Oracle® Call Interface
Programmer's Guide

12c¢ Release 2 (12.2)
E85621-02
July 2021

ORACLE"

Oracle Call Interface Programmer's Guide, 12c Release 2 (12.2)
E85621-02

Copyright © 1996, 2021, Oracle and/or its affiliates.

Primary Author: Rod Ward

Contributors: G. Arora, V. Arora, A. Bande, D. Banerjee, S. Banerjee, M. Bastawala, E. Belden, P. Betteridge,
N. Bhatt, T. Bhosle, J. Blowney, R. Chakravarthula, S. Chandrasekar, B. Cheng, D. Chiba, L. Chidambaran,
C. Colrain, T. Das, Ronald Decker, A. Desai, A. Downing, S. Fogel, T. Hoang, N. Ikeda, K. Itikarlapalli, C. lyer,
S. lyer, C. Jones, A. Keh, B. Khaladkar, S. Krishnaswamy, R. Kumar, R. Kumar, S. Lahorani, S. Lari, T. H.
Lee, T. Li, C. Liang, I. Listvinsky, J. Liu, E. Lu, S. Lynn, K.Mensah, V. Moore, A. Mullick, K. Neel, E.
Paapanen, S. Pelski, R. Phillips, R. Pingte, R. Rajamani, M. Ramacher, A. Ramappa, S. Sahu, A. Saxena, S.
Seshadri, R. Singh, B. Sinha, H. Slattery, J. Stewart, L. Sun, S. Tata, H. Tran, A. Tuininga, S. Vallapureddy,
M. Vemana, S. Vemuri, B. Venkatakrishnan, K. Verma, G. Viswanathan, S. Wolicki, L. Wong, S. Youssef, B.
Zebian

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and maodifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and maodifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience Ivi
Documentation Accessibility Ivi
Related Documents Ivii
Conventions Ivii

Changes in This Release for Oracle Call Interface Programmer's Guide

Changes in Oracle Database 12c Release 2 (12.2.0.1) lix
1 OCI: Introduction and Upgrading

Overview of OCI 1-1
Building an OCI Application 1-3
Alternatives to OCI 1-3
Procedural and Nonprocedural Elements 1-4
Object Support 1-5
SQL Statements 1-6
Data Definition Language 1-6

Control Statements 1-7

Data Manipulation Language 1-7
Queries 1-8
PL/SQL 1-8
Embedded SQL 1-9

Special OCI Terms for SQL 1-10
Encapsulated Interfaces 1-10
Simplified User Authentication and Password Management 1-11
Features to Improve Application Performance and Scalability 1-11
OCI Object Support 1-12
Client-Side Object Cache 1-12
Associative and Navigational Interfaces 1-12

OCI Runtime Environment for Objects 1-13

Type Management: Mapping and Manipulation Functions 1-13

ORACLE

Object Type Translator 1-14

OCI Support for Oracle Streams Advanced Queuing 1-14
XA Library Support 1-14
About Compatibility and Upgrading 1-15
Version Compatibility of Statically Linked and Dynamically Linked Applications 1-15
About Upgrading of Existing OCI Release 7 Applications 1-16
Obsolete OCI Routines 1-17
OCI Routines Not Supported 1-19

2 OCI Instant Client and Instant Client Light

About OCI Instant Client 2-1
Installing the OCI Instant Client or Installing the Linux RPM Packages 2-2
When to Use Instant Client 2-5
About Patching Instant Client Shared Libraries on Linux or UNIX 2-5
Regeneration of Data Shared Library and Zip and RPM Files 2-6

Regenerating Data Shared Library libociei.so 2-7
Regenerating Data Shared Library libociicus.so 2-7
Regenerating Data Shared Libraries libociei.so and libociicus.so in One Step 2-7
Regenerating Zip and RPM Files for the Basic Package 2-8
Regenerating Zip and RPM Files for the Basic Light Package 2-8
Regenerating Zip and RPM Files for the JDBC Package 2-8
Regenerating Zip and RPM Files for the ODBC Package 2-8
Regenerating Zip and RPM Files for the SQL*Plus Package 2-8
Regenerating Zip and RPM Files for the Tools Package 2-8
Regenerating Zip and RPM Files for All Packages 2-8
Database Connection Strings for OCI Instant Client 2-9
Examples of Instant Client Connect Identifiers 2-10
Environment Variables for OCI Instant Client 2-11
SDK for Instant Client 2-12

About Instant Client Light (English) 2-13
Globalization Settings 2-13
Operation of Instant Client Light 2-14
Installing Instant Client Light 2-15

3 OCI Programming Basics

Header File and Makefile Locations 3-1
Overview of OCI Program Programming 3-2
OCI Data Structures 3-3

Handles 3-3

ORACLE iv

About Allocating and Freeing Handles 3-5

Environment Handle 3-6
Error Handle 3-6
Service Context Handle and Associated Handles 3-6
Statement, Bind, and Define Handles 3-8
Describe Handle 3-9
Complex Object Retrieval Handle 3-9
Thread Handle 3-9
Subscription Handle 3-10
Direct Path Handles 3-10
Connection Pool Handle 3-10
Handle Attributes 3-11
OCI Descriptors 3-12
OCI Programming Steps 3-17
OCI Environment Initialization 3-18
About Creating the OCI Environment 3-18
About Allocating Handles and Descriptors 3-19
Application Initialization, Connection, and Session Creation 3-19
About Processing SQL Statements in OCI 3-24
Commit or Roll Back Operations 3-25
About Terminating the Application 3-25
Error Handling in OCI 3-26
Return and Error Codes for Data 3-27
Functions Returning Other Values 3-28
Additional Coding Guidelines 3-28
Operating System Considerations 3-29
Parameter Types 3-29
Address Parameters 3-30
Integer Parameters 3-30
Character String Parameters 3-30
Inserting Nulls into a Column 3-30
Indicator Variables 3-31
Input 3-31
Output 3-31
Indicator Variables for Named Data Types and REFs 3-32
About Canceling Calls 3-32
Positioned Updates and Deletes 3-33
Reserved Words 3-34
Oracle Reserved Namespaces 3-34
Polling Mode Operations in OCI 3-35
Nonblocking Mode in OCI 3-36

ORACLE Y

Setting Blocking Modes 3-37
Canceling a Nonblocking Call 3-37
About Using PL/SQL in an OCI Program 3-37
OCI Globalization Support 3-38
Client Character Set Control from OCI 3-39
Character Control and OCI Interfaces 3-39
Character-Length Semantics in OCI 3-40
Character Set Support in OCI 3-40
Controlling Language and Territory in OCI 3-40
Other OCI Globalization Support Functions 3-41
About Getting Locale Information in OCI 3-41
About OCI and the BOM (Byte Order Mark) 3-42
About Manipulating Strings in OCI 3-43
About Converting Character Sets in OCI 3-44
OCI Messaging Functions 3-45
Imsgen Utility 3-46
Guidelines for Text Message Files 3-46

An Example of Creating a Binary Message File from a Text Message File 3-47

4 Data Types

Oracle Data Types 4-1
About Using External Data Type Codes 4-3
Internal Data Types 4-4
LONG, RAW, LONG RAW, VARCHAR2 4-5
Character Strings and Byte Arrays 4-5
UROWID 4-6
BINARY_FLOAT and BINARY_DOUBLE 4-6
External Data Types 4-7
VARCHAR2 4-9
Input 4-10

Output 4-11
NUMBER 4-11
64-Bit Integer Host Data Type 4-12
OCI Bind and Define for 64-Bit Integers 4-13
Support for OUT Bind DML Returning Statements 4-13
INTEGER 4-14
FLOAT 4-14
STRING 4-15
Input 4-15

Output 4-15

ORACLE Vi

VARNUM 4-16

LONG 4-16
VARCHAR 4-16
DATE 4-17
RAW 4-18
VARRAW 4-18
LONG RAW 4-18
UNSIGNED 4-19
LONG VARCHAR 4-19
LONG VARRAW 4-19
CHAR 4-19
Input 4-19
Output 4-20
CHARZ 4-21
Named Data Types: Object, VARRAY, Nested Table 4-21
REF 4-22
ROWID Descriptor 4-22
LOB Descriptor 4-23
BFILE 4-24
BLOB 4-25
CLOB 4-25
NCLOB 4-25
Datetime and Interval Data Type Descriptors 4-25
ANSI DATE 4-26
TIMESTAMP 4-26
TIMESTAMP WITH TIME ZONE 4-26
TIMESTAMP WITH LOCAL TIME ZONE 4-27
INTERVAL YEAR TO MONTH 4-27
INTERVAL DAY TO SECOND 4-27
About Avoiding Unexpected Results Using Datetime 4-27
Native Float and Native Double 4-28
C Object-Relational Data Type Mappings 4-28
Data Conversions 4-28
Data Conversions for LOB Data Type Descriptors 4-30
Data Conversions for Datetime and Interval Data Types 4-30
Assignment Notes 4-31
Data Conversion Notes for Datetime and Interval Types 4-32
Datetime and Date Upgrading Rules 4-32
Pre-9.0 Client with 9.0 or Later Server 4-32
Pre-9.0 Server with 9.0 or Later Client 4-32
Data Conversion for BINARY_FLOAT and BINARY_DOUBLE in OCI 4-33

ORACLE vii

Typecodes 4-34
Relationship Between SQLT and OCI_TYPECODE Values 4-35
Definitions in oratypes.h 4-37
5 Using SQL Statements in OCI

Overview of SQL Statement Processing 5-1
About Preparing Statements 5-4
About Using Prepared Statements on Multiple Servers 5-5
About Binding Placeholders in OCI 5-6
Rules for Placeholders 5-7
About Executing Statements 5-7
Execution Snapshots 5-8
Execution Modes of OCIStmtExecute() 5-9
Using Batch Error Mode 5-9
Example of Batch Error Mode 5-11

About Describing Select-List Items 5-12
Implicit Describe 5-13
Explicit Describe of Queries 5-15
About Defining Output Variables in OCI 5-16
About Fetching Results 5-16
About Fetching LOB Data 5-17
About Setting Prefetch Count 5-17
About Using Scrollable Cursors in OCI 5-18
About Increasing Scrollable Cursor Performance 5-20
Example of Access on a Scrollable Cursor 5-20

6 Binding and Defining in OCI

Overview of Binding in OCI 6-1
Named Binds and Positional Binds 6-3
OCI Array Interface 6-4
About Binding Placeholders in PL/SQL 6-5
Steps Used in OCI Binding 6-6
PL/SQL Block in an OCI Program 6-7
Advanced Bind Operations in OCI 6-9
About Binding LOBs 6-10
Binding LOB Locators 6-10

About Binding LOB Data 6-12

About Binding in OCI_DATA_AT_EXEC Mode 6-16
About Binding REF CURSOR Variables 6-17

ORACLE

viii

Overview of Defining in OCI
Steps Used in OCI Defining
Advanced Define Operations in OCI
About Defining LOB Output Variables
About Defining LOB Locators
About Defining LOB Data
About Defining PL/SQL Output Variables
About Defining for a Piecewise Fetch
About Binding and Defining Arrays of Structures in OCI
Skip Parameters
Skip Parameters for Standard Arrays
OCI Calls Used with Arrays of Structures
Arrays of Structures and Indicator Variables
About Binding and Defining Multiple Buffers
DML with a RETURNING Clause in OCI
About Using DML with a RETURNING Clause to Combine Two SQL Statements
About Binding RETURNING...INTO Variables
OCI Error Handling
DML with RETURNING REF...INTO Clause in OCI
Binding the Output Variable
Additional Notes About OCI Callbacks
Array Interface for DML RETURNING Statements in OCI
Character Conversion in OCI Binding and Defining
About Choosing a Character Set
Character Set Form and ID
Implicit Conversion Between CHAR and NCHAR
About Setting Client Character Sets in OCI
About Binding Variables in OCI
About Using the OCI_ATTR_MAXDATA_SIZE Attribute
About Using the OCI_ATTR_MAXCHAR_SIZE Attribute
Buffer Expansion During OCI Binding
Constraint Checking During Defining
General Compatibility Issues for Character-Length Semantics in OCI
PL/SQL REF CURSORs and Nested Tables in OCI
Natively Describe and Bind All PL/SQL Types Including Package Types
Runtime Data Allocation and Piecewise Operations in OCI
Valid Data Types for Piecewise Operations
Types of Piecewise Operations
About Providing INSERT or UPDATE Data at Runtime
Performing a Piecewise Insert or Update
Piecewise Operations with PL/SQL

ORACLE

6-17
6-18
6-19
6-20
6-20
6-21
6-22
6-22
6-22
6-23
6-24
6-24
6-25
6-25
6-28
6-29
6-30
6-31
6-31
6-31
6-33
6-33
6-33
6-33
6-34
6-35
6-35
6-36
6-37
6-37
6-38
6-39
6-40
6-42
6-44
6-44
6-45
6-46
6-47
6-47
6-49

PL/SQL Indexed Table Binding Support 6-50

Restrictions for PL/SQL Indexed Table Binding Interface 6-51
About Providing FETCH Information at Run Time 6-51
Performing a Piecewise Fetch 6-52
Piecewise Binds and Defines for LOBs 6-53

7 Describing Schema Metadata

About Using OCIDescribeAny() 7-1
Limitations on OCIDescribeAny() 7-3
Notes on Types and Attributes 7-3

Data Type Codes 7-3
About Describing Types 7-4
Implicit and Explicit Describe Operations 7-4
OCI_ATTR_LIST_ARGUMENTS Attribute 7-5

Parameter Attributes 7-5
Table or View Parameters 7-7
Procedure, Function, and Subprogram Attributes 7-8
Package Attributes 7-9
Type Attributes 7-9
Type Attribute Attributes 7-11
Type Method Attributes 7-12
Collection Attributes 7-13
Synonym Attributes 7-14
Sequence Attributes 7-15
Column Attributes 7-16
Argument and Result Attributes 7-19
List Attributes 7-20
Schema Attributes 7-21
Database Attributes 7-21
Rule Attributes 7-22
Rule Set Attributes 7-23
Evaluation Context Attributes 7-23
Table Alias Attributes 7-24
Variable Type Attributes 7-24
Name Value Attributes 7-25

Character-Length Semantics Support in Describe Operations 7-25
Implicit Describing 7-26
Explicit Describing 7-26

Client and Server Compatibility Issues for Describing 7-27

Examples Using OCIDescribeAny() 7-27

ORACLE X

Retrieving Column Data Types for a Table 7-27

Describing the Stored Procedure 7-29
Retrieving Attributes of an Object Type 7-30
Retrieving the Collection Element's Data Type of a Named Collection Type 7-32
Describing with Character-Length Semantics 7-34
Describing Each Column to Know Whether It Is an Invisible Column 7-35

8 LOB and BFILE Operations

About Using OCI Functions for LOBs 8-1
About Creating and Modifying Persistent LOBs 8-2
About Associating a BFILE in a Table with an Operating System File 8-3
LOB Attributes of an Object 8-3
Writing to a LOB Attribute of an Object 8-4
Transient Objects with LOB Attributes 8-4
Array Interface for LOBs 8-5
About Using LOBs of Size Greater than 4 GB 8-5
Functions to Use for the Increased LOB Sizes 8-6
Compatibility and Migration 8-7
LOB and BFILE Functions in OCI 8-9
About Improving LOB Read/Write Performance 8-10
About Using Data Interface for LOBs 8-10

About Using OCILobGetChunkSize() 8-11

About Using OCILobWriteAppend?2() 8-11

About Using OCILobArrayRead() and OCILobArrayWrite() 8-11

LOB Buffering Functions 8-12
Functions for Opening and Closing LOBs 8-13
Restrictions on Opening and Closing LOBs 8-13

LOB Read and Write Callbacks 8-14
Callback Interface for Streaming 8-14
Reading LOBs by Using Callbacks 8-15

Writing LOBs by Using Callbacks 8-16
Temporary LOB Support 8-18
Creating and Freeing Temporary LOBs 8-19
Temporary LOB Durations 8-20
About Freeing Temporary LOBs 8-21
Take Care When Assigning Pointers 8-21
Temporary LOB Example 8-22
Prefetching of LOB Data, Length, and Chunk Size 8-25
Options of SecureFiles LOBs 8-28

ORACLE Xi

O Managing Scalable Platforms

OCI Support for Transactions
Levels of Transactional Complexity
Simple Local Transactions
Serializable or Read-Only Local Transactions
Global Transactions
Transaction Identifiers
Attribute OCI_ATTR_TRANS_NAME
Transaction Branches
Branch States
Detaching and Resuming Branches
About Setting the Client Database Name
One-Phase Commit Versus Two-Phase Commit
Preparing Multiple Branches in a Single Message
Transaction Examples
Initialization Parameters
Showing Update Successfully, One-Phase Commit
Showing Starting a Transaction, Detach, Resume, Prepare, Two-Phase Commit
Showing a Read-Only Update Fails
Showing Starting a Read-Only Transaction, Select, and Commit
Password and Session Management
OCI Authentication Management
OCI Password Management
Secure External Password Store
OCI Session Management
Middle-Tier Applications in OCI
OCI Attributes for Middle-Tier Applications
OCI_CRED_PROXY
OCI_ATTR_PROXY_CREDENTIALS
OCI_ATTR_DISTINGUISHED_NAME
OCI_ATTR_CERTIFICATE
OCI_ATTR_INITIAL_CLIENT_ROLES
OCI_ATTR_CLIENT_IDENTIFIER
OCI_ATTR_PASSWORD
Externally Initialized Context in OCI
Externally Initialized Context Attributes in OCI
OCI_ATTR_APPCTX_SIZE
OCI_ATTR_APPCTX_LIST
Session Handle Attributes Used to Set an Externally Initialized Context
End-to-End Application Tracing

ORACLE

Xii

9-10
9-11
9-11
9-11
9-13
9-13
9-14
9-15
9-16
9-16
9-16
9-17
9-17
9-18
9-18
9-19
9-22
9-22
9-23
9-23
9-23
9-24

OCI_ATTR_COLLECT_CALL_TIME 9-24
OCI_ATTR_CALL_TIME 9-25
Attributes for End-to-End Application Tracing 9-25

Using OCISessionBegin() with an Externally Initialized Context 9-26
Client Application Context 9-28
Using Multiple SET Operations 9-29
Using CLEAR-ALL Operations Between SET Operations 9-29
Network Transport and PL/SQL on Client Namespace 9-30
Using Edition-Based Redefinition 9-31
OCI Security Enhancements 9-32
Controlling the Database Version Banner Displayed 9-32
Banners for Unauthorized Access and User Actions Auditing 9-33
Non-Deferred Linkage 9-34
Overview of OCI Multithreaded Development 9-34
Advantages of OCI Thread Safety 9-35
OCI Thread Safety and Three-Tier Architectures 9-35
About Implementing Thread Safety 9-35
About Polling Mode Operations and Thread Safety 9-37

Mixing 7.x and Later Release OCI Calls 9-37
OClIThread Package 9-37
Initialization and Termination 9-38
OCIThread Context 9-39
Passive Threading Primitives 9-39
OCIThreadMutex 9-40
OClIThreadKey 9-41
OCIThreadKeyDestFunc 9-41
OCIThreadld 9-42

Active Threading Primitives 9-42
OClIThreadHandle 9-43

10 OCI Programming Advanced Topics

Session Pooling in OCI 10-1
Functionality of OCI Session Pooling 10-2
Homogeneous and Heterogeneous Session Pools 10-2
About Using Tags in Session Pools 10-2
Multi-Property Tags 10-3

OCI Handles for Session Pooling 10-6
OCISPool 10-6
OCIAuthInfo 10-7

Using OCI Session Pooling 10-7

ORACLE

Xiii

OCI Calls for Session Pooling
Allocate the Pool Handle
Create the Pool Session
Log On to the Database
Log Off from the Database
Destroy the Session Pool
Free the Pool Handle
Example of OCI Session Pooling
Runtime Connection Load Balancing
Database Resident Connection Pooling
Connection Pooling in OCI
OCI Connection Pooling Concepts
Similarities and Differences from a Shared Server
Stateless Sessions Versus Stateful Sessions
Multiple Connection Pools
Transparent Application Failover
Using OCI Calls for Connection Pooling
Allocate the Pool Handle
Create the Connection Pool
Log On to the Database
Deal with SGA Limitations in Connection Pooling
Log Off from the Database
Destroy the Connection Pool
Free the Pool Handle
Examples of OCI Connection Pooling
When to Use Connection Pooling, Session Pooling, or Neither
Functions for Session Creation
About Choosing Between Different Types of OCI Sessions
Statement Caching in OCI
Statement Caching Without Session Pooling in OCI
Statement Caching with Session Pooling in OCI
Rules for Statement Caching in OCI
Bind and Define Optimization in Statement Caching
OCI Statement Caching Code Example
User-Defined Callback Functions in OCI
About Registering User Callbacks in OCI
OClUserCallbackRegister
User Callback Function
User Callback Control Flow
User Callback for OCIErrorGet()
Errors from Entry Callbacks

ORACLE

Xiv

10-9

10-9

10-9
10-10
10-10
10-11
10-11
10-12
10-12
10-12
10-13
10-13
10-14
10-14
10-15
10-15
10-16
10-16
10-16
10-18
10-19
10-20
10-20
10-21
10-21
10-21
10-22
10-23
10-24
10-25
10-26
10-27
10-28
10-29
10-29
10-30
10-31
10-32
10-33
10-34
10-34

Dynamic Callback Registrations 10-34

About Loading Multiple Packages 10-35
Package Format 10-35

User Callback Chaining 10-36

About Accessing Other Data Sources Through OCI 10-36
Restrictions on Callback Functions 10-37
Example of OCI Callbacks 10-37

OCI Callbacks from External Procedures 10-39
Transparent Application Failover in OCI 10-40
About Configuring Transparent Application Failover 10-41
Transparent Application Failover Callbacks in OCI 10-41
Transparent Application Failover Callback Structure and Parameters 10-42
Failover Callback Structure and Parameters 10-43
Failover Callback Registration 10-44
Failover Callback Example 10-44
Handling OCI_FO_ERROR 10-45

HA Event Notification 10-47
OCIEvent Handle 10-49
OCI Failover for Connection and Session Pools 10-49
OCI Failover for Independent Connections 10-49
Event Callback 10-50
Custom Pooling: Tagged Server Handles 10-51
About Determining Transparent Application Failover (TAF) Capabilities 10-52
OCI and Transaction Guard 10-52
Developing Applications that Use Transaction Guard 10-53
Typical Transaction Guard Usage 10-54
Transaction Guard Examples 10-55

OCI and Application Continuity 10-60
What Happens Following a Recoverable Error 10-61
Criteria for Successful Replay 10-61
What Factors Disable Application Continuity in OCI 10-62
Failed Replay 10-62
When Is Application Continuity Most Effective 10-63
When Application Continuity in OCI Can Fail Over 10-63

LOB Functions Supported in Application Continuity 10-63
Application Continuity in OCI Does Not Support These Constructs 10-65
Possible Side Effects of Application Continuity 10-65

OCI and Streams Advanced Queuing 10-65
OCI Streams Advanced Queuing Functions 10-66
OCI Streams Advanced Queuing Descriptors 10-67
Streams Advanced Queuing in OCI Versus PL/SQL 10-67

ORACLE XV

Using Buffered Messaging 10-73
Publish-Subscribe Notification in OCI 10-74
Publish-Subscribe Registration Functions in OCI 10-76
Publish-Subscribe Register Directly to the Database 10-76

Open Registration for Publish-Subscribe 10-80

Using OCI to Open Register with LDAP 10-81

Setting QOS, Timeout Interval, Namespace, Client Address, and Port Number 10-82

OCI Functions Used to Manage Publish-Subscribe Notification 10-83
Notification Callback in OCI 10-83
Notification Procedure 10-86
Publish-Subscribe Direct Registration Example 10-87
Publish-Subscribe LDAP Registration Example 10-92

11 More OCI Advanced Topics

About Continuous Query Notification 11-1
Database Startup and Shutdown 11-2
About OCI Database Startup and Shutdown 11-2
Examples of Startup and Shutdown in OCI 11-3
Implicit Fetching of ROWIDs 11-6
About Implicit Fetching of ROWIDs 11-6
Example of Implicit Fetching of ROWIDs 11-7
OCI Support for Implicit Results 11-9
Client Result Cache 11-11
Client Statement Cache Auto-Tuning 11-11
About Auto-Tuning Client Statement Cache 11-12
Benefit of Auto-Tuning Client Statement Cache 11-12
Client Statement Cache Auto-Tuning Parameters 11-13
<statement_cache> 11-13
<auto_tune> 11-14
Comparison of the Connection Specific Auto-Tuning Parameters 11-16

Usage Examples of Client Statement Cache Auto Tuning 11-18
Enabling and Disabling OCI Client Auto-Tuning 11-18
Usage Guidelines for Auto-Tuning Client Statement Cache 11-19
OCI Client-Side Deployment Parameters Using oraaccess.xml 11-19
About oraaccess.xml 11-19
About Client-Side Deployment Parameters Specified in oraaccess.xml 11-19
High Level Structure of oraaccess.xml 11-20
About Specifying Global Parameters in oraaccess.xml 11-21
About Specifying Defaults for Connection Parameters 11-23
Overriding Connection Parameters at the Connection-String Level 11-25

ORACLE

XVi

File (oraaccess.xml) Properties 11-29
Fault Diagnosability in OCI 11-29
About Fault Diagnosability in OCI 11-30
ADR Base Location 11-30
Using ADRCI 11-31
Controlling ADR Creation and Disabling Fault Diagnosability Using sqlnet.ora 11-33
Client and Server Operating with Different Versions of Time Zone Files 11-34
Support for Pluggable Databases 11-35
Enhancements on OCI API Calls with Multitenant Container Databases (CDB) in
General 11-36
OCI Enhancements for ALTER SESSION SET CONTAINER 11-36
Restrictions on OCI API Calls with Multitenant Container Databases (CDB) in General 11-36
Restrictions on OCI Calls with ALTER SESSION SET CONTAINER 11-37
Restrictions on OCI Calls with ALTER SESSION SWITCH CONTAINER SWITCH
SERVICE 11-39
About the OCI Interface for Using Shards 11-39
About Specifying a Sharding Key and Super Sharding Key for Getting a Connection
from an OCI Session Pool 11-43
About Specifying a Sharding Key and Super Sharding Key for Getting a Connection
from a Custom Pool 11-45
About Using the XStream Interface 11-47
XStream Out 11-47
LCR Streams 11-48
The Processed Low Position and Restart Considerations 11-48
XStream In 11-48
Processed Low Position and Restart Ability 11-49
Stream Position 11-49
Security of XStreams 11-50
12 OCI Object-Relational Programming
OCI Object Overview 12-1
About Working with Objects in OCI 12-2
Basic Object Program Structure 12-3
Persistent Objects, Transient Objects, and Values 12-4
Persistent Objects 12-4
Transient Objects 12-5
Values 12-6
About Developing an OCI Object Application 12-6
About Representing Objects in C Applications 12-8
About Initializing the Environment and the Object Cache 12-9
About Making Database Connections 12-10

ORACLE

XVii

Retrieving an Object Reference from the Server 12-10

Pinning an Object 12-11
Array Pin 12-13
Manipulating Object Attributes 12-13
About Marking Objects and Flushing Changes 12-15
Fetching Embedded Objects 12-15
Object Meta-Attributes 12-17
Persistent Object Meta-Attributes 12-17
Additional Attribute Functions 12-19
Transient Object Meta-Attributes 12-20
Complex Object Retrieval 12-20
About Prefetching Objects 12-22
About Implementing Complex Object Retrieval in OCI 12-23
COR Prefetching 12-24
COR Interface 12-24
Example of COR 12-25
OCI Versus SQL Access to Objects 12-26
Pin Count and Unpinning 12-27
NULL Indicator Structure 12-28
About Creating Objects 12-31
Attribute Values of New Objects 12-31
About Freeing and Copying Objects 12-33
Object Reference and Type Reference 12-33
Create Objects Based on Object Views and Object Tables with Primary-Key-Based
OIDs 12-34
Error Handling in Object Applications 12-35
About Type Inheritance 12-35
Substitutability 12-36
NOT INSTANTIABLE Types and Methods 12-37
OCI Support for Type Inheritance 12-38
OCIDescribeAny() 12-38
Bind and Define Functions 12-38
OCIObjectGetTypeRef() 12-39
OCIObjectCopy() 12-39
OCICollAssignElem() 12-39
OCICollAppend() 12-39
OCICollGetElem() 12-40
OTT Support for Type Inheritance 12-40
About Type Evolution 12-40

ORACLE Xviii

13 Object-Relational Data Types in OCI
Overview of OCI Functions for Objects 13-1
About Mapping Oracle Data Types to C 13-2
OCI Type Mapping Methodology 13-3
About Manipulating C Data Types with OCI 13-4
Precision of Oracle Number Operations 13-5
Date (OCIDate) 13-5
Date Example 13-6
Datetime and Interval (OCIDateTime, OClinterval) 13-7
About Datetime Functions 13-8
Datetime Example 13-10
About Interval Functions 13-10
Number (OCINumber) 13-12
OCINumber Examples 13-12
Fixed or Variable-Length String (OCIString) 13-14
About String Functions 13-15
String Example 13-15
Raw (OCIRaw) 13-16
About Raw Functions 13-16
Raw Example 13-17
Collections (OClITable, OClArray, OCIColl, OCllter) 13-17
Generic Collection Functions 13-18
About Collection Data Manipulation Functions 13-19
About Collection Scanning Functions 13-19
Varray/Collection Iterator Example 13-20
About Nested Table Manipulation Functions 13-21
Nested Table Element Ordering 13-21
Nested Table Locators 13-22
About Multilevel Collection Types 13-22
Multilevel Collection Type Example 13-23
REF (OCIRef) 13-24
About REF Manipulation Functions 13-24
REF Example 13-25
Object Type Information Storage and Access 13-25
Descriptor Objects 13-25
AnyType, AnyData, and AnyDataSet Interfaces 13-26
About Type Interfaces 13-27
About Creating a Parameter Descriptor for OCIType Calls 13-28
About Obtaining the OCIType for Persistent Types 13-30
Type Access Calls 13-30
ORACLE XiX

Extensions to OCIDescribeAny() 13-30

About OCIAnyData Interfaces 13-31
NCHAR Typecodes for OCIAnyData Functions 13-32
About OCIAnyDataSet Interfaces 13-32
About Binding Named Data Types 13-33
Named Data Type Binds 13-33
About Binding REFs 13-34
Information for Named Data Type and REF Binds 13-35
Information Regarding Array Binds 13-35
About Defining Named Data Types 13-36
About Defining Named Data Type Output Variables 13-36
About Defining REF Output Variables 13-37
Information for Named Data Type and REF Defines, and PL/SQL OUT Binds 13-37
Information About Array Defines 13-39

About Binding and Defining Oracle C Data Types 13-39
Bind and Define Examples 13-41
Salary Update Examples 13-42
Method 1 - Fetch, Convert, Assign 13-43

Method 2 - Fetch and Assign 13-44

Method 3 - Direct Fetch 13-44
Summary and Notes 13-45
SQLT_NTY Bind and Define Examples 13-45
SQLT_NTY Bind Example 13-46
SQLT_NTY Define Example 13-47

14 Direct Path Load Interface

Direct Path Loading Overview 14-1
Data Types Supported for Direct Path Loading 14-3
Direct Path Handles 14-4
Direct Path Context 14-4

OCI Direct Path Function Context 14-5

Direct Path Column Array and Direct Path Function Column Array 14-6

Direct Path Stream 14-6

About Direct Path Interface Functions 14-7
Limitations and Restrictions of the Direct Path Load Interface 14-8
Direct Path Load Examples for Scalar Columns 14-9
Data Structures Used in Direct Path Loading Example 14-9

Outline of an Example of a Direct Path Load for Scalar Columns 14-11

About Using a Date Cache in Direct Path Loading of Dates in OCI 14-14
OCI_ATTR_DIRPATH_DCACHE_SIZE 14-15

ORACLE

XX

OCI_ATTR_DIRPATH_DCACHE_NUM
OCI_ATTR_DIRPATH_DCACHE_MISSES
OCI_ATTR_DIRPATH_DCACHE_HITS
OCI_ATTR_DIRPATH_DCACHE_DISABLE

About Validating Format for Oracle NUMBER and DATE Data

Direct Path Loading of Object Types

Direct Path Loading of Nested Tables
Describing a Nested Table Column and Its Nested Table
Direct Path Loading of Column Objects
Describing a Column Object
Allocating the Array Column for the Column Object
Loading Column Object Data into the Column Array
OCI_DIRPATH_COL_ERROR
Direct Path Loading of SQL String Columns
Describing a SQL String Column
Allocating the Column Array for SQL String Columns
Loading the SQL String Data into the Column Array
Direct Path Loading of REF Columns
Describing the REF Column
Allocating the Column Array for a REF Column
Loading the REF Data into the Column Array
Direct Path Loading of NOT FINAL Object and REF Columns
Inheritance Hierarchy
About Describing a Fixed, Derived Type to Be Loaded
About Allocating the Column Array
About Loading the Data into the Column Array
Direct Path Loading of Object Tables
Direct Path Loading a NOT FINAL Object Table

Direct Path Loading in Pieces

Loading Object Types in Pieces

Direct Path Context Handles and Attributes for Object Types

Direct Path Context Attributes
OCI_ATTR_DIRPATH_OBJ_CONSTR

Direct Path Function Context and Attributes
OCI_ATTR_DIRPATH_OBJ_CONSTR
OCI_ATTR_NAME
OCI_ATTR_DIRPATH_EXPR_TYPE
OCI_ATTR_DIRPATH_NO_INDEX_ERRORS
OCI_ATTR_NUM_COLS
OCI_ATTR_NUM_ROWS

Direct Path Column Parameter Attributes

ORACLE

14-15
14-15
14-15
14-15
14-16
14-16
14-17
14-17
14-18
14-18
14-20
14-20
14-21
14-21
14-22
14-23
14-24
14-24
14-25
14-27
14-27
14-28
14-28
14-29
14-30
14-30
14-30
14-31
14-32
14-33
14-33
14-34
14-34
14-34
14-35
14-35
14-36
14-37
14-37
14-38
14-38

XXi

OCI_ATTR_NAME 14-39

OCI_ATTR_DIRPATH_SID 14-41
OCI_ATTR_DIRPATH_OID 14-41
Direct Path Function Column Array Handle for Nonscalar Columns 14-41
OCI_ATTR_NUM_ROWS Attribute 14-42

15 Object Advanced Topics in OCI

Object Cache and Memory Management 15-1
Cache Consistency and Coherency 15-4
Object Cache Parameters 15-4
Object Cache Operations 15-5

About Pinning and Unpinning 15-5
About Freeing 15-6
About Marking and Unmarking 15-6
About Flushing 15-6
About Refreshing 15-6
About Loading and Removing Object Copies 15-6
About Pinning an Object Copy 15-7
About Unpinning an Object Copy 15-8
About Freeing an Object Copy 15-9
About Making Changes to Object Copies 15-9
About Marking an Object Copy 15-10
About Unmarking an Object Copy 15-10
About Synchronizing Object Copies with the Server 15-11
About Flushing Changes to the Server 15-11
About Refreshing an Object Copy 15-12
Object Locking 15-13
Lock Options 15-13
About Locking Obijects for Update 15-13
About Locking with the NOWAIT Option 15-14
About Implementing Optimistic Locking 15-14
Commit and Rollback in Object Applications 15-15
Object Duration 15-15
Durations Example 15-16
Memory Layout of an Instance 15-17

Object Navigation 15-18
Simple Object Navigation 15-18

OCI Navigational Functions 15-20
About Pin/Unpin/Free Functions 15-21
About Flush and Refresh Functions 15-21

ORACLE XXii

About Mark and Unmark Functions 15-21
About Object Meta-Attribute Accessor Functions 15-22
About Other Functions 15-22
Type Evolution and the Object Cache 15-22
OCI Support for XML 15-23
XML Context 15-24
XML Data on the Server 15-24
Using OCI XML DB Functions 15-24
OCI Client Access to Binary XML 15-26
Accessing XML Data from an OCI Application 15-26
Repository Context 15-27

Create Repository Context from a Dedicated OCI Connection 15-27

Create Repository Context from a Connection Pool 15-27

About Associating Repository Context with a Data Connection 15-28

About Setting XMLType Encoding Format Preference 15-28
Example of Using a Connection Pool 15-28

16 Using the Object Type Translator with OCI

What Is the Object Type Translator? 16-1
About Creating Types in the Database 16-3
About Invoking OTT 16-4
Command Line 16-4
Configuration File 16-4
INTYPE File 16-5

OTT Command Line 16-5
OTT Command-Line Invocation Example 16-5
oTT 16-6
USERID 16-6
INTYPE 16-6
OUTTYPE 16-6

CODE 16-7

HFILE 16-7
INITFILE 16-7

Intype File 16-8
OTT Data Type Mappings 16-9
About Mapping Object Data Types to C 16-10
OTT Type Mapping Example 16-12
Null Indicator Structs 16-14
OTT Support for Type Inheritance 16-15
Substitutable Object Attributes 16-17

ORACLE

XXiii

Outtype File 16-18

About Using OTT with OCI Applications 16-19
About Accessing and Manipulating Objects with OCI 16-20
Calling the Initialization Function 16-21
Tasks of the Initialization Function 16-23

OTT Reference 16-23
OTT Command-Line Syntax 16-24
OTT Parameters 16-25

USERID 16-26
INTYPE 16-26
OUTTYPE 16-27
CODE 16-27
INITFILE 16-27
INITFUNC 16-27
HFILE 16-28
CONFIG 16-28
ERRTYPE 16-28
CASE 16-29
SCHEMA_NAMES 16-29
TRANSITIVE 16-30
URL 16-30
Where OTT Parameters Can Appear 16-30
Structure of the Intype File 16-31
Intype File Type Specifications 16-31
Nested Included File Generation 16-32
SCHEMA_NAMES Usage 16-34
Example: Schema_Names Usage 16-35
Default Name Mapping 16-36
OTT Restriction on File Name Comparison 16-37
OTT Command on Microsoft Windows 16-37

17 Oracle Database Access C API

Introduction to the Relational Functions 17-1
Conventions for OCI Functions 17-1
Purpose 17-1
Syntax 17-2
Parameters 17-2
Comments 17-2
Returns 17-2
Example 17-2

ORACLE XXiV

Related Functions 17-2

About Calling OCI Functions 17-2
Server Round-Trips for LOB Functions 17-3
Connect, Authorize, and Initialize Functions 17-3
OCIAppCtxClearAll() 17-4
OCIAppCtxSet() 17-5
OClIConnectionPoolCreate() 17-6
OCIConnectionPoolDestroy() 17-8
OCIDBShutdown() 17-9
OCIDBStartup() 17-10
OCIEnvCreate() 17-11
OCIEnvNIsCreate() 17-15
OClLogoff() 17-19
OClLogon() 17-20
OClLogon2() 17-21
OCIRequestDisableReplay() 17-24
OClServerAttach() 17-25
OClServerDetach() 17-27
OClSessionBegin() 17-27
OCIlSessionEnd() 17-31
OClSessionGet() 17-32
OClSessionPoolCreate() 17-39
OCIlSessionPoolDestroy() 17-42
OClSessionRelease() 17-42
OClITerminate() 17-44
Handle and Descriptor Functions 17-45
OCIArrayDescriptorAlloc() 17-45
OCIlArrayDescriptorFree() 17-47
OCIAttrGet() 17-48
OCIAttrSet() 17-49
OCIDescriptorAlloc() 17-50
OCIDescriptorFree() 17-52
OCIHandleAlloc() 17-53
OCIHandleFree() 17-54
OCIParamGet() 17-55
OCIParamsSet() 17-56
Bind, Define, and Describe Functions 17-58
OCIBindArrayOfStruct() 17-58
OCIBindByName() 17-60
OCIBindByName2() 17-65
OCIBindByPos() 17-71

ORACLE XXV

OCIBindByP0s2() 17-76

OCIBindDynamic() 17-81
OCIBindObject() 17-84
OCIDefineArrayOfStruct() 17-86
OCIDefineByPos() 17-87
OCIDefineByPos2() 17-92
OCIDefineDynamic() 17-97
OCIDefineObject() 17-99
OCIDescribeAny() 17-101
OCIStmtGetBindInfo() 17-104

18 More Oracle Database Access C API

Introduction to the Relational Functions 18-1
Conventions for OCI Functions 18-1
Statement Functions 18-2
OCIStmtExecute() 18-2
OCIStmtFetch2() 18-5
OCIStmtGetNextResult() 18-7
OCIStmtGetPiecelnfo() 18-8
OCIStmtPrepare2() 18-10
OCIStmtRelease() 18-12
OCIStmtSetPiecelnfo() 18-12
LOB Functions 18-14
OClDurationBegin() 18-17
OClIDurationEnd() 18-18
OCILobAppend() 18-19
OCILobArrayRead() 18-20
OCILobArrayWrite() 18-24
OCILobAssign() 18-28
OCIlLobCharSetForm() 18-30
OCILobCharSetld() 18-31
OCIlLobClose() 18-32
OCILobCopy2() 18-33
OCILobCreateTemporary() 18-35
OCILobErase2() 18-37
OCIlLobFileClose() 18-38
OCILobFileCloseAll() 18-39
OCILobFileExists() 18-40
OCILobFileGetName() 18-41
OCIlLobFilelsOpen() 18-43

ORACLE XXVi

OCILobFileOpen() 18-44

OCILobFileSetName() 18-45
OCILobFreeTemporary() 18-46
OCIlLobGetChunkSize() 18-47
OClLobGetContentType() 18-49
OClLobGetLength2() 18-50
OCILobGetOptions() 18-52
OCIlLobGetStorageLimit() 18-53
OClLoblsEqual() 18-54
OCIlLoblsOpen() 18-55
OCIlLoblsTemporary() 18-56
OCILobLoadFromFile2() 18-57
OCIlLobLocatorAssign() 18-59
OClLobLocatorlsInit() 18-60
OCILobOpen() 18-61
OCILobRead?2() 18-63
OClLobSetContentType() 18-67
OClLobSetOptions() 18-68
OCILobTrim2() 18-70
OCILobWrite2() 18-71
OCILobWriteAppend2() 18-75
Streams Advanced Queuing and Publish-Subscribe Functions 18-78
OCIAQDeq() 18-79
OCIAQDegArray() 18-81
OCIAQEN(q() 18-83
OCIAQENQgArray() 18-85
OCIAQListen2() 18-87
OCISubscriptionDisable() 18-89
OCISubscriptionEnable() 18-90
OCISubscriptionPost() 18-91
OCISubscriptionRegister() 18-92
OCISubscriptionUnRegister() 18-94
Direct Path Loading Functions 18-96
OCIDirPathAbort() 18-96
OCIDirPathColArrayEntryGet() 18-97
OCIDirPathColArrayEntrySet() 18-98
OCIDirPathColArrayReset() 18-100
OCIDirPathColArrayRowGet() 18-100
OCIDirPathColArrayToStream() 18-102
OCIDirPathDataSave() 18-103
OCIDirPathFinish() 18-104

ORACLE i

OCIDirPathFlushRow() 18-105

OCIDirPathLoadStream() 18-106
OCIDirPathPrepare() 18-107
OCIDirPathStreamReset() 18-108
Thread Management Functions 18-109
OClIThreadClose() 18-110
OClIThreadCreate() 18-111
OCIThreadHandleGet() 18-112
OCIThreadHndDestroy() 18-113
OCIThreadHndInit() 18-114
OCIThreadldDestroy() 18-114
OClIThreadldGet() 18-115
OCIThreadldInit() 18-116
OCIThreadldNull() 18-117
OClIThreadldSame() 18-118
OCIThreadldSet() 18-119
OCIThreadldSetNull() 18-120
OCIThreadlInit() 18-121
OCIThreadIsMulti() 18-122
OClIThreadJoin() 18-122
OCIThreadKeyDestroy() 18-123
OClIThreadKeyGet() 18-124
OCIThreadKeylnit() 18-125
OClIThreadKeySet() 18-126
OCIThreadMutexAcquire() 18-127
OCIThreadMutexDestroy() 18-128
OCIThreadMutexInit() 18-129
OClIThreadMutexRelease() 18-129
OCIThreadProcessinit() 18-130
OClIThreadTerm() 18-131
Transaction Functions 18-132
OClITransCommit() 18-132
OClITransDetach() 18-135
OClITransForget() 18-136
OClITransMultiPrepare() 18-136
OClITransPrepare() 18-137
OClITransRollback() 18-138
OClITransStart() 18-139
Sharding Functions 18-145
OCIShardingKeyColumnAdd() 18-145
OCIShardingKeyReset() 18-147

ORACLE XXViii

OClIShardInstancesGet() 18-148

Miscellaneous Functions 18-151
OCIBreak() 18-151
OCIClientVersion() 18-152
OCIErrorGet() 18-153
OClLdaToSvcCtx() 18-156
OCIPasswordChange() 18-157
OCIPing() 18-159
OCIReset() 18-160
OCIRowidToChar() 18-160
OClServerRelease() 18-162
OClServerVersion() 18-163
OCISvcCtxToLda() 18-164
OClUserCallbackGet() 18-165
OClUserCallbackRegister() 18-166

19 OCI Navigational and Type Functions

Introduction to the Navigational and Type Functions 19-1
Object Types and Lifetimes 19-2
Terminology 19-3
Conventions for OCI Functions 19-3
Return Values 19-3
Navigational Function Return Values 19-4
Server Round-Trips for Cache and Object Functions 19-4
Navigational Function Error Codes 19-4

OCI Flush or Refresh Functions 19-6
OClICacheFlush() 19-6
OClICacheRefresh() 19-8
OCIObjectFlush() 19-10
OCIlObjectRefresh() 19-11

OCI Mark or Unmark Object and Cache Functions 19-13
OClICacheUnmark() 19-13
OCIlObjectMarkDelete() 19-14
OCIlObjectMarkDeleteByRef() 19-15
OCIlObjectMarkUpdate() 19-16
OCIObjectUnmark() 19-18
OCIlObjectUnmarkByRef() 19-19

OCI Get Object Status Functions 19-20
OCIObjectExists() 19-20
OCIObjectGetProperty() 19-21

ORACLE XXiX

OCIObijectlIsDirty() 19-24

OCIObjectlsLocked() 19-25
OCI Miscellaneous Object Functions 19-26
OCIObjectCopy() 19-27
OCIObjectGetAttr() 19-29
OCIObjectGetInd() 19-31
OCIObjectGetObjectRef() 19-32
OCIlObjectGetTypeRef() 19-33
OCIObjectLock() 19-34
OCIObjectLockNoWait() 19-35
OCIObjectNew() 19-36
OCIObjectSetAttr() 19-40
OCI Pin, Unpin, and Free Functions 19-42
OClICacheFree() 19-42
OClICacheUnpin() 19-43
OCIObjectArrayPin() 19-44
OCIObjectFree() 19-46
OCIObjectPin() 19-47
OCIlObjectPinCountReset() 19-50
OCIObjectPinTable() 19-51
OCIObjectUnpin() 19-53
OCI Type Information Accessor Functions 19-54
OCITypeArrayByName() 19-55
OCITypeArrayByFullName() 19-57
OCITypeArrayByRef() 19-60
OCITypeByFullName() 19-62
OCITypeByName() 19-64
OCITypeByRef() 19-67
OCITypePackage() 19-68

20 OCI Data Type Mapping and Manipulation Functions

Introduction to Data Type Mapping and Manipulation Functions 20-1
Conventions for OCI Functions 20-1
Returns 20-2
Data Type Mapping and Manipulation Function Return Values 20-2
Functions Returning Other Values 20-2
Server Round-Trips for Data Type Mapping and Manipulation Functions 20-3
Examples 20-3

OCI Collection and Iterator Functions 20-3
OCICollAppend() 20-4

ORACLE XXX

OCICollAssign() 20-5

OCICollAssignElem() 20-6
OCICollGetElem() 20-7
OCICollGetElemArray() 20-10
OCICaolllsLocator() 20-12
OCICollMax() 20-13
OCICollSize() 20-14
OCICollTrim() 20-15
OCllterCreate() 20-16
OCllterDelete() 20-18
OCllterGetCurrent() 20-19
OCllterlnit() 20-20
OCllterNext() 20-21
OCllterPrev() 20-23
OCI Date, Datetime, and Interval Functions 20-25
OClIDateAddDays() 20-27
OCIDateAddMonths() 20-27
OClIDateAssign() 20-28
OClIDateCheck() 20-29
OCIDateCompare() 20-30
OClIDateDaysBetween() 20-31
OClIDateFromText() 20-32
OClIDateGetDate() 20-33
OClIDateGetTime() 20-34
OClDateLastDay() 20-35
OClIDateNextDay() 20-35
OClIDateSetDate() 20-36
OClIDateSetTime() 20-37
OClIDateSysDate() 20-38
OClIDateTimeAssign() 20-38
OClIDateTimeCheck() 20-39
OClIDateTimeCompare() 20-40
OClIDateTimeConstruct() 20-41
OClIDateTimeConvert() 20-43
OClIDateTimeFromArray() 20-44
OClIDateTimeFromText() 20-45
OClIDateTimeGetDate() 20-46
OClIDateTimeGetTime() 20-47
OClIDateTimeGetTimeZoneName() 20-48
OClIDateTimeGetTimeZoneOffset() 20-49
OClIDateTimelntervalAdd() 20-50

ORACLE XXXi

OClDateTimelntervalSub() 20-51

OClIDateTimeSubtract() 20-52
OClIDateTimeSysTimeStamp() 20-53
OClIDateTimeToArray() 20-53
OClIDateTimeToText() 20-54
OClIDateToText() 20-56
OClIDateZoneToZone() 20-57
OClintervalAdd() 20-58
OClIntervalAssign() 20-59
OClIntervalCheck() 20-60
OClintervalCompare() 20-61
OClIntervalDivide() 20-62
OClIntervalFromNumber() 20-63
OClIntervalFromText() 20-64
OClIntervalFromTZ() 20-65
OClIntervalGetDaySecond() 20-66
OClIntervalGetYearMonth() 20-67
OClIntervalMultiply() 20-68
OClIntervalSetDaySecond() 20-69
OClIntervalSetYearMonth() 20-70
OClIntervalSubtract() 20-70
OClIntervalToNumber() 20-71
OClintervalToText() 20-72
OCI NUMBER Functions 20-73
OCINumberAbs() 20-75
OCINumberAdd() 20-76
OCINumberArcCos() 20-76
OCINumberArcSin() 20-77
OCINumberArcTan() 20-78
OCINumberArcTan2() 20-78
OCINumberAssign() 20-79
OCINumbercCeil() 20-80
OCINumberCmp() 20-80
OCINumberCos() 20-81
OCINumberDec() 20-82
OCINumberDiv() 20-83
OCINumberExp() 20-84
OCINumberFloor() 20-84
OCINumberFromint() 20-85
OCINumberFromReal() 20-86
OCINumberFromText() 20-87

ORACLE XXXii

OCINumberHypCos() 20-88

OCINumberHypSin() 20-89
OCINumberHypTan() 20-89
OCINumberinc() 20-90
OCINumberIntPower() 20-91
OCINumberlsint() 20-92
OCINumberlsZero() 20-93
OCINumberLn() 20-93
OCINumberLog() 20-94
OCINumberMod() 20-95
OCINumberMul() 20-96
OCINumberNeg() 20-96
OCINumberPower() 20-97
OCINumberPrec() 20-98
OCINumberRound() 20-99
OCINumberSetPi() 20-99
OCINumberSetZero() 20-100
OCINumberShift() 20-101
OCINumberSign() 20-101
OCINumberSin() 20-102
OCINumberSqrt() 20-103
OCINumberSub() 20-104
OCINumberTan() 20-104
OCINumberTolnt() 20-105
OCINumberToReal() 20-106
OCINumberToRealArray() 20-107
OCINumberToText() 20-108
OCINumberTrunc() 20-109
OCI Raw Functions 20-110
OCIRawAllocSize() 20-110
OCIRawAssignBytes() 20-111
OCIRawAssignRaw() 20-112
OCIRawPtr() 20-113
OCIRawResize() 20-114
OCIRawsSize() 20-115
OCI REF Functions 20-116
OCIRefAssign() 20-116
OCIRefClear() 20-117
OCIRefFromHex() 20-118
OCIRefHexSize() 20-119
OCIReflsEqual() 20-120

OCIRefIsNull() 20-121

OCIRefToHex() 20-122
OCI String Functions 20-123
OCIStringAllocSize() 20-124
OCIStringAssign() 20-125
OCIStringAssignText() 20-126
OCIStringPtr() 20-127
OCISstringResize() 20-128
OCIStringSize() 20-129
OCI Table Functions 20-130
OClTableDelete() 20-130
OClITableEXxists() 20-131
OClTableFirst() 20-132
OClTableLast() 20-133
OClITableNext() 20-135
OClTablePrev() 20-136
OClITableSize() 20-137

271 OCI Cartridge Functions

Introduction to External Procedure and Cartridge Services Functions 21-1
Conventions for OCI Functions 21-1
Cartridge Services — OCI External Procedures 21-2
OCIExtProcAllocCallMemory() 21-2
OCIExtProcGetEnv() 21-3
OCIExtProcRaiseExcp() 21-4
OCIExtProcRaiseExcpWithMsg() 21-5
Cartridge Services — Memory Services 21-6
OClIDurationBegin() 21-7
OCIDurationEnd() 21-8
OCIMemoryAlloc() 21-8
OCIMemoryFree() 21-9
OCIMemoryResize() 21-10
Cartridge Services — Maintaining Context 21-11
OClContextClearValue() 21-11
OClIContextGenerateKey() 21-12
OClIContextGetValue() 21-13
OClIContextSetValue() 21-13
Cartridge Services — Parameter Manager Interface 21-15
OCIExtractFromFile() 21-15
OCIExtractFromList() 21-16

ORACLE XXXIV

OCIExtractFromStr() 21-17
OCIExtractlnit() 21-18
OCIExtractReset() 21-19
OCIExtractSetKey() 21-20
OCIExtractSetNumKeys() 21-21
OCIExtractTerm() 21-22
OClExtractToBool() 21-22
OCIlExtractTolnt() 21-23
OCIExtractToList() 21-24
OCIExtractToOCINum() 21-25
OCIExtractToStr() 21-25
Cartridge Services — File 1/O Interface 21-26
OCIFileClose() 21-27
OCIFileExists() 21-28
OCIFileFlush() 21-29
OCIFileGetLength() 21-29
OCIFilelnit() 21-30
OCIFileOpen() 21-31
OCIFileRead() 21-32
OCIFileSeek() 21-33
OCIFileTerm() 21-34
OCIFileWrite() 21-34
Cartridge Services — String Formatting Interface 21-35
OCIFormatinit() 21-36
OCIFormatString() 21-36
OCIFormatTerm() 21-41
22 OCI Any Type and Data Functions

Introduction to Any Type and Data Interfaces 22-1
Conventions for OCI Functions 22-1
OCI Type Interface Functions 22-2
OCITypeAddAttr() 22-2
OCITypeBeginCreate() 22-3
OCITypeEndCreate() 22-5
OCITypeSetBuiltin() 22-5
OClITypeSetCollection() 22-6
OCI Any Data Interface Functions 22-7
OCIlAnyDataAccess() 22-7
OCIlAnyDataAttrGet() 22-9
OCIlAnyDataAttrSet() 22-11
ORACLE XXXV

OCIlAnyDataBeginCreate() 22-13
OCIlAnyDataCollAddElem() 22-15
OCIlAnyDataCollGetElem() 22-16
OCIlAnyDataConvert() 22-18
OCIlAnyDataDestroy() 22-20
OCIlAnyDataEndCreate() 22-20
OCIlAnyDataGetCurrAttrNum() 22-21
OCIlAnyDataGetType() 22-21
OCIlAnyDatalsNull() 22-22
OCIlAnyDataTypeCodeToSqlt() 22-23
OCI Any Data Set Interface Functions 22-24
OCIlAnyDataSetAddInstance() 22-24
OCIlAnyDataSetBeginCreate() 22-25
OCIlAnyDataSetDestroy() 22-26
OCIlAnyDataSetEndCreate() 22-27
OCIlAnyDataSetGetCount() 22-28
OCIlAnyDataSetGetlnstance() 22-28
OCIlAnyDataSetGetType() 22-29
23 OCI Globalization Support Functions
Introduction to Globalization Support in OCI 23-1
Conventions for OCI Functions 23-1
OCI Locale Functions 23-2
OCINIsCharSetldToName() 23-2
OCINIsCharSetNameTold() 23-3
OCINIsEnvironmentVariableGet() 23-4
OCINIsGetlInfo() 23-5
OCINIsNumericlnfoGet() 23-7
OCI Locale-Mapping Function 23-8
OCINIsNameMap() 23-9
OCI String Manipulation Functions 23-10
OCIMultiBytelnSizeToWideChar() 23-12
OCIMultiByteStrCaseConversion() 23-13
OCIMultiByteStrcat() 23-14
OCIMultiByteStrcmp() 23-14
OCIMultiByteStrcpy() 23-16
OCIMultiByteStrlen() 23-16
OCIMultiByteStrncat() 23-17
OCIMultiByteStrncmp() 23-18
OCIMultiByteStrncpy() 23-19

ORACLE

XXXVI

OCIMultiByteStrnDisplayLength() 23-20

OCIMultiByteToWideChar() 23-21
OCIWideCharInSizeToMultiByte() 23-22
OCIWideCharMultiByteLength() 23-23
OCIWideCharStrCaseConversion() 23-23
OCIWideCharStrcat() 23-24
OCIWideCharStrchr() 23-25
OCIWideCharStrcmp() 23-26
OCIWideCharStrcpy() 23-27
OCIWideCharStrlen() 23-28
OCIWideCharStrncat() 23-28
OCIWideCharStrncmp() 23-29
OCIWideCharStrncpy() 23-30
OCIWideCharStrrchr() 23-31
OCIWideCharToLower() 23-32
OCIWideCharToMultiByte() 23-33
OCIWideCharToUpper() 23-34
OCI Character Classification Functions 23-34
OCIWideCharlsAlnum() 23-35
OCIWideCharlsAlpha() 23-36
OCIWideCharlsCntrl() 23-36
OCIWideCharlsDigit() 23-37
OCIWideCharlsGraph() 23-37
OCIWideCharlsLower() 23-38
OCIWideCharlsPrint() 23-38
OCIWideCharlsPunct() 23-39
OCIWideCharlsSingleByte() 23-39
OCIWideCharlsSpace() 23-40
OCIWideCharlsUpper() 23-40
OCIWideCharlsXdigit() 23-41
OCI Character Set Conversion Functions 23-41
OCICharSetConversionlsReplacementUsed() 23-42
OCICharSetToUnicode() 23-42
OCINIsCharSetConvert() 23-43
OClUnicodeToCharSet() 23-45
OCI Messaging Functions 23-46
OCIMessageClose() 23-46
OCIMessageGet() 23-47
OCIMessageOpen() 23-48

ORACLE XXXVii

24 OCI XML DB Functions

Introduction to XML DB Support in OCI 24-1
Conventions for OCI Functions 24-1
Returns 24-1

OCI XML DB Functions 24-2
OCIBinXmICreateReposCtxFromConn() 24-2
OCIBinXmICreateReposCtxFromCPool() 24-3
OCIBinXmlISetFormatPref() 24-4
OCIBinXmISetReposCtxForConn() 24-4
OCIXmIDbFreeXmlCtx() 24-5
OCIXmIDbInitXmICtx() 24-5

25 Oracle ODBC Driver

26 Introduction to the OCI Interface for XStream

About the XStream Interface 26-1
XStream Out 26-1
XStream In 26-2
Position Order and LCR Streams 26-2
XStream and Character Sets 26-2

Handler and Descriptor Attributes 26-3
Conventions 26-3
Server Handle Attributes 26-3

OCI_ATTR_XSTREAM_ACK_INTERVAL 26-3
OCI_ATTR_XSTREAM_IDLE_TIMEOUT 26-4

27 OCI XStream Functions

Introduction to XStream Functions 27-1
OCI XStream Functions 27-2
OCILCRAttributesGet() 27-4
OCILCRAttributesSet() 27-5
OCILCRComparePosition() 27-6
OCILCRConvertPosition() 27-7
OCILCRFree() 27-9
OCILCRDDLInfoGet() 27-9
OCILCRHeaderGet() 27-11
OCILCRRowStmtGet() 27-14

ORACLE XXXViii

OCILCRRowStmtWithBindVarGet() 27-14

OCILCRNew() 27-16
OCILCRRowColumninfoGet() 27-17
OCILCRRowColumninfoSet() 27-20
OCILCRDDLInfoSet() 27-23
OCILCRGetLCRIDVersion() 27-25
OCILCRHeaderSet() 27-26
OCILCRLobInfoGet() 27-28
OCILCRLobInfoSet() 27-29
OCILCRSCNsFromPosition() 27-31
OCILCRSCNToPosition() 27-31
OCILCRScnToPosition2() 27-32
OCILCRWhereClauseGet() 27-33
OCILCRWhereClauseWithBindVarGet() 27-34
OCIXStreamInAttach() 27-36
OCIXStreamInDetach() 27-38
OCIXStreamInLCRSend() 27-38
OCIXStreamInLCRCallbackSend() 27-40
OCIXStreamInProcessedLWMGet() 27-44
OCIXStreamInErrorGet() 27-46
OCIXStreamInFlush() 27-47
OCIXStreamInChunkSend() 27-47
OCIXStreamInCommit() 27-51
OCIXStreamInSessionSet() 27-52
OCIXStreamOutAttach() 27-53
OCIXStreamOutDetach() 27-54
OCIXStreamOutLCRReceive() 27-55
OCIXStreamOutLCRCallbackReceive() 27-56
OCIXStreamOutProcessedLWMSet() 27-61
OCIXStreamOutChunkReceive() 27-62
OCIXStreamOutGetNextChunk() 27-65
OCIXStreamOutSessionSet() 27-68

A Handle and Descriptor Attributes

Conventions A-2
Environment Handle Attributes A-2
Error Handle Attributes A-9
Service Context Handle Attributes A-10
Server Handle Attributes A-13

Authentication Information Handle Attributes A-17

ORACLE XXXIX

User Session Handle Attributes

Administration Handle Attributes

Connection Pool Handle Attributes
Session Pool Handle Attributes

Transaction Handle Attributes

Statement Handle Attributes

Bind Handle Attributes

Define Handle Attributes

Describe Handle Attributes

Parameter Descriptor Attributes

Shard Instance Descriptor Attributes

LOB Locator Attributes

Complex Object Attributes
Complex Object Retrieval Handle Attributes
Complex Object Retrieval Descriptor Attributes

Streams Advanced Queuing Descriptor Attributes
OCIAQENQqOptions Descriptor Attributes
OCIAQDeqOptions Descriptor Attributes
OCIAQMsgProperties Descriptor Attributes
OCIAQAgent Descriptor Attributes
OCIServerDNs Descriptor Attributes

Subscription Handle Attributes
Continuous Query Notification Attributes
Continuous Query Notification Descriptor Attributes
Notification Descriptor Attributes
Invalidated Query Attributes

Direct Path Loading Handle Attributes
Direct Path Context Handle (OCIDirPathCtx) Attributes
Direct Path Function Context Handle (OCIDirPathFuncCtx) Attributes
Direct Path Function Column Array Handle (OCIDirPathColArray) Attributes
Direct Path Stream Handle (OCIDirPathStream) Attributes
Direct Path Column Parameter Attributes

About Accessing Column Parameter Attributes
Process Handle Attributes
Event Handle Attributes

B OCI Demonstration Programs

A-18
A-31
A-31
A-33
A-37
A-37
A-47
A-50
A-52
A-54
A-54
A-55
A-56
A-56
A-57
A-57
A-57
A-59
A-63
A-66
A-67
A-68
A-74
A-76
A-78
A-79
A-80
A-80
A-88
A-89
A-90
A-91
A-92
A-96
A-98

ORACLE

Xl

C OCI Function Server Round-Trips

Overview of Server Round-Trips C-1
Relational Function Round-Trips C-1
LOB Function Round-Trips C-3
Object and Cache Function Round-Trips C-5
Describe Operation Round-Trips C-6
Data Type Mapping and Manipulation Function Round-Trips C-6
Any Type and Data Function Round-Trips C-7
Other Local Functions C-7

D Getting Started with OCI for Windows

What Is Included in the OCI Package for Windows? D-1
Oracle Directory Structure for Windows D-2
Sample OCI Programs for Windows D-2
About Compiling OCI Applications for Windows D-2
About Linking OCI Applications for Windows D-3
oci.lib D-3
Client DLL Loading When Using Load Library() D-3
About Running OCI Applications for Windows D-4
Oracle XA Library D-4
About Compiling and Linking an OCI Program with the Oracle XA Library D-4
About Using XA Dynamic Registration D-5
Adding an Environmental Variable for the Current Session D-5

About Adding a Registry Variable for All Sessions D-5

Adding a Registry Variable: D-5

XA and TP Monitor Information D-6
About Using the Object Type Translator for Windows D-6

E Deprecated OCI Functions

Deprecated Initialize Functions E-1
OCIEnvInit() E-2
OClInitialize() E-3

Deprecated Statement Functions E-5
OCIStmtFetch() E-6
OCIStmtPrepare() E-7

Deprecated Lob Functions E-8
OCILobCopy() E-9
OClLobDisableBuffering() E-10
OCIlLobEnableBuffering() E-11

ORACLE xli

OCILobErase() E-12

OCILobFlushBuffer() E-12
OClLobGetLength() E-14
OCILobLoadFromFile() E-14
OCILobRead() E-15
OCILobTrim() E-19
OCILobWrite() E-19
OCILobWriteAppend() E-23
Deprecated Streams Advanced Queuing Functions E-26
OCIAQListen() E-27

F Multithreaded extproc Agent

Why Use the Multithreaded extproc Agent? F-1
The Challenge of Dedicated Agent Architecture F-1
The Advantage of Multithreading F-1

Multithreaded extproc Agent Architecture F-2
Monitor Thread F-4
Dispatcher Threads F-4
Task Threads F-4

Administering the Multithreaded extproc Agent F-5
Agent Control Utility (agtctl) Commands F-5
About Using agtctl in Single-Line Command Mode F-6

Setting Configuration Parameters for a Multithreaded extproc Agent F-7
Starting a Multithreaded extproc Agent F-7
Shutting Down a Multithreaded extproc Agent F-7
Examining the Value of Configuration Parameters F-8
Resetting a Configuration Parameter to Its Default Value F-8
Deleting an Entry for a Specific SID from the Control File F-8
Requesting Help F-9
Using Shell Mode Commands F-9
Example: Setting a Configuration Parameter F-9
Example: Starting a Multithreaded extproc Agent F-10
Configuration Parameters for Multithreaded extproc Agent Control F-10
Index

ORACLE xlii

List of Examples

3-1 Using the OCI_ATTR_USERNAME Attribute to Set the User Name in the Session Handle

3-2 Returning Describe Information in the Statement Handle Relating to Select-List Items

3-3 Using the OCILogon2 Call for a Single User Session

3-4 Enabling a Local User to Serve as a Proxy for Another User

3-5 Connection String to Use for the Proxy User

3-6 Preserving Case Sensitivity When Enabling a Local User to Serve as a Proxy for Another User

3-7 Preserving Case Sensitivity in the Connection String

3-8 Using "dilbertimybert]" in the Connection String

3-9 Using "dilbertimybert]"["joe[myjoe]"] in the Connection String

3-10 Setting the Target User Name

3-11 Using OCI to Set the OCI_ATTR_PROXY_CLIENT Attribute and the Proxy dilbert

3-12 Creating and Initializing an OCI Environment

3-13 Getting Locale Information in OCI

3-14 Basic String Manipulation in OCI

3-15 Classifying Characters in OCI

3-16 Converting Character Sets in OCI

3-17 Retrieving a Message from a Text Message File

4-1 OCI Bind and Define Support for 64-Bit Integers

4-2 Binding 8-Byte Integer Data Types for OUT Binds of a DML Returning Statement

5-1 Binding Both Input and Output Variables in Nonquery Operations

5-2 Using Batch Error Execution Mode

5-3 Implicit Describe - Select List Is Available as an Attribute of the Statement Handle

5-4 Explicit Describe - Returning the Select-List Description for Each Column

5-5 Access on a Scrollable Cursor

6-1 Handle Allocation and Binding for Each Placeholder in a SQL Statement

6-2 Defining a PL/SQL Statement to Be Used in OCI

6-3 Binding the Placeholder and Executing the Statement to Insert a Single Locator

6-4 Binding the Placeholder and Executing the Statement to Insert an Array of Locators

6-5 Allowed: Inserting into C1, C2, and L Columns Up to 8000, 8000, and 2000 Byte-Sized Bind
Variable Data Values, Respectively

6-6 Allowed: Inserting into C1 and L Columns up to 2000 and 8000 Byte-Sized Bind Variable
Data Values, Respectively

6-7 Allowed: Updating C1, C2, and L Columns up to 8000, 8000, and 2000 Byte-Sized Bind
Variable Data Values, Respectively

ORACLE

3-11
3-11
3-20
3-22
3-22
3-22
3-22
3-22
3-22
3-22
3-23
3-23
3-42
3-43
3-44
3-45
3-46
4-13
4-13

5-6
5-11
5-13
5-15
5-21

6-6

6-7
6-11
6-11

6-14

6-14

6-14

xliii

6-8 Allowed: Updating C1, C2, and L Columns up to 2000, 2000, and 8000 Byte-Sized
Bind Variable Data Values, Respectively

6-9 Allowed: Piecewise, Callback, and Array Insert or Update Operations

6-10 Not Allowed: Inserting More Than 4000 Bytes into Both LOB and LONG Columns
Using the Same INSERT Statement

6-11 Allowed: Inserting into the CT3 LOB Column up to 2000 Byte-Sized Bind Variable
Data Values

6-12 Not Allowed: Binding Any Length Data to a LOB Column in an Insert As Select Operation

6-13 Defining a Scalar Output Variable Following an Execute and Describe Operation

6-14 Defining LOBs Before Execution

6-15 Defining LOBs After Execution

6-16 Using Multiple Bind and Define Buffers

6-17 Binding the REF Output Variable in an OCI Application

6-18 Setting the Client Character Set to OCI_UTF16ID in OCI

6-19 Insert and Select Operations Using the OCI_ATTR_MAXCHAR_SIZE Attribute

6-20 Binding and Defining UTF-16 Data

6-21 Binding the :cursorl Placeholder to the Statement Handle stm2p as a REF CURSOR

6-22 Defining a Nested Table (Second Position) as a Statement Handle

7-1 Initializing the OCI Process in Object Mode

7-2 Using an Explicit Describe to Retrieve Column Data Types for a Table

7-3 Describing the Stored Procedure

7-4 Using an Explicit Describe on a Named Object Type

7-5 Using an Explicit Describe on a Named Collection Type

7-6 Using a Parameter Descriptor to Retrieve the Data Types, Column Names, and
Character-Length Semantics

7-7 Checking for Invisible Columns

8-1 Implementing Read Callback Functions Using OCILobRead2()

8-2 Implementing Write Callback Functions Using OCILobWrite2()

8-3 Using Temporary LOBs

8-4 Prefetching of LOB Data, Length, and Chunk Size

9-1 Defining the OCI_ATTR_SERVER_GROUP Attribute to Pass the Server Group Name

9-2 Defining the OCI_ATTR_PROXY_CREDENTIALS Attribute to Specify the Credentials
of the Application Server for Client Authentication

9-3 Defining the OCI_ATTR_DISTINGUISHED_NAME Attribute to Pass the
Distinguished Name of the Client

9-4 Defining the OCI_ATTR_CERTIFICATE Attribute to Pass the Entire X.509 Certificate

9-5 Defining the OCI_ATTR_INITIAL_CLIENT_ROLES Attribute to Pass the Client Roles

ORACLE

6-15
6-15

6-15

6-16
6-16
6-18
6-21
6-21
6-26
6-31
6-36
6-41
6-42
6-43
6-43

7-27
7-29
7-31
7-32

7-34
7-35
8-15
8-17
8-22
8-25
9-14

9-17

9-17

9-18
9-18

xliv

9-6 Defining the OCI_ATTR_CLIENT_IDENTIFIER Attribute to Pass the End-User Identity

9-7 Defining the OCI_ATTR_PASSWORD Attribute to Pass the Password for Validation

9-8 OCI Attributes That Let You Specify the External Name and Initial Privileges of a Client

9-9 Defining the OCI_ATTR_APPCTX_SIZE Attribute to Initialize the Context Array Size with
the Desired Number of Context Attributes

9-10 Using the OCI_ATTR_APPCTX_LIST Attribute to Get a Handle on the Application Context
List Descriptor for the Session

9-11 Calling OCIParamGet() to Obtain an Individual Descriptor for the i-th Application Context
Using the Application Context List Descriptor

9-12 Defining Session Handle Attributes to Set Externally Initialized Context

9-13 Using the OCI_ATTR_CALL_TIME Attribute to Get the Elapsed Time of the Last Server Call

9-14 Using OCISessionBegin() with an Externally Initialized Context

9-15 Changing the "responsibility" Attribute Value in the CLIENTCONTEXT Namespace

9-16 Two Ways to Clear Specific Attribute Information in a Client Namespace

9-17 Clearing All the Context Information in a Specific Client Namespace

9-18 Calling OCIAttrSet() to Set the OCI_ATTR_EDITION Attribute

10-1 Example of PL/SQL Fix-Up Callback

10-2 Optimizing Bind and Define Operations on Statements in the Cache

10-3 Pseudocode That Describes the Overall Processing of a Typical OCI Call

10-4 Environment Variable Setting for the ORA_OCI_UCBPKG Variable

10-5 Specifying the pkgNInit() and PkgNEnvCallback() Functions

10-6 Using pkgNEnvCallback() to Register Entry, Replacement, and Exit Callbacks

10-7 Registering User Callbacks with the NULL ucbDesc

10-8 Using the OCIStmtPrepare() Call to Call the Callbacks in Order

10-9 User-Defined Failover Callback Function Definition

10-10 Failover Callback Registration

10-11 Failover Callback Unregistration

10-12 Callback Function That Implements a Failover Strategy

10-13 Event Notification

10-14 Transaction Guard Demo Program

10-15 Enqueue Buffered Messaging

10-16 Dequeue Buffered Messaging

10-17 Setting QOS Levels, the Notification Grouping Class, Value, and Type, and the Namespace
Specific Context

10-18 Using AQ Grouping Notification Attributes in an OCI Notification Callback

10-19 Implementing a Publish Subscription Notification

10-20 Registering for Notification Using Callback Functions

ORACLE

9-19
9-19
9-19

9-23

9-23

9-23
9-24
9-25
9-26
9-29
9-29
9-30
9-31
10-4
10-28
10-33
10-38
10-38
10-38
10-39
10-39
10-44
10-45
10-45
10-46
10-51
10-55
10-73
10-74

10-79
10-85
10-87
10-88

xIv

10-21

LDAP Registration

11-1 Calling OCIDBStartup() to Perform a Database Startup Operation

11-2 Calling OCIDBShutdown() in OCI_DBSHUTDOWN_FINAL Mode

11-3 Calling OCIDBShutdown() in OClI_DBSHUTDOWN_ABORT Mode

11-4 Implicit Fetching of ROWIDs

11-5 DBMS_SQL RETURN_RESULT Subprogram

11-6 A PL/SQL Stored Procedure to Implicitly Return Result-Sets (Cursors) to the Client

11-7 An Anonymous PL/SQL Block to Implicitly Return Result-Sets (Cursors) to the Client

11-8 Using OCIStmtGetNextResult() to Retrieve and Process the Implicit Results
Returned by Either a PL/SQL Stored Procedure or Anonymous Block

12-1 SQL Definition of Standalone Objects

12-2 SQL Definition of Embedded Objects

12-3 Pinning an Object

12-4 Manipulating Object Attributes in OCI

12-5 Using Complex Object Retrieval in OCI

12-6 C Representations of Types with Their Corresponding NULL Indicator Structures

12-7 Creating a New Object for an Object View

13-1 Manipulating an Attribute of Type OCIDate

13-2 Manipulating an Attribute of Type OCIDateTime

13-3 Manipulating an Attribute of Type OCINumber

13-4 Converting Values in OCINumber Format Returned from OCIDescribeAny() Calls to
Unsigned Integers

13-5 Manipulating an Attribute of Type OCIString

13-6 Manipulating an Attribute of Type OCIRaw

13-7 Using Collection Data Manipulation Functions

13-8 Using Multilevel Collection Data Manipulation Functions

13-9 Using REF Manipulation Functions

13-10 Using Type Interfaces to Construct Object Types

13-11 Using Type Interfaces to Construct Collection Types

13-12 Using Special Construction and Access Calls for Improved Performance

13-13 Method 1 for a Salary Update: Fetch, Convert, and Assign

13-14 Method 2 for a Salary Update: Fetch and Assign, No Convert

13-15 Method 3 for a Salary Update: Direct Fetch

13-16 Using the SQLT_NTY Bind Call Including OCIBindObject()

13-17 Using the SQLT_NTY Define Call Including OCIDefineObject()

14-1 Direct Path Programs Must Include the Header Files

14-2 Passing the Handle Type to Allocate the Function Context

ORACLE

10-92
11-4
11-4
11-5
11-7

11-10

11-10

11-10

11-10
12-5
12-5

12-12

12-14

12-25

12-30

12-34
13-6

13-10

13-12

13-14
13-15
13-17
13-20
13-23
13-25
13-27
13-28
13-31
13-44
13-44
13-44
13-46
13-47

14-4

14-5

XIvi

14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12
14-13
14-14
14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22
14-23
14-24
15-1
15-2
15-3
16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
16-9
16-10
16-11
16-12

Explicit Allocation of Direct Path Column Array Handle
Explicit Allocation of Direct Path Function Column Array Handle
Allocating a Direct Path Stream Handle

Data Structures Used in Direct Path Loading Examples
Contents of the Header File cdemodp.h

Use of OCI Direct Path Interfaces

Allocating the Column Array and Stream Handles
Getting the Number of Rows and Columns

Setting Input Data Fields

Resetting the Column Array State

Resetting the Stream State

Converting Data to Stream Format

Loading the Stream

Finishing the Direct Path Load Operation

Freeing the Direct Path Handles

Allocating a Child Column Array for a Column Object
Allocating a Child Column Array for a SQL String Column
Allocating a Child Column Array for a REF Column
Allocating the Column Array for the Object Table

Specifying Values for the OCI_ATTR_DIRPATH_EXPR_TYPE Attribute

Setting a Function Context as a Column Attribute

Allocating a Child Column Array for a Function Context

Object Type Representation of a Department Row

C Representation of a Department Row

Initializing and Terminating XML Context with a C API

Definition of the Employee Object Type Listed in the Intype File
Contents of the Generated Header File demo.h

Contents of the demov.c File

Invoking OTT from the Command Line

Contents of a User-Created Intype File

Object Type Definition for Employee

OTT-Generated Struct Declarations

Object Type Definitions for the OTT Type Mapping Example
Various Type Mappings Created by OTT from Object Type Definitions
Object Type and Subtype Definitions

Contents of the Intype File

OTT Generates C Structs for the Types and Null Indicator Structs

ORACLE

14-6

14-6

14-7

14-9

14-9
14-12
14-12
14-13
14-13
14-13
14-13
14-13
14-13
14-14
14-14
14-20
14-23
14-27
14-31
14-36
14-39
14-41
15-18
15-18
15-24

16-2

16-2

16-3

16-5

16-9
16-10
16-10
16-13
16-13
16-16
16-16
16-16

xIvii

16-13
16-14
16-15
16-16
16-17
16-18
16-19
16-20
16-21
16-22
16-23
18-1
18-2
F-1

Contents of an Intype File

Contents of the Outtype File After Running OTT

Content of an Intype File Named ex2c.typ

Invoking OTT and Specifying the Initialization Function

Content of an OTT-Generated File Named ex2cv.c

Object Type Definition to Demonstrate How OTT Generates Include Files
Content of the Intype File

Invoking OTT from the Command Line

Content of the Header File tott95b.h

Content of the Header File tott95a.h

Construct to Use to Conditionally Include the Header File tott95b.h
Creating a Compound Sharding Key

Custom Pool Example

Setting Configuration Parameters and Starting agtctl

ORACLE

16-18
16-19
16-22
16-22
16-22
16-33
16-33
16-33
16-33
16-34
16-34
18-146
18-149
F-5

xIviii

List of Figures

3-1 Basic OCI Program Flow

3-2 Components of a Service Context

3-3 Statement Handles

3-4 Direct Path Handles

5-1 Steps in Processing SQL Statements

6-1 Using OCIBindByName() to Associate Placeholders with Program Variables
6-2 Determining Skip Parameters

6-3 Performing Piecewise Insert

6-4 Performing Piecewise Fetch

7-1 OCIDescribeAny() Table Description

9-1 Multiple Tightly Coupled Branches

9-2 Session Operating on Multiple Branches

10-1 OCI Connection Pooling

10-2 Publish-Subscribe Model

12-1 Basic Object Operational Flow

14-1 Direct Path Loading

14-2 Inheritance Hierarchy for a Column of Type Person

15-1 Object Cache

15-2 Object Graph of person_t Instances

16-1 Using OTT with OCI

19-1 Classification of Instances by Type and Lifetime

27-1 Execution Flow of the OCIXStreamInLCRCallbackSend() Function
27-2 Execution Flow of the OCIXStreamOutLCRCallbackReceive() Function
F-1 Multithreaded extproc Agent Architecture

ORACLE

3-2
3-7
3-8
3-10
5-2
6-2
6-23
6-48
6-52
7-2
9-5
9-5
10-15
10-75
12-7
14-1
14-29
15-3
15-19
16-20
19-2
27-43
27-59
F-3

xlix

List of Tables

1-1
1-2
2-1
2-2
2-3
2-4
3-1
3-2
3-3
3-4
3-5
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
5-1
6-1
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11

Obsolescent OCI Functions

OCI Functions Not Supported

OCI Instant Client Shared Libraries for Linux and UNIX
OCI Instant Client Shared Libraries for Microsoft Windows
OCI Instant Client Light Shared Libraries Linux and UNIX
OCI Instant Client Light Shared Libraries for Microsoft Windows
OCI Handle Types

Descriptor Types

OCI Return Codes

Return and Error Codes

Oracle Reserved Namespaces

Internal Oracle Database Data Types

External Data Types and Codes

VARNUM Examples

Format of the DATE Data Type

Data Conversions

Data Conversions for LOBs

Data Conversion for Datetime and Interval Types

Data Conversion for External Data Types to Internal Numeric Data Types
Data Conversions for Internal to External Numeric Data Types
OCITypeCode Values and Data Types

OCI_TYPECODE to SQLT Mappings
OCI_ATTR_STMT_TYPE Values and Statement Types
Information Summary for Bind Types

Attributes of All Parameters

Attributes of Tables or Views

Attributes Specific to Tables

Attributes of Procedures or Functions

Attributes Specific to Package Subprograms

Attributes of Packages

Attributes of Types

Attributes of Type Attributes

Attributes of Type Methods

Attributes of Collection Types

Attributes of Synonyms

ORACLE

1-18
1-19

7-11
7-12
7-13
7-15

7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
8-1

9-1

9-2

9-3

9-5
9-6
9-7
9-8
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
11-1
11-2
12-1

Attributes of Sequences

Attributes of Columns of Tables or Views

Predefined Collation IDs, Their ub4 Values (in parenthesis), and Their SQL Names

Attributes of Arguments and Results

List Attributes

Attributes Specific to Schemas

Attributes Specific to Databases
Attributes Specific to Rules

Attributes Specific to Rule Sets
Attributes Specific to Evaluation Contexts
Attributes Specific to Table Aliases
Attributes Specific to Variable Types
Attributes Specific to Name-Value Pair
LOB Functions Compatibility and Migration
Global Transaction Identifier

One-Phase Commit

Two-Phase Commit

Read-Only Update Fails

Read-Only Transaction

Initialization and Termination Multithreading Functions
Passive Threading Primitives

Active Threading Primitives

Time and Event

AQ Functions

Enqueue Parameters

Dequeue Parameters

Listen Parameters

Array Enqueue Parameters

Array Dequeue Parameters

Agent Parameters

Message Properties

Enqueue Option Attributes

Dequeue Option Attributes

Publish-Subscribe Functions

Comparison of Some Connection Specific Auto-Tuning Parameters

Equivalent OCI Parameter Settings in oraaccess.xml and sqglnet.ora

Meta-Attributes of Persistent Objects

ORACLE

7-15
7-16
7-18
7-19
7-20
7-21
7-21
7-23
7-23
7-23
7-24
7-24
7-25
8-7
9-4
9-9
9-10
9-10
9-11
9-38
9-39
9-42
10-46
10-68
10-68
10-68
10-69
10-69
10-70
10-70
10-70
10-71
10-72
10-83
11-16
11-22
12-17

12-2
12-3
12-4
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
14-1
14-2
15-1
15-2
15-3
15-4
15-5
15-6
15-7
16-1
17-1
17-2
17-3
17-4
18-1
18-2
18-3
18-4
18-5
18-6
18-7
18-8

Set and Check Functions

Transient Meta-Attributes

Attribute Values for New Objects

Function Prefix Examples

Binding and Defining Datetime and Interval Data Types
Datetime Functions

Interval Functions

String Functions

Raw Functions

Collection Functions

Collection Scanning Functions

Nested Table Functions

REF Manipulation Functions

Descriptor Objects

Data Type Mappings for Binds and Defines
Direct Path Context Functions

Direct Path Column Array Functions

Object Attributes After a Refresh Operation
Example of Allocation and Pin Durations
Pin, Free, and Unpin Functions

Flush and Refresh Functions

Mark and Unmark Functions

Object Meta-Attributes Functions

Other Object Functions

Object Data Type Mappings for Object Type Attributes
Mode of a Parameter

Connect, Authorize, and Initialize Functions
Handle and Descriptor Functions

Bind, Define, and Describe Functions
Statement Functions

LOB Functions

Advanced Queuing and Publish-Subscribe Functions
Direct Path Loading Functions

Thread Management Functions
Transaction Functions

Sharding Functions

Miscellaneous Functions

ORACLE

12-20
12-20
12-32
13-5
13-8
13-9
13-11
13-15
13-16
13-19
13-19
13-21
13-24
13-26
13-40
14-7
14-8
15-12
15-17
15-21
15-21
15-22
15-22
15-22
16-11
17-2
17-3
17-45
17-58
18-2
18-15
18-79
18-96
18-109
18-132
18-145
18-151

18-9
18-10
19-1
19-2
19-3
19-4
19-5
19-6
19-7
19-8
19-9
19-10
19-11
20-1
20-2
20-3
20-4
20-5
20-6
20-7
20-8
20-9
20-10
20-11
20-12
20-13
20-14
20-15
20-16
20-17
21-1
21-2
21-3
21-4
21-5
21-6
21-7

OCI Function Codes

Continuation of OCI Function Codes from 97 and Higher

Type and Lifetime of Instances

Return Values of Navigational Functions

OCI Navigational Functions Error Codes

Flush or Refresh Functions

Object Status After Refresh

Mark or Unmark Object and Cache Functions

Get Object Status Functions

Miscellaneous Object Functions

Instances Created

Pin, Unpin, and Free Functions

Type Information Accessor Functions

Function Return Values

Collection and Iterator Functions

Element Pointers

Date Functions

Error Bits Returned by the valid Parameter for OCIDateCheck()
Comparison Results

Error Bits Returned by the valid Parameter for OCIDateTimeCheck()
Comparison Results Returned by the result Parameter for OCIDateTimeCompare()
Error Bits Returned by the valid Parameter for OClIntervalCheck()
Comparison Results Returned by the result Parameter for OClintervalCompare()
NUMBER Functions

Comparison Results Returned by the result Parameter for OCINumberCmp()
Values of result

Raw Functions

Ref Functions

String Functions

Table Functions

External Procedures Functions

Memory Services Functions

Maintaining Context Functions

Parameter Manager Interface Functions

File /O Interface Functions

String Formatting Functions

Format Modifier Flags

ORACLE

18-170
18-171
19-3
19-4
19-4
19-6
19-12
19-13
19-20
19-26
19-38
19-42
19-54
20-2
20-3
20-8
20-25
20-29
20-31
20-40
20-41
20-61
20-62
20-74
20-81
20-102
20-110
20-116
20-124
20-130
21-2
21-6
21-11
21-15
21-26
21-35
21-38

21-8 Format Codes to Specify How to Format an Argument Written to a String
22-1 Function Return Values

22-2 Type Interface Functions

22-3 Any Data Functions

22-4 Data Types and Attribute Values

22-5 Data Types and Attribute Values

22-6 Any Data Set Functions

23-1 Function Return Values

23-2 OCI Locale Functions

23-3 OCI Locale-Mapping Function

23-4 OCI String Manipulation Functions

23-5 OCI Character Classification Functions

23-6 OCI Character Set Conversion Functions

23-7 OCI Messaging Functions

24-1 Function Return Values

24-2 OCIl XML DB Functions

27-1 Mode of a Parameter

27-2 OCI XStream Functions

27-3 Table Column Data Types

27-4 Required Column List in the First LCR

27-5 Storage of LOB or LONG Data in the LCR

A-1 Function Code of the SQL Command Associated with the SQL Statement
B-1 OCI Demonstration Programs

C-1 Server Round-Trips for Relational Operations

C-2 Server Round-Trips for OCILob Calls

C-3 Server Round-Trips for Object and Cache Functions
C-4 Server Round-Trips for Describe Operations

C-5 Server Round-Trips for Data Type Manipulation Functions
C-6 Server Round-Trips for Any Type and Data Functions
C-7 Locally Processed Functions

D-1 ORACLE_HOME Directories and Contents

D-2 Oracle XA Components

D-3 Link Libraries

E-1 Deprecated OCI Functions

E-2 Deprecated Initialize Functions

E-3 Deprecated Statement Functions

E-4 Deprecated LOB Functions

ORACLE

21-39
22-1
22-2
22-7

22-10

22-12

22-24
23-1
23-2
23-8

23-10

23-34

23-41

23-46
24-1
24-2
27-2
27-2

27-19

27-49

27-63
A-44

B-1
c-1
c-3
C5
C-6
C-6
c-7
c-7
D-2
D-4
D-5
E-1
E-1
E-6
E-9

liv

E-5 Characters or Bytes in amtp for OCILobRead()

E-6 Characters or Bytes in amtp for OCILobWrite()

E-7 Characters or Bytes in amtp for OCILobWriteAppend()
E-8 Deprecated Streams Advanced Queuing Functions
F-1 Agent Control Utility (agtctl) Commands

F-2 Configuration Parameters for agtctl

ORACLE

E-16
E-20
E-24
E-26

F-5
F-10

Preface

Preface

Audience

Oracle Call Interface (OCI) is an application programming interface (API) that lets
applications written in C or C++ interact with Oracle Database. OCI gives your
programs the capability to perform the full range of database operations that are
possible with Oracle Database, including SQL statement processing and object
manipulation.

This guide is intended for programmers developing new applications or converting
existing applications to run in the Oracle Database environment. This comprehensive
treatment of OCI is also valuable to systems analysts, project managers, and others
interested in the development of database applications.

This guide assumes that you have a working knowledge of application programming
using C. Readers should also be familiar with the use of structured query language
(SQL) to access information in relational database systems. In addition, some sections
of this guide assume knowledge of the basic concepts of object-oriented programming.

¢ See Also:

e Oracle Database SQL Language ReferenceandOracle Database
Administrator’s Guide for information about SQL

e Oracle Database Concepts

e Oracle Database New Features Guide for information about the
differences between the Standard Edition and the Enterprise Edition and
all the features and options that are available to you

e Oracle C++ Call Interface Programmer's Guide for more information
about OCI functionality for C++ that enables programmers to manipulate
database objects of user-defined types as C++ objects

Documentation Accessibility

ORACLE

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Ivi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Preface

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

Many of the examples in this book use the sample schemas, which are installed by default
when you select the Basic Installation option with an Oracle Database installation. See
Oracle Database Sample Schemas for information about how these schemas were created
and how you can use them.

To download free release notes, installation documentation, white papers, or other collateral,
visit the Oracle Technology Network (OTN). You must register online before using OTN;
registration is free and can be done at

http://ww. oracl e. con t echnet wor k/ comrmuni ty/ | oi n/ over vi ew

If you have a user name and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://ww. oracl e.com t echnet wor k/ i ndexes/ docunent at i on/

Oracle Call Interface Programmer's Guide does not contain all information that describes the
features and functionality of OCI in the Oracle Database Standard Edition and Enterprise
Edition products. Explore the following documents for additional information about OCI.

* Oracle Database Data Cartridge Developer's Guide provides information about cartridge
services and OCI calls pertaining to development of data cartridges.

* Oracle Database Globalization Support Guide explains OCI calls pertaining to NLS
settings and globalization support.

* Oracle Database Advanced Queuing User's Guide supplies information about OCI calls
pertaining to Advanced Queuing.

e Oracle Database Development Guide explains how to use OCI with the XA library.

* Oracle Database SecureFiles and Large Objects Developer's Guide provides information
about using OCI calls to manipulate LOBs, including code examples.

* Oracle Database Object-Relational Developer's Guide offers a detailed explanation of
object types.

For additional information about Oracle Database, consult the following documents:
* Oracle Database Net Services Administrator's Guide

» Oracle Database New Features Guide

* Oracle Database Concepts

* Oracle Database Reference

* Oracle Database Error Messages Reference

Conventions

The following text conventions are used in this document:

ORACLE Ivii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/community/join/overview/
http://www.oracle.com/technetwork/indexes/documentation/

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

Iviii

Changes in This Release for Oracle Call
Interface Programmer's Guide

This preface contains:

e Changes in Oracle Database 12c Release 2 (12.2)

Changes in Oracle Database 12c Release 2 (12.2.0.1)

Changes in Oracle Database 12c release 2 (12.2.0.1).

The following are changes in the Oracle Call Interface (OCI) for release 2 (12.2.0.1):
* New Features

e Deprecated Features

New Features

The following features are new in this release:

» Oracle Sharding interfaces — support interfaces for the database sharding feature during
connection initiation for a standalone connection, for getting a connection from an OCI
Session pool, and support interfaces for custom connection pools:

— New sharding key and super sharding key descriptor type OCl Shar di ngKey with an
OCI descriptor named OCl _DTYPE_SHARDI NG_KEY. This descriptor type is used for
forming the sharding key as well as the super sharding key. This descriptor type is a
new addition to the t ype parameter for the OCl Descri pt or Al | oc() call for allocating
the sharding key and super sharding key descriptors.

— New OCl Shar di ngkeyCol utmAdd() call to add sharding key columns to an
CCl Shar di ngKey to form a compound sharding key or compound super sharding key.

— New OCl Shar di ngKeyReset () call allows an application to reset an OCl Shar di ngKey
and reuse an allocated descriptor for creating a new sharding key or super sharing
key.

— New service context handle attributes:

* OCl _ATTR_SHARDI NG _KEY — For standalone connections and OCI Session pools,
this attribute is set on the OCIAuth handle before performing OCl Sessi onCet ()
call. For custom pools, this attribute associates a sharding key to a given
connection (OCl Svc(Ct x).

* OCl _ATTR_SUPER SHARDI NG _KEY — For standalone connections and OCI Session
pools, this attribute is set on the OCIAuth handle before performing
OCl Sessi onGet () call. For custom pools, this attribute associates a super
sharding key to a given connection (OCl SvcCt x).

ORACLE lix

ORACLE

Changes in This Release for Oracle Call Interface Programmer's Guide

* OCl _ATTR_SHARDI NG _KEY_B64 — For diagnostic purposes, this attribute to
get the base 64 representation of a sharding key or super sharding key
value. This attribute on the OCI _DTYPE SHARDI NG KEY descriptor allows the
OCl AttrGet () call to take the OCl Shar di ngKey descriptor type as input and
return the base64 representation of the sharding key or super sharding
key.

— For standalone connections and OCI session pools:

* The OCl Sessi onGet () call takes an OCIAuth handle as input on which
various properties are set, including the CCl Shar di ngKey descriptor type
that is used to form the sharding key and the super sharding key. With
these properties set, the OCl Sessi onCGet () call gets a new session or a
suitable existing session (if available, in case of OCI Session pool) to the
specific shard containing the data corresponding to the sharding key and
super sharding key values provided.

— For use with custom pools, to return connections to specific shards, both the
shard name must be determined to which the shard connection has been
made and the shard name to sharding key or super sharding key to shard
name mapping also must be determined to enable the lookup for a matching
connection. The following new features enable this functionality:

* The attribute OCI _ATTR | NSTNAME is used on a service context to return the
shard instance name for a given connection using the OCl Attr Cet () call.

* New QOCl Shar dl nst ancesGet () call that returns the list of instances for a
given sharding key, super sharding key, and connection string.

* New OCl Sessi onGet () mode OCl _SESSGET_CUSTOM POQL for use with
custom pools to allow explicit caching of its shard topology information
when connecting to a new shard instance.

See OClDescriptorAlloc(), OCIShardingKeyColumnAdd(),
OCIShardingKeyReset(), Service Context Handle Attributes, OCIAttrGet(),
OClIShardinstancesGet(), and OCISessionGet() for more information.

See About the OCI Interface for Using Shards, About Specifying a Sharding Key
and Super Sharding Key for Getting a Connection from an OCI Session Pool,
About Specifying a Sharding Key and Super Sharding Key for Getting a
Connection from a Custom Pool, and OCI Descriptors for more information.

See the topic about developing applications for Oracle Sharding in Oracle
Database Administrator’s Guide for more information.

Support for describing collations of result columns:

— New statement handle attribute OCl _ATTR_COLLATI ON_| D— Returns the
collations from the describe information of a statement.

See Column Attributes for more information.
Improvements to OCI Session Pooling
— Support for multi-property tags with OCI Session Pool and DRCP:

OCl Sessi onGet () tagi nf o parameter has been extended to allow a tag to
have multiple string properties. Such a tag with multiple string properties that
are separated by the semi-colon (;) character is known as a multi-property tag.
The ordering of the properties in the multi-property tag is significant for finding
a matching session in the pool. A multi-property tag must be used in
conjunction with the OCl _SESSGET_MJULTI PROPERTY_TAG mode.

Changes in This Release for Oracle Call Interface Programmer's Guide

The r et Tagl nf o parameter returned by OCl Sessi onGet () can also return a multi-
property tag corresponding to the returned session, and needs to be interpreted in
conjunction with the f ound parameter.

A session can be tagged with a multi-property tag by invoking OCl Sessi onRel ease()
(with OCI _SESSRLS RETAG | OCI _SESSRLS MJULTI PROPERTY_TAG mode) by setting the
tag parameter to be a multi-property tag.

This functionality also works with DRCP. See Database Resident Connection Pooling
for more information.

See About Using Tags in Session Pools and OCISessionGet() for more information.

A new mode OCl _SPOOL_ATTRVAL_TI MEDWAI T has been added to OCI Session Pool
handle that can be used to time out the OCl Sessi onGet () call waiting to get a free
session. The time out value can be specified by the OCl _ATTR_SPOOL_WAI T_TI MEQUT
attribute.

See Session Pool Handle Attributes for more information.

Improvements to OCI Session Pooling involving dead connection detection, cleanup,
and idle session re-establishment. This improves reliability, giving applications more
certainty that OCl Sessi onGet () can return a usable session after an underlying
network outage or database node failure.

e Support for Application Continuity in an HA infrastructure includes:

ORACLE

Support for OCI Session pool for applications that use a pool.

New FAI LOVER TYPE value: TRANSACTI ON. This value supports replay of an inflight
transaction upon receipt of a recoverable error.

For hiding planned maintenance:

* New OCI Transparent Application Failover (TAF) error codes. See ORA- 25410,
ORA- 25417, ORA- 25418, and ORA- 25419 in Oracle Database Error Messages
Reference for more information.

For hiding unplanned outages:
* OCI Session pool support.

* A new session pool handle attribute: OCI _ATTR FOCBK — Use this attribute with
OCl Attr Set () to define a TAF callback and the context to be associated with
each session in the OCI Session pool; or, use this attribute with OCl Attr Get () to
populate the OCl FocbkSt ruct with the TAF callback and the context defined for
the session pool.

* A new API, CCl Request Di sabl eRepl y() — Triggers OCI to stop recording calls
until the end of an application request (the end of a request is marked by
OCl Sessi onRel ease()). Use this call when Application Continuity for OCl is
enabled but the application is entering a section of code that is not replayable.

* A new TAF callback function, TAFcbk_f n — Register a callback function so that if
failover occurs, the callback function can be invoked several times while
reestablishing the user’s session. The first call to allow the application to inform
the user of an upcoming delay while failover is in progress and a second call to
inform the user that the connection is reestablished and usable, or if failover is
unsuccessful to inform the user that failover cannot occur. If the connection is
reestablished and usable, the client may want to replay ALTER SESSI ON
commands and inform the user failover has happened, and so forth.

IXi

ORACLE

Changes in This Release for Oracle Call Interface Programmer's Guide

* New Authentication Information Handle attribute
OCl _ATTR_FI XUP_CALLBACK — Specifies on the authentication handle
attribute the callback passed to OCl Sessi onGet () for applications not
using an OCISessionPool or using custom pools. For applications using
OCIlSessionPool, this attribute must be set on the authentication handle,
which in turn must be set on the session pool handle with attribute
OCl _ATTR SPOOL_AUTH set to attribute OCI _ATTR _FI XUP_CALLBACK.

See OCI and Application Continuity, User Session Handle Attributes, Session Pool
Handle Attributes, Authentication Information Handle Attributes, PL/SQL Callback
for Session State Fix Up, OCIRequestDisableReplay(), and Transparent
Application Failover Callback Structure and Parameters for more information.

Support for identifiers up to 128 bytes:

Names can now be up to 128 bytes in length. Previously the limit was 30 bytes.
For example, these names include attribute names, directory alias names, and
identifier names, such as for handle attributes that hold identifier names for
OCIDirPath (direct path loading functions) among many other names.

Older OCI clients that only support 30-byte identifier names will continue to work
with Release 2 (12.2) OCI APlIs.

With the identifier length increased, OCI applications using deprecated V7 API
odessp() and deprecated UPI API upi dpr () may need to be changed. See the
Note in About Upgrading of Existing OCI Release 7 Applications for more
information.

Support for Pluggable Databases:

— Enhancements to OCI calls for Multitenant Container Databases (CDB):
Client result cache works with connections to Pluggable Databases.

— Enhancements to OCI calls for ALTER SESSION SET CONTAINER:

The client must be at the same version as the server to perform these
operations; otherwise, a lower version client will get an error:

* The ALTER SESSI ON SET CONTAI NER statement supports applications that
use TI MESTAMP W TH TI MEZONE or TI MESTAVMP W TH LOCAL TI MEZONE data
types in OCI. This allows an application to switch between pluggable
databases having different database time zone settings or different
database time zone file version settings.

* The ALTER SESSI ON SET CONTAI NER statement can be used to switch an
OCI connection between any two pluggable databases whose character
sets are different.

See Enhancements on OCI API Calls with Multitenant Container Databases (CDB)
in General and OCI Enhancements for ALTER SESSION SET CONTAINER for
more information.

The OTT parameter USERI D now accepts a max length up to 243 bytes for the
user name and db_nane combination, which is appended and used as a key in the
OCl Cont ext Get Val ue() call. For Oracle Database 12¢ Release 1 (12.1), the max
length was 64 bytes.

See the USERID OTT parameter for more information.

For the functions OCl Cont ext Set Val ue(), OCl Cont ext Get Val ue(), and
OCl Cont ext Cl ear Val ue() the maximum length of the keyl en parameter was
increased from 64 bytes to 255 bytes.

Ixii

ORACLE

Changes in This Release for Oracle Call Interface Programmer's Guide

See OCIContextSetValue(), OCIContextGetValue(), and OCIContextClearValue() for
more information.

The <wal | et _| ocati on> element has been added under the ons section for Oracle
Notification Service (ONS) parameters of the or aaccess. xm client configuration file.

See About Specifying Defaults for Connection Parameters for more information.

Support to convert from version 1 to version 2 SCN in XStream for new and changed
functions:

This support includes new functions: OCl LCRScnToPosi ti on2(),

OCl LCRConpar ePosi tion(), OCl LCRConvert Posi tion(), OCl LCRGet LCRI DVersi on() ; and
changes to functions: OCl LCRSCNsFr onPosi ti on() — to support both version 1 and
version 2 and OCl LCRScnToPosi ti on() — raises an error if the SCN value is larger than
the maximum for version 1.

See OCILCRScnToPosition2(), OCILCRComparePosition(), OCILCRConvertPosition(),
OCILCRGetLCRIDVersion(), OCILCRSCNsFromPosition(), and OCILCRSCNToPosition()
for more information.

See the topic about logical change records in Oracle Database XStream Guide for more
information.

XStream function support for replication of application containers and application
common objects in federation PDBs

This support includes changes to the following functions:

— OCl LCRHeader Get (), a new LCR flag: OCI _LCR_APPCON_REPLAY — indicates the
logical change record (LCR) is replayed from the application container sync
statement.

— OCl XSt reamut At t ach(), new mode flags:

* OCl XSTREAM QUT_ATTACH_APP_CONTAI NER — the application is capturing
application container statements (ALTER PLUGGABLE DATABASE APPLI CATI ON)
LCRs.

* OCI XSTREAM QUT_ATTACH_EXTENDED TXI D — the application is making a request
for extended transaction ID format.

See OCILCRHeaderGet() and OCIXStreamOutAttach() for more information.
Distributed LOBs support in OCI:

Queries that select a LOB locator from a remote table are supported. DML operations on
a remote table using a DBLink are supported.

Any tables mentioned in the FROMor WHERE clause in queries and DML should be
collocated. If remote locators are used as bind variables in the WHERE clauses, they
should be collocated. By tables or locators being collocated, it means that they use the
same database link.

OCI LOB API supports distributed operations using remote LOB locators (CLOB, BLOB) but
not for BFI LE locators.

All LOB APIs that take in two locators must have both LOBSs collocated at one database.

New LOB locator attribute: OCl _ATTR LOB_REMOTE can be used to find out whether a LOB
locator belongs to local database table or remote database table. As a Boolean data
type, the returned value TRUE indicates the LOB locator is from a remote database table.

Iiii

ORACLE

Changes in This Release for Oracle Call Interface Programmer's Guide

The following LOB functions throw an error when a remote locator is passed:
OClLobAssign(), OCILobLocatorAssign(), OCILobEnableBuffering(),
OClLobDisableBuffering(), OCILobFlushBuffer(), OCILobArrayRead(),
OCILobArrayWrite(), and OCILobLoadFromFile2().

See LOB Functions, About Using OCI Functions for LOBs, and LOB Locator
Attributes for more information.

See the chapter about using distributed LOBs and working with remote LOBs in
Oracle Database SecureFiles and Large Objects Developer's Guide for more
information.

Support for Hybrid Columnar Compression (HCC) with conventional DML
operations:

HCC can be used during array inserts with OCI. HCC conventional array inserts
are only supported for HCC tables on ASSM tablespaces.

See OCI Array Interface for more information.

See Oracle Database Administrator’s Guide for information about how to configure
HCC.

Restriction on OCI calls that use the ALTER SESSI ON SW TCH CONTAI NER SW TCH
SERVI CE statement.

See Restrictions on OCI Calls with ALTER SESSION SWITCH CONTAINER
SWITCH SERVICE for more information.

Support for validating the format or internal representation of Oracle NUVBER and
DATE data when loading stream data:

When a stream is parsed on the server using OCl Di r Pat hLoadSt r ean() , you can
use the direct path context handle attribute OCl _ATTR_DI RPATH_FLAGS with the

OCl _DI RPATH FLAGS VLDT flag set to validate the internal representation of dates
and numbers. However, this is an expensive operation, so the default is to not set
this flag.

See About Validating Format for Oracle NUMBER and DATE Data and Direct Path
Context Handle (OCIDirPathCtx) Attributes for more information.

Support for establishing an administrative session for an expired user account at
logon before changing the password. The mode parameter for

COCl Passwor dChange() can in addition to the OCl _AUTH value accept any one the
following additional mode flags that corresponds to its administrative session:
OCl _CPW SYSDBA, OCl _CPW SYSOPER, OCI _CPW SYSASM OCl _CPW SYSBKP,

OCl _CPW SYSDGD, and OCI _CPW SYSKM.

See OCIPasswordChange() for more information.

A change in the linear snapshot size from 24 bytes to 34 bytes requires the
reconstruction of the collection image form:

When an older client or server accesses a Release 12.2 or higher database
involving any access to collections, the collection image form that contains the
linear snapshot must be converted when sending or receiving to older clients or
server. This conversion results in the performance degradation. Oracle
recommends that you use a 12.2 version of the client or server to avoid this
conversion.

See OCI Object Overview for more information.

IXiv

Changes in This Release for Oracle Call Interface Programmer's Guide

Instant Client can now use the ORA _TZFI LE environment variable to read the time zone
file from the file system. Previously, specifying the ORA_TZFI LE environment variable
would read the time zone file that was bundled in the data shared library and ignore the
time zone file from the file system.

Two new service context handle attributes, OCI _ATTR_MAX CHARSET_RATI Oand

OCl _ATTR_MAX_NCHARSET_RATI Ocan be used to obtain the maximum character set
expansion ratio from server to client character set or national character set respectively.
This lets you more efficiently allocate optimal memory of buffers before conversion so
that when data is returned from the database, sufficient space can be allocated to hold it.
This is useful in scenarios where there are different character sets or national character
sets between server and client.

See About Choosing a Character Set and Service Context Handle Attributes for more
informati

A new authentication mode OCl _SYSRAC for SYSRAC access can be used in the node
parameter for OCl Sessi onBegi n() . In this mode, you are authenticated for SYSRAC
access. In addition, the authentication modes OCl _SYSBKP for SYSBACKUP access,

OCl _SYSDGD for SYSDG access, and OCl _SYSKMT for SYSKM access though implemented
in Oracle 12c¢ Release 1 (12.1) were not documented until recently in that release. These
modes are also now documented in this current release.

See OCI Authentication Management and OCISessionBegin() for more information.

A new statement handle attribute OCI _ATTR SQ._| D that gets the SQL_| D for a specific
SQL statement from the server and makes it available on the client.

See Statement Handle Attributes for more information.
Two new direct path context handle (OCl Di r Pat hCt x) attributes:

— OCl _ATTR_DI RPATH DEF_EXP_CACHE_SI ZE — Specifies the number of default
expressions that are evaluated at a time. The default is 100. For default expressions
that must be evaluated for every row, increasing this value may improve
performance.

— OCl _ATTR DI RPATH DEFAULTS — Specifies how the direct path API handles default
expressions for columns that are not explicitly being loaded.

See Direct Path Context Handle (OCIDirPathCtx) Attributes for more information.

Deprecated Features

The following deprecated features will not be supported in future releases:

ORACLE

OCl release 7.3 API

See About Upgrading of Existing OCI Release 7 Applications for more information.
LOB Buffering subsystem APIs

The following functions are deprecated beginning with Oracle 12¢ Release 2 (12.2.0.1):
— OCILobEnableBuffering()

— OCILobDisableBuffering()

— OCILobFlushBuffer()

In place of using these LOB buffering functions, use the LOB prefetch feature described
in Prefetching of LOB Data, Length, and Chunk Size.

Statement function APIs

Ixv

Changes in This Release for Oracle Call Interface Programmer's Guide

The following function is deprecated beginning with Oracle 12¢ Release 2
(12.2.0.1): OCl St nt Prepare() .

Oracle strongly encourages use of OCIStmtPrepare2() in all OCI applications
instead of the deprecated call OCIStmtPrepare().

Use the OCl St nt Prepar e2() call to support the use of Application Continuity in an
HA infrastructure. Applications that use OCl St nt Prepar e() return the following
error: Error - ORA-25412: transaction replay disabled by call to

OCl St nt Prepare.

ORACLE Ixvi

OCI: Introduction and Upgrading

This chapter contains these topics:

* Overview of OCI

* About Compatibility and Upgrading

Overview of OCI

ORACLE

Oracle Call Interface (OCI) is an application programming interface (API) that lets you create
applications that use function calls to access an Oracle database and control all phases of
SQL statement execution.

OCI supports the data types, calling conventions, syntax, and semantics of C and C++.
OCI provides:

» High performance and scalability through the efficient use of system memory and
network connectivity

» Consistent interfaces for dynamic session and transaction management in a two-tier
client/server or multitier environment

e N-tier authentication
e Comprehensive support for application development using Oracle Database objects

e Access to external databases, such as Oracle TimesTen In-Memory Database and
Oracle In-Memory Database Cache. See Oracle TimesTen In-Memory Database C
Developers Guide.

» Applications that support an increasing number of users and requests without additional
hardware investments

* Ways to manipulate data and schemas in an Oracle Database using the C programming
language and a library of standard database access and retrieval functions in the form of
a dynamic runtime library (OCI library) that can be linked in an application at run time.

* Encapsulated or opaque interfaces, whose implementation details are unknown

e Simplified user authentication and password management

e Extensions to improve application performance and scalability

e Consistent interface for transaction management

» OCI extensions to support client-side access to Oracle objects

» Significant advantages over other methods of accessing an Oracle Database:
— More fine-grained control over all aspects of application design
— High degree of control over program execution

— Use of familiar third-generation language programming techniques and application
development tools, such as browsers and debuggers

1-1

ORACLE

Chapter 1
Overview of OCI

— Connection pooling, session pooling, and statement caching that enable
building of scalable applications

— Support of dynamic SQL

— Availability on the broadest range of operating systems of all the Oracle
programmatic interfaces

— Dynamic binding and defining using callbacks
— Description functionality to expose layers of server metadata
— Asynchronous event notification for registered client applications

— Enhanced array data manipulation language (DML) capability for array inserts,
updates, and deletes

— Ability to associate commit requests with executes to reduce round-trips

— Optimization of queries using transparent prefetch buffers to reduce round-
trips

— Thread safety, which eliminates the need for mutual exclusive locks (mutexes)
on OCI handles

— APIs to design a scalable, multithreaded application that can support large
numbers of users securely

— SQL access functions, for managing database access, processing SQL
statements, and manipulating objects retrieved from an Oracle database

— Data type mapping and manipulation functions, for manipulating data
attributes of Oracle types

— Data loading functions, for loading data directly into the database without
using SQL statements

— External procedure functions, for writing C callbacks from PL/SQL

" See Also:

e Oracle Technology Network URL for the OCI page: http://
www.oracle.com/technetwork/database/features/oci/

e Oracle C++ Call Interface Programmer's Guide

¢ Related Documents

This section includes the following topics:

Building an OCI Application

Alternatives to OCI

Object Support

SQL Statements

Encapsulated Interfaces

Simplified User Authentication and Password Management

Features to Improve Application Performance and Scalability

1-2

http://www.oracle.com/technetwork/database/features/oci/
http://www.oracle.com/technetwork/database/features/oci/

Chapter 1
Overview of OCI

* OCI Object Support
* OCI Support for Oracle Streams Advanced Queuing
e XA Library Support

Building an OCI Application

You compile and link an OCI program in the same way that you compile and link a non-
database application. There is no need for a separate preprocessing or precompilation step.

Oracle Database supports most popular compilers. The details of linking an OCI program
vary from system to system. On some operating systems, it may be necessary to include
other libraries, in addition to the OCI library, to properly link your OCI programs. See your
Oracle Database system-specific documentation and the installation guide for more
information about compiling and linking an OCI application for your operating system.

¢ See Also:

Getting Started with OCI for Windows

Alternatives to OCI

ORACLE

What are the alternatives to OCI?
Some alternatives to using the Oracle Call Interface (OCI) include:

* Oracle Database Programming Interface for C (ODPI-C)
* Oracle C++ Call Interface (OCCI)

e Oracle Pro*C/C++ Precompiler

Oracle Database Programming Interface for C (ODPI-C)

ODPI-C is an open source library of C code that simplifies the use of common Oracle Call
Interface (OCI) features for Oracle Database drivers and user applications. ODPI-C sits on
top of OCI and requires Oracle client libraries. ODPI-C:

e Favors ease of use aimed at driver writers where niche special-case OCI features are not
needed.

e Provides a faster implementation of drivers with considerably less code. Oracle features
can be exposed to users rapidly and in a consistent way.

e Provides simpler memory management for binding variables and fetching.

e Automatically converts binding and 'defining’ (for fetches) to "native" C types so that
additional calls do not need to be made. This is beneficial particularly for numbers and
dates. The ability to retrieve LONG and LOB columns as strings and buffers is an
advantage as well.

» Provisdes a "safer" API in that resource handles are validated. Casts are not needed. A
reference counting mechanism adds resiliency by stopping applications from destroying
in-use OCI resources.

e Provides an API that simplifies connection and resource management. For example, it
automatically does session pool pinging to provide better High Availability.

1-3

Chapter 1
Overview of OCI

* Provides an alternative programming experience from OCI that uses a multiple
getter and setter model for handling attributes.

* Provides a sample Makefile that builds ODPI-C as a shared library. Or, the ODPI-
C source code can be included in your project and built as you would build an OCI
application.

See Also:

e Product Launch: Oracle Database Programming Interface for C (ODPI-
C), for a list of ODPI-C supported features and a list of references
including to its home page, code location on github, and documentation

¢ About OCI Instant Client

Oracle C++ Call Interface (OCCI)

The Oracle C++ Call Interface (OCCI) is an application programming interface (API)
that allows applications written in C++ to interact with one or more Oracle database
servers. OCCI gives your programs the ability to perform the full range of database
operations that are possible with an Oracle database server, including SQL statement
processing and object manipulation.

¢ See Also:

Introduction to OCCI in Oracle C++ Call Interface Programmer's Guide

Oracle Pro*CI/C++ Precompiler

Oracle Pro*C/C++ Precompiler is a programming tool that enables the user to embed
SQL statements in a high-level source program. The precompiler accepts the source
program as input, translates the embedded SQL statements into standard Oracle
runtime library calls, and generates a modified source program that you can compile,
link, and execute in the usual way.

¢ See Also:

Introduction to Oracle Pro*C/C++ Precompiler in Pro*C/C++ Programmer's
Guide

Procedural and Nonprocedural Elements

ORACLE

OClI enables you to develop scalable, multithreaded applications in a multitier
architecture that combines the nonprocedural data access power of structured query
language (SQL) with the procedural capabilities of C and C++.

* In a nonprocedural language program, the set of data to be operated on is
specified, but what operations are to be performed, or how the operations are to

1-4

Chapter 1
Overview of OCI

be conducted, is not specified. The nonprocedural nature of SQL makes it an easy
language to learn and to use to perform database transactions. It is also the standard
language used to access and manipulate data in modern relational and object-relational
database systems.

* In a procedural language program, the execution of most statements depends on
previous or subsequent statements and on control structures, such as loops or
conditional branches, that are not available in SQL. The procedural nature of these
languages makes them more complex than SQL, but it also makes them more flexible
and powerful.

The combination of both nonprocedural and procedural language elements in an OCI
program provides easy access to an Oracle database in a structured programming
environment.

OCI supports all SQL data definition, data manipulation, query, and transaction control
facilities that are available through an Oracle database. For example, an OCI program can
run a query against an Oracle database. The query can require the program to supply data to
the database using input (bind) variables, as follows:

SELECT name FROM enpl oyees WHERE enpno = :enpnunber;

In the preceding SQL statement, : enpnunber is a placeholder for a value that is to be
supplied by the application.

You can also take advantage of PL/SQL, Oracle's procedural extension to SQL. The
applications you develop can be more powerful and flexible than applications written in SQL
alone. OCI also provides facilities for accessing and manipulating objects in a database.

Object Support

ORACLE

OCI has facilities for working with object types and objects.

An object type is a user-defined data structure representing an abstraction of a real-world
entity. For example, the database might contain a definition of a per son object. That object
might have attributes—f i rst _nane, | ast _nane, and age—to represent a person's identifying
characteristics.

The object type definition serves as the basis for creating objects that represent instances of
the object type by using the object type as a structural definition, you could create a per son
object with the attribute values 'John’, 'Bonivento’, and '30'. Object types may also contain
methods—programmatic functions that represent the behavior of that object type.

OCl includes functions that extend the capabilities of OCI to handle objects in an Oracle
Database. These capabilities include:

e Executing SQL statements that manipulate object data and schema information
» Passing of object references and instances as input variables in SQL statements

e Declaring object references and instances as variables to receive the output of SQL
statements

» Fetching object references and instances from a database
e Describing the properties of SQL statements that return object instances and references
e Describing PL/SQL procedures or functions with object parameters or results

« Extension of commit and rollback calls to synchronize object and relational functionality

1-5

Chapter 1
Overview of OCI

¢ See Also:

* Encapsulated Interfaces which describes additional OCI calls that are
provided to support manipulation of objects after they have been
accessed by SQL statements

e Oracle Database Concepts

e Oracle Database Object-Relational Developer's Guide

SQL Statements

One of the main tasks of an OCI application is to process SQL statements.

Different types of SQL statements require different processing steps in your program.
It is important to take this into account when coding your OCI application. Oracle
Database recognizes several types of SQL statements:

Data Definition Language (DDL)
Control Statements

— Transaction Control

— Session Control

— System Control

Data Manipulation Language (DML)

Queries

" Note:

Queries are often classified as DML statements, but OCI applications
process queries differently, so they are considered separately here.

PL/SQL
Embedded SQL
Special OCI Terms for SQL

" See Also:
Using SQL Statements in OCI

Data Definition Language

Data definition language (DDL) statements manage schema objects in the database.

DDL statements create new tables, drop old tables, and establish other schema
objects. They also control access to schema objects.

ORACLE

1-6

Chapter 1
Overview of OCI

The following is an example of creating and specifying access to a table:

CREATE TABLE enpl oyees

(nane VARCHAR2(20) ,
ssn VARCHAR2(12) ,
enpno NUMBER(6) ,
mgr NUMBER(6) ,

sal ary NUMBER(6)) ;

GRANT UPDATE, | NSERT, DELETE ON enpl oyees TO donna;
REVOKE UPDATE ON enpl oyees FROM j ani e;

DDL statements also allow you to work with objects in the Oracle database, as in the
following series of statements that create an object table:

CREATE TYPE person_t AS OBJECT (
name VARCHAR2(30),,
ssn VARCHAR2(12) ,
address VARCHAR2(50));

CREATE TABLE person_tab OF person_t;

Control Statements

OCI applications treat transaction control, session control, and system control statements as
if they were DML statements.

¢ See Also:

Oracle Database SQL Language Reference for information about these types of
statements

Data Manipulation Language

Data manipulation language (DML) statements can change data in the database tables.
For example, DML statements are used to:

* Insert new rows into a table

e Update column values in existing rows

» Delete rows from a table

* Lock a table in the database

e Explain the execution plan for a SQL statement

e Require an application to supply data to the database using input (bind) variables

¢ See Also:

About Binding Placeholders in OCI for more information about input bind
variables

ORACLE e

Queries

PL/SQL

ORACLE

Chapter 1
Overview of OCI

DML statements also allow you to work with objects in the Oracle database, as in the
following example, which inserts an instance of type per son_t into the object table
person_tab:

I NSERT | NTO person_tab
VALUES (person_t (' Steve May',' 987-65-4320",' 146 Wnfield Street'));

Queries are statements that retrieve data from a database.

A query can return zero, one, or many rows of data. All queries begin with the SQL
keyword SELECT, as in the following example:

SELECT dname FROM dept
WHERE deptno = 42;

Queries access data in tables, and they are often classified with DML statements.
However, OCI applications process queries differently, so they are considered
separately in this guide.

Queries can require the program to supply data to the database using input (bind)
variables, as in the following example:

SELECT nane
FROM enpl oyees
WHERE enpno = : enpnunber;

In the preceding SQL statement, : enpnunber is a placeholder for a value that is to be
supplied by the application.

When processing a query, an OCI application also must define output variables to
receive the returned results. In the preceding statement, you must define an output
variable to receive any name values returned from the query.

" See Also:

e Overview of Binding in OCI for more information about input bind
variables

e Overview of Defining in OCI for information about defining output
variables

« Using SQL Statements in OCI for detailed information about how SQL
statements are processed in an OCI program

PL/SQL is Oracle's procedural extension to the SQL language.

PL/SQL processes tasks that are more complicated than simple queries and SQL data
manipulation language statements. PL/SQL allows some constructs to be grouped into
a single block and executed as a unit. Among these are:

e One or more SQL statements

1-8

Chapter 1
Overview of OCI

* \Variable declarations

* Assignment statements

* Procedural control statements (IF...THEN...ELSE statements and loops)
* Exception handling

You can use PL/SQL blocks in your OCI program to:

e Call Oracle Database stored procedures and stored functions

» Combine procedural control statements with several SQL statements, so that they are
executed as a unit

* Access special PL/SQL features such as records, tables, cursor FOR loops, and
exception handling

e Use cursor variables

» Take advantage of implicit result set capability that allows reuse of existing stored
procedure designs that return implicit result sets

» Access and manipulate objects in an Oracle database

The following PL/SQL example issues a SQL statement to retrieve values from a table of
employees, given a particular employee number. This example also demonstrates the use of
placeholders in PL/SQL statements.

BEG N
SELECT enane, sal, comm INTO :enp_nane, :salary, :comission
FROM enmp
WHERE enpno = :enp_nunber;

END;

Note that the placeholders in this statement are not PL/SQL variables. They represent input
values passed to the database when the statement is processed. These placeholders must
be bound to C language variables in your program.

¢ See Also:
e Oracle Database PL/SQL Language Reference for information about coding

PL/SQL blocks

e About Binding Placeholders in PL/SQL for information about working with
placeholders in PL/SQL

Embedded SQL

ORACLE

OCI processes SQL statements as text strings that an application passes to the database on
execution.

The Oracle precompilers (Pro*C/C++, Pro*COBOL, Pro*FORTRAN) allow you to embed SQL
statements directly into your application code. A separate precompilation step is then
necessary to generate an executable application.

It is possible to mix OCI calls and embedded SQL in a precompiler program.

1-9

Chapter 1
Overview of OCI

¢ See Also:

Pro*C/C++ Programmer's Guide

Special OCI Terms for SQL

This guide uses special terms to refer to the different parts of a SQL statement.
For example, consider the following SQL statement:

SELECT custoner, address
FROM cust oner s

WHERE bus_type = ' SOFTWARE'
AND sal es_vol ume = :sal es;

It contains the following parts:

A SQL command - SELECT

* Two select-list items - cust omer and addr ess

* Atable name in the FROMclause - cust omer s

e Two column names in the WHERE clause - bus_t ype and sal es_vol une
* Aliteral input value in the WHERE clause - 'SOFTWARE'

* A placeholder for an input variable in the WHERE clause - : sal es

When you develop your OCI application, you call routines that specify to the Oracle
database the address (location) of input and output variables of your program. In this
guide, specifying the address of a placeholder variable for data input is called a bind
operation. Specifying the address of a variable to receive select-list items is called a
define operation.

For PL/SQL, both input and output specifications are called bind operations.

" See Also:

e Using SQL Statements in OCI for more information about these terms
and operations

Encapsulated Interfaces

ORACLE

All the data structures that are used by OCI calls are encapsulated in the form of
opaque interfaces that are called handles.

A handle is an opaque pointer to a storage area allocated by the OCI library that
stores context information, connection information, error information, or bind
information about a SQL or PL/SQL statement. A client allocates certain types of
handles, populates one or more of those handles through well-defined interfaces, and
sends requests to the server using those handles. In turn, applications can access the
specific information contained in a handle by using accessor functions.

1-10

Chapter 1
Overview of OCI

The OCI library manages a hierarchy of handles. Encapsulating the OCI interfaces with these
handles has several benefits to the application developer, including:

* Reduction of server-side state information that must be retained, thereby reducing server-
side memory usage

* Improvement of productivity by eliminating the need for global variables, making error
reporting easier, and providing consistency in the way OCI variables are accessed and
used

» Allows changes to be made to the underlying structure without affecting applications

Simplified User Authentication and Password Management

OCI provides application developers with simplified user authentication and password
management.

This is supported in several ways:

* OCIl enables a single OCI application to authenticate and maintain multiple users.

* OCI enables the application to update a user's password, which is particularly helpful if
an expired password message is returned by an authentication attempt.

OCI supports two types of login sessions:

* A simplified login function for sessions by which a single user connects to the database
using a login name and password

* A mechanism by which a single OCI application authenticates and maintains multiple
sessions by separating the login session (the session created when a user logs in to an
Oracle database) from the user sessions (all other sessions created by a user)

Privileged connections, such as SYSDBA, SYSOPER and others, are also supported.

Features to Improve Application Performance and Scalability

ORACLE

OCI provides several feature extensions to improve application performance and scalability.

Application performance has been improved by reducing the number of client to server
round-trips required, and scalability improvements have been made by reducing the amount
of state information that must be retained on the server side. Some of these features include:

e Statement caching to improve performance by caching executable statements that are
used repeatedly

e Client result caching to limit the number of round trips to the database server

« Implicit prefetching of SELECT statement result sets to eliminate the describe round-trip,
reduce round-trips, and reduce memory usage

* Elimination of open and close cursor round-trips
e Support for multithreaded environments
» Session multiplexing over connections

» Consistent support for a variety of configurations, including standard two-tier client/server
configurations, server-to-server transaction coordination, and three-tier transaction
processing (TP)-monitor configurations

* Consistent support for local and global transactions, including support for the XA
interface's TM_JOIN operation

1-11

Chapter 1
Overview of OCI

* Improved scalability by providing the ability to concentrate connections, processes,
and sessions across users on connections and by eliminating the need for
separate sessions to be created for each branch of a global transaction

» Allowing applications to authenticate multiple users and allow transactions to be
started on their behalf

OCI Object Support

OCI provides a comprehensive application programming interface for programmers
seeking to use Oracle Database object capabilities.

These features can be divided into the following major categories:

e Client-Side Object Cache
e Associative and Navigational Interfaces to access and manipulate objects
e OCI Runtime Environment for Objects

e Type Management: Mapping and Manipulation Functions to access information
about object types and control data attributes of Oracle types

e Object Type Translator (OTT) utility, for mapping internal Oracle Database schema
information to client-side language bind variables

Client-Side Object Cache

The object cache is a client-side memory buffer that provides lookup and memory
management support for objects.

The object cache stores and tracks object instances that have been fetched by an OCI
application from the server to the client side. The object cache is created when the
OCI environment is initialized. When multiple applications run against the same server,
each has its own object cache. The cache tracks the objects that are currently in
memory, maintains references to objects, manages automatic object swapping, and
tracks the meta-attributes or type information about objects. The object cache provides
the following features to OCI applications:

* Improved application performance by reducing the number of client/server round-
trips required to fetch and operate on objects

» Enhanced scalability by supporting object swapping from the client-side cache

* Improved concurrency by supporting object-level locking

Associative and Navigational Interfaces

ORACLE

What are the different types of interfaces OCI applications can use to access objects?

Applications using OCI can access objects in an Oracle database through several
types of interfaces:

e Using SQL SELECT, | NSERT, and UPDATE statements

e Using a C-style pointer chasing scheme to access objects in the client-side cache
by traversing the corresponding smart pointers or REFs

OCI provides a set of functions with extensions to support object manipulation using
SQL SELECT, | NSERT, and UPDATE statements. To access Oracle Database objects,

1-12

Chapter 1
Overview of OCI

these SQL statements use a consistent set of steps as if they were accessing relational
tables. OCI provides the following sets of functions required to access objects:

Binding and defining object type instances and references as input and output variables
of SQL statements

Executing SQL statements that contain object type instances and references
Fetching object type instances and references

Describing select-list items of an Oracle object type

OCl also provides a set of functions using a C-style pointer chasing scheme to access
objects after they have been fetched into the client-side cache by traversing the
corresponding smart pointers or REFs. This navigational interface provides functions for:

Instantiating a copy of a referenceable persistent object (that is, of a persistent object
with object ID in the client-side cache) by pinning its smart pointer or REF

Traversing a sequence of objects that are connected to each other by traversing the REFs
that point from one to the other

Dynamically getting and setting values of an object's attributes

OCI Runtime Environment for Objects

OCI provides functions for objects to manage how Oracle Database objects are used on the
client side.

These functions provide for:

Connecting to an Oracle database server to access its object functionality, including
initializing a session, logging on to a database server, and registering a connection

Setting up the client-side object cache and tuning its parameters
Getting errors and warning messages

Controlling transactions that access objects in the database
Associatively accessing objects through SQL

Describing PL/SQL procedures or functions whose parameters or results are Oracle
types

Type Management: Mapping and Manipulation Functions

OCI provides two sets of functions to work with Oracle Database objects.

Type Mapping functions allow applications to map attributes of an Oracle schema
represented in the server as internal Oracle data types to their corresponding host
language types.

Type Manipulation functions allow host language applications to manipulate individual
attributes of an Oracle schema such as setting and getting their values and flushing their
values to the server.

Additionally, the OCl Descri beAny() function provides information about objects stored in the
database.

ORACLE

1-13

Chapter 1
Overview of OCI

Object Type Translator

The Object Type Translator (OTT) utility translates schema information about Oracle
object types into client-side language bindings of host language variables, such as
structures.

The OTT takes as input an i nt ype file that contains metadata information about Oracle
schema objects. It generates an out t ype file and the header and implementation files
that must be included in a C application that runs against the object schema. Both OCI
applications and Pro*C/C++ precompiler applications may include code generated by
the OTT. The OTT is beneficial because it:

* Improves application developer productivity: OTT eliminates the need for you to
code the host language variables that correspond to schema objects.

* Maintains SQL as the data definition language of choice: By providing the ability to
automatically map Oracle schema objects that are created using SQL to host
language variables, OTT facilitates the use of SQL as the data definition language
of choice. This in turn allows Oracle Database to support a consistent model of
data.

» Facilitates schema evolution of object types: OTT regenerates included header
files when the schema is changed, allowing Oracle applications to support schema
evolution.

OTT is typically invoked from the command line by specifying the i nt ype file, the
out t ype file, and the specific database connection. With Oracle Database, OTT can
only generate C structures that can either be used with OCI programs or with the
Pro*C/C++ precompiler programs.

OCI Support for Oracle Streams Advanced Queuing

OCI provides an interface to Oracle Streams Advanced Queuing (Streams AQ)
feature.

Streams AQ provides message queuing as an integrated part of Oracle Database.
Streams AQ provides this functionality by integrating the queuing system with the
database, thereby creating a message-enabled database. By providing an integrated
solution, Streams AQ frees you to devote your efforts to your specific business logic
rather than having to construct a messaging infrastructure.

¢ See Also:

OCI and Streams Advanced Queuing

XA Library Support

ORACLE

OCI supports the Oracle XA library.

The xa. h header file is in the same location as all the other OCI header files. For Linux
or UNIX, the path is $ORACLE_HOMWE/ r dbrs/ publ i c. Users of the dermo_r dbns. nk file on
Linux or UNIX are not affected because this make file includes the $ORACLE_HOVE/
rdbrs/ publ i ¢ directory.

1-14

Chapter 1
About Compatibility and Upgrading

For Windows, the path is ORACLE_BASE\ ORACLE_HOME\oci \ i ncl ude.

¢ See Also:

e Oracle XA Library for more information about Windows and XA applications

e Oracle Database Development Guide for information about developing
applications with Oracle XA

About Compatibility and Upgrading

What issues are there regarding compatibility between different releases of OCI client and
server? What changes are there in OCI library routines? What concerns are there about
upgrading from release 7 to the current release?

The following sections discuss issues concerning compatibility between different releases of
OCI client and server, changes in the OCI library routines, and upgrading an application from
the release 7.x OCI to the current release of OCI:

* Version Compatibility of Statically Linked and Dynamically Linked Applications
» About Upgrading of Existing OCI Release 7 Applications

* Obsolete OCI Routines

* OCI Routines Not Supported

Version Compatibility of Statically Linked and Dynamically Linked
Applications

ORACLE

What are the rules for relinking for a new release?
Here are the rules for relinking for a new release.

» Statically linked OCI applications:

Statically linked OCI applications must be relinked for both major and minor releases,
because the statically linked Oracle Database client-side library code may be
incompatible with the error messages in the upgraded Oracle home. For example, if an
error message was updated with additional parameters then it is no longer compatible
with the statically linked code.

* Dynamically linked OCI applications:

Dynamically linked OCI applications from Oracle Database 10g and later releases need
not be relinked. That is, the Oracle Database client-side dynamic library is upwardly
compatible with the previous version of the library. Oracle Universal Installer creates a
symbolic link for the previous version of the library that resolves to the current version.
Therefore, an application that is dynamically linked with the previous version of the
Oracle Database client-side dynamic library does not need to be relinked to operate with
the current version of the Oracle Database client-side library.

1-15

Chapter 1
About Compatibility and Upgrading

< Note:

If the application is linked with a runtime library search path (such as -

r pat h on Linux), then the application may still run with the version of
Oracle Database client-side library it is linked with. To run with the
current version of Oracle Database client-side library, it must be relinked.

¢ See Also:

— Oracle Database Upgrade Guide for information about compatibility
and upgrading

— The server versions supported currently are found on My Oracle
Support Document 207303.1

About Upgrading of Existing OCI Release 7 Applications

OCI has been significantly improved with many features since OCI release 7.

Applications that use the OCI release 7.3 APl work unchanged against the current
release of Oracle Database. They do need to be linked with the current client library.
However, OCI release 7.3 API has been deprecated and this option will not be
available in future Oracle releases.

OCl release 7 and the OCI calls of this release can be mixed in the same application
and in the same transaction provided they are not mixed within the same statement
execution. As a result, when migrating an existing OCI version 7 application you have
the following two alternatives:

e Upgrade to the current OCI client but do not modify the application: If you choose
to upgrade from an Oracle release 7 OCI client to the current release OCI client,
you need only link the new version of the OCI library and need not recompile your
application. The relinked Oracle Database release 7 OCI applications work
unchanged against a current Oracle Database. This option is deprecated and will
not be available in future Oracle releases.

e Upgrade to the current OCI client and modify the application: To use the
performance and scalability benefits provided by the current OCI, however, you
must modify your existing applications to use the current OCI programming
paradigm, rebuild and relink them with the current OCI library, and run them
against the current release of the Oracle database.

If you want to use any of the object capabilities of the current Oracle Database
release, you must upgrade your client to the current release of OCI.

ORACLE 1-16

Chapter 1
About Compatibility and Upgrading

< Note:

Applications using version 7 API will not be able to connect to Oracle Database 12c
by default. Such applications willing to connect to Oracle Database 12¢ must set
sqgl net. al | owed_| ogon_version to 8.

In Oracle Database 12c¢ Release 2 (12.2), identifier length supported by Oracle
Database has been increased from 30 bytes to 128 bytes. With this database
change, OCI applications using deprecated V7 API odessp() may need to be
changed. In odessp() for the argument ar gnam an application needs to pass the
two dimensional array, which can accommodate identifiers of length 128 bytes,
which was previously 30 bytes.

Applications using UPI API upi dpr () may also need to be changed with long
identifiers in Oracle Database 12¢ Release 2 (12.2). In upi dpr () for the argument
argunent _name, an application needs to pass the two dimensional array, which can
accommodate identifiers of length 128 bytes, which was previously 30 bytes.

¢ See Also:

Programmer's Guide to the Oracle7 Server Call Interface in Oracle 7
Documentation.

Obsolete OCI Routines

Release 8.0 of the OCI introduced an entirely new set of functions that were not available in
release 7.3.

Oracle strongly recommends that new applications use the new calls to improve performance
and provide increased functionality. Future releases of Oracle will not be supporting the
release 7.3 API.

Table 1-1 lists the 7.x OCI calls with their later equivalents. For more information about the
OCIl calls, see the function descriptions in this guide. For more information about the 7.x calls,
see Programmer's Guide to the Oracle Call Interface, Release 7.3.

Note:

In many cases the new or current OCI routines do not map directly onto the 7.x
routines, so it almost may not be possible to simply replace one function call and
parameter list with another. Additional program logic may be required before or after
the new or current call is made. See the remaining chapters, in particular OCI
Programming Basics of this guide for more information.

ORACLE 1-17

ORACLE

Chapter 1
About Compatibility and Upgrading

Table 1-1 Obsolescent OCI Functions
'

7.x OCI Routine

Equivalent or Similar Later OCI Routine

obi ndps(), obndra(),
obndrn(), obndrv()

obreak()
ocan()

ocl ose()

ocof (), ocon()

ocomn()
odefin(), odefinps()

odescr ()

odessp()
)

oer his

oexec(), oexn()

(
(
),
oexf et ()

of en(), of et ch()

of I ng()
oget pi ()
ol og()
ol ogof (

)
onbclr(), onbset()
onbt st ()

oopen()
oopt ()
opar se()
opinit()
orol ()
oset pi ()
sqgl 1d2()
sql | da()
odsc()
oermsg()
ol on()
orlon()
oname()

OCl Bi ndByNanme() or CCl Bi ndByNane2(), OCl Bi ndByPos() or
OCl Bi ndByPos2() (Note: additional bind calls may be necessary
for some data types)

CCl Break()

none

Note: cursors are not used in release 8.x or later

OCl St nt Execut e() with OCI _COMM T_ON_SUCCESS mode
OCl TransCommi t ()

CCl Def i neByPos() or OCl Def i neByPos2() (Note: additional
define calls may be necessary for some data types)

Note: schema objects are described with OCIDescribeAny(). A
describe, as used in release 7.x, most often be done by calling
OCIAttrGet() on the statement handle after SQL statement
execution.

CCl Descri beAny()
OCl ErrorGet ()
OCl St nt Execut e()

OCl St nt Execut e(), OCl St nt Fet ch2() (Note: result set rows
can be implicitly prefetched)

OCl St nt Fet ch2()

none

OCl St nt Get Pi ecel nfo()
OCl Logon() or OCl Logon2()
CCl Logof f ()

Note: nonblocking mode can be set or checked by calling
OCl AttrSet() orOCl AttrGet () on the server context handle
or service context handle

Note: cursors are not used in release 8.x or later
none

OCl St nt Prepar e2() ; however, it is all local
OCl EnvCreat e()

CCl TransRol | back()

OCl St nt Set Pi ecel nfo()

SQSveCi xGet or SQLEnvCet

SQSveCt xGet or SQLEnvGet

Note: see odescr() preceding

OCl ErrorGet ()

CCl Logon()

OCl Logon()

Note: see odescr () preceding

1-18

Chapter 1
About Compatibility and Upgrading

Table 1-1 (Cont.) Obsolescent OCI Functions
|

7.x OCI Routine Equivalent or Similar Later OCI Routine
osql 3() Note: see opar se() preceding
" Note:

Applications using si ze_t to define host area (hda) that is passed to the OCI 7
calls, may crash on some platforms due to misaligned data. Hda_Def should be
used instead of si ze_t in that case. If the application cannot be modified, the
compiler and linker flag m sal i gn can be used on a SPARC platform. Refer to the
demos and the following documentation for more information: Sun Studio 12: C++
User’s Guide A.2.53 —misalign.

¢ See Also:

* OCI Programming Basics for information about what additional program logic
may be required before or after the new or current call is made.

OCI Routines Not Supported

Some OCI routines that were available in previous versions of OCI are not supported in the
current release.

They are listed in Table 1-2.

Table 1-2 OCI Functions Not Supported
]

OCI Routine Equivalent or Similar Later OCI Routine

obi nd() OCl Bi ndByNane(), OCl Bi ndByPos() (Note: additional bind
calls may be necessary for some data types)

obi ndn() CCl Bi ndByNane(), OCl Bi ndByPos() (Note: additional bind
calls may be necessary for some data types)

odfinn() CCl Def i neByPos() (Note: additional define calls may be
necessary for some data types)

odsrbn() Note: see odescr () in Table 1-1

ol ogon() OCl Logon()

osql () Note: see opar se() Table 1-1

ORACLE 1-19

OCI Instant Client and Instant Client Light

Describes OCI Instant Client and Instant Client Light
This chapter contains the following topics:

e About OCI Instant Client
e About Instant Client Light (English)

About OCI Instant Client

The Instant Client feature simplifies the deployment of customer applications based on OCI,
OCCI, ODBC, and JDBC OCI by eliminating the need for an Oracle home on the client
machines.

The storage space requirement of an OCI application running in Instant Client mode is
significantly reduced compared to the same application running in a full client-side
installation. The Instant Client shared libraries occupy only about one-fourth the disk space of
a full client-side installation. Finally, the Instant Client is easy to install.

Why use Instant Client?

e Installation involves copying a small number of files or installing a package, for example
the Linux RPM packages.

e The Oracle Database client-side number of required files and the total disk storage are
significantly reduced.

e There is no loss of functionality or performance for applications deployed using Instant
Client.

e ltis simple for independent software vendors to package applications.

A README file is included with the Instant Client installation. It describes the version, date
and time, and the operating system the Instant Client was generated on.

The following tables shows the Oracle Database client-side files required to deploy an OCI
application:

Table 2-1 OCI Instant Client Shared Libraries for Linux and UNIX
|

Linux and UNIX Description for Linux and UNIX
libclntsh.so.12.1 Client Code Library
l'ibclntshcore.so.12.1

l'i boci ei.sol OCI Instant Client Data Shared Library
[ibnnzl2. so Security Library

libons. so ONS library

1 The libraries libclntsh.s0.12.1, libcintshcore.s0.12.1, and libociei.so must reside in the same directory in order to
use Instant Client.

ORACLE 2-1

Chapter 2
About OClI Instant Client

Table 2-2 OCI Instant Client Shared Libraries for Microsoft Windows
]

Microsoft Windows Description for Microsoft Windows

oci.dll Forwarding functions that applications link with
oraoci ei 12. dl | Data and code

orannzshb12. dl | Security Library

oraons. dl | ONS library used by OCI internally

oci . sym Symbol tables

oraoci ei 12. sym
orannzsbbl2. sym

On Microsoft Windows, a . symfile is provided for each dynamic-link library (DLL).
When the . symfile is present in the same location as the DLL, a stack trace with
function names is generated when a failure occurs in OCI on Microsoft Windows.

See Also:
Fault Diagnosability in OCI
OCI Instant Client Light Shared Libraries Linux and UNIX Table 2-3
OCI Instant Client Light Shared Libraries for Microsoft Windows Table 2-4

Oracle Database 12c Release 2 (12.2) library names are used in the table.
This section includes the following topics:

* Installing the OCI Instant Client or Installing the Linux RPM Packages
* When to Use Instant Client

* About Patching Instant Client Shared Libraries on Linux or UNIX

* Regeneration of Data Shared Library and Zip and RPM Files

» Database Connection Strings for OCI Instant Client

* Environment Variables for OCI Instant Client

e SDK for Instant Client

Installing the OCI Instant Client or Installing the Linux RPM Packages

Oracle Instant Client can be installed in two ways.

The Instant Client libraries can be installed by either choosing the Instant Client option
from Oracle Universal Installer or by downloading and installing the Instant Client
libraries from the OCI page on the Oracle Technology Network website:

http://ww. oracl e. com t echnet wor k/ dat abase/ f eat ures/instant-client/

ORACLE 2-2

http://www.oracle.com/technetwork/database/features/instant-client/

Chapter 2
About OCI Instant Client

To Download and Install the Instant Client Libraries from the Oracle Technology
Network Website or to Install the Instant Client from the Oracle Universal Installer

The following steps are for the Linux, Unix, and Windows environments.

1. From the Oracle Technology Network, download and install the Instant Client shared
libraries to an empty directory, such asinstantclient 12 2, for Oracle Database 12¢
Release 2 (12.2). Choose the Basic package.

2. Or, for Oracle Universal Installer, invoke the Oracle Universal Installer and select the
Instant Client option and install the Instant Client shared libraries to an empty directory,
such asinstantclient_12 2, for Oracle Database 12c Release 2 (12.2).

3. Set the operating system shared library path environment variable to the directory from
Step 1. For example, on Linux or UNIX, set LD LI BRARY PATHtoinstantclient 12 2.
On Windows, set PATHto the i nstantcl i ent _12_2 directory.

4. If necessary, set the NLS_LANG environment variable to specify the language and territory
used by the client application and database connections opened by the application, and
the client's character set, which is the character set for data entered or displayed by a
client program. NLS_LANGis set as an environment variable on UNIX platforms and is set
in the registry on Windows platforms. See Oracle Database Globalization Support Guide
for more information on setting the NLS_LANG environment variable.

5. (Optional). Set the TNS_ADM N environment variable if the sql net . or a, t nsnanes. or a, or
oraaccess. xm files are desired.

After completing the preceding steps you are ready to run the OCI application.

The OCI application uses the Instant Client when the OCI shared libraries are accessible
through the operating system Library Path variable. In this way, there is no dependency on
the Oracle home and none of the other code and data files provided in the Oracle home are
needed by OCI (except for the t nsnanes. or a file described later).

If you did a complete client installation (by choosing the Admi n option in Oracle Universal
Installer), the Instant Client shared libraries are also installed. The locations of the Instant
Client shared libraries in a full client installation are:

On Linux or UNIX:

I'i bociei. so library is in $ORACLE_HOME/ i nst ant ¢l i ent
libclntsh.so.12.1,1ibclntshcore.so.12.1, and libnnz12. so are in $ORACLE HOMVE/ I i b
On Windows:

oraoci ei 12. dl | library is in ORACLE_HOME\ i nst ant cl i ent

oci.dll,ociwd2.dll,and orannzsbbl2. dl| are in ORACLE_HOVE\ bi n

To enable running the OCI application using Instant Client, copy the preceding libraries to a
different directory and set the operating system shared library path to locate this directory.

ORACLE 2-3

ORACLE

Chapter 2
About OCI Instant Client

< Note:

All the libraries must be copied from the same Oracle home and must be
placed in the same directory. Co-location of symlinks to Instant Client
libraries is not a substitute for physical co-location of the libraries.

There should be only one set of Oracle libraries on the operating system
Library Path variable. That is, if you have multiple directories containing
Instant Client libraries, then only one such directory should be on the
operating system Library Path.

Similarly, if an Oracle home-based installation is performed on the same
system, then you should not have ORACLE HOMVE/ | i b and the Instant Client
directory on the operating system Library Path simultaneously regardless of
the order in which they appear on the Library Path. That is, either the
ORACLE_HOWE/ | i b directory (for non-Instant Client operation) or Instant Client
directory (for Instant Client operation) should be on the operating system
Library Path variable, but not both.

To enable other capabilities such as OCCI and JDBC OCI, you must copy a few
additional files. To enable OCCI, you must install the OCCI Library (I i bocci . so0. 12. 1
on Linux or UNIX and or aocci 12. dl | on Windows) in the Instant Client directory. For
the JDBC OCI driver, in addition to the three OCI shared libraries, you must also
download OCI JDBC Library (for example | i boci j dbc12. so on Linux or UNIX and
oci jdbcl2.dl'l on Windows). Place all libraries in the Instant Client directory.

< Note:

On hybrid platforms, such as Sparc64, to operate the JDBC OCI driver in the
Instant Client mode, copy the | i boci ei . so library from the ORACLE_HOVE/

i nstant cl i ent 32 directory to the Instant Client directory. Copy all other
Sparc64 libraries needed for the JIDBC OCI Instant Client from the
ORACLE_HOWE/ | i b32 directory to the Instant Client directory.

2-4

Chapter 2
About OCI Instant Client

< Note:

In addition, on Linux and UNIX systems, instead of copying individual files, you can
generate Instant Client zip and RPM files for OCI and OCCI, JDBC, and SQL*Plus
as described in "Regeneration of Data Shared Library and Zip and RPM Files".
Then, you can copy the zip and RPM files to the target system and unzip them as
previously described. The regenerated Instant Client binaries contain only the
Instant Client files installed in the Oracle Client Administrator Home from which the
regeneration is done. To install the rpm files, follow these instructions:

1. Become root by running su and entering the super-user password.
2. Change to the directory in which you want to install.
3. Uninstall any earlier installations.
rpm -e package_name
4. Install each package.

rpm-ivh package- name. rpm

Or, to upgrade each package.
rpm - Wh package- nanme. rpm
5. Delete the . r pmfiles if you want to save disk space.

6. Exit the root shell. No need to reboot.

When to Use Instant Client

Instant Client is a deployment choice and can be used for running production applications.

In general, all OCI functionality is available to an application being run using the Instant
Client, except that the Instant Client is for client-side operation only. Therefore, server-side
external procedures cannot use Instant Client libraries.

For development you can also use the Instant Client SDK.

See Also:

e SDK for Instant Client
e Fault Diagnosability in OCI

About Patching Instant Client Shared Libraries on Linux or UNIX

ORACLE

Because Instant Client is a deployment feature, the number and size of files (client footprint)
required to run an OCI application has been reduced.

Hence, all files needed to patch Instant Client shared libraries are not available in an Instant
Client deployment. A complete client installation based on Oracle home is needed for
patching. Use the opat ch utility for patching.

2-5

Chapter 2
About OCI Instant Client

After you apply the patch in an Oracle home environment, copy the files listed in About
OCl Instant Client to the instant client directory, as described in Installing the OCI
Instant Client or Installing the Linux RPM Packages.

Instead of copying individual files, you can generate Instant Client zip and RPM files
for OCI and OCCI, JDBC, and SQL*Plus as described in Regeneration of Data Shared
Library and Zip and RPM Files. Then, you can copy the zip and RPM files to the target
system and unzip them as described in Installing the OCI Instant Client or Installing
the Linux RPM Packages.

The opat ch utility stores the patching information of the ORACLE_HOME installation in
I'i bel nt sh. so. This information can be retrieved by the following command:

genezi -v

If the Instant Client deployment system does not have the genezi utility, you can copy
it from the ORACLE_HOWE/ bi n directory.

" Note:

The opat ch utility is not available on Windows.

Regeneration of Data Shared Library and Zip and RPM Files

The process to regenerate the data shared library and the zip and RPM files changed.

The process to regenerate the data shared library and the zip and RPM files changed
in Oracle Database 12c Release 1 (12.1). Separate make file targets are used to
create the data shared libraries, zip, and RPM files either individually or all at once. In
previous releases, one target, i | i boci ei , was provided to build the data shared
libraries, zip, and RPM files. Now i | i boci ei builds only the zip and RPM files.
Regeneration of data shared libraries requires both a compiler and linker, which may
not be available on all installations. The sections that follow show the make file target
used to regenerate data shared libraries, zip, and RPM files.

< Note:

The regenerated Instant Client binaries contain only the Instant Client files
installed in the Oracle Client Administrator Home from which the
regeneration is done. Therefore, error messages, character set encodings,
and time zone files that are present in the regeneration environment are the
only ones that are packaged in the data shared libraries. Error messages,
character set encodings, and time zone files depend on which national
languages were selected for the installation of the Oracle Client
Administrator Home.

Regeneration of the data shared library and the zip and RPM files is not
available on Windows platforms.

This section includes the following topics:

ORACLE 2-6

Chapter 2
About OCI Instant Client

* Regenerating Data Shared Library libociei.so

* Regenerating Data Shared Library libociicus.so

* Regenerating Data Shared Libraries libociei.so and libociicus.so in One Step
* Regenerating Zip and RPM Files for the Basic Package

* Regenerating Zip and RPM Files for the Basic Light Package

* Regenerating Zip and RPM Files for the JDBC Package

* Regenerating Zip and RPM Files for the ODBC Package

* Regenerating Zip and RPM Files for the SQL*Plus Package

* Regenerating Zip and RPM Files for the Tools Package

* Regenerating Zip and RPM Files for All Packages

Regenerating Data Shared Library libociei.so

The OCI Instant Client Data Shared Library (I i boci ei . so) can be regenerated by using the
following commands in an Administrator Install of ORACLE_HOME:

cd $ORACLE_HOWE/ rdbms/ i b
make -f ins_rdbns. nk igenlibociei

The new regenerated | i boci ei . so is placed in the ORACLE_HOVE/ i nst ant cl i ent directory.
The original existing | i boci ei . so located in this same directory is renamed to | i boci ei . so0.

Regenerating Data Shared Library libociicus.so

To regenerate Instant Client Light data shared library (1 i boci i cus. so), use the following
commands:

mkdir -p $ORACLE_HOMWE rdbns/install/instantclient/light
cd $ORACLE_HOWE/ rdbms/ i b
make -f ins_rdbns. nk igenlibociicus

The newly regenerated | i boci i cus. so is placed in the ORACLE_HOWE/i nst ant cl i ent/l i ght
directory. The original existing | i boci i cus. so located in this same directory is renamed to
I'i bociicus. so0.

Regenerating Data Shared Libraries libociei.so and libociicus.so in One Step

ORACLE

To regenerate the data shared libraries | i boci ei . so and libociicus.so, use the following
commands:

mkdir -p $ORACLE_HOMWE rdbns/install/instantclient/light
cd $ORACLE_HOWE/ rdbms/ i b
make -f ins_rdbns. nk igenliboci

The newly regenerated | i boci ei . so is placed in the ORACLE_HOWE/i nst ant cl i ent directory.
The original existing | i boci ei . so located in this same directory is renamed to | i boci ei . s00.

The newly regenerated | i boci i cus. so is placed in the ORACLE_HOWE/i nst ant cl i ent/l i ght
directory. The original existing | i boci i cus. so located in this same directory is renamed to
I'i bociicus. so0.

2-7

Chapter 2
About OCI Instant Client

Regenerating Zip and RPM Files for the Basic Package

To regenerate the zip and RPM files for the basic package, use the following
commands:

cd $ORACLE HOVE/ rdbns/lib
make -f ins_rdbns.nk ic_basic_zip

Regenerating Zip and RPM Files for the Basic Light Package

To regenerate the zip and RPM files for the basic light package, use the following
commands:

cd $ORACLE_HOWE/ rdbms/ i b
make -f ins_rdbnms.nk ic_basiclite_zip

Regenerating Zip and RPM Files for the JDBC Package

To regenerate the zip and RPM files for the JDBC package, use the following
commands:

cd $ORACLE_HOMVE/ rdbns/lib
make -f ins_rdbns.nk ic_jdbc_zip

Regenerating Zip and RPM Files for the ODBC Package

To regenerate the zip and RPM files for the ODBC package, use the following
commands:

cd $ORACLE HOVE/ rdbns/lib
make -f ins_rdbns.nk ic_odbc_zip

Regenerating Zip and RPM Files for the SQL*Plus Package

To regenerate the zip and RPM files for the SQL*Plus package, use the following
commands:

cd $ORACLE_HOMVE/ rdbns/lib
make -f ins_rdbns. nk ic_sqlplus_zip

Regenerating Zip and RPM Files for the Tools Package

To regenerate the zip and RPM files for the tools package, use the following
commands:

cd $ORACLE_HOMVE/ rdbns/lib
make -f ins_rdbns.nk ic_tools_zip

Regenerating Zip and RPM Files for All Packages

ORACLE

To regenerate the zip and RPM files for all packages, use the following commands:

cd $ORACLE HOVE/ rdbns/lib
make -f ins_rdbns.nk ilibociei

The new zip and RPM files are generated under the following directory:

2-8

Chapter 2
About OCI Instant Client

$ORACLE_HOME/ rdbns/ i nstal | /instantclient

Regeneration of the data shared library and the zip and RPM files is not available on
Windows platforms.

Database Connection Strings for OCI Instant Client

ORACLE

OCI Instant Client can make remote database connections in all the ways that ordinary SQL
clients can.

However, because Instant Client does not have the Oracle home environment and directory
structure, some database naming methods require additional configuration steps.

All Oracle Net naming methods that do not require use of ORACLE_BASE HOME, or
ORACLE_HOME, or TNS_ADM N (to locate configuration files such as t nsnanes. or a, sqgl net . or a,
or oraaccess. xm) work in the Instant Client mode. In particular, the connect i dentifier in
the OCl Server Attach() call can be specified in the following formats:

A SQL Connect URL string of the form:
user name/ passwor d@ost[: port][/service nane][:server][/instance_nane]
* As alocal naming parameters t nsnanes. or a configuration file entry of the form:

net _service_nane=
(DESCRI PTI ON=
(ADDRESS=(pr ot ocol _address_i nformation))
(CONNECT_DATA=
(SERVI CE_NAME=servi ce_nane)))

* As an Oracle Net connect descriptor of the form:

" (DESCRI PTI ON=(ADDRESS=(PROTOCCL=pr ot ocol - nane) (HOST=host -nanme) (PORT=port -
nunber))
(CONNECT_DATA=(SERVI CE_NAME=ser vi ce- nane))) "

* A Connection Name that is resolved through Directory Naming where the site is
configured for LDAP server discovery.

For naming methods such as t nsnanes. or a and directory naming to work, the TNS_ADM N
environment variable must be set.

¢ See Also:

Oracle Database Net Services Administrator's Guide chapter on "Configuring
Naming Methods" for more about connect descriptors

If the TNS_ADM N environment variable is not set, and t nsnames. or a entries such as i nst 1,
and so on, are used, then the ORACLE_HOVME variable must be set, and the configuration files
are expected to be in the $ORACLE_HOWE/ net wor k/ adni n directory.

Note that the ORACLE_HOME variable in this case is only used for locating Oracle Net
configuration files, and no other component of Client Code Library (OCI, NLS, and so on)
uses the value of ORACLE_HOME. So it is preferred and easier to set the TNS_ADM N
environment variable to establish the location of the t nsnanes. or a file.

2-9

Chapter 2
About OClI Instant Client

If a NULL string, ", is used as the connection string in the OCl Server Attach() call, then
the TWO _TASK environment variable can be set to the connect i dentifier.Ona
Windows operating system, the LOCAL environment variable is used instead of

TWO TASK.

Similarly, for OCI command-line applications such as SQL*Plus, the TWO TASK (or
LCOCAL on Windows) environment variable can be set to the connect_identifier. Its value
can be anything that would have gone to the right of the ‘@' on a typical connect
string.

This section includes the following topic: Examples of Instant Client Connect
Identifiers.

Examples of Instant Client Connect Identifiers

ORACLE

If you are using SQL*Plus in Instant Client mode, then you can specify the connect
identifier in the following ways:

If the | i st ener. ora file on the Oracle database contains the following:

LI STENER = (ADDRESS LI ST=
(ADDRESS=(PROTOCOL=t cp) (HOST=ser ver 6) (PORT=1573))

)

SID LI ST_LI STENER = (SID_LIST=
(Sl D_DESC=(SI D_NAME=r dbns3) (GLOBAL_DBNAME=r dbns3. server 6. us. al cheny. conm
(ORACLE_HOME=/ horre/ dba/ r dbrs3/ or acl e))

)

The SQL*Plus connect identifier is:

"server6: 1573/ rdbnms3. server 6. us. al cheny. cont'

The connect identifier can also be specified as:

" (DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cp) (HOST=ser ver 6) (PORT=1573)) (CONNECT_DATA=
(SERVI CE_NAME=r dbns3. server 6. us. al cheny.com))"

Alternatively, you can set the TWD _TASK environment variable to any of the previous
connect identifiers and connect without specifying the connect identifier. For example:

export TWO TASK=//server6: 1573/ rdbns3. server 6. us. al cheny. com

You can also specify the TWO_TASK environment variable as:

export TWO TASK=(DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cp) (HOST=ser ver 6) (PORT=1573))
(CONNECT_DATA=(SERVI CE_NAME=r dbns3. server 6. us. al cheny. con)))

Then you can invoke SQL*Plus with an empty connect identifier (you are prompted for
the password):

sql pl us user

The connect descriptor can also be stored in the t nsnanes. or a file. For example, if the
t nsnames. or a file contains the following connect descriptor:

conn_str = (DESCRI PTI ON=(ADDRESS=(PROTCCCL=t cp) (HOST=ser ver 6) (PORT=1573))
(CONNECT_DATA=
(SERVI CE_NAME=r dbns3. server 6. us. al cheny. con)))

2-10

Chapter 2
About OCI Instant Client

The t nsnanes. or a file is located in the / hone/ webuser /i nstant cl i ent directory, so you can
set the variable TNS_ADM N (or LOCAL on Windows) as:

export TNS_ADM N=/ hone/ webuser/instantclient

Then you can use the connect identifier conn_st r for invoking SQL*Plus, or for your OCI
connection.

Note:

TNS_ADM N specifies the directory where the t nsnanes. or a file is located and
TNS_ADM Niis not the full path of the t nsnanes. or a file.

If the preceding t nsnames. or a file is located in an installation based Oracle home, in the /
net wor k/ server 6/ horre/ dba/ or acl e/ net wor k/ admi n directory, then the ORACLE_HOVE
environment variable can be set as follows and SQL*Plus can be invoked as previously, with
the identifier conn_str:

export ORACLE_HOME=/ net wor k/ ser ver 6/ hone/ dba/ or acl e

Finally, if t nsnanes. or a can be located by TNS_ADM N or ORACLE_HOME, then the TWO TASK
environment variable can be set as follows enabling you to invoke SQL*Plus without a
connect identifier:

export TWO TASK=conn_str

Environment Variables for OCI Instant Client

ORACLE

The ORACLE_HOME environment variable no longer determines the location of NLS, CORE, and
error message files. An OCl-only application should not require ORACLE_HOVE to be set.
However, if it is set, it does not affect OCI. OCI always obtains its data from the Data Shared
Library. If the Data Shared Library is not available, only then is ORACLE_HOVE used and a full
client installation is assumed. Though ORACLE_HOME is not required to be set, if it is set, then it
must be set to a valid operating system path name that identifies a directory.

If Dynamic User callback libraries are to be loaded, then as this guide specifies, the callback
package must reside in ORACLE_HOWE/ | i b (ORACLE_HOME\ bi n on Windows). Set ORACLE_HOVE
in this case.

Environment variables ORA_NLS10 and ORA_NLS_PROFI LE33 are ignored in the Instant Client
mode.

Beginning with Oracle Database 12c Release 2 (12.2), when using Instant Client libraries, the
Instant Client can use the ORA_TZFI LE environment variable to read the time zone file from
the file system when this environment variable is set. Otherwise, if the ORA_TZFI LE variable is
not set, then the larger, default, ti nezl rg_n. dat file from the Data Shared Library is used. If
the smaller ti nezone_n. dat file is to be used from the Data Shared Library, then set the
ORA_TZFI LE environment variable to the name of the file without any absolute or relative path
names. The file must be copied to subdirectory or acor e/ zonei nf o for (UNIX/LINUX) or
oracor e\ zonei nf o for (Microsoft Windows) in the instant client directory. You can use the
genezi utility with the - v option to verify that the time zone file and location is valid or run
SQL*Plus.

On Linux or UNIX:

2-11

Chapter 2
About OCI Instant Client

export ORA TZFI LE=ti mezone_n. dat

On Windows:

set ORA _TZFI LE=ti mezone_n. dat

In these examples, n is the time zone data file version number.

Be sure to create subdirectory or acor e/ zonei nf o for (UNIX/LINUX) or subdirectory

oracor e\ zonei nf o for (Microsoft Windows) where oracoei or oraociicus DLL's are
located (typically in the i nstantclient 12 2 directory) and copy the ti mezone_n. dat
file to this directory.

To determine the versions of small and large time zone files that are packaged in the
Instant Client Data Shared Library, enter the following command to run the genezi
utility:

genezi -v

If OCI is not operating in the Instant Client mode (because the Data Shared Library is
not available), then ORA TZFI LE variable, if set, names a complete path name as it
does in previous Oracle Database releases.

If TNSNAMES entries are used, then, as mentioned earlier, TNS_ADM N directory must
contain the TNSNAMES configuration files. If TNS_ADM Nis not set, then the ORACLE_HOVE/
net wor k/ adm n directory must contain Oracle Net Services configuration files.

SDK for Instant Client

The software development kit (SDK) is a set of development tools that allows the
creation of applications can be downloaded from the Instant Client link URL on the
Oracle Technology Network website:

http://ww. oracl e. com' t echnet wor k/ dat abase/ f eat ures/instant-client/

* The Instant Client SDK package has both C and C++ header files and a makefile
for developing OCI and OCCI applications while in an Instant Client environment.
Developed applications can be deployed in any client environment.

* The SDK contains C and C++ demonstration programs.

e On Windows, libraries required to link the OCI or OCCI applications are also
included. Make. bat is provided to build the demos.

e On UNIX or Linux, the makefile deno. nk is provided to build the demos. The
instantclient_12 2 directory must be on the LD LI BRARY_PATH before linking the
application. The OCI and OCCI programs require the presence of | i bcl nt sh. so
and | i bocci . so symbolic links in the i nstant cl i ent _12_2 directory. The deno. nk
make file creates these before the link step. These symbolic links can also be
created in a shell:

cd instantclient_12_2
In -s libclntsh.so.12.2 |ibclntsh.so
In -s libocci.so.12.2 |ibocci.so

* The SDK also contains the Object Type Translator (OTT) utility and its classes to
generate the application header files.

ORACLE 2-12

http://www.oracle.com/technetwork/database/features/instant-client/

Chapter 2
About Instant Client Light (English)

About Instant Client Light (English)

What about Instant Client Light (English) version.

The Instant Client Light (English) version of Instant Client further reduces the disk space
requirements of the client installation. The size of the library has been reduced by removing
error message files for languages other than English and leaving only a few supported
character set definitions out of around 250.

This Instant Client Light version is geared toward applications that use either US7ASCII,
WES8DEC, WE8IS08859P1, WEBMSWIN1252, or a Unicode character set. There is no
restriction on the LANGUAGE and the TERRI TORY fields of the NLS_LANG setting, so the Instant
Client Light operates with any language and territory settings. Because only English error
messages are provided with the Instant Client Light, error messages generated on the client
side, such as Net connection errors, are always reported in English, even if NLS_LANGis set to
a language other than AMERI CAN. Error messages generated by the database side, such as
syntax errors in SQL statements, are in the selected language provided the appropriate
translated message files are installed in the Oracle home of the database instance.

This section includes the following topics:

e Globalization Settings

e Operation of Instant Client Light

e Installing the OCI Instant Client or Installing the Linux RPM Packages

Globalization Settings

ORACLE

What character sets are supported by Instant Client Light.

Instant Client Light supports the following client character sets:

Single-byte
e US7ASCII
e WESDEC

« WEBSMSWIN1252
« WESISO8859P1

Unicode

e UTF8

e AL16UTF16
e AL32UTF8

Instant Client Light can connect to databases having one of these database character sets:

 US7ASCII

» WESDEC

* WE8SMSWIN1252
* WEBSISO8859P1
« WESEBCDIC37C

2-13

Chapter 2
About Instant Client Light (English)

- WESEBCDIC1047
« UTF8
 AL32UTF8

Instant Client Light returns an error if a character set other than those in the preceding
lists is used as the client or database character set.

Instant Client Light can also operate with the OCI Environment handles created in the
OCl _UTF16 mode.

¢ See Also:

Oracle Database Globalization Support Guide for more information about
National Language Support (NLS) settings

Operation of Instant Client Light

ORACLE

When do OCI applications operate in the Instant Client Light mode.

OCI applications, by default, look for the OCI Data Shared Library, | i boci ei . so (or
Oraoci ei 12. dlI I on Windows) on the LD_LI BRARY_PATH (PATH on Windows) to
determine if the application should operate in the Instant Client mode. If this library is
not found, then OCI tries to load the Instant Client Light Data Shared Library (see
Table 2-3and Table 2-4), | i boci i cus. so (or Oraoci i cusl12.dl | on Windows). If the
Instant Client Light library is found, then the application operates in the Instant Client
Light mode. Otherwise, a full installation based on Oracle home is assumed.

Table 2-3 OCI Instant Client Light Shared Libraries Linux and UNIX

Linux and UNIX Description for Linux and UNIX
[ibclntsh.so. 12.1 Client Code Library
l'ibclntshcore.so.12.1

libociicus.so OCI Instant Client Light Data Shared Library
l'ibnnzl2. so Security Library

Table 2-4 OCI Instant Client Light Shared Libraries for Microsoft Windows

Microsoft Windows Description for Microsoft Windows

oci.dll Forwarding functions that applications link with
oraociicusl2.dl| Data and code

orannzsbbl12. dl | Security Library

oCi . sym Symbol tables

oraociicusl2. sym
orannzsbbh12. sym

2-14

Chapter 2
About Instant Client Light (English)

¢ See Also:
OCI Instant Client Shared Libraries for Linux and UNIX Table 2-1
OCl Instant Client Shared Libraries for Microsoft Windows Table 2-2

Installing Instant Client Light

Instant Client Light can be installed in one of these ways:

e Installed from Oracle Technology Network (OTN)

The following URL is the Instant Client page on the Oracle Technology Network website:

http:/iwww.oracle.com/technetwork/database/features/instant-client/

For Instant Client Light, download and unzip the basi cl i t e. zi p package in to an empty
instantclient_12_2 directory.

¢ Installed from an Instant Client Administrator installation

From the ORACLE_HOWE/ i nstant cl i ent/|i ght subdirectory, copy | i boci i cus. so (or
oraociicusl2.dll on Windows). The Instant Client directory on the LD LI BRARY_PATH
(PATH on Windows) should contain the Instant Client Light Data Shared Library,

I'i bociicus.so (oraociicusl2.dl | on Windows), instead of the larger OCI Instant Client
Data Shared Library, | i boci ei . so (oraoci ei 12. dl' | on Windows).

* Installed from an Oracle Universal Installer installation

When you select the Instant Client option from the Oracle Universal Installer,

|'i bociei.so (ororaociei1l2.dl | on Windows) is installed in the base directory of the
installation, which means these files are placed on the LD LI BRARY_PATH (PATH on
Windows).

The Instant Light Client Data Shared Library, | i boci i cus. so (or oraoci i cus12.dll on
Windows), is installed in the | i ght subdirectory of the base directory and not enabled by
default. Therefore, to operate in the Instant Client Light mode, the OCI Data Shared
Library, | i boci ei . so (or Oraoci ei 12. dl | on Windows) must be deleted or renamed and
the Instant Client Light library must be copied from the | i ght subdirectory to the base
directory of the installation.

For example, if Oracle Universal Installer has installed the Instant Client in
my_orai c_12_2 directory on the LD _LI BRARY_PATH (PATH on Windows), then use the
following command sequence to operate in the Instant Client Light mode:

cd ny_oraic_12_2
rmlibociei.so
mv |ight/libociicus.so .

¢ Note:

To ensure that no incompatible binaries exist in the installation, always copy
and install the Instant Client files in to an empty directory.

ORACLE 2-15

http://www.oracle.com/technetwork/database/features/instant-client/

OCI Programming Basics

This chapter introduces concepts and procedures involved in programming with OCI.

After reading this chapter, you should have most of the tools necessary to understand and
create a basic OCI application.

This chapter includes the following major sections:

* Header File and Makefile Locations

e Overview of OCI Program Programming
* OCI] Data Structures

* OCI Programming Steps

* Error Handling in OCI

e Additional Coding Guidelines

e About Using PL/SQL in an OCI Program
* OCI Globalization Support

New users should pay particular attention to the information presented in this chapter,
because it forms the basis for the rest of the material presented in this guide. The information
in this chapter is supplemented by information in later chapters.

See Also:

e Oracle Database Globalization Support Guide for a discussion of the OCI
functions that apply to a multilingual environment

e Oracle Database Data Cartridge Developer's Guide for a discussion of the OCI
functions that apply to cartridge services

Header File and Makefile Locations

ORACLE

The OCI and OCCI header files that are required for OCI and OCCI client application
development on Linux and UNIX operating systems reside in the SORACLE_HOVE/ r dbns/
publ i ¢ directory.

These files are available both with the Oracle Database Server installation, and with the
Oracle Database Client Administration and Custom installations.

All demonstration programs and their related header files continue to reside in

the $ORACLE_HOME/ r dbns/ deno directory. These demonstration files are installable only from
the Examples media. See OCI Demonstration Programs for the names of these programs
and their purposes.

3-1

Chapter 3
Overview of OCI Program Programming

Several makefiles are provided in the deno directory. Each makefile contains
comments with instructions on its use in building OCI executables. Oracle
recommends that you use these demonstration makefiles whenever possible to avoid
errors in compilation and linking.

The deno_r dbns. nk file in the deno directory and is an example makefile. See the
comments on how to build the demonstration OCI programs. The deno_r dbns. nk file
includes the $ORACLE_HOVE/ r dbns/ publ i ¢ directory. Ensure that your own customized
makefiles have the $ORACLE_HOVE/ r dbns/ publ i ¢ directory in the | NCLUDE path.

The oci uch. nk file is a makefile in deno for building a callback shared library.

Overview of OCI Program Programming

ORACLE

The general goal of an OCI application is to operate on behalf of multiple users.

In an n-tiered configuration, multiple users are sending HTTP requests to the client
application. The client application may need to perform some data operations that
include exchanging data and performing data processing.

OCI uses the following basic program flow:

1. Create the environment by initializing the OCI programming environment and
threads.

2. Allocate necessary handles, and establish server connections and user sessions.

3. Exchange data with the database server by executing SQL statements on the
server, and perform necessary application data processing.

4. Execute prepared statements, or prepare a new statement for execution.
5. Terminate user sessions and disconnect from server connections.
6. Free handles and data structures.

Figure 3-1 illustrates the flow of steps in an OCI application. OCI Programming Steps
describes each step in more detail.

Figure 3-1 Basic OCI Program Flow

Qreate
Environment

v

Allocate Handles
and Data Structures

v

Connect to Server
and Begin Session

v

Issue SQL
and Process Data

v

Disconnect

v

Free Handles

& Data Structures

3-2

Chapter 3
OCI Data Structures

The diagram and the list of steps present a simple generalization of OCI programming steps.
Variations are possible, depending on the functionality of the program. OCI applications that
include more sophisticated functionality, such as managing multiple sessions and
transactions and using objects, require additional steps.

All OCI function calls are executed in the context of an environment. There can be multiple
environments within an OCI process. If an environment requires any process-level
initialization, then it is performed automatically.

" Note:

It is possible to have multiple active connections and statements in an OCI
application.

See Also:

OCI Object-Relational Programming through Using the Object Type Translator with
OCI for information about accessing and manipulating objects

OCI Data Structures

Handles

ORACLE

Handles and descriptors are opaque data structures that are defined in OCI applications.

Handles and descriptors can be allocated directly, through specific allocate calls, or they can
be implicitly allocated by OCI functions.

< Note:

Programmers who have previously written 7.x OCI applications must become
familiar with these data structures that are used by most OCI calls.

Handles and descriptors store information pertaining to data, connections, or application
behavior. Handles are defined in more detail in the next section.

This section includes the following topics: Handles

Related Topics

e OCI Descriptors
OCI descriptors and locators are opaque data structures that maintain data-specific
information.

Almost every OCI call includes in its parameter list one or more handles.

A handle is an opaque pointer to a storage area allocated by the OCI library. You use a
handle to store context or connection information, (for example, an environment or service

3-3

Chapter 3
OCI Data Structures

context handle), or it may store information about OCI functions or data (for example,
an error or describe handle). Handles can make programming easier, because the
library, rather than the application, maintains this data.

Most OCI applications must access the information stored in handles. The get and set
attribute OCI calls, OCl Attr CGet () and OCl Attr Set (), access and set this information.

Table 3-1 lists the handles defined for OCI. For each handle type, the C data type and
handle type constant used to identify the handle type in OCI calls are listed.

Table 3-1 OCI Handle Types

Description C Data Type Handle Type Constant
OCI environment handle OCl Env OCl _HTYPE_ENV

OCI error handle CCl Error OCl _HTYPE_ERROR
OClI service context handle OCl SveCt x OCl _HTYPE_SVCCTX
OCI statement handle OCl St mt OCl _HTYPE_STMI

OCI bind handle CCl Bi nd OCl _HTYPE BI ND

OCI define handle OCl Def i ne OCl _HTYPE_DEFI NE
OCI describe handle OCl Descri be OCl _HTYPE_DESCRI BE
OCI server handle OCl Server OCl _HTYPE_SERVER
OClI user session handle OCl Sessi on OCl _HTYPE_SESSI ON
OCI authentication information handle OCl Aut hi nfo OCl _HTYPE_AUTHI NFO
OCI connection pool handle OCl CPool OCl _HTYPE_CPOOL
OCI session pool handle OCl SPool OCl _HTYPE_SPOOL
OClI transaction handle OCl Trans OCl _HTYPE_TRANS

OCI complex object retrieval (COR) handle
OCI thread handle

OCI subscription handle

OCI direct path context handle

OCIl direct path function context handle
OCI direct path column array handle

OCI direct path stream handle

OCI process handle

OCI administration handle

OCI HA event handle

OCl Conpl ex(oj ect
OCl Thr eadHandl e
OCl Subscription
OCl Di r Pat hCt x

OCl Di r Pat hFuncCt x
OCl Di r Pat hCol Arr ay
OCl Di r Pat hSt r eam
OCl Process

OCl Admi n

OCl Event

OCl _HTYPE_COVPLEXOBJECT

Not applicable

OCl _HTYPE_SUBSCRI PTI ON

OCl _HTYPE_DI RPATH _CTX

OCl _HTYPE_DI RPATH_FN_CTX

OCl _HTYPE_DI RPATH_COLUWN_ARRAY
OCl _HTYPE_DI RPATH_STREAM

OCl _HTYPE_PROC

OCl _HTYPE_ADM N

Not applicable

This section includes the following topics:

* About Allocating and Freeing Handles

* Environment Handle

e Error Handle

* Service Context Handle and Associated Handles

* Statement, Bind, and Define Handles

ORACLE

3-4

Chapter 3
OCI Data Structures

* Describe Handle

e Complex Object Retrieval Handle
e Thread Handle

e Subscription Handle

* Direct Path Handles

* Connection Pool Handle
* Handle Attributes

* OCI Descriptors
Related Topics

* Handle Attributes

* OCIAttrSet()

* OCIAttrGet()

About Allocating and Freeing Handles

ORACLE

Your application allocates all handles (except the bind, define, and thread handles) for a
particular environment handle.

You pass the environment handle as one of the parameters to the handle allocation call. The
allocated handle is then specific to that particular environment.

The bind and define handles are allocated for a statement handle, and contain information
about the statement represented by that handle.

¢ Note:

The bind and define handles are implicitly allocated by the OCI library, and do not
require user allocation.

The environment handle is allocated and initialized with a call to OCl EnvCr eat e() or to
OCl EnvN sCreat e(), one of which is required by all OCI applications.

All user-allocated handles are initialized using the OCI handle allocation call,
OCl Handl eAl | oc() .

The types of handles include: session pool handle, direct path context handle, thread handle,
COR handle, subscription handle, describe handle, statement handle, service context handle,
error handle, server handle, connection pool handle, event handle, and administration
handle.

The thread handle is allocated with the OCl Thr eadHndl ni t () call.

An application must free all handles when they are no longer needed. The OCl Handl eFree()
function frees all handles.

3-5

Chapter 3
OCI Data Structures

< Note:

When a parent handle is freed, all child handles associated with it are also
freed and can no longer be used. For example, when a statement handle is
freed, any bind and define handles associated with it are also freed.

Handles lessen the need for global variables. Handles also make error reporting
easier. An error handle is used to return errors and diagnostic information.

Related Topics

* OCI Demonstration Programs
* OCIEnvCreate()

* OCIEnvNIsCreate()

* OCIHandleAlloc()

e OCIThreadHndInit()

e OCIHandleFree()

Environment Handle

The environment handle defines a context in which all OCI functions are invoked.
Each environment handle contains a memory cache that enables fast memory access.
All memory allocation under the environment handle is done from this cache. Access
to the cache is serialized if multiple threads try to allocate memory under the same
environment handle. When multiple threads share a single environment handle, they
may block on access to the cache.

The environment handle is passed as the parent parameter to the OCIHandleAlloc()
call to allocate all other handle types. Bind and define handles are allocated implicitly.

Error Handle

The error handle is passed as a parameter to most OCI calls.

The error handle maintains information about errors that occur during an OCI
operation. If an error occurs in a call, the error handle can be passed to
OCl Error Get () to obtain additional information about the error that occurred.

Allocating the error handle is one of the first steps in an OCI application because most
OCIl calls require an error handle as a parameter.

Related Topics

e About Implementing Thread Safety
To take advantage of thread safety, an application must be running on a thread-
safe operating system.

Service Context Handle and Associated Handles

A service context handle defines attributes that determine the operational context for
OCI calls to a server.

ORACLE 3-6

Chapter 3
OCI Data Structures

The service context handle contains three handles as its attributes, that represent a server
connection, a user session, and a transaction. These attributes are illustrated in Figure 3-2.

Figure 3-2 Components of a Service Context

Service Context

Handle
Server User Session Transaction
Handle Handle Handle

» A server handle identifies a connection to a database. It translates into a physical
connection in a connection-oriented transport mechanism.

» A user session handle defines a user's roles and privileges (also known as the user's
security domain), and the operational context in which the calls execute.

* A transaction handle defines the transaction in which the SQL operations are performed.
The transaction context includes user session state information, including any fetch state
and package instantiation.

Breaking the service context handle down in this way provides scalability and enables
programmers to create sophisticated multitiered applications and transaction processing (TP)
monitors to execute requests on behalf of multiple users on multiple application servers and
different transaction contexts.

You must allocate and initialize the service context handle with OClI Handl eAl | oc(),

OCl Logon(), or OCl Logon2() before you can use it. The service context handle is allocated
explicitly by OCl Handl eAl | oc() . It can be initialized using OCl At tr Set () with the server, user
session, and transaction handle. If the service context handle is allocated implicitly using

COCl Logon(), it is already initialized.

Applications maintaining only a single user session for each database connection at any time
can call CCl Logon() to get an initialized service context handle.

In applications requiring more complex session management, the service context handle
must be explicitly allocated, and the server and user session handles must be explicitly set
into the service context handle. OCl Server Attach() and OCl Sessi onBegi n() calls initialize
the server and user session handle respectively.

An application only defines a transaction explicitly if it is a global transaction or there are
multiple transactions active for sessions. It works correctly with the implicit transaction
created automatically by OCI when the application makes changes to the database.

ORACLE .

Chapter 3
OCI Data Structures

¢ See Also:

e OCI Support for Transactions

e OCI Environment Initialization, and Password and Session Management
for more information about establishing a server connection and user
session

* OCIHandleAlloc()

e OClLogon()

e OClILogon2()

* OCIAttrSet()

e OCIServerAttach()
e OClISessionBegin()

Statement, Bind, and Define Handles

ORACLE

A statement handle is the context that identifies a SQL or PL/SQL statement and its
associated attributes

A statement handle is shown in Figure 3-3.

Figure 3-3 Statement Handles

Statement
Handle
Define Bind
Handle Handle

Information about input and output bind variables is stored in bind handles. The OCI
library allocates a bind handle for each placeholder bound with the OCl Bi ndByNang()
or OCl Bi ndByName2()) or OCI Bi ndByPos() or OCl Bi ndByPos2() function. The user must
not allocate bind handles. They are implicitly allocated by the bind call.

Fetched data returned by a query (select statement) is converted and retrieved
according to the specifications of the define handles. The OCI library allocates a define
handle for each output variable defined with OCI Def i neByPos() or OCl Def i neByPos2().
The user must not allocate define handles. They are implicitly allocated by the define
call.

Bind and define handles are implicitly allocated by the OCI library, and are
transparently reused if the bind or define operation is repeated. The actual value of the
bind or define handle is needed by the application for the advanced bind or define
operations described in Binding and Defining in OCI. The handles are freed when the
statement handle is freed or when a new statement is prepared on the statement
handle. Explicitly allocating bind or define handles may lead to memory leaks.
Explicitly freeing bind or define handles may cause abnormal program termination.

3-8

Chapter 3
OCI Data Structures

¢ See Also:

e "Advanced Bind Operations in OCI"

"Advanced Define Operations in OCI"
* OCIBindByName()

e OCIBindByName2()

* OCIBindByPos()

e OCIBindByPos2()

e OCIDefineByPos()

e OCIDefineByPos2()

Describe Handle

The describe handle is used by the OCI describe call, OCl Descr i beAny() .

The OCl Descri beAny() call obtains information about schema objects in a database (for
example, functions or procedures). The call takes a describe handle as one of its parameters,
along with information about the object being described. When the call completes, the
describe handle is populated with information about the object. The OCI application can then
obtain describe information through the attributes of the parameter descriptors.

¢ See Also:

* Describing Schema Metadata for more information about using the
OCl Descri beAny() function

« OCIDescribeAny()

Complex Object Retrieval Handle

The complex object retrieval (COR) handle is used by some OCI applications that work with
objects in an Oracle database.

The complex object retrieval (COR) handle contains COR descriptors, provides instructions
for retrieving objects referenced by another object.

Related Topics

e Complex Object Retrieval
A complex object includes its root object and its set of logically related objects each of
which are prefetched based on a given depth level.

Thread Handle

ORACLE

The thread handle is used in multithreaded applications.

3-9

Chapter 3
OCI Data Structures

For information about the thread handle, which is used in multithreaded applications,
see the following OCIThread Package.

Related Topics

* OCIThread Package
The OCl Thr ead package provides some commonly used threading primitives.

Subscription Handle

The subscription handle is used by an OCI client application that registers and
subscribes to receive notifications of database events or events in the AQ namespace.

The subscription handle encapsulates all information related to a registration from a
client.

Related Topics

* Publish-Subscribe Notification in OCI
The publish-subscribe notification feature allows an OCI application to receive
client notifications directly, register an email address to which notifications can be
sent, register an HTTP URL to which natifications can be posted, or register a
PL/SQL procedure to be invoked on a notification.

Direct Path Handles

The direct path handles are necessary for an OCI application that uses the direct path
load engine in the Oracle database.

The direct path load interface enables the application to access the direct block
formatter of the Oracle database. Figure 3-4 shows the different kinds of direct path
handles.

Figure 3-4 Direct Path Handles

Direct Path
Context Handle

l

Direct Path Direct Path Direct Path
Column Array Stream Function Context
Handle Handle Handle

Related Topics

o Direct Path Loading Overview
The direct path load interface enables an OCI application to access the direct path
load engine of Oracle Database to perform the functions of the SQL*Loader utility.

» Direct Path Loading Handle Attributes

Connection Pool Handle

The connection pool handle is used for applications that pool physical connections into
virtual connections.

ORACLE 3-10

Chapter 3
OCI Data Structures

The connection pool handle is used for applications that pool physical connections into virtual
connections by calling specific OCI functions.

Related Topics

* Connection Pooling in OCI
Connection pooling is the use of a group (the pool) of reusable physical connections by
several sessions to balance loads.

Handle Attributes

ORACLE

All OCI handles have attributes that represent data stored in that handle.

You can read handle attributes by using the attribute get call, OCl Attr Get (), and you can
change them with the attribute set call, OCl Attr Set ().

For example, the statements in Example 3-1 set the user name in the session handle by
writing to the OCl _ATTR_USERNAME attribute:

Some OCI functions require that particular handle attributes be set before the function is
called. For example, when OCl Sessi onBegi n() is called to establish a user's login session,
the user name and password must be set in the user session handle before the call is made.

Other OCI functions provide useful return data in handle attributes after the function
completes. For example, when OCl St nt Execut e() is called to execute a SQL query, describe
information relating to the select-list items is returned in the statement handle, as shown in
Example 3-2.

¢ See Also:

e The description of OCIArrayDescriptorAlloc() for an example showing how to
allocate a large number of descriptors

e Handle and Descriptor Attributes
e OCIAttrGet()

e OCIAttrSet()

e OCISessionBegin()

e OCIStmtExecute()

Example 3-1 Using the OCI_ATTR_USERNAME Attribute to Set the User Name in the
Session Handle

text username[] = "hr";
err = OClAttrSet ((void *) mysessp, OCl _HTYPE_SESSION, (void *)usernane,
(ub4) strlen((char *)usernane), OCl _ATTR USERNAME, (OClIError *) myerrhp);

Example 3-2 Returning Describe Information in the Statement Handle Relating to
Select-List Items

ub4 parnctnt;

/* get the nunber of colums in the select list */

err = OClAttrGet ((void *)stmhp, (ub4)OCl _HTYPE_STMI, (void *)
&parnecnt, (ub4 *) 0, (ub4)OCl _ATTR_PARAM COUNT, errhp);

3-11

OCI Descriptors

Chapter 3
OCI Data Structures

OCI descriptors and locators are opaque data structures that maintain data-specific

information.

Table 3-2 lists OCI descriptors, along with their C data type, and the OCI type constant
that allocates a descriptor of that type in a call to OCl Descri ptor Al l oc(). The
CCl Descri pt or Free() function frees descriptors and locators.

Table 3-2 Descriptor Types

Description C Data Type OCI Type Constant
Snapshot descriptor OCl Snapshot OCl _DTYPE_SNAP
Result set descriptor OCl Resul t OCl _DTYPE_RSET
LOB data type locator QOCl LobLocat or OCl _DTYPE LOB

BFI LE data type locator

Read-only parameter descriptor

ROW D descriptor

ANSI DATE descriptor

TI MESTAMP descriptor

TI MESTAMP W TH TI ME ZONE descriptor

TI MESTAMP W TH LOCAL TI ME ZONE
descriptor

| NTERVAL YEAR TO MONTH descriptor
| NTERVAL DAY TO SECOND descriptor
User callback descriptor

Distinguished names of the database
servers in a registration request

Complex object descriptor

Advanced queuing enqueue options
Advanced queuing dequeue options
Advanced queuing message properties
Advanced queuing agent

Advanced queuing notification
Advanced queuing listen options
Advanced queuing message properties
Change natification

Table change

Row change

Shard key and shard group key descriptor

CCl LobLocat or
OCl Par am

OCl Rowi d

OCl Dat eTi me
OCl Dat eTi ne
CCl Dat eTi ne
CCl Dat eTi e

OCl I nterval
oCl I nterval
CCl Uch

OCl Ser ver DNs

OCl_DTYPE_FI LE
OCl _DTYPE_PARAM

OCl _DTYPE_ROW D

OCl _DTYPE_DATE
OCl_DTYPE_TI MESTAVP
OCl_DTYPE_TI MESTAMP_TZ
OCl _DTYPE_TI MESTAVP_LTZ

OCl _DTYPE_| NTERVAL_YM
OCl_DTYPE_| NTERVAL_DS
oCl_DTYPE_UCB

OCl _DTYPE_SRVDN

OCl Conpl ex(bj ect Conp OCl _DTYPE_COWPLEXOBJECTCOWP

OCl AQEngOpt i ons

OCl AQDeqOpt i ons
OCl AQVsgProperties

OCl AQAgent
OCl AQNot i fy

OCl AQLi stenOpt s
OCl AQLI sMsgPr ops

None
None
None
QCl Shar dkey

OCl _DTYPE_AQENQ OPTI ONS

OCl _DTYPE_AQDEQ OPTI ONS

OCl _DTYPE_AQVSG_PROPERTI ES
OCl_DTYPE_AQAGENT

OCl _DTYPE_AQ\FY

OCl _DTYPE_AQLI S_OPTI ONS
oCl_DTYPE_AQLI S_MSG_PROPERTI ES
OCl _DTYPE_CHDES
OCl_DTYPE_TABLE_CHDES

OCl _DTYPE_ROW CHDES

OCl _DTYPE_SHARD_KEY

ORACLE

3-12

Chapter 3
OCI Data Structures

< Note:

Although there is a single C type for CCl LobLocat or, this locator is allocated with a
different OCI type constant for internal and external LOBs. LOB and BFILE Locators
discusses this difference.

The following list describes the main purpose of each descriptor type. The sections that follow
describe each descriptor type in more detail:

OCl Snapshot - Used in statement execution

OCl LobLocat or - Used for LOB (OCl _DTYPE_LOB) or BFI LE (CCl _DTYPE_FI LE) calls
OCl Par am- Used in describe calls

OCl Rowi d - Used for binding or defining RON D values

CCl Dat eTi me and OCl I nt erval - Used for datetime and interval data types

COCl Conpl exhj ect Conmp - Used for complex object retrieval

OCl AQEngOpt i ons, OCl AQDeqOpt i ons, OCl AQVsgPr operti es, OCl AQAgent - Used for
Advanced Queuing

OCl AQ\ot i fy - Used for publish-subscribe notification
OCl Server DNs - Used for LDAP-based publish-subscribe notification

This section includes the following topics:

Snapshot Descriptor

LOB and BFILE Locators

Parameter Descriptor

ROWID Descriptor

Date, Datetime, and Interval Descriptors
Complex Object Descriptor

Advanced Queuing Descriptors

User Memory Allocation

Related Topics

OCIDescriptorAlloc()
OCIDescriptorFree()
OCIlArrayDescriptorAlloc()
OCIDescriptorFree()

Snapshot Descriptor

ORACLE

The snapshot descriptor is an optional parameter to the execute call, OCl St nt Execute().

The snapshot descriptor indicates that a query is being executed against a database
shapshot that represents the state of a database at a particular time.

3-13

Chapter 3
OCI Data Structures

Allocate a snapshot descriptor with a call to OCl Descri pt or Al | oc() by passing
OCl _DTYPE_SNAP as the t ype parameter.

Related Topics
e OCIStmtExecute()
e OCIDescriptorAlloc()

e Execution Snapshots
The OCl St nt Execut e() call provides the ability to ensure that multiple service
contexts operate on the same consistent snapshot of the database's committed
data.

LOB and BFILE Locators

ORACLE

A large object (LOB) is an Oracle data type that can hold binary large object (BLOB) or
character large object (CLOB) data.

In the database, an opaque data structure called a LOB locator is stored in a LOB
column of a database row, or in the place of a LOB attribute of an object. The locator
serves as a pointer to the actual LOB value, which is stored in a separate location.

Note:

Depending on your application, you may or may not want to use LOB
locators. You can use the data interface for LOBs, which does not require
LOB locators. In this interface, you can bind or define character data for CLOB
columns or RAWdata for BLOB columns.

The OCI LOB locator is used to perform OCI operations against a LOB (BLOB or CLOB)
or FILE (BFI LE). OCl LobXXX functions take a LOB locator parameter instead of the LOB
value. OCI LOB functions do not use actual LOB data as parameters. They use the
LOB locators as parameters and operate on the LOB data referenced by them.

The LOB locator is allocated with a call to OCl Descri pt or Al | oc() by passing
OCl _DTYPE_LOB as the t ype parameter for BLOBs or CLOBs, and OCl _DTYPE_FI LE for
BFI LEs.

Note:

The two LOB locator types are not interchangeable. When binding or
defining a BLOB or CLOB, the application must take care that the locator is
properly allocated by using OCl _DTYPE_LOB. Similarly, when binding or
defining a BFI LE, the application must be sure to allocate the locator using
OCl _DTYPE FI LE.

An OCI application can retrieve a LOB locator from the Oracle database by issuing a
SQL statement containing a LOB column or attribute as an element in the select list. In
this case, the application would first allocate the LOB locator and then use it to define
an output variable. Similarly, a LOB locator can be used as part of a bind operation to
create an association between a LOB and a placeholder in a SQL statement.

3-14

Chapter 3
OCI Data Structures

Related Topics

* LOB and BFILE Operations
This chapter describes LOB and BFILE operations.

e About Binding LOB Data
Oracle Database allows nonzero binds for | NSERTs and UPDATEs of any size LOB.

e About Defining LOB Data
e OCIDescriptorAlloc()

Parameter Descriptor

OCI applications use parameter descriptors to obtain information about select-list columns or
schema objects.

This information is obtained through a describe operation.

The parameter descriptor is the only descriptor type that is not allocated using

COCl DescriptorAl'l oc() . You can obtain it only as an attribute of a describe handle, statement
handle, or through a complex object retrieval handle by specifying the position of the
parameter using an OCl Par anet () call.

Related Topics
e OCIDescriptorAlloc()
¢ OCIParamGet()

* About Describing Select-List Items
If your OCI application is processing a query, you may need to obtain more information
about the items in the select list.

* Describing Schema Metadata

ROWID Descriptor

The RON D descriptor, OCl Rowi d, is used by applications that must retrieve and use Oracle
ROWIDs.

To work with a ROA D an application can define a RON D descriptor for a rowid position in a
SQL select list, and retrieve a RON D into the descriptor. This same descriptor can later be
bound to an input variable in an | NSERT statement or WHERE clause.

ROW Ds are also redirected into descriptors using OCl Attr Get () on the statement handle
following an execute operation.

Related Topics
* OCIAttrGet()

Date, Datetime, and Interval Descriptors

ORACLE

The date, datetime, and interval descriptors are used by applications that use the date,
datetime, or interval data types (OCl Dat e, OCl Dat eTi me, and OCl | nt erval).

These descriptors can be used for binding and defining, and are passed as parameters to the
functions OCl Descri ptor Al I oc() and OCl Descri pt or Free() to allocate and free memory.

3-15

Chapter 3
OCI Data Structures

Related Topics

* OCIDescriptorAlloc()

* OCIDescriptorFree()

o Data Types

* OCI Data Type Mapping and Manipulation Functions

Complex Object Descriptor

Complex object retrieval (COR) may improve application performance when dealing
with objects.

Application performance when dealing with objects may be increased using complex
object retrieval (COR).

Related Topics

e Complex Object Retrieval
A complex object includes its root object and its set of logically related objects
each of which are prefetched based on a given depth level.

Advanced Queuing Descriptors

There are a number of Oracle Streams Advanced Queuing descriptors for use to
maintain data-specific information.

Oracle Streams Advanced Queuing provides message queuing as an integrated part
of Oracle Database.

Related Topics

* OCI and Streams Advanced Queuing
OCI provides an interface to the Streams Advanced Queuing (Streams AQ)
feature. Streams AQ provides message queuing as an integrated part of Oracle
Database.

» Publish-Subscribe Registration Functions in OCI
You can register directly to the database or register using Lightweight Directory
Access Protocol (LDAP).

User Memory Allocation

ORACLE

The OCl DescriptorAl l oc() call has an xtramem sz parameter in its parameter list.

The xt ramem sz parameter is used to specify the amount of user memory that should
be allocated along with a descriptor or locator.

Typically, an application uses this parameter to allocate an application-defined
structure that has the same lifetime as the descriptor or locator. This structure can be
used for application bookkeeping or storing context information.

Using the xt ramem sz parameter means that the application does not need to explicitly
allocate and deallocate memory as each descriptor or locator is allocated and
deallocated. The memory is allocated along with the descriptor or locator, and freeing
the descriptor or locator (with OCl Descri pt or Free()) frees the user's data structures
as well.

3-16

Chapter 3
OCI Programming Steps

The OCl Handl eAl | oc() call has a similar parameter for allocating user memory that has the
same lifetime as the handle.

The OCl EnvCreat e() and (OCl Envinit () deprecated) calls have a similar parameter for
allocating user memory that has the same lifetime as the environment handle.

Related Topics

* OClIDescriptorAlloc()
* OClIDescriptorFree()
* OCIHandleAlloc()

e OCIEnvCreate()

e OCIEnvInit()

OCI Programming Steps

The following sections describe in detail each of the steps in developing an OCI application.

Some of the steps are optional. For example, you do not need to describe or define select-list
items if the statement is not a query. Application-specific processing also occurs in between
any and all of the OCI function steps.

The following sections describe the steps that are required of an OCI application:

* OCI Environment Initialization

* About Processing SQL Statements in OCI
e Commit or Roll Back Operations

* About Terminating the Application

e Error Handling in OCI

" See Also:

e The first sample program in OCI Demonstration Programs for an example
showing the use of OCI calls for processing SQL statements.

* Runtime Data Allocation and Piecewise Operations in OCI for a detailed
description of the special case of dynamically providing data at run time

e About Binding and Defining Arrays of Structures in OCI for a description of the
special considerations for operations involving arrays of structures

e Error Handling in OCI for an outline of the steps involved in processing a SQL
statement within an OCI program

e Overview of OCI Multithreaded Development for information about using the
OCI to write multithreaded applications

e SQL Statements for more information about types of SQL statements

ORACLE 3-17

Chapter 3
OCI Programming Steps

OCI Environment Initialization

This section describes how to initialize the OCI environment, establish a connection to
a server, and authorize a user to perform actions against the database.

First, the three main steps in initializing the OCI environment are described in the
following sections:

e About Creating the OCI Environment
e About Allocating Handles and Descriptors

e Application Initialization, Connection, and Session Creation

About Creating the OCI Environment

ORACLE

Each OCI function call is executed in the context of an environment that is created with
the OCl EnvCreat e() call.

The OCl EnvCreat e() call must be invoked before any other OCI call is executed. The
only exception is the setting of a process-level attribute for the OCI shared mode.

The mode parameter of OCl EnvCr eat e() specifies whether the application calling the
OCl library functions can:

* Runin athreaded environment (mode = OCl _THREADED).
* Use objects (mode = OCl _OBJECT). Use with AQ subscription registration.
e Use subscriptions (mode = OCl _EVENTS).

The mode can be set independently in each environment.

It is necessary to initialize in object mode if the application binds and defines objects,
or if it uses the OCI's object navigation calls. The program may also choose to use
none of these features (node = OCI _DEFAULT) or some combination of them, separating
the options with a vertical bar. For example if mode = (OCI _THREADED | OCl _ OBJECT),
then the application runs in a threaded environment and uses objects.

You can specify user-defined memory management functions for each OCI
environment.

See Also:

* OCIEnvCreate(), OCIEnvNIsCreate(), and OClInitialize() (deprecated) for
more information about the initialization calls

e Overview of OCI Multithreaded Development

e OCI Object-Relational Programming , Object-Relational Data Types in
OCI, Direct Path Load Interface, Object Advanced Topics in OCI, and
Using the Object Type Translator with OCI

¢ Publish-Subscribe Notification in OCI

3-18

Chapter 3
OCI Programming Steps

About Allocating Handles and Descriptors

Oracle Database provides OCI functions to allocate and deallocate handles and descriptors.

You must allocate handles using OCl Handl eAl | oc() before passing them into an OCI call,
unless the OCI call, such as OCl Bi ndByPos() or OCl Bi ndByPos2(), allocates the handles for
you.

You can allocate the types of handles listed in Table 3-1 with OCl Handl eAl | oc() Depending
on the functionality of your application, it must allocate some or all of these handles.

Related Topics

e OCIHandleAlloc()
e OCIBindByPos()
e OCIBindByPos2()

Application Initialization, Connection, and Session Creation

An application must call OCl EnvN sCreat e() to initialize the OCI environment handle. Existing
applications may have used OCl EnvCreat e() .

Following this step, the application has several options for establishing an Oracle database
connection and beginning a user session.

These methods include:

* Single User, Single Connection
* Client Access Through a Proxy

* Nonproxy Multiple Sessions or Connections

< Note:

CCl EnvCreat e() or OCl EnvN sCreat e() should be used instead of the
QClInitialize() and OClEnvinit() calls.OClInitialize() and OCl Envlnit()
calls are supported for backward compatibility.

Single User, Single Connection

ORACLE

The single user, single connection option is the simplified logon method, which can be used if
an application maintains only a single user session for each database connection at any time.

When an application calls OCl Logon2() or OCl Logon(), the OCI library initializes the service
context handle that is passed to it, and creates a connection to the specified Oracle database
for the user making the request.

Example 3-3 shows what a call to OCl Logon2() looks like for a single user session with user
name hr, password hr, and database or acl edb.

The parameters to this call include the service context handle (which has been initialized), the
user name, the user's password, and the name of the database that are used to establish the
connection. With the last parameter, node, set to OCl _DEFAULT, this call has the same effect

3-19

Chapter 3
OCI Programming Steps

as calling the older OCl Logon() . Use OCl Logon2() for any new applications. The
server and user session handles are implicitly allocated by this function.

If an application uses this logon method, the service context, server, and user session
handles are all read-only; the application cannot switch session or transaction by
changing the appropriate attributes of the service context handle using an

OCl AttrSet () call

An application that initializes its session and authorization using OCl Logon2() must
terminate them using OCl Logof f ().

¢ Note:

For simplicity in demonstrating this feature, this example does not perform
the password management techniques that a deployed system normally
uses. In a production environment, follow the Oracle Database password
management guidelines, and disable any sample accounts. See Oracle
Database Security Guide for password management guidelines and other
security recommendations.

Example 3-3 Using the OCILogon2 Call for a Single User Session

OCl Logon2(envhp, errhp, &svchp, (text *)"hr", (ub4)strlien("hr"), (text *)"hr",
(ub4)strlien("hr"), (text *)"oracledb", (ub4)strlen("oracledb"),
OCl _DEFAULT) ;

¢ See Also:

Operating System Considerations for information regarding operating
systems providing facilities for spawning processes that allow child
processes to reuse state created by their parent process. This section
explains why the child process must not use the same database connection
as created by the parent.

Client Access Through a Proxy

Proxy authentication is a process typically employed in an environment with a middle
tier such as a firewall, in which the end user authenticates to the middle tier, which
then authenticates to the database on the user's behalf—as its proxy.

The middle tier logs in to the database as a proxy user. A proxy user can switch
identities and, after logging in to the database, switch to the end user's identity. It can
perform operations on the end user's behalf, using the authorization appropriate to that
particular end user.

ORACLE 3-20

ORACLE

Chapter 3
OCI Programming Steps

< Note:

In release 1 of Oracle 11g, standards for acceptable passwords were greatly raised
to increase security. Examples of passwords in this section are incorrect. A
password must contain no fewer than eight characters. See the guidelines for
securing passwords Oracle Database Security Guide for additional information.

Proxy to database users is supported by using OCI and the ALTER USER statement, whose
BNF syntax is:

ALTER USER <t arget user> GRANT CONNECT THROUGH <proxy> [AUTHENTI CATI ON REQUI RED] ;

The ALTER USER statement is used once in an application. Connections can be made multiple
times afterward. In OCI, you can either use connect strings or the function OCl At t r Set () with
the parameter OCl _ATTR_PROXY_CLI ENT.

Even though beginning with Oracle Database 12¢ Release 2 (12.2) the maximum length of
each identifier is increased to 128 bytes, the user name and proxy combination can not
exceed 250 bytes.

After a proxy switch is made, the current and connected user is the target user of the proxy.
The identity of the original user is not used for any privilege calculations. The original user
can be a local or external user.

Example 3-4 through Example 3-11 show connect strings that you can use in functions such
as OCl Logon2() (set node = OCI _DEFAULT), OCl Logon(), CCl Sessi onBegi n() with
OCl AttrSet () (pass the attribute OCI _ATTR_USERNAME of the session handle), and so on.

In Example 3-4, Dilbert and Joe are two local database users. To enable Dilbert to serve as a
proxy for Joe, use the SQL statement shown in Example 3-4.

When user name di | bert is acting on behalf of j oe, use the connection string shown in
Example 3-5. (The user name di | bert has the password ti ger 123).

The left and right brackets "[" and "]" are entered in the connection string.

In Example 3-6, "Dilbert" and "Joe" are two local database users. The names are case-
sensitive and must be enclosed in double quotation marks. To enable "Dilbert" to serve as a
proxy for "Joe", use the SQL statement shown in Example 3-6.

When "Dilbert" is acting on behalf of "Joe", use the connection string shown in Example 3-7.
Be sure to include the double quotation marks (") characters.

When the proxy user is created as "dilbert{mybert]", use the connection string shown in
Example 3-8 to connect to the database. (The left and right brackets "[" and "]" are entered in
the connection string.)

In Example 3-9, dilbertfmybert] and joe[myjoe] are two database users that contain the left
and right bracket characters "[" and "]". If dilbertimybert] wants to act on behalf of joe[myjoe],
Example 3-9 shows the connect statement to use.

In Example 3-10, you can set the target user name by using the ALTER USER statement.

3-21

ORACLE

Chapter 3
OCI Programming Steps

¢ See Also:

e OCI_ATTR_PROXY_CLIENT

e Oracle Database Security Guide for a discussion of proxy authentication
e Password and Session Management

e OCIAttrSet()

Note:

There are compatibility issues of client access through a proxy. Because this
feature was introduced in Oracle Database release 10.2, pre-10.2 clients do
not have it. If newer clients use the feature with pre-10.2 Oracle databases,
the connect fails and the client returns an error after checking the database
release level.

Example 3-4 Enabling a Local User to Serve as a Proxy for Another User

ALTER USER j oe GRANT CONNECT THROUGH di | bert;

Example 3-5 Connection String to Use for the Proxy User

dilbert[joe]/tigerl23@bl

Example 3-6 Preserving Case Sensitivity When Enabling a Local User to Serve
as a Proxy for Another User

ALTER USER "Joe" GRANT CONNECT THROUGH "Dil bert";

Example 3-7 Preserving Case Sensitivity in the Connection String
"Dil bert"["Joe"]/tigerl23@bl

Example 3-8 Using "dilbertfmybert]" in the Connection String

“dil bert[mybert]"/tiger123

remthe user was already created this way:
rem CREATE USER "dil bert[nybert]" |DENTIFIED BY tiger123;

Example 3-9 Using "dilbertfmybert]"["joe[myjoe]"] in the Connection String

"dil bert[nmybert]"["joe[nyjoe]"]/tigerl23

Example 3-10 Setting the Target User Name
ALTER USER j oe GRANT CONNECT THROUGH dil bert;

Then, as shown in Example 3-11, in an OCI program, use the OCl Attr Set () call to set
the attribute OCl _ATTR_PROXY_CLI ENT and the proxy di | bert . In your program, use
these statements to connect multiple times.

3-22

Chapter 3
OCI Programming Steps

Example 3-11 Using OCI to Set the OCI_ATTR_PROXY_CLIENT Attribute and the
Proxy dilbert

OCl AttrSet (session, OCl _HTYPE_SESSION, (void *)"dilbert",
(ubd)strlen("dilbert"), OCl_ATTR USERNAME,
error_handl e);

OCl AttrSet (session, OCl _HTYPE SESSION, (void *)"tiger123",
(ub4)strlen("tiger123"), OC _ATTR PASSWORD,
error_handl e);

OCl AttrSet (session, OCl _HTYPE _SESSION, (void *)"joe",
(ub4)strlen("joe"), OCl_ATTR PROXY_CLIENT,
error_handl e);

Nonproxy Multiple Sessions or Connections

ORACLE

The nonproxy multiple sessions or connections option uses explicit attach and begin-session
calls to maintain multiple user sessions and connections on a database connection.

Specific calls to attach to the Oracle database and begin sessions are:

 (OC ServerAttach() - Creates an access path to the Oracle database for OCI operations.

e (Cl Sessi onBegi n() - Establishes a session for a user against a particular Oracle
database. This call is required for the user to execute operations on the Oracle database.

A subsequent call to OCl Sessi onBegi n() using different service context and session context
handles logs off the previous user and causes an error. To run two simultaneous
nonmigratable sessions, a second OCl Sessi onBegi n() call must be made with the same
service context handle and a new session context handle.

These calls set up an operational environment that enables you to execute SQL and PL/SQL
statements against a database.

¢ See Also:

e Connect, Authorize, and Initialize Functions

e OCI Programming Advanced Topics for more information about maintaining
multiple sessions, transactions, and connections

e Client Character Set Control from OCI for the use of OCl EnvN sCr eat e()

Example 3-12 demonstrates the creation and initialization of an OCI environment.

» A server context is created and set in the service handle.

* Then a user session handle is created and initialized using a database user name and
password.

* For simplicity, error checking is not included.

The demonstration program cdeno81. ¢ in the denp directory illustrates this process, with error
checking.

Example 3-12 Creating and Initializing an OCI Environment

#i ncl ude <oci . h>

rral n()

3-23

Chapter 3
OCI Programming Steps

{

OCl Env *myenvhp; /* the environnment handle */
COCl Server *nysrvhp; /* the server handle */

OCl Error *nyerrhp; /* the error handle */

COCl Sessi on *myusr hp; /* user session handle */

OCl SveCtx *nysvchp; /* the service handle */

/* initialize the nmode to be the threaded and object environnent */
(voi d) OCl EnvCreate(&ryenvhp, OCI_THREADED| OCl _OBJECT, (void *)0,
0, 0, 0, (size_t) 0, (void **)0);

/* allocate a server handle */
(void) OClHandl eAlloc ((void *)myenvhp, (void **)&nmysrvhp,
OCl _HTYPE_SERVER, 0, (void **) 0);

/* allocate an error handle */
(void) OClHandl eAlloc ((void *)myenvhp, (void **)&nyerrhp,
OCl _HTYPE_ERROR, 0, (void **) 0);

/* create a server context */
(void) OCl ServerAttach (mysrvhp, nyerrhp, (text *)"instl alias",
strlen ("instl_alias"), OCl _DEFAULT);

/* allocate a service handle */
(void) OClHandl eAlloc ((void *)myenvhp, (void **)&nmysvchp,
OCl _HTYPE_SVCCTX, 0, (void **) 0);

/* set the server attribute in the service context handl e*/
(void) OClAttrSet ((void *)mysvchp, OCl _HTYPE_SVCCTX,
(void *)nysrvhp, (ub4) 0, OCl _ATTR SERVER, nyerrhp);

/* allocate a user session handle */
(void) OClHandl eAlloc ((void *)myenvhp, (void **)&myusrhp,
OCl _HTYPE_SESSION, 0, (void **) 0);:

/* set user name attribute in user session handle */
(void) OClAttrSet ((void *)myusrhp, OCl _HTYPE_SESSI ON,

(void *)"hr", (ubd)strlen("hr"),

OCl _ATTR_USERNAME, nyerrhp);

/* set password attribute in user session handle */
(void) OClAttrSet ((void *)myusrhp, OCl _HTYPE_SESSI ON,

(void *)"hr", (ubd)strlen("hr"),

OCl _ATTR_PASSWORD, nyerr hp);

(void) OCl SessionBegin ((void *) nysvchp, nyerrhp, myusrhp,
OCl _CRED RDBMS, OCl _DEFAULT);

/* set the user session attribute in the service context handl e*/
(void) OClAttrSet ((void *)nmysvchp, OCI _HTYPE_SVCCTX,
(void *)nmyusrhp, (ub4) 0, OCl _ATTR _SESSION, nyerrhp);

About Processing SQL Statements in OCl

What are the specific steps involved in processing SQL statements in OCI.

ORACLE 3-24

Chapter 3
OCI Programming Steps

Using SQL Statements in OCI outlines the specific steps involved in processing SQL
statements in OCI.

Commit or Roll Back Operations

An application commits changes to the database by calling OCl TransCommi t () .

The OCl TransCommi t () call uses a service context as one of its parameters. The transaction
is associated with the service context whose changes are committed. This transaction can be
explicitly created by the application or implicitly created when the application modifies the
database.

Note:

By using the OCI _COMM T_ON_SUCCESS mode of the OCl St nt Execut e() call, the
application can selectively commit transactions after each statement execution,
saving an extra round-trip.

To roll back a transaction, use the OCl Tr ansRol | back() call.

If an application disconnects from Oracle Database in a way other than a normal logoff, such
as losing a network connection, and OCl TransConmi t () has not been called, all active
transactions are rolled back automatically.

¢ See Also:

¢ "Service Context Handle and Associated Handles"

e "OCI Support for Transactions"

About Terminating the Application

What should an application do before it terminates.
An OCI application should perform the following steps before it terminates:

1. Delete the user session by calling OCl Sessi onEnd() for each session.

2. Delete access to the data sources by calling OCl Server Det ach() for each source.
3. Explicitly deallocate all handles by calling OCl Handl eFree() for each handle.
4

Delete the environment handle, which deallocates all other handles associated with it.

" Note:

When a parent OCI handle is freed, any child handles associated with it are
freed automatically

ORACLE 3-25

Chapter 3
OCI Programming Steps

The calls to OCl Server Det ach() and OCl Sessi onEnd() are not mandatory but are
recommended. If the application terminates, and OCl TransConmi t () (transaction
commit) has not been called, any pending transactions are automatically rolled back.

¢ See Also:

The first sample program in OCI Demonstration Programs for an example
showing handles being freed at the end of an application

¢ Note:

If the application uses the simplified logon method of OCl Logon2(), then a
call to OCl Logof f () terminates the session, disconnects from the Oracle
database, and frees the service context and associated handles. The
application is still responsible for freeing other handles it allocated.

Error Handling in OCI

OCI function calls have a set of return codes.

These OCI function call return codes are listed in Table 3-3, which indicate the
success or failure of the call, such as OCI _SUCCESS or OCl _ERRCR, or provide other
information that may be required by the application, such as CCI _NEED DATA or
OCl _STI LL_EXECUTI NG. Most OCI calls return one of these codes.

To verify that the connection to the server is not terminated by the OCl _ERROR, an
application can check the value of the attribute OCI _ATTR_SERVER STATUS in the server
handle. If the value of the attribute is OCl _SERVER NOT_CONNECTED, then the connection
to the server and the user session must be reestablished.

¢ See Also:

e "Functions Returning Other Values" for exceptions
e "OCIErrorGet()" for complete details and an example of usage

¢ "Server Handle Attributes"

Table 3-3 OCI Return Codes
]

OCI Return Code Value Description

OCl _SUCCESS 0 The function completed successfully.

OCl _SUCCESS_W TH_I NFO 1 The function completed successfully; a call to OCl Er r or Get ()
returns additional diagnostic information. This may include warnings.

OCl _NO_DATA 100 The function completed, and there is no further data.

ORACLE

3-26

Table 3-3 (Cont.) OCI Return Codes

Chapter 3
OCI Programming Steps

OCI Return Code Value Description

OCl _ERROR -1 The function failed; a call to OCl Error Get () returns additional
information.

OCl _I NVALI D_HANDLE -2 An invalid handle was passed as a parameter or a user callback was
passed an invalid handle or invalid context. No further diagnostics
are available.

OCl _NEED DATA 99 The application must provide runtime data.

OCl _STI LL_EXECUTI NG -3123 The service context was established in nonblocking mode, and the
current operation could not be completed immediately. The operation
must be called again to complete. OCl Err or Get () returns
ORA- 03123 as the error code.

OCl _CONTI NUE -24200 This code is returned only from a callback function. It indicates that
the callback function wants the OCI library to resume its normal
processing.

OCl _ROANCBK_DONE -24201 This code is returned only from a callback function. It indicates that

the callback function is done with the user row callback.

If the return code indicates that an error has occurred, the application can retrieve error
codes and messages specific to Oracle Database by calling OCl Er r or Get () . One of the
parameters to OCl Error Get () is the error handle passed to the call that caused the error.

Note:

Multiple diagnostic records can be retrieved by calling OCl Er r or Get () repeatedly
until there are no more records (OCI _NO DATA is returned). OCl Error Get () returns at
most a single diagnostic record.

This section includes the following topics:

¢ Return and Error Codes for Data

* Functions Returning Other Values

Return and Error Codes for Data

The OCI return code, error number, indicator variable, and column return code are specified
when the data fetched is normal, null, or truncated.

In Table 3-4, the OCI return code, error number, indicator variable, and column return code
are specified when the data fetched is normal, null, or truncated.

See Also:

ORACLE

"Indicator Variables"

3-27

Table 3-4 Return and Error Codes

State of Data

Return Code

Indicator - Not provided

Chapter 3
Additional Coding Guidelines

Indicator - Provided

Not null or
truncated

Not null or
truncated

Null data

Null data

Truncated data

Truncated data

Not provided

Provided

Not provided

Provided

Not provided

Provided

OCl _SUCCESS
Error=0

OCl _SUCCESS
Error=0
Return code =0

OCl _ERROR
Error = 1405

OCl _ERROR
Error = 1405
Return code = 1405

OCl _ERROR
Error = 1406

OCl _SUCCESS_W TH_I NFO
Error = 24345
Return code = 1405

OCl _SUCCESS
Error =0
Indicator = 0

OCl _SUCCESS
Error=0

Indicator = 0

Return code =0
OCl _SUCCESS
Error =0

Indicator = -1

OCl _SUCCESS
Error=0

Indicator = -1
Return code = 1405
OCl _ERROR

Error = 1406
Indicator = data_len
OCl _SUCCESS_W TH_I NFO
Error = 24345
Indicator = data_len
Return code = 1406

For truncated data, dat a_| en is the actual length of the data that has been truncated if
this length is less than or equal to SB2MAXVAL. Otherwise, the indicator is set to -2.

Functions Returning Other Values

ORACLE

Some functions return values other than the OCI error codes.

These other OCI error codes are listed in Table 3-3. When you use these functions, be
aware that they return values directly from the function call, rather than through an QUT
parameter. More detailed information about each function and its return values is listed
in the reference chapters.

Additional Coding Guidelines

This section explains some additional issues when coding OCI applications.

This section includes the following topics:

Operating System Considerations

Parameter Types

Inserting Nulls into a Column

Indicator Variables

3-28

Chapter 3
Additional Coding Guidelines

* About Canceling Calls

» Positioned Updates and Deletes
* Reserved Words

* Polling Mode Operations in OCI
* Nonblocking Mode in OCI

» Setting Blocking Modes

* Canceling a Nonblocking Call

Operating System Considerations

Operating systems may provide facilities for spawning processes that allow child processes
to reuse the state created by their parent process.

After spawning a child process, the child process must not use the same database
connection as created by the parent. Any attempt on behalf of the child process to use the
same database connection as the parent may cause undesired connection interference and
result in intermittent ORA- 03137 errors, because Oracle Net expects only one user process to
be using a connection to the database.

Where multiple, concurrent connections are required, consider using threads if your platform
supports a threads package. Concurrent connections are supported in either single-threaded
or multithreaded applications. For better performance with many concurrently opened
connections, consider pooling them.

¢ See Also:

e Overview of OCI Multithreaded Development
e OCIThread Package
e Session Pooling in OCI

e When to Use Connection Pooling, Session Pooling, or Neither

Parameter Types

ORACLE

OCI functions take a variety of different types of parameters, including integers, handles, and
character strings.

Special considerations must be taken into account for some types of parameters, as
described in the following sections:

e Address Parameters
* Integer Parameters

e Character String Parameters

This section includes the following topics:

3-29

Chapter 3
Additional Coding Guidelines

¢ See Also:

Connect, Authorize, and Initialize Functions for more information about
parameter data types and parameter passing conventions

Address Parameters

Address parameters are used to pass the address of the variable to Oracle Database.

You should be careful when developing in C, because it normally passes scalar
parameters by value.

Integer Parameters

Binary integer and short binary integer parameters are numbers whose size is system-
dependent.

See Oracle Database documentation that is specific to your operating system for the
size of these integers on your system.

Character String Parameters

Character strings are a special type of address parameter.

Each OCI routine that enables a character string to be passed as a parameter also
has a string length parameter. The length parameter should be set to the length of the
string.

Note:

Unlike earlier versions of OCI, you do not pass -1 for the string length
parameter of a null-terminated string.

Inserting Nulls into a Column

ORACLE

How to insert a null into a database column.
You can insert a null into a database column in several ways.

* One method is to use a literal NULL in the text of an | NSERT or UPDATE statement.
For example, the SQL statement makes the ENAME column NULL.

I NSERT | NTO enpl (enane, enpno, deptno)
VALUES (NULL, 8010, 20)

* Use indicator variables in the OCI bind call.

* Insert a NULL to set both the buffer length and maximum length parameters to zero
on a bind call.

3-30

Chapter 3
Additional Coding Guidelines

< Note:

Following the SQL standard requirements, Oracle Database returns an error if
an attempt is made to fetch a null select-list item into a variable that does not
have an associated indicator variable specified in the define call.

Related Topics

e Indicator Variables
Each bind and define OCI call has a parameter that associates an indicator variable, or
an array of indicator variables, with a DML statement, a PL/SQL statement, or a query.

Indicator Variables

Each bind and define OCI call has a parameter that associates an indicator variable, or an
array of indicator variables, with a DML statement, a PL/SQL statement, or a query.

The C language does not have the concept of null values; therefore, you associate indicator
variables with input variables to specify whether the associated placeholder is a NULL. When
data is passed to an Oracle database, the values of these indicator variables determine
whether a NULL is assigned to a database field.

For output variables, indicator variables determine whether the value returned from Oracle is
a NULL or a truncated value. For a NULL fetch in an OCl St nt Fet ch2() call or a truncation in an
OCl St nt Execut e() call, the OCI call returns OCI _SUCCESS_W TH_I NFO. The output indicator
variable is set.

The data type of indicator variables is sh2. For arrays of indicator variables, the individual
array elements should be of type sb2.

This section includes the following topics:
* Input
e Output

* Indicator Variables for Named Data Types and REFs

Input

What values can be assigned to an indicator variable.

For input host variables, the OCI application can assign the following values to an indicator

variable:

Input Indicator Value Action Taken by Oracle Database

-1 Oracle Database assigns a NULL to the column, ignoring the value of the

input variable.

>=0 Oracle Database assigns the value of the input variable to the column.

Output

What values can be assigned to an indicator variable.

On output, Oracle Database can assign the following values to an indicator variable:

ORACLE 3-31

Chapter 3
Additional Coding Guidelines

Output Indicator Value Meaning

-2 The length of the item is greater than the length of the output
variable; the item has been truncated. Additionally, the original
length is longer than the maximum data length that can be
returned in the sb2 indicator variable.

-1 The selected value is null, and the value of the output variable is
unchanged.

0 Oracle Database assigned an intact value to the host variable.

>0 The length of the item is greater than the length of the output

variable; the item has been truncated. The positive value returned
in the indicator variable is the actual length before truncation.

Indicator Variables for Named Data Types and REFs

Indicator variables for most data types introduced after release 8.0 behave as
described earlier.

The only exception is SQLT_NTY (a named data type). For data of type SQLT_NTY,
the indicator variable must be a pointer to an indicator structure. Data of type
SQLT_REF uses a standard scalar indicator, just like other variable types.

When database types are translated into C struct representations using the Object
Type Translator (OTT), a null indicator structure is generated for each object type. This
structure includes an atomic null indicator, plus indicators for each object attribute.

¢ See Also:

* Documentation for the OTT in Using the Object Type Translator with
OCI, and NULL Indicator Structure for information about NULL indicator
structures

* Descriptions of OCl Bi ndByName() and OCl Bi ndByPos() in Bind, Define,
and Describe Functions, and the sections Information for Named Data
Type and REF Binds, and Information for Named Data Type and REF
Defines, and PL/SQL OUT Binds for more information about setting
indicator parameters for named data types and REFs

About Canceling Calls

How do you cancel long-running or repeated OCI calls.

On most operating systems, you can cancel long-running or repeated OCI calls by
entering the operating system's interrupt character (usually Control+C) from the
keyboard.

ORACLE 3-32

Chapter 3
Additional Coding Guidelines

< Note:

This is not to be confused with canceling a cursor, which is accomplished by calling
OCl St nt Fet ch2() with the nrows parameter set to zero.

When you cancel the long-running or repeated call using the operating system interrupt, the
error code ORA- 01013 ("user requested cancel of current operation") is returned.

When given a particular service context pointer or server context pointer, the OCl Br eak()
function performs an immediate (asynchronous) stop of any currently executing OCI function
associated with the server. It is normally used to stop a long-running OCI call being
processed on the server. The OCl Reset () function is necessary to perform a protocol
synchronization on a nonblocking connection after an OCI application stops a function with
OCl Break() .

< Note:

OCl Break() works on Windows systems.

The status of potentially long-running calls can be monitored using nonblocking calls. Use
multithreading for new applications.

¢ See Also:

e Overview of OCI Multithreaded Development
e OCIThread Package

Positioned Updates and Deletes

ORACLE

You can use the RON D associated with a SELECT...FOR UPDATE CF... statement in a later UPDATE
or DELETE statement.

The RON Dis retrieved by calling OCl Attr Get () on the statement handle to retrieve the
handle's OCl _ATTR_ROW D attribute.

For example, consider a SQL statement such as the following:

SELECT ename FROM enpl WHERE enpno = 7499 FOR UPDATE OF sal

When the fetch is performed, the RON D attribute in the handle contains the row identifier of
the selected row. You can retrieve the RON D into a buffer in your program by calling
OCl AttrGet () as follows:

OCl Rowi d *rowi d; /* the rowid in opaque format */

/* allocate descriptor with OCl DescriptorAloc() */

status = OCl DescriptorAlloc ((void *) envhp, (void **) &owd,
(ub4) OCI_DTYPE_ROND, (size_t) 0, (void **) 0);

3-33

Chapter 3
Additional Coding Guidelines

status = OCIAttrGet ((void *) nystntp, OCI_HTYPE STM,
(void *) rowid, (ub4 *) 0, OCI _ATTR_ ROWND, (OClError *) myerrhp);

You can then use the saved RON Din a DELETE or UPDATE statement. For example, if
row d is the buffer in which the row identifier has been saved, you can later process a
SQL statement such as the following by binding the new salary to the : 1 placeholder
and rowi d to the : 2 placeholder.

UPDATE enpl SET sal = :1 WHERE rowid = :2

Be sure to use data type code 104 (RON D descriptor, see Table 4-2) when binding
row dto: 2.

By using prefetching, you can select an array of RON Ds for use in subsequent batch
updates.

" See Also:

« UROWID and DATE for more information about RON Ds

e External Data Types for a table of external data types and codes

Reserved Words

Some words are reserved by Oracle.

That is, some reserved words have a special meaning to Oracle and cannot be
redefined. For this reason, you cannot use them to name database objects such as
columns, tables, or indexes.

This section includes the following topic: Oracle Reserved Namespaces

¢ See Also:

Oracle Database SQL Language Reference and Oracle Database PL/SQL
Language Reference to view the lists of the Oracle keywords or reserved
words for SQL and PL/SQL

Oracle Reserved Namespaces

ORACLE

What namespaces are reserved by Oracle. For a complete list of functions within a
particular namespace, refer to the document that corresponds to the appropriate
Oracle library.

Table 3-5 contains a list of namespaces that are reserved by Oracle. The initial
characters of function names in Oracle libraries are restricted to the character strings
in this list. Because of potential name conflicts, do not use function names that begin
with these characters.

3-34

Chapter 3
Additional Coding Guidelines

Table 3-5 Oracle Reserved Namespaces

Namespace Library

XA External functions for XA applications only

SQ External SQLLIB functions used by Oracle Precompiler and SQL*Module
applications

o0 External OCI functions internal OCI functions

UPl, KP Function names from the Oracle UPI layer

NA Oracle Net Native Services Product

NC Oracle Net RPC Project

ND Oracle Net Directory

NL Oracle Net Network Library Layer

NM Oracle Net Management Project

NR Oracle Net Interchange

NS Oracle Net Transparent Network Service

NT Oracle Net Drivers

NZ Oracle Net Security Service

O8N Oracle Net V1

TTC Oracle Net Two Task

GEN, L, ORA Core library functions

LI, LM LX Function names from the Oracle Globalization Support layer

S Function names from system-dependent libraries

KO Kernel Objects

Polling Mode Operations in OCI

OCI has calls that poll for completion.

ORACLE

Examples of such polling mode calls are:

* OCI calls in nonblocking mode

* OCI calls that operate on LOB data in pieces such as OCl LobRead2() and

CCl LobWite2()

e (OC Stnt Execut e() and OCl St nt Fet ch2() when used with OCl St nt Set Pi ecel nfo() and
OCl St nt Get Pi ecel nfo()

In such cases, OCI requires that the application ensure that the same OCI call is repeated on
the connection and nothing else is done on the connection in the interim. Performing any
other OCI call on such a connection (when OCI has handed control back to the caller) can
result in unexpected behavior.

Hence, with such polling mode OCI calls, the caller must ensure that the same call is
repeated on the connection and that nothing else is done until the call completes.

OCl Break() and OCl Reset () are exceptions to the rule. These calls are allowed so that the
caller can stop an OCI call that has been started.

3-35

Chapter 3
Additional Coding Guidelines

Nonblocking Mode in OCI

ORACLE

OCI provides the ability to establish a server connection in blocking mode or
nonblocking mode.

Note:

Because nonblocking mode requires the caller to repeat the same call until it
completes, it increases CPU usage. Instead, use multithreaded mode.

" See Also:

e Overview of OCI Multithreaded Development
e OCIThread Package

When a connection is made in blocking mode, an OCI call returns control to an OCI
client application only when the call completes, either successfully or in error. With the
nonblocking mode, control is immediately returned to the OCI program if the call could
not complete, and the call returns a value of OCl _STI LL_EXECUTI NG.

In nonblocking mode, an application must test the return code of each OCI function to
see if it returns OCl _STI LL_EXECUTI NG. If it does, the OCI client can continue to
process program logic while waiting to retry the OCI call to the server. This mode is
particularly useful in graphical user interface (GUI) applications, real-time applications,
and in distributed environments.

The nonblocking mode is not interrupt-driven. Rather, it is based on a polling
paradigm, which means that the client application must check whether the pending call
is finished at the server by executing the call again with the exact same parameters.

The following features and functions are not supported in nonblocking mode:
* Direct Path Load

* LOB buffering

e Objects

* Query cache

e Scrollable cursors

» Transparent application failover (TAF)
* OCl AGEngArray()

* OO0 AQDeqArray()

e (OCl DescribeAny()

e (OCl LobArrayRead()

e OClLobArrayWite()

3-36

Chapter 3
About Using PL/SQL in an OCI Program

e (OClTransStart()
e (OCl TransDet ach()

Setting Blocking Modes

You can modify or check an application's blocking status by calling OCl Attr Set () to set the
status, or OCl Attr Get () to read the status on the server context handle with the attrtype
parameter set to OCl _ATTR_NONBLOCKI NG_MODE.

You must set this OCI _ATTR_NONBLOCKI NG_MODE attribute only after OCl Sessi onBegi n() or
CCl Logon2() has been called. Otherwise, an error is returned.

Note:

Only functions that have a server context or a service context handle as a
parameter can return OCl _STI LL_EXECUTI NG.

¢ See Also:

Server Handle Attributes

Canceling a Nonblocking Call

You can cancel a long-running OCI call by using the OCl Br eak() function while the OCI call is
in progress.

You must then issue an OCl Reset () call to reset the asynchronous operation and protocol.

About Using PL/SQL in an OCI Program

ORACLE

PL/SQL is Oracle's procedural extension to the SQL language.

PL/SQL supports tasks that are more complicated than simple queries and SQL data
manipulation language (DML) statements. PL/SQL enables you to group some constructs
into a single block and execute it as a unit. These constructs include:

e One or more SQL statements

* \Variable declarations

e Assignment statements

* Procedural control statements such as | F. .. THEN. . . ELSE statements and loops
* Exception handling

You can use PL/SQL blocks in your OCI program to perform the following operations:

e Call Oracle stored procedures and stored functions

» Combine procedural control statements with several SQL statements, to be executed as
a unit

3-37

Chapter 3
OCI Globalization Support

Access special PL/SQL features such as tables, CURSOR FOR loops, and exception
handling

Use cursor variables

Operate on objects in a server

4

Note:

— Although OCI can only directly process anonymous blocks, and not
named packages or procedures, you can always put the package or
procedure call within an anonymous block and process that block.

— Note that all OUT variables must be initialized to NULL (through an
indicator of -1, or an actual length of 0) before a PL/SQL begin-end
block can be executed in OCI.

— OCI does not support the PL/SQL RECORD data type.

— When binding a PL/SQL VARCHAR?2 variable in OCI, the maximum
size of the bind variable is 32512 bytes, because of the overhead of
control structures.

Note:

When you write PL/SQL code, it is important to remember that the parser
treats everything between a pair of hyphens"--" and a carriage return
character as a comment. So if comments are indicated on each line by
"--" the C compiler can concatenate all lines in a PL/SQL block into a
single line without putting a carriage return "\n" for each line. In this
particular case, the parser fails to extract the PL/SQL code of a line if the
previous line ends with a comment. To avoid the problem, the
programmer should put "\n" after each "--" comment to ensure that the
comment ends there.

See Also:

Oracle Database PL/SQL Language Reference for information about
coding PL/SQL blocks

OCI Globalization Support

ORACLE

The following sections introduce OCI functions that can be used for globalization
purposes, such as deriving locale information, manipulating strings, character set
conversion, and OCIl messaging.

These functions are also described in detail in other chapters of this guide because
they have multiple purposes and functionality.

This section includes the following topics:

3-38

Chapter 3
OCI Globalization Support

* Client Character Set Control from OCI

* Character Control and OCI Interfaces

* Character-Length Semantics Support in Describe Operations
e Character Set Support in OCI

» Controlling Language and Territory in OCI

* Other OCI Globalization Support Functions
* About Getting Locale Information in OCI

* About OCI and the BOM (Byte Order Mark)
e About Manipulating Strings in OCI

* About Converting Character Sets in OCI

* OCI Messaging Functions

* Imsgen Utility

Client Character Set Control from OCI

The function OCl EnvN sCreat e() enables you to set character set information in applications
independently from NLS_LANG and NLS_NCHAR settings.

OCl _UTF161 D cannot be set from NLS_LANG or NLS_NCHAR and must be set using

OCl EnvN sCreat e() . One application can have several environment handles initialized within
the same system environment using different client-side character set IDs and national
character set IDs. For example:

OCl EnvN sCreat e(OCl Env **envhpp, ..., csid, ncsid);

In this example, csi d is the value for the character set ID for the parameter char set , and
ncsi d is the value for the national character set ID for the parameter nchar set . Either can be
0 or OCI _UTF16I D. If both are 0, this is equivalent to using OCl EnvCr eat e() instead. The other
arguments are the same as for the OCl EnvCreat e() call.

Any Oracle character set ID, except ALL6UTF16, can be specified through the
OCl EnvN sCt rat e() function to specify the encoding of metadata, SQL CHAR data, and SQL
NCHAR data.

You can retrieve character sets in NLS_LANGand NLS_NCHAR through another function,
OCl Nl sEnvi ronnent Vari abl eGet () .

¢ See Also:

e OCIEnvNIsCreate()

e About Setting Client Character Sets in OCI for a pseudocode fragment that
illustrates a sample usage of these calls

Character Control and OCI Interfaces

How is character control performed by OCI interfaces.

ORACLE 3-39

Chapter 3
OCI Globalization Support

The OCI NI sGet I nf o() function returns information about any character set, including
OCl _UTF16l Dif this value has been used in OCl EnvN sCreat e() .

The OCl AttrGet () function returns the character set ID and national character set ID
that were passed into OCl EnvN sCreat e() . This is used to get

OCl _ATTR_ENV_CHARSET_| Dand OCI _ATTR_ENV_NCHARSET _| D. This includes the value
OCl _UTF16l D.

If both char set and nchar set parameters were set to 0 by OCl EnvN sCreat e(), the
character set IDs in NLS_LANGand NLS_NCHAR are returned.

The OCl Attr Set () function sets character IDs as the defaults if
OCl _ATTR_CHARSET_FORMis reset through this function. The eligible character set IDs
include OCI _UTF16I Dif OCl EnvNl sCreat e() is passed as charset or nchar set .

The OCI Bi ndByName() or OCl Bi ndByNanme2() and OCl Bi ndByPos() or CCl Bi ndByPos2()
functions bind variables with the default character set in the OCl EnvN sCreat e() call,
including OCI _UTF161 D. The actual length and the returned length are always in bytes if
OCl EnvN sCreat () is used.

The OCl Def i neByPos() or OCl Def i neByPos2() function defines variables with the
value of charset in OCl EnvN sCreat e(), including OCl _UTF16l D, as the default. The
actual length and returned length are always in bytes if OCl EnvNl sCr eat e() is used.
This behavior for bind and define handles is different from that when OCl EnvCr eat e()
is used and OClI _UTF16I Dis the character set ID for the bind and define handles.

Character-Length Semantics in OCI

OCI works as a translator between server and client, and passes around character
information for constraint checking.

There are two kinds of character sets: variable-width and fixed-width. (A single-byte
character set is a special case of a fixed-width character set where each byte stands
for one character.)

For fixed-width character sets, constraint checking is easier, as the number of bytes is
equal to a multiple of the number of characters. Therefore, scanning of the entire string
is not needed to determine the number of characters for fixed-width character sets.
However, for variable-width character sets, complete scanning is needed to determine
the number of characters in a string.

Character Set Support in OCI

How does OCI support character sets.

See Character-Length Semantics Support in Describe Operations and Character
Conversion in OCI Binding and Defining for a complete discussion of character set
support in OCI.

Controlling Language and Territory in OCI

The NLS language and territory can also be set programmatically using the attributes
OCl _ATTR_ENV_NLS_LANGUAGE and OCl _ATTR_ENV_NLS_TERRI TCRY on OCI environment
handle.

ORACLE 3-40

Chapter 3
OCI Globalization Support

See the following attributes for more details on their usage. These attributes will be effective
for the database sessions created from that environment handle after the attributes have
been set.

- OCI_ATTR_ENV_NLS_LANGUAGE
« OCI_ATTR_ENV_NLS_TERRITORY

Other OCI Globalization Support Functions

Many globalization support functions accept either the environment handle or the user
session handle.

The OCI environment handle is associated with the client NLS environment variables. This
environment does not change when ALTER SESS| ON statements are issued to the server. The
character set associated with the environment handle is the client character set. The OCI
session handle (returned by OCl Sessi onBegi n()) is associated with the server session
environment. The NLS settings change when the session environment is modified with an
ALTER SESSI ON statement. The character set associated with the session handle is the
database character set.

Note that the OCI session handle does not have NLS settings associated with it until the first
transaction begins in the session. SELECT statements do not begin a transaction.

¢ See Also:

e OCI Globalization Support Functions

e Oracle Database Globalization Support Guide for information about OCI
programming with Unicode

About Getting Locale Information in OCI

An Oracle Database locale consists of language, territory, and character set definitions.

The locale determines conventions such as day and month names, as well as date, time,
number, and currency formats. A globalized application follows a user's locale setting and
cultural conventions. For example, when the locale is set to German, users expect to see day
and month names in German.

¢ See Also:

e OCI Locale Functions
e OCINIsEnvironmentVariableGet()

You can retrieve the following information with the OCI Nl sCGet I nf o() function:

* Days of the week (translated)

* Abbreviated days of the week (translated)

ORACLE 3-41

Chapter 3
OCI Globalization Support

* Month names (translated)
» Abbreviated month names (translated)
* Yes/no (translated)

* AM/PM (translated)

* AD/BC (translated)

* Numeric format

* Debit/credit

e Date format

e Currency formats

» Default language

* Default territory

* Default character set

e Default linguistic sort

* Default calendar

The code in Example 3-13 retrieves locale information and checks for errors.
Example 3-13 Getting Locale Information in OCI

sword MyPrintLinguisticName(envhp, errhp)
CClEnv *envhp;
CCl Error *errhp;

{

OraText infoBuf[OCl _NLS MAXBUFSZ] ;

sword ret;

ret = OCl N sGet | nfo(envhp, /* environnment handle */
errhp, [* error handle */
i nf oBuf, [* destination buffer */
(size_t) OCl _NLS MAXBUFSZ, /* buffer size */
(ub2) OCI _NLS_LI NGUI STI C_NAME) ; I* item*/

if (ret != OOl _SUCCESS)

{
checkerr(errhp, ret, OCl_HTYPE_ERROR);

ret = OCl _ERROR;
}

el se

{
printf("NLS [inguistic: %\n", infoBuf);

}

return(ret);

}
About OCI and the BOM (Byte Order Mark)

OCI does not support nor handle the BOM (byte order mark) and assumes that the
byte order is native to the machine on which your application is executing.

Your OCI application must not pass a string containing a BOM expecting that OCI can
detect the encoding of the string. Your OCI application must remove the BOM if it

ORACLE 3-42

Chapter 3
OCI Globalization Support

exists in the string being passed in and ensure that it is in the encoding the OCI function
expects.

About Manipulating Strings in OCI

ORACLE

Multibyte strings and wide-character strings are supported for string manipulation.

Multibyte strings are encoded in native Oracle character sets. Functions that operate on
multibyte strings take the string as a whole unit with the length of the string calculated in
bytes. Wide-character string (wchar) functions provide more flexibility in string manipulation.
They support character-based and string-based operations where the length the string
calculated in characters.

The wide-character data type, OCl Whar , is Oracle-specific and should not be confused with
the wchar _t data type defined by the ANSI/ISO C standard. The Oracle wide-character data
type is always 4 bytes in all operating systems, whereas the size of wchar _t depends on the
implementation and the operating system. The Oracle wide-character data type normalizes
multibyte characters so that they have a uniform fixed width for easy processing. This
guarantees no data loss for round-trip conversion between the Oracle wide-character set and
the native character set.

String manipulation can be classified into the following categories:

e Conversion of strings between multibyte and wide character
* Character classifications

* Case conversion

e Calculations of display length

e General string manipulation, such as comparison, concatenation, and searching

¢ See Also:

OCI String Manipulation Functions

Example 3-14 shows a simple case of manipulating strings.

The OCI character classification functions are described in detail in OCI Character
Classification Functions.

Example 3-15 shows how to classify characters in OCI.
Example 3-14 Basic String Manipulation in OCI

size_t MyConvert Ml ti Byt eToW deChar (envhp, dstBuf, dstSize, srcStr)
CCl Env *envhp;
OCl Wehar *dst Buf;

size_t dst Si ze;
O aText *srcStr; /* null termnated source string */
{

sword ret;

size_t dstlLen = 0;
size_t srclLen;

/* get length of source string */
srcLen = OCIMultiByteStrlen(envhp, srcStr);

3-43

Chapter 3
OCI Globalization Support

ret = OCl Ml tiBytelnSi zeToW deChar (envhp, [* environnent handle */
dst Buf, /* destination buffer */
dst Si ze, /* destination buffer size */
srcstr, /* source string */
srclLen, /* length of source string */
&dst Len); /* pointer to destination length */

if (ret != OO _SUCCESS)

checkerr(envhp, ret, OCI_HTYPE_ENV);
}

return(dstLen);

}

Example 3-15 Classifying Characters in OCI

bool ean Myl sNunber W deChar Stri ng(envhp, srcStr)
OClEnv *envhp;

OCl Whar *srcStr; /* wide char source string */
{
OCl Wehar *pstr = srcStr; /* define and init pointer */
bool ean status = TRUE; /* define and initialize status variable */

/* Check input */
if (pstr == (OCIWhar*) NULL)
return(FALSE);

if (*pstr == (OCIWehar) NULL)
return(FALSE);

/* check each character for digit */

do
if (OCIWdeCharlsDigit(envhp, *pstr) !'= TRUE)
{
status = FALSE;
break; /* non-decimal digit character */
1

} while (*++pstr != (OCl Whar) NULL);

return(status);

}

About Converting Character Sets in OCI

ORACLE

Conversion between Oracle character sets and Unicode (16-bit, fixed-width Unicode
encoding) is supported.

Replacement characters are used if a character has no mapping from Unicode to the
Oracle character set. Therefore, conversion back to the original character set is not
always possible without data loss.

Character set conversion functions involving Unicode character sets require data bind
and define buffers to be aligned at a ub2 address or an error is raised.

Example 3-16 shows a simple conversion into Unicode.

3-44

Chapter 3
OCI Globalization Support

¢ See Also:

OCI Character Set Conversion Functions

Example 3-16 Converting Character Sets in OCI

/* Exanpl e of Converting Character Sets in OCl
__ */

size_t MyConvert Ml ti Byt eToUni code(envhp, errhp, dstBuf, dstSize, srcStr)
OCl Env *envhp;

OCl Error *errhp;

ub2 *dst Buf;

size_t dstSize;

OraText *srcStr;

{
size_t dstlLen = 0;
size_t srclLen = 0;
OraText tb[OCl _NLS MAXBUFSZ] ; /* NLS info buffer */
ub2 cid; /* OClEnv character set ID */
/* get OClEnv character set */
checkerr(errhp, OCI N sCetlnfo(envhp, errhp, tbh, sizeof(tbh),
OCl _NLS_CHARACTER_SET));
cid = OClI N sChar Set NaneTol d(envhp, th);
if (cid == OC _UTF16l D)
{
ub2 *srcStrb2 = (ub2*)srcStr;
while (*srcStrUb2++) ++srclen;
srcLen *= sizeof (ub2);
}
el se
srcLen = OCIMul tiByteStrlen(envhp, srcStr);
checkerr (errhp,
OCl NI sChar Set Convert (
envhp, [* environnent handle */
errhp, [* error handle */
OCl _UTF161 D, /* Unicode character set ID */
dst Buf, /* destination buffer */
dst Si ze, /* size of destination buffer */
cid, /* OClEnv character set ID */
srcstr, /* source string */
srclLen, /* length of source string */
&dstLen)); /* pointer to destination length */
return dstLen/sizeof (ub2);
}

OCI Messaging Functions

ORACLE

The user message API provides a simple interface for cartridge developers to retrieve their
own messages and Oracle Database messages.

Example 3-17 creates a message handle, initializes it to retrieve messages from i mpus. nsg,
retrieves message number 128, and closes the message handle. It assumes that OCI

3-45

Chapter 3
OCI Globalization Support

environment handles, OCI session handles, and the product, facility, and cache size
have been initialized properly.

Example 3-17 Retrieving a Message from a Text Message File

CCl Msg msghnd,; /* message handle */
/* initialize a message handle for retrieving nmessages frominpus. nsg*/
err = OCl MessageQpen(hndl, errhp, &mwsghnd, prod, fac, OCl _DURATI ON_SESSI ON) ;
if (err !'= OC _SUCCESS)
/* error handling */

/* retrieve the message with nmessage nunber = 128 */
megptr = OCl MessageGet (nmsghnd, 128, msgbuf, sizeof (nsgbuf));
/* do something with the message, such as display it */

/* close the nessage handl e when there are no nore messages to retrieve */
CCl Messaged ose(hndl, errhp, msghnd);

¢ See Also:

e Oracle Database Data Cartridge Developer's Guide

e OCI Messaging Functions

Imsgen Utility

The | nsgen utility converts text-based message files (. nsg) into binary format (. nsb)
so that Oracle Database messages and OCI messages provided by the user can be
returned to OCI functions in the desired language.

The BNF syntax of the Imsgen utility is as follows:

I megen text _file product facility [l anguage]

In the preceding syntax:

e« text fileisamessage text file.

e product is the name of the product.
» facility is the name of the facility.

e |l anguage is the optional message language corresponding to the language
specified in the NLS_LANG parameter. The language parameter is required if the
message file is not tagged properly with language.

This section includes the following topics:
e Guidelines for Text Message Files

e An Example of Creating a Binary Message File from a Text Message File

Guidelines for Text Message Files

What are the guidelines that text message files must follow.

Text message files must follow these guidelines:

ORACLE 3-46

Chapter 3
OCI Globalization Support

* Lines that start with "/ " and "/ / " are treated as internal comments and are ignored.

e To tag the message file with a specific language, include a line similar to the following:
CHARACTER_SET_NAME= Japanese_Japan. JAL6EUC

e Each message contains three fields:

message_number, warning_l evel, nessage_text

— The message number must be unigue within a message file.
— The warning level is not currently used. Set to 0.
— The message text cannot be longer than 76 bytes.

The following is an example of an Oracle Database message text file:

| Copyright (c) 2001 by the Oracle Corporation. Al rights reserved.
/| This is a test us7ascii nessage file

CHARACTER _SET_NAME= american_aneri ca. us7ascii

/

00000, 00000, "Export terminated unsuccessfully\n"

00003, 00000, "no storage definition found for segnent(%u, %u)"

An Example of Creating a Binary Message File from a Text Message File

ORACLE

How do you create a binary message file from a text message file.

The following table contains sample values for the | nsgen parameters:

Imsgen Parameter Value

pr oduct $HOVE/ myAppl i cati on
facility i

| anguage AVERI CAN

text file i Npus. nsg

The text message file is found in the following location:
$HOVE/ my App/ mesg/ i npus. g
One of the lines in the text message file is:

00128, 2, "Duplicate entry % found in %"

The | nsgen utility converts the text message file (i npus. msg) into binary format, resulting in a
file called i npus. nsb:

% | nsgen i nmpus. msg $HOVE/ nyAppl i cation inp AVERI CAN

The following output results:

Generating nmessage file inpus.nsg -->
[home/ scot t/ myAppl i cation/ nesg/i npus. nsb

NLS Binary Message File Generation Utility: Version 9.2.0.0.0 -Production
Copyright (c) Oacle Corporation 1979, 2001. Al rights reserved.

CORE 9.2.0.0.0 Production

3-47

Data Types

This chapter provides a reference to Oracle external data types used by OCI applications.

It also discusses Oracle data types and the conversions between internal and external
representations that occur when you transfer data between your program and an Oracle
database.

This chapter contains these topics:

* Oracle Data Types

* Internal Data Types
» External Data Types
» Data Conversions

* Typecodes

» Definitions in oratypes.h

¢ See Also:

Oracle Database SQL Language Reference for detailed information about
Oracle internal data types

Oracle Data Types

ORACLE

One of the main functions of an OCI program is to communicate with an Oracle database.

The OCI application may retrieve data from database tables through SQL SELECT queries, or
it may modify existing data in tables through | NSERT, UPDATE, or DELETE statements.

Inside a database, values are stored in columns in tables. Internally, Oracle represents data
in particular formats known as internal data types. Examples of internal data types include
NUMBER, CHAR, and DATE (see Table 4-1).

In general, OCI applications do not work with internal data type representations of data, but
with host language data types that are predefined by the language in which they are written.
When data is transferred between an OCI client application and a database table, the OCI
libraries convert the data between internal data types and external data types.

External data types are host language types that have been defined in the OCI header files.
When an OCI application binds input variables, one of the bind parameters is an indication of
the external data type code (or SQLT code) of the variable. Similarly, when output variables
are specified in a define call, the external representation of the retrieved data must be
specified.

4-1

ORACLE

Chapter 4
Oracle Data Types

In some cases, external data types are similar to internal types. External types provide
a convenience for the programmer by making it possible to work with host language
types instead of proprietary data formats.

Note:

Even though some external types are similar to internal types, an OCI
application never binds to internal data types. They are discussed here
because it can be useful to understand how internal types can map to
external types.

OCI can perform a wide range of data type conversions when transferring data
between an Oracle database and an OCI application. There are more OCI external
data types than Oracle internal data types. In some cases, a single external type maps
to an internal type; in other cases, multiple external types map to a single internal type.

The many-to-one mappings for some data types provide flexibility for the OCI
programmer. For example, suppose that you are processing the following SQL
statement:

SELECT sal FROM enp WHERE enpno = :enpl oyee_nunber

You want the salary to be returned as character data, instead of a binary floating-point
format. Therefore, you specify an Oracle database external string data type, such as
VARCHAR2 (code = 1) or CHAR (code = 96) for the dty parameter in the

OCl Def i neByPos() or OCl Defi neByPos2() call for the sal column. You also must
declare a string variable in your program and specify its address in the val uep
parameter. See Table 4-2 for more information.

If you want the salary information to be returned as a binary floating-point value,
however, specify the FLOAT (code = 4) external data type. You also must define a
variable of the appropriate type for the val uep parameter.

Oracle Database performs most data conversions transparently. The ability to specify
almost any external data type provides a lot of power for performing specialized tasks.
For example, you can input and output DATE values in pure binary format, with no
character conversion involved, by using the DATE external data type.

To control data conversion, you must use the appropriate external data type codes in
the bind and define routines. You must tell Oracle Database where the input or output
variables are in your OCI program and their data types and lengths.

OCI also supports an additional set of OCI typecodes that are used by the Oracle
Database type management system to represent data types of object type attributes.
You can use a set of predefined constants to represent these typecodes. The
constants each contain the prefix OCl _TYPECCDE.

In summary, the OCI programmer must be aware of the following different data types
or data representations:

» Internal Oracle data types, which are used by table columns in an Oracle
database. These also include data types used by PL/SQL that are not used by
Oracle Database columns (for example, indexed table, boolean, record).

4-2

Chapter 4
Oracle Data Types

» External OCI data types, which are used to specify host language representations of
Oracle data.

e OCl _TYPECODE values, which are used by Oracle Database to represent type information
for object type attributes.

Information about a column's internal data type is conveyed to your application in the form of
an internal data type code. With this information about what type of data is to be returned,
your application can determine how to convert and format the output data. The Oracle
internal data type codes are listed in the section Internal Data Types.

¢ See Also:

e DATE for a description of the external data type

e Internal Data Types

« External Data Types and About Using External Data Type Codes

e Typecodes, and Relationship Between SQLT and OCI_TYPECODE Values

e Oracle Database SQL Language Reference for detailed information about
Oracle internal data types

e About Describing Select-List Items for information about describing select-list
items in a query

About Using External Data Type Codes

ORACLE

An external data type code indicates to Oracle Database how a host variable represents data
in your program.

This determines how the data is converted when it is returned to output variables in your
program, or how it is converted from input (bind) variables to Oracle Database column
values. For example, to convert a NUMBER in an Oracle database column to a variable-length
character array, you specify the VARCHAR2 external data type code in the OCl Def i neByPos()
call that defines the output variable.

To convert a bind variable to a value in an Oracle Database column, specify the external data
type code that corresponds to the type of the bind variable. For example, to input a character
string such as 02-FEB-65 to a DATE column, specify the data type as a character string and
set the length parameter to 9.

It is always the programmer's responsibility to ensure that values are convertible. If you try to
insert the string " MY BIRTHDAY" into a DATE column, you get an error when you execute the
statement.

¢ See Also:

Table 4-2 for a complete list of the external data types and data type codes

4-3

Internal Data Types

Lists and describes the internal data types.

Chapter 4
Internal Data Types

Table 4-1 lists the internal Oracle Database data types (also known as built-in), along
with each type's maximum internal length and data type code. PL/SQL types listed in
Table 4-10 and Table 4-11 are also considered to be internal data types.

Table 4-1 Internal Oracle Database Data Types

|

Internal Oracle Database Data Type Maximum Internal Length Data Type

Code

VARCHAR2, NVARCHAR2 4000 bytes (standard) 1
32767 bytes (extended)

NUMBER 21 bytes 2

LONG 2"31-1 bytes (2 gigabytes) 8

DATE 7 bytes 12

RAW 2000 bytes (standard) 23
32767 bytes (extended)

LONG RAW 2731-1 bytes 24

ROW D 10 bytes 69

CHAR, NCHAR 2000 bytes 96

Bl NARY_FLOAT 4 bytes 100

Bl NARY_DOUBLE 8 bytes 101

User-defined type (object type, VARRAY, Not Applicable 108

nested table)

REF Not Applicable 111

CLOB, NCLOB 128 terabytes 112

BLCB 128 terabytes 113

BFI LE Maximum operating system 114
file size or UBSMAXVAL

TI MESTAVP 11 bytes 180

TI MESTAMP W TH TI VE ZONE 13 bytes 181

[NTERVAL YEAR TO MONTH 5 bytes 182

I NTERVAL DAY TO SECOND 11 bytes 183

URON D 3950 bytes 208

TI MESTAMP W TH LOCAL TI ME ZONE 11 bytes 231

This section includes the following topics:

* LONG, RAW, LONG RAW, VARCHAR?2
e Character Strings and Byte Arrays

e UROWID

* BINARY_FLOAT and BINARY_DOUBLE

ORACLE 4-4

Chapter 4
Internal Data Types

¢ See Also:

Oracle Database SQL Language Reference for more information about these built-
in data types

LONG, RAW, LONG RAW, VARCHAR?2

Use piecewise capabilities provided by specific OCI APIs to perform inserts, updates or
fetches of these data types.

You can use the piecewise capabilities provided by OCl Bi ndByNane() or OCl Bi ndByNane2(),
OCl Bi ndByPos() or OCl Bi ndByPos2(), OCl Def i neByPos() or OCl Defi neByPos2(),

OCl St nt Get Pi ecel nfo(), and OCl St nt Set Pi ecel nfo() to perform inserts, updates or fetches
involving column data of the LONG, RAW LONG RAW and VARCHAR? data types.

¢ See Also:

* OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()

* OCIDefineByPos() or OCIDefineByPos2()
* OCIStmtGetPiecelnfo()

* OCIStmtSetPiecelnfo()

Character Strings and Byte Arrays

ORACLE

Use Oracle internal data types to specify columns that contain characters or arrays of bytes.

You can use following Oracle internal data types to specify columns that contain characters or
arrays of bytes: CHAR, VARCHAR2, RAW LONG, and LONG RAW

Note:

LOBs can contain characters and BFI LEs can contain binary data. They are handled
differently than other types, so they are not included in this discussion.

CHAR, VARCHAR2, and LONG columns normally hold character data. RAWand LONG RAWhold bytes
that are not interpreted as characters (for example, pixel values in a bit-mapped graphic
image). Character data can be transformed when it is passed through a gateway between
networks. Character data passed between machines using different languages, where single
characters may be represented by differing numbers of bytes, can be significantly changed in
length. Raw data is never converted in this way.

It is the responsibility of the database designer to choose the appropriate Oracle internal data
type for each column in the table. The OCI programmer must be aware of the many possible

4-5

UROWID

Chapter 4
Internal Data Types

ways that character and byte-array data can be represented and converted between
variables in the OCI program and Oracle Database tables.

When an array holds characters, the length parameter for the array in an OCI call is
always passed in and returned in bytes, not characters.

¢ See Also:

LOB and BFILE Operations for more information about CHAR, VARCHAR2, RAW
LONG, and LONG RAWdata types

The Universal RON D (UROW D) is a data type that can store both logical and physical
rowids of Oracle Database tables.

Logical rowids are primary key-based logical identifiers for the rows of index-organized
tables (10Ts).

To use columns of the UROW D data type, the value of the COVPATI BLE initialization
parameter must be set to 8.1 or later.

The following host variables can be bound to Universal RON Ds:
¢ SQLT_CHR (VARCHAR?)

« SQLT_VCS (VARCHAR)

e SQT_STR (NULL-terminated string)

¢ SQLT_LVC (LONG VARCHAR)

« SQLT_AFC (CHAR)

¢ SQLT_AVC (CHARZ)

° SQT_VST (OCI String)

e SQ.T_RDD (RON D descriptor)

BINARY_FLOAT and BINARY_DOUBLE

ORACLE

The Bl NARY_FLOAT and BI NARY_DOUBLE data types represent single-precision and
double-precision floating point values that mostly conform to the IEEE754 Standard for
Floating-Point Arithmetic.

Prior to the addition of these data types with release 10.1, all numeric values in an
Oracle Database were stored in the Oracle NUMBER format. These new binary floating
point types do not replace Oracle NUMBER. Rather, they are alternatives to Oracle
NUMBER that provide the advantage of using less disk storage.

These internal types are represented by the following codes:

« SQLT_I BFLOAT for BI NARY_FLOAT
SQLT_| BDOUBLE for Bl NARY DOUBLE

4-6

Chapter 4
External Data Types

All the following host variables can be bound to Bl NARY_FLOAT and Bl NARY_DOUBLE data
types:

e SQ.T_BFLQAT (native float)

e SQ.T_BDOUBLE (native double)
° SQLT_INT (integer)

e SQLT_FLT (float)

* SQ.T_NUM(Oracle NUMBER)

e SQ.T_U N (unsigned)

« SQLT_VNU (VARNUM)

¢ SQLT_CHR (VARCHAR?)

¢ SQLT_VCS (VARCHAR)

* SQT_STR(NULL-terminated String)
¢ SQLT_LVC (LONG VARCHAR)

« SQLT_AFC (CHAR)

¢ SQLT_AVC (CHAR?)

e SQT VST (OCIString)

For best performance, use external types SQLT_BFLOAT and SQLT_BDCQUBLE in conjunction with
the BI NARY_FLOAT and Bl NARY_DOUBLE data types.

External Data Types

Lists and describes the data type codes for external data types.

Table 4-2 lists data type codes for external data types. For each data type, the table lists the
program variable types for C from or to which Oracle Database internal data is normally
converted.

Table 4-2 External Data Types and Codes
|

External Data Type Code Program Variable? OCI-Defined Constant
VARCHAR2 1 char[n] SQLT_CHR

NUMBER 2 unsigned char[21] SQLT_NUM

8-bit signed | NTEGER 3 signed char SQLT_INT

16-bit signed | NTECER 3 signed short, signed int SQLT_INT

32-bit signed | NTEGER 3 signed int, signed long SQLT_INT

64-bit signed | NTEGER 3 signed long, signed long long SQLT_I'NT

FLOAT 4 float, double SQLT_FLT
NULL-terminated STRI NG 5 char[n+1] SQLT_STR

VARNUM 6 char[22] SQLT_VNU

LONG 8 char[n] SQLT_LNG

VARCHAR 9 char[n+sizeof(short integer)] SQLT_VCS
ORACLE 4-7

Chapter 4
External Data Types

Table 4-2 (Cont.) External Data Types and Codes
]

External Data Type Code Program Variable! OCI-Defined Constant
DATE 12 char[7] SQLT_DAT
VARRAW 15 unsigned char[n+sizeof(short SQLT_VB
integer)]
native float 21 float SQLT_BFLOAT
native double 22 double SQLT_BDOUBLE
RAW 23 unsigned char[n] SQ.T_BIN
LONG RAW 24 unsigned char[n] SQLT_LBI
UNSI GNED | NT 68 unsigned SQT_UN
LONG VARCHAR 94 char[n+sizeof(integer)] SQT_LVC
LONG VARRAW 95 unsigned char[n+sizeof(integer)] SQLT_LVB
CHAR 96 char[n] SQLT_AFC
CHARZ 97 char[n+1] SQLT_AVC
ROW D descriptor 104 OCIRowid * SQLT_RDD
NAMED DATATYPE 108 struct SQLT_NTY
REF 110 OCIRef SQLT_REF
Character LOB descriptor 112 OClLobLocator? SQLT_CLOB
Binary LOB descriptor 113 OClLobLocator? SQLT _BLOB
Binary FILE descriptor 114 OClLobLocator SQT_FILE
OCl STRI NGtype 155 OCIString SQLT_VST3
OCl DATE type 156 OClDate * SQLT_ODT3
ANSI DATE descriptor 184 OClIDateTime * SQLT_DATE
Tl MESTAWMP descriptor 187 OClIDateTime * SQLT_TI MESTAMP
TI MESTAMP W TH TI ME ZONE 188 OClDateTime * SQLT_TI MESTAMP_TZ
descriptor
[NTERVAL YEAR TO MONTH 189 OClInterval * SQLT_I NTERVAL_YM
descriptor
I NTERVAL DAY TO SECOND 190 OClInterval * SQLT_I NTERVAL_DS
descriptor
TI MESTAMP W TH LOCAL TI ME 232 OClDateTime * SQLT_TI MESTAMP_LTZ
ZONE descriptor

1 Where the length is shown as n, it is a variable, and depends on the requirements of the program (or of the operating system
for ROWID).
2 In applications using data type mappings generated by OTT, CLOBs may be mapped as OCIClobLocator, and BLOBs may be
mapped as OCIBlobLocator. For more information, see Chapter 15.
3 For more information about the use of these data types, see Chapter 12.
This section includes the following topics describing these external data types:
* VARCHAR2
* NUMBER

* 64-Bit Integer Host Data Type

ORACLE 4-8

Chapter 4
External Data Types

* INTEGER
* FLOAT

« STRING

* VARNUM

* LONG

* VARCHAR
- DATE

* RAW

* VARRAW

* LONG RAW

* UNSIGNED

* LONG VARCHAR
* LONG VARRAW

e CHAR

e CHARZ

* Named Data Types: Object, VARRAY, Nested Table
* REF

* ROWID Descriptor

» LOB Descriptor

» Datetime and Interval Data Type Descriptors
* Native Float and Native Double

* C Object-Relational Data Type Mappings

VARCHARZ2

The VARCHAR2 data type is a variable-length string of characters with a maximum length of
4000 bytes.

If the i nit.ora parameter max_string_size = standard (default value), the maximum length
of a VARCHAR2 can be 4000 bytes. If the i ni t. ora parameter nax_string_si ze = extended,
the maximum length of a VARCHAR2 can be 32767 bytes.

¢ Note:

If you are using Oracle Database objects, you can work with a special OCl Stri ng
external data type using a set of predefined OCI functions.

This section includes the following topics:
* Input
e Output

ORACLE 4.9

Input

ORACLE

Chapter 4
External Data Types

¢ See Also:

e init.oraparameter MAX_STRING_SIZE in Oracle Database Reference
for more information about extended data types

e Object-Relational Data Types in OCI for more information about the
OCl Stri ng external data type

The val ue_sz parameter determines the length in the OCl Bi ndByNane() or
OCl Bi ndByPos() call. If you are using extended VARCHAR? lengths, then the val ue_sz
parameter determines the length in the OCl Bi ndByNanme2() and OCl Bi ndByPos2() calls.

If the val ue_sz parameter is greater than zero, Oracle Database obtains the bind
variable value by reading exactly that many bytes, starting at the buffer address in your
program. Trailing blanks are stripped, and the resulting value is used in the SQL
statement or PL/SQL block. If, with an | NSERT statement, the resulting value is longer
than the defined length of the database column, the | NSERT fails, and an error is
returned.

¢ Note:

A trailing NULL is not stripped. Variables should be blank-padded but not
NULL-terminated.

If the val ue_sz parameter is zero, Oracle Database treats the bind variable as a NULL,
regardless of its actual content. Of course, a NULL must be allowed for the bind
variable value in the SQL statement. If you try to insert a NULL into a column that has a
NOT NULL integrity constraint, Oracle Database issues an error, and the row is not
inserted.

When the Oracle internal (column) data type is NUMBER, input from a character string
that contains the character representation of a number is legal. Input character strings
are converted to internal numeric format. If the VARCHAR2 string contains an illegal
conversion character, Oracle Database returns an error and the value is not inserted
into the database.

" See Also:

* OCIBindByName()
e OCIBindByPos()

* OCIBindByName2()
e OCIBindByPos2()

4-10

Chapter 4
External Data Types

Output

You must specify the desired length for the return value in val ue_sz for bind and define
functions.

Specify the desired length for the return value in the val ue_sz parameter of the

OCl Def i neByPos() call, or the val ue_sz parameter of OCl Bi ndByNane() or OCl Bi ndByPos()
for PL/SQL blocks. If zero is specified for the length, no data is returned. If you are using
extended VARCHAR? lengths, then the val ue_sz parameter determines the desired length for
the return value in the OCl Def i neByPos2() call, or in the OCl Bi ndByNane2() and

CCl Bi ndByPos2() calls for PL/SQL blocks.

If you omit the r | enp parameter of OCl Def i neByPos(), returned values are blank-padded to
the buffer length, and NULLs are returned as a string of blank characters. If r| enp is included,
returned values are not blank-padded. Instead, their actual lengths are returned in the rl enp
parameter.

To check if a NULL is returned or if character truncation has occurred, include an indicator
parameter in the OCl Def i neByPos() call. Oracle Database sets the indicator parameter to -1
when a NULL is fetched and to the original column length when the returned value is
truncated. Otherwise, it is set to zero. If you do not specify an indicator parameter and a NULL
is selected, the fetch call returns the error code OCI _SUCCESS W TH_| NFO. Retrieving
diagnostic information for the error returns ORA- 1405.

" See Also:

* Indicator Variables

* OCIDefineByPos() or OCIDefineByPos2()
* OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()

NUMBER

You should not need to use NUMBER as an external data type.

If you do use it as an external data type, Oracle Database returns numeric values in its
internal 21-byte binary format and expects this format on input. The following discussion is
included for completeness only.

¢ Note:

If you are using objects in an Oracle database, you can work with a special
OCl Nunmber data type using a set of predefined OCI functions.

Oracle Database stores values of the NUMBER data type in a variable-length format. The first
byte is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit of the
exponent byte is the sign bit; it is set for positive numbers, and it is cleared for negative

ORACLE 4-11

Chapter 4
External Data Types

numbers. The lower 7 bits represent the exponent, which is a base-100 digit with an
offset of 65.

To calculate the decimal exponent, add 65 to the base-100 exponent and add another
128 if the number is positive. If the number is negative, you do the same, but
subsequently the bits are inverted. For example, -5 has a base-100 exponent = 62
(Ox3e). The decimal exponent is thus (~0x3e) -128 - 65 = 0xcl -128 -65 =193 -128
-65 = 0.

Each mantissa byte is a base-100 digit, in the range 1..100. For positive numbers, the
digit has 1 added to it. So, the mantissa digit for the value 5 is 6. For negative
numbers, instead of adding 1, the digit is subtracted from 101. So, the mantissa digit
for the number -5 is 96 (101 - 5). Negative numbers have a byte containing 102
appended to the data bytes. However, negative numbers that have 20 mantissa bytes
do not have the trailing 102 byte. Because the mantissa digits are stored in base 100,
each byte can represent 2 decimal digits. The mantissa is normalized; leading zeros
are not stored.

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to
be accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum
precision of 38 digits for an Oracle NUMBER.

If you specify the data type code 2 in the dt y parameter of an OCl Def i neByPos() or
OCl Def i neByPos2() call, your program receives numeric data in this Oracle internal
format. The output variable should be a 21-byte array to accommodate the largest
possible number. Note that only the bytes that represent the number are returned.
There is no blank padding or NULL termination. If you must know the number of bytes
returned, use the VARNUMexternal data type instead of NUMBER.

¢ See Also:

OCINumber Examples
VARNUM for a description of the internal NUVBER format

e Number (OCINumber) more information about the OCl Nunber data type
OCIDefineByPos() or OCIDefineByPos2()

64-Bit Integer Host Data Type

ORACLE

You can bind and define integer values greater than 32-bit size (more than nine digits
of precision) from and into a NUMBER column using a 64-bit native host variable and
SQLT_I NT or SQLT_Ul N as the external data type in an OCI application.

Starting with release 11.2, OCI supports the ability to bind and define integer values
greater than 32-bit size (more than nine digits of precision) from and into a NUMBER
column using a 64-bit native host variable and SQLT_| NT or SQLT_UI N as the external
data type in an OCI application.

This feature enables an application to bind and define 8-byte native host variables
using SQLT I NT or SQLT_Ul N external data types in the OCI bind and define function
calls on all platforms. The OCI Def i neByPos() or OCl Def i neByPos2(), CCl Bi ndByNane()
or OCl Bi ndByNane2(), and OCl Bi ndByPos() or OCl Bi ndByPos2() function calls can

4-12

Chapter 4
External Data Types

specify an 8-byte integer data type pointer as the val uep parameter. This feature enables you
to insert and fetch large integer values (up to 18 decimal digits of precision) directly into and
from native host variables and to perform free arithmetic on them.

This section includes the following topics:

* OCI Bind and Define for 64-Bit Integers

e Support for OUT Bind DML Returning Statements
* OCIDefineByPos() or OCIDefineByPos2()

* OCIBindByName() or OCIBindByName2()

* OCIBindByPos() or OCIBindByPos2()

OCI Bind and Define for 64-Bit Integers

Shows a code fragment for an OCI bind and define for 64-bit integers.
Example 4-1 shows a code fragment that works without errors.

Example 4-1 OCI Bind and Define Support for 64-Bit Integers

);- Variabl e declarations */

orash8 shigval 1, shigval2, shigval3; // Signed 8-byte variables.
oraub8 ubi gval 1, ubigval 2, ubigval 3; // Unsigned 8-byte variabl es.

/* Bind Statements */

OCl Bi ndByPos(..., (void *) &shigvall, sizeof(sbhigvall), , SQLT_INT, ...);
OCl Bi ndByPos(..., (void *) &ubigval 1, sizeof(ubigvall), ..., SQT_UN, ...);
OCl Bi ndByNanme(. .., (void *) &shigval 2, sizeof(shigval2), ..., SQT_INT, ...);
OCl Bi ndByNane(. .., (void *) &ubigval 2, sizeof(ubigval2), , SQAT_UIN, ...);
[* Define Statenments */

OCl Def i neByPos(..., (void *) &shigval 3, sizeof(shigval3), ..., SQT_INT, ...);
OCl Def i neByPos(..., (void *) &ubigval 3, sizeof(ubigval3), ..., SQLT_UN, ...);

Support for OUT Bind DML Returning Statements

ORACLE

Shows a code fragment that illustrates binding 8-byte integer data types for OUT binds of a
DML returning statement.

Example 4-2 shows a code fragment that illustrates binding 8-byte integer data types for OUT
binds of a DML returning statement.

Example 4-2 Binding 8-Byte Integer Data Types for OUT Binds of a DML Returning
Statement

/* Define SQL statenents to be used in program */

static text *dm _stnt = (text *) " UPDATE enp SET sal = sal + :1
WHERE enpno = :2
RETURNI NG sal | NTO :outl";

/* Declare all handles to be used in program */
CCl St mt *stnt hp;

OCl Error *errhp;

OCl Bi nd *bndlp = (OCIBind *) O;

4-13

Chapter 4
External Data Types

OCl Bi nd *bnd2p
CCl Bi nd *bnd3p

(OCI Bind *)
(OCI Bind *)

0;
0;

/* Bind variable declarations */
orash8 shi gval ; /1 QUJT bind variable (8-byte size).
swor d eno, hike; // IN bind variables.

/* get values for IN bind variables */

/* Bind Statenents */
OCl Bi ndByPos(stnt hp, &bndlp, errhp, 1, (dvoid *) &hike,

(sh4) sizeof (hike), SQT_INT, (dvoid *) O,

(ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI _DEFAULT);
OCl Bi ndByPos(stnt hp, &nd2p, errhp, 2, (dvoid *) &eno,

(sh4) sizeof (eno), SQT_INT, (dvoid *) 0,

(ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI _DEFAULT);
CCl Bi ndByNane(stnt hp, &bnd3p, errhp, (text *) ":outl", -1,

(dvoid *) &shigval, sizeof(shigval), SQT_INT, (dvoid *) O,

(ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCl_DEFAULT);

/* Use the returned QUT bind variable value */

INTEGER

The | NTEGER data type converts numbers.

An external integer is a signed binary number; the size in bytes is system-dependent.
The host system architecture determines the order of the bytes in the variable. A
length specification is required for input and output. If the number being returned from
Oracle Database is not an integer, the fractional part is discarded, and no error or
other indication is returned. If the number to be returned exceeds the capacity of a
signed integer for the system, Oracle Database returns an "overflow on conversion”
error.

FLOAT

The FLOAT data type processes numbers that have fractional parts or that exceed the
capacity of an integer.

The number is represented in the host system's floating-point format. Normally the
length is either 4 or 8 bytes. The length specification is required for both input and
output.

The internal format of an Oracle number is decimal, and most floating-point
implementations are binary; therefore, Oracle Database can represent numbers with
greater precision than floating-point representations.

ORACLE 4-14

STRING

Input

Output

ORACLE

Chapter 4
External Data Types

< Note:

You may receive a round-off error when converting between FLOAT and NUVBER.
Using a FLOAT as a hind variable in a query may return an ORA- 1403 error. You can
avoid this situation by converting the FLOAT into a STRI NG and then using VARCHAR2
or a NULL-terminated string for the operation.

The NULL-terminated STRI NGformat behaves like the VARCHAR2 format, except that the string
must contain a NULL terminator character.

The STRI NG data type is most useful for C language programs.

This section includes the following topics:
* Input
e Output

The string length supplied in the OCI Bi ndByNane() or OCl Bi ndByPos() call limits the scan for
the NULL terminator.

If the NULL terminator is not found within the length specified, Oracle Database issues the
following error:

ORA-01480: trailing NULL missing from STR bind value

If the length is not specified in the bind call, OCI uses an implied maximum string length of
4000.

The minimum string length is 2 bytes. If the first character is a NULL terminator and the length
is specified as 2, a NULL is inserted into the column, if permitted. Unlike types VARCHAR2 and
CHAR, a string containing all blanks is not treated as a NULL on input; it is inserted as is.

Note:

You cannot pass -1 for the string length parameter of a NULL-terminated string

A NULL terminator is placed after the last character returned.

If the string exceeds the field length specified, it is truncated and the last character position of
the output variable contains the NULL terminator.

A NULL select-list item returns a NULL terminator character in the first character position. An
ORA- 01405 error is also possible.

4-15

VARNUM

LONG

VARCHAR

ORACLE

Chapter 4
External Data Types

The VARNUMdata type is like the external NUMBER data type, except that the first byte
contains the length of the number representation.

This length does not include the length byte itself. Reserve 22 bytes to receive the
longest possible VARNUM Set the length byte when you send a VARNUMvalue to Oracle
Database.

Table 4-3 shows several examples of the VARNUMvalues returned for numbers in a
table.

Table 4-3 VARNUM Examples

___|
Decimal Value Length Byte Exponent Byte Mantissa Bytes Terminator Byte

0 1 128 Not applicable Not applicable
5 2 193 6 Not applicable
-5 3 62 96 102

2767 3 194 28, 68 Not applicable
-2767 4 61 74, 34 102

100000 2 195 11 Not applicable
1234567 5 196 2,24, 46, 68 Not applicable

The LONG data type stores character strings longer than 4000 bytes.

You can store up to 2 gigabytes (2*31-1 bytes) in a LONG column. Columns of this type
are used only for storage and retrieval of long strings. They cannot be used in
functions, expressions, or WHERE clauses. LONG column values are generally converted
to and from character strings.

Do not create tables with LONG columns. Use LOB columns (CLOB, NCLOB, or BLOB)
instead. LONG columns are supported only for backward compatibility.

Oracle also recommends that you convert existing LONG columns to LOB columns. LOB
columns are subject to far fewer restrictions than LONG columns. Furthermore, LOB
functionality is enhanced in every release, but LONG functionality has been static for
several releases.

The VARCHAR data type stores character strings of varying length.

The first 2 bytes contain the length of the character string, and the remaining bytes
contain the string. The specified length of the string in a bind or a define call must
include the two length bytes, so the largest VARCHAR string that can be received or sent
is 65533 bytes long, not 65535.

4-16

Chapter 4
External Data Types

DATE

The DATE data type can update, insert, or retrieve a date value using the Oracle internal date
binary format.

A date in binary format contains 7 bytes, as shown in Table 4-4.

Table 4-4 Format of the DATE Data Type

Byte 1 2 3 4 5 6 7
Meaning Century Year Month Day Hour Minute Second
Example (for 30- 119 192 11 30 16 18 1

NOV-1992, 3:17 PM)

The century and year bytes (bytes 1 and 2) are in excess-100 notation. The first byte stores
the value of the year, which is 1992, as an integer, divided by 100, giving 119 in excess-100
notation. The second byte stores year modulo 100, giving 192. Dates Before Common Era
(BCE) are less than 100. The era begins on 01-JAN-4712 BCE, which is Julian day 1. For
this date, the century byte is 53, and the year byte is 88. The hour, minute, and second bytes
are in excess-1 notation. The hour byte ranges from 1 to 24, the minute and second bytes
from 1 to 60. If no time was specified when the date was created, the time defaults to
midnight (1, 1, 1).

When you enter a date in binary format using the DATE external data type, the database does
not do consistency or range checking. All data in this format must be carefully validated
before input.

" Note:

There is little need to use the Oracle external DATE data type in ordinary database
operations. It is much more convenient to convert DATE into character format,
because the program usually deals with data in a character format, such as DD-
MON-YY.

When a DATE column is converted to a character string in your program, it is returned using
the default format mask for your session, or as specified in the | NI T. ORA file.

If you are using objects in an Oracle database, you can work with a special OCl Dat e data type
using a set of predefined OCI functions.

¢ See Also:

« Date (OClIDate) for more information about the OCl Dat e data type

e Datetime and Interval Data Type Descriptors for information about DATETI ME
and | NTERVAL data types

ORACLE 4-17

RAW

VARRAW

Chapter 4
External Data Types

The RAWdata type is used for binary data or byte strings that are not to be interpreted
by Oracle Database, for example, to store graphics character sequences.

The maximum length of a RAWcolumn is 2000 bytes. If the i ni t. or a parameter
max_string size = standard (default value), the maximum length of a RAWcan be
2000 bytes. If the i ni t. or a parameter max_string_si ze = ext ended, the maximum
length of a RAWcan be 32767 bytes.

When RAWdata in an Oracle Database table is converted to a character string in a
program, the data is represented in hexadecimal character code. Each byte of the RAW
data is returned as two characters that indicate the value of the byte, from '00' to 'FF'.
To input a character string in your program to a RAWcolumn in an Oracle Database
table, you must code the data in the character string using this hexadecimal code.

You can use the piecewise capabilities provided by OCl Def i neByPos(),

CCl Bi ndByNane(), OCl Bi ndByPos(), OCl St nt Get Pi ecel nfo(), and

OCl St nt Set Pi ecel nfo() to perform inserts, updates, or fetches involving RAW(or LONG
RAW columns.

If you are using objects in an Oracle database, you can work with a special OCl Raw
data type using a set of predefined OCI functions.

See Also:

e Oracle Database SQL Language Reference for more information about
MAX_STRI NG _SI ZE

e init.ora parameter MAX_STRING_SIZE in Oracle Database Reference
for more information about extended data types

« Raw (OCIRaw)for more information about this data type

The VARRAWdata type is similar to the RAWdata type.

However, the first 2 bytes contain the length of the data. The specified length of the
string in a bind or a define call must include the two length bytes, so the largest VARRAW
string that can be received or sent is 65533 bytes, not 65535. For converting longer
strings, use the LONG VARRAWexternal data type.

LONG RAW

ORACLE

The LONG RAWdata type supports a 2 gigabyte length.

The LONG RAWdata type is similar to the RAWdata type, except that it stores raw data
with a length up to 2 gigabytes (2"31-1 bytes).

4-18

Chapter 4
External Data Types

UNSIGNED

The UNSI GNED data type is used for unsigned binary integers.

The size in bytes is system-dependent. The host system architecture determines the order of
the bytes in a word. A length specification is required for input and output. If the number
being output from Oracle Database is not an integer, the fractional part is discarded, and no
error or other indication is returned. If the number to be returned exceeds the capacity of an
unsigned integer for the system, Oracle Database returns an "overflow on conversion” error.

LONG VARCHAR

The LONG VARCHAR data type stores data from and into an Oracle Database LONG column.

The first 4 bytes of a LONG VARCHAR contain the length of the item. So, the maximum length of
a stored item is 2731-5 bytes.

LONG VARRAW

The LONG VARRAWdata type is used to store data from and into an Oracle Database LONG RAW
column.

The length is contained in the first four bytes. The maximum length is 2*31-5 bytes.

CHAR

The CHAR data type is a string of characters, with a maximum length of 2000.
CHAR strings are compared using blank-padded comparison semantics.

This section includes the following topics:

* Input
e Output
¢ See Also:

Oracle Database SQL Language Reference

Input

The length is determined by the val ue_sz parameter in the OCl Bi ndByNanme() or
OCl Bi ndByNanme2() or OCl Bi ndByPos() or OCl Bi ndByPos2() call.

" Note:

The entire contents of the buffer (val ue_sz chars) is passed to the database,
including any trailing blanks or NULLs.

ORACLE 4-19

Output

ORACLE

Chapter 4
External Data Types

If the val ue_sz parameter is zero, Oracle Database treats the bind variable as a NULL,
regardless of its actual content. Of course, a NULL must be allowed for the bind
variable value in the SQL statement. If you try to insert a NULL into a column that has a
NOT NULL integrity constraint, Oracle Database issues an error and does not insert the
row.

Negative values for the val ue_sz parameter are not allowed for CHARs.

When the Oracle internal (column) data type is NUMBER, input from a character string
that contains the character representation of a number is legal. Input character strings
are converted to internal numeric format. If the CHAR string contains an illegal
conversion character, Oracle Database returns an error and does not insert the value.
Number conversion follows the conventions established by globalization support
settings for your system. For example, your system might be configured to recognize a
comma (,) rather than a period (.) as the decimal point.

" See Also:

e OCIBindByName() or OCIBindByName2()
* OCIBindByPos() or OCIBindByPos2()

Specify the desired length for the return value in the val ue_sz parameter of the
OCl Def i neByPos() or OCl Def i neByPos2() call.

If zero is specified for the length, no data is returned.

If you omit the r | enp parameter of OCl Def i neByPos() or OCl Def i neByPos2(), returned
values are blank padded to the buffer length, and NULLs are returned as a string of
blank characters. If r| enp is included, returned values are not blank-padded. Instead,
their actual lengths are returned in the rl enp parameter.

To check whether a NULL is returned or character truncation occurs, include an
indicator parameter or array of indicator parameters in the OCl Def i neByPos() or

OCl Def i neByPos2() call. An indicator parameter is set to -1 when a NULL is fetched
and to the original column length when the returned value is truncated. Otherwise, it is
set to zero. If you do not specify an indicator parameter and a NULL is selected, the
fetch call returns an ORA- 01405 error.

You can also request output to a character string from an internal NUMBER data type.
Number conversion follows the conventions established by the globalization support
settings for your system. For example, your system might use a comma (,) rather than
a period (.) as the decimal point.

¢ See Also:

e Indicator Variables
e OCIDefineByPos() or OCIDefineByPos2()

4-20

Chapter 4
External Data Types

CHARZ

The CHARZ external data type is similar to the CHAR data type, except that the string must be
NULL-terminated on input, and Oracle Database places a NULL-terminator character at the end
of the string on output.

The NULL terminator serves only to delimit the string on input or output; it is not part of the
data in the table.

On input, the length parameter must indicate the exact length, including the NULL terminator.
For example, if an array in C is declared as follows, then the length parameter when you bind
my_nummust be seven. Any other value would return an error for this example.

char ny_nun{] = "123. 45",

The following new external data types were introduced with or after release 8.0. These data
types are not supported when you connect to an Oracle release 7 server.

< Note:

Both internal and external data types have Oracle-defined constant values, such as
SQLT_NTY, SQLT_REF, corresponding to their data type codes. Although the constants
are not listed for all of the types in this chapter, they are used in this section when
discussing new Oracle data types. The data type constants are also used in other
chapters of this guide when referring to these new types.

Named Data Types: Object, VARRAY, Nested Table

Named data types are user-defined types that are specified with the CREATE TYPE command
in SQL.

Examples include object types, varrays, and nested tables. In OCI, named data type refers to
a host language representation of the type. The SQLT_NTY data type code is used when
binding or defining named data types.

In a C application, named data types are represented as C structs. These structs can be
generated from types stored in the database by using the Object Type Translator. These
types correspond to OCl _ TYPECODE_OBJECT.

¢ See Also:

e Object Type Information Storage and Access for more information about
working with named data types in OCI

e Using the Object Type Translator with OCI for information about how named
data types are represented as C structs

ORACLE 4-21

Chapter 4
External Data Types

REF

This is a reference to a named data type.

The C language representation of a REF is a variable declared to be of type OCl Ref *.
The SQLT_REF data type code is used when binding or defining REFs.

Access to REFs is only possible when an OCI application has been initialized in object
mode. When REFs are retrieved from the server, they are stored in the client-side
object cache.

To allocate a REF for use in your application, you should declare a variable to be a
pointer to a REF, and then call OCl (bj ect New() , passing OCl _TYPECODE_REF as the
t ypecode parameter.

See Also:

e OCIObjectNew()

e Object Advanced Topics in OCI for more information about working with
REFs in the OCI

ROWID Descriptor

The RON D data type identifies a particular row in a database table.
ROW D can be a select-list item in a query, such as:

SELECT RON' D, ename, enpno FROM enp

In this case, you can use the returned RON D in further DELETE statements.

If you are performing a SELECT for UPDATE, the ROA D is implicitly returned. This RON D
can be read into a user-allocated RON D descriptor by using OCl Attr Get () on the
statement handle and used in a subsequent UPDATE statement. The prefetch operation
fetches all RON Ds on a SELECT for UPDATE; use prefetching and then a single row fetch.

You access rowids using a RON D descriptor, which you can use as a bind or define
variable.

¢ See Also:

e OCIAttrGet()

e OCI Descriptors and Positioned Updates and Deletes for more
information about the use of the RON D descriptor

ORACLE 4-22

Chapter 4
External Data Types

LOB Descriptor

ORACLE

A LOB (large object) stores binary or character data up to 128 terabytes (TB) in length.

Binary data is stored in a BLOB (binary LOB), and character data is stored in a CLOB (character
LOB) or NCLOB (national character LOB).

LOB values may or may not be stored inline with other row data in the database. In either
case, LOBs have the full transactional support of the Oracle database. A database table
stores a LOB locator that points to the LOB value, which may be in a different storage space.

When an OCI application issues a SQL query that includes a LOB column or attribute in its
select list, fetching the results of the query returns the locator, rather than the actual LOB
value. In OCI, the LOB locator maps to a variable of type OCl LobLocat or .

< Note:

Depending on your application, you may or may not want to use LOB locators. You
can use the data interface for LOBs, which does not require LOB locators. In this
interface, you can bind or define character data for CLOB columns or RAWdata for
BLOB columns.

The OCI functions for LOBs take a LOB locator as one of their arguments. The OCI functions
assume that the locator has already been created, whether or not the LOB to which it points
contains data.

Bind and define operations are performed on the LOB locator, which is allocated with the
OCl Descri ptor Al l oc() function.

The locator is always fetched first using SQL or OCl Obj ect Pi n(), and then operations are
performed using the locator. The OCI functions never take the actual LOB value as a
parameter.

The data type codes available for binding or defining LOBs are:

e SQ.T BLOB- A binary LOB data type

e SQ.T_CLOB- A character LOB data type

The NCLOB is a special type of CLOB with the following requirements:

* To write into or read from an NCLOB, the user must set the character set form (csfrm
parameter to be SQLCS_NCHAR.

e The amount (ant p) parameter in calls involving CLOBs and NCLOBs is always interpreted in
terms of characters, rather than bytes, for fixed-width character sets.

This section includes the following topics:

* BFILE
- BLOB
- CLOB
* NCLOB

4-23

Chapter 4
External Data Types

¢ See Also:

e OCI Descriptors for more information about descriptors, including the
LOB locator

e Oracle Database SQL Language Reference and Oracle Database
SecureFiles and Large Objects Developer's Guide for more information
about LOBs

e About Binding LOB Data

e About Defining LOB Data

e LOB and BFILE Functions in OCI
e OClIDescriptorAlloc()

e OCIObjectPin()

e LOB and BFILE Operations for more information about OCI| LOB
functions

BFILE

Oracle Database supports access to binary files (BFI LEs).

The BFI LE data type provides access to LOBs that are stored in file systems outside
an Oracle database.

A BFI LE column or attribute stores a file LOB locator, which serves as a pointer to a
binary file on the server's file system. The locator maintains the directory object and
the file name. The maximum size of a BFI LE is the smaller of the operating system
maximum file size or UBSMAXVAL.

Binary file LOBs do not participate in transactions. Rather, the underlying operating
system provides file integrity and durability.

The database administrator must ensure that the file exists and that Oracle Database
processes have operating system read permissions on the file.

The BFI LE data type allows read-only support of large binary files; you cannot modify a
file through Oracle Database. Oracle Database provides APIs to access file data.

The data type code available for binding or defining BFI LEs is SQLT_BFI LE (a binary
FILE LOB data type)

¢ See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about directory aliases

ORACLE 4-24

BLOB

CLOB

NCLOB

Chapter 4
External Data Types

The BLOB data type stores unstructured binary large objects.

BLOBs can be thought of as bit streams with no character set semantics. BLOBs can store up to
128 terabytes of binary data.

BLOBs have full transactional support; changes made through OCI participate fully in the
transaction. The BLOB value manipulations can be committed or rolled back. You cannot save
a BLOB locator in a variable in one transaction and then use it in another transaction or
session.

The CLOB data type stores fixed-width or variable-width character data.
CLOBs can store up to 128 terabytes of character data.

CLOBs have full transactional support; changes made through OCI participate fully in the
transaction. The CLOB value manipulations can be committed or rolled back. You cannot save
a CLOB locator in a variable in one transaction and then use it in another transaction or
session.

An NCLOB is a national character version of a CLOB.

It stores fixed-width, single-byte or multibyte national character set (NCHAR) data, or variable-
width character set data. NCLOBs can store up to 128 terabytes of character text data.

NCLOBs have full transactional support; changes made through OCI participate fully in the
transaction. NCLOB value manipulations can be committed or rolled back. You cannot save an
NCLOB locator in a variable in one transaction and then use it in another transaction or
session.

Datetime and Interval Data Type Descriptors

ORACLE

Lists and describes the datetime and interval data type descriptors.

The datetime and interval data type descriptors are briefly summarized here.
This section includes the following topics:

* ANSI DATE

e TIMESTAMP

e TIMESTAMP WITH TIME ZONE

e TIMESTAMP WITH LOCAL TIME ZONE

* INTERVAL YEAR TO MONTH

* INTERVAL DAY TO SECOND

* About Avoiding Unexpected Results Using Datetime

4-25

Chapter 4
External Data Types

¢ See Also:

Oracle Database SQL Language Reference

ANSI DATE

ANSI DATE is based on DATE, but contains no time portion. It also has no time zone.

ANSI DATE follows the ANSI specification for the DATE data type. When assigning an
ANSI DATE to a DATE or a time stamp data type, the time portion of the Oracle DATE and
the time stamp are set to zero. When assigning a DATE or a time stamp to an ANSI
DATE, the time portion is ignored.

Instead of using the ANSI DATE data type, Oracle recommends that you use the
TI MESTAMP data type, which contains both date and time.

TIMESTAMP

The TI MESTAMP data type is an extension of the DATE data type. It stores the year,
month, and day of the DATE data type, plus the hour, minute, and second values.

The TI MESTAMP data type has no time zone. The TI MESTAVP data type has the following
form:

TI MESTAMP(fracti onal _seconds_preci si on)

In this form, the optional f ract i onal _seconds_pr eci si on specifies the number of
digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6.

TIMESTAMP WITH TIME ZONE

TI MESTAMP W TH Tl ME ZONE (TSTZ) is a variant of TI MESTAMP that includes an explicit
time zone displacement in its value.

The time zone displacement is the difference in hours and minutes between local time
and UTC (coordinated universal time—formerly Greenwich mean time). The
TI MESTAMP W TH Tl ME ZONE data type has the following form:

TI MESTAMP(fracti onal _seconds_precision) WTH TI ME ZONE

In this form, fracti onal _seconds_preci si on optionally specifies the number of digits
in the fractional part of the SECOND datetime field, and can be a number in the range 0
to 9. The default is 6.

Two TI MESTAMP W TH Tl ME ZONE values are considered identical if they represent the
same instant in UTC, regardless of the Tl ME ZONE offsets stored in the data.

ORACLE 4-26

Chapter 4
External Data Types

TIMESTAMP WITH LOCAL TIME ZONE

TI MESTAMP W TH LOCAL TI ME ZONE (TSLTZ) is another variant of TI MESTAMP that includes a time
zone displacement in its value.

Storage is in the same format as for TI MESTAMP. This type differs from TI MESTAMP W TH TI ME
ZONE in that data stored in the database is normalized to the database time zone, and the
time zone displacement is not stored as part of the column data. When retrieving the data,
Oracle Database returns it in your local session time zone.

The time zone displacement is the difference (in hours and minutes) between local time and
UTC (coordinated universal time—formerly Greenwich mean time). The TI MESTAMP W TH
LOCAL TI ME ZONE data type has the following form:

TI MESTAMP(f racti onal _seconds_precision) WTH LOCAL TI ME ZONE

In this form, fracti onal _seconds_preci si on optionally specifies the number of digits in the
fractional part of the SECOND datetime field and can be a number in the range 0 to 9. The
default is 6.

INTERVAL YEAR TO MONTH

| NTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime fields.
The | NTERVAL YEAR TO MONTH data type has the following form:
| NTERVAL YEAR(year _precision) TO MONTH

In this form, the optional year _pr eci si on is the number of digits in the YEAR datetime field.
The default value of year preci sionis 2.

INTERVAL DAY TO SECOND

| NTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and
seconds.

The | NTERVAL DAY TO SECOND data type has the following form:

| NTERVAL DAY (day_precision) TO SECOND(fractional _seconds_preci sion)

In this form:

e day_preci sion is the number of digits in the DAY datetime field. It is optional. Accepted
values are 0 to 9. The default is 2.

» fractional _seconds_precision is the number of digits in the fractional part of the
SECOND datetime field. Accepted values are 0 to 9. The value should be provided as
nanoseconds. The Default Day to Second precision is 6 unless the precision is specified
to a different value at the time of creating the table. In this case, the least significant three
digits will be truncated.

About Avoiding Unexpected Results Using Datetime

How to avoid unexpected results using datetime.

ORACLE 4-27

Chapter 4
Data Conversions

< Note:

To avoid unexpected results in your data manipulation language (DML)
operations on datetime data, you can verify the database and session time
zones by querying the built-in SQL functions DBTI MEZONE and

SESSI ONTI MEZONE. If the time zones have not been set manually, Oracle
Database uses the operating system time zone by default. If the operating
system time zone is not a valid Oracle Database time zone, Oracle Database
uses UTC as the default value.

Native Float and Native Double

The native float (SQLT_BFLQAT) and native double (SQLT_BDOUBLE) data types represent
the single-precision and double-precision floating-point values.

They are represented natively, that is, in the host system's floating-point format.

These external types were added in release 10.1 to externally represent the

Bl NARY_FLQAT and BI NARY_DOUBLE internal data types. Thus, performance for the
internal types is best when used in conjunction with external types native float and
native double respectively. This draws a clear distinction between the existing
representation of floating-point values (SQLT_FLT) and these types.

C Object-Relational Data Type Mappings

OCI supports Oracle-defined C data types for mapping user-defined data types to C
representations (for example, OCl Nunber, OCl Arr ay).

OCI provides a set of calls to operate on these data types, and to use these data types
in bind and define operations, in conjunction with OCI external data types.

¢ See Also:

Object-Relational Data Types in OCI for information about using these
Oracle-defined C data types

Data Conversions

ORACLE

Shows the supported conversions from internal data types to external data types and
from external data types into internal column representations.

Table 4-5 shows the supported conversions from internal data types to external data
types, and from external data types into internal column representations, for all data
types available through release 7.3. Information about data conversions for data types
newer than release 7.3 is listed here:

* REFs stored in the database are converted to SQLT_REF on output.

* SQ.T_REF is converted to the internal representation of REFs on input.

4-28

Chapter 4
Data Conversions

* Named data types stored in the database can be converted to SQLT_NTY (and
represented by a C struct in the application) on output.

e SQT_NTY (represented by a C struct in an application) is converted to the internal
representation of the corresponding type on input.

LOBs are shown in Table 4-6, because of the width limitation.

¢ See Also:

Object-Relational Data Types in OCI for information about OCl St ri ng, OCl Nurber ,
and other new data types

Table 4-5 Data Conversions

NAl INTERNAL NA NA NA NA NA NA NA NA

DATA

TYPES->
EXTERNAL VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW LONG CHAR
DATA TYPES RAW
VARCHAR?2 1/02 11O 11O /03 1103 1104 /0% 1/0° NA
NUMBER 1108 1’0 I NA NA NA NA NA 1108
| NTEGER 1108 1’0 [NA NA NA NA NA 1108
FLOAT 1/06 110 [NA NA NA NA NA 1108
STRI NG 11O 11O 11O 1103 1103 1104 /o> /058 1/0
VARNUM 1108 1’0 [NA NA NA NA NA 1108
DECI MAL /08 110 [NA NA NA NA NA 1108
LONG o] I/0 I/0 1103 1103 l/o* /o> /058 1/0
VARCHAR 110 110 110 1108 1108 1104 /05 11058 10
DATE 110 NA | NA NA 110 NA NA 110
VARRAW 1/0° NA 18,9 NA NA NA 11O 11O 1/0°
RAW 1/0° NA 8,9 NA NA NA 110 110 1/0°
LONG RAW 0109 NA 18,9 NA NA NA I/0 I/0 (o}
UNSI GNED 1108 I/O [NA NA NA NA NA 1108
LONG 1’0 Ife} I/0 /03 /03 1104 /o> /058 10
VARCHAR
LONG VARRAW 1/0° NA 8,9 NA NA NA 110 110 1/0°
CHAR I/O 11O 11O 1103 1103 1104 /o> 1P I/O
CHARZ I/0 1’0 1’0 1103 1103 1104 /o> I° I/0
ROW D 13 NA NA 1’0 1’0 NA NA NA 13
descriptor

1 NA means not applicable.
2]/O = Conversion is valid for input or output.
3 For input, host string must be in Oracle ROWID/UROWID format. On output, column value is returned in Oracle ROWID/UROWID

format.

ORACLE

4-29

© B © 00 N O 0o b

Chapter 4
Data Conversions

For input, host string must be in the Oracle DATE character format. On output, column value is returned in Oracle DATE format.
For input, host string must be in hexadecimal format. On output, column value is returned in hexadecimal format.

For output, column value must represent a valid number.

| = Conversion is valid for input only.

Length must be less than or equal to 2000.

On input, column value is stored in hexadecimal format. On output, column value must be in hexadecimal format.

O = Conversion is valid for output only.

This section includes the following topics:

e Data Conversions for LOB Data Type Descriptors

e Data Conversions for Datetime and Interval Data Types

e Datetime and Date Upgrading Rules

e Data Conversion for BINARY_FLOAT and BINARY_DOUBLE in OCI

Data Conversions for LOB Data Type Descriptors

Shows the data conversions for LOBs.

Table 4-6 shows the data conversions for LOBs. For example, the external character
data types (VARCHAR, CHAR, LONG, and LONG VARCHAR) convert to the internal CLOB data
type, whereas the external raw data types (RAW VARRAW LONG RAW and LONG VARRAW
convert to the internal BLOB data type.

Table 4-6 Data Conversions for LOBs
]

EXTERNAL DATA TYPES INTERNAL CLOB INTERNAL BLOB
VARCHAR 110t NA2

CHAR 110 NA

LONG 110 NA

LONG VARCHAR 110 NA

RAW NA 110

VARRAW NA 110

LONG RAW NA 110

LONG VARRAW NA 110

1 1/O = Conversion is valid for input or output.
2 NA means not applicable.

Data Conversions for Datetime and Interval Data Types

ORACLE

Shows the data conversion for datetime and interval data types.

You can also use one of the character data types for the host variable used in a fetch
or insert operation from or to a datetime or interval column. Oracle Database does the
conversion between the character data type and datetime or interval data type for you
(see Table 4-7.

4-30

Table 4-7 Data

Chapter 4
Data Conversions

Conversion for Datetime and Interval Types

External Types/internal VARCHAR, DATE TS TSTZ TSLTZ INTERVAL INTERVAL

Types CHAR YEARTO DAY TO
MONTH SECOND

VARCHAR2, CHAR 110t 110 110 110 110 110 110

DATE I/O 110 110 110 110 NA2 NA

OCl DATE 11O 110 110 110 110 NA NA

ANSI DATE I/O 110 110 110 110 NA NA

TI MESTAMP (TS) I/O 110 110 110 110 NA NA

TI MESTAMP W TH TI ME ZONE 1/0 110 110 110 110 NA NA

(TST2)

TI MESTAMP W TH LOCAL I/O 110 110 110 110 NA NA

TIME ZONE (TSLTZ)

| NTERVAL YEAR TO MONTH 1/O NA NA NA NA 110 NA

| NTERVAL DAY TO SECOND 1/O NA NA NA NA NA 110

1 |/O = Conversion is valid for input or output.
2 NA means not applicable.

This section includes the following topics:
* Assignment Notes

- Data Conversion Notes for Datetime and Interval Types

Assignment Notes

ORACLE

When you assign a source with a time zone to a target without a time zone, the time zone
portion of the source is ignored.

When you assign a source without a time zone to a target with a time zone, the time zone of
the target is set to the session's default time zone.

When you assign an Oracle Database DATE to a TI MESTAMP, the TI ME portion of the DATE is

copied over to the TI MESTAMP. When you assign a TI MESTAMVP to Oracle Database DATE, the
TI ME portion of the result DATE is set to zero. This is done to encourage upgrading of Oracle
Database DATE to ANSI -compliant DATETI ME data types.

When you assign an ANSI DATE to an Oracle DATE or a TI MESTAWP, the Tl ME portion of the
Oracle Database DATE and the TI MESTAVP are set to zero. When you assign an Oracle
Database DATE or a TI MESTAMP to an ANSI DATE, the TI ME portion is ignored.

When you assign a DATETI ME to a character string, the DATETI ME is converted using the
session's default DATETI ME format. When you assign a character string to a DATETI ME, the
string must contain a valid DATETI ME value based on the session's default DATETI ME format

When you assign a character string to an | NTERVAL, the character string must be a valid
| NTERVAL character format.

4-31

Chapter 4
Data Conversions

Data Conversion Notes for Datetime and Interval Types

Describes some information for datetime and interval types.

When you convert from TSLTZ to CHAR, DATE, TI MESTAMWP, and TSTZ, the value is
adjusted to the session time zone.

When you convert from CHAR, DATE, and Tl MESTAMP to TSLTZ, the session time zone is
stored in memory.

When you assign TSLTZ to ANSI DATE, the time portion is zero.

When you convert from TSTZ, the time zone that the time stamp is in is stored in
memory.

When you assign a character string to an interval, the character string must be a valid
interval character format.

Datetime and Date Upgrading Rules

OCI has full forward and backward compatibility between a client application and the
Oracle database for datetime and date columns.

This section includes the following topics:
* Pre-9.0 Client with 9.0 or Later Server
e Pre-9.0 Server with 9.0 or Later Client

Pre-9.0 Client with 9.0 or Later Server

The only datetime data type available to a pre-9.0 application is the DATE data type,
SQLT_DAT.

When a pre-9.0 client that defined a buffer as SQLT_DAT tries to obtain data from a
TSLTZ column, only the date portion of the value is returned to the client.

Pre-9.0 Server with 9.0 or Later Client

When a pre-9.0 server is used with a 9.0 or later client, the client can have a bind or
define buffer of type SQLT_TI MESTAMP_LTZ.

The following compatibilities are maintained in this case.

If any client application tries to insert a SQLT_TI MESTAMP_LTZ (or any of the new
datetime data types) into a DATE column, an error is issued because there is potential
data loss in this situation.

When a client has an OUT bind or a define buffer that is of data type
SQLT_TI MESTAMP_LTZ and the underlying server-side SQL buffer or column is of DATE
type, then the session time zone is assigned.

ORACLE 4-32

Chapter 4
Data Conversions

Data Conversion for BINARY FLOAT and BINARY _DOUBLE in OCI

ORACLE

Shows the supported conversions between internal numeric data types and all relevant
external types.

Table 4-8 shows the supported conversions between internal numeric data types and all
relevant external types. An (I) implies that the conversion is valid for input only (binds), and
(O) implies that the conversion is valid for output only (defines). An (1/O) implies that the
conversion is valid for input and output (binds and defines).

Table 4-8 Data Conversion for External Data Types to Internal Numeric Data Types

__|
External Typesl/internal Types BINARY_FLOAT BINARY_DOUBLE

VARCHAR l/ot 1’0
VARCHAR2 110 110
NUMBER 110 110
| NTEGER 110 110
FLOAT 110 110
STRING 110 110
VARNUM 110 110
LONG 110 110
UNSI GNED | NT 11O 110
LONG VARCHAR 110 1’0
CHAR 110 110
Bl NARY_FLOAT 110 110
Bl NARY_DOUBLE 110 110

1 An (I/O) implies that the conversion is valid for input and output (binds and defines)

Table 4-9 shows the supported conversions between all relevant internal types and numeric
external types. An (I) implies that the conversion is valid for input only (only for binds), and
(O) implies that the conversion is valid for output only (only for defines). An (I/O) implies that
the conversion is valid for input and output (binds and defines).

Table 4-9 Data Conversions for Internal to External Numeric Data Types

Internal Types/External Types Native Float Native Double
VARCHAR2 I/0t 110

NUMBER 110 I/0

LONG 12 |

CHAR I/0 I/0

Bl NARY_FLOAT 110 110

Bl NARY_DOUBLE I/0 110

1 An (I/O) implies that the conversion is valid for input and output (binds and defines)

4-33

Chapter 4
Typecodes

2 An (l) implies that the conversion is valid for input only (only for binds)

Typecodes

ORACLE

A unique typecode is associated with each Oracle Database type, whether scalar,
collection, reference, or object type.

This typecode identifies the type, and is used by Oracle Database to manage
information about object type attributes. This typecode system is designed to be
generic and extensible. It is not tied to a direct one-to-one mapping to Oracle data
types. Consider the following SQL statements:

CREATE TYPE ny_type AS OBJECT
(attrl NUMBER,

attr2 | NTEGER,

attr3 SMALLI NT) ;

CREATE TABLE ny_table AS TABLE OF ny_type;

These statements create an object type and an object table. When it is created,

ny_t abl e has three columns, all of which are of Oracle NUMBER type, because

SMALLI NT and | NTEGER map internally to NUMBER. The internal representation of the
attributes of ny_t ype, however, maintains the distinction between the data types of the
three attributes: attr1 is OCl _TYPECODE_NUMBER, attr 2 is OCl _TYPECCDE_| NTECGER, and
attr3is OCl _TYPECODE SMALLI NT. If an application describes ny_t ype, these
typecodes are returned.

OCl TypeCode is the C data type of the typecode. The typecode is used by some OCI
functions, like OCIObjectNew(), where it helps determine what type of object is
created. It is also returned as the value of some attributes when an object is described;
for example, querying the OCI _ATTR _TYPECCDE attribute of a type returns an

CCl TypeCode value.

Table 4-10 lists the possible values for an OCl TypeCode. There is a value
corresponding to each Oracle data type.

Table 4-10 OCITypeCode Values and Data Types
|

Value Data Type

OCl _TYPECODE_REF REF

OCl _TYPECODE_DATE DATE

OCl _TYPECODE_TI MESTAMP TIMESTAMP

OCl _TYPECODE_TI MESTAMP_TZ TIMESTAMP WITH TIME ZONE
OCl _TYPECODE_TI MESTAMP_LTZ TIMESTAMP WITH LOCAL TIME ZONE
OCl _TYPECODE_I NTERVAL_YM INTERVAL YEAR TO MONTH
OCl _TYPECCDE_| NTERVAL_DS INTERVAL DAY TO SECOND
OCl _TYPECODE_REAL Single-precision real

OCl _TYPECODE_DOUBLE Double-precision real

OCl _TYPECODE_FLOAT Floating-point

OCl _TYPECODE_NUMBER Oracle NUMBER

OCl _TYPECODE_BFLCAT BINARY_FLOAT

4-34

Chapter 4
Typecodes

Table 4-10 (Cont.) OCITypeCode Values and Data Types
|

Value

Data Type

0Cl_TYPECODE_BDOUBLE
OCl_TYPECODE_DECI MAL

0Cl _TYPECODE_OCTET

OCl _TYPECODE_| NTEGER

OCl _TYPECODE_SMALLI NT
OCl_TYPECODE_RAW

OCl _TYPECODE_VARCHAR?

0Cl _TYPECODE_VARCHAR
0Cl_TYPECODE_CHAR

OCl _TYPECODE_VARRAY

OCl _TYPECODE_TABLE
oCl_TYPECODE_CLOB
oCl_TYPECODE_BLOB
OCl_TYPECODE_BFI LE
OCl_TYPECODE_OBJECT

OCl _TYPECODE_NAVEDCOLLECTI ON
0Cl _TYPECODE_BOOLEAN:
0Cl_TYPECODE_RECORD!

OCl _TYPECODE_| TABLEL
OCl_TYPECODE_| NTEGER!

BINARY_DOUBLE

Decimal

Octet

Integer

Small int

RAW

Variable string ANSI SQL, that is, VARCHAR2
Variable string Oracle SQL, that is, VARCHAR
Fixed-length string inside SQL, that is SQL CHAR
Variable-length array (varray)

Multiset

Character large object (CLOB)

Binary large object (BLOB)

Binary large object file (BFI LE)

Named object type, or SYS.XMLType
Collection

Boolean

Record

Index-by BINARY_INTEGER

PLS_INTEGER or BINARY_INTEGER

1 This type is a PL/SQL type only.

This section includes the following topic: Relationship Between SQLT and OCI_TYPECODE

Values.

Relationship Between SQLT and OCI_TYPECODE Values

Oracle Database recognizes two different sets of data type code values.

ORACLE

One set is distinguished by the SQLT_ prefix, the other by the OCl _TYPECODE_ prefix.

The SQLT typecodes are used by OCI to specify a data type in a bind or define operation,
enabling you to control data conversions between Oracle Database and OCI client
applications. The OCl _ TYPECQODE types are used by Oracle's type system to reference or
describe predefined types when manipulating or creating user-defined types.

In many cases, there are direct mappings between SQLT and OCl _ TYPECCDE values. In other
cases, however, there is not a direct one-to-one mapping. For example,

OCl _TYPECCODE_SI GNED8, OCl _TYPECCODE_SI GNED16, OCl _TYPECCDE_SI GNED32,

OCl _TYPECODE_| NTEGER, OCI _TYPECODE_OCTET, and OCl _TYPECODE_SMALLI NT are all mapped

to the SQLT_I NT type.

Table 4-11 illustrates the mappings between SQLT and OCl _TYPECQODE types.

4-35

Table 4-11 OCI_TYPECODE to SQLT Mappings
-

Oracle Type System Typename

Oracle Type System Type

Chapter 4
Typecodes

Equivalent SQLT Type

BFI LE
BLOB

BOOLEAN

CHAR

CLOB

COLLECTI ON

DATE

TI MESTAVP

TI MESTAVP W TH TI ME ZONE
TI MESTAMP W TH LOCAL TIME ZONE
| NTERVAL YEAR TO MONTH

| NTERVAL DAY TO SECOND
FLOAT

DECI MAL

DOUBLE

BI NARY_FLOAT

BI NARY_DOUBLE

| NDEX- BY Bl NARY_| NTEGER!
| NTEGER

NUMBER

OCTET

PLS_| NTEGER or Bl NARY_| NTEGER!
POl NTER

RAW

REAL

REF

RECORD!

OBJECT or SYS. XM.Type

SI GNEDY 8)

SI G\EDY 16)

SI G\ED(32)

SMALLI NT

TABLE?

UNSI GNED(8)

UNSI GNED(16)

UNSI GNED(32)

VARRAY?

ORACLE

0Cl _TYPECODE_BFI LE
OCl _TYPECODE_BLOB

OCl _TYPECODE_BOOLEAN
0Cl_TYPECODE_CHAR (n)
0Cl_TYPECODE_CLOB

0Cl _TYPECODE_NAVEDCOLLECTI ON
OCl _TYPECODE_DATE

OCl _TYPECODE_TI MESTAMP
0Cl_TYPECODE_TI MESTAWP_TZ
OCl_TYPECODE_TI MESTAVP_LTZ
OCl _TYPECODE_| NTERVAL_YM
OCl_TYPECODE_| NTERVAL_DS
OCl_TYPECODE_FLOAT (b)
0Cl_TYPECODE_DECI MAL (p)
OCl_TYPECODE_DOUBLE

OCl _TYPECODE_BFLOAT

0Cl _TYPECODE_BDOUBLE
OCl_TYPECODE_| TABLE

OCl _TYPECODE_| NTEGER
OCl_TYPECODE_NUMBER (p, s)
0Cl_TYPECODE_OCTET
0Cl_TYPECODE_PLS_| NTEGER
oCl_TYPECODE_PTR
OCl_TYPECODE_RAW
OCl_TYPECODE_REAL
0Cl_TYPECODE_REF
0Cl_TYPECODE_RECORD

OCl _TYPECODE_OBJECT
OCl_TYPECODE_S| GNEDS

OCl _TYPECODE_S| GNED16
OCl_TYPECODE_S| GNED32

OCl _TYPECODE_SMALLI NT

OCl _TYPECODE_TABLE

OCl _TYPECODE_UNSI GNEDS
0Cl_TYPECODE_UNSI GNEDL6
0Cl_TYPECODE_UNSI GNED32
OCl _TYPECODE_VARRAY

SQLT BFILE
SQLT BLOB

SQLT BOL
SQLT_AFC(n)2

SQLT CLOB
SQLT_NCO

SQLT DAT

SQLT_TI MESTAMVP
SQLT_TI MESTAVP_TZ
SQLT_TI MESTAVP_LTZ
SQLT_I NTERVAL_YM
SQLT | NTERVAL_DS
SQLT FLT (8)3

SQLT _NUM(p, 0)
SQLT_FLT (8)

SQLT BFLOAT

SQLT BDOUBLE
SQLT NTY

SQLT_I NT (i)
SQLT_NUM(p, s)®
SQLT INT (1)
SQLT INT

<NONE>

SQLT_LVB

SQLT FLT (4)

SQLT REF
SQLT_NTY

SQLT NTY

SQLT I NT (1)
SQLT INT (2)
SQLT I NT (4)
SQLT I NT ()5
<NONE>
SQLT_UIN(Q)
SQLT UIN(2)
SQLT UIN(4)
<NONE>

4-36

Chapter 4
Definitions in oratypes.h

Table 4-11 (Cont.) OCI_TYPECODE to SQLT Mappings
]

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type
VARCHAR OCl _TYPECODE_VARCHAR (n) SQLT_CHR (n)?

VARCHAR? OCl _TYPECODE_VARCHAR? (n) SQLT_VCS (n)?

1 This type is a PL/SQL type only.

2 nis the size of the string in bytes.

3 These are floating-point numbers, the precision is given in terms of binary digits. b is the precision of the number in binary digits.
4 This is equivalent to a NUMBER with no decimal places.

5 iis the size of the number in bytes, set as part of an OCI call.

6 pis the precision of the number in decimal digits; s is the scale of the number in decimal digits.

7

Can only be part of a named collection type.

Definitions in oratypes.h

Describes the contents of the or at ypes. h header file.

Throughout this guide there are references to data types like ub2 or sb4, or to constants like
UBAMAXVAL. These types are defined in the or at ypes. h header file, which is found in the

publ i ¢ directory. The exact contents may vary according to the operating system that you are
using.

¢ Note:

The use of the data types in or at ypes. h is the only supported means of supplying
parameters to OCI.

ORACLE 4-37

Using SQL Statements in OCI

This chapter discusses the concepts and steps involved in processing SQL statements with
Oracle Call Interface.

This chapter contains these topics:

* Overview of SQL Statement Processing
* About Preparing Statements

* About Binding Placeholders in OCI

* About Executing Statements

* About Describing Select-List Items

* About Defining Output Variables in OCI
* About Fetching Results

* About Using Scrollable Cursors in OCI

Overview of SQL Statement Processing

ORACLE

One of the most common tasks of an OCI program is to accept and process SQL statements.

Chapter 3 “OCI Programming Basics” discussed the basic steps involved in any OCI
application. This chapter presents a more detailed look at the specific tasks involved in
processing SQL statements in an OCI program.

This section outlines the specific steps involved in accepting and processing SQL statements.

Once you have allocated the necessary handles and connected to an Oracle database, follow
the steps illustrated in Figure 5-1.

5-1

ORACLE

Chapter 5
Overview of SQL Statement Processing

Figure 5-1 Steps in Processing SQL Statements

Prepare | OCIStmtPrepare2()
Statement
v
B Bind] gglgindgygame]s:?fB:IEléan E;,rN;meE[}
. IBindByPos()/OCIBindByPos2()
__Flacenolders OCIBindObject()
OCIBindArrayOfStructi)
OCIBindDynamic()
[Exgcute OCIStmtExecute()
| Statement
y OCIP G
| Select-list Items” OCIAtrGet()
* .
[Define Ty OCIDefineByFPos()

e OCIDefineObject()
| Output Vanables OCIDefineArrayOfStruct()

v OCIDefineDynamic(}
Eateh and | OCIStmiFetchi)
| Process Data”
I * These steps performead
if necessany

Prepare the statement. Define an application request using OCl St nt Pr epar e2() .
OCl St nt Prepar e2() is an enhanced version of OCl St nt Prepar e() that was
introduced to support statement caching. Beginning with Oracle Database 12c
Release 2 (12.2), OCl St nt Prepar e() is deprecated.

Bind placeholders, if necessary. For DML statements and queries with input
variables, perform one or more of the following bind calls to bind the address of
each input variable (or PL/SQL output variable) or array to each placeholder in the
statement.

e OCI Bi ndByPos2() or OCl Bi ndByPos()

e (OC Bi ndByName2() or OCl Bi ndByNarme()
e (OCl Bi ndOhj ect ()

e OCl Bi ndDynanmi c()

e (OCBindArrayO Struct ()

Execute the statement by calling OCl St nt Execut e() . For DDL statements, no
further steps are necessary.

Describe the select-list items, if necessary, usingQCl Par antet () and

OCl AttrGet (). This is optional step is not required if the number of select-list items
and the attributes of each item (such as its length and data type) are known at
compile time.

Define output variables, if necessary. For queries, perform one or more define
calls to OCl Def i neByPos2() or OCl Defi neByPos(),, OCl Def i neQbj ect (),

OCl Def i neDynami ¢(), or OCl Def i neArrayCf Struct () to define an output variable
for each select-list item in the SQL statement. Note that you do not use a define

5-2

ORACLE

Chapter 5
Overview of SQL Statement Processing

call to define the output variables in an anonymous PL/SQL block. You did this when you
bound the data.

6. Fetch the results of the query, if necessary, by calling OCl St nt Fet ch2() .

After these steps have been completed, the application can free allocated handles and then
detach from the server, or it may process additional statements.

Note:

OCI programs no longer require an explicit parse step. If a statement must be
parsed, that step occurs upon execution, meaning that release 8.0 or later
applications must issue an execute command for both DML and DDL statements.

The following sections describe each step in detail.

< Note:

Some variation in the order of steps is possible. For example, it is possible to do the
define step before the execute step if the data types and lengths of returned values
are known at compile time.

Additional steps beyond those listed earlier may be required if your application must do any
of the following:

* Initiate and manage multiple transactions
* Manage multiple threads of execution

» Perform piecewise inserts, updates, or fetches

5-3

Chapter 5
About Preparing Statements

¢ See Also:

e Statement Caching in OCI

e OCI Programming Basics

* OCIStmtPrepare2() or OCIStmtPrepare()
e OCIBindByPos2() or OCIBindByPos()

e OCIBindByName2() or OCIBindByName()
* OCIBindObject()

e OCIBindDynamic()

* OCIBindArrayOfStruct()

* OCIStmtExecute()

e OCIParamGet()

* OCIAttrGet()

* OCIDefineByPos2() or OCIDefineByPos()
e OCIDefineObject()

* OCIDefineDynamic()

e OCIDefineArrayOfStruct()

e OCIStmtFetch2()

About Preparing Statements

ORACLE

SQL and PL/SQL statements are prepared for execution by using the statement
prepare call and any necessary bind calls.

In this phase, the application specifies a SQL or PL/SQL statement and binds
associated placeholders in the statement to data for execution. The client-side library
allocates storage to maintain the statement prepared for execution.

An application requests a SQL or PL/SQL statement to be prepared for execution
using the OCl St nt Prepar e2() call and passes to this call a previously allocated
statement handle. This is a completely local call, requiring no round-trip to the server.
No association is made between the statement and a particular server at this point.

Following the request call, an application can call OCl Attr Get () on the statement
handle, passing OCl _ATTR_STMI_TYPE to the at t rt ype parameter, to determine what
type of SQL statement was prepared. The possible attribute values and corresponding
statement types are listed in Table 5-1.

Table 5-1 OCI_ATTR_STMT_TYPE Values and Statement Types
|

Attribute Value Statement Type
OCl _STMTI_SELECT SELECT statement
OCl _STMI_UPDATE UPDATE statement

5-4

Chapter 5
About Preparing Statements

Table 5-1 (Cont.) OCI_ATTR_STMT_TYPE Values and Statement Types

Attribute Value Statement Type

OCl _STMI_DELETE DELETE statement
OCl _STMT_I NSERT | NSERT statement
OCl _STMI_CREATE CREATE statement
OCl _STMI_DROP DROP statement

OCl _STMI_ALTER ALTER statement

OCl _STMI_BEG N BEG N... (PL/SQL)
OCl _STMI_DECLARE DECLARE... (PL/SQL)
This section includes the following topic: About Using Prepared Statements on Multiple
Servers

¢ See Also:

e OCIStmtPrepare2()
* OCIAttrGet()
e About Using PL/SQL in an OCI Program

About Using Prepared Statements on Multiple Servers

A prepared application request can be executed on multiple servers at run time by
reassociating the statement handle with the respective service context handles for the
servers.

All information about the current service context and statement handle association is lost
when a new association is made.

For example, consider an application such as a network manager, which manages multiple
servers. In many cases, it is likely that the same SELECT statement must be executed against
multiple servers to retrieve information for display. OCI allows the network manager
application to prepare a SELECT statement once and execute it against multiple servers. It
must fetch all of the required rows from each server before reassociating the prepared
statement with the next server.

" Note:

If a prepared statement must be reexecuted frequently on the same server, it is
more efficient to prepare a new statement for another service context.

ORACLE 5-5

Chapter 5
About Binding Placeholders in OCI

About Binding Placeholders in OCI

ORACLE

Most DML statements, and some queries (such as those with a WHERE clause), require
a program to pass data to Oracle Database as part of a SQL or PL/SQL statement.

This data can be constant or literal, known when your program is compiled. For
example, the following SQL statement, which adds an employee to a database,
contains several literals, such as 'BESTRY" and 2365:

I NSERT | NTO enp VALUES
(2365, ' BESTRY', ' PROGRAWER , 2000, 20)

Coding a statement like this into an application would severely limit its usefulness. You
must change the statement and recompile the program each time you add a new
employee to the database. To make the program more flexible, you can write the
program so that a user can supply input data at run time.

When you prepare a SQL statement or PL/SQL block that contains input data to be
supplied at run time, placeholders in the SQL statement or PL/SQL block mark where
data must be supplied. For example, the following SQL statement contains five
placeholders, indicated by the leading colons (: enane), that show where input data
must be supplied by the program.

I NSERT | NTO enp VALUES
(:enpno, :enane, :job, :sal, :deptno)

You can use placeholders for input variables in any DELETE, | NSERT, SELECT, or UPDATE
statement, or in a PL/SQL block, in any position in the statement where you can use
an expression or a literal value. In PL/SQL, placeholders can also be used for output
variables.

Placeholders cannot be used to represent other Oracle objects such as tables. For
example, the following is not a valid use of the enp placeholder:

I NSERT | NTO : enp VALUES
(12345, 'OERTEL', 'WRITER, 50000, 30)

For each placeholder in a SQL statement or PL/SQL block, you must call an OCI
routine that binds the address of a variable in your program to that placeholder. When
the statement executes, the database gets the data that your program placed in the
input variables or bind variables and passes it to the server with the SQL statement.

Binding is used for both input and output variables in nonquery operations. In
Example 5-1, the variables enpno_out, enane_out, j ob_out, sal _out, and dept no_out
should be bound. These are outbinds (as opposed to regular inbinds).

Example 5-1 Binding Both Input and Output Variables in Nonquery Operations

I NSERT | NTO enp VALUES
(:enpno, :enane, :job, :sal, :deptno)

RETURNI NG
(enpno, enane, job, sal, deptno)
I NTO
(:enmpno_out, :ename_out, :job_out, :sal_out, :deptno_out)

This section includes the following topic: Rules for Placeholders

5-6

Chapter 5
About Executing Statements

¢ See Also:

Binding and Defining in OCI for detailed information about implementing bind
operations

Rules for Placeholders

Lists and describes the rules for forming placeholders.
The rules for forming placeholders are as follows:

e The first character is a colon (":").

e The colon is followed by a combination of underscore (" "), AtoZ,atoz,or0to 9.
However, the first character following the colon cannot be an underscore.

e The letters must be only from the English alphabet, and only the first 30 characters after
the colon are significant. The name is case-insensitive.

e The placeholder can consist of only digits after the colon. If it is only digits, the
placeholder must be less than 65536. If the name starts with a digit, then only digits are
allowed.

e The hyphen ("-") is not allowed.

About Executing Statements

An OCI application executes prepared statements individually using OCl St nt Execut e() .

When an OCI application executes a query, it receives from the Oracle database data that
matches the query specifications. Within the database, the data is stored in Oracle-defined
formats. When the results are returned, the OCI application can request that data be
converted to a particular host language format, and stored in a particular output variable or
buffer.

For each item in the select list of a query, the OCI application must define an output variable
to receive the results of the query. The define step indicates the address of the buffer and the
type of the data to be retrieved.

< Note:

If output variables are defined for a SELECT statement before a call to

OCl St nt Execut e() , the number of rows specified by the i t er s parameter are
fetched directly into the defined output buffers and additional rows equivalent to the
prefetch count are prefetched. If there are no additional rows, then the fetch is
complete without calling OCl St nt Fet ch2() .

For nonqueries, the number of times the statement is executed during array operations
equalsiters - rowoff, whererowoff isthe offset in the bound array, and is also a
parameter of the OCl St nt Execut e() call.

ORACLE .

Chapter 5
About Executing Statements

For example, if an array of 10 items is bound to a placeholder for an | NSERT statement,
anditers is setto 10, all 10 items are inserted in a single execute call when r owof f is
zero. If rowof f is set to 2, only 8 items are inserted.

This section includes the following topics:
* Execution Snapshots

» Execution Modes of OCIStmtExecute()

¢ See Also:

e OCIStmtExecute()
e OCIStmtFetch2()
e About Defining Output Variables in OCI

Execution Snapshots

The OCl St nt Execut e() call provides the ability to ensure that multiple service contexts
operate on the same consistent snapshot of the database's committed data.

This is achieved by taking the contents of the snap_out parameter of one
OCl St nt Execut e() call and passing that value as the snap_i n parameter of the next
OCl St nt Execut e() call.

< Note:

Uncommitted data in one service context is not visible to another context,
even when both calls are using the same snapshot.

The data type of both the snap_out and snap_i n parameter is OCl Snapshot .
OClSnapshot is an OCI shapshot descriptor that is allocated with the
OCl DescriptorAl'l oc() function.

It is not necessary to specify a snapshot when calling OCl St nt Execut e() . The
following sample code shows a basic execution in which the snapshot parameters are
passed as NULL.

checkerr(errhp, OC StntExecute(svchp, stnthp, errhp, (ub4) 1, (ub4) 0,
(OCl Snapshot *)NULL, (OC Snapshot *) NULL, OCI _DEFAULT));

" Note:

The checkerr () function, which is user-developed, evaluates the return code
from an OCI application.

ORACLE 5-8

Chapter 5
About Executing Statements

¢ See Also:

* OCIStmtExecute()
e OClIDescriptorAlloc()
e OCI Descriptors

Execution Modes of OCIStmtExecute()

You can specify a number of modes for the OCl St nt Execut e() call.

This section describes the OCIStmtExecute() call. See OCl St nt Execut e() for other values of
the parameter node.

This section includes the following topics:
* Using Batch Error Mode

* Example of Batch Error Mode

See Also:
OCIStmtExecute()

Using Batch Error Mode

ORACLE

OCI provides the ability to perform array DML operations.

For example, an application can process an array of | NSERT, UPDATE, or DELETE statements
with a single statement execution. If one of the operations fails due to an error from the
server, such as a unique constraint violation, the array operation terminates, and OCI returns
an error. Any rows remaining in the array are ignored. The application must then reexecute
the remainder of the array, and go through the whole process again if it encounters more
errors, which causes additional round-trips.

To facilitate processing of array DML operations, OCI provides the batch error mode (also
called the enhanced DML array feature). This mode, which is specified in the

OCl St nt Execut e() call, simplifies DML array processing if there are one or more errors. In
this mode, OCI attempts to insert, update, or delete all rows, and collects information about
any errors that occurred. The application can then retrieve error information and reexecute
any DML operations that failed during the first call. In this way, all DML operations in the array
are attempted in the first call, and any failed operations can be reissued in a second call.

" Note:

This feature is only available to applications linked with release 8.1 or later OCI
libraries running against a release 8.1 or later server. Applications must also be
recoded to account for the new program logic described in this section.

5-9

ORACLE

Chapter 5
About Executing Statements

This mode is used as follows:

1.

The user specifies OCl _BATCH ERRORS as the mode parameter of the
OCl St nt Execut e() call.

After performing an array DML operation with OCl St nt Execut e() , the application
can retrieve the number of errors encountered during the operation by calling

OCl AttrGet () on the statement handle to retrieve the OCI _ATTR_NUM DM._ERRORS
attribute, as shown in the following code example.

Calling OCIAttrGet() to Retrieve the Number of Errors Encountered During an
Array DML Operation

ub4 numerrs;
OCl AttrGet(stntp, OCl _HTYPE STMI, &wumerrs, 0, OCl_ATTR_NUM DM._ERRCRS,
errhp);

The application extracts each error using OCl Par antet () , along with its row
information, from the error handle that was passed to the OCl St nt Execut e() call.
To retrieve the information, the application must allocate an additional new error
handle for the OCl Par anGet () call, populating the new error handle with batched
error information. The application obtains the syntax of each error with

OCl Error Get (), and the row offset into the DML array at which the error occurred,
by calling OCl Attr Get () on the new error handle.

For example, after the num errs amount has been retrieved, the application can
issue the following calls shown in the following code example.

Retrieving Information About Each Error Following an Array DML Operation

CClError errhndl, errhp2;
for (i=0; i<numerrs; i++)
{
OCl Par anet (errhp, OCl _HTYPE_ERROR, errhp2, (void **)&errhndl, i);
OCl AttrGet(errhndl, OCl _HTYPE ERROR, &row offset, O,
OCl _ATTR_DML_ROW OFFSET, errhp2);
CClErrorCet(..., errhndl, ...);

Following this operation, the application can correct the bind information for the
appropriate entry in the array using the diagnostic information retrieved from the
batched error. Once the appropriate bind buffers are corrected or updated, the
application can reexecute the associated DML statements.

Because it cannot be determined at compile time which rows in the first execution
may cause errors, the binds for the subsequent DML should be done dynamically
by passing in the appropriate buffers at run time. The bind buffers used in the
array binds done on the first DML operation can be reused.

¢ See Also:

e OCIStmtExecute()
« OCIAttrGet()

e OCIParamGet()

e OCIErrorGet()

5-10

Chapter 5
About Executing Statements

Example of Batch Error Mode

Shows how the batch error execution mode might be used.

Example 5-2 shows an example of how the batch error execution mode might be used. In this
example, assume that you have an application that inserts five rows (with two columns, of
types NUMBER and CHAR) into a table. Furthermore, assume that only two rows (1 and 3) are
successfully inserted in the initial DML operation. The user then proceeds to correct the data
(wrong data was being inserted the first time) and to issue an update with the corrected data.
The user uses statement handles st nt pl and st nt p2 to issue the | NSERT and UPDATE
statements, respectively.

In Example 5-2, CCl Bi ndDynani ¢() is used with a callback because the user does not know
at compile time what rows may return with errors. With a callback, you can simply pass the
erroneous row numbers, stored in r ow_of f, through the callback context and send only those
rows that must be updated or corrected. The same bind buffers can be shared between the

I NSERT and the UPDATE statement executions.

Example 5-2 Using Batch Error Execution Mode

CCI Bi nd *bindpl[2], *bindp2[2];

ub4 numerrs, row_ of f[MAXROAS], number [MAXROWE] = {1, 2, 3, 4, 5};
char grade[MAXRONS] = {'A','B','C,'D,'E};

CClError *errhp2;

CCl Error *errhndl [MAXROAS] ;

/* Array bind all the positions */
COCl Bi ndByPos (stntpl, &indpl[0],errhp, 1, (void *)&nunber[0],
si zeof (number[0]), SQLT_INT, (void *)0, (ub2 *)0, (ub2 *)O0,
0, (ub4 *)0, 00l _DEFAULT);
CCl Bi ndByPos (stntpl, &indpl[1],errhp,2,(void *)&grade[0],
si zeof (grade[0]), SQLT_CHR, (void *)0, (ub2 *)0, (ub2 *)0,0,
(ub4 *)0, OCI _DEFAULT);
/* execute the array | NSERT */
OCl St nt Execut e (svchp, stntpl, errhp,5,0,0,0, OCl _BATCH ERRCRS);
/* get the nunber of errors. Adifferent error handler errhp2 is used so that
* the state of errhp is not changed */
OCl AttrGet (stntpl, OCl_HTYPE STMI, &umerrs, O,
OCl _ATTR_NUM DML_ERRORS, errhp2);
if (numerrs) {
/* The user can do one of two things: 1) Allocate as many */
[* error handl es as nunber of errors and free all handles */
/* at a later time; or 2) Allocate one err handle and reuse */
/* the same handle for all the errors */
for (i =0; i <numerrs; i++) {
OCl Handl eAl l oc((void *)envhp, (void **)&errhndl[i],
(ub4) OClI_HTYPE_ERROR, 0, (void *) 0);
OCl Par anet (errhp, OCl_HTYPE_ERROR, errhp2, &errhndl[i], i);
OCl AttrGet (errhndl[i], OCl_HTYPE ERROR, &row off[i], O,
OCl _ATTR DML_ROW OFFSET, errhp2);
/* get server diagnostics */
CClErrorGet (..., errhndl[i], ...);
}
}

/* make corrections to bind data */

COCl Bi ndByPos (stntp2, &i ndp2[0], errhp, 1, (void *)0, sizeof (grade[0]), SQLT_I NT,
(void *)0, (ub2 *)0,(ub2 *)0,0, (ub4 *)0, OCl _DATA AT_EXEC);

CCl Bi ndByPos (st ntp2, &indp2[1],errhp, 2, (void *)0, sizeof (nunber[0]), SQLT_DAT,
(void *)0, (ub2 *)0,(ub2 *)0,0, (ub4 *)0, OCl _DATA AT_EXEC);

ORACLE 5-11

Chapter 5
About Describing Select-List Items

/* register the callback for each bind handle, row off and position

* information can be passed to the callback function by neans of context
* pointers.

*/

OCl Bi ndDynami ¢ (bi ndp2[0], errhp, ctxpl, my_cal | back, 0, 0);

OCl Bi ndDynani ¢ (bi ndp2[1], errhp, ct xp2, ny_cal | back, 0, 0);

/* execute the UPDATE statenent */

COCl St nt Execut e (svchp, stntp2, errhp, numerrs, 0,0, 0, OCl _BATCH ERRCRS);

See Also:
OCIBindDynamic()

About Describing Select-List Items

ORACLE

If your OCI application is processing a query, you may need to obtain more information
about the items in the select list.

This is particularly true for dynamic queries whose contents are not known until run
time. In this case, the program may need to obtain information about the data types
and column lengths of the select-list items. This information is necessary to define
output variables that may receive query results.

For example, consider a query where the program has no prior information about the
columns in the enpl oyees table:

SELECT * FROM enpl oyees

There are two types of describes available: implicit and explicit.

An implicit describe does not require any special calls to retrieve describe information
from the server, although special calls are necessary to access the information. An
implicit describe allows an application to obtain select-list information as an attribute of
the statement handle after a statement has been executed without making a specific
describe call. It is called implicit because no describe call is required. The describe
information comes free with the statement execution.

An explicit describe requires the application to call a particular function to bring the
describe information from the server. An application may describe a select list (query)
either implicitly or explicitly. Other schema elements must be described explicitly.

You can describe a query explicitly before execution by specifying OCl _DESCRI BE_ ONLY
as the mode of OCl St nt Execut e() , which does not execute the statement, but returns
the select-list description. For performance reasons, Oracle recommends that
applications use the implicit describe, which comes free with a standard statement
execution.

An explicit describe with the OCl Descri beAny() call obtains information about schema
objects rather than select lists.

In all cases, the specific information about columns and data types is retrieved by
reading handle attributes.

This section includes the following topics:

5-12

Chapter 5
About Describing Select-List ltems

* Implicit Describe

» Explicit Describe of Queries

¢ See Also:

e Describing Schema Metadata for information about using OCIDescribeAny() to
obtain metadata pertaining to schema objects

« OCIStmtExecute()
e OClIDescribeAny()

Implicit Describe

ORACLE

After a SQL statement is executed, information about the select list is available as an
attribute of the statement handle. No explicit describe call is needed.

To retrieve information about multiple select-list items, an application can call OCl Par antet ()
with the pos parameter set to 1 the first time, and then iterate the value of pos and repeat the
OCl Par anet () call until OCI _ERROR with ORA- 24334 is returned. An application could also
specify any position n to get a column at random.

Once a parameter descriptor has been allocated for a position in the select list, the
application can retrieve specific information by calling OCl Attr Get () on the parameter
descriptor. Information available from the parameter descriptor includes the data type and
maximum size of the parameter.

The sample code in Example 5-3Example 5-3 shows a loop that retrieves the column names
and data types corresponding to a query following query execution. The query was
associated with the statement handle by a prior call to OCl St nt Prepar e2() .

The checkerr () function in Example 5-3 is used for error handling. The complete listing can
be found in the first sample application in OCI Demonstration Programs.

The calls to OCl Attr Get () and OCl Par antet () are local calls that do not require a network
round-trip, because all of the select-list information is cached on the client side after the
statement is executed.

Example 5-3 Implicit Describe - Select List Is Available as an Attribute of the
Statement Handle

COCl Par am *mypard = (OCl Param *) 0;

ub2 dtype;

text *col _nane;

ub4 counter, col_name_|len, char_semantics;
ub2 col _width;

sh4 parm st at us;

text *sqlstnt = (text *)"SELECT * FROM enpl oyees WHERE enpl oyee_id = 100";
checkerr(errhp, OC StntPrepare2(svchp, &stnthp, errhp, (OraText *)sqlstnt,

(ub4)strien((char *)sqglstnt), NULL, O,
(ub4) OCI _NTV_SYNTAX, (ub4) OCl _DEFAULT));

5-13

ORACLE

Chapter 5
About Describing Select-List ltems

checkerr(errhp, OC StntExecute(svchp, stnthp, errhp, 0, 0, (OC Snapshot *)0,
(OCl Snapshot *)0, OCI _DEFAULT));

/* Request a parameter descriptor for position 1 in the select list */
counter = 1;
parm status = OCl ParanGet ((void *)stnthp, OCl_HTYPE STMI, errhp,

(void **)&nmypard, (ub4) counter);

/* Loop only if a descriptor was successfully retrieved for
current position, starting at 1 */

whi

l e (parmstatus == OCl _SUCCESS) ({

/* Retrieve the data type attribute */

checkerr(errhp, OClAttrGet((void*) nypard, (ub4) OCl _DTYPE_PARAM
(voi d*) &dtype, (ub4 *) 0, (ub4) OCI _ATTR DATA TYPE,
(CClError *) errhp));

/* Retrieve the colum name attribute */

col _nane_len = 0;

checkerr(errhp, OClAttrGet((void*) nypard, (ub4) OCl _DTYPE_PARAM
(voi d**) &col _name, (ub4 *) &col _nane_l en, (ub4) OCI _ATTR_NAME,
(CClError *) errhp));

/* Retrieve the length semantics for the colum */
char_semantics = 0;
checkerr(errhp, OClAttrGet((void*) nypard, (ub4) OCl _DTYPE_PARAM
(voi d*) &char_semantics, (ub4 *) 0, (ub4) OCl _ATTR CHAR_USED,
(CClError *) errhp));
col_width = 0;
if (char_semantics)
/* Retrieve the colum width in characters */
checkerr(errhp, OClAttrGet((void*) nypard, (ub4) OCl _DTYPE_PARAM
(void*) &col _width, (ub4 *) 0, (ub4) OC _ATTR_CHAR SI ZE,
(OClError *) errhp));
el se
/* Retrieve the colum width in bytes */
checkerr(errhp, OClAttrGet((void*) nypard, (ub4) OCl _DTYPE_PARAM
(voi d*) &col width, (ub4 *) 0, (ub4) OCl _ATTR DATA S| ZE,
(OClError *) errhp));

/* increment counter and get next descriptor, if there is one */
count er ++;
parm status = OCl ParanGet ((void *)stnthp, OCl_HTYPE STMI, errhp,
(void **)&mypard, (ub4) counter);
} /¥ while */

¢ See Also:

e OCIParamGet()

« OCIAttrGet()

e OCIStmtPrepare2()

e OCIArrayDescriptorAlloc()

e Parameter Attributes for a list of the specific attributes of the parameter
descriptor that may be read by OCIArrayDescriptorAlloc()

5-14

Chapter 5
About Describing Select-List ltems

Explicit Describe of Queries

You can describe a query explicitly before execution by specifying OCI _DESCRI BE_ONLY as the
mode of OCl St nt Execut e()

This does not execute the statement, but returns the select-list description.

Note:

To maximize performance, Oracle recommends that applications execute the
statement in default mode and use the implicit describe that accompanies the
execution.

The code in Example 5-4 demonstrates the use of explicit describe in a select list to return
information about columns.

Example 5-4 Explicit Describe - Returning the Select-List Description for Each
Column

int i =0;

ub4 nuntols = 0;

ub2 type = 0;

COCl Param *col hd = (OCl Param *) 0; /* colum handl e */

text *sglstnt = (text *)"SELECT * FROM enpl oyees WHERE enpl oyee_id = 100";

checkerr(errhp, OC StntPrepare2(svchp, &stnthp, errhp, (OaText *)sqlstnt,
(ub4)strlien((char *)sqglstnt), NULL, O,
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT));

/* initialize svchp, stnthp, errhp, rowoff, iters, snap_in, snap_out */

/* set the execution node to OCI _DESCRIBE_ONLY. Note that setting the node to
OCl _DEFAULT does an inplicit describe of the statement in addition to executing
the statement */

checkerr(errhp, OC StntExecute(svchp, stnthp, errhp, 0, O,
(QCl Snapshot *) 0, (OClSnapshot *) 0, OCl_DESCRIBE_ONLY));

/* Get the nunber of colums in the query */
checkerr(errhp, OClAttrGet((void *)stmhp, OCl_HTYPE_STMI, (void *)é&nuncols,
(ub4 *)0, OCI_ATTR _PARAM COUNT, errhp));

/* go through the colum list and retrieve the data type of each col um.
Start frompos =1 */
for (i =1; i <= nuntols; i++4)
{
/* get parameter for colum i */
checkerr(errhp, OCl Parantet ((void *)stnthp, OCl_HTYPE STMI, errhp, (void **)&col hd,

i)

/* get data-type of colum i */

type = 0

checkerr(errhp, OClAttrGet((void *)col hd, OCl _DTYPE PARAM
(void *)&ype, (ub4 *)0, OCl _ATTR DATA TYPE, errhp));

ORACLE 5-15

Chapter 5
About Defining Output Variables in OCI

¢ See Also:
OCIStmtExecute()

About Defining Output Variables in OCl

Query statements return data from the database to your application.

When processing a query, you must define an output variable or an array of output
variables for each item in the select list from which to retrieve data. The define step
creates an association that determines where returned results are stored, and in what
format.

For example, to process the following statement you would normally define two output
variables: one to receive the value returned from the name column, and one to receive

the value returned from the ssn column:

SELECT nane, ssn FROM enpl oyees
WHERE enpno = :enmpnum

¢ See Also:
Binding and Defining in OCI

About Fetching Results

ORACLE

If an OCI application has processed a query, it is typically necessary to fetch the
results with OCl St nt Fet ch2() after the statement has completed execution.

The OCI St nt Fet ch2() function supports scrollable cursors.

Fetched data is retrieved into output variables that have been specified by define
operations.

Note:

If output variables are defined for a SELECT statement before a call to
OCl St nt Execut e() , the number of rows specified by the i t ers parameter is
fetched directly into the defined output buffers

This section includes the following topics:
e About Fetching LOB Data
e About Setting Prefetch Count

5-16

Chapter 5
About Fetching Results

¢ See Also:

e About Using Scrollable Cursors in OCI
e OCIStmtFetch2()
* OCIStmtExecute()

e These statements mentioned previously fetch data associated with the sample
code in Steps Used in OCI Defining. See that example for more information.

e Overview of Defining in OCI for information about defining output variables

About Fetching LOB Data

If LOB columns or attributes are part of a select list, they can be returned as LOB locators or
actual LOB values, depending on how you define them.

If LOB locators are fetched, then the application can perform further operations on these
locators through the OCl LobXXX functions.

¢ See Also:

e LOB and BFILE Operations for more information about working with LOB
locators in OCI

e About Defining LOB Output Variables for usage and examples of selecting LOB
data without the use of locators

About Setting Prefetch Count

ORACLE

To minimize server round-trips and optimize performance, OCI can prefetch result set rows
when executing a query.

You can customize this prefetching by setting either the OCI _ATTR_PREFETCH_ROWS or
OCl _ATTR _PREFETCH MEMORY attribute of the statement handle using the OCl At t r Set ()
function. These attributes are used as follows:

e (OCl _ATTR PREFETCH ROWS sets the number of rows to be prefetched. If it is not set, then
the default value is 1. If the i t er s parameter of OCl St nt Execut e() is 0 and prefetching is
enabled, the rows are buffered during calls to OCl St nt Fet ch2() . The prefetch value can
be altered after execution and between fetches.

e (OCl _ATTR PREFETCH MEMORY sets the memory allocated for rows to be prefetched. The
application then fetches as many rows as can fit into that much memory.

When both of these attributes are set, OCI prefetches rows up to the

OCl _ATTR_PREFETCH_ROWSE limit unless the OCl _ATTR _PREFETCH_MEMORY limit is reached, in
which case OCI returns as many rows as can fit in a buffer of size

OCl _ATTR_PREFETCH_MENCRY.

5-17

Chapter 5
About Using Scrollable Cursors in OCI

By default, prefetching is turned on, and OCI fetches one extra row, except when
prefetching cannot be supported for a query (see the note that follows). To turn
prefetching off, set both the OCl _ATTR_PREFETCH ROWS and OCl _ATTR _PREFETCH MEMORY
attributes to zero.

If both OCI _ATTR_PREFETCH_ROWS and OCI _ATTR_PREFETCH_MEMORY attributes are
explicitly set, OCI uses the tighter of the two constraints to determine the number of
rows to prefetch.

To prefetch exclusively based on the memory constraint, set the

OCl _ATTR_PREFETCH_MEMORY attribute and be sure to disable the

OCl _ATTR _PREFETCH ROWS attribute by setting it to zero (to override the default setting
of 1 row).

To prefetch exclusively based on the number of rows constraint, set the
OCl _ATTR_PREFETCH_ROAS attribute and disable the OCl _ATTR_PREFETCH_MEMORY
attribute by setting it to zero (if it was ever explicitly set to a non-zero value).

Prefetching is possible for REF CURSORs and nested cursor columns. By default,
prefetching is not turned on for REF CURSORs. To turn on prefetching for REF CURSCRs,
set the OCI _ATTR PREFETCH ROWS or OCI _ATTR PREFETCH MEMORY attribute before
fetching rows from the REF CURSOR. When a REF CURSCR is passed multiple times
between an OCI application and PL/SQL and fetches on the REF CURSOR are done in
OCI and in PL/SQL, the rows prefetched by OCI (if enabled) cause the application to
behave as if out-of-order rows are being fetched in PL/SQL. In such situations, OCI
prefetch should not be enabled on REF CURSCRs.

Note:

Prefetching is not in effect if LONG, LOB or Opaque Type columns (such as
XM.Type) are part of the query.

¢ See Also:

e Statement Handle Attributes
e OCIAttrSet()

e OCIStmtExecute()

e OCIStmtFetch2()

About Using Scrollable Cursors in OCI

ORACLE

A cursor is a current position in a result set.

Execution of a cursor puts the results of the query into a set of rows called the result
set that can be fetched either sequentially or nonsequentially. In the latter case, the
cursor is known as a scrollable cursor.

5-18

ORACLE

Chapter 5
About Using Scrollable Cursors in OCI

A scrollable cursor supports forward and backward access into the result set from a given
position, by using either absolute or relative row number offsets into the result set.

Rows are numbered starting at one. For a scrollable cursor, you can fetch previously fetched
rows, the nth row in the result set, or the nth row from the current position. Client-side
caching of either the partial or entire result set improves performance by limiting calls to the
server.

Oracle Database does not support DML operations on scrollable cursors. A cursor cannot be
made scrollable if the LONG data type is part of the select list.

Moreover, fetches from a scrollable statement handle are based on the snapshot at execution
time. OCI client prefetching works with OCI scrollable cursors. The size of the client prefetch
cache can be controlled by the existing OCI attributes OCI _ATTR_PREFETCH_ROAS and

OCl _ATTR_PREFETCH_MEMORY.

Note:

Do not use scrollable cursors unless you require their functionality, because they
use more server resources and can have greater response times than nonscrollable
cursors.

The OCl St nt Execut e() call has an execution mode for scrollable cursors,

OCl _STMI_SCROLLABLE_READONLY. The default for statement handles is nonscrollable, forward
sequential access only, where the mode is OCl _FETCH_NEXT. You must set this execution
mode each time the statement handle is executed.

The statement handle attribute OCI _ATTR_CURRENT_PGSI TI ON can be retrieved only by using
OCl Attr Get (). This attribute cannot be set by the application; it indicates the current position
in the result set.

For nonscrollable cursors, OCl _ATTR_RON COUNT is the total number of rows fetched into the
user buffers with the OCl St nt Fet ch2() calls since this statement handle was executed.
Because nonscrollable cursors are forward sequential only, OCl _ATTR_ROW COUNT also
represents the highest row number detected by the application.

Beginning with Oracle Database Release 12.1, using the attribute OCI _ATTR _UB8_ROW COUNT
is preferred to using the attribute OCI _ATTR_ROW COUNT if row count values can exceed the
value of UBAMAXVAL for an OCI application.

For scrollable cursors, OCl _ATTR_ROW COUNT represents the maximum (absolute) row number
fetched into the user buffers. Because the application can arbitrarily position the fetches, this
does not have to be the total number of rows fetched into the user's buffers since the
(scrollable) statement was executed.

The attribute OCI _ATTR_ROWS_FETCHED on the statement handle represents the number of
rows that were successfully fetched into the user's buffers in the last fetch call or execute. It
works for both scrollable and nonscrollable cursors.

Use the OCl St nt Fet ch2() call, instead of the OCl St nt Fet ch() call, which is retained for
backward compatibility. You are encouraged to use OCl St nt Fet ch2() for all new applications,
even those not using scrollable cursors. This call also works for nonscrollable cursors, but
can raise an error if any other orientation besides OCI _DEFAULT or OCI _FETCH_NEXT is passed.

5-19

Chapter 5
About Using Scrollable Cursors in OCI

Scrollable cursors are supported for remote mapped queries. Transparent application
failover (TAF) is supported for scrollable cursors.

Note:

If you call OCl St nt Fet ch2() with the nr ows parameter set to 0, the cursor is
canceled.

This section includes the following topics:
e About Increasing Scrollable Cursor Performance

e Example of Access on a Scrollable Cursor

¢ See Also:

* OCIStmtExecute()

* OCIAttrGet()

e OCIStmtFetch2()

e About Setting Prefetch Count

About Increasing Scrollable Cursor Performance

Response time is improved if you use OCI client-side prefetch buffers.

After calling OCl St nt Execut e() for a scrollable cursor, call OCl St nt Fet ch2() using

OCl _FETCH_LAST to obtain the size of the result set. Then set OCI _ATTR PREFETCH ROWG
to about 20% of that size, and set OCl _PREFETCH_MEMORY if the result set uses a large
amount of memory.

" See Also:

e OCIStmtExecute()
e OCIStmtFetch2()

Example of Access on a Scrollable Cursor

ORACLE

Shows the use of a scrollable cursor.

Assume that a result set is returned by the following SQL query, and that the table EMP
has 14 rows:

SELECT enpno, ename FROM enp

One use of scrollable cursors is shown in Example 5-5.

5-20

Chapter 5
About Using Scrollable Cursors in OCI

Example 5-5 Access on a Scrollable Cursor

/* execute the scrollable cursor in the scrollable node */
OCl St nt Execut e(svchp, stnthp, errhp, (ub4)0, (ub4)0, (CONST OCl Snapshot *)NULL,
(0OC Snapshot *) NULL, OCl _STMT_SCROLLABLE_READONLY);

/* Fetches rows with absolute row nunbers 6, 7, 8. After this call,
OCl _ATTR _CURRENT POSI TION = 8, OCI _ATTR ROW COUNT = 8 */
checkprint(errhp, OClStntFetch2(stnthp, errhp, (ub4) 3,

OCl _FETCH ABSOLUTE, (sb4) 6, OCl _DEFAULT):

/* Fetches rows with absolute row nunbers 6, 7, 8. After this call,
OCl _ATTR _CURRENT POSI TION = 8, OCI _ATTR ROW COUNT = 8 */
checkprint(errhp, OClStntFetch2(stnthp, errhp, (ub4) 3,

OCl _FETCH_RELATIVE, (sb4) -2, OCl _DEFAULT);

/* Fetches rows with absolute row nunbers 14. After this call,
OCl _ATTR CURRENT POSI TION = 14, OCl _ATTR ROW COUNT = 14 */
checkprint(errhp, OClStntFetch2(stnthp, errhp, (ub4) 1,

OCl _FETCH_LAST, (sh4) 0, OCl _DEFAULT);

/* Fetches rows with absolute row nunber 1. After this call,
OCl _ATTR CURRENT POSITION = 1, OCI _ATTR ROW COUNT = 14 */
checkprint(errhp, OClStntFetch2(stnthp, errhp, (ub4) 1,

OCl _FETCH_FIRST, (sb4) 0, OCl _DEFAULT):

/* Fetches rows with absolute row nunbers 2, 3, 4. After this call,
OCl _ATTR _CURRENT POSI TION = 4, OCI _ATTR ROW COUNT = 14 */
checkprint(errhp, OClStntFetch2(stnthp, errhp, (ub4) 3,

OCl _FETCH_NEXT, (sh4) 0, OCl _DEFAULT);

/* Fetches rows with absolute row nunbers 3,4,5,6,7. After this call,
OCl _ATTR CURRENT POSITION = 7, OCI_ATTR ROWOCOUNT = 14. It is assumed
the user's define nemory is allocated. */
checkprint(errhp, OClStntFetch2(stnthp, errhp, (ub4) 5,

OCl _FETCH PRI OR, (sb4) 0, OCl _DEFAULT):

checkprint (errhp, status)

ub4 rows_fetched,
/* This checks for any OCl errors before printing the results of the fetch call
in the define buffers */
checkerr (errhp, status);
checkerr(errhp, OCH AttrGet((CONST void *) stnthp, OCl_HTYPE STM,
(void *) &ows_fetched, (uint *) 0, OCl _ATTR ROWS_FETCHED, errhp));

ORACLE 5-21

Binding and Defining in OCI

This chapter describes binding and defining in OCI.
This chapter contains these topics:

e Overview of Binding in OCI

e Advanced Bind Operations in OCI

e Overview of Defining in OCI

* Advanced Define Operations in OCI

* About Binding and Defining Arrays of Structures in OCI

* About Binding and Defining Multiple Buffers

DML with a RETURNING Clause in OCI

e Character Conversion in OCI Binding and Defining

 PL/SQL REF CURSORs and Nested Tables in OCI

* Natively Describe and Bind All PL/SQL Types Including Package Types

* Runtime Data Allocation and Piecewise Operations in OCI

Overview of Binding in OCI

This chapter expands on the basic concepts of binding and defining, and provides more
detailed information about the different types of binds and defines you can use in OCI
applications.

Additionally, this chapter discusses the use of arrays of structures, and other issues involved
in binding, defining, and character conversions.

For example, given the | NSERT statement:

I NSERT | NTO enp VALUES
(:enpno, :enane, :job, :sal, :deptno)

Then given the following variable declarations:

t ext *enane, *job;
sword enpno, sal, deptno;

the bind step makes an association between the placeholder name and the address of the

program variables. The bind also indicates the data type and length of the program variables,
as illustrated in Figure 6-1.

ORACLE 6-1

Chapter 6
Overview of Binding in OCI

Figure 6-1 Using OCIBindByName() to Associate Placeholders with Program Variables

INSERT INTO emp

VALUES

OCIBindByName ()

Address
Data Type
Length

ORACLE

(empno, ename, job, sal, deptno)

(:empno, :ename, :j sal, :deptno)

&empno ename &sal &deptno
integer string string integer integer
sizeof (empno) strlen (ename) +1 strlen (job)+1 sizeof (sal) sizeof (deptno)

If you change only the value of a bind variable, it is not necessary to rebind it to
execute the statement again. Because the bind is by reference, as long as the address
of the variable and handle remain valid, you can reexecute a statement that references
the variable without rebinding.

Note:

At the interface level, all bind variables are considered at least | N and must
be properly initialized. If the variable is a pure OUT bind variable, you can set
the variable to 0. You can also provide a NULL indicator and set that indicator
to -1 (NULL).

In the Oracle database, data types have been implemented for named data types,
REFs and LOBs, and they can be bound as placeholders in a SQL statement.

¢ Note:

For opaque data types (descriptors or locators) whose sizes are not known,
pass the address of the descriptor or locator pointer. Set the size parameter
to the size of the appropriate data structure, (si zeof (structure)).

This section includes the following topics:

e Named Binds and Positional Binds

e OCI Array Interface

e About Binding Placeholders in PL/SQL
e Steps Used in OCI Binding

e PL/SQL Block in an OCI Program

6-2

Chapter 6
Overview of Binding in OCI

¢ See Also:

Steps Used in OCI Binding for the code that implements this example

Named Binds and Positional Binds

ORACLE

In a named bind, each placeholder in the statement has a name associated with it, while in a
positional bind, the placeholders are referred to by their position in the statement rather than
by their names.

The SQL statement in Figure 6-1 is an example of a named bind. Each placeholder in the
statement has a name associated with it, such as 'ename’ or 'sal'. When this statement is
prepared and the placeholders are associated with values in the application, the association
is made by the name of the placeholder using the CCl Bi ndByNane() or OCl Bi ndByNane2() call
with the name of the placeholder passed in the placeholder parameter.

A second type of bind is known as a positional bind. In a positional bind, the placeholders are
referred to by their position in the statement rather than by their names. For binding
purposes, an association is made between an input value and the position of the placeholder,
using the OCl Bi ndByPos() or CCl Bi ndByPos2() call.

To use the previous example for a positional bind:

I NSERT | NTO enp VALUES
(:enpno, :enane, :job, :sal, :deptno)

The five placeholders are then each bound by calling OCl Bi ndByPos() or OCl Bi ndByPos2()
and passing the position number of the placeholder in the posi ti on parameter. For example,
the : enpno placeholder would be bound by calling OCl Bi ndByPos() or OCl Bi ndByPos2() with
a position of 1, : enane with a position of 2, and so on.

In a duplicate bind, only a single bind call may be necessary. Consider the following SQL
statement, which queries the database for employees whose commission and salary are both
greater than a given amount:

SELECT enpno FROM enp
WHERE sal > :some_val ue
AND comm > :sone_val ue

An OCI application could complete the binds for this statement with a single call to

CCl Bi ndByNang() or OCl Bi ndByNane2() to bind the : some_val ue placeholder by name. In this
case, all bind placeholders for : sone_val ue get assigned the same value as provided by the
OCl Bi ndByNang() or OCl Bi ndByNane2() call.

Now consider the case where a 6th placeholder is added that is a duplicate. For example,
add : enane as the 6th placeholder in the first previous example:

I NSERT | NTO enp VALUES
(:enpno, :enane, :job, :sal, :deptno, :enane)

If you are using the OCl Bi ndByName() or OCl Bi ndByName2() call, just one bind call suffices to
bind both occurrences of the : ename placeholder. All occurrences of : enane in the statement
will get bound to the same value. Moreover, if new bind placeholders get added as a result of
which bind positions for existing bind placeholders change, you do not need to change your

6-3

Chapter 6
Overview of Binding in OCI

existing bind calls in order to update bind positions. This is a distinct advantage in
using the OCl Bi ndByNane() or OCl Bi ndByNane2() call if your program evolves to add
more bind variables in your statement text.

If you are using the OCl Bi ndByPos() or OCl Bi ndByPos2() call, however, you have
increased flexibility in terms of binding duplicate bind-parameters separately, if you
need it. You have the option of binding any of the duplicate occurrences of a bind
parameter separately. Any unbound duplicate occurrences of a parameter inherit the
value from the first occurrence of the bind parameter with the same name. The first
occurrence must be explicitly bound.

In the context of SQL statements, the position n indicates the bind parameter at the
nth position. However, in the context of PL/SQL statements, OCl Bi ndByPos() or

OCl Bi ndByPos2() has a different interpretation for the position parameter: the position
n in the bind call indicates a binding for the nth unique parameter name in the
statement when scanned left to right.

Using the previous example again and the same SQL statement text, if you want to
bind the 6th position separately, the : enanme placeholder would be bound by calling
CCl Bi ndByPos() or OCl Bi ndByPos2() with a position of 6. Otherwise, if left
unbound, : enane would inherit the value from the first occurrence of the bind
parameter with the same name, in this case, from : enane in position 2.

¢ See Also:

e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPo0s2()

OCI Array Interface

ORACLE

You can pass data to the Oracle database in various ways.

You can execute a SQL statement repeatedly using the OCl St nt Execut e() routine and
supply different input values on each iteration.

You can use the Oracle array interface and input many values with a single statement
and a single call to OCl St nt Execut e() . In this case, you bind an array to an input
placeholder, and the entire array can be passed at the same time, under the control of
the iters parameter.

The array interface significantly reduces round-trips to the database when you are
updating or inserting a large volume of data. This reduction can lead to considerable
performance gains in a busy client/server environment. For example, consider an
application that inserts 10 rows into the database. Calling OCl St nt Execut e() 10 times
with single values results in 10 network round-trips to insert all the data. The same
result is possible with a single call to OCl St nt Execut e() using an input array, which
involves only one network round-trip.

Beginning with Oracle Database 12c¢ Release 2 (12.2), support is added for Hybrid
Columnar Compression (HCC) with conventional DMLs, so HCC can be used during
array inserts with OCI. HCC conventional array inserts are only supported for HCC
tables on ASSM tablespaces. .

6-4

Chapter 6
Overview of Binding in OCI

< Note:

When you use the OCI array interface to perform inserts, row triggers in the
database are fired as each row is inserted.

The maximum number of rows allowed in an array DML statement is 4 billion -1
(3,999,999,999). However, if you use ub8 instead of ub4, this increases the
maximum number of rows allowed in an array DML statement to be more than 4
billion rows.

¢ See Also:

e OCIStmtExecute()

e About Table Compression in Oracle Database Administrator’s Guide for
information about how to configure HCC

About Binding Placeholders in PL/SQL

ORACLE

You process a PL/SQL block by placing the block in a string variable, binding any variables,
and then executing the statement containing the block, just as you would with a single SQL
statement.

When you bind placeholders in a PL/SQL block to program variables, you must use
CCl Bi ndByNang() or OCl Bi ndByNane2() or OCl Bi ndByPos() or OCl Bi ndByPos2() to perform
the basic binds for host variables that are either scalars or arrays.

The following short PL/SQL block contains two placeholders, which represent | N parameters
to a procedure that updates an employee's salary, when given the employee number and the
new salary amount:

char plsql_statenment[] = "BEA N
RAI SE_SALARY(: enp_nunber, :new sal);\
END; *

These placeholders can be bound to input variables in the same way as placeholders in a
SQL statement.

When processing PL/SQL statements, output variables are also associated with program
variables by using bind calls.

For example, consider the following PL/SQL block:

BEG N
SELECT enane, sal , conm | NTO : enp_nane, :salary, :conmission
FROM enmp
VWHERE enpno = : enp_nunber;

END;

In this block, you would use OCl Bi ndByNare() or OCl Bi ndByNanme2() to bind variables in place
of the : enp_nane, : sal ary, and : conmi ssi on output placeholders, and in place of the input
placeholder : enp_nunber.

6-5

Chapter 6
Overview of Binding in OCI

< Note:

All buffers, even pure OUT buffers, must be initialized by setting the buffer
length to zero in the bind call, or by setting the corresponding indicator to -1.

See Also:

e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()

* Information for Named Data Type and REF Binds for more information
about binding PL/SQL placeholders

Steps Used in OCI Binding

ORACLE

Placeholders are bound in several steps.

For a simple scalar or array bind, it is only necessary to specify an association
between the placeholder and the data, by using OCl Bi ndByNane() or
OCl Bi ndByNanme2() or OCl Bi ndByPos() or OCl Bi ndByPos2() .

Once the bind is complete, the OCI library detects where to find the input data or
where to put the PL/SQL output data when the SQL statement is executed. Program
input data does not need to be in the program variable when it is bound to the
placeholder, but the data must be there when the statement is executed.

The following code example in Example 6-1 shows handle allocation and binding for
each placeholder in a SQL statement.

Note:

The checkerr () function evaluates the return code from an OCI application.
The code for the function is in the Example for OCl Error Get () .

Example 6-1 Handle Allocation and Binding for Each Placeholder in a SQL
Statement

/* The SQL statement, associated with stnthp (the statement handle)

by calling OCl StntPrepare2() */

text *insert = (text *) "INSERT | NTO enp(enpno, ename, job, sal, deptno)\
VALUES (:enpno, :enane, :job, :sal, :deptno)";

/* Bind the placeholders in the SQL statement, one per bind handle. */

checkerr(errhp, OC BindByNane(stnthp, &bndlp, errhp, (text *) ":ENAME",
strlien(": ENAME"), (ubl *) ename, enanelen+l, SQLT_STR (void *) O,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCl _DEFAULT));

6-6

Chapter 6
Overview of Binding in OCI

checkerr(errhp, OC Bi ndByName(stnthp, &nd2p, errhp, (text *) ":JOB",
strien(":JOB"), (ubl *) job, joblen+l, SQLT_STR (void *)
& ob_ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI _DEFAULT));
checkerr(errhp, OC Bi ndByNane(stnthp, &bnd3p, errhp, (text *) ":SAL",
strlen(":SAL"), (ubl *) &sal, (sword) sizeof(sal), SQ.T_INT,
(void *) &sal _ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0,
OCl _DEFAULT));
checkerr(errhp, OC Bi ndByNane(stnthp, &bnd4p, errhp, (text *) ":DEPTNO',
strlien(": DEPTNO'), (ubl *) &deptno, (sword) sizeof(deptno), SQ.T_I NT,
(void *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI _DEFAULT));
checkerr(errhp, OC Bi ndByName(stnthp, &bnd5p, errhp, (text *) ":EMPNO',
strien(": EMPNO'), (ubl *) &enpno, (sword) sizeof (enpno), SQLT_INT,
(void *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0,0CI _DEFAULT));

¢ See Also:

* OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()
e OCIErrorGet()

PL/SQL Block in an OCI Program

ORACLE

Perhaps the most common use for PL/SQL blocks in OCl is to call stored procedures or
stored functions.

Assume that there is a procedure named RAI SE_SALARY stored in the database, and you
embed a call to that procedure in an anonymous PL/SQL block, and then process the
PL/SQL block.

The following program fragment shows how to embed a stored procedure call in an OCI
application. The program passes an employee number and a salary increase as inputs to a
stored procedure called r ai se_sal ary:

rai se_salary (enployee_numIN, sal _increase IN, new salary OUT);

This procedure raises a given employee's salary by a given amount. The increased salary
that results is returned in the stored procedure's variable, new_sal ary, and the program
displays this value.

Note that the PL/SQL procedure argument, new_sal ary, although a PL/SQL OUT variable,
must be bound, not defined.

Example 6-2 demonstrates how to perform a simple scalar bind where only a single bind call
is necessary. In some cases, additional bind calls are needed to define attributes for specific
bind data types or execution modes.

Example 6-2 Defining a PLISQL Statement to Be Used in OCI

/* Define PL/SQL statement to be used in program */
text *give_raise = (text *) "BEG N
RAI SE_SALARY(: enp_nunber, : sal _i ncrease, :new salary);\

END; ";
CCIBind *bndlp = NULL,; [* the first bind handle */
CCIBind *bnd2p = NULL; /* the second bind handle */
CCIBind *bnd3p = NULL; [* the third bind handle */

6-7

Chapter 6
Overview of Binding in OCI

static void checkerr();
sh4 status;

mai n()
{
sword enpno, raise, new_sal;
OCl Session *usrhp = (OCl Sessi on *)NULL;

/* attach to Oracle database, and perform necessary initializations
and aut hori zations */

/* prepare the statement request, passing the PL/SQ text
block as the statement to be prepared */
checkerr(errhp, OC StntPrepare2(svchp, &stnthp, errhp, (text *) give_raise,
(ub4)
strlen(give_raise), NULL, 0, OCI _NTV_SYNTAX, OCI _DEFAULT));

/* bind each of the placeholders to a programvariable */
checkerr(errhp, OC Bi ndByNanme(stnthp, &bndlp, errhp, (text *) ":enp_nunber",
-1, (ubl *) &enpno,
(sword) sizeof (enmpno), SQT_INT, (void *) O,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI _DEFAULT));

checkerr(errhp, OCIBindByNane(stnthp, &bnd2p, errhp, (text *) ":sal __increase",
-1, (ubl *) &raise,
(sword) sizeof(raise), SQT_INT, (void *) 0,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI _DEFAULT));

/* renmenber that PL/SQ OUT variables are bound, not defined */

checkerr(errhp, OC Bi ndByNanme(stnthp, &bnd3p, errhp, (text *) ":new_salary",
-1, (ubl *) &new sal,
(sword) sizeof(new sal), SQT_INT, (void *) O,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI _DEFAULT));

/* pronmpt the user for input values */
printf("Enter the enployee nunber: ");
scanf ("%", &enpno);

[* flush the input buffer */
myfflush();

printf("Enter enployee's raise: ");
scanf ("%d", &raise);

[* flush the input buffer */
myfflush();

/* execute PL/SQ bl ock*/
checkerr(errhp, OC StntExecute(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(OCl Snapshot *) NULL, (OCl Snapshot *) NULL, OCl _DEFAULT));

/* display the new salary, followi ng the raise */
printf("The new salary is %l\n", new sal);

COCl St nt Rel ease(stnthp, errhp, NULL, 0, OCl _DEFAULT);
}

ORACLE 6-8

¢ See Also:

Chapter 6
Advanced Bind Operations in OCI

Why a PL/SQL OUT variable must be bound and not defined is explained in About
Defining PL/SQL Output Variables and in Information for Named Data Type and
REF Defines, and PL/SQL OUT Binds.

Advanced Bind Operations in OCI

More advanced bind operations include multistep binds, and binds of named data types and
REFs.

About Binding Placeholders in OCI discussed how a basic bind operation is performed to
create an association between a placeholder in a SQL statement and a program variable by
using OCl Bi ndByNane() or OCl Bi ndByNane2() or OCl Bi ndByPos() or OCl Bi ndByPos2() . This
section covers more advanced bind operations, including multistep binds, and binds of
named data types and REFs.

In some cases, additional bind calls are necessary to define specific attributes for certain bind
data types or certain execution modes.

The following sections describe these special cases, and the information about binding is
summarized in Table 6-1.

Table 6-1 Information Summary for Bind Types

Type of Bind

Bind Data Type

Notes

Scalar

Array of scalars

Named data type

Boolean

REF

LOB
BFI LE

Array of structures or
static arrays

ORACLE

Any scalar data type

Any scalar data type

SQLT_NTY

SQLT_BOL

SQLT_REF

SQLT BLOB
SQLT_CLOB

Varies

Bind a single scalar using OCl Bi ndByNange() or
OCl Bi ndByNane2() or OCl Bi ndByPos() or OCl Bi ndByPos2() .

Bind an array of scalars using OCl Bi ndByName() or
OCl Bi ndByNane2() or OCl Bi ndByPos() or OCl Bi ndByPos2() .

Includes records and collections

Two bind calls are required:
« (OCl Bi ndByNane() or OCl Bi ndByNanme2() or
OCl Bi ndByPos() or OCl Bi ndByPos2()
« (OCl Bi ndOhj ect ()
Bind a Boolean using OCl Bi ndByNane() or OCl Bi ndByNane2()
or CCl Bi ndByPos() or OCl Bi ndByPos2() .

Two bind calls are required:
e OC Bi ndByNane() or OCl Bi ndByName2() or
OCl Bi ndByPos() or OCl Bi ndByPos2()
« OCl Bi ndObj ect ()
Allocate the LOB locator using OCl Descri pt or Al | oc(), and
then bind its address, OCl LobLocat or **, with

OCl Bi ndByNang() or OCl Bi ndByName2() or OCl Bi ndByPos()
or OCl Bi ndByPos2(), by using one of the LOB data types.

Two bind calls are required:

« (OCl Bi ndByNane() or OCl Bi ndByNanme2() or
OCl Bi ndByPos() or OCl Bi ndByPos2()

« OCBindArrayO Struct ()

6-9

Chapter 6
Advanced Bind Operations in OCI

Table 6-1 (Cont.) Information Summary for Bind Types

___|]
Type of Bind Bind Data Type Notes
Piecewise insert Varies OCl Bi ndByNanme() or OCl Bi ndByNane2() or OCl Bi ndByPos()

or OCl Bi ndByPos2() is required. The application may also need
to call OCl Bi ndDynami ¢() to register piecewise callbacks.

REF CURSCRvariables SQLT RSET Allocate a statement handle, OCl St nt , and then bind its address,
OCl Stnt **, using the SQLT_RSET data type.

This section includes the following topics:

e About Binding LOBs

* About Binding in OCI_DATA_AT_EXEC Mode
* About Binding REF CURSOR Variables

¢ See Also:

« Named Data Type Binds for information about binding named data types
(objects)

e About Binding REFs

e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()

e OCIBIindObject()

e OCIDescriptorAlloc()

e OCIBindArrayOfStruct()

e OCIBindDynamic()

About Binding LOBs

There are two ways of binding LOBs:

e Bind the LOB locator, rather than the actual LOB values. In this case the LOB
value is written or read by passing a LOB locator to the OCI LOB functions.

e Bind the LOB value directly, without using the LOB locator.
This section includes the following topics:

e Binding LOB Locators

e About Binding LOB Data

Binding LOB Locators

Either a single locator or an array of locators can be bound in a single bind call.

ORACLE 6-10

Chapter 6
Advanced Bind Operations in OCI

In each case, the application must pass the address of a LOB locator and not the locator
itself. For example, suppose that an application has prepared this SQL statement where
one_l ob is a bind variable corresponding to a LOB column:

I NSERT | NTO sone_t abl e VALUES (: one_| ob)

Then your application makes the following declaration:

CCl LobLocat or * one_| ob;

Then the calls in Example 6-3 would be used to bind the placeholder and execute the
statement:

You can also insert an array using the same SQL | NSERT statement. In this case, the
application would include the code shown in Example 6-4.

You must allocate descriptors with the OCl Descri pt or Al | oc() function before they can be
used. In an array of locators, you must initialize each array element using

OCl DescriptorAlloc().Use OCl _DTYPE_LOB as the t ype parameter when allocating BLOBs,
CLOBs, and NCLOBs. Use OCI _DTYPE_FI LE when allocating BFI LEs.

Example 6-3 Binding the Placeholder and Executing the Statement to Insert a Single
Locator

[* initialize single |locator */
one_l ob = OCl DescriptorAlloc(...0OC _DTYPE_LCB...);

/* pass the address of the locator */

OCl Bi ndByNane(...,(void *) &one_lob,... SQLT_CLOB, ...);
OCl St nt Execute(...,1,...) /* 1 is the iters paraneter */

Example 6-4 Binding the Placeholder and Executing the Statement to Insert an Array
of Locators

CCl LobLocat or * [ob_array[10];
for (i=0; i<10, i++4)
lob_array[i] = OClDescriptorAloc(...0C DTYPE LOB...);
/* initialize array of locators */

OCl Bi ndByName(...,(void *) lob_array,...);

OCl St nt Execute(...,10,...); /[* 10 is the iters parameter */

This section includes the following topic: Restrictions on Binding LOB Locators

See Also:
OClIDescriptorAlloc()

Restrictions on Binding LOB Locators
What are the restrictions on binding LOB locators.
Observe the following restrictions when you bind LOB locators:

e Piecewise and callback | NSERT or UPDATE operations are not supported.

ORACLE 6-11

Chapter 6
Advanced Bind Operations in OCI

* When using a FILE locator as a bind variable for an | NSERT or UPDATE statement,
you must first initialize the locator with a directory object and file name, by using
COCl LobFi | eSet Nane() before issuing the | NSERT or UPDATE statement.

¢ See Also:

e LOB and BFILE Operations for more information about the OCI LOB
functions

e OCILobFileSetName()

About Binding LOB Data

Oracle Database allows nonzero binds for | NSERTs and UPDATEs of any size LOB.

So you can bind data into a LOB column using OCl Bi ndByPos() or OCl Bi ndByPos2(),
OCl Bi ndByNane() or OCl Bi ndByNane2(), and PL/SQL binds.

The bind of more than 4 kilobytes of data to a LOB column uses space from the
temporary tablespace. Ensure that your temporary tablespace is big enough to hold at
least the amount of data equal to the sum of all the bind lengths for LOBs. If your
temporary tablespace is extendable, it is extended automatically after the existing
space is fully consumed. Use the following command to create an extendable
temporary tablespace:

CREATE TABLESPACE ... AUTCEXTEND ON ... TEMPORARY ...;

This section includes the following topics:
* Restrictions on Binding LOB Data
* Examples of Binding LOB Data

¢ See Also:

e OCIBindByPos() or OCIBindByPos2()
e OCIBindByName() or OCIBindByName2()

Restrictions on Binding LOB Data

ORACLE

What are the restrictions on binding LOB data.
Observe the following restrictions when you bind LOB data:

e If atable has both LONGand LOB columns, then you can have binds of greater
than 4 kilobytes for either the LONG column or the LOB columns, but not both in the
same statement.

* In an | NSERT AS SELECT operation, Oracle Database does not allow binding of any
length data to LOB columns.

6-12

ORACLE

Chapter 6
Advanced Bind Operations in OCI

A special consideration applies on the maximum size of bind variables that are neither
LONG or LOB, but that appear after any LOB or LONG bind variable in the SQL
statement. You receive an ORA- 24816 error from Oracle Database if the maximum size for
such bind variables exceeds 4000 bytes. To avoid this error, you must set

OCl _ATTR_MAXDATA SI ZE to 4000 bytes for any such binds whose maximum size may
exceed 4000 bytes on the server side after character set conversion. Alternatively,
reorder the binds so that such binds are placed before any LONG or LOBs in the bind list.

Oracle Database does not do implicit conversions, such as HEX to RAWor RAWto HEX, for
data of size more than 4000 bytes. The PL/SQL code in the following code example
illustrates this:

Demonstrating Some Implicit Conversions That Cannot Be Done

create table t (cl clob, c2 blob);
decl are

t ext var char (32767) ;

bi nbuf raw(32767);

begi n
text :=1lpad ('a, 12000, 'a');
bi nbuf := utl_raw cast_to_raw(text);

-- The fol | owi ng works:
insert intot values (text, binbuf);

-- The foll owi ng does not work because Oracle dpes not do inplicit
-- hex to raw conversion.
insert intot (c2) values (text);

-- The fol l owi ng does not work because Oracle does not do inplicit
-- raw to hex conversion.
insert intot (cl) values (binbuf);

-- The fol I owi ng does not work because you cannot conbine the
-- utl_raw cast_to_raw() operator with the >4k bind.
insert intot (c2) values (utl_raw cast_to_raw(text));

end;
/

If you bind more than 4000 bytes of data to a BLOB or a CLOB, and the data is filtered by a
SQL operator, then Oracle Database limits the size of the result to at most 4000 bytes.

For example:

create table t (cl clob, c2 blob);

-- The foll owing command inserts only 4000 bytes because the result of
-- LPADis limted to 4000 bytes

insert into t(cl) values (lpad('a, 5000, 'a'));

-- The foll owing command inserts only 2000 bytes because the result of
-- LPADis limted to 4000 bytes, and the inplicit hex to raw conversion
-- converts it to 2000 bytes of RAWdata.

insert into t(c2) values (lpad('a, 5000, 'a'));

¢ See Also:

About Using the OCI_ATTR_MAXDATA_SIZE Attribute

6-13

Chapter 6
Advanced Bind Operations in OCI

Examples of Binding LOB Data

ORACLE

Shows some exampled of binding LOB data.

The following SQL statements are used in Example 6-5 through Example 6-12:

CREATE TABLE foo (a | NTEGER);
CREATE TYPE | ob_typ AS OBJECT (AL CLOB);
CREATE TABLE | ob_long_tab (CL CLOB, C2 CLOB, CT3 lob typ, L LONG);

Example 6-5 Allowed: Inserting into C1, C2, and L Columns Up to 8000, 8000,
and 2000 Byte-Sized Bind Variable Data Values, Respectively

void insert() /* A function in an OCl program*/
{
/* The following is allowed */
ubl buffer[8000];
text *insert_sql = (text *) "INSERT INTO lob_long tab (Cl, C2, L) \
VALUES (:1, :2, :3)";
COCl Stnt Prepare(stnthp, errhp, insert_sql, strlien((char*)insert_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[0], errhp, 1, (void *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[1], errhp, 2, (void *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[2], errhp, 3, (void *)buffer, 2000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (QOC Snapshot *) NULL,
(OCl Snapshot *) NULL, OCI _DEFAULT);
}

Example 6-6 Allowed: Inserting into C1 and L Columns up to 2000 and 8000
Byte-Sized Bind Variable Data Values, Respectively

void insert()
{
/* The following is allowed */
ubl buffer[8000];
text *insert_sql = (text *) "INSERT INTO lob_long tab (C1, L) \
VALUES (:1, :2)";
OCl Stmt Prepare(stnthp, errhp, insert_sqgl, strlien((char*)insert_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCl DEFAULT);
COCl Bi ndByPos(st nthp, &bindhp[0], errhp, 1, (void *)buffer, 2000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OCl _DEFAULT);
CCl Bi ndByPos(st nthp, &bindhp[1], errhp, 2, (void *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OCI _DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (QOC Snapshot *) NULL,
(OCl Snapshot *) NULL, OCI _DEFAULT);
}

Example 6-7 Allowed: Updating C1, C2, and L Columns up to 8000, 8000, and
2000 Byte-Sized Bind Variable Data Values, Respectively

voi d updat e()
{
/* The following is allowed, no matter how many rows it updates */
ubl buffer[8000];
text *update_sql = (text *)"UPDATE |ob_long_tab SET \
Cl=:1 C=2, L=3";
CCl St nt Prepare(stnthp, errhp, update_sqgl, strlen((char*)update_sql),

6-14

ORACLE

Chapter 6
Advanced Bind Operations in OCI

(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);

OCl Bi ndByPos(stnt hp, &bindhp[0], errhp, 1, (void *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);

OCl Bi ndByPos(stnt hp, &bindhp[1], errhp, 2, (void *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);

OCl Bi ndByPos(stnt hp, &bindhp[2], errhp, 3, (void *)buffer, 2000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);

OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (QOC Snapshot *) NULL,

(OCl Snapshot *) NULL, OCI _DEFAULT);
}

Example 6-8 Allowed: Updating C1, C2, and L Columns up to 2000, 2000, and 8000
Byte-Sized Bind Variable Data Values, Respectively

voi d update()
{
[* The following is allowed, no matter how many rows it updates */
ubl buf fer[8000];
text *update_sql = (text *)"UPDATE |ob_long_tab SET \
Cl =:1, C=:2, L=:3";
OCl St nt Prepare(stnthp, errhp, update_sql, strlen((char*)update_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[0], errhp, 1, (void *)buffer, 2000,
SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[1], errhp, 2, (void *)buffer, 2000,
SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[2], errhp, 3, (void *)buffer, 8000,
SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (OC Snapshot *) NULL,
(OC Snapshot *) NULL, OCl _DEFAULT);
}

Example 6-9 Allowed: Piecewise, Callback, and Array Insert or Update Operations

void insert()
{
/* Piecew se, callback and array insert/update operations sinilar to
* the allowed regular insert/update operations are also allowed */

}

Example 6-10 Not Allowed: Inserting More Than 4000 Bytes into Both LOB and LONG
Columns Using the Same INSERT Statement

void insert()
{
/* The following is NOT allowed because you cannot insert >4000 bytes
* into both LOB and LONG col utms */
ubl buffer[8000];
text *insert_sql = (text *)"INSERT INTO |ob_long_tab (C1, L) \
VALUES (:1, :2)";
OCl Stnt Prepare(stnthp, errhp, insert_sql, strlen((char*)insert_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[0], errhp, 1, (void *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[1], errhp, 2, (void *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (OC Snapshot *) NULL,
(OCl Snapshot *) NULL, OCl _DEFAULT);

6-15

Chapter 6
Advanced Bind Operations in OCI

Example 6-11 Allowed: Inserting into the CT3 LOB Column up to 2000 Byte-
Sized Bind Variable Data Values

void insert()
{
/* Insert of data into LOB attributes is allowed */
ubl buf fer[8000];
text *insert_sql = (text *)"INSERT INTO | ob_long_tab (CT3) \
VALUES (lob_typ(:1))";
OCl Stnt Prepare(stnthp, errhp, insert_sql, strlen((char*)insert_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[0], errhp, 1, (void *)buffer, 2000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OCI _DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (OC Snapshot *) NULL,
(OCl Snapshot *) NULL, OCl _DEFAULT);
}

Example 6-12 Not Allowed: Binding Any Length Data to a LOB Column in an
Insert As Select Operation

void insert()

{

/* The following is NOT allowed because you cannot do insert as
* select character data into LOB col um */
ubl buffer[8000];
text *insert_sqgl = (text *)"INSERT INTO | ob_|ong_tab (Cl) SELECT \
:1 from FOO';
CCl St nt Prepare(stnthp, errhp, insert_sqgl, strlen((char*)insert_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
CCl Bi ndByPos(st nt hp, &bindhp[0], errhp, 1, (void *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OCl _DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (OC Snapshot *) NULL,
(OCl Snapshot *) NULL, OCl _DEFAULT);

}
About Binding in OCI_DATA_AT EXEC Mode

If the node parameter in a call to OCl Bi ndByName() or OCl Bi ndByNane2() or

OCl Bi ndByPos() or OCl Bi ndByPos2() is set to OCl _DATA_AT_EXEC, an additional call to
OCl Bi ndDynami ¢() is necessary if the application uses the callback method for
providing data at run time.

The call to OCl Bi ndDynami ¢() sets up the callback routines, if necessary, for indicating
the data or piece provided. If the OCI _DATA AT_EXEC mode is chosen, but the standard
OCI piecewise polling method is used instead of callbacks, the call to

CCl Bi ndDynami ¢() is not necessary.

When binding RETURN clause variables, an application must use OCl _DATA AT_EXEC
mode, and it must provide callbacks.

ORACLE 6-16

Chapter 6
Overview of Defining in OCI

¢ See Also:

* Runtime Data Allocation and Piecewise Operations in OCI for more information
about piecewise operations

e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()
e OCIBindDynamic()

About Binding REF CURSOR Variables

REF CURSORs are bound to a statement handle with a bind data type of SQLT_RSET.

See Also:
PL/SQL REF CURSORs and Nested Tables in OCI

Overview of Defining in OCI

ORACLE

Query statements return data from the database to your application.

When processing a query, you must define an output variable or an array of output variables
for each item in the select list for retrieving data. The define step creates an association that
determines where returned results are stored, and in what format.

For example, if your program processes the following statement then you would normally
define two output variables: one to receive the value returned from the name column, and one
to receive the value returned from the ssn column:

SELECT nane, ssn FROM enpl oyees
WHERE enpno = :enmpnum

If you were only interested in retrieving values from the nane column, you would not need to
define an output variable for ssn. If the SELECT statement being processed returns more than
a single row for a query, the output variables that you define can be arrays instead of scalar
values.

Depending on the application, the define step can occur before or after an execute operation.
If you know the data types of select-list items at compile time, the define can occur before the
statement is executed. If your application is processing dynamic SQL statements entered by
you at run time or statements that do not have a clearly defined select list, the application
must execute the statement to retrieve describe information. After the describe information is
retrieved, the type information for each select-list item is available for use in defining output
variables.

OCI processes the define call locally on the client side. In addition to indicating the location of
buffers where results should be stored, the define step determines what data conversions
must occur when data is returned to the application.

6-17

Chapter 6
Overview of Defining in OCI

< Note:

Output buffers must be 2-byte aligned.

The dt y parameter of the CCl Def i neByPos() or OCl Def i neByPos2() call specifies the
data type of the output variable. OCI can perform a wide range of data conversions
when data is fetched into the output variable. For example, internal data in Oracle DATE
format can be automatically converted to a St ri ng data type on output.

This section includes the following topic: Steps Used in OCI Defining

" See Also:

- Data Types for more information about data types and conversions
e About Describing Select-List ltems
e OCIDefineByPos() or OCIDefineByPos2()

Steps Used in OCI Defining

ORACLE

A basic define is done with a position call, OCl Def i neByPos() or OCl Def i neByPos2() .

This step creates an association between a select-list item and an output variable.
Additional define calls may be necessary for certain data types or fetch modes. Once
the define step is complete, the OCI library determines where to put retrieved data.
You can make your define calls again to redefine the output variables without having to
reprepare or reexecute the SQL statement.

Example 6-13 shows a scalar output variable being defined following an execute and
describe operation.

¢ See Also:

e About Describing Select-List Items for an explanation of the describe
step

e OCIDefineByPos() or OCIDefineByPos2()

Example 6-13 Defining a Scalar Output Variable Following an Execute and
Describe Operation

SELECT depart nment _name FROM departments WHERE departnent _id = :dept_i nput

/* The input placehol der was bound earlier, and the data comes fromthe
user input bel ow */

printf("Enter enployee dept: ");
scanf ("%", &deptno);

6-18

Chapter 6
Advanced Define Operations in OCI

/* Execute the statement. |f OCl StntExecute() returns OCl _NO DATA, neaning that
no data matches the query, then the department nunber is invalid. */

if ((status = OCl StntExecute(svchp, stnthp, errhp, 0, 0, (OClI Snapshot *) O,
(OCl Snapshot *) 0,
OCl _DEFAULT))
&& (status !'= OCl _NO DATA))
{
checkerr(errhp, status);
return OCl _ERROR
}
if (status == OCl _NO DATA) {
printf("The dept you entered does not exist.\n");
return 0;

}

/* The next two statenents describe the select-list item dnane, and
returnits length */
checkerr(errhp, OCl ParanGet((void *)stnthp, (ub4) OCl _HTYPE_STMI, errhp, (void
**) &parndp, (ub4) 1));
checkerr(errhp, OCl AttrGet((void*) parndp, (ub4) OCl _DTYPE_PARAM
(voi d*) &deptlen, (ub4 *) &sizelen, (ub4) OCI _ATTR DATA SIZE,
(OClError *) errhp));

/* Use the retrieved length of dname to allocate an output buffer, and
then define the output variable. If the define call returns an error,
exit the application */
dept = (text *) malloc((int) deptlen + 1);
if (status = OCl DefineByPos(stnthp, &defnp, errhp,
1, (void *) dept, (sb4) deptlen+l,
SQLT_STR, (void *) 0, (ub2 *) 0,
(ub2 *) 0, OCl _DEFAULT))
{
checkerr(errhp, status);
return OCl _ERROR;

}

Advanced Define Operations in OCI

ORACLE

This section covers advanced define operations, including multistep defines and defines of
named data types and REFs.

In some cases, the define step requires additional calls than just a call to OCl Def i neByPos()
or OCl Def i neByPos2() ; for example, that define the attributes of an array fetch,

OCl Defi neArrayOf Struct (), or a named data type fetch, OCl Def i neChj ect () . For example,
to fetch multiple rows with a column of named data types, all the three calls must be invoked
for the column. To fetch multiple rows of scalar columns only, OCl Def i neArrayOf Struct ()
and COCl Def i neByPos() or OCl Def i neByPos2() are sufficient.

Oracle Database also provides predefined C data types that map object type attributes.

This section includes the following topics:
e About Defining LOB Output Variables
e About Defining PL/SQL Output Variables

« About Defining for a Piecewise Fetch

6-19

Chapter 6
Advanced Define Operations in OCI

¢ See Also:

* Object-Relational Data Types in OCI

e Advanced Define Operations in OCI

e OCIDefineByPos() or OCIDefineByPos2()
e OCIDefineArrayOfStruct()

* OCIDefineObject()

About Defining LOB Output Variables

There are two ways of defining LOBs:

» Define a LOB locator, rather than the actual LOB values. In this case, the LOB
value is written or read by passing a LOB locator to the OCI LOB functions.

» Define a LOB value directly, without using the LOB locator.
This section includes the following topics:

* About Defining LOB Locators

e About Defining LOB Data

About Defining LOB Locators

ORACLE

Either a single locator or an array of locators can be defined in a single define call. In
each case, the application must pass the address of a LOB locator and not the locator
itself. For example, suppose that an application has prepared the following SQL
statement:

SELECT | obl FROM sone_t abl e;

In this statement, | obl is the LOB column, and one_| ob is a define variable
corresponding to a LOB column with the following declaration:

COCl LobLocat or * one_lI ob;

Then the following calls would be used to bind the placeholder and execute the
statement:

/* initialize single |ocator */
CCl DescriptorAlloc(...&one_lob, OC _DTYPE LOB...);

/* pass the address of the locator */
CCl Bi ndByNane(...,(void *) &one_lob,... SQT CLOB, ...);
CCl St nt Execute(...,1,...); /* 1is the iters paraneter */

You can also insert an array using this same SQL SELECT statement. In this case, the
application would include the following code:

CCl LobLocat or * | ob_array[10];
for (i=0; i<10, i++)

CCl DescriptorAlloc(...& ob_array[i], OCl _DTYPE_LOB...);
/* initialize array of locators */

6-20

Chapter 6
Advanced Define Operations in OCI

OCl Bi ndByName(...,(void *) lob_array,...);

COCl St nt Execute(...,10,...); /[* 10 is the iters parameter */

Note that you must allocate descriptors with the OCl Descri pt or Al | oc() function before they
can be used. In an array of locators, you must initialize each array element using

OCl DescriptorAlloc().Use OCl _DTYPE LOB as the t ype parameter when allocating BLOBs,
CLOBs, and NCLOBs. Use OCl _DTYPE_FI LE when allocating BFI LEs.

About Defining LOB Data

ORACLE

Oracle Database allows nonzero defines for SELECTs of any size LOB. So you can select up
to the maximum allowed size of data from a LOB column using OCIDefineByPos() and
PL/SQL defines. Because there can be multiple LOBs in a row, you can select the maximum
size of data from each one of those LOBs in the same SELECT statement.

The following SQL statement is the basis for Example 6-14 and Example 6-15:
CREATE TABLE lob_tab (Cl1 CLOB, C2 CLOB);

Example 6-14 Defining LOBs Before Execution

voi d sel ect _define_before_execute() /* A function in an OCl program */
{

/* The following is allowed */

ubl buffer1[8000];

ubl buffer2[8000];

text *select_sql = (text *)"SELECT c1l, c2 FROM | ob_tab";

OCl Stnt Prepare(stnthp, errhp, select_sql, (ub4)strlen((char*)select_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);

OCl Def i neByPos(stnthp, &defhp[0], errhp, 1, (void *)bufferl, 8000,
SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI _DEFAULT);

OCl Def i neByPos(stnthp, &defhp[1], errhp, 2, (void *)buffer2, 8000,
SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI _DEFAULT);

OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (OC Snapshot *)0,
(OCl Snapshot *)0, OCl _DEFAULT);

}

Example 6-15 Defining LOBs After Execution

voi d sel ect _execut e_before_define()

/* The following is allowed */

ubl buffer1[8000];

ubl buffer2[8000];

text *select_sql = (text *)"SELECT c1, c2 FROM | ob_tab";

OCl St nt Prepare(stnthp, errhp, select_sql, (ub4)strlen((char*)select_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCl DEFAULT);

OCl St nt Execut e(svchp, stnthp, errhp, 0, 0, (QOC Snapshot *)0,
(OCl Snapshot *)0, OCl _DEFAULT);

COCl Def i neByPos(stnthp, &defhp[0], errhp, 1, (void *)bufferl, 8000,
SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI _DEFAULT);

COCl Def i neByPos(stnthp, &defhp[1], errhp, 2, (void *)buffer2, 8000,
SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI _DEFAULT);

OCl Stmt Fetch(stnthp, errhp, 1, OCl _FETCH NEXT, OCI _DEFAULT);

6-21

Chapter 6
About Binding and Defining Arrays of Structures in OClI

About Defining PL/SQL Output Variables

Do not use the define calls to define output variables for select-list items in a SQL
SELECT statement inside a PL/SQL block.

Use OCI bind calls instead.

" See Also:

Information for Named Data Type and REF Defines, and PL/SQL OUT Binds
for more information about defining PL/SQL output variables

About Defining for a Piecewise Fetch

A piecewise fetch requires an initial call to OCl Def i neByPos() or OCl Defi neByPos2() .

An additional call to OCI Def i neDynani c() is necessary if the application uses callbacks
rather than the standard polling mechanism.
" See Also:

* OCIDefineByPos()or OCIDefineByPos2()
* OCIDefineDynamic()

About Binding and Defining Arrays of Structures in OCl

ORACLE

Defining arrays of structures requires an initial call to OCl Def i neByPos() or
OCl Def i neByPos2().

An additional call to OCl Defi neArrayCf St ruct () is necessary to set up each additional
parameter, including the ski p parameter necessary for arrays of structures operations.

Using arrays of structures can simplify the processing of multirow, multicolumn
operations. You can create a structure of related scalar data items, and then fetch
values from the database into an array of these structures, or insert values into the
database from an array of these structures.

For example, an application may need to fetch multiple rows of data from columns
NAME, AGE, and SALARY. The application can include the definition of a structure
containing separate fields to hold the NAME, AGE, and SALARY data from one row in the
database table. The application would then fetch data into an array of these structures.

To perform a multirow, multicolumn operation using an array of structures, associate
each column involved in the operation with a field in a structure. This association,
which is part of OCl Def i neArrayCf Struct () and OCl Bi ndArrayOf Struct () calls,
specifies where data is stored.

This section includes the following topics:

6-22

Chapter 6
About Binding and Defining Arrays of Structures in OCI

e Skip Parameters
* OCI Calls Used with Arrays of Structures

» Arrays of Structures and Indicator Variables

¢ See Also:

* OCIDefineByPos() or OCIDefineByPos2()
e OCIDefineArrayOfStruct()
« OCIBindArrayOfStruct()

Skip Parameters

When you split column data across an array of structures, it is no longer stored contiguously
in the database.

The single array of structures stores data as though it were composed of several arrays of
scalars. For this reason, you must specify a skip parameter for each field that you are binding
or defining. This skip parameter is the number of bytes that must be skipped in the array of
structures before the same field is encountered again. In general, this is equivalent to the
byte size of one structure.

Figure 6-2 shows how a skip parameter is determined. In this case, the skip parameter is the
sum of the sizes of the fields fi el d1 (2 bytes), fi el d2 (4 bytes), and fi el d3 (2 bytes), which
is 8 bytes. This equals the size of one structure.

Figure 6-2 Determining Skip Parameters

Array of Structures

field 1 field 2 field 3 | field 1 field 2 field 3 | field 1 field 2 field 3
2 bytes | 4 bytes | 2 bytes | 2 bytes | 4 bytes | 2 bytes | 2 bytes | 4 bytes | 2bytes| = =« o s
| | > | | >
skip 8 bytes skip 8 bytes

On some operating systems it may be necessary to set the skip parameter to
si zeof (one_array_el enent) rather than si zeof (st ruct), because some compilers insert
extra bytes into a structure.

Consider an array of C structures consisting of two fields, a ub4 and a ub1:

struct demo {
ub4 fieldil;
ubl field2;
b
struct demp deno_array[MAXSI ZE] ;

ORACLE 6-23

Chapter 6
About Binding and Defining Arrays of Structures in OCI

Some compilers insert 3 bytes of padding after the ubl so that the ub4 that begins the
next structure in the array is properly aligned. In this case, the following statement may
return an incorrect value:

ski p_paraneter = sizeof(struct dem);

On some operating systems this produces a proper skip parameter of 8. On other
systems, ski p_par anet er is set to 5 bytes by this statement. In the latter case, use the
following statement to get the correct value for the skip parameter:

ski p_paraneter = sizeof(deno_array[0]);

This section includes the following topic: Skip Parameters for Standard Arrays.

Skip Parameters for Standard Arrays

Arrays of structures are an extension of binding and defining arrays of single variables.

When you specify a single-variable array operation, the related skip equals the size of
the data type of the array under consideration. For example, consider an array
declared as follows:

text enp_names[4][20];

The skip parameter for the bind or define operation is 20. Each data element in the
array is then recognized as a separate unit, rather than being part of a structure.

OCI Calls Used with Arrays of Structures

What calls must be used when you perform operations involving arrays of structures.

Two OCI calls must be used when you perform operations involving arrays of
structures:

* Use CCl Bi ndArrayC Struct () for binding fields in arrays of structures for input
variables

e Use OCl DefineArrayO Struct () for defining arrays of structures for output
variables.

" Note:

Binding or defining for arrays of structures requires multiple calls. A call
to OCl Bi ndByName() or OCl Bi ndByNane2() or CCl Bi ndByPos() or

CCl Bi ndByPos2() must precede a call to OCl Bi ndArrayOf Struct (), and
a call to OCl Def i neByPos() or OCl Def i neByPos2() must precede a call to
CCl DefineArrayCOf Struct ().

ORACLE 6-24

Chapter 6
About Binding and Defining Multiple Buffers

¢ See Also:

* OCIBindArrayOfStruct()

e OCIDefineArrayOfStruct()

e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()

* OCIDefineByPos()or OCIDefineByPos2()

Arrays of Structures and Indicator Variables

The implementation of arrays of structures in addition supports the use of indicator variables
and return codes.

You can declare parallel arrays of column-level indicator variables and return codes that
correspond to the arrays of information being fetched, inserted, or updated. These arrays can
have their own skip parameters, which are specified during OCl Bi ndArrayCOf Struct () or

OCl Def i neArrayOf Struct () calls.

You can set up arrays of structures of program values and indicator variables in many ways.
Consider an application that fetches data from three database columns into an array of
structures containing three fields. You can set up a corresponding array of indicator variable
structures of three fields, each of which is a column-level indicator variable for one of the
columns being fetched from the database. A one-to-one relationship between the fields in an
indicator struct and the number of select-list items is not necessary.

¢ See Also:

e Indicator Variables
e OCIBindArrayOfStruct()
e OCIDefineArrayOfStruct()

About Binding and Defining Multiple Buffers

ORACLE

You can specify multiple buffers for use with a single bind or define call.

Performance is improved because the number of round-trips is decreased when data stored
at different noncontiguous addresses is not copied to one contiguous location. CPU time
spent and memory used are thus reduced.

The data type OCl | OV is defined as:

typedef struct OC 1OV

void *bfp; /* The pointer to a buffer for the data */
ub4 bfl; /* The size of the buffer */
}oci oy,

6-25

ORACLE

Chapter 6
About Binding and Defining Multiple Buffers

The value OCl _I OV for the node parameter is used in the OCl Bi ndByPos() or

OCl Bi ndByPos2() and OCl Bi ndByNang() or OCl Bi ndByNane2() functions for binding
multiple buffers. If this value of node is specified, the address of OCl | OV must be
passed in parameter val uep. The size of the data type must be passed in the
parameter val uesz. For example:

OCl I OV vecarr[NunBuf fers];

/* For bind at position 1 with data type int */
CCl Bi ndByPos(stnthp, bindp, errhp, 1, (void *)&vecarr[0],
sizeof (int), ... OO _IOV);

The value OCl _| OV for the mode parameter is used in the OCl Def i neByPos() or

CCl Def i neByPos2() function for defining multiple buffers. If this value of node is
specified, the address of OCl | OV is passed in parameter val uep. The size of the data
type must be passed in the parameter val uesz. This mode is intended to be used for
scatter or gather binding, which allows multiple buffers to be bound or defined to a
position, for example column A for the first 10 rows in one buffer, next 5 rows in one
buffer, and the remaining 25 rows in another buffer. That eliminates the need to
allocate and copy all of them into one big buffer while doing the array execute
operation.

Example 6-16 illustrates the use of the structure OCl | OV and its node values.

Example 6-16 Using Multiple Bind and Define Buffers

/* The follow ng macros nention the maxi numlength of the data in the
* different buffers. */

#define LENGTH_DATE 10
#define LENGTH_EMP_NAME 100

/* These two macros represent the nunber of elements in each bind and define
array */

#define NUM BIND 30

#define NUMDEFINE 45

/* The bind buffers for inserting dates */
char buf 1] NUM BI ND] [LENGTH_DATE] ,
char buf _2[NUM BIND * 2] [LENGTH_DATE],

/* The bind buffer for inserting enp nane */
char buf 3[NUM BIND * 3] [LENGTH_EMP_NAVE]

/* The define buffers */
char buf 4] NUM DEFI NE] [LENGTH_ENMP_NAME] ;
char buf 5[NUM DEFI NE] [LENGTH_ENMP_NAME] ;

/* The size of data value for buffers corresponding to the same col um nust be
the same, and that value is passed in the OCIBind or Define calls.
buf _4 and buf_5 above have the sane data values; that is, LENGTH EMP_NAME
al though the nunber of elements are different in the two buffers.

*|

QOCl Bi nd *bndhpl = (OCIBind *)0
QOCl Bi nd *bndhp2 = (OCIBind *)0
OCl Define *defhp = (OCIDefine *)0
OCl St nt *stnthp = (OCIStnmt *)0

6-26

ORACLE

Chapter 6
About Binding and Defining Multiple Buffers

CCl Error *errhp = (OClError *)O0;
OCl IOV bvec[2], dvec[?2];

/*

Exanpl e of how to use indicators and return codes with this feature,
showi ng the allocation when using with define. You allocate nenory
for indicator, return code, and the length buffer as one chunk of
NUM DEFINE * 2 el ements.

*|

short *i ndname[NUM_DEFI NE*2] ; [* indicators */

ub4 *al enname[NUM _DEFI NE* 2] ; [* return lengths */
ub2 *rcodename[NUM DEFI NE*2] ; /* return codes */

static text *insertstr =
"I NSERT | NTO EMP (EMP_NAME, JO N DATE) VALUES (:1, :2)";
static text *selectstr = "SELECT EMP_NAME FROM EMP";

/* Al'locate environnent, error handles, and so on, and then initialize the
environment. */

/* Prepare the statement with the insert query in order to show the
binds. */
OCl StntPrepare (stnmthp, errhp, insertstr,
(ub4)strlen((char *)insertstr),
(ub4) OCI _NTV_SYNTAX, (ub4)QCl _DEFAULT);

/* Popul ate buffers with values. The follow ng represents the sinplest

* way of populating the buffers. However, in an actual scenario

* these buffers may have been popul ated by data received fromdifferent
* sources. */

/* Store the date in the bind buffers for the date. */
strcpy(buf _1[0], "21-SEP-02");

strcpy(buf _1[NUM BIND - 1], "21-OCT-02"):
strcpy(buf _2[0], "22-QCT-02");
strcpy(buf _2[2*NUM BIND - 1], "21-DEC 02");

ﬁéﬁset(bvec[O], 0, sizeof(CCIOV));
menset (bvec[1], 0, sizeof (OCIIQV));

/* Set up the addresses in the 10 Vector structure */

bvec[0].bfp = buf _1[0]; [* Buffer address of the data */
bvec[0] . bf | = NUM BI ND* LENGTH_DATE; /* Size of the buffer */

/* And so on for other structures as well. */

bvec[1].bfp = buf _2[0]; [* Buffer address of the data */
bvec[1] . bfl = NUM Bl ND*2* LENGTH_DATE; /* Size of the buffer */

/* Do the bind for date, using OCI IOV */

CCl Bi ndByPos (stnthp, &bindhp2, errhp, 2, (void *)&bvec[0],
si zeof (buf _1[0]), SQT_STR,
(void *)inddate, (ub2 *)alendate, (ub2 *)rcodedate, O,
(ubd *)0, OC_IOV);

/* Store the enployee nanes in the bind buffers, 3 for the names */
strcpy (buf _3[0], "JOHN ");

6-27

Chapter 6
DML with a RETURNING Clause in OCI

strcpy (buf _3[NUMBIND *3 - 1], "HARRY");

/* Do the bind for enployee nane */

OCl Bi ndByPos (stnthp, &bindhpl, errhp, 1, buf_3[0], sizeof(buf_3[0]),
SQLT_STR (void *)indenp, (ub2 *)al enenp, (ub2 *)rcodeenp, 0,
(ub4 *)0, OCl _DEFAULT);

OCl St nt Execute (svchp, stnthp, errhp, NUMBIND*3, O,
(OCl Snapshot *)0, (OCl Snapshot *)0, OCl _DEFAULT);

/* Now the statement to depict defines */
/* Prepare the statement with the select query in order to show the
defines */
OCl Stnt Prepare(stnthp, errhp, selectstr, (ub4)strlien((char *)selectstr),
(ub4) OCI _NTV_SYNTAX, (ub4)QCl _DEFAULT);

menset (dvec[0], 0, sizeof (OCI1QV);
menset (dvec[1], 0, sizeof (OCIIQV));

/* Set up the define vector */
dvec[0].bfp = buf _4[0];

dvec[0]. bf| = NUM DEFI NE* LENGTH EMP_NAME;
dvec[1].bfp = buf_5[0];

dvec[1].bfl = NUM DEFI NE* LENGTH EMP_NAME;
/*

Pass the buffers for the indicator, Iength of the data, and the
return code. Note that the buffer where you receive
the data is split into two locations,
each having NUM DEFI NE nunber of el enents. However, the indicator
buffer, the actual length buffer, and the return code buffer conprise a
single chunk of NUMDEFINE * 2 el ements.
*/
OCl Def i neByPos (stnthp, &defhp, errhp, 1, (void *)&dvec[0],
si zeof (buf _4[0]), SQ.T_STR, (void *)indnane,
(ub2 *)al ennane, (ub2 *)rcodenane, OCl _|OQV);

QOCl St nt Execute (svchp, stnthp, errhp, NUM DEFI NE*2, O,

(OCl Snapshot *) 0,
(OCl Snapshot *) 0, OCl _DEFAULT);

¢ See Also:

* OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()
e OCIDefineByPos() or OCIDefineByPos2()

DML with a RETURNING Clause in OCI

This section outlines the rules for correctly implementing DML statements with the
RETURNI NG clause.

ORACLE 6-28

Chapter 6
DML with a RETURNING Clause in OCI

OCI supports the use of the RETURNI NG clause with SQL | NSERT, UPDATE, and DELETE
statements.

This section includes the following topics:

e About Using DML with a RETURNING Clause to Combine Two SQL Statements
e About Binding RETURNING...INTO Variables

e OCI Error Handling

DML with RETURNING REF...INTO Clause in OCI

* Additional Notes About OCI Callbacks

e Array Interface for DML RETURNING Statements in OCI

See Also:

e The Database demonstration programs included with your Oracle installation
for complete examples. For additional information, see OCI Demonstration
Programs.

e Oracle Database SQL Language Reference for more information about the use
of the RETURNI NG clause with | NSERT, UPDATE, or DELETE statements

About Using DML with a RETURNING Clause to Combine Two SQL

Statements

ORACLE

Using the RETURNI NG clause with a DML statement enables you to combine two SQL
statements into one, possibly saving a server round-trip.

This is accomplished by adding an extra clause to the traditional UPDATE, | NSERT, and DELETE
statements. The extra clause effectively adds a query to the DML statement.

In OCI, values are returned to the application as QUT bind variables. In the following
examples, the bind variables are indicated by a preceding colon, ":". These examples assume
the existence of t abl el, a table that contains columns col 1, col 2, and col 3.

The following statement inserts new values into the database and then retrieves the column
values of the affected row from the database, for manipulating inserted rows.

I NSERT I NTO tabl el VALUES (:1, :2, :3)
RETURNI NG col 1, col 2, col 3
INTO :outl, :out2, :out3

The next example updates the values of all columns where the value of col 1 falls within a
given range, and then returns the affected rows that were modified.

UPDATE tablel SET coll =coll + :1, col2 =:2, col3 =:3
WHERE col 1 >= :low AND col 1 <= : high
RETURNI NG col 1, col 2, col 3
INTO :outl, :out2, :out3

The DELETE statement deletes the rows where col 1 value falls within a given range, and then
returns the data from those rows.

6-29

Chapter 6
DML with a RETURNING Clause in OCI

DELETE FROM tabl el WHERE col 1 >= :1ow AND col 2 <= : high
RETURNI NG col 1, col 2, col 3
INTO :outl, :out2, :out3

About Binding RETURNING...INTO Variables

Because both the UPDATE and DELETE statements can affect multiple rows in the table,
and a DML statement can be executed multiple times in a single OCl St nt Execut e()
call, how much data is returned may not be known at run time.

As a result, the variables corresponding to the RETURNI NG...I NTO placeholders must be
bound in OCI _DATA_AT_EXEC mode. An application must define its own dynamic data
handling callbacks rather than using a polling mechanism.

The returning clause can be particularly useful when working with LOBs. Normally, an
application must insert an empty LOB locator into the database, and then select it back
out again to operate on it. By using the RETURNI NG clause, the application can combine
these two steps into a single statement:

I NSERT | NTO some_t abl e VALUES (:in_| ocator)
RETURNI NG | ob_col um
I NTO : out _| ocator

An OCI application implements the placeholders in the RETURNI NG clause as pure QUT
bind variables. However, all binds in the RETURNI NG clause are initially | Nand must be
properly initialized. To provide a valid value, you can provide a NULL indicator and set
that indicator to -1.

An application must adhere to the following rules when working with bind variables in a
RETURNI NG clause:

* Bind RETURNI NG clause placeholders in CCl _DATA AT_EXEC mode using
OCl Bi ndByName() or OCl Bi ndByName2() or OCl Bi ndByPos() or OCl Bi ndByPos2(),
followed by a call to OCl Bi ndDynami ¢() for each placeholder.

e When binding RETURNI NG clause placeholders, supply a valid OUT bind function as
the ocbf p parameter of the OCl Bi ndDynami ¢() call. This function must provide
storage to hold the returned data.

e Theicbfp parameter of OCl Bi ndDynami c¢() call should provide a default function
that returns NULL values when called.

* The pi ecep parameter of OCl Bi ndDynami c() must be set to OCl _ONE_PI ECE.

No duplicate binds are allowed in a DML statement with a RETURNI NG clause, and no
duplication is allowed between bind variables in the DML section and the RETURNI NG
section of the statement.

< Note:

OCI supports only the callback mechanism for RETURNI NG clause binds. The
polling mechanism is not supported.

ORACLE 6-30

Chapter 6
DML with a RETURNING Clause in OCI

¢ See Also:

* OCIStmtExecute()

e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()

e OCIBindDynamic()

OCI Error Handling

The QUT bind function provided to OCl Bi ndDynani ¢() must be prepared to receive partial
results of a statement if there is an error.

If the application has issued a DML statement that is executed 10 times, and an error occurs
during the fifth iteration, the Oracle database returns the data from iterations 1 through 4. The
callback function is still called to receive data for the first four iterations.

DML with RETURNING REF...INTO Clause in OCl

The RETURNI NG clause can also be used to return a REF to an object that is being inserted into
or updated in the database.

UPDATE extaddr e SET e.zip = '12345', e.state =' AZ
WHERE e.state = "CA" AND e.zip = '95117
RETURNI NG REF(e), zip
INTO : addref, :zip

The preceding statement updates several attributes of an object in an object table and
returns a REF to the object (and a scalar postal code (ZIP)) in the RETURNI NG clause.

This section includes the following topic: Binding the Output Variable.

Binding the Output Variable

ORACLE

Binding the REF output variable in an OCI application requires three steps.

The following pseudocode in Example 6-17 shows a function that performs the binds
necessary for the preceding three steps.

1. Set the initial bind information is set using OCl Bi ndByName() or OCl Bi ndByName2() .

2. Set additional bind information for the REF, including the type description object (TDO), is
set with OCl Bi ndQbj ect () .

3. Make a call is made to OCl Bi ndDynami c() .
Example 6-17 Binding the REF Output Variable in an OCI Application

sword bi nd_out put (stnthp, bndhp, errhp)
OCl Stnt *stnt hp;
OCl Bi nd *bndhp[];
OCl Error *errhp;
{
ub4d i;
/* get TDO for BindCbject call */

6-31

Chapter 6
DML with a RETURNING Clause in OCI

i f (OC TypeByNane(envhp, errhp, svchp, (CONST text *) 0,
(ub4) 0, (CONST text *) "ADDRESS OBJECT",
(ub4) strlen((CONST char *) "ADDRESS OBJECT"),
(CONST text *) 0, (ub4) O,
OCI _DURATI ON_SESSI ON, OCl _TYPEGET HEADER, &addrtdo))
{
return OCl _ERROR,
}

[* initial bind call for both variables */

i f (OC Bi ndByNane(stnthp, &bndhp[2], errhp,
(text *) ":addref", (sbh4) strlen((char *) ":addref"),
(void *) 0, (sb4) sizeof (OCIRef *), SQLT_REF,
(void *) 0, (ub2 *)0, (ub2 *)O,
(ub4) 0, (ub4 *) 0, (ub4) OClI_DATA AT_EXECQ)

|| OC Bi ndByNane(stnthp, &ndhp[3], errhp,
(text *) ":zip", (sb4) strlen((char *) ":zip"),
(void *) 0, (sh4) MAXZIPLEN, SQLT CHR
(void *) 0, (ub2 *)0, (ub2 *)O,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DATA AT _EXEQ))

{

return OCl _ERROR;
}

/* object bind for REF variable */
i f (OC Bi ndObj ect (bndhp[2], errhp, (OCI Type *) addrtdo,
(void **) &addrref[0], (ub4 *) 0, (void **) 0, (ub4 *) 0))

{
return OCl _ERROR,

}

for (i =0; i < MAXCOLS; i++)
pos[i] =1i;

/* dynam ¢ binds for both RETURNI NG variables */

i f (OC Bi ndDynani c(bndhp[2], errhp, (void *) &pos[0], cbhf_no_data,
(void *) &pos[0], cbf_get_data)

|| ©OC Bi ndDynani c(bndhp[3], errhp, (void *) &pos[1], cbf_no_data,
(void *) &pos[1], cbhf_get_data))

{

return OCl _ERROR
}

return OCl _SUCCESS,

¢ See Also:

e OCIBindByName() or OCIBindByName2()
e OCIBindObject()
e OCIBindDynamic()

ORACLE 6-32

Chapter 6
Character Conversion in OCI Binding and Defining

Additional Notes About OCI Callbacks

When a callback function is called, the OCI _ATTR_ROAS_RETURNED attribute of the bind handle
tells the application the number of rows being returned in that particular iteration.

During the first callback of an iteration, you can allocate space for all rows that are returned
for that bind variable. During subsequent callbacks of the same iteration, you increment the
buffer pointer to the correct memory within the allocated space.

Array Interface for DML RETURNING Statements in OCI

OCI provides additional functionality for single-row DML and array DML operations in which
each iteration returns more than one row.

To take advantage of this feature, you must specify an OUT buffer in the bind call that is at
least as big as the iteration count specified by the OCl St nt Execut e() call. This is in addition
to the bind buffers provided through callbacks.

If any of the iterations returns more than one row, then the application receives an
OCl _SUCCESS W TH_I NFOreturn code. In this case, the DML operation is successful. At this
point, the application may choose to roll back the transaction or ignore the warning.

" See Also:
OCIStmtExecute()

Character Conversion in OCI Binding and Defining

This section discusses issues involving character conversions between the client and the
server.

This section includes the following topics:

e About Choosing a Character Set

e About Setting Client Character Sets in OCI
e About Binding Variables in OCI

About Choosing a Character Set

ORACLE

If a database column containing character data is defined to be a CHAR or VARCHAR2 or NCHAR
or NVARCHAR2 column, then a bind or define involving that column must make special
considerations for dealing with character set specifications.

These considerations are necessary in case the width of the client character set is different
from the server character set, and also for proper character conversion. During conversion of
data between different character sets, the size of the data may increase or decrease by up to
a factor of four. Ensure that buffers that are provided to hold the data are of sufficient size.

6-33

Chapter 6
Character Conversion in OCI Binding and Defining

Beginning with Oracle Database 12c¢ Release 2 (12.2), OCI provides two service
context handle attributes OCl _ATTR_MAX CHARSET_ RATI Oand

OCl _ATTR_MAX_NCHARSET RATI Oto obtain the maximum character set expansion ratio
from server to client character set or national character set respectively. Using these
attributes lets you more efficiently allocate optimal memory of buffers before
conversion so that when data is returned from the database, sufficient space can be
allocated to hold it. Using these attributes is useful in scenarios where there are
different character sets or national character sets between server and client.

The following code example shows how get the maximum character set expansion
ratio from server to client character set:

size t cratio;

OCl AttrGet((void *)svchp, (ub4)OCl _HTYPE _SVCCTX, (size_t *)&cratio,
(ub4) 0, OCI_ATTR MAX_CHARSET_RATI O errhp);

printf("Conversion ratio fromserver to client character set is %\ n",
cratio);

Conversion ratio fromserver to client character set is 2

The following code example shows how get the maximum character set expansion
ratio from server to client national character set:

size t cratio;

OCl AttrCet((void *)svchp, (ub4)OCl _HTYPE_SVCCTX, (size_t *)&cratio,
(ub4) 0, OCI_ATTR MAX_NCHARSET_RATI O, errhp);

printf("Conversion ratio fromserver to client ncharset is %\n",
cratio);

Conversion ratio fromserver to client ncharset is 1

In some cases, it may also be easier for an application to deal with CHAR or VARCHAR2
or with NCHAR or NVARCHAR? data in terms of numbers of characters, rather than
numbers of bytes, which is the usual case.

This section includes the following topics:
* Character Set Form and ID
e Implicit Conversion Between CHAR and NCHAR

Character Set Form and ID

ORACLE

Each OCI bind and define handle is associated with the OCl _ATTR _CHARSET FORMand
OCl _ATTR _CHARSET | D attributes.

An application can set these attributes with the OCl Attr Set () call to specify the
character form and character set ID of the bind or define buffer.

The csf or mattribute (OCl _ATTR_CHARSET_FORM) indicates the character set of the client
buffer for binds, and the character set in which to store fetched data for defines. It has
two possible values:

e SQLCS_ | MPLI O T - Default value indicates that the database character set ID for
the bind or define buffer and the character buffer data are converted to the server
database character set

6-34

Chapter 6
Character Conversion in OCI Binding and Defining

* SQLCS_NCHAR - Indicates that the national character set ID for the bind or define buffer and
the client buffer data are converted to the server national character set.

If the character set ID attribute, OCl _ATTR _CHARSET | D, is not specified, either the default
value of the database or the national character set ID of the client is used, depending on the
value of csf orm They are the values specified in the NLS_LANG and NLS_NCHAR environment
variables, respectively.

< Note:

e The data is converted and inserted into the database according to the server's
database character set ID or national character set ID, regardless of the client-
side character set ID.

e OCl _ATTR CHARSET | D must never be set to 0.

e The define handle attributes OCl _ATTR_CHARSET FORMand
COCl _ATTR_CHARSET _| D do not affect the LOB types. LOB locators fetched from
the server retain their original csf or ms. There is no CLOB/NCLOB conversion as
part of define conversion based on these attributes.

¢ See Also:

e Oracle Database SQL Language Reference for more information about NCHAR
data

e OCIAttrSet()

Implicit Conversion Between CHAR and NCHAR

As the result of implicit conversion between database character sets and national character
sets, OCI can support cross binding and cross defining between CHAR and NCHAR.

Although the OCI _ATTR CHARSET FCRMattribute is set to SQLCS_NCHAR, OCI enables
conversion of data to the database character set if the data is inserted into a CHAR column.

About Setting Client Character Sets in OCI

ORACLE

You can set the client character sets through the OCl EnvN sCreat e() function parameters
charset and ncharset.

Both of these parameters can be set as OCl _UTF16I D. The char set parameter controls
coding of the metadata and CHAR data. The nchar set parameter controls coding of NCHAR
data. The function OClI N sEnvi r onnment Vari abl eCGet () returns the character set from

NLS LANGand the national character set from NLS_NCHAR.

Example 6-18 illustrates the use of these functions (OCI provides a typedef called ut ext to
facilitate binding and defining of UTF-16 data):

6-35

Chapter 6
Character Conversion in OCI Binding and Defining

¢ See Also:

* OCIEnvNIsCreate()
* OCINIsEnvironmentVariableGet()

Example 6-18 Setting the Client Character Set to OCI_UTF16ID in OCI

CCl Env *envhp;

ub2 ncsid = 2; /* we8dec */

ub2 hdl csid, hdlncsid;

OraText thenane[20];

utext *selstm = L"SELECT enanme FROM emp"; /* UTF16 statenent */
CCl St *stnthp;

CCl Defi ne *def hp;

CClError *errhp;

OCl EnvN sCreat e(OCl Env **envhp, ..., OCl _UTF16l1D, ncsid);
CCl Stnt Prepare(stnthp, ..., selstnm, ...); /* prepare UTF16 statenent */
CCl Def i neByPos(stnthp, defnp, ..., 1, thenane, sizeof(thenane), SQT_CHR ...);

CCl N sEnvi ronment Vari abl eGet (&hdl csid, (size_t)0, OCl_NLS CHARSET ID, (ub2)O0,
(size_t*)NULL);
OCl AttrSet(defnp, ..., &hdlcsid, 0, OCI_ATTR CHARSET_ID, errhp);
/* change charset 1D to NLS_LANG setting*/

About Binding Variables in OCI

Update or insert operations are done through variable binding.

When binding variables, specify the OCl _ATTR_MAXDATA_SI ZE attribute and
OCl _ATTR_MAXCHAR Sl ZE attribute in the bind handle to indicate the byte and character
constraints used when inserting data in to the Oracle database.

These attributes are defined as:

e The OCl _ATTR_MAXDATA Sl ZE attribute sets the maximum number of bytes allowed
in the buffer on the server side.

¢ The OCl _ATTR_MAXCHAR_SI ZE attribute sets the maximum number of characters
allowed in the buffer on the server side.

This section includes these additional topics:
» Buffer Expansion During OCI Binding
» Constraint Checking During Defining

* General Compatibility Issues for Character-Length Semantics in OCI

ORACLE 6-36

Chapter 6
Character Conversion in OCI Binding and Defining

¢ See Also:

e About Using the OCI_ATTR_MAXDATA_SIZE Attribute for more information
e About Using the OCI_ATTR_MAXCHAR_SIZE Attribute for more information

About Using the OCI_ATTR_MAXDATA_SIZE Attribute

Every bind handle has an OCl _ATTR_MAXDATA Sl ZE attribute that specifies the number of
bytes allocated on the server to accommodate client-side bind data after character set
conversions.

An application typically sets OCl _ATTR_MAXDATA Sl ZE to the maximum size of the column or
the size of the PL/SQL variable, depending on how it is used. Oracle Database issues an
error if OCl _ATTR_MAXDATA_SI ZE is not large enough to accommodate the data after
conversion, and the operation fails.

For I N I NOUT binds, when OCI _ATTR_MAXDATA SI ZE attribute is set, the bind buffer must be
large enough to hold the number of characters multiplied by the bytes in each character of
the character set.

If OCI _ATTR_MAXCHAR SI ZE is set to a nonzero value such as 100, then if the character set has
2 bytes in each character, the minimum possible allocated size is 200 bytes.

The following scenarios demonstrate some uses of the OCl _ATTR_MAXDATA_SI ZE attribute:

e Scenario 1: CHAR (source data) converted to non-CHAR (destination column)

There are implicit bind conversions of the data. The recommended value of
OCl _ATTR_MAXDATA Sl ZE is the size of the source buffer multiplied by the worst-case
expansion factor between the client and Oracle Database character sets.

e Scenario 2: CHAR (source data) converted to CHAR (destination column) or non-CHAR
(source data) converted to CHAR (destination column)

The recommended value of OCl _ATTR_MAXDATA Sl ZE is the size of the column.
e Scenario 3: CHAR (source data) converted to a PL/SQL variable

In this case, the recommended value of OCI _ATTR _MAXDATA Sl ZE is the size of the
PL/SQL variable.

About Using the OCI_ATTR_MAXCHAR_SIZE Attribute

ORACLE

OCl _ATTR_MAXCHAR_SI ZE enables processing to work with data in terms of number of
characters, rather than number of bytes.

For binds, the OCI _ATTR_MAXCHAR_SI ZE attribute sets the number of characters reserved in
the Oracle database to store the bind data.

For example, if OCI_ATTR_MAXDATA_SIZE is set to 100, and CCl _ATTR_MAXCHAR SI ZE is
set to 0, then the maximum possible size of the data in the Oracle database after conversion
is 100 bytes. However, if OCl _ATTR_MAXDATA_SI ZE is set to 300, and OCl _ATTR_MAXCHAR_SI ZE
is set to a nonzero value, such as 100, then if the character set has 2 bytes/character, the
maximum possible allocated size is 200 bytes.

6-37

Chapter 6
Character Conversion in OCI Binding and Defining

For defines, the OCl _ATTR_MAXCHAR_SI ZE attribute specifies the maximum number of
characters that the client application allows in the return buffer. Its derived byte length
overrides the max| engt h parameter specified in the OCl Def i neByPos() or

OClI Def i neByPos2() call.

Note:

Regardless of the value of the attribute OCl _ATTR_MAXCHAR Sl ZE, the buffer
lengths specified in a bind or define call are always in terms of bytes. The
actual length values sent and received by you are also in bytes.

See Also:
OCIDefineByPos() or OCIDefineByPos2()

Buffer Expansion During OCI Binding

IN Binds

Dynamic SQL

ORACLE

Do not set OCl _ATTR_MAXDATA_SI ZE for QUT binds or for PL/SQL binds. Only set
OCl _ATTR_MAXDATA SI ZE for | NSERT or UPDATE statements.

If neither of these two attributes is set, OCI expands the buffer using its best estimates.

This section includes the following topics:
* INBinds
e Dynamic SQL

- Buffer Expansion During Inserts

For an | N bind, if the underlying column was created using character-length semantics,
then it is preferable to specify the constraint using OCI _ATTR_MAXCHAR_SI ZE.

As long as the actual buffer contains fewer characters than specified in
OCl _ATTR_MAXCHAR_SI ZE, no constraints are violated at OCI level.

If the underlying column was created using byte-length semantics, then use

OCl _ATTR_MAXDATA_SI ZE in the bind handle to specify the byte constraint on the server.
If you also specify an OCI _ATTR_MAXCHAR_SI ZE value, then this constraint is imposed
when allocating the receiving buffer on the server side.

For dynamic SQL, you can use the explicit describe to get OCl _ATTR_DATA S| ZE and
OCl _ATTR_CHAR Sl ZE in parameter handles, as a guide for setting
OCl _ATTR_MAXDATA S| ZE and OCl _ATTR_MAXCHAR_SI ZE attributes in bind handles.

It is a good practice to specify OCl _ATTR_MAXDATA_SI ZE and OCl _ATTR_MAXCHAR_SI ZE
to be no more than the actual column width in bytes or characters.

6-38

Chapter 6
Character Conversion in OCI Binding and Defining

Buffer Expansion During Inserts

Use CCl _ATTR_MAXDATA_SI ZE to avoid unexpected behavior caused by buffer expansion
during inserts.

Consider what happens when the database column has character-length semantics, and the
user tries to insert data using OCl Bi ndByPos() or OCl Bi ndByPos2() or OCl Bi ndByNane() or
OCl Bi ndByNane2() while setting only the OCl _ATTR_MAXCHAR_SI ZE to 3000 bytes. The
database character set is UTF8 and the client character set is ASCII. Then, in this case
although 3000 characters fits in a buffer of size 3000 bytes for the client, on the server side it
might expand to more than 4000 bytes. Unless the underlying column is a LONGor a LOB
type, the server returns an error. To avoid this problem specify the OCl _ATTR_MAXDATA S| ZE to
be 4000 to guarantee that the Oracle database never exceeds 4000 bytes.

¢ See Also:

e OCIBindByPos() or OCIBindByPo0s2()
e OCIBindByName() or OCIBindByName2()

Constraint Checking During Defining

To select data from columns into client buffers, OCI uses defined variables.

You can set an OCI _ATTR_MAXCHAR SI ZE value on the define buffer to impose an additional
character-length constraint. There is no OCl _ATTR_MAXDATA_SI ZE attribute for define handles
because the buffer size in bytes serves as the limit on byte length. The define buffer size
provided in the OCl Def i neByPos() or OCl Def i neByPos2() call can be used as the byte
constraint.

This section includes the following topics:
e Dynamic SQL Selects
e Return Lengths

¢ See Also:
OCIDefineByPos() or OCIDefineByPos2()

Dynamic SQL Selects

ORACLE

When sizing buffers for dynamic SQL, always use the OCl _ATTR_DATA_SI ZE value in the
implicit describe to avoid data loss through truncation.

If the database column is created using character-length semantics known through the

OCl _ATTR_CHAR_USED attribute, then you can use the OCl _ATTR_MAXCHAR_SI ZE value to set an
additional constraint on the define buffer. A maximum number of OCl _ATTR_MAXCHAR S| ZE
characters is put in the buffer.

6-39

Chapter 6
Character Conversion in OCI Binding and Defining

Return Lengths

The following return length values are always in bytes regardless of the character-
length semantics of the database.

e The value returned in the al en, or the actual length field in binds and defines

* The value that appears in the length, prefixed in special data types such as
VARCHAR and LONG VARCHAR

¢ The value of the indicator variable in case of truncation

The only exception to this rule is for string buffers in the OCl _UTF161 D character set ID;
then the return lengths are in UTF-16 units.

Note:

The buffer sizes in the bind and define calls and the piece sizes in the
OCl St nt Get Pi ecel nfo() and OCl St nt Set Pi ecel nfo() and the callbacks are
always in bytes.

¢ See Also:

e OCIStmtGetPiecelnfo()
e OCIStmtSetPiecelnfo()

General Compatibility Issues for Character-Length Semantics in OCl

ORACLE

Character-length semantics in OCI depends on the Oracle Database release, release
9.0 or later versus release 8.1 or earlier.

* For arelease 9.0 or later client communicating with a release 8.1 or earlier Oracle
Database, OCl _ATTR_MAXCHAR SI ZE is not known by the Oracle Database, so this
value is ignored. If you specify only this value, OCI derives the corresponding
OCl _ATTR_MAXDATA Sl ZE value based on the maximum number of bytes for each
character for the client-side character set.

» For arelease 8.1 or earlier client communicating with a release 9.0 or later Oracle
Database, the client can never specify an CCl _ATTR_MAXCHAR_SI ZE value, so the
Oracle Database considers the client as always expecting byte-length semantics.
This is similar to the situation when the client specifies only
OCl _ATTR_MAXDATA Sl ZE.

So in both cases, the Oracle database and client can exchange information in an
appropriate manner.

This section includes the following topics:
e Code Example for Inserting and Selecting Using OCI_ATTR_MAXCHAR_SIZE
e Code Example for UTF-16 Binding and Defining

6-40

Chapter 6
Character Conversion in OCI Binding and Defining

Code Example for Inserting and Selecting Using OCl_ATTR_MAXCHAR_SIZE

When a column is created by specifying a number N of characters, the actual allocation in the
database considers the worst case scenario.

This is shown in Example 6-19. The real number of bytes allocated is a multiple of N, say M
times N. Currently, Mis 3 as the maximum number of bytes allocated for each character in
UTF-8.

For example, in Example 6-19, in the EMP table, the ENAVE column is defined as 30 characters
and the ADDRESS column is defined as 80 characters. Thus, the corresponding byte lengths in
the database are M*30 or 3*30=90, and M*80 or 3*80=240, respectively.

Example 6-19 Insert and Select Operations Using the OCI_ATTR_MAXCHAR_SIZE
Attribute

utext enane[31], address[81];

/* E <=30+ 1, D <= 80+ 1, considering null-termnnation */

sh4 ename_nax_chars = EC=20, address_nax_chars = ED=60;

/* EC<= (E - 1), ED<= (D - 1) */

sh4 ename_nax_bytes = EB=80, address_max_bytes = DB=200;

/* EB <= M* EC, DB <= M* DC */

text *insstmt = (text *)"INSERT | NTO EMP(ENAME, ADDRESS) VALUES (:ENAME, \
. ADDRESS) ";

text *selstnt = (text *)"SELECT ENAME, ADDRESS FROM EMP";

/* Inserting Colum Data */

OCl Stnt Prepare(stnthpl, errhp, insstnt, (ub4)strlen((char *)insstnt),
(ub4) OCI _NTV_SYNTAX, (ub4)OCI DEFAULT);

OCl Bi ndByNane(st nt hpl, &bndlp, errhp, (text *)":ENAME',
(sbh4)strlien((char *)":ENAME"),
(void *)enane, sizeof(enane), SQLT_STR (void *)& nsname_i nd,
(ub2 *)al enp, (ub2 *)rcodep, (ub4)maxarr_len, (ub4 *)curelep, OCI_DEFAULT);

/* either */

OCl AttrSet((void *)bndlp, (ub4)QCl _HTYPE BIND, (void *)&enane_max_bytes,
(ub4) 0, (ub4)OCl _ATTR MAXDATA S| ZE, errhp);

[* or */

OCl AttrSet((void *)bndlp, (ub4)QCl _HTYPE BIND, (void *)&enane_max_chars,
(ub4) 0, (ub4)OCl _ATTR MAXCHAR S| ZE, errhp);

/* Retrieving Colum Data */

OCl Stnt Prepare(stnthp2, errhp, selstnt, strlen((char *)selstnt),
(ub4) OCI _NTV_SYNTAX, (ub4)OCI DEFAULT);

OCl Def i neByPos(stnthp2, &dfnlp, errhp, (ub4)1, (void *)enane,
(sh4)si zeof (ename),
SQLT_STR, (void *)&sel name_i nd, (ub2 *)alenp, (ub2 *)rcodep,
(ub4) OCI _DEFAULT);

[* if not called, byte semantics is by default */

OCl AttrSet((void *)dfnlp, (ub4)QCl _HTYPE DEFINE, (void *)&enanme_max_chars,
(ub4) 0,
(ub4) OCl _ATTR_MAXCHAR_SI ZE, errhp);

Code Example for UTF-16 Binding and Defining

The character set ID in bind and define of the CHAR or VARCHAR2, or in NCHAR or NVARCHAR2
variant handles can be set to assume that all data is passed in UTF-16 (Unicode) encoding.
To specify UTF-16, set OCl _ATTR_CHARSET_I D= OCl _UTF16l D.

ORACLE 6-41

Chapter 6
PL/SQL REF CURSORs and Nested Tables in OCI

OCI provides a typedef called ut ext to facilitate binding and defining of UTF-16 data.
The internal representation of ut ext is a 16-bit unsigned integer, ub2. Operating
systems where the encoding scheme of the wchar _t data type conforms to UTF-16
can easily convert ut ext to the wchar _t data type using cast operators.

Even for UTF-16 data, the buffer size in bind and define calls is assumed to be in
bytes. Users should use the ut ext data type as the buffer for input and output data.

Example 6-20 shows pseudocode that illustrates a bind and define for UTF-16 data.

Example 6-20 Binding and Defining UTF-16 Data

OClStnt *stnthpl, *stnthp2;
QOCl Defi ne *dfnlp, *df n2p;
QOCI Bind *bndlp, *bnd2p;
text *insstnt=
(text *) "INSERT | NTO EMP(ENAME, ADDRESS) VALUES (:enane, :address)"; \
text *selnane =
(text *) "SELECT ENAME, ADDRESS FROM EMP";
utext enane[21]; /* Nane - UTF-16 */
utext address[51]; /* Address - UTF-16 */
ub2 csid = OCl _UTF16l D,
sh4 ename_col _Ien = 20;
sh4 address_col |l en = 50;

/* Inserting UTF-16 data */

OCl Stnt Prepare (stnthpl, errhp, insstnt, (ub4)strlen ((char *)insstnt),
(ub4) OCI _NTV_SYNTAX, (ub4)OC DEFAULT);

stnthpl, &bndlp, errhp, (text*)":ENAME',

sh4)strlien((char *)": ENAME"),

void *) ename, sizeof(ename), SQT_STR,

voi d *)& nsname_ind, (ub2 *) 0, (ub2 *) 0, (ub4) 0,
(ub4 *)0, OCl _DEFAULT);

(void *) bndlp, (ub4) OCI_HTYPE BIND, (void *) &csid,

ub4) 0, (ub4)OCl _ATTR CHARSET_ID, errhp);

void *) bndlp, (ub4) OCI_HTYPE BIND, (void *) &ename_col |en,

ub4) 0, (ub4)OCl _ATTR MAXDATA SIZE, errhp);

QOCl Bi ndByNane (
(
(
(

OCl At tr Set

OCl At t r Set (

—_~ e~~~

/* Retrieving UTF-16 data */

OCl Stnt Prepare (stnthp2, errhp, selname, strlen((char *) sel nane),
(ub4) OCI _NTV_SYNTAX, (ub4)OC DEFAULT);

OCl Def i neByPos (stnthp2, &Ifnlp, errhp, (ub4)l, (void *)enang,
(sh4)si zeof (enane), SQT_STR,
(void *)0, (ub2 *)0, (ub2 *)0, (ub4)OCl _DEFAULT);

OCl AttrSet ((void *) dfnlp, (ub4) OCl _HTYPE DEFINE, (void *) &csid,

(ub4) 0, (ub4)OC ATTR CHARSET ID, errhp);

¢ See Also:

Bind Handle Attributes

PL/SQL REF CURSORs and Nested Tables in OCI

OCI provides the ability to bind and define PL/SQL REF CURSORs and nested tables.

ORACLE 6-42

ORACLE

Chapter 6
PL/SQL REF CURSORs and Nested Tables in OCI

An application can use a statement handle to bind and define these types of variables. As an
example, consider this PL/SQL block:

static const text *plsql_block = (text *)
"begin \
OPEN : cursorl FOR SELECT enpl oyee_id, |ast_nanme, job_id, manager_id, \
salary, departnent_id \
FROM enpl oyees WHERE j ob_i d=:j ob ORDER BY enpl oyee_id; \
OPEN : cursor2 FOR SELECT * FROM departments ORDER BY departnent _id;
end; ";

An application allocates a statement handle for binding by calling OCl Handl eAl | oc(), and
then binds the : cur sor 1 placeholder to the statement handle, as in the following code,
where : cursor 1 is bound to st n2p.

In this code in Example 6-21, st mlp is the statement handle for the PL/SQL block, whereas
st n2p is the statement handle that is bound as a REF CURSCR for later data retrieval. A value of
SQLT_RSET is passed for the dt y parameter.

As another example, consider the following:

static const text *nst_tab = (text *)
"SELECT | ast _name, CURSOR(SELECT department _nane, |location_id \
FROM departments) FROM enpl oyees WHERE | ast _name = ' FORD ";

The second position is a nested table, which an OCI application can define as a statement
handle shown in Example 6-22.

After execution, when you fetch a row into st n2p it becomes a valid statement handle.

Note:

If you have retrieved multiple REF CURSORs, you must take care when fetching them
into st n2p. If you fetch the first one, you can then perform fetches on it to retrieve its
data. However, after you fetch the second REF CURSCR into st n2p, you no longer
have access to the data from the first REF CURSCR.

OCI does not support PL/SQL REF CURSORs that were executed in scrollable mode.

OCI does not support scrollable REF CURSORs because you cannot scroll back to the
rows already fetched by a REF CURSCR.

Example 6-21 Binding the :cursorl Placeholder to the Statement Handle stm2p as a
REF CURSOR

status = OCl St Prepare (stnilp, errhp, (text *) plsql_block,
strlen((char *)plsqgl_block), OC_NTV_SYNTAX, OCl _DEFAULT);

status = OCl Bi ndByNane (stmlp, (OCIBind **) &bndlp, errhp,
(text *)":cursorl", (sb4)strlen((char *)":cursorl"),
(void *)&stnRp, (sb4) 0, SQT_RSET, (void *)O0,
(ub2 *)0, (ub2 *)0, (ub4)0, (ub4 *)O, (ub4) OCl _DEFAULT) ;

Example 6-22 Defining a Nested Table (Second Position) as a Statement Handle

status = OCl StntPrepare (stnilp, errhp, (text *) nst_tab,
strlen((char *)nst_tab), OCI _NTV_SYNTAX, OCI _DEFAULT);

6-43

Chapter 6
Natively Describe and Bind All PL/SQL Types Including Package Types

status = QOCl DefineByPos (stnilp, (OCIDefine **) &Ifn2p, errhp, (ub4)2,
(void *)&stnPp, (sb4)0, SQLT_RSET, (void *)0, (ub2 *)O,
(ub2 *)0, (ub4)0OC _DEFAULT);

See Also:
OCIHandleAlloc()

Natively Describe and Bind All PL/SQL Types Including
Package Types

Beginning with Oracle Database Release 12.1, OCI clients support the ability to
natively describe and bind all PL/SQL types.

This includes the base scalar type Boolean, which was previously unsupported as a
bind type. This also includes types declared in PL/SQL packages, such as named
record or collection type (including nested table, varray and index table) or implicit
record subtype (%rowtype) declared inside of a PL/SQL package specification. Native
support for these features means clients can describe and bind PL/SQL types using
only the provided client-side APlIs.

The PL/SQL typecodes for these data types (Boolean, record, index-by

Bl NARY_| NTEGER, and PLS_| NTEGER or Bl NARY_| NTEGER) are listed in Table 4-10. The
equivalent SQLT type for these PL/SQL typecodes is listed in Table 4-11. Clients must
bind the specified type using the respective specified value of SQLT type as the DTY of
the bind. For example, for records, clients must bind package record types

(OCI _TYPECODE _RECORD) using SQLT_NTY as the DTY of the bind; for collections, clients
must bind all package collection types (OCl _TYPECODE_| TABLE) using SQLT_NTY as the
DTY of the bind; and for Booleans, clients must bind Boolean types

(OCI _TYPECODE_BOOLEAN) using SQLT_BQL as the DTY of the bind. Bind APlIs:

OCl Bi ndByNang(), OCl Bi ndByName2(), OCl Bi ndByPos(), and OCl Bi ndByPos2() support
each SQLT type value in the DTY of the bind that represents these PL/SQL typecodes.

See Also:

e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()

Runtime Data Allocation and Piecewise Operations in OCI

ORACLE

You can use OCI to perform piecewise inserts, updates, and fetches of data.

You can also use OCI to provide data dynamically in case of array inserts or updates,
instead of providing a static array of bind values. You can insert or retrieve a very large
column as a series of chunks of smaller size, minimizing client-side memory
requirements.

6-44

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

The size of individual pieces is determined at run time by the application and can be uniform
or not.

The piecewise functionality of OCI is particularly useful when performing operations on
extremely large blocks of string or binary data, operations involving database columns that
store CLOB, BLOB, LONG, RAW or LONG RAWdata.

The piecewise fetch is complete when the final OCl St nt Fet ch2() call returns a value of
OCI_SUCCESS.

In both the piecewise fetch and insert, it is important to understand the sequence of calls
necessary for the operation to complete successfully. For a piecewise insert, you must call
OCl St nt Execut e() one time more than the number of pieces to be inserted (if callbacks are
not used). This is because the first time OCl St nt Execut e() is called, it returns a value
indicating that the first piece to be inserted is required. As a result, if you are inserting n
pieces, you must call OCl St nt Execut e() a total of n+1 times.

Similarly, when performing a piecewise fetch, you must call CCl St nt Fet ch2() once more than
the number of pieces to be fetched.

This section includes the following topics:

* Valid Data Types for Piecewise Operations

* Types of Piecewise Operations

e About Providing INSERT or UPDATE Data at Runtime
* Piecewise Operations with PL/SQL

e PL/SQL Indexed Table Binding Support

e About Providing FETCH Information at Run Time

* Piecewise Binds and Defines for LOBs

See Also:

e OCIStmtFetch2()
e OCIStmtExecute()

Valid Data Types for Piecewise Operations

ORACLE

Only some data types can be manipulated in pieces.

OCI applications can perform piecewise fetches, inserts, or updates of all the following data
types:

* VARCHARZ2
e STRING

« LONG

* LONGRAW
* RAW

- CLOB

6-45

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

- BLOB

Another way of using this feature for all data types is to provide data dynamically for
array inserts or updates. The callbacks should always specify OCl _ONE_PI ECE for the
pi ecep parameter of the callback for data types that do not support piecewise
operations.

Types of Piecewise Operations

What are the ways you can perform piecewise operations.
You can perform piecewise operations in two ways:

e Use calls provided in the OCI library to execute piecewise operations under a
polling paradigm.

* Employ user-defined callback functions to provide the necessary information and
data blocks.

When you set the node parameter of an OCl Bi ndByPos() or OCl Bi ndByPos2() or

CCl Bi ndByNane() or OCl Bi ndByNane2() call to OCl _DATA AT_EXEC, it indicates that an
OCI application is providing data for an | NSERT or UPDATE operation dynamically at
runtime.

Similarly, when you set the node parameter of an OCl Def i neByPos() or
CCl Def i neByPos2() call to OCI _DYNAM C_FETCH, it indicates that an application
dynamically provides allocation space for receiving data at the time of the fetch.

In each case, you can provide the runtime information for the | NSERT, UPDATE, or FETCH
operation in one of two ways: through callback functions, or by using piecewise
operations. If callbacks are desired, an additional bind or define call is necessary to
register the callbacks.

The following sections give specific information about runtime data allocation and
piecewise operations for inserts, updates, and fetches.

¢ Note:

Piecewise operations are also valid for SQL and PL/SQL blocks.

¢ See Also:

e OCIBindByPos() or OCIBindByPos2()
e OCIBindByName() or OCIBindByName2()
e OCIDefineByPos() or OCIDefineByPos2()

ORACLE 6-46

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

About Providing INSERT or UPDATE Data at Runtime

When you specify the OCI _DATA AT_EXEC mode in a call to OCl Bi ndByPos() or
OCl Bi ndByPos2() or OCl Bi ndByNane() or OCl Bi ndByName2(), the val ue_sz parameter defines
the total size of the data that can be provided at run time.

The application must be ready to provide to the OCI library the run time | N data buffers on
demand as many times as is necessary to complete the operation. When the allocated
buffers are no longer required, they must be freed by the client.

Runtime data is provided in one of two ways:

e You can define a callback using the OCl Bi ndDynam c() function, which when called at run
time returns either a piece of the data or all of it.

» If no callbacks are defined, the call to OCl St nt Execut e() to process the SQL statement
returns the OCl _NEED DATA error code. The client application then provides the | N QUT
data buffer or piece using the OCl St nt Set Pi ecel nf o() call that specifies which bind and
piece are being used.

This section includes the following topic: Performing a Piecewise Insert or Update.

See Also:

e OCIBindByPos() or OCIBindByPos2()

e OCIBindByName() or OCIBindByName2()
e OCIBindDynamic()

e OCIStmtExecute()

e OCIStmtSetPiecelnfo()

Performing a Piecewise Insert or Update

ORACLE

Once the OCI environment has been initialized, and a database connection and session have
been established, a piecewise insert begins with calls to prepare a SQL or PL/SQL statement
and to bind input values.

Piecewise operations using standard OCI calls rather than user-defined callbacks do not
require a call to OCl Bi ndDynani c() .

¢ Note:

Additional bind variables that are not part of piecewise operations may require
additional bind calls, depending on their data types.

Following the statement preparation and bind, the application performs a series of calls to
OCl St nt Execut e(), OCl St nt Get Pi ecel nfo(), and OCl St nt Set Pi ecel nf o() to complete the
piecewise operation. Each call to OCl St nt Execut e() returns a value that determines what
action should be performed next. In general, the application retrieves a value indicating that

6-47

ORACLE

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

the next piece must be inserted, populates a buffer with that piece, and then executes
an insert. When the last piece has been inserted, the operation is complete.

Keep in mind that the insert buffer can be of arbitrary size and is provided at run time.
In addition, each inserted piece does not need to be of the same size. The size of
each piece to be inserted is established by each OCl St nt Set Pi ecel nfo() call.

¢ Note:

If the same piece size is used for all inserts, and the size of the data being
inserted is not evenly divisible by the piece size, the final inserted piece is
expected to be smaller. You must account for this by indicating the smaller
size in the final OCl St nt Set Pi ecel nfo() call.

The procedure is illustrated in Figure 6-3 and expanded in the steps following the
figure.

Figure 6-3 Performing Piecewise Insert

FF*repare Statement |
| OCIStmiPreparez(}

L]

Bind
QCIBindByName()/
CCIBindByMame2()/
OCIBindByPos()/

COCIBindByPos2()

Set Piece Info | o
0

ClStmiSetPiecsinio() >
Get Pi:ce info | QULNEED DATA M Erecute poMer -
OCIStmtGetPiecelnfa() | ¥ | OCIStmtExecuta() _"'[fror]

4 oci_success

E Done

1. Initialize the OCI environment, allocate the necessary handles, connect to a
server, authorize a user, and prepare a statement request by using
OCl St nt Prepar e2().

2. Bind a placeholder by using OCl Bi ndByNang() or OCl Bi ndByNane2() or
CCl Bi ndByPos() or OCl Bi ndByPos2() . You do not need to specify the actual size of
the pieces you use, but you must provide the total size of the data that can be
provided at run time.

3. Call OCl St nt Execut e() for the first time. No data is being inserted here, and the
OCl _NEED DATA error code is returned to the application. If any other value is
returned, it indicates that an error occurred.

4. Call OCl St nt Get Pi ecel nfo() to retrieve information about the piece that must be
inserted. The parameters of OCl St nt Get Pi ecel nf o() include a pointer to a value

6-48

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

indicating if the required piece is the first piece, OCl _FI RST_PI ECE, or a subsequent piece,
OCl _NEXT_PI ECE.

5. The application populates a buffer with the piece of data to be inserted and calls
OCl St nt Set Pi ecel nfo() with these parameters:

e A pointer to the piece
* A pointer to the length of the piece

« Avalue indicating whether this is the first piece (OCl _FI RST_PI ECE), an intermediate
piece (OCl _NEXT_PI ECE), or the last piece (OCl _LAST_PI ECE)

6. Call OCl St nt Execut e() again. If OCl _LAST_PI ECE was indicated in Step 5 and
OCl St nt Execut e() returns OCl _SUCCESS, all pieces were inserted successfully. If
OCl St nt Execut e() returns OCl _NEED DATA, go back to Step 3 for the next insert. If
OCl St nt Execut e() returns any other value, an error occurred.

The piecewise operation is complete when the final piece has been successfully inserted.
This is indicated by the OCl _SUCCESS return value from the final OCl St nt Execut e() call.

Piecewise updates are performed in a similar manner. In a piecewise update operation the
insert buffer is populated with data that is being updated, and OCl St nt Execut e() is called to
execute the update.

" See Also:

e Polling Mode Operations in OCI

e OCIBindDynamic()

e OCIStmtExecute()

e OCIStmtGetPiecelnfo()

e OCIStmtSetPiecelnfo()

e OCIStmtPrepare2()

e OCIBindByName() or OCIBindByName2()
* OCIBindByPos() or OCIBindByPos2()

Piecewise Operations with PL/SQL

ORACLE

An OCI application can perform piecewise operations with PL/SQL for I N, OUT, and | N QUT
bind variables in a method similar to that outlined previously.

Keep in mind that all placeholders in PL/SQL statements are bound, rather than defined. The
call to OCl Bi ndDynani c() specifies the appropriate callbacks for OUT or | N QUT parameters.

¢ See Also:
OCIBindDynamic()

6-49

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

PL/SQL Indexed Table Binding Support

ORACLE

PL/SQL indexed tables can be passed as | N QUT binds into PL/SQL anonymous
blocks using OCI.

The procedure for binding PL/SQL indexed tables is quite similar to performing an
array bind for SQL statements. The OCI program must bind the location of an array
with other metadata for the array as follows, using either OCl Bi ndByNanme() or

OCl Bi ndByNane2() or OCl Bi ndByPos() or OCl Bi ndByPos2() . The process of binding a
C array into a PL/SQL indexed table bind variable must provide the following
information during the bind call:

e void *valuep (I N QUT) - A pointer to a location that specifies the beginning of the
array in client memory

 ub2 dty (IN) - The data type of the elements of the array as represented on the
client

e sh4 value_sz (IN) - The maximum size (in bytes) of each element of the array as
represented on the client

e ub4 maxarr_len (IN) - The maximum number of elements of the data type the
array is expected to hold in its lifetime

If allocating the entire array up front for doing static bindings, the array must be
sized sufficiently to contain maxarr _| en number of elements, each of size

val ue_sz. This information is also used to constrain the indexed table as seen by
PL/SQL. PL/SQL cannot look up the indexed table (either for read or write) beyond
this specified limit.

* ub4 *curelep (1IN QUT) - A pointer to the number of elements in the array (from
the beginning of the array) that are currently valid.

This should be less than or equal to the maximum array length. Note that this
information is also used to constrain the indexed table as seen by PL/SQL. For I N
binds, PL/SQL cannot read from the indexed table beyond this specified limit. For
QUT binds, PL/SQL can write to the indexed table beyond this limit, but not beyond
the maxarr _| en limit.

For I Nindexed table binds, before performing OCl St nt Execut e() , the user must set up
the current array length (*cur el ep) for that execution. In addition, the user also must
set up the actual length and indicator as applicable for each element of the array.

For QUT binds, OCI must return the current array length (*cur el ep) and the actual
length, indicator and return code as applicable for each element of the array.

For best performance, keep the array allocated with maximum array length, and then
vary the current array length between executes based on how many elements are
actually being passed back and forth. Such an approach does not require repeatedly
deallocating and reallocating the array for every execute, thereby helping overall
application performance.

It is also possible to bind using OCI piecewise calls for PL/SQL indexed tables. Such
an approach does not require preallocating the entire array up front. The

OCl St nt Set Pi ecel nfo() and OCl St nt Get Pi ecel nfo() calls can be used to pass in
individual elements piecewise.

This section includes the following topic: Restrictions for PL/SQL Indexed Table
Binding Interface.

6-50

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

¢ See Also:

e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()

* OCIStmtExecute()

* OCIStmtSetPiecelnfo()

* OCIStmtGetPiecelnfo()

Restrictions for PL/SQL Indexed Table Binding Interface

What are the restrictions for the PL/SQL indexed table OCI binding interface.
The PL/SQL indexed table OCI binding interface does not support binding:
* Arrays of ADTs or REFs

» Arrays of descriptor types such as LOB descriptors, ROWID descriptors, datetime or
interval descriptors

* Arrays of PLSQL record types

About Providing FETCH Information at Run Time

When a call is made to CCl Def i neByPos() or OCl Def i neByPos2() with the node parameter set
to OCI _DYNAM C_FETCH, an application can specify information about the data buffer at the
time of fetch.

You may also need to call OCl Def i neDynani ¢() to set a callback function that is invoked to
get information about your data buffer.

Runtime data is provided in one of two ways:

* You can define a callback using the OCl Def i neDynami ¢() function. The val ue_sz
parameter defines the maximum size of the data that is provided at run time. When the
client library needs a buffer to return the fetched data, the callback is invoked to provide a
runtime buffer into which either a piece of the data or all of it is returned.

» If no callbacks are defined, the OCl _NEED DATA error code is returned and the OUT data
buffer or piece can then be provided by the client application by using
OCl St nt Set Pi ecel nfo(). The OCI St nt Get Pi ecel nfo() call provides information about
which define and which piece are involved.

This section includes the following topic: Performing a Piecewise Fetch

ORACLE 6-51

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

¢ See Also:

e OCIDefineByPos() or OCIDefineByPos2()
* OCIDefineDynamic()

* OCIStmtSetPiecelnfo()

* OCIStmtGetPiecelnfo()

Performing a Piecewise Fetch

ORACLE

The fetch buffer can be of arbitrary size. In addition, each fetched piece does not need
to be of the same size.

The only requirement is that the size of the final fetch must be exactly the size of the
last remaining piece. The size of each piece to be fetched is established by each

OCl St nt Set Pi ecel nfo() call. This process is illustrated in Figure 6-4 and explained in
the steps following the figure.

Figure 6-4 Performing Piecewise Fetch

DCIStmIE xecute()

v

Defina]
OCIDefineByPos()/
OCIDefineByPos2()

Execme Statement |

Set Plece Info | "
OCIStmiSetPiecelnfol) o
t

- — OCI_MEED_DATA —y Other
Get Piece Info -— - [Fetch
E}CIStmlGetPiecelnlo{} - | OCIStmtFetch() —pL Error]

l OCI_SUCCESS

L Done

1. Initialize the OCI environment, allocate necessary handles, connect to a database,
authorize a user, prepare a statement, and execute the statement by using
OCl St nt Execut e() .

2. Define an output variable by using OCl Def i neByPos() or OCl Def i neByPos2() , with
nmode set to OCI _DYNAM C_FETCH. At this point you do not need to specify the actual
size of the pieces you use, but you must provide the total size of the data that is to
be fetched at run time.

3. Call OCl St nt Fet ch2() for the first time. No data is retrieved, and the
OCl _NEED DATA error code is returned to the application. If any other value is
returned, then an error occurred.

4. Call OCl St nt Get Pi ecel nfo() to obtain information about the piece to be fetched.
The pi ecep parameter indicates whether it is the first piece (OCl _FI RST_PI ECE), a
subsequent piece (OCI _NEXT_PI ECE), or the last piece (OCI _LAST Pl ECE).

6-52

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

Call OCl St nt Set Pi ecel nf o() to specify the fetch buffer.

Call OCl St nt Fet ch2() again to retrieve the actual piece. If OCl St nt Fet ch2() returns

OCl _SUCCESS, all the pieces have been fetched successfully. If OCl St nt Fet ch2() returns
OCl _NEED DATA, return to Step 4 to process the next piece. If any other value is returned,
an error occurred.

¢ See Also:

e Polling Mode Operations in OCI
OCIStmtSetPiecelnfo()

e OCIStmtExecute()

e OCIDefineByPos() or OCIDefineByPos2()
e OCIStmtGetPiecelnfo()

e OCIStmtFetch2()

Piecewise Binds and Defines for LOBs

ORACLE

What are the ways of doing piecewise binds and defines for LOBs.

There are two:

Using the data interface

You can bind or define character data for CLOB columns using SQLT_CHR (VARCHAR?2) or
SQLT_LNG (LONG) as the input data type for the following functions. You can also bind or
define raw data for BLOB columns using SQLT_LBI (LONGRAW, and SQLT_BI N (RAW as the
input data type for these functions:

— OClI Defi neByPos() or OCl Def i neByPos2()
— OCl Bi ndByNane() or OCl Bi ndByNane2()
— OCI Bi ndByPos() or OCl Bi ndByPos2()

All the piecewise operations described later are supported for CLOB and BLOB columns in
this case.

Using the LOB locator

You can bind or define a LOB locator for CLOB and BLOB columns using SQLT_CLCB (CLOB)
or SQLT_BLOB (BLOB) as the input data type for the following functions.

— OCl DefineByPos() or OCl Defi neByPos2()
— OCI Bi ndByName() or OCl Bi ndByName2()
— OCI Bi ndByPos() or OCl Bi ndByPos2()

You must then call OCILob* functions to read and manipulate the data. CCl LobRead2()
and OCl LobWite2() support piecewise and callback modes.

6-53

Chapter 6
Runtime Data Allocation and Piecewise Operations in OCI

¢ See Also:

e OCIDefineByPos() or OCIDefineByPos2()
e OCIBindByName() or OCIBindByName2()
e OCIBindByPos() or OCIBindByPos2()

* About Binding LOB Data for usage and examples for both | NSERT and
UPDATE st at ement s

e About Defining LOB Data for usage and examples of SELECT statements
e OCILobRead2()
e OCILobWrite2()

* LOB Read and Write Callbacks for information about streaming using
callbacks with OCl LobWite2() and OCl LobRead?2()

ORACLE 6-54

Describing Schema Metadata

This chapter discusses the use of the OCl Descri beAny() function to obtain information about
schema elements.

This chapter contains these topics:

e About Using OCIDescribeAny()

o Parameter Attributes

» Character-Length Semantics Support in Describe Operations

* Examples Using OCIDescribeAny()

¢ See Also:
OClIDescribeAny()

About Using OClIDescribeAny()

Performs an explicit describe of schema objects and their subschema objects.

The OCl Descri beAny() function enables you to perform an explicit describe of the following
schema objects and their subschema objects:

* Tables and views
* Synonyms

* Procedures

* Functions

» Packages

* Sequences

* Collections

* Types

e Schemas

* Databases

Information about other schema elements (function arguments, columns, type attributes, and
type methods) is available through a describe of one of the preceding schema objects or an
explicit describe of the subschema object.

When an application describes a table, it can then retrieve information about that table's
columns. Additionally, OCl Descri beAny() can directly describe subschema objects such as
columns of a table, packages of a function, or fields of a type if given the name of the
subschema obiject.

ORACLE 7-1

Chapter 7
About Using OCIDescribeAny()

The OCl Descri beAny() call requires a describe handle as one of its arguments. The
describe handle must be previously allocated with a call to OCl Handl eAl | oc() .

The information returned by OCl Descri beAny() is organized hierarchically like a tree,
as shown in Figure 7-1.

Figure 7-1 OCIDescribeAny() Table Description

describe
handle

'

table
description

'

columns

column 1 column 2
data type name

The describe handle returned by the CCl Descri beAny() call has an attribute,

OCl _ATTR_PARAM that points to such a description tree. Each node of the tree has
attributes associated with that node, as well as attributes that are like recursive
describe handles and point to subtrees containing further information. If all the
attributes are homogenous, as with elements of a column list, they are called
parameters. The attributes associated with any node are returned by OCl Attr Get (),
and the parameters are returned by OCl Par anGet () .

A call to OCl Attr Get () on the describe handle for the table returns a handle to the
column-list information. An application can then use OCl Par anGet () to retrieve the
handle to the column description of a particular column in the column list. The handle
to the column descriptor can be passed to OCl Attr Get () to get further information
about the column, such as the name and data type.

After a SQL statement is executed, information about the select list is available as an
attribute of the statement handle. No explicit describe call is needed. To retrieve
information about select-list items from the statement handle, the application must call
OCl Par antet () once for each position in the select list to allocate a parameter
descriptor for that position.

¢ Note:

No subsequent OCl At t r Get () or OCl Par antet () call requires extra round-
trips, as the entire description is cached on the client side by
OCl Descri beAny() .

This section includes the following topics:

ORACLE 7-2

Chapter 7
About Using OCIDescribeAny()

e Limitations on OCIDescribeAny()
* Notes on Types and Attributes

See Also:

e OCIDescribeAny()
« OCIHandleAlloc()
* OCIAttrGet()

e OCIParamGet()

Limitations on OCIDescribeAny()

The COCl Descri beAny() call limits information returned to the basic information and stops
expanding a node if it amounts to another describe operation.

For example, if a table column is of an object type, then OCI does not return a subtree
describing the type, because this information can be obtained by another describe call.

The table name is not returned by OCl Descri beAny() or the implicit use of
OCl St nt Execut e() . Sometimes a column is not associated with a table. In most cases, the
table is already known.

¢ See Also:

e About Describing Select-List ltems
e OCIDescribeAny()
* OCIStmtExecute()

Notes on Types and Attributes

What to be aware of when performing describe operations.

When performing describe operations, you should be aware of the following topics:
» Data Type Codes

* About Describing Types

* Implicit and Explicit Describe Operations

e OCI_ATTR_LIST_ARGUMENTS Attribute

Data Type Codes

The OCl _ATTR_TYPECODE attribute returns typecodes that represent the types supplied by the
user when a new type is created using the CREATE TYPE statement.

ORACLE 7.3

Chapter 7
About Using OCIDescribeAny()

These typecodes are of the enumerated type OCl TypeCode, and are represented by
OCl _TYPECODE constants. Internal PL/SQL type (boolean) is supported.

The OCl _ATTR_DATA TYPE attribute returns typecodes that represent the data types
stored in database columns. These are similar to the describe values returned by
previous versions of Oracle Database. These values are represented by SQLT
constants (ub2 values). Boolean types return SQLT_BQOL.

¢ See Also:

e External Data Types for more information about SQLT_BCL

e Typecodes for more information about typecodes, such as the
OCl _TYPECODE values returned in the OCl _ATTR _TYPECCDE attribute and
the SQLT typecodes returned in the OCI _ATTR DATA TYPE attribute

About Describing Types

To describe type objects, it is necessary to initialize the OCI process in object mode.
This is shown in Example 7-1.

Example 7-1 Initializing the OCI Process in Object Mode

[* Initialize the OCl Process */

if (OClEnvCreate((OC Env **) &envhp, (ub4) OCI _OBJECT, (voivoid *) O,
(void * (*)(void *,size_t)) O,
(void * (*)(void *, void *, size_t)) 0,
(void (*)(void *, void *)) 0, (size_t) 0, (void **) 0))

{
printf("FAILED: OCl EnvCreate()\n");

return OCl _ERROR,
}

¢ See Also:
OCIEnvCreate()

Implicit and Explicit Describe Operations

The column attribute OCI _ATTR _PRECI SI ON can be returned using an implicit describe
with OCl St nt Execut e() and an explicit describe with OCl Descri beAny() .

When you use an implicit describe, set the precision to sb2. When you use an explicit
describe, set the precision to ubl for a placeholder. This is necessary to match the
data type of precision in the dictionary.

ORACLE 7-4

Chapter 7
Parameter Attributes

¢ See Also:

« OCIStmtExecute()
» OCIDescribeAny()

OCI_ATTR_LIST ARGUMENTS Attribute

The OCl _ATTR LI ST_ARGUMENTS attribute for type methods represents second-level arguments
for the method.

For example, consider the following record ny_t ype and the procedure ny_proc that takes an
argument of type ny_t ype:

nmy_type record(a nunber, b char)
my_proc (ny_input my_type)

In this example, the OCl _ATTR_LI ST_ARGUVENTS attribute would apply to arguments a and b of
the ny_t ype record.

Parameter Attributes

This section describes the attributes and handles that belong to different parameters.

A parameter is returned by OCl Par antet () . Parameters can describe different types of
objects or information, and have attributes depending on the type of description they contain,
or type-specific attributes.

The OCl Descri beAny() call does support more than two name components (for example,
schema. type.attrl. attr2. met hodl). With more than one component, the first component is
interpreted as the schema name (unless some other flag is set). There is a flag to specify that
the object must be looked up under PUBLIC, that is, describe "a", where "a" can be either in
the current schema or a public synonym.

If you do not know what the object type is, specify OCl _PTYPE_UNK. Otherwise, an error is
returned if the actual object type does not match the specified type.

Table 7-1 lists the attributes of all parameters.

Table 7-1 Attributes of All Parameters
]

Attribute Description Attribute Data Type
OCl _ATTR GBJ_ID Object or schema ID ub4
OCl _ATTR _OBJ_NAME Database name or object name in a schema OraText *

OCl _ATTR OBJ_SCHEMA Schema name where the object is located

ORACLE

OraText *

7-5

Chapter 7
Parameter Attributes

Table 7-1 (Cont.) Attributes of All Parameters
]

Attribute

Description Attribute Data Type

OCl_ATTR PTYPE

OCl _ATTR_TI MESTAMP The time stamp of the object on which the description is

Type of information described by the parameter. Possible ubl
values:

OCl _PTYPE_TABLE - table

OCl _PTYPE_VI EW- view

OCl _PTYPE_PRCC - procedure

OCl _PTYPE_FUNC - function

OCl _PTYPE_PKG- package

OCl _PTYPE_TYPE - type, including a package type

OCl _PTYPE_TYPE_ATTR - attribute of a type, including
package record type attributes

OCl _PTYPE_TYPE_CCLL - collection type information,
including package collection elements

OCl _PTYPE_TYPE_METHOD - method of a type

OCl _PTYPE_SYN - synonym

OCl _PTYPE_SEQ- sequence

OCl _PTYPE_CQL - column of a table or view

OCl _PTYPE_ARG- argument of a function or procedure
OCl _PTYPE_TYPE_ARG - argument of a type method
OCl _PTYPE_TYPE RESULT - results of a method

OCl _PTYPE_LI ST - column list for tables and views,
argument list for functions and procedures, or
subprogram list for packages

OCl _PTYPE_SCHEMA - schema
OCl _PTYPE_DATABASE - database
OCl _PTYPE_UNK - unknown schema object

*
based in Oracle date format ub1

ORACLE

The following sections list the attributes and handles specific to different types of
parameters:

Table or View Parameters

Procedure, Function, and Subprogram Attributes
Package Attributes

Type Attributes

Type Attribute Attributes

Type Method Attributes

Collection Attributes

Synonym Attributes

Sequence Attributes

Column Attributes

Argument and Result Attributes

7-6

e List Attributes

e Schema Attributes

» Database Attributes

* Rule Attributes

* Rule Set Attributes

* Evaluation Context Attributes
* Table Alias Attributes

* Variable Type Attributes

« Name Value Attributes

See Also:

* OCIParamGet()
* OCIDescribeAny()

Table or View Parameters

Chapter 7

Parameter Attributes

Lists and describes the type-specific attributes for parameters for a table or view.

Table 7-2 lists the type-specific attributes for parameters for a table or view (type

OCl_PTYPE_TABLE or OCI _PTYPE VI EW.

Table 7-2 Attributes of Tables or Views

Attribute Description Attribute Data Type
OCl _ATTR OBJID Object ID uba
OCl _ATTR_NUM COLS Number of columns ub2
OCl _ATTR LI ST_COLUWNS Column list (type OCl _PTYPE_LI ST) OCl Param *
OCl _ATTR _REF_TDO REF to the type description object (TDO) of the oCl Ref *
base type for extent tables
OCl _ATTR I S_TEMPCRARY Indicates that the table is temporary ub1l
OCl _ATTR_I S_TYPED Indicates that the table is typed ub1l
OCl _ATTR_DURATI ON Duration of a temporary table. Values can be: oCl Dur ati on

OCl _DURATI ON_SESSI ON - session
OCl _DURATI ON_TRANS - transaction
OCl _DURATI ON_NULL - table not temporary

Table 7-3 lists additional attributes that belong to tables.

ORACLE

7-7

Chapter 7
Parameter Attributes

Table 7-3 Attributes Specific to Tables
]

Attribute

Description Attribute Data Type

OCl_ATTR_RDBA

CCl _ATTR_TABLESPACE

CCl _ATTR_CLUSTERED

OCl _ATTR_PARTI TI ONED

OCl_ATTR_| NDEX_ONLY

Data block address of the segment header ubd

Tablespace that the table resides in

wor d
Indicates that the table is clustered ub1l
Indicates that the table is partitioned ub1l
Indicates that the table is index-only ub1l

Procedure, Function, and Subprogram Attributes

Lists and describes the type-specific attributes when a parameter is for a procedure or

function.

Table 7-4 lists the type-specific attributes when a parameter is for a procedure or
function (type OCI _PTYPE_PROC or OCI _PTYPE_FUNC).

Table 7-4 Attributes of Procedures or Functions
]

Attribute Description Attribute
Data Type
OCl _ATTR LI ST_ARGUM Argument list. See List Attributes. D
= = - voi d
ENTS
OCl _ATTR_I S_I NVOKER Indicates that the procedure or function has invoker's rights b1
RI GHTS :

Table 7-5 lists the attributes that are defined only for package subprograms.

Table 7-5 Attributes Specific to Package Subprograms
]

Attribute Description Attribute Data Type
OCl _ATTR_NAME Name of the procedure or function OraText *
OCl _ATTR OVERLOAD | D Overloading ID number (relevant in case the ub2

procedure or function is part of a package and
is overloaded). Values returned may be different
from direct query of a PL/SQL function or
procedure.

ORACLE

7-8

Chapter 7
Parameter Attributes

Package Attributes

Lists and describes the attributes when a parameter is for a package.

Table 7-6 lists the attributes when a parameter is for a package (type OCl _PTYPE_PKG).

Table 7-6 Attributes of Packages

Attribute Description Attribute
Data Type

OCl _ATTR LI ST_PKG TY Get a list of all types in an OCl _PTYPE_PKG package parameter handle. voi d *

PES

OCI _ATTR_LI ST_SUBPRO Subprogram list. See List Attributes. voi d *

CGRANB

OCl _ATTR_I S_I NVOKER _ Indicates that the package has invoker's rights? ubl

RI GHTS

Type Attributes

Lists and describes the attributes when a parameter is for a type.

Table 7-7 lists the attributes when a parameter is for a type (type OCI _PTYPE TYPE). These
attributes are only valid if the application initialized the OCI process in OCl _OBJECT mode in a
call to OCl EnvCreate().

Table 7-7 Attributes of Types

Attribute Description Attribute
Data
Type

OCl _ATTR_REF_TDO Returns the in-memory REF of the type descriptor object (TDO) for the ol Ref *

type, if the column type is an object type. If space has not been reserved
for the OCl Ref , then it is allocated implicitly in the cache. The caller can
then pin the TDO with OCl Cbj ect Pi n() .

OCl _ATTR_TYPECODE Typecode. See Data Type Codes. Currently can be only

OC_TYPECODE_OBJECT, OCI_ TYPECCDE. NAVEDCOLLECTI ON, or o0 TypeC
OCl _TYPECODE_RECORD.
OCl _ATTR_COLLECTI ON_T Typecode of collection if type is collection; invalid otherwise. See Data QI TypeC
YPECODE Type Codes. Currently can be only OCl _TYPECODE_VARRAY, ode
OCl _TYPECODE_TABLE, or OCl _TYPECODE_| TABLE. If this attribute is
queried for a type that is not a collection, an error is returned.
OCl _ATTR_I'S_I NCOWPLET Indicates that this is an incomplete type
ubl
E TYPE
OCl _ATTR IS _SYSTEM TY Indicates that this is a system type ubl
PE
OCl _ATTR_|I' S_PREDEFI NE Indicates that this is a predefined type ubl
D TYPE
OCl _ATTR_I'S_TRANSI ENT Indicates that this is a transient type b1
TYPE v

ORACLE 7-9

Table 7-7 (Cont.) Attributes of Types

Chapter 7
Parameter Attributes

Attribute Description Attribute
Data
Type

OCl _ATTR_I'S_SYSTEM GE Indicates that this is a system-generated type ubl

NERATED TYPE

OCl _ATTR_HAS_NESTED T This type contains a nested table attribute. ubl

ABLE

OCl _ATTR HAS LOB This type contains a LOB attribute. ubl

OCl _ATTR _HAS FILE This type contains a BFI LE attribute. ubl

OCl _ATTR_COLLECTI ON_E Handle to collection element. See Collection Attributes. voi d *

LEMENT

OCl _ATTR_NUM TYPE_ATT Number of type attributes ub2

RS

OCI _ATTR LI ST_TYPE_AT List of type attributes. See List Attributes. voi d *

TRS

OCl _ATTR_NUM TYPE_MET Number of type methods ub2

HODS

OCl _ATTR LI ST_TYPE_ME List of type methods. See List Attributes. voi d *

THODS

OCl _ATTR_MAP_METHOD Map method of type. See Type Method Attributes. voi d *

OCl _ATTR_ORDER_METHOD Order method of type. See Type Method Attributes. voi d *

OCl _ATTR_I S_I| NVOKER R Indicates that the type has invoker's rights ubl

| GHTS

OCl _ATTR_NAME A pointer to a string that is the type attribute name O aText

OCl _ATTR_PACKAGE_NAME A string with the package name if the attribute is a package type. O aText

OCl _ATTR _SCHEMA NAME A string with the schema name where the type has been created O aText

OCl _ATTR IS _FINAL_TYP Indicates that this is a final type ubl

E

OCI _ATTR_I'S_I NSTANTI A Indicates that this is an instantiable type ubl

BLE_TYPE

OCl _ATTR I S_SUBTYPE Indicates that this is a subtype ubl

ORACLE

7-10

Table 7-7 (Cont.) Attributes of Types
]

Chapter 7
Parameter Attributes

Attribute Description Attribute
Data
Type

OCl _ATTR _SUPERTYPE _SC Name of the schema that contains the supertype O aText

HEMA_NAME *

OCI _ATTR_SUPERTYPE_NA Name of the supertype O aText

ME *

Type Attribute

See Also:
OCIEnvCreate()

Attributes

Lists and describes the attributes when a parameter is for an attribute of a type.

Table 7-8 lists the attributes when a parameter is for an attribute of a type (type

oCl

_PTYPE_TYPE_ATTR).

Table 7-8 Attributes of Type Attributes
|

Attribute Description Attribute
Data Type
OCl _ATTR DATA SIZE The maximum size of the type attribute. This length is returned in bytes ub2
and not characters for strings and raws. It returns 22 for NUVBERs.
OCl _ATTR_TYPECODE Typecode. See Data Type Codes. 0l TypeCode
OCl _ATTR DATA TYPE The data type of the type attribute. See Data Type Codes. ub2
OCl _ATTR_NAME A pointer to a string that is the type attribute name O aText *
OClI _ATTR _PRECI SI ON The precision of numeric type attributes. If the precision is nonzero and ubl
scale is -127, then it is a FLOAT; otherwise, it is a NUMBER(pr eci si on,
scal e) . When precision is 0, NUMBER(pr eci si on, scal e) can be for exolici
) xplicit
represented simply as NUVBER. describe
sh2
for implicit
describe
OCl _ATTR _SCALE The scale of numeric type attributes. If the precision is nonzero and scale bl

ORACLE

is -127, then it is a FLOAT; otherwise, it is a NUMBER(pr eci si on,
scal e) . When precision is 0, NUMBER(pr eci si on, scal e) can be
represented simply as NUMBER.

7-11

Table 7-8 (Cont.) Attributes of Type Attributes

Chapter 7

Parameter Attributes

Attribute Description Attribute
Data Type
OCl _ATTR_PACKAGE_NA A string that is the package name of a type if it is a package type. OraText *
ME
OCl _ATTR _TYPE_NAME A string that is the type name. The returned value contains the type name OraText *
if the data type is SQLT_NTY or SQLT_REF. If the data type is SQLT_NTY,
the name of the named data type's type is returned. If the data type is
SQLT_REF, the type name of the named data type pointed to by the REF
is returned.
OCl _ATTR_SCHEMA NAM A string with the schema name under which the type has been created O aText *
E
OCl _ATTR_REF_TDO Returns the in-memory REF of the TDO for the type, if the column type is oCl Ref *
an object type. If space has not been reserved for the OCl Ref , then it is
allocated implicitly in the cache. The caller can then pin the TDO with
OCl Qhj ectPin().
OCl _ATTR _CHARSET I D The character set ID, if the type attribute is of a string or character type ub2
OCl _ATTR_CHARSET_FO The character set form, if the type attribute is of a string or character type ubl
RM
OCl _ATTR_FSPRECI SI O The fractional seconds precision of a datetime or interval ubl
N
OCl _ATTR _LFPRECI SI O The leading field precision of an interval ubl

N

Type Method Attributes

Lists and dsescribes the attributes when a parameter is for a method of a type.

Table 7-9 lists the attributes when a parameter is for a method of a type (type

0Cl _PTYPE_TYPE_METHOD).

Table 7-9 Attributes of Type Methods
|

Attribute Description Attribute
Data Type

OCl _ATTR_NAVME Name of method (procedure or function) OraText *

OCl _ATTR_ENCAPSULATI ON Encapsulation level of the method (either OCI _TYPEENCAP_PRI VATE OCl TypeEnc

or OCl _TYPEENCAP_PUBLI C) ap

OCl _ATTR_LI ST_ARGUMENT Argument list. See OCI_ATTR_LIST_ARGUMENTS Attribute, and void *

S List Attributes.

OCl _ATTR_I'S_CONSTRUCTO Indicates that method is a constructor ubl

R

OCl _ATTR_I'S_DESTRUCTCR Indicates that method is a destructor ubl

ORACLE

7-12

Chapter 7
Parameter Attributes

Table 7-9 (Cont.) Attributes of Type Methods
]

Attribute Description Attribute
Data Type

OCl _ATTR I S_OPERATOR Indicates that method is an operator ubl

OCl _ATTR I'S_SELFI SH Indicates that method is selfish ubl

OCl _ATTR I S_MAP Indicates that method is a map method ubl

OCl _ATTR I'S_ORDER Indicates that method is an order method ubl

OCl _ATTR_I'S_RNDS Indicates that "Read No Data State" is set for method ubl

OCl _ATTR_I' S_RNPS Indicates that "Read No Process State" is set for method ubl

OCl _ATTR I S_WNDS Indicates that "Write No Data State" is set for method ubl

OCl _ATTR I S_WNPS Indicates that "Write No Process State" is set for method ubl

OCl _ATTR_I'S_FI NAL_METH Indicates that this is a final method ubl

(OD)]

OClI _ATTR_I S_| NSTANTI AB Indicates that this is an instantiable method ubl

LE_METHOD

OCl _ATTR_I'S_OVERRI DI NG Indicates that this is an overriding method ubl

_METHCD

Collection Attributes

Lists and describes the attributes when a parameter is for a collection type.
Table 7-10 lists the attributes when a parameter is for a collection type (type
OCl _PTYPE_COLL).

Table 7-10 Attributes of Collection Types
]

Attribute Description Attribute
Data Type
OClI _ATTR DATA SI ZE The maximum size of the type attribute. This length is returned in bytes ub2
and not characters for strings and raws. It returns 22 for NUVBERSs.
OCl _ATTR TYPECODE Typecode. See Data Type Codes. odl TypeCod
e
OClI _ATTR DATA TYPE The data type of the type attribute. See Data Type Codes. ub2

ORACLE 7-13
