Oracle® OLAP
DML Reference

12c¢ Release 2 (12.2)
E83794-01
April 2017

ORACLE"

Oracle OLAP DML Reference, 12c Release 2 (12.2)

E83794-01

Copyright © 1994, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: David McDermid

Contributors: Sarika Surampudi, Donna Carver, Chris Chiappa, Roger Johnson, A.A. Hopeman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XXVili
Documentation Accessibility XXViii
Related Documents XXVili
Conventions XXVili

Changes in This Release for Oracle OLAP DML Reference

Changes in Oracle OLAP in Oracle Database 12c Release 2 (12.2) XXX
Changes in Oracle OLAP in Oracle Database 12c Release 2 (12.1) XXX

1 OLAP DML Basic Concepts

1.1 Whatis the OLAP DML? 1-1
1.1.1 Cube-Aware OLAP DML Statements 11
1.1.2 OLAP DML Statements that Work Directly on Analytic Workspace

Objects 1-2

1.2 Basic Syntactic Units of the OLAP DML 1-3

1.3 How to Execute OLAP DML Statements 1-4

1.4 Introduction to Analytic Workspaces 1-4
1.4.1 Privileges Needed to Create and Delete Analytic Workspaces 1-5
1.4.2 Defining a New Analytic Workspace 1-5
1.4.3 Working with Previously-Defined Analytic Workspaces 1-5
1.4.4 Viewing Information About an Analytic Workspace 1-6

1.5 Introduction to Analytic Workspace Data Objects 1-6
1.5.1 Types of Analytic Workspace Data Objects 1-7

1.5.1.1 \Variables 1-7
1.5.1.2 Objects that Can Dimension Variables 1-9
1.5.1.3 Relations 1-11
1.5.1.4 Valueset and Surrogate Objects 1-11
1.5.2 Objects that Support the Use of Hierarchies 1-11
1.5.2.1 Hierlist Dimension 1-13
1.5.2.2 Parentrel Relation 1-13

ORACLE iii

1.5.2.3 Levellist Dimension 1-14

1.5.2.4 Hierlevels Valueset 1-15
1.5.2.5 Inhier Valueset or Variable 1-15
1.5.2.6 Levelrel Relation 1-17
1.5.2.7 Familyrel Relation 1-19
1.5.2.8 Gidrel Relation 1-20
1.6 OLAP DML Statements Apply to All of the Values of a Data Object 1-21
1.6.1 Changing the Default Looping Behavior of Statements 1-21
1.7 How to Specify the Set of Data that OLAP DML Operations Work Against 1-22
1.7.1 About Status Lists 1-22
1.7.1.1 Default Status Lists 1-22
1.7.1.2 Current Status Lists 1-22
1.7.2 Changing the Current Status of a Dimension to Work with a Subset of
Data 1-23
1.7.3 Saving and Restoring Current Dimension Status 1-23
1.7.4 Using a Subset of Data Without Changing Status 1-23
1.8 Populating Multidimensional Hierarchical Data Objects 1-24
2 Data Types, Operators, and Expressions
2.1 OLAP DML Data Types 2-1
2.1.1 Numeric Data Types 2-4
2.1.1.1 Using LONGINTEGER Values 2-4
2.1.1.2 Using NUMBER Values 2-4
2.1.2 Text Data Types 2-5
2.1.2.1 Text Literals 2-5
2.1.2.2 Escape Sequences 2-5
2.1.3 Date-only Data Type 2-6
2.1.3.1 Date-only Input Values 2-6
2.1.3.2 Date-only Dimension Values 2-8
2.1.3.3 DATE-only Variable Display Styles 2-8
2.1.4 Datetime and Interval Data Types 2-8
2.1.4.1 Datetime and Interval Fields 2-9
2.1.4.2 Datetime Format Templates 2-10
2.1.4.3 String-to-Date Conversion Rules 2-11
2.1.44 DATETIME Data Type 2-11
2.1.45 TIMESTAMP Data Type 2-13
2.1.46 TIMESTAMP_TZ Data Type 2-13
2.1.47 TIMESTAMP_LTZ Data Type 2-14
2.1.4.8 YMINTERVAL Data Type 2-15
2.1.49 DSINTERVAL Data Type 2-16
2.1.5 Boolean Data Type 2-17

ORACLE iv

2.1.6 RAW Data Type
2.1.7 Row ldentifier Data Types

217.1
21.7.2

ROWID Data Type
UROWID Data Type

2.1.8 Converting from One Data Type to Another
2.1.8.1 Automatic Conversion of Textual Data Types
2.1.8.2 Automatic Conversion of Numeric Data Types
2.2 OLAP DML Operators

2.2.1 Arithmetic Operators

2.2.2 Comparison and Logical Operators

2.2.3 Assignment Operator
2.3 OLAP DML Expressions
2.3.1 About OLAP DML Expressions

2311
23.1.2

How the Data Type of an Expression is Determined
How the Dimensionality of an Expression is Determined

2.3.2 Using Workspace Objects in Expressions

2.3.2.1 How OLAP DML Data Objects Behave in Expressions

2.3.2.2 Syntax for Specifying an Object in an Expression

2.3.2.3 Specifying Values of Dimensions and Composites in Expressions
2.3.2.4 Using Variables and Relations in Expressions

2.3.2.5 Limiting a Dimension to a Single Value Without Changing Status

2.3.3 Working with Empty Cells in Expressions

233.1
2.3.3.2

Specifying a Value of NA
Controlling how NA values are treated

2.3.4 Numeric Expressions

2.3.4.1 Mixing Numeric Data Types

2.3.4.2 Using Text Dimensions in Arithmetic Expressions
2.3.4.3 Limitations of Floating Point Calculations

2.3.4.4 Controlling Errors During Calculations

2.3.5 Text Expressions

2351

Language of Text Expressions

2.3.5.2 Working with DATETIME Values in Text Expressions
2.3.5.3 Working with NTEXT Data
2.3.6 Datetime and Interval Expressions

2.3.6.1 Datetime Expressions
2.3.6.2 Interval Expressions
2.3.6.3 Datetime/Interval Arithmetic

2.3.7 Date-only Expressions

2.3.8 Boolean Expressions

2.38.1
2.3.8.2

ORACLE

Creating Boolean Expressions
Comparing NA Values in Boolean Expressions

2-17
2-18
2-18
2-18
2-19
2-19
2-19
2-20
2-20
2-21
2-22
2-22
2-22
2-23
2-23
2-25
2-25
2-26
2-29
2-30
2-31
2-34
2-35
2-35
2-35
2-35
2-36
2-36
2-36
2-37
2-37
2-37
2-37
2-38
2-38
2-39
2-39
2-41
2-41
2-42
2-43

2.3.8.3 Controlling Errors When Comparing Numeric Data 2-43

2.3.8.4 Comparing Dimension Values 2-45

2.3.8.,5 Comparing Dates 2-46

2.3.8.6 Comparing Text Data 2-46

2.3.9 Conditional Expressions 2-47
2.3.9.1 IF..THEN...ELSE expression 2-47

2.3.9.2 SWITCH Expressions 2-48

2.3.10 Substitution Expressions 2-49

3 Formulas, Models, Aggregations, and Allocations

3.1 Creating Calculation Objects 3-1
3.2 OLAP DML Formulas 3-2
3.3 OLAP DML Model Objects 3-3
3.3.1 Whatis an OLAP DML Model? 3-3
3.3.2 Creating Models 3-3
3.3.2.1 Nesting Models 3-4

3.3.2.2 Dimension Status and Model Equations 3-4

3.3.2.3 Using Data from Past and Future Time Periods 3-5

3.3.2.4 Handling NA Values in Models 3-5

3.3.2.5 Solving Simultaneous Equations 3-6

3.3.2.6 Modeling for Multiple Scenarios 3-6

3.3.3 Compiling Models 3-6
3.3.3.1 Resolving Names in Equations 3-7

3.3.3.2 Code for Looping Over Dimensions 3-8

3.3.3.3 Evaluating Program Arguments 3-8

3.3.3.4 Dependencies Between Equations 3-8

3.3.3.5 Obtaining Analysis Results 3-10

3.3.3.6 Checking for Additional Problems 3-10

3.3.4 Running a Model 3-11
3.3.4.1 Syntax for Running a Model 3-11

3.3.4.2 Dimensions of Solution Variables 3-12

3.3.5 Debugging a Model 3-13

3.4 OLAP DML Aggregation Objects 3-13
3.4.1 Whatis an OLAP DML Aggregation? 3-13
3.4.2 Aggregating Data Using the OLAP DML 3-14
3.4.3 Compiling Aggregation Specifications 3-15
3.4.4 Executing the Aggregation 3-15
3.4.5 Creating Custom Aggregates 3-16

3.5 OLAP DML Allocation Objects 3-16
3.5.1 Introduction to Allocating Data Using the OLAP DML 3-16

ORACLE vi

3.5.2 Features of Allocation in Oracle OLAP 3-17
3.5.3 Allocating Data 3-17
3.5.4 Handling NA Values When Allocating Data 3-18

4 OLAP DML Properties

4.1 About OLAP DML Properties 4-1
4.2 System Properties: Alphabetical Listing 4-1
4.3 System Properties by Category 4-2
4.4 $AGGMAP 4-2
45 $AGGREGATE_FORCECALC 4-5
46 $AGGREGATE_FORCEORDER 4-6
4.7 $AGGREGATE_FROM 4-6
4.8 $AGGREGATE_FROMVAR 4-7
49 S$ALLOCMAP 4-8
4.10 $COUNTVAR 4-9
411 $DEFAULT_LANGUAGE 4-10
412 $GID_DEPTH 4-15
4.13 $GID_LIST 4-16
4.14 $GID_TYPE 4-16
4.15 $LOOP_AGGMAP 4-17
4.16 $LOOP_DENSE 4-17
4.17 $LOOP_TYPE 4-18
4.18 $LOOP_VAR 4-19
4.19 $NATRIGGER 4-20
420 $STORETRIGGERVAL 4-22
421 $VARCACHE 4-23

5 OLAP DML Options

5.1 About Options 5-1
5.2 Options: Alphabetical Listing 5-1
5.3 Options by Category 5-4
5.4 ALLOCERRLOGFORMAT 5-8
55 ALLOCERRLOGHEADER 5-9
56 AWWAITTIME 5-10
5.7 BADLINE 5-11
5.8 BMARGIN 5-12
5.9 CALENDARWEEK 5-13
5.10 COLWIDTH 5-14
5.11 COMMAS 5-16

ORACLE vii

5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50
5.51
5.52

ORACLE

COMPILEMESSAGE
COMPILEWARN
DATEFORMAT
DATEORDER
DAYABBRLEN
DAYNAMES
DECIMALCHAR
DECIMALOVERFLOW
DECIMALS
DEFAULTAWSEGSIZE
DIVIDEBYZERO
DSECONDS
ECHOPROMPT
EIFBYTES
EIFEXTENSIONPATH
EIFNAMES
EIFSHORTNAMES
EIFTYPES
EIFUPDBYTES
EIFVERSION
ERRNAMES
ERRORNAME
ERRORTEXT
ESCAPEBASE
EXPTRACE
INF_STOP_ON_ERROR
LCOLWIDTH
LIKECASE
LIKEESCAPE
LIKENL
LIMIT.SORTREL
LIMITSTRICT
LINENUM
LINESLEFT
LOCK_LANGUAGE_DIMS
LSIZE

MAXFETCH
MODDAMP
MODERROR
MODGAMMA
MODINPUTORDER

5-17
5-17
5-18
5-22
5-23
5-25
5-26
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-32
5-33
5-34
5-34
5-35
5-36
5-37
5-37
5-38
5-39
5-39
5-40
5-41
5-43
5-44
5-46
5-47
5-48
5-50
5-52
5-53
5-55
5-56
5-57
5-60
5-61
5-64

viii

5.53
5.54
5.55
5.56
5.57
5.58
5.59
5.60
5.61
5.62
5.63
5.64
5.65
5.66
5.67
5.68
5.69
5.70
571
5.72
5.73
5.74
5.75
5.76
5.77
5.78
5.79
5.80
5.81
5.82
5.83
5.84
5.85
5.86
5.87
5.88
5.89
5.90
591
5.92
5.93

ORACLE

MODMAXITERS
MODOVERFLOW
MODSIMULTYPE
MODTOLERANCE
MODTRACE
MONTHABBRLEN
MONTHNAMES
MULTIPATHHIER
NASKIP

NASKIP2

NASPELL
NLS_CALENDAR
NLS_CURRENCY
NLS_DATE_FORMAT
NLS_DATE_LANGUAGE
NLS_DUAL_CURRENCY
NLS_ISO_CURRENCY
NLS_LANG
NLS_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_SORT
NLS_TERRITORY
NOSPELL
OKFORLIMIT
OKNULLSTATUS
OUTFILEUNIT
PAGENUM
PAGEPRG
PAGESIZE

PAGING

PARENS
PERMITERROR
PERMITREADERROR
PRGTRACE

RANDOM.SEED.1 and RANDOM.SEED.2

RECURSIVE

ROLE

ROOTOFNEGATIVE
SECONDS

SESSCACHE
SESSION_NLS_LANGUAGE

5-66
5-67
5-69
5-71
5-74
5-77
5-78
5-80
5-82
5-85
5-88
5-89
5-90
5-90
5-91
5-91
5-92
5-92
5-93
5-93
5-94
5-95
5-96
5-96
5-97
5-98
5-99
5-100
5-102
5-103
5-105
5-106
5-108
5-109
5-110
5-113
5-113
5-114
5-115
5-116
5-117

5.94 SPARSEINDEX 5-118
5.95 SQLBLOCKMAX 5-119
5.96 SQLCODE 5-120
5.97 SQLERRM 5-120
5.98 SQLMESSAGES 5-121
5.99 STATIC_SESSION_LANGUAGE 5-122
5.100 THIS_AW 5-123
5.101 THOUSANDSCHAR 5-123
5.102 TMARGIN 5-124
5.103 TRACEFILEUNIT 5-125
5.104 TRIGGERMAXDEPTH 5-125
5.105 TRIGGERSTOREOK 5-127
5.106 USERID 5-129
5.107 USETRIGGERS 5-129
5.108 VARCACHE 5-130
5.109 WEEKDAYSNEWYEAR 5-131
5.110 WRAPERRORS 5-132
5.111 YESSPELL 5-133
5.112 YRABSTART 5-133
5.113 ZEROROW 5-134
5.114 ZSPELL 5-136
) OLAP DML Programs

6.1 Programs Provided With the OLAP DML 6-1
6.2 Creating OLAP DML Programs 6-2
6.3 Specifying Program Contents 6-3
6.3.1 Creating User-Defined Functions 6-3
6.3.2 Passing Arguments 6-4
6.3.2.1 Using Multiple Arguments 6-4

6.3.2.2 Handling Arguments Without Converting Values to a Specific Data
Type 6-4
6.3.2.3 Passing Arguments as Text with Ampersand Substitution 6-4
6.3.3 Program Flow-of-Control 6-5
6.3.4 Preserving the Environment Settings 6-6
6.3.4.1 Changing the Program Environment 6-6
6.3.4.2 Ways to Save and Restore Environments 6-7
6.3.4.3 Saving the Status of a Dimension or the Value of an Option 6-7
6.3.4.4 Saving Several Values at Once 6-7
6.3.4.5 Using Level Markers 6-8
6.3.4.6 Using CONTEXT to Save Several Values at Once 6-8
6.3.5 Handling Errors 6-8

ORACLE

6.3.5.1 Trapping an Error 6-9

6.3.5.2 Passing an Error to a Calling Program 6-9

6.3.5.3 Suppressing Error Messages 6-10

6.3.5.4 Creating Your Own Error Messages 6-10

6.3.5.5 Handling Errors in Nested Programs 6-11

6.3.5.6 Handling Errors While Saving the Session Environment 6-11

6.4 Compiling Programs 6-11
6.4.1 Finding Out If a Program Has Been Compiled 6-12
6.4.2 Programming Methods That Prevent Compilation 6-12

6.5 Testing and Debugging Programs 6-12
6.5.1 Generating Diagnostic Messages 6-12
6.5.2 Identifying Bad Lines of Code 6-13
6.5.3 Sending Output to a Debugging File 6-13

6.6 Executing Programs 6-13
6.7 Common Types of OLAP DML Programs 6-14
6.7.1 Startup Programs 6-14
6.7.1.1 Permission Programs 6-15

6.7.1.2 OnAttach Programs 6-16

6.7.1.3 Autogo Programs 6-17

6.7.2 Data Import and Export Programs 6-17
6.7.2.1 Importing Data to and Exporting Data from Relational Tables 6-17

6.7.2.2 Importing Data to and Exporting Data from Flat Files 6-18

6.7.2.3 Importing Data to and Exporting Data from Spreadsheets 6-18

6.7.3 Trigger Programs 6-18
6.7.3.1 Creating an Object Trigger Program 6-19

6.7.3.2 Characteristics of Object Trigger Programs 6-19

6.7.4 Aggregation, Allocation, and Modeling Programs 6-22
6.7.5 Forecasting Programs 6-22
6.7.6 Programs to Export and Import Workspace Objects 6-22

6.8 User-Written Programs Looked For by Oracle OLAP 6-23
6.8.1 AUTOGO 6-23
6.8.2 ONATTACH 6-24
6.8.3 ONDETACH 6-25
6.8.4 PERMIT_READ 6-26
6.8.5 PERMIT_WRITE 6-27
6.8.6 TRIGGER_AFTER_UPDATE 6-28
6.8.7 TRIGGER_AW 6-29
6.8.8 TRIGGER_BEFORE_UPDATE 6-30
6.8.9 TRIGGER_DEFINE 6-32

ORACLE Xi

7 OLAP DML Functions: A - K

7.1 About OLAP DML Functions 7-1
7.2 Functions: Alphabetical Listing 7-1
7.3 Functions by Category 7-8
7.4 ABS 7-15
7.5 ADD_MONTHS 7-16
7.6 AGGCOUNT 7-17
7.7 AGGMAPINFO 7-20
7.8 AGGREGATE function 7-24
7.9 AGGREGATION 7-32
7.10 AGGROPS 7-33
7.11 ALLOCOPS 7-34
7.12 ANTILOG 7-34
7.13 ANTILOG10 7-35
7.14 ANY 7-35
7.15 ARCCOS 7-37
7.16 ARCSIN 7-38
7.17 ARCTAN 7-38
7.18 ARCTAN2 7-39
7.19 ARG 7-40
7.20 ARGCOUNT 7-41
7.21 ARGFR 7-42
7.22 ARGS 7-44
7.23 ASCI 7-45
7.24 ASCIISTR 7-46
7.25 AVERAGE 7-46
7.26 AW function 7-48
7.27 BACK 7-51
7.28 BASEDIM 7-52
7.29 BASEVAL 7-54
7.30 BEGINDATE 7-55
7.31 BIN_TO_NUM 7-56
7.32 BITAND 7-57
7.33 BLANKSTRIP 7-57
7.34 CALLTYPE 7-58
7.35 CATEGORIZE 7-59
7.36 CEIL 7-61
7.37 CHANGEBYTES 7-62
7.38 CHANGECHARS 7-62
7.39 CHANGEDRELATIONS 7-63

ORACLE Xii

7.40
7.41
7.42
7.43
7.44
7.45
7.46
7.47
7.48
7.49
7.50
7.51
7.52
7.53
7.54
7.55
7.56
7.57
7.58
7.59
7.60
7.61
7.62
7.63
7.64
7.65
7.66
7.67
7.68
7.69
7.70
7.71
7.72
7.73
7.74
7.75
7.76
7.77
7.78
7.79
7.80

ORACLE

CHANGEDVALUES
CHARLIST
CHARTOROWID
CHGDIMS

CHR
COALESCE
COLVAL
CONTEXT function
CONVERT
CORRELATION
COSs

COSH

COUNT
CUMSUM
CURRENT_DATE
CURRENT_TIMESTAMP
DAYOF
DBTIMEZONE
DDOF
DECODE
DEPRDECL
DEPRDECLSW
DEPRSL
DEPRSOYD
ENDDATE
ENDOF

EVERY

EXISTS

EXP
EVERSION
EXTBYTES
EXTCHARS
EXTCOLS
EXTLINES
EXTRACT
FCOPEN
FCQUERY
FILEERROR
FILEGET
FILENEXT
FILEOPEN

7-64
7-65
7-65
7-66
7-68
7-69
7-69
7-70
7-71
7-79
7-82
7-82
7-83
7-84
7-87
7-87
7-88
7-89
7-89
7-90
7-93
7-97
7-102
7-105
7-108
7-109
7-109
7-111
7-112
7-112
7-113
7-114
7-115
7-116
7-117
7-118
7-119
7-123
7-126
7-127
7-128

Xiii

7.81
7.82
7.83
7.84
7.85
7.86
7.87
7.88
7.89
7.90
7.91
7.92
7.93
7.94
7.95
7.96
7.97
7.98

FILEQUERY
FILTERLINES
FINDBYTES
FINDCHARS
FINDLINES
FINTSCHED
FLOOR
FPMTSCHED
FROM Tz
GET
GREATEST
GROUPINGID function
GROWRATE
HEXTORAW
HIERCHECK
HIERHEIGHT
HIERSHAPE
INFO

7.98.1 INFO (FORECAST)
7.98.2 INFO (MODEL)
7.98.3 INFO (PARSE)
7.98.4 INFO (REGRESS)

7.99

7.100
7.101
7.102
7.103
7.104
7.105
7.106
7.107
7.108
7.109
7.110
7.111
7.112
7.113
7.114
7.115
7.116
7.117

ORACLE

INITCAP
INLIST
INSBYTES
INSCHARS
INSCOLS
INSLINES
INSTAT
INSTR functions
INTPART
IRR
ISDATE
ISINFINITE
ISEMPTY
ISNAN
ISSESSION
ISVALUE
JOINBYTES
JOINCHARS
JOINCOLS

7-130
7-133
7-134
7-135
7-137
7-138
7-140
7-141
7-144
7-144
7-148
7-149
7-150
7-151
7-151
7-154
7-158
7-160
7-160
7-162
7-169
7-171
7-174
7-174
7-175
7-176
7-177
7-178
7-179
7-182
7-183
7-184
7-185
7-186
7-187
7-187
7-188
7-188
7-189
7-190
7-191

Xiv

7.118 JOINLINES 7-193
7.119 KEY 7-194

8 OLAP DML Functions: L -Z

8.1 LAG 8-1
8.2 LAGABSPCT 8-4
8.3 LAGDIF 8-6
8.4 LAGPCT 8-7
8.5 LARGEST 8-9
8.6 LAST_DAY 8-11
8.7 LEAD 8-12
8.8 LEAST 8-14
8.9 LENGTH functions 8-14
8.10 LIMIT function 8-15
8.11 LIMITMAPINFO 8-19
8.12 LNNVL 8-20
8.13 LOCALTIMESTAMP 8-20
8.14 LOG function 8-21
8.15 LOGI10 8-22
8.16 LOWCASE 8-22
8.17 LOWER 8-23
8.18 LPAD 8-23
8.19 LTRIM 8-24
8.20 MAKEDATE 8-25
8.21 MAX 8-26
8.22 MAXBYTES 8-27
8.23 MAXCHARS 8-28
8.24 MEDIAN 8-29
8.25 MIN 8-30
8.26 MMOF 8-31
8.27 MODE 8-31
8.28 MODULO 8-33
8.29 MONTHS BETWEEN 8-34
8.30 MOVINGAVERAGE 8-34
8.31 MOVINGMAX 8-37
8.32 MOVINGMIN 8-38
8.33 MOVINGTOTAL 8-40
8.34 NA2 8-42
8.35 NAFILL 8-42
8.36 NAFLAG 8-43

ORACLE XV

8.37
8.38
8.39
8.40
8.41
8.42
8.43
8.44
8.45
8.46
8.47
8.48
8.49
8.50
8.51
8.52
8.53
8.54
8.55
8.56
8.57
8.58
8.59
8.60
8.61
8.62
8.63
8.64
8.65
8.66
8.67
8.68
8.69
8.70
8.71
8.72
8.73
8.74
8.75
8.76
8.77

ORACLE

NEW_TIME
NEXT_DAY
NLS_CHARSET_ID

NLS_CHARSET_NAME

NLSSORT

NONE

NORMAL

NPV

NULLIF
NUMBYTES
NUMCHARS
NUMLINES
NUMTODSINTERVAL
NUMTOYMINTERVAL
NVL

NVL2

OBJ

OBJLIST
OBJORG
OBSCURE
ORA_HASH
PARTITION
PARTITIONCHECK
PERCENTAGE
QUAL

RANDOM

RANK
RAWTOHEX
RECNO
REGEXP_COUNT
REGEXP_INSTR
REGEXP_REPLACE
REGEXP_SUBSTR
REM

REMAINDER
REMBYTES
REMCHARS
REMCOLS
REMLINES
REPLACE
REPLBYTES

8-44
8-45
8-46
8-47
8-47
8-48
8-50
8-51
8-52
8-53
8-54
8-55
8-55
8-56
8-56
8-57
8-58
8-73
8-74
8-80
8-82
8-83
8-84
8-85
8-87
8-89
8-90
8-95
8-96
8-97
8-98
8-100
8-101
8-102
8-103
8-103
8-104
8-106
8-107
8-108
8-108

XVi

8.78
8.79
8.80
8.81
8.82

8.82.1
8.82.2

8.83
8.84
8.85
8.86
8.87
8.88
8.89
8.90
8.91
8.92
8.93
8.94
8.95
8.96
8.97
8.98
8.99
8.100
8.101
8.102
8.103
8.104
8.105
8.106
8.107
8.108
8.109
8.110
8.111
8.112
8.113
8.114
8.115
8.116

ORACLE

REPLCHARS
REPLCOLS
REPLLINES
RESERVED
ROUND

ROW function
ROWIDTOCHAR
ROWIDTONCHAR
RPAD

RTRIM
RUNTOTAL

SESSIONTIMEZONE

SIGN
SIN
SINH
SMALLEST
SMOOTH
SORT function
SORTLINES
SOUNDEX
SQLFETCH
SQRT
STARTOF
STATALL
STATCURR
STATDEPTH
STATEQUAL
STATFIRST
STATLAST
STATLEN
STATLIST
STATMAX
STATMIN
STATRANK
STATVAL
STDDEV
SUBSTR functions
SUBTOTAL
SYS_CONTEXT

ROUND (datetime)
ROUND (number)

8-110
8-112
8-113
8-114
8-115
8-116
8-118
8-121
8-122
8-123
8-123
8-124
8-125
8-127
8-127
8-127
8-128
8-129
8-130
8-133
8-134
8-135
8-135
8-136
8-136
8-138
8-138
8-139
8-140
8-140
8-141
8-142
8-143
8-144
8-145
8-147
8-149
8-151
8-153
8-154
8-155

XVii

8.117
8.118
8.119
8.120
8.121
8.122
8.123
8.124
8.125
8.126
8.127
8.128
8.129
8.130
8.131
8.132
8.133
8.134
8.135
8.136
8.137
8.138
8.139
8.140
8.141
8.142

8.142.1

8.143
8.144
8.145
8.146
8.147
8.148
8.149
8.150
8.151
8.152
8.153
8.154
8.155

ORACLE

SYSDATE
SYSINFO
SYSTEM
SYSTIMESTAMP
TALLY

TAN

TANH
TCONVERT
TEXTFILL

TO_BINARY_DOUBLE

TO_BINARY_FLOAT
TO_CHAR
TO_DATE
TO_DSINTERVAL
TO_NCHAR
TO_NUMBER
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TOD

TODAY

TOTAL

TRANSLATE
TRIGGER function
TRIM

TRUNCATE

TZ_OFFSET
UNIQUELINES
UNRAVEL
UPPER

UPPER
VALSPERPAGE
VALUES
VINTSCHED
VPMTSCHED
VSIZE

WEEKOF
WIDTH_BUCKET
WKSDATA

TRUNCATE (datetime)
8.142.2 TRUNCATE (number)

8-157
8-157
8-158
8-159
8-159
8-161
8-161
8-162
8-168
8-170
8-171
8-172
8-175
8-176
8-176
8-179
8-180
8-182
8-182
8-183
8-183
8-184
8-186
8-187
8-189
8-190
8-190
8-191
8-192
8-193
8-194
8-196
8-196
8-197
8-198
8-201
8-203
8-206
8-206
8-207
8-209

XViii

8.156 WRITABLE 8-210
8.157 YYOF 8-211

O OLAP DML Commands: A-G

9.1 About OLAP DML Commands 9-1
9.2 Commands: Alphabetical Listing 9-2
9.3 Commands by Category 9-5
9.4 ACQUIRE 9-10
9.5 ACROSS 9-14
9.6 ADD_CUBE_MODEL 9-15
9.7 ADD_DIMENSION_MEMBER 9-16
9.8 ADD_MODEL_DIMENSION 9-21
9.9 AGGMAP 9-22
9.9.1 AGGINDEX 9-39
9.9.2 BREAKOUT DIMENSION 9-42
9.9.3 CACHE 9-44
9.9.4 DIMENSION (for aggregation) 9-47
9.9.5 DROP DIMENSION 9-47
9.9.6 MEASUREDIM (for aggregation) 9-49
9.9.7 MODEL (in an aggregation) 9-50
9.9.8 PRECOMPUTE 9-51
9.9.9 RELATION (for aggregation) 9-52
9.10 AGGMAP ADD or REMOVE model 9-64
9.11 AGGMAP SET 9-66
9.12 AGGREGATE command 9-67
9.13 ALLCOMPILE 9-75
9.14 ALLOCATE 9-76
9.15 ALLOCMAP 9-82
9.15.1 CHILDLOCK 9-86
9.15.2 DEADLOCK 9-87
9.15.3 DIMENSION (for allocation) 9-87
9.15.4 ERRORLOG 9-88
9.15.5 ERRORMASK 9-89
9.15.6 MEASUREDIM (for allocation) 9-89
9.15.7 RELATION (for allocation) 9-90
9.15.8 SOURCEVAL 9-95
9.15.9 VALUESET 9-96
9.16 ALLSTAT 9-99
9.17 ARGUMENT 9-100
9.18 AW command 9-104

ORACLE XixX

9.18.1
9.18.2
9.18.3
9.18.4
9.18.5
9.18.6
9.18.7
9.18.8
9.18.9

AW ALIASLIST

AW ATTACH

AW CREATE

AW DELETE

AW DETACH

AW FREEZE

AW LIST

AW PURGE CACHE

AW ROLLBACK TO FREEZE

9.18.10 AW SEGMENTSIZE

9.18.11

AW THAW

9.18.12 AW TRUNCATE
9.19 AWDESCRIBE

9.20 BLANK
9.21 BREAK
9.22 CALL
9.23 CDA

9.24 CHGDFN

9.25 CLEAR

9.26 COMMIT

9.27 COMPILE

9.28 CONSIDER

9.29 CONTEXT command
9.30 CONTINUE

9.31 COPYDFN

9.32 CREATE_LOGICAL_MODEL
9.33 DATE_FORMAT
9.34 DBGOUTFILE

9.35 DEFINE

9.35.1
9.35.2
9.35.3

9.35.3.1
9.35.3.2
9.35.3.3
9.35.3.4
9.35.3.5

9.35.4
9.35.5
9.35.6
9.35.7

ORACLE

DEFINE AGGMAP
DEFINE COMPOSITE
DEFINE DIMENSION

DEFINE FORMULA
DEFINE MODEL

DEFINE PARTITION TEMPLATE

DEFINE PROGRAM

DEFINE DIMENSION (simple)
DEFINE DIMENSION (DWMQY)
DEFINE DIMENSION (conjoint)
DEFINE DIMENSION CONCAT
DEFINE DIMENSION ALIASOF

9-105
9-106
9-112
9-114
9-115
9-117
9-118
9-119
9-119
9-119
9-120
9-120
9-120
9-122
9-123
9-124
9-127
9-128
9-135
9-138
9-139
9-143
9-143
9-146
9-146
9-147
9-148
9-155
9-157
9-159
9-161
9-165
9-166
9-169
9-172
9-175
9-177
9-179
9-181
9-183
9-184

XX

9.35.8 DEFINE RELATION 9-186
9.35.9 DEFINE SURROGATE 9-188
9.35.10 DEFINE VALUESET 9-190
9.35.11 DEFINE VARIABLE 9-193
9.35.12 DEFINE WORKSHEET 9-211
9.36 DELETE 9-213
9.37 DESCRIBE 9-214
9.38 DO ... DOEND 9-216
9.39 EDIT 9-217
9.40 EQ 9-218
9.41 EXPORT 9-220
9.41.1 EXPORT (EIF) 9-220
9.41.2 EXPORT (spreadsheet) 9-226
9.42 FCCLOSE 9-227
9.43 FCEXEC 9-228
9.44 FCSET 9-231
9.45 FETCH 9-237
9.46 FILECLOSE 9-239
9.47 FILECOPY 9-240
9.48 FILEDELETE 9-241
9.49 FILEMOVE 9-241
9.50 FILEPAGE 9-242
9.51 FILEPUT 9-243
9.52 FILEREAD 9-245
9.53 FILESET 9-259
9.54 FILEVIEW 9-261
9.55 FOR 9-269
9.56 FORECAST 9-272
9.57 FORECAST.REPORT 9-277
9.58 FULLDSC 9-278
9.59 GOTO 9-280
9.60 GROUPINGID command 9-282
10 OLAP DML Commands: H-Z

10.1 HEADING 10-1
10.2 HIDE 10-2
10.3 HIERDEPTH 10-3
10.4 HIERHEIGHT command 10-5
10.5 IF..THEN...ELSE command 10-8
10.6 IMPORT 10-9
ORACLE XXi

10.6.1 IMPORT (EIF) 10-10

10.6.2 IMPORT (text) 10-18
10.6.3 IMPORT (spreadsheet) 10-22
10.7 INFILE 10-25
10.8 LD 10-27
10.9 LIMIT command 10-27
10.9.1 LIMIT (using values) command 10-37
10.9.2 LIMIT using LEVELREL command 10-47
10.9.3 LIMIT (using related dimension) command 10-49
10.9.4 LIMIT (using parent relation) 10-51
10.9.5 LIMIT NOCONVERT command 10-57
10.9.6 LIMIT command (using POSLIST) 10-58
10.10 LIMIT BASEDIMS 10-58
10.11 LISTBY 10-60
10.12 LISTFILES 10-61
10.13 LISTNAMES 10-61
10.14 LOAD 10-63
10.15 LOG command 10-64
10.16 MAINTAIN 10-66
10.16.1 MAINTAIN ADD 10-68
10.16.1.1 MAINTAIN ADD for TEXT, ID, and INTEGER Values 10-69
10.16.1.2 MAINTAIN ADD for DAY, WEEK, MONTH, QUARTER, and
YEAR Values 10-71
10.16.1.3 MAINTAIN ADD SESSION 10-72
10.16.1.4 MAINTAIN ADD TO PARTITION 10-77
10.16.2 MAINTAIN DELETE 10-78
10.16.2.1 MAINTAIN DELETE dimension 10-78
10.16.2.2 MAINTAIN DELETE composite 10-80
10.16.2.3 MAINTAIN DELETE FROM PARTITION 10-81
10.16.3 MAINTAIN MERGE 10-83
10.16.4 MAINTAIN MOVE 10-84
10.16.4.1 MAINTAIN MOVE dimension value 10-85
10.16.4.2 MAINTAIN MOVE TO PARTITION 10-87
10.16.5 MAINTAIN RENAME 10-88
10.17 MODEL 10-89
10.17.1 DIMENSION (in models) 10-93
10.17.2 INCLUDE 10-97
10.18 MODEL.COMPRPT 10-100
10.19 MODEL.DEPRT 10-101
10.20 MODEL.XEQRPT 10-102
10.21 MONITOR 10-104

ORACLE XXii

10.22
10.23
10.24
10.25
10.26
10.27
10.28
10.29
10.30
10.31
10.32
10.33
10.34
10.35
10.36
10.37
10.38
10.39
10.40
10.41
10.42
10.43
10.44
10.45
10.46
10.47
10.48
10.49
10.50
10.51
10.52
10.53
10.54
10.55
10.56
10.57
10.58

MOVE

OUTFILE

PAGE

PARSE

PERMIT

PERMITRESET

POP

POPLEVEL

PROGRAM

PROPERTY

PUSH

PUSHLEVEL

RECAP

REDO

REEDIT

REGRESS
REGRESS.REPORT
RELATION command
RELEASE
REMOVE_CUBE_MODEL
REMOVE_DIMENSION_MEMBER
REMOVE_MODEL_DIMENSION
RENAME

REPORT

RESYNC

RETURN

REVERT

ROW command

SET

SET1
SET_INCLUDED_MODEL
SET_PROPERTY

SHOW

SIGNAL

SLEEP

SORT command

SQL

10.58.1 SQL CLEANUP
10.58.2 SQL CLOSE

10.58.3 SQL DECLARE CURSOR
10.58.4 SQL EXECUTE

ORACLE

10-107
10-109
10-111
10-113
10-114
10-121
10-123
10-124
10-125
10-127
10-129
10-130
10-133
10-135
10-136
10-138
10-140
10-141
10-144
10-147
10-149
10-152
10-152
10-154
10-163
10-164
10-166
10-168
10-176
10-186
10-186
10-189
10-190
10-192
10-194
10-194
10-201
10-204
10-205
10-205
10-210

XXiii

10.58.5 SQL FETCH 10-210

10.58.6 SQL IMPORT 10-217

10.58.7 SQL OPEN 10-222

10.58.8 SQL PREPARE 10-222

10.58.9 SQL PROCEDURE 10-225

10.58.10 SQL SELECT 10-227
10.59 STATUS 10-229
10.60 STDHDR 10-231
10.61 SWITCH command 10-232
10.62 TEMPSTAT 10-234
10.63 TRACE 10-235
10.64 TRACKPRG 10-237
10.65 TRAP 10-241
10.66 TRIGGER command 10-243
10.67 TRIGGERASSIGN 10-254
10.68 UNHIDE 10-258
10.69 UPDATE 10-259
10.70 UPDATE_ATTRIBUTE_VALUE 10-261
10.71 UPDATE_DIMENSION_MEMBER 10-264
10.72 VARIABLE 10-268
10.73 VNF 10-270
10.74 WHILE 10-276
10.75 ZEROTOTAL 10-277

A OLAP_TABLE SQL Functions

A.1 Creating Relational Views Using OLAP_TABLE A-1
A.1.1 Required OLAP DML Objects A-1
A.1.2 Creating Logical Tables for Use by OLAP_TABLE A-2

A.1.2.1 Using OLAP_TABLE With Predefined ADTs A-2
A.1.2.2 Using OLAP_TABLE With Automatic ADTs A-3
A.1.3 Adding Calculated Columns to the Relational View A-4

A.2 Using OLAP DML Expressions in SELECT FROM OLAP_TABLE Statements A-4
A.2.1 Using OLAP DML Expressions as Single-Row Functions A-5
A.2.2 Modifying an Analytic Workspace From Within a SELECT FROM

OLAP_TABLE Statement A-5

A.3 OLAP_TABLE A-6

A.4 OLAP_CONDITION A-23

A5 OLAP_EXPRESSION A-28

A.6 OLAP_EXPRESSION_BOOL A-31

A.7 OLAP_EXPRESSION_DATE A-34

ORACLE XXiV

A.8 OLAP_EXPRESSION_TEXT A-35
B DBMS_AW PL/SQL Package

B.1 Managing Analytic Workspaces B-1
B.2 Embedding OLAP DML in SQL Statements B-2
B.2.1 Methods for Executing OLAP DML Commands B-2
B.2.2 Guidelines for Using Quotation Marks in OLAP DML Commands B-2

B.3 Using the Sparsity Advisor B-3
B.3.1 Data Storage Options in Analytic Workspaces B-3
B.3.2 Selecting the Best Data Storage Method B-3
B.3.3 Using the Sparsity Advisor B-4
B.3.4 Example: Evaluating Sparsity in the GLOBAL Schema B-4
B.3.4.1 Advice from Sample Program B-6

B.3.4.2 Information Stored in AW_SPARSITY_ADVICE Table B-6

B.4 Using the Aggregate Advisor B-6
B.4.1 Aggregation Facilities within the Workspace B-6
B.4.2 Example: Using the ADVISE_REL Procedure B-7

B.5 Summary of DBMS_AW Subprograms B-10
B.6 ADD_DIMENSION_SOURCE Procedure B-11
B.7 ADVISE_CUBE Procedure B-13
B.8 ADVISE_DIMENSIONALITY Function B-14
B.9 ADVISE_DIMENSIONALITY Procedure B-16
B.10 ADVISE_PARTITIONING_DIMENSION Function B-19
B.11 ADVISE_PARTITIONING_LEVEL Function B-20
B.12 ADVISE_REL Procedure B-21
B.13 ADVISE_SPARSITY Procedure B-22
B.14 AW_ATTACH Procedure B-24
B.15 AW_COPY Procedure B-26
B.16 AW_CREATE Procedure B-27
B.17 AW _DELETE Procedure B-28
B.18 AW_DETACH Procedure B-28
B.19 AW_RENAME Procedure B-29
B.20 AW_TABLESPACE Function B-30
B.21 AW_UPDATE Procedure B-31
B.22 CONVERT Procedure B-32
B.23 EVAL_NUMBER Function B-33
B.24 EVAL_TEXT Function B-33
B.25 EXECUTE Procedure B-34
B.26 GETLOG Function B-36
B.27 INFILE Procedure B-37

ORACLE

XXV

B.28 INTERP Function B-37

B.29 INTERPCLOB Function B-38
B.30 INTERP_SILENT Procedure B-39
B.31 OLAP_ON Function B-40
B.32 OLAP_RUNNING Function B-41
B.33 PRINTLOG Procedure B-42
B.34 RUN Procedure B-43
B.35 SHUTDOWN Procedure B-44
B.36 SPARSITY_ADVICE_TABLE Procedure B-45
B.37 STARTUP Procedure B-46

C OLAP_API_SESSION_INIT PL/SQL Package

C.1 Initialization Parameters for the OLAP API C-1
C.2 Viewing the Configuration Table C-1
C.2.1 ALL OLAP_ALTER_SESSION View C-2
C.3 Summary of OLAP_API_SESSION_INIT Subprograms C-2
C.3.1 ADD_ALTER_SESSION Procedure C-2
C.3.2 CLEAN_ALTER_SESSION Procedure C-3
C.3.3 DELETE_ALTER_SESSION Procedure C-3

D Changes in Previous Releases

D.1 OLAP DML Statement Changes for Oracle Database 119 D-1
D.1.1 Statements Added in Oracle Database 11g D-1
D.1.2 Statements Deleted in Oracle Database 11g D-3
D.1.3 Statements Changed in Oracle Database 11g D-3
D.1.4 Statements Renamed in Oracle Database 119 D-3

D.2 OLAP DML Statement Changes for Oracle Database 10g D-4
D.2.1 Statements Added in Oracle Database 10g D-4
D.2.2 Statements Deleted in Oracle Database 10g D-5
D.2.3 Statements Changed in Oracle Database 10g D-6
D.2.4 Statements Renamed in Oracle Database 10g D-7

D.3 OLAP DML Statement Changes for Oracle Database 9i D-7
D.3.1 Statements Added in Oracle Database 9i D-7
D.3.2 Statements Deleted in Oracle Database 9i D-8
D.3.3 Statements Changed in Oracle Database 9i D-10
D.3.4 Statements Renamed in Oracle Database 9i D-11

ORACLE XXVi

Index

ORACLE XXVii

Preface

Preface

Oracle OLAP DML Reference provides a complete description of the OLAP Data
Manipulation Language (OLAP DML) used to create analytic workspace definitions
that are stored within an analytic workspace and to manipulate these object.

This preface contains these topics:

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Audience

Oracle OLAP DML Reference is intended for programmers and database
administrators who write OLAP DML programs and who create analytic workspaces
and analytic workspace objects using the OLAP DML.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information about working with Oracle OLAP, see these Oracle resources:

e Oracle OLAP User's Guide
* QOracle OLAP Java API Reference
e Oracle OLAP Java API Developer's Guide

Conventions

The following text conventions are used in this document:

ORACLE XXViii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

This reference presents OLAP DML syntax in a simple variant of Backus-Naur Form
(BNF) that includes the following symbols and conventions.

Symbol or Convention Meaning

(]
{}
I

delimiters

italics

Brackets enclose optional items.
Braces enclose items only one of which is required.
A vertical bar separates alternatives.

Ellipsis points show that the preceding syntactic element can be
repeated.

Delimiters other than brackets, braces, vertical bars, and ellipses
must be entered as shown.

Words appearing in italics are placeholders for which you must
substitute a name or a value. Words that are not in italics are
keywords. They must be typed as shown.

XXiX

Changes in This Release for Oracle OLAP DML Reference

Changes in This Release for Oracle OLAP
DML Reference

This preface describes changes in Oracle OLAP DML Reference in this release. For
information on changes in earlier releases, see the Oracle OLAP DML Reference
manual.

Changes in Oracle OLAP in Oracle Database 12c Release 2
(12.2)

The following change is in Oracle OLAP DML Reference for Oracle Database 12¢
Release 2 (12.2):

e The OBJ function has the new keyword CHANGEDPAGES, which returns the
number of pages in the analytic workspace that have changed since the last
update.

Also, Active Data Guard (ADG) read-only active standby instances now support read-
only OLAP applications. An active standby instance must have real-time apply
operating.

You can now offload to ADG active standby instances applications that query
CUBE_TABLE and OLAP_TABLE functions that use dynamic abstract data types
(ADTSs). The initial ADT creation triggers a request to create it on the ADG primary.
Real-time apply propagates the new ADT to the active standby instance, which allows
the query to run after a short delay. If the ADT fails to appear on the standby in a
reasonable time, then an error condition occurs.

Changes in Oracle OLAP in Oracle Database 12c Release 2
(12.1)

The following are changes in Oracle OLAP DML Reference for Oracle Database 12c
Release 1 (12.1).

* New Features

e Other Changes

New Features

The following features are new in this release:

e Increased maximum line length

The maximum line length of text has changed from 4,000 to 32,767.

ORACLE XXX

Changes in This Release for Oracle OLAP DML Reference

See the descriptions of TEXT and NTEXT in Text Data Types, and the EXTCOLS,
INSCOLS, JOINBYTES, JOINCOLS, REMCOLS, and REPLCOLS functions.

Other Changes

The following are additional changes in the release:

* Performance enhancement
A new highly compact storage format for valuesets.
See the NOORDER keyword of DEFINE VALUESET.
* Changes in statements

The following statements have been changed in the OLAP DML in Oracle
Database 12c:

DEFINE VALUESET
EXTCOLS

INSCOLS
JOINBYTES
JOINCOLS
REMCOLS
REPLCOLS

ORACLE XXXi

OLAP DML Basic Concepts

This chapter contains the following topics:

What is the OLAP DML?

Basic Syntactic Units of the OLAP DML

How to Execute OLAP DML Statements
Introduction to Analytic Workspaces

Introduction to Analytic Workspace Data Objects

OLAP DML Statements Apply to All of the Values of a Data Object

1.1 What is the OLAP DML?

The OLAP DML is the original language for defining Oracle OLAP objects and
manipulating Oracle OLAP data.

There are two major types of OLAP DML statements:

OLAP DML statements that work against Oracle OLAP cubes and cube
dimensions that have been previously defined in the Oracle data dictionary using
the OLAP API. For an introduction to these statements, see "Cube-Aware OLAP
DML Statements".

OLAP DML statements that create and manipulate lower-level OLAP objects that
are defined and stored in an analytic workspace. For an introduction to these
statements, see "OLAP DML Statements that Work Directly on Analytic
Workspace Objects".

1.1.1 Cube-Aware OLAP DML Statements

OLAP cubes are first-class Oracle OLAP objects and are defined in the Oracle data
dictionary. Some OLAP DML statements work against cubes and other first-class
OLAP objects.

ORACLE

¢ See Also:

Oracle OLAP User's Guide for information on OLAP cubes and other first-level
OLAP objects.

The following OLAP DML programs work with previously-defined OLAP cubes and
cube dimensions.

ADD_CUBE_MODEL
ADD_DIMENSION_MEMBER
ADD_MODEL_DIMENSION

1-1

Chapter 1
What is the OLAP DML?

CREATE_LOGICAL_MODEL
REMOVE_CUBE_MODEL
REMOVE_DIMENSION_MEMBER
REMOVE_MODEL_DIMENSION
SET_INCLUDED_MODEL
SET_PROPERTY
UPDATE_ATTRIBUTE_VALUE
UPDATE_DIMENSION_MEMBER

Typically, these programs take, as input, the Oracle data dictionary name of an OLAP
cube or cube dimension. When the programs execute they not only make the
necessary changes to the cube or cube dimension, they also make changes to all of
the analytic workspace objects that underlie these cubes and cube dimensions.

Also, you can use the OBJORG function in OLAP DML statements that are not cube-
aware to specify the analytic workspace objects that underlie OLAP cubes and cube
dimensions.

1.1.2 OLAP DML Statements that Work Directly on Analytic
Workspace Objects

ORACLE

Historically, OLAP DML statements did not work against first-level OLAP objects as
defined in the OLAP data dictionary. Instead, OLAP DML statements create and
manipulate lower-level OLAP objects that are defined and stored in an analytic
workspace. This remains the case for most OLAP DML statements today.

Note:

Unless otherwise stated, statements and information provided in this manual
applies to OLAP DML statements that are not cube-aware (that is, OLAP DML
statements work directly on analytic workspace objects).

For OLAP DML statements that work directly on analytic workspace objects, if an
object name is needed as input to the statement, the object name is the name of an
object as defined in the analytic workspace, not as defined in the Oracle data
dictionary.

You can use these OLAP DML statements to create programs that analyze analytic
workspace data without using SQL, Java, the OLAP API, or the Oracle OLAP tools.
You can use the OLAP DML to define the analytic workspaces and the objects that are
stored in analytic workspaces. For example, you can:

» Create an analytic workspace as described in "Defining a New Analytic
Workspace".

» Define the multidimensional data objects in an analytic workspace using the
DEFINE command.

» Define calculation objects and programs that analyze the data as described in
Formulas, Models, Aggregations, and Allocations.

* Populate and analyze the data in the multidimensional data objects.

1-2

Chapter 1
Basic Syntactic Units of the OLAP DML

1.2 Basic Syntactic Units of the OLAP DML

ORACLE

The basic syntactic units of the OLAP DML are options, properties, commands,
functions, and programs. All of these are sometimes collectively referred to as OLAP
DML statements.

OLAP DML Options

An OLAP DML option is a special type of analytic workspace object that specifies the
characteristic of some aspect of how Oracle OLAP calculates or formats data or what
Oracle OLAP operations are activated. Some options are read-only, while others are
read/write options for which you can specify values. Read/write options have default
values.

You cannot define your own options as part of an analytic workspace. However, you
can use any of the options that are defined as part of the Oracle OLAP DML. The
options are documented as reference topics in OLAP DML Options .

OLAP DML Properties

A property is a named value that is associated with a definition of an analytic
workspace object. You can name, create, and assign properties to an object using an
OLAP DML PROPERTY command.

Properties that begin with a $ (dollar sign) are recognized by Oracle OLAP as system
properties. You cannot create system properties; however, in some cases you can
assign system properties to objects. These system properties are documented as
reference topics in OLAP DML Properties.

OLAP DML Functions

OLAP functions work in much the same way as commands in other programming
languages. They initiate action and return a value. The one exception is the looping
nature of OLAP DML functions as discussed in "OLAP DML Statements Apply to All of
the Values of a Data Object".

Most of the OLAP DML functions are standard text and calculation functions. Other
OLAP DML functions return more complex information.Additionally, you can augment
the functionality of the OLAP DML by writing an OLAP DML program for use as a
function.

The built-in OLAP DML functions are documented as reference topics in OLAP DML
Functions: A - K and OLAP DML Functions: L - Z .

OLAP DML Commands

OLAP DML commands work in much the same way as commands in other
programming languages—the one exception is the looping nature of OLAP DML
commands as discussed in "OLAP DML Statements Apply to All of the Values of a
Data Object".

Many OLAP DML commands perform complex actions. Some of these commands are
data definition commands like the AW command which you use to create an analytic
workspace and the DEFINE command which you use to define objects within an
analytic workspace. Other OLAP DML commands are data manipulation commands.
Some commands are recognized by Oracle OLAP as events that can trigger the

1-3

Chapter 1
How to Execute OLAP DML Statements

execution of OLAP DML programs. (See "Trigger Programs" for more information.)
Additionally, you can augment the functionality of the OLAP DML by writing an OLAP
DML program for use as a command.

The built-in OLAP DML commands are documented as reference topics in Chapter 8,
OLAP DML Commands: A-G and OLAP DML Commands: H-Z.

OLAP DML Programs

Several OLAP DML programs are provided as part of the OLAP DML. Some of these
programs produce reports that you can print or see online. Other programs provided
as part of the OLAP DML perform standard calculations of use to programmers and
database administrators. For more information on the programs delivered with the
OLAP DML, see "Programs Provided With the OLAP DML".

You can also write your own OLAP DML programs to augment the functionality of the
OLAP DML as described in OLAP DML Programs.

1.3 How to Execute OLAP DML Statements

The simplest way to execute OLAP DML statement is by using the OLAP Worksheet.
The OLAP Worksheet is delivered as part of the Analytic Workspace Manager. To
open the OLAP worksheet from within the Analytic Workspace Manager:

1. Connect to an Oracle Database instance.
2. Select a Schema.
3. Select Tools, then OLAP Worksheet.

You can also execute OLAP DML statements in SQL and Java:

e Using the PL/SQL DBMS_AW package you can execute OLAP DML statements as
described in the Oracle OLAP DML Reference manual.

» Using SPL_Executor delivered as part of Oracle OLAP Java API you can embed
OLAP DML statements within a Java program.

¢ See Also:
Oracle OLAP Java API Reference

1.4 Introduction to Analytic Workspaces

ORACLE

Conceptually, an analytic workspace is that portion of Oracle Database that is used by
Oracle OLAP to perform OLAP analysis. Physically, an analytic workspace is stored in
the database as LOBs in a table named AW$wor kspacenane.

An analytic workspace also contains the following types of objects and the OLAP DML
definitions for these objects:

* Multidimensional data objects that contain the data to analyze and the results of
the analysis.

» Calculation objects (that is, formulas, models, aggregations, and allocations) that
contain OLAP DML statements that specify the analysis.

1-4

Chapter 1
Introduction to Analytic Workspaces

* OLAP DML programs that perform complex analysis.

1.4.1 Privileges Needed to Create and Delete Analytic Workspaces

Because an analytic workspace is physically stored as a table in an Oracle Database
instance, you need SQL GRANT privileges to work with an analytic workspace. The
privileges you need vary depending on whether the analytic workspace is in a schema
that you own or in a schema that you do not own:

* When you are the owner of the schema, you only need SQL GRANT privileges
when you want to create an analytic workspace or attach an analytic workspace.
The privileges you must be granted to perform these tasks and the OLAP DML
commands that relate to these tasks are outlined in the following table.

Task OLAP DML Command SQL GRANT Privileges
Needed

Create an analytic AW CREATE CREATE TABLE

workspace

Attach an analytic AW ATTACH with ASOF FLASHBACK TABLE

workspace AS OF keyword

* When you are not the owner of the schema, you need SQL GRANT privileges to
create an analytic workspace, to attach an analytic workspace in ASOF mode, to
drop an analytic workspace, and to truncate an analytic workspace as shown in
the following table.

Task OLAP DML Command SQL GRANT Privileges
Needed

Create an analytic AW CREATE CREATE ANY TABLE, SELECT

workspace ANY TABLE, UPDATE ANY
TABLE

Attach an analytic workspace AW ATTACH with ASOF FLASHBACK ANY TABLE

AS OF keyword

Delete an analytic workspace AW DELETE DROP ANY TABLE

Truncate an analytic AW TRUNCATE TRUNCATE ANY TABLE

workspace

Note that Oracle Database does not turn on roles when you run a named PL/SQL
procedure. In this case, the you must have the CREATE TABLE privilege directly.

1.4.2 Defining a New Analytic Workspace
You can use the OLAP DML to create analytic workspaces. To create an analytic

workspace, issue an AW command with the CREATE keyword, followed by an
UPDATE statement and a COMMIT statement.

1.4.3 Working with Previously-Defined Analytic Workspaces

Before you can work with a previously-defined analytic workspace, you must first
attach the analytic workspace by issuing an AW ATTACH statement. You can attach
an analytic workspace in any of the following attachment modes:

ORACLE 1-5

Chapter 1
Introduction to Analytic Workspace Data Objects

* Read-only: Users can make private changes to the data in the workspace to
perform what-if analysis but cannot commit any of these changes. Any number of
users can be attached in Read Only mode.

* Readlwrite access mode: Only one user can have an analytic workspace open in
read/write at a time. The user has to commit either all or none of the changes
made to the workspace.

* Readlwrite exclusive access mode: The read/write exclusive attach mode is not
compatible with any other access modes. A user cannot attach an analytic
workspace in read/write exclusive mode when another user has it attached in any
mode. Only one user can have an analytic workspace open in read/write exclusive
at a time. The user has to commit either all or none of the changes made to the
workspace.

* Multiwriter access mode: An analytic workspace that is attached in multiwriter
mode can be accessed simultaneously by several sessions. In multiwriter mode,
users can simultaneously modify the same analytic workspace in a controlled
manner by specifying the attachment mode (read-only or read/write) for individual
variables, relations, valuesets, and dimensions.

For more information on the various attachment modes, see the syntax and notes for
the AW ATTACH statement.

1.4.4 Viewing Information About an Analytic Workspace

The following table lists the OLAP DML statements that you can use to view
information about an analytic workspace

Table 1-1 Statements for Viewing Information About an Analytic Workspace

Statement Description

AW function Returns information about currently attached workspaces.

AWDESCRIBE program Sends information about the current analytic workspace to the
current outfile.

EXISTS function Returns a value that indicates whether an object is defined in any
attached workspace.

LISTBY program Lists all objects in an analytic workspace that are dimensioned by
or related to one or more specified dimensions or composites.

LISTNAMES program Lists the names of the objects in an analytic workspace.

OBJ function Returns information about an analytic workspace object.

OBJLIST function Lists the objects that are in one or more workspaces that you
specify.

DESCRIBE command Lists the simple definition of one or more workspace objects.

FULLDSC program Lists the complete definition of one or more workspace objects,

including the properties and triggers of the object(s).

1.5 Introduction to Analytic Workspace Data Objects

A relational database typically stores data values in tables that represent third normal
form data. In this type of implementation, the values of key columns of a relational
database table are unique values of a single level of data. For example, at one level in

ORACLE 1-6

Chapter 1
Introduction to Analytic Workspace Data Objects

the relational database you might have a table with a key column named City that
contains the names of cities and at the next highest level in the database a table with a
key column named state that contains the names of states, and so on and so on.

In an analytic workspace the objects that hold the data to analyze are arrays called
variables. The keys into variables are stored in other objects which act as the
dimensions of the variables. To support performant OLAP analysis, values from
multiple levels are stored within a single dimension called a hierarchical dimension.
For example, an analytic workspace might have a hierarchical dimension named geog
that had as values the names of both cities and states.

The objects that store values that relate values of two or more dimensions are called
relations. Thus the one-to-many relationship between values of different levels in a
hierarchical dimension are stored in an analytic workspace. For example, the
relationship between the city and state values in a hierarchical geog dimension would
be stored in an analytic workspace relation typically called a parentrel relation. (See
"Parentrel Relation" for more information.)

Additional analytic workspace objects are typically defined to keep additional
information about the hierarchical dimension. Several important OLAP DML
commands and functions (such as the LIMIT command) presume the existences of
these objects in your analytic workspace as the name of these objects is one
argument in the syntax of the statement.

The data objects that you define using the OLAP DML are multidimensional objects
that are stored in an analytic workspace. When you use OLAP DML statements to
perform operations against these multidimensional data objects, those operations
apply all at once to entire set of values contained by these objects.

1.5.1 Types of Analytic Workspace Data Objects

The OLAP DML supports the use of the following types of analytic workspace data
objects:

Variables

Simple Dimensions

Concat Dimensions
Composites

Partition Templates

Alias Dimensions

Relations

Valueset and Surrogate Objects

Tip:

You can use the OBJORG function to specify analytic workspace objects that
underlie cubes and cube dimensions.

1.5.1.1 Variables

The most important data object in an analytic workspace is the variable. A variable is
an object that stores data. All of the data in a variable must have the same data type.

ORACLE r

ORACLE

Chapter 1
Introduction to Analytic Workspace Data Objects

Typically, you use variables to contain data values that quantify a particular aspect of
your business For example, your business might have several categories of
transactions (measured in dollars, units, percentages, and so on) and each category is
stored in its own variable. For example, you might record sales data in dollars (a sales
variable) and units (a units variable).

Because the OLAP DML is a multidimensional programming language, variables are
multidimensional and correspond to what other OLAP languages sometimes call
measures. Conceptually, you can think of a variable with two dimensions as a table, a
variable with three dimensions as a cube, and so on. Physically, variables are stored
as multidimensional arrays with the actual structure of the arrays determined by the
object by which the variable is dimensioned.

The scope and permanence of a variable can vary. A permanent variable is a variable
for which both the variable values and definitions are stored in an analytic workspace.
Temporary variables have values only during the current session. When you update
and commit the analytic workspace, only the definitions of temporary variables are
saved. When you exit from the analytic workspace, the data values are discarded. You
can also define variables in programs.

You can define scalar variables in programs, but most variables that you define using
the OLAP DML are dimensioned variables. Dimensioned variables are arrays that hold
multiple values. The indexes or dimensions of the variable provide the organization for
the variable. The values of the dimension are similar to keys in a relational table, in
that they uniquely identify a data value. For example, if you have a sales variable that
is dimensioned by time, geography, and product dimensions, then each combination of
the values of time, geography, and product identifies a value in sales. (Note that the
indexes of variables are not actually the values of the dimension, but, instead, are the
INTEGER positions of the values in the dimension.)

Variables can be dimensioned by either flat or hierarchical dimensions. A flat
dimension exists when the values within a dimension are all at the same level; no
value is the child or parent of another value. A hierarchical dimension exists when the
values with a single dimension are in a one-to-many (parent-to-child) relationship with
each other.

A hierarchical dimension is a means of organizing and structuring this type of data
within a single dimension. You can then use it to dimension a variable that contains
data for all the levels. Some dimensions have multiple hierarchies. You specify the
parent-to-child relationships of the dimension values by creating a self-relation.You
use a hierarchical dimension to define a variable that contains data of varying levels of
aggregation within a single variable. Storing all of these values in a single variable
affords a quicker response time for users who want to view the data, particularly when
the variable is large.

Frequently, the cells in the variable that correspond to upper level values in the
hierarchical dimension contain the sum or total of the values in the cells of the variable
that correspond to the lower level dimension values. For example, in a sales variable
that is defined with a hierarchical dimension representing time, the cells of the variable
for each quarter might represent the total sales for the months in the quarter.

After you have defined a variable with hierarchical dimensions, you can add variable
data to the lowest level of the hierarchy, and then calculate or aggregate the values for
the higher levels of the hierarchy. Conversely, you can distribute or allocate data from
higher levels to lower levels of the hierarchy.

1-8

Chapter 1
Introduction to Analytic Workspace Data Objects

¢ See:
DEFINE VARIABLE

1.5.1.2 Objects that Can Dimension Variables

ORACLE

How variable and relation data is actually structured and stored is dependent on what
type of object you use to dimension the variable or relation and the order in which
those objects appear in the definition of the variable or relation. Variables can be
dimensioned by simple dimensions, concat dimensions, composites, partition
templates, and alias dimensions. The object by which you choose to dimension a
variable determines how the data of the variable is stored.

¢ See Also:

"Objects that Support the Use of Hierarchies"

Simple Dimensions

The members of a simple dimension are data values that all have the same data type.
When a variable is dimensioned by a simple dimension, there is one cell in the
variable for every member of the dimension. When there is a dimension member for
which the variable has no data, Oracle OLAP stores an NA value in the variable for
that empty value. If storing such NA values would result in a full page of NA values,
then Oracle OLAP does not actually store the NA values.

¢ See:
DEFINE DIMENSION (simple)

Concat Dimensions

You define concat dimensions over previously-defined simple dimensions or conjoint
dimensions. Consequently, the base dimensions of a concat dimension can be of
different data types. You can represent a hierarchy with a concat dimension that has
two or more simple flat dimensions among its base dimensions. You can use concat
dimensions to easily map dimensions in an analytic workspace to columns in relational
tables and thereby promote more efficient loading of data from the relational structures
into the analytic workspace structures.

¢ See:
DEFINE DIMENSION CONCAT

1-9

ORACLE

Chapter 1
Introduction to Analytic Workspace Data Objects

Composites

You define composites over previously-defined dimensions. Conceptually, you can
think of a composite consisting of two structures:

* The composite object itself. The composite contains the dimension-value
combinations (that is, the composite tuples) that Oracle OLAP uses to determine
the structure of any variables that are dimensioned by the composite.

* Anindex between the composite values and its base dimension values.

For a variable that is dimensioned by a composite, Oracle OLAP does not create a cell
for every value in the base dimensions as it would if the variable was dimensioned by
a simple dimension. Instead, it creates array elements (that is, variable cells) only for
those dimension values that are stored in the tuples of the composite. Data for the
variable is stored in order, cell by cell, for each tuple in the composite. From the
perspective of data storage, each combination of base dimension values in a
composite is treated like the value of a regular dimension. Consequently, when you
define a variable with one regular dimension and one composite, the data for the
variable is stored as though it was a two-dimensional variable. Using composites to
reduce the number of elements created for a variable results in more efficient data
storage.

¢ See:
DEFINE COMPOSITE

Partition Templates

You define a partition template over previously-defined dimensions or composites. A
partition template is a specification for the partitions of a partitioned variable. A
partitioned variable is stored as multiple rows in the relational table of LOBs that is the
analytic workspace—each partition is a row in the table.

See:
DEFINE PARTITION TEMPLATE

Alias Dimensions

An alias dimension is an alias for a simple dimension. An alias dimension has the
same type and values as its base dimension. Typically, you define an alias dimension
when you want to dimension a variable by the same dimension twice.

¢ See:
DEFINE DIMENSION ALIASOF

1-10

Chapter 1
Introduction to Analytic Workspace Data Objects

1.5.1.3 Relations

A relation is an object that establishes a correspondence between the values of a
given dimension and the values of that same dimension or other dimensions in the
analytic workspace. Relations are dimensioned arrays. Each cell in a relation holds the
index of the value of a dimension. You can define relations between two or more
dimensions, multiple relations between a set of dimensions, or a dimension with itself
(a self-relation).

Most frequently, a relation is a self-relation for a hierarchical dimension. By creating a
relation between values in a dimension that participate in a one-to-many (parent-to-
child) relationship, you can organize your data by the child values and view
aggregates of data by the parent values. For example, you can create a geog.parent
relation for a geography dimension to define the relationships between the city and
state values in geography. In this way you can organize the data by city and view the
aggregates of data by state.

1.5.1.4 Valueset and Surrogate Objects

The OLAP DML provides the following special data objects that you use not when you
are defining your variables, but instead, when you are querying them,

Valueset Objects

A valueset is a list of dimension values for one or more previously-defined dimensions.
You use a valueset to save dimension status lists across sessions.

¢ See:
DEFINE VALUESET

Surrogates

A dimension surrogate is an alternative set of values for a previously-defined
dimension. You cannot dimension a variable by a surrogate, but you can use a
surrogate rather than a dimension in a model, in a LIMIT command, in a qualified data
reference, or in data loading with statements such as FILEREAD, FILEVIEW, SQL
FETCH, and SQL IMPORT.

¢ See:
DEFINE SURROGATE

1.5.2 Objects that Support the Use of Hierarchies

Typically, variables are dimensioned by hierarchical objects. For example, you might
have a sales variable that is dimensioned by geog, time, and product. The geog
dimension might have two hierarchies (one for political divisions and another for sales

ORACLE 1-11

ORACLE

Chapter 1
Introduction to Analytic Workspace Data Objects

regions) and each of these hierarchies could have several levels with the top level of
the political geography hierarchy being All Country and the top level of the sales
geography hierarchy being All Regions. Example 1-1 illustrates defining and
populating this type of hierarchical geography dimension.

Typically, after you define a hierarchical dimension, you define the following objects for
that dimension:

» hierlist dimension that lists the names of the hierarchies for the dimension. See
"Hierlist Dimension" for more information and an example.

e parentrel relation that defines the hierarchies. A dimension is only a hierarchical
dimension when it has a parentrel defined for it. See "Parentrel Relation" for more
information and an example.

« levellist relation that lists the names of all of the levels of all of the hierarchies. See
"Levellist Dimension" for more information and an example.

e hierlevels valueset that is the values of the levels of each hierarchy. See
"Hierlevels Valueset" for more information and an example.

e inhier valueset or variable that identifies the values of each hierarchy. See "Inhier
Valueset or Variable" for more information and examples.

» levelrel relation that relates each value of the hierarchical dimension to its level in
the hierarchy. See "Levelrel Relation" for more information and an example.

- familyrel relation that is each hierarchical dimension value and its related values.
See "Familyrel Relation" for more information and an example.

e gidrel relation that is the grouping ids of each value within each hierarchy. See
"Gidrel Relation" for more information and an example.

Example 1-1 Defining and Populating a Hierarchical Dimension Named geog

DEFINE geog DIMENSION TEXT

LD A dimension with two hierarchies for geography

"Populate the dimension with City, State, Region, and Country values

MAINTAIN geog ADD "Boston® "Springfield® "Hartford® *Mansfield® “Montreal® "Walla
Walla® "Portland” "Oakland®" "San Diego" "MA® "CT" "WA" "CA" "Quebec” "East® "West"
"All Regions® "USA" "Canada® "All Country*®

"Display the values in geog

REPORT geog

Boston
Springfield
Hartford
Mansfield
Montreal
Walla Walla
Portland
Oakland

San Diego
MA

CT

WA

CA

Quebec

East

1-12

West

All Regions
USA

Canada

All Country

1.5.2.1 Hierlist Dimension

Chapter 1

Introduction to Analytic Workspace Data Objects

A hierlist dimension is a TEXT dimension in the analytic workspace that has as values
the names of the hierarchies of a hierarchical dimension. For example, if the company
has a different calendar and fiscal year, the time dimension for that company would
have two hierarchies: one for calendar and another for year. The hierlist dimension
that supported that time hierarchy would have two values: Calendar and Fiscal.

For consistency's sake, analytic workspaces include a hierlist dimension for every
hierarchical dimension -- even when that hierarchical dimension has only one

hierarchy.

Example 1-2 Defining and Populating a hierlist Dimension Named geog_ hierlist

This example illustrates defining and populating this type of dimension.

DEFINE geog_hierlist DIMENSION TEXT

LD List of Hierarchies for geog dimension
"Populate the geog_hierlist dimension
MAINTAIN geog_hierlist ADD "Political_Geog" "Sales_Geog"
"Display the values of the geog_hierlist dimension
REPORT geog_hierlist

GEOG_HIERLIST

Political_Geog

Sales_Geog

1.5.2.2 Parentrel Relation

A parentrel relation is a relation between the hierarchical dimension and itself (a self-
relation) and the hierlist dimension. It identifies the parent of each dimension member
within a hierarchy.

ORACLE

Example 1-3 Defining and Populating a parentrel Relation hamed
geog_parentrel

This example illustrates defining and populating this type of relation.

"Define the relation
DEFINE geog_parentrel RELATION geog <geog geog_hierlist>

LD Self-relation for geog showing parents of each value

"Populate each cell in the relation "with the parent of the geog value
"This example using assignment statement with QDRs to do that

geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel

(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist

"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"

geog
geog
geog
geog
geog
geog
geog
geog

"Boston™) = "MA"
"Hartford") = "CT"
"Springfield™) = "MA*®
"Mansfield®) = "CT"
"Montreal®) = "Quebec®
"Walla Walla™) = "WA*"
"Portland™) = "WA"
"Oakland®) = "CA"

1-13

geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel

(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist

"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"

Chapter 1
Introduction to Analytic Workspace Data Objects

"Sales_Geog" geog "San Diego") = "CA*"
"Sales_Geog" geog "CT") = "East”
"Sales_Geog" geog "MA") = "East”
"Sales_Geog" geog "WA") = "West"
"Sales_Geog" geog "CA") = "West"

"Quebec™) = "East”

"East") = "All Regions”

"West") = "All Regions”
geog "Boston®") = "MA"
geog "Hartford") = "CT"
geog "Springfield™) = "MA"
geog “"Mansfield") = "CT"
geog ‘“Montreal®) = "Quebec”
geog "Walla Walla™) = "WA"
geog "Portland®) = "WA®
geog "Oakland®) = "CA"
geog "San Diego") = "CA*"

geog
geog
geog

"Political_Geog" geog "CT") = "USA"
"Political_Geog" geog "MA") = "USA"
"Political_Geog" geog "WA") = "USA"

"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"

"Display the values of geog_parentrel
REPORT DOWN geog W 20 geog_parentrel

geog "CA") = "USA"

geog "Quebec®) = "Canada”
geog "USA®") = "All Country"
geog "Canada®) = "All Country”

GEOG Political_Geog Sales_Geog
Boston MA MA
Springfield MA MA

Hartford CT CT
Mansfield CT CT

Montreal Quebec Quebec
Walla Walla WA WA

Portland WA WA

Oakland CA CA

San Diego CA CA

MA USA East

CT USA East

WA USA West

CA USA West

Quebec Canada East

East NA All Regions
West NA All Regions
All Regions NA NA

USA All Country NA

Canada All Country NA

All Country NA NA

1.5.2.3 Levellist Dimension

A levellist dimension is a TEXT dimension that has as values the names all of the
levels of the hierarchies of a hierarchical dimension.

ORACLE

1-14

Chapter 1
Introduction to Analytic Workspace Data Objects

Example 1-4 Defining and Populating a levellist Dimension Named
geog_levellist

This example illustrates defining and populating this type of dimension.

DEFINE geog_levellist DIMENSION TEXT

LD List of levels used by hierarchies of the geog dimension

"Populate the geog_levellist dimension with the names of the levels of both the
"Political_Geog and Sales_Geog hierarchies

MAINTAIN geog_levellist ADD "All Country® *Country® “All Regions® "Region® MAINTAIN
geog_levellist ADD *"State-Prov® "City"

"Display the values of the geog_levellist dimension

REPORT geog_levellist

GEOG_LEVELLIST

All Country
Country

All Regions
Region
State-Prov
City

1.5.2.4 Hierlevels Valueset

A hierlevels valueset is those values of the hierlevels dimension (typically ordered from
bottom to top) that are included in each hierarchy of the hierarchical dimension.

Example 1-5 Defining and Populating a hierlevels Valueset named geog_hierlevels
This example illustrates defining and populating this type of valueset.

DEFINE geog_hierlevels VALUESET geog_levellist <geog_hierlist>
"Using LIMIT populate the valueset with the appropriate values for each hierarchy
LIMIT geog_hierlevels TO ALL

LIMIT geog_hierlevels (geog_hierlist "Political_Geog") TO "City" "State-Prov" "Country® "All Country"
LIMIT geog_hierlevels (geog_hierlist "Sales_Geog") TO "City" "State-Prov" "Region® "All Regions®

"Display the values in the valueset
REPORT W 22 geog_hierlevels

GEOG_HIERLIST GEOG_HIERLEVELS
Political_Geog City

State-Prov

Country

All Country
Sales_Geog City

State-Prov

Region

All Regions

1.5.2.5 Inhier Valueset or Variable

An inhier valueset is those values of the inhier dimension that are in each hierarchy.

ORACLE 1-15

Chapter 1
Introduction to Analytic Workspace Data Objects

An inhier variable is a BOOLEAN variable that is dimensioned by the hierarchical
dimension and the hierlist dimension. For each hierarchy, it has a TRUE value for
each dimension value that is in that hierarchy.

Example 1-6 Defining and Populating an inhier Valueset Named geog_inhier
This example illustrates defining and populating inhier valueset.

"Define the valueset

DEFINE geog_inhier VALUESET geog <geog_hierlist>

"Using LIMIT commands, populate the valueset

LIMIT geog_inhier (geog_hierlist "Political_Geog") REMOVE "East® "West®" "All Regions®
LIMIT geog_inhier (geog_hierlist "Sales_Geog") REMOVE "Canada® "USA®" “"All Country®
"Display the values in the valueset

REPORT W 20 geog_inhier

GEOG_HIERLIST GEOG_INHIER
Political_Geog Boston
Springfield
Hartford
Mansfield
Montreal
Walla Walla
Portland
Oakland
San Diego
MA
cT
WA
CA
Quebec
USA
Canada
All Country
Sales_Geog Boston
Springfield
Hartford
Mansfield
Montreal
Walla Walla
Portland
Oakland
San Diego
MA
cT
WA
CA
Quebec
East
West
All Regions

Example 1-7 Defining and Populating an inhier Variable Named geog_inhiervar
This example illustrates defining and populating an inhier variable valueset.

DEFINE geog_inhiervar VARIABLE BOOLEAN <geog geog_hierlist>

"Using LIMIT commands and assignment statements, populate

ORACLE 1-16

Chapter 1
Introduction to Analytic Workspace Data Objects

" the variable

LIMIT geog_hierlist TO ALL

LIMIT geog_hierlist TO "Political_Geog"
LIMIT geog TO "East™ "West" "All Regions®
geog_inhiervar = FALSE

LIMIT geog COMPLEMENT

geog_inhiervar = TRUE

LIMIT geog_hierlist TO ALL

LIMIT geog_hierlist TO "Sales_Geog"

LIMIT geog TO ALL

LIMIT geog TO "Canada®™ "USA" "All Country®
geog_inhiervar = FALSE

LIMIT geog COMPLEMENT

geog_inhiervar = TRUE

LIMIT geog TO ALL

LIMIT geog_hierlist TO ALL

"Display the values of the variable
REPORT DOWN geog geog_inhiervar

---GEOG_INHIERVAR----
----GEOG_HIERLIST----

Political_
GEOG Geog Sales_Geog
Boston yes yes
Springfield yes yes
Hartford yes yes
Mansfield yes yes
Montreal yes yes
Walla Walla yes yes
Portland yes yes
Oakland yes yes
San Diego yes yes
MA yes yes
CT yes yes
WA yes yes
CA yes yes
Quebec yes yes
East no yes
West no yes
All Regions no yes
USA yes no
Canada yes no
All Country yes no

1.5.2.6 Levelrel Relation

A levelrel relation is a relation between the levellist and hierlist dimensions that records
the level for each member of the hierarchical dimension

Example 1-8 Defining and Populating a levelrel Relation nhamed geog_levelrel
This example illustrates defining and populating this type of relation.

"Define the relation
DEFINE geog_levelrel RELATION geog_levellist <geog geog_hierlist>
LD Level of each dimension member for geog

"Populate the relation
"This example uses assignment statements with QDRs to populate

ORACLE 1-17

geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel

(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist

"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"

geog
geog
geog
geog
geog
geog
geog
geog
geog

Chapter 1
Introduction to Analytic Workspace Data Objects

"Boston®) = "City"
"Hartford") = "City"
"Springfield") = "City"
"Mansfield") = "City"
"Montreal®) = "City"
"Walla Walla™) = "City"
"Portland®) = "City"
"Oakland®) = "City"
"San Diego®) = "City"

geog_levelrel (geog_hierlist "Sales_Geog" geog "CT") = "State-Prov"
geog_levelrel (geog_hierlist "Sales_Geog" geog "MA") = "State-Prov"
geog_levelrel (geog_hierlist "Sales_Geog" geog "WA") = "State-Prov"
geog_levelrel (geog_hierlist "Sales_Geog" geog "CA") = "State-Prov"
geog_levelrel (geog_hierlist "Sales_Geog" geog "Quebec®) = "State-Prov"

geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel

(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist

"Display the values

"Sales_Geog"
"Sales_Geog" geog
"Sales_Geog" geog
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"

geog

"East") = "Region®

"West") = "Region®

"All Regions®) = "All Regions”
geog "Boston®") = "City"
geog "Hartford™) = "City"
geog "Springfield™) = "City"
geog "Mansfield™) = "City"
geog ‘“Montreal®™) = "City"
geog "Walla Walla™) = "City"
geog "Portland™) = "City"
geog "Oakland™) = "City"
geog "San Diego") = "City"
geog "CT") = "State-Prov"
geog "MA") = "State-Prov"
geog "WA") = "State-Prov"

geog "CA") = "State-Prov"
geog "Quebec®) = "State-Prov"
geog "USA") = "Country"
geog "Canada®) = "Country”
geog "All Country™) = "All Country®

REPORT DOWN geog W 20 geog_levelrel

GEOG Political_Geog Sales_Geog
Boston City City
Springfield City City

Hartford City City

Mansfield City City

Montreal City City

Walla Walla City City

Portland City City

Oakland City City

San Diego City City

MA State-Prov State-Prov

CT State-Prov State-Prov

WA State-Prov State-Prov

CA State-Prov State-Prov
Quebec State-Prov State-Prov
East NA Region

West NA Region

All Regions NA All Regions
USA Country NA
ORACLE 1-18

Chapter 1
Introduction to Analytic Workspace Data Objects

Canada
All Country

Country NA
All Country NA

1.5.2.7 Familyrel Relation

The familyrel relation is a relation between the hierarchical dimension and the levellist
and hierlist dimensions that provides the full parentage of each dimension member in
the hierarchy.

Example 1-9 Defining and Populating a familyrel Relation named geog_familyrel
This example illustrates defining and populating this type of relation.

"Define the relation
DEFINE geog_familyrel RELATION geog <geog geog_levellist geog_hierlist>
LD FEATURES Family/Ancestry structure for the geog dimension

"Populate the relation using the HIERHEIGHT command
HIERHEIGHT geog_parentrel INTO geog_familyrel USING geog_levelrel

"Display the values of the familyrel relation

"First the values for the Political_Geog hierarchy are displayed
"Then the values for the Sales_Geog hierarchy

REPORT DOWN geog W 12 geog_familyrel

GEOG_HIERLIST: Political_Geog

GEOG All Country Country All Regions Region State-Prov City
Boston All Country USA NA NA MA Boston
Springfield All Country USA NA NA MA Springfield
Hartford All Country USA NA NA CcT Hartford
Mansfield All Country USA NA NA CcT Mansfield
Montreal All Country Canada NA NA Quebec Montreal
Walla Walla All Country USA NA NA WA Walla Walla
Portland All Country USA NA NA WA Portland
Oakland All Country USA NA NA CA Oakland
San Diego All Country USA NA NA CA San Diego
MA A1l Country USA NA NA MA NA
CT All Country USA NA NA cT NA
WA A1l Country USA NA NA WA NA
CA All Country USA NA NA CA NA
Quebec All Canada NA NA Quebec NA
Countries
East NA NA NA NA NA NA
West NA NA NA NA NA NA
All Regions NA NA NA NA NA NA
USA All Country USA NA NA NA NA
Canada All Country Canada NA NA NA NA
All Country All Country NA NA NA NA NA
GEOG_HIERLIST: Sales_Geog
——————————————————————————————— GEOG_FAMILYREL---—==——— oo
——————————————————————————————— GEOG_LEVELLIST--————— o
GEOG All Country Country All Regions Region State-Prov City
Boston NA NA All Regions East MA Boston
Springfield NA NA All Regions East MA Springfield
Hartford NA NA All Regions East CT Hartford
Mansfield NA NA All Regions East CcT Mansfield
ORACLE 1-19

Chapter 1
Introduction to Analytic Workspace Data Objects

Montreal NA NA All Regions East Quebec Montreal
Walla Walla NA NA All Regions West WA Walla Walla
Portland NA NA All Regions West WA Portland
Oakland NA NA All Regions West CA Oakland
San Diego NA NA All Regions West CA San Diego
MA NA NA All Regions East MA NA

CT NA NA All Regions East CcT NA

WA NA NA All Regions West WA NA

CA NA NA All Regions West CA NA
Quebec NA NA All Regions East Quebec NA

East NA NA All Regions East NA NA

West NA NA All Regions West NA NA

All Regions NA NA All Regions NA NA NA

USA NA NA NA NA NA NA
Canada NA NA NA NA NA NA

All Country NA NA NA NA NA NA

1.5.2.8 Gidrel Relation

A gidrel relation is a relation between a NUMBER dimension, the hierarchical
dimension, and the hierlist dimension that contains the grouping ID of each dimension
member in each hierarchy of the hierarchical dimension. It also has a $GID_DEPTH
property that identifies the depth within a hierarchy of each dimension member.

Example 1-10 Defining and Populating a gidrel Relation named geog_gidrel
This example illustrates defining and populating this type of relation.

"Create a dimension that has values that are numbers

DEFINE gid_dimension DIMENSION NUMBER (38,0)"Add values to that dimension

"This example uses MAINTAIN ADD to add a few numbers

MAINTAIN gid_dimension ADD 1 2 34567 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

"Define the gidrel relation

DEFINE geog_gidrel RELATION gid_dimension <geog geog_hierlist>

"Display the complete definition of the geog_gidrel relation

"Note that it has no properties

DEFINE GEOG_GIDREL RELATION GID_DIMENSION <GEOG GEOG_HIERLIST>

"Populate the gidrel relation using the GROUPINGID command

GROUPINGID geog_parentrel INTO geog_gidrel USING geog_levelrel INHIERARCHY geog_inhier
"Display the values of the geog_gidrel relation

REPORT down geog w 20 geog_gidrel

GEOG Political_Geog Sales_Geog
Boston 0 0
Springfield 0 0
Hartford 0 0
Mansfield 0 0
Montreal 0 0
Walla Walla 0 0
Portland 0 0
Oakland 0 0
San Diego 0 0
MA 1 1
CT 1 1
WA 1 1

ORACLE 1-20

CA

Quebec

East

West

All Regions
USA

Canada

All Country

1
1
NA
NA
NA
3
3
7

Chapter 1
OLAP DML Statements Apply to All of the Values of a Data Object

"Display the complete definition of the geog_gidrel relation
"Note that it now has a $GID_DEPTH property

DEFINE GEOG_GIDREL RELATION GID_DIMENSION <GEOG GEOG_HIERLIST>
PROPERTY "$GID_DEPTH" 4

1.6 OLAP DML Statements Apply to All of the Values of a
Data Object

The OLAP DML is a multidimensional language. Consequently, operations in the
OLAP DML apply all at once to an entire set of values. Again, conceptually, you can
think of these operations as applying to the values in all of the cells in a variable; or,
physically, you can think of these operations as applying to all of the elements in the
array that is the variable. Consequently, if you use the OLAP DML assignment
statement (that is, SET or =), then you do not need to code explicit loops to assign
values to all of the elements in a variable. Instead, when you issue a statement against
an object that has one or more dimensions, the statement loops over the values in
status for each dimension of the object and performs the requested operation.

Assume, for example, that there is a dimension named prodid that has three values,
Prod01, Prod02, and Prod03, and you have a variable named quantity that is
dimensioned by prodid. As the following code snippet illustrates, if Prod01, Prod02, and
Prodo3 are all in status, when you assign the value 3 to quantity, Oracle OLAP assigns
the value 3 to all of the elements in quantity.

quantity = 3

REPORT quantity

PRODID QUANTITY
PRODO1 3.00
PRODO2 3.00
PRODO3 3.00

Other OLAP DML statements (for example, REPORT, ROW, and FOR) also loop
through all of the in status elements of a dimensioned object when they execute.

1.6.1 Changing the Default Looping Behavior of Statements

ORACLE

By default, statements loop through the values of a dimensioned object using the order
in which the dimensions of the object are listed in the definition of the object. Also,
when a variable is dimensioned by a composite, most looping statements loop through
the variable as though it was not dimensioned by a composite, but was, instead,
dimensioned by the base dimensions of the composite.

The OLAP DML provides ways for you to change the default looping behavior or to
explicitly request looping:

1-21

Chapter 1
How to Specify the Set of Data that OLAP DML Operations Work Against

* ACROSS phrase—Some looping command (such as assignment statements that
you use to assign values) have an ACROSS phrase that you can use to specify
non-default looping behavior. For detailed documentation of the ACROSS phrase,
see the SET (=) command.

* ACROSS command—When an OLAP DML statement is not a looping statement
or does not include an ACROSS phrase, you can request looping behavior by
coding the DML statement as an argument of the ACROSS command.

1.7 How to Specify the Set of Data that OLAP DML
Operations Work Against

For each defined dimension, Oracle OLAP uses lists called status lists to keep track
of the dimension values that are accessible to the user.

1.7.1 About Status Lists

Oracle OLAP uses two kinds of status lists: default status lists and current status lists.
The values in the current status lists of the dimensions in an analytic workspace
determine the set of data that is available to the OLAP DML at any given moment in
time.

1.7.1.1 Default Status Lists

The default status list of a dimension is the list of all of the values of the dimension
that have read permission, in the order in which the values are stored, when you first
attach an analytic workspace. You can change the default status list of a dimension in
the following ways:

* You can add, delete, move, merge, and rename values in a dimension by using
the MAINTAIN command or adding dimension values in other ways (for example,
using a SQL FETCH statement).

* You can change the read permission of values that are associated with a
dimension by using a PERMIT or PERMITRESET statement.

1.7.1.2 Current Status Lists

ORACLE

The current status list of a dimension is an ordered list of currently accessible values
for the dimension. Values that are in the current status list of a dimension are said to
be "in status." When you first attach an analytic workspace, the default and current
status lists of each dimension are the same.

The current status list of a dimension determines the accessibility of the data in the
analytic workspace:

» For dimensions, only those dimension values that are in the current status list are
visible and accessible to OLAP DML expressions.

» For dimensioned objects like variables, only those data values that are indexed by
dimension values in the current status list are visible and accessible to OLAP DML
expressions. As a loop is performed through a dimensioned object, the order of
the dimension values in the current status list is used to determine the order in
which the values of the object are accessed.

1-22

Chapter 1
How to Specify the Set of Data that OLAP DML Operations Work Against

Note that a dimension and any surrogate for that dimension share the same status.
Setting the status of a dimension surrogate sets the status of its dimension and setting
the status of a dimension sets the status of any dimension surrogates for it.
Throughout this documentation, references to dimensions apply equally to dimension
surrogates, except where noted. Additionally, composites are not dimensions, and
therefore they do not have any independent status. The values of a composite that are
in status are determined by the status of the base dimensions of the composite.

Note:

Whether or not a dimension value is in status merely restricts the OLAP DML's
view of the value during a given session; it does not permanently affect the
values that are stored in the analytic workspace.

1.7.2 Changing the Current Status of a Dimension to Work with a
Subset of Data

Because the current status list of a dimension determines the accessibility of the data
in the analytic workspace, the way to work with a subset of analytic workspace data is
to change the current status lists of one or more dimensions.

You change the values and the order of the values in the current status list of a
dimension using the LIMIT command. The LIMIT command is a very complex OLAP
DML command that lets you specify what values you want in the current status list by
specifying the values explicitly or implicitly using relations. At it simplest level,
Example 10-20 illustrates how you can use the LIMIT command to change the current
status list of a dimension so you can work with a subset of data.

1.7.3 Saving and Restoring Current Dimension Status

There are several different ways that you can save the current status of a dimension.
The scope of each way is different:

* Any session—To save the current status for use in any session, create a named
valueset with that status. Use a DEFINE VALUESET command to define the
valueset. Use a LIMIT command to assign the values to the valueset.

* Current session—To0 save, access, or update the current status for use in the
current session, use a named context. Use the CONTEXT command to define the
context.

* Current program—To save the current status for use in the current program, then
use the PUSHLEVEL and PUSH commands. You can restore the current status
values using the POPLEVEL and POP commands.

1.7.4 Using a Subset of Data Without Changing Status

ORACLE

Sometimes you want to have an individual OLAP DML statement or expression work
against a subset of data without actually changing the current status list of a
dimension. To support this need, some OLAP DML statements allow you to specify the
name of a previously-defined valueset object instead of the name of a dimension.

1-23

Chapter 1
Populating Multidimensional Hierarchical Data Objects

Additionally, on-the-fly, you can specify a data subset without changing the current
status list of dimensions using one of the following:

* The CHGDIMS function which, during the evaluation of expression, changes the
dimensionality of an expression or changes the dimension status.

e The LIMIT function which, during the evaluation of expression, returns the
dimension or dimension surrogate values that result from a specified LIMIT
command or a specified dimension status stack.

» Use a qualified data reference (QDR) which is a way of limiting one or more
dimensions of an expression to a single value when you want to specify a single
value of a data object without changing the current status.

1.8 Populating Multidimensional Hierarchical Data Objects

ORACLE

Frequently you first populate the base values of your variables from relational tables or
from flat files. You then calculate other values from these base values using OLAP
DML calculation objects. For example, you might define aggregation objects to
aggregate the values that are higher up the hierarchy.

You can also assign values to variables, relations, and dimension surrogates using
assignment statements (see SET and SET1) and add values to dimensions using
MAINTAIN statements.

Q Tip:

Formulas, Models, Aggregations, and Allocations

1-24

Data Types, Operators, and Expressions

This chapter contains information about the following:
* OLAP DML Data Types

* OLAP DML Operators

* OLAP DML Expressions

2.1 OLAP DML Data Types

ORACLE

In the OLAP DML, as in other languages, a data type is a collection of values and the
definition of one or more operations on those values.

The Oracle OLAP DML supports the data types outlined in the following table.

Table 2-1 Summary of OLAP DML Data Types

Data Type Abbreviation Description
BOOLEAN BOOL Represents the logical TRUE and FALSE values.
DATE None Does not correspond to the SQL data type of the same

name; but, instead, is an older data type that is unique
to the OLAP DML.

Day, month, and year data (but not hour and minute
data) between January 1, 1000 A.D. and December
31,9999 A.D.

DATETIME None Corresponds to the SQL DATE data type.

Valid date range from January 1, 4712 BC to
December 31, 9999 AD. The default format is
determined explicitly by the NLS_DATE_FORMAT
parameter or implicitly by the NLS_TERRITORY
parameter. The size is fixed at 7 bytes. This data type
contains the datetime fields YEAR, MONTH, DAY, HOUR,
MINUTE, and SECOND. It does not have fractional
seconds or a time zone.

TIMESTAMP None Corresponds to the SQL TIMESTAMP data type.

Year, month, and day values of date, and hour,
minute, and second values of time up to a precision of
9 places for the fractional part of the SECOND datetime
field. The default format is determined explicitly by the
NLS_DATE_FORMAT parameter or implicitly by the
NLS_TERRITORY parameter. The size is 11 bytes. This
data type contains the datetime fields YEAR, MONTH,
DAY, HOUR, MINUTE, and SECOND. It contains fractional
seconds but does not have a time zone.

2-1

Chapter 2
OLAP DML Data Types

Table 2-1 (Cont.) Summary of OLAP DML Data Types

__|
Abbreviation Description

Data Type

TIMESTAMP_TZ

TIMESTAMP_LTZ

DSINTERVAL

YMINTERVAL

INTEGER
SHORTINTEGER
LONGINTEGER
DECIMAL

SHORTDECIMAL

NUMBER [(p,[s1)]

TEXT

ORACLE

None

None

None

INT
SHORTINT
LONGINT
DEC

SHORT

None

None

Corresponds to the SQL TIMESTAMP WITH TIME ZONE
data type.

All values of TIMESTAMP as well as time zone
displacement value, with a precision of 9 places for the
fractional part of the SECOND datetime field. The default
format is determined explicitly by the NLS_DATE_FORMAT
parameter or implicitly by the NLS_TERRITORY
parameter. The size is fixed at 13 bytes. This data
type contains the datetime fields YEAR, MONTH, DAY,
HOUR, MINUTE, SECOND, TIMEZONE_HOUR, and
TIMEZONE_MINUTE. It has fractional seconds and an
explicit time zone.

Corresponds to the SQL TIMESTAMP WITH LOCAL TIME

ZONE data type.

All values of TIMESTAMP_TZ, with the following

exceptions:

. Data is normalized to the database time zone
when it is stored in the database.

« When the data is retrieved, users see the data in
the session time zone.

The default format is determined explicitly by the

NLS_DATE_FORMAT parameter or implicitly by the

NLS_TERRITORY parameter. The size is 11 bytes.

Corresponds to the SQL INTERVAL DAY TO SECOND
data type.

Stores a period of time in days, hours, minutes, and
seconds.

Corresponds to the SQL INTERVAL YEAR TO MONTH
data type.

Stores a period of time in years and months.

A whole number in the range of (-2**31) to (2**31)-1.
A whole number in the range of (-2**15) to (2**15)-1.
A whole number in the range of (-2**63) to (2**63)-1.

A decimal number with up to 15 significant digits in the
range of -(10**308) to +(10**308).

A decimal number with up to 7 significant digits in the
range of -(10**38) to +(10**38).

A decimal number with up to 38 significant digits in the
range of -(10**125) to +(10**125).

Up to 32,767 bytes for each line in the database
character set. This data type is equivalent to the CHAR
and VARCHAR2 data types in the database. (Note that
when defining a variable of this data type you specify
the RANSPACE®64 keyword in the DEFINE VARIABLE
statement to increase the maximum number of
characters for the values of the variable from nearly
2**32 to nearly 2**64.)

2-2

ORACLE

Chapter 2
OLAP DML Data Types

Table 2-1 (Cont.) Summary of OLAP DML Data Types

__|
Abbreviation Description

Data Type

NTEXT

RAW (size)

ROWID

UROWID

WORKSHEET

None

None

None

None.

None

Up to 32,767 bytes for each line in UTF-8 character
encoding. This data type is equivalent to the NCHAR
and NVARCHAR2 data types in the database. (Note that
when defining a variable of this data type you specify
the RANSPACEG64 keyword in the DEFINE VARIABLE
statement to increase the maximum number of
characters for the values of the variable from nearly
2**32 to nearly 2**64.)

Up to 8 single-byte characters for each line in the
database character set. (1D is valid only for values of
simple dimensions, see DEFINE DIMENSION
(simple).)

Raw binary data of length size bytes. Maximum size is
2000 bytes. You must specify size for a RAW value.
(Note that when defining a variable of this data type
you specify the RANSPACE64 keyword in the DEFINE
VARIABLE statement to increase the maximum
number of characters for the values of the variable
from nearly 2**32 to nearly 2**64.)

Base 64 string representing the unique address of a
row in its table. This data type is primarily for values
returned by the ROWID pseudocolumn.

Base 64 string representing the logical address of a
row of an index-organized table. The optional size is
the size of a column of type UROWID. The maximum
size and default is 4,000 bytes.

Specified for arguments and temporary variables in an
OLAP DML program when you want to handle
arguments without converting values to a specific data
type. Use the WKSDATA function to retrieve the data
type of an argument with a WORKSHEET data type.

Categories of Data Types

Frequently, these data types are thought of as belonging to the following categories:

* Numeric Data Types which are INTEGER, SHORTINTEGER, LONGINTEGER, DECIMAL,

SHORTDECIMAL, and NUMBER

e Text Data Types which are TEXT, NTEXT and ID.

e Datetime and Interval Data Types which include the datetime data types of
DATETIME, TIMESTAMP, TIMESTAMP_TZ, and TIMESTAMP-LTZ and the interval data types of

DSINTERVAL and YMINTERVAL.

» Date-only Data Type which is the DATE data type that is unique to the OLAP DML.
* Boolean Data Type which is BOOLEAN.
* Row Identifier Data Types which are ROWID and UROWID.

Which OLAP DML Data Objects Can Have Which Data Type?

Different objects support the use of different data types for their values:

2-3

Chapter 2
OLAP DML Data Types

» For variables, all of the data types are supported.

* For dimensions and surrogates, the INTEGER, NUMBER, TEXT, 1D (simple dimensions
only), NTEXT, DATETIME, TIMESTAMP, TIMESTAMP_TZ, TIMESTAMP-LTZ, DSINTERVAL, and
YMINTERVAL data types are supported. Additionally, when you define a dimension of
type DAY, WEEK, MONTH, QUARTER, or YEAR using a DEFINE DIMENSION
(DWMQY) statement, the data type of the values of that dimension are DATE-only.

2.1.1 Numeric Data Types

The numeric data types described in the following table are supported.

Table 2-2 OLAP DML Numeric Data Types

___|
Data Type Data Value

INTEGER A whole number in the range of (-2**31) to (2**31)-1.
SHORTINTEGER A whole number in the range of (-2**15) to (2**15)-1.
LONGINTEGER A whole number in the range of (-2**63) to (2**63)-1.

DECIMAL A decimal number with up to 15 significant digits in the range of -(10**308)
to +(10**308).

SHORTDECIMAL A decimal number with up to 7 significant digits in the range of -(10**38) to
+(10**38).

NUMBER A decimal number with up to 38 significant digits in the range of -(10**125)
to +(10**125).

For data entry, a value for any of these data types can begin with a plus (+) or minus
(-) sign; it cannot contain commas. Note, however, that a comma is required before a
negative number that follows another numeric expression, or the minus sign is
interpreted as a subtraction operator. Additionally, a decimal value can contain a
decimal point. For data display, thousands and decimal markers are controlled by the
NLS NUMERIC_CHARACTERS option.

2.1.1.1 Using LONGINTEGER Values

Most of the numeric data types return NA when a value is outside its range. However,
the LONGINTEGER data type does not have overflow protection and returns an incorrect
value when, for example, a calculation produces a humber that exceeds its range. Use
the NUMBER data type instead of LONGINTEGER when this is likely to be a problem.

2.1.1.2 Using NUMBER Values

ORACLE

When you define a NUMBER variable, you can specify its precision (p) and scale (s) so
that it is sufficiently, but not unnecessarily, large. Precision is the number of significant
digits. Scale can be positive or negative. Positive scale identifies the number of digits
to the right of the decimal point; negative scale identifies the number of digits to the left
of the decimal point that can be rounded up or down.

The NUMBER data type is supported by Oracle Database standard libraries and operates
the same way as it does in SQL. It is used for dimensions and surrogates when a text
or INTEGER data type is not appropriate. It is typically assigned to variables that are not
used for calculations (like forecasts and aggregations), and it is used for variables that
must match the rounding behavior of the database or require a high degree of

2-4

Chapter 2
OLAP DML Data Types

precision. When deciding whether to assign the NUMBER data type to a variable, keep
the following facts in mind to maximize performance:

* Analytic workspace calculations on NUMBER variables is slower than other numeric
data types because NUMBER values are calculated in software (for accuracy) rather
than in hardware (for speed).

* When data is fetched from an analytic workspace to a relational column that has
the NUMBER data type, performance is best when the data has the NUMBER data type
in the analytic workspace because a conversion step is not required.

2.1.2 Text Data Types

The text data types described in the following table are supported by Oracle OLAP.

Table 2-3 OLAP DML Text Data Types

__|
Data Type Data Value

TEXT Up to 32,767 bytes for each line in the database character set.
This data type is equivalent to the CHAR and VARCHAR2 data types
in the database.

NTEXT Up to 32,767 bytes for each line in UTF-8 character encoding.
This data type is equivalent to the NCHAR and NVARCHAR2 data
types in the database.

ID Up to 8 single-byte characters for each line in the database
character set. (1D is valid only for values of simple dimensions,
see DEFINE DIMENSION (simple).)

2.1.2.1 Text Literals

Enclose text literals in single quotes. Oracle OLAP recognizes unquoted alpha-
numeric values as object names and double quotes as the beginning of a comment.

You can embed quoted strings within a quoted string, which is necessary when you
want to specify the base dimension value of a composite or conjoint dimension or
when a value includes an apostrophe. Because a single quotation mark is used in
Oracle OLAP to indicate a text string, it is considered a special character when used
within such a string. Consequently, to specify the literal value of a single quotation
mark within a text string, precede the quotation mark with a backslash.

For example, suppose you want to find out if New York and Apple Sauce are a valid
combination of base dimension values in the markprod conjoint dimension. The
following statement produces the answer YES or NO.

SHOW ISVALUE(markprod, "<\"New York\" \"Apple Sauce\">")
When embedded quoted strings have a further level of embedding, you must use

backslashes before each special character, such as the apostrophe and the backslash
that must precede it in "Joe's Deli," as shown in the following statement.

SHOW ISVALUE(markprod, "<\"Joe\\\"s Deli\" \"Apple Sauce\">")

2.1.2.2 Escape Sequences

The following table shows escape sequences that are recognized by Oracle OLAP.

ORACLE 2-5

Chapter 2
OLAP DML Data Types

Table 2-4 Recognized Escape Sequences

__|
Sequence Meaning

\b Backspace

\f Form feed

\n Line feed

\r Carriage return

\t Horizontal tab

\" Double quote

\" Single quote

\\ Backslash

\dnnn Character with ASCII code nnn decimal, where \d indicates a decimal escape

and nnn is the decimal value for the character

\xnn Character with ASCII code nn hexadecimal, where \x indicates a hexadecimal
escape and nn is the hexadecimal value for the character

\Unnnn Character with Unicode nnnn, where \U indicates a Unicode escape and nnnn is
a four-digit hexadecimal INTEGER that represents the Unicode codepoint with the
value U+nnnn. The U must be a capital letter.

2.1.3 Date-only Data Type

The Oracle OLAP DML DATE data type does not correspond to the SQL data type of
the same name. It is, instead, is an older data type that is unique to the OLAP DML.
The OLAP DML DATE data type is a valid data type for variables and for dimensions of
type DAY, WEEK, MONTH, QUARTER, and YEAR as discussed in the DEFINE
DIMENSION (DWMQY) command topic. It is used to store day, month, and year data
(but not hour and minute data) between January 1, 1000 A.D. and December 31, 9999
A.D. Because the OLAP DML DATE data type does not include hour and minute data, it
is often referred to as the DATE-only data type.

Tip:

The Oracle OLAP DML data type that corresponds to the SQL DATE data type
is named DATETIME. See DATETIME Data Type for more information.

2.1.3.1 Date-only Input Values

A valid input literal value of type DATE must conform to one of three styles: numeric,
packed numeric, or month name. You can mix these styles throughout a session.

ORACLE 2-6

ORACLE

Chapter 2
OLAP DML Data Types

Tip:

To determine whether a text expression (such as an expression with a data
type of TEXT or ID) represents a valid DATE-only value, use the ISDATE
program

Numeric style

Specify the day, month, and year as three INTEGER values with one or more separators
between them, using these rules:

* The day and month components can have one digit or two digits.

» For any year, the year component can have four digits (for example, 1997). For
years in the range 1950 to 2049, the year component can, alternatively, have two
digits (50 represents 1950, and so on).

* To separate the components, you can use a space, dash (-), slash (/), colon (z),
or comma (,).

Examples: "24/4/97" or "24-04-1997"

Packed numeric style

Specify the day, month, and year as three INTEGER values with no separators between
them, using these rules:

* The day and month components must have two digits. When the day or month is
less than 10, it must be preceded by a zero.

e For any year, the year component can have four digits (for example, 1997). For
years in the range 1950 to 2049, the year component can, alternatively, have two
digits (50 represents 1950, and so on).

e You cannot use any separators between the date components.

Examples: "240497" or "04241997"

Month name style
Specify the day and year as INTEGER values and the month as text, using these rules:

e The month component must match one name listed in the MONTHNAMES option.
You can abbreviate the month name to one letter or more, when you supply
enough letters to uniquely match the beginning of a name in MONTHNAMES. The
case of the letters in the month component (uppercase or lowercase) does not
need to match the case in MONTHNAMES.

* The day component can have one digit or two digits.

» For any year, the year component can have four digits (for example, 1997). For
years in the range 1950 to 2049, the year component can, alternatively, have two
digits (50 represents 1950, and so on).

* When the day and year components are adjacent, they must have at least one
separator between them. As separators, you can use a space, dash (-), slash (/),
colon (:), or comma (,). When you want, you can place one or more separators
between the day and month or between the year and month.

2-7

Chapter 2
OLAP DML Data Types

Examples: "24APRI7" or "24 ap 97" or "April 24, 1997"

2.1.3.2 Date-only Dimension Values

The format of a DATE -only value of a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR is determined by the value name format (VNF) associated with
the object. A VNF is a template that controls the input and display format for DATE -only
values. The template can include format specifications for any of the components that
identify a time period (day, month, calendar year, fiscal year, and period within a fiscal
year). You associate a VNF with an object by adding a VNF statement to its definition.
When you do not add a VNF to the definition of an object, the object uses the default
VNF shown in the following table.

Table 2-5 Default VNFs for DWMQY Dimensions
|

Type of Dimension Default VNF Example

DAY <DD><MTXT><YY> 01JAN95
WEEK W<P>.<FF> W1.95

Multiple WEEK <NAME><P>.<FF> MYWEEK1.95
MONTH <MTXT><YY> JAN95S

Multiple MONTH <NAME><P>.<FF> MYMONTH1.95
QUARTER Q<P>.<FF> Q1.95

YEAR YR<YY> YR95

DATE-only values have independent input and output formats. You can enter DATE-only
values in one style and report them in a different style.

2.1.3.3 DATE-only Variable Display Styles

When you show a DATE-only variable value in output, the format depends on the
DATEFORMAT option. The default format is a 2-digit day, a 3-letter month, and a 2-
digit year; for example, 03MAR97. The text for the month names depends on the
MONTHNAMES option. To change the order of the month, day, and year components,
see the DATEORDER option.

2.1.4 Datetime and Interval Data Types

ORACLE

The OLAP DML has data types that correspond to SQL datetime and interval data
types. As outlined in the following table, the names of the data types are different in
OLAP DML than they are in SQL.

Table 2-6 OLAP DML Datetime and Interval Data Types and the Corresponding
SQL Data Types

OLAP DML Data Type Corresponding SQL Data Type
DATETIME DATE

TIMESTAMP TIMESTAMP

TIMESTAMP_TZ TIMESTAMP WITH TIMEZONE

2-8

Chapter 2
OLAP DML Data Types

Table 2-6 (Cont.) OLAP DML Datetime and Interval Data Types and the
Corresponding SQL Data Types

OLAP DML Data Type Corresponding SQL Data Type
TIMESTAMP_LTZ TIMESTAMP WITH LOCAL TIME ZONE
DSINTERVAL INTERVAL DAY TO SECOND
YMINTERVAL INTERVAL YEAR TO MONTH

In the OLAP DML, the datetime data types are DATETIME, TIMESTAMP, TIMESTAMP_TZ, and
TIMESTAMP_LTZ. The interval data types are YMINTERVAL and DSINTERVAL. Both datetimes
and intervals are made up of fields as discussed in "Datetime and Interval Fields".

Note:

The Oracle OLAP DML has a date data type named DATE that does not
correspond to the SQL data type of that name. (The OLAP DML DATE data
type was implement before the SQL datetime and interval data types were
implemented in the OLAP DML.) The OLAP DML DATE data type stores only
date values (no time values) and is therefore sometimes referred to as the
DATE-only data type.

2.1.4.1 Datetime and Interval Fields

Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the data type. The following table lists the datetime fields and
their possible values for datetimes and intervals.

Tip:

To avoid unexpected results in your operations on datetime data, you can verify
the database and session time zones using DBTIMEZONE and
SESSIONTIMEZONE If the time zones have not been set manually, Oracle
Database uses the operating system time zone by default. If the operating
system time zone is not a valid Oracle time zone, then Oracle uses UTC as the
default value.

Table 2-7 Datetime Fields and Values

Datetime Field Valid Values for Datetime Data Types Valid Values for Interval
Data Types
YEAR -4712 to 9999 (excluding year 0) Any positive or negative
integer
MONTH 01to 12 Oto 11
ORACLE 2-9

Chapter 2
OLAP DML Data Types

Table 2-7 (Cont.) Datetime Fields and Values

Datetime Field Valid Values for Datetime Data Types Valid Values for Interval
Data Types

DAY 01 to 31 (limited by the values of MONTH and YEAR, Any positive or negative
according to the rules of the current NLS calendar integer
parameter)

HOUR 00 to 23 0to 23

MINUTE 00 to 59 0to 59

SECOND 00 to 59.9(n), where 9(n) is the precision of time 0 to 59.9(n), where 9(n) is the
fractional seconds. The 9(n) portion is not applicable precision of interval fractional
for DATETIME. seconds

TIMEZONE_HOUR

-12 to 14 (This range accommodates daylight saving Not applicable
time changes.) Not applicable for DATETIME or
TIMESTAMP.

TIMEZONE_MINUTE

00 to 59. Not applicable for DATETIME or TIMESTAMP. Not applicable

(See note at end of table)

TIMEZONE_REGION

Query the TZNAME column of the VSTIMEZONE_NAMES Not applicable
data dictionary view. Not applicable for DATETIME or
TIMESTAMP.

For a complete listing of all time zone regions, refer
to Oracle Database Globalization Support Guide.

TIMEZONE_ABBR

Query the TZABBREV column of the Not applicable
V$TIMEZONE_NAMES data dictionary view. Not
applicable for DATETIME or TIMESTAMP.

Note: TIMEZONE_HOUR and TIMEZONE_MINUTE are specified together and interpreted as an
entity in the format +|- hh:mm, with values ranging from -12:59 to +14:00.

2.1.4.2 Datetime Format Templates

ORACLE

A datetime format template is a template that describes the format of datetime data
stored in a character string. A format model does not change the internal
representation of the value in the database. When you convert a character string into a
date, a format model determines how Oracle Database interprets the string. In OLAP
DML statements, you can use a format model as an argument of the TO_CHAR and
TO_DATE functions to specify:

* The format for Oracle to use to return a value from the database
* The format for a value you have specified for Oracle to store in the database

You can use datetime format templates in the following functions:

* Inthe TO_* datetime functions to translate a character value that is in a format
other than the default format into a datetime value. (The T0_* datetime functions
are TO_CHAR, TO_DATE, TO_TIMESTAMP, TO_TIMESTAMP_TZ, TO_YMINTERVAL, and
TO_DSINTERVAL.)

* Inthe TO_CHAR function to translate a datetime value that is in a format other than
the default format into a string (for example, to print the date from an application)

2-10

Chapter 2
OLAP DML Data Types

The default datetime formats are specified either explicitly with the initialization
parameter NLS_DATE_FORMAT or implicitly with the initialization parameter NLS_TERRITORY.
You can change the default datetime formats for your session with the ALTER SESSION
statement. You can override this default and specify a datetime format for use with a
particular OLAP DML object by using the DATE_FORMAT command to add a
datetime format to the definition of the object.

2.1.4.3 String-to-Date Conversion Rules

The following additional formatting rules apply when converting string values to
datetime values (unless you have used the FX or FXFM modifiers in the format model to
control exact format checking):

* You can omit punctuation included in the format string from the date string if all the
digits of the numeric format elements, including leading zeros, are specified. In
other words, specify 02 and not 2 for two-digit format elements such as MM, DD,
and YY.

* You can omit time fields found at the end of a format string from the date string.

» If a match fails between a datetime format element and the corresponding
characters in the date string, then Oracle attempts alternative format elements, as
shown in the following table.

Table 2-8 Oracle Format Matching

Original Format Element Additional Format Elements to Try instead Of the Original

"MON® and "MONTH"

“uM*
“MON "MONTH*®
"MONTH" "MON®
"Yy*® "YYYY*®
"RR*" "RRRR"

2.1.4.4 DATETIME Data Type

The OLAP DML DATETIME data type corresponds to the SQL DATE data type. As
such, the format and language of DATETIME values are controlled by the settings of the
NLS DATE_FORMAT and NLS_DATE_LANGUAGE options. The DATETIME data type
is supported by Oracle Database standard libraries and operates the same way in the
OLAP DML as it does the DATE data type in SQL.

ORACLE 2-11

ORACLE

Chapter 2
OLAP DML Data Types

Note:

The Oracle OLAP DML has a date data type named DATE that does not
correspond to the SQL data type of that name. The OLAP DML DATE data
type stores only date values (no time values) and is therefore sometimes
referred to as the DATE-only data type. The DATEORDER, DATEFORMAT,
and MONTHNAMES options, which control the formatting of DATE values, have
no effect on DATETIME values. However, DATETIME and DATE values can be used
interchangeably in most DML statements.

You can specify a DATETIME value as a string literal, or you can convert a character or
numeric value to a date value with the TO_DATE function.

To specify a DATETIME value as a literal, you must use the Gregorian calendar. You can
specify an ANSI literal, as shown in this example:

DATETIME "1998-12-25"

The ANSI date literal contains no time portion, and must be specified in exactly this
format ('YYYY-MM-DD").

Alternatively you can specify a DATETIME value us the TO_DATE function and
include, as in the following example:

TO_DATE("98-DEC-25 17:30","YY-MON-DD HH24:MI1")

The default date format template for an Oracle DATETIME value is specified by the
initialization parameter NLS_DATE_FORMAT. This example date format includes a two-digit
number for the day of the month, an abbreviation of the month name, the last two
digits of the year, and a 24-hour time designation.

Oracle automatically converts character values that are in the default datetime format
into datetime values when they are used in datetime expressions.

If you specify a datetime value without a time component, then the default time is
midnight (00:00:00 or 12:00:00 for 24-hour and 12-hour clock time, respectively). If you
specify a datetime value without a date, then the default date is the first day of the
current month.

Values of DATETIME always contain both the date and time fields. Therefore, if you use
DATETIME values in an expression, you must either specify the time field in your query or
ensure that the time fields in the DATETIME values are set to midnight. Otherwise, Oracle
may not return the results you expect. You can use the TRUNC (date) function to set the
time field to midnight, or you can include a greater-than or less-than condition in the
guery instead of an equality or inequality condition. However, if the expression
contains DATETIME values other than midnight, then you must filter out the time fields
in the query to get the correct result.

The date function SYSDATE returns the current system date and time. The function
CURRENT_DATE returns the current session date. For information on SYSDATE, the TO_*
datetime functions, and the default date format, see "Datetime functions" and the
DATE_FORMAT command.

2-12

Chapter 2
OLAP DML Data Types

2.1.4.5 TIMESTAMP Data Type

The TIMESTAMP data type is an extension of the DATETIME data type. It stores the year,
month, and day of the DATETIME data type, plus hour, minute, and second values. This
data type is useful for storing precise time values.

SHOW SYSDATE
26-JUL-06

DEFINE mytimestamp VARIABLE TIMESTAMP
mytimestamp = SYSDATE

COLWIDTH = 30

REPORT mytimestamp

MYT IMESTAMP

26-JUL-06 10.44.42 AM

The TIMESTAMP data type stores year, month, day, hour, minute, and second, and
fractional second values. When you specify TIMESTAMP as a literal, the fractional
seconds precision value can be any number of digits up to 9, as follows:

TIMESTAMP "1997-01-31 09:26:50.124°

2.1.4.6 TIMESTAMP_TZ Data Type

ORACLE

TIMESTAMP_TZ corresponds to the SQL TIMESTAMP WITH TIMEZONE data type. It is a variant
of TIMESTAMP that includes a time zone offset in its value. The time zone offset is the
difference (in hours and minutes) between local time and UTC (Coordinated Universal
Time—formerly Greenwich Mean Time). This data type is useful for collecting and
evaluating date information across geographic regions.

Oracle from the public domain information available at http://ww.iana.org/time-zones.
Oracle time zone data may not reflect the most recent data available at this site.

The TIMESTAMP_TZ data type is a variant of TIMESTAMP that includes a time zone offset.
When you specify TIMESTAMP_TZ as a literal, the fractional seconds precision value can
be any number of digits up to 9. For example:

TIMESTAMP "1997-01-31 09:26:56.66 +02:00"

Two TIMESTAMP_TZ values are considered identical if they represent the same
instant in UTC, regardless of the TIME ZONE offsets stored in the data. For example,

TIMESTAMP "1999-04-15 8:00:00 -8:00"

equals

TIMESTAMP ®1999-04-15 11:00:00 -5:00°

That is, 8:00 a.m. Pacific Standard Time equals 11:00 a.m. Eastern Standard Time.

You can replace the UTC offset with the TZR (time zone region) format element. For
example, the following example has the same value as the preceding example:

TIMESTAMP "1999-04-15 8:00:00 US/Pacific"

2-13

http://www.iana.org/time-zones

Chapter 2
OLAP DML Data Types

To eliminate the ambiguity of boundary cases when the daylight saving time switches,
use both the TZR and a corresponding TzD format element. The following example
ensures that the preceding example returns a daylight saving time value:

TIMESTAMP "1999-10-29 01:30:00 US/Pacific PDT"

You can also express the time zone offset using a datetime expression.

" See Also:

"Datetime and Interval Expressions"

If you do not add the TzD format element, and the datetime value is ambiguous, then
Oracle returns an error if you have the ERROR_ON_OVERLAP_TIME session parameter set to
TRUE. If that parameter is set to FALSE, then Oracle interprets the ambiguous datetime
as standard time in the specified region.

2.1.4.7 TIMESTAMP_LTZ Data Type

TIMESTAMP_LTZ corresponds to the SQL TIMESTAMP WITH LOCAL TIMEZONE data type. It is
another variant of TIMESTAMP that includes a time zone offset in its value. It differs from
TIMESTAMP_LTZ in that data stored in the database is normalized to the database time
zone, and the time zone offset is not stored as part of the column data. When a user
retrieves the data, Oracle returns it in the user's local session time zone. The time
zone offset is the difference (in hours and minutes) between local time and UTC
(Coordinated Universal Time—formerly Greenwich Mean Time). This data type is
useful for displaying date information in the time zone of the client system in a two-tier
application.

Oracle time zone data is derived from the public domain information available at
http://www.iana.org/time-zones. Oracle time zone data may not reflect the most recent
data available at this site.

The TIMESTAMP_LTZ data type differs from TIMESTAMP_TZ in that data stored in the
database is normalized to the database time zone. The time zone offset is not stored
as part of the column data. There is no literal for TIMESTAMP_LTZ. Rather, you represent
values of this data type using any of the other valid datetime literals. The table that
follows shows some formats you can use to add a TIMESTAMP_LTZ value into object,
along with the corresponding value returned by an OLAP DML statement such as a
SHOW command.

Value Specified When Adding Value Value Returned

"19-FEB-2004" 19-FEB-2004.00.00.000000
AM

SYSTIMESTAMP 19-FEB-04 02.54.36.497659
PM

TO_TIMESTAMP("19-FEB-2004", "DD-MON-YYYY")); 19-FEB-04 12.00.00.000000
AM

SYSDATE 19-FEB-04 02.55.29.000000
PM

ORACLE 2-14

http://www.iana.org/time-zones

Chapter 2
OLAP DML Data Types

Value Specified When Adding Value Value Returned

TO_DATE("19-FEB-2004", "DD-MON-YYYY")); 19-FEB-04 12.00.00.000000
AM

TIMESTAMP*2004-02-19 8:00:00 US/Pacific"); 19-FEB-04 08.00.00.000000
AM

Notice that if the value specified does not include a time component (either explicitly or
implicitly), then the value returned defaults to midnight.

2.1.4.8 YMINTERVAL Data Type

YMINTERVAL corresponds to the SQL INTERVAL YEAR TO MONTH data type. It stores a period
of time using the YEAR and MONTH datetime fields. This data type is useful for
representing the difference between two datetime values when only the year and
month values are significant.

Specify YMINTERVAL interval literals using the following syntax.
INTERVAL 'integer [- integer ' YEAR|MONTH [(precision)] [TO YEAR | MONTH]

where

e ‘'integer [-integer]' specifies integer values for the leading and optional trailing
field of the literal. If the leading field is YEAR and the trailing field is MONTH, then the
range of integer values for the month field is 0 to 11.

e precision is the maximum number of digits in the leading field. The valid range of
the leading field precision is 0 to 9 and its default value is 2.

If you specify a trailing field, it must be less significant than the leading field. For
example, INTERVAL '0-1' MONTH TO YEAR is not valid.

The following YMINTERVAL literal indicates an interval of 123 years, 2 months:

INTERVAL "123-2" YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated versions:

Form of Interval Literal Interpretation

INTERVAL "123-2" YEAR(3) TO MONTH An interval of 123 years, 2 months. You must
specify the leading field precision if it is greater
than the default of 2 digits.

INTERVAL "123" YEAR(3) An interval of 123 years 0 months.

INTERVAL "300" MONTH(3) An interval of 300 months.

INTERVAL "4 YEAR Maps to INTERVAL "4-0" YEAR TO MONTH and
indicates 4 years.

INTERVAL "50" MONTH Maps to INTERVAL "4-2" YEAR TO MONTH and
indicates 50 months or 4 years 2 months.

INTERVAL "123" YEAR Returns an error, because the default

precision is 2, and '123' has 3 digits.

You can add or subtract one INTERVAL YEAR TO MONTH literal to or from another to yield
another INTERVAL YEAR TO MONTH literal. For example:

ORACLE 2-15

Chapter 2
OLAP DML Data Types

INTERVAL "5-3" YEAR TO MONTH + INTERVAL"20" MONTH =
INTERVAL "6-11" YEAR TO MONTH

2.1.4.9 DSINTERVAL Data Type

ORACLE

DSINTERVAL corresponds to the SQL INTERVAL DAY TO SECOND data type. It stores a
period of time in terms of days, hours, minutes, and seconds. This data type is useful
for representing the precise difference between two datetime values.

Specify DSINTERVAL interval literals using the following syntax.
INTERVAL ‘integer|integer time_expr|time_expr

DAY|HOUR|MINUTE [(leading_precision)] | SECOND [leading_precision|,
fractional_seconds_precision])]

[TO DAY|HOUR|MINUTE|SECOND |[(fractional _seconds_precision)]]
where

* integer specifies the number of days. If this value contains more digits than the
number specified by the leading precision, then Oracle returns an error.

e tinme_expr specifies a time in the format HH[:MI[-SS[.n]]1] or MI[:SS[.n]] or SS[.n],
where n specifies the fractional part of a second. If n contains more digits than the
number specified by fracti onal _seconds_preci si on, then n is rounded to the
number of digits specified by the fracti onal _seconds_pr eci si on value. You can
specify ti me_expr following an integer and a space only if the leading field is DAY.

» |eading_precision is the number of digits in the leading field. Accepted values are
0 to 9. The default is 2.

e fractional _seconds_precision is the number of digits in the fractional part of the
SECOND datetime field. Accepted values are 1 to 9. The default is 6.

If you specify a trailing field, it must be less significant than the leading field. For
example, INTERVAL MINUTE TO DAY is not valid. Because of this restriction, if SECOND is the
leading field, the interval literal cannot have any trailing field.

The valid range of values for the trailing field are as follows:
e HOUR: Oto 23

e MINUTE: O to 59

e SECOND: O to 59.999999999

Examples of the various forms of DSINTERVAL literals follow, including some abbreviated
versions:

Form of Interval Literal Interpretation

INTERVAL "4 5:12:10.222° DAY TO 4 days, 5 hours, 12 minutes, 10 seconds, and
SECOND(3) 222 thousandths of a second.

INTERVAL "4 5:12" DAY TO MINUTE 4 days, 5 hours and 12 minutes.

INTERVAL "400 5" DAY(3) TO HOUR 400 days 5 hours.

INTERVAL "400" DAY(3) 400 days.

INTERVAL "11:12:10.2222222" HOUR TO 11 hours, 12 minutes, and 10.2222222
SECOND(7) seconds.

2-16

Chapter 2
OLAP DML Data Types

Form of Interval Literal Interpretation

INTERVAL "11:20" HOUR TO MINUTE 11 hours and 20 minutes.

INTERVAL "10" HOUR 10 hours

INTERVAL "10:22" MINUTE TO SECOND 10 minutes 22 seconds.

INTERVAL "10" MINUTE 10 minutes.

INTERVAL "4% DAY 4 days.

INTERVAL "25" HOUR 25 hours

INTERVAL "40" MINUTE 40 minutes.

INTERVAL "120" HOUR(3) 120 hours

INTERVAL "30.12345" SECOND(2,4) 30.1235 seconds. The fractional second
'12345' is rounded to '1235' because the
precision is 4.

You can add or subtract one DAY TO SECOND interval literal from another DAY TO SECOND
literal. For example.

INTERVAL"20" DAY - INTERVAL"240" HOUR = INTERVAL"10-0" DAY TO SECOND

2.1.5 Boolean Data Type

A BOOLEAN data type enables you to represent logical values. In code, BOOLEAN values
are represented by values for "no" and "yes" (in any combination of uppercase and
lowercase characters). The actual values that are recognized in your version of Oracle
OLAP are determined by the language identified by the NLS_LANGUAGE option. You
can use the read-only NOSPELL and YESSPELL options to obtain the values
represent BOOLEAN values. In English language code, you can represent BOOLEAN values,
using:

* YES, TRUE, ON
* NO, FALSE, OFF

Working with BOOLEAN expressions is discussed in "Boolean Expressions".

2.1.6 RAW Data Type

ORACLE

The RAW data type stores data that is not to be interpreted (that is, not explicitly
converted when moving data between different systems) by Oracle Database. The RAW
data type is intended for binary data or byte strings.

The syntax for specifying RAW data is as follows:
RAW (size)
where you must specify a size up to the maximum of 2000 bytes

RAW is a variable-length data type, however Oracle Net (which connects user sessions
to the instance) and Oracle Database utilities do not perform character conversion
when transmitting RAW data.

When Oracle automatically converts RAW data to and from text data, the binary data is
represented in hexadecimal form, with one hexadecimal character representing every

2-17

Chapter 2
OLAP DML Data Types

four bits of RAW data. For example, one byte of RAW data with bits 11001011 is
displayed and entered as CB.

2.1.7 Row I|dentifier Data Types

The row identifier data types are used to store an address of a row in a relational table.
The OLAP DML supports two different data types that you can use to copy this data
from a relational table into objects in an analytic workspace:

e ROWID Data Type
« UROWID Data Type

2.1.7.1 ROWID Data Type

You can examine a row address of a relational table by querying the pseudocolumn
ROWID. Values of this pseudocolumn are strings representing the address of each
row. These strings have the data type ROWID.

Note:

Although you can create relational tables and clusters that contain actual
columns having the ROWID data type. Oracle Database does not guarantee
that the values of such columns are valid rowids

The extended ROWID data type stored in a user column includes the data in the
restricted rowid plus a data object number. The data object number is an identification
number assigned to every database segment. You can retrieve the data object number
from the data dictionary views USER_OBJECTS, DBA_OBJECTS, and
ALL_OBJECTS. Objects that share the same segment (clustered tables in the same
cluster, for example) have the same object number.

Extended rowids are stored as base 64 values that can contain the characters A-Z, a-
z, 0-9, and the plus sign (+) and forward slash (/). Extended rowids are not available
directly. You can use a supplied package, DBMS_ROWID, to interpret extended rowid
contents. The package functions extract and provide information that would be
available directly from a restricted rowid as well as information specific to extended
rowids.

2.1.7.2 UROWID Data Type

ORACLE

The rows of some relational tables have addresses that are not physical or permanent
or were not generated by Oracle Database. For example, the row addresses of index-
organized tables are stored in index leaves, which can move. Rowids of foreign tables
(such as DB2 tables accessed through a gateway) are not standard Oracle rowids.

Oracle uses universal rowids (urowids) to store the addresses of index-organized and
foreign tables. Index-organized tables have logical urowids and foreign tables have
foreign urowids. Both types of urowid are stored in the ROWID pseudocolumn (as are
the physical rowids of heap-organized tables).

2-18

Chapter 2
OLAP DML Data Types

Oracle creates logical rowids based on the primary key of the table. The logical rowids
do not change if the primary key does not change. The ROWID pseudocolumn of an
index-organized table has a data type of UROWID. You can access this
pseudocolumn as you would the ROWID pseudocolumn of a heap-organized table
(that is, using a SELECT ... ROWID statement). To store the rowids of an index-
organized table, then define a column of type UROWID for the table and retrieve the
value of the ROWID pseudocolumn into that column.

2.1.8 Converting from One Data Type to Another

In many cases, Oracle OLAP performs automatic data type conversion for you as
discussed in "Automatic Conversion of Textual Data Types" and "Automatic
Conversion of Numeric Data Types". Additionally there are a number of OLAP DML
functions that you can use to convert values from one data type to another.

2.1.8.1 Automatic Conversion of Textual Data Types

Oracle OLAP automatically converts NTEXT values to TEXT when they are specified as
arguments to OLAP DML statements. This can result in data loss when the NTEXT
values cannot be represented in the database character set

2.1.8.2 Automatic Conversion of Numeric Data Types

Oracle OLAP automatically converts SHORTINTEGER variables and INTEGER variables (with
a fixed width of 1 byte to INTEGER (with a width of 4 bytes) for calculations. When you
calculate a total of SHORTINTEGER variables, then you can obtain and report a result
greater than 32,767 or less than -32,768. When you calculate a total of 1-byte INTEGER
variables, then you can obtain and report a result greater than 127 or less than -128.
However, when you try to assign the result to a SHORTINTEGER variable or a 1-byte
INTEGER variable respectively, then the variable is set to NA.

Oracle OLAP automatically converts numeric data types according to the following
rules:

* When you use a value with the SHORTINTEGER or SHORTDECIMAL data type in an
expression, then the value is converted to its long counterpart before using it. See
"Boolean Expressions" for information about problems that can occur when you
mix SHORTDECIMAL and DECIMAL data types in a comparison expression.

* When you save the results of a calculation as a value with the SHORTINTEGER data
type, then NA is stored when the result is outside the range of a SHORTINTEGER (-
32768 to 32767).

e When you assign the value of a DECIMAL expression to an object with the INTEGER
data type, then the value is rounded before storing or using it.

" Note:

When a DECIMAL value is outside the range of an INTEGER, then an NA is
stored.

* When you use a decimal value where a value with the INTEGER data type is
required, then the value is rounded before storing or using it.

ORACLE 2-19

Chapter 2
OLAP DML Operators

Note:

When the DECIMAL value is outside the range of an INTEGER, then an
NA is stored.

* When you assign the value of a decimal expression to a variable with the
SHORTDECIMAL data type, then only the first 7 significant digits are stored.

e When you combine NUMBER values with other numeric data types, then all values
are converted to NUMBER.

When these conversion are not what you want, then you can use the CONVERT,
TO_CHAR, TO_NCHAR, TO_NUMBER, or TO_DATE functions to get different
results.

2.2 OLAP DML Operators

An operator is a symbol that transforms a value or combines it in some way with
another value. The following table describes the categories of OLAP DML operators.

Table 2-9 OLAP DML Operators

Category Description

Arithmetic Operators that you can use in numeric expressions with numeric data to produce
a numeric result. You can also use some arithmetic operators in date
expressions with a mix of date and numeric data, which returns either a date or
numeric result. For a list of arithmetic operators, see "Arithmetic Operators". For
more information on numeric expressions, see "Numeric Expressions”

Comparison Operators that you can use to compare two values of the same basic type
(numeric, text, date, or, in rare cases, Boolean), which returns a BOOLEAN result.
For a list of comparison operators, see "Comparison and Logical Operators". For
more information on BOOLEAN expressions, see "Boolean Expressions”.

Logical The AND, OR, and NOT operators that you can use to transform BOOLEAN values
using logical operations, which returns a BOOLEAN result. For a list of logical
operators, see "Comparison and Logical Operators". For more information on
BOOLEAN expressions, see "Boolean Expressions".

Assignment An operator that you use to assign the results of an expression into an object or
to assign a value to an OLAP DML option. For more information on using
assignment statements, see the SET, and SET1 commands, and "Assignment
Operator".

Conditional The IF.._THEN...ELSE, SWITCH, and CASE operators that you can use to use to
select between values based on a condition. For more information, see
"Conditional Expressions".

Substitution The & (ampersand) operator that you can use to evaluate an expression and
substitute the resulting value. For more information, see "Substitution
Expressions".

2.2.1 Arithmetic Operators

The following table shows the OLAP DML arithmetic operators, their operations, and
priority where priority is the order in which that operator is evaluated. Operators of the
same priority are evaluated from left to right. When you use two or more operators in a

ORACLE 2-20

Chapter 2
OLAP DML Operators

numeric expression, the expression is evaluated according to standard rules of
arithmetic. You must code a comma before a negative number that follows another
numeric expression, or the minus sign is interpreted as a subtraction operator. For
example, intvar,-4

Table 2-10 Arithmetic Operators
|

Operator Operation Priority
- Sign reversal 1
** Exponentiation 2
* Multiplication 3
/ Division 3
* Addition 4
- Subtraction 4

2.2.2 Comparison and Logical Operators

ORACLE

You use comparison and logical operators to make expressions in much the same way
as arithmetic operators. Each operator has a priority that determines its order of
evaluation. Operators of equal priority are evaluated left to right, unless parentheses
change the order of evaluation. However, the evaluation is halted when the truth value
is decided.

The following table shows the OLAP DML comparison operators and logical operators
(AND, OR, and NOT). It lists the operator, the operations, example, and priority where
priority is the order in which that operator is evaluated. Operators of the same priority
are evaluated from left to right.

Table 2-11 Comparison and Logical Operators
|

Operator Operation Example Priority
NOT Returns opposite of NOT(YES) = NO 1
BOOLEAN expression
EQ Equal to 4 EQ 4 = YES 2
NE Not equal to 5 NE 2 = YES 2
GT Greater than 5GT 7 =NO 2
LT Less than 5 LT 7 = YES 2
GE Greater than or equal to 8 GE 8 = YES 2
LE Less than or equal to 8 LE 9 = YES 2
IN Is a date in a time period? "1Jan02" IN myDimension = YES 2
LIKE Does a text value match a “Finance® LIKE *%nan%* = YES 2
specified text pattern?
AND Both expressions are true 8 GE 8 AND 5 LT 7 = YES 3
OR Either expression is true 8 GE 8 OR 5 GT 7 = YES 4

2-21

Chapter 2
OLAP DML Expressions

2.2.3 Assignment Operator

In the OLAP DML, as in many other programming languages, the = (equal) sign is
used as an assignment operator.

An expression creates temporary data; you can display the resulting values, but these
values are not automatically stored in your analytic workspace for future reference
during a session. You use an assignment statement to store the result of an
expression in an object that has the same data type and dimensions as the
expression. If you update and commit the object, then the values are available to you
in future sessions.

Like other programming languages, an assignment statement in the OLAP DML sets
the value of the target expression equal to the results of the source expression.
However, an OLAP DML assignment statement does not work exactly as it does in
other programming languages. Like many other OLAP DML statements it does not
assign a value to a single cell, instead, when the target-expression is a
multidimensional object, Oracle OLAP loops through the cells of the target object
setting each one to the results of the source-expression. Additionally, you can use
UNRAVEL to copy the values of an expression into the cells of a target object when
the dimensions of the expression are different from the dimensions of the target object.

For more information on using assignment statements in the OLAP DML, see SET and
SETL1.

2.3 OLAP DML Expressions

Expressions represent data values in the syntax of the OLAP DML. This section
provides the following information about OLAP DML expressions:

* "About OLAP DML Expressions"

» "Using Workspace Obijects in Expressions".

* "Working with Empty Cells in Expressions"

» Detailed information about the various types of OLAP DML expressions:

Numeric Expressions

Text Expressions

Datetime and Interval Expressions
Date-only Expressions

Boolean Expressions

Conditional Expressions
Substitution Expressions

2.3.1 About OLAP DML Expressions

ORACLE

An OLAP DML expression has a data type and can also have dimensions. You can
use expressions as arguments in statements. An expression often performs a
mathematical or logical operation. It always evaluates to a result in a workspace data

type.

An expression can be:

e Aliteral value. For example, 10 or "East"

2-22

Chapter 2
OLAP DML Expressions

* An analytic workspace object that contains multiple values. For example, the
variable sales

e A function that returns one or more values. For example, TOTAL or JOINLINES

e Another expression that combines literal values, dimensions, variables, formulas,
and functions with operators. For example, inflation*1.02

You can save an expression as a formula as described in "OLAP DML Formulas"

2.3.1.1 How the Data Type of an Expression is Determined

The data type of an expression is the data type of the resulting value. It might not be
the same as the data type of the data objects that constitute the expression; it
depends on the data and on the operators and functions that are involved.

In addition, a conditional expression that is indicated by an IF... THEN...ELSE operator is
supported. A conditional expression returns a value whose data type depends on the
expressions in the THEN and ELSE clauses, not on the expression in the IF clause, which
must be BOOLEAN.

" Note:

Do not confuse a conditional expression with the IF...THEN...ELSE command
in a program, which has similar syntax but a different purpose. The IF
statement does not have a data type and is not evaluated like an expression.

2.3.1.2 How the Dimensionality of an Expression is Determined

ORACLE

An expression is dimensioned by a union of the dimensions of all of the variables,
dimensions, relations, formulas, qualified data references, and functions in the
expression:

* Variables, relations, and formulas are dimensioned by the dimensions listed in the
definition of the object.

Example 1: When the price variable is dimensioned by month and product, then
the expression price * 1.2 is also dimensioned by month and product.

Example 2: When the units variable is dimensioned by month, product, and
district, then the expression units * price is dimensioned by month, product, and
district (even though the dimensions of the price variable are month and product
only).

* Qualified data references (QDRs) are dimensioned by all of the dimensions of the
associated object, except for the dimensions being qualified. (For more information
about qualified data references, see "Limiting a Dimension to a Single Value
Without Changing Status".)

e The return values of most OLAP DML functions are, in most cases, dimensioned
by the union of the dimensions of the input arguments. However, some functions
(such as aggregation functions) have fewer dimensions than the input arguments.
In these cases, the dimensionality of the return value is documented in the topic
for the function in OLAP DML Functions: A - K.

2-23

Chapter 2
OLAP DML Expressions

Note:

Unless otherwise noted, when you specify breakout dimensions or relations
in an aggregation function, you change the dimensionality of the
expression. The first dimension that you specify as a breakout dimension is
the slowest varying and the last dimension that you specify is the fastest
varying.

" Note:

You can change the dimensionality of an expression or subexpression using
the CHGDIMS function

2.3.1.2.1 Determining the Dimensions of an Expression

You can find out the dimensions of an expression by issuing a PARSE statement,
followed by the INFO function. PARSE evaluates the text of an expression; the INFO
indicates how the expression is interpreted.

This example illustrates the use of the DIMENSION keyword with the INFO function to
retrieve the dimensions of the expression just analyzed by PARSE. Assume that you
issue the following statement.

PARSE "TOTAL(sales region)”

The statement produces the following output.

SHOW INFO(PARSE DIMENSION)
REGION

2.3.1.2.2 How Dimension Status Affects the Number of Values in the Results of

Expressions

ORACLE

The number of values an expression yields depends on the dimensions of the
expression and the status of those dimensions. An expression yields one data value
for each combination of dimension values in the current status. For example, when
three dimension values are in status for month, and two for product, then the expression
price GT 100 results in six values (3 times 2).

Thus, to get the desired results, you must ensure that the dimensions of an expression
are limited to the range of data you want to consider. In addition, you must consider
any PERMIT statements that might limit access to the dimensions of the data.

When you want to specify a single value without changing the current status you can
use a qualified data reference (QDR). Using a QDR, you can qualify a dimension
(which enables you to specify one dimension value in an expression) or one or more
dimensions of a variable or relation. For more information on dimension status, see
"How to Specify the Set of Data that OLAP DML Operations Work Against"; for more
information on QDRs, see "Limiting a Dimension to a Single Value Without Changing
Status".

2-24

Chapter 2
OLAP DML Expressions

2.3.2 Using Workspace Objects in Expressions

You can use an analytic workspace data object in an expression by specifying its
name as described in "Syntax for Specifying an Object in an Expression”. When

calculating the expression, Oracle OLAP uses the data in the specified object as
described in "How OLAP DML Data Objects Behave in Expressions”.

2.3.2.1 How OLAP DML Data Objects Behave in Expressions

The following table summarizes how Oracle OLAP uses the data in an object used as
an argument in an expression.

Table 2-12 Objects in Expressions

___|
Object Use in Expressions

Variables As a one-dimensional or multi-dimensional array of data, depending on its
definition. For example, as the target or source expression in an assignment
statement.

See also "Using Variables and Relations in Expressions" and " OLAP DML
Commands: H-Z".

Relations As a one-dimensional or multi-dimensional of data, depending on its definition.
For example, as the target or source expression in an assignment statement as
outlined in " OLAP DML Commands: H-Z".

* When you use a relation in a text expression, the relation value is referenced
as a text value. The values of the related dimension that is contained in the
relation are converted into text, and you can use these values in an
expression. You can also compare a text literal to a relation.

* When you use a relation in a numeric expression, the relation value is
referenced by its position (an INTEGER) in its related dimension array. You
can use this numeric value in an expression. The position number is based
on the default status list of the dimension, not the current status list of the
dimension.

See also "Using Variables and Relations in Expressions" , "Using Related

Dimensions in Expressions".

Dimensions As a one-dimensional array of data. When you use a TEXT dimension value in a
numeric expression or compare values in a non-numeric dimension, Oracle
OLAP uses the INTEGER position number of the value in the array (as based on
the default status list) rather than the value itself.

See also "Specifying a Value of a CONCAT Dimension" and "Using Related
Dimensions in Expressions".

Composites You can use a composite wherever you can use a dimension.
See also "Specifying a Value of a Composite” .
Valuesets As a list of dimension values.

See also "Using Variables and Relations in Expressions" and the DEFINE
VALUESET command.

ORACLE 2-25

Chapter 2
OLAP DML Expressions

Table 2-12 (Cont.) Objects in Expressions

___|
Object Use in Expressions

Dimension As a one-dimensional array. A surrogate provides an alternative set of values for

surrogates a dimension. When you use a TEXT surrogate value in a numeric expression or
compare values in a non-numeric surrogate, Oracle OLAP uses the INTEGER
position number of the value in the array (as based on the default status list)
rather than the value itself.

Note: You can use a surrogate rather than a dimension in a model, in a LIMIT
command, in a qualified data reference, or in data loading with statements such
as FILEREAD, FILEVIEW, SQL FETCH, and SQL IMPORT. A surrogate cannot
be a participant object in any argument in a DEFINE statement that defines
another object.

Formulas As a sub-expression or as an expression in a statement.

Programs For a program that does not return a value, use the program name as you would
an OLAP DML command. For a program that returns a value, invoke the program
the same way that you invoke an OLAP DML function: use the program name in
the expression and enclose the program arguments, if any, in parentheses.

2.3.2.2 Syntax for Specifying an Object in an Expression

ORACLE

You can specify an analytic workspace object in an expression using the following
syntax.

[[schema-name.]analytic-workspace-name!]object-name

schema-name

The name of the schema in which the analytic workspace was defined when it was
created. By default, an analytic workspace is created in the schema for the database
user ID of the user issuing the AW CREATE statement. In alImost any DML statement,
you can specify the full name of an analytic workspace (for example, Scott.demo).

analytic-workspace-name

The name of the workspace that contains the desired object. By specify the analytic
workspace name along with the object name you create a qualified object name
(QON) for the object. Using a qualified object name for an object is recommended
except in those situations described in "When Not to Use Qualified Object Names".
You can specify the value for analytic-workspace-name in any of the following ways:

* The name of an analytic workspace. A workspace hame is assigned when an
analytic workspace is created with an AW CREATE statement.

* The alias name of an analytic workspace. An analytic workspace alias is an
alternative name for an attached analytic workspace. You can assign or delete an
alias with an AW ALIAS LIST statement. An alias is in effect from the time it is
assigned to the time that the workspace is detached (or until the alias is deleted).
Therefore, each time you attach an unattached workspace, you must reassign its
aliases.

One reason for assigning an alias is to have a short way to reference an analytic
workspace that belongs to a schema that is not yours. For example, you can use
the alias in qualified object names and statements that reference such an analytic

2-26

Chapter 2
OLAP DML Expressions

workspace. Another reason for assigning an alias is to write generic code that
includes a reference to an analytic workspace but does not hard-code its name.
With the alias providing a generic reference, you can assign the alias and run the
code on different workspaces at different times.

* Within an aggregation specification, model, or program, you can use THIS_AW to
qualify an object name. When Oracle OLAP compiles an object, it interprets any
occurrence of THIS_AW as the name of the workspace in which the object is being
compiled. Thus if you have an analytic workspace named myworkspace that
contains a program named myprog and a variable named myvar, Oracle OLAP
interprets a statement myvar=1 as though it was written myworkspace!myvar=1.
Within a program, you can retrieve the value of THIS_AW using the THIS_AW
option.

When you do not specify a value for analytic-workspace-name, Oracle OLAP
assumes that the specified object is in the current analytic workspace. The current
analytic workspace is the first analytic workspace in the list of the active analytic
workspaces that you view with an AW LIST statement. You can retrieve the name of
the current analytic workspace by using the AW function with the NAME keyword.

" Note:

Your session does not have to have a current analytic workspace. When you
start Oracle OLAP without specifying an analytic workspace name, then the
EXPRESS analytic workspace is first on the list. However, in this case, the
EXPRESS analytic workspace is not current; there is no current analytic
workspace until you specify one with the AW command.

object-name
The name of the object unless the object is an unnamed composite. When the object
is an unnamed composite, use the following syntax.

SPARSE <basedims....>

For the basedims argument, specify the names of the dimensions, separated by
spaces, for which the unnamed composite was created. For an example of using an
unnamed composite in an OLAP DML statement, see Example 10-104.

Objects with the same name in different workspaces are treated as completely
separate objects, and no similarity or relationship is assumed to exist between them.
Any OLAP DML language restrictions that apply between objects in different
workspaces apply even when the objects have the same name. For example, you
cannot dimension an object in one workspace by a dimension that resides in another
workspace, even when both workspaces have dimensions with the same name.

2.3.2.2.1 Considerations When Creating and Using Qualified Object Names

ORACLE

Although the use of qualified object names for objects is typical, there are several
considerations to keep in mind:

* There are some situations where you cannot use a qualified object name or do not
need to use a qualified object name. See "When Not to Use Qualified Object
Names" for more information

2-27

Chapter 2
OLAP DML Expressions

» Before you use ampersand substitution when creating a qualified object name you
must understand how and when the substitution occurs. See "Using Ampersand
Substitution for Workspace and Object Names" for more information.

» Special considerations apply when passing a qualified object name as an
argument to a program. See "Passing Qualified Object Names to Programs" for
more information.

When Not to Use Qualified Object Names

Generally it is good practice to use a qualified object name in an expression. However,
there are some situations where you cannot use a qualified object name or when a
qualified object name is not necessary:

* The following objects cannot have qualified object names:

— An object that is local to a particular program because it was created by an
ARGUMENT or VARIABLE statement.

— The NAME dimension of any given workspace. When you reference the
NAME dimension, Oracle OLAP always uses the NAME dimension of the
current workspace.

* You do not need to use a qualified object name in the following circumstances:

— In the qualifiers of a qualified data reference (QDR). Only the object being
gualified needs to be named with a qualified object name. Any unqualified
names are assumed to apply to objects in the same workspace as the object
being qualified.

— Inan unnamed composite, when you specify one base dimension as a
gualified object name, then all the others are assumed to come from the same
workspace.

— Inanamed composite, when the name is a qualified object name then its base
dimensions are assumed to come from the same workspace.

— Ina model, when you specify the solution variable as a qualified object name,
then all the dimensions named in DIMENSION statements are assumed to
come from the same workspace.

Using Ampersand Substitution for Workspace and Object Names

The workspace name, or the object name, or both can be supplied using ampersand
substitution. However, take care when using a qualified object name with ampersand
substitution because Oracle OLAP parses the qualified object name (with its
exclamation point) before it resolves the ampersand reference. For example, in the
expression &awname!objname, the ampersand (&) applies to the entire qualified object
name, not just to the workspace name.

Passing Qualified Object Names to Programs

When you pass a qualified object name as an argument to a program and you use an
ARGUMENT statement and the ARG, ARGFR, and ARGS functions, the entire
gualified object name is considered to be a single argument. Its component parts are
not passed separately.

ORACLE 2-28

Chapter 2
OLAP DML Expressions

2.3.2.3 Specifying Values of Dimensions and Composites in Expressions

In most cases, you refer to the value of a dimension by specifying the value following
the conventions for the data type of the value. For example, assume that you have a
TEXT dimension named geog. You can add the value "World" to the dimension by
issuing the following statement.

MAINTAIN geog ADD "World®

Note, however, that when you use a TEXT dimension value in a numeric expression or
compare values in a non-numeric dimension, Oracle OLAP uses the INTEGER position
number of the value in the array (as based on the default status list) rather than the
value itself.

Special considerations apply to specifying the values of composites and concat
dimensions.

2.3.2.3.1 Specifying a Value of a Composite

You can specify a value of a composite in the following ways:

* By specifying a set of values of the base dimensions of the composite using the
following syntax.

{composite_name | SPARSE]} {<base_dimension_name
base_dimension_value }, ...>

» (Named composites only) By specifying just the values of the composite using the
following syntax.

composite_name <base_dimension_value ...>

where base_dimension_value is a set of values of the base dimensions, in the
order in which they were defined in the composite, separated by spaces.

2.3.2.3.2 Specifying a Value of a CONCAT Dimension

ORACLE

Once you have defined a unique CONCAT dimension, you can refer to its values
simply by specifying the values of the base dimensions.

However, you must specify a value of a nonunique CONCAT dimension as a
concatenation of the name of the base dimension and the base dimension value
separated by a colon (:) and a space and enclosed in angle brackets(<>). In an
expression, use the following format.

<BASE_DIMENSION_NAME: base_dimension value>

For example, assume that you have defined the base dimensions named city and
state and, a CONCAT dimension for them named geog. When you report on the geog
dimension, the values of geog include the names of the base dimensions along with the
values.

DEFINE city DIMENSION TEXT

DEFINE state DIMENSION TEXT

DEFINE geog DIMENSION CONCAT(city state)
MAINTAIN city ADD "New York®

MAINTAIN state ADD "New York"

REPORT geog

2-29

Chapter 2
OLAP DML Expressions

<CITY: New York>
<STATE: New York>

2.3.2.3.3 Using Related Dimensions in Expressions

The syntax of some OLAP DML statements (for example, some variations of the LIMIT
command) include two dimension arguments referred to as a dimension, and a related
dimension. Other OLAP DML statements (for example, AVERAGE, ANY, COUNT,
CUMSUM, NONE, LARGEST, SMALLEST, and TOTAL) allow you to specify the
dimensionality of the result in terms of a related dimension. In these contexts, the
related dimension is any dimension that shares a relation with another dimension.

Even though the value that you specify for the arguments in these statements is the
name of a dimension, in actuality Oracle OLAP uses a relation between the
dimensions to perform its calculations. When the two dimensions share only one
relation, the behavior is clear. Oracle OLAP performs the calculation based on the
values in that relation.

However, when two dimensions share multiple relations, then the behavior is less
clear. In some cases, as with a LIMIT using LEVELREL command, you can specify the
shared relation you want Oracle OLAP to use. In other cases, the statement syntax
does not allow you to specify the name of a relation. In this case, Oracle OLAP
chooses among the multiple relations as described in " OLAP DML Commands: H-Z".

2.3.2.4 Using Variables and Relations in Expressions

ORACLE

In expressions, a variable is referenced as an array containing values of the specified
data type. A relation is referenced as an array containing values of the specified
dimension. In most other respects, variables and relations (both typically
multidimensional objects) share the same characteristics.

In most cases, when you use OLAP DML statements with variables that are defined
with composites, the statements treat those variables as if they were defined with base
dimensions:

* You can access a variable that is dimensioned by a composite by requesting any
of the base dimension values.

* The values of a composite that are in status are determined by the status of the
base dimensions of the composite. Composites are not dimensions, and therefore,
they do not have any independent status.

When you use a REPORT statement or any other statement that loops over a variable
that uses a composite, the default behavior is to evaluate all the combinations of the
values of the base dimensions of the composite that are in status. Any combinations
that do not exist in the composite display NA for their associated data.

For example, the following statements create a report for the East region that shows
the number of coupons issued for sportswear from January through March 2002.
Because no coupons were issued in March 2002, the report displays NA in that
column.

LIMIT month TO "Jan02" "Feb02" "Mar02*
LIMIT market TO "East"

LIMIT product TO "Sportswear”

REPORT coupons

2-30

Chapter 2
OLAP DML Expressions

MARKET: EAST

———————————— COUPONS-----—=------

------------- MONTH--————————————
PRODUCT Jan02 Feb02 Mar02
Sportswear 1,000 1,000 NA

However, for performance reasons, you can change the default looping behavior for
statements such as REPORT, ROW, and the assignment statement (SET) so that they
loop over the values in the composite rather than all of the base dimension values.

2.3.2.5 Limiting a Dimension to a Single Value Without Changing Status

A qualified data reference (QDR) is a way of limiting one or more dimensions of a data
object to a single value. QDRs are useful when you want to specify a single value of a
data object without changing the current status. Using a QDR, you can qualify a
dimension (which enables you to specify one dimension value in an expression) or one
or more dimensions of a variable or relation.

Sometimes the syntax of a QDR is ambiguous and could either be misinterpreted or
cause a syntax error. In this case, you can use the QUAL function to explicitly specify
a qualified data reference (QDR).

2.3.2.5.1 Syntax of a Qualified Data Reference

ORACLE

You specify a qualified data reference using the following syntax
expression(dimnamel dimexpl [, dimname2 dimexp2. . .])

The di nmane argument is the name of a dimension or a dimension surrogate of the
dimension, of the expression and the dimexp argument is one of the following:

e Avalue of dimname.

Note:

The setting of the LIMITSTRICT option determines how Oracle OLAP
behaves when a QDR specifies a nonexistent value. By default, when you
specify a nonexistent value, Oracle OLAP treats the nonexistent value as
an invalid value and issues an error. If, instead, you want Oracle OLAP to
treat a nonexistent value as an NA value, set the value of LIMITSTRICT to
NO.

e Atext expression whose result is a value of dimname.
e A numeric expression whose result is the logical position of a value of dimname.

e Arelation of di mane.

2-31

Chapter 2
OLAP DML Expressions

Note:

When syntax of a QDR is ambiguous and could either be misinterpreted or
cause a syntax error, use the QUAL function to explicitly specify a qualified
data reference (QDR).

2.3.2.5.2 Qualifying a Variable

You can qualify any or all of the dimensions of a variable using either of the following
techniques:

e The QDR can temporarily limit a dimension of the variable by selecting one
specified value of the dimension. This value can be outside the current status.

 The QDR can replace a dimension of the variable with a less aggregate related
dimension when you supply the name of an appropriate relation as the qualifier.
The dimension is temporarily replaced by the dimension(s) of the relation.

For example, the variable sales has three dimensions, month, product, and district.
You might want to compare total sales in Boston to the total sales in all cities. In a
single statement, you want district to be limited to two different values:

* For the numerator of the expression, you want the status of district to be Boston.
» For the denominator of the expression, you want the status of district to be ALL.
The following statement lets you calculate this result by using a QDR.

SHOW sales(district "Boston®)/TOTAL(sales)

You can qualify multiple dimensions of a variable. For example, when you qualify all
the dimensions of the sales variable by specifying one dimension value of each
dimension, then you narrow sales down to a single—cell value.

To fetch sales for Jun02, Tents, and Seattle, use the following QDR.

SHOW sales(month *Jun02®, product "Tents®, district "Seattle")

This statement fetches a single value.

You can use a qualified data reference with the target expression of an assignment
(SET) statement. This lets you assign a value to a specific cell in a data object.

The following example assigns the value 10200 to the data cell of the sales composite
that is specified in the qualified data reference. When the composite named sales does
not have a value for the combination Boston and Tents, then this value combination is
added to the composite, thus adding the data cell.

sales(market "Boston® product "Tents® month "Jan99°)= 10200

2.3.2.5.3 Replacing a Dimension in a Variable

ORACLE

When you use a relation as the qualifier in the QDR, you replace a dimension of the
variable with the dimension or dimensions of the relation. The relation must be related
to the dimension that you are qualifying, and it must be dimensioned by the
replacement dimension.

2-32

Chapter 2
OLAP DML Expressions

Example 2-1 Replacing a Dimension in a Variable

Suppose you have two variables, sales and quota, which are dimensioned by month,
product, and district. A third variable, division.mgr, is dimensioned by month and
division. You also have a relation between division and product, called
division.product. These objects have the following definitions.

DEFINE sales VARIABLE DECIMAL <month product district>
LD Sales Revenue

DEFINE quota VARIABLE DECIMAL <month product district>
DEFINE division.mgr VARIABLE TEXT <month division>
DEFINE division.product RELATION division <product>

LD Division for each product

The following statement produces the report following it.

REPORT division.mgr

Camping Hawley Hawley Jones Jones Jones Jones
Sporting Carey Carey Carey Carey Carey Musgrave
Clothing Musgrave Musgrave Musgrave Musgrave Musgrave Wong

Suppose you want to obtain a report that shows the fraction by which sales have
exceeded quota and you want to include the appropriate division manager for each
product. You can show the division manager for each product by using the relation
division.product, which is related to division and dimensioned by product, as the
qualifier. The QDR replaces the division dimension with product, so that it has the
same dimensions as the other expression in the report sales / quota. The following
statement produces the report following it.

REPORT DOWN month sales W 6 sales/quota W 8 HEADING -
"MANAGER"® division.mgr(division division.product)

DISTRICT: BOSTON

----------------------------- PRODUCT === m = mmmmmm e e
-——-TEnts---- --- canoes---- -- racquets--- --sportswear-- --- footwear---
Sales/ Sales/ Sales/ Sales/ Sales/

Month Quota Manager Quota Manager Quota Manager Quota Manager Quota Manager
Jan02 1.00 Hawley 0.82 Hawley 1.02 Carey 0.91 Musgrave 0.92 Musgrave
Feb02 0.84 Hawley 0.96 Hawley 1.00 Carey 0.80 Musgrave 1.07 Musgrave
Mar02 0.87 Jones 0.95 Jones 0.87 Carey 0.88 Musgrave 0.91 Musgrave
Apr02 0.91 Jones 0.93 Jones 0.99 Carey 0.94 Musgrave 0.95 Musgrave

2.3.2.5.4 Qualifying a Relation

ORACLE

You can also use a QDR to qualify a relation (which is really a special kind of variable).

Suppose the region.district relation is dimensioned by district. When you qualify
district with the value Seattle, then the value of the expression is the value of the
relation for Seattle. Because the QDR specifies one value of district, the expression
has a single—cell result.

The definition of region.district is as follows.

2-33

Chapter 2
OLAP DML Expressions

DEFINE region.district RELATION region <district>
LD The region for each district

The following statement displays the value WEST.

SHOW region.district(district "Seattle")

2.3.2.5.5 Qualifying a Dimension

You can use a QDR to qualify the dimension itself, which enables you to specify one
dimension value in an expression. The following expression specifies one value of
district, the one contained in the single-cell variable mydistrict.

district(district mydistrict)

For a concat dimension, you can use a QDR to qualify the dimension by specifying a
value from a base dimension of the concat dimension. The following expression
specifies one value of reg.dist.ccdim, a concat dimension that has region and
district as its base dimensions. The costs variable is dimensioned by the division
and reg.dist.ccdim dimensions.

SHOW reg.dist.ccdim(district "Boston®)

The preceding expression produces the following result.

<DISTRICT: Boston>

2.3.2.5.6 Using Ampersand Substitution with QDRs

An ampersand character (&) at the beginning of an expression substitutes the value of
the expression for the expression itself in a statement. When you use an ampersand
with a QDR, you must enclose the whole expression in parentheses when you want
the variable to be qualified before the substitution is made.

Suppose you have a text variable named myvar that is dimensioned by reptype and that
contains the names of variables. Remember that it is myvar that is dimensioned by
reptype, not the variables named by myvar. Therefore, you must use parentheses so
that myvar is qualified and the resulting value is used in a REPORT statement.

REPORT &(myvar(reptype "actual®))

When you do not use parentheses and the variable that is specified in myvar is sales,
then you get an error message that sales is not dimensioned by reptype.

2.3.3 Working with Empty Cells in Expressions

At any given time, some cells of an analytic workspace data object may be empty. An
empty cell occurs when a specific data value has not been assigned to it or when a
data value cannot be calculated for the cell. The value of any empty cell in an object is
NA. An NA value has no specific data type. Certain functions (for example, the
aggregation functions) return NA when the requested information is not available or
cannot be calculated. Similarly, an expression whose value cannot be calculated has
NA as its value.

ORACLE 2-34

Chapter 2
OLAP DML Expressions

Note:

To support OLAP DML composite-dimensioned variables that correspond to
relational fact tables with null facts, OLAP has a special NA value which is
controlled by an NA2 bit. For more information on how Oracle OLAP manages
NA values controlled by NA2 bits, see "NA2 Bits and Null Tracking".

2.3.3.1 Specifying a Value of NA

There are cases in which you might specify an operation for which no data is available.
For example, there might be no appropriate value for a given cell in a variable, for the
return value of a function, or for the value of an expression that includes an arithmetic
operator. In these cases, an NA (Not Available) value is automatically supplied.

To set the values of a variable or relation to NA, you can use an assignment statement
(SET), as shown in the following example.

sales = NA

2.3.3.2 Controlling how NA values are treated

Several options and functions control how NA values are treated. For example:

e The NA options listed in "Options by Category".

e The NAFILL function returns the values of the source expression with any NA
values appearing as the specified fill expression. You can include this function in
an expression to control the format of its value.

e System properties listed in OLAP DML Properties.

2.3.4 Numeric Expressions

A numeric expression evaluates to any of the numeric data types. The data in a
numeric expression can be any combination of the following:

e Numeric literals as discussed in "Numeric Data Types".
e Numeric variables or formulas

e Dimensions

e Functions that yield numeric results

e Date literals, variables, formulas, or functions

In addition, you can join any of these expressions with the arithmetic operators for a
more complex numeric expression. You use arithmetic operators in numeric
expressions with numeric data, which returns a numeric result. You can also use some
arithmetic operators in date expressions with a mix of date and numeric data, to
retrieve either a date or numeric result.

Several options determine how Oracle OLAP handles numeric expressions.

2.3.4.1 Mixing Numeric Data Types

You can include any type of numeric data in the same numeric expression.

ORACLE 2-35

Chapter 2
OLAP DML Expressions

The data type of the result is determined according to the following rules:

* When all the data in the expression is INTEGER or SHORTINTEGER, and the only
operations are addition, subtraction, and multiplication, then the result is INTEGER.

* When any of the data is NUMBER, then the result is NUMBER.

* When any of the data is DECIMAL or SHORTDECIMAL, and no data is NUMBER, then the
result is DECIMAL.

* When you perform any division or exponentiation operations, then the result is
DECIMAL.

2.3.4.2 Using Text Dimensions in Arithmetic Expressions

When you use a dimension with a data type of TEXT in a numeric expression, the
dimension value is treated as a position (an INTEGER) and is used as a numeric. The
position number is based on the default status list, not on current status.

2.3.4.3 Limitations of Floating Point Calculations

All decimal data is converted to floating point format, both for storing and for
calculations. In floating point format, a number is represented by means of a mantissa
and an exponent. The mantissa and the exponent are stored as binary numbers. The
mantissa is a binary fraction which, when multiplied by a number equal to 2 raised to
the exponent, produces a number that equals or closely approximates the original
decimal number.

Because there is not always an exact binary representation for a fractional decimal
number, just as there is not an exact representation for the decimal value of 1/3,
fractional parts of decimal numbers cannot always be represented exactly as binary
fractions. Arithmetic operations on floating point numbers can result in further
approximations, and the inaccuracy gradually increases with the number of operations.
In addition to the approximation factor, the available number of significant digits affects
the exactness of the result.

For all of these reasons, a result computed by the TOTAL, AVERAGE, or other
aggregation functions on a DECIMAL or SHORTDECIMAL variable can differ in the least
significant digits from a result you compute by hand. Because the SHORTDECIMAL data
type provides a maximum of only seven significant digits, you see more of these
differences with SHORTDECIMAL data. Therefore, you might want to use the NUMBER data
type when accuracy is more important than computational speed, such as variables
that contain currency amounts.

Another result of the fact that some fractional decimal numbers cannot be exactly
represented by binary fractions is that for such numbers, the DECIMAL data type offers a
different and closer approximation than the SHORTDECIMAL data type, because it has
more significant digits. This can lead to problems when SHORTDECIMAL and DECIMAL data
types are mixed in a comparison expression. For information on how to handle such
comparisons, see "Boolean Expressions" .

2.3.4.4 Controlling Errors During Calculations

You can control the following types of errors:

» Division by zero. When you divide an NA value by zero, then the result is NA; no
error occurs. Dividing a non-NA value by zero normally produces an error. When a

ORACLE 2-36

Chapter 2
OLAP DML Expressions

divide-by-zero error occurs when you are making a calculation on dimensioned
data, then you can end up with partial results. When you use REPORT or an
assignment statement (SET), values are reported or stored as they are calculated,
so the division by zero halts the loop before it has gone through all the values.

When you want to suppress the divide-by-zero error, then you can change the
value of the DIVIDEBYZERO option to YES. Consequently, the result of any
division by zero is NA and no error occurs. This allows the calculation of the other
values of a dimensioned expression to continue.

* Root of negative numbers. It is normally an error to try to take the root of a
negative number (which includes raising a number to a non-integer power). When
you want to suppress the error message and allow the calculation of roots for non-
negative values of the expression to continue, then set the ROOTOFNEGATIVE
option to YES.

* Overflow errors. The DECIMALOVERFLOW option works in a similar manner to
DIVIDEBYZERO. It lets you control whether an error is generated when a
calculation produces a decimal result larger than it can handle.

2.3.5 Text Expressions

A text expression evaluates to data with the TEXT, NTEXT, or ID data type. Text
expressions can be any combination of the following:

* Text literals. For example, "Boston” or "Current Sales Report”
e Text dimensions. For example, district or month
e Text variables or formulas. For example, product.name

e Functions that yield text results. For example, JOINLINES("Product: ' product.name)

2.3.5.1 Language of Text Expressions

Oracle OLAP supports text expressions in all languages that you can identify using the
NLS_LANGUAGE option. It also supports multi-language programs and applications
using a language dimension.

2.3.5.2 Working with DATETIME Values in Text Expressions

When you use a DATETIME value where a text value (TEXT, NTEXT, or ID) is expected, or
when you store a DATETIME value in a text variable, then the DATETIME value is
automatically converted to a text value.

The format of a DATETIME value is controlled by the NLS_DATE_FORMAT option. Once
a DATETIME value is stored in a text variable, the NLS_DATE_FORMAT setting has no
impact.

2.3.5.3 Working with NTEXT Data

ORACLE

TEXT and NTEXT data are interchangeable in most cases. However, implicit conversion
can occur, such as when an NTEXT value is assigned to a TEXT variable. When TEXT is
converted to NTEXT, no data loss occurs because the UTF-8 character encoding of the
NTEXT data type encompasses most other data types. However, when NTEXT is
converted to TEXT, data loss occurs when NTEXT characters are not represented in the
workspace character set.

2-37

Chapter 2
OLAP DML Expressions

When TEXT and NTEXT values are used together, for example in a call to the JOINCHARS
function, the TEXT value is converted to NTEXT and an NTEXT value is returned.

2.3.6 Datetime and Interval Expressions

As discussed in "Datetime and Interval Data Types", the OLAP DML supports the
same datetime and interval data types that are supported by SQL. This section
discusses:

« "Datetime Expressions "
* ‘"Interval Expressions "

« "Datetime/Interval Arithmetic "

2.3.6.1 Datetime Expressions

A datetime expression yields a value of a datetime data type. A datetime expression
has the following syntax.

datetime_value_expr AT LOCAL |
TIME ZONE {' [+ | -] hh:mm' | DBTIMEZONE | 'time_zone_name' | expr }

A datetinme_val ue_expr can be a datetime value or a compound expression that yields a
datetime value. Datetimes and intervals can be combined according to the rules
defined in Table 2-7. The three combinations that yield datetime values are valid in a
datetime expression.

If you specify AT LOCAL, Oracle uses the current session time zone.
The settings for AT TIME ZONE are interpreted as follows:

e The string " (+]-)HH:MM" specifies a time zone as an offset from UTC.

e DBTIMEZONE: Oracle uses the database time zone established (explicitly or by
default) during database creation.

* SESSIONTIMEZONE: Oracle uses the session time zone established by default or in
the most recent ALTER SESSION statement.

e time_zone_nane: Oracle returns the dat eti me_val ue_expr in the time zone indicated
by ti me_zone_nane. For a listing of valid time zone names, query the
V$TIMEZONE_NAMES dynamic performance view.

Note:

Timezone region hames are needed by the daylight savings feature. The
region names are stored in the time zone files under oracore/zoneinfo. The
server always uses the large time zone file corresponding to the version
number recorded in sys.props$.

« expr: If expr returns a character string with a valid time zone format, Oracle returns
the input in that time zone. Otherwise, Oracle returns an error.

ORACLE 2-38

Chapter 2
OLAP DML Expressions

2.3.6.2 Interval Expressions

An interval expression yields a value of DSNTERVAL or MY INTERVAL where the expression
has the following syntax.

interval_value_expr DAY [(leading_field_precision)] TO

SECOND |[(fractional_second_precision)]| YEAR [(leading_field_precision)] TO
MONTH

The interval _val ue_expr can be a DSNTERVAL or MYINTERVAL value or a compound
expression that yields a DSNTERVAL or MYINTERVAL value. Datetimes and intervals can be
combined according to the rules defined in Table 2-7 . The six combinations that yield
interval values are valid in an interval expression.

Both | eadi ng_fi el d_precision and fracti onal _second_preci si on can be any integer
from 0 to 9. If you omit the | eadi ng_fi el d_pr eci si on for either DAY or YEAR, then Oracle
Database uses the default value of 2. If you omit the fracti onal _second_pr eci si on for
second, then the database uses the default value of 6. If the value returned by a query
contains more digits that the default precision, then Oracle Database returns an error.
Therefore, it is good practice to specify a precision that you know is at least as large
as any value returned by the query.

2.3.6.3 Datetime/Interval Arithmetic

You can perform several arithmetic operations on date (DATETIME), timestamp
(TIMESTAMP, TIMESTAMP_TZ, and TIMESTAMP_LTZ) and interval (DSINTERVAL and YMINTERVAL)
data. Oracle calculates the results based on the following rules:

* You can use NUMBER constants in arithmetic operations on date and timestamp
values, but not interval values. Oracle internally converts timestamp values to date
values and interprets NUMBER constants in arithmetic datetime and interval
expressions as numbers of days. For example, SYSDATE + 1 is tomorrow. SYSDATE -
7 is one week ago. SYSDATE + (10/1440) is ten minutes from now. Subtracting the
hire_date column of the sample table employees from SYSDATE returns the number of
days since each employee was hired. You cannot multiply or divide date or
timestamp values.

» Oracle implicitly converts BINARY_FLOAT and BINARY_DOUBLE operands to NUMBER.

e Each DATETIME value contains a time component, and the result of many date
operations include a fraction. This fraction means a portion of one day. For
example, 1.5 days is 36 hours. These fractions are also returned by Oracle built-in
functions for common operations on DATETIME data. For example, the
MONTHS_BETWEEN function returns the number of months between two dates. The
fractional portion of the result represents that portion of a 31-day month.

» If one operand is a DATETINME value or a numeric value (neither of which contains
time zone or fractional seconds components), then:

— Oracle implicitly converts the other operand to DATETIME data. (The exception is
multiplication of a numeric value times an interval, which returns an interval.)

— If the other operand has a time zone value, then Oracle uses the session time
zone in the returned value.

— If the other operand has a fractional seconds value, then the fractional
seconds value is lost.

ORACLE 2-39

ORACLE

Chapter 2

OLAP DML Expressions

* When you pass a timestamp, interval, or numeric value to a built-in function that
was designed only for the DATETIME data type, Oracle implicitly converts the non-

DATETIME value to a DATETIME value.

* When interval calculations return a datetime value, the result must be an actual
datetime value or the database returns an error.

e Oracle performs all timestamp arithmetic in UTC time. For TIMESTAMP_LTZ, Oracle
converts the datetime value from the database time zone to UTC and converts
back to the database time zone after performing the arithmetic. For TIMESTAMP_TZ,
the datetime value is always in UTC, so no conversion is necessary.

The following table is a matrix of datetime arithmetic operations. Dashes represent
operations that are not supported.

Table 2-13 Matrix of Datetime Arithmetic
]

Operand & Operator DATETIME TIMESTAMP INTERVAL Numeric
DATETIME — — — —

+ - - DATETIME DATETIME
- DATETIME DATETIME DATETIME DATETIME
* — — — -

/ - _ - -
TIMESTAMP — — — —

+ - - TIMESTAMP -

- INTERVAL INTERVAL TIMESTAMP TIMESTAMP
* — — — —

/ - _ - -
INTERVAL — — — —

+ DATETIME TIMESTAMP INTERVAL -

- - - INTERVAL -

* - - - INTERVAL
/ - - - INTERVAL
Numeric — — — —

+ DATETIME DATETIME - NA

- - - - NA

* - - INTERVAL NA

/ - - - NA
Examples

You can add an interval value expression to a start time. Consider the sample table
oe.orders with a column order_date.

2-40

Chapter 2
OLAP DML Expressions

2.3.7 Date-only Expressions

A date-only expression is an expression that evaluates to the OLAP DML DATE data
type as discussed in "Date-only Data Type". The expression might be a function that
returns a date-only value, a date-only literal, or a more complex expression.

¢ See Also:

"Date-only Input Values", "Date-only Dimension Values", and "DATE-only
Variable Display Styles".

Calculating DATE-only Values

You can add numbers to a DATE value, or subtract numbers from them. Whole numbers
are calculated as days, and decimal values are calculated as fractions of a day. For
example, SYSDATE+1.5 adds 1 day and 12 hours to the current date and time. You
cannot divide or multiply DATE values, and you cannot subtract them from numbers. For
example, 1-SYSDATE and 1*SYSDATE return errors.

Using DATE-only Values in Arithmetic Expressions

When you use DATE values in arithmetic expressions, the result can be numeric or it
can be a date. The legal operations for dates and the data type of the result are
outlined in the following table:

Table 2-14 Legal Operations for DATE Values
|

Operation Result

Add or subtract a number from a Future or prior date

date

Subtract a date from a date The number of days between the dates.

Add or subtract a number from a The time period at the appropriate interval in the future or

time period. the past, similar to the return values of the LEAD or LAG
function. The result is NA when there is no dimension
value that corresponds to the result. The calculation is
made based on the positions of the values in the default
status list of the dimension.

2.3.8 Boolean Expressions

ORACLE

A Boolean expression is a logical statement that is either TRUE or FALSE. Boolean
expressions can compare data of any type if both parts of the expression have the
same basic data type. You can test data to see if it is equal to, greater than, or less
than other data.

A Boolean expression can consist of Boolean data, such as the following:

* BOOLEAN values (YES and NO, and their synonyms, ON and OFF, and TRUE and FALSE)

e BOOLEAN variables or formulas

2-41

Chapter 2
OLAP DML Expressions

* Functions that yield BOOLEAN results
e BOOLEAN values calculated by comparison operators
For example, assume that your code contains the following Boolean expression.

actual GT 20000

When processing this expression, Oracle OLAP compares each value of the variable
actual to the constant 20,000. When the value is greater than 20,000, then the
statement is TRUE; when the value is less than or equal to 20,000, then the statement is
FALSE.

When you are supplying a Boolean value, you can type either YES, ON, or TRUE for a true
value, and NO, OFF, or FALSE for a false value. When the result of a Boolean calculation
is produced, the defaults are YES and NO in the language specified by the
NLS_LANGUAGE option. The read-only YESSPELL and NOSPELL options record the
YES and NO values.

Table 2-11 shows the comparison and logical operators. Each operator has a priority
that determines its order of evaluation. Operators of equal priority are evaluated left to
right, unless parentheses change the order of evaluation. However, the evaluation is
halted when the truth value is decided. For example, in the following expression, the
TOTAL function is never executed because the first phrase determines that the whole
expression is true.

yes EQ yes OR TOTAL(sales) GT 20000

2.3.8.1 Creating Boolean Expressions

A Boolean expression is a three-part clause that consists of two items to be compared,
separated by a comparison operator. You can create a more complex Boolean
expression by joining any of these three-part expressions with the AND and OR logical
operators. Each expression that is connected by AND or OR must be a complete Boolean
expression in itself, even when it means specifying the same variable several times.

For example, the following expression is not valid because the second part is
incomplete.

sales GT 50000 AND LE 20000

In the next expression, both parts are complete so the expression is valid.

sales GT 50000 AND sales LE 20000

When you combine several Boolean expressions, the whole expression must be valid
even when the truth value can be determined by the first part of the expression. The
whole expression is compiled before it is evaluated, so when there are undefined
variables in the second part of a Boolean expression, you get an error.

Use the NOT operator, with parentheses around the expression, to reverse the sense of
a Boolean expression.

The following two expressions are equivalent.

district NE "BOSTON®
NOT(district EQ *BOSTON®)

ORACLE 2-42

Chapter 2
OLAP DML Expressions

Example 2-2 Using Boolean Comparisons

The following example shows a report that displays whether sales in Boston for each
product were greater than a literal amount.

LIMIT time TO FIRST 2
LIMIT geography TO "BOSTON®
REPORT DOWN product ACROSS time: f.sales GT 7500

This REPORT statement returns the following data.

CHANNEL: TOTALCHANNEL
GEOGRAPHY: BOSTON
---F.SALES GT 7500---

———————— TIME--——---——-
PRODUCT Jan02 Feb02
Portaudio NO NO
Audiocomp YES YES
TV NO NO
VCR NO NO
Camcorder YES YES
Audiotape NO NO
Videotape YES YES

2.3.8.2 Comparing NA Values in Boolean Expressions

When the data you are comparing in a Boolean expression involves an NA value, a
YES or NO result is returned when that makes sense. For example, when you test
whether an NA value equals a non-NA value, then the result is NO. However, when the
result would be misleading, then NA is returned. For example, testing whether an NA
value is less than or greater than a non—NA value gives a result of NA.

The following table shows the results of Boolean expressions involving NA values,
which yield non-NA values:

Table 2-15 Boolean Expressions with NA Values that Result in non-NA Values
|

Expressions Result
NA EQ NA YES
NA NE NA NO
NA EQ non-NA NO
NA NE non-NA YES
NA AND NO NO
NA OR YES YES

2.3.8.3 Controlling Errors When Comparing Numeric Data

When you get unexpected results when comparing numeric data, then there are
several possible causes to consider:

* A number you are comparing might have a small decimal part that does not show
in output because of the setting of the DECIMALS option.

ORACLE 2-43

Chapter 2
OLAP DML Expressions

* You are comparing two floating point numbers and at least one number is the
result of an arithmetic operation.

* You have mixed SHORTDECIMAL and DECIMAL data types in a comparison.

Oracle recommends that you use the ABS and ROUND functions to do approximate
tests for equality and avoid all three causes of unexpected comparison failure. When
using ABS or ROUND, you can adjust the absolute difference or the rounding factor to
values you feel are appropriate for your application. When speed of calculation is
important, then you probably want to use the ABS rather than the ROUND function.

2.3.8.3.1 Controlling Errors Due to Numerical Precision

Suppose expense is a decimal variable whose value is set by a calculation. When the
result of the calculation is 100.000001 and the number of decimal places is two, then
the value appears in output as 100.00. However, the output of the following statement
returns NO.

SHOW expense EQ 100.00

You can use the ABS or the ROUND function to ignore these slight differences when
making comparisons.

2.3.8.3.2 Controlling Errors When Comparing Floating Point Numbers

A standard restriction on the use of floating point numbers in a computer language is
that you cannot expect exact equality in a comparison of two floating point numbers
when either number is the result of an arithmetic operation. For example, on some
systems, the following statement returns a NO instead of the expected YES.

SHOW .1 + .2 EQ .3

When you deal with decimal data, do not code direct comparisons. Instead, use the
ABS or the ROUND function to allow a tolerance for approximate equality. For
example, either of the following two statements produce the desired YES.

SHOW ABS((.1 + .2) - .3) LT .00001
SHOW ROUND(.1 + .2) EQ ROUND(.3, .00001)

2.3.8.3.3 Controlling Errors When Comparing Different Numeric Data Types

ORACLE

You cannot expect exact equality between SHORTDECIMAL and DECIMAL or NUMBER
representations of a decimal number with a fractional component, because the DECIMAL
and NUMBER data types have more significant digits to approximate fractional
components that cannot be represented exactly.

Suppose you define a variable with a SHORTDECIMAL data type and set it to a fractional
decimal number, then compare the SHORTDECIMAL number to the fractional decimal
number, as shown here.

DEFINE sdvar SHORTDECIMAL
sdvar = 1.3
SHOW sdvar EQ 1.3

The comparison is likely to return NO. What happens in this situation is that the literal is

automatically typed as DECIMAL and converts the SHORTDECIMAL variable sdvar to DECIMAL,
which extends the decimal places with zeros. A bit-by-bit comparison is then

2-44

Chapter 2
OLAP DML Expressions

performed, which fails. The same comparison using a variable with a DECIMAL or a
NUMBER data type is likely to return YES.

There are several ways to avoid this type of comparison failure:

e Do not mix the SHORTDECIMAL with DECIMAL or NUMBER types in comparisons. To avoid
mixing these two data types, generally avoid defining variables with decimal
components as SHORTDECIMAL.

» Use the ABS or ROUND function to allow for approximate equality. The following
statements both produce YES.

SHOW ABS(sdvar - 1.3) LT .00001
SHOW ROUND(sdvar, .00001) EQ ROUND(.3, .00001)

2.3.8.4 Comparing Dimension Values

Values are not compared in the same dimension based on their textual values.
Instead, Oracle OLAP compares the positions of the values in the default status of the
dimension. This enables you to specify statements like the following statement.

REPORT district LT "Seattle”

Statements are interpreted such as these using the following process:

1. The text literal “Seattle” is converted to its position in the district default status
list of the dimension.

2. That position is compared to the position of all other values in the district
dimension.

3. As shown by the following report, the value YES is returned for districts that are
positioned before Seattle in the district default status list of the dimension, and
NO for Seattle itself.

REPORT 22 WIDTH district LT "Seattle”

District DISTRICT LT "Seattle”

Boston YES
Atlanta YES
Chicago YES
Dallas YES
Denver YES
Seattle NO

A more complex example assigns increasing values to the variable quota based on
initial values assigned to the first six months. The comparison depends on the position
of the values in the month dimension. Because it is a time dimension, the values are in
chronological order.

quota = IF month LE "Jun02" THEN 100 ELSE LAG(quota, 1, month)* 1.15
However, when you compare values from different dimensions, such as in the

expression region It district, then the only common denominator is TEXT, and text
values are compared, not dimension positions.

ORACLE 2-45

Chapter 2
OLAP DML Expressions

2.3.8.5 Comparing Dates

You can compare two dates with any of the Boolean comparison operators. For dates,
"less" means before and "greater" means after. The expressions being compared can
include any of the date calculations discussed in Table 2-11. For example, in a billing

application, you can determine whether today is 60 or more days after the billing date

to send out a more strongly worded bill.

bill.date + 60 LE SYSDATE
Dates also have a numeric value. You can use the TO_NUMBER and TO_DATE

functions to change a value from a DATE to an INTEGER or an INTEGER to a DATE for
comparison.

2.3.8.6 Comparing Text Data

When you compare text data, you must specify the text exactly as it appears, with
punctuation, spaces, and uppercase or lowercase letters. A text literal must be
enclosed in single quotes. For example, this expression tests whether the first letter of
each employee's name is greater than the letter "M."

EXTCHARS(employee.name, 1, 1) GT "M"

You can compare TEXT and ID values, but they can only be equal when they are the
same length. When you test whether a text value is greater or less than another, the
ordering is based on the setting of the NLS_SORT option.

You can compare numbers with text by first converting the number to text. Ordering is
based on the values of the characters. This can produce unexpected results because
the text is evaluated from left to right. For example, the text literal 1234 is greater than
100,999.00 because 2, the second character in the first text literal, is greater than 0, the
second character in the second text literal.

Suppose name. label is an ID variable whose value is 3-Person and name.desc is a TEXT
variable whose value is 3-Person Tents.

The result of the following SHOW statement is NO.

SHOW name.desc EQ name.label

The result of the following statements is YES.

name.desc = "3-Person”
SHOW name.desc EQ name.label

2.3.8.6.1 Comparing a Text Value to a Text Pattern

ORACLE

The Boolean operator LIKE is designed for comparing a text value to a text pattern. A
text value is like another text value or pattern when corresponding characters match.

Besides literal matching, LIKE lets you use wildcard characters to match multiple
characters in a string:

* Anunderscore (_) character in a pattern matches any single character.

* A percent (%) character in a pattern matches zero or more characters in the first
string.

2-46

Chapter 2
OLAP DML Expressions

For example, a pattern of %AT_ matches any text that contains zero or more characters,
followed by the characters AT, followed by any other single character. Both DATA and
ERRATA return YES when LIKE is used to compare them with the pattern %AT_.

The results of expressions using the LIKE operator are affected by the settings of the
LIKECASE and LIKENL options.

No negation operator exists for LIKE. To accomplish negation, you must negate the
entire expression. For example, the result of the following statement is NO.

SHOW NOT ("Boston® LIKE "Bo%")

2.3.8.6.2 Comparing Text Literals to Relations

You can also compare a text literal to a relation. A relation contains values of the
related dimension and the text literal is compared to a value of that dimension. For
example, region.district holds values of region, so you can do the following
comparison.

region.district EQ "West"

2.3.9 Conditional Expressions

A conditional expression is an expression you can use to select between values based
on a condition. You can use conditional expression as part of any other expression if
the data type is appropriate. Oracle OLAP supports the use of the following conditional
expressions:

* IF..THEN...ELSE expression
* SWITCH Expressions

2.3.9.1 IF...THEN...ELSE expression

ORACLE

An |IF expression is an expression you can use to select one of two values based on a
Boolean condition.

Note:

Do not confuse the IF expression with the IF... THEN...ELSE command, which
has similar syntax but a different purpose, and which must be used in an
Oracle OLAP program. The IF...THEN...ELSE command does not have a data
type and is not evaluated like an expression.

An IF expression has the following syntax.
IF Boolean-expression THEN expressionl ELSE expression2

In most cases, expressionl and expression2 must be of the same basic data type
(numeric, text, or Boolean) and the data type of the whole expression is determined
using the same rules as those for the binary operators. However, when the data type
of either expression1 or expression2 is DATE, it is possible for the other expression to
have a numeric or text data type. Because Oracle OLAP expects both data types to be
DATE, it converts the numeric or text value to a DATE. Also, when the value of one

2-47

Chapter 2
OLAP DML Expressions

expression is a dimension value then the value of the other expression is converted to
a dimension value as it is for QDRs.

You can nest IF expressions; however, in this case, you might want to use a SWITCH
expression instead as discussed in "SWITCH Expressions".

An IF expression is processed by first evaluating the Boolean expression; then:

* When the result of the Boolean expression is TRUE, then expression1 is evaluated
and returns that value.

* When the result of the Boolean expression is FALSE, then expression2 is evaluated
and returns that value.

The expressi onl and expressi on2 arguments are any valid OLAP DML expressions that
evaluate to the same basic data type. However, when the data type of either value is
DATE, it is possible for the other value to have a numeric or text data type. Because
both data types are expected to be DATE, Oracle OLAP converts the numeric or text
value to a DATE. The data type of the whole expression is the same as the two
expressions. When the result of the Boolean expression is NA, then NA is returned.

Example 2-3 Using an IF Expression

This example shows a sales bonus report. The bonus is 5 percent of the amount that
sales exceeded budget, but when sales in the district are below budget, then the
bonus is zero.

LIMIT month TO "Jan02" TO "Jun02"

LIMIT product TO "Tents"

REPORT DOWN district IF sales-sales.plan LT 0 THEN O
ELSE .05*(sales-sales.plan)

PRODUCT: TENTS
---IF SALES-SALES.PLAN LT O THEN O ELSE .05*(SALES-SALES.PLAN)---

DISTRICT Jan02 Feb02 Mar02 Apr02 May02 Jun02

Boston 229.53 0.00 0.00 0.00 584.51 749.13
Atlanta 0.00 0.00 0.00 190.34 837.62 1,154.87

Chicago 0.00 0.00 0.00 84.06 504.95 786.81

2.3.9.2 SWITCH Expressions

A SWITCH expression consists of a series of CASE expressions. You can use a
SWITCH expression as an alternative to a complicated, nested IF ... THEN ... ELSE
expression when all the conditions are equality comparisons with a single value.

Note:

Do not confuse the SWTICH expression with the SWITCH command, which
has similar syntax but a different purpose, and which must be used in an
Oracle OLAP program. The SWITCH command is not evaluated like an
expression.

A SWITCH expression has the following syntax.

ORACLE 2-48

Chapter 2
OLAP DML Expressions

SWITCH expression DO { case-label ... exp [,] } ... DOEND
where case- | abel has the following syntax:
CASE exp: | DEFAULT:

When processing a SWITCH expression, Oracle OLAP compares each CASE
expression in succession until it finds a match. When a match is found, it returns the
value specified after the last label of the current case group. When no match is found
and a DEFAULT label is specified, it returns the value specified for the DEFAULT
case; otherwise it returns NA.

Example 2-4 Using a SWITCH Expression Instead of an IF Expression

Assume that you have coded the following OLAP DML statement which includes
nested IF...THEN...ELSE statements.

testprogram = IF testtype EQ 0 -
THEN “program0® -
ELSE IF testtype EQ 1 -
THEN “"programl® -
ELSE IF testtype EQ 2 OR testtype EQ 3 -
THEN "program2*®
ELSE NA

You could, instead, code the same behavior using a SWITCH expression as shown
below.

testprogram = SWITCH testtype DO
CASE 0: "program0-,
CASE 1: “programl®,

CASE 2: -

CASE 3: T"program2®, -
DEFAULT: NA -

DOEND

You could also code the same behavior using a SWITCH statement that spans fewer
lines, omits commas, and omits the DEFAULT case because NA is the default return
value when a match is not found.

testprogram = SWITCH testtype DO CASE O: "program0® CASE 1: "programl® -
CASE 2: CASE 3: "program2® DOEND

2.3.10 Substitution Expressions

ORACLE

To construct a substitution expression, use an ampersand character (&) at the
beginning of an expression. Using an ampersand (that is, the substitution operator)
this way is also called ampersand substitution. The ampersand specifies that Oracle
OLAP evaluates an expression containing a substitution expression as follows:

1. Evaluate the expression following the ampersand (the substitution expression).

2. Evaluate the rest of the expression using the result of step 1 (that is, the result of
the substitution expression).

Ampersand substitution gives you a level of indirection when you are specifying an
expression. For example, when you specify an ampersand followed by a variable that
holds the name of another variable, the value of the expression becomes the data in
the second variable. Ampersand substitution lets you write more general programs

2-49

ORACLE

Chapter 2
OLAP DML Expressions

that can operate on data that is chosen when the program is run. Note, however, that,
Oracle OLAP does not compile program lines with ampersand substitution; instead
these lines are interpreted when the program runs. To avoid ampersand substitution in
a program, you can often use an IF or SWITCH command instead.

You cannot use ampersand substitution in model equations.

Using Ampersand Substitution with QDRs

When you use an ampersand with a QDR, you must enclose the whole expression in
parentheses if you want the variable to be qualified before the substitution is made.

Suppose you have a text variable named myvar that is dimensioned by reptype and that
contains the names of variables. Remember that it is myvar that is dimensioned by
reptype, not the variables named by myvar. Therefore, you must use parentheses so
that myvar is qualified and the resulting value is used in a REPORT statement.

REPORT &(myvar(reptype "actual®))

When you do not use parentheses and the variable that is specified in myvar is sales,
then you get an error message that sales is not dimensioned by reptyp

Example 2-5 Using Ampersand Substitution

Suppose you have a variable called curname that holds the name of a dimension in the
analytic workspace (product). When you execute the following statement, then
REPORT produces the single value, product, which is the actual value stored in the
curname variable.

REPORT curname

CURNAME

PRODUCT

However, when you execute the following statement, then REPORT produces the
values of the dimension product.

REPORT &curname

PRODUCT
Tents
Canoes
Racquets
Sportswear
Footwear

2-50

Formulas, Models, Aggregations, and
Allocations

Calculation objects are OLAP DML objects that contain OLAP DML statements that
specify analysis to be performed. Calculation objects include: formulas, models,
aggregation specifications, allocation specifications, and programs.

This chapter contains information on the following

Creating Calculation Objects
OLAP DML Formulas

OLAP DML Model Objects
OLAP DML Aggregation Objects
OLAP DML Allocation Objects

For information on creating OLAP DML programs, see OLAP DML Programs.

3.1 Creating Calculation Objects

The general process of creating a calculation specification object is the following two
step process:

1.
2.

Define the calculation object using the appropriate DEFINE statement.

Add the calculation specification to the object definition. You can add the
calculation specification to the definition of a calculation object in the following
ways:

At the command line level of the OLAP Worksheet, in an input file, or as an
argument to a PL/SQL function. In this case, ensure that the object is the
current object (issue a CONSIDER statement, if necessary), and, then, issue
the appropriate statement that includes the specification as a multiline text
argument. To code the specification as a multiline text, you can use a
JOINLINES function where each of the text arguments of JOINLINES is a
statement that specifies the desired processing, and where the final statement
IS END.

In an Edit Window of the OLAP Worksheet. In this case, at the command line
level of the OLAP Worksheet, issue an EDIT statement with the appropriate
keyword. An EDIT statement opens an Edit Window for the specified object.
You can then type each statement as an individual line in the Edit Window.
Saving the specification and closing the Edit Window when you are finished.

The following table outlines the OLAP DML statements that you use to create each
type of calculation specification.

ORACLE

3-1

Chapter 3
OLAP DML Formulas

Table 3-1 Commands for Defining calculation objects

___|
Calculations Definition Statement Specification Statement For More Information

Formula DEFINE FORMULA EQ "OLAP DML Formulas"

Model DEFINE MODEL MODEL "OLAP DML Model
Objects"

Aggregation DEFINE AGGMAP AGGMAP "OLAP DML Aggregation
Objects"

Allocation DEFINE AGGMAP ALLOCMAP " OLAP DML Allocation
Objects"

Program DEFINE PROGRAM PROGRAM OLAP DML Programs

3.2 OLAP DML Formulas

You can
use and
you can

save an expression in a formula. Frequently, you define a formula for ease of
to save storage space. Once you have defined a formula for an expression,
use the name of the formula to represent the expression. Oracle OLAP does

not store the data for a formula in a variable; instead it calculates the data at run time
each time the data is requested.

Before you create a formula, decide whether you want to specify the expression when

you first

define the formula object or whether you want to specify the expression for

the formula after you define the formula object:

* To specify the expression when you first define the formula object:

1.

Issue a DEFINE FORMULA statement to define the formula object. Include the
expression in the definition. Do not specify values for the datatype or
dimensions arguments.

(Optional) Issue a COMPILE statement to compile the formula.

When you want the formula to be a permanent part of the analytic workspace,
save the formula using an UPDATE statement followed by COMMIT.

* To specify the expression for the formula after you define the formula object:

1.

Issue a DEFINE FORMULA statement to define the formula object. Specify
values for the datatype or dimensions arguments, but do not specify a value for
the expression itself.

Issue a CONSIDER statement to make the formula the current definition and
then issue an EQ statement to specify the expression for the formula.

(Optional) Issue a COMPILE statement to compile the formula.

When you want the formula to be a permanent part of the analytic workspace,
save the formula using an UPDATE statement followed by COMMIT.

For example, you can define a formula to calculate dollar sales, as follows.

DEFINE d

ollar.sales FORMULA units * price

You can use TRACE to help you debug a forumula.

ORACLE

3-2

Chapter 3
OLAP DML Model Objects

3.3 OLAP DML Model Objects

This topic provides information about creating and executing OLAP DML models. It
includes the following subtopics:

* What is an OLAP DML Model?
» Creating Models

e Compiling Models

* Running a Model

* Debugging a Model

3.3.1 What is an OLAP DML Model?

An OLAP DML model is a set of interrelated equations that can assign results either to
a variable or to a dimension value. For example, in a financial model, you can assign
values to specific line items, such as gross.margin or net. income.

gross.margin = revenue - cogs

When an assignment statement assigns data to a dimension value or refers to a
dimension value in its calculations, then it is called a dimension-based equation. A
dimension-based equation does not refer to the dimension itself, but only to the values
of the dimension. Therefore, when the model contains any dimension-based
equations, then you must specify the name of each of these dimensions in a DIMENSION
statement at the beginning of the model.

When a model contains any dimension-based equations, then you must supply the
name of a solution variable when you run the model. The solution variable is both a
source of data and the assignment target of model equations. It holds the input data
used in dimension-based equations, and the calculated results are stored in
designated values of the solution variable. For example, when you run a financial
model based on the line dimension, you might specify actual as the solution variable.

Dimension-based equations provide flexibility in financial modeling. Because you do
not need to specify the modeling variable until you solve a model, you can run the
same model with the actual variable, the budget variable, or any other variable that is
dimensioned by line.

Models can be quite complex. You can:

e Include one model within another model as discussed in "Nesting Models"

e Use data from different time periods as discussed in "Using Data from Past and
Future Time Periods"

e Solve simultaneous equations as discussed in "Solving Simultaneous Equations”

e Create models for different scenarios as described in "Modeling for Multiple
Scenarios"

3.3.2 Creating Models

To create an OLAP DML model, take the following steps:

ORACLE 3-3

Chapter 3
OLAP DML Model Objects

1. Issue a DEFINE MODEL command to define the program object.

2. Issue a MODEL command which adds a specification to the model to specify the
processing that you want performed.

3. Compile the model as described in "Compiling Models".

4. (Optional) If necessary, change the settings of model options listed in "Model
Options".

5. Execute the model as described in "Running a Model".
6. Debug the model as described in "Debugging a Model".

7. When you want the model to be a permanent part of the analytic workspace, save
the model using an UPDATE command followed by COMMIT.

For an example of creating a model, see Example 10-57.

3.3.2.1 Nesting Models

You can include one model within another model by using an INCLUDE statement
within a MODEL command. The MODEL command that contains the INCLUDE
statement is referred to as the parent model. The included model is referred to as the
base model. You can nest models by placing an INCLUDE statement in a base
model. For example, model myModel1 can include model myModel2, and model myModel?2
can include model myModel3. The nested models form a hierarchy. In this example,
myModel1 is at the top of the hierarchy, and myModel3 is at the root.

When a model contains an INCLUDE statement, then it cannot contain any
DIMENSION statements. A parent model inherits its dimensions, if any, from the
DIMENSION statements in the root model of the included hierarchy. In the example
just given, models myModel1 and myModel2 both inherit their dimensions from the
DIMENSION statements in model myModel 3.

The INCLUDE statement enables you to create modular models. When certain
equations are common to several models, then you can place these equations in a
separate model and include that model in other models as needed.

The INCLUDE statement also facilitates what-if analyses. An experimental model can
draw equations from a base model and selectively replace them with new equations.
To support what-if analysis, you can use equations in a model to mask previous
equations. The previous equations can come from the same model or from included
models. A masked equation is not executed or shown in the MODEL.COMPRPT
report for a model.

3.3.2.2 Dimension Status and Model Equations

ORACLE

When a model contains an assignment statement to assign data to a dimension value,
then the dimension is limited temporarily to that value, performs the calculation, and
restores the initial status of the dimension.

For example, a model might have the following statements.

DIMENSION line
gross.margin = revenue - c0gs

If you specify actual as the solution variable when you run the model, then the
following code is constructed and executed.

3-4

Chapter 3
OLAP DML Model Objects

PUSH line

LIMIT line TO gross.margin

actual = actual(line revenue) - actual(line cogs)
POP line

The fact that using a solution variable in a model causes this behind-the-scenes code
construction allows you perform complex calculations with simple model equations.
For example, line item data might be stored in the actual variable, which is
dimensioned by line. However, detail line item data might be stored in a variable
named detail .data, with a dimension named detail.line.

When your analytic workspace contains a relation between line and detail . line,
which specifies the line item to which each detail item pertains, then you might write
model equations such as the following ones.

revenue = total(detail.data line)
expenses = total(detail.data line)

The relation between detail.line and line is used automatically to aggregate the
detail data into the appropriate line items. The code that is constructed when the
model is run ensures that the appropriate total is assigned to each value of the line
dimension. For example, while the equation for the revenue item is calculated, line is
temporarily limited to revenue, and the TOTAL function returns the total of detail items for
the revenue value of line.

3.3.2.3 Using Data from Past and Future Time Periods

Several OLAP DML functions make it easy for you to use data from past or future time
periods. For example, the LAG function returns data from a specified previous time
period, and the LEAD function returns data from a specified future period.

When you run a model that uses past or future data in its calculations, you must
ensure that your solution variable contains the necessary past or future data. For
example, a model might contain an assignment statement that bases an estimate of
the revenue line item for the current month on the revenue line item for the previous
month.

DIMENSION line month

revenue = LAG(revenue, 1, month) * 1.05

When the month dimension is limited to Apr2004 to Jun2004 when you run the model,
then you must ensure that the solution variable contains revenue data for Mar96.

When your model contains a LEAD function, then your solution variable must contain
the necessary future data. For example, when you want to calculate data for the
months of April through June of 2004, and when the model retrieves data from one
month in the future, then the solution variable must contain data for July 2004 when
you run the model.

3.3.2.4 Handling NA Values in Models

Oracle OLAP observes the NASKIP2 option when it evaluates equations in a model.
NASKIP2 controls how NA values are handled when + (plus) and - (minus) operations

ORACLE 3-5

Chapter 3
OLAP DML Model Objects

are performed. The setting of NASKIP2 is important when the solution variable
contains NA values.

The results of a calculation may be NA not only when the solution variable contains an
NA value that is used as input, but also when the target of a simultaneous equation is
NA. Values in the solution variable are used as the initial values of the targets in the first
iteration over a simultaneous block. Therefore, when the solution variable contains NA
as the initial value of a target, an NA result may be produced in the first iteration, and
the NA result may be perpetuated through subsequent iterations.

To avoid obtaining NA for the results, you can ensure that the solution variable does not
contain NA values or you can set NASKIP2 to YES before running the model.

3.3.2.5 Solving Simultaneous Equations

An iterative method is used to solve the equations in a simultaneous block. In each
iteration, a value is calculated for each equation. The new value is compared to the
value from the previous iteration. When the comparison falls within a specified
tolerance, then the equation is considered to have converged to a solution. When the
comparison exceeds a specified limit, then the equation is considered to have
diverged.

When all the equations in the block converge, then the block is considered solved.
When any equation diverges or fails to converge within a specified number of
iterations, then the solution of the block (and the model) fails and an error occurs.

You can exercise control over the solution of simultaneous equations with the OLAP
DML options described in "Model Options". For example, using these options, you can
specify the solution method to use, the factors to use in testing for convergence and
divergence, the maximum number of iterations to perform, and the action to take when
the assignment statement diverges or fails to converge.

3.3.2.6 Modeling for Multiple Scenarios

Instead of calculating a single set of figures for a month and division, you might want
to calculate several sets of figures, each based on different assumptions.

You can define a scenario model that calculates and stores forecast or budget figures
based on different sets of input figures. For example, you might want to calculate profit
based on optimistic, pessimistic, and best-guess figures.

To build a scenario model:

1. Define a scenario dimension.

2. Define a solution variable dimensioned by the scenario dimension.
3. Enter input data into the solution variable.

4. Write a model to calculate results based on the input data.

For an example of building a scenario model see, Example 10-58.

3.3.3 Compiling Models

ORACLE

When you finish writing the statements in a model, you can use the COMPILE
command to compile the model. During compilation, COMPILE checks for format
errors, so you can use COMPILE to help debug your code before running a model.

3-6

Chapter 3
OLAP DML Model Objects

When you do not use COMPILE before you run the model, then the model is compiled
automatically before it is solved.You can use the OBJ function with the ISCOMPILED
choice to test whether a model is compiled.

SHOW OBJ(ISCOMPILED *myModel*)

When you compile a model, either by using a COMPILE statement or by running the
model, the model compiler checks for problems that are unique to models. You receive
an error message when any of the following occurs:

e The model contains any statements other than DIMENSION, INCLUDE, and
assignment (SET) statements.

* The model contains both a DIMENSION statement and an INCLUDE statement.

A DIMENSION or INCLUDE statement is placed after the first equation in the
model.

e The dimension values in a single dimension-based equation refer to two or more
different dimensions.

e An equation refers to a name that the compiler cannot identify as an object in any
attached analytic workspace. When this error occurs, it may be because an
equation refers to the value of a dimension, but you have neglected to include the
dimension in a DIMENSION statement. In addition, a DIMENSION statement may
appear to be missing when you are compiling a model that includes another model
and the other model fails to compile. When a root model (the innermost model in a
hierarchy of included models) fails to compile, the parent model cannot inherit any
DIMENSION commands from the root model. In this case the compiler may report
an error in the parent model when the source of the error is actually in the root
model. See INCLUDE for additional information.

3.3.3.1 Resolving Names in Equations

ORACLE

The model compiler examines each name in an equation to determine the analytic
workspace object to which the name refers. Because you can use a variable and a
dimension value in the same way in a model equation (basing calculations on it or
assigning results to it), a name might be the name of a variable or it might be a value
of any dimension listed in a DIMENSION statement.

To resolve each name reference, the compiler searches through the dimensions listed
in explicit or inherited DIMENSION statements, in the order they are listed, to
determine whether the name matches a dimension value of a listed dimension. The
search concludes as soon as a match is found.

Therefore, when two or more listed dimensions have a dimension value with the same
name, the compiler assumes that the value belongs to the dimension named earliest in
a DIMENSION statement.

Similarly, the model compiler might misinterpret the dimension to which a literal
INTEGER value belongs. For example, the model compiler assumes that the literal value
200" belongs to the first dimension that contains either a value at position 200 or the
literal dimension value 200.

To avoid an incorrect identification, you can specify the desired dimension and enclose
the value in parentheses and single quotes. See "SET".

When the compiler finds that a name is not a value of any dimension specified in a
DIMENSION statement, it assumes that the name is the name of an analytic

3-7

Chapter 3
OLAP DML Model Objects

workspace variable. When a variable with that name is not defined in any attached
analytic workspace, an error occurs.

3.3.3.2 Code for Looping Over Dimensions

The model compiler determines the dimensions over which the statements loop. When
an equation assigns results to a variable, the compiler constructs code that loops over
the dimensions (or bases of a composite) of the variable.

When you run a model that contains dimension-based equations, the solution variable
that you specify can be dimensioned by more dimensions than are listed in
DIMENSION statements.

3.3.3.3 Evaluating Program Arguments

When you specify the value of a model dimension as an argument to a user-defined
program, the compiler recognizes a dependence introduced by this argument.

For example, an equation might use a program named weight that tests for certain
conditions and then weights and returns the Taxes line item based on those conditions.
In this example, a model equation might look like the following one.

Net.Income = Opr.lIncome - weight(Taxes)

The compiler correctly recognizes that Net. Income depends on Opr. Income and Taxes.
However, when the weight program refers to any dimension values or variables that
are not specified as program arguments, the compiler does not detect any hidden
dependencies introduced by these calculations.

3.3.3.4 Dependencies Between Equations

ORACLE

The model compiler analyzes dependencies between the equations in the model. A
dependence exists when the expression on the right-hand side of the equal sign in one
equation refers to the assignment target of another equation. When an equation
indirectly depends on itself as the result of the dependencies among equations, a
cyclic dependence exists between the equations.

The model compiler structures the model into blocks and orders the equations within
blocks and the blocks themselves to reflect dependencies. When you run the model, it
is solved one block at a time. The model compiler can produce three types of solution
blocks:

* Simple Solution Blocks—Simple blocks include equations that are independent
of each other and equations that have dependencies on each other that are non-
cyclic.

For example, when a block contains equations that solve for values A, B, and C, a
non-cyclic dependence can be illustrated as A>B>C. The arrows indicate that A
depends on B, and B depends on C.

e Step Solution Blocks—Step blocks include equations that have a cyclic
dependence that is a one-way dimensional dependence. A dimensional
dependence occurs when the data for the current dimension value depends on
data from previous or later dimension values. The dimensional dependence is
one-way when the data depends on previous values only or later values only, but

3-8

ORACLE

Chapter 3
OLAP DML Model Objects

not both. For more information on one-way dimensional dependence, see
"Ensuring One-Way Dimensional Dependence”.

Dimensional dependence typically occurs over a time dimension. For example, it is
common for a line item value to depend on the value of the same line item or a
different line item in a previous time period. When a block contains equations that
solve for values A and B, a one-way dimensional dependence can be illustrated as
A>B>LAG(A). The arrows indicate that A depends on B, and B depends on the value
of A from a previous time period.

e Simultaneous Solution Blocks—Simultaneous blocks include equations that
have a cyclic dependence that is other than one-way dimensional. The cyclic
dependence may involve no dimensional qualifiers at all, or it may be a two-way
dimensional dependence. For more information on two-way dimensional
dependence, see "Structures for Which the Model Compiler Assumes Two-Way
Dimensional Dependence”.

When a model contains a block of simultaneous equations, COMPILE gives you a
warning message. In this case, you may want to check the settings of the options
that control simultaneous solutions before you run the model. "Model Options" lists
these options.

An example of a cyclic dependence that does not depend on any dimensional
qualifiers can be illustrated as A>B>C>A. The arrows indicate that A depends on B, B
depends on C, and C depends on A.

An example of a cyclic dependence that is a two-way dimensional dependence
can be illustrated as A>LEAD(B)>LAG(A). The arrows indicate that A depends on the
value of B from a future period, while B depends on the value of A from a previous
period.

Order of Simultaneous Equations

The solution of a simultaneous block of equations is sensitive to the order of the
equations. In general, rely on the model compiler to determine the optimal order for the
equations. In some cases, however, you may be able to encourage convergence by
placing the equations in a particular order.

To force the compiler to leave the simultaneous equations in each block in the order in
which you place them, set the MODINPUTORDER option to YES before compiling the
model. (MODINPUTORDER has no effect on the order of equations in simple blocks
or step blocks.)

Structures for Which the Model Compiler Assumes Two-Way Dimensional
Dependence

When dependence is introduced through any of the following structures, the model
compiler assumes that two-way dimensional dependence occurs:

* Atwo-way dimensional dependence can occur when you use an aggregation
function, such as AVERAGE, TOTAL, ANY, or COUNT.

Opr.Income = Gross.Margin -
(TOTAL(Marketing + Selling + R.D))
Marketing = LAG(Opr.Income, 1, month)

* Atwo-way dimensional dependence can occur when you use a time-series
function that requires a time-period argument, such as CUMSUM, LAG, or LEAD

3-9

Chapter 3
OLAP DML Model Objects

(except for the specific functions and conditions described in "Ensuring One-Way
Dimensional Dependence").

A two-way dimensional dependence also can occur when you use a financial
function, such as DEPRSL or NPV.

A cyclic dependence across a time dimension that you introduce through a loan or
depreciation function may cause unexpected results. The loan functions include
FINTSCHED, FPMTSCHED, VINTSCHED, and VPMTSCHED. The depreciation
functions include DEPRDECL, DEPRDECLSW, DEPRSL, and DEPRSOYD.

Ensuring One-Way Dimensional Dependence

When dependence between equations is introduced through any of the following
structures, a one-way dimensional dependence occurs:

A one-way dimensional dependence occurs when you use a LAG or LEAD
function and when the argument for the number of time periods is coded as an
explicit number (either as a value or a constant) or as the result of ABS.
(Otherwise, there may be a two-way dependence, involving both previous and
future dimension values, and the compiler assumes that a simultaneous solution is
required.) The following example illustrates this use of LAG.

Opr.Income = Gross.Margin - (Marketing + Selling + R.D)
Marketing = LAG(Opr.Income, 1, month)

A one-way dimensional dependence occurs when you use a MOVINGAVERAGE,
MOVINGMAX, MOVINGMIN, or MOVINGTOTAL function, when the start and stop
arguments are non-zero numbers, and when both the start and top arguments are
positive or both are negative. Otherwise, two-way dimensional dependence is
assumed.

Opr.Income = Gross.Margin - (Marketing + Selling + R.D)
Marketing = MOVINGAVERAGE(Opr.Income, -4, -1, 1, month)

3.3.3.5 Obtaining Analysis Results

After compiling a model, you can use the following tools to obtain information about
the results of the analysis performed by the compiler:

The MODEL.COMPRPT program produces a report that shows how model
equations are grouped into blocks. For step blocks and for simultaneous blocks
with a cross-dimensional dependence, the report lists the dimensions involved in
the dependence.

The MODEL.DEPRT program produces a report that lists the variables and
dimension values on which each model equation depends. When a dependence is
dimensional, the report gives the name of the dimension.

The INFO function lets you obtain specific items of information about the structure
of the model.

3.3.3.6 Checking for Additional Problems

The compiler does not analyze the contents of any programs or formulas that are used
in model equations. Therefore, you must check the programs and formulas yourself to
make sure they do not do any of the following:

ORACLE

Refer to the value of any variable used in the model.

3-10

Chapter 3
OLAP DML Model Objects

Refer to the solution variable.
Limit any of the dimensions used in the model.

Invoke other models.

When a model or program violates any of these restrictions, the results of the model
may be incorrect.

3.3.4 Running a Model

When you run a model, keep these points in mind:

Before you run a model, the input data must be available in the solution variable.

Before running a model that contains a block of simultaneous equations, you might
want to check or modify the values of some OLAP DML options that control the
solution of simultaneous blocks. These options are described briefly in "Model
Options".

When your model contains any dimension-based equations, then you must
provide a numeric solution variable that serves both as a source of data and as the
assignment target for equation results. The solution variable is usually
dimensioned by all of the dimensions on which model equations are based and
also by the other dimensions of the solution variable on which you are not basing
equations.

When you run a model, a loop is performed automatically over the values in the
current status list of each of the dimensions of the solution variable on which you
have not based equations.

When a model equation bases its calculations on data from previous time periods,
then the solution variable must contain data for these previous periods. When it
does not, or when the first value of the dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR is in status, then the results of the calculation are NA.

3.3.4.1 Syntax for Running a Model

ORACLE

To run or solve a model, use the following syntax.

model-name [solution-variable] [NOWARN]

where:

nodel - nane is the name of the model.

sol uti on-vari abl e is the name of a numeric variable that serves as both the
source and the target of data in a model that contains dimension-based equations.
The solution variable is usually dimensioned by all the dimensions on which model
equations are based (as specified in explicit or included DIMENSION commands).
The solution-variable argument is required when the model contains any
dimension-based equations. When all the model equations are based only on
variables, a solution variable is not needed and an error occurs when you supply
this argument. See "Dimensions of Solution Variables" for more information on
dimensions of solution variables.

NOWARN is an optional argument that specifies that you do not want to be warned
when the model contains a block of simultaneous equations.

3-11

Chapter 3
OLAP DML Model Objects

3.3.4.2 Dimensions of Solution Variables

ORACLE

In a model with dimension-based equations, the solution variable is usually
dimensioned by the dimensions on which model equations are based. Or, when a
solution variable is dimensioned by a composite, the model equations can be based
on base dimensions of the composite. The dimensions on which model equations are
based are listed in explicit or inherited DIMENSION statements.

Special Cases of Solution Variables

The following special cases regarding the dimensions of the solution variable can
occur:

e The solution variable can have dimensions that are not listed in DIMENSION
commands. Oracle OLAP automatically loops over the values in the status of the
extra dimensions. For example, the model might contain a DIMENSION statement
that lists the line and month dimensions, but you might specify a solution variable
dimensioned by line, month, and division. Oracle OLAP automatically loops over
the division dimension when you run the model. The solution variable can also be
dimensioned by a composite that has one or more base dimensions that are not
listed in DIMENSION commands. See "Solution Variables Dimensioned by a
Composite"

* When the solution variable has dimensions that are not listed in DIMENSION
commands and when any of these other dimensions are the dimension of a step
or simultaneous block, an error occurs.

» Oracle OLAP loops over the values in the status of all the dimensions listed in
DIMENSION commands, regardless of whether the solution variable is
dimensioned by them. Therefore, Oracle OLAP does extra, unnecessary work
when the solution variable is not dimensioned by all the listed dimensions. Oracle
OLAP warns you of this situation before it starts solving the model.

* The inclusion of an unneeded dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR in a DIMENSION statement causes incorrect results when
you use a loan, depreciation, or aggregation function in a model equation. The
incorrect results occur because any component of a model equation that refers to
the values of a model dimension behaves as if that component has all the
dimensions of the model.

Solution Variables Dimensioned by a Composite

When a solution variable contains a composite in its dimension list, Oracle OLAP
observes the sparsity of the composite whenever possible. As it solves the model,
Oracle OLAP confines its loop over the composite to the values that exist in the
composite. It observes the current status of the composite's base dimensions as it
loops.

However, for proper solution of the model, Oracle OLAP must treat the following base
dimensions of the composite as regular dimensions:

* A base dimension that is listed in a DIMENSION statement.

e A base dimension that is implicated in a model equation created using SET (for
example, an equation that assigns data to a variable dimensioned by the base
dimension).

3-12

Chapter 3
OLAP DML Aggregation Objects

A base dimension that is also a base dimension of a different composite that is
specified in the ACROSS phrase of an equation. (See SET for more information
on assignment statements and the use of ACROSS phrase.)

When a base dimension of a solution variable's composite falls in any of the preceding
three categories, Oracle OLAP treats that dimension as a regular dimension and loops
over all the values that are in the current status.

When the solution variable's composite has other base dimensions that do not fall in
the special three categories, Oracle OLAP creates a temporary composite of these
extra base dimensions. The values of the temporary composite are the combinations
that existed in the original composite. Oracle OLAP loops over the temporary
composite as it solves the model.

3.3.5 Debugging a Model

The following tools are available for debugging models:

To see the order in which the equations in a model are solved, you can set the
MODTRACE option to YES before you run the model.When you set MODTRACE to
YES, you can use a DBGOUTFILE statement to send debugging information to a
file. The file produced by DBGOUTFILE interweaves each line of your model with
its corresponding output.

You can use the MODEL.COMPRPT, MODEL.DEPRT, and MODEL.XEQRPT
programs and the INFO function to obtain information about the structure of a
compiled model and the solution status of a model you have run.

3.4 OLAP DML Aggregation Objects

This topic provides information about aggregating data using the OLAP DML.It
includes the following subtopics:

What is an OLAP DML Aggregation?
Aggregating Data Using the OLAP DML
Compiling Aggregation Specifications
Executing the Aggregation

Creating Custom Aggregates

3.4.1 What is an OLAP DML Aggregation?

Historically, aggregating data was summing detail data to provide subtotals and totals.
However, using OLAP DML aggmap objects you can specify more complex
aggregation calculations:

ORACLE

The summary data dimensioned by a hierarchical dimension can be calculated
using many different types of methods (for example, first, last, average, or
weighted average). For an example of this type of aggregation, see Example 9-18.

The summary data dimensioned by a nonhierarchical dimension can be calculated
using a model. Using a model to calculate summary data is useful for calculating
values for dimensions, such as line items, that do not have a hierarchical structure.
Instead, you create a model to calculate the values of individual line items from

3-13

Chapter 3
OLAP DML Aggregation Objects

one or more other line items or workspace objects. For an example of this type of
aggregation, see Example 9-17.

The detail data used to calculate the summary data can be in the variable that
contains the summary data or in one or more other variables. The variable that
contains the summary data does not have to have the same dimensions as the
variables that contain the detail data. For an examples of this type of aggregation,
see Example 9-15 and Example 9-32.

The data can be aggregated as a database maintenance procedure, in response
to user requests for summarized data, or you can combine these approaches. See
"Executing the Aggregation” for more information.

Data that is aggregated in response to user requests can be calculated each time
it is requested or stored or cached in the analytic workspace for future queries.

The specification for the aggregation can be permanent or temporary as described
in "Creating Custom Aggregates".

3.4.2 Aggregating Data Using the OLAP DML

To aggregate data using the OLAP DML, take the following steps:

ORACLE

1.

Decide if you want to aggregate all of the data as a database maintenance
procedure using the AGGREGATE command or on-the-fly at run time using the
AGGREGATE function or the SAGGMAP property, or if you want to combine these
approaches and precalculate some values and calculate others at run time. For a
discussion of the various approaches, see "Executing the Aggregation”.

Issue a DEFINE AGGMAP statement to define the aggmap object as type
AGGMAP.

Write the aggregation specification as described in AGGMAP.

When aggregating a partitioned variable, run PARTITIONCHECK to check that the
aggregation specification created in the previous step is compatible with the
variable's partitioning. If it is not, either rewrite the aggregation specification or
repartition the variable using CHGDFN.

When some or all of the data is to be aggregated using the AGGREGATE
function:

a. Compile the aggmap object as described in "Compiling Aggregation
Specifications".

b. Add the triggering property, object, or event. For example, add a formula that
has the AGGREGATE function as its expression and add $SNATRIGGER
property to the variable to trigger the execution of that formula in response to a
run-time request for data.

When you want the aggmap object to be a permanent part of the analytic
workspace, save the aggmap object using an UPDATE statement followed by
COMMIT.

For data that is to be calculated using the AGGREGATE command:

a. (Optional) Use the DBMS_CUBE_LOG.ENABLE procedure to log the
aggregation operation.

b. Use the AGGREGATE command, followed by UPDATE and COMMIT to
precalculate the data and store it in the analytic workspace.

3-14

Chapter 3
OLAP DML Aggregation Objects

3.4.3 Compiling Aggregation Specifications

Compiling the aggmap object is important for aggregation performed at run-time using
the AGGREGATE function. Unless the compiled version of the aggmap has been
saved, the aggmap is recompiled by each session that uses it.

There are two ways you can compile an aggmap objects:

e |ssue a COMPILE statement.

A COMPILE statement is the only way to compile an aggmap object that is used
by an AGGREGATE function. Explicitly compiling an aggmap is also useful for
finding syntax errors in the aggmap before attempting to use it to generate data.
The following statement compiles the sales.agg aggmap.

COMPILE gpct.aggmap

* When you aggregate the data using an AGGREGATE command, include the
FUNCDATA phrase in the statement.

When you use the FUNCDATA phrase in an AGGREGATE command, Oracle
OLAP compiles the aggmap before it aggregates the data. For example, this
statement compiles and precalculates the aggregate data.

AGGREGATE sales USING gpct.aggmap FUNCDATA

" Note:

When some data is calculated on the fly, then you must compile and save
the aggmap after executing the AGGREGATE command.

3.4.4 Executing the Aggregation

ORACLE

The OLAP DML provides two ways to aggregate data:

* As adata maintenance procedure using the AGGREGATE command. To use this
method of aggregating data within an aggregation specification, identify data that
you want to aggregate in this manner using the PRECOMPUTE statement or
PRECOMPUTE clause of the RELATION statement.

e At run-time when needed using the AGGREGATE function or adding
an $AGGMAP property to the variable.

You can choose whatever method seems appropriate: by level, individual member,
member attribute, time range, data value, or other criteria. You can also combine
these approaches and precalculate some values and calculate others at run time. In
this case, frequently, you use the same aggmap with the AGGREGATE command and
the AGGREGATE function. However, in some cases you might use different aggmaps.

One step that you can take to achieve overall good performance is to balance the
amount of the data that you aggregate and store in an analytic workspace with the
amount of data that you specify for calculation on the fly. You can use a
PRECOMPUTE statement or clause within your aggregation specification to ask
Oracle OLAP to use special functionality called the Aggregate Advisor to automatically
determine what values to aggregate as a data maintenance procedure using the
AGGREGATE command, or to explicitly identify the values yourself.

3-15

Chapter 3
OLAP DML Allocation Objects

3.4.5 Creating Custom Aggregates

The definitions for most aggregations persist from one session to another. However,
you might need to create session-only aggregates at run time for forecasting or what-if
analysis, or just because you want to view the data in an unforeseen way. Adding
session-only aggregates is sometimes called creating custom aggregates. You can
create non-persistent aggregated data without permanently changing the specification
for the aggregation in the following ways:

e Using a MAINTAIN ADD SESSION statement, define temporary dimension
members and include an aggregation specification as part of the definition of these
members. The aggregation specification can either be a model or an aggmap. For
an example of using this method to create a temporary aggregation, see
Example 10-42 .

» Create a model that specifies the aggregation. Use an AGGMAP ADD statement
to add the model to an aggmap at run time. After a session, Oracle OLAP
automatically removes any models that you have added to an aggmap in this
manner. See AGGMAP ADD or REMOVE model for more information.

3.5 OLAP DML Allocation Objects

Allocating data involves creating lower-level data from summary data. This topic
provides an overview of how to allocate data using OLAP DML statements. It includes
the following subtopics:

e Introduction to Allocating Data Using the OLAP DML
» Features of Allocation in Oracle OLAP
e Allocating Data

* Handling NA Values When Allocating Data

3.5.1 Introduction to Allocating Data Using the OLAP DML

ORACLE

You can specify data allocation in an ALLOCMAP type aggmap object. To implement
the allocation, execute an ALLOCATE command for the ALLOCMAP aggmap. The
target is a variable that is dimensioned by one or more hierarchical dimensions. The
source data is specified by dimension values at a higher level in a hierarchical
dimension than the values that specify the target cells.

ALLOCATE uses an aggmap to specify the dimensions and the values of the
hierarchies to use in the allocation, the method of operation to use for a dimension,
and other aspects of the allocation.

Some allocation operations are based on existing data. The object containing that data
is the basis object for the allocation. In those operations, ALLOCATE distributes the
data from the source based on the values of the basis object.

ALLOCATE has operations that are the inverse of the operations of the AGGREGATE
command. The allocation operation methods range from simple allocations, such as
copying the source data to the cells of the target variable, to very complex allocations,
such as a proportional distribution of data from a source that is a formula, with the
amount distributed being based on another formula, with multiple variables as targets,

3-16

Chapter 3
OLAP DML Allocation Objects

and with an aggmap that specifies different methods of allocation for different
dimensions.

3.5.2 Features of Allocation in Oracle OLAP

The Oracle OLAP allocation system is very flexible and has many features, including
the following:

* The source, basis, and target objects can be the same variable or they can be
different objects.

* The source and basis objects can be formulas, so you can perform computations
on existing data and use the result as the source or basis of the allocation.

* You can specify the method of operation of the allocation for a dimension. The
operations range from simple to very complex.

* You can specify whether the allocated value is added to or replaces the existing
value of the target cell.

* You can specify an amount to add to or multiply by the allocated value before the
result is assigned to the target cell.

* You can lock individual values in a dimension hierarchy so that the data of the
target cells for those dimension values is not changed by the allocation. When you
lock a dimension value, then the allocation system normalizes the source data,
which subtracts the locked data from the source before the allocation. You can
choose to not normalize the source data.

* You can specify minimum, maximum, floor, or ceiling values for certain operations.

* You can copy the allocated data to a second variable so that you can have a
record of individual allocations to a cell that is the target of multiple allocations.

* You can specify ways of handling allocations when the basis has a null value.

* You can use the same aggmap in different ALLOCATE commands to use the
same set of dimension hierarchy values, operations, and arguments with different
source, basis, or target objects.

3.5.3 Allocating Data

ORACLE

To allocate data using an aggmap object, use the following OLAP DML statements in
the order indicated:

1. Issue a DEFINE AGGMAP statement to define the aggmap object.

¢ Note:

When using the OLAP Worksheet, at the command line level, immediately
after the DEFINE AGGMAP statement, enter an "empty" allocation
specification by coding an ALLOCMAP statement. For example:

DEFINE myaggmap AGGMAP
ALLOCMAP “END"

2. Add a specification to the aggmap object that specifies the allocation that you want
performed. See ALLOCMAP for more information.

3-17

8.

Chapter 3
OLAP DML Allocation Objects

When you want the aggmap object to be a permanent part of the analytic
workspace, save the aggmap object using an UPDATE statement followed by
COMMIT.

(Optional) Use the DBMS_CUBE_LOG.ENABLE procedure to log the allocation
operation.

(Optional) Redesign the allocation error log by setting the
ALLOCERRLOGFORMAT and ALLOCERRLOGHEADER options to nondefault
values.

(Optional) Set the $ALLOCMAP property on one or more variables to specify that
the aggmap is the default allocation specification for the variables.

(Recommended, but optional) Limit the variable to the target cells (that is, the cells
into which you want to allocate data).

Issue an ALLOCATE statement to allocate the data.

3.5.4 Handling NA Values When Allocating Data

Sometimes you want to overwrite existing data when allocating values to a target
variable and at other times you want to write allocated values to target cells that have
an NA basis before the allocation. For example, when you create a product in your
product dimension, then no basis exists for the new product in your budget variable.
You want to allocate advertising costs for the entire product line, including the new
product.

You can handle NA values using formulas and hierarchical operators in a RELATION
statement in the following ways:

ORACLE

Handling NA data with formulas—The preferred method for handling the NA values
is to construct a basis that only describes the desired target cells. You can refine
your choice of basis values by deriving the basis from a formula. The following
statements define a formula that equates the values of the new product to twice
the value of an existing product. You could use such a formula as the basis for
allocating advertising costs to the new product.

DEFINE formula_basis FORMULA DECIMAL <product>

EQ IF product EQ "NEWPRODUCT® -
THEN 2 * product.budget(product "EXISTINGPRODUCT") -
ELSE product.budget

Handling NA data with hierarchical operators—To allocate data to target cells that
currently have NA values, use a hierarchical operator in a RELATION statement in
the allocation specification. The hierarchical operators use the hierarchy of the
dimension rather than existing data as the allocation basis. A danger in using
hierarchical operators is the possibility of densely populating your detail level data,
which can result in a much larger analytic workspace and require much more time
to aggregate the data.

To continue the example of allocating the advertising cost for the new product, you
could use the hierarchical last operator HLAST to specify allocating the cost to the
new (and presumably the last) product in the product dimension hierarchy.

3-18

OLAP DML Properties

This chapter contains the following topics:

e About OLAP DML Properties

e System Properties: Alphabetical Listing
e System Properties by Category

e One topic for each of the OLAP DML system properties, arranged alphabetically
beginning with SAGGMAP.

For other reference topics for the OLAP DML, see OLAP DML Options , OLAP DML
Functions: A - K, OLAP DML Functions: A - K, OLAP DML Commands: A-G, and
OLAP DML Commands: H-Z.

4.1 About OLAP DML Properties

A property is a named value that is associated with a definition of an analytic
workspace object. You can name, create, and assign properties to an object using an
OLAP DML PROPERTY command.

Properties that begin with a $ (dollar sign) are recognized by Oracle OLAP as system
properties. You cannot create system properties; however, in some cases you can
assign system properties to objects. In particular, you can assign system properties
that interact with the OLAP DML.

4.2 System Properties: Alphabetical Listing

ORACLE

$AGGMAP
$AGGREGATE_FORCECALC
$AGGREGATE_FORCEORDER
$AGGREGATE_FROM
$AGGREGATE_FROMVAR
$ALLOCMAP

$COUNTVAR
$DEFAULT_LANGUAGE
$GID_DEPTH

$GID_LIST

$GID_TYPE
$LOOP_AGGMAP
$LOOP_DENSE
$LOOP_TYPE

$LOOP_VAR

$NATRIGGER
$STORETRIGGERVAL
$VARCACHE

4-1

Chapter 4
System Properties by Category

4.3 System Properties by Category

The OLAP DML provides system properties that set or retrieve values that influence
how the OLAP DML performs the following:

Aggregation Properties
Allocation Property
Grouping Id Properties
Formula Properties
Language Property
NA Value Properties

Aggregation Properties

$AGGMAP
$AGGREGATE_FORCECALC
$AGGREGATE_FORCEORDER
$AGGREGATE_FROM
$AGGREGATE_FROMVAR
$COUNTVAR

$VARCACHE

Allocation Property

$ALLOCMAP

Grouping Id Properties

$GID_DEPTH

$GID_LIST

$GID_TYPE
Formula Properties

$LOOP_AGGMAP
$LOOP_DENSE
$LOOP_TYPE
$LOOP_VAR
Language Property

$DEFAULT_LANGUAGE

NA Value Properties

$NATRIGGER
$STORETRIGGERVAL
$VARCACHE

4.4 SAGGMAP

The SAGGMAP property specifies that Oracle OLAP use the identified aggmap to
automatically aggregate non-precomputed data to substitute for NA values that are in

ORACLE 4-2

ORACLE

Chapter 4
$AGGMAP

the dimensioned variable, but not in the session cache for the variable (if any).
Consequently, you do not need to explicitly use the AGGREGATE function to
aggregate non-precomputed data in a variable that has an SAGGMAP property.

Additionally, the aggmap specified in the $AGGMAP property of a variable is the
aggmap that Oracle OLAP uses when the variable is the target of an AGGREGATE
command that does not include a USING phrase.

Syntax

You add or delete an $AGGMAP property to the most recently defined or considered
object (see DEFINE and CONSIDER commands) using a PROPERTY statement:

e To add the property, issue the following statement.

PROPERTY '$AGGMAP' agggmap-name

* To delete the property, issue the following statement.

PROPERTY DELETE '$AGGMAP'
Parameters

aggmap-name
A TEXT expression that is the name of a previously defined aggmap object.

Examples
Example 4-1 Using SAGGMAP To Dynamically Aggregate Data

Assume that you have a hierarchical dimension named geog,a simple dimension
named year, and the following variable named sales which is dimensioned by both and
which has data only at the detail level.

Assume that you want to explicitly specify the value of 8000 for the sales cell for
Connecticut in 2005. To do this you issue the following assignment statement and a
report of sales shows the value.

sales (geog "Connecticut” year "2005") = 8000
REPORT sales;

——————————— SALES------———--

——————————— YEAR--—————————-
GEOG 2004 2005 2006 2007
Toronto 1,000 1,333 1,954 1,260
Norfolk 1,131 1,867 1,843 1,767
Montreal 1,571 1,754 1,316 1,905
Quebec City 1,914 1,728 1,386 1,847
Hartford 1,870 1,943 1,085 1,335
New Haven 1,684 1,330 1,458 1,402
Springfield 1,630 1,116 1,897 1,690
Boston 1,780 1,310 1,368 1,581
Ontario NA NA NA NA
Quebec NA NA NA NA
Connecticut NA 8,000 NA NA
Massachusetts NA NA NA NA
Canada NA NA NA NA
USA NA NA NA NA
All Geog NA NA NA NA

4-3

ORACLE

Chapter 4
$AGGMAP

Now assume that you define an aggmap for sales. The aggmap has the following
definition which specifies that only the upper-level data for Canada and the top level
(A1l Geog) be aggregated by the AGGREGATE command.

DEFINE MYAGGMAP AGGMAP

AGGMAP

RELATION geogParentrel PRECOMPUTE ("Quebec® "Ontario” “"Canada® *All Geog®)
END

Now assume you issue the following statements:

CONSIDER sales
PROPERTY "$AGGMAP*™ "Myaggmap”

As a result of using the SAGGMAP property to make myaggmap as the default aggmap
for sales, a simple REPORT statement for sales causes Oracle OLAP to aggregate all
of the data for the USA. (Note that only those values that were not specified as
PRECOMPUTE and that previously had NA values are calculated. The 8,000 value for
Connecticut in 2005 that was specifically assigned is not recalculated.)

REPORT sales

——————————— SALES---—--————-

——————————— YEAR-—=-—-—————-
GEOG 2004 2005 2006 2007
Toronto 1,000 1,333 1,954 1,260
Norfolk 1,131 1,867 1,843 1,767
Montreal 1,571 1,754 1,316 1,905
Quebec City 1,914 1,728 1,386 1,847
Hartford 1,870 1,943 1,085 1,335
New Haven 1,684 1,330 1,458 1,402
Springfield 1,630 1,116 1,897 1,690
Boston 1,780 1,310 1,368 1,581
Ontario NA NA NA NA
Quebec NA NA NA NA

Connecticut 3,554 8,000 2,543 2,737
Massachusetts 3,410 2,426 3,265 3,271

Canada NA NA NA NA
USA 6,964 5,699 5,808 6,008
All Geog NA NA NA NA

Once you aggregate sales using the AGGREGATE command, Oracle OLAP
aggregates values for all of the PRECOMPUTE cells in sales.

REPORT sales

----------- SALES--—-——————-

——————————— YEAR--—=====———-
GEOG 2004 2005 2006 2007
Toronto 1,000 1,333 1,954 1,260
Norfolk 1,131 1,867 1,843 1,767
Montreal 1,571 1,754 1,316 1,905
Quebec City 1,914 1,728 1,386 1,847
Hartford 1,870 1,943 1,085 1,335
New Haven 1,684 1,330 1,458 1,402
Springfield 1,630 1,116 1,897 1,690
Boston 1,780 1,310 1,368 1,581

4-4

Chapter 4
$AGGREGATE_FORCECALC

Ontario 2,131 3,200 3,797 3,027
Quebec 3,485 3,482 2,702 3,752
Connecticut 3,554 8,000 2,543 2,737
Massachusetts 3,410 2,426 3,265 3,271

Canada 5,616 6,682 6,499 6,779
USA 6,964 5,699 5,808 6,008
All Geog 12,580 12,381 12,307 12,787

Example 4-2 The $AGGMAP Property Effect on an AGGREGATE Command

$AGGREGATE_FROM illustrates how the AGGREGATE command shown in
Example 9-13 can be simplified to the following statement.

AGGREGATE sales_by_revenue USING revenue_aggmap

You can further simplify the AGGREGATE command if you place an $AGGMAP
property on the sales_by revenue variable. To define an SAGGMAP property on the
sales_by_revenue variable, issue the following statements.

CONSIDER sales_by revenue
PROPERTY "$AGGMAP* “"revenue_aggmap”

Now you can aggregate the data by issuing the following AGGREGATE command that
does not include a USING clause.

AGGREGATE sales_by_revenue

4.5 $AGGREGATE_FORCECALC

ORACLE

The SAGGREGATE_FORCECALC property specifies the same behavior as that
specified by the FORCECALC keyword in an AGGREGATE function. By adding

an $AGGREGATE_FORCECALC property to a variable you can ensure this behavior
when the variable is aggregated using an AGGREGATE function, even when that
function does not include the FORCECALC keyword.

The behavior specified by both the $AGGREGATE_FORCECALC property and the
FORCECALC keyword is that when an AGGREGATE function aggregates the
variable, Oracle OLAP recalculates any value that is not specified in a PRECOMPUTE
clause of a RELATION (for aggregation) statement in the aggmap of a variable, even
when there is a value stored in the desired cell. Recalculating values that are not
specified in a PRECOMPUTE clause is the desired behavior when you want users to
be able to change detail data cells and see the changed values reflected in
dynamically-computed aggregate cells.

Syntax

You add or delete an $AGGREGATE_FORCECALC property to the most recently
defined or considered object (see DEFINE and CONSIDER commands) by issuing a
PROPERTY statement:

e To add the property, issue the following statement.

PROPERTY '$AGGREGATE_FORCECALC'

* To delete the property, issue the following statement.

PROPERTY DELETE '$SAGGREGATE_FORCECALC'

4-5

Chapter 4
$AGGREGATE_FORCEORDER

4.6 SAGGREGATE_FORCEORDER

The $AGGREGATE_FORCEORDER property specifies the same behavior as that
specified by the FORCEORDER keyword in an AGGREGATE command or an
AGGREGATE function. By adding an $AGGREGATE_FORCEORDER property to a
variable you can ensure this behavior when the variable is aggregated, even when it is
aggregated by an AGGREGATE statement does not include the FORCEORDER
keyword.

The behavior specified by both the SAGGREGATE_ORDER property and the
FORCEORDER keyword is that the calculations must be performed in the order in
which the RELATION (for aggregation) statements are listed in the aggmap used for
the aggregation. Typically, you want this behavior when some values calculated
through aggregation have changed because, otherwise, the optimization methods
used by AGGREGATE may cause the modified values to be ignored. (Note, however,
that forcing the order of execution can slow performance.)

Syntax

You add or delete an $AGGREGATE_FORCEORDER property to the most recently
defined or considered object (see DEFINE and CONSIDER commands) by issuing a
PROPERTY statement:

e To add the property, issue the following statement.

PROPERTY '$AGGREGATE_FORCEORDER'

* To delete the property, issue the following statement.

PROPERTY DELETE '$AGGREGATE_FORCEORDER'

4.7 SAGGREGATE_FROM

ORACLE

The SAGGREGATE_FROM property specifies the same behavior as that specified by
a FROM clause in an AGGREGATE command or an AGGREGATE function. By
adding an $SAGGREGATE_FROM property to a variable you can ensure this behavior
when the variable is aggregated, even when it is aggregated by an AGGREGATE
statement does not include the FROM clause.

Both the $AGGREGATE_FROM property and the FROM clause specify an object from
which Oracle OLAP obtains the detail data for the aggregation.

¢ Note:
OLAP DML Commands: A-G

Syntax

You add or delete an $AGGREGATE_FROM property to the most recently defined or
considered object (see DEFINE and CONSIDER commands) by issuing a PROPERTY
statement:

e To add the property, issue the following statement.

4-6

Chapter 4
$AGGREGATE_FROMVAR

PROPERTY '$AGGREGATE_FROM' fromspec

* To delete the property, issue the following statement.

PROPERTY DELETE '$AGGREGATE_FROM'

Parameters

fromspec
An arbitrarily dimensioned variable, formula, or relation from which the detail data for
the aggregation is obtained.

Examples
Example 4-3 Using the SAGGREGATE_FROM Property

Example 9-15 uses the following AGGREGATE command to populate the
total_sales_exclud_north variable with aggregate values computed from the sales
variable.

AGGREGATE total_sales_exclud_north USING agg_sales_exclud_north FROM sales

You can place a $AGGREGATE_FROM property on the total_sales_exclud_north
variable by issuing the following statements.

CONSIDER total_sales_exclud_north
PROPERTY "$AGGREGATE_FROM®" “"sales”

Now you can aggregate the data by issuing the following AGGREGATE command that
does not include a FROM clause.

AGGREGATE total_sales_exclud_north USING agg_sales_exclud_north

4.8 SAGGREGATE_FROMVAR

ORACLE

The SAGGREGATE_FROMVAR property specifies the same behavior as that
specified by a FROMVAR clause in an AGGREGATE command or an AGGREGATE
function. By adding an SAGGREGATE_FROMVAR property to a variable you can
ensure this behavior when the variable is aggregated, even when it is aggregated by
an AGGREGATE statement that does not include the FROMVAR clause.

Both the $AGGREGATE_FROMVAR property and the FROMVAR clause specify two
or more objects from which Oracle OLAP obtains the detail data for the aggregation.

Note:
OLAP DML Commands: A-G

Syntax

You add or delete an $AGGREGATE_FROMVAR property to the most recently
defined or considered object (see DEFINE and CONSIDER commands) by issuing a
PROPERTY statement:

* To add the property, issue the following statement.

4-7

Chapter 4
$ALLOCMAP

PROPERTY '$AGGREGATE_FROMVAR' textvar ACROSS dimname

* To delete the property, issue the following statement.

PROPERTY DELETE '$AGGREGATE_FROMVAR'

Parameters

textvar

A TEXT expression that specifies an arbitrarily dimensioned variable or formula that
specifies the names of the objects from which to obtain detail data when performing a
capstone aggregation. Specify NA to indicate that a node does not need detail data to
calculate the value.

ACROSS dimname

Specifies the dimension or a named composite that the aggregation loops over to
discover the cells in the objects specified by textvar. Because the objects specified by
textvar can be formulas, you can realize a significant performance advantage by
supplying a looping dimension that eliminates the sparsity.

Examples

Example 4-4 Capstone Aggregation Using the $SAGGREGATE_FROMVAR
Property

Example 9-32 uses the following AGGREGATE command to perform the final
capstone aggregation.

AGGREGATE sales_capstone76 USING capstone_aggmap FROMVAR capstone_source

As the following statements illustrate, you can omit the FROMVAR clause if you create
the appropriate FROMVAR property on sales-capstone76.

CONSIDER sales_capstone76
PROPERTY "$AGGREGATE_FROMVAR®" “"capstone_source”
AGGREGATE sales_capstone76 USING capstone_aggmap

4.9 $ALLOCMAP

The $ALLOCMAP property specifies the default aggmap for allocation for a variable
which is the aggmap that Oracle OLAP uses when the variable is the target variable of
an ALLOCATE statement that does not include a USING phrase.

Syntax

You add or delete an $ALLOCMAP property to the most recently defined or
considered object (see DEFINE and CONSIDER commands) using a PROPERTY
statement:

e To add the property, issue the following statement.

PROPERTY '$ALLOCMAP' aggmap-name

e To delete the property, issue the following statement.

PROPERTY DELETE '$SAALLOCMAP!

ORACLE 4-8

Chapter 4
$COUNTVAR

Parameters

aggmap-name

A TEXT expression that specifies the name of a previously defined ALLOCMAP type
aggmap object.

Examples

Example 4-5 Using $ALLOCMAP to Specify a Default Allocation Specification

The following statement allocates data in the projbudget variable using the projbudgmap
allocation specification.

ALLOCATE projbudget USING projbudgmap

You can specify that projbudgmap is the default allocation specification for the
projbudget variable by issuing the following statements.

CONSIDER projbudget
PROPERTY "$ALLOCMAP® "projbugmap”

Now, by issuing the following statement, you can allocate data in the projbudget
variable using the projbudgmap allocation specification.

ALLOCATE projbudget

For other examples of using the SALLOCMAP property, see the ALLOCATE
command.

4,10 SCOUNTVAR

ORACLE

The $COUNTVAR property specifies the same behavior as that specified by a
COUNTVAR clause in an AGGREGATE command or an AGGREGATE function. By
adding an $COUNTVAR property to a variable you can ensure this behavior when the
variable is aggregated, even when it is aggregated by an AGGREGATE statement
does not include the COUNTVAR clause.

The behavior specified by both the SCOUNTVAR property and the COUNTVAR clause
is that Oracle OLAP uses a variable that you have previously-defined (sometimes
called a Countvar variable) to store the non-NA counts of the number of leaf nodes
that contributed to aggregate values calculated for RELATION (for aggregation)
statements that have an AVERAGE, HAVERAGE, HWAVERAGE, or WAVERAGE
operator.

" Note:

Typically, you do not use a user-defined Countvar variable to store the counts
for average aggregations; instead, you use an Oracle OLAP-created Aggcount
variable. You cannot use a Countvar variable when the aggregation
specification includes a RELATION (for aggregation) statement with an
average operator is for a compressed composite. See "Aggcount Variables" in
DEFINE VARIABLE for more information.

4-9

Chapter 4
$DEFAULT _LANGUAGE

Syntax

You add or delete a SCOUNTVAR property to the most recently defined or considered
object (see DEFINE and CONSIDER commands) using a PROPERTY statement:

e To add the property, issue the following statement.
PROPERTY '$COUNTVAR' countvar
e To delete the property, issue the following statement.

PROPERTY DELETE '$COUNTVAR'

Parameters

countvar

A TEXT expression that specifies the name of a previously defined Countvar variable.
The Countvar variable must be an INTEGER variable with the same dimensions in the
same order as the dimensions as the variable on which you add the SCOUNTVAR

property.
Examples
Example 4-6 Using $SCOUNTVAR

For a variable named v1, the following statements cause Oracle OLAP to count the
number of leaf nodes that contributed to an aggregate value that is the result of the
execution of the myaggmap aggmap object by an AGGREGATE function.

CONSIDER v1
PROPERTY *$COUNTVAR™ *mycountvar”

4,11 $DEFAULT _LANGUAGE

ORACLE

$DEFAULT_LANGUAGE property identifies a dimension as the language dimension
for the analytic workspace in which it is defined and specifies the default language for
that language dimension.

" Note:

There can be only one language dimension in an analytic workspace and only
that dimension can have a $DEFAULT_LANGUAGE property.

¢ See Also:

LOCK_LANGUAGE_DIMS, SESSION_NLS_LANGUAGE, and
STATIC_SESSION_LANGUAGE options.

Syntax

Before you add or delete a $SDEFAULT_LANGUAGE property to your language
dimension, you must make that dimension the most recently defined or considered

4-10

ORACLE

Chapter 4
$DEFAULT LANGUAGE

object (see DEFINE and CONSIDER commands). You add $DEFAULT_LANGUAGE
property using a PROPERTY statement:

* To add the property, issue the following statement.

PROPERTY '$DEFAULT_LANGUAGE' language

e To delete the property, issue the following statement.

PROPERTY DELETE '$DEFAULT_LANGUAGE'

Parameters

language
A TEXT expression that is a value in your language dimension, or an empty string.

Usage Notes
Working with Language Dimensions

A language dimension is a dimension that has a $SDEFAULT_LANGUAGE property
defined for it. There can only be one language dimension in an analytic workspace.
Working with language dimensions involves:

e Creating a Language Dimension

e Defining Multi-language Variables that are Dimensioned by the Language
Dimension

e Working with Language Dimension Status

Creating a Language Dimension
To create a language dimension, take the following steps:

1. Define a TEXT dimension using DEFINE DIMENSION.

2. Populate the language dimension with the names of the languages you want to
support. As language names, use valid values for NLS _LANGUAGE.

3. Add the $DEFAULT _LANGUAGE property to the dimension thereby identifying the
dimension to Oracle OLAP as the language dimension in the analytic workspace.

Defining Multi-language Variables that are Dimensioned by the Language
Dimension

To create multi-language variables, you include the language dimension as a
dimension of the variable as illustrated in Example 4-8.

Working with Language Dimension Status

When an analytic workspace with a language dimension is attached, Oracle OLAP
initializes the status of the language dimension, as follows:

1. Oracle OLAP limits the language dimension to the value of the
SESSION_NLS_LANGUAGE option when the language dimension contains that
value.

2. If the language dimension does not contain value to which the
SESSION_NLS_LANGUAGE option is set, then Oracle OLAP limits the language
dimension to the language specified in the dimension's SDEFAULT _LANGUAGE
property when the SDEFAULT_LANGUAGE property contains a value and when
that value is a value of the language dimension.

4-11

ORACLE

Chapter 4
$DEFAULT _LANGUAGE

3. If the language dimension does not contain value to which the
SESSION_NLS_LANGUAGE option is set and if the language
dimension's $SDEFAULT_LANGUAGE property is empty or names a nonexistent
value, Oracle OLAP limits the language dimension to the value of the language
dimension to the first value in the dimension's default order.

By default, after initialization, the status of a language dimension cannot be changed.
However, you can change this behavior by changing the value of the
LOCK_LANGUAGE_DIMS option from TRUE to FALSE which changes the status of
the language dimension to ALL and enables issuing LIMIT statements against the
dimension.

Exporting Language Dimensions

When exporting an analytic workspace using EXPORT (EIF), Oracle OLAP takes the
following steps to determine what values of the language dimension to export:

e If the value of the LOCK_LANGUAGE_DIMS option is FALSE when an EXPORT
statement executes, Oracle OLAP honors the current status of the language
dimension and performs the export accordingly.

e If the value of the LOCK_LANGUAGE_DIMS option is TRUE when an EXPORT
statement executes, Oracle OLAP:

1. Changes the value of the LOCK_LANGUAGE_DIMS option to FALSE (thereby
setting the status to ALL) before executing the EXPORT statement.

2. Executes the EXPORT statement. Oracle OLAP exports all of the values of
the language dimension.

3. Changes the value of the LOCK_LANGUAGE_DIMS option to TRUE and
resets the status of the language dimension according to the value of the
SESSION_NLS_LANGUAGE option.

Examples
Example 4-7 Creating a Language Dimension

This example illustrates creating a language dimension named mylangs that supports
the use of both French and American and that specifies that the default language is
American.

NLS_LANGUAGE = "AMERICAN*®

DEFINE mylangs DIMENSION TEXT

MAINTAIN mylangs ADD "FRENCH®" "AMERICAN®
CONSIDER mylangs

PROPERTY "$DEFAULT_LANGUAGE® *AMERICAN®

SHOW OBJ(PROPERTY "$DEFAULT LANGUAGE®™ *mylangs")
AMERICAN

REPORT mylangs
MYLANGS

FRENCH
AMERICAN

Example 4-8 Attaching a Language Dimension

Assume that in an analytic workspace named myaw that you have created a language
dimension named mylangs as described in Example 4-7. Assume also that you have

4-12

ORACLE

Chapter 4
$DEFAULT LANGUAGE

created a products dimension and a prod-desc variable with the following definitions
and values.

DEFINE MYLANGS DIMENSION TEXT
SHOW OBJ(PROPERTY *$DEFAULT LANGUAGE™ *mylangs")
AMERICAN

DEFINE PRODUCTS DIMENSION TEXT
DEFINE PROD_DESC VARIABLE TEXT <PRODUCTS MYLANGS>

MYLANGS
FRENCH
AMERICAN
PRODUCTS
PRODO1
PROD02
------ PROD_DESC------
—————— PRODUCTS-------
MYLANGS PRODO1 PROD02
FRENCH Pantalons JupesAMERICAN Trousers Skirts

Assume that you attach the analytic workspace. By displaying the options for the
analytic workspace and requesting a report of mylangs and prod_desc, shows that
Oracle OLAP has limited the mylangs dimension to American which is the value of the
SESSION_NLS_LANGUAGE option.

SHOW NLS_LANGUAGE

AMERICAN

AW ATTACH myaw RW

" Get the default language in our language dimension
SHOW OBJ(PROPERTY *$DEFAULT LANGUAGE™ *mylangs™)
AMERICAN

SHOW SESSION_NLS LANGUAGE

AMERICAN

SHOW LOCK_LANGUAGE_DIMS

yes

SHOW STATIC_SESSION_LANGUAGE

no

REPORT mylangs

MYLANGS
AMERICAN
REPORT prod_desc
------ PROD_DESC------
------ PRODUCTS-------
MYLANGS PRODO1 PROD02
AMERICAN Trousers Skirts

4-13

Chapter 4
$DEFAULT _LANGUAGE

Example 4-9 Changing NLS_LANGUAGE

Assume that you have attached the analytic workspace myaw as described in

Example 4-8. Now you change the value of NLS_LANGUAGE to French. Because the
value of STATIC_SESSION_LANGUAGE is set to NO, making this change effectively
changes the value of the SESSION_NLS_LANGUAGE option to French. When the
value of SESSION_NLS_LANGUAGE option is French, as a report of mylangs and
prod_desc illustrates, Oracle OLAP limits the mylangs dimension to French.

SET NLS_LANGUAGE= "FRENCH"
SHOW OBJ(PROPERTY "$DEFAULT_LANGUAGE®™ "mylangs®)
AMERICAN

SHOW NLS_LANGUAGE

FRENCH

SHOW SESSION_NLS LANGUAGE
FRENCH

SHOW LOCK_LANGUAGE_DIMS

oui

SHOW STATIC_SESSION_LANGUAGE
non

REPORT mylangs
MYLANGS

FRENCH

REPORT prod_desc

—————— PROD_DESC------

—————— PRODUCTS-------
MYLANGS PRODO1 PRODO2
FRENCH Pantalons Jupes

Example 4-10 Setting NLS_LANGUAGE to a Value that is Not in a Language
Dimension

Assume that in the analytic workspace named myaw (described in Example 4-9) the
value of NLS_LANGUAGE is set first to American and then set to Spanish. As
illustrated in the following code, because the language dimension, mylangs, does not
include Spanish as one of its values, Oracle OLAP limits the mylangs dimension using
the value of the $SDEFAULT_LANGUAGE property which is American.

"Change the value of NLS_LANGUAGE to AMERICAN
SET NLS_LANGUAGE= "AMERICAN"
"Change the value of NLS_LANGUAGE to SPANISH
SET NLS_LANGUAGE= "SPANISH*®

SHOW OBJ(PROPERTY *$DEFAULT LANGUAGE™ *mylangs")
AMERICAN

SHOW NLS_LANGUAGE
SPANISH

SHOW SESSION_NLS_LANGUAGE
SPANISH

SHOW LOCK_LANGUAGE_DIMS
si

SHOW STATIC_SESSION_LANGUAGE

ORACLE 4-14

Chapter 4
$GID_DEPTH

no

REPORT mylangs
MYLANGS

AMERICAN

REPORT prod_desc

------ PROD_DESC------

------ PRODUCTS-------
MYLANGS PRODO1 PRODO2
AMERICAN Trousers Skirts

Assume that you had defined the mylangs language dimension without specifying a
default language using the following code.

DEFINE mylangs DIMENSION TEXT

MAINTAIN mylangs ADD "FRENCH® "AMERICAN®
CONSIDER mylangs

PROPERTY "$DEFAULT_LANGUAGE" **

In this case, when you set the value of NLS_LANGUAGE to Spanish, because the
language dimension, mylangs does not have a value specified for

its SDEFAULT_LANGUAGE property, Oracle OLAP limits the mylangs dimension using
the first value in the mylangs dimension which is French.

NLS_LANGUAGE = "SPANISH"
SHOW OBJ(PROPERTY *$DEFAULT LANGUAGE™ *mylangs")

SHOW NLS_LANGUAGE

SPANISH

SHOW SESSION_NLS_LANGUAGE
SPANISH

SHOW LOCK_LANGUAGE_DIMS

Sl

SHOW STATIC_SESSION_LANGUAGE
no

REPORT mylangs

MYLANGS
FRENCH
REPORT prod_desc
------ PROD_DESC------
—————— PRODUCTS-------
MYLANGS PRODO1 PROD02
FRENCH Pantalons Jupes

4.12 $GID_DEPTH

ORACLE

The $GID_DEPTH property specifies the number of levels of grouping ids in the
grouping id relation to which it is added.

The $GID_DEPTH property, which is automatically created and set when a
GROUPINGID command populates a grouping id relation, specifies the number of
levels of grouping ids in the grouping id relation to which it is added.

4-15

Chapter 4
$GID_LIST

Syntax

You cannot explicitly define a $GID_DEPTH property. Oracle OLAP automatically
creates a $GID_DEPTH property on a grouping id relation when the execution of a
GROUPIONGID command creates the relation.

$GID_DEPTH = intlevels
Parameters

intlevels
An INTEGER value that specifies the number of levels of grouping ids.

For an example of using the $GID_DEPTH property, see Example 9-145.

4.13 $GID_LIST

The $GID_LIST property contains the names of the levels used to create the grouping
ids.

The $GID_LIST property contains the names of the levels used to create the grouping
ids in a relation created when the GROUPINGID command with either the ROLLUP or
GROUPSET keyword executes.

Syntax

You cannot explicitly define a $GID_LIST property. Oracle OLAP automatically creates
a $GID_LIST property on a grouping id relation when the execution of a
GROUPIONGID command with either the ROLLUP or GROUPSET keyword creates
the relation.

$GID_LIST = levels

Parameters

levels
A TEXT expression which is the levels, separated by hyphens (-), of the hierarchies of
the dimension for which grouping ids were created.

4.14 $GID_TYPE

ORACLE

$GID_TYPE property specifies the grouping type of the grouping ids.

The $GID_TYPE property, which is automatically created and set when a
GROUPINGID command with either the ROLLUP or GROUPSET keyword populates
a grouping id relation, specifies whether the grouping type of the grouping ids.

Syntax

You cannot explicitly define a $GID_TYPE property. Oracle OLAP automatically
creates a $GID_TYPE property on a grouping id relation when the execution of a
GROUPIONGID command with either the ROLLUP or GROUPSET keyword creates
the relation.

$GID_TYPE = ROLLUP | GROUPSET

4-16

Chapter 4
$LOOP_AGGMAP

Parameters

ROLLUP

Specifies that the grouping ids are of the rollup type.

For more information on this type of grouping type, see the discussion of ROLLUP in
the rollup cube clause of a SQL SELECT statement in Oracle Database SQL Language
Reference.

GROUPSET

Specifies that the grouping ids are of the grouping set type.

For more information on this type of grouping type, see the discussion of grouping
sets in the grouping sets clause of a SQL SELECT statement in Oracle Database SQL
Language Reference.

4,15 $LOOP_AGGMAP

The SLOOP_AGGMAP property is used to determine how to loop the formula on
which it is assigned when a SQL OLAP_TABLE function with the LOOP OPTIMIZED
clause is executed. It specifies the name of an aggmap object to use when Oracle
OLAP generates a UNION subclause that includes the formula. The value that you
specify for this property overrides all other aggmaps associated with a variable (for
example, aggmaps for which the variable has an $AGGMAP property) and can be
used to clarify which aggmap Oracle OLAP should use when the underlying variables
of a formula are associated with different aggmaps.

Syntax

You add or delete a SLOOP_AGGMAP property to the most recently defined or
considered formula (see DEFINE and CONSIDER commands) using a PROPERTY
statement:

e To add the property, issue the following statement.

PROPERTY '$LOOP_AGGMAP' agggmap-name

* To delete the property, issue the following statement.
PROPERTY DELETE '$LOOP_AGGMAP'
Parameters

aggmap_name
The name of an aggmap object.

4.16 SLOOP_DENSE

ORACLE

The $LOOP_DENSE property is used to determine how to loop the formula on which it
is assigned when an OLAP_TABLE SQL function with the LOOP OPTIMIZED clause
is executed.

It specifies that Oracle OLAP loops densely over the formula (that is, that it loops over
every tuple of the formula—even those member cells that do not have values).

4-17

Chapter 4
$LOOP_TYPE

¢ See Also:

e Oracle OLAP DML Reference for information on looping in OLAP_TABLE
e SET_PROPERTY

Syntax

You add or delete a SLOOP_DENSE property to the most recently defined or
considered formula (see DEFINE and CONSIDER commands) using a PROPERTY
statement:

* To add the property, issue the following statement.

PROPERTY '$LOOP_DENSE' dimension_list

* To delete the property, issue the following statement.
PROPERTY DELETE '$LOOP_DENSE'
Parameters

dimension_list
One or more names of the dimensions of the formula separated by commas.

4.17 $LOOP_TYPE

ORACLE

The $LOOP_TYPE property specifies how to loop over a formula that contains multiple
variables when the formula is used in an OLAP_TABLE SQL function that has the
LOOP OPTIMIZED clause.

The type of looping can impact performance and the number rows that are returned
when the formula contains NA aware functions such as NVL or if NULL TRACKING is
disabled. For information on null tracking, see "NA2 Bits and Null Tracking".

Syntax

You add or delete a $SLOOP_TYPE property to the most recently defined or considered
formula (see DEFINE and CONSIDER commands) using a PROPERTY statement:

* To add the property, issue the following statement.

PROPERTY '$LOOP_TYPE' {DENSE' | INNER' | 'OUTER'}

e To delete the property, issue the following statement.

PROPERTY DELETE '$SLOOP_TYPE'

Parameters

DENSE

Returns variable values for all possible combinations of tuples. If null tracking is not
specified for a composite, you get NA values for non-existent data as well as for
intentionally null values.

4-18

Chapter 4
$LOOP_VAR

DENSE is similar to a cross join in a SQL SELECT statement. It results in the
Cartesian product of all of the base dimensions of the variables.

INNER

(Default) Returns variable values only when a tuple has data in all of the variables.
NVL values are not included.

INNER is similar to a SQL inner join.

OUTER

Returns a variable value when the tuple has data in any of the variables. NVL values
are included.

OUTER is similar to a SQL outer join.

4.18 $LOOP VAR

The $LOOP_VAR property specifies that when an OLAP_TABLE SQL function with
the LOOP OPTIMIZED clause is executed, the formula on which it is assigned is
looped in the same manner as the variable or QDR specified in the property.

¢ See Also:

e Oracle OLAP DML Reference for more information on looping in
OLAP_TABLE

e SET_PROPERTY

Syntax

You add or delete a $SLOOP_VAR property to the most recently defined or considered
formula (see DEFINE and CONSIDER commands) using a PROPERTY statement:

e To add the property, issue the following statement.

PROPERTY '$LOOP_VAR' gdr | variable

* To delete the property, issue the following statement.
PROPERTY DELETE '$LOOP_VAR'
Parameters

qdr
A QDR for a dimension of the formula.

variable
A variable with the same dimensions as the formula.

ORACLE 4-19

Chapter 4
$NATRIGGER

4.19 SNATRIGGER

ORACLE

The SNATRIGGER property specifies values for Oracle OLAP to substitute for NA
values that are in a dimensioned variable, but not in the session cache for the variable

(if any).

To calculate the values, Oracle OLAP takes the steps described in "Usage

Notes", SNATRIGGER. The results of the calculation are either stored in the variable
or cached in the session cache for the variable as described in "Usage Notes",
VARCACHE.

Note:

When you want to trigger the aggregation of a variable, you can use
the $SAGGMAP property rather than the SNATRIGGER property.

Syntax

You add or delete a SNATRIGGER property to the most recently defined or considered
object (see DEFINE and CONSIDER commands) using a PROPERTY statement:

* To add the property, issue the following statement.
PROPERTY '$NATRIGGER' value
* To delete the property, issue the following statement.

PROPERTY DELETE '$NATRIGGER'

Parameters

value
A TEXT expression that is the value of the property. The text can be any expression
that is valid for defining a formula.

Usage Notes
How Oracle OLAP Calculates Data for a Variable with NA Values

When calculating the data for a dimensioned variable, Oracle OLAP takes the
following steps for each cell in the variable:

1. Isthere is a session cache for the variable.
* Yes. Go to step 2.
* No. Go to step 3.
2. Does that cell in the session cache for the variable have an NA value.
* Yes. Go to step 3.
* No.Gotostep7.
3. Does that cell in variable storage have an NA value.

* Yes. Go to step 4.

4-20

Chapter 4
$NATRIGGER

* No.Gotostep 7.
4. Does the variable have an $AGGMAP property?

* Yes. Aggregate the variable using the aggmap specified for the SAGGMAP
property and, then, go to step 5.

* No. Go to step 6.

5. What is the value of the cell after aggregating the variable?
* NA, go to step 6.
* Non-NA, go to step 7.

6. Does the variable have a $SNATRIGGER property?

* Yes. Execute the expression specified for the SNATRIGGER property and,
then, go to step 7.

* No.Gotostep 7.
7. Calculate the data.

8. Apply the NAFILL function or the NASKIP, NASKIP2, or NASPELL options, as
appropriate.

Making NA Triggers Recursive or Mutually Recursive

You can make NA triggers recursive or mutually recursive by including triggered
objects within the value expression. You must set the RECURSIVE option to YES
before a formula, program, or other SNATRIGGER expression can invoke a trigger
expression again while it is executing. For limiting the number of triggers that can
execute simultaneously, see the TRIGGERMAXDEPTH option.

Using SNATRIGGER with Composites

You can set an $NATRIGGER expression on a variable that is dimensioned by a
composite, but Oracle OLAP evaluates the $NATRIGGER expression only for the
dimension-value combinations that exist in the composite.

SNATRIGGER Ignored by EXPORT and AGGREGATE

The AGGREGATE command and the AGGREGATE function ignore

the SNATRIGGER property setting for a variable during an aggregation operation. The
statements fetch the stored value only, and do not invoke the SNATRIGGER
expression. The SNATRIGGER property remains in effect for other operations.

In executing an EXPORT (EIF) statement, Oracle OLAP does not evaluate

the SNATRIGGER property expression on a variable when it simply exports the
variable. However, Oracle OLAP does evaluate the SNATRIGGER property
expression when the variable is part of an expression that Oracle OLAP calculates
during the export operation.

Examples
Example 4-11 Adding an SNATRIGGER Property to a Variable

The following statements define a dimension with three values and define a variable
that is dimensioned by the dimension. They add the SNATRIGGER property to the
variable, then put a value in one cell of the variable and leave the other cells empty so
their values are NA. Finally, they report the values in the cells of the variable.

ORACLE 4-21

Chapter 4
$STORETRIGGERVAL

DEFINE d1 INTEGER DIMENSION
MAINTAIN d1 ADD 3

DEFINE v1 DECIMAL <d1>
PROPERTY *$NATRIGGER® *500.0°
vi(dl 1) = 333.3

REPORT v1

The preceding statements produce the following output.

D1 V1
1 333.3
2 500.0
3 500.0

4.20 $STORETRIGGERVAL

ORACLE

The $STORETRIGGERVAL property specifies whether, when a $SNATRIGGER
expression executes, Oracle OLAP replaces the NA values in the variable with the
results of the expression.

Note:

Applications typically use the $VARCACHE property rather than
the $STORETRIGGERVAL property because the functionality of
the $STORETRIGGERVAL property is subsumed within the $VARCACHE

property.

See also "How Oracle OLAP Determines Whether to Store or Cache Results
of $NATRIGGER"

Syntax

You add or delete a $STORETRIGGERVAL property to the most recently defined or
considered object using a PROPERTY statement:

e To add the property, issue the following statement.
PROPERTY '$STORETRIGGERVAL' value

e To delete the property, issue the following statement.
PROPERTY DELETE '$ASTORETRIGGERVAL'

Parameters

value
A BOOLEAN expression that contains the value of the property.

Examples
Example 4-12 Storing an $SNATRIGGER Property Value

The following statements cause Oracle OLAP to store the SNATRIGGER expression
value in the NA cells of the v1 variable when Oracle OLAP evaluates the expression.

4-22

Chapter 4
$VARCACHE

TRIGGERSTOREOK = yes
CONSIDER v1
PROPERTY *$STORETRIGGERVAL® yes

4.21 SVARCACHE

The $VARCACHE property specifies whether Oracle OLAP stores or caches variable
data that is the result of the execution of an AGGREGATE function or a SNATRIGGER
expression.

Syntax

You add or delete a $VARCACHE property to the most recently defined or considered
object (see DEFINE and CONSIDER commands) using a PROPERTY statement:

e To add the property, issue the following statement.

PROPERTY '$VARCACHE' value

e To delete the property, issue the following statement.

PROPERTY DELETE '$VARCACHE'

Parameters

value

One of the following TEXT expressions that indicate where Oracle OLAP should place
variable data that is the result of calculations performed when the AGGREGATE
function or $NATRIGGER value executes:

* VARIABLE specifies that Oracle OLAP populates the variable with data that is the
result of the execution of the AGGREGATE function or SNATRIGGER property.
When you specify this option, the data that is the result of the aggregation is
permanently stored in the variable when the analytic workspace is updated and
committed.

* SESSION specifies that Oracle OLAP caches data that is the result of the
execution of the AGGREGATE function or SNATRIGGER property in the session
cache (See "What is an Oracle OLAP Session Cache?"). When you specify this
option, the data that is the result of the execution of the AGGREGATE function
or SNATRIGGER property is ignored during updates and commits and is
discarded after the session.

@ Important:

When SESSCACHE is set to NO, Oracle OLAP does not cache the data
even when you specify SESSION. In this case, specifying SESSION is the
same as specifying NONE.

* NONE specifies that Oracle OLAP calculates new variable data each time the
AGGREGATE function or SNATRIGGER value executes; Oracle OLAP does not
store or cache the data.

ORACLE 4-23

ORACLE

Chapter 4
$VARCACHE

e DEFAULT specifies that you do not want Oracle OLAP to use the $VARCACHE
property when determining what to do with data that is calculated by the
AGGREGATE function. (See "How Oracle OLAP Determines Whether to Store or
Cache Aggregated Data".)

Usage Notes

How Oracle OLAP Determines Whether to Store or Cache Results
of SNATRIGGER

When a SNATRIGGER expression executes, what Oracle OLAP does with variable
data that results from the execution of the expression is determined based on whether
or not the variable that has the $SNATRIGGER property also has

a $STORETRIGGERVAL property and, if not, if the value of the SNATRIGGER
property is an AGGREGATE function.

When a SNATRIGGER expression executes, Oracle OLAP goes through the following
process:

1. Does the variable with the SNATRIGGER property also have
a $STORETRIGGERVAL property? If it does, then Oracle OLAP goes to step la.
If it does not, then Oracle OLAP goes to step 2.

a. Isthe value of the TRIGGERSTOREOK option, YES or NO? If itis YES, then
Oracle OLAP goes to step 1b. If it is NO, then Oracle OLAP goes to step 2.

b. Is the value of the $STORETRIGGERVAL property, YES or NO? If it is YES,
then Oracle OLAP stores the results of the $NATRIGGER expression and end
decision-making process. If it is NO, then Oracle OLAP does not store the
results of the SNATRIGGER expression and end decision-making process.

2. Is the SNATRIGGER expression an AGGREGATE function? If it is, then Oracle
OLAP follows the steps described in "How Oracle OLAP Determines Whether to
Store or Cache Aggregated Data" to determine what to do with the result
of SNATRIGGER expression execution. If it is not, then Oracle OLAP goes to step
3.

3. Does the variable with the $NATRIGGER property also have a $VARCACHE
property? If it does, then Oracle OLAP goes to step 4. If it does not, then Oracle
OLAP goes to step 5.

4. Does the $VARCACHE property have a value of DEFAULT? If it does, then go to
step 5. If it does not, then Oracle OLAP uses the value of the $VARCACHE
property (that is, STORE, CACHE, or NONE) to determine what happens to the variable
data values that are the result of SNATRIGGER expression execution and end
decision-making process.

5. Use the current setting of the VARCACHE option to determine what happens to
the variable data values that are the result of SNATRIGGER expression execution
and end decision-making process.

How Oracle OLAP Determines Whether to Store or Cache Aggregated Data

When an AGGREGATE command executes, Oracle OLAP always stores the results of
the calculation directly in the variable in the same way it stores the results of an
assignment statement. However, when an AGGREGATE function executes, Oracle
OLAP sometimes stores the results of the calculation directly in the variable and
sometimes caches it in the session cache. (See "What is an Oracle OLAP Session
Cache?" in SESSCACHE for more information about the session cache.)

4-24

Chapter 4
$VARCACHE

To determine where to place the data that is the result of AGGREGATE function
execution, Oracle OLAP goes through the following process to determine whether to
store or cache aggregated variable data:

1. Isthere a CACHE statement in the specification for the aggmap that is being used
by the current AGGREGATE function? If there is, then Oracle OLAP goes to step
2. If there is not, then Oracle OLAP goes to step 3.

2. Isthe CACHE statement a CACHE DEFAULT statement? If it is, then Oracle
OLAP goes to step 3. If it is not, then Oracle OLAP uses the CACHE statement in
the aggregation specification to determine what to do with variable data that is the
result of the calculation and ends the decision-making process.

3. Does the variable being aggregated have a $VARCACHE property? If it does, then
Oracle OLAP goes to Step 4. If it does not, then Oracle OLAP goes to step 5.

4. Does the $VARCACHE property have a value of DEFAULT? If it does, then Oracle
OLAP goes to step 5. If it does not, then Oracle OLAP uses the value of
the $VARCACHE property determines what happens to the variable data
calculated using the AGGREGATE function, and ends the decision-making
process.

5. Use the current setting of the VARCACHE option to determine what happens to
the variable data calculated using the AGGREGATE function. End decision-
making process.

See Also:

e "How Oracle OLAP Determines Whether to Store or Cache Aggregated
Data"

"How Oracle OLAP Determines Whether to Store or Cache Results
of $NATRIGGER"

* "What is an Oracle OLAP Session Cache?"

e The description of the NA keyword of the CACHE statement for information
on caching NA values calculated by the AGGREGATE function

Examples
Example 4-13 Setting the $VARCACHE Property

For a variable named v1, the following statements cause Oracle OLAP to cache the
variable data that is the result of the execution of an AGGREGATE function
or $NATRIGGER expression.

CONSIDER v1
PROPERTY *$SVARCACHE®™ "v1-

ORACLE 4-25

OLAP DML Options

This chapter contains the following topics:
e About Options

e Options: Alphabetical Listing

e Options by Category

* One topic for each of the OLAP DML options, arranged alphabetically beginning
with ALLOCERRLOGFORMAT.

For other OLAP DML reference topics, see OLAP DML Properties, OLAP DML
Functions: A - K, OLAP DML Functions: L - Z , OLAP DML Commands: A-G, and
OLAP DML Commands: H-Z.

5.1 About Options

An OLAP DML option is a special type of analytic workspace object that specifies the
characteristic of some aspect of how Oracle OLAP calculates or formats data or what
Oracle OLAP operations are activated. Some options are read-only, while others are
read/write options for which you can specify values. Read/write options have default
values.

You can use the SET (=) command to retrieve the value of an option into a predefined
variable and to specify a new value for a read/write option. Use the SHOW command
to display the value of an option.

5.2 Options: Alphabetical Listing

ORACLE

A

ALLOCERRLOGFORMAT
ALLOCERRLOGHEADER
AWWAITTIME

BADLINE
BMARGIN

CALENDARWEEK
COLWIDTH
COMMAS
COMPILEMESSAGE
COMPILEWARN

5-1

ORACLE

DATEFORMAT
DATEORDER
DAYABBRLEN
DAYNAMES
DECIMALCHAR
DECIMALOVERFLOW
DECIMALS
DEFAULTAWSEGSIZE
DIVIDEBYZERO
DSECONDS

ECHOPROMPT
EIFBYTES
EIFEXTENSIONPATH
EIFNAMES
EIFSHORTNAMES
EIFTYPES
EIFUPDBYTES
EIFVERSION
ERRNAMES
ERRORNAME
ERRORTEXT
ESCAPEBASE
EXPTRACE

INF_STOP_ON_ERROR

LCOLWIDTH
LIKECASE
LIKEESCAPE
LIKENL
LIMIT.SORTREL
LIMITSTRICT
LINENUM
LINESLEFT

LOCK_LANGUAGE_DIMS

LSIZE

MAXFETCH
MODDAMP
MODERROR
MODGAMMA

Chapter 5
Options: Alphabetical Listing

5-2

ORACLE

MODINPUTORDER
MODMAXITERS
MODOVERFLOW
MODSIMULTYPE
MODTOLERANCE
MODTRACE
MONTHABBRLEN
MONTHNAMES
MULTIPATHHIER

NASKIP

NASKIP2

NASPELL
NLS_CALENDAR
NLS_CURRENCY
NLS_DATE_FORMAT
NLS_DATE_LANGUAGE
NLS_DUAL_CURRENCY
NLS_ISO_CURRENCY
NLS_LANG
NLS_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_SORT
NLS_TERRITORY
NOSPELL

OKFORLIMIT
OKNULLSTATUS
OUTFILEUNIT

PAGENUM

PAGEPRG

PAGESIZE

PAGING

PARENS
PERMITERROR
PERMITREADERROR
PRGTRACE

RANDOM.SEED.1 and RANDOM.SEED.2

RECURSIVE
ROLE
ROOTOFNEGATIVE

Chapter 5
Options: Alphabetical Listing

5-3

SECONDS
SESSCACHE
SESSION_NLS_LANGUAGE
SPARSEINDEX
SQLBLOCKMAX

SQLCODE

SQLERRM

SQLMESSAGES
STATIC_SESSION_LANGUAGE

THIS_AW
THOUSANDSCHAR
TMARGIN
TRACEFILEUNIT
TRIGGERMAXDEPTH
TRIGGERSTOREOK

USERID
USETRIGGERS

VARCACHE

WEEKDAYSNEWYEAR
WRAPERRORS

YESSPELL
YRABSTART

ZEROROW
ZSPELL

5.3 Options by Category

ORACLE

Analytic Workspace Options
Globalization Support
Multi-Language Support Options
Aggregation Options

Allocation Options

Model Options

Chapter 5
Options by Category

5-4

Chapter 5
Options by Category

Compilation Options

Error Options

Debugging Options

SQL Embed Options

File Reading and Writing Options
EIF Options

Report Options

NA Values Options

Date-only Data Type Options
Datetime Options

Numeric Options

RANK Function Monitoring Options

Analytic Workspace Options

AWWAITTIME
DEFAULTAWSEGSIZE

Globalization Support

NLS_CALENDAR
NLS_CURRENCY
NLS_DATE_FORMAT
NLS_DATE_LANGUAGE
NLS_DUAL_CURRENCY
NLS_ISO_CURRENCY
NLS_LANG

NLS_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_SORT

NLS_TERRITORY

Multi-Language Support Options

LOCK_LANGUAGE_DIMS
NLS_DATE_LANGUAGE
NLS_LANG

NLS_LANGUAGE
SESSION_NLS_LANGUAGE
STATIC_SESSION_LANGUAGE

Aggregation Options
MULTIPATHHIER
SESSCACHE
VARCACHE

Allocation Options

ALLOCERRLOGFORMAT
ALLOCERRLOGHEADER

ORACLE' 5.5

ORACLE

Model Options

MODDAMP
MODERROR
MODGAMMA
MODINPUTORDER
MODMAXITERS
MODOVERFLOW
MODSIMULTYPE
MODTOLERANCE
MODTRACE

Compilation Options

COMPILEMESSAGE
COMPILEWARN
THIS_AW

Error Options

BADLINE
ERRNAMES
ERRORNAME
ERRORTEXT
INF_STOP_ON_ERROR
MODERROR
PERMITERROR
PERMITREADERROR
SQLERRM
SQLMESSAGES
WRAPERRORS

Debugging Options

EXPTRACE
MODTRACE
PRGTRACE

SQL Embed Options

SQLBLOCKMAX
SQLCODE
SQLERRM
SQLMESSAGES

File Reading and Writing Options

ECHOPROMPT
ESCAPEBASE
INF_STOP_ON_ERROR
OUTFILEUNIT

Chapter 5
Options by Category

5-6

ORACLE

EIF Options

EIFBYTES
EIFEXTENSIONPATH
EIFNAMES
EIFSHORTNAMES
EIFTYPES
EIFUPDBYTES
EIFVERSION

Report Options

BMARGIN
COLWIDTH
COMMAS
DECIMALCHAR
DECIMALS
LCOLWIDTH
LINENUM
LINESLEFT
LSIZE
NASPELL
NOSPELL
PAGENUM
PAGEPRG
PAGESIZE
PAGING
PARENS
THOUSANDSCHAR
TMARGIN
YESSPELL
ZEROROW
ZSPELL

NA Values Options

LIMITSTRICT
NASKIP

NASKIP2

NASPELL
RECURSIVE
TRIGGERMAXDEPTH
TRIGGERSTOREOK

Date-only Data Type Options

CALENDARWEEK
DATEFORMAT
DATEORDER
DAYABBRLEN
DAYNAMES

Chapter 5
Options by Category

5-7

Chapter 5
ALLOCERRLOGFORMAT

DSECONDS
MONTHABBRLEN
MONTHNAMES
WEEKDAYSNEWYEAR
YRABSTART

Datetime Options

CALENDARWEEK
DSECONDS
SECONDS

Numeric Options

DECIMALOVERFLOW

DIVIDEBYZERO

RANDOM.SEED.1 and RANDOM.SEED.2
ROOTOFNEGATIVE

RANK Function Monitoring Options

RANK_CALLS
RANK_CELLS
RANK_SORTS

5.4 ALLOCERRLOGFORMAT

ORACLE

The ALLOCERRLOGFORMAT option determines the contents and the formatting of
the error log that you specify with the ERRORLOG argument to the ALLOCATE
command.

Syntax
ALLOCERRLOGFORMAT = text

Parameters

text

Characters that determine the contents and formatting of the error log that you specify
with an ERRORLOG statement in an ALLOCMAP command. By placing an INTEGER
value before the formatting character, you can specify the number of characters that
the object occupies in the error log. You can specify escape sequences as formatting
characters. For valid escape sequences, see "Escape Sequences"”. The following
table lists the characters that specify the contents of the error log. The default value of
ALLOCERRLOGFORMAT is the following.

*%8p %8y %8z %e (%n)"

Character Output Specified

b The basis object being processed.
c The child node of the dimension being processed.
d The name of the dimension being processed.

5-8

Chapter 5
ALLOCERRLOGHEADER

Character Output Specified

e A description of the error encountered.

n The error code of the error encountered.

p The parent node of the dimension being processed.

r The name of the relation being allocated down.

s The source object being processed.

t The target object being processed.

n The basis value of the child cell receiving the allocation.
y The source value of the parent cell being allocated.

z The basis value of the parent cell being allocated.

Examples
Example 5-1 Setting the ALLOCERRLOGFORMAT Option

This example sets the ALLOCERRLOGFORMAT option and produces the results
shown in the last line.

ALLOCERRLOGFORMAT = "%8p %8y %8z %e (%n)"
SHOW ALLOCERRLOGFORMAT
%8p %8y %8z %e (%n)

5.5 ALLOCERRLOGHEADER

ORACLE

The ALLOCERRLOGHEADER option determines the column headings for the error
log that you specify with the ERRORLOG argument to the ALLOCATE command. To
specify additional formatting for the error log, use the ALLOCERRLOGFORMAT
option.

Syntax
ALLOCERRLOGHEADER = text

Parameters

text

Characters that determine the content and formatting of the column headers that are
the first line of the error log that you specify with the ALLOCATE command. (See
ALLOCERRLOGFORMAT for a list of the characters you can use.)

When you specify NA as the value for this option, then ALLOCATE does not write any
header to the error log. The following is the default value of

ALLOCERRLOGHEADER.
"Dim Source Basis\n%-8d %-8v %-8b Description\n
Examples

Example 5-2 Setting the ALLOCERRLOGHEADER Option

The following statements define the heading for the error log specified by an
ALLOCATE statement and show the value of the ALLOCERRLOGHEADER option.

5-9

Chapter 5
AWWAITTIME

ALLOCERRLOGHEADER = "Dim Source Basis\n %-8d %-8v %-8b Description \n

SHOW ALLOCERRLOGHEADER

The preceding statement produces the following results.

Dim Source Basis
%-8d %-8s %-8b Description

An allocation operation that has a variable named budget as both the source and basis
objects and which encounters a deadlock when allocating down the division
dimension produces the following entry in the error log.

Dim Source Basis
Division Budget Budget Description

Accdiv 650000 NA A deadlock occurred allocating data (5)

5.6 AWWAITTIME

ORACLE

The AWWAITTIME option holds the number of seconds that an AW ATTACH
command with the WAIT keyword waits for an analytic workspace to become available
for access. The default value of AWWAITTIME is 20 seconds.

Data Type

INTEGER

Syntax
AWWAITTIME = seconds

Parameters

seconds
The number of seconds to wait for an analytic workspace to be available. The default
value is 20 seconds.

Usage Notes
Workspace Sharing

When your user ID has the appropriate access rights and no user has read/write
exclusive access to the workspace, you can get read-only access to an analytic
workspace, no matter how many other users are using it. When another user has read/
write access and commits the workspace, your view of the workspace does not
change; you must detach and reattach the workspace to see the changes.

Examples
Example 5-3 Specifying a Wait Time of One Minutes

Assume that you want to wait for 60 seconds when attaching an analytic workspace.
To do so, reset the value of the AWWAITTIME option by issuing the following
statement.

AWWAITTIME = 60

5-10

Chapter 5
BADLINE

5.7 BADLINE

When a program, model, or input file is executing, the BADLINE option controls
whether Oracle OLAP records, in the current outfile, the line that caused an error.

¢ See Also:
PROGRAM, MODEL, and INFILE.

Data Type
BOOLEAN

Syntax
BADLINE = {YES|NO}

Parameters

YES

When an error occurs during the execution of a program, model, or input file, Oracle
OLAP records in the current outfile the name of the program, model, or file in which
the error occurred and the line that caused the error. When an error message is
included in the output, the BADLINE information appears immediately after the error
message.

NO
(Default) When an error occurs in a program, model, or input file, Oracle OLAP does
not record the error in the current outfile.

Examples
Example 5-4 Using the BADLINE Option
In a simple program called test, the variable myint1 is divided by zero.

DEFINE test PROGRAM
PROGRAM

VARIABLE myintl INTEGER
VARIABLE myint2 INTEGER

myintl = 0
myint2 = 250/myintl
END

When you run the program when the DIVIDEBYZERO option is set to NO, then an error
occurs because division by zero is not allowed. When BADLINE is set to YES, the
following messages are recorded in the current outfile.

ERROR: (MXXEQO1) A division by zero was attempted. Set DIVIDEBYZERO to
YES if you want NA to be returned as the result of division by zero.
In DEMOITEST PROGRAM:

myint2 = 250/myintl

ORACLE 5-11

Chapter 5
BMARGIN

Example 5-5 Finding Errors in Program Lines
In a simple program called test, the variable myint1 is divided by 0 (zero).

DEFINE test PROGRAM
PROGRAM

VARIABLE myintl INTEGER
VARIABLE myint2 INTEGER

myintl = 0
myint2 = 250/myintl
END

When you run the program, an error occurs because division by zero is not allowed
(that is, when DIVIDEBYZERQO is set to NO).

When BADLINE is set to NO only the error is recorded in the current outfile.

ERROR: (MXXEQO1) A division by zero was attempted. (If you want NA to
be returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)

When BADLINE is set to YES, the line that causes the error and the name of the
program in which the error occurred are recorded in the current outfile.

ERROR: (MXXEQO1) A division by zero was attempted. (If you want NA to
be returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)

In TESTBAD PROGRAM:

myint2 = 250/myintl

In EDDE.RUNCMD PROGRAM:

5.8 BMARGIN

ORACLE

The BMARGIN option defines the number of blank lines for the bottom margin of
output pages. BMARGIN is meaningful only when PAGING is set to YES and only for
output from statements such as REPORT and DESCRIBE. The BMARGIN option is
usually set in the initialization section of report programs.

Data Type

INTEGER
Syntax
BMARGIN =n
Parameters

n
An INTEGER expression that specifies the number of lines to set aside for the bottom
margin in a report. The default is 1.

Usage Notes
Setting BMARGIN for a File

To set BMARGIN for a file, first make the file your current outfile by specifying its name
in an OUTFILE statement, then set BMARGIN to the desired value. The new value

5-12

Chapter 5
CALENDARWEEK

remains in effect until you reset it or until you use an OUTFILE statement to direct
output to a different outfile. When you direct output to a different outfile, BMARGIN
returns to its default value of 1 for the file.

When you set BMARGIN for the default outfile, the new value remains in effect until
you reset it, regardless of intervening OUTFILE statements that send output to a file.
That is, the value of BMARGIN is automatically saved for the default outfile

Examples
Example 5-6 Setting the Bottom Margin of a Report Page

Suppose you want to be able to make notes on the bottom of a report page. You can
set a large bottom margin of 5 lines. Here is the statement that you would include in
the initialization section of your report program.

BMARGIN = 5

5.9 CALENDARWEEK

ORACLE

The CALENDARWEEK option determines whether weeks should be aligned with the
actual calendar year.

Note:

You can only use this function with dimensions of type WEEK.

Data Type
BOOLEAN

Syntax
CALENDARWEEK = {YES|NO}

Parameters

YES

(Default) Specifies that weeks are aligned with the calendar year. For example, if you
have defined a dimension of type WEEK, Oracle OLAP numbers its values so that the
first week in the calendar year is week 1, the second week in the calendar year is
week 2, and so on. Weeks are aligned with the calendar year regardless of any
beginning or ending date specified in the WEEK dimension definition.

NO

Specifies that weeks are not aligned with the calendar year. Instead, weeks are
numbered so that they are aligned with the date specified in the dimension definition.
For example, if you have defined a dimension of type WEEK with a beginning or
ending date, its values are numbered so that the week corresponding to the date in
the dimension definition is week 1, the following week is week 2, and so on.

Usage Notes

Fiscal Years

5-13

Chapter 5
COLWIDTH

Setting CALENDARWEEK to NO causes weeks to be numbered so that the number 1 is
assigned to the week beginning or ending on the date specified in the DEFINE
DIMENSION statement. This week is then assigned to a fiscal year, which is the
calendar year of the first January 1 on or after the week's starting date. For example, if
you define a dimension of type WEEK with a starting date of 02Jan1996 (or,
equivalently, an ending date of 08Jan1996), the week starting 02Jan1996 is considered
week 1 of fiscal year 1997. If, by contrast, you had given the dimension a starting date
between 02Jan1995 and 01Jan1996, then the week starting on that date is week 1 of
fiscal year 1996.

Examples
Example 5-7 Aligning Weeks with the Calendar Year

The following statements define a dimension of type WEEK, define its ending date,
add values to the dimension, and produce a report.

DEFINE week dimension WEEK ENDING "18Jan97*"
MAINTAIN week ADD "21Dec96" "25Jan97"
REPORT W 22 CONVERT(week DATE)

These statements produce the following output.

WEEK CONVERT(WEEK DATE)
w51.96 21Dec96
w52.96 28Dec96
wl.97 04Jan97
w2.97 11Jan97
w3.97 18Jan97
w4 .97 25Jan97

Example 5-8 Aligning Weeks with a Specified Ending Date

The following statements set the CALENDARWEEK option to NO, which aligns the
weeks with the ending date that is specified in the definition of the week dimension in
"Example 5-7" .

CALENDARWEEK = NO
REPORT W 22 CONVERT(week date)

These statements produce the following output.

WEEK CONVERT(WEEK DATE)
w50.97 21Dec96
w51.97 28Dec96
w52 .97 04Jan97
w53.97 11Jan97
wl.98 18Jan97
w2.98 25Jan97

5.10 COLWIDTH

The COLWIDTH option controls the default width of data columns in report output. For
output from the ROW command and HEADING command, COLWIDTH affects all
columns except the first column. For output from REPORT, COLWIDTH affects all
data columns and the label columns for a composite or a conjoint dimension.

ORACLE 5-14

Chapter 5
COLWIDTH

Note:

For an individual column, the COLWIDTH value is always overridden by a
WIDTH attribute in a HEADING, REPORT, or ROW command

Data Type

INTEGER

Syntax
COLWIDTH =n
Parameters

n
An INTEGER expression that specifies the desired column width in number of
characters. You can set COLWIDTH to any value from 1 to 4,000. The default is 10.

" Note:

The maximum width of a line in a report is 4,000 characters. Therefore, the
combined width of all the columns of a report cannot be greater than 4,000
characters.

Examples
Example 5-9 Setting the Default Column Width in a Report

Suppose you want to look at unit sales for six months. Because the data values are
not large, you do not need a width of 10 characters for your data columns. You can set
COLWIDTH to provide a narrower default column.

LIMIT district TO "Atlanta®

LIMIT month TO "Oct95" TO “"Mar96"
COLWIDTH = 6

REPORT ACROSS month: units

These statements produce the following output.

DISTRICT: ATLANTA

—————————————————— UNITS-—=————— ==

—————————————————— MONTH--=-=====——=—————-
PRODUCT Oct95 Nov95 Dec95 Jan96 Feb96 Mar96
Tents 503 345 259 279 305 356
Canoes 317 282 267 281 309 386
Racquets 1,365 1,270 1,357 1,125 1,304 1,263
Sportswear 3,065 2,327 1,955 2,591 2,829 3,137
Footwear 3,445 3,247 2,831 3,089 3,282 3,475

ORACLE 5-15

Chapter 5
COMMAS

5.11 COMMAS

ORACLE

The COMMAS option controls the use of the character that separates thousands and
millions in numeric output. This character is typically a comma; however, it might be
different depending on your NLS_TERRITORY setting. The THOUSANDSCHAR
option records the character that is currently being used for separating thousands. The
COMMAS option controls whether the character appears in numeric output.

COMMAS affects all commands that produce output, including the ROW command,
HEADING, REPORT, and SHOW.

Note:

You can use the COMMA and NOCOMMA attributes of a HEADING, REPORT,
or ROW command to override the COMMAS setting.

Data Type
BOOLEAN

Syntax
COMMAS = {NO|YES}

Parameters

NO
Numeric output does not contain a character that separates thousands, millions, and
S0 on.

YES
(Default) Numeric output contains a character that separates thousands, millions, and
S0 on.

Examples
Example 5-10 Showing Numerical Data Without Commas

Suppose you want to look at the cost of goods sold, without commas in the data
values. You can set COMMAS to NO before producing your report.

COMMAS = NO

LIMIT line TO "Cogs"

LIMIT month TO "Jan96" "Feb96"

REPORT DOWN division ACROSS month: DECIMAL 0 actual

These statements produce the following output.

LINE: COGS
----- ACTUAL ------
------ MONTH------

DIVISION Jan96 Feb96

Canping 368044 385120

5-16

Chapter 5
COMPILEMESSAGE

Sporting 287558 315299
Clothing 567767 610727

5.12 COMPILEMESSAGE

You use the COMPILEMESSAGE option to specify whether you want Oracle OLAP to
send to the current outfile non-irrecoverable error messages during execution of the
COMPILE command. Non-irrecoverable error messages are those indicating errors
that do not prevent a program from compiling.

¢ See Also:

For more information about compiling objects, see COMPILE.

Data Type
BOOLEAN

Syntax
COMPILEMESSAGE = {YES|NO}

Parameters

YES
(Default) Indicates that Oracle OLAP should record non-irrecoverable error messages
during execution of the COMPILE command.

NO
Indicates that Oracle OLAP should suppress non-irrecoverable error messages during
execution of the COMPILE command.

Examples
Example 5-11 Suppressing Error Messages During Compilation

The following statement specifies that Oracle OLAP should suppress non-
irrecoverable error messages during execution of the COMPILE command.

COMPILEMESSAGE = NO

5.13 COMPILEWARN

ORACLE

The COMPILEWARN option controls whether Oracle OLAP records a warning
message in the current outfile when a compilable object, such as a program or a
model, is being compiled automatically. (When you use the COMPILE command to
explicitly compile an object, Oracle OLAP does not display the COMPILEWARN
message.)

A compilable object is automatically compiled in the following cases:

* The first time it is executed after being edited.

5-17

Chapter 5
DATEFORMAT

* The first time it is executed in a session when it was compiled in a previous
session after the last time the analytic workspace was updated and committed.

» After an analytic workspace object referred to in the code has been renamed or
deleted. When the object name in the code has not been redefined, you receive an
error message.

* When the code refers to objects in another analytic workspace and the objects in
the currently attached analytic workspace do not have the same object type
(variable, relation, and so on), data type (INTEGER, TEXT, and so on), or dimensions
as the objects available when the code was previously compiled.

Data Type
BOOLEAN

Syntax
COMPILEWARN = {YES|NO}

Parameters

YES
Oracle OLAP records a message warning you that a compilable object is being
compiled automatically. The message explains why the compilation was necessary.

NO
(Default) Oracle OLAP does not record a message warning you that an object is being
compiled automatically.

Examples
Example 5-12 Specifying That You Want Compiler Warnings

When COMPILEWARN is set to YES, when you run the do_report program just after
editing it, Oracle OLAP places the following message in your current outfile before the
do_report output.

DO_REPORT 1is being automatically compiled.

5.14 DATEFORMAT

ORACLE

The DATEFORMAT option holds the template used for displaying DATE-only data
type values and converting DATE-only values to text values. The template can include
format specifications for any of the four components of a date (day, month, year, and
day of the week). It can also include additional text.

¢ See Also:

"Date-only Data Type Options"

Data Type
TEXT

5-18

ORACLE

Chapter 5
DATEFORMAT

Syntax
DATEFORMAT = template

Parameters

template

A TEXT expression that specifies the template for displaying dates. Each component
in the template must be preceded by a left angle bracket and followed by a right angle
bracket. You can include additional text before, after, or between the components.
The default template is *<DD><MTXT><YY>".

The following tables present the valid formats for each component. The tables provide
two display examples, one for March 1, 1990 and another for November 12, 2051.
The following table presents the valid formats for days.

Format Meaning March 1,1990 November 12, 2051
<D> One digit or two digits 1 12

<DD> Two digits 01 12

<DS> Space-padded, two digits 1 12

<DT> Ordinal, uppercase 1ST 12TH

<DTL> Ordinal, lowercase 1st 12th

The following table presents the valid formats for weeks. The table provides two
display examples, one for March 1, 1990 and another for November 12, 2051.

Format Meaning March 1, 1990 November 12,
2051

<W> Numeric 4 1

<WT> First letter, W S
uppercase

<WTXT> First three letters, WED SUN
uppercase.

<WTXTL> First three letters, Wed Sun
lowercase

<WTEXT> Full name, WEDNESDAY SUNDAY
uppercase

<WTEXTL> Full name, Wednesday Sunday
lowercase

Note that when you specify a format of <WTXT>, <WTXTL>, <WTEXT>, or <WTEXTL>, the case
in which the value is specified in DAYNAMES affects the displayed value:

* When the name in DAYNAMES is entered as all lowercase, the entire name is
converted to uppercase. Otherwise, the first letter is converted to uppercase and
the second and subsequent letters remain in their original case.

e When the name in DAYNAMES is entered as all uppercase, the second and
subsequent letters are converted to lowercase. Otherwise, the entire name
remains in the case specified in DAYNAMES.

The following table presents the valid formats for months. The table provides two
display examples, one for March 1, 1990 and another for November 12, 2051.

5-19

ORACLE

Chapter 5

DATEFORMAT
Format Meaning March 1, 1990 November 12,
2051

<M> One digit or two digits 1 11
<MM> Two digits 03 11
<MS> Space-padded, two digits 3 11
<MT> First letter, uppercase M N
<MTXT> First three letters, MAR NOV

uppercase
<MTXTL> First three letters, Mar Nov

lowercase

Note that when you specify a format of <MTXT> or <MTXTL>, the case in which the value
is specified in MONTHNAMES affects the displayed value:

* When the name in MONTHNAMES is entered as all lowercase, the entire name is
converted to uppercase. Otherwise, the first letter is converted to uppercase and
the second and subsequent letters remain in their original case.

* When the name in MONTHNAMES is entered as all uppercase, the second and
subsequent letters are converted to lowercase. Otherwise, the entire name
remains in the case specified in MONTHNAMES.

The following table presents the valid formats for years. The table provides two
display examples, one for March 1, 1990 and another for November 12, 2051.

Format Meaning March 1, 1990 November 12,
2051
<YY> Two digits or four 90 2051
digits
<YYYY> Four digits 1990 2051

Usage Notes
Specifying Angle Brackets as Text in a DATEFORMAT Template

To include an angle bracket as additional text in a template, specify two angle brackets
for each angle bracket to be included as text (for example, to display the entire date in
angle brackets, specify "<<<D><M><YY>>>").

Month and Day Names

The names used in the month component for the MT, MTXT, MTXTL, MTEXT, and
MTEXTL formats are drawn from the current setting of the MONTHNAMES option.
The names used in the day-of-the-week component for the WT, WTXT, WTXTL,
WTEXT, and WTEXTL formats are drawn from the current setting of the DAYNAMES
option.

Specifying Abbreviations for Day and Month

You can set the DAYABBRLEN and MONTHABBRLEN options to use abbreviations of
different lengths for day and month names.

Out-of-Range Years for DATEFORMAT

When you specify the YY format, and a year outside the range of 1950 to 2049 is to be
displayed, the year is displayed in four digits.

5-20

ORACLE

Chapter 5
DATEFORMAT

Automatic Conversion of DATE-only Values to Text Values

When you use a value with DATE-only data type where a text data type is expected.
Oracle OLAP also uses the date template in the DATEFORMAT option to
automatically convert the date to a text value. When you want to override the current
DATEFORMAT template, you can convert the date result to text by using the
CONVERT function with a date-format argument.

Once a DATE-only value is stored in a text variable, the DATEFORMAT template is no
longer used to format the display of the value, and subsequent changes to
DATEFORMAT have no impact.

DATE-only Dimension Values

The DATEFORMAT option does not how Oracle OLAP displays DATE-only values of
DAY, WEEK, MONTH, QUARTER, and YEAR dimensions. How these values are
displayed is controlled by a VNF (value name format) attached to the dimension
definition, or by default conventions for DAY, WEEK, MONTH, QUARTER, and YEAR
dimensions as described in the Default VNFs for DWMQY Dimensions table in Date-
only Dimension Values.

Examples
Example 5-13 Changing the Format of Dates

The following statements define a DATE-only variable and set its value to March 24,
1997, then set the date format to two digits each in the order of day, month, and year,
and send the result to the current outfile.

DEFINE datevar VARIABLE DATE
datevar = "24Mar97°"
DATEFORMAT = "<DD>/<MM>/<YY>"
SHOW datevar

These statements produce the following output.

24/03/97

The following statements change the date format to month (text), day (two digits), and
year (four digits), and send the result to the current outfile.

DATEFORMAT = "<MTEXTL> <D>, <YYYY>"
SHOW DATEVAR

These statements produce the following output.

March 24, 1997

The following statements change the date format to day of the week (text), month
(text), day (one or two digits), and year (four digits), and send the result to the current
outfile.

DATEFORMAT = "<WTEXTL> <MTEXTL> <D>, <YYYY>"
SHOW DATEVAR

These statements produce the following output.

Monday March 24, 1997

5-21

Chapter 5
DATEORDER

Example 5-14 Including Text in the Format of a Date

The following statements save and then change the DATEFORMAT option to include
extra text for an analytic workspace startup greeting.

PUSH DATEFORMAT

DATEFORMAT = "Hello. Today is <wtextl>, the <dtl> -
OF <MTEXTL>."

SHOW TODAY

POP DATEFORMAT

When today's date is May 30, 1997, the following output is sent to the current outfile
when the program is run.

Hello. Today is Friday, the 30th of May.

5.15 DATEORDER

ORACLE

The DATEORDER option holds three characters that indicate the intended order of the
month, day, and year components of the DATE-only values in an analytic workspace
for those cases in which their interpretation is ambiguous. Oracle OLAP automatically
refers to DATEORDER whenever you enter an ambiguous DATE-only value or convert
one from a text value. For information about date values, see "Date-only Data Type".

Data Type
ID

Syntax
DATEORDER = order

Parameters

order

One of the following text expressions: *MDY*®, "DMY™, "YMD", "YDM*", "MYD", "DYM". Each
letter represents a component of the date. M stands for the month, D for the day, and Y
for the year. The default date order is “MDY".

Usage Notes
Ambiguous Dates

When you enter an unambiguous DATE-only value or convert a text value that has
only one interpretation as a date, it is handled without consulting the DATEORDER
option. For example, in 03-24-97 the 97 can only refer to the year. Considering what is
left, the 24 cannot refer to the month, so it must be the day. Only 03 is left, so it must be
the month. When, however, the interpretation is ambiguous, as in the value 3-5-97, the
current value of DATEORDER is used to interpret the meaning of each component.

DATEORDER and TEXT-to-DATE-only Conversion

When you use a text value where a DATE-only value is expected, or when you store a
text value in a DATE-only variable, the text value must conform to a style listed "Date-
only Input Values". Oracle OLAP automatically converts the text value to a DATE-only
value. When the meaning of the text value is ambiguous, the current setting of
DATEORDER is used to interpret the value.

5-22

Chapter 5
DAYABBRLEN

To override the current DATEORDER setting in converting a text value to a DATE-only
value, use the CONVERT function with the date-order argument.

Essential Date Components

Suppose you want to assign a date value to a DAY, WEEK, MONTH, QUARTER, or
YEAR dimension using a MAINTAIN statement or to a valueset using the LIMIT
command. When you specify the value in the form of a DATE-only expression or a text
literal, Oracle OLAP uses the DATEORDER option to interpret the value. When
supplying a text literal, you can use any valid input style for dates. However, you must
supply only the date components that are necessary for identifying a time period in the
particular type of dimension or valueset you are using. For example, for a MONTH
dimension or its valueset, you can specify a complete date, such as 30jun97, or you
can provide only the essential components, such as jun97 or 0697.

DWMQY Dimension Phases

The DATEORDER option is used to interpret a phase argument to a DEFINE
DIMENSION statement for DAY, WEEK, MONTH, QUARTER, and YEAR dimensions.

Examples
Example 5-15 Changing the Date Order

The following statements define and assign a value to a DATE-only variable, specify
the date format and the date order, and send the output to the current outfile.

DEFINE datevar VARIABLE DATE
dATEFORMAT = "<MTXT> <D>, <YYYY>"
DATEORDER = "MDY*"

DATEVAR = "3 5 1997"

SHOW DATEVAR

These statements produce the following output.

MAR 5, 1997

The following statements change the date order, and, therefore, the way the same
value of the DATE-only variable is interpreted.

DATEORDER = "DMY*"
SHOW DATEVAR

These statements produce the following output.

MAY 3, 1997

5.16 DAYABBRLEN

ORACLE

The DAYABBRLEN option specifies the number of characters to use for abbreviations
of day names that are stored in the DAYNAMES option. You can specify how many
characters to use for abbreviating particular day names when you specify the <WT>,
<WTXT>, and <WTXTL> formats with the DATEFORMAT text option.

Data Type
TEXT

5-23

ORACLE

Chapter 5
DAYABBRLEN

Syntax

DAYABBRLEN = specification [;|, specification]...

where speci fi cati on is a text expression that has the following form:
startpos [- endpos] : length

You can define many different groups of days, each with different abbreviation lengths.
When you do so, separate the groups with a comma or a semicolon as shown in the
syntax.

Parameters

startpos [- endpos]

Numbers that represent the first and last days whose abbreviation length is defined by
length. These numeric positions apply to the corresponding lines of text in the
DAYNAMES option. You can specify these ranges of values in reverse order, endpos
[-startpos], when you prefer.

The DAYNAMES option can have more than seven lines, so you can specify startpos
and endpos greater than seven in the setting of DAYABBRLEN. When you specify a
range where neither startpos nor endpos has a corresponding text value in the
DAYNAMES option, then Oracle OLAP has no text values to abbreviate for that
range. When you later change your day names list so that startpos is valid, the
specified abbreviation is applied.

length

A number that specifies the length in characters (not bytes) of abbreviated day
names. When you do not specify an abbreviation length for a given position in the
DAYNAMES option, or when you explicitly set a given position to zero, Oracle OLAP
uses the default abbreviations of one character for <WT> and three characters for
<WTXT> and <WTXTL>. Oracle OLAP never uses abbreviations when you have
designated the full name specifications <WTEXT> and <WTEXTL>.

Usage Notes
Ambiguous Day Names

You can use DAYABBRLEN to interpret ambiguous names, for example, whether *T*
stands for Tuesday or Thursday. When the DAYABBRLEN for Tuesday was 1 and for
Thursday was 2, then "T" would always match Tuesday, and it would require at least
"Th* to match Thursday. This interpretation does not depend on the order of Tuesday
and Thursday in the week; it would work the same way when the two days were
reversed. If, on the other hand, the DAYABBRLEN for each of these was 2, then "T*
would not match either one, and you would have to enter at least *Tu* or "Th* to get a
match.

Examples
Example 5-16 Specifying Day Abbreviations

The following DAYABBRLEN setting specifies that the first five days of the week are
abbreviated with one character and the last two days are abbreviated with two
characters.

DAYABBRLEN = "1-5:1, 6-7:2°
DATEFORMAT = "<WTXT> <MTXT> <D>, <YYYY>"
SHOW CONVERT ("2 august 2005" DATE)

5-24

Chapter 5
DAYNAMES

These statements product the following result, with Tuesday abbreviated to one
character.

T AUGUST 2, 2005

5.17 DAYNAMES

ORACLE

The DAYNAMES option holds the list of valid names for the days of the week. The
names are used to display values of type DATE-only or to convert DATE-only values
to text.

Oracle OLAP consults the DAYNAMES list when it displays or converts a date using
the <WT>, <WTXT>, <WTXTL>, <WTEXT>, or <WTEXTL> formats. These formats are specified in
the DATEFORMAT option. When you have multiple sets of day names, Oracle OLAP
chooses the synonym whose number of characters and capitalization pattern best
match the DATEFORMAT specification.

Data Type
TEXT

Syntax
DAYNAMES = name-list

Parameters

name-list

A multiline text expression that lists the names of the seven days of the week. Each
name occupies a separate line. Regardless of which day you are treating as the first
day of the week, the list must begin with the name for Sunday. The default value is
the list of English names for the days of the week, in uppercase. You can include
multiple sets of seven names in your list. The eighth name is a synonym for the first
name, the ninth name is a synonym for the second name, and so on.

Examples
Example 5-17 Specifying Day Names

The following statements set DAYNAMES to the French names for the days of the
week and send the output to the current outfile.

DAYNAMES = “dimanche\nlundi\n-
mardi\nmercredi\njeudi\nvendredi\nsamedi*
SHOW DAYNAMES

These statements produce the following output.

dimanche
lundi
mardi
mercredi
jeudi
vendredi
samedi

5-25

Chapter 5
DECIMALCHAR

5.18 DECIMALCHAR

(Read-only) The DECIMALCHAR option is the value specified for the
NLS_NUMERIC_CHARACTERS option.

DECIMALCHAR only affects the way Oracle OLAP formats numbers in output. When
you format numbers for input, use a period (.) for the decimal marker. To use a
different decimal marker, enclose the value in single quotes and use the TO_NUMBER
function to convert the value from text to a valid number.

Data Type
ID

Syntax
DECIMALCHAR

Examples
Example 5-18 Identifying the Decimal and Thousands Markers

The statements in this example show the DECIMALCHAR and THOUSANDSCHAR
values.

e The following statement might produce a comma as output.
SHOW THOUSANDSCHAR
e The following statement might produce a period as output.
SHOW DECIMALCHAR
e With these values, the following statement might produce the output that follows it.

SHOW TOTAL(sales)
63,181,743.50

5.19 DECIMALOVERFLOW

The DECIMALOVERFLOW option controls the result of arithmetic operations that
produce out-of-range numbers. Decimal numbers are stored as a mantissa and an
exponent. Decimal overflow occurs when the result of a calculation is very large and
can no longer be represented by the exponent portion of the decimal representation.

Data Type
BOOLEAN

Syntax
DECIMALOVERFLOW = YES|NO

ORACLE 5-26

Chapter 5
DECIMALS

Parameters

YES
Allows overflow. A calculation that generates overflow executes without error, and the
results of the calculation are NA.

NO
(Default) Disallows overflow. A calculation involving overflow stops executing, and an
error message is produced.

Examples
produce the following result.

NA

Example 5-19 The Effect of DECIMALOVERFLOW

This example shows the effect of changing the value of the DECIMALOVERFLOW
option.

When you execute a SHOW statement such as the following without changing
DECIMALOVERFLOW from its default value of NO, an error occurs.

SHOW 1000000.0 ** 133

When you change DECIMALOVERFLOW to YES, the same statement executes without
an error and produces NA as the result of the operation. The statements

DECIMALOVERFLOW = YES
SHOW 1000000.0 ** 133

5.20 DECIMALS

ORACLE

The DECIMALS option controls the number of decimal places that are shown in
numeric output. Values are rounded to fit the specified number of decimal places.
(Note, however, that the setting of DECIMALS does not affect the format of INTEGER
values in output. INTEGER values are shown with no decimal places, unless you
explicitly apply a DECIMAL attribute to them in a HEADING, REPORT, or ROW
command.)

Data Type
INTEGER
Syntax
DECIMALS =n
Parameters

n
An INTEGER expression that specifies the number of decimal places to include in all
output of DECIMAL and SHORTDECIMAL values; n can be any number in the range
0 to 40 or the number 255. (When you set DECIMALS to 255, you are specifying the

5-27

Chapter 5
DEFAULTAWSEGSIZE

formats for values of both SHORTDECIMAL and DECIMAL data types. See
"Example 5-21".) The default is 2.

Examples
Example 5-20 Showing Data with No Decimal Places

To show no decimal places in numeric output, set the DECIMALS option to 0 (zero)
before you produce your report.

DECIMALS = 0

LIMIT line TO "COGS™

LIMIT month TO "Jan96" "Feb96"

REPORT DOWN division ACROSS month: budget

These statements produce the following output.

LINE: COGS
——————— BUDGET--------
———————— MONTH--------
DIVISION Jan96 Feb96
Camping 355,933 385,308
Sporting 279,773 323,982
Clothing 528,370 546,468

Example 5-21 Comparing 2 Decimal Places with Best Presentation Format

This example contrasts the effects of setting DECIMALS to 2 and setting it to 255 ("best
presentation” format).

The OLAP DML statements

DECIMALS = 2
SHOW JOINCHARS(1.1 "A")

produce the following output.

1.10A

The OLAP DML statements

DECIMALS = 255
SHOW JOINCHARS(1.1 *A%)

produce the following output.

1.1A

5.21 DEFAULTAWSEGSIZE

ORACLE

The DEFAULTAWSEGSIZE option holds the default maximum segment size for an
analytic workspace created in your database session. The setting is in effect for the
duration of your session. For each new session, DEFAULTAWSEGSIZE reverts to the
default value.

5-28

Chapter 5
DIVIDEBYZERO

Tip:

To change the maximum size for new segments in an existing workspace, use
the AW command with the SEGMENTSIZE keyword. To discover the current
maximum size for new segments, use the AW function with the
SEGMENTSIZE keyword.

Syntax
DEFAULTAWSEGSIZE =n

Parameters

n
The number of bytes.

Examples
Example 5-22 Displaying the Maximum Segment Size for a Session

The following statement lists the current maximum segment size for workspaces.

SHOW DEFAULTAWSIZE

Example 5-23 Setting the Maximum Segment Size for a Session

The following statement sets the maximum segment size to approximately 1/2
gigabyte.

DEFAULTAWSIZE = 536870910

5.22 DIVIDEBYZERO

ORACLE

The DIVIDEBYZERO option controls the result of division by zero. (Note that division
by zero includes raising zero to a negative power; for example, 0 ** -2.)

Data Type
BOOLEAN

Syntax
DIVIDEBYZERO = YES|NO

Parameters

YES

Allows division by zero. A statement involving division by zero executes without error;
however, the result of the division by zero is NA. When you are dividing by a
dimensioned variable or expression, setting DIVIDEBYZERO to YES enables you to
get results for most of the expression's values when a few calculations might involve
dividing by zero.

5-29

Chapter 5
DSECONDS

I(\IDoefauIt) Disallows division by zero. A statement involving division by zero stops
executing and produces an error message.

Examples

Example 5-24 The Effect of DIVIDEBYZERO

This example shows the effect of changing the value of the DIVIDEBYZERO option.

When you execute a SHOW statement, such as the following, without changing the
DIVIDEBYZERO option from its default value of NO, Oracle OLAP attempts to divide
100 by 0 and then produces an error message.

SHOW 100 /7 O

When you change DIVIDEBYZERO to YES, the same statement executes without error
and produces NA as the result of the division. The statements

DIVIDEBYZERO = YES
SHOW 100 7 O

produce the following result.

NA

5.23 DSECONDS

ORACLE

(Read-only) The DSECONDS option returns the elapsed time as a DECIMAL value.
When Oracle is installed on UNIX, the DSECONDS option is the elapsed number of
seconds since Oracle was started. When Oracle is installed on Windows, the
DSECONDS option is the elapsed number of seconds since the computer on which
Oracle is installed was rebooted. As an aid to enhancing a program's speed,
DSECONDS can be used to determine how much time elapses while the program is
running.

¢ Note:

The SECONDS option for information about retrieving elapsed time as an
INTEGER value.

Data Type
DECIMAL

Syntax
DSECONDS

Examples
Example 5-25 Timing a Program Using DSECONDS

The following program puts the value of DSECONDS at the start of the program in a
variable called t1 and then displays the difference between t1 and the value of
DSECONDS after the program executes.

5-30

Chapter 5
ECHOPROMPT

DEFINE prodsummary PROGRAM

PROGRAM

VARIABLE t1 DECIMAL

tl = dseconds

LIMIT product TO ALL

BLANK

FOR product

DO
ROW WIDTH 16 name.product ACROSS month Jun96: DECIMAL O LSET -

"$"WIDTH 18 <RSET " (Actual)" sales rset " (Plan)" sales.plan>

DOEND

BLANK

ROW WIDTH 35 LSET "The program took " rset " seconds." -
(dseconds - tl1)

END

Running this program produces the following results.

3-Person Tents $95,121 (actual) $80,138 (plan)
Aluminum Canoes $157,762 (actual) $132,931 (plan)
Tennis Racquets $97,174 (actual) $84,758 (plan)
Warm-up Suits $79,630 (actual) $73,569 (plan)
Running Shoes $153,688 (actual) $109,219 (plan)

The program took .20 seconds.

5.24 ECHOPROMPT

ORACLE

The ECHOPROMPT option determines if input lines and error messages should be
echoed to the current outfile. When ECHOPROMPT is set to YES and you have
specified a debugging file with DBGOUTFILE, the input lines and error messages are
echoed to the debugging file instead of the current outfile.

Data Type
BOOLEAN

Syntax
ECHOPROMPT = {YES|NO}

Parameters

YES
Input lines and error messages are echoed to the current outfile or the debugging file
specified by DBGOUTFILE.

NO
(Default) Input lines and error messages do not appear in the current outfile or in the
debugging file.

Examples

Example 5-26 Using ECHOPROMPT

Suppose you want to have all input lines and error messages included in the disk file
that contains your output. Set ECHOPROMPT to YES before issuing an OUTFILE
statement that sends the output to the disk file. In the following statements, the disk file
is in the current directory object.

5-31

Chapter 5
EIFBYTES

ECHOPROMPT = YES
OUTFILE "newcalc.dat"

5.25 EIFBYTES

(Read-only) The EIFBYTES option holds the number of bytes read by the most recent
IMPORT (EIF) command or written by the most recent EXPORT (EIF) command.

Data Type
INTEGER

Syntax
EIFBYTES

Examples
Example 5-27 Finding Out the Number of Bytes

To find out how many bytes of information were exported to an EIF file when you
exported the dimensions of the demo workspace, you use the following statements.

LIMIT name TO OBJ(TYPE) EQ *DIMENSION®
EXPORT ALL TO EIF FILE “*myfile.eif"
SHOW EIFBYTES

The SHOW statement produces the following output.

2,038

5.26 EIFEXTENSIONPATH

ORACLE

The EIFEXTENSIONPATH option contains a list of directory objects that identify the
locations where EIF extension files should be created.

Data Type
TEXT

Syntax
EIFEXTENSIONPATH = path-expression

Parameters

path-expression

A text expression that contains one or more directory object names. When you specify
multiple aliases, you must enter each one on a separate line. Specify multiple aliases
in the order in which they should be used for storing EIF extension files.

Usage Notes
When Extension Files Are Created

When the size of an EIF file grows beyond the size specified for EIF files by the
FILESIZE argument to the EXPORT (EIF) command, or the current disk or location
becomes full, an EIF extension file is created.

5-32

Chapter 5
EIFNAMES

Before creating a new extension file, the location specified by EIFEXTENSIONPATH is
checked for sufficient disk space. The required amount of disk space is the amount
specified for FILESIZE in the EXPORT (EIF). When no value has been specified for
FILESIZE, then a check is made for at least 80K of disk space (the minimum size
allowed by FILESIZE). When there is insufficient disk space, checking continues
through the list until a location with enough available disk space is found.

Multiple Paths in EIFEXTENSIONPATH

When EIFEXTENSIONPATH contains multiple directory objects, the first extension file
is created in the first alias in the list. The second extension file is created in the second
alias on the list, and so on. When the end of the list is reached, the process starts over
again at the beginning. When EIFEXTENSIONPATH contains a single directory object,
all extension files are created in that location.

Examples
Example 5-28 Establishing a Location for Extension Files

The following statement establishes the eifext directory object as the location in which
EIF extension files should be created.

EIFEXTENSIONPATH = "eifext”

5.27 EIFNAMES

ORACLE

The EIFNAMES option holds a list of the names of all the objects imported by the most
recent IMPORT (EIF) command.
Data Type

TEXT

Syntax
EIFNAMES

Examples
Checking What You Have Imported

Suppose you have exported the units variable and the productset valueset from the
demo analytic workspace to a file called myfile_eif. After importing the contents of the
file into a new workspace, you can use the EIFNAMES option to see the names of the
objects you have just imported.

The following statements

AW CREATE mytest
IMPORT ALL FROM EIF FILE “"myfile.eif"
SHOW EIFNAMES

produce this output.

DISTRICT
PRODUCT
MONTH
UNITS
PRODUCTSET

5-33

Chapter 5
EIFSHORTNAMES

5.28 EIFSHORTNAMES

The EIFSHORTNAMES option controls the structure of the extension of EIF overflow
(extension) file names.

Data Type
BOOLEAN

Syntax
EIFSHORTNAMES = YES|NO

Parameters

YES
Sets the extension of EIF overflow (extension) file names to xx, where each x is an
automatically assigned lowercase letter between a and z.

NO

(Default) Sets the extension of EIF overflow (extension) file names have the structure
filename.ennn, where nnn is a three-digit number beginning with 001, to distinguish
them from workspace extension file names. For example, when an EIF file is named
export.eif, the extension files are named export.e001, export.e002, and so on,

Examples
Example 5-29 Limiting the Extension of a File Name to Three Characters

The following statement specifies that the file extension for EIF extension file names
must be in the form xx.

EIFSHORTNAMES = YES

5.29 EIFTYPES

ORACLE

The EIFTYPES option holds a list of the types of objects that are contained in the list
produced by the EIFNAMES option. The types are listed in the same order as the
corresponding object names in the EIFNAMES list.

Data Type
TEXT

Syntax
EIFTYPES

Examples
Example 5-30 Checking What You Have Imported

Suppose you have exported the units variable and the productset valueset from an
analytic workspace named demo to a file called myfile._eif. After importing the contents
of the file into a new workspace, you can use the EIFNAMES and EIFTYPES options
to see the names and object types of the objects you have just imported.

5-34

Chapter 5
EIFUPDBYTES

Create the workspace and import the objects with these statements.

AW CREATE mytest
IMPORT ALL FROM EIF FILE *myfile.eif”

Send the names of the imported objects to the current outfile with this statement

SHOW EIFNAMES

to produce this output.

DISTRICT
PRODUCT
MONTH
UNITS
PRODUCTSET

Send the types of the imported objects to the current outfile with this statement

SHOW EIFTYPES

to produce this output.

DIMENSION
DIMENSION
DIMENSION
VARIABLE
VALUESET

5.30 EIFUPDBYTES

ORACLE

The EIFUPDBYTES option controls the frequency of updates when you are using the
IMPORT (EIF) command with its UPDATE keyword. The value of EIFUPDBYTES has
an effect only when the UPDATE keyword is specified in this command.

Data Type
INTEGER

Syntax
EIFUPDBYTES =n

Parameters

n
An INTEGER expression that specifies the minimum number of bytes to be read
between updates, during an import. When EIFUPDBYTES has a value of 0, an
update is triggered after each analytic workspace object is imported. When
EIFUPDBYTES has a value greater than 0, an update is triggered each time the
specified number of bytes is imported. The default is 0 (zero).

Examples
Example 5-31 Reducing Update Frequency

In the following example, the UPDATE keyword in the IMPORT (EIF) command
ensures that updates occur periodically. The setting of EIFUPDBYTES ensures that
the updates do not occur too often.

5-35

Chapter 5
EIFVERSION

EIFUPDBYTES = 500000
IMPORT ALL FROM EIF FILE "finance.eif® UPDATE

5.31 EIFVERSION

ORACLE

The EIFVERSION option is used with the EXPORT (EIF) and IMPORT (EIF)
commands to copy data between different versions of Express® Server or Oracle
OLAP. The version from which the data is exported is referred to as the source. The
version to which the data is imported is referred to as the target.

Before you use the EXPORT command to export data to an EIF file, you use the
EIFVERSION option to specify the internal version or build number of the target. Then,
when you use EXPORT to copy data from the source to an EIF file, the data is in a
format that can be imported by the target. Generally, you can import data from an EIF
file into any target that has a later version number than the one you specify for the EIF
file with EIFVERSION. However, when you set EIFVERSION to a value that is lower
than the default version (that is, the version number of the current process), and you
try to export data that the earlier version cannot manage, an error is generated. For
example, when you try to export an aggmap to a 6.2 version of Express Server, an
error is generated because Express Server 6.2 cannot manage aggmap.

You can use the EVERSION function to determine the internal version or build number
of the target.

Syntax
EIFVERSION =n

Parameters

n
The internal version or build number of an Express Server or Oracle OLAP process
which is the target into which you want the data imported.

By default, EIFVERSION is set to the internal version or build number of the current
process.

Examples
Example 5-32 Exporting and Importing Between Different Versions

This example shows how to use EIFVERSION when you want to export data from
Oracle OLAP to an EIF file and then import it into Express Server version 6.2.0.

This statement (issued from the target 6.2.0 Express Server)

SHOW EVERSION

returns the following version and build information

0, Build: 60232
0, Build: 60232

Module Mgr, Version:

6.2.0.0.
OES Kernel, Version: 6.2.0.0.

The following statements export the data from Oracle OLAP (which has a higher build
number than 60232) to an EIF file that can be read in Express 6.2.0

EIFVERSION = 60232
EXPORT ALL TO EIF FILE “"myeif.eif"

5-36

Chapter 5
ERRNAMES

5.32 ERRNAMES

The ERRNAMES option controls whether the value of the ERRORTEXT option
contains the name of the error (that is, the value of the ERRORNAME option) and the
text of the error message.

Data Type
BOOLEAN

Syntax
ERRNAMES = {NO|YES}

Parameters

NO
ERRORTEXT contains only the text of the error message.

YES
(Default) ERRORTEXT contains the name and the text of the error message.

Examples
Example 5-33 ERRORTEXT Value Depending on ERRNAMES Setting

Suppose that you run the following program.

VARIABLE myint INTEGER
myint = 35/0
SHOW ERRORTEXT

When the value of ERRNAMES is set to YES, the program returns the following value
for ERRORTEXT.

ERROR: (MXXEQO1l) A division by zero was attempted. (If you want NA to
be returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)

When the value of ERRNAMES is set to NO, the program returns the following value for
ERRORTEXT.

ERROR: A division by zero was attempted. (If you want NA to be
returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)

5.33 ERRORNAME

ORACLE

The ERRORNAME option holds the name of the first error that occurs when you
execute a program or when you execute an OLAP DML statement.

Data Type
TEXT

5-37

Chapter 5
ERRORTEXT

Syntax
ERRORNAME

Usage Notes
ERRORNAME and SIGNAL

You can create your own error conditions in a program with the SIGNAL command.
SIGNAL sets ERRORNAME and ERRORTEXT to the values you specify.

You can use the special name PRGERR with the SIGNAL command to communicate to a
calling program that an error has occurred. The command SIGNAL PRGERR sets
ERRORNAME to a blank value and passes an error condition to the calling program
without causing another error message to be displayed. For information on using
SIGNAL to pass an Oracle OLAP error up a chain of nested programs, see the TRAP
command.

Examples
Example 5-34 Using ERRORNAME with TRAP

In a report program that uses a TRAP command to handle errors, you can use the
SIGNAL command to send the appropriate error name to the current outfile.

DEFINE myreport PROGRAM

LD Monthly Report

PROGRAM

TRAP ON CLEANUP NOPRINT

PUSH month DECIMALS LSIZE PAGESIZE
LIMIT month TO LAST 1

POP month DECIMALS LSIZE PAGESIZE
RETURN

CLEANUP:

POP month DECIMALS LSIZE PAGESIZE
SIGNAL ERRORNAME ERRORTEXT

END

5.34 ERRORTEXT

ORACLE

The ERRORTEXT option holds the text of the first error message that occurs when
you execute a program or a statement. The name of the error whose message is
found in ERRORTEXT is contained in the ERRORNAME option.

¢ See Also:
ERRORNAME option, ERRNAMES option, TRAP command

Data Type
TEXT

5-38

Chapter 5
ESCAPEBASE

Syntax
ERRORTEXT

Examples
Example 5-35 ERRORTEXT with the SIGNAL Command

In a report program that uses a TRAP command to handle errors, you can use the
SIGNAL command to send the appropriate error message to the current outfile.

DEFINE myreport PROGRAM

LD Monthly Report

PROGRAM

TRAP ON CLEANUP NOPRINT

PUSH month DECIMALS LSIZE PAGESIZE
LIMIT month TO LAST 1

POP month DECIMALS LSIZE PAGESIZE
RETURN

CLEANUP:

POP month DECIMALS LSIZE PAGESIZE
SIGNAL ERRORNAME ERRORTEXT

END

5.35 ESCAPEBASE

The ESCAPEBASE option specifies the type of escape that is produced by the INFILE
keyword of the CONVERT function.

Syntax
ESCAPEBASE = 'escape-type'

Parameters

escape-type

Specify "d" for decimal escape, "x" for hexadecimal escape.

The default escape type is decimal, which produces the INTEGER value for a character
in the following form.

“\dnnn*

A hexadecimal escape is the INTEGER value for a character in the following form.

“\xnn*

Examples

For an example of using ESCAPEBASE with CONVERT to convert a text value to an
escape sequence, see Example 7-50.

5.36 EXPTRACE

The EXPTRACE option controls whether OLAP DML programs in the analytic
workspace named EXPRESS are traced when the PRGTRACE option is set to YES. The
EXPRESS analytic workspace is always attached and contains, among other things,

ORACLE 5-39

Chapter 5
INF_STOP_ON_ERROR

OLAP DML programs documented as OLAP DML statements and other "helper" OLAP
DML programs.

Data Type
BOOLEAN

Syntax
EXPTRACE = {YES|NO}

Parameters

YES
All programs are traced, including OLAP DML programs provided as OLAP DML
statements.

NO
(Default) OLAP DML programs provided as OLAP DML statements are not traced.
Only other types of programs are traced.

Usage Notes
How to Identify OLAP DML Programs Provided as OLAP DML Statements

Some OLAP DML statements are implemented as OLAP DML programs. These
programs are affected by EXPTRACE. To send to the current outfile a list of these
programs, issue the following statement.

SHOW AW(PROGRAM “express®)

Examples
Example 5-36 Tracing System DML Programs

After the following statements are issued, system DML programs such as LISTNAMES
and ALLSTAT are traced in addition to user-defined programs.

PRGTRACE = YES
EXPTRACE = YES

5.37 INF_ STOP_ON_ERROR

ORACLE

The INF_STOP_ON_ERROR option specifies the behavior of Oracle OLAP when an
error occurs during the execution of an INFILE statement.

Syntax
INF_STOP_ON_ERROR ={YES|NO}
Parameters

YES
When an error occurs, report the error and stop reading from the file.

NO
When an error occurs, report the error and continue reading from the file.

5-40

Chapter 5
LCOLWIDTH

Examples
Example 5-37 Using INF_STOP_ON_ERROR with DBMS_EXECUTE

Assume that you have an file named attachmyaw. inf that includes the following OLAP
DML statement that detaches an analytic workspace named myaw

AW DETACH myaw

Assume that the myaw workspace is not attached when a SQL application issues the
DBMS_AW_EXECUTE statement with an OLAP DML INFILE statement to read the
attachmyaw. infinfile file.

When the INF_STOP_ON_ERR option is set to NO then the error Analytic workspace
MYAW is not attached is reported, Oracle OLAP continues to read the file, and the
DBMS_AW.EXECUTE procedure completes successfully.

DBMS_AW.EXECUTE(" INF_STOP_ON_ERR = NO *);
DBMS_AW_.EXECUTE(" INFILE attachmyaw.inf");

The current directory is MYDIR.
ERROR: (ORA-34344) Analytic workspace MYAW is not attached.
ERROR: (ORA-34344) Analytic workspace MYAW is not attached.

PL/SQL procedure successfully completed.

When the INF_STOP_ON_ERR option is set to YES then the error Analytic workspace
MYAW is not attached is reported, Oracle OLAP stops reading the file, and the
DBMS_AW_EXECUTE procedure aborts.

DBMS_AW.EXECUTE(" INF_STOP_ON_ERR = YES ");
DBMS_AW.EXECUTE(" INFILE attachmyaw.inf");

The current directory is MYSPL.
DECLARE
*

ERROR at line 1:

ORA-35166: (ORA-34344) Analytic workspace MYAW is not attached.
ORA-06512: at "SYS.DBMS_AW", line 27

ORA-06512: at "SYS.DBMS_AW", line 115

ORA-06512: at line 8

5.38 LCOLWIDTH

The LCOLWIDTH option controls the default width of the label column in reports. For
output from ROW command and HEADING, LCOLWIDTH affects the first column. For
output from REPORT, LCOLWIDTH affects the first column unless the first column is a
data column or part of a set of columns that represent the base dimensions of a
composite or a conjoint dimension.

Note:

For an individual column, the LCOLWIDTH value is always overridden by a
WIDTH attribute in a HEADING, REPORT, or ROW command

ORACLE 5-41

ORACLE

¢ See Also:

COLWIDTH

Data Type
INTEGER

Syntax
LCOLWIDTH =n

Parameters

n

An INTEGER expression that specifies the desired column width in number of

Chapter 5
LCOLWIDTH

characters. You can set LCOLWIDTH to any value from 1 to 4000. The default is 14.

Note:

characters

Examples

Example 5-38 Setting Default Column Widths

The maximum width of a line in a report is 4,000 characters. Therefore, the
combined width of all the columns of a report cannot be greater than 4,000

Suppose you want to look at unit sales for six months. Because the longest product
name is 10 characters, you do not need the default width of 14 for your label column.
Also, because the sales figures are not large, you do not need a width of 10 characters
for your data columns. You can set LCOLWIDTH and COLWIDTH to give smaller
default column widths.

LIMIT district TO "Atlanta”

LIMIT month TO "Oct95" TO “"Mar96"

LCOLWIDTH = 10
COLWIDTH = 6

REPORT ACROSS month: units

These statements produce the following output.

DISTRICT: ATLANTA

Tents 503
Canoes 317
Racquets 1,365
Sportswear 3,065
Footwear 3,445

5-42

Chapter 5
LIKECASE

5.39 LIKECASE

ORACLE

The LIKECASE option controls whether the LIKE operator is case sensitive.

Tip:

The LIKENL option controls whether the LIKE operator recognizes newline
characters.

Data Type
BOOLEAN

Syntax
LIKECASE = {YES|NO}

Parameters

YES
(Default) Specifies that the LIKE operator is case sensitive.

NO
Specifies that the LIKE operator is not case sensitive.

Examples
Example 5-39 The Effect of LIKECASE
The following statements show the use of the LIKECASE option.

LIKECASE = YES
SHOW "oracle® LIKE "Oracle%”

The output of this SHOW statement is
NO

The SHOW statement
SHOW "ORACLE® LIKE "%orc%"

produces the following output.

NO

The statements

LIKECASE = NO
SHOW "ORACLE" like "orc%"

produce the following output.

YES

5-43

Chapter 5
LIKEESCAPE

5.40 LIKEESCAPE

ORACLE

The LIKEESCAPE option lets you specify an escape character for the LIKE operator.

Data Type
ID

Syntax
LIKEESCAPE = char

Parameters

char

A text expression that specifies the character to use as an escape character in a LIKE
text comparison. The default is no escape character.

The LIKE escape character affects the LISTNAMES program, which accepts a LIKE
argument that it uses in a LIKE text comparison.

Usage Notes
Using the Escape Character

The LIKE escape character lets you find text expressions that contain the LIKE
operator wildcard characters, which are an underscore (), which matches any single
character, and a percent character (%), which matches any string of zero or more
characters.

To include an underscore or percent character in a text comparison, first specify an
escape character with the LIKEESCAPE option. Then, in your LIKE expression,
precede the underscore or percent character with the LIKEESCAPE character you
specified.

You might want to avoid using a backslash (\) as the LIKE escape character, because
the backslash is the standard OLAP DML escape character. You would therefore need
two backslashes to indicate that LIKEESCAPE should treat the second backslash as a
literal character.

Examples
Example 5-40 Using an Escape Character with the LIKE Operator

This example demonstrates how to specify an escape character and how to use it with
the LIKE operator.

Suppose you have a variable named prodstat that contains the following text values.

DEFINE prodstat TEXT <product>
prodstat(product "Tents") = -

"What are the results of the fabric testing?"
prodstat(product "Canoes®) = -

"How has the flooding affected distribution?*®
prodstat(product "Racquets®) = -

"The best-selling model is Whack_it!"
prodstat(product "Sportswear®) = -

"90% of the stock is ready to ship.”

5-44

ORACLE

Chapter 5
LIKEESCAPE

prodstat(product "Footwear®) = -
"When are the new styles going to be ready?"

Suppose you have the following program, named findeschar, to find certain characters
in the text contained in the cells of the prodstat variable. The program uses the LIKE
operator.

ARGUMENT findstring TEXT
FOR product
IF prodstat LIKE findstring
THEN SHOW JOINCHARS(product * - * prodstat)

Before the program can find a text value that contains a percent character (%) or an
underscore (), you must specify an escape character by using the LIKEESCAPE
option. Suppose you want to use a question mark (?) as the escape character. Before
you set the escape character to a question mark, the following statement finds text that
contains a question mark.

CALL findeschar("%?%") "Find any text that contains a question mark.

The preceding statement produces the following output.

Tents - What are the results of the fabric testing?
Canoes - How has the flooding affected distribution?
Footwear - When are the new styles going to be ready?

The following statements specify the question mark (?) as the escape character and
then call the FINDESCHAR program.

LIKEESCAPE = "?*
CALL findeschar("%?%") "Find any tex