_cl ause
drop_col um_cl ause

add_col um_cl ause
modi fy_col um_cl ause
drop_col um_cl ause

rename_col umm_cl ause

modi fy_col | ection_retrieval

modi fy_collection_retrieval]...
modi fy_LOB_storage_cl ause

modi fy_LOB_storage_cl ause]
alter_varray_col _properties
alter_varray_col _properties]

I
I
}
[
I
|
1.
I
I
[
I
[
I
[

}

<modi fy_LOB storage_clause> ::=

MODI FY LOB (LOB_ item) (nodify LOB parameters)
<modi fy LOB paraneters> ::=

{ storage_cl ause

| PCTVERSI ON i nt eger

| FREEPOOLS i nt eger

| REBU LD FREEPOCOLS

| LOB retention_clause

| LOB deduplicate_clause

| LOB _conpression_clause

| { ENCRYPT encryption_spec | DECRYPT }

| { CACHE

| { NOCACHE | CACHE READS } [|ogging_clause]
}

| allocate_extent clause

| shrink_clause

| deallocate_unused_cl ause

}

3.3.3 ALTER TABLE LOB Storage Parameters

ORACLE

You must use specific parameters of the ALTER TABLE statement that relate to LOB storage.

Parameters may be specific to BasicFiles LOB or SecureFiles LOB storage, as indicated.

Table 3-2 Parameters of ALTER TABLE Statement Related to LOBs

___|
Parameter Description

RETENTI ON Configures the LOB column to store old versions of LOB data in a
specified manner. Altering RETENTI ON only affects space created
after the ALTER TABLE statement runs.

3-17

Chapter 3
ALTER TABLE with LOB Storage

Table 3-2 (Cont.) Parameters of ALTER TABLE Statement Related to LOBs
]

Parameter Description

COVPRESS or NOCOVPRESS Enables or disables Advanced LOB Compression. All LOBs in the
LOB segment are altered with the new setting.

DEDUPLI CATE or Enables or disables Advanced LOB Deduplication.

KEEP_DUPLI CATES The option DEDUPLI CATE enables you to specify that LOB data

that is identical in two or more rows in a LOB column share the
same data blocks. The database combines LOBs with identical
content into a single copy, reducing storage and simplifying
storage management. The opposite of this option is
KEEP_DUPLI CATES.

ENCRYPT or DECRYPT Enables or disables SecureFiles LOB encryption. Alters all LOBs
in the LOB segment with the new setting. A LOB segment can be
only altered to enable or disable LOB encryption. That is, ALTER
cannot be used to update the encryption algorithm or the
encryption key. Update the encryption algorithm or encryption key
using the ALTER TABLE REKEY syntax.

3.3.4 ALTER TABLE SecureFiles LOB Features

Certain features specific to SecureFiles LOBs work with the ALTER TABLEstatement.

These SecureFiles LOBs features work with ALTER TABLE as described in the usage
notes and examples.

" Note:

Clauses in example discussions refer to the Backus Naur (BNF) notation
"BNF for the ALTER TABLE Statement".

Parameters are described in "ALTER TABLE LOB Storage Parameters".

Topics:

* ALTER TABLE with Advanced LOB Compression
* ALTER TABLE with Advanced LOB Deduplication
* ALTER TABLE with SecureFiles Encryption

3.3.4.1 ALTER TABLE with Advanced LOB Compression

Advanced LOB Compression works with the ALTER TABLE statement.
Topics:

* Usage Notes for Advanced LOB Compression

* Examples of ALTER TABLE and Advanced LOB Compression

ORACLE 3-18

Chapter 3
ALTER TABLE with LOB Storage

3.3.4.1.1 Usage Notes for Advanced LOB Compression

Consider these issues when using ALTER TABLE and Advanced LOB Compression.

* This syntax alters the compression mode of the LOB column.

e The DBM5S_LOB. SETOPTI ONS procedure can enable or disable compression on individual
LOBs.

e Compression may be specified either at the table level or the partition level.

e The LON MEDI UM and HI GH options provide varying degrees of compression. The higher
the compression, the higher the latency incurred. The H GH setting incurs more work, but
compresses the data better. The default is MEDI UM

¢ See Also:

CREATE TABLE with Advanced LOB Compression

3.3.4.1.2 Examples of ALTER TABLE and Advanced LOB Compression

These examples demonstrate how to issue ALTER TABLE statements for specific compression
scenarios.

Example 3-15 Altering a SecureFiles LOB Column to Enable LOW Compression

ALTER TABLE t1 MODI FY
LOB(a) (
COMPRESS LOW
)

Example 3-16 Altering a SecureFiles LOB Column to Disable Compression

ALTER TABLE t1 MODI FY
LOB(a) (
NOCOVPRESS
)

Example 3-17 Altering a SecureFiles LOB Column to Enable HIGH Compression

ALTER TABLE t1 MODI FY
LOB(a) (
COVPRESS HI GH
)

Example 3-18 Altering a SecureFiles LOB Column to Enable Compression on One
partition

ALTER TABLE t1 MODI FY PARTITION pl
LOB(a) (
COVPRESS HI GH
)

3.3.4.2 ALTER TABLE with Advanced LOB Deduplication

Advanced LOB Deduplication works with the ALTER TABLE statement.

ORACLE 3-19

Chapter 3
ALTER TABLE with LOB Storage

Topics:
* Usage Notes for Advanced LOB Deduplication
* Examples of ALTER TABLE and Advanced LOB Deduplication

3.3.4.2.1 Usage Notes for Advanced LOB Deduplication

Consider these issues when using ALTER TABLE and Advanced LOB Deduplication.
* The ALTER TABLE syntax can enable or disable LOB-level deduplication.
* This syntax alters the deduplication mode of the LOB column.

e The DBM5S_LOB. SETOPTI ONS procedure can enable or disable deduplication on
individual LOBs.

» Deduplication can be specified at a table level or partition level. Deduplication
does not span across partitioned LOBs.

3.3.4.2.2 Examples of ALTER TABLE and Advanced LOB Deduplication

These examples demonstrate how to issue ALTER TABLE statements for specific
deduplication scenarios.

Example 3-19 Altering a SecureFiles LOB Column to Disable Deduplication

ALTER TABLE t1 MODI FY
LOB(a) (
KEEP_DUPLI CATES
)s
Example 3-20 Altering a SecureFiles LOB Column to Enable Deduplication

ALTER TABLE t1 MODI FY
LOB(a) (
DEDUPLI CATE
)

Example 3-21 Altering a SecureFiles LOB Column to Enable Deduplication on
One Partition

ALTER TABLE t1 MODI FY PARTITION pl
LOB(a) (
DEDUPLI CATE
);

3.3.4.3 ALTER TABLE with SecureFiles Encryption

SecureFiles Encryption works with the ALTER TABLE statement.

Topics:

e Usage Notes for SecureFiles Encryption

e Examples of ALTER TABLE and SecureFiles Encryption
3.3.4.3.1 Usage Notes for SecureFiles Encryption

Consider these issues when using ALTER TABLE and SecureFiles Encryption.

ORACLE 3-20

Chapter 3
Initialization, Compatibility, and Upgrading

* ALTERTABLE enables and disables SecureFiles Encryption. This syntax also allows the
user to re-key LOB columns with a new key or algorithm.

e ENCRYPT and DECRYPT options enable or disable encryption on all LOBs in the specified
SecureFiles LOB column.

e The default for LOB encryption is SALT. NOSALT is not supported.
* The DECRYPT option converts encrypted columns to clear text form.
» Key management controls the ability to encrypt or decrypt.

» LOBs can be encrypted only on a per-column basis. A partitioned LOB has either all
partitions encrypted or not encrypted.

3.3.4.3.2 Examples of ALTER TABLE and SecureFiles Encryption

These examples demonstrate how to issue ALTER TABLE statements for specific encryption
scenarios.

Example 3-22 Altering a SecureFiles LOB Column by Encrypting Based on a Specific
Algorithm

Enable LOB encryption using AES256.

ALTER TABLE t1 MODI FY
(a CLOB ENCRYPT USI NG ' AES256'") ;

This is another example of enabling LOB encryption using AES256.

ALTER TABLE t1 MODI FY LOB(a)
(ENCRYPT USI NG ' AES256') ;

Example 3-23 Altering a SecureFiles LOB Column by Encrypting Based on a
Password Key

Enable encryption on a SecureFiles LOB column and build the encryption key using a
password.

ALTER TABLE t1 MODI FY
(a CLOB ENCRYPT | DENTI FI ED BY fo00);

Example 3-24 Altering a SecureFiles LOB Column by Re-keying the Encryption
To re-encrypt the LOB column with a new key, re-key the table.

ALTER TABLE t1 REKEY USI NG ' AES256' ;

3.4 Initialization, Compatibility, and Upgrading
You must perform LOB initialization using appropriate compatibility parameters.
Topics:
* Compatibility and Upgrading

» Initialization Parameter for SecureFiles LOBs

ORACLE 3-21

Chapter 3
Initialization, Compatibility, and Upgrading

3.4.1 Compatibility and Upgrading

All features described in this document are enabled with compatibility set to
11. 2. 0. 0. 0 or higher. There is no downgrade capability after 11. 2. 0. 0. 0 is set.

If you want to upgrade BasicFiles LOBs to SecureFiles LOBs, you must use typical
methods for upgrading data (CTAS/ITAS, online redefinition, export/import, column to
column copy, or using a view and a new column). Most of these solutions require twice
the disk space used by the data in the input LOB column. However, partitioning and
taking these actions on a partition-by-partition basis lowers the disk space
requirements.

3.4.2 Initialization Parameter for SecureFiles LOBs

ORACLE

You, as database administrator, using the DB_SECUREFI LE initialization parameter, can
modify the initial settings that the COVPATI Bl LI TY parameter sets as default.

By changing the intial settings, you change the circumstances under which
SecureFiles LOBs or BasicFiles LOBs are created or allowed. The DB_SECUREFI LE
parameter is typically setin the fileinit. ora.

¢ See Also:

e Oracle Database Reference

e Compatibility and Upgrading

The DB_SECUREFI LE initialization parameter is dynamic and can be modified with the
ALTER SYSTEMstatement. Example 3-25 shows the format for changing the parameter
value:

The valid values for DB_SECUREFI LE are:

e NEVER prevents SecureFiles LOBs from being created. If NEVER is specified, any
LOBs that are specified as SecureFiles LOBs are created as BasicFiles LOBs. If
storage options are not specified, the BasicFiles LOB defaults are used. All
SecureFiles LOB-specific storage options and features such as compress,
encrypt, or deduplicate throw an exception.

» | GNORE disallows SecureFiles LOBs and ignores any errors that forcing BasicFiles
LOBs with SecureFiles LOBs options might cause. If | GNORE is specified, the
SECUREFI LE keyword and all SecureFiles LOB options are ignored.

» PERM TTED allows SecureFiles LOBs to be created, if specified by users.
Otherwise, BasicFiles LOBs are created.

e PERFERRED attempts to create a SecureFiles LOB unless BasicFiles LOB is
explicitly specified for the LOB or the parent LOB (if the LOB is in a partition or
sub-partition). PREFERRED is the default value starting with Oracle Database 12c.

* ALWAYS attempts to create SecureFiles LOBs but creates any LOBs not in ASSM
tablespaces as BasicFiles LOBs, unless the SECUREFI LE parameter is explicitly

3-22

Chapter 3
Migrating Columns from BasicFiles LOBs to SecureFiles LOBs

specified. Any BasicFiles LOB storage options specified are ignored, and the SecureFiles
LOB defaults are used for all storage options not specified.

* FORCE attempts to create all LOBs as SecureFiles LOBs even if users specify BASI CFI LE.
This option is not recommended. Instead, PREFERRED or ALWAYS should be used.

Example 3-25 Setting DB_SECUREFILE parameter through ALTER SYSTEM

ALTER SYSTEM SET DB_SECUREFI LE = ' ALWAYS';

3.5 Migrating Columns from BasicFiles LOBs to SecureFiles

LOBs

You can use several methods of migrating LOBs columns.

Topics:

* Preventing Generation of REDO Data When Migrating to SecureFiles LOBs
* Online Redefinition for BasicFiles LOBs

* Online Redefinition Example for Migrating Tables with BasicFiles LOBs

* Redefining a SecureFiles LOB in Parallel

3.5.1 Preventing Generation of REDO Data When Migrating to SecureFiles

LOBs

Migrating BasicFiles LOB columns generates redo data, which can cause performance
problems.

Redo changes for the table are logged during the migration process if the CREATE TABLE
statement had the LOGE NG clause set.

Redo changes for a column being converted from BasicFiles LOB to SecureFiles LOB are
logged if LOGA NGis the storage setting for the SecureFiles LOB column. The logging setting
(LOGE NG or NOLOGE NG) for the LOB column is inherited from the tablespace in which the LOB
is created.

You can prevent redo space generation during migration to SecureFiles LOB.

* Specify the NOLOGA NG storage parameter for any new SecureFiles LOB columns.

You may turn LOGG NG on when the migration is complete.

3.5.2 Online Redefinition for BasicFiles LOBs

ORACLE

Online redefinition is the recommended method for migration of BasicFiles LOBs to
SecureFiles LOBs.

You can perform online redefinition at the table or partition level.

Online Redefinition Advantage

* No requirement to take the table or partition offline

e Can be done in parallel

3-23

Chapter 3
Migrating Columns from BasicFiles LOBs to SecureFiles LOBs

Online Redefinition Disadvantages

* Additional storage equal to the entire table or partition required and all LOB
segments must be available

e Global indexes must be rebuilt

3.5.3 Online Redefinition Example for Migrating Tables with BasicFiles

LOBs

ORACLE

You can migrate a table using Online Redefinition.

Online Redefinition has the advantage of not requiring the table to be off line, but it
requires additional free space equal to or even slightly greater than the space used by
the table. Example 3-26 demonstrates how to migrate a table using Online
Redefinition.

Example 3-26 Example of Online Redefinition

REM Grant privileges required for online redefinition.
GRANT EXECUTE ON DBMS_REDEFI NI TION TO pm
GRANT ALTER ANY TABLE TO pm
GRANT DROP ANY TABLE TO pm
GRANT LOCK ANY TABLE TO pm
GRANT CREATE ANY TABLE TO pm
GRANT SELECT ANY TABLE TO pm
REM Privil eges required to performcloning of dependent objects.
GRANT CREATE ANY TRI GGER TO pm
GRANT CREATE ANY | NDEX TO pm
CONNECT pm
/1 ALTER SESSI ON FORCE parallel dm;
DROP TABLE cust;
CREATE TABLE cust(c_i d NUMBER PRI MARY KEY,
c_zi p NUMBER,
¢_nane VARCHAR(30) DEFAULT NULL,
c_lob CLOB
);
I NSERT | NTO cust VALUES(1, 94065, 'hhh', "ttt');
-- Creating InterimTable
-- There is no requirenent to specify constraints because they are
-- copied over fromthe original table.
CREATE TABLE cust_int(c_id NUMBER NOT NULL,
c_zi p NUMBER,
¢_nane VARCHAR(30) DEFAULT NULL,
c_lob CLOB
) LOB(c_| ob) STORE AS SECUREFI LE (NOCACHE FI LESYSTEM LI KE_LOGG NG) ;
DECLARE
col _mappi ng VARCHAR2(1000);
BEG N
-- map all the colums in the interimtable to the original table
col _mapping : =
"c_idc_id, "|]
'c_zipc_zip, '||
'c_name c_nane, ||
‘c_lob c_lob';
DBMS_REDEFI NI TI ON. START_REDEF_TABLE(' pm, 'cust', 'cust_int', col _mapping);
END;
/
DECLARE

3-24

Chapter 3
PL/SQL Packages for LOBs and DBFS

error_count pls_integer := 0;
BEG N
DBVS_REDEFI NI TI ON. COPY_TABLE_DEPENDENTS(' pm, 'cust', 'cust_int",
1, TRUE, TRUE, TRUE, FALSE, error_count);
DBMS_QUTPUT. PUT_LINE(' errors :="' || TO CHAR(error_count));
END;
/
EXEC DBVS_REDEFI NI TI ON. FI NI SH REDEF _TABLE(' pm, 'cust', 'cust_int');
-- Drop the interimtable
DROP TABLE cust _int;
DESC cust;
-- The following insert statement fails. This illustrates
-- that the primary key constraint on the c_id colum is
-- preserved after nigration.
I NSERT | NTO cust VALUES(1, 94065, 'hhh', "ttt');
SELECT * FROM cust;

3.5.4 Redefining a SecureFiles LOB in Parallel

You can redefine a SecureFiles LOB column in parallel, if the system has sufficient resources
for parallel execution.

To set up parallel execution of online redefinition, run ALTER SESSI ON.

* Add the following statement after the connect statementExample 3-26 in the last section:

ALTER SESSI ON FORCE PARALLEL DM;

3.6 PL/SQL Packages for LOBs and DBFS

There are PL/SQL packages that can be used with BasicFiles LOBs and SecureFiles LOBs.
Changes made to accommodate SecureFiles LOBs and DBFS are emphasized.

Topics:

¢ The DBMS_LOB Package Used with SecureFiles LOBs and DBFS

« DBMS_LOB Constants Used with SecureFiles LOBs and DBFS

+ DBMS_LOB Subprograms Used with SecureFiles LOBs and DBFS
« DBMS_SPACE Package

3.6.1 The DBMS_LOB Package Used with SecureFiles LOBs and DBFS

ORACLE

The DBMS_LOB package provides subprograms to operate on, or access and manipulate
specific parts of a LOB or complete LOBs.

The DBM5_LOB package applies to both SecureFiles LOB and BasicFiles LOB.

DBMS_LOB Constants Used with SecureFiles LOBs and DBFS and DBMS_LOB
Subprograms Used with SecureFiles LOBs and DBFS describe modifications made to the
DBM5_LOB constants and subprograms with the addition of SecureFiles LOB and Database
File System (DBFS).

3-25

Chapter 3
PL/SQL Packages for LOBs and DBFS

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for more
information about DBVS_LOB package

e Introducing the Database File System

3.6.2 DBMS_LOB Constants Used with SecureFiles LOBs and DBFS

Certain constants support DBFS link interfaces.

Table 3-3 lists constants that support DBFS Link interfaces.

" See Also:

Oracle Database PL/SQL Packages and Types Reference for complete
information about constants used in the PL/SQL DBV5_LOB package

Table 3-3 DBMS_LOB Constants That Support DBFS Link Interfaces

]
Constant Description

DBFS_LI NK_NEVER DBFS link state value

DBFS_LI NK_YES DBFS link state value

DBFS_LI NK_NO DBFS link state value

DBFS LI NK_CACHE Flag used by COPY_DBFS_LI NK() and MOVE_DBFS_LI NK() .

DBFS LI NK_NOCACHE Flag used by COPY_DBFS_LI NK() and MOVE_DBFS_LI NK() .

DBFS_LI NK_PATH_MAX_SI ZE The maximum length of DBFS pathnames; 1024.

CONTENTTYPE_MAX_SI ZE The maximum 1-byte ASCII characters for content type; 128.

3.6.3 DBMS_LOB Subprograms Used with SecureFiles LOBs and

DBFS

ORACLE

You should note that some changes have been made to the DBM5S_LOB subprograms
over time.

Table 3-4 summarizes changes made to PL/SQL package DBVS_LOB subprograms.

Be aware that some of the DBM5_LOB operations that existed before Oracle Database
11g Release 2 throw an exception error if the LOB is a DBFS link. To remedy this

3-26

Chapter 3
PL/SQL Packages for LOBs and DBFS

problem, modify your applications to explicitly replace the DBFS link with a LOB by calling the
DBVS_LOB. COPY_FROM LI NK procedure before they make these calls. When the call completes,
then the application can move the updated LOB back to DBFS using the

DBMS_LOB. MOVE_TO DBFS LI NK procedure, if necessary.

Other DBV5S_LOB operations that existed before Oracle Database 11g Release 2 work
transparently if the DBFS Link is in a file system that supports streaming. Note that these
operations fail if streaming is either not supported or disabled.

Table 3-4 DBMS_LOB Subprograms
]

Subprogram Description

APPEND Appends the contents of the source LOB to the destination LOB

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

COVPARE Compares two LOBs in full or in parts

See Also:

Oracle Database PL/SQL Packages
and Types Reference

CONVERTTOBLOB Converts the character data of a CLOB or NCLOB into the specified
character set and writes it in binary format to a destination BLOB

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

CONVERTTOCLOB Converts the binary data of a BLOB into the specified character set
and writes it in character format to a destination CLOB or NCLOB

" See Also:

Oracle Database PL/SQL Packages
and Types Reference

ORACLE 3-27

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms
]

Subprogram Description
coPY Copies all or part of the source LOB to the destination LOB
¢ See Also:
Oracle Database PL/SQL Packages
and Types Reference
COPY_DBFS_LI NK Copies an existing DBFS link into a new LOB
See Also:
Oracle Database PL/SQL Packages
and Types Reference
COPY_FROM DBFS_LI NK Copies the specified LOB data from DBFS HSM Store into the
database

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

DBFS_LI NK_GENERATE_PATHN Returns a unique file path name for creating a DBFS Link

AME
¢ See Also:
Oracle Database PL/SQL Packages
and Types Reference
ERASE Erases all or part of a LOB

See Also:

Oracle Database PL/SQL Packages
and Types Reference

ORACLE 3-28

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms

___|
Subprogram Description

FRAGVENT_DELETE Deletes a specified fragment of the LOB

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

FRAGVENT _I NSERT Inserts a fragment of data into the LOB

See Also:

Oracle Database PL/SQL Packages
and Types Reference

FRAGVENT _MOVE Moves a fragment of a LOB from one location in the LOB to another
location

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

FRAGVENT _REPLACE Replaces a fragment of a LOB with new data

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

CET_DBFS_LI NK Returns the DBFS path name for a LOB

See Also:

Oracle Database PL/SQL Packages
and Types Reference

ORACLE 3-29

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms

___|
Subprogram Description

CGET_DBFS_LI NK_STATE Returns the linking state of a LOB

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

GETCONTENTTYPE Retrieves the content type string of the LOB data

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

CETOPTI ONS Retrieves the previously set options of a specific LOB

¢ See Also:

e Oracle Database PL/SQL Packages and Types Oracle Database
PL/SQL Packages and Types Reference

e Oracle Call Interface Programmer's Guidefor more information on
the corresponding OCl LobGet Cont ent Type() an OCI LOB

function
| SSECUREFI LE Determines if a LOB is a SecureFiles LOB
¢ See Also:
Oracle Database PL/SQL Packages
and Types Reference
LOADBLOBFROVFI LE Loads BFI LE data into a BLOB

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

ORACLE 3-30

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms
]

Subprogram

Description

LOADCLOBFROMWFI LE

LOADFROVFI LE

MOVE_TO DBFS_LI NK

READ

SET_DBFS_LI NK

ORACLE

Loads BFI LE data into a CLOB
If the CLOB is linked, an exception is thrown.

See Also:

Oracle Database PL/SQL Packages
and Types Reference

Loads BFI LE data into a LOB

See Also:

Oracle Database PL/SQL Packages
and Types Reference

Moves the specified LOB data from the database into DBFS HSM
Store

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

Reads data from a LOB

See Also:

Oracle Database PL/SQL Packages
and Types Reference

Links a LOB with a DBFS path name

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

3-31

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms

___|
Subprogram Description

SETCONTENTTYPE Sets the content type string of the LOB data

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

SETOPTI ONS Sets new options for a specific LOB

See Also:

e Oracle Database PL/SQL
Packages and Types Reference

e Oracle Call Interface Programmer's
Guidefor more information on the

corresponding
OCl LobSet Cont ent Type()

(OCI LOB function)

SUBSTR Returns a fragment of a LOB

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

TRI'M Trims the LOB to a specified length

See Also:

Oracle Database PL/SQL Packages
and Types Reference

VWRI TE Writes data to a LOB

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

ORACLE 3-32

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms

Subprogram Description

VIRl TEAPPEND Appends data to the end of a LOB

¢ See Also:

Oracle Database PL/SQL Packages
and Types Reference

3.6.4 DBMS_SPACE Package

You can analyze segment growth and space requirements using the DBVS_SPACE PL/SQL
package.

The DBMS_SPACE PL/SQL package enables you to analyze segment growth and space
requirements.

3.6.4.1 DBMS_SPACE.SPACE_USAGE()

The existing DBM5_SPACE. SPACE_USAGE procedure is overloaded to return information about
LOB space usage.

It returns the amount of disk space in blocks used by all the SecureFiles LOBs in the LOB
segment.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference

ORACLE 3-33

Operations Specific to Persistent and
Temporary LOBs

LOB operations between persistent and temporary LOB instances can differ.
Topics:

* Persistent LOB Operations

e Temporary LOB Operations

* Creating Persistent and Temporary LOBs in PL/SQL

e Freeing Temporary LOBs in OCI

See Also:

e Using LOB APIs gives details and examples of API usage for LOB APIs that
can be used with either temporary or persistent LOBs.

e LOB APIs for BFILE Operations gives details and examples for usage of LOB
APIs that operate on BFILEs.

4.1 Persistent LOB Operations

This section describes operations that apply only to persistent LOBs.

4.1.1 Inserting a LOB into a Table

You can insert LOB instances into persistent LOB columns using by multiple methods.

¢ See Also:

DDL and DML Statements with LOBs for more information about the different
methods available to insert LOB instances into persistent LOB columns

4.1.2 Selecting a LOB from a Table

You can select a persistent LOB from a table just as you would any other data type. In the
following example, persistent LOB instances of different types are selected into PL/SQL
variables.

decl are

ORACLE 4-1

Chapter 4
Temporary LOB Operations

bl obl BLOB;

bl ob2 BLOB;

clobl CLOB;

ncl obl NCLOB;

BEG N
SELECT ad_photo I NTO bl obl FROM print_nmedi a WHERE Product _id = 2268
FOR UPDATE;
SELECT ad_photo I NTO bl ob2 FROM print _medi a WHERE Product _id = 3106;

SELECT ad_sourcetext | NTO cl obl FROM Print _nedi a
WHERE product _i d=3106 and ad_i d=13001 FOR UPDATE;

SELECT ad_fltextn INTO ncl obl FROM Print_nedi a
WHERE product _i d=3060 and ad_i d=11001 FOR UPDATE;

END;
/
show errors;

4.2 Temporary LOB Operations

This section describes operations that apply only to temporary LOB instances.

4.2.1 Creating and Freeing a Temporary LOB

To create a temporary LOB instance, you must declare a variable of the given LOB
data type and pass the variable to the CREATETEMPORARY API.

The temporary LOB instance exists in your application until it goes out of scope, your
session terminates, or you explicitly free the instance. Freeing a temporary LOB
instance is recommended to free system resources.

The following example demonstrates how to create and free a temporary LOB in the
PL/SQL environment using the DBMS_LOB package.

decl are
bl ob1l BLOB;
bl ob2 BLOB;
cl obl CLOB;
ncl obl NCLOB;

BEG N
-- create tenp LOBs
DBMS_LOB. CREATETEMPORARY|
DBMS_LOB. CREATETEMPORARY|
DBMS_LOB. CREATETEMPORARY|
DBMS_LOB. CREATETEMPORARY|

bl obl1, TRUE, DBMS_LOB. SESSI ON);
bl ob2, TRUE, DBMS_LOB. SESSI ON) ;
cl obl, TRUE, DBMS_LOB. SESSI ON);
ncl obl, TRUE, DBMS_LOB. SESSION);

—_

-- fill with data
writeDat aToLOB_proc(bl obl);
writ eDat aToLOB_proc(bl ob2);

-- CHAR->LOB conversion
clobl := 'abcde';
ncl obl := TO _NCLOB(cl obl);

-- Oher APIs
cal |l _l ob_api s(bl obl, blob2, clobl, nclobl);

-- free tenp LOBs

ORACLE 4-2

Chapter 4
Creating Persistent and Temporary LOBs in PL/SQL

DBVS_LOB. FREETEMPORARY(bl 0b1) ;
DBVS_LOB. FREETEMPORARY(bl 0b2) ;
DBVS_LOB. FREETEMPORARY(¢l 0b1) ;
DBVS_LOB. FREETEMPORARY(ncl ob1) ;

END;

/
show errors;

4.3 Creating Persistent and Temporary LOBs in PL/SQL

The code example that follows illustrates how to create persistent and temporary LOBs in PL/
SQL. This code is in the demonstration file:

$ORACLE_HOVE/ r dbns/ deno/ | obs/ pl sql /| obdeno. sql

This demonstration file also calls procedures in separate PL/SQL files that illustrate usage of
other LOB APIs.

¢ See Also:

PL/SQL LOB Demonstration Files for a list of demonstration files and links for more
information about related LOB APIs

decl are
bl ob1l BLOB;
bl ob2 BLOB;
cl obl CLOB;
ncl obl NCLOB;
BEG N
SELECT ad_photo I NTO bl obl FROM print_medi a WHERE Product _id
FOR UPDATE;
SELECT ad_photo | NTO bl ob2 FROM print_medi a WHERE Product _id

2268

3106;

SELECT ad_sourcetext |INTO cl obl FROM Print_nedia
WHERE product _i d=3106 and ad_i d=13001 FOR UPDATE;

SELECT ad_fltextn INTO ncl obl FROM Print_media
WHERE product _i d=3060 and ad_i d=11001 FOR UPDATE;

cal | _l ob_api s(bl obl, blob2, clobl, nclobl);
rol | back;

END;

/

show errors;

decl are
bl ob1l BLOB;

ORACLE 4.3

Chapter 4
Freeing Temporary LOBs in OCI

bl ob2 BLCB;
clobl CLCB;
ncl obl NCLOB;

BEG N
-- create tenp LOBs
DBNVS_LOB. CREATETEMPORARY
DBNVS_LOB. CREATETEMPORARY
DBNVS_LOB. CREATETEMPORARY
DBNVS_LOB. CREATETEMPORARY

bl obl, TRUE, DBMS_LOB. SESSI ON);
bl ob2, TRUE, DBMS_LOB. SESSI ON) ;
cl obl, TRUE, DBM5_LOB. SESSI ON);
ncl obl, TRUE, DBMS_LOB. SESSION);

—_—

-- fill with data
wri t eDat aToLOB_proc(bl obl);
wri t eDat aToLOB_proc(bl ob2);

-- CHAR->LOB conversion
clobl := '"abcde';
ncl obl := TO NCLOB(cl obl);

-- CGther APls
cal | _| ob_api s(blobl, blob2, clobl, nclobl);

-- free tenp LOBs

DBVS_LCB. FREETEMPORARY(bl ob1) ;
DBVS_LCB. FREETEMPORARY(bl 0b2) ;
DBVS_LCB. FREETEMPORARY(cl ob1) ;
DBVS_LOB. FREETEMPORARY(ncl obl) ;

END;
/
show errors;

4.4 Freeing Temporary LOBs in OCI

Any time that your OCI program obtains a LOB locator from SQL or PL/SQL, check
that the locator is temporary. If it is, free the locator when your application is finished
with it. The locator can be from a define during a select or an out bind. A temporary
LOB duration is always upgraded to session when it is shipped to the client side. The
application must do the following before the locator is overwritten by the locator of the
next row:

OCl Lobl sTenporary(env, err, locator, is_tenporary);

i f(is_tenporary)
OCl LobFr eeTenpor ary(svc, err, locator);

¢ See Also:

Oracle Call Interface Programmer's Guide chapter 16, section "LOB
Functions."

ORACLE 4-4

Distributed LOBs

Topics:

e Working with Remote LOBs

e SQL Semantics with LOBs in Remote Tables
e Working with Remote LOBs in PL/SQL

« Using Remote Locators with OCl LOB API

5.1 Working with Remote LOBs

You can work with LOB data in remote tables is the following ways:

e Directly referencing LOB columns in remote tables (Remote LOB Columns) accessed
using a database link.

e Selecting remote LOB columns into a local LOB locator variable (Remote locator)
Topics
* Working with Remote LOB Columns

* Working with Remote Locator

5.1.1 Working with Remote LOB Columns

Remote LOBs are supported in these ways:

e Create table as select or insert as select
e Functions on remote LOBSs returning scalars

» Data Interface for remote LOBs
5.1.1.1 Create table as select or insert as select

Only standalone LOB columns are allowed in the select list for statements that are structured
in the following manner:

CREATE TABLE t AS SELECT * FROM tablel@envte site;

INSERT INTOt SELECT * FROM tablel@enote_site;

UPDATE t SET | obcol = (SELECT | obcol FROMtablel@enote site);

I NSERT INTO tablel@enote site SELECT * FROM | ocal _table;

UPDATE tablel@enote_site SET |obcol = (SELECT | obcol FROM I ocal table);
DELETE FROM t abl el@enote_site <WHERE cl ause i nvol ving non_| ob_col ums>

ORACLE 5-1

Chapter 5
Working with Remote LOBSs

5.1.1.2 Functions on remote LOBs returning scalars

SQL and PL/SQL functions having a LOB parameter and returning a scalar data type
are supported. Other SQL functions and DBM5_LOB APIs are not supported for use with
remote LOB columns. For example, the following statement is supported:

CREATE TABLE tab AS SELECT DBMS LOB. GETLENGTH@Ibs2(cl ob_col) |en FROM

t ab@lbs2;
CREATE TABLE tab AS SELECT LENGTH(cl ob_col) I en FROMtab@bs2;

However, the following statement is not supported because DBMS_LOB. SUBSTR returns a
LOB:

CREATE TABLE tab AS SELECT DBMS_LOB. SUBSTR(cl ob_col) fromtab@bs2;

5.1.1.3 Data Interface for remote LOBs

You can insert a character or binary buffer into a remote CLOB or BLOB, and select a
remote CLOB or BLOB into a character or binary buffer, for example, using PL/SQL:

SELECT cl obcol 1, typel.blobattr INTO varchar_buf1, raw buf2 FROM
tablel@enote site;

I NSERT INTO tabl el@enotesite (clobcol 1, typel.blobattr) VALUES
varchar _buf1, raw buf2;

I NSERT INTO tablel@enotesite (lobcol) VALUES ('test');

UPDATE tabl el SET |obcol = "xxx';

5.1.2 Working with Remote Locator

ORACLE

You can select a persistent LOB locator from a remote table into a local variable and
this can be done in PL/SQL or in OCI. The remote columns can be of type BLOB,
CLOB or NCLOB. The following SQL statement is the basis for all the examples with
remote LOB locator in this chapter.

CREATE TABLE | ob_tab (c1 NUVBER, c2 CLOB);

In the following example, the table | ob_t ab (with columns c2 of type CLOB and c1 of
type number) defined in the remote database is accessible using database link db2
and a local CLOB variable | ob_var 1.

SELECT c¢2 INTO I ob_varl FROM | ob_tab@b2 WHERE c1=1;
SELECT c2 INTO | ob_varl FROM | ob_tab@bh2 WHERE c1=1 for update;

In PL/SQL, the function dbns_| ob. i srenot e can be used to check if a particular LOB
belongs to a remote table. Similarly, in OCl , you can use the OCl _ATTR_LOB_REMOTE

5-2

Chapter 5
Working with Remote LOBs

attribute of OCl LobLocat or to check if a particular LOB belongs to a remote table. For
example,

| F(dbms_l ob. i srenote(lob_varl)) THEN
dbns_out put. put _|ine(*LOB locator is renote)

ENDI F;
¢ See Also:
e ISREMOTE Function
« OCI_ATTR_LOB_REMOTE Attribute
Topics:

* Using Local and Remote locators as bind with queries and DML on remote tables

* Restrictions when using remote LOB locators

5.1.2.1 Using Local and Remote locators as bind with queries and DML on remote

tables

ORACLE

For the Queries and DMLs (I NSERT, UPDATE, DELETE) with bind values, the following four
cases are possible. The first case involves local tables and locators and is the standard LOB
functionality. The other three cases are part of the distributed LOBs functionality and have
restrictions listed at the end of this section.

» Local table with local locator as bind value.

* Local table with remote locator as bind value

* Remote table with local locator as bind value

* Remote table with remote locator as bind value

Queries of the following form which use remote lob locator as bind value will be supported:
SELECT nane FROM | ob_tab@b2 WHERE | ength(cl)=length(:lob vl);

In the above query, cl is an LOB column and | ob_v1 is a remote locator.

DMLs of the following forms using a remote LOB locator will be supported. Here, the bind
values can be local or remote persistent LOB locators.

UPDATE | ob_tab@b2 SET cl=:1o0b_v1;

INSERT into | ob_tab@b2 VALUES (i1, :2);

¢ Note:

DMLs with r et ur ni ng clause are not supported on remote tables for both scalar
and LOB columns.

5-3

Chapter 5
SQL Semantics with LOBs in Remote Tables

5.1.2.2 Restrictions when using remote LOB locators

General restrictions while using remote LOB locators include the following:

You cannot select a remote temporary LOB locator into a local variable using
SELECT statement. For example,

sel ect substr(c2, 3, 1) fromlob_tab@b2 where cl=1
The above query returns an error.

Remote lob functionality will not be supported for Index Organized tables (I0T). An
attempt to get a locator from remote an 10T table will result in an error.

Both local database and remote database have to be of Database release 12.2 or
higher version.

With distributed LOBs functionality, tables mentioned in the f r omclause or wher e
clause should be collocated on the same database. If remote locators are used as
bind variables in the wher e clauses, they should belong to the same remote
database. You cannot have one locator from DB1 and another locator from DB2 to
be used as bind variables.

Collocated tables or locators use the same database link. It is possible to have 2
different DB Links pointing to the same database. In the example below, both
dbl i nk1 and dbl i nk2 point to the same remote database, but perhaps with
different authentication method. Oracle Database does not support such
operations.

I NSERT into tabl@ilblinkl SELECT * fromtab2@iblink2;

Bind values should be the same LOB type as the column LOB type. For example,
NCLOB locators should be bound to NCLOB column and CLOB locators should be
bound to CLOB column. Implicit conversion between NCLOB and CLOB types is not
supported in remote LOBs case.

DMLs (I NSERTs/ UPDATES) with Array Binds is not supported when bind involves a
remote locator or if table involved is a remote table

You cannot select a BFI LE column from a remote table into a local variable.

5.2 SQL Semantics with LOBs in Remote Tables

Topics:

Built-in Functions for Remote LOBs and BFILEs

Passing Remote Locator to Built in SQL Functions

5.2.1 Built-in Functions for Remote LOBs and BFILEs

ORACLE

Any SQL built-in functions and user-defined functions that are supported on local

LOBs and BFILEs are also supported on remote LOBs and BFILES, as long as the

final value returned by nested functions is not a LOB type. This includes functions for

remote persistent and temporary LOBs and for BFILESs.

5-4

ORACLE

Chapter 5
SQL Semantics with LOBs in Remote Tables

Built-in SQL functions which are executed on a remote site can be part of any SQL
statement, like SELECT, | NSERT, UPDATE, and DELETE. For example:

SELECT LENGTH(ad_sourcetext) FROM print_nedi a@enote_site -- CLOB

SELECT LENGTH(ad_fltextn) FROM print_nedi a@enote_site; -- NCLOB

SELECT LENGTH(ad_conposite) FROM print_nedi a@enmte_site; -- BLOB

SELECT product _id fromprint_nedi a@enote_site WHERE LENGTH(ad_sour cetext) >
3

UPDATE print_nedi a@enote_site SET product_id = 2 WHERE
LENGTH(ad_sourcetext) > 3;

SELECT TO CHAR(foo@lbs2(...)) FROM dual @bhs2;
-- where foo@lbs2 returns a tenmporary LOB

The SQL functions fall under the following (not necessarily exclusive) categories:

e SQL functions that are not supported on LOBSs:
These functions are relevant only for CLOBs: an example is DECCDE.

These functions cannot be supported on remote LOBs because they are not supported
on local LOBs.

* Functions taking exactly one LOB argument (all other arguments are of other data types)
and not returning a LOB:

These functions are relevant only for CLOBs, NCLOBs, and BLOBs: an example is
LENGTH and it is supported. For example:

SELECT LENGTH(ad_conposite) FROM print_medi a@enote_site;

SELECT LENGTH(ad_header.| ogo) FROM print_nedi a@enote site; -- LOB in
obj ect

SELECT product _id fromprint_nedi a@enote_site WHERE

LENGTH(ad_sourcetext) > 3;

* Functions that return a LOB:

All these functions are relevant only for CLOBs and NCLOBs. These functions may
return the original LOB or produce a temporary LOB. These functions can be performed
on the remote site, as long as the result returned to the local site is not a LOB.

Functions returning a temporary LOB are: REPLACE, SUBSTR, CONCAT, ||, TRIM LTRI M
RTRI M LOVER, UPPER, NLS_LOWER, NLS_UPPER, LPAD, and RPAD.

Functions returning the original LOB locator are: NVL, DECCDE, and CASE. Note that even
though DECODE and CASE are not supported currently to operate on LOBs, they could
operate on other data types and return a LOB.

For example, the following statements are supported:
SELECT TO CHAR(CONCAT(ad_sourcetext, ad sourcetext)) FROM

print_medi a@emte_site;
SELECT TO CHAR(SUBSTR(ad fltextnfs, 1, 3)) FROMprint_medi a@enote_site;

5-5

Chapter 5
Working with Remote LOBs in PL/SQL

But the following statements are not supported:

SELECT CONCAT(ad_sourcetext, ad_sourcetext) FROM
print_medi a@enmote_site;
SELECT SUBSTR(ad_sourcetext, 1, 3) FROM print_nedi a@enote_site;

* Functions that take in more than one LOB argument:

These are: | NSTR, LI KE, REPLACE, CONCAT, ||, SUBSTR, TRIM LTRI M RTRI M LPAD, and
RPAD. All these functions are relevant only for CLOBs and NCLOBs.

These functions are supported only if all the LOB arguments are in the same
dbl i nk, and the value returned is not a LOB. For example, the following is
supported:

SELECT TO CHAR(CONCAT(ad_sourcetext, ad sourcetext)) FROM
print_media@enote site; -- CLOB

SELECT TO CHAR(CONCAT(ad_fltextn, ad fltextn)) FROM
print_media@enote site; -- NCLOB

But the following is not supported:

SELECT TO CHAR(CONCAT(a. ad_sourcetext, b.ad _sourcetext)) FROM
print_medi a@bl a, print_media@b2 b WHERE a. product _id =
b. product _i d;

5.2.2 Passing Remote Locator to Built in SQL Functions

You can pass a remote locator to most built-in SQL functions such as LENGTH, | NSTR,
SUBSTR, and UPPER. For example,

Var |obl CLOB;
BEG N
select c2 into lobl fromlob_tab@b2 where cl=1;
END;
/
sel ect length(:lobl) fromdual;

5.3 Working with Remote LOBs in PL/SQL

Topics:
e PL/SQL Functions for Remote LOBs and BFILEs
e Using Remote Locators with DBV _LOB

5.3.1 PL/SQL Functions for Remote LOBs and BFILES

Built-in and user-defined PL/SQL functions that are executed on the remote site and
operate on remote LOBs and BFILEs are allowed, as long as the final value returned
by nested functions is not a LOB.

ORACLE 5-6

Chapter 5
Working with Remote LOBs in PL/SQL

The following example uses the print _nedi a table described in "Table for LOB Examples:
The PM Schema print_media Table"

SELECT product _id FROM print _nmedi a@bs2 WHERE foo@bs2(ad_sourcetext, 'aa')
> 0;
-- foo is a user-define function returning a NUMBER

DELETE FROM print _nedi a@bs2 WHERE DBMS_LOB. GETLENGTH@bs2(ad_graphic) = 0;

5.3.1.1 Restrictions on Remote User-Defined Functions

* The restrictions that apply to SQL functions apply here also.

¢ See Also:

Built-in Functions for Remote LOBs and BFILEs

e Afunction in one dbl i nk cannot operate on LOB data in another dblink.For example, the
following statement is not supported:

SELECT a. product _id FROM print_nedi a@bsl a, print_nedi a@bs2 b WHERE
CONTAI NS@bs1(b. ad_sourcetext, 'aa') > 0;

* One query block cannot contain tables and functions at different dbl i nks. For example,
the following statement is not supported:

SELECT a. product _id FROM print_nedi a@bs2 a, print_nedi a@bs3 b
WHERE CONTAI NS@lbs2(a. ad_sourcetext, 'aa') > 0 AND
foo@bs3(b. ad_sourcetext) > 0;

-- foo is a user-defined function in dbs3

* There is no support for performing remote LOB operations (that is, DBV5_LOB) from within
PL/SQL, other than issuing SQL statements from PL/SQL.

5.3.1.2 Remote Functions in PL/SQL, OCI, and JDBC

All the SQL statements listed in Restrictions on Remote User-Defined Functions work the
same if they are executed from inside PL/SQL, OCI, and JDBC. No additional functionality is
provided.

5.3.2 Using Remote Locator in PL/SQL

ORACLE

A remote locator can be passed as a parameter to built in PL/SQL functions like LENGTH,
I NSTR, SUBSTR, UPPER and so on which accepts LOB as input. For example,

DECLARE

substr _data varchar2(4000);

remte | oc CLOB;

BEG N

SELECT c2 into renote_| oc

FROM | ob_tab@b2 WHERE c1=1;

substr_data := substr(renote_l oc, position, |ength)
END;

5-7

Chapter 5
Using Remote Locators with OCILOB API

5.3.3 Using Remote Locators with oevs_Los

All DBVM5S_LOB APIs other than the APIs targeted for BFILES support operations on
remote LOB locators.

The following example shows how to pass remote locator as input to dbns_| ob
operations.

DECLARE
[ob CLOB;
buf VARCHAR2(120) := 'TST';
anmt NUMBER(2);
[en NUMBER(2);
BEG N
am :=30;
select c¢2 into lob fromlob_tab@b2 where c1=3 for update;
dbns_lob.wite(lob, ant, 1, buf);
am :=30;
dbns_| ob. read(lob, ant, 1, buf);
len := dbns_| ob. getlength(lob);
dbns_out put . put _| i ne(buf);
dbrs_out put. put _|ine(ant);
dbms_out put. put _line('get length output =" || len);
END;
/

Topics:

* Restrictions on Using Remote Locators with DBMS_LOB
5.3.3.1 Restrictions on Using Remote Locators with oewvs Loe

All the APIs that accepts two LOB locators must have both LOBs collocated at one
database.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference to view the
complete list of DBVS_LOB APIs.

5.4 Using Remote Locators with ca s API

All OCI LOB APIs (except APIs meant for BFILES) support operations on remote LOB
locators.

ORACLE 5-8

ORACLE

Chapter 5
Using Remote Locators with OCILOB API

< Note:

All the APIs that accept two locators must obtain both the LOB locators through the
same database link.

The following list of OCl LOB functions will give an error when a remote LOB locator is passed to
them:

e OCl LobAssign

e (OCl LobLocat or Assi gn

e OCl LobArrayRead()
 OClLobArrayWite()

e (OCl LobLoadFronFil e2()

The following example shows how to pass a remote locator to OCl LOB API.

voi d select_read_remte_| ob()
{
text *select_sqgl = (text *)"SELECT c2 | ob_tab@bsl where c1=1";
ub4 antp = 10;
ub4 nbytes = 0;
ub4 | obl en=0;
QOCl LobLocat or * one_| ob;
text strbuf[40];

[* initialize single |ocator */

OCl Descriptor Al l oc(envhp, (dvoid **) &one_| ob,
(ub4) OCI _DTYPE_LOB,
(size_t) 0, (dvoid **) 0)

OCl Stnt Prepare(stnthp, errhp, select _sql, (ub4)strlen((char*)select _sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);

OCl Def i neByPos(stnthp, &defp, errhp, (ub4) 1,
(dvoid *) &one_l ob,
(sb4) -1,
(ub2) SQLT_CLOB,

(dvoid *) 0, (ub2 *) 0,

(ub2 *) 0, (ub4) OCI _DEFAULT));

/* fetch the renpte locator into the local variable one_|ob */
OCl St nmt Execut e(svchp, stnthp, errhp, 1, 0, (OC Snapshot *)O0,
(OCl Snapshot *)0, OCl _DEFAULT);
/* Get the length of the renote LOB */
OCl LobGet Lengt h(svchp, errhp,
(OCl LobLocator *) one_lob, (ub4 *)& oblen)
printf("LOB length = %\n", |oblen);

menset ((voi d*)strbuf, (int)'\0", (size t)40);

5-9

Chapter 5
Using Remote Locators with OCILOB API

[* Read the data fromthe renote LOB */

OCl LobRead(svchp, errhp, one_lob, &antp,
(ub4) 1, (dvoid *) strbuf, (ub4)& nbytes, (dvoid *)O0,
(OCl Cal | backLobRead) 0,
(ub2) 0, (ubl) SQCS IMPLICIT));

printf("LOB content = 9%\n", strbuf);

" See Also:

OCI Programmer’s Guide, for the complete list of OCl LOB APIs

ORACLE 5-10

DDL and DML Statements with LOBS

DDL and DML statements work with LOBs.

Topics:

e Creating a Table Containing One or More LOB Columns

e Creating a Nested Table Containing a LOB

* Inserting a Row by Selecting a LOB From Another Table

e Inserting a LOB Value Into a Table

* Inserting a Row by Initializing a LOB Locator Bind Variable
« Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()
e Updating a Row by Selecting a LOB From Another Table

" See Also:

For guidelines on how to | NSERT into a LOB when binds of more than 4000 bytes
are involved, see the following sections in "Binds of All Sizes in INSERT and
UPDATE Operations".

6.1 Creating a Table Containing One or More LOB Columns

ORACLE

You can create a table containing one or more LOB columns.

When you use functions, EMPTY_BLOB() and EMPTY_CLOB(), the resulting LOB is initialized,
but not populated with data. Also note that LOBs that are empty are not NULL.

¢ See Also:

Oracle Database SQL Language Referencefor a complete specification of syntax
for using LOBs in CREATE TABLE and ALTER TABLE with:

e BLOB, CLOB, NCLOB and BFI LE columns
e EMPTY_BLOB and EMPTY_CLOB functions

* LOB storage clause for persistent LOB columns, and LOB attributes of
embedded objects

Scenario

These examples use the following Sample Schemas:

6-1

ORACLE

Chapter 6
Creating a Table Containing One or More LOB Columns

* Human Resources (HR)
e Order Entry (CE)
e Product Media (PM

¢ Note:

Note HR and OE schemas must exist before the PMschema is created.

Note:

Because you can use SQL DDL directly to create a table containing one or
more LOB columns, it is not necessary to use the DBVS_LOB package.

¢ See Also:

Oracle Database Sample Schemas for more information about sample
schemas

/* Setup script for creating Print_nedia,
Online_nedia and associ ated structures
*|

DROP USER pm CASCADE;

DRCOP DI RECTORY ADPHOTO DI R;

DROP DI RECTORY ADCOWPCSI TE_DI R;

DROP DI RECTORY ADGRAPHI C DI R;

DROP | NDEX onl i nemedi a CASCADE CONSTRAI NTS;
DROP | NDEX printmedi a CASCADE CONSTRAINTS;
DROP TABLE onl i ne_medi a CASCADE CONSTRAI NTS;
DROP TABLE print_nedi a CASCADE CONSTRAI NTS;
DROP TYPE textdoc_typ;

DROP TYPE textdoc_tab;

DROP TYPE adheader _typ;

DROP TABLE adheader _typ;

CREATE USER pmidentified by password;
GRANT CONNECT, RESOURCE to pm

CREATE DI RECTORY ADPHOTO DIR AS '/tnp/';
CREATE DI RECTORY ADCOVPOSITE_DIR AS '/tnp/';
CREATE DI RECTORY ADGRAPHIC DIR AS '/tnp/';
CREATE DI RECTORY nedia_dir AS '/tnp/';

GRANT READ ON DI RECTORY ADPHOTO DIR to pm
GRANT READ ON DI RECTORY ADCOMPCSI TE_DIR to pm
GRANT READ ON DI RECTORY ADGRAPHIC DIR to pm
GRANT READ ON DI RECTORY media_dir to pm

CONNECT pmi password (or &pass);
COWM T;

CREATE TABLE a_table (blob_col BLOB);

6-2

ORACLE

Chapter 6

Creating a Table Containing One or More LOB Columns

CREATE TYPE adheader _typ AS OBJECT (
header _nane VARCHAR2(256) ,
creation_date DATE,
header _t ext VARCHAR(1024) ,
| ogo BLOB);

CREATE TYPE textdoc_typ AS OBJECT (
docunent _typ VARCHAR2(32),
formatted_doc BLOB);

CREATE TYPE Textdoc_ntab AS TABLE of textdoc_typ;

CREATE TABLE adheader _tab of adheader_typ (
Ad_final text DEFAULT EMPTY_CLOB(), CONSTRAI NT
Take CHECK (Take |'S NOT NULL), DEFAULT NULL);

CREATE TABLE online_nedi a

(product _id NUMBER(6),

product _phot o ORDSYS. ORDI nage,

product _phot o_si gnat ure ORDSYS. ORDI nageSi gnat ur e,
product _t hunbnai | ORDSYS. ORDI nage,

product _vi deo ORDSYS. ORDVi deo,

product _audi o ORDSYS. ORDAudi o,

product _text CLOB,

product _testinonial s ORDSYS. ORDDoc) ;

CREATE UNI QUE | NDEX onl i nenmedi a_pk
ON online_nedia (product_id);

ALTER TABLE online_nedi a
ADD (CONSTRAI NT onl i nenedi a_pk
PRI MARY KEY (product_id), CONSTRAINT loc_c_id_fk

FOREI GN KEY (product _id) REFERENCES oe. product _i nformation(product _id)

)

CREATE TABLE print_nedi a
(product _id NUVBER(6),
ad_id NUMBER(6),
ad_conposite BLOB,
ad_sourcetext CLOB,
ad_finaltext CLOB,
ad_fktextn NCLOB,
ad_testdocs_ntab textdoc_tab,
ad_photo BLOB,

ad_gr aphi ¢ BFI LE,
ad_header adheader _typ,

press_rel ease LONG NESTED TABLE ad_t extdocs_ntab STORE AS textdocs_nest edt ab;

CREATE UNI QUE | NDEX pri nt medi a_pk
ON print_media (product_id, ad_id);

ALTER TABLE print_nedia

ADD (CONSTRAINT pri nt medi a_pk

PRI MARY KEY (product_id, ad_id),

CONSTRAI'NT printmedi a_fk FOREIGN KEY (product _id)
REFERENCES oe. product _i nf or mati on(product _i d)

)

6-3

Chapter 6
Creating a Nested Table Containing a LOB

6.2 Creating a Nested Table Containing a LOB

You can create a nested table containing a LOB.

You must create the object type that contains the LOB attributes before you create a
nested table based on that object type. In the example that follows, table Print _nedi a
contains nested table ad_t ext doc_nt ab that has type t ext doc_t ab. This type uses two
LOB data types:

e BFILE - an advertisement graphic
e CLOB - an advertisement transcript

The actual embedding of the nested table is accomplished when the structure of the
containing table is defined. In our example, this is effected by the NESTED TABLE
statement when the Print _nedi a table is created as shown in the following example:

/* Create type textdoc_typ as the base type
for the nested table textdoc_ntab,
where textdoc_ntab contains a LOB:

*/

CREATE TYPE textdoc_typ AS OBJECT

(
docunent _typ VARCHAR2(32),
formatted_doc BLOB

);

/

/* The type has been created. Now you need a */
/* nested table of that type to enbed in */

/* table Print_nedia, so: */

CREATE TYPE textdoc_ntab AS TABLE of textdoc_typ;
/

CREATE TABLE textdoc_ntable (
i d NUMBER,
ntab_col textdoc_ntab)
NESTED TABLE ntab_col STORE AS textdoc_nest edt ab;

DROP TYPE textdoc_typ force;
DROP TYPE textdoc_ntab;
DROP TABLE textdoc_ntabl e;

¢ See Also:

e "Creating a Table Containing One or More LOB Columns"

e Oracle Database SQL Language Reference for further information on
CREATE TABLE

6.3 Inserting a Row by Selecting a LOB From Another Table

You can insert a row containing a LOB as SELECT.

ORACLE 6-4

Chapter 6
Inserting a LOB Value Into a Table

< Note:

Persistent LOB types BLOB, CLOB, and NCLOB, use copy semantics, as opposed to
reference semantics that apply to BFI LEs. When a BLOB, CLOB, or NCLOB is copied
from one row to another in the same table or a different table, the actual LOB value
is copied, not just the LOB locator.

For LOBs, one of the advantages of using an object-relational approach is that you can
define a type as a common template for related tables. For instance, it makes sense that both
the tables that store archival material and working tables that use those libraries, share a
common structure.

For example, assuming Pri nt _medi a and Onl i ne_nedi a have identical schemas. The
statement creates a new LOB locator in table Print _media. It al so copies the LOB data
from Onl i ne_nedi a to the location pointed to by the new LOB locator inserted in table
Print_media.

The following code fragment is based on the fact that the table Onl i ne_nedi a is of the same
type as Print _nedi a referenced by the ad_t ext docs_nt ab column of table Print _nedi a. It
inserts values into the library table, and then inserts this same data into Pri nt _nedi a by
means of a SELECT.

/* Store records in the archive table Online_nedia: */
| NSERT | NTO Onli ne_nedi a
VALUES (3060, NULL, NULL, NULL, NULL,
'some text about this CRT Mnitor', NULL);

/* Insert values into Print_media by selecting fromOnline_media: */
I NSERT I NTO Print_media (product_id, ad_id, ad_sourcetext)
(SELECT product _id, 11001, product _text
FROM Onl i ne_medi a WHERE product _id = 3060);

¢ See Also:

e Oracle Database SQL Language Reference for more information on | NSERT

e Oracle Database Sample Schemas for a description of the PM Schema and the
Print_medi a table used in this example

6.4 Inserting a LOB Value Into a Table

ORACLE

You can insert a LOB value using EMPTY_CLOB() or EMPTY_BLOB() .

Usage Notes

Here are guidelines for inserting LOBSs:

Before Inserting Make the LOB Column Non-Null

Before you write data to a persistent LOB, make the LOB column non-NULL; that is, the LOB
column must contain a locator that points to an empty or populated LOB value. You can

6-5

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

initialize a BLOB column value by using the function EMPTY_BLOB() as a default
predicate. Similarly, a CLOB or NCLOB column value can be initialized by using the
function EMPTY_CLOB() .

You can also initialize a LOB column with a character or raw string less than 4000
bytes in size. For example:

I NSERT I NTO Print_media (product_id, ad_id, ad_sourcetext)
VALUES (1, 1, 'This is a One Line Advertisement');

Note that you can also perform this initialization during the CREATE TABLE operation.

¢ See Also:

Creating a Table Containing One or More LOB Columns

These functions are special functions in Oracle SQL, and are not part of the DBVS_LOB
package.

/* In the new row of table Print_nmedia,
the colums ad_sourcetext and ad_fltextn are initialized using EMPTY_CLOB(),
the col ums ad_conposite and ad_photo are initialized using EMPTY_BLOB(),
the colum formatted-doc in the nested table is initialized using
EMPTY_BLOB(),
the colum logo in the colum object is initialized using EMPTY_BLOB(): */

I NSERT | NTO Print_nedia
VALUES (3060, 11001, EMPTY_BLOB(), EMPTY_CLOB(), EMPTY_CLOB(), EMPTY_CLOB(),
textdoc_tab(textdoc_typ ("HTM.', EMPTY_BLOB())), EMPTY_BLOB(), NULL,
adheader _typ('any header name', <any date> 'ad header text goes here',
EMPTY_BLOB()),

"Press rel ease goes here');

6.5 Inserting a Row by Initializing a LOB Locator Bind

Variable

ORACLE

You can insert a row by initializing a LOB locator bind variable.

Examples for this use case are provided in several programmatic environments:
Topics:

* About Inserting Rows with LOB Locator Bind Variables

* PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable

e C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable
 COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable
e C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable
» Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable

e SQL: Oracle Database SQL Language Reference, the | NSERT statement

e C (OCI): Oracle Call Interface Programmer's Guide "Relational Functions"

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

6-6

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and embedded SQL and precompiler directives — | NSERT.

e C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide | NSERT

* Java (JDBC):Oracle Database JDBC Developer's Guide "Working With LOBs" —
Creating and Populating a BLOB or CLOB Colum

6.5.1 About Inserting Rows with LOB Locator Bind Variables

You need to consider these points.

Preconditions
Before you can insert a row using this technique, the following conditions must be met:

* The table containing the source row must exist.
* The destination table must exist.

For details on creating tables containing LOB columns, see "LOB Storage Parameters".

Usage Notes

For guidelines on how to | NSERT and UPDATE a row containing a LOB when binds of more
than 4000 bytes are involved, see "Binds of All Sizes in INSERT and UPDATE Operations".

Syntax

Review these syntax references for details on using this operation in each programmatic
environment:

6.5.2 PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable

You can insert a row by initializing a LOB locator bind variable in PL/SQL

/* This file is installed in the follow ng path when you install */
/* the database: $ORACLE_HOWE rdbns/ deno/ | obs/ pl sql /linsert.sqgl */

/* inserting a row through an insert statenent */

CREATE OR REPLACE PROCEDURE insertLOB proc (Lob_loc INBLOB) IS

BEG N
/* Insert the BLOB into the row */
DBMS_QUTPUT. PUT_LINE(" ------------ LOB | NSERT EXAMPLE ------------ D

I NSERT | NTO print_nedia (product_id, ad_id, ad_photo)
val ues (3106, 60315, Lob_loc);
END;
/

6.5.3 C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable

ORACLE

You can insert a row by initializing a LOB locator bind variable in C (OCI).

/* This file is installed in the follow ng path when you install */
/* the database: $ORACLE_HOWE/ r dbns/ deno/ | obs/ oci/linsert.c */

/* Insert the Locator into table using Bind Variables. */
#i ncl ude <oratypes. h>

6-7

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

#incl ude <l obdeno. h>
void insertLOB proc(QOCl LobLocator *Lob_I oc, OClEnv *envhp,

{

}

COCl Error *errhp, OCl SvcCtx *svchp, OCl Stnt *stnthp)

i nt product _i d;
QOCl Bi nd *bndhp3;
QOCl Bi nd *bndhp2;
QOCl Bi nd *bndhpl;
t ext *insstnm =
(text *) "INSERT INTO Print_media (product_id, ad_id, ad_sourcetext) \
VALUES (:1, :2, :3)";
printf ("----------- OCl Lob Insert DenD -------------- \n");

/* Insert the locator into the Print_nedia table with product_i d=3060 */
product _id = (int)3060;

/* Prepare the SQL statenent */

checkerr (errhp, OCl StntPrepare(stnthp, errhp, insstnt, (ub4)
strlen((char *) insstnt),
(ub4) OCI _NTV_SYNTAX, (ub4)QCl _DEFAULT));

/* Binds the bind positions */

checkerr (errhp, OC BindByPos(stnthp, &bndhpl, errhp, (ub4) 1,
(void *) &product _id, (sbh4) sizeof(product_id),
SQLT_INT, (void *) 0, (ub2 *)0, (ub2 *)0,
(ub4) 0, (ub4 *) 0, (ub4) OC _DEFAULT));

checkerr (errhp, OC Bi ndByPos(stnthp, &bndhpl, errhp, (ub4) 2,
(void *) &product _id, (sbh4) sizeof(product_id),
SQLT_INT, (void *) 0, (ub2 *)0, (ub2 *)0,
(ub4) 0, (ub4 *) 0, (ub4) OCI _DEFAULT));

checkerr (errhp, OC BindByPos(stnthp, &bndhp2, errhp, (ub4) 3,
(void *) &Lob_loc, (shb4) 0, SQT_CLOB,
(void *) 0, (ub2 *)0, (ub2 *)O,
(ub4) 0, (ub4 *) 0, (ub4) OClI_DEFAULT));

/* Execute the SQL statenent */

checkerr (errhp, OC StntExecute(svchp, stnthp, errhp, (ub4) 1, (ub4) 0,
(CONST OClI Snapshot*) 0, (OCI Snapshot*) 0,
(ub4) OCI _DEFAULT));

6.5.4 COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB
Locator Bind Variable

You can insert a row by initializing a LOB locator bind variable in COBOL
(Pro*COBOL).

ORACLE

* This file is installed in the follow ng path when you install
* the database: $ORACLE_HOVE/ r dbns/ deno/ | obs/ procob/ | insert. pco

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. | NSERT- LCB.
ENVI RONMVENT DI VI SI ONL
DATA DI VI SI ON.

VORKI NG- STORAGE SECTI ON.

01 BLOB1 SQL-BLOB.

6-8

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

01 USERID PIC X(11) VALUES "PM password".
EXEC SQL | NCLUDE SQLCA END- EXEC.

PRCCEDURE DI VI S| ON.
| NSERT- LOB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL- ERROR END- EXEC.
EXEC SQL CONNECT : USERI D END- EXEC.
* Initialize the BLOB | ocator
EXEC SQL ALLOCATE : BLOB1 END- EXEC.
* Popul ate the LOB
EXEC SQL WHENEVER NOT FOUND GOTO END- OF- BLOB END- EXEC.
EXEC SQL
SELECT AD PHOTO | NTO : BLOB1 FROM PRI NT_MEDI A
WHERE PRODUCT_I D = 2268 AND AD I D = 21001 END- EXEC.

* |nsert the value with PRODUCT_I D of 3060
EXEC SQL
| NSERT | NTO PRI NT_MEDI A (PRODUCT_I D, AD_PHOTO)
VALUES (3060, 11001, :BLOB1)END- EXEC.

* Free resources held by |ocator
END- OF- BLOB.
EXEC SQL WHENEVER NOT FOUND CONTI NUE END- EXEC.
EXEC SQL FREE : BLOB1 END- EXEC.
EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STOP RUN.

SQL- ERROR
EXEC SQL WHENEVER SQLERRCR CONTI NUE END- EXEC.
DI SPLAY " "
DI SPLAY " ORACLE ERRCR DETECTED: ".
DI SPLAY " "
DI SPLAY SQLERR\C.
EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STGP RUN.

Note:

For simplicity in demonstrating this feature, this example does not perform the
password management techniques that a deployed system normally uses. In a
production environment, follow the Oracle Database password management
guidelines, and disable any sample accounts. See Oracle Database Security Guide
for password management guidelines and other security recommendations.

6.5.5 C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator

Bind Variable

You can insert a row by initializing a LOB locator bind variable in C/C++ (Pro*C/C++).

ORACLE

/* This file is installed in the followi ng path when you install */
/* the database: $ORACLE_HOVE/ rdbns/ demo/ | obs/ proc/linsert.pc */

#i ncl ude <oci . h>
#i ncl ude <stdio. h>

6-9

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

#incl ude <sql ca. h>

voi d Sanpl e_Error()
{
EXEC SQL WHENEVER SQLERROR CONTI NUE;
printf("%*s\n", sqlca.sqlerrmsqglerrnm, sqglca.sqlerrmsqglerrnt);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

voi d insertUseBi ndVari abl e_proc(Rownum Lob_| oc)
int Rownum Rownun®;

CCl Bl obLocat or *Lob_I oc;

EXEC SQ. WHENEVER SQLERROR DO Sanple_Error();
EXEC SQL | NSERT INTO Print_nedia (product_id, ad_id, ad_photo)
VALUES (: Rownum : Rownun2, :Lob_loc);

voi d insertBLOB proc()
CCl Bl obLocat or *Lob_I oc;

/* Initialize the BLOB Locator: */
EXEC SQL ALLOCATE : Lob_l oc;

/* Select the LOB fromthe row where product_id = 2268 and ad_i d=21001: */
EXEC SQ. SELECT ad_photo I NTO : Lob_| oc
FROM Print _nmedi a WHERE product _id = 2268 AND ad_i d = 21001,

/* Insert into the row where product _id = 3106 and ad_id = 13001: */
i nsert UseBi ndVari abl e_proc(3106, 13001, Lob_loc);

/* Rel ease resources held by the locator: */
EXEC SQL FREE : Lob_| oc;

voi d main()

char *sanp = "pnl password";

EXEC SQL CONNECT : pm

i nsertBLOB_proc();

EXEC SQL ROLLBACK WORK RELEASE;
}

6.5.6 Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind

Variable

ORACLE

You can insert a row by initializing a LOB locator bind variable in Java (JDBC).

/* This file is installed in the followi ng path when you install */
/* the database: $ORACLE_HOVE/ rdbns/ deno/ | obs/javal/linsert.java */

/1 Core JDBC cl asses:

i nport java.sql.DriverMnager;

i nport java.sql.Connection;

i nport java.sql.Statenent;

i nport java.sql.PreparedStatenent;
i mport java.sql.ResultSet;

i nport java.sql.SQLException;

6-10

Chapter 6
Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()

/1 Oracle Specific JDBC cl asses:
i mport oracle.sql.*;
import oracle.jdbc.driver.*;

public class linsert
{
public static void main (String args [])
throws Exception
{

/'l Load the Oracle JDBC driver
DriverManager.registerDriver (new oracle.jdbc.driver.OacleDriver ());
/1 Connect to the database:
Connection conn =
Driver Manager . get Connection ("jdbc:oracle:oci8: @, "pnt, "password");

/1 It's faster when auto commit is off:
conn. set Aut oCommi t (fal se);

Il Create a Statenent:
Statement stnt = conn.createStatenent ();
try

{
Resul t Set rset = stnt.executeQuery (
"SELECT ad_photo FROM Print_medi a WHERE product _id = 3106 AND ad_i d = 13001");
if (rset.next())

Il retrieve the LOB locator fromthe Result Set

BLOB adphoto_bl ob = ((Oracl eResultSet)rset).getBLOB (1);

Oracl ePreparedSt at ement ops =

(Oracl ePreparedSt at ement) conn. prepar eSt at enent (
"I NSERT I NTO Print_media (product_id, ad_id, ad_photo) VALUES (2268, "
+"21001, ?)");

ops. set Bl ob(1, adphoto_bl oh);

ops. execute();

conn.comit();

conn. cl ose();

}

}
catch (SQLException e)
{

}

}
}

6.6 Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()

You can UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOBY() .

e.printStackTrace();

< Note:

Performance improves when you update the LOB with the actual value, instead of
using EMPTY_CLOB() or EMPTY_BLOB() .

ORACLE 6-11

Chapter 6
Updating a Row by Selecting a LOB From Another Table

Preconditions

Before you write data to a persistent LOB, make the LOB column non-NULL; that is, the
LOB column must contain a locator that points to an empty or populated LOB value.
You can initialize a BLOB column value by using the function EMPTY_BLOB() as a default
predicate. Similarly, a CLOB or NCLOB column value can be initialized by using the
function EMPTY_CLOB() .

You can also initialize a LOB column with a character or raw string less than 4000
bytes in size. For example:

UPDATE Print_nedi a
SET ad_sourcetext = 'This is a One Line Story'
WHERE product _id = 2268;

You can perform this initialization during CREATE TABLE (see "Creating a Table
Containing One or More LOB Columns") or, as in this case, by means of an | NSERT.

The following example shows a series of updates using the EMPTY_CLOB operation to
different data types.
UPDATE Print_nedia SET ad_sourcetext = EMPTY_CLOB()

WHERE product _id = 3060 AND ad_id = 11001;

UPDATE Print_nedia SET ad_fltextn = EMPTY_CLOB()
WHERE product _id = 3060 AND ad_id = 11001;

UPDATE Print_nedia SET ad_photo = EMPTY_BLOB()
WHERE product _id = 3060 AND ad_id = 11001;

¢ See Also:

SQL: Oracle Database SQL Language Reference for more information on
UPDATE

6.7 Updating a Row by Selecting a LOB From Another Table

ORACLE

You can use the SQL UPDATE AS SELECT statement to update a row containing a LOB
column by selecting a LOB from another table.

To use this technique, you must update by means of a reference. For example, the
following code updates data from onl i ne_nedi a:

Rem Updating a row by selecting a LOB from another table (persistent LOBs)
UPDATE Print_media SET ad_sourcetext =

(SELECT * product _text FROM online_nedia WHERE product _id = 3060);
WHERE product _id = 3060 AND ad_id = 11001;

6-12

Value Semantics LOBS

This part describes SQL semantics for LOBs supported in the SQL and PL/SQL
environments.

This part contains these chapters:

* SQL Semantics and LOBs
* PL/SQL Semantics for LOBs
e Migrating Columns from LONGs to LOBs

ORACLE

SQL Semantics and LOBs

Various SQL semantics are supported for LOBs.

These techniques allow you to use LOBs directly in SQL code and provide an alternative to
using LOB-specific APIs for some operations.

Topics:

About Using LOBs in SQL

SQL Functions and Operators Supported for Use with LOBs
Implicit Conversion of LOB Data Types in SQL
Unsupported Use of LOBs in SQL

VARCHAR2 and RAW Semantics for LOBs

Built-in Functions for Remote LOBs and BFILEs

7.1 About Using LOBs in SQL

You can access CLOB and NCLOB data types using SQL VARCHAR? semantics, such as SQL
string operators and functions. (LENGTH functions can be used with BLOB data types and CLOB
and NCLOBs.) These techniques are beneficial in the following situations:

When performing operations on LOBs that are relatively small in size (up to about 100K
bytes).

After migrating your database from LONG columns to LOB data types, any SQL string
functions, contained in your existing PL/SQL application, continue to work after the
migration.

SQL semantics are not recommended in the following situations:

ORACLE

When you use advanced features such as random access and piece-wise fetch, you
must use LOB APIs.

When performing operations on LOBs that are relatively large in size (greater than 1MB)
using SQL semantics can impact performance. Using the LOB APIs is recommended in
this situation.

" Note:

SQL semantics are used with persistent and temporary LOBs. (SQL semantics
do not apply to BFI LE columns because BFI LE is a read-only data type.)

7-1

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

7.2 SQL Functions and Operators Supported for Use with

LOBs

Many SQL operators and functions that take VARCHAR2 columns as arguments also
accept LOB columns.

7.2.1 About SQL Functions and Operators for LOBs

ORACLE

This list summarizes those categories of SQL functions and operators that are
supported for use with LOBs. Details on individual functions and operators are given in
Table 7-1.

* Concatenation
e Comparison
(Some comparison functions are not supported for use with LOBS.)
e Character functions
* Conversion
(Some conversion functions are not supported for use with LOBS.)

The following categories of functions are not supported for use with LOBs:

* Aggregate functions

Note that although pre-defined aggregate functions are not supported for use with
LOBs, you can create user-defined aggregate functions to use with LOBs.

* Unicode functions

Details on individual functions and operators are in Table 7-1, which lists SQL
operators and functions that take VARCHAR? types as operands or arguments, or return
a VARCHAR? value. The SQL column identifies the functions and operators that are
supported for CLOB and NCLOB data types. (The LENGTH function is also supported for
the BLOB data type.)

The DBM5_LOB PL/SQL package supplied with Oracle Database supports using LOBs
with most of the functions listed in Table 7-1 as indicated in the PL/SQL column.

Note:

Operators and functions with No indicated in the SQL column of Table 7-1 do
not work in SQL queries used in PL/SQL blocks - even though some of these
operators and functions are supported for use directly in PL/SQL code.

¢ See Also:

Oracle Database Data Cartridge Developer's Guide for more information
about user-defined aggregate functions

7-2

Chapter 7

SQL Functions and Operators Supported for Use with LOBs

7.2.2 Implicit Conversion of CLOB to CHAR Types

Functions designated as CNV in the SQL or PL/SQL column of Table 7-1 are performed by
converting the CLOB to a character data type, such as VARCHAR2. In the SQL environment, only
the first 4K bytes of the CLOB are converted and used in the operation; in the PL/SQL
environment, only the first 32K bytes of the CLOB are converted and used in the operation.

Table 7-1 SQL VARCHARZ2 Functions and Operators on LOBs
|

Category Operator / Function SQL Example /| Comments SQL PL/SQL
Concatenation | |, CONCAT() Sel ect clobCol || clobCol2 fromtab; Yes Yes
Comparison = ,1=>>=<<=<>, if clobCol =clobCol 2 then... No Yes
Nz
Comparison IN,NOT I N if clobCol NOT IN (clobl, clob2, clob3) No Yes
then. ..
Comparison SOME, ANY, ALL if clobCol < SOME (select clobCol2 No N/A
from..) then...
Comparison BETVEEN if clobCol BETWEEN cl obCol 2 and No Yes
cl obCol 3 then. ..
Comparison LI KE [ESCAPE] if clobCol LIKE '%attern% then... Yes Yes
Comparison 1S [NOT] NULL where clobCol 1S NOT NULL Yes Yes
Character I NI TCAP, NLS | NI TCAP sel ect I NITCAP(clobCol) from.. CNV CNV
Functions
Character LOVER, NLS LOVER, ...where LOVER(cl obCol 1) = Yes Yes
Functions UPPER, NLS_UPPER LOWER(¢l obCol 2)
Character LPAD, RPAD sel ect RPAD(clobCol, 20, ' La') from.. Yes Yes
Functions
Character TRIM LTRIM RTRI M ...Where RTRIMLTRI Mcl obCol, " ab"), Yes Yes
Functions "xy') ='cd
Character REPLACE sel ect REPLACE(cl obCol, 'orig',' new) Yes Yes
Functions from..
Character SOUNDEX ... where SOUNDEX(clobCd) = CNV CNV
Functions SOUNDEX(" SMYTHE')
Character SUBSTR ...where substr(clobCol, 1,4) =like Yes Yes
Functions "TH S
Character TRANSLATE sel ect TRANSLATE(cl obCol , CNV CNV
Functions "123abc',"NC) from..
Character ASCl | sel ect ASCII(clobCol) from.. CNV CNV
Functions
Character I NSTR ...Where instr(clobCol, 'book') = 11 Yes Yes
Functions
Character LENGTH ...where length(clobCol) !=7; Yes Yes
Functions
Character NLSSORT ...where NLSSORT (clobCol,' NLS SORT = CNV CNV
Functions Cerman') > NLSSORT ('S ,"' NLS_SORT =
German')
ORACLE 7-3

Chapter 7

SQL Functions and Operators Supported for Use with LOBs

Table 7-1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs
]

Category Operator / Function SQL Example | Comments SQL PL/ISQL
Character | NSTRB, SUBSTRB, These functions are supported only for CLOBs that Yes Yes
Functions LENGTHB use single-byte character sets. (LENGTHB is
supported for BLOBs and CLCBs.)
Character RECEXP_LI KE This function searches a character column for a Yes Yes
Functions - pattern. Use this function in the WHERE clause of a
Regular query to return rows matching the regular
Expressions expression you specify.
" See Also:
e Oracle Database SQL Language Reference for
syntax details on SQL functions for regular
expressions.
e Oracle Database Development Guide for
information on using regular expressions with
the database.
Character REGEXP_REPLACE This function searches for a pattern in a character Yes Yes
Functions - column and replaces each occurrence of that
Regular pattern with the pattern you specify.
Expressions
Character REGEXP_I NSTR This function searches a string for a given Yes Yes
Functions - occurrence of a regular expression pattern. You
Regular specify which occurrence you want to find and the
Expressions start position to search from. This function returns
an integer indicating the position in the string
where the match is found.
Character REGEXP_SUBSTR This function returns the actual substring matching Yes Yes
Functions - the regular expression pattern you specify.
Regular
Expressions
Conversion CHARTOROW D CHARTOROW D(cl obCol) CNV CNV
Conversion COVPCOSE COVPOSE(" string') CNV CNV
Returns a Unicode string given a string in the data
type CHAR, VARCHAR2, CLOB, NCHAR, NVARCHAR2,
NCLOB. An o code point qualified by an umlaut
code point is returned as the o-umlaut code point.
Conversion DECOMPOSE DECOVPCSE(' str' [CANONI CAL | CNV CNV
COVPATI BILITY])
Valid for Unicode character arguments. Returns a
Unicode string after decomposition in the same
character set as the input. o-umlaut code point is
returned as the o code point followed by the umlaut
code point.
Conversion HEXTORAW HEXTORAW CLOB) No CNV
ORACLE 7-4

Chapter 7

SQL Functions and Operators Supported for Use with LOBs

Table 7-1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs

Category Operator / Function SQL Example | Comments SQL PL/ISQL
Conversion CONVERT sel ect Yes CNV
CONVERT(cl obCol , ' VEBDEC , ' WEBHP')
from..
Conversion TO_DATE TO _DATE(cl obCol) CNV CNV
Conversion TO_NUMBER TO_NUMBER(cl obCol) CNV CNV
Conversion TO_TI MESTAMP TO_TI MESTAMP(¢l 0bCol) No CNV
Conversion TO MULTI _BYTE TO MULTI _BYTE(cl obCol) CNV CNV
TO_SI NGLE_BYTE TO_SI NGLE_BYTE(cl obCol)
Conversion TO CHAR TO CHAR(cl obCol) Yes Yes
Conversion TO_NCHAR TO_NCHAR(¢l obCol) Yes Yes
Conversion TO LOB I NSERT I NTO... SELECT N/A N/A
TO LOB(I ongCol). ..
Note that TO_LOB can only be used to create or
insert into a table with LOB columns as SELECT
FROMa table with a LONG column.
Conversion TO CLOB TO CLOB(var char2Col) Yes Yes
Conversion TO_NCLOB TO_NCLOB(var char 2Cl ob) Yes Yes
Aggregate COUNT sel ect count(clobCol) from.. No N/A
Functions
Aggregate MAX, M N sel ect MAX(clobCol) from.. No N/A
Functions
Aggregate GROUPI NG sel ect grouping(clobCol) from.. group No N/A
Functions by cube (cl obCol);
Other CGREATEST, LEAST sel ect GREATEST (cl obCol 1, clobCol 2) No CNV
Functions from..
Other DECODE sel ect DECCDE(cl obCol, conditionl, CNV CNV
Functions val uel, defaultValue) from..
Other NVL sel ect NVL(clobCol,"NULL') from.. Yes Yes
Functions
Other DUWP sel ect DUMP(cl obCol) from.. No N/A
Functions
Other VS| ZE sel ect VS| ZE(cl obCol) from.. No N/A
Functions
Unicode | NSTR2, SUBSTR?, These functions use UCS2 code point semantics. No CNV
LENGTH2, LI KE2
Unicode | NSTR4, SUBSTR4, These functions use UCS4 code point semantics. No CNV
LENGTH4, LI KE4
Unicode | NSTRC, SUBSTRC, These functions use complete character semantics. No CNV
LENGTHC, LI KEC
ORACLE 7-5

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

7.2.3 CLOBs and NCLOBs Do Not Follow Session Collation Settings

Standard operators that operate on CLOBs and NCLOBs without first converting them to
VARCHAR2 or NVARCHAR?, (those marked Yes in the SQL or PL/SQL columns of

Table 7-1), do not behave linguistically, except for REGEXP functions. Binary comparison
of the character data is performed irrespective of the NLS_COVP and NLS_SORT
parameter settings.

These REGEXP functions are the exceptions, where, if CLOB or NCLOB data is passed in,
the linguistic comparison is similar to the comparison of VARCHAR2 and NVARCHAR2
values.

« REGEXP_LIKE

- REGEXP_REPLACE
- REGEXP_INSTR

. REGEXP_SUBSTR
« REGEXP_COUNT

" Note:
CLOBs and NCLOBs support the default USING NLS_COMP option.

¢ See Also:

Oracle Database Reference for more information about NLS COWP

7.2.4 UNICODE Support

ORACLE

Variations on certain functions are provided for Unicode support.

Variations on the | NSTR, SUBSTR, LENGTH, and LI KE functions are provided for Unicode
support. (These variations are indicated as Unicode in the Category column of
Table 7-1.)

¢ See Also:

e Oracle Database Globalization Support Guide
e Oracle Database Development Guide
e Oracle Database SQL Language Reference

Oracle Database PL/SQL Packages and Types Referencefor a detailed
description on the usage of UNICODE functions

7-6

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

7.2.5 Codepoint Semantics

Codepoint semantics of the | NSTR, SUBSTR, LENGTH, and LI KE functions, described in

Table 7-1, differ depending on the data type of the argument passed to the function. These
functions use different codepoint semantics depending on whether the argument is a
VARCHAR2 or a CLOB type as follows:

When the argument is a CLOB, UCS2 codepoint semantics are used for all character sets.

When the argument is a character type, such as VARCHAR?, the default codepoint
semantics are used for the given character set:

— UCS2 codepoint semantics are used for ALL6UTF16 and UTF8 character sets.
— UCS4 codepoint semantics are used for all other character sets, such as AL32UTFS8.

If you are storing character data in a CLOB or NCLOB, then note that the amount and offset
parameters for any APIs that read or write data to the CLOB or NCLOB are specified in
UCS2 codepoints. In some character sets, a full character consists one or more UCS2
codepoints called a surrogate pair. In this scenario, you must ensure that the amount or
offset you specify does not cut into a full character. This avoids reading or writing a partial
character.

Oracle Database helps to detect half surrogate pair on read or write boundaries in case
of SQL functions and in case of read/write through LOB APIs. The behavior is as follows:

— If the starting offset is in the middle of a surrogate pair, an error is raised for both read
and write operations.

— If the read amount reads only a partial character, increment or decrement the amount
by 1 to read complete characters.

¢ Note:
The output amount may vary from the input amount.
— If the write amount overwrites a partial character, an error is raised to prevent the

corruption of existing data caused by overwriting of a partial character in the
destination CLOB or NCLCB.

¢ Note:

This check only applies to the existing data in the CLOB or NCLOB. You
must make sure that the incoming buffer for the write operation starts and
ends in complete characters.

7.2.6 Return Values for SQL Semantics on LOBs

ORACLE

The return type of a function or operator that takes a LOB or VARCHAR? is the same as the
data type of the argument passed to the function or operator.

Functions that take more than one argument, such as CONCAT, return a LOB data type if one

or more arguments is a LOB. For example, CONCAT(CLOB, VARCHAR?) returns a CLCB.

7-7

Chapter 7
Implicit Conversion of LOB Data Types in SQL

¢ See Also:

Oracle Database SQL Language Reference for details on the CONCAT
function and the concatenation operator (||).

A LOB instance is always accessed and manipulated through a LOB locator. This is
also true for return values: SQL functions and operators return a LOB locator when the
return value is a LOB instance.

Any LOB instance returned by a SQL function is a temporary LOB instance. LOB
instances in tables (persistent LOBSs) are not modified by SQL functions, even when
the function is used in the SELECT list of a query.

7.2.7 LENGTH Return Value for LOBs

The return value of the LENGTH function differs depending on whether the argument
passed is a LOB or a character string:

e Ifthe input is a character string of length zero, then LENGTH returns NULL.

* For a CLOB of length zero, or an empty locator such as that returned by
EMPTY_CLOB(), the LENGTH and DBVMS_LOB. GETLENGTH functions return 0.

7.3 Implicit Conversion of LOB Data Types in SQL

Some LOB data types support implicit conversion and can be used in operations such
as cross-type assignment and parameter passing. These conversions are processed
at the SQL layer and can be performed in all client interfaces that use LOB types.

7.3.1 Implicit Conversion Between CLOB and NCLOB Data Types in
SQL

The database enables you to perform operations such as cross-type assignment and
cross-type parameter passing between CLOB and NCLOB data types. The database
performs implicit conversions between these types when necessary to preserve
properties such as character set formatting.

Note that, when implicit conversions occur, each character in the source LOB is
changed to the character set of the destination LOB, if needed. In this situation, some
degradation of performance may occur if the data size is large. When the character set
of the destination and the source are the same, there is no degradation of
performance.

After an implicit conversion between CLOB and NCLOB types, the destination LOB is
implicitly created as a temporary LOB. This new temporary LOB is independent from
the source LOB. If the implicit conversion occurs as part of a define operation in a
SELECT statement, then any modifications to the destination LOB do not affect the
persistent LOB in the table that the LOB was selected from as shown in the following
example:

SQ.> -- check I ob I ength before update
SQ.> sel ect dbns_| ob. getl ength(ad_sourcetext) fromPrint_nedia

ORACLE 7-8

Chapter 7
Implicit Conversion of LOB Data Types in SQL

2 where product i d=3106 and ad_id = 13001,

DBVS_LOB. GETLENGTH(AD_SOURCETEXT)

sQL>
SQ.> decl are
2 clobl clob;
3 ant nunber: =10;
4 BEGN
- select a clob colum into a clob, no inplicit convesion
SELECT ad_sourcetext |NTO cl obl FROM Print_medi a
VHERE product _i d=3106 and ad_i d=13001 FOR UPDATE;

dbns_lob.trin{clobl, ant); -- Trimthe selected |ob to 10 bytes
END;
/

= O O o ~NOo o1

1
1
PL/ SQL procedure successful ly conpl eted.

SQ> -- Mdification is performed on clobl which points to the

SQ> -- clob colum in the table

SQ.> sel ect dbns_| ob. getl ength(ad_sourcetext) fromPrint_nedia
2 where product i d=3106 and ad_id = 13001,

DBVS_LOB. GETLENGTH(AD_SOURCETEXT)

SQL>
SQ.> rol | back;

Rol | back conpl ete.

SQ.> -- check I ob Iength before update
SQ.> sel ect dbns_| ob. getl ength(ad_sourcetext) fromPrint_nedia
2 where product i d=3106 and ad_id = 13001,

DBVS_LOB. GETLENGTH(AD_SOURCETEXT)

SQL>
SQ.> declare
2 nclobl nclob;
3 ant nunber:=10;

4 BEGN

5

6 - select a clob colum into a nclob, inplicit conversion occurs
7 SELECT ad_sourcetext |NTO nclobl FROM Print_nedi a

8 VHERE product _i d=3106 and ad_i d=13001 FOR UPDATE;

9

10 dbms_| ob. trin(nclobl, ant); -- Trimthe selected lob to 10 bytes
11 END;

12/

PL/ SQL procedure successful ly conpl eted.

SQ> -- Mdification to nclobl does not affect the clob in the table,
SQL> -- because nclobl is a independent tenporary LOB

ORACLE 7-9

Chapter 7
Unsupported Use of LOBs in SQL

SQ.> sel ect dbns_| ob. getl ength(ad_sourcetext) fromPrint_nedia
2 where product i d=3106 and ad_id = 13001,

DBMS_LOB. GETLENGTH(AD_SOURCETEXT)

¢ See Also:

e "Implicit Conversions Between CLOB and VARCHAR?2" for information
on PL/SQL semantics support for implicit conversions between CLOB and
VARCHAR? types.

e "Converting Character Sets Implicitly with LOBs" for more information on
implicit character set conversions when loading LOBs from Bl LEs.

e Oracle Database SQL Language Reference for details on implicit
conversions supported for all data types.

7.4 Unsupported Use of LOBs in SQL

Table 7-2 lists SQL operations that are not supported on LOB columns.

Table 7-2 Unsupported Usage of LOBs in SQL

SQL Operations Not Supported

Example of unsupported usage

SELECT DI STI NCT

SELECT clause
ORDER BY

SELECT clause
GROUP BY

UNI ON, | NTERSECT, M NUS
(Note that UNI ON ALL works for LOBSs.)

Join queries

Index columns

SELECT DI STINCT cl obCol from..
SELECT. .. ORDER BY cl obCol

SELECT avg(num) FROM ..
GROUP BY cl obCol

SELECT clobCol1 fromtabl UNI ON SELECT cl obCol 2 from
tab2;

SELECT... FROM .. WHERE tabl.clobCol = tab2.clobCol
CREATE | NDEX cl obl ndx ON tab(cl obCol). ..

7.5 VARCHAR2 and RAW Semantics for LOBS

Semantics used with VARCHAR2 and RAWdata types also apply to LOBs.

7.5.1 About VARCHARZ2 and RAW Semantics for LOBs

These semantics, used with VARCHAR2 and RAWdata types, also apply to LOBs:

e Defining a CHAR buffer on a CLOB

ORACLE

7-10

Chapter 7
VARCHAR?2 and RAW Semantics for LOBs

You can define a VARCHAR?2 for a CLOB and RAWfor a BLOB column. You can also define
CLOB and BLOB types for VARCHAR2 and RAWcolumns.

Selecting a CLOB column into a CHAR buffer or VARCHAR2

If a CLOB column is selected into a VARCHAR2 variable, then data stored in the CLOB column
is retrieved and put into the CHAR buffer. If the buffer is not large enough to contain all the
CLOB data, then a truncation error is thrown and no data is written to the buffer. After
successful completion of the SELECT operation, the VARCHAR2 variable holds as a regular
character buffer.

In contrast, when a CLOB column is selected into a local CLOB variable, the CLOB locator is
fetched.

Selecting a BLOB column into a RAW

When a BLOB column is selected into a RAWvariable, the BLOB data is copied into the RAW
buffer. If the size of the BLOB exceeds the size of the buffer, then a truncation error is
thrown and no data is written to the buffer.

7.5.2 LOBs Returned from SQL Functions

When a LOB is returned from a SQL function, the result returned is a temporary LOB.

Your application should view the temporary LOB as local storage for the data returned from
the SELECT operation as follows:

In PL/SQL, the temporary LOB has the same lifetime (duration) as other local PL/SQL
program variables. It can be passed to subsequent SQL or PL/SQL VARCHAR?2 functions or
gueries as a PL/SQL local variable. The temporary LOB goes out of scope at the end of
the program block at which time, the LOB is freed. These are the same semantics as
those for PL/SQL VARCHAR? variables. At any time, nonetheless, you can use a

DBVS_LOB. FREETEMPORARY() call to release the resources taken by the local temporary
LOBs.

Note:

If the SQL statement returns a LOB or a LOB is an QUT parameter for a PL/SQL
function or procedure, you must test if it is a temporary LOB, and if it is, then
free it after you are done with it.

In OCI, the temporary LOBs returned from SQL queries are always in session duration,
unless a user-defined duration is present, in which case, the temporary LOBs are in the
user-defined duration.

WARNING:

Ensure that your temporary tablespace is large enough to store all temporary
LOB results returned from queries in your program(s).

The following example illustrates selecting out a CLOB column into a VARCHAR2 and returning
the result as a CHAR buffer of declared size:

ORACLE

7-11

Chapter 7
VARCHAR?2 and RAW Semantics for LOBs

DECLARE
vcl VARCHAR2(32000);
bl CLOB;
| b2 CLOB;
BEG N
SELECT cl obCol 1 INTO vcl FROM tab WHERE col | D=1;
-- Iblis atenporary LOB
SELECT cl obCol 2 || clobCol 3 INTO | bl FROM tab WHERE col | D=2;

[b2 := vcl|]| Ib1,;

-- Ib2 is a still tenporary LOB, so the persistent data in the database
-- is not nodified. An update is necessary to nodify the table data.
UPDATE tab SET clobCol1 = | b2 WHERE col ID = 1;

DBMS_LOB. FREETEMPORARY(| b2); -- Free up the space taken by |b2

<... SOME nore queries ...>

END, -- at the end of the block, Ibl is automatically freed

7.5.3 1S NULL and IS NOT NULL Usage with VARCHAR2s and
CLOBs

You can use the | S NULL and | S NOT NULL operators with LOB columns.

When used with LOBs, the | S NULL and | S NOT NULL operators determine whether a
LOB locator is stored in the row.

Note:

In the SQL 92 standard, a character string of length zero is distinct from a
NULL string. The return value of IS NULL differs when you pass a LOB
compared to a VARCHAR2:

* When you pass an initialized LOB of length zero to the | S NULL function,
zero (FALSE) is returned. These semantics are compliant with the SQL
standard.

e When you pass a VARCHAR?2 of length zero to the | S NULL function, TRUE
is returned.

7.5.4 WHERE Clause Usage with LOBs

SQL functions with LOBs as arguments, except functions that compare LOB values,
are allowed in predicates of the WHERE clause.

The LENGTH function, for example, can be included in the predicate of the WHERE
clause:

CREATE TABLE t (n NUMBER, c¢ CLOB);
INSERT INTO t VALUES (1, "abc');

SELECT * FROMt WHERE c |'S NOT NULL;
SELECT * FROMt WHERE LENGTH(c) > 0;

ORACLE 7-12

Chapter 7
Built-in Functions for Remote LOBs and BFILES

SELECT * FROMt WHERE ¢ LIKE ' %%
SELECT * FROMt WHERE SUBSTR(c, 1, 2) LIKE ' %% :
SELECT * FROMt WHERE INSTR(c, 'b') = 2;

7.6 Built-in Functions for Remote LOBs and BFILES

" See Also:

Built-in Functions for Remote LOBs and BFILEs for more information about built-in
functions and user-defined functions supported on remote LOBs and BFI LEs

ORACLE 7-13

PL/SQL Semantics for LOBs

Topics:

e PL/SQL Statements and Variables

e Implicit Conversions Between CLOB and VARCHAR?2
» Explicit Conversion Functions

e PL/SQL Functions for Remote LOBs and BFILEs

8.1 PL/SQL Statements and Variables

In PL/SQL, semantic changes have been made.

Note:

Most discussions concerning PL/SQL semantics, and CLOBs and VARCHARZ?s, also
apply to BLOBs and RAVW, unless otherwise noted. In the text, BLOB and RAWare not
explicitly mentioned.

PL/SQL semantics support is described in the following sections:

* Implicit Conversions Between CLOB and VARCHAR?2
* Explicit Conversion Functions
* VARCHAR2 and CLOB in PL/SQL Built-In Functions

8.2 Implicit Conversions Between CLOB and VARCHAR?2

Implicit conversions from CLOB to VARCHAR2 and from VARCHAR? to CLOB data types are allowed

ORACLE

in PL/SQL.

These conversions enable you to perform the following operations in your application:
e CLOBcolumns can be selected into VARCHAR2 PL/SQL variables

* VARCHAR2 columns can be selected into CLOB variables

e Assignment and parameter passing between CLOBs and VARCHAR2s

Accessing a CLOB as a VARCHAR2 in PL/SQL

The following example illustrates the way CLOB data is accessed when the CLOBs are treated

as VARCHARZ?s:

decl are
nmy St or yBuf VARCHAR2(4001) ;
BEG N

8-1

Chapter 8
Explicit Conversion Functions

SELECT ad_sourcetext | NTO myStoryBuf FROM print_media WHERE ad_i d = 12001,
-- Display Story by printing nyStoryBuf directly

END;

/

Assigning a CLOB to a VARCHAR2 in PL/ISQL

decl are
myLOB CLOB;
BEG N
SELECT ' ABCDE' | NTO myLOB FROM print_nedia WHERE ad_id = 11001;
-- myLOB is a tenporary LOB.
-- Use nyLOB as a | ob | ocator
DBVS_OUTPUT. PUT_LINE(' I's tenp? ' || DBMS_LOB. | STEMPORARY(nyLOB));
END;
/

8.3 Explicit Conversion Functions

ORACLE

In SQL and PL/SQL, the certain explicit conversion functions convert other data types
to and from CLOB, NCLOB, and BLOB as part of the LONG-to-LOB migration:

e TO_CLOB(): Converting from VARCHAR2, NVARCHAR?2, or NCLOB to a CLOB
e TO_NCLOB(): Converting from VARCHAR2, NVARCHAR2, or CLOB to an NCLOB
e TO BLOB(): Converting from RAWto a BLOB

)

e TO CHAR() converts a CLOB to a CHAR type. When you use this function to convert a
character LOB into the database character set, if the LOB value to be converted is
larger than the target type, then the database returns an error. Implicit conversions
also raise an error if the LOB data does not fit.

e TO_NCHAR() converts an NCLOB to an NCHAR type. When you use this function to
convert a character LOB into the national character set, if the LOB value to be
converted is larger than the target type, then the database returns an error. Implicit
conversions also raise an error if the LOB data does not fit.

» CAST does not directly support any of the LOB data types. When you use CAST to
convert a CLOB value into a character data type, an NCLOB value into a national
character data type, or a BLOB value into a RAWdata type, the database implicitly
converts the LOB value to character or raw data and then explicitly casts the
resulting value into the target data type. If the resulting value is larger than the
target type, then the database returns an error.

Other explicit conversion functions are not supported, such as, TO NUMBER() , see
Table 7-1.

" Note:
LOBs do not support duplicate LONG binds.

8-2

Chapter 8
Explicit Conversion Functions

¢ See Also:

Migrating Columns from LONGs to LOBs for more information about conversion
functions

8.3.1 VARCHAR2 and CLOB in PL/SQL Built-In Functions

ORACLE

CLOB and VARCHAR? are two distinct types.

However, depending on the usage, a CLOB can be passed to SQL and PL/SQL VARCHAR?
built-in functions, used exactly like a VARCHAR2. Or the variable can be passed into DBV _LOB
APIs, acting like a LOB locator. See the following combined example,"CLOB Variables in PL/
SQL".

PL/SQL VARCHAR? functions and operators can take CLOBs as arguments or operands.

When the size of a VARCHAR?2 variable is not large enough to contain the result from a function
that returns a CLOB, or a SELECT on a CLOB column, an error is raised and no operation is
performed. This is consistent with VARCHAR2 semantics.

CLOB Variables in PLISQL

decl are
nyStory CLOB;
revisedStory CLOB;
myG st VARCHAR2(100);
revi sedG st VARCHAR2(100);
BEG N
-- select a CLOB colum into a CLOB variabl e
SELECT Story |NTO nyStory FROM print_nedi a WHERE product _i d=10;
-- perform VARCHAR2 operations on a CLOB variable
10 revisedStory : = UPPER(SUBSTR(myStory, 100, 1));
11 -- revisedStory is a tenporary LOB
12 -- Concat a VARCHAR2 at the end of a CLOB
13 revisedStory : = revisedStory || nyG st;
14 -- The followi ng statenent raises an error because myStory is
15 -- longer than 100 bytes
16 nyG st := nyStory;
17 END;

O ~NO O WN K-

©

Please note that in line 10 of "CLOB Variables in PL/SQL", a temporary CLOB is implicitly
created and is pointed to by the revi sedSt ory CLOB locator. In the current interface the line
can be expanded as:

buf f er VARCHAR2(32000)

DBVS_LOB. CREATETEMPORARY(r evi sedSt ory) ;

buf fer := UPPER(DBMS_LOB. SUBSTR(nySt ory, 100, 1));
DBVS_LOB. WRI TE(r evi sedSt ory, | engt h(buffer), 1, buffer);

In line 13, myG st is appended to the end of the temporary LOB, which has the same effect
of:

DBVS_LOB. WRI TEAPPEND(r evi sedSt ory, nyG st, length(nyGst));

In some occasions, implicitly created temporary LOBs in PL/SQL statements can change the
representation of LOB locators previously defined. Consider the next example.

8-3

ORACLE

Chapter 8
Explicit Conversion Functions

Change in Locator-Data Linkage

1 declare

2 nyStory CLOB;

3 ant nunber: =100;

4 buffer VARCHAR2(100):='sone data';

5 BEG N

6 -- select a CLOB colum into a CLOB variable

7 SELECT Story INTO myStory FROM print_nedi a WHERE product _i d=10;
8 DBMS_LOB. WRI TE(nyStory, ant, 1, buf);

9 -- wite to the persistent LOBin the table

10

11 nyStory: = UPPER(SUBSTR(myStory, 100, 1));

12 -- perform VARCHAR2 operations on a CLOB variable, tenmporary LOB created.
13 -- Changes are not reflected in the database table fromthis point on.
14

15 update print_media set Story = nmyStory WHERE product _id = 10;

16 -- an update is necessary to synchronize the data in the table.

17 END;

After line 7, nySt ory represents a persistent LOB in pri nt _medi a.
The DBM5_LOB. WRI TE call in line 8 directly writes the data to the table.

No UPDATE statement is necessary. Subsequently in line 11, a temporary LOB is
created and assigned to nySt ory because nySt ory is now used like a local VARCHAR2
variable. The LOB locator nySt or y now points to the newly-created temporary LOB.

Therefore, modifications to nySt ory are no longer reflected in the database. To
propagate the changes to the database table, an UPDATE statement becomes
necessary now. Note again that for the previous persistent LOB, the UPDATE is not
required.

Note:

If the SQL statement returns a LOB or a LOB is an OUT parameter for a
PL/SQL function or procedure, you must test if it is a temporary LOB, and if it
is, then free it after you are done with it.

Freeing Temporary LOBs Automatically and Manually

Temporary LOBs created in a program block as a result of a SELECT or an assignment
are freed automatically at the end of the PL/SQL block or function or procedure. You
must also free the temporary LOBs that were created with DBV5_LOB. CREATETEMPORARY
to reclaim system resources and temporary tablespace. Do this by calling

DBMS_LOB. FREETEMPORARY on the CLOB variable.

decl are
Storyl CLOB;
Story2 CLOB;
St or yConbi ned CLOB;
StoryLower CLOB;
BEG N
SELECT Story INTO Storyl FROM print_nedia WHERE product _ID = 1;
SELECT Story INTO Story2 FROM print_nedi a WHERE product _ID = 2;
StoryConbined := Storyl || Story2; -- StoryConbined is a tenporary LOB

8-4

Chapter 8
PL/SQL Functions for Remote LOBs and BFILES

- Free the StoryConbined manually to free up space taken
DBVS_LOB. FREETEMPORARY(St or yConbi ned) ;
StoryLower := LONER(Storyl) || LOANER(Story2);

END, -- At the end of block, StoryLower is freed.

8.4 PL/SQL Functions for Remote LOBs and BFILES

" See Also:

PL/SQL Functions for Remote LOBs and BFILEs for PL/SQL functions that support
remote LOBs and BFI LEs

ORACLE 8-5

Data Interface for Persistent LOBs

Data interface is a generic term referring to whichever interface is in use, to query the
database or to update the database.

Topics:

* Overview of the Data Interface for Persistent LOBs

* Benefits of Using the Data Interface for Persistent LOBs
e Using the Data Interface for Persistent LOBs in PL/SQL
e The Data Interface Used for Persistent LOBs in OCI

e The Data Interface Used with Persistent LOBs in Java

e The Data Interface Used with Remote LOBs

9.1 Overview of the Data Interface for Persistent LOBS

ORACLE

The data interface for persistent LOBs includes a set of Java, PL/SQL, and OCI APIs that are
extended to work with LOB data types.

These APIs, originally designed for use with legacy data types such as LONG, LONG RAW and
VARCHAR2, can also be used with the corresponding LOB data types shown in Table 9-1 and
Table 9-2. These tables show the legacy data types in the bind or define type column and the
corresponding supported LOB data type in the LOB column type column. You can use the
data interface for LOBs to store and manipulate character data and binary data in a LOB
column just as if it were stored in the corresponding legacy data type.

" Note:

The data interface works for LOB columns and LOBs that are attributes of objects.
In this chapter LOB columns means LOB columns and LOB attributes.

You can use array bind and define interfaces to insert and select multiple rows in
one round-trip.

While most of this discussion focuses on character data types, the same concepts apply to
the full set of character and binary data types listed in Table 9-1 and Table 9-2. CLOB also
means NCLOB in these tables.

Table 9-1 Corresponding LONG and LOB Data Types in SQL and PL/SQL
]

Bind or Define Type LOB Column Type Used For Storing
CHAR CLOB Character data
LONG CLOB Character data

9-1

Chapter 9
Benefits of Using the Data Interface for Persistent LOBs

Table 9-1 (Cont.) Corresponding LONG and LOB Data Types in SQL and PL/SQL

Bind or Define Type LOB Column Type Used For Storing
VARCHAR2 CLOB Character data
LONG RAW BLOB Binary data

RAW BLOB Binary data

Table 9-2 Corresponding LONG and LOB Data Types in OCI
|

Bind or Define Type LOB Column Type Used For Storing
SQLT_AFC(n) CLOB Character data
SQLT CHR CLOB Character data
SQLT_LNG CLOB Character data
SQLT_VCS CLOB Character data
SQLT_BIN BLOB Binary data

SQLT _LBI BLOB Binary data
SQLT_LVB BLCB Binary data

9.2 Benefits of Using the Data Interface for Persistent LOBs

Using the data interface for persistent LOBs has the following benefits:

If your application uses LONG data types, then you can use the same application
with LOB data types with little or no modification of your existing application
required. To do so, just convert LONG audiotape columns in your tables to LOB
audiotape columns as discussed in Migrating Columns from LONGs to LOBs.

Performance is better for OCI applications that use sequential access techniques.
A piecewise | NSERT or fetch using the data interface has comparable performance
to using OCI functions like OCl LobRead2() and OCl LobW it e2() . Because the data
interface allows more than 4K bytes of data to be inserted into a LOB in a single
OCI call, a round-trip to the server is saved.

You can read LOB data in one OCl St nt Fet ch() call, instead of fetching the LOB
locator first and then calling OCl LobRead2() . This improves performance when you
want to read LOB data starting at the beginning.

You can use array bind and define interfaces to insert and select multiple rows with
LOBs in one round trip.

9.3 Using the Data Interface for Persistent LOBs in PL/SQL

The data interface enables you to use LONG and LOB data types listed in Table 9-1 to
perform the following operations in PL/SQL:

ORACLE

9-2

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

9.3.1 About Using the Data Interface for Persistent LOBs in PL/SQL

I NSERT or UPDATE character data stored in datatypes such as VARCHAR2, CHAR, or LONGinto
a CLOB column.

| NSERT or UPDATE binary data stored in datatypes such as RAWor LONG RAWiInto a BLOB
column.

Use the SELECT statement on CLOB columns to select data into a character buffer variable
such as CHAR, LONG, or VARCHAR?.

Use the SELECT statement on BLOB columns to select data into a binary buffer variable
such as RAWand LONG RAW

Make cross-type assignments (implicit type conversions) between CLOB and VARCHAR?,
CHAR, or LONG variables.

Make cross-type assignments (implicit type conversions) between BLOB and RAWor LONG
RAWvariables.

Pass LOB datatypes to functions defined to accept LONG datatypes or pass LONG
datatypes to functions defined to accept LOB datatypes. For example, you can pass a
CLOB instance to a function defined to accept another character type, such as VARCHARZ,
CHAR, or LONG.

Use CLOBs with other PL/SQL functions and operators that accept VARCHAR2 arguments
such as I NSTR and SUBSTR.

Note:

When using the data interface for LOBs with the SELECT statement in PL/SQL,
you cannot specify the amount you want to read. You can only specify the
buffer length of your buffer. If your buffer length is smaller than the LOB data
length, then the database throws an exception.

¢ See Also:

— SQL Semantics and LOBs for details on LOB support in SQL statements
— Some Implicit Conversions Are Not Supported for LOB Data Types

— Passing CLOBs to SQL and PL/SQL Built-In Functions for the complete list
of functions that accept VARCHAR2 arguments such as | NSTR and SUBSTR

9.3.2 Guidelines for Accessing LOB Columns Using the Data Interface in
SQL and PL/SQL

This section describes techniques you use to access LOB columns or attributes using the
data interface for persistent LOBs.

ORACLE

9-3

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

Data from CLOB and BLOB columns or attributes can be referenced by regular SQL
statements, such as | NSERT, UPDATE, and SELECT.

There is no piecewise | NSERT, UPDATE, or fetch routine in PL/SQL. Therefore, the
amount of data that can be accessed from a LOB column or attribute is limited by the
maximum character buffer size. PL/SQL supports character buffer sizes up to 32KB - 1
(32767 bytes). For this reason, only LOBs less than 32K bytes in size can be
accessed by PL/SQL applications using the data interface for persistent LOBs.

If you must access more than 32KB -1 using the data interface, then you must make
OCIl calls from the PL/SQL code to use the APIs for piece-wise insert and fetch.

Use the following guidelines for using the data interface to access LOB columns or
attributes:

* | NSERT operations

You can | NSERT into tables containing LOB columns or attributes using regular
| NSERT statements in the VALUES clause. The field of the LOB column can be a
literal, a character datatype, a binary datatype, or a LOB locator.

e UPDATE operations

LOB columns or attributes can be updated as a whole by UPDATE... SET
statements. In the SET clause, the new value can be a literal, a character datatype,
a binary datatype, or a LOB locator.

e 4000 byte limit on hexadecimal to raw and raw to hexadecimal conversions

The database does not do implicit hexadecimal to RAWor RAWto hexadecimal
conversions on data that is more than 4000 bytes in size. You cannot bind a buffer
of character data to a binary datatype column, and you cannot bind a buffer of
binary data to a character datatype column if the buffer is over 4000 bytes in size.
Attempting to do so results in your column data being truncated at 4000 bytes.

For example, you cannot bind a VARCHAR? buffer to a LONG RAWor a BLOB column if
the buffer is more than 4000 bytes in size. Similarly, you cannot bind a RAWbuffer
to a LONG or a CLOB column if the buffer is more than 4000 bytes in size.

e SELECT operations

LOB columns or attributes can be selected into character or binary buffers in PL/
SQL. If the LOB column or attribute is longer than the buffer size, then an
exception is raised without filling the buffer with any data. LOB columns or
attributes can also be selected into LOB locators.

9.3.3 Implicit Assignment and Parameter Passing

ORACLE

Implicit assignment and parameter passing are supported for LOB columns.

For the data types listed in Table 9-1 and Table 9-2, you can pass or assign: any
character type to any other character type, or any binary type to any other binary type
using the data interface for persistent LOBs.

Implicit assignment works for variables declared explicitly and for variables declared
by referencing an existing column type using the %I YPE attribute as show in the
following example. This example assumes that column | ong_col in table t has been
migrated from a LONGto a CLOB column.

CREATE TABLE t (long_col LONG; -- Alter this table to change LONG colum to LOB
DECLARE

9-4

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

a VARCHAR2(100);
b t.long_col %ype; -- This variable changes fromLONGto CLOB

BEG N
SELECT * INTO b FROM t;
a:=bh; -- This changes from"VARCHAR?2 := LONG to VARCHAR2 := CLOB
b :=a;, -- This changes from"LONG := VARCHAR2 to CLOB : = VARCHAR2
END;

Implicit parameter passing is allowed between functions and procedures. For example, you
can pass a CLOB to a function or procedure where the formal parameter is defined as a

VARCHARZ.

" Note:

The assigning a VARCHAR2 buffer to a LOB variable is somewhat less efficient than
assigning a VARCHAR? to a LONG variable because the former involves creating a
temporary LOB. Therefore, PL/SQL users experience a slight deterioration in the
performance of their applications.

9.3.4 Passing CLOBs to SQL and PL/SQL Built-In Functions

Implicit parameter passing is also supported for built-in PL/SQL functions that accept
character data. For example, | NSTR can accept a CLOB and other character data.

Any SQL or PL/SQL built-in function that accepts a VARCHAR2 can accept a CLOB as an
argument. Similarly, a VARCHAR2 variable can be passed to any DBMS_LOB API for any
parameter that takes a LOB locator.

See Also:
SQL Semantics and LOBs

9.3.5 Explicit Conversion Functions

In PL/SQL, these explicit conversion functions convert other data types to CLOB and BLOB
datatypes as follows:

* TO CLOB() converts LONG VARCHAR2, and CHAR to CLOB
e TO BLOB() converts LONG RAWand RAWto BLOB
Also note that the conversion function TO_CHAR() can convert a CLOB to a CHAR type.

9.3.6 Calling PL/SQL and C Procedures from SQL

When a PL/SQL or C procedure is called from SQL, buffers with more than 4000 bytes of
data are not allowed.

ORACLE 9-5

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

9.3.7 Calling PL/SQL and C Procedures from PL/SQL

You can call a PL/SQL or C procedure from PL/SQL. You can pass a CLOB as an actual
parameter where CHR is the formal parameter, or vice versa. The same holds for BLOBs
and RAWS.

One example of when these cases can arise is when either the formal or the actual
parameter is an anchored type, that is, the variable is declared using the
t abl e_nane. col utm_nane% ype syntax.

PL/SQL procedures or functions can accept a CLOB or a VARCHAR? as a formal
parameter. For example the PL/SQL procedure could be one of the following:

* When the formal parameter is a CLCB:

CREATE OR REPLACE PROCEDURE get _| ob(tabl e_name | N VARCHAR2, |ob | NOUT
CLOB) AS
BEG N
END;
/
* When the formal parameter is a VARCHARZ:

CREATE OR REPLACE PROCEDURE get _| ob(table_name | N VARCHAR2, |ob | NOUT
VARCHAR?) AS

BEG N

END;
/

The calling function could be of any of the following types:
* When the actual parameter is a CHR:

create procedure ...
declare
¢ VARCHAR?2[200] ;
BEG N

get _| ob('table_name', c);
END;

* When the actual parameter is a CLOB:

create procedure ...
decl are
c CLOB;
BEG N
get | ob('table_name', c);
END;

9.3.8 Binds of All Sizes in INSERT and UPDATE Operations

Binds of all sizes are supported for | NSERT and UPDATE operations on LOB columns.
Multiple binds of any size are allowed in a single | NSERT or UPDATE statement.

ORACLE 9-6

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

< Note:

When you create a table, the length of the default value you specify for any LOB
column is restricted to 4000 bytes.

9.3.9 4000 Byte Limit on Results of a SQL Operator

If you bind more than 4000 bytes of data to a BLOB or a CLOB, and the data consists of a SQL
operator, then Oracle Database limits the size of the result to at most 4000 bytes.

The following statement inserts only 4000 bytes because the result of LPAD is limited to 4000
bytes:

I NSERT | NTO print_media (ad_sourcetext) VALUES (lpad('a', 5000, 'a'));

The following statement inserts only 2000 bytes because the result of LPAD is limited to 4000
bytes, and the implicit hexadecimal to raw conversion converts it to 2000 bytes of RAWdata:

I NSERT | NTO print_nedia (ad_photo) VALUES (lpad('a', 5000, 'a'));

9.3.10 Example of 4000 Byte Result Limit of a SQL Operator

This example illustrates how the result for SQL operators is limited to 4000 bytes.

/* The follow ng command inserts only 4000 bytes because the result of
* LPAD is limted to 4000 bytes */
I NSERT | NTO print_medi a(product _id, ad_id, ad_sourcetext)
VALUES (2004, 5, lpad('a', 5000, 'a'));
SELECT LENGTH(ad_sourcetext) FROM print_media
VWHERE product _i d=2004 AND ad_i d=5;
ROLLBACK;

/* The follow ng command inserts only 2000 bytes because the result of
* LPAD is limted to 4000 bytes, and the inplicit hex to raw conversion
* converts it to 2000 bytes of RAWdata. */
I NSERT | NTO print_medi a(product _id, ad_id, ad_conposite)
VALUES (2004, 5, lpad('a', 5000, 'a'));
SELECT LENGTH(ad_conposite) from print_nedia
VWHERE product _i d=2004 AND ad_i d=5;
ROLLBAACK;

9.3.11 Restrictions on Binds of More Than 4000 Bytes

ORACLE

There are restrictions for binds of more than 4000 bytes:

» If a table has both LONGand LOB columns, then you can bind more than 4000 bytes of
data to either the LONG or LOB columns, but not both in the same statement.

* Inan | NSERT AS SELECT operation, binding of any length data to LOB columns is not
allowed.

9-7

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

9.3.12 Performing Parallel DDL, Parallel DML (PDML), and Parallel
Query (PQ) Operations on LOBs

Oracle supports parallel execution of the following operations when performed on
partitioned tables with SecureFiles LOBs or BasicFiles LOBs.

ORACLE

CREATE TABLE AS SELECT

I NSERT AS SELECT

Multitable | NSERT

SELECT

DELETE

UPDATE

MERCE (conditional UPDATE and | NSERT)
ALTER TABLE MOVE

SQL Loader

Import/Export

Additionally, Oracle supports parallel execution of the following operations when
performed on non-partitioned tables with only SecureFile LOBs:

CREATE TABLE AS SELECT

I NSERT AS SELECT

Multitable | NSERT

SELECT

DELETE

UPDATE

MERCE (conditional UPDATE and | NSERT)
ALTER TABLE MOVE

SQL Loader

Restrictions on parallel operations with LOBs

Parallel insert direct load (PIDL) is disabled if a table also has a BasicFiles LOB
column, in addition to a SecureFiles LOB column.

PDML is disabled if LOB column is part of a constraint.

PDML does not work when there are any domain indexes defined on the LOB
column.

Parallelism must be specified only for top-level non-partitioned tables.

Use the ALTER TABLE MOVE statement with LOB storage clause, to change the
storage properties of LOB columns instead of the ALTER TABLE MODI FY statement.
The ALTER TABLE MOVE statement is more efficient because it executes in parallel
and does not generate undo logs.

9-8

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

¢ See Also:

Oracle Database Administrator's Guide section "Managing Processes for Parallel
SQL Execution”

Oracle Database SQL Language Reference section "ALTER TABLE"

9.3.13 Example: PL/SQL - Using Binds of More Than 4000 Bytes in
INSERT and UPDATE

ORACLE

This example demonstrates using binds larger than 4000 bytes in | NSERT and UPDATE
operations.

DECLARE
bi gt ext VARCHAR2(32767);
smal | t ext VARCHAR2(2000);
bi graw RAW (32767);

BEG N
bigtext := LPAD('a', 32767, 'a');
smal I text := LPAD('a', 2000, 'a');
bigraw : = utl _raw cast_to_raw (bigtext);

/* Multiple long binds for LOB colums are allowed for | NSERT: */
I NSERT | NTO print_nedi a(product _id, ad_id, ad_sourcetext, ad_conposite)
VALUES (2004, 1, bigtext, bigraw);

/* Single long bind for LOB colums is allowed for |INSERT: */
I NSERT | NTO print_nedia (product_id, ad_id, ad_sourcetext)
VALUES (2005, 2, snalltext);

bigtext := LPAD('b', 32767, 'b');
smal ltext := LPAD('b', 20, 'a');
bigraw : = utl _raw cast_to_raw (bigtext);

/* Multiple long binds for LOB colums are allowed for UPDATE */
UPDATE print_nedia SET ad_sourcetext = higtext, ad_conposite = bhigraw,
ad_finaltext = smalltext;

/* Single long bind for LOB colums is allowed for UPDATE: */
UPDATE print_nedia SET ad_sourcetext = smalltext, ad_finaltext = bigtext;

/* The following is NOT all owed because we are trying to insert nore than
4000 bytes of data in a LONG and a LOB colum: */

I NSERT | NTO print_nedi a(product _id, ad_id, ad_sourcetext, press_rel ease)
VALUES (2030, 3, bhigtext, bigtext);

/* Insert of data into LOB attribute is allowed */
I NSERT | NTO print_nedi a(product _id, ad_id, ad_header)
VALUES (2049, 4, adheader _typ(null, null, null, bigraw));

/* The following is not allowed because we try to perform | NSERT AS
SELECT data INTO LOB */

I NSERT | NTO print_nedi a(product _id, ad_id, ad_sourcetext)
SELECT 2056, 5, bigtext FROM dual;

9-9

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

END;
/

9.3.14 Using the Data Interface for LOBs with INSERT, UPDATE, and
SELECT Operations

| NSERT and UPDATE statements on LOBs are used in the same way as on LONGs. For
example:

DECLARE
ad_buf fer VARCHAR2(100);
BEG N
I NSERT | NTO print_nedi a(product _id, ad_id, ad_sourcetext)
VALUES(2004, 5, 'Source for advertisement 1');
UPDATE print_media SET ad_sourcetext="'Source for advertisenent 2'
WHERE pr oduct _i d=2004 AND ad_i d=5;
/* This retrieves the LOB colum if it is up to 100 bytes, otherwise it
* raises an exception */
SELECT ad_sourcetext |NTO ad_buffer FROM print_nedia
WHERE pr oduct _i d=2004 AND ad_i d=5;
END;
/

9.3.15 Using the Data Interface for LOBs in Assignments and
Parameter Passing

ORACLE

The data interface for LOBs enables implicit assignment and parameter passing as
shown in the following example:

CREATE TABLE t (clob_col CLOB, blob_col BLOB);
INSERT INTO t VALUES(' abcdefg', 'aaaaaa');

DECLARE
var _buf VARCHAR2(100);
cl ob_buf CLOB;
raw_buf RAW100);
bl ob_buf BLOB;
BEG N
SELECT * I NTO clob_buf, blob_buf FROMt;
var_buf := clob_buf;
cl ob_buf: = var_buf;
raw_buf : = bl ob_buf;
bl ob_buf := raw buf;
END;

/

CREATE OR REPLACE PROCEDURE FOO (a IN QUT CLOB) IS

BEG N
-- Any procedure body
a = "abc';

END;

/

CREATE OR REPLACE PROCEDURE BAR (b IN QUT VARCHARZ2) IS

BEG N
-- Any procedure body
b :="xyz';

END;

9-10

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

/

DECLARE
a VARCHAR2(1100) := '1234567';
b CLOB;

BEG N
FO(a);
SELECT clob_col INTOb FROMt;
BAR(b);

END;

/

9.3.16 Using the Data Interface for LOBs with PL/SQL Built-In Functions

This example illustrates the use of CLOBs in PL/SQL built-in functions, using the data interface
for LOBs:

DECLARE
my_ad CLOB;
revised_ad CLOB;
myG st VARCHAR2(100):= 'This is ny gist.';
revi sedG st VARCHAR2(100);
BEG N
I NSERT | NTO print_nedia (product_id, ad_id, ad_sourcetext)
VALUES (2004, 5, 'Source for advertisenent 1');

-- select a CLOB colum into a CLOB variable
SELECT ad_sourcetext |NTO nmy_ad FROM print_nedia
WHERE pr oduct _i d=2004 AND ad_i d=5;

-- perform VARCHAR2 operations on a CLOB variable
revised_ad := UPPER(SUBSTR(ny_ad, 1, 20));

-- revised_ad is a tenporary LOB
-- Concat a VARCHAR2 at the end of a CLOB
revised_ad :=revised_ad || nyG st;

-- The following statenent raises an error if ny_ad is
-- longer than 100 bytes
myG st ;= ny_ad;

END;

/

9.4 The Data Interface Used for Persistent LOBs in OCI

This section discusses OCI functions included in the data interface for persistent LOBSs.
These OCI functions work for LOB datatypes exactly the same way as they do for LONG
datatypes. Using these functions, you can perform | NSERT, UPDATE, fetch, bind, and define

operations in OCI on LOBs using the same techniques you would use on other datatypes that
store character or binary data.

" Note:

You can use array bind and define interfaces to insert and select multiple rows with
LOBs in one round trip.

ORACLE 9-11

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

¢ See Also:

Oracle Call Interface Programmer's Guide, section "Runtime Data Allocation
and Piecewise Operations in OCI"

9.4.1 LOB Data Types Bound in OCI

You can bind LOB datatypes in the following operations:

* Regular, piecewise, and callback binds for | NSERT and UPDATE operations
* Array binds for | NSERT and UPDATE operations

e Parameter passing across PL/SQL and OCI boundaries

Piecewise operations can be performed by polling or by providing a callback. To
support these operations, the following OCI functions accept the LONGand LOB data
types listed in Table 9-2.

e (OCl Bi ndByNane() and COCl Bi ndByPos()

These functions create an association between a program variable and a
placeholder in the SQL statement or a PL/SQL block for | NSERT and UPDATE
operations.

e (OCl Bi ndDynami c()

You use this call to register callbacks for dynamic data allocation for | NSERT and
UPDATE operations

e OC StntGetPiecelnfo() and OCl St nt Set Pi ecel nfo()

These calls are used to get or set piece information for piecewise operations.

9.4.2 LOB Data Types Defined in OCI

The data interface for persistent LOBs allows the following OCI functions to accept the
LONG and LOB data types listed in Table 9-2.

e OCl DefineByPos()
This call associates an item in a SELECT list with the type and output data buffer.
e OCl Definebynam c()

This call registers user callbacks for SELECT operations if the OCI _DYNAM C_FETCH
mode was selected in OCl Def i neByPos() function call.

When you use these functions with LOB types, the LOB data, and not the locator, is
selected into your buffer. Note that in OCI, you cannot specify the amount you want to
read using the data interface for LOBs. You can only specify the buffer length of your
buffer. The database only reads whatever amount fits into your buffer and the data is
truncated.

ORACLE 9-12

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9.4.3 Multibyte Character Sets Used in OCI with the Data Interface for
LOBs

When the client character set is in a multibyte format, functions included in the data interface
operate the same way with LOB datatypes as they do for LONG datatypes as follows:

« For a piecewise fetch in a multibyte character set, a multibyte character could be cut in
the middle, with some bytes at the end of one buffer and remaining bytes in the next
buffer.

e For a regular fetch, if the buffer cannot hold all bytes of the last character, then Oracle
returns as many bytes as fit into the buffer, hence returning partial characters.

9.4.4 OCI Functions Used to Perform INSERT or UPDATE on LOB
Columns

This section discusses the various techniques you can use to perform | NSERT or UPDATE
operations on LOB columns or attributes using the data interface. The operations described
in this section assume that you have initialized the OCI environment and allocated all
necessary handles.

9.4.4.1 Performing Simple INSERTs or UPDATESs in One Piece

To perform simple | NSERT or UPDATE operations in one piece using the data interface for
persistent LOBs, perform the following steps:

1. Call OC St nt Prepare() to prepare the statement in OCI _DEFAULT mode.

2. Call OCl Bi ndByNane() or OCl Bi ndbyPos() in OCl _DEFAULT mode to bind a placeholder for
LOB as character data or binary data.

3. Call OCl St nt Execut e() to do the actual | NSERT or UPDATE operation.

9.4.4.2 Using Piecewise INSERTs and UPDATEs with Polling

To perform piecewise | NSERT or UPDATE operations with polling using the data interface for
persistent LOBs, do the following steps:

1. Call OCl St nt Prepare() to prepare the statement in OCI _DEFAULT mode.

2. Call OCl Bi ndByName() or OCl Bi ndbyPos() in OCl _DATA_AT_EXEC mode to bind a LOB as
character data or binary data.

3. Call OO St nt Execut e() in default mode. Do each of the following in a loop while the value
returned from CCl St nt Execut e() is OCl _NEED_DATA. Terminate your loop when the value
returned from OCl St mt Execut e() is OCl _SUCCESS.

()
e Call OCl St nt Get Pi ecel nfo() to retrieve information about the piece to be inserted.
e Call OCl St nt Set Pi ecel nfo()

9.4.4.3 Performing Piecewise INSERTs and UPDATESs with Callback

To perform piecewise | NSERT or UPDATE operations with callback using the data interface for
persistent LOBs, do the following steps:

to set information about piece to be inserted.

ORACLE 9-13

3.
4.

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

Call OCl St nt Prepare() to prepare the statement in OCl _DEFAULT mode.

Call OCl Bi ndByNane() or OCl Bi ndbyPos() in OCI _DATA AT _EXEC mode to bind a
placeholder for the LOB column as character data or binary data.

Call OCl Bi ndDynani ¢() to specify the callback.
Call OCl St nt Execut e() in default mode.

9.4.4.4 Array INSERT and UPDATE Operations

To perform array | NSERT or UPDATE operations using the data interface for persistent
LOBs, use any of the techniques discussed in this section in conjunction with

COCl Bi ndArrayOf Struct (), or by specifying the number of iterations (i ter), with i t er
value greater than 1, in the OCl St nt Execut e() call.

9.4.5 The Data Interface Used to Fetch LOB Data in OCI

This section discusses techniques you can use to fetch data from LOB columns or
attributes in OCI using the data interface for persistent LOBs.

9.4.5.1 Simple Fetch in One Piece

To perform a simple fetch operation on LOBs in one piece using the data interface for
persistent LOBs, do the following:

1.
2.

3.
4,

Call OCl St nt Prepare() to prepare the SELECT statement in OCI _DEFAULT mode.

Call OCl Def i neByPos() to define a select list position in OCl _DEFAULT mode to
define a LOB as character data or binary data.

Call OCl St nt Execut e() to run the SELECT statement.
Call OCl St nt Fet ch() to do the actual fetch.

9.4.5.2 Performing a Piecewise Fetch with Polling

To perform a piecewise fetch operation on a LOB column with polling using the data
interface for LOBs, do the following steps:

1.
2.

ORACLE

Call OCl St nt Prepare() to prepare the SELECT statement in OCI _DEFAULT mode.

Call OCl Def i nebyPos() to define a select list position in OCl _DYNAM C_FETCH mode
to define the LOB column as character data or binary data.

Call OCl St nt Execut e() to run the SELECT statement.

Call OC St nt Fet ch() in default mode. Do each of the following in a loop while the
value returned from OCI St nt Fet ch() is OCl _NEED DATA. Terminate your loop when
the value returned from OCl St nt Fet ch() is OCl _SUCCESS.

e Call OCl St nt Get Pi ecel nfo() to retrieve information about the piece to be
fetched.

e Call OC St nt Set Pi ecel nfo() to set information about piece to be fetched.

9-14

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9.4.5.3 Performing a Piecewise with Callback

To perform a piecewise fetch operation on a LOB column with callback using the data
interface for persistent LOBs, do the following:

1. Call OC Stnt Prepare() to prepare the statement in OCI _DEFAULT mode.

2. Call OCl Defi nebyPos() to define a select list position in OCl _DYNAM C_FETCH mode to
define the LOB column as character data or binary data.

3. Call OC St nt Execut e() to run the SELECT statement.
4. Call OCl Defi neDynani c() to specify the callback.
5. Call OCl St nt Fet ch() in default mode.

9.4.5.4 Array Fetch

To perform an array fetch in OCI using the data interface for persistent LOBs, use any of the
techniques discussed in this section in conjunction with OCl Def i neArrayOf St ruct (), or by
specifying the number of iterations (i t er), with the value of i t er greater than 1, in the

OCl St nt Execut e() call.

9.4.6 PL/SQL and C Binds from OCI

ORACLE

When you call a PL/SQL procedure from OCI, and have an | Nor OUT or I N OUT bind, you
should be able to:

* Bind a variable as SQLT_CHR or SQLT_LNGwhere the formal parameter of the PL/SQL
procedure is SQLT_CLOB, or

* Bind a variable as SQLT_BI Nor SQLT_LBI where the formal parameter is SQ.T_BLOB

The following two cases work:

Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner
Here is an example of calling PL/SQL out-binds in the "begin foo(:1); end;" Manner:

text *sglstnt = (text *)"BEG N get _lob(:c); END, "

Calling PL/SQL Out-binds in the "call foo(:1);" Manner
Here is an example of calling PL/SQL out-binds in the "call foo(:1);" manner:

text *sglstnmt = (text *)"CALL get_lob(:c);" ;

In both these cases, the rest of the program has these statements:

COCl St nt Prepare(stnthp, errhp, sqlstnt, (ubd)strlen((char *)sqglstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCl _DEFAULT);
curlen = 0;

CCl Bi ndByNane(st nt hp, &bndhp[3], errhp,
(text *) ":c", (sb4) strlen((char *) ":c"),
(dvoid *) buf5, (sb4) LONGLEN, SQLT_CHR,
(dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
(ub4) 1, (ub4 *) &curlen, (ub4) OCl _DATA AT_EXEC);

The PL/SQL procedure, get _| ob(), is as follows:

9-15

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

procedure get_lob(c INOUT CLOB) is -- This night have been col um% ype
BEG N
. /* The procedure body could be in PL/SQ or Ct/
END,

9.4.7 Example: C (OCI) - Binds of More than 4000 Bytes for INSERT
and UPDATE

You can use binds of more than 4000 byes for | NSERT and UPDATE operations.

void insert3()
{
/* Insert of data into LOB attributes is allowed. */
ubl buffer[8000];
text *insert_sql = (text *)"INSERT INTO Print_nedia (ad_header) \
VALUES (adheader _typ(NULL, NULL, NULL,:1))";
OCl Stnt Prepare(stnthp, errhp, insert_sql, strlien((char*)insert_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCl _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCl _DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (const OCl Snapshot*) 0,
(OCl Snapshot*) 0, OCI _DEFAULT);
}

9.4.8 Using the Data Interface for LOBs in PL/SQL Binds from OCI on

LOBs

ORACLE

The data interface for LOBs allows LOB PL/SQL binds from OCI to work. When you
call a PL/SQL procedure from OCI, and have an | N or OUT or I N QUT bind, you should
be able to bind a variable as SQLT_CHR, where the formal parameter of the PL/SQL
procedure is SQLT_CLOB.

< Note:

C procedures are wrapped inside a PL/SQL stub, so the OCI application
always calls the PL/SQL stub.

For the OCI calling program, the following are likely cases:

Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner

For example:

text *sqlstm = (text *)"BEGN PKGL. P5 (:c); END, "

Calling PL/SQL Out-binds in the "call foo(:1);" Manner
For example:

text *sglstnmt = (text *)"CALL PKGL.P5(:c);" ;

In both these cases, the rest of the program is as follows:

9-16

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

COCl Stnt Prepare(stnthp, errhp, sqlstnt, (ubd)strlen((char *)sqglstnt),
(ub4) OOl _NTV_SYNTAX, (ub4) OCI _DEFAULT);
curlen = 0;

COCl Bi ndByNane(st nt hp, &bndhp[3], errhp,
(text *) ":c4", (sbh4) strlen((char *) ":c"),
(dvoid *) buf5, (sb4) LONGLEN, SQLT_CHR
(dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
(ub4) 1, (ub4 *) &curlen, (ub4) OCl _DATA AT _EXEC);

QOCl St nt Execut e(svchp, stnthp, errhp, (ub4) 0, (ub4) 0, (const QOCl Snapshot*) 0,
(OCl Snapshot*) 0, (ub4) OCI _DEFAULT);

The PL/SQL procedure PKGL. P5 is as follows:
CREATE OR REPLACE PACKAGE BODY pkgl AS
pr.o.cédure p5 (c OUT CLOB) is
- This mght have been tabl e% owtype (so it is CLOB now)
BEG N
ENb. b5;
END pkgl;
9.4.9 Binding LONG Data for LOB Columns in Binds Greater Than 4000
Bytes
This example illustrates binding character data for a LOB column:
voi d sinple_insert()
word bufl en;
text buf[5000];
text *insstmt = (text *) "INSERT INTO Print_nedia(Product _id, Ad_id,\
Ad_sourcetext) VALUES (2004, 1, :SRCTXT)";

OCl Stnt Prepare(stnthp, errhp, insstnt, (ub4)strlen((char *)insstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI DEFAULT);

QOCl Bi ndByNane(st nt hp, &bndhp[0], errhp,
(text *) ":SRCTXT", (sb4) strlen((char *) ":SRCTXT"),
(dvoid *) buf, (sh4) sizeof(buf), SQT_CHR
(dvoid *) 0, (ub2 *) 0, (ub2 *) O,
(ub4) 0, (ub4 *) 0, (ub4) OC _DEFAULT);

menset ((void *)buf, (int)'A, (size_t)5000);

OCl St nt Execut e(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(const OCl Snapshot*) 0, (OC Snapshot*) 0, (ub4) OCl _DEFAULT);
}

9.4.10 Binding LONG Data to LOB Columns Using Piecewise INSERT with
Polling

This example illustrates using piecewise | NSERT with polling using the data interface for
LOBs.

ORACLE 9-17

ORACLE

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

voi d piecew se_insert()

{

text *sqlstnmt = (text *)"INSERT INTO Print_medi a(Product_id, Ad_id,\
Ad_sourcetext) VALUES (:1, :2, :3)";

ub2 rcode;

ubl piece, i;

word product _id = 2004;

word ad_id = 2;

ub4 bufl en;

char buf[5000];

OCl Stnt Prepare(stnthp, errhp, sqlstnt, (ub4)strlen((char *)sqlstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(stnthp, &bndhp[0], errhp, (ub4) 1,
(dvoid *) &product _id, (sb4) sizeof(product_id), SQ.T_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)0,
(ub4) 0, (ub4 *) 0, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(stnthp, &bndhp[1], errhp, (ub4) 2,
(dvoid *) &ad_id, (sb4) sizeof(ad_id), SQT_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)0,
(ub4) 0, (ub4 *) 0, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(stnthp, &bndhp[2], errhp, (ub4) 3,
(dvoid *) 0, (sh4) 15000, SQLT_LNG
(dvoid *) 0, (ub2 *)0, (ub2 *)0,
(ub4) 0, (ub4 *) 0, (ub4) OCl_DATA_AT_EXEQ);

i =0;
while (1)
{ .

i ++;

retval = OCl Stnt Execute(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(CONST OClI Snapshot*) 0, (OCl Snapshot*) 0,
(ub4) OCI _DEFAULT):
switch(retval)
{
case OCl _NEED_DATA:
menset ((void *)buf, (int)"'A +i, (size_t)5000);
bufl en = 5000;
if (i == 1) piece = OCl _FI RST_PI ECE;
else if (i == 3) piece = OCl _LAST_PI ECE;
el se piece = OCl _NEXT_PI ECE;

if (OCIStnt SetPiecelnfo((dvoid *)bndhp[2],
(ub4) OCl _HTYPE_BIND, errhp, (dvoid *)buf,
&buflen, piece, (dvoid *) 0, & code))
{
printf("ERROR OCl StntSetPiecelnfo: % \n", retval);
break;

}

break;
case OCl _SUCCESS:
break;
defaul t:
printf("oci exec returned % \n", retval);
report_error(errhp);
retval = OCl _SUCCESS;
} /* end switch */
if (retval == OCl _SUCCESS)
break;

9-18

}

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

} I* end while(l) */

9.4.11 Binding LONG Data to LOB Columns Using Piecewise INSERT with

Callback

ORACLE

This example illustrates binding LONG data to LOB columns using a piecewise | NSERT with
callback:

voi d cal | back_insert()

{

}

word buflen = 15000;

word product _id = 2004;

word ad_id = 3;

text *sqglstm = (text *) "INSERT INTO Print_media(Product_id, Ad_id,\
Ad_sourcetext) VALUES (:1, :2, :3)";

word pos = 3;

OCl Stnt Prepare(stnthp, errhp, sqlstn, (ub4)strlen((char *)sqlstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT)

OCl Bi ndByPos(stnthp, &bndhp[0], errhp, (ub4) 1,
(dvoid *) &product_id, (sb4) sizeof(product_id), SQ.T_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)O,
(ub4) 0, (ub4 *) 0, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(stnthp, &bndhp[1], errhp, (ub4) 2,
(dvoid *) &ad_id, (sb4) sizeof(ad_id), SQT_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)O,
(ub4) 0, (ub4 *) 0, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(stnthp, &bndhp[2], errhp, (ub4) 3,
(dvoid *) 0, (sb4) buflen, SQT_CHR,
(dvoid *) 0, (ub2 *)0, (ub2 *)O,
(ub4) 0, (ub4 *) 0, (ub4) OCl_DATA_AT_EXEQ);

OCl Bi ndDynami ¢(bndhp[2], errhp, (dvoid *) (dvoid *) &pos,
insert_cbk, (dvoid *) 0, (QOC CallbackQutBind) 0);

OCl St nt Execut e(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(const OCl Snapshot*) 0, (OCl Snapshot*) 0,
(ub4) OOl _DEFAULT);

/* end insert_data() */

/* Inbind callback to specify input data. */
static sbh4 insert_cbk(dvoid *ctxp, OCI Bind *bindp, ub4 iter, ub4 index,

{

dvoid **bufpp, ub4 *al enpp, ubl *piecep, dvoid **indpp)

static int a = 0;

word j;

ub4 inpos = *((ub4 *)ctxp);
char buf[5000];

swit ch(inpos)

case 3:
memset ((void *)buf, (int) 'A +a, (size_t) 5000);
*bufpp = (dvoid *) buf;
*al enpp = 5000 ;
a++;
br eak;

9-19

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

default: printf("ERROR invalid position number: %\ n", inpos);
}

*indpp = (dvoid *) 0;
*pi ecep = OCl _ONE_PI ECE;
if (inpos == 3)

if (a<=1)

{
*pi ecep = OCl _FI RST_PI ECE;
printf("Insert callback: 1st piece\n");

else if (a<3d)
{
*pi ecep = OCl _NEXT_PI ECE;
printf("Insert callback: %'th piece\n", a);
}
el se {
*pi ecep = OCl _LAST_PI ECE;
printf("Insert callback: %'th piece\n", a);
a=0;
}
}
return OCl _CONTI NUE;

}
9.4.12 Binding LONG Data to LOB Columns Using an Array INSERT

This example illustrates binding character data for LOB columns using an array | NSERT
operation:

void array_insert()
{
ub4 i;
word bufl en;
word arrbuf1[5];
word arrbuf 2[5] ;
text arrbuf3[5][5000];
text *insstnm = (text *)"INSERT INTO Print_nedia(Product_id, Ad_id,\
Ad_sourcetext) VALUES (:PID, :AID :SRCTXT)";

OCl St nt Prepare(stnthp, errhp, insstnt,
(ub4)strlen((char *)insstnt), (ub4) OCI _NTV_SYNTAX,
(ub4) OCI _DEFAULT):

OCl Bi ndByName(st nt hp, &bndhp[0], errhp,
(text *) ":PID', (sb4) strlen((char *) ":PID"),
(dvoid *) &arrbuf1[0], (sb4) sizeof(arrbufl[0]), SQ.T_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *) 0,
(ub4) 0, (ub4 *) 0, (ub4) OCl _DEFAULT);

OCl Bi ndByNane(st nt hp, &bndhp[1], errhp,
(text *) ":AID', (sb4) strlen((char *) ":AD"),
(dvoid *) &arrbuf2[0], (sb4) sizeof(arrbuf2[0]), SQ.T_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *) 0,
(ub4) 0, (ub4 *) 0, (ub4) OC _DEFAULT);

CCl Bi ndByNane(stnt hp, &bndhp[2], errhp,

(text *) ":SRCTXT", (sb4) strlen((char *) ":SRCTXT"),
(dvoid *) arrbuf3[0], (sbh4) sizeof(arrbuf3[0]), SQT_CHR,

ORACLE 9-20

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

(dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
(ub4) 0, (ub4 *) 0, (ub4) OCI _DEFAULT):

COCl Bi ndArrayOf Struct (bndhp[0], errhp sizeof (arrbuf1[0]),
i ndsk, rlsk, rcsk);

CCl Bi ndArrayOf Struct (bndhp[1], errhp, sizeof(arrbuf2[0]),
i ndsk, rlsk, rcsk);

CCl Bi ndArrayOf Struct (bndhp[2], errhp, sizeof(arrbuf3[0]),
i ndsk, rlsk, rcsk);

for (i=0; i<5; i++)

{

arrbuf1[i] = 2004;

arrbuf2[i] =i+4,

memset ((void *)arrbuf3[i], (int)' A +i, (size_t)5000);
}

OCl St nt Execut e(svchp, stnthp, errhp, (ub4) 5, (ub4) O,
(const OCl Snapshot*) 0, (OC Snapshot*) 0,
(ub4) OCl _DEFAULT);

}
9.4.13 Selecting a LOB Column into a LONG Buffer Using a Simple Fetch

This example illustrates selecting a LOB column using a simple fetch:

voi d sinple_fetch()
{
word retval;
text buf[15000];
text *selstm = (text *) "SELECT Ad_sourcetext FROM Print_nmedi a WHERE\
Product _id = 2004";

OCl St nt Prepare(stnthp, errhp, selstnt, (ub4)strlen((char *)selstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);

retval = OCl Stnt Execute(svchp, stnthp, errhp, (ub4) 0, (ub4) O,
(const OCl Snapshot*) 0, (OCl Snapshot*) 0,
(ub4) OCI _DEFAULT);
while (retval == OCI _SUCCESS || retval == OCl _SUCCESS W TH_| NFO
{
QOCl Def i neByPos(stnt hp, &defhp, errhp, (ub4) 1, (dvoid *) buf,
(sb4) sizeof (buf), (ub2) SQT_CHR (dvoid *) O,
(ub2 *) 0, (ub2 *) 0, (ub4) OCI _DEFAULT);
retval = OCl StntFetch(stmthp, errhp, (ub4) 1,
(ub4) OCI _FETCH_NEXT, (ub4) OCI _DEFAULT);
if (retval == OCl_SUCCESS || retval == OCl _SUCCESS W TH_ | NFO
printf("buf = %*s\n", 15000, buf);
}
}

9.4.14 Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch
with Polling

This example illustrates selecting a LOB column into a LONG buffer using a piecewise fetch
with polling:

voi d piecew se_fetch()

{

ORACLE 9-21

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

text buf[15000];

ub4 bufl en=5000;

word retval;

text *selstnmt = (text *) "SELECT Ad_sourcetext FROM Print_nedia
WHERE Product _id = 2004 AND Ad_id = 2";

OCl St nt Prepare(stnthp, errhp, selstnt,
(ub4) strlen((char *)selstnt),
(ub4) OCl _NTV_SYNTAX, (ub4) OCl DEFAULT):

COCl Def i neByPos(stnt hp, &dfnhp, errhp, (ub4) 1,
(dvoid *) NULL, (sb4) 100000, SQLT_LNG
(dvoid *) 0, (ub2 *) 0,
(ub2 *) 0, (ub4) OCI _DYNAM C FETCH);

retval = OCl Stnt Execute(svchp, stnthp, errhp, (ub4) 0, (ub4) O,
(CONST OCl Snapshot*) 0, (OC Snapshot *)
(ub4) OCl _DEFAULT):

0,

retval = OCl StntFetch(stnthp, errhp, (ub4) 1,
(ub2) OCI _FETCH NEXT, (ub4) OCI _DEFAULT):

while (retval !'= OCl _NO DATA && retval != OCl _SUCCESS)
{

ubl piece;

ub4 iter;

ub4 idx;

genclr((void *)buf, 5000);
switch(retval)
{
case OCI _NEED_DATA:
OCl St nt Get Pi ecel nfo(stnthp, errhp, &hdlptr, &hdltype,
& n_out, &ter, & dx, &piece);
bufl en = 5000;
OCl St nt Set Pi ecel nfo(hdl ptr, hdltype, errhp,
(dvoid *) buf, &buflen, piece,
(CONST dvoid *) & ndpl, (ub2 *) 0);
retval = OCl _NEED DATA;
br eak;
defaul t:
printf("ERROR piece-w se fetching, %l\n", retval);
return;
} /* end switch */
retval = OCl StntFetch(stnthp, errhp, (ub4) 1,
(ub2) OCl _FETCH NEXT, (ub4) OCl _DEFAULT):
printf("Data : %5000s\n", buf);
} /* end while */
}

9.4.15 Selecting a LOB Column into a LONG Buffer Using Piecewise
Fetch with Callback

ORACLE

This example illustrates selecting a LONG column into a LOB buffer when using a
piecewise fetch with callback:

char buf[5000];
voi d cal | back_fetch()

{

9-22

ORACLE

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

word outpos = 1;
text *sqlstnt = (text *) "SELECT Ad_sourcetext FROM Print_medi a WHERE
Product _id = 2004 AND Ad_id = 3";

OCl Stnt Prepare(stnthp, errhp, sqlstnm, (ub4)strlen((char *)sqlstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
OCl Def i neByPos(stnthp, &dfnhp[0], errhp, (ub4) 1,
(dvoid *) 0, (sh4)3 * sizeof(buf), SQT_CHR
(dvoid *) 0, (ub2 *)0, (ub2 *)0,
(ub4) OCl _DYNAM C_FETCH);

CCl Def i neDynami c(df nhp[0], errhp, (dvoid *) &outpos,
(OCl Cal | backDefine) fetch_cbk);

OCl St nt Execut e(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(const OCl Snapshot*) 0, (OC Snapshot*) 0,
(ub4) OCI _DEFAULT);

buf[4999] = "\0'";

printf("Sel ect callback: Last piece: %\n", buf);

}

/K */
/* Fetch callback to specify buffers. */
/K */

static sb4 fetch_cbk(dvoid *ctxp, OClDefine *dfnhp, ub4 iter, dvoid **bufpp,
ub4 **al enpp, ubl *piecep, dvoid **indpp, ub2 **rcpp)
{
static int a = 0;
ub4 outpos = *((ub4 *)ctxp);
ub4 | en = 5000;
swi t ch(out pos)

case 1:
a ++;
*buf pp = (dvoid *) buf;
*al enpp = &l en;
br eak;
defaul t:
*buf pp = (dvoid *) 0;
*al enpp = (ub4 *) 0;
printf("ERROR invalid position nunber: %l\n", outpos);
}
*indpp = (dvoid *) O;
*repp = (ub2 *) 0

buf[{len] ="\0";

if (a<=1)

{
*pi ecep = OCl _FI RST_PI ECE;
printf("Select callback: Oth piece\n");

else if (a<3d)
{
*pi ecep = OCl _NEXT_PI ECE;
printf("Select callback: %' th piece: %\n", a-1, buf);
}
el se {
*pi ecep = OCl _LAST_PI ECE;
printf("Select callback: %' th piece: %\n", a-1, buf);
a=0;

}

9-23

Chapter 9
The Data Interface Used with Persistent LOBs in Java

return OCl _CONTI NUE;
}

9.4.16 Selecting a LOB Column into a LONG Buffer Using an Array

Fetch

This example illustrates selecting a LOB column into a LONG buffer using an array
fetch:

void array_fetch()
{
word i;
text arrbuf[5][5000];
text *selstnt = (text *) "SELECT Ad_sourcetext FROM Print_nmedi a WHERE
Product _id = 2004 AND Ad_id >=4";

OCl Stnt Prepare(stnthp, errhp, selstnm, (ub4)strlen((char *)selstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);

OCl St nt Execut e(svchp, stnthp, errhp, (ub4) 0, (ub4) O,
(const OCl Snapshot*) 0, (OC Snapshot*) 0, (ub4) OCl _DEFAULT);

OCl Def i neByPos(stnthp, &defhpl, errhp, (ub4) 1,
(dvoid *) arrbuf[0], (sb4) sizeof(arrbuf[0]),
(ub2) SQLT_CHR, (dvoid *) O,
(ub2 *) 0, (ub2 *) 0, (ub4) OCI _DEFAULT);

OCl Def i neArrayOf Struct (df nhpl, errhp, sizeof(arrbuf[0]), indsk,
rl sk, rcsk);

retval = OCl StntFetch(stnthp, errhp, (ub4) 5,

(ub4) OCI _FETCH NEXT, (ub4) OCl _DEFAULT);
if (retval == OCI _SUCCESS || retval == OCl _SUCCESS W TH_| NFO
{

printf("%5000s\n", arrbuf[0])
printf("%5000s\n", arrbuf[1])
printf("%5000s\n", arrbuf[2])
()
()

printf("%5000s\n", arrbuf[3]);
printf("%5000s\n", arrbuf[4]
}
}

0.5 The Data Interface Used with Persistent LOBS in Java

ORACLE

You can also read and write CLOB and BLOB data using the same streaming mechanism
as for LONG and LONG RAWdata.

To read, use def i neCol umType(nn, Types. LONGVARCHAR) or defi neCol umType(nn,
Types. LONGVARBI NARY) on the column. This produces a direct stream on the data as if
it is a LONG or LONG RAWcolumn. For input in a Pr epar edSt at enent , you may use

set Bi naryStrean(), set Character Strean(), or set Ascii Strean() for a parameter
which is a BLOB or CLOB. These methods use the stream interface to create a LOB in
the database from the data in the stream. If the length of the data is known, for better
performance, use the versions of set Bi nar ySt r eam() or set Char act er St r eam
functions which accept the length parameter. The data interface also supports
standard JDBC methods such as getString/getBytes on ResultSet and
CallableStatement and setString/setBytes on PreparedStatement to read and write

9-24

Chapter 9
The Data Interface Used with Remote LOBs

LOB data. It is easier to code, and in many cases faster, to use these APIs for LOB access.
All these techniques reduce database round trips and may result in improved performance in
some cases. See the Javadoc on stream data for the significant restrictions which apply, at
http://ww. oracl e. com t echnol ogy/ .

Refer to the following in the JDBC Developer's Guide and Reference:

" See Also:

e Oracle Database JDBC Developer's Guide, "Working with LOBs and BFILEs",
section "Data Interface for LOBs"

e Oracle Database JDBC Developer's Guide, "JDBC Standards Support"

9.6 The Data Interface Used with Remote LOBS

The data interface for insert, update, and select of remote LOBs (access over a dbl i nk) is
supported after Oracle Database 10g Release 2.

9.6.1 About the Data Interface with Remote LOBs

The examples discussed use the print _nedi a table created in two schemas: dbs1 and dbs2.
The CLOB column of that table used in the examples shown is ad_fi nal t ext. The examples to
be given for PL/SQL, OCI, and Java use binds and defines for this one column, but multiple
columns can also be accessed. Here is the functionality supported and its limitations:

* You can define a CLOB as CHAR or NCHAR and an NCLOB as CHAR or NCHAR. CLOB and
NCLOB can be defined as a LONG. A BLOB can be defined as a RAWor a LONG RAW

e Array binds and defines are supported.

¢ See Also:

"Remote Data Interface Example in PL/SQL" and the sections following it.

9.6.2 Non-Supported Syntax

ORACLE

Certain syntax is not supported for remote LOBs.

* Queries involving more than one database are not supported:

SELECT t1.|obcol, a2.1obcol FROMt1, t2.1obcol @bs2 a2 WHERE
LENGTH(t 1. | obcol) = LENGTH(a2. | obcol);

Neither is this query (in a PL/SQL block):

SELECT t 1.1 obcol INTO varchar_bufl FROM t 1@lbs1l
UNION ALL
SELECT t 2.1 obcol I NTO varchar_buf2 FROM t 2@lbs2;

9-25

http://www.oracle.com/technology/

Chapter 9
The Data Interface Used with Remote LOBs

* Only binds and defines for data going into remote persistent LOB columns are
supported, so that parameter passing in PL/SQL where CHAR data is bound or
defined for remote LOBs is not allowed because this could produce a remote
temporary LOB, which are not supported. These statements all produce errors:

SELECT foo() |NTO varchar_buf FROMtabl el@bs2; -- foo returns a LOB
SELECT foo() @bs | NTO char_val FROM DUAL; -- foo returns a LOB

SELECT XM.Type(). getcl obval | NTO varchar_buf FROM tabl el@bs2;
e If the remote object is a view such as

CREATE VIEWvV AS SELECT foo() a FROM... ; -- foo returns a LOB
/* The | ocal database then tries to get the CLOB data and returns an error */
SELECT a INTO varchar _buf FROM v@lbs2;

This returns an error because it produces a remote temporary LOB, which is not
supported.
e RETURNI NG| NTOdoes not support implicit conversions between CHAR and CLCB.

e PL/SQL parameter passing is not allowed where the actual argument is a LOB
type and the remote argument is a VARCHAR2, NVARCHAR2, CHAR, NCHAR, or RAW

9.6.3 Remote Data Interface Example in PL/SQL

The data interface only supports data of size less than 32KB in PL/SQL. The following
shippet shows a PL/SQL example:

CONNECT pm
decl are
my_ad varchar (6000) := I pad('b', 6000, 'b");
BEG N
I NSERT | NTO print_nmedi a@bs2(product _id, ad_id, ad_finaltext)
VALUES (10000, 10, ny_ad);
-- Reset the buffer value
my_ad :="'a';
SELECT ad_finaltext INTO my_ad FROM print_medi a@lbs?2
WHERE product _id = 10000;
END;
/

If ad_fi nal t ext were a BLOB column instead of a CLOB, nmy_ad has to be of type RAW If
the LOB is greater than 32KB - 1 in size, then PL/SQL raises a truncation error and the
contents of the buffer are undefined.

9.6.4 Remote Data Interface Example in OCI

ORACLE

The data interface only supports data of size less than 2 @Byt es (the maximum value
possible of a variable declared as sh4) for OCI. The following pseudocode can be
enhanced to be a part of an OCI program:

text *sgl = (text *)"insert into print_medi a@bs2
(product _id, ad_id, ad_finaltext)
values (:1, :2, :3)";

OCl Stnt Prepare(...);

COCl Bi ndByPos(...); /* Bind data for positions 1 and 2
* which are independent of LOB */

9-26

Chapter 9
The Data Interface Used with Remote LOBs

CCl Bi ndByPos(stnthp, &bndhp[2], errhp, (ub4) 3,
(dvoid *) charbufl, (sb4) len_charbufl, SQLT_CHR,
(dvoid *) 0, (ub2 *)0, (ub2 *)0, 0, 0, OCl _DEFAULT);
OCl St nt Execute(...);

text *sqgl = (text *)"select ad_finaltext from print_nedi a@bs2
where product _id = 10000";
OCl Stnt Prepare(...);
OCl Def i neByPos(stnthp, &dfnhp[2], errhp, (ub4) 1,
(dvoid *) charbuf2, (sb4) Ien_charbuf2, SQT_CHR,
(dvoid *) 0, (ub2 *)0, (ub2 *)0, OCI_DEFAULT);
OCl St nt Execute(...);

If ad_final t ext were a BLOB instead of a CLOB, then you bind and define using type
SQLT_BI N. If the LOB is greater than 2GB - 1 in size, then OCI raises a truncation error and
the contents of the buffer are undefined.

9.6.5 Remote Data Interface Examples in JDBC

ORACLE

The following code snippets works with all three JDBC drivers (OCI, Thin, and kpr b in the
database):

Bind:

This is for the non-streaming mode:

String sql = "insert into print_medi a@bs2 (product_id, ad_id, ad_final_text)" +
" values (:1, :2, :3)";
PreparedSt at ement pstnt = conn. prepareStatement (sql);
pstnt.setint(1, 2);
pstnt.setint(2, 20);
pstnt.setString(3, "Java string");
int rows = pstnt.executeUpdate();

For the streaming mode, the same code as the preceding works, except that the set String()
statement is replaced by one of the following:

pstnt . set CharacterStrean(3, new Label edReader (), 1000000);
pstnt.setAscii Strean(3, new Label edAsciilnputStrean(), 1000000);

Here, Label edReader () and Label edAsci i | nput Strean() produce character and ASCII
streams respectively. If ad_fi nal t ext were a BLOB column instead of a CLOB, then the
preceding example works if the bind is of type RAW

pstnt.setBytes(3, <some byte[] array>);
pstnt.setBinaryStream 3, new Label edl nput Strean(), 1000000);

Here, Label edl nput St rean() produces a hinary stream.
Define:

For non-streaming mode:

9-27

Chapter 9
The Data Interface Used with Remote LOBs

OracleStatenent stnt = (Oracl eStatenent) (conn. createStatenent());
stnt. defineCol umType(1, Types.VARCHAR);
Resul tSet rst = stnt.executeQuery("select ad_finaltext from
print_medi a@bs2");
while(rst.next())
{
String s =rst.getString(1);
Systemout.printin(s);

}

For streaming mode:

Oracl eStatenent stnt = (Oracl eStatenent) (conn. createStatenent());
stnt. defineCol umType(1, Types. LONGVARCHAR);
Resul t Set rst = stnt.executeQuery("select ad_finaltext from
print_nedi a@bs2");
while(rst.next())
{
Reader reader = rst.getCharacterStrean(1);
whil e(reader.ready())

{

Systemout. print((char)(reader.next()));
}
Systemout. printin();

}

If ad_final text were a BLOB column instead of a CLOB, then the preceding examples
work if the define is of type LONGVARBI NARY:

Oracl eStatenent stnt = (Oracl eStatement)conn. createStatenent();

stnt. defineCol umType(1, Types.|NTEGER);
stnt. defineCol umType(2, Types.LONGVARBI NARY);

Resul t Set rset = stnt.executeQuery("SELECT I D, LOBCOL FROM LOBTAB@WYSELF");

whi | e(rset.next())

{
/* using getBytes() */
/*
byte[] b = rset.getBytes("LOBCOL");
Systemout.printIn("ID: " + rset.getlnt("ID') +" length: " + b.length);
*/
/* using getBinaryStream) */
I nput Stream byte_stream = rset. getBi naryStrean("LOBCOL");
byte [] b = new byte [100000];
int b_len = byte_streamread(b);
Systemout.printin("ID " + rset.getlnt("ID') +" length: " + b_len);

byte_stream cl ose();

" See Also:
Oracle Database JDBC Developer's Guide

ORACLE 9-28

Reference Semantics LOBSs

This part provides details on using LOB APIs in supported environments. Examples of LOB
API usage are given.

This part contains these chapters:

e Overview of Supplied LOB APIs
* LOB APIs for BFILE Operations
e Using LOB APIs

ORACLE

Overview of Supplied LOB APIs

There are APIs supplied to support LOBSs.

Topics:

* Programmatic Environments That Support LOBs

e Comparing the LOB Interfaces

* Using PL/SQL (DBMS_LOB Package) to Work With LOBs
e Using OCI to Work With LOBs

e Using C++ (OCCI) to Work With LOBs

e Using C/C++ (Pro*C) to Work With LOBs

e Using COBOL (Pro*COBOL) to Work With LOBs

e Using Java (JDBC) to Work With LOBs

e Oracle Provider for OLE DB (OraOLEDB)

e Overview of Oracle Data Provider for NET (ODP.NET)

10.1 Programmatic Environments That Support LOBs

Table 10-1 lists the programmatic environments that support LOB functionality.

¢ See Also:
APIs for supported LOB operations are described in detail in the following chapters:

e Operations Specific to Persistent and Temporary LOBs
e Using LOB APIs
e LOB APIs for BFILE Operations

Table 10-1 Programmatic Environments That Support LOBs

Language Precompiler or Related Sections Related Books
Interface
Program
PL/SQL DBMS_LOB "Using PL/SQL (DBMS_LOB Oracle Database PL/SQL Packages
Package Package) to Work With LOBs". and Types Reference
C Oracle Call "Using OCI to Work With LOBs". Oracle Call Interface Programmer's
Interface for C Guide
(ociy
ORACLE

10-1

Table 10-1 (Cont.) Programmatic Environments That Support LOBs

Chapter 10
Comparing the LOB Interfaces

Language Precompiler or Related Sections Related Books
Interface
Program

C++ Oracle Call "Using C++ (OCCI) to Work With Oracle C++ Call Interface
Interface for C++ LOBs". Programmer's Guide
(occi

C/C++ Pro*C/C++ "Using C/C++ (Pro*C) to Work With Pro*C/C++ Programmer's Guide
Precompiler LOBs".

COBOL Pro*COBOL "Using COBOL (Pro*COBOL) to Pro*COBOL Programmer's Guide
Precompiler Work With LOBs".

Java JDBC Application "Using Java (JDBC) to Work With Oracle Database JDBC Developer’'s
Programmatic LOBs". Guide.
Interface (API)

ADO/OLE DB Oracle Provider "Oracle Provider for OLE DB Oracle Provider for OLE DB
for OLE DB (OraOLEDB)" Developer's Guide for Microsoft
(OraOLEDB). Windows

.NET Oracle Data "Overview of Oracle Data Provider ~ Oracle Data Provider for .NET

Provider for .NET

(ODP.NET)

for .NET (ODP.NET) "

Developer's Guide for Microsoft

Windows

10.2 Comparing the LOB Interfaces

Table 10-2 and Table 10-3 compare the eight LOB programmatic interfaces by listing
their functions and methods used to operate on LOBs. The tables are split in two
simply to accommodate all eight interfaces. The functionality of the interfaces, with
regards to LOBs, is described in the following sections.

Table 10-2 Comparing the LOB Interfaces, 1 of 2

PL/SQL: DBMS_LOB c (oc) C++ (OCCI) Pro*CIC++ and
(dbmslob.sql) (ociap.h) (occiData.h). Also for Pro*COBOL
Clob and Bfile classes.
DBVS_LOB. COVPARE N/A N/A N/A
DBMS_LOB. | NSTR N/A N/A N/A
DBMS_LOB. SUBSTR N/A N/A N/A
DBMS_LOB. APPEND OCl LobAppend() Bl ob. append() APPEND
N/A (use PL/SQL assign CCl LobAssi gn() ASSI GN
operator)
N/A OCl LobChar Set Form() d ob. get Char set Form N/A
(CLOB only)
N/A OCl LobChar Set I d() O ob. getCharsetld() N/A
(CLOB only)
DBVS_LOB. CLOSE OCl Lobd ose() Bl ob. cl ose() CLCSE
N/A N/A G ob.closeStrean() N/A
DBMS_LOB. COPY OCl LobCopy2() Bl ob. copy() CoPY
ORACLE 10-2

Table 10-2 (Cont.) Comparing the LOB Interfaces, 1 of 2

Chapter 10
Comparing the LOB Interfaces

PL/SQL: DBMS_LOB c (oc) C++ (OCCI) Pro*CIC++ and
(dbmslob.sql) (ociap.h) (occiData.h). Also for Pro*COBOL
Clob and Bfile classes.
DBMS_LOB. ERASE OCl LobEr ase2() N/A ERASE
DBMS_LOB. FI LECLOSE OCl LobFi | ed ose() Q ob. cl ose() CLOSE
DBMS_LOB. FI LECLOSEALL CCl LobFi | eCl oseAl | (N/A FILE CLOSE ALL
)
DBMS_LOB. FI LEEXI STS OCl LobFi | eExi st () Bfile.fileExists() DESCR BE
[FI LEEXI STS]
DBMS_LOB.GETCHUNKSIZE OCILobGetChunkSize() Blob.getChunkSize() DESCRIBE
[CHUNKSIZE]
DBMS_LOB. GET_STORAGE LIM T OCl LobGCet St or ageLi m N/A N/A
it()
DBMS_LOB. GETOPTI ONS OCl LobGet Options() Bl ob/Cl ob::get Options N/A
DBMS_LOB. FI LEGETNAME OCl LobFi | eGet Name() Bfile.getFileName() DESCRIBE DI RECTORY,
and FI LENAMVE

DBMS_LOB. FI LEI SOPEN
DBMS_LOB. FI LEOPEN

N/A (use BFILENAME operator)
DBMS_LOB. GETLENGTH

N/A

DBMS_LOB. | SOPEN

DBMS_LOB. LOADFROVFI LE

N/A

DBVS_LOB. OPEN
DBVS_LOB. READ
DBVS_LOB. SETOPTI ONS
DBVS_LOB. TRI M
DBMS_LOB. VR TE
DBVS_LOB. Rl TEAPPEND

DBMS_LOB. CREATETEMPORARY

DBMS_LOB. FREETEMPORARY

DBMS_LOB. | STEMPORARY
N/A

OCl LobFi | el sOpen()
CCl LobFi | eOpen()
OCl LobFi | eSet Name()
OCl LobGet Lengt h2()
QCl Lobl sEqual ()

CCl Lobl sCpen()

CCl LobLoadFronFi | e
2()

OCl LobLocat or I sl ni
t()

OCl LobOpen()

OCl LobRead()

OCl LobSet Opt i ons()
OCl LobTri n2()

CCl LobWite2

OCl LobW i t eAppend2(
)

OCl LobCr eat eTenpor a
ry()

OCl LobFr eeTenpor ar
y()

OCl Lobl sTenpor ary()

OCl LobLocat or Assi g
n()

Bfile.getDirAlias()
Bfile.isOpen()
Bfile.open()
Bfile.setNang()

Bl ob. | engt h()

Use operator = ()=/!=

Bl ob. i sOpen()

Use over | oadedcopy()

Cob.isinitialized(
)
Bl ob. open

Bl ob. read

Bl ob/Cl ob::set Opt i ons
Blob.trim
Blob.wite

N/A

N/A
N/A

N/A

DESCRI BE | SOPEN
CPEN

FI LE SET

DESCRI BE LENGTH
N/A

DESCRI BE | SOPEN
LOAD FROM FILE

N/A

OPEN

READ

N/A

TRIM

VR TECRALGB.
VRI TE APPEND

N/A

N/A

N/A

use operator = () or copy N/A

constructor

ORACLE

10-3

ORACLE

Table 10-3 Comparing the LOB Interfaces, 2 of 2
|

Chapter 10
Comparing the LOB Interfaces

PL/SQL: DBMS_LOB Java (JDBC) ODP.NET
(dbmslob.sql)

DBMS_LOB. COVPARE Use DBMS_LOB. Oracl ed ob. Conpare
DBMS_LOB. | NSTR position O acl ed ob. Search

DBMS_LOB. SUBSTR

DBMS_LCB. APPEND

OCl LobAssi gn()

OCl LobChar Set For m()
OCl LobChar Set 1 d()
DBVS_LOB. CLOSE
DBVS_LOB. COPY
DBMS_LOB. ERASE
DBMVS_LOB. FI LECLOSE
DBVS_LOB. FI LECLOSEALL
DBMS_LOB. FI LEEXI STS
DBMS_LOB. GETCHUNKSI ZE

DBMS_LCB. FI LEGETNAMVE

DBMS_LOB. FI LEI SOPEN
DBVS_LOB. FI LEOPEN
OCl LobFi | eSet Name()

OCl LobFl ushBuf fer ()
DBVS_LOB. GETLENGTH
N/A

DBVS_LOB. | SOPEN

DBVS_LOB. LOADFROVFI LE
DBVS_LOB. OPEN

DBMS_LOB. READ

DBMS_LOB. TRI M

get Byt es for BLOBs or
BFI LEsget SubSt ri ng for
CLOBs

Use | engt h and then
put Bytes() or
Put String()

N/A [use equal sign]
N/A

N/A

use DBMS_LCB.

Use read and write
Use DBMS_LCB.
closeFile

Use DBMS_LOB.
fileExists

get ChunkSi ze

getDirAlias

get Nane

Use DBMS_LOB. | SOPEN
openFile

Use BFI LENAMVE

N/A

l ength

equal s()

use DBMS_LOB. | SOPEN()

Useread and thenwite
Use DBVS_LOB. OPEN()

BLOB or BFI LE:

get Byt es() and

get Bi naryStrean()
CLOB:getString() and
get SubString() and
get Char act er St ream()

Use DBMS LOB. TRI M)

N/A

O acl ed ob. Append

Oracl ed ob. C one

N/A

N/A

Oracl ed ob. O ose

O acl ed ob. CopyTo
Oracl ed ob. Erase

Oracl eBFile.C oseFile
N/A

Oracl eBFil e. Fi | eExi sts

O acl ed ob. Opti nunChunksSi
ze

Oracl eBFil e. Di rect oryNane
Oracle.BFile. Fil eNane

O acl eBFi | e. I sOpen
Oracl eBFil e. OpenFil e

Oracl eBFi | e. Di rect or yNane
O acl e. BFil e. Fi | eNane

N/A
Oracl ed ob. Lengt h
N/A

Oracl eC ob. I s nChunkWite
Mode

N/A

O acl ed ob. Begi nChunkWi t
e

Oracl eC ob. Read

Oracl ed ob. SetLength

10-4

Chapter 10

Using PL/SQL (DBMS_LOB Package) to Work With LOBs

Table 10-3 (Cont.) Comparing the LOB Interfaces, 2 of 2

PL/SQL: DBMS_LOB Java (JDBC) ODP.NET
(dbmslob.sql)
DBMS_LOB. WRI TE BLOB: set Byt es() and OacleCob.Wite

set Bi naryStream)

CLOB:set String() and
set Charact er Strean()

DBVS_LOB. WRI TEAPPEND Use | engt h() and then
put String() or
put Byt es()

DBMS5_LOB. CREATETEMPCRARY N/A
DBMS_LOB. FREETEMPORARY N/A
DBMS_LOB. | STEMPORARY N/A

Oracl ed ob. Append

O acl ed ob constructors
Oracl ed ob. Di spose
O acl ed ob. | sTenporary

10.3 Using PL/SQL (DBMS_LOB Package) to Work With LOBs

The PL/SQL DBM5_LOB package can be used for the following operations:

* Internal persistent LOBs and Temporary LOBs: Read and modify operations, either

entirely or in a piece-wise manner.

e BFILEs: Read operations

¢ See Also:

example code.

Oracle Database PL/SQL Packages and Types Reference for detailed
documentation, including parameters, parameter types, return values, and

10.3.1 Provide a LOB Locator Before Running the DBMS_LOB Routine

DBMS_LOB routines work based on LOB locators. For the successful completion of DBVS_LOB
routines, you must provide an input locator representing a LOB that exists in the database
tablespaces or external file system, before you call the routine.

ORACLE

* Persistent LOBs: First use SQL to define tables that contain LOB columns, and
subsequently you can use SQL to initialize or populate the locators in these LOB

columns.

» External LOBs: Define a DI RECTORY object that maps to a valid physical directory
containing the external LOBs that you intend to access. These files must exist, and have
READ permission for Oracle Server to process. If your operating system uses case-
sensitive path names, then specify the directory in the correct case.

Once the LOBs are defined and created, you may then SELECT a LOB locator into a local
PL/SQL LOB variable and use this variable as an input parameter to DBM5S_LOB for access to

the LOB value.

Examples provided with each DBMS_LOB routine illustrate this in the following sections.

10-5

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

¢ See Also:

Directory Objects

10.3.2 Guidelines for Offset and Amount Parameters in DBMS_LOB

Operations

The following guidelines apply to offset and amount parameters used in procedures in
the DBMS_LOB PL/SQL package:

For character data—in all formats, fixed-width and varying-width—the anount and
of f set parameters are in characters. This applies to operations on CLOB and
NCLOB data types.

For binary data, the of f set and anount parameters are in bytes. This applies to
operations on BLOB data types.

When using the following procedures:
— DBMS_LOB. LOADFROWFI LE

— DBMS_LOB. LOADBLOBFROVFI LE

— DBMS_LOB. LOADCLOBFROVFI LE

you cannot specify an amount parameter with a value larger than the size of the
BFI LE you are loading from. To load the entire BFI LE with these procedures, you
must specify either the exact size of the BFI LE, or the maximum allowable storage
limit.

When using DBMS_LOB. READ, the anount parameter can be larger than the size of
the data. The amount should be less than or equal to the size of the buffer. The
buffer size is limited to 32K.

¢ See Also:

— Loading a LOB with Data from a BFILE

— About Loading a BLOB with Data from a BFILE

— Loading a CLOB or NCLOB with Data from a BFILE
— About Reading Data from a LOB

10.3.3 Determining Character Set ID

To determine the character set ID, you must know the character set name.

ORACLE

A user can select from the VENLS VALI D_VALUES view, which lists the names of the
character sets that are valid as database and national character sets. Then call the
function NLS_CHARSET | D with the desired character set name as the one string
argument. The character set ID is returned as an integer. UTF16 does not work
because it has no character set name. Use character set ID = 1000 for UTF16.

10-6

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

Although UTF16 is not allowed as a database or national character set, the APIs in DBMS_LOB
support it for database conversion purposes. DBVS _LOB. LOADCLOBFROVFI LE and other
procedures in DBMS_LOB take character set ID, not character set name, as an input.

" See Also:

e Oracle Database PL/SQL Packages and Types Reference for details and
supported Unicode encodings

e Oracle Database Globalization Support Guide for supported languages

10.3.4 PL/SQL Functions and Procedures for LOBs

See Also:

PL/SQL functions and procedures that operate on BLOBs, CLOBs, NCLOBs, and
BFI LEs

e Table 10-4 to modify persistent LOB values

* Table 10-5 to read or examine LOB values

e Table 10-6 to create, free, or check on temporary LOBs

e Table 10-7 for read-only functions on external LOBs (BFI LEs)
e Table 10-8 to open or close a LOB, or check if LOB is open

e PL/SQL Packages for LOBs and DBFS to perform archive management on
SecureFiles

10.3.5 PL/SQL Functions and Procedures to Modify LOB Values

Here is a table of DBM5_LOB procedures:

Table 10-4 PL/SQL: DBMS_LOB Procedures to Modify LOB Values

Function/Procedure Description

APPEND Appends the LOB value to another LOB

CONVERTTOBLOB Converts a CLOBto a BLOB

CONVERTTOCLOB Converts a BLOBto a CLOB

coPY Copies all or part of a LOB to another LOB

ERASE Erases part of a LOB, starting at a specified offset

FRAGVENT _DELETE Delete the data from the LOB at the given offset for the given length
FRAGVENT _I NSERT Insert the given data (< 32KBytes) into the LOB at the given offset
FRAGVENT _MOVE Move the given amount of bytes from the given offset to the new given offset
FRAGVENT _REPLACE Replace the data at the given offset with the given data (< 32kBytes)

ORACLE 10-7

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

Table 10-4 (Cont.) PL/ISQL: DBMS_LOB Procedures to Modify LOB Values
]

Function/Procedure

Description

LOADFROWFI LE
LOADCLOBFROMWFI LE
LOADBLOBFROWFI LE
SETOPTI ONS

TRIM

VRI TE

VIRl TEAPPEND

Load BFI LE data into a persistent LOB

Load character data from a file into a LOB

Load binary data from a file into a LOB

Sets LOB features (deduplication and compression)
Trims the LOB value to the specified shorter length
Writes data to the LOB at a specified offset

Writes data to the end of the LOB

10.3.6 PL/SQL Functions and Procedures for Introspection of LOBs

Table 10-5 PL/SQL: DBMS_LOB Procedures to Read or Examine Internal and External LOB

values

Function/Procedure

Description

COVPARE
CGETCHUNKSI ZE

GETLENGTH
GETOPTI ONS
GET_STORAGE_LIM T
| NSTR

| SSECUREFI LE

READ
SETOPTI ONS

SUBSTR

Compares the value of two LOBs

Gets the chunk size used when reading and writing. This only works on
persistent LOBs and does not apply to external LOBs (BFI LEs).

Gets the length of the LOB value.

Returns options (deduplication, compression, encryption) for SecureFiles.
Gets the LOB storage limit for the database configuration.

Returns the matching position of the nth occurrence of the pattern in the LOB.

Returns TRUE if the BLOB or CLOB locator passed to it is for a SecureFiles or
FALSE if it is not.

Reads data from the LOB starting at the specified offset.

Sets options (deduplication and compression) for a SecureFiles, overriding the
default LOB column settings. Incurs a server round trip.

Returns part of the LOB value starting at the specified offset.

10.3.7 PL/SQL Operations on Temporary LOBs

Table 10-6 PL/SQL: DBMS_LOB Procedures to Operate on Temporary LOBs
__|]

Function/Procedure

Description

CREATETEMPORARY
ISTEMPORARY
FREETEMPORARY

Creates a temporary LOB
Checks if a LOB locator refers to a temporary LOB

Frees a temporary LOB

ORACLE

10-8

Chapter 10
Using OCI to Work With LOBs

10.3.8 PL/SQL Read-Only Functions and Procedures for BFILES

Table 10-7 PL/SQL: DBMS_LOB Read-Only Procedures for BFILEs

Function/Procedure

Description

FI LECLOSE

FI LECLOSEALL
FI LEEXI STS
FI LEGETNAME
FI LEI SOPEN

FI LEOPEN

Closes the file. Use CLOSE() instead.
Closes all previously opened files

Checks if the file exists on the server

Gets the directory object name and file name

Checks if the file was opened using the input BFILElocators. Use
| SOPEN() instead.

Opens a file. Use OPEN() instead.

10.3.9 PL/SQL Functions and Procedures to Open and Close Internal and

External LOBs

Table 10-8 PL/SQL: DBMS_LOB Procedures to Open and Close Internal and External LOBs
|

Function/Procedure Description
OPEN Opens a LOB
| SOPEN Sees if a LOB is open
CLOSE Closes a LOB
See Also:

Opening Persistent LOBs with the OPEN and CLOSE Interfaces for detailed
information about these procedures for specific LOB operations, such as, | NSERT a

row containing a LOB

10.4 Using OCI to Work With LOBs

Oracle Call Interface (OCI) LOB functions enable you to access and make changes to LOBs
and to read data from BFI LEs in C.

ORACLE

¢ See Also:

Oracle Call Interface Programmer's Guide chapter "LOB and BFILE Operations" for
the details of all topics discussed in this section.

10-9

Chapter 10
Using OCI to Work With LOBs

10.4.1 Prefetching of LOB Data, Length, and Chunk Size

To improve OCI access of smaller LOBs, LOB data can be prefetched and cached
while also fetching the locator. This applies to internal LOBs, temporary LOBs, and
BFI LEs.

10.4.2 Setting the CSID Parameter for OCI LOB APIs

If you want to read or write data in 2-byte Unicode format, then set the csi d (character
set ID) parameter in OCl LobRead2() and OCl LobWite2() to OCl _UTF16l D.

The csi d parameter indicates the character set id for the buffer parameter. You can set
the csi d parameter to any character set ID. If the csi d parameter is set, then it
overrides the NLS_LANG environment variable.

See Also:

e Oracle Call Interface Programmer's Guidefor information on the
OCl Uni codeToChar Set () function and details on OCI syntax in general.

e Oracle Database Globalization Support Guidefor detailed information
about implementing applications in different languages.

10.4.3 Fixed-Width and Varying-Width Character Set Rules for OCI

In OCI, for fixed-width client-side character sets, the following rules apply:

ORACLE

CLOBs and NCLOBs: offset and amount parameters are always in characters

BLOBs and BFI LEs: offset and amount parameters are always in bytes

The following rules apply only to varying-width client-side character sets:

Offset parameter:

Regardless of whether the client-side character set is varying-width, the offset
parameter is always as follows:

— CLOBs and NCLOBs: in characters

— BLOBs and BFI LEs: in bytes

Amount parameter:

The amount parameter is always as follows:

— When referring to a server-side LOB: in characters
— When referring to a client-side buffer: in bytes
OCILobFileGetLength():

Regardless of whether the client-side character set is varying-width, the output
length is as follows:

— CLOBs and NCLOBs: in characters

10-10

Chapter 10
Using OCI to Work With LOBs

— BLOBs and BFI LEs: in bytes
e OCILobRead2():
With client-side character set of varying-width, CLOBs and NCLOBs:

— Input amount is in characters. Input amount refers to the number of characters to
read from the server-side CLOB or NCLOB.

— Output amount is in bytes. Output amount indicates how many bytes were read into
the buffer buf p.

* OCILobWrite2(): With client-side character set of varying-width, CLOBs and NCLOBs:

— Input amount is in bytes. The input amount refers to the number of bytes of data in
the input buffer buf p.

— Output amount is in characters. The output amount refers to the number of
characters written into the server-side CLOB or NCLOB.

10.4.3.1 Other Operations

For all other LOB operations, irrespective of the client-side character set, the anount
parameter is in characters for CLOBs and NCLOBs. These include OCl LobCopy2(),

OCl LobEr ase2(), OCl LobLoadFronFi | e2(), and OCl LobTri n2() . All these operations refer to
the amount of LOB data on the server.

See Also:

Oracle Database Globalization Support Guide

10.4.3.2 NCLOBs in OCI

NCLOBs are allowed as parameters in methods.

10.4.4 OClLobLoadFromFile2() Amount Parameter

When using OCl LobLoadFr onFi | e2() you cannot specify anount larger than the length of the
BFI LE. To load the entire BFI LE, you can pass the value returned by
OCl LobCet StorageLimt().

10.4.5 OClLobRead2() Amount Parameter

To read to the end of a LOB using OCl LobRead2() , you specify an amount equal to the value
returned by OCl LobGet St or ageLinit ().

See Also:

About Reading Data from a LOB

ORACLE 10-11

Chapter 10
Using OCI to Work With LOBs

10.4.6 OClLobLocator Pointer Assignment

Special care must be taken when assigning OCl LobLocat or pointers in an OCI
program—using the "=" assignment operator. Pointer assignments create a shallow
copy of the LOB. After the pointer assignment, the source and target LOBs point to the
same copy of data.

These semantics are different from using LOB APIs, such as OCl LobAssi gn() or
OCl LobLocat or Assi gn() to perform assignments. When the these APls are used, the
locators logically point to independent copies of data after assignment.

For temporary LOBs, before performing pointer assignments, you must ensure that
any temporary LOB in the target LOB locator is freed by calling OCl Fr eeTenpor ary().
In contrast, when OCl LobLocat or Assi gn() is used, the original temporary LOB in the
target LOB locator variable, if any, is freed automatically before the assignment
happens.

10.4.7 LOB Locators in Defines and Out-Bind Variables in OCI

Before you reuse a LOB locator in a define or an out-bind variable in a SQL statement,
you must free any temporary LOB in the existing LOB locator buffer using
OCl FreeTenporary() .

10.4.8 OCI Functions That Operate on BLOBs, CLOBs, NCLOBs, and
BFILEs

OCI functions that operate on BLOBs, CLOBs, NCLOBs, and BFI LEs are as follows:
* To modify persistent LOBs, see #unique_279/unique_279_Connect_42_G1039025

* Toread or examine LOB values, see #unique_280/
unique_280_Connect_42_G1039053

» To create or free temporary LOB, or check if Temporary LOB exists, see
#unique_281/unique_281_Connect_42_G1039069

* For read only functions on external LOBs (BFI LEs), see #unique_282/
unigque_282_ Connect_42_ G1039085

e To operate on LOB locators, see #unique_283/
unigue_283 Connect_42 G1039110

e To open and close LOBSs, see #unique_284/unique_284 Connect_42_(G1039151

10.4.9 OCI Functions to Modify Persistent LOB (BLOB, CLOB, and
NCLOB) Values

Table 10-9 OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values
]

Function/Procedure Description
OCl LobAppend() Appends LOB value to another LOB.
OCl LobArrayWite() Writes data using multiple locators in one round trip.

ORACLE 10-12

Chapter 10
Using OCI to Work With LOBs

Table 10-9 (Cont.) OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values
]

Function/Procedure Description
CCl LobCopy2() Copies all or part of a LOB to another LOB.
OCl LobEr ase2() Erases part of a LOB, starting at a specified offset.

OCl LobLoadFr onFi | e2() Loads BFI LE data into a persistent LOB.
OCl LobSet Cont ent Type() Sets a content string in a SecureFiles.

OCl LbSet Opt i ons() Enables option settings (deduplication and compression) for a SecureFiles.
CCl LobTri m2() Truncates a LOB.
CCl LobW i te2() Writes data from a buffer into a LOB, overwriting existing data.

OCl LobW i t eAppend2() Writes data from a buffer to the end of the LOB.

10.4.10 OCI Functions to Read or Examine Persistent LOB and External
LOB (BFILE) Values

Table 10-10 OCI Functions to Read or Examine persistent LOB and external LOB (BFILE)
Values

Function/Procedure Description

CCl LobAr rayRead() Reads data using multiple locators in one round trip.

OCl LobGet ChunkSi ze() Gets the chunk size used when reading and writing. This works on
persistent LOBs and does not apply to external LOBs (BFI LEs).

OCl LobGet Cont ent Type() Gets the content string for a SecureFiles.

OCl LobGet Lengt h2() Returns the length of a LOB or a BFI LE.

OCl LObGet Opt i ons() Obtains the enabled settings (deduplication, compression, encryption)
for a given SecureFiles.

OCl LobGet St orageLinit() Gets the maximum length of an internal LOB.

OCl LobRead2() Reads a specified portion of a non-NULL LOB or a BFI LE into a buffer.

10.4.11 OCI Functions for Temporary LOBs

Table 10-11 OCI Functions for Temporary LOBs

Function/Procedure Description

OCl LobCr eat eTenpor ar y() Creates a temporary LOB.

OCl Lobl sTenpor ar y() Sees if a temporary LOB exists.
OCl LobFreeTenpor ar y() Frees a temporary LOB.

ORACLE 10-13

10.4.12 OCI Read-Only Functions for BFILES

Table 10-12 OCI Read-Only Functions for BFILES

Chapter 10
Using OCI to Work With LOBs

Function/Procedure Description

OCl LobFi | ed ose() Closes an open BFI LE.

CCl LobFi | eCl oseAl | () Closes all open BFI LEs.

OCl LobFi | eExi sts() Checks whether a BFI LE exists.
OCl LobFi | eGet Name() Returns the name of a BFI LE.
OCl LobFi | el sOpen() Checks whether a BFI LE is open.
OCl LobFi | eQpen() Opens a BFI LE.

10.4.13 OCI LOB Locator Functions

Table 10-13 OCI LOB-Locator Functions

Function/Procedure Description

CCl LobAssi gn() Assigns one LOB locator to another.

CCl LobChar Set For m() Returns the character set form of a LOB.

OCl LobChar Set 1 d() Returns the character set ID of a LOB.

COCl LobFi | eSet Name() Sets the name of a BFI LE in a locator.

OCl Lobl sEqual () Checks whether two LOB locators refer to the same LOB.
CCl LobLocat orlslnit() Checks whether a LOB locator is initialized.

10.4.14 OCI Functions to Open and Close Internal and External LOBs

Table 10-14 OCI Functions to Open and Close Internal and External LOBs

Function/Procedure Description

OCl LobOpen() Opens a LOB.

OCl Lobl sOpen() Sees if a LOB is open.
CCl Lobd ose() Closes a LOB.

10.4.15 OCI LOB Examples

Further OCI examples are provided in:

* Using LOB APIs
* LOB APIs for BFILE Operations

ORACLE

10-14

Chapter 10
Using C++ (OCCI) to Work With LOBs

¢ See Also:

Oracle Call Interface Programmer's Guide for further OCI demonstration script
listings

10.4.16 Further Information About OCI

" See Also:

http: //ww. oracl e. cont t echnol ogy/ for more information about OCI features and
frequently asked questions.

10.5 Using C++ (OCCI) to Work With LOBs

ORACLE

Oracle C++ Call Interface (OCCI) is a C++ API for manipulating data in an Oracle database.
OCCl is organized as an easy-to-use set of C++ classes that enable a C++ program to
connect to a database, run SQL statements, insert/update values in database tables, retrieve
results of a query, run stored procedures in the database, and access metadata of database
schema objects. OCCI also provides a seamless interface to manipulate objects of user-
defined types as C++ class instances.

Oracle C++ Call Interface (OCCI) is designed so that you can use OCI and OCCI together to
build applications.

The OCCI API provides the following advantages over JDBC and ODBC:

e OCCI encompasses more Oracle functionality than JDBC. OCCI provides all the
functionality of OCI that JDBC does not provide.

e OCCI provides compiled performance. With compiled programs, the source code is
written as close to the computer as possible. Because JDBC is an interpreted API, it
cannot provide the performance of a compiled API. With an interpreted program,
performance degrades as each line of code must be interpreted individually into code that
is close to the computer.

e OCCI provides memory management with smart pointers. You do not have to be
concerned about managing memory for OCCI objects. This results in robust higher
performance application code.

* Navigational access of OCCI enables you to intuitively access objects and call methods.
Changes to objects persist without writing corresponding SQL statements. If you use the
client side cache, then the navigational interface performs better than the object interface.

e With respect to ODBC, the OCCI API is simpler to use. Because ODBC is built on the C
language, OCCI has all the advantages C++ provides over C. Moreover, ODBC has a
reputation as being difficult to learn. The OCCI, by contrast, is designed for ease of use.

You can use OCCI to make changes to an entire persistent LOB, or to pieces of the
beginning, middle, or end of it, as follows:

* For reading from internal and external LOBs (BFI LES)

e For writing to persistent LOBs

10-15

http://www.oracle.com/technology/

Chapter 10
Using C++ (OCCI) to Work With LOBs

10.5.1 OCCI Classes for LOBs

OCCI provides these classes that allow you to use different types of LOB instances as
objects in your C++ application:

* (O ob class to access and modify data stored in internal CLOBs and NCLOBs
» Bl ob class to access and modify data stored in internal BLOBs

e Bfile class to access and read data stored in external LOBs (BFI LES)

See Also:

Syntax information on these classes and details on OCCI in general is
available in theOracle C++ Call Interface Programmer's Guide.

10.5.1.1 Clob Class

The Clob driver implements a CLOB object using an SQL LOB locator. This means that
a CLOB object contains a logical pointer to the SQL CLOB data rather than the data
itself.

The CLOB interface provides methods for getting the length of an SQL CLOB value, for
materializing a CLOB value on the client, and getting a substring. Methods in the
Resul t Set and St at enent interfaces such as get 0 ob() and set O ob() allow you to
access SQL CLOB values.

¢ See Also:

Oracle C++ Call Interface Programmer's Guide for detailed information on
the Clob class.

10.5.1.2 Blob Class

ORACLE

Methods in the Resul t Set and St at enent interfaces, such as get Bl ob() and

set Bl ob(), allow you to access SQL BLOB values. The Bl ob interface provides
methods for getting the length of a SQL BLOB value, for materializing a BLOB value on
the client, and for extracting a part of the BLOB.

See Also:

e Oracle C++ Call Interface Programmer's Guide for detailed information
on the Blob class methods and details on instantiating and initializing a
Blob object in your C++ application.

e Oracle Database Globalization Support Guidefor detailed information
about implementing applications in different languages.

10-16

Chapter 10
Using C++ (OCCI) to Work With LOBs

10.5.1.3 Bfile Class

The Bf i | e class enables you to instantiate a Bf i | e object in your C++ application. You must
then use methods of the Bf i | e class, such as the set Nane() method, to initialize the Bfi | e
object which associates the object properties with an object of type BFI LE in a BFI LE column
of the database.

" See Also:

Oracle C++ Call Interface Programmer's Guide for detailed information on the Bf i | e
class methods and details on instantiating and initializing an Bf i | e object in your C+
+ application.

10.5.2 Fixed-Width Character Set Rules

In OCCI, for fixed-width client-side character sets, these rules apply:
e ob: offset and amount parameters are always in characters
» Bl ob: offset and amount parameters are always in bytes

* Bfile: offset and amount parameters are always in bytes

10.5.3 Varying-Width Character Set Rules

ORACLE

The following rules apply only to varying-width client-side character sets:

e Offset parameter: Regardless of whether the client-side character set is varying-width,
the offset parameter is always as follows:

— Cdob():in characters
— Blob():in bytes
— Bfile():inbytes
Amount parameter: The amount parameter is always as indicated:
— Cob:in characters, when referring to a server-side LOB
— Bl ob: in bytes, when referring to a client-side buffer
— Bfile:in bytes, when referring to a client-side buffer

* length(): Regardless of whether the client-side character set is varying-width, the output
length is as follows:

— Cob.length():in characters
— Blob.length():in bytes
— Bfile.length():in bytes

* Clob.read() and Blob.read(): With client-side character set of varying-width, CLOBs and
NCLOBs:

— Input amount is in characters. Input amount refers to the number of characters to
read from the server-side CLOB or NCLOB.

10-17

Chapter 10
Using C++ (OCCI) to Work With LOBs

— Output amount is in bytes. Output amount indicates how many bytes were
read into the OCCI buffer parameter, buf f er .

e Clob.write() and Blob.write(): With client-side character set of varying-width,
CLOBs and NCLOBs:

— Input amount is in bytes. Input amount refers to the number of bytes of data
in the OCCI input buffer, buf f er .

— Output amount is in characters. Output amount refers to the number of
characters written into the server-side CLOB or NCLOB.

10.5.4 Offset and Amount Parameters for Other OCCI Operations

For all other OCCI LOB operations, irrespective of the client-side character set, the
amount parameter is in characters for CLOBs and NCLOBs. These include the following:

O ob.copy()

e (Cob.erase()

e dob.trim)

* For LoadFr onFi | e functionality, overloaded C ob. copy()

All these operations refer to the amount of LOB data on the server.

¢ See also:

Oracle Database Globalization Support Guide

10.5.4.1 NCLOBs in OCCI

* NCLOBinstances are allowed as parameters in methods

e NCLOB instances are allowed as attributes in object types.

10.5.5 Amount Parameter for OCCI LOB copy() Methods

The copy() method on C ob and Bl ob enables you to load data from a BFI LE. You can
pass one of the following values for the anount parameter to this method:

e An amount smaller than the size of the BFI LE to load a portion of the data
* An amount equal to the size of the BFI LE to load all of the data
* The UBSMAXVAL constant to load all of the BFI LE data

You cannot specify an amount larger than the length of the BFI LE.

10.5.6 Amount Parameter for OCClI read() Operations

The read() method on an d ob, Bl ob, or Bf i | e object, reads data from a BFI LE. You
can pass one of these values for the amount parameter to specify the amount of data
to read:

* An amount smaller than the size of the BFI LE to load a portion of the data

ORACLE 10-18

Chapter 10
Using C++ (OCCI) to Work With LOBs

* An amount equal to the size of the BFI LE to load all of the data
e 0 (zero) to read until the end of the BFI LE in streaming mode

You cannot specify an amount larger than the length of the BFI LE.

10.5.7 Further Information About OCCI

¢ See Also:

e Oracle C++ Call Interface Programmer's Guide

e« http://ww. oracl e.com search for articles and product information featuring
OCCI.

10.5.8 OCCI Methods That Operate on BLOBs, BLOBs, NCLOBs, and
BFILES

OCCI methods that operate on BLOBs, CLOBs, NCLOBs, and BFI LEs are as follows:
* To modify persistent LOBs, see Table 10-15

e Toread or examine LOB values, see Table 10-16

* For read only methods on external LOBs (BFI LES), see Table 10-17

Other LOB OCCI methods are described in Table 10-18

* To open and close LOBs, see Table 10-19

10.5.9 OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and
NCLOB) Values

Table 10-15 OCCI Clob and Blob Methods to Modify Persistent LOB (BLOB, CLOB, and
NCLOB) Values

Function/Procedure Description

Bl ob/ O ob. append() Appends CLOB or BLOB value to another LOB.

Bl ob/ O ob. copy() Copies all or part of a CLOB or BLOB to another LOB.

Bl ob/ O ob. copy() Loads BFI LE data into a persistent LOB.

Bl ob/d ob.trim) Truncates a CLOB or BLOB.

Bl ob/ Cl ob. write() Writes data from a buffer into a LOB, overwriting existing data.

ORACLE 10-19

http://www.oracle.com/

Chapter 10
Using C++ (OCCI) to Work With LOBs

10.5.10 OCCI Methods to Read or Examine Persistent LOB and
BFILE Values

Table 10-16 OCCI Blob/Clob/Bfile Methods to Read or Examine persistent LOB and BFILE
Values

Function/Procedure Description

Bl ob/ O ob. get ChunkSi ze() Gets the chunk size used when reading and writing. This works on
persistent LOBs and does not apply to external LOBs (BFI LEs).

Bl ob/ Cl ob. get Opt i ons() Obtains settings for existing and newly created LOBs.

Bl ob/ O ob. | engt h() Returns the length of a LOB or a BFI LE.

Bl ob/ O ob. read() Reads a specified portion of a non-NULL LOB or a BFI LE into a buffer.

Bl ob/ O ob. set Opt i ons() Enables LOB settings for existing and newly created LOBs.

10.5.11 OCCI Read-Only Methods for BFILES

Table 10-17 OCCI Read-Only Methods for BFILES
- ___]

Function/Procedure Description

Bfile.close() Closes an open BFI LE.
Bfile.fileExists() Checks whether a BFI LE exists.
Bfile.getFileName() Returns the name of a BFI LE.
Bfile.getDirAlias() Gets the directory object name.
Bfile.isOpen() Checks whether a BFI LE is open.
Bfile.open() Opens a BFI LE.

10.5.12 Other OCCI LOB Methods

Table 10-18 Other OCCI LOB Methods
]

Methods Description

Cl ob/ Bl ob/ Bfi | e. operat or =() Assigns one LOB locator to another. Use = or the copy constructor.
Q ob. get Char Set For m() Returns the character set form of a LOB.

C ob. get Char Set 1 d() Returns the character set ID of a LOB.

Bfile.setNang() Sets the name of a BFI LE.

C ob/ Bl ob/ Bf i | e. oper at or==() Checks whether two LOB refer to the same LOB.

Clob/Blob/Bfile.islnitialized() Checks whether a LOB is initialized.

ORACLE 10-20

Chapter 10
Using C/C++ (Pro*C) to Work With LOBs

10.5.13 OCCI Methods to Open and Close Internal and External LOBs

Table 10-19 OCCI Methods to Open and Close Internal and External LOBs

Function/Procedure Description

C ob/ Bl ob/ Bfi | e. Open() Opens a LOB

Cl ob/ Bl ob/ Bfile.isOpen() Sees if a LOB is open
Cl ob/ Bl ob/Bfile.dose() Closes a LOB

10.6 Using C/C++ (Pro*C) to Work With LOBs

You can make changes to an entire persistent LOB, or to pieces of the beginning, middle or
end of a LOB by using embedded SQL. You can access both internal and external LOBs for
read purposes, and you can write to persistent LOBs.

Embedded SQL statements allow you to access data stored in BLOBs, CLOBs, NCLOBs, and
BFI LEs. These statements are listed in the following tables, and are discussed in greater
detail later in the chapter.

¢ See Also:

Pro*C/C++ Programmer's Guidefor detailed documentation, including syntax, host
variables, host variable types and example code.

10.6.1 Providing an Allocated Input Locator Pointer That Represents LOB

Unlike locators in PL/SQL, locators in Pro*C/C++ are mapped to locator pointers which are
then used to refer to the LOB or BFILE value.

To successfully complete an embedded SQL LOB statement you must do the following:

1.

ORACLE

Provide an allocated input locator pointer that represents a LOB that exists in the
database tablespaces or external file system before you run the statement.

SELECT a LOB locator into a LOB locator pointer variable.

Use this variable in the embedded SQL LOB statement to access and manipulate the
LOB value.

¢ See Also:

APIs for supported LOB operations are described in detail in:
e Operations Specific to Persistent and Temporary LOBs

e Using LOB APIs

e LOB APIs for BFILE Operations

10-21

Chapter 10
Using C/C++ (Pro*C) to Work With LOBs

10.6.2 Pro*C/C++ Statements That Operate on BLOBs, CLOBs,

NCLOBs, and

BFILES

Pro*C/C++ statements that operate on BLOBs, CLOBs, and NCLOBs are listed in the
following tables:

To modify persistent LOBs, see #unique_306/unique_306_Connect_42 G1039287

To read or examine LOB values, see #unique_307/
unique_307_Connect_42_ G1039315

To create or free temporary LOB, or check if Temporary LOB exists, see
#unique_308/unique_308_Connect_42 G1039331

To operate close and 'see if file exists' functions on BFILES, see #unique_309/
unique_309 Connect_42_ G1039347

To operate on LOB locators, see #unique_310/
unique_310 Connect_42_ G1039363

To open or close LOBs or BFI LEs, see #unique_311/
unique_311 Connect_42_G1039392

10.6.3 Pro*C/C++ Embedded SQL Statements to Modify Persistent

LOB Values

Table 10-20 Pro*C/C++: Embedded SQL Statements to Modify Persistent LOB Values

Statement Description

APPEND Appends a LOB value to another LOB.

CoPY Copies all or a part of a LOB into another LOB.

ERASE Erases part of a LOB, starting at a specified offset.

LOAD FROMFI LE Loads BFI LE data into a persistent LOB at a specified offset.
TRIM Truncates a LOB.

WRI TE Writes data from a buffer into a LOB at a specified offset.

VRl TE APPEND Writes data from a buffer into a LOB at the end of the LOB.

10.6.4 Pro*C/C++ Embedded SQL Statements for Introspection of

LOBs

Table 10-21 Pro*C/C++: Embedded SQL Statements for Introspection of LOBs
]

Statement

Description

DESCRI BE [CHUNKSI ZE] Gets the chunk size used when writing. This works for persistent LOBs only. It

DESCRI BE [LENGTH]
READ

does not apply to external LOBs (BFI LEs).
Returns the length of a LOB or a BFI LE.
reads a specified portion of a non-NULL LOB or a BFI LE into a buffer.

ORACLE

10-22

Chapter 10
Using COBOL (Pro*COBOL) to Work With LOBs

10.6.5 Pro*C/C++ Embedded SQL Statements for Temporary LOBs

Table 10-22 Pro*C/C++: Embedded SQL Statements for Temporary LOBs

Statement Description

CREATE TEMPORARY Creates a temporary LOB.

DESCRI BE [| STEMPORARY] Sees if a LOB locator refers to a temporary LOB.
FREE TEMPORARY Frees a temporary LOB.

10.6.6 Pro*C/C++ Embedded SQL Statements for BFILES

Table 10-23 Pro*C/C++: Embedded SQL Statements for BFILES

Statement Description
FI LECLOSE ALL Closes all open BFI LEs.
DESCRI BE [FI LEEXI STS] Checks whether a BFI LE exists.

DESCRI BE Returns the directory object name and filename of a BFI LE.

[DI RECTORY, FI LENAVE]

10.6.7 Pro*C/C++ Embedded SQL Statements for LOB Locators

Table 10-24 Pro*C/C++ Embedded SQL Statements for LOB Locators

Statement Description
ASSI GN Assigns one LOB locator to another.
Sets the directory object name and filename of a BFI LE in a locator.

FI LE SET

10.6.8 Pro*C/C++ Embedded SQL Statements to Open and Close LOBs

Table 10-25 Pro*C/C++ Embedded SQL Statements to Open and Close Persistent LOBs and
External LOBs (BFILES)

Statement Description

OPEN Opens a LOB or BFI LE.

DESCRI BE[| SOPEN] Sees if a LOB or BFI LE is open.
CLOSE Closes a LOB or BFI LE.

10.7 Using COBOL (Pro*COBOL) to Work With LOBs

You can make changes to an entire persistent LOB, or to pieces of the beginning, middle or
end of it by using embedded SQL. You can access both internal and external LOBs for read

purposes, and you can also write to persistent LOBs.

ORACLE 10-23

Chapter 10
Using COBOL (Pro*COBOL) to Work With LOBs

Embedded SQL statements allow you to access data stored in BLOBs, CLOBs, NCLOBs,
and BFI LEs. These statements are listed in the following tables, and are discussed in
greater detail later in the manual.

10.7.1 Providing an Allocated Input Locator Pointer That Represents

LOB

Unlike locators in PL/SQL, locators in Pro*COBOL are mapped to locator pointers
which are then used to refer to the LOB or BFILE value. For the successful completion
of an embedded SQL LOB statement you must perform the following:

1.

Provide an allocated input locator pointer that represents a LOB that exists in the
database tablespaces or external file system before you run the statement.

SELECT a LOB locator into a LOB locator pointer variable

Use this variable in an embedded SQL LOB statement to access and manipulate
the LOB value.

¢ See Also:

APIs for supported LOB operations are described in detail in:
e Operations Specific to Persistent and Temporary LOBs

e Using LOB APIs

* LOB APIs for BFILE Operations

Where the Pro*COBOL interface does not supply the required functionality, you can
call OCl using C. Such an example is not provided here because such programs are
operating system dependent.

See Also:

Pro*COBOL Programmer's Guidefor detailed documentation, including
syntax, host variables, host variable types, and example code.

10.7.2 Pro*COBOL Statements That Operate on BLOBs, CLOBs,
NCLOBs, and BFILEs

The following Pro*COBOL statements operate on BLOBs, CLOBs, NCLOBs, and
BFILEs:

ORACLE

To modify persistent LOBs, see #unique_314/unique_314 Connect 42 G1039412

To read or examine internal and external LOB values, see #unique_315/
unique_315 Connect_42_ G1039440

To create or free temporary LOB, or check LOB locator, see #unique_316/
unique_316_Connect_42_ G1039456

10-24

Chapter 10
Using COBOL (Pro*COBOL) to Work With LOBs

» To operate close and 'see if file exists' functions on BFI LES, see #unique_317/
unique_317_ Connect_42_G1039472

e To operate on LOB locators, see #unique_318/unique_318_Connect_42_ (G1039488

e To open or close persistent LOBs or BFI LES, see #unique_319/
unique_319 Connect_42_ G1039517

10.7.3 Pro*COBOL Embedded SQL Statements to Modify Persistent LOB

Values

Table 10-26 Pro*COBOL Embedded SQL Statements to Modify LOB Values

Statement Description

APPEND Appends a LOB value to another LOB.

coPY Copies all or part of a LOB into another LOB.

ERASE Erases part of a LOB, starting at a specified offset.

LOAD FROMFI LE Loads BFI LE data into a persistent LOB at a specified offset.
TRIM Truncates a LOB.

VRI TE Writes data from a buffer into a LOB at a specified offset

VIR TE APPEND Writes data from a buffer into a LOB at the end of the LOB.

10.7.4 Pro*COBOL Embedded SQL Statements for Introspection of LOBs

Table 10-27 Pro*COBOL Embedded SQL Statements for Introspection of LOBs

Statement

Description

DESCRI BE [CHUNKS! ZE]
DESCRI BE [LENGTH|
READ

Gets the Chunk size used when writing.
Returns the length of a LOB or a BFI LE.
Reads a specified portion of a non-NULL LOB or a BFI LE into a buffer.

10.7.5 Pro*COBOL Embedded SQL Statements for Temporary LOBs

Table 10-28 Pro*COBOL Embedded SQL Statements for Temporary LOBs

Statement Description

CREATE TEMPORARY Creates a temporary LOB.

DESCRI BE [| STEMPORARY] Sees if a LOB locator refers to a temporary LOB.
FREE TEMPORARY Frees a temporary LOB.

ORACLE

10-25

Chapter 10
Using Java (JDBC) to Work With LOBs

10.7.6 Pro*COBOL Embedded SQL Statements for BFILES

Table 10-29 Pro*COBOL Embedded SQL Statements for BFILES

Statement Description

FI LE CLOSE ALL Closes all open BFI LEs.

DESCRI BE [FI LEEXI STS] Checks whether a BFI LE exists.

DESCRI BE [DI RECTORY, Returns the directory object name and filename of a BFI LE.
FI LENAME]

10.7.7 Pro*COBOL Embedded SQL Statements for LOB Locators

Table 10-30 Pro*COBOL Embedded SQL Statements for LOB Locator Statements

Statement Description
ASSI GN Assigns one LOB locator to another.
FI LE SET Sets the directory object name and filename of a BFI LE in a locator.

10.7.8 Pro*COBOL Embedded SQL Statements for Opening and
Closing LOBs and BFILEs

Table 10-31 Pro*COBOL Embedded SQL Statements for Opening and Closing Persistent LOBs
and BFILEs

Statement Description

OPEN Opens a LOB or BFI LE.

DESCRI BE[| SOPEN| Sees if a LOB or BFI LE is open.
CLOSE Closes a LOB or BFI LE.

10.8 Using Java (JDBC) to Work With LOBs

You can perform the following tasks on LOBs with Java (JDBC):

* Modifying Internal Persistent LOBs Using Java

* Reading Internal Persistent LOBs and External LOBs (BFILEs) With Java
e Calling DBMS_LOB Package from Java (JDBC)

» Referencing LOBs Using Java (JDBC)

e Create and Manipulate Temporary LOBs and Store Them in Tables as Permanent
LOBs. See JDBC Temporary LOB APIs

ORACLE 10-26

Chapter 10
Using Java (JDBC) to Work With LOBs

10.8.1 Modifying Internal Persistent LOBs Using Java

You can make changes to an entire persistent LOB, or to pieces of the beginning, middle, or
end of a persistent LOB in Java by means of the JDBC API using the classes:

e oracle.sql .BLOB
e oracle.sqgl.CLOB

These classes implement j ava. sql . Bl ob and j ava. sql . O ob interfaces according to the
JDBC 3.0 specification, which has methods for LOB modification. They also include legacy
Oracle proprietary methods for LOB modification. These legacy methods are marked as
deprecated.

Starting in Oracle Database Release 11.1, the minimum supported version of the JDK is
JDKS5. To use JDKS5, place oj dbc5. j ar in your CLASSPATH. To use JDKG6, place oj dbcé. jar in
your CLASSPATH. oj dbc5. j ar supports the JDBC 3.0 specification and oj dbc6. j ar supports
the JDBC4.0 specification which is new with JDKG6.

10.8.2 Reading Internal Persistent LOBs and External LOBs (BFILES) With

Java

With JDBC you can use Java to read both internal persistent LOBs and external LOBs
(BFI LEs).

10.8.2.1 BLOB, CLOB, and BFILE Classes

 BLOBand CLOB Classes: In JDBC theses classes provide methods for performing
operations on large objects in the database including BLOB and CLOB data types.

e BFILE Class: In JDBC this class provides methods for performing operations on BFI LE
data in the database.

The BLOB, CLOB, and BFI LE classes encapsulate LOB locators, so you do not deal with
locators but instead use methods and properties provided to perform operations and get state
information.

10.8.3 Calling DBMS_LOB Package from Java (JDBC)

Any LOB functionality not provided by these classes can be accessed by a call to the
PL/SQL DBM5_LOB package. This technique is used repeatedly in the examples throughout
this manual.

10.8.4 Prefetching LOBSs to Improve Performance

ORACLE

The number of server round trips can be reduced by prefetching part of the data and
metadata (length and chunk size) along with the LOB locator during the fetch.

The SELECT parse, execution, and fetch occurs in one round trip. For large LOBs (larger than
five times the prefetch size) less improvement is seen.

To configure the prefetch size, a connection property,
oracl e.jdbc. def aul t LobPr ef et chSi ze, defined as a constant in
oracle.jdbc. Oacl eConnecti on can be used. Values can be -1 to disable prefetching, 0 to

10-27

Chapter 10
Using Java (JDBC) to Work With LOBs

enable prefetching for metadata only, or any value greater than 0 which represents the
number of bytes for BLOBs and characters for CLOBs, to be prefetched along with the
locator during fetch operations.

You can change the prefetch size for a particular statement by using a method defined
inoracle.jdbc. Oracl eStatenent:

voi d set LobPrefetchSize(int size) throws SQLExcepti on;

The statement level setting overrides the setting at the connection level. This setting
can also be overriden at the column level through the extended def i neCol umType
method, where the size represents the number of bytes (or characters for CLOB) to
prefetch. The possible values are the same as for the connection property. The type
must be set to Oracl eTypes. CLOB for a CLOB column and Or acl eTypes. BLOB for a BLOB
column. This method throws SQLExcept i on if the value is less than -1. To complement
the statement there is in or acl e. j dbc. Oracl eSt at ement :

int getLobPrefetchSize();

10.8.5 Zero-Copy Input/Output for SecureFiles to Improve
Performance

To improve the performance of SecureFiles, there is a Zero-copy Input/Output protocol
on the server that is only available to network clients that support the new Net NS Data
transfer protocol.

To determine if a LOB is a SecureFiles or not, use the method

publi ¢ bool ean isSecureFile() throws SQ.Exception

If it is a SecureFiles, TRUE is returned.

Use this thin connection property to disable (by setting to FALSE) the Zero-copy Input/
Output protocol:

oracl e. net. useZeroCopyl O

10.8.5.1 Zero-Copy Input/Output on the Server

Oracle Net Services is now able to use data buffers provided by the users of Oracle
Net Services without transferring the data into or out of its local buffers.

The network buffers (at the NS layer) are bypassed and internal lob buffers are directly
written on the network. The same applies to buffer reads.

This feature is only available to network clients that support the new NS Data packet
(this is negotiated during the NS handshake). The thin driver supports the new NS
protocol so that the server can use the zero-copy protocol and JavaNet exposes the
zero-copy 10 mechanism to the upper layer so that data copies are no longer required
in the thin driver code.

10.8.5.2 Zero-Copy Input/Output in the JDBC Thin Driver

When you call the BLOB. get Byt es(l ong pos, int length, byte[] buffer) API, the
buffer provided is used at the JavaNet layer to read the bytes from the socket.

ORACLE 10-28

Chapter 10
Using Java (JDBC) to Work With LOBs

The data is retrieved in one single round trip. Similarly, during a write operation, when you call
BLOB. set Byt es(l ong pos, byte[] bytes), the buffer is directly written on the network at the
JavaNet layer. So the data is written in one single round trip. The user buffer is sent as a
whole.

10.8.5.3 JDBC-OCI Driver Considerations

The JDBC-OCI driver supports Zero-copy Input/Output in the server and in the network layer.

10.8.6 Referencing LOBs Using Java (JDBC)

You can get a reference to any of the preceding LOBs in the following two ways:

 As acolumn of an O acl eResul t Set

e Asan QUT type PL/SQL parameter from an Or acl ePr epar edSt at emrent

10.8.6.1 Using OracleResultSet: BLOB and CLOB Objects Retrieved

When BLOB and CLOB objects are retrieved as a part of an O acl eResul t Set , these objects
represent LOB locators of the currently selected row.

If the current row changes due to a move operation, for example, r set .next (), then the
retrieved locator still refers to the original LOB row.

To retrieve the locator for the most current row, you must call get BLOB(), get CLOB() , or
get BFI LE() on the Oracl eResul t Set each time a move operation is made depending on
whether the instance is a BLOB, CLOB or BFI LE.

10.8.7 JDBC Syntax References and Further Information

For further JDBC syntax and information about using JDBC with LOBSs:

" See Also:

e Oracle Database JDBC Developer's Guide,for detailed documentation,
including parameters, parameter types, return values, and example code.

e http://ww. oracle.conftechnol ogy/

10.8.8 JDBC Methods for Operating on LOBs

ORACLE

The following JDBC methods operate on BLOBs, CLOBs, and BFI LEs:

* BLOBs:
To modify BLOB values, see Table 10-32

To read or examine BLOB values, see Table 10-33

— For streaming BLOB data, see Table 10-34

Temporary BLOBs: Creating, checking if BLOB is open, and freeing. See #unique_337/
unique_337_Connect_42_ G1039847

10-29

http://www.oracle.com/technology/

Chapter 10
Using Java (JDBC) to Work With LOBs

— Opening, closing, and checking if BLOB is open, see #unique_337/
unique_337_Connect_42_G1039847

— Truncating BLOBs, see #unique_338/unique_338_Connect_42_ (1039898

— BLOB streaming API, see #unique_339/unique_339_Connect_42_ G1039922
e (CLOBs:

— To read or examine CLOB values, see Table 10-36

— For streaming CLOB data, see Table 10-37

— To modify CLOBs, see #unique_339/unique_339_Connect 42 G1039922
e Temporary CLOBs:

— Opening, closing, and checking if CLOB is open, see #unique_342/
unique_342_ Connect_42_G1039863

— Truncating CLOBs, see #unique_343/unique_343_Connect_42_(G1039908

— CLOB streaming API, see #unique_344/unique_344_Connect_42_G1039935
e BFILEs:
To read or examine BFI LEs, see Table 10-38

For streaming BFI LE data, see Table 10-39

Opening, closing, and checking if BFI LE is open, see #unique_347/
unique_347_Connect_42_G1039879

— BFILE streaming API, see #unique_348/unique_348 Connect_42_G1039954

10.8.9 JDBC oracle.sql.BLOB Methods to Modify BLOB Values

Table 10-32 JDBC oracle.sql.BLOB Methods To Modify BLOB Values
- ___]

Method Description
int setBytes(long, byte[]) Inserts the byte array into the BLOB, starting at the
given offset

10.8.10 JDBC oracle.sql.BLOB Methods to Read or Examine BLOB
Values

Table 10-33 JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values
]

Method Description

byte[] getBytes(long, int) Gets the contents of the LOB as an array of bytes,
given an offset

 ong position(byte[],|ong) Finds the given byte array within the LOB, given an
offset

[ong position(Blob,long) Finds the given BLOB within the LOB

public bool ean equal s(java. | ang. Cbj ect) Compares this LOB with another. Compares the LOB
locators.

ORACLE 10-30

Chapter 10
Using Java (JDBC) to Work With LOBs

Table 10-33 (Cont.) JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values

Method Description
public long |ength() Returns the length of the LOB
public int getChunkSize() Returns the ChunkSi ze of the LOB

10.8.11 JDBC oracle.sgl.BLOB Methods and Properties for Streaming
BLOB Data

Table 10-34 JDBC oracle.sql.BLOB Methods and Properties for Streaming BLOB Data

Method Description
public java.io.lnputStream getBinaryStrean()) Streams the LOB as a binary stream
public java.io.QutputStream setBinaryStrean) Retrieves a stream that can be used to

write to the BLOB value that this Bl ob
object represents

10.8.12 JDBC oracle.sql.CLOB Methods to Modify CLOB Values

Table 10-35 JDBC oracle.sql.CLOB Methods to Modify CLOB Values

Method Description

int setString(long, java.lang.String) JDBC 3.0: Writes the given Java String to the CLOB
value that this C ob object designates at the position
pos.

int putChars(long, char[]) Inserts the character array into the LOB, starting at the
given offset

10.8.13 JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Value

Table 10-36 JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Values

Method Description

java.lang. String getSubString(long, int) Returns a substring of the LOB as a string

int getChars(long, int, char[]) Reads a subset of the LOB into a character array
 ong position(java.lang.String, |ong) Finds the given String within the LOB, given an offset
[ong position(oracle.jdbc2.d ob, |ong) Finds the given CLOB within the LOB, given an offset
ong | ength() Returns the length of the LOB

i nt get ChunkSi ze() Returns the ChunkSi ze of the LOB

ORACLE 10-31

Chapter 10
Using Java (JDBC) to Work With LOBs

10.8.14 JDBC oracle.sql.CLOB Methods and Properties for Streaming

CLOB Data

Table 10-37 JDBC oracle.sql.CLOB Methods and Properties for Streaming CLOB Data
]

Method

Description

java.io. I nputStream getAscii Stream()

java.io. Qutput Stream set Ascii Strean(| ong pos)

java.io. Reader getCharacterStrean()
java.io.Witer setCharacterStrean(long pos)

Implements the O ob interface method. Gets the
CLOB value designated by this Cl ob object as a
stream of ASCII bytes

JDBC 3.0: Retrieves a stream to be used to write
ASCII characters to the CLOB value that this Cl ob
object represents, starting at position pos

Reads the CLOB as a character stream

JDBC 3.0: Retrieves a stream to be used to write
Unicode characters to the CLOB value that this
C ob object represents, starting at position pos

10.8.15 JDBC oracle.sql.BFILE Methods to Read or Examine External

LOB (BFILE) Values

Table 10-38 JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE) Values
- ___]

Method

Description

byte[] getBytes(long, int)

int getBytes(long, int, byte[])
l ong position(oracle.sql.BFILE [ong)

| ong position(byte[], |ong)

ong | ength()
bool ean fil eExists()

public void openFile()
public void closeFile()

public bool ean isFileQpen()
public java.lang. String getDirAias()

public java.lang. String getName()

Cets the contents of the BFI LE as an array of bytes,
given an offset

Reads a subset of the BFI LE into a byte array

Finds the first appearance of the given BFI LE
contents within the LOB, from the given offset

Finds the first appearance of the given byte array
within the BFI LE, from the given offset

Returns the length of the BFILE

Checks if the operating system file referenced by this
BFI LE exists

Opens the operating system file referenced by this
BFI LE

Closes the operating systemfile
referenced by this BFILE

Checks if this BFI LE is open

Gets the directory object name for this
BFI LE

Gets the file name referenced by this
BFI LE

ORACLE

10-32

Chapter 10
Using Java (JDBC) to Work With LOBs

10.8.16 JDBC oracle.sql.BFILE Methods and Properties for Streaming
BFILE Data

Table 10-39 JDBC oracle.sql.BFILE Methods and Properties for Streaming BFILE Data

|
Method Description

public java.io.lnputStream getBi naryStrean) Reads t he BFILE as a binary stream

10.8.17 JDBC Temporary LOB APIs

Oracle Database JDBC drivers contain APIs to create and close temporary LOBs. These
APIs can replace workarounds that use the following procedures from the DBMS_LOB PL/SQL
package in prior releases:

» DBMS_LOB. createTenporary()
« DBMS_LOB.isTenporary()
« DBMS_LOB.freeTenporary()

Table 10-40 JDBC: Temporary BLOB APIs
]

Methods Description

public static BLOB createTenporary(Connection conn, Creates a temporary BLOB

bool ean cache, int duration) throws SQLException

public static bool ean isTenporary(BLOB bl ob) Checks if the specified BLOB locator refers

throws SQLException to a temporary BLOB

public bool ean isTenporary() throws SQ.Exception Checks if the current BLOB locator refers
to a temporary BLOB

public static void freeTenporary(BLOB tenp_bl ob) Frees the specified temporary BLOB

throws SQLException

public void freeTenmporary() throws SQLException Frees the temporary BLOB

Table 10-41 JDBC: Temporary CLOB APIs
]

Methods Description

public static CLOB createTenporary(Connection conn, Creates a temporary CLOB

bool ean cache, int duration) throws SQLException

public static boolean isTenporary(CLOB cl ob) Checks if the specified CLOB locator

throws SQLException refers to a temporary CLOB

public bool ean isTenporary() throws SQLException Checks if the current CLOB locator
refers to a temporary CLOB

public static void freeTenporary(CLOB tenp_cl ob) Frees the specified temporary CLOB

throws SQLException

public void freeTenmporary() throws SQLException Frees the temporary CLOB

ORACLE 10-33

Chapter 10
Using Java (JDBC) to Work With LOBs

10.8.18 JDBC: Opening and Closing LOBs

oracl e. sqgl . CLOB class is the Oracle JDBC driver implementation of standard JDBC
j ava. sqgl . d ob interface. Table 10-41 lists the Oracle extension APIs in
oracl e. sql . CLOB for accessing temporary CLOBSs.

Oracle Database JDBC drivers contain APIs to explicitly open and close LOBs. These
APIs replace previous techniques that use DBVS_LOB. open() and DBMS_LOB. ¢l ose() .

10.8.19 JDBC: Opening and Closing BLOBs

oracl e. sql . BLOB class is the Oracle JDBC driver implementation of standard JDBC
java.sql.Blob interface. Table 10-42 lists the Oracle extension APIs in
oracl e. sql . BLOB that open and close BLOBs.

Table 10-42 JDBC: Opening and Closing BLOBs
|

Methods Description

public void open(int node) throws SQLException Opens the BLOB
public bool ean i sCpen() throws SQLException Sees if the BLOB is open
public void close() throws SQLException Closes the BLOB

10.8.19.1 Opening the BLOB Using JDBC

To open a BLOB, your JDBC application can use the open method as defined in
oracl e. sql . BLOB class as follows:

/**

* Open a BLOB in the indicated node. Valid nodes include MODE_READONLY,
* and MODE_READWRITE. It is an error to open the same LOB twice.

*/

public void open (int node) throws SQLException

Possible values of the mode parameter are:

public static final int MODE_READONLY
public static final int MODE_READWR TE

Each call to open opens the BLOB. For example:

BLOB blob = ...
bl ob. open (BLOB. MODE_READWRI TE) ;

10.8.19.2 Checking If the BLOB Is Open Using JDBC

ORACLE

To see if a BLOB is opened, your JDBC application can use the i sOpen method defined
in oracle.sql.BLOB. The return Boolean value indicates whether the BLOB has been
previously opened or not. The i sOpen method is defined as follows:

/**

* Check whether the BLOB is opened.
* @eturn true if the LOB is opened.

10-34

Chapter 10
Using Java (JDBC) to Work With LOBs

*/
public bool ean isOpen () throws SQLException

The usage example is:

BLOB blob = ...
/1 See if the BLOB is opened
bool ean i sOpen = bl ob.isOpen ();

10.8.19.3 Closing the BLOB Using JDBC

To close a BLOB, your JDBC application can use the close method defined in
oracl e. sqgl . BLOB. The close APl is defined as follows:

/**
* Cose a previously opened BLCB.
*/
public void close () throws SQLException

The usage example is:

BLOB blob = ...
/1 close the BLOB
bl ob. cl ose ();

10.8.20 JDBC: Opening and Closing CLOBs

Class oracl e. sql . CLOB is the Oracle JDBC driver implementation of the standard JDBC
j ava. sqgl . d ob interface. Table 10-43 lists the Oracle extension APIs in oracl e. sgl . CLOB to
open and close CLOBs.

Table 10-43 JDBC: Opening and Closing CLOBs
|

Methods Description

public void open(int node) throws SQLException Open the CLOB

public bool ean i sQpen() throws SQLException See if the CLOB is opened
public void close() throws SQ.Exception Close the CLOB

10.8.20.1 Opening the CLOB Using JDBC

ORACLE

To open a CLOB, your JDBC application can use the open method defined in oracl e. sql . CLOB
class as follows:

/**

* Open a CLOB in the indicated node. Valid nodes include MODE_READONLY,
* and MODE_READWRITE. It is an error to open the same LOB twice.

*/

public void open (int node) throws SQLException

The possible values of the mode parameter are:

public static final int MODE_READONLY
public static final int MODE_READWR TE

Each call to open opens the CLOB. For example,

10-35

Chapter 10
Using Java (JDBC) to Work With LOBs

CLOB clob = ...
cl ob. open (CLOB. MODE_READVRI TE) ;

10.8.20.2 Checking If the CLOB Is Open Using JDBC

To see if a CLOB is opened, your JDBC application can use the i sOpen method defined
in oracle.sql.CLOB. The return Boolean value indicates whether the CLOB has been
previously opened or not. The i sCpen method is defined as follows:

/**

* Check whether the CLOB is opened.
* @eturn true if the LOB is opened.
*/
public bool ean isCpen () throws SQLException

The usage example is:

CLOB clob = ...
Il See if the CLOB is opened
bool ean i sOpen = cl ob.isOpen ();

10.8.20.3 Closing the CLOB Using JDBC

To close a CLOB, the JDBC application can use the close method defined in
oracl e. sqgl . CLOB. The close APl is defined as follows:

/**

* Close a previously opened CLCB.
*/
public void close () throws SQLException

The usage example is:

CLOB clob = ...
/1 close the CLOB
clob.close ();

10.8.21 JDBC: Opening and Closing BFILEs

oracl e. sql . BFI LE class wraps the database BFI LE object. Table 10-44 lists the Oracle
extension APIs in or acl e. sql . BFI LE for opening and closing BFI LEs.

Table 10-44 JDBC API Extensions for Opening and Closing BFILEs
|

Methods Description

public void open() throws SQLException Opens the BFI LE

public void open(int node) throws SQLException Opens the BFI LE

public bool ean i sCpen() throws SQLException Checks if the BFI LE is open
public void close() throws SQLException Closes the BFI LE

10.8.21.1 Opening BFILEs

ORACLE

To open a BFI LE, your JDBC application can use the OPEN method defined in
oracl e. sql . BFI LE class as follows:

10-36

Chapter 10
Using Java (JDBC) to Work With LOBs

/**

* (Open a external LOB in the read-only node. It is an error
* to open the sane LOB twice.

*/

public void open () throws SQLException

/**

* Open a external LOB in the indicated nmode. Valid nmodes include
* MODE_READONLY only. It is an error to open the same

* LOB twice.

*/

public void open (int node) throws SQLException

The only possible value of the mode parameter is:

public static final int MODE READONLY

Each call to open opens the BFI LE. For example,

BFILE bfile = ...
bfile.open ();

10.8.21.2 Checking If the BFILE Is Open

To see if a BFI LE is opened, your JDBC application can use the i sOpen method defined in
oracl e. sql . BFI LE. The return Boolean value indicates whether the BFILE has been
previously opened or not. The i sOpen method is defined as follows:

/**

* Check whether the BFILE i s opened.

* @eturn true if the LOB is opened.

*/

public bool ean isCpen () throws SQLException

The usage example is:

BFILE bfile = ...
Il See if the BFILE is opened
bool ean i sOpen = bfile.isOpen ();

10.8.21.3 Closing the BFILE

To close a BFI LE, your JDBC application can use the cl ose method defined in
oracl e.sql.BFILE. The cl ose APl is defined as follows:

/**

* Cose a previously opened BFILE.

*

/

public void close () throws SQLException

The usage example is --

BFILE bfile = ...
/'l close the BFILE
bfile.close ();

10.8.21.4 Usage Example (OpenCloseLob.java)

ORACLE

/*

10-37

ORACLE

Chapter 10

Using Java (JDBC) to Work With LOBs

* This sanple shows how to open/close BLOB and CLOB.

*/

/1 You nust inport the java.sql package to use JDBC
import java.sql.*;

/1 You nust inport the oracle.sql

i mport oracle.sql.*;

class Opend oselLob

{

public static void main (String args [])

{

throws SQLException

/1 Load the Oracle JDBC driver

package to use oracle.sql.BLOB

Driver Manager.registerDriver(new oracle.jdbc.driver.OacleDriver());

String url = "jdbc:oracle:oci8: @;
try {
String urll = System get Property("JDBC_URL");
if (urll !'=null)
url = url1;
} catch (Exception e) {
/1 1f there is any security exception, ignore it
/1 and use the default

}

/1 Connect to the database
Connection conn =

Driver Manager. get Connection (url, "scott", "password");

/1 It is faster when auto commt is off
conn. set AutoConmit (fal se);

Il Create a Statenent
Statement stnt = conn.createStatenent ();

try
{

stnt.execute ("drop table basic_|lob_table");

catch (SQLException e)
{

/1 An exception could be raised here if the table did not exist.

}

/Il Create a table containing a BLOB and a CLOB
stnt.execute ("create table basic_|lob_table (x varchar2 (30),

/1 Populate the table
stnt.execute (

"insert into basic_lob_table values"

b blob, ¢ clob)");

+ " ('one', '010101010101010101010101010101", 'onetwothreefour')");

/1 Select the |obs

Resul t Set rset = stnt.executeQuery ("select * frombasic_|lob_table");

while (rset.next ())

Il Get the |obs
BLOB bl ob = (BLOB) rset.getCbject (2);
CLOB clob = (CLOB) rset.getChject (3);

10-38

Chapter 10
Using Java (JDBC) to Work With LOBs

/1 Cpen the | obs

Systemout.println ("Open the |obs");
bl ob. open (BLOB. MODE_READWRI TE) ;

cl ob. open (CLOB. MODE_READVRI TE) ;

/1 Check if the |obs are opened
Systemout. println ("blob.isOpen()="+blob.isCpen());
Systemout.println ("clob.isOpen()="+clob.isCpen());

/1 Cose the |obs

Systemout.println ("C ose the |obs");
bl ob. cl ose ();

clob.close ();

/1 Check if the |obs are opened

Systemout. println ("blob.isOpen()="+bl ob.isCpen());

Systemout.println ("clob.isOpen()="+clob.isCpen());
}

/1 Close the ResultSet
rset.close ();

/1 Close the Statenent
stnt.close ();

/1 Close the connection
conn. close ();

}
}

10.8.22 Truncating LOBs Using JDBC

Oracle Database JDBC drivers contain APIs to truncate persistent LOBs. These APIs replace
previous techniques that used DBMS_LOB. trin().

10.8.22.1 JDBC: Truncating BLOBs

oracl e. sql . BLOB class is Oracle JDBC driver implementation of the standard JDBC
j ava. sql . Bl ob interface. Table 10-45 lists the Oracle extension APl in or acl e. sql . BLOB that
truncates BLOBSs.

Table 10-45 JDBC: Truncating BLOBs

L __|]
Methods Description

public void truncate(long new en) throws SQLException Truncates the BLOB

The truncate API is defined as follows:
/ * %

*Truncate the value of the BLOB to the length you specify in the new en paraneter.
* @aram new en the new length of the BLOB.

*/

public void truncate (I ong new en) throws SQLException

The new en parameter specifies the new length of the BLOB.

ORACLE 10-39

Chapter 10
Using Java (JDBC) to Work With LOBs

10.8.22.2 JDBC: Truncating CLOBs

oracl e. sqgl . CLOB class is the Oracle JDBC driver implementation of standard JDBC
j ava. sqgl . d ob interface. Table 10-46 lists the Oracle extension API in
oracl e. sqgl . CLOB that truncates CLOBs.

Table 10-46 JDBC: Truncating CLOBs
]

Methods Description

public void truncate(long new en) throws SQLException Truncates the CLOB

The truncate API is defined as follows:
/ * %

*Truncate the value of the CLOB to the length you specify in the new en
par amet er.

* @aram new en the new length of the CLOB.

*/

public void truncate (I ong new en) throws SQLException

The new en parameter specifies the new length of the CLOB.

¢ See:

"About Trimming LOB Data", for an example.

10.8.23 JDBC BLOB Streaming APIs

The JDBC interface provided with the database includes LOB streaming APIs that
enable you to read from or write to a LOB at the requested position from a Java
stream.

The or acl e. sqgl . BLOB class implements the standard JDBC j ava. sql . Bl ob interface.
Table 10-47 lists BLOB Streaming APIs.

Table 10-47 JDBC: BLOB Streaming APIs

Methods Description

public java.io.CQutputStream JDBC 3.0: Retrieves a stream that can

set Bi naryStream (1 ong pos) throws SQLException be used to write to the BLOB value that
this Bl ob object represents, starting at
position pos

public java.io.lnputStream JDBC 3.0: Retrieves a stream that can

get Bi naryStrean() throws SQLExcepti on be used.to read the BLOB valge that this
Bl ob object represents, starting at the
beginning

ORACLE 10-40

Chapter 10
Using Java (JDBC) to Work With LOBs

Table 10-47 (Cont.) JDBC: BLOB Streaming APls

Methods Description
public java.io.lnputStream Oracle extension: Retrieves a stream
get Bi naryStrean(| ong pos) throws SQLException that can be used to read the BLOB value

that this Bl ob object represents, starting
at position pos

These APIs are defined as follows:
/**

* Wite to the BLOB froma streamat the requested position.

*

* @arampos is the position data to be put.

* @eturn a output streamto wite data to the BLOB

*/

public java.io.QutputStream setBinaryStrean(long pos) throws SQ.Exception

/**

* Read fromthe BLOB as a streamat the requested position.

*

* @arampos is the position data to be read.

* @eturn a output streamto wite data to the BLOB

*/

public java.io.|nputStream getBinaryStrean(long pos) throws SQLException

10.8.24 JDBC CLOB Streaming APIs

The oracl e. sgl . CLOB class is the Oracle JDBC driver implementation of standard JDBC
j ava. sqgl . d ob interface. Table 10-48 lists the CLOB streaming APlIs.

Table 10-48 JDBC: CLOB Streaming APIs

Methods Description
public java.io.CQutputStream JDBC 3.0: Retrieves a stream to be used
set Ascii Stream (1 ong pos) throws SQLException to write ASCII characters to the CLOB

value that this Cl ob object represents,
starting at position pos
public java.io. Witer JDBC 3.0: Retrieves a stream to be used

set Charact er Stream (1 ong pos) throws SQLException to write Unicode characters to the CLOB
value that this Cl ob object represents,

starting, at position pos
public java.io.lnputStream JDBC 3.0: Retrieves a stream that can be

et Ascii Strea t hr ows SOLExcepti on used to read ASCII characters from the
g "0 & P CLOB value that this Cl ob object

represents, starting at the beginning
public java.io.lnputStream Oracle extension: Retrieves a stream that

et Ascii Streant! on os) throws SOLException can be used to read ASCII characters
g i ong pos) & P from the CLOB value that this O ob object

represents, starting at position pos

ORACLE 10-41

Chapter 10
Using Java (JDBC) to Work With LOBs

Table 10-48 (Cont.) JDBC: CLOB Streaming APIs
]

Methods Description
public java.io.Reader JDBC 3.0: Retrieves a stream that can be
get Character Strean() throws SQLException used to read Unicode characters from the

CLOB value that this Cl ob object
represents, starting at the beginning

public java.io.Reader Oracle extension: Retrieves a stream that

et Char act er St reant | on 0s) throws SOLException can be used to read Unicode characters
g (1 ong pos) QL P from the CLOB value that this C ob object

represents, starting at position pos

These APIs are defined as follows:
/**
* Wite to the CLOB froma streamat the requested position.
* @arampos is the position data to be put.
* @eturn a output streamto wite data to the CLOB
*/
public java.io.QutputStream setAsciiStrean(long pos) throws SQLException

/**

* Wite to the CLOB froma streamat the requested position.
* @arampos is the position data to be put.
* @eturn a output streamto wite data to the CLOB
*/
public java.io.Witer setCharacterStrean(long pos) throws SQ.Exception

/**

* Read fromthe CLOB as a streamat the requested position.

* @arampos is the position data to be put.

* @eturn a output streamto wite data to the CLOB

*/
public java.io.|nputStream getAscii Strean(long pos) throws SQLException
/**

* Read fromthe CLOB as a streamat the requested position.

* @arampos is the position data to be put.

* @eturn a output streamto wite data to the CLOB

*/
public java.io.Reader getCharacterStrean(long pos) throws SQLException

10.8.25 BFILE Streaming APIs

oracl e. sql . BFI LE class wraps the database BFI LEs. Table 10-49 lists the Oracle
extension APIs in or acl e. sql . BFI LE that reads BFI LE content from the requested
position.

Table 10-49 JDBC: BFILE Streaming APIs

__|]
Methods Description

public java.io.lnputStream Reads from the BFI LE as a stream
get BinaryStream(l ong pos) throws SQ.Exception

ORACLE 10-42

Chapter 10
Using Java (JDBC) to Work With LOBs

These APIs are defined as follows:
/**

* Read fromthe BLOB as a streamat the requested position.

*

* @arampos is the position data to be read.

* @eturn a output streamto wite data to the BLOB

*/

public java.io.lnputStream getBinaryStrean(long pos) throws SQ.Exception

10.8.25.1 JDBC BFILE Streaming Example (NewStreamLob.java)

ORACLE

/*
* This sanpl e shows how to read/wite BLOB and CLOB as streans.
*/

import java.io.*;

/1 You nust inport the java.sql package to use JDBC
i mport java.sql.*;

/1 You nust inport the oracle.sql package to use oracle.sqgl.BLOB
i nport oracle.sql.*;

cl ass NewStreanlob
{

public static void main (String args []) throws Exception
{
/1 Load the Oracle JDBC driver
DriverManager.regi sterDriver(new oracle.jdbc.driver.OacleDriver());

String url = "jdbc:oracle:oci8: @;
try {
String urll = System get Property("JDBC_URL");
if (urll !'=null)
url = url1;
} catch (Exception e) {
/1 1f there is any security exception, ignore it
/1 and use the default

}

/1 Connect to the database
Connection conn =
Driver Manager. get Connection (url, "scott", "password");
[l 1t is faster when auto commit is off
conn. set AutoConmit (false);

I/ Create a Statenent
Statement stnt = conn.createStatement ();

try
{
stnt.execute ("drop table basic_|lob_table");
}
catch (SQLException e)

/1 An exception could be raised here if the table did not exist.

}

/] Create a table containing a BLOB and a CLOB

10-43

ORACLE

}

Chapter 10
Using Java (JDBC) to Work With LOBs

stnt.execute (
"create table basic_lob_table"
+ "(x varchar2 (30), b blob, ¢ clob)");

/1 Populate the table
stnt.execute (
"insert into basic_lob_table values"
+ "("one', '010101010101010101010101010101', ' onetwot hreefour')");

Systemout. println ("Dunping |obs");

Il Select the |obs
Resul t Set rset = stnt.executeQuery ("select * frombasic_|lob_table");
while (rset.next ())
{
Il Get the |obs
BLOB bl ob = (BLOB) rset.getChject (2);
CLOB clob = (CLOB) rset.getChject (3);

[l Print the lob contents
dunpBl ob (conn, blob, 1);
dunpC ob (conn, clob, 1);

/1 Change the lob contents

filldob (conn, clob, 11, 50);

fillBlob (conn, blob, 11, 50);
}

rset.close ();
Systemout. printin ("Dunping | obs again");

rset = stnt.executeQuery ("select * frombasic_|lob_table");
while (rset.next ())
{

/1l Get the |obs

BLOB bl ob = (BLOB) rset.getCbject (2);

CLOB clob = (CLOB) rset.getChject (3);

/1 Print the | obs contents
dunpBl ob (conn, blob, 11);
dunpd ob (conn, clob, 11);

/I Cose all resources
rset.close();
stnt.close();
conn. cl ose();

/1l Uility function to dunp Cob contents
static void dunpC ob (Connection conn, CLOB clob, Iong offset)

{

throws Exception

Il get character streamto retrieve clob data
Reader instream = cl ob. get Charact er Strean(of fset);

/] create tenporary buffer for read
char[] buffer = new char[10];

/'l length of characters read
int length = 0;

10-44

Chapter 10
Using Java (JDBC) to Work With LOBs

Il fetch data
while ((length = instreamread(buffer)) !=-1)

Systemout.print("Read " + length + " chars: ");

for (int i=0; i<length; i++)
Systemout. print(buffer[i]);
Systemout. println();
}

/1 Cose input stream
instream cl ose();

}

/1l Uility function to dunp Blob contents
static void dunpBl ob (Connection conn, BLOB blob, |ong offset)
throws Exception
{
/] Get binary output streamto retrieve blob data
I nput Stream i nstream = bl ob. get Bi naryStrean{ of fset);
/] Create tenporary buffer for read
byte[] buffer = new byte[10];
/'l length of bytes read
int length = 0;
Il Fetch data
while ((length = instreamread(buffer)) !=-1)

Systemout.print("Read " + length + " bytes: ");

for (int i=0; i<length; i++)
Systemout. print(buffer[i]+" ");
Systemout. println();
}

/I Cose input stream
i nstream cl ose();

}

/I Uility function to put data in a Clob
static void fill dob (Connection conn, CLOB clob, long offset, long |ength)
throws Exception

{

Witer outstream = clob. setCharacterStreanof fset);

int i =0;
int chunk = 10;

while (i < length)
{

outstreamwite("aaaaaaaaaa", 0, chunk);

i += chunk;
if (length - i < chunk)
chunk = (int) length - i;
}

outstreamcl ose();

}

/1l Uility function to put data in a Blob
static void fillBlob (Connection conn, BLOB blob, Iong offset, long |ength)
throws Exception

ORACLE 10-45

Chapter 10
Oracle Provider for OLE DB (OraOLEDB)

{
Qut put Stream out stream = bl ob. set Bi narySt rean(of f set) ;
int i =0;
int chunk = 10;

byte [] data={1, 1, 1, 1, 1, 1, 1, 1, 1, 1};

while (i < length)
{

outstreamwite(data, 0, chunk);

i += chunk;
if (length - i < chunk)
chunk = (int) length - i;
}
outstreamcl ose();
}
}

10.8.26 JDBC and Empty LOBs

An empty BLOB can be created from the following API from or acl e. sql . BLOB:

public static BLOB enpty_lob () throws SQ.Exception

Similarly, the following API from or acl e. sgl . CLOB creates an empty CLOB:

public static CLOB enpty_lob () throws SQ.Exception

Empty LOB instances are created by JDBC drivers without making database round
trips. Empty LOBs can be used in the following cases:

* set APIs of Prepar edSt at ement
e update APIs of updatable result set
e attribute value of STRUCTs

* element value of ARRAYS

< Note:
Empty LOBs are special marker LOBs but not real LOB values.
JDBC applications cannot read or write to empty LOBs created from the preceding

APIs. An ORA-17098 "Invalid empty lob operation" results if your application attempts
to read/write to an empty LOB.

10.9 Oracle Provider for OLE DB (OraOLEDB)

ORACLE

Oracle Provider for OLE DB (OraOLEDB) offers high performance and efficient access
to Oracle data for OLE DB and ADO developers.

Developers programming with COM, C++, or any COM client can use OraOLEDB to
access Oracle databases.

10-46

Chapter 10
Overview of Oracle Data Provider for .NET (ODP.NET)

OraOLEDB is an OLE DB provider for Oracle. It offers high performance and efficient access
to Oracle data including LOBs, and also allows updates to certain LOB types.

The following LOB types are supported by OraOLEDB:

* For Persistent LOBs:

READMVRI TE through the rowset.
* For BFILEs:

READ-ONLY through the rowset.
* Temporary LOBs:

Are not supported through the rowset.

¢ See Also:

Oracle Provider for OLE DB Developer's Guide for Microsoft Windows

10.10 Overview of Oracle Data Provider for .NET (ODP.NET)

ORACLE

Oracle Data Provider for .NET (ODP.NET) is an implementation of a data provider for the
Oracle database.

ODP.NET uses Oracle native APIs to offer fast and reliable access to Oracle data and
features from any .NET application. ODP.NET also uses and inherits classes and interfaces
available in the Microsoft .NET Framework Class Library. The ODP.NET supports the
following LOBs as native data types with .NET: BLOB, CLOB, NCLOB, and BFI LE.

COM and .NET are complementary development technologies. Microsoft recommends that
developers use the .NET Framework rather than COM for new development.

" See Also:

Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

10-47

LOB APIs for BFILE Operations

ORACLE

APIs for operations that use BFI LEs are listed in Table 11-1.

This information is given for each operation described:

Usage Notes provide implementation guidelines such as information specific to a given
programmatic environment or data type.

Syntax refers you to the syntax reference documentation for each supported
programmatic environment.

Examples describe any setup tasks necessary to run the examples given. Demonstration
files listed are available in subdirectories under $ORACLE_HOVE/ r dbns/ deno/ | obs/ named
pl sql, oci, vb, and j ava. The driver program | obdeno. sql isin/pl sql and the driver
program | obdeno. c isin/oci.

" Note:
LOB APIs do not support loading data into BFI LEs.

¢ See Also:

About Using SQL*Loader to Load LOBs for details about techniques to load
data into BFI LEs.

Topics:

Supported Environments for BFILE APls

About Accessing BFILEs

Directory Objects

BFILENAME and Initialization

Characteristics of the BFILE Data Type

BFILE Security

About Loading a LOB with BFILE Data

About Opening a BFILE with OPEN

About Opening a BFILE with FILEOPEN

About Determining Whether a BFILE Is Open Using ISOPEN
About Determining Whether a BFILE Is Open with FILEISOPEN
About Displaying BFILE Data

About Reading Data from a BFILE

11-1

Chapter 11

Supported Environments for BFILE APIs

* About Reading a Portion of BFILE Data Using SUBSTR

e Comparing All or Parts of Two BFILES

» Checking If a Pattern Exists in a BFILE Using INSTR

» Determining Whether a BFILE Exists
* Getting the Length of a BFILE
* About Assigning a BFILE Locator

* Getting Directory Object Name and File Name of a BFILE

e About Updating a BFILE by Initializing a BFILE Locator

* Closing a BFILE with FILECLOSE
* Closing a BFILE with CLOSE

e Closing All Open BFILEs with FILECLOSEALL

* About Inserting a Row Containing a BFILE

11.1 Supported Environments for BFILE APIs

Those programmatic environments that are supported for the APIs are listed in
Table 11-1. The first column describes the operation that the API performs. The
remaining columns indicate with Yes or No whether the API is supported in PL/SQL,

OCl, COBOL, Pro*C/C++, and JDBC.

Table 11-1 Environments Supported for BFILE APIs

Operation PL/SQL OCI COBOL Pro*CIC++ JDBC
About Inserting a Row Containing a BFILE Yes Yes Yes Yes Yes
About Loading a LOB with BFILE Data Yes Yes Yes Yes Yes
About Opening a BFILE with FILEOPEN Yes Yes No No Yes
About Opening a BFILE with OPEN Yes Yes Yes Yes Yes
About Determining Whether a BFILE Is Open Using Yes Yes Yes Yes Yes
ISOPEN

About Determining Whether a BFILE Is Open with Yes Yes No No Yes
FILEISOPEN

About Displaying BFILE Data Yes Yes Yes Yes Yes
About Reading Data from a BFILE Yes Yes Yes Yes Yes
About Reading a Portion of BFILE Data Using Yes No Yes Yes Yes
SUBSTR

Comparing All or Parts of Two BFILES Yes No Yes Yes Yes
Checking If a Pattern Exists in a BFILE Using Yes No Yes Yes Yes
INSTR

Determining Whether a BFILE Exists Yes Yes Yes Yes Yes
Getting the Length of a BFILE Yes Yes Yes Yes Yes
About Assigning a BFILE Locator Yes Yes Yes Yes Yes
Getting Directory Object Name and File Name of a Yes Yes Yes Yes Yes
BFILE
ORACLE 11-2

Chapter 11
About Accessing BFILES

Table 11-1 (Cont.) Environments Supported for BFILE APIs

Operation PL/SQL OcCI COBOL Pro*C/IC++ JDBC
About Updating a BFILE by Initializing a BFILE Yes Yes Yes Yes Yes
Locator

Closing a BFILE with FILECLOSE Yes Yes No No Yes
Closing a BFILE with CLOSE Yes Yes Yes Yes Yes
Closing All Open BFILEs with FILECLOSEALL Yes Yes Yes Yes Yes

11.2 About Accessing BFILES

To access BFI LEs use one of the following interfaces:

e OCI (Oracle Call Interface)

 PL/SQL (DBMS_LOB package)

e Precompilers, such as Pro*C/C++ and Pro*xCOBOL
e Java (JDBC)

¢ See Also:

Overview of Supplied LOB APIs for information about supported environments for
accessing BFI LEs.

11.3 Directory Objects

The DI RECTORY object facilitates administering access and usage of BFl LE data types.

A DI RECTORY object specifies a logical alias name for a physical directory on the database
server file system under which the file to be accessed is located. You can access a file in the
server file system only if granted the required access privilege on DI RECTORY object. You can
also use Oracle Enterprise Manager Cloud Control to manage DI RECTORY objects.

¢ See Also:

e CREATE DI RECTCRY in Oracle Database SQL Language Reference

e See Oracle Database Administrator's Guide for the description of Oracle
Enterprise Manager Cloud Control

11.3.1 Initializing a BFILE Locator

ORACLE

The DI RECTORY object provides the flexibility to manage the locations of the files, instead of
forcing you to hard-code the absolute path names of physical files in your applications.

11-3

Chapter 11
Directory Objects

A directory object name is used in conjunction with the BFI LENAME function, in SQL and
PL/SQL, or the CCl LobFi | eSet Nane() in OCI, for initializing a BFI LE locator.

WARNING:

The database does not verify that the directory and path name you specify
actually exist. You should take care to specify a valid directory in your
operating system. If your operating system uses case-sensitive path names,
then be sure you specify the directory in the correct format. There is no
requirement to specify a terminating slash (for example, / t np/ is not
necessary, simply use / t np).

Directory specifications cannot contain ".." anywhere in the path (for
example, / abc/def/hij..).

11.3.2 How to Associate Operating System Files with a BFILE

ORACLE

To associate an operating system file to a BFI LE, first create a DI RECTORY object which
is an alias for the full path name to the operating system file.

To associate existing operating system files with relevant database records of a
particular table use Oracle SQL DML (Data Manipulation Language). For example:

e Use | NSERT to initialize a BFI LE column to point to an existing file in the server file
system.

* Use UPDATE to change the reference target of the BFI LE.

* Initialize a BFI LE to NULL and then update it later to refer to an operating system
file using the BFI LENAME function.

* OCIl users can also use OCl LobFi | eSet Nane() to initialize a BFI LE locator variable
that is then used in the VALUES clause of an | NSERT statement.

Directory Example

The following statements associate the files | magel. gi f and i mage2. gi f with records
having key_val ue of 21 and 22 respectively. 'l MG is a DI RECTORY object that represents
the physical directory under which | magel. gi f and i mage2. gi f are stored.

You may be required to set up data structures similar to the following for certain
examples to work:

CREATE TABLE Lob_table (
Key val ue NUVBER NOT NULL,
F_lob BFILE)
I NSERT | NTO Lob_tabl e VALUES
(21, BFILENAME(' IMG, 'Imagel.gif'));
I NSERT | NTO Lob_tabl e VALUES
(22, BFILENAME(' IMG, 'image2.gif'));

The following UPDATE statement changes the target file to i mage3. gi f for the row with
key_val ue of 22.

UPDATE Lob_table SET f_lob = BFILENAME(' IMS, 'image3.gif')
WHERE Key_val ue = 22;

11-4

Chapter 11
BFILENAME and Initialization

WARNING:

The database does not expand environment variables specified in the DI RECTORY
object or file name of a BFI LE locator. For example, specifying:

BFI LENAME(' WORK_DIR', ' $WY_FI LE")

where MY_FI LE, an environment variable defined in the operating system, is not
valid.

11.4 BFILENAME and Initialization

BFI LENAME is a built-in function that you use to initialize a BFI LE column to point to an external
file.

Once physical files are associated with records using SQL DML, subsequent read operations
on the BFI LE can be performed using PL/SQL DBM5_LOB package and OCI. However, these
files are read-only when accessed through BFI LES, and so they cannot be updated or deleted
through BFI LEs.

As a consequence of the reference-based semantics for BFI LEs, it is possible to have
multiple BFI LE columns in the same record or different records referring to the same file. For
example, the following UPDATE statements set the BFI LE column of the row with key_val ue =
21 in| ob_t abl e to point to the same file as the row with key_val ue = 22.

UPDATE | ob_t abl e
SET f_lob = (SELECT f_| ob FROM | ob_t abl e WHERE key_val ue = 22)
WHERE key_val ue = 21;

Think of BFI LENAME in terms of initialization — it can initialize the value for the following:

e BFILE column

* BFI LE (automatic) variable declared inside a PL/SQL module

11.5 Characteristics of the BFILE Data Type

ORACLE

Using the BFI LE data type has the following advantages:

e If your need for a particular BFI LE is temporary and limited within the module on which
you are working, then you can use the BFI LE related APIs on the variable without ever
having to associate this with a column in the database.

* Because you are not forced to create a BFI LE column in a server side table, initialize this
column value, and then retrieve this column value using a SELECT, you save a round-trip
to the server.

About Loading a LOB with BFILE Data for examples related toDBVS_LOB.LOADFROVFI LE .

The OCI counterpart for BFI LENAME is OCl LobFi | eSet Nare() , which can be used in a similar
fashion.

11-5

Chapter 11
BFILE Security

11.5.1 DIRECTORY Name Specification

You must have CREATE ANY DI RECTORY system privilege to create directories.

Path names cannot contain two dots (".."). The naming convention for DI RECTORY
objects is the same as that for tables and indexes. That is, normal identifiers are
interpreted in uppercase, but delimited identifiers are interpreted as is. For example,
the following statement:

CREATE OR REPLACE DI RECTORY scott _dir AS '/usr/home/scott';

creates or redefines a DI RECTORY object whose name is 'SCOTT_DI R (in uppercase).
But if a delimited identifier is used for the DI RECTORY name, as shown in the following
statement

CREATE DI RECTORY "Mary _Dir" AS '/usr/hone/ mary';

then the directory object name is ‘Mary_Dir'. Use 'SCOTT_DI R and 'Mary_Di r ' when
calling BFI LENAME. For example:

BFI LENAVE(' SCOTT DIR, 'afile’)
BFI LENAVE(' Mary Dir', 'afile')

11.5.1.1 On Windows Platforms

On Windows platforms the directory names are case-insensitive. Therefore the
following two statements refer to the same directory:

CREATE DI RECTORY "big_cap_dir" AS "g:\data\source";

CREATE DI RECTORY "smal | _cap_dir" AS "G \ DATA\ SOURCE";

11.6 BFILE Security

BEFI LE security concerns the BFI LE security model and associated SQL statements.
The main SQL statements associated with BFI LE security are:

* SQL DDL: CREATE and REPLACE or ALTER a DI RECTORY object

* SQL DML: GRANT and REVCKE the READ system and object privileges on DI RECTORY
objects

11.6.1 Ownership and Privileges

ORACLE

The DI RECTORY object is a system owned object.

For more information on system owned objects, see Oracle Database SQL Language
Reference. Oracle Database supports two new system privileges, which are granted
only to DBA:

e CREATE ANY DI RECTORY: For creating or altering the DI RECTORY object creation
* DROP ANY DI RECTORY: For deleting the DI RECTORY object

11-6

Chapter 11
BFILE Security

11.6.2 Read Permission on a DIRECTORY Object

READ permission on the DI RECTORY object enables you to read files located under that
directory. The creator of the DI RECTORY object automatically earns the READ privilege.

If you have been granted the READ permission with GRANT option, then you may in turn grant
this privilege to other users/roles and add them to your privilege domains.

" Note:

The READ permission is defined only on the DI RECTORY object, not on individual files.
Hence there is no way to assign different privileges to files in the same directory.

The physical directory that it represents may or may not have the corresponding operating
system privileges (read in this case) for the Oracle Server process.

It is the responsibility of the DBA to ensure the following:

* That the physical directory exists

* Read permission for the Oracle Server process is enabled on the file, the directory, and
the path leading to it

* The directory remains available, and read permission remains enabled, for the entire
duration of file access by database users

The privilege just implies that as far as the Oracle Server is concerned, you may read from
files in the directory. These privileges are checked and enforced by the PL/SQL DBV _LOB
package and OCI APIs at the time of the actual file operations.

WARNING:

Because CREATE ANY DI RECTORY and DROP ANY DI RECTORY privileges potentially
expose the server file system to all database users, the DBA should be prudent in
granting these privileges to normal database users to prevent security breach.

11.6.3 SQL DDL for BFILE Security

¢ See Also:

Oracle Database SQL Language Reference for information about the following SQL
DDL statements that create, replace, and drop DI RECTORY objects:

e CREATE DI RECTORY
* DROP DI RECTORY

ORACLE 11-7

Chapter 11
BFILE Security

11.6.4 SQL DML for BFILE Security

" See Also:

Oracle Database SQL Language Reference for information about the
following SQL DML statements that provide security for BFI LEs:

* GRANT (system privilege)
e GRANT (object privilege)

e REVOKE (system privilege)
e REVOKE (object privilege)
e AUDI T (new statements)

e AUDI T (schema objects)

11.6.5 Catalog Views on Directories

Catalog views are provided for DIRECTORY objects to enable users to view object
names and corresponding paths and privileges. Supported views are:

e ALL_DI RECTORI ES (OWNER, DI RECTORY_NAME, DI RECTORY_PATH)
This view describes all directories accessible to the user.
e DBA DI RECTORI ES(OWNER, DI RECTORY_NAME, DI RECTORY_PATH)

This view describes all directories specified for the entire database.

11.6.6 Guidelines for DIRECTORY Usage

ORACLE

The main goal of the DI RECTORY feature is to enable a simple, flexible, non-intrusive,
yet secure mechanism for the DBA to manage access to large files in the server file
system. But to realize this goal, it is very important that the DBA follow these
guidelines when using DI RECTORY objects:

* Do not map a DI RECTCRY object to a data file directory. A DI RECTORY object should
not be mapped to physical directories that contain Oracle data files, control files,
log files, and other system files. Tampering with these files (accidental or
otherwise) could corrupt the database or the server operating system.

* Only the DBA should have system privileges. The system privileges such as
CREATE ANY DI RECTORY (granted to the DBA initially) should be used carefully and
not granted to other users indiscriminately. In most cases, only the database
administrator should have these privileges.

* Use caution when granting the DIRECTORY privilege. Privileges on DI RECTORY
objects should be granted to different users carefully. The same holds for the use
of the W TH GRANT OPTI ON clause when granting privileges to users.

e Do not drop or replace DI RECTORY objects when database is in operation.
DI RECTORY objects should not be arbitrarily dropped or replaced when the
database is in operation. If this were to happen, then operations from all sessions

11-8

Chapter 11
BFILE Security

on all files associated with this DI RECTORY object fail. Further, if a DROP or REPLACE
command is executed before these files could be successfully closed, then the
references to these files are lost in the programs, and system resources associated with
these files are not be released until the session(s) is shut down.

The only recourse left to PL/SQL users, for example, is to either run a program block that
calls DBVMS_LOB.FI LECLOSEALL and restart their file operations, or exit their sessions
altogether. Hence, it is imperative that you use these commands with prudence, and
preferably during maintenance downtimes.

» Use caution when revoking a user's privilege on DI RECTCRY objects. Revoking a user's
privilege on a DI RECTORY object using the REVOKE statement causes all subsequent
operations on dependent files from the user's session to fail. Either you must re-acquire
the privileges to close the file, or run a FI LECLOSEALL in the session and restart the file
operations.

In general, using DI RECTCRY objects for managing file access is an extension of system
administration work at the operating system level. With some planning, files can be logically
organized into suitable directories that have READ privileges for the Oracle process.

DI RECTORY objects can be created with READ privileges that map to these physical directories,
and specific database users granted access to these directories.

11.6.7 BFILEs in Shared Server (Multithreaded Server) Mode

The database does not support session migration for BFI LE data types in shared server
(multithreaded server) mode. This implies that operations on open BFI LE instances can
persist beyond the end of a call to a shared server.

In shared server sessions, BFI LE operations are bound to one shared server, they cannot
migrate from one server to another.

11.6.8 External LOB (BFILE) Locators

For BFI LEs, the value is stored in a server-side operating system file; in other words, external
to the database. The BFI LE locator that refers to that file is stored in the row.

11.6.8.1 When Two Rows in a BFILE Table Refer to the Same File

If a BFI LE locator variable that is used in a DBM5S_LOB.FI LECPEN (for example L1) is assigned to
another locator variable, (for example L2), then both L1 and L2 point to the same file.

This means that two rows in a table with a BFI LE column can refer to the same file or to two
distinct files — a fact that the canny developer might turn to advantage, but which could well
be a pitfall for the unwary.

11.6.8.2 BFILE Locator Variable

ORACLE

A BFI LE locator variable operates like any other automatic variable. With respect to file
operations, it operates like a file descriptor available as part of the standard input/output
library of most conventional programming languages.

This implies that once you define and initialize a BFI LE locator, and open the file pointed to by
this locator, all subsequent operations until the closure of this file must be done from within
the same program block using this locator or local copies of this locator.

11-9

Chapter 11
About Loading a LOB with BFILE Data

11.6.8.3 Guidelines for BFILES

Note the following guidelines when working with BFI LEs:

Open and close a file from the same program block at same nesting level. The
BFI LE locator variable can be used, just as any scalar, as a parameter to other
procedures, member methods, or external function callouts. However, it is
recommended that you open and close a file from the same program block at the
same nesting level.

Set the BFI LE value before flushing the object to the database. If an object
contains a BFl LE, then you must set the BFI LE value before flushing the object to
the database, thereby inserting a new row. In other words, you must call

OCl LobFi | eSet Nane() after OCl Obj ect New() and before OCl Ghj ect Fl ush() .

Indicate the DI RECTORY object name and file name before inserting or updating of a
BFI LE. It is an error to insert or update a BFI LE without indicating a DI RECTORY
object name and file name.

This rule also applies to users using an OCI bind variable for a BFI LE in an insert
or update statement. The OCI bind variable must be initialized with a DI RECTORY
object name and file name before issuing the insert or update statement.

Initialize BFI LE Before insert or update

" Note:

OCl Set Attr () does not allow the user to set a BFI LE locator to NULL.

Before using SQL to insert or update a row with a BFI LE, you must initialize the
BFI LE to one of the following:

— NULL (not possible if using an OCI bind variable)
— A DI RECTORY object name and file name

A path name cannot contain two dots ("..") anywhere in its specification. A file
name cannot start with two dots.

11.7 About Loading a LOB with BFILE Data

You can load a LOB with data from a BFI LE.

ORACLE

¢ See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Oracle Database JDBC Developer’s Guide for details of working with BFI LE
functions in this chapter.

11-10

Chapter 11
About Loading a LOB with BFILE Data

Preconditions
The following preconditions must exist before calling this procedure:

* The source BFI LE instance must exist.

* The destination LOB instance must exist.

Usage Notes

< Note:

The LOADBLOBFROVFI LE and LOADCLOBFROVFI LE procedures implement the
functionality of this procedure and provide improved features for loading binary data
and character data. The improved procedures are available in the PL/SQL
environment only. When possible, using one of the improved procedures is
recommended.

See Also:

e About Loading a BLOB with Data from a BFILE
e Loading a CLOB or NCLOB with Data from a BFILE

Character Set Conversion

In using OCI, or any of the programmatic environments that access OCI functionality,
character set conversions are implicitly performed when translating from one character set to
another.

BFILE to CLOB or NCLOB: Converting From Binary Data to a Character Set

When you use the DBM5S_LOB. LOADFROWFI LE procedure to populate a CLOB or NCLOB, you are
populating the LOB with binary data from the BFI LE. No implicit translation is performed from
binary data to a character set. For this reason, you should use the LOADCLOBFROVFI LE
procedure when loading text.

" See Also:

e Loading a CLOB or NCLOB with Data from a BFILE

e Oracle Database Globalization Support Guide for character set conversion
issues.

Amount Parameter
Note the following with respect to the anount parameter:

e DBMS_LOB. LOADFROWFI LE

ORACLE 11-11

Chapter 11
About Opening a BFILE with OPEN

If you want to load the entire BFI LE, then pass the constant DBMS_LOB. LOBMAXSI ZE.
If you pass any other value, then it must be less than or equal to the size of the
BFI LE.

OCI LobLoadFr onfFi | e()

If you want to load the entire BFI LE, then you can pass the constant UBAMAXVAL. If
you pass any other value, then it must be less than or equal to the size of the
BFI LE.

CCl LobLoadFr onFi | e2()

If you want to load the entire BFI LE, then you can pass the constant UBSMAXVAL. If
you pass any other value, then it must be less than or equal to the size of the
BFI LE.

See Also:

Table 12-2 for details on the maximum value of the amount parameter.

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — LOADFROMFILE

C (OCI): Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations", for usage notes and examples. Chapter 16, "LOB Functions" —
OCl LobLoadFronFi | e2().

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB LOAD (executable embedded SQL
extension).

C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBSs)",
"LOB Statements" "Embedded SQL Statements and Directives"— LOB LOAD.

Java (JDBC) Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILEs.

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB): f| oaddat . sql
OCI: f| oaddat . ¢
Java (JDBC): No example.

11.8 About Opening a BFILE with OPEN

You can open a BFI LE using the OPEN function.

ORACLE

11-12

Chapter 11
About Opening a BFILE with FILEOPEN

< Note:

You can also open a BFI LE using the FI LEOPEN function; however, using the OPEN
function is recommended for new development.

See Also:

e About Opening a BFILE with FILEOPEN for more information about FI LEOPEN
function

e Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

 PL/SQL(DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — OPEN

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations", for usage notes. Chapter 16, section "LOB Functions" — OCl LobCpen(),
OCl Lobd ose() .

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB OPEN executable embedded SQL extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements”, "Embedded SQL Statements and Directives" — LOB OPEN.

e Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs and
BFILEs" — Working with BFILEs.

Scenario

These examples open an image in operating system file ADPHOTO DI R.

Examples

Examples are provided in the following programmatic environments:
e PL/SQL(DBMS_LOB): f open. sql

 OCI: fopen.c

e Java (JDBC): fopen. j ava

11.9 About Opening a BFILE with FILEOPEN

You can open a BFI LE using the FI LEOPEN function.

ORACLE 11-13

Chapter 11
About Determining Whether a BFILE Is Open Using ISOPEN

< Note:

The FI LEOPEN function is not recommended for new application
development. The OPEN function is recommended for new development.

¢ See Also:

e About Opening a BFILE with OPEN

e Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Usage Notes for Opening a BFILE

While you can continue to use the older FI LEOPEN form, Oracle strongly recommends
that you switch to using OPEN, because this facilitates future extensibility.

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — FILEOPEN, FILECLOSE

e C (OCI) (Oracle Call Interface Programmer's Guide). Chapter 7, "LOB and File
Operations, for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi | eQpen(), OCI LobFi | ed ose(), OCI LobFi | eSet Nane() .

 COBOL (Pro*COBOL): A syntax reference is not applicable in this release.
e C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

* Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILEs.

Scenario for Opening a BFILE
These examples open keyboard_| ogo. j pg in DI RECTORY object MEDI A DI R.

Examples

Examples are provided in the following programmatic environments:
* PL/SQL (DBMS_LOB): ffil open. sql

e OCI ffilopen.c

e Java (JDBC):ffil open.java

11.10 About Determining Whether a BFILE Is Open Using
ISOPEN

You can determine whether a BFI LE is open using | SOPEN.

ORACLE 11-14

Chapter 11
About Determining Whether a BFILE Is Open with FILEISOPEN

< Note:

This function (I SOPEN) is recommended for new application development. The older
FI LEI SOPEN function, is not recommended for new development.

¢ See Also:

e About Determining Whether a BFILE Is Open with FILEISOPEN

e Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — ISOPEN

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi I el sOpen() .

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB DESCRIBE executable embedded SQL extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements”, "Large Objects (LOBs)", "LOB Statements", "Embedded SQL Statements
and Directives" — LOB DESCRIBE

e Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs and
BFILEs" — Working with BFILESs.

Examples

Examples are provided in the following programmatic environments:
e PL/SQL (DBMS_LOB): fi sopen. sql

« OCI: fisopen.c

e Java (JDBC): fisopen.java

11.11 About Determining Whether a BFILE Is Open with
FILEISOPEN

You can determine whether a BFI LE is OPEN using the FI LEI SOPEN function.

ORACLE 11-15

Chapter 11
About Displaying BFILE Data

< Note:

The FI LEI SOPEN function is not recommended for new application
development. The | SOPEN function is recommended for new development.

¢ See Also:

e About Determining Whether a BFILE Is Open Using ISOPEN

e Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Usage Notes

While you can continue to use the older FI LEI SOPEN form, Oracle strongly
recommends that you switch to using | SOPEN, because this facilitates future
extensibility.

Syntax

Use the following syntax references for each programmatic environment:

e PL/SQL(DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEISOPEN

e C (OCI) (Oracle Call Interface Programmer's Guide). Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi | el sOpen() .

« COBOL (Pro*COBOL): A syntax reference is not applicable in this release.
e C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

» Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILEs.

Scenario

These examples query whether a BFI LE associated with ad_gr aphi ¢ is open.

Examples

Examples are provided in the following programmatic environments:
* PL/SQL(DBMS_LOB): ffisopen. sql

e OCI: ffisopen.c

e Java (JDBC): ffisopen.java

11.12 About Displaying BFILE Data

You can display BFI LE data using various operations that differ by programmatic
environment..

ORACLE 11-16

Chapter 11
About Reading Data from a BFILE

¢ See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — READ. Chapter 29, "DBMS_OUTPUT" - PUT_LINE

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" — OCl LobFi | eCpen() ,
OCl LobRead2() .

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB READ executable embedded SQL extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements" — READ

e Java (JDBC) (Oracle Database JDBC Developer's Guide): Chapter 7, "Working With
LOBs and BFILEs" — Working with BFILEs.

Examples

Examples are provided in these programmatic environments:

* PL/SQL (DBMS_LOB): f di spl ay. sql

e OCI fdisplay.c

e Java (JDBC): fdisplay.java

11.13 About Reading Data from a BFILE

ORACLE

You can read data from a BFI LE.

See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Usage Notes

Note the following when using this operation.

Streaming Read in OCI

The most efficient way to read large amounts of BFI LE data is by OCl LobRead2() with the
streaming mechanism enabled, and using polling or callback. To do so, specify the starting
point of the read using the of f set parameter as follows:

11-17

ORACLE

Chapter 11
About Reading Data from a BFILE

ub8 char_ant
ub8 byte_ant
ub4 offset = 100

0;
0;
0;

CCl LobRead2(svchp, errhp, locp, &yte ant, &char_ant, offset, bufp, bufl,
OCl_ONE_PIECE, 0, 0, 0, 0);

When using polling mode, be sure to look at the value of the byt e_ant parameter after
each OCl LobRead2() call to see how many bytes were read into the buffer, because
the buffer may not be entirely full.

When using callbacks, the | enp parameter, which is input to the callback, indicates
how many bytes are filled in the buffer. Be sure to check the | enp parameter during
your callback processing because the entire buffer may not be filled with data.

Amount Parameter

e When calling DBMS_LOB. READ, the amount parameter can be larger than the size of
the data; however, the amount parameter should be less than or equal to the size
of the buffer. In PL/SQL, the buffer size is limited to 32K.

* When calling OCl LobRead2(), you can pass a value of 0 (zero) for the byt e_ant
parameter to read to the end of the BFI LE.

¢ See Also:

Oracle Call Interface Programmer's Guide

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — READ

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobRead2() .

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB READ executable embedded SQL
extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBSs)",
"LOB Statements”, "Embedded SQL Statements and Directives" — LOB READ

e Java (JDBC) (Oracle Database JDBC Developer's Guide): Chapter 7, "Working
With LOBs and BFILEs" — Working with BFILES.

Examples
Examples are provided in the following programmatic environments:

 PL/SQL (DBMS_LOB): fread. sql
e OCl:fread.c
e Java (JDBC): fread.]java

11-18

Chapter 11
About Reading a Portion of BFILE Data Using SUBSTR

11.14 About Reading a Portion of BFILE Data Using SUBSTR

You can read a portion of BFI LE data using SUBSTR.

" See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — SUBSTR

* OCI: A syntax reference is not applicable in this release.

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB CLOSE executable embedded SQL extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements”, "Embedded SQL Statements and Directives" — LOB OPEN.

» Java (JDBC) (Oracle Database JDBC Developer's Guide): Chapter 7, "Working With
LOBs and BFILEs" — Working with BFILEs.

Examples

Examples are provided in these programmatic environments:
« PL/SQL (DBMS_LOB): freadprt. sq

e C (OCI): No example is provided with this release.

 Java (JDBC):freadprt.java

11.15 Comparing All or Parts of Two BFILES

ORACLE

You can compare all or parts of two BFI LEs.

¢ See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL(DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — COMPARE

11-19

Chapter 11
Checking If a Pattern Exists in a BFILE Using INSTR

* C (OCI): A syntax reference is not applicable in this release.

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB OPEN executable embedded SQL
extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBSs)",
"LOB Statements”, "Embedded SQL Statements and Directives" — LOB OPEN.

» Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILEs.

Examples

Examples are provided in these programmatic environments:
e PL/SQL(DBMS_LOB): f conpare. sql

* OCI: No example is provided with this release.

» Java (JDBC): fconpare.java

11.16 Checking If a Pattern Exists in a BFILE Using INSTR

You can determine whether a pattern exists in a BFl LE using the | NSTRoperation.

¢ See Also:

Table 11-1for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — INSTR

e C (OCI: A syntax reference is not applicable in this release.

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBSs,
usage notes on LOB statements, and LOB OPEN executable embedded SQL
extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements”, "Embedded SQL Statements and Directives" — LOB OPEN.

e Java (JDBC) (Oracle Database JDBC Developer's Guide):"Working With LOBs
and BFILEs" — Working with BFILEs.

Examples
These examples are provided in the following programmatic environments:
* PL/SQL (DBMS_LOB): fpattern. sql

e OCI: No example is provided with this release.

ORACLE 11-20

Chapter 11
Determining Whether a BFILE Exists

 Java (JDBC):fpattern.java

11.17 Determining Whether a BFILE EXxists

This procedure determines whether a BFI LE locator points to a valid BFI LE instance.

¢ See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEEXISTS

e C (OCI) Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi | eExi sts().

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB DESCRIBE executable embedded SQL extension.

e C/C++ (Pro*C/C++) Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements", "Embedded SQL Statements and Directives" — LOB DESCRIBE.

* Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples

The examples are provided in the following programmatic environments:
* PL/SQL (DBMS_LOB): f exi sts. sql

e OCI: fexists.c

e Java (JDBC): fexists.java

11.18 Getting the Length of a BFILE

ORACLE

You can get the length of a BFI LE.

" See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

11-21

Chapter 11
About Assigning a BFILE Locator

PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — GETLENGTH

C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations". Chapter 16, section "LOB Functions" — OCl LobGet Lengt h2().

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB DESCRIBE executable embedded SQL
extension.

C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements”, "Embedded SQL Statements and Directives" — LOB
DESCRIBE

Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples

The examples are provided in these programmatic environments:

PL/SQL (DBMS_LOB): f1 engt h. sql
OCl: flength.c
Java (JDBC): fl engt h. j ava

11.19 About Assigning a BFILE Locator

You can assign one BFI LE locator to another.

ORACLE

¢ See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

SQL (Oracle Database SQL Language Reference): Chapter 7, "SQL Statements"
— CREATE PROCEDURE

PL/SQL (DBMS_LOB): Refer to Advanced Design Considerations of this manual
for information on assigning one lob locator to another.

C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobLocat or Assi gn() .

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB ASSIGN executable embedded SQL
extension.

C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB ASSIGN

11-22

Chapter 11
Getting Directory Object Name and File Name of a BFILE

e Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples
The examples are provided in the following programmatic environments:
* PL/SQL (DBMS_LOB): f copyl oc. sql

« OCI: fcopyloc.c
e Java (JDBC): fcopyl oc. | ava

11.20 Getting Directory Object Name and File Name of a BFILE

You can get the DI RECTORY object name and file name of a BFI LE.

" See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEGETNAME

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi | eGet Nang() .

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and LOB DESCRIBE executable embedded SQL extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements", "Embedded SQL Statements and Directives" — LOB DESCRIBE ... GET
DIRECTORY ...

e Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples

Examples of this procedure are provided in the following programmatic environments:
« PL/SQL (DBMS_LOB): f getdir. sql

e OCl fgetdir.c

e Java (JDBC):fgetdir.java

11.21 About Updating a BFILE by Initializing a BFILE Locator

You can update a BFI LE by initializing a BFI LE locator.

ORACLE 11-23

Chapter 11
Closing a BFILE with FILECLOSE

¢ See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB): See the (Oracle Database SQL Language Reference),
Chapter 7, "SQL Statements” — UPDATE

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi | eSet Nang() .

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and ALLOCATE executable embedded SQL
extension. See also Oracle Database PL/SQL Packages and Types Reference for
more information on SQL UPDATE statement

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements”, "Embedded SQL Statements and Directives"

« Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples

e PL/SQL (DBMS_LOB): fupdat e. sql
* OCI: fupdate.c

e Java (JDBC): fupdate.java

11.22 Closing a BFILE with FILECLOSE

You can close a BFI LE with FI LECLCOSE.

¢ Note:

This function (FI LECLCSE) is not recommended for new development. For
new development, use the CLCSE function instead.

" See Also:
Closing a BFILE with CLOSE

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

ORACLE 11-24

Chapter 11
Closing a BFILE with CLOSE

Syntax
Use the following syntax references for each programmatic environment:

 PL/SQL (DBMS_LOB)(Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEOPEN, FILECLOSE

e C (OCI) (Oracle Call Interface Programmer's Guide). Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi | eC ose().

* COBOL (Pro*COBOL): A syntax reference is not applicable in this release.

* C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

» Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples

 PL/SQL (DBMS_LOB): fcl ose_f. sql

e OClfclose f.c

e Java (JDBC): fclose_f.java

11.23 Closing a BFILE with CLOSE

ORACLE

You can close a BFI LE with the CLOSE function.

" Note:

This function (CLOSE) is recommended for new application development. The older
FI LECLGSE function, is not recommended for new development.

¢ See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Usage Notes

Opening and closing a BFI LE is mandatory. You must close the instance later in the session.

" See Also:

e About Opening a BFILE with OPEN
e About Determining Whether a BFILE Is Open Using ISOPEN

11-25

Chapter 11
Closing All Open BFILEs with FILECLOSEALL

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — CLOSE

e C (OCI) (Oracle Call Interface Programmer's Guide). Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobCl ose().

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB CLOSE executable embedded SQL
extension

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBSs)",
"LOB Statements”, "Embedded SQL Statements and Directives" — LOB CLOSE

» Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples
 PL/SQL (DBMS_LOB): fcl ose_c. sql
e OClfclose c.c

e Java (JDBC): fcl ose_c.java

11.24 Closing All Open BFILEs with FILECLOSEALL

You can close all open BFI LEs.

You are responsible for closing any BFI LE instances before your program terminates.
For example, you must close any open BFI LE instance before the termination of a
PL/SQL block or OCI program.

You must close open BFILE instances even in cases where an exception or
unexpected termination of your application occurs. In these cases, if a BFl LE instance
is not closed, then it is still considered open by the database. Ensure that your
exception handling strategy does not allow BFILE instances to remain open in these
situations.

" See Also:

e Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

e "Setting Maximum Number of Open BFILEs "

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — FILECLOSEALL

ORACLE 11-26

Chapter 11
About Inserting a Row Containing a BFILE

C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
COCl LobFi | el oseAl'l ().

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and LOB FILE CLOSE ALL executable embedded SQL
extension

C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)", "LOB
Statements”, "Embedded SQL Statements and Directives" — LOB FILE CLOSE ALL

Java (JDBC) Oracle Database JDBC Developer's Guide: Chapter 7, "Working With LOBs
and BFILEs" — Working with BFILEs.

Examples

PL/SQL (DBMS_LOB): f cl osea. sql
OCl: fclosea. c

Java (JDBC): fcl osea. j ava

11.25 About Inserting a Row Containing a BFILE

You can insert a row containing a BFI LE by initializing a BFI LE locator.

ORACLE

See Also:

e Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Usage Notes

You must initialize the BFI LE locator bind variable to NULL or a DI RECTORY object and file name
before issuing the | NSERT statement.

Syntax

See the following syntax references for each programmatic environment:

SQL(Oracle Database SQL Language Reference, Chapter 7 "SQL Statements" —
INSERT

C (OCI) Oracle Call Interface Programmer's Guide: Chapter 7, "LOB and File
Operations".

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, embedded SQL, and precompiler directives. See also Oracle
Database SQL Language Reference, for related information on the SQL INSERT
statement.

C/C++ (Pro*C/C++) Pro*C/C++ Programmer's Guide: "Large Objects (LOBs)", "LOB
Statements", "Embedded SQL Statements and Directives" — LOB FILE SET. See also
(Oracle Database SQL Language Reference), Chapter 7 "SQL Statements" — INSERT

Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

11-27

Chapter 11
About Inserting a Row Containing a BFILE

Examples

 PL/SQL (DBMS_LOB): finsert. sql
« OCl:finsert.c

e Java (JDBC):finsert.java

ORACLE 11-28

Using LOB APIs

ORACLE

APIs that perform operations on BLOB, CLOB, and NCLOB data types appear in Table 12-1.
These operations can be used with either persistent or temporary LOB instances. Note that
these do not apply to BFI LEs.

¢ See Also:

e Operations Specific to Persistent and Temporary LOBs for information on how
to create temporary and persistent LOB instances and other operations specific
to temporary or persistent LOBs.

 LOB APIs for BFILE Operations for information on operations specific to BFI LE
instances.

This information is given for each of these operations:

Preconditions describe dependencies that must be met and conditions that must exist
before calling each operation.

Usage Notes provide implementation guidelines such as information specific to a given
programmatic environment or data type.

Syntax refers you to the syntax reference documentation for each supported
programmatic environment.

Examples describe any setup tasks necessary to run the examples given. Demonstration
files listed are available in subdirectories under $ORACLE_HOVE/ r dbns/ deno/ | obs/ named
pl sql, oci, vb, and j ava. The driver program | obdeno. sql isin/pl sql and the driver
program | obdeno. ¢ isin/oci .

Topics:

Supported Environments

About Appending One LOB to Another

About Determining Character Set Form

About Determining Character Set ID

Loading a LOB with Data from a BFILE

About Loading a BLOB with Data from a BFILE
Loading a CLOB or NCLOB with Data from a BFILE
Determining Whether a LOB is Open

About Displaying LOB Data

About Reading Data from a LOB

About LOB Array Read

12-1

Chapter 12
Supported Environments

Reading a Portion of a LOB (SUBSTR)

Comparing All or Part of Two LOBs

Patterns: Checking for Patterns in a LOB Using INSTR
Length: Determining the Length of a LOB

Copying All or Part of One LOB to Another LOB
Copying a LOB Locator

Equality: Checking If One LOB Locator Is Equal to Another
About Determining Whether LOB Locator Is Initialized
About Appending to a LOB

About Writing Data to a LOB

LOB Array Write

About Trimming LOB Data

About Erasing Part of a LOB

Determining Whether a LOB instance Is Temporary
Converting a BLOB to a CLOB

Converting a CLOB to a BLOB

Ensuring Read Consistency

12.1 Supported Environments

Table 12-1 indicates which programmatic environments are supported for the APIs
discussed in this chapter. The first column describes the operation that the API
performs. The remaining columns indicate with Yes or No whether the API is
supported in PL/SQL, OCI, OCCI, COBOL, Pro*C/C++, and JDBC.

Table 12-1 Environments Supported for LOB APIs

Operation PL/SQL OCI OCCI COBOL Pro*C/C++ JDBC
About Appending One LOB to Another Yes Yes No Yes Yes Yes
About Determining Character Set Form No Yes No No No No
About Determining Character Set ID No Yes No No No No
Determining Chunk Size, See: About Writing Data Yes Yes Yes Yes Yes Yes
toa LOB

Comparing All or Part of Two LOBs Yes No No Yes Yes Yes
Converting a BLOB to a CLOB Yes No No No No No
Converting a CLOB to a BLOB Yes No No No No No
Copying a LOB Locator Yes Yes No Yes Yes Yes
Copying All or Part of One LOB to Another LOB Yes Yes No Yes Yes Yes
About Displaying LOB Data Yes Yes No Yes Yes Yes
Equality: Checking If One LOB Locator Is Equal No Yes No No Yes Yes
to Another

About Erasing Part of a LOB Yes Yes No Yes Yes Yes
ORACLE 12-2

Table 12-1 (Cont.) Environments Supported for LOB APIs

Chapter 12

About Appending One LOB to Another

Operation PL/ISQL OCI OCCI COBOL Pro*C/C++ JDBC
About Determining Whether LOB Locator Is No Yes No No Yes No
Initialized

Length: Determining the Length of a LOB Yes Yes No Yes Yes Yes
Loading a LOB with Data from a BFILE Yes Yes No Yes Yes Yes
About Loading a BLOB with Data from a BFILE Yes No No No No No
Loading a CLOB or NCLOB with Data from a Yes No No No No No
BFILE

About LOB Array Read No Yes No No No No
LOB Array Write No Yes No No No No
Opening Persistent LOBs with the OPEN and Yes Yes Yes Yes Yes Yes
CLOSE Interfaces

Open: Determining Whether a LOB is Open Yes Yes Yes Yes Yes Yes
Patterns: Checking for Patterns in a LOB Using Yes No No Yes Yes Yes
INSTR

Reading a Portion of a LOB (SUBSTR) Yes No No Yes Yes Yes
About Reading Data from a LOB Yes Yes No Yes Yes Yes
Storage Limit, Determining: Maximum Storage Yes No No No No No
Limit for Terabyte-Size LOBs

About Trimming LOB Data Yes Yes No Yes Yes Yes
WriteNoAppend, see About Appendingto a LOB. No No No No No No
About Writing Data to a LOB Yes Yes Yes Yes Yes Yes

12.2 About Appending One LOB to Another

This operation appends one LOB instance to another.

Preconditions

Before you can append one LOB to another, the following conditions must be met:

« Two LOB instances must exist.

» Both instances must be of the same type, for example both BLOB or both CLOB types.

* You can pass any combination of persistent or temporary LOB instances to this

operation.

Usage Notes

Persistent LOBs: You must lock the row you are selecting the LOB from prior to updating a
LOB value if you are using the PL/SQL DBM5_LOB Package or OCI. While the SQL | NSERT and
UPDATE statements implicitly lock the row, locking the row can be done explicitly using the
SQL SELECT FOR UPDATE statement in SQL and PL/SQL programs, or by using an OCI pi n or

| ock function in OCI programs.

ORACLE

12-3

Chapter 12
About Determining Character Set Form

Syntax
See the following syntax references for each programmatic environment:

 PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — APPEND

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobAppend()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e« COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB APPEND executable embedded SQL
extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information on embedded
SQL statements and directives — LOB APPEND

» Java (JDBC):Oracle Database JDBC Developer’s Guidefor information on creating
and populating LOB columns in Java.

Examples

To run the following examples, you must create two LOB instances and pass them
when you call the given append operation.

Examples for this use case are provided in the following programmatic environments:
 PL/SQL (DBMS_LOB Package): | append. sql

e OCI: | append.c

e Java (JDBC): | append. j ava

" See Also:

e Example of Updating LOBs Through Updated Locators for more details
on the state of the locator after an update

e Operations Specific to Persistent and Temporary LOBs for more
information about Creating a LOB instance

12.3 About Determining Character Set Form

ORACLE

This section describes how to get the character set form of a LOB instance.

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this
operation.

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobCharSetForm()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

12-4

Chapter 12
About Determining Character Set ID

 COBOL (Pro*COBOL): There is no applicable syntax reference for this operation
e C/C++ (Pro*C/C++): There is no applicable syntax reference for this operation.

» Java (JDBC): There is no applicable syntax reference for this operation.

Example

The example demonstrates how to determine the character set form of the foreign language
text (ad_f It extn).

This functionality is currently available only in OCI:

e OCllgetchfmec

12.4 About Determining Character Set ID

This section describes how to determine the character set ID.

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this
operation.

e C (OCI): Oracle Call Interface Programmer's Guide "Relational Functions" — LOB
Functions, OCILobCharSetld()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide
« COBOL (Pro*COBOL): There is no applicable syntax reference for this operation.
e C/C++ (Pro*C/C++): There is no applicable syntax reference for this operation

« Java (JDBC): There is no applicable syntax reference for this operation.

Example
This functionality is currently available only in OCI:

e OCl: lgetchar.c

12.5 Loading a LOB with Data from a BFILE

ORACLE

This operation loads a LOB with data from a BFI LE. This procedure can be used to load data
into any persistent or temporary LOB instance of any LOB data type.

Preconditions
Before you can load a LOB with data from a BFI LE, the following conditions must be met:

e The BFI LE must exist.

* The target LOB instance must exist.

Usage Notes

Note the following issues regarding this operation.

12-5

ORACLE

Chapter 12
Loading a LOB with Data from a BFILE

Use LOADCLOBFROMFILE When Loading Character Data

When you use the DBMS_LOB. LOADFROWFI LE procedure to load a CLOB or NCLOB
instance, you are loading the LOB with binary data from the BFI LE and no implicit
character set conversion is performed. For this reason, using the

DBMS_LOB. LOADCLOBFROVFI LE procedure is recommended when loading character
data.

Specifying Amount of BFILE Data to Load

The value you pass for the amount parameter to functions listed in Table 12-2 must be
one of the following:

* An amount less than or equal to the actual size (in bytes) of the BFI LE you are
loading.

e The maximum allowable LOB size (in bytes). Passing this value, loads the entire
BFI LE. You can use this technique to load the entire BFI LE without determining the
size of the BFI LE before loading. To get the maximum allowable LOB size, use the
technique described in Table 12-2.

Table 12-2 Maximum LOB Size for Load from File Operations

Environment Function To pass maximum LOB size,
get value of:

DBMS_LOB DBMS_LOB. LOADBLOBFROMFI LE DBMS_LOB. LOBMAXSI ZE

DBMS_LOB DBMS_LOB. LOADCLOBFROMFI LE DBMS_LOB. LOBMAXSI ZE

Cl OCl LobLoadFronFi | e2() UBBMAXVAL

00 COCl LobLoadFronFi | e() (For LOBs less UB4MAXVAL

than 4 gigabytes in size.)

Syntax

See the following syntax references for details on using this operation in each
programmatic environment:

* PL/SQL (DBMS_LOB Package):Oracle Database PL/SQL Packages and Types
Reference"DBMS_LOB" — LOADFROMFILE.

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OClLobLoadFromFile()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

« COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB LOAD, LOB CPEN, and LOB CLOSE
executable embedded SQL extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guide, for more information on LOB
LOAD executable embedded SQL extension

e Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

12-6

Chapter 12
About Loading a BLOB with Data from a BFILE

PL/SQL (DBMS_LOB Package): | | oaddat . sql
OCI: | | oaddat . ¢
Java (JDBC): || oaddat . j ava

" See Also:

The LOADBLOBFROWFI LE and LOADCLOBFROVFI LE procedures implement the
functionality of this procedure and provide improved features for loading binary
data and character data. (These improved procedures are available in the
PL/SQL environment only.) When possible, using one of the improved
procedures is recommended. See "About Loading a BLOB with Data from a
BFILE" and "Loading a CLOB or NCLOB with Data from a BFILE" for more
information.

As an alternative to this operation, you can use SQL*Loader to load persistent
LOBs with data directly from a file in the file system. See "About Using
SQL*Loader to Load LOBs" for more information.

Loading a CLOB or NCLOB with Data from a BFILE for more information about
DBVS_LOB. LOADCLOBFROVFI LE procedure

12.6 About Loading a BLOB with Data from a BFILE

This procedure loads a BLOB with data from a BFI LE. This procedure can be used to load data
into any persistent or temporary BLOB instance.

ORACLE

¢ See Also:

"Loading a LOB with Data from a BFILE"

To load character data, use DBVS_LOB. LOADCLOBFROWFI LE. See "Loading a
CLOB or NCLOB with Data from a BFILE" for more information.

As an alternative to this operation, you can use SQL*Loader to load persistent
LOBs with data directly from a file in the file system. See "About Using
SQL*Loader to Load LOBs" for more information.

Preconditions

The following conditions must be met before calling this procedure:

The target BLOB instance must exist.
The source BFI LE must exist.

You must open the BFI LE. (After calling this procedure, you must close the BFI LE at some

Usage Notes

Note the following with respect to this operation:

12-7

Chapter 12
Loading a CLOB or NCLOB with Data from a BFILE

New Offsets Returned

Using DBVS_LOB. LOADBLOBFROVFI LE to load binary data into a BLOB achieves the same
result as using DBMS_LOB. LOADFROVFI LE, but also returns the new offsets of BLOB.

Specifying Amount of BFILE Data to Load

The value you pass for the amount parameter to the DBVS_LOB. LOADBLOBFROVFI LE
function must be one of the following:

* An amount less than or equal to the actual size (in bytes) of the BFI LE you are
loading.

¢ The maximum allowable LOB size: DBMS_LOB. LOBMAXSI ZE. Passing this value
causes the function to load the entire BFI LE. This is a useful technique for loading
the entire BFI LE without introspecting the size of the BFI LE.

¢ See Also:
Table 12-2

Syntax

See Oracle Database PL/SQL Packages and Types Reference, "DBMS_LOB" —
LOADBLOBFROMFILE procedure for syntax details on this procedure.

Examples

This example is available in PL/SQL only. This API is not provided in other
programmatic environments. The online file is | | dbl obf. sqgl . This example illustrates:

* How to use LOADBLOBFROVFI LE to load the entire BFI LE without getting its length
first.

* How to use the return value of the offsets to calculate the actual amount loaded.

12.7 Loading a CLOB or NCLOB with Data from a BFILE

ORACLE

This procedure loads a CLOB or NCLOB with character data from a BFI LE. This
procedure can be used to load data into a persistent or temporary CLOB or NCLOB
instance.

" See Also:

e "Loading a LOB with Data from a BFILE"

e To load binary data, use DBM5S_LOB. LOADBLOBFROMFI LE. See "About
Loading a BLOB with Data from a BFILE" for more information.

e As an alternative to this operation, you can use SQL*Loader to load
persistent LOBs with data directly from a file in the file system. See
"About Using SQL*Loader to Load LOBs" for more information.

12-8

Chapter 12
Loading a CLOB or NCLOB with Data from a BFILE

Preconditions

The following conditions must be met before calling this procedure:

* The target CLOB or NCLOB instance must exist.

e The source BFI LE must exist.

* You must open the BFI LE. (After calling this procedure, you must close the BFI LE at some
point.)

Usage Notes

You can specify the character set id of the BFI LE when calling this procedure. Doing so,
ensures that the character set is properly converted from the BFI LE data character set to the
destination CLOB or NCLOB character set.

Specifying Amount of BFILE Data to Load

The value you pass for the amount parameter to the DBVMS_LOB. LOADCLOBFROVFI LE function
must be one of the following:

* An amount less than or equal to the actual size (in characters) of the BFI LE data you are
loading.

e The maximum allowable LOB size: DBM5_LOB. LOBVAXSI ZE

Passing this value causes the function to load the entire BFI LE. This is a useful technique
for loading the entire BFI LE without introspecting the size of the BFI LE.

Syntax

See Oracle Database PL/SQL Packages and Types Reference, "DBMS_LOB" —
LOADCLOBFROMFI LE procedure for syntax details on this procedure.

Examples
The following examples illustrate different techniques for using this API:

e "About PL/SQL: Loading Character Data from a BFILE into a LOB"
e "About PL/SQL: Loading Segments of Character Data into Different LOBs"

12.7.1 About PL/SQL: Loading Character Data from a BFILE into a LOB

The following example illustrates:

e How to use default csid (0).

* How to load the entire file without calling get | engt h for the BFI LE.
e How to find out the actual amount loaded using return offsets.

This example assumes that ad_sour ce is a BFI LE in UTF8 character set format and the
database character set is UTF8. The online file is | | dcl obf . sql .

ORACLE 12-9

Chapter 12
Determining Whether a LOB is Open

12.7.2 About PL/SQL: Loading Segments of Character Data into

Different LOBs

ORACLE

The following example illustrates:

How to get the character set ID from the character set name using the
NLS_CHARSET _| D function.

How to load a stream of data from a single BFI LE into different LOBs using the
returned offset value and the language context | ang_ct x.

How to read a warning message.

This example assumes that ad_file_ext 01 is a BFI LEin JALI6TSTSET format and the
database national character set is ALL6UTF16. The online file is | | dcl obs. sql .

12.8 Determining Whether a LOB is Open

This operation determines whether a LOB is open.

Preconditions

The LOB instance must exist before executing this procedure.

Usage Notes

When a LOB is open, it must be closed at some point later in the session.

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — OPEN, | SOPEN.

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
COCl Lobl sOpen() .

C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB DESCRIBE executable embedded
SQL extension.

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB DESCRI BE executable
embedded SQL extension

Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB Package): | i sopen. sql
OCI: lisopen. c

C++ (OCCI): No example is provided with this release.

12-10

Chapter 12
About Displaying LOB Data

e Java (JDBC): lisopen.java

12.8.1 Java (JDBC): Checking If a LOB Is Open

Here is how to check a BLOB or a CLCB.

12.8.1.1 Checking If a CLOB Is Open

To see if a CLOB is open, your JDBC application can use the i sOpen method defined in
oracl e. sqgl . CLOB. The return Boolean value indicates whether the CLOB has been previously
opened or not. The i sOpen method is defined as follows:

/**

* Check whether the CLOB is opened.
* @eturn true if the LOB is opened.
*/
public bool ean isOpen () throws SQLException

The usage example is:

CLOB clob = ...
Il See if the CLOB is opened
bool ean i sQpen = cl ob.isOpen ();

12.8.1.2 Checking If a BLOB Is Open

To see if a BLOB is open, your JDBC application can use the i sOpen method defined in
oracl e. sql . BLOB. The return Boolean value indicates whether the BLOB has been previously
opened or not. The i sOpen method is defined as follows:

/**

* Check whether the BLOB is opened.

* @eturn true if the LOB is opened.

*/

public bool ean isOpen () throws SQLException

The usage example is:

BLOB blob = ...
/1 See if the BLOB is opened
bool ean i sOpen = bl ob.isOpen ();

12.9 About Displaying LOB Data

ORACLE

This section describes APIs that allow you to read LOB data. You can use this operation to
read LOB data into a buffer. This is useful if your application requires displaying large
amounts of LOB data or streaming data operations.

Usage Notes

Note the following when using these APIs.

12-11

ORACLE

Chapter 12
About Displaying LOB Data

Streaming Mechanism

The most efficient way to read large amounts of LOB data is to use OCl LobRead2() with
the streaming mechanism enabled.

Amount Parameter
The value you pass for the amount parameter is restricted for the APIs described in
Table 12-3.

Table 12-3 Maximum LOB Size for Amount Parameter
]

Environment Function Value of amount parameter is
limited to:
DBMS_LOB DBMS_LOB. READ The size of the buffer, 32Kbytes.
OcClI OCl LobRead() UB4 MAXVAL
(For LOBs less than 4 gigabytes in Specifying this amount reads the
size.) entire file.
OcCl COCl LobRead2() UBSMAXVAL
(For LOBs of any size.) Specifying this amount reads the
entire file.
Syntax

Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — OPEN, READ, CLOSE.

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —,
OClLobOpen(), OCILobRead2(), OCILobClose().

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB READ executable embedded SQL
extension.

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information on LOB READ
executable embedded SQL extension

» Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBS" —
Creating and Populating a BLOB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:
 PL/SQL (DBMS_LOB Package): | di spl ay. sql

e OCI:Idisplay.c

e C++ (OCCI): No example is provided in this release.

e Java (JDBC): I displ ay.java

12-12

Chapter 12
About Reading Data from a LOB

12.10 About Reading Data from a LOB

ORACLE

This section describes how to read data from LOBs using OCl LobRead2() .

Usage Notes

Note the following when using this operation.

Streaming Read in OCI

The most efficient way to read large amounts of LOB data is to use OCl LobRead2() with the
streaming mechanism enabled using polling or callback. To do so, specify the starting point of
the read using the of f set parameter as follows:

ub8 char_ant
ub8 byte_ant
ub4 offset = 100

0;
0;
0;

OCl LobRead2(svchp, errhp, locp, &yte ant, &char_ant, offset, bufp, bufl,
OCl _ONE_PI ECE, 0, 0, 0, 0);

When using polling mode, be sure to look at the value of the byt e_ant parameter after each
COCl LobRead2() call to see how many bytes were read into the buffer because the buffer may
not be entirely full.

When using callbacks, the | enp parameter, which is input to the callback, indicates how many
bytes are filled in the buffer. Be sure to check the | enp parameter during your callback
processing because the entire buffer may not be filled with data.

See Also:

Oracle Call Interface Programmer's Guide

Chunk Size

A chunk is one or more Oracle blocks. You can specify the chunk size for the BasicFiles LOB
when creating the table that contains the LOB. This corresponds to the data size used by
Oracle Database when accessing or modifying the LOB value. Part of the chunk is used to
store system-related information and the rest stores the LOB value. The API you are using
has a function that returns the amount of space used in the LOB chunk to store the LOB
value. In PL/SQL use DBMS_LOB. GETCHUNKSI ZE. In OCI, use OCl LobGet ChunkSi ze() . For
SecureFiles, CHUNK is an advisory size and is provided for backward compatibility purposes.

To improve performance, you may run wri t e requests using a multiple of the value returned
by one of these functions. The reason for this is that you are using the same unit that the
Oracle database uses when reading data from disk. If it is appropriate for your application,
then you should batch reads until you have enough for an entire chunk instead of issuing
several LOB read calls that operate on the same LOB chunk.

Syntax

Use the following syntax references for each programmatic environment:

12-13

Chapter 12
About LOB Array Read

* PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types

Reference "DBMS_LOB" — OPEN, GETCHUNKSI ZE, READ, CLCSE

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCl LobOpen(), OCl LobRead?2(), OCl LobCl ose().

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

¢ COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,

usage notes on LOB statements, and LOB READ executable embedded SQL

extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information about LOB

READ executable embedded SQL extension

» Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working With

LOBs" — Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:
 PL/SQL (DBMS_LOB Package): | read. sql

* OCl:lread.c

 Java (JDBC):lread.]java

12.11 About LOB Array Read

ORACLE

This section describes how to read LOB data for multiple locators in one round trip,

using OCl LobAr rayRead() .

Usage Notes

This function improves performance in reading LOBs in the size range less than about

512 Kilobytes. For an OCI application example, assume that the program has a
prepared SQL statement such as:

SELECT | obl FROM | ob_t abl e for UPDATE;

where | obl is the LOB column and | ob_array is an array of define variables
corresponding to a LOB column:

CCl LobLocat or * [ob_array[10];

for (i=0; i<10, i++) [* initialize array of |ocators */
lob_array[i] = OClDescriptorAlloc(..., OCl _DIYPE_LOB, ...);
CCl DefineByPos(..., 1, (dvoid *) lob_array, ... SQT_CLOB, ...);

/* Execute the statement with iters = 10 to do an array fetch of 10 |ocators.

OCl St nt Execute (<service context>, <statenent handl e> <error handl e>,
10, I* iters */
0, I* row of fset */
NULL, /* snapshot IN */
NULL, /* snapshot out */
OCl _DEFAULT /* mode */);

*/

12-14

ORACLE

/*

for (i=0;

ub4 array_iter = 10;
char *bufp[10];
oraub8 bufl[10];

oraub8 char_ant p[10]

oraub8 of fset[10]

for (i=0;
{

i <10; i++)

bufp[i] = (char *)malloc(1000);

bufI[i] = 1000;
offset[i] =1

char_antp[i] = 1000

Read the 1st 1000 characters for al

[* Single byte fixed width char set

10 locators in one

* round trip. Note that offset and ampunt need not be

* same for all the locators

*

/

&array_iter, /* array s
| ob_array, [* array of
NULL, [* array of
char _ant p, /* array of
of f set, /* array of
(void **)bufp, /* array of
bufl, /* array of
OCl _ONE_PI ECE, [/* piece
NULL, [* callb
NULL, [* callb
0, [* chara
SQLCS_IMPLICIT);/* chara

i <10; i++)
{

OCl LobArrayRead(<service context>, <error handl e>

ze */
| ocators */
byte anounts */
char amounts */
of fsets */
read buffers */
buffer lengths */
information */
ack context */
ack function */

cter set ID- default */

cter set form*/

[* Fill bufp[i] buffers with data to be witten */
strncpy (bufp[i], "Test Data--

bufI[i] = 1000;

of fset[i] = 50;

char_antp[i] = 15
}

15);

/* Single byte fixed width char set. */

/* Wite the 15 characters fromoffset 50 to all 10

* |ocators in one round trip. Note that offset and
* ampunt need not be sane for all the locators. */

*/

&array_iter, [*
| ob_array, /*
NULL, /*
char_antp, /*
of f set, /*
(voi d **)bufp, /*
buf, /*
OCl _ONE_PI ECE,
NULL,
NULL,

array
array
array
array
array
array
array
/* pie
/* cal
/* cal

OCl LobArrayWite(<service context>, <error handl e>

size */

of locators */

of byte amounts */
of char ampunts */
of offsets */

of read buffers */
of buffer lengths */
ce information */

| back context */

| back function */

Chapter 12
About LOB Array Read

12-15

ORACLE

Chapter 12
About LOB Array Read

0, I* character set ID - default */
SQLCS_IMPLICIT);/* character set form?*/

Streaming Support

LOB array APIs can be used to read/write LOB data in multiple pieces. This can be
done by using polling method or a callback function.Here data is read/written in
multiple pieces sequentially for the array of locators. For polling, the APl would return
to the application after reading/writing each piece with the array_i t er parameter
(OUT) indicating the index of the locator for which data is read/written. With a callback,
the function is called after reading/writing each piece with array_i ter as IN parameter.

Note that:

* ltis possible to read/write data for a few of the locators in one piece and read/write
data for other locators in multiple pieces. Data is read/written in one piece for
locators which have sufficient buffer lengths to accommodate the whole data to be
read/written.

* Your application can use different amount value and buffer lengths for each
locator.

* Your application can pass zero as the amount value for one or more locators
indicating pure streaming for those locators. In the case of reading, LOB data is
read to the end for those locators. For writing, data is written until OCl _LAST Pl ECE
is specified for those locators.

LOB Array Read in Polling Mode

The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte
buffer size. Each locator needs 10 pieces to read the complete data.

OCl LobArrayRead() must be called 100 (10*10) times to fetch all the data.First we call
OCl LobArrayRead() with OCl _FI RST_PI ECE as pi ece parameter. This call returns the
first 1K piece for the first locator.Next OCl LobAr r ayRead() is called in a loop until the
application finishes reading all the pieces for the locators and returns OCl _SUCCESS. In
this example it loops 99 times returning the pieces for the locators sequentially.

/* Fetch the locators */

/* array_iter paraneter indicates the nunber of locators in the array read.
* |t is an IN paraneter for the 1st call in polling and is ignored as IN

* paraneter for subsequent calls. As OUT parameter it indicates the |ocator
* index for which the piece is read.

*/

ub4 array_iter = 10;
char *bufp[10];

oraub8 bufl[10];

oraub8 char_ant p[10];
oraub8 of fset[10];
sword st;

for (i=0; i<10; i++)

{
bufp[i] = (char *)malloc(1000);
bufI[i] = 1000;
offset[i] = 1;
char_antp[i] = 10000; /* Single byte fixed width char set. */

12-16

Chapter 12

About LOB Array Read
}
st = OCl LobArrayRead(<service context>, <error handle>,
&array_iter, /[* array size */
lob_array, /* array of locators */
NULL, [* array of byte anounts */
char_antp, /* array of char amounts */
of f set, [* array of offsets */
(void **)bufp, /* array of read buffers */
bufl, [* array of buffer lengths */
OCl _FIRST_PIECE, /* piece information */
NULL, /* cal | back context */
NULL, /* cal | back function */
0, /* character set ID- default */
SQLCS_IMPLICIT); /* character set form?*/
I* First piece for the first locator is read here.
* buf p[0] => Buffer pointer into which data is read.
* char_antp[0] => Nunmber of characters read in current buffer
*/
While (st == OCl _NEED DATA)
{
st = OCl LobArrayRead(<service context>, <error handl e>,
garray_iter, /* array size */
lob_array, /* array of locators */
NULL, /* array of byte anounts */
char_antp, /* array of char amunts */
of fset, /* array of offsets */
(void **)bufp, I* array of read buffers */
bufl, /* array of buffer lengths */
OCl _NEXT_PI ECE, /* piece information */
NULL, /* cal | back context */
NULL, /* cal |l back function */
0, [* character set ID- default */
SQLCS_IMPLICIT);
[* array_iter returns the index of the current array elenent for which
* data is read. for exanple, aray_iter = 1 inplies first |ocator,
* array_iter = 2 inplies second | ocator and so on.
*
* |ob_array[array_iter - 1]=> Lob locator for which data is read.
* bufp[array_iter - 1] => Buffer pointer into which data is read.
* char_antp[array_iter - 1] => Nunber of characters read in current buffer
*/
/* Consune the data here */
}

LOB Array Read with Callback

The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte buffer size.
Each locator needs 10 pieces to read all the data. The callback function is called 100 (10*10)
times to return the pieces sequentially.

/* Fetch the |ocators */

ub4 array_iter = 10;

ORACLE 12-17

Chapter 12

About LOB Array Read
char *bufp[10];
oraub8 bufl[10];
oraub8 char_ant p[10];
oraub8 of fset[10];
sword st;
for (i=0; i<10; i++)
{
bufp[i] = (char *)malloc(1000);
bufI[i] = 1000;
of fset[i] = 1,
char_antp[i] = 10000; /* Single byte fixed width char set. */
}
st = OCl LobArrayRead(<service context> <error handle>,
&array_iter, /* array size */
| ob_array, /* array of locators */
NULL, /* array of byte anounts */
char _ant p, /* array of char amounts */
of f set, /* array of offsets */
(void **)bufp, I* array of read buffers */
buf, I* array of buffer lengths */
OCl _FIRST_PIECE, [/* piece information */
ctx, /* cal | back context */
cbk_read_| ob, /* call back function */
0 [* character set ID- default */

SQLCS IMPLICIT);

/* Cal | back function for LOB array read. */
sh4 cbk_read_| ob(dvoid *ctxp, ub4 array_iter, CONST dvoid *bufxp, oraub8 |en,
ubl piece, dvoid **changed_bufpp, oraub8 *changed_| enp)
{
static ub4 piece_count = 0;
pi ece_count ++;
swi tch (piece)
{
case OCl _LAST_PI ECE:
/*--- buffer processing code goes here ---*/
(void) printf("callback read the % th piece(last piece) for %lth |ocator \n\n",
pi ece_count, array_iter);
pi ece_count = 0O;
break;
case OCl _FI RST_PI ECE:
/*--- buffer processing code goes here ---*/
(void) printf("callback read the 1st piece for %lth |ocator\n",
array_iter);
[* --Optional code to set changed_bufpp and changed_lenp if the buffer needs
to be changed dynanically --*/
break;
case OCl _NEXT_PI ECE:
/*--- buffer processing code goes here ---*/
(void) printf("callback read the % th piece for %lth |ocator\n",
pi ece_count, array_iter);
/* --Optional code to set changed_bufpp and changed_lenp if the buffer
must be changed dynamically --*/
break;
defaul t:
(void) printf("callback read error: unkown piece = %l.\n", piece);
return OCl _ERROR

}
return OCl _CONTI NUE;

ORACLE 12-18

Chapter 12
About LOB Array Read

Polling LOB Array Read

The next example is polling LOB data in OCl LobAr rayRead() with variable ant p, bufl, and
of fset.

/* Fetch the locators */

ub4 array_iter = 10;
char *buf p[10] ;

oraub8 bufl[10];

oraub8 char_ant p[10];
oraub8 of fset[10];
sword st;

for (i=0; i<10; i++)

{

bufp[i] = (char *)malloc(1000);

bufI[i] = 1000;

offset[i] = 1;

char_anmtp[i] = 10000; [* Single byte fixed width char set. */
}

/* For 3rd locator read data in 500 bytes piece fromoffset 101. Anount
* is 2000, that is, total nunber of pieces is 2000/500 = 4.

*/

of fset[2] = 101; bufl[2] = 500; char_antp[2] = 2000;

/* For 6th locator read data in 100 bytes piece fromoffset 51. Ampunt
* is 0 indicating pure polling, that is, datais read till the end of
* the LOB is reached.

*/

of fset[5] = 51; bufl[5] = 100; char_antp[5] = 0;

/* For 8th locator read 100 bytes of data in one piece. Note anount
* is less than buffer length indicating single piece read.

*/

offset[7] = 61; bufl[7] = 200; char_antp[7] = 100;

st = OCl LobArrayRead(<service context>, <error handl e>,
&array_iter, [* array size */
lob_array, /* array of locators */

NULL, [* array of byte amounts */
char_antp, /* array of char amounts */
of f set, [* array of offsets */
(void **)bufp, [* array of read buffers */
bufl, [* array of buffer lengths */
CCl _FIRST_PI ECE, /* piece information */
NULL, /* cal | back context */
NULL, /* cal |l back function */
0, /* character set |ID - default */

SQLCS_IMPLICIT); /* character set form*/

/* First piece for the first locator is read here.

* buf p[0] => Buffer pointer into which data is read.

* char_ant p[0] => Number of characters read in current buffer
*

*/

ORACLE 12-19

while (st == OCl_NEED_DATA)

Chapter 12
Reading a Portion of a LOB (SUBSTR)

| ocators */

byte amounts */
char amounts */
of fsets */

read buffers */
buffer lengths */

pi ece information */

cal | back context */

cal | back function */
character set ID - default */

array_iter returns the index of the current array el ement for which

bufp[array_iter - 1] => Buffer pointer into which data is read.
char_antp[array_iter - 1]=>Number of characters read in current buffer

{
st = OCl LobArrayRead(<service context>, <error handl e>,
garray_iter, /* array size */
lob_array, /* array of
NULL, /* array of
char_antp, /* array of
of f set, I* array of
(voi d **)bufp, /* array of
bufl, I* array of
OCl _NEXT_PI ECE, /*
NULL, /*
NULL, /*
0, /*
SQLCS_IMPLICIT);
/*
* data is read. for example, aray_iter = 1 inplies first |ocator,
* array_iter = 2 inplies second | ocator and so on.
*
* |ob_array[array_iter - 1]=> Lob locator for which data is read.
*
*
*/

/* Consume the data here */

}

Syntax

Use the following syntax references for the OCI programmatic environment:

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —

OCl LobArrayRead() .

Example

An example is provided in the following programmatic environment:

OCI: Ireadarr.c

12.12 Reading a Portion of a LOB (SUBSTR)

This section describes how to read a portion of a LOB using SUBSTR.

ORACLE

Syntax

Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — SUBSTR, OPEN, CLOSE

e C (OCI): There is no applicable syntax reference for this use case

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

12-20

Chapter 12
Comparing All or Part of Two LOBs

COBOL (Pro*COBOL)Pro*COBOL Programmer’s Guide for information on LOBs, usage
notes on LOB Statements, and ALLOCATE, LOB OPEN, LOB READ, LOB CLOSE
executable embedded SQL extensions

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB READ executable embedded
SQL extension

Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB Package): | substr. sql

OCI: No example is provided with this release.

C++ (OCCI): No example is provided with this release.
Java (JDBC): | substr.java

12.13 Comparing All or Part of Two LOBs

This section describes how to compare all or part of two LOBs.

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — COMPARE.

C (OCI): There is no applicable syntax reference for this use case.
C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guideor information on LOBs, usage
notes on LOB Statements, and EXECUTE executed embedded SQL

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on EXECUTE
executed embedded SQL

Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB Package): | conpar e. sql
C (OCI): No example is provided with this release.
C++ (OCCI): No example is provided with this release.

Java (JDBC): | conpare. j ava

12.14 Patterns: Checking for Patterns in a LOB Using INSTR

This section describes how to see if a pattern exists in a LOB using | NSTR.

ORACLE

12-21

Chapter 12
Length: Determining the Length of a LOB

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — INSTR

C (OCI): There is no applicable syntax reference for this use case.
C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and EXECUTE executed embedded SQL

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on
EXECUTE executed embedded SQL

Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB Package): I i nstr. sql

C (OCI): No example is provided with this release.
C++ (OCCI): No example is provided with this release.
Java (JDBC): linstr.java

12.15 Length: Determining the Length of a LOB

This section describes how to determine the length of a LOB.

ORACLE

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — GETLENGTH

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
COCl LobGet Lengt h2()

C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB DESCRIBE executable embedded
SQL extension

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on LOB
DESCRIBE executable embedded SQL extension

Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

12-22

Chapter 12
Copying All or Part of One LOB to Another LOB

 PL/SQL (DBMS_LOB Package) | | engt h. sql

e OClIlength.c

e C++ (OCCI): No example is provided with this release.
e Java (JDBC): |l ength.java

12.16 Copying All or Part of One LOB to Another LOB

ORACLE

This section describes how to copy all or part of a LOB to another LOB. These APIs copy an
amount of data you specify from a source LOB to a destination LOB.

Usage Notes

Note the following issues when using this API.

Specifying Amount of Data to Copy

The value you pass for the anount parameter to the DBMS_LOB. COPY function must be one of
the following:

* An amount less than or equal to the actual size of the data you are loading.

* The maximum allowable LOB size: DBM5S_LOB. LOBMAXSI ZE. Passing this value causes the
function to read the entire LOB. This is a useful technigue for reading the entire LOB
without introspecting the size of the LOB.

Note that for character data, the amount is specified in characters, while for binary data, the
amount is specified in bytes.

Locking the Row Prior to Updating

If you plan to update a LOB value, then you must lock the row containing the LOB prior to
updating. While the SQL | NSERT and UPDATE statements implicitly lock the row, locking is
done explicitly by means of a SQL SELECT FOR UPDATE statement in SQL and PL/SQL
programs, or by using an OCl pi n or | ock function in OCI programs.

¢ See Also:

Example of Updating LOBs Through Updated Locators for more details on the state
of the locator after an update

Syntax
See the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — COPY

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" — OCILobCopy2
e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB Statements, and LOB COPY executable embedded SQL extension

12-23

Chapter 12
Copying a LOB Locator

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information on LOB COPY
executable embedded SQL extension

Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB Package): | copy. sql
OCl: I copy.c
Java (JDBC): | copy.j ava

12.17 Copying a LOB Locator

This section describes how to copy a LOB locator. Note that different locators may
point to the same or different data, or to current or outdated data.

ORACLE

" See Also:

Read-Consistent Locators for more details about how to assign one LOB to
another using PL/SQL using the : = operator

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB Package): Refer to "Read-Consistent Locators" for
information on assigning one lob locator to another

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
CCl LobAssi gn(), OCl Lobl sEqual ()

C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and ALLOCATE and LOB ASSIGN executable
embedded SQL extensions

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideSELECT, LOB ASSIGN
executable embedded SQL extensions

Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB Package): | copy! oc. sql
OCIl: | copyl oc. ¢
C++ (OCCI): No example is provided with this release.

Java (JDBC): | copyl oc. j ava

12-24

Chapter 12
Equality: Checking If One LOB Locator Is Equal to Another

12.18 Equality: Checking If One LOB Locator Is Equal to

Another

This section describes how to determine whether one LOB locator is equal to another. If two
locators are equal, then this means that they refer to the same version of the LOB data.

¢ See Also:

¢ Table 12-1

¢« "Read-Consistent Locators"

Syntax

Use the following syntax references for each programmatic environment:

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" — OCl LobAssi gn(),
OCl Lobl sEqual ()

C++ (OCCI): Oracle C++ Call Interface Programmer's Guide
COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB ASSIGN executable embedded
SQL extension

Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBS" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

PL/SQL: No example is provided with this release.
OCl: lequal . c
C++ (OCCI): No example is provided with this release.

Java (JDBC): | equal . j ava

12.19 About Determining Whether LOB Locator Is Initialized

This section describes how to determine whether a LOB locator is initialized.

ORACLE

¢ See Also:
Table 12-1

12-25

Chapter 12
About Appending to a LOB

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this
use case.

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
CCl LobLocat or I sl nit()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide
 COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.
e C/C++ (Pro*C/C++)Pro*C/C++ Programmer's Guide

» Java (JDBC): There is no applicable syntax reference for this use case.

Examples

Examples are provided in the following programmatic environments:

* PL/SQL (DBMS_LOB Package): No example is provided with this release.
e OCl:linit.c

e C (OCCI)): No example is provided with this release.

e Java (JDBC): No example is provided with this release.

12.20 About Appending to a LOB

ORACLE

This section describes how to write-append the contents of a buffer to a LOB.

See Also:
Table 12-1

Usage Notes

Note the following issues regarding usage of this API.

Writing Singly or Piecewise
The wri t eappend operation writes a buffer to the end of a LOB.

For OCI, the buffer can be written to the LOB in a single piece with this call;
alternatively, it can be rendered piecewise using callbacks or a standard polling
method.

Writing Piecewise: When to Use Callbacks or Polling

If the value of the piece parameter is OCl _FI RST_PI ECE, then data must be provided
through callbacks or polling.

» If a callback function is defined in the cbf p parameter, then this callback function is
called to get the next piece after a piece is written to the pipe. Each piece is written
from buf p.

12-26

Chapter 12
About Writing Data to a LOB

* If no callback function is defined, then OCl LobW i t eAppend2() returns the OCl _NEED DATA
error code. The application must call OCl LobW i t eAppend2() again to write more pieces of
the LOB. In this mode, the buffer pointer and the length can be different in each call if the
pieces are of different sizes and from different locations. A piece value of
OCl _LAST_PI ECE terminates the piecewise write.

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBVMS_LOB package or the OCI, you must lock
the row containing the LOB. While the SQL | NSERT and UPDATE statements implicitly lock the
row, locking is done explicitly by means of an SQL SELECT FOR UPDATE statement in SQL and
PL/SQL programs, or by using an OCl pi n or | ock function in OCI programs.

¢ See Also:

Example of Updating LOBs Through Updated Locators for more details on the state
of the locator after an update

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — \\Rl TEAPPEND

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCl LobW i t eAppend2()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on Embedded
SQL Statements and Directives

» Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:
* PL/SQL (DBMS_LOB Package): | wri t eap. sql

e OClLIwiteap.c

e C++ (OCCI): No example is provided with this release.

e Java (JDBC): lwiteap.java

12.21 About Writing Data to a LOB

ORACLE

This section describes how to write the contents of a buffer to a LOB.

12-27

Chapter 12
About Writing Data to a LOB

¢ See Also:

e Table 12-1
e About Reading Data from a LOB

Usage Notes

Note the following issues regarding usage of this API.

Stream Write

The most efficient way to write large amounts of LOB data is to use OCl LobW i t e2()
with the streaming mechanism enabled, and using polling or a callback. If you know
how much data is written to the LOB, then specify that amount when calling

OCl LobWi te2() . This ensures that LOB data on the disk is contiguous. Apart from
being spatially efficient, the contiguous structure of the LOB data makes reads and
writes in subsequent operations faster.

Chunk Size

A chunk is one or more Oracle blocks. You can specify the chunk size for the LOB
when creating the table that contains the LOB. This corresponds to the data size used
by Oracle Database when accessing or modifying the LOB value. Part of the chunk is
used to store system-related information and the rest stores the LOB value. The API
you are using has a function that returns the amount of space used in the LOB chunk
to store the LOB value. In PL/SQL use DBM5S_LOB. GETCHUNKSI ZE. In OCI, use

OCl LobGet ChunkSi ze() .

Use a Multiple of the Returned Value to Improve Write Performance

To improve performance, run write requests using a multiple of the value returned by
one of these functions. The reason for this is that the LOB chunk is versioned for every
wr it e operation. If all wri t es are done on a chunk basis, then no extra or excess
versioning is incurred or duplicated. If it is appropriate for your application, then you
should batch writes until you have enough for an entire chunk instead of issuing
several LOB write calls that operate on the same LOB chunk.

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBM5_LOB Package or OCI, you must
lock the row containing the LOB. While the SQL | NSERT and UPDATE statements
implicitly lock the row, locking is done explicitly by means of a SQL SELECT FOR UPDATE
statement in SQL and PL/SQL programs, or by using an OCl pi n or | ock function in
OCI programs.

¢ See Also:

Example of Updating LOBs Through Updated Locators for more details on
the state of the locator after an update

ORACLE 12-28

ORACLE

Chapter 12
About Writing Data to a LOB

Using DBMS_LOB.WRITE to Write Data to a BLOB

When you are passing a hexadecimal string to DBMS_LOB.WRITE() to write data to a BLOB,
use the following guidelines:

e The amount parameter should be <= the buffer | engt h parameter

* Thel engt h of the buffer should be ((amount *2) - 1). This guideline exists because the two
characters of the string are seen as one hexadecimal character (and an implicit
hexadecimal-to-raw conversion takes place), that is, every two bytes of the string are
converted to one raw byte.

The following example is correct:

decl are

blob loc BLOB;

rawbuf RAW10);

an_offset INTEGER : = 1;

an_amount BI NARY_I NTECGER : = 10;
BEG N

select blob_col into blob_loc froma_table
where id = 1;

rawbuf :='1234567890123456789" ;

dbns_| ob. wite(blob_l| oc, an_anount, an_offset,
rawbuf) ;

comit;
END;

Replacing the value for an_amount in the previous example with the following values, yields
error message, ora_21560:

an_anount BI NARY_I NTEGER : = 11,
or

an_amount Bl NARY_|I NTEGER : = 19;
Syntax

Use the following syntax references for each programmatic environment:

 PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — WRITE

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" — OCILobWrite2().
e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB WRITE executable embedded SQL extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB WRITE executable embedded
SQL extension

e Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working With
LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:

12-29

Chapter 12
LOB Array Write

 PL/SQL (DBMS_LOB Package): | wri te. sql
e OCl:lwite.c
e Java (JDBC):lwite.java

12.22 LOB Array Write

ORACLE

This section describes how to write LOB data for multiple locators in one round trip,
using CCl LobArrayWite().

Usage Notes

¢ See Also:

"About LOB Array Read" for examples of array read/write.

LOB Array Write in Polling Mode

The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer
size. OCl LobArrayWite() has to be called 100 (10 times 10) times to write all the data.
The function is used in a similar manner to OCl LobW i te2().

/* Fetch the |ocators */

[* array_iter paranmeter indicates the nunber of locators in the array read.

* It is an IN paraneter for the 1st call in polling and is ignored as IN

* paraneter for subsequent calls. As an OUT paraneter it indicates the |ocator
* index for which the piece is witten.

*/

ub4 array_iter = 10;
char *buf p[10];

oraub8 bufl[10];

oraub8 char _ant p[10];
oraub8 of fset[10];
sword st;

int i, j;

for (i=0; i<10; i++)

{
bufp[i] = (char *)nmalloc(1000);
buf ITi] = 1000;
/* Fill bufp here. */

offset[i] = 1;
char_antp[i] = 10000; /* Single byte fixed width char set. */
}
for (i =1; i <=10; i++4)
[* Fill up bufp[i-1] here. The first piece for ith locator would be witten

from
buf p[i-1] */

12-30

Chapter 12

LOB Array Write
st = OClLobArrayWite(<service context> <error handl e>,
&array_iter, /* array size */
lob_array, [/* array of locators */
NULL, /* array of byte amounts */
char_antp, /* array of char ampunts */
of fset, /* array of offsets */
(void **)bufp, /* array of wite buffers */
bufl, /* array of buffer lengths */
OCl _FIRST_PI ECE, /* piece information */
NULL, /* cal | back context */
NULL, /* cal | back function */
0, /* character set ID- default */
SQLCS_IMPLICIT); /* character set form?*/
for (j =2,) <10; j++)
{
[* Fill up bufp[i-1] here. The jth piece for ith locator would be witten from
buf p[i-1] */
st = OClLobArrayWite(<service context> <error handle>,
&array_iter, /* array size */
| ob_array, /* array of locators */
NULL, /* array of byte anobunts */
char _ant p, I* array of char amounts */
of f set, /* array of offsets */
(void **)bufp, I* array of wite buffers */
buf !, I* array of buffer lengths */
OCl _NEXT_PI ECE, /* piece information */
NULL, /* cal | back context */
NULL, /* cal |l back function */
0, [* character set ID - default */
SQLCS_IMPLICIT);
[* array_iter returns the index of the current array elenent for which
* data is being witten. for exanple, aray_iter = 1 inplies first |ocator,
* array_iter = 2 inplies second locator and so on. Here i = array_iter.
*
* |ob_array[array_iter - 1] => Lob locator for which data is witten.
* bufp[array_iter - 1] => Buffer pointer fromwhich data is witten.
* char_anmtp[array_iter - 1] => Nunber of characters witten in
* the piece just witten
*/
}
[* Fill up bufp[i-1] here. The last piece for ith locator would be witten from
bufp[i -1] */
st = OClLobArrayWite(<service context> <error handl e>,
&array_iter, /* array size */
| ob_array, /* array of locators */
NULL, /* array of byte anounts */
char _ant p, I* array of char amounts */
of f set, /* array of offsets */
(void **)bufp, I* array of wite buffers */
buf, I* array of buffer lengths */
OCl _LAST_PIECE, /* piece information */
NULL, /* cal | back context */
NULL, /* cal | back function */
0, /* character set ID - default */
SQLCS_IMPLICIT);
}

ORACLE 12-31

Chapter 12
LOB Array Write

LOB Array Write with Callback

The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer
size. A total of 100 pieces must be written (10 pieces for each locator). The first piece
is provided by the CCl LobArrayWite() call. The callback function is called 99 times to
get the data for subsequent pieces to be written.

/* Fetch the locators */

ub4 array_iter = 10;
char *buf p[10];
oraub8 bufl[10];

oraub8 char_ant p[10];
oraub8 of fset[10];
sword st;

for (i=0; i<10; i+4)

{
bufp[i] = (char *)malloc(1000);
buf I[i] = 1000;
offset[i] = 1,
char_antp[i] = 10000; I* Single byte fixed width char set. */
}
st = OClLobArrayWite(<service context> <error handl e>,
&array_iter, /* array size */
| ob_array, /* array of locators */
NULL, /* array of byte anounts */
char _ant p, /* array of char amounts */
of f set, /* array of offsets */
(void **)bufp, I* array of wite buffers */
buf I, /* array of buffer lengths */
OCl _FIRST_PIECE, [/* piece information */
ctx, /* cal | back context */
chk_wite_lob /* cal |l back function */
0 /* character set ID- default */

SQLCS IMPLICIT);

/* Cal | back function for LOB array wite. */

sh4 cbk_wite_lob(dvoid *ctxp, ub4 array_iter, dvoid *bufxp, oraub8 *Ienp,
ubl *piecep, ubl *changed_bufpp, oraub8 *changed_| enp)

{

static ub4 piece_count = 0;

pi ece_count ++;

printf (" %lth piece witten for %th locator \n\n", piece_count, array_iter);

[*-- code to fill bufxp with data goes here. *lenp should reflect the size and
* should be less than or equal to MAXBUFLEN -- */

[* --Optional code to set changed_bufpp and changed_lenp if the buffer must

* be changed dynamically --*/

if (this is the last data buffer for current |ocator)

*pi ecep = OCl _LAST_PI ECE;
else if (thisis the first data buffer for the next |ocator)

ORACLE 12-32

Chapter 12
LOB Array Write

*pi ecep = OCl _FI RST_PI ECE;
pi ece_count = 0;

el se
*pi ecep = OCl _NEXT_PI ECE;

return OCl _CONTI NUE;
}

Polling LOB Data in Array Write

The next example is polling LOB data in OCl LobArrayW i te() with variable ant p, bufl , and
of fset.

/* Fetch the l|ocators */

ub4 array_iter = 10;
char *buf p[10];

oraub8 bufl[10];

oraub8 char _ant p[10];
oraub8 of fset[10];
sword st;

int i, j;

int piece_count;

for (i=0; i<10; i++)

{
bufp[i] = (char *)malloc(1000);
buf ITi] = 1000;
[* Fill bufp here. */
offset[i] = 1;
char_antp[i] = 10000; /* Single byte fixed width char set. */
}
/* For 3rd locator wite data in 500 bytes piece fromoffset 101. Amount
* is 2000, that is, total nunber of pieces is 2000/500 = 4.
*/
of fset[2] = 101; bufl[2] = 500; char_antp[2] = 2000;
/* For 6th locator wite data in 100 bytes piece fromoffset 51. Anount
* is 0 indicating pure polling, that is, data is witten
* till OCl _LAST_PIECE
*/
of fset[5] = 51; bufl[5] = 100; char_antp[5] = 0;
/* For 8th locator wite 100 bytes of data in one piece. Note ampunt
* is less than buffer length indicating single piece wite.
*/
offset[7] = 61; bufl[7] = 200; char_antp[7] = 100;
for (i =1; i <=10; i++4)
{
/* Fill up bufp[i-1] here. The first piece for ith locator would be witten from

bufp[i-1] */

/* Cal cul ate number of pieces that must be witten */
pi ece_count = char_antp[i-1]/bufl[i-1];

/* Single piece case */

ORACLE 12-33

Chapter 12

LOB Array Write
if (char_antp[i-1] <= bufl[i-1])
pi ece_count = 1;

[* Zero amount indicates pure polling. So we can wite as nany

* pieces as needed. Let us wite 50 pieces.

*/

if (char_antp[i-1] == 0)

pi ece_count = 50;

st = OClLobArrayWite(<service context> <error handl e>,
&array_iter, /* array size */
lob_array, [/* array of locators */
NULL, /* array of byte amounts */
char_antp, /* array of char amounts */
of fset, /* array of offsets */

(void **)bufp, /* array of wite buffers */

bufl, /* array of buffer lengths */
OCl _FIRST_PI ECE, /* piece information */
NULL, /* cal | back context */
NULL, /* cal | back function */
0 [* character set ID- default */

SQLCS_IMPLICIT); /* character set form?*/
for (j =2, j < piece_count; j++)

/* Fill up bufp[i-1] here. The jth piece for ith locator would be witten
* frombufp[i-1] */

st = OCILobArrayWite(<service context> <error handl e>,
&array_iter, /* array size */
| ob_array, /* array of locators */

NULL, [* array of byte amounts */
char _ant p, /* array of char anounts */
of f set, [* array of offsets */
(void **)bufp, /* array of wite buffers */
bufl, /* array of buffer lengths */
OCl _NEXT_PI ECE, /* piece information */
NULL, /* cal | back context */
NULL, /* cal | back function */
0 [* character set ID- default */

SQLCS I MPLICIT);

[* array_iter returns the index of the current array elenent for which

* data is being witten. for exanple, aray_iter = 1 inplies first |ocator,
* array_iter = 2 inplies second locator and so on. Here i = array_iter.

*

* |ob_array[array_iter - 1] => Lob locator for which data is witten.

* bufp[array_iter - 1] => Buffer pointer fromwhich data is witten.
* char_anmtp[array_iter - 1] => Nunber of characters witten in

* the piece just witten

*

-

}

[* Fill up bufp[i-1] here. The last piece for ith |ocator would be witten from
* pufp[i -1] */

[* If piece_count is 1 it is asingle piece wite. */
if (piece_count[i] !'= 1)
st = OClLobArrayWite(<service context> <error handl e>,
&array_iter, /* array size */

ORACLE 12-34

Chapter 12
About Trimming LOB Data

| ob_array, /* array of locators */

NULL, [* array of byte amounts */
char _ant p, /* array of char anounts */
of fset, [* array of offsets */
(void **)bufp, /* array of wite buffers */

bufl, /* array of buffer lengths */
OCl _LAST_PIECE, /* piece information */
NULL, /* cal | back context */
NULL, /* cal | back function */
0, /* character set ID - default */
SQLCS_IMPLICIT);

}

Syntax

Use the following syntax references for the OCI programmatic environment:

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" — OCl LobArrayWite().

Example
An example is provided in the following programmatic environment:

OCI: lwritearr.c

12.23 About Trimming LOB Data

This section describes how to trim a LOB to the size you specify.

¢ See Also:
Table 12-1

Usage Notes

Note the following issues regarding usage of this API.

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBM5_LOB Package, or OCI, you must lock
the row containing the LOB. While the SQL | NSERT and UPDATE statements implicitly lock the
row, locking is done explicitly by means of:

e A SELECT FOR UPDATE statement in SQL and PL/SQL programs.

* AnQC pinorlock function in OCI programs.

¢ See Also:

Example of Updating LOBs Through Updated Locators for more details on the state
of the locator after an update

ORACLE 12-35

Chapter 12
About Erasing Part of a LOB

Syntax
Use the following syntax references for each programmatic environment:

 PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB"— TRIM

* C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobTrim2().

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB TRIM executed embedded SQL
extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guide for more information on LOB
TRIM executed embedded SQL extension

» Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working With
LOBs" — Creating and Populating a BLOB or CLCB Column.

Examples

Examples are provided in the following programmatic environments:

 PL/SQL (DBMS_LOB Package): I tri m sql

e OClItrimc

e C++ (OCCI): No example is provided with this release.

e Java (JDBC):Itrimjava

12.24 About Erasing Part of a LOB

ORACLE

This section describes how to erase part of a LOB.

¢ See Also:
Table 12-1

Usage Notes

Note the following issues regarding usage of this API.

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBMS_LOB Package or OCI, you must
lock the row containing the LOB. While | NSERT and UPDATE statements implicitly lock
the row, locking is done explicitly by means of a SELECT FOR UPDATE statement in SQL
and PL/SQL programs, or by using the OCl pi n or | ock function in OCI programs.

12-36

Chapter 12
Determining Whether a LOB instance Is Temporary

¢ See Also:

Example of Updating LOBs Through Updated Locators f or more details on the
state of the locator after an update

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — ERASE

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" — OCl LobEr ase2() .
C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs, usage
notes on LOB statements, and LOB ERASE executable embedded SQL extension.

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on LOB ERASE
executable embedded SQL extension

Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBS" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB Package): | erase. sql
OCl: |l erase.c
C++ (OCCI): No example is provided with this release.

Java (JDBC): | erase. j ava

12.25 Determining Whether a LOB instance Is Temporary

This section describes how to determine whether a LOB instance is temporary.

ORACLE

¢ See Also:
Table 12-1

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — ISTEMPORARY, FREETEMPORARY

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILoblsTemporary().

12-37

Chapter 12
Converting a BLOB to a CLOB

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and embedded SQL and LOB DESCRIBE
executable embedded SQL extension

e C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guidefor more information on LOB
DESCRIBE executable embedded SQL extension

» Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:
* PL/SQL (DBMS_LOB Package): | i st enp. sql

e OCllistenp.c

12.25.1 Java (JDBC): Determining Whether a BLOB Is Temporary

To see if a BLOB is temporary, the JDBC application can either use the i sTenpor ary
instance method to determine whether the current BLOB object is temporary, or pass
the BLOB object to the static i sTenpor ary method to determine whether the specified
BLOB object is temporary. These two methods are defined inl i st enpb. j ava.

This JDBC API replaces previous work-arounds that use DBMS_LOB. i sTenpor ar y() .

To determine whether a CLOB is temporary, the JDBC application can either use the
i sTenpor ary instance method to determine whether the current CLOB object is
temporary, or pass the CLOB object to the static i sTenpor ary method. These two
methods are defined in | i st enpc. j ava.

12.26 Converting a BLOB to a CLOB

You can convert a BLOB instance to a CLOB using the PL/SQL procedure
DBMS_LOB. CONVERTTCCLOB.

This technique is convenient if you have character data stored in binary format that
you want to store in a CLOB. You specify the character set of the binary data when
calling this procedure.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details on
syntax and usage of this procedure

12.27 Converting a CLOB to a BLOB

You can convert a CLOB instance to a BLOB instance using the PL/SQL procedure
DBMS_LOB. CONVERTTOBLOB. This technique is a convenient way to convert character
data to binary data using LOB APlIs. See

ORACLE 12-38

Chapter 12
Ensuring Read Consistency

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details on syntax and
usage of this procedure

12.28 Ensuring Read Consistency

ORACLE

This script can be used to ensure that hot backups can be taken of tables that have
NOLOGA NG or FI LESYSTEM LI KE_LOGE NG LOBs and have a known recovery point with no
read inconsistencies:

ALTER DATABASE FORCE LOGE NG
SELECT CHECKPO NT_CHANGE# FROM V$DATABASE; --Start SCN

SCN (System Change Number) is a stamp that defines a version of the database at the time
that a transaction is committed.

Perform the backup.
Run the next script:

ALTER SYSTEM CHECKPO NT GLOBAL;
SELECT CHECKPO NT_CHANGE# FROM V$DATABASE; --End SCN
ALTER DATABASE NO FORCE LOGAE NG

Back up the archive logs generated by the database. At the minimum, archive logs between
start SCN and end SCN (including both SCN points) must be backed up.

To restore to a point with no read inconsistency, restore to end SCN as your incomplete
recovery point. If recovery is done to an SCN after end SCN, there can be read inconsistency
in the NOLOGE NG LOBs.

For SecureFiles, if a read inconsistency is found during media recovery, the database treats
the inconsistent blocks as holes and fills BLOBs with 0's and CLOBs with fill characters.

12-39

Application Design with LOBs

This part covers issues that you must consider when designing LOB applications.
This part contains these chapters:

* LOB Storage with Applications
* Advanced Design Considerations
e Overview of Supplied LOB APIs

¢ Performance Guidelines

ORACLE

LOB Storage with Applications

Applications that contain tables with LOB columns may use both SECUREFI LE and BASI CFI LE
LOBs. If a feature applies to only one kind of LOB, this is stated.

Topics:

Tables That Contain LOBs

Data Types for LOB Columns

LOB Storage Parameters

LOB Columns Indexing

LOB Manipulation in Partitioned Tables

LOBs in Index Organized Tables

Restrictions for LOBs in Partitioned Index-Organized Tables
Updating LOBs in Nested Tables

13.1 Tables That Contain LOBs

When creating tables that contain LOBs, use these guidelines:

Topics:

Persistent LOBs Initialized to NULL or Empty
Initializing LOBs
Initializing Persistent LOB Columns and Attributes to a Value

Initializing BFILEs to NULL or a File Name

13.1.1 Persistent LOBs Initialized to NULL or Empty

You can set a persistent LOB — that is, a LOB column in a table, or a LOB attribute in an
object type that you defined— to be NULL or empty:

ORACLE

Set a Persistent LOB to NULL: A LOB set to NULL has no locator. A NULL value is stored
in the row in the table, not a locator. This is the same process as for all other data types.

Set a Persistent LOB to Empty: By contrast, an empty LOB stored in a table is a LOB
of zero length that has a locator. So, if you SELECT from an empty LOB column or
attribute, then you get back a locator which you can use to populate the LOB with data
using supported programmatic environments, such as OCI or PL/ SQ.(DBM5S_LOB).

¢ See Also:

Overview of Supplied LOB APIs for more information on supported environments

13-1

Chapter 13
Tables That Contain LOBs

13.1.1.1 Setting a Persistent LOB to NULL

You may want to set a persistent LOB value to NULL upon inserting the row.
These are possible situations where this is useful:

* In cases where you do not have the LOB data at the time of the | NSERT.

* If you want to use a SELECT statement, such as the following, to determine whether
or not the LOB holds a NULL value:

SELECT COUNT (*) FROM print_nedia WHERE ad_graphic |'S NOT NULL;

SELECT COUNT (*) FROM print_nedia WHERE ad_graphic |'S NULL;

Note that you cannot call OCI or DBMS_LOB functions on a NULL LOB, so you must then
use an SQL UPDATE statement to reset the LOB column to a non-NULL (or empty)
value.

The point is that you cannot make a function call from the supported programmatic
environments on a LOB that is NULL. These functions only work with a locator, and if
the LOB column is NULL, then there is no locator in the row.

13.1.1.2 Setting a Persistent LOB to Empty

You can initialize a persistent LOB to EMPTY rather that NULL. Doing so, enables you to
obtain a locator for the LOB instance without populating the LOB with data.

* You set a persistent LOB to EMPTY, using the SQL function EMPTY_BLOB() or
EMPTY_CLOB() in the | NSERT statement, as follows.

I NSERT | NTO a_t abl e VALUES (EMPTY_BLOB());

As an alternative, you can use the RETURNI NG clause to obtain the LOB locator in one
operation rather than calling a subsequent SELECT statement:

DECLARE
Lob_|oc BLOB;

BEG N
| NSERT I NTO a_table VALUES (EMPTY_BLOB()) RETURNI NG bl ob_col | NTO Lob | oc;
/* Now use the locator Lob | oc to populate the BLOB with data */

END;

13.1.2 Initializing LOBs

ORACLE

You can initialize the LOBs in pri nt _medi a by using the following | NSERT statement:

I NSERT | NTO print_nedia VALUES (1001, EMPTY_CLOB(), EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

This sets the value of ad_sourcet ext, ad_fltextn, ad_conposi te, and ad_phot o to an
empty value, and sets ad_gr aphi ¢ to NULL.

13-2

Chapter 13
Data Types for LOB Columns

¢ See Also:

Table for LOB Examples: The PM Schema print_media Table for the print _nedi a
table.

13.1.3 Initializing Persistent LOB Columns and Attributes to a Value

You can initialize the LOB column or LOB attributes to a value that contains more than 4G
bytes of data, the limit before release 10.2.

¢ See Also:

Data Interface for Persistent LOBs

13.1.4 Initializing BFILES to NULL or a File Name

A BFI LE can be initialized to NULL or to a filename. To do so, you can use the BFI LENAME()
function.

¢ See Also:

"BFILENAME and Initialization".

13.1.5 Restriction on First Extent of a LOB Segment

The first extent of any segment requires at least 2 blocks (if FREELI ST GROUPS was 0). That is,
the initial extent size of the segment should be at least 2 blocks. LOBs segments are different
because they need at least 3 blocks in the first extent if the LOB is a BasicFiles LOB and 16
blocks if the LOB is a SecureFiles LOB.

If you try to create a LOB segment in a permanent dictionary managed tablespace with initial
= 2 blocks, then it still works because it is possible for segments in permanent dictionary-
managed tablespaces to override the default storage setting of the tablespaces.

But if uniform, locally managed tablespaces or dictionary managed tablespaces of the
temporary type, or locally managed temporary tablespaces have an extent size of 2 blocks,
then LOB segments cannot be created in these tablespaces. This is because in these
tablespace types, extent sizes are fixed and the default storage setting of the tablespaces is
not ignored.

13.2 Data Types for LOB Columns

When selecting a data type, consider the following three topics:

e LOBs Compared to LONG and LONG RAW Types
* Varying-Width Character Data Storage in LOBs

ORACLE 13-3

Chapter 13
Data Types for LOB Columns

» Converting Character Sets Implicitly with LOBs

13.2.1 LOBs Compared to LONG and LONG RAW Types

Table 13-1 lists the similarities and differences between LOBs, LONGs, and LONG
RAW types.

Table 13-1 LOBs Vs. LONG RAW

LOB Data Type LONG and LONG RAW Data Type

You can store multiple LOBs in a single row You can store only one LONG or LONG RAWin each
row.

LOBs can be attributes of a user-defined This is not possible with either a LONG or LONG

data type RAW

Only the LOB locator is stored in the table In the case of a LONG or LONG RAWthe entire
column; BLOB and CLOB data can be stored value is stored in the table column.

in separate tablespaces and BFI LE data is

stored as an external file.

For inline LOBs, the database stores LOBs
that are less than approximately 4000 bytes
of data in the table column.

When you access a LOB column, you can ~ When you access a LONGor LONGRAW the entire

choose to fetch the locator or the data. value is returned.
A LOB can be up to 128 terabytes or more A LONG or LONG RAWinstance is limited to 2
in size depending on your block size. gigabytes in size.

There is greater flexibility in manipulating Less flexibility in manipulating data in a random,
data in a random, piece-wise manner with piece-wise manner with LONG or LONG RAW
LOBs. LOBs can be accessed at random dat a. LONGs must be accessed from the

offsets. beginning to the desired location.
You can use Oracle Golden Gate to Replication is not possible with LONG or LONG
replicate LOBs. RAW.

13.2.2 Varying-Width Character Data Storage in LOBs

Varying-width character data in CLOB and NCLOB data types is stored in an internal
format that is compatible with UCS2 Unicode character set format. This ensures that
there is no storage loss of character data in a varying-width format. Also note the
following if you are using LOBSs to store varying-width character data:

* You can create tables containing CLOB and NCLOB columns even if you use a
varying-width CHAR or NCHAR database character set.

* You can create a table containing a data type that has a CLOB attribute regardless
of whether you use a varying-width CHAR database character set.

13.2.3 Converting Character Sets Implicitly with LOBs

For CLOB and NCLOB instances used in OCI (Oracle Call Interface), or any of the
programmatic environments that access OCI functionality, character set conversions
are implicitly performed when translating from one character set to another.

ORACLE 13-4

Chapter 13
LOB Storage Parameters

* Use the DBM5_LOB. LOADCLOBFROVFI LE API to perform an implicit conversion from binary
data to character data when loading to a CLOB or NCLOB.

With the exception of DBM5S_LOB. LOADCLOBFROVFI LE, LOB APIs do not perform implicit
conversions from binary data to character data.

For example, when you use the DBVS_LOB. LOADFROWFI LE API to populate a CLOB or NCLOB,
you are populating the LOB with binary data from a BFI LE. In this case, you must perform
character set conversions on the BFI LE data before calling DBVMS_LOB. LOADFROVFI LE.

" See Also:

Oracle Database Globalization Support Guide for more detail on character set
conversions.

Note:

The database character set cannot be changed from a single-byte to a multibyte
character set if there are populated user-defined CLOB columns in the database
tables. The national character set cannot be changed between AL16UTF16 and UTF8
if there are populated user-defined NCLCB columns in the database tables.

Note:

LOBs are not supported when the Container Database root and Pluggable
Databases are in different character sets. For more information, refer to Relocating
a PDB Using CREATE PLUGGABLE DATABASE.

13.3 LOB Storage Parameters

ORACLE

You should consider certain LOB storage characteristics when designing tables with LOB
storage. For a discussion of SECUREFI LE parameters:
¢ See Also:

* "CREATE TABLE with LOB Storage"
¢ "ALTER TABLE with LOB Storage"

Topics:
e Inline and Out-of-Line LOB Storage

e Defining Tablespace and Storage Characteristics for Persistent LOBs

13-5

Chapter 13
LOB Storage Parameters

13.3.1 Inline and Out-of-Line LOB Storage

ORACLE

LOB columns store locators that reference the location of the actual LOB value.

Actual LOB values are stored either in the table row (inline) or outside of the table row
(out-of-line), depending on the column properties you specify when you create the
table, and depending the size of the LOB.

LOB values are stored out-of-line when any of the following situations apply:

» If you explicitly specify DI SABLE STORAGE | N ROWfor the LOB storage clause when
you create the table.

« If the size of the LOB is greater than approximately 4000 bytes (4000 minus
system control information), regardless of the LOB storage properties for the
column.

e If you update a LOB that is stored out-of-line and the resulting LOB is less than
approximately 4000 bytes, it is still stored out-of-line.

LOB values are stored inline when any of the following conditions apply:

* When the size of the LOB stored in the given row is small, approximately 4000
bytes or less, and you either explicitly specify ENABLE STORAGE | N ROWor the LOB
storage clause when you create the table, or when you do not specify this
parameter (which is the default).

e When the LOB value is NULL (regardless of the LOB storage properties for the
column).

Using the default LOB storage properties (inline storage) can allow for better database
performance; it avoids the overhead of creating and managing out-of-line storage for
smaller LOB values. If LOB values stored in your database are frequently small in size,
then using inline storage is recommended.

Note:

e LOB locators are always stored in the row.

A LOB locator always exists for any LOB instance regardless of the LOB
storage properties or LOB value - NULL, empty, or otherwise.

e Ifthe LOB is created with DI SABLE STORAGE | N ROWNproperties and the
BasicFiles LOB holds any data, then a minimum of one CHUNK of out-of-
line storage space is used; even when the size of the LOB is less than
the CHUNK size.

e Ifa LOB column is initialized with EMPTY_CLOB() or EMPTY_BLOB(), then
no LOB value exists, not even NULL. The row holds a LOB locator only.
No additional LOB storage is used.

* LOB storage properties do not affect BFI LE columns. BFI LE data is
always stored in operating system files outside the database.

13-6

Chapter 13
LOB Storage Parameters

13.3.2 Defining Tablespace and Storage Characteristics for Persistent

LOBs

When defining LOBs in a table, you can explicitly indicate the tablespace and storage
characteristics for each persistent LOB column.

To create a BasicFiles LOB, the BASI CFl LE keyword is optional but is recommended for
clarity, as shown in the following example:

CREATE TABLE Contai nsLOB tab (n NUVBER, ¢ CLOB)
| ob (c) STORE AS BASI CFI LE segname (TABLESPACE | obt bs1 CHUNK 4096
PCTVERSI ON 5
NOCACHE LOGG NG
STORAGE (MAXEXTENTS 5)

)

For SecureFiles, the SECUREFI LE keyword is necessary, as shown in the following example
(assuming TABLESPACE | obt bs1 is ASSM):

CREATE TABLE Contai nsLOB_tabl (n NUMBER, c¢ CLOB)
lob (c) STORE AS SECUREFI LE sfsegname (TABLESPACE | obt bsl
RETENTI ON AUTO
CACHE LOGA NG
STORAGE (MAXEXTENTS 5)
)

¢ Note:

There are no tablespace or storage characteristics that you can specify for external
LOBs (BFI LEs) as they are not stored in the database.

If you must modify the LOB storage parameters on an existing LOB column, then use the
ALTERTABLE ... MOVE statement. You can change the RETENTI ON, PCTVERSI ON, CACHE,
NOCACHE LOGE NG, NOLOGG NG, or STORAGE settings. You can also change the TABLESPACE using
the ALTER TABLE ... MOVE statement.

13.3.2.1 Assigning a LOB Data Segment Name

ORACLE

As shown in the previous example, specifying a name for the LOB data segment makes for a
much more intuitive working environment. When querying the LOB data dictionary views
USER_LOBS, ALL_LOBS, DBA_LOBS, you see the LOB data segment that you chose instead of
system-generated names.

" See Also:

Oracle Database Reference for more information about initialization parameters

13-7

Chapter 13
LOB Storage Parameters

13.3.3 LOB Storage Characteristics for LOB Column or Attribute

LOB storage characteristics that can be specified for a LOB column or a LOB attribute
include the following:

TABLESPACE
PCTVERSI ON or RETENTI ON

Note that you can specify either PCTVERSI ON or RETENTI ON for BasicFiles LOBSs, but
not both. For SecureFiles, only the RETENTI ON parameter can be specified.

CACHE/NOCACHE/ CACHE READS
LOGAE NG NOLOGGE NG

CHUNK

ENABLE/DI SABLE STORAGE | N ROW
STORAGE

For most users, defaults for these storage characteristics are sufficient. If you want to
fine-tune LOB storage, then consider the following guidelines.

¢ See Also:

e STORAGE clause in Oracle Database SQL Language Reference
e RETENTI ON parameter in Oracle Database SQL Language Reference

13.3.4 TABLESPACE and LOB Index

The LOB index is an internal structure that is strongly associated with LOB storage.
This implies that a user may not drop the LOB index and rebuild it.

Note:

The LOB index cannot be altered.

The system determines which tablespace to use for LOB data and LOB index
depending on your specification in the LOB storage clause:

If you do not specify a tablespace for the LOB data, then the tablespace of the
table is used for the LOB data and index.

If you specify a tablespace for the LOB data, then both the LOB data and index
use the tablespace that was specified.

13.3.4.1 Tablespace for LOB Index in Non-Partitioned Table

When creating a table, if you specify a tablespace for the LOB index for a non-
partitioned table, then your specification of the tablespace is ignored and the LOB

ORACLE

13-8

Chapter 13
LOB Storage Parameters

index is co-located with the LOB data. Partitioned LOBs do not include the LOB index syntax.

Specifying a separate tablespace for the LOB storage segments enables a decrease in
contention on the tablespace of the table.

13.3.5 PCTVERSION

ORACLE

When a BasicFiles LOB is modified, a new version of the BasicFiles LOB page is produced in
order to support consistent read of prior versions of the BasicFiles LOB value.

PCTVERSI ON is the percentage of all used BasicFiles LOB data space that can be occupied by
old versions of BasicFiles LOB data pages. As soon as old versions of BasicFiles LOB data
pages start to occupy more than the PCTVERSI ON amount of used BasicFiles LOB space,
Oracle Database tries to reclaim the old versions and reuse them. In other words, PCTVERSI ON
is the percent of used BasicFiles LOB data blocks that is available for versioning old
BasicFiles LOB data.

PCTVERSI ON has a default of 10 (%), a minimum of 0, and a maximum of 100.
To decide what value PCTVERSI ON should be set to, consider the following:

e How often BasicFiles LOBs are updated?
e How often the updated BasicFiles LOBs are read?

Table 13-2 provides some guidelines for determining a suitable PCTVERSI ON value given an
update percentage of 'X'.

Table 13-2 Recommended PCTVERSION Settings

BasicFiles LOB Update Pattern BasicFiles LOB Read Pattern PCTVERSION
Updates X% of LOB data Reads updated LOBs X%

Updates X% of LOB data Reads LOBs but not the updated LOBs 0%

Updates X% of LOB data Reads both updated and non-updated LOBs 2X%

Never updates LOB Reads LOBs 0%

If your application requires several BasicFiles LOB updates concurrent with heavy reads of
BasicFiles LOB columns, then consider using a higher value for PCTVERSI ON, such as 20%.

Setting PCTVERSI ON to twice the default value allows more free pages to be used for old
versions of data pages. Because large queries may require consistent reads of BasicFiles
LOB columns, it may be useful to retain old versions of BasicFiles LOB pages. In this case,
BasicFiles LOB storage may grow because the database does not reuse free pages
aggressively.

If persistent BasicFiles LOB instances in your application are created and written just once
and are primarily read-only afterward, then updates are infrequent. In this case, consider
using a lower value for PCTVERSI ON, such as 5% or lower.

The more infrequent and smaller the BasicFiles LOB updates are, the less space must be
reserved for old copies of BasicFiles LOB data. If existing BasicFiles LOBs are known to be
read-only, then you could safely set PCTVERSI ON to 0% because there would never be any
pages needed for old versions of data.

13-9

Chapter 13
LOB Storage Parameters

13.3.6 RETENTION Parameter for BasicFiles LOBs

You can specify the RETENTI ON parameter in the LOB storage clause of the CREATE
TABLE or ALTER TABLE statement as an alternative to the PCTVERSI ON parameter,.
Doing so, configures the LOB column to store old versions of LOB data for a period of
time, rather than using a percentage of the table space. For example:

CREATE TABLE Cont ai nsLOB tab (n NUMBER ¢ CLOB)
lob (c) STORE AS BASI CFI LE segname (TABLESPACE | obtbsl CHUNK 4096
RETENTI ON
NOCACHE LOGG NG
STORAGE (MAXEXTENTS 5)

):

The RETENTI ON parameter is designed for use with UNDO features of the database, such
as Flashback Versions Query. When a LOB column has the RETENTI ON property set,
old versions of the LOB data are retained for the amount of time specified by the
UNDO_RETENTI ON parameter.

Note the following with respect to the RETENTI ON parameter:

e UNDOSQL is not enabled for LOB columns as it is with other data types. You must
set the RETENTI ON property on a LOB column to use Undo SQL on LOB data.

e You cannot set the value of the RETENTI ON parameter explicitly. The amount of
time for retention of LOB versions in determined by the UNDO_RETENTI ON
parameter.

» Usage of the RETENTI ON parameter is only supported in Automatic Undo
Management mode. You must configure your table for use with Automatic Undo
Management before you can set RETENTI ON on a LOB column. ASSM is required
for LOB RETENTI ON to be in effect for BasicFiles LOBs. The RETENTI ON parameter
of the SQL (in the STORE AS clause) is silently ignored if the BasicFiles LOB resides
in an MSSM tablespace.

* The LOB storage clause can specify RETENTI ON or PCTVERSI ON, but not both.

" See Also:

— Oracle Database Development Guide for more information on using
flashback features of the database.

— Oracle Database SQL Language Reference for details on LOB
storage clause syntax.

13.3.7 RETENTION Parameter for SecureFiles LOBSs

ORACLE

Specifying the RETENTI ON parameter for SecureFiles indicates that the database
manages consistent read data for the SecureFiles storage dynamically, taking into
account factors such as the UNDO mode of the database.

e Specify MAX if the database is in FLASHBACK mode to limit the size of the LOB UNDO
retention in bytes. If you specify MAX, then you must also specify the MAXSI ZE
clause in the st orage_cl ause.

13-10

Chapter 13
LOB Storage Parameters

* Specify AUTOIf you want to retain UNDO sufficient for consistent read purposes only. This is
the default.

e Specify NONE if no UNDOis required for either consistent read or flashback purposes.
The default RETENTI ON for SecureFiles is AUTO.

13.3.8 CACHE / NOCACHE / CACHE READS

When creating tables that contain LOBs, use the cache options according to the guidelines in
Table 13-3:

Table 13-3 When to Use CACHE, NOCACHE, and CACHE READS
]

Cache Mode Read Write

CACHE READS Frequently Once or occasionally
CACHE Frequently Frequently

NOCACHE (default) Once or occasionally Never

13.3.8.1 CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache

e CACHE: LOB pages are placed in the buffer cache for faster access.

« NOCACHE: As a parameter in the STORE AS clause, NOCACHE specifies that LOB values
are not brought into the buffer cache.

« CACHE READS: LOB values are brought into the buffer cache only during read and not
during write operations.

NOCACHE is the default for both SecureFiles and BasicFiles LOBs.

¢ Note:

Using the CACHE option results in improved performance when reading and writing
data from the LOB column. However, it can potentially age other non-LOB pages
out of the buffer cache prematurely.

13.3.9 LOGGING / NOLOGGING Parameter for BasicFiles LOBs

The [NOLOGA NG parameter is applied to using LOBs in the same manner as for other table
operations. In the usual case, if the [NOLOGE NG clause is omitted, then this means that
neither NOLOGE NG nor LOGE NGis specified and the logging attribute of the table or table
partition defaults to the logging attribute of the tablespace in which it resides.

For LOBs, there is a further alternative depending on how CACHE is stipulated.

e« CACHE is specified and [NOLOGG NG clause is omitted. LOGA NGis automatically
implemented (because you cannot have CACHE NOLOGA NG).

* CACHE is not specified and [NOLOGAE NG clause is omitted. The process defaults in the
same way as it does for tables and partitioned tables. That is, the [NOLOGG NG value is
obtained from the tablespace in which the LOB segment resides.

ORACLE 13-11

Chapter 13
LOB Storage Parameters

The following issues should also be kept in mind.

13.3.9.1 LOBs Always Generate Undo for LOB Index Pages

Regardless of whether LOGG NG or NOLOGA NGis set, LOBs never generate rollback
information (undo) for LOB data pages because old LOB data is stored in versions.

Rollback information that is created for LOBs tends to be small because it is only for
the LOB index page changes.

13.3.9.2 When LOGGING is Set Oracle Generates Full Redo for LOB Data

Pages

NOLOGA NGis intended to be used when a customer does not care about media
recovery.

Thus, if the disk/tape/storage media fails, then you cannot recover your changes from
the log because the changes were never logged.

13.3.9.2.1 NOLOGGING is Useful for Bulk Loads or Inserts.

For instance, when loading data into the LOB, if you do not care about redo and can
just start the load over if it fails, set the LOB data segment storage characteristics to
NOCACHE NOLOGAE NG. This provides good performance for the initial load of data.

Once you have completed loading data, if necessary, use ALTER TABLE to modify the
LOB storage characteristics for the LOB data segment for normal LOB operations, for
example, to CACHE or NOCACHE LOGA NG.

Note:
CACHE implies that you also get LOGA NG.

13.3.10 LOGGING/FILESYSTEM_LIKE_LOGGING for SecureFiles

LOBs

ORACLE

The NOLOGG NG and LOGA NG parameters are applied to using LOBs in the same
manner as for other table operations.

In the usual case, if the | oggi ng_cl ause is omitted, then the SecureFiles inherits its
logging attribute from the tablespace in which it resides. In this case, if NOLOGGE NGis
the default value, the SecureFiles defaults to FI LESYSTEM LI KE_LOGAE NG,

Note:

Using the CACHE option results in improved performance when reading and
writing data from the LOB column. However, it can potentially age other non-
LOB pages out of the buffer cache prematurely.

13-12

Chapter 13
LOB Storage Parameters

13.3.10.1 CACHE Implies LOGGING

For SecureFiles, there is a further alternative depending on how CACHE is specified:

* If CACHE is specified and the LOGA NG clause is omitted, then LOGA NG is used.

e If CACHE is not specified and the logging_clause is omitted. Then the process defaults in
the same way as it does for tables and partitioned tables. That is, the LOGE NG value is
obtained from the tablespace in which the LOB value resides. If the tablespace is
NOLOGA NG, then the SecureFiles defaults to FI LESYSTEM LI KE_LOGG NG.

Keep the following issues in mind.

13.3.10.2 SecureFiles and an Efficient Method of Generating REDO and UNDO

This means that Oracle Database determines if it is more efficient to generate REDO and UNDO
for the change to a block, similar to heap blocks, or if it generates a version and full REDO of
the new block similar to BasicFiles LOBs.

13.3.10.3 FILESYSTEM_LIKE_LOGGING is Useful for Bulk Loads or Inserts

For instance, when loading data into the LOB, if you do not care about REDOand can just start
the load over if it fails, set the LOB data segment storage characteristics to
FI LESYSTEM LI KE_LOGA NG. This provides good performance for the initial load of data.

Once you have completed loading data, if necessary, use ALTER TABLE to modify the LOB
storage characteristics for the LOB data segment for normal LOB operations. For example, to
CACHE or NOCACHE LOGAE NG.

13.3.11 CHUNK

ORACLE

A chunk is one or more Oracle blocks.

You can specify the chunk size for the BasicFiles LOB when creating the table that contains
the LOB. This corresponds to the data size used by Oracle Database when accessing or
modifying the LOB value. Part of the chunk is used to store system-related information and
the rest stores the LOB value. The API you are using has a function that returns the amount
of space used in the LOB chunk to store the LOB value. In PL/SQL use

DBMS_LOB. GETCHUNKSI ZE. In OCI, use OCl LobGet ChunkSi ze() .

" Note:

If the tablespace block size is the same as the database block size, then CHUNK is
also a multiple of the database block size. The default CHUNK size is equal to the
size of one tablespace block, and the maximum value is 32K.

¢ See Also:

"Terabyte-Size LOB Support" for information about maximum LOB sizes

13-13

Chapter 13
LOB Storage Parameters

13.3.11.1 The Value of CHUNK

Once the value of CHUNK is chosen (when the LOB column is created), it cannot be
changed.

Because you cannot change the value CHUNK, it is important that you choose a value
which optimizes your storage and performance requirements. For SecureFiles, CHUNK
is an advisory size and is provided for backward compatibility purposes.

13.3.11.1.1 Space Considerations

The value of CHUNK does not matter for LOBs that are stored inline.

Inline storage occurs when ENABLE STORAGE | N ROWis set, and the size of the LOB
locator and the LOB data is less than approximately 4000 bytes. However, when the
LOB data is stored out-of-line, it always takes up space in multiples of the CHUNK
parameter. This can lead to a large waste of space if your data is small, but the CHUNK
is set to a large number. Table 13-4 illustrates this point:

Table 13-4 Data Size and CHUNK Size
]

Data Size CHUNK Size Disk Space Used to Store the LOB Space Utilization
(Percent)

3500 enable storage in row irrelevant 3500 in row 100

3500 disable storage in row 32 KB 32 KB 10

3500 disable storage in row 4 KB 4 KB 920

33 KB 32 KB 64 KB 51

2 GB +10 32 KB 2 GB + 32 KB 99+

13.3.11.1.2 Performance Considerations

It is more efficient to access LOBs in big chunks.

You can set CHUNK to the data size most frequently accessed or written. For example, if
only one block of LOB data is accessed at a time, then set CHUNK to the size of one
block. If you have big LOBs, and read or write big amounts of data, then choose a
large value for CHUNK.

13.3.11.2 Set INITIAL and NEXT to Larger than CHUNK

ORACLE

If you explicitly specify storage characteristics for the LOB, then make sure that
I NI TI AL and NEXT for the LOB data segment storage are set to a size that is larger
than the CHUNK size.

For example, if the database block size is 2KB and you specify a CHUNK of 8KB, then
make sure that | NI TI AL and NEXT are bigger than 8KB and preferably considerably
bigger (for example, at least 16KB).

Put another way: If you specify a value for I NI TI AL, NEXT, or the LOB CHUNK size, then
make sure they are set in the following manner:

* CHUNK <= NEXT

13-14

Chapter 13
LOB Columns Indexing

e CHUNK<=INTIAL

13.3.12 ENABLE or DISABLE STORAGE IN ROW Clause

The ENABLE | DI SABLE STORACGE | N ROWclause is used to indicate whether the LOB should be
stored inline (in the row) or out-of-line. If the LOB is saved | N ROW

* Exadata pushdown is enabled for LOBs without compression and encryption, and LOBs
with securefile compression

* In-Memory is enabled for LOBs without compression and encryption

¢ Note:

You may not alter this specification once you have made it: if you ENABLE STORAGE
I N ROW then you cannot alter it to DI SABLE STORAGE | N ROWand vice versa.

The default is ENABLE STORAGE | N ROW

13.3.13 Guidelines for ENABLE or DISABLE STORAGE IN ROW

13.4LOB

ORACLE

The maximum amount of LOB data stored in the row is the maximum VARCHAR2 size (4000).
This includes the control information and the LOB value. If you indicate that the LOB should
be stored in the row, once the LOB value and control information is larger than approximately
4000, then the LOB value is automatically moved out of the row.

This suggests the following guidelines:

The default, ENABLE STORAGE IN ROW, is usually the best choice for the following
reasons:

 Small LOBs: If the LOB is small (less than approximately 4000 bytes), then the whole
LOB can be read while reading the row without extra disk 1/0.

» Large LOBs: If the LOB is big (greater than approximately 4000 bytes), then the control
information is still stored in the row if ENABLE STORAGE IN ROW is set, even after
moving the LOB data out of the row. This control information could enable us to read the
out-of-line LOB data faster.

However, in some cases DI SABLE STORAGE | N ROWis a better choice. This is because storing
the LOB in the row increases the size of the row. This impacts performance if you are doing a
lot of base table processing, such as full table scans, multi-row accesses (range scans), or
many UPDATE/SELECT to columns other than the LOB columns.

Columns Indexing

There are different techniques you can use to index LOB columns.

" Note:

After you move a LOB column any existing table indexes must be rebuilt.

13-15

Chapter 13
LOB Columns Indexing

Topics:

* Domain Indexing on LOB Columns

* Text Indexes on LOB Columns

* Function-Based Indexes on LOBs

» Extensible Indexing on LOB Columns

e Oracle Text Indexing Support for XML

13.4.1 Domain Indexing on LOB Columns

You might be able to improve the performance of queries by building indexes
specifically attuned to your domain. Extensibility interfaces provided with the database
allow for domain indexing, a framework for implementing such domain specific
indexes.

" Note:

You cannot build a B-tree or bitmap index on a LOB column.

¢ See Also:

Oracle Database Data Cartridge Developer's Guide for information on
building domain specific indexes.

13.4.2 Text Indexes on LOB Columns

Depending on the nature of the contents of the LOB column, one of the Oracle Text
options could also be used for building indexes.

For example, if a text document is stored in a CLOB column, then you can build a text
index to speed up the performance of text-based queries over the CLOB column.

" See Also:

Oracle Text Application Developer's Guide for an example of using a CLOB
column to store text data

13.4.3 Function-Based Indexes on LOBs

ORACLE

A function-based index is an index built on an expression. It extends your indexing
capabilities beyond indexing on a column. A function-based index increases the
variety of ways in which you can access data.

Function-based indexes cannot be built on nested tables or LOB columns. However,
you can build function-based indexes on VARRAYSs.

13-16

Chapter 13
LOB Columns Indexing

Like extensible indexes and domain indexes on LOB columns, function-based indexes are
also automatically updated when a DML operation is performed on the LOB column.
Function-based indexes are also updated when any extensible index is updated.

See Also:

Oracle Database Development Guide for more information on using function-based
indexes.

13.4.4 Extensible Indexing on LOB Columns

The database provides extensible indexing, a feature which enables you to define new index
types as required. This is based on the concept of cooperative indexing where a data
cartridge and the database build and maintain indexes for data types such as text and spatial
for example, for On-line-Analytical Processing (OLAP).

The cartridge is responsible for defining the index structure, maintaining the index content
during load and update operations, and searching the index during query processing. The
index structure can be stored in Oracle as heap-organized, or an index-organized table, or
externally as an operating system file.

To support this structure, the database provides an indextype. The purpose of an indextype is
to enable efficient search and retrieval functions for complex domains such as text, spatial,
image, and OLAP by means of a data cartridge. An indextype is analogous to the sorted or
bit-mapped index types that are built-in within the Oracle Server. The difference is that an
indextype is implemented by the data cartridge developer, whereas the Oracle kernel
implements built-in indexes. Once a new indextype has been implemented by a data
cartridge developer, end users of the data cartridge can use it just as they would built-in
indextypes.

When the database system handles the physical storage of domain indexes, data cartridges

« Define the format and content of an index. This enables cartridges to define an index
structure that can accommodate a complex data object.

e Build, delete, and update a domain index. The cartridge handles building and maintaining
the index structures. Note that this is a significant departure from the medicine indexing
features provided for simple SQL data types. Also, because an index is modeled as a
collection of tuples, in-place updating is directly supported.

e Access and interpret the content of an index. This capability enables the data cartridge to
become an integral component of query processing. That is, the content-related clauses
for database queries are handled by the data cartridge.

By supporting extensible indexes, the database significantly reduces the effort needed to
develop high-performance solutions that access complex data types such as LOBs.

13.4.4.1 Extensible Optimizer

ORACLE

The extensible optimizer funct