
Oracle® Audit Vault and Database
Firewall
Developer's Guide

Release 20
E93410-09
June 2022



Oracle Audit Vault and Database Firewall Developer's Guide, Release 20

E93410-09

Copyright © 2012, 2022, Oracle and/or its affiliates.

Primary Author: Karthik Shetty

Contributors: Sumanth Vishwaraj, Rajesh Tammana, Mahesh Rao, Prabhu Sahoo, Sourav Basu, Vipin Samar

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience xii

Documentation Accessibility xii

Diversity and Inclusion xii

Related Documents xii

Conventions xiii

Translation xiii

 Changes in This Release for Oracle Audit Vault and Database Firewall

Changes In Oracle Audit Vault and Database Firewall Release 20 xv

1   What is Oracle Audit Vault and Database Firewall

1.1 Overview of Oracle Audit Vault and Database Firewall 1-1

1.2 How Oracle Audit Vault Server and Agent Work 1-1

1.3 Types of Audit Collection Plug-Ins 1-2

1.3.1 What Are Audit Collection Plug-ins? 1-2

1.3.2 About Oracle AVDF Plug-In Types 1-3

1.3.3 Determining Which Audit Collection Plug-in Type to Create 1-3

1.3.4 Java-Based Collection Plug-ins 1-3

1.4 Audit Vault Server Events and their Attributes 1-4

1.4.1 About Audit Vault Server Events and Attributes 1-4

1.4.2 Understanding Core Fields 1-4

1.4.3 CommandClass and Target Types 1-5

1.4.4 Other Oracle Audit Vault Fields 1-5

1.4.4.1 About Large Fields 1-5

1.4.4.2 About Extension Field 1-5

1.4.4.3 About Marker Fields 1-6

1.4.5 Storing Audit Records in Audit Vault 1-6

1.5 The Collection Process 1-7

1.5.1 Flow of Collection: User 1-7

1.5.2 Flow of Control Inside the Audit Collection Plug-in 1-8

iii



1.5.3 Collection Concepts 1-8

1.5.3.1 Collection Thread 1-8

1.5.3.2 Collection Phase 1-9

1.5.3.3 Mapping 1-9

1.5.3.4 Checkpoint of a Trail 1-9

1.5.3.5 Recovery Phase Of Data Collection 1-10

1.5.3.6 Audit Trail Clean Up 1-10

1.6 General Procedure for Writing Audit Collection Plug-ins 1-11

2   Setting Up Your Development Environment

2.1 Before Setting Up the Development Environment 2-1

2.2 Setting Up the Development Environment 2-1

2.3 Audit Collection Plug-in Directory Structure 2-2

2.3.1 General Directory Structure 2-2

2.3.2 Audit Collection Plug-In Directory Structure 2-3

2.3.3 Java-Based Collection Plug-in Directory Structure 2-4

2.3.4 Staging a plugin-manifest.xml File 2-4

2.3.5 About Mapper Files 2-5

2.3.6 Description of Plug-in Manifest File 2-5

3   Audit Collection Plug-ins

3.1 About Audit Collection Plug-ins 3-1

3.2 Database Table Collection Plug-ins 3-2

3.2.1 Requirements for Database Table Collection Plug-ins 3-2

3.2.2 Example Audit Trail for a Database Table Collection Plug-in 3-3

3.2.3 Creating a Database Table Mapper File 3-4

3.3 XML File Collection Plug-ins 3-10

3.3.1 Requirements for XML File Collection Plug-ins 3-10

3.3.2 Example Audit Trail for an XML File Collection Plug-in 3-11

3.3.3 Creating the XML File Audit Collection Mapper File 3-12

3.3.4 XML Transformation for Non-Standard Audit Records 3-17

3.3.4.1 Additional Requirement for XML Transformation Using XSL 3-17

3.3.4.2 Changes Required to Transform Non-Standard Audit Records 3-17

3.3.4.3 Sample Non-Standard XML Audit Data Record 3-18

3.3.4.4 Creating an XSL File for Transformation 3-19

3.4 JSON File Collection Plug-ins 3-21

3.4.1 Requirements for JSON File Collection Plug-ins 3-21

3.4.2 Example Audit Trail for a JSON File Collection Plug-in 3-22

3.4.3 Creating the JSON File Audit Collection Mapper File 3-23

iv



3.5 CSV File Collection Plug-ins 3-28

3.5.1 Requirements for CSV File Collection Plug-ins 3-28

3.5.2 Example Audit Trail for a CSV File Collection Plug-in 3-29

3.5.3 Creating the CSV File Audit Collection Mapper File 3-30

3.6 JSON REST Collection Plug-ins 3-35

3.6.1 Requirements for JSON REST Collection Plug-ins 3-35

3.6.2 Example Audit Trail for a JSON REST Collections Plug-in 3-36

3.6.3 Creating the JSON REST Audit Collection Mapper File 3-38

3.7 Target Collection Attributes 3-43

3.8 Preprocessing Audit Data 3-44

4   Java-Based Audit Trail Collection Plug-ins

4.1 About Java-Based Collection Plug-ins 4-1

4.2 JDK Requirement for Using the Java-Based Collection Plug-in 4-1

4.3 About the Flow of Control Inside the Java-Based Collection Plug-in 4-1

4.4 Useful Classes and Interfaces in the Collection Framework 4-2

4.5 How to Create a Java-Based Collection Plug-in 4-4

4.5.1 About Creating a Java-Based Collection Plug-in 4-5

4.5.2 Using the AuditEventCollectorFactory to Get the AuditEventCollector Object 4-5

4.5.3 Using the CollectorContext Class When Creating a Java-Based Collection
Plug-in 4-6

4.5.3.1 Basic Source Attributes 4-6

4.5.3.2 Basic Trail Attributes 4-6

4.5.3.3 Utility Instances 4-7

4.5.3.4 Additional Source or Trail Attributes 4-7

4.5.4 Initializing the Java-Based Collection Plug-in 4-8

4.5.5 Connecting, Fetching Events, and Setting Checkpoints 4-9

4.5.6 Transforming Source Event Values to Audit Vault Event Values 4-11

4.5.6.1 Event Time to UTC 4-11

4.5.6.2 Source Event Name to Audit Vault Event Name 4-12

4.5.6.3 Source Event ID to Source Event Name 4-13

4.5.6.4 Mapping Source Event Name or ID to Target Type 4-13

4.5.6.5 Source Event Status to Oracle Audit Vault Event Status 4-14

4.5.7 Retrieving Other Audit Field Values 4-15

4.5.8 Changing Oracle AVDF Attributes at Run Time 4-15

4.5.9 Changing Custom Attributes at Run Time 4-16

4.5.10 Creating Extension Fields 4-17

4.5.11 Handling Large Audit Fields 4-17

4.5.12 Creating Markers to Uniquely Identify Records 4-18

4.5.13 Closing the Java-Based Collection Plug-in 4-19

4.5.14 Using Exceptions in Collection Plug-ins 4-19

v



4.6 Java-Based Collection Plug-in Utility APIs 4-20

4.6.1 About Connection to Database Sources Using ConnectionManager API 4-20

4.6.2 Example of Using the ConnectionManager API to Connect to Database
Sources 4-21

4.6.3 Using the Windows Event Log Access API 4-23

4.6.4 Using Windows EventMetaData API 4-26

4.6.5 Using the AVLogger API to Log Messages 4-27

4.6.6 Using the Oracle XML Developer's Kit to Parse XML Files 4-28

4.7 Using an Audit Trail Cleanup with Java-Based Collection Plug-ins 4-28

4.8 Java-Based Collection Plug-in Security Considerations 4-29

5   Packaging Audit Collection Plug-ins

5.1 Flow of Packaging 5-1

5.2 Creating a plugin_manifest.xml File for Shipping 5-1

5.3 External Dependencies 5-2

5.4 Creating New Versions of Your Audit Collection Plug-ins 5-2

5.5 avpack Tool 5-3

6   Testing Audit Collection Plug-ins

6.1 Requirements for Testing Audit Collection Plug-ins 6-1

6.2 Typical Audit Collection Plug-in Testing Processes 6-1

6.3 Deploying an Audit Vault Agent 6-3

6.4 Redeploying the Oracle Audit Vault Agent 6-3

A   Audit Vault Server Fields

A.1 Oracle Audit Vault and Database Firewall Fields A-1

A.1.1 Core Fields A-1

A.1.2 Large Fields A-2

A.1.3 Marker Field A-2

A.1.4 Extension Field A-3

A.2 Actions and Target Types A-3

A.2.1 Actions A-3

A.2.2 Target Types A-6

B   Schemas

B.1 Sample Schema for a plugin-manifest.xml file B-1

B.2 Database Table Collection Plug-in Mapper File B-4

B.3 Schema For XML File Collection Plug-in Mapper File B-5

vi



B.4 Schema For JSON File Collection Plug-in Mapper File B-6

B.5 Schema For CSV File Collection Plug-in Mapper File B-7

B.6 Schema For JSON REST Collection Plug-in Mapper File B-9

B.7 Schema For REST Collector Plug-in Mapper File B-11

B.8 Schema For Name Pattern Collection Plug-in Mapper File B-14

B.9 Schema For JSON Collector Plug-in Mapper File B-15

B.10 Schema For EZCollector Plug-in Mapper File B-16

C   Example Code

C.1 Database Table Collection Plug-in Example C-1

C.1.1 Database Table Collection Plug-in Mapper File C-1

C.1.2 Database Table Collection Plug-in Manifest File C-5

C.2 XML File Collection Plug-in Examples C-6

C.2.1 XML File Collection Plug-In Mapper File C-6

C.2.2 XML File Collection Plug-In Manifest File C-10

C.3 JSON File Collection Plug-in Example C-11

C.3.1 JSON File Collection Plug-In Mapper File C-11

C.3.2 JSON File Collection Plug-In Manifest File C-14

C.4 CSV File Collection Plug-in Example C-15

C.4.1 CSV File Collection Plug-In Mapper File C-15

C.4.2 CSV File Collection Plug-In Manifest File C-19

C.5 JSON REST Collection Plug-in Example C-20

C.5.1 JSON REST Collection Plug-In Mapper File C-20

C.5.2 JSON REST Collection Plug-In Manifest File C-24

C.6 Java-Based Collection Plug-in Example C-25

C.6.1 Java Collection Plug-in Code C-25

C.6.2 Java Based Collection Plug-in Manifest File C-35

D   Bundled JDBC Drivers

D.1 About Bundled JDBC Drivers D-1

D.2 Connecting URLs D-2

D.3 DataSource Class D-2

Glossary

Index

vii



List of Examples

2-1 General Directory Structure 2-2

2-2 Directory Structure For Collection Plug-In 2-4

2-3 Directory Structure for Java-Based Collection Plug-in 2-4

3-1 Sample XML Audit Record 3-12

3-2 Audit.xml: Sample XML Audit Record 3-18

3-3 test_template.xsl 3-19

3-4 Transformed Audit Record file 3-19

3-5 Sample JSON Audit Record 3-23

3-6 Sample CSV Audit Record 3-29

3-7 Sample JSON Audit Record 3-37

4-1 Creating a SampleAuditEventCollector Class 4-5

4-2 Initializing a Java-Based Collection Plug-in 4-8

4-3 Using the ConnectionManager Utility to Connect and Retrieve Audit Records From a

Database 4-8

4-4 Fetching ResultSets and Setting Checkpoints 4-10

4-5 Using hasNext to Fetch Records 4-11

4-6 Transforming EventTime from Source Time Zone to UTC 4-11

4-7 Mapping Source Event Names to Audit Vault Event Names 4-12

4-8 Mapping Source Event Ids to Source Event Names 4-13

4-9 Mapping Source ID to Target Type 4-14

4-10 Transforming Source Values to Oracle Audit Vault EventStatus Values 4-14

4-11 Returning Values that Do Not Need Transformation 4-15

4-12 Changing an Oracle Audit Vault and Database Firewall Attribute 4-15

4-13 Changing a Custom Attribute 4-16

4-14 Creating an Extension Field 4-17

4-15 Creating Large Fields 4-18

4-16 Creating Markers 4-18

4-17 Calling Close and Releasing Resources 4-19

4-18 Using the Connection Manager to Handle Connection Pooling 4-21

4-19 Using the AVLogger API 4-27

B-1 Sample plugin-manifest.xsd file B-1

B-2 Database Table Collection Plug-in Mapper Schema B-4

B-3 XML file collection plug-in Mapper Schema B-5

B-4 JSON file collection plug-in Mapper Schema B-6

B-5 CSV file collection plug-in Mapper Schema B-8

viii



B-6 JSON REST collection plug-in Mapper Schema B-9

B-7 REST Collector Plug-in Mapper File B-11

B-8 Name Pattern Collection Plug-in Mapper File B-14

B-9 JSON Collector Plug-in Mapper File B-15

B-10 EZCollector Plug-in Mapper File B-16

C-1 Sample XML Mapper File for a Database Table Collection Plug-in C-1

C-2 Sample Manifest File for a Database Table Collection Plug-in C-5

C-3 Sample XML File Collection Plug-in Mapper File C-7

C-4 Sample Manifest File for an XML File Collection Plug-in C-10

C-5 Sample JSON File Collection Plug-in Mapper File C-12

C-6 Sample Manifest File for a JSON File Collection Plug-in C-14

C-7 Sample CSV File Collection Plug-in Mapper File C-16

C-8 Sample Manifest File for a CSV File Collection Plug-in C-19

C-9 Sample JSON REST Collection Plug-in Mapper File C-21

C-10 Sample Manifest File for a JSON REST Collection Plug-in C-24

C-11 SampleEventCollectorFactory.java C-25

C-12 SampleEventCollector.java C-26

C-13 Java-Based Manifest File C-35

ix



List of Figures

1-1 Flow of Collection for Oracle Audit Vault Collection Agents 1-7

4-1 Classes and Interfaces from AuditService, CollectorContext, and Class AVLogger 4-3

4-2 Classes and Interfaces from Collection Framework Used in Collection Plug-in 4-4

4-3 Structure of Windows Event Logs 4-24

4-4 EventMetaData_Classes 4-26

x



List of Tables

3-1 AUD Audit Table Data Fields and Mappings 3-3

3-2 Audit Data Fields in XML Audit Records and Mappings 3-11

3-3 Audit Data Fields in JSON Audit Records and Mappings 3-22

3-4 Audit Data Fields in CSV Audit Records and Mappings 3-29

3-5 Audit Data Fields in JSON Audit Records and Mappings 3-37

D-1 JDBC Drivers and Connecting URLs D-1

xi



Preface

Oracle Audit Vault and Database Firewall Developer's Guide explains how to develop
Audit Collection Plug-ins for Oracle Audit Vault and Database Firewall.

Audience
Oracle Audit Vault and Database Firewall Developer's Guide is intended for
developers who want to develop Audit Collection Plug-ins.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Related Documents
See Oracle Audit Vault and Database Firewall 20.1 Books.

Oracle Technology Network (OTN)

You can download free release notes, installation documentation, updated versions of
this guide, technical reports, or other collateral from the Oracle Technology Network
(OTN). Visit

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/database/oracle/audit-vault-database-firewall/20/books.html


http://www.oracle.com/technetwork/index.html
For security-specific information on OTN, visit

http://www.oracle.com/technetwork/topics/security/whatsnew/index.html
For the latest version of the Oracle documentation, including this guide, visit

http://www.oracle.com/technetwork/documentation/index.html

Oracle Audit Vault and Database Firewall Specific Sites

For OTN information specific to Oracle Audit Vault and Database Firewall, visit

http://www.oracle.com/technetwork/database/database-technologies/audit-vault-
and-database-firewall/documentation/index.html

My Oracle Support

You can find information about security patches, certifications, and the support knowledge
base by visiting My Oracle Support:

https://support.oracle.com/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Translation
This topic contains translation (or localization) information for Oracle AVDF User Interface
and Documentation.

The Web based User Interface or the Audit Vault Server console is translated and made
available in the following languages. This includes the User Interface, error messages, and
help text.

• French

• German

• Italian

• Japanese

• Korean

• Spanish

• Portuguese - Brazil

Preface

xiii

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/topics/security/whatsnew/index.html
http://www.oracle.com/technetwork/documentation/index.html
http://www.oracle.com/technetwork/database/database-technologies/audit-vault-and-database-firewall/documentation/index.html
http://www.oracle.com/technetwork/database/database-technologies/audit-vault-and-database-firewall/documentation/index.html
https://support.oracle.com/


• Chinese - Traditional

• Chinese - Simplified

Oracle AVDF Documentation is available in the following languages:

• English

• Japanese

Preface

xiv



Changes in This Release for Oracle Audit
Vault and Database Firewall

Review the changes made for development features in Oracle Audit Vault and Database
Firewall.

Changes In Oracle Audit Vault and Database Firewall Release
20

New features in Oracle Audit Vault and Database Firewall release 20.

New Features in Oracle AVDF 20.4

CSV format support for audit collection. Refer to the following sections for complete
information:

• CSV File Collection Plug-ins

• Schema For CSV File Collection Plug-in Mapper File

• CSV File Collection Plug-in Example

New Features in Oracle AVDF 20.1

• Introduced custom collector to collect audit data from JSON files. See the following
sections:

– JSON File Collection Plug-ins

– Schema For JSON File Collection Plug-in Mapper File

– JSON File Collection Plug-in Example

• Introduced custom collector to collect audit data from Basic Authentication based REST
services with JSON data format. See the following sections:

– JSON REST Collection Plug-ins

– Schema For JSON REST Collection Plug-in Mapper File

– JSON REST Collection Plug-in Example

• Introduced a new element ComplexName. See sections Database Table Collection Plug-in
Mapper File and Creating a Database Table Mapper File for complete information.

• Introduced schema files for collection plug-in mapper files. See Schemas for complete
information.

xv



1
What is Oracle Audit Vault and Database
Firewall

Learn about Oracle Audit Vault and Database Firewall software (Oracle AVDF), and about
collection plug-ins.

1.1 Overview of Oracle Audit Vault and Database Firewall
Learn about Oracle Audit Vault and Database Firewall components, and what each
component does.

Oracle Audit Vault and Database Firewall (Oracle AVDF) supports native database audit data
collection and network-based SQL monitoring to deliver a comprehensive Database Activity
Monitoring solution. It is comprised of these components:

• Audit Vault Server: A server that contains an embedded Oracle Database and other
software components that manage the activities of Oracle Audit Vault and Database
Firewall.

• Audit Vault Agent: A Java component that runs on a remote host and manages the
collection of audit information based on commands from the Audit Vault server. The agent
interfaces with the collection plug-ins under its control to gather audit records and sends
it to the Audit Vault Server.

• Database Firewall: The Database Firewall is a dedicated server that runs the Database
Firewall software. Each Database Firewall monitors SQL traffic on the network from
database clients to target databases. The Database Firewall then sends the SQL data to
the Audit Vault Server to be analyzed in reports.

Oracle Audit Vault and Database Firewall ships with several prepackaged collection plug-ins,
which are software programs that know how to access and interpret audit data from target
systems of various types. Collection plug-ins collect audit data from an audit trail generated
by a target system and store it in an Audit Vault Server repository. Each collection plug-in is
specific to a particular type of trail from a particular type of target. These collection plug-ins
collect data from databases such as Oracle, SQL Server, Sybase ASE, and DB2.

See Also:

Oracle Audit Vault and Database Firewall Administrator's Guide

1.2 How Oracle Audit Vault Server and Agent Work
Audit Collection Plug-ins retrieve audit data in the form of audit trails, which are sequences of
audit records.

1-1



Audit Collection Plug-ins retrieve audit data in the form of audit trails, which are
sequences of audit records. Audit trails are generated by different target types and
stored in database tables or XML audit records.

A target can write one or more audit trails; each audit trail is stored in a separate
location, and can have its own format.

To elaborate a little on these terms:

• Target

A target is a software component which generates an audit trail. A target is an
instance of a target type and has specific properties such as connection
credentials and trail types.

• Target Type

A target type represents a collection of a particular type of target that generates
the same type of audit data. Oracle Database, for example, is a target type which
can have many instances. However, all Oracle Databases generate the same
audit data and record the same fields.

• Audit Trail

An Audit Trail identifies a location and format where audit data resides. Each audit
trail is generated by one and only one target. Examples of audit trails are:

– For targets that write data into files, the trail is the directory path plus the file
mask.

– For targets that write audit data into a database table, the name of the table is
the trail for that target. Unified_Audit_Trail is an example of a database
table audit trail in an Oracle database.

1.3 Types of Audit Collection Plug-Ins
Learn what audit collection plug-ins are, which audit collection plug-ins you should use
for your audit trails, and what Java-based collection plug-ins you can use with Oracle
Database Vault.

1.3.1 What Are Audit Collection Plug-ins?
Learn about audit collection plug-ins.

Audit collection is supported from many database types. See Product Compatibility
Matrix for a list of supported database types and versions.

In case audit collection is not supported out of the box from a specific database type,
then you can build custom audit collection plug-in to retrieve audit data stored in the
audit trails.

A collection plug-in provides functionality similar to the prepackaged collection plug-
ins shipped with Oracle Audit Vault and Database Firewall, by retrieving audit data
stored in audit trails.

Oracle Audit Vault and Database Firewall allows developers and third-party vendors to
build custom collection plug-ins. These custom plug-ins are capable of collecting audit
data from a new target type.

Chapter 1
Types of Audit Collection Plug-Ins

1-2



You can write collection plug-ins that collect audit trails stored in database tables and XML
files, or that are accessible in any other way.

You can support targets, such as relational databases, operating systems, mid-tier systems,
or enterprise applications.

To obtain more individualized audit data, you can create custom collection plug-ins, and
deploy them into existing Oracle Audit Vault and Database Firewall installations.

Related Topics

• Overview of Oracle Audit Vault and Database Firewall
Learn about Oracle Audit Vault and Database Firewall components, and what each
component does.

1.3.2 About Oracle AVDF Plug-In Types
You can create two types of collection plug-ins for Oracle AVDF. The actual type that you
need to create depends on the properties of the audit trail that you want to collect.

To describe the audit data being collected, you create an XML file, called a mapper file, for
the collection plug-in to use. Oracle Audit Vault Server uses this file to access and interpret
the audit records being collected. You do not need to write code for this type of plug-in.

There is also a Java-based type of collection plug-in, which uses a Java API. You can design
your own Java-based collection plug-in, or you can use one that is prepackaged with Oracle
Audit Vault and Database Firewall.

1.3.3 Determining Which Audit Collection Plug-in Type to Create
The audit collection plug-in that you use depends on the type of audit trail that you are
collecting for Oracle Audit Vault and Database Firewall.

You can easily define a mapper file (template) and a collection plug-in if the audit trails you
wish to collect are stored in either of the following:

• Database Tables: Stored in database tables that conform to specific constraints

• XML/JSON/CSV Files: Stored in XML/JSON/CSV files based on the Oracle AVDF XML
Audit File format

• REST: REST data source that generates data in JSON format.

Related Topics

• Database Table Collection Plug-in Example
See examples of Oracle Audit Vault database table collection plug-in mapper files and
database table plug-in manifest files.

• XML File Collection Plug-in Examples
Learn about the plug-in mapper file and plug-in manifest file attributes and fields for
Oracle Audit Vault and Database Firewall.

1.3.4 Java-Based Collection Plug-ins
When the audit trail you need to collect is not in a format that a Collection plug-in can easily
read, you write Java-based collection plug-ins in Java code.

Chapter 1
Types of Audit Collection Plug-Ins

1-3



Using the Java API provided, you can write code to collect these more complex audit
trails and send them to the Audit Vault Server repository.

1.4 Audit Vault Server Events and their Attributes
Oracle AVDF monitors the stream of events that occur in target systems.

1.4.1 About Audit Vault Server Events and Attributes
Learn about Audit Vault Server events, fields, and audit records.

Monitoring the activity, the stream of events, that occur in a target system is the
essence of Oracle Audit Vault and Database Firewall. These events are described by
fields. A collection of fields describing a single event that occurred on the target
system is an audit record.

The following applies for Oracle Audit Vault and Database Firewall:

• Each target logs events as audit events that occur on that target. Audit records
capture information about audit events.

• Audit records typically have a target type event name that describes what
happened to what type of object. They also contain the target of the action that
happened. In addition, they must contain a time when the action occurred, the
subject, or actor, who caused the action to happen, and may also contain
additional data.

Audit Vault Server organizes the fields of an audit record into these groups: core
fields, extension fields, large fields, and marker fields.

1.4.2 Understanding Core Fields
Learn what core fields are, and what their purpose is with Oracle Audit Vault and
Database Firewall actions.

Core fields are the fundamental fields that describe an event, and most audit records
contain some or all of these fields. However, not all core fields are required in every
audit record.

Starting with Oracle Audit Vault and Database Firewall release 12.1.1, the core fields
which describe the actions occurred are:

• CommandClass field: The action that caused the audit record to be generated.

• UserName and OsUserName fields: The subject or user who performed the action.

• EventTime field: When, what time, the action occurred.

• ClientHostName, ClientIp, and other related fields: Where, what location, of the
action.

• TargetType, TargetOwner, and TargetObject fields: The object type, object owner,
or target of the action.

Chapter 1
Audit Vault Server Events and their Attributes

1-4



See Also:

Core Fields for a complete list of core fields.

1.4.3 CommandClass and Target Types
Learn about the core fields CommandClass and TargetType in Oracle Audit Vault and
Database Firewall.

The CommandClass and TargetType fields have well-known values, which cover a set of
general-purpose events that occur in targets belonging to various domains, such as
databases or operating systems.

Some examples of the CommandClass values are Logon, Select, Update, and Shutdown.

Related Topics

• Audit Vault Server Fields
You can map Oracle Audit Vault and Database Firewall events and fields in your
collection plug-ins.

• Actions and Target Types
When you build collection plug-ins, you can use the target types and actions that Oracle
Audit Vault can detect.

1.4.4 Other Oracle Audit Vault Fields
In addition to core fields, Oracle Audit Vault Server can interpret Large Fields, Marker fields,
and Extension Fields

1.4.4.1 About Large Fields
In Oracle Audit Vault and Database Firewall, large fields are fields that contain arbitrarily
large amount of data.

Large fields are fields that contain arbitrarily large amount of data.

Related Topics

• Large Fields
In Oracle Audit Vault, Large fields are fields that can contain arbitrarily large amounts of
data.

1.4.4.2 About Extension Field
In Oracle Audit Vault and Database Firewall, Extension fields provide a way to make target
fields that do not have a semantically equivalent Oracle Audit Vault field, and do not map to
Core or Large fields.

As a developer, you can determine the format used to store extension fields.

Chapter 1
Audit Vault Server Events and their Attributes

1-5



Related Topics

• Extension Field
Extension fields store fields that cannot be accommodated in core or large fields,
as name-value pairs, separated by delimiter, inside a single Audit Vault field.

1.4.4.3 About Marker Fields
In Oracle Audit Vault and Database Firewall, Marker fields provide unique identifiers
of a record in an audit trail.

A marker field is constructed out of one or more fields in an audit record.

Related Topics

• Marker Field
In Oracle Audit Vault, marker fields are fields that uniquely identify a record in a
trail.

1.4.5 Storing Audit Records in Audit Vault
When you develop plug-ins for Oracle Audit Vault and Database Firewall, Oracle
recommends that you follow Oracle guidelines for storing audit records.

As a plug-in developer, you must map the various events that occur within targets, and
their fields, to the various fields allowed by Oracle Audit Vault. If a field in the audit
record maps to one of the named fields (core, large, or marker fields) in Audit Vault,
then you should map it as such.If a field in the audit record does not map to one of the
named fields, then you can map it to an extension field of your choosing.

For the Action and TargetType Oracle Audit Vault Server fields, see the list of field
values. If your audit record maps to one of these values semantically, then Oracle
strongly encourages you to use that value. However, you are free to use other values
than the Oracle Audit Vault Server fields.

Oracle strongly encourages you to follow these basic guidelines when you store
values in Oracle Audit Vault:

• Do not store IDs that reference objects in the target database. Oracle Audit Vault
does not have access to these objects. Consequently, values that refer to objects
in the target database are meaningless. Instead, store literal names of objects, so
that they can be understood by the auditors.

• Follow defined Audit Vault conventions. For example, all the ACTION fields and
TARGET TYPE fields in Oracle Audit Vault have uppercase values. |Oracle
recommends that you follow this convention, unless this convention is not
applicable to your target type, and would cause the data stored in Oracle Audit
Vault to be interpreted incorrectly.

• Map to the values if possible. For example, if TABLE exists in the list as a
TargetType, do not add an audit record with the TargetType of DATABASE TABLE.

Finally, if you think a field in the audit record of a target merits becoming a core field,
then Oracle recommends that you contact Oracle, so that this field can be reviewed
and added to the model appropriately.

Chapter 1
Audit Vault Server Events and their Attributes

1-6



Related Topics

• Actions and Target Types
When you build collection plug-ins, you can use the target types and actions that Oracle
Audit Vault can detect.

1.5 The Collection Process
Learn how the Oracle Audit Vault collection process works.

1.5.1 Flow of Collection: User
When you develop a collection plug-in for Oracle Audit Vault and Database Firewall, your
process of development and deployment has a consistent flow.

Collection plug-ins proceed through this lifecycle:

Flow of Development

1. You, the developer, create a collection plug-in and provide it to the user.

2. Your user deploys the plug-in into the Oracle Audit Vault Server. The act of deploying a
plug-in into the server creates a new version of the Oracle Audit Vault Agent. This new
agent contains collector code from the collection plug-in.

3. Your user then deploys the new Agent onto the host where it needs to run.

From then on, the user can start collecting audit trails supported by the collector code.

4. Your User starts collecting audit trails supported by the collector code.

Flow of Collection

After the user starts collection, the flow of collection proceeds as shown in this diagram.

Figure 1-1    Flow of Collection for Oracle Audit Vault Collection Agents

Source

Start
Collection

1

. . .

Start

Collection
Framework

Collector
Thread

Agent

Collector

Collection
Framework

Collector
Thread

Collector

Audit
Trails

Collect 
Trail

Send Audit Records4

3

Agent Thread
· Agent Framework
· Collection Framework

2

AV
Server

Management
Commands

5

Chapter 1
The Collection Process

1-7



1.5.2 Flow of Control Inside the Audit Collection Plug-in
After you develop a collection plug-in for Oracle Audit Vault and Database Firewall, the
collection plug-in follow this flow as it collects audit trails.

A collection plug-in accesses an audit trail, and extracts an audit record and its related
fields from the audit trail. Next, it maps the audit record to an Oracle Audit Vault event,
and all the fields to Oracle Audit Vault fields. The collection plug-in then passes the
Oracle Audit Vault event and fields to the Audit Vault Agent, which sends the
information to the Oracle Audit Vault Server.

Flow of Collection

1. The Oracle Audit Vault Server commands the Agent Framework to create a thread
to collect a specific audit trail.

2. The new thread created by the agent collects a specific audit trail, and then turns
over control of the thread to the Collection Framework.

3. Within the thread, the Collection Framework connects to the Oracle Audit Vault
Server, and queries for configuration information for the audit trail being collected.
Additionally, it requests information for the last checkpoint set for that trail. The
checkpoint is stored in the Oracle Audit Vault Server in a checkpoint table.

4. With the information it now has, the Collection Framework refers to the plug-in
manifest file for the correct Java class to start within the correct collection plug-in.
It passes the configuration information to this class, and submits a request to
initialize itself.

5. After the the collector has initialized itself, the Collection Framework loops
repeatedly. Within each loop, the Collection Framework does the following:

• Asks the collector for any additional audit records in the audit trail.

The collector transforms (by mapping) any further audit records into the form
of audit records as specified in the mapper file, and hands them to the
Collection Framework through the Collection API.

• The Agent sends the checkpoint information and other metric data received
from the collection plug-in to the Audit Vault Server. The Audit Vault Server
stores this information in a checkpoint table.

6. If the Audit Vault Server sends commands to the Collection Framework, such as a
shutdown command, the Collection Framework passes them to the collector to act
on. If the Collection Framework receives a STOP command from the Oracle Audit
Vault Server, it notifies the collector to stop sending records. It then exits the
collection thread, and shuts itself down.

1.5.3 Collection Concepts
To use Oracle Audit Vault, review basic Oracle Audit Valut basic concepts.

1.5.3.1 Collection Thread
Learn about how Oracle Audit Vault collection threads are run.

The Agent starts collection threads. Within each thread, the Audit Vault Collection
Framework executes code provided by the collection plug-in. The collection

Chapter 1
The Collection Process

1-8



Framework is the run time infrastructure that exposes the collection API with which the
collection plug-in interfaces. The collection plug-in also uses utility APIs if required.

1.5.3.2 Collection Phase
The collection phase is the phase in which Audit Vault collects audit trail records.

During the collection phase, the collection plug-in accesses the audit trail to extract new
records. The exact mechanism of how audit trails are accessed depends on the audit trail.
After a target audit record is retrieved from the trail, the collection plug-in transforms (maps) it
into an audit record that can be sent to the Audit Vault Server.

The collection plug-in must also acquire information about the character set of the target
records, the encoding used, and issues related to the time stamps. This is done to make
these things coordinate with Audit Vault Server requirements.

Related Topics

• Mapping
The mappings required from targets to Audit Vault Server depends on the fields in the
target records.

1.5.3.3 Mapping
The mappings required from targets to Audit Vault Server depends on the fields in the target
records.

These types of mapping are required for the Audit Vault Server:

• Event Mapping: Maps a target specific event to an Audit Vault Server event.

• Field Mapping: Maps the various field of the target records to Audit Vault Server fields.

• Value Mapping: Maps various field values collected into a set of normalized values for
each field (for example, 0 and 1 may be mapped to FALSE and TRUE for a specific field).

• Complex Mapping: Complex mappings are used when there are no simple mappings
from one target field to an Audit Vault Server field, or one target audit event to one Audit
Vault Server event.

Complex mappings can require additional data from the target, or require additional
programming code in the collection plug-in.

See Also:

Configuring Quick JSON Target Type to Collect Audit Data from MongoDB

1.5.3.4 Checkpoint of a Trail
A Checkpoint, or a checkpoint of a trail, is the point up to which audit records were
committed to the Oracle Audit Vault Server.

The collection plug-in sets a checkpoint periodically so that it can resume from the last
checkpoint when restarted.

Chapter 1
The Collection Process

1-9



1.5.3.5 Recovery Phase Of Data Collection
Learn how Oracle AVDF manages recovery of audit records through checkpoints and
recovery mechanisms.

Recovery happens when the Agent stops in the middle of collection and has to be
restarted. At this point, the recovery process ensures there are no duplicate records in
the Audit Vault Server.

Audit Vault Server ensures that every audit record is archived once and only once. For
this purpose, Audit Vault Server implements a checkpoint and recovery mechanism.

In the recovery phase of data collection, a collection plug-in has stopped and
restarted, resuming collection. The collection plug-in resumes collection from the
checkpoint at which it previously stopped

If the collection plug-in has not collected any records from the audit trail, then the
checkpoint occurs before the first record. If the collection plug-in has started collecting
records and then stopped, then the checkpoint occurs immediately after the last record
that it collected.

Resuming collection immediately after the checkpoint ensures that the collection plug-
in does not miss any records. To avoid collecting duplicate records during recovery, the
collection plug-in checks the Marker field of each record.

The collection plug-in should not collect and pass on to the agent any records that
occurred before the last checkpoint. However, the Agent automatically filters out
records committed after the last checkpoint, and recollected when the collection plug-
in restarts. Collection plug-ins built using Oracle Audit Vault and Database Firewall
SDK write the EventTimeUTC field into a file with the extension .atc. A script can
subsequently read this file, and delete audit records as appropriate.

Related Topics

• Audit Collection Plug-ins
Learn about Audit Collection Plug-ins, and how to create them for Oracle Audit
Vault.

1.5.3.6 Audit Trail Clean Up
Audit Vault Server collection plug-ins can clean up archived audit trail data for targets.

Audit trail clean up is a feature that some targets provide to clean up audit records
after they have been archived. If this type of feature exists in the target, an Audit Vault
Server collection plug-in can integrate with it, to tell the target to what extent the audit
trail has been archived. Identifying which portion of the audit trail is archived enables
the target to clean up the audit trail (remove the original audit data) to that point,
because cleaning up data that has been archived results in no loss of data. The
collection plug-in gives the clean up utility information about the checkpoint, the point
up to which data has been collected.

The collection plug-in can notify the clean-up feature of the target system by invoking
the appropriate interface of the feature. For instance, the system may read a
timestamp from a file in the file system and clean up the audit trail up to that
timestamp. If that is the case, the plug-in can write that file periodically.

Chapter 1
The Collection Process

1-10



For example, Oracle Database targets provides this type of utility in the DMBS_AUDIT_MGMT
package, and the Oracle Database prepackaged collection plug-ins integrate with it.

1.6 General Procedure for Writing Audit Collection Plug-ins
To ensure that you develop audit collection plug-ins correctly, follow this procedure.

The general procedure for writing collection plug-ins is:

1. Know what capability you want to add to Oracle Audit Vault and Database Firewall, a new
target type or a new audit trail for an existing target type.

2. Check if Oracle provides a plug-in that does what you want. If so, then use it.

Continue only if the plug-in you need does not exist.

Note:

Do not create version-dependent target types. Version-dependent target types
are different target types written to use for different versions of the same
software. If you create version-dependent target types, then Oracle Audit Vault
and Database Firewall is unable to collect from the target after it is upgraded to
a different version.

For example, suppose that you create the version-dependent target types SQL
Server 2000 and SQL Server 2005 and a collection plug-in that collects the
audit trail from a SQL Server 2000 target. If you upgrade that target to SQL
Server 2005, then Oracle Audit Vault agent cannot collect its audit trail.

3. Understand the events that your target type writes and their fields.

Use appropriate existing events and fields when you write your plug-in (for examples of
existing events and fields. If the events or fields you need are not available, you can use
extension fields. Oracle, from time to time, evaluates the set of fields that Audit Vault
supports, and may add new fields if they apply to a broad set of target types. If you
believe your fields satisfy this criterion, please contact Oracle Support.

4. Decide which type of collection plug-in to write.

5. Set up the development environment.

6. Learn more about the type of plug-in you are creating.

Refer to "Java-Based Audit Trail Collection Plug-ins" for information about Java-based
plug-ins

7. Determine the following for your collection plug-in:

• How to connect to the target.

• How to interrogate the target to learn what you must know.

• Which platforms your plug-in will support.

8. Decide whether your plug-in will support audit trail cleanup.

9. Set up the collection plug-in parameters.

For Java-based plug-ins, write the relevant code.

10. Create a plug-in manifest file to describe the collection plug-in.

Chapter 1
General Procedure for Writing Audit Collection Plug-ins

1-11



11. Run the avpack utility to package the plug-in.

12. Test the plug-in the staging environment.

13. If the plug-in works, then make it available to the Oracle Audit Vault administrator
to deploy in the development environment, using the command-line commands.

See Also:

• Oracle Audit Vault and Database Firewall Administrator's Guide to
see the existing plug-ins offered.

• About Extension Field

• Types of Audit Collection Plug-Ins

• Audit Vault Server Fields

• Setting Up Your Development Environment

• Audit Collection Plug-ins

• Audit Trail Clean Up

• Packaging Audit Collection Plug-ins

• Packaging Audit Collection Plug-ins

• Testing Audit Collection Plug-ins

• Oracle Audit Vault and Database Firewall Administrator's Guide for
information on command-line commands.

Related Topics

• Java-Based Audit Trail Collection Plug-ins
Oracle Audit Vault and Database Firewall provides a set of Java-based audit trial
collection plug-in, which enable you to create custom plug-ins.

Chapter 1
General Procedure for Writing Audit Collection Plug-ins

1-12



2
Setting Up Your Development Environment

Learn about the process of setting up the Oracle Audit Vault Server development
environment.

2.1 Before Setting Up the Development Environment
To develop audit collection plug-ins, you must first set up the development environment. This
set up provides a consistent environment for developing and testing the collection plug-ins.

Before you set up a developer environment, you must complete the following tasks:

• Obtain and install Oracle AVDF 20: You must have this version so that you can test the
collection plug-in execution and determine whether it captures the correct audit records
from the target, and makes them available in the server. Also, doing early end-to-end
integration tests helps to eliminate any connectivity problems, and other bugs in your
code.

• Decide the type of collection plug-in to use.

Related Topics

• Determining Which Audit Collection Plug-in Type to Create
The audit collection plug-in that you use depends on the type of audit trail that you are
collecting for Oracle Audit Vault and Database Firewall.

See Also:

Oracle Audit Vault and Database Firewall Installation Guide for more information on
installation of Oracle Audit Vault and Database Firewall.

2.2 Setting Up the Development Environment
To set up your development environment, you must first download the Oracle Audit Vault and
Database Firewall SDK, and then set up the operating system environment.

To set up your environment for developing collection plug-ins you must follow these steps to
download the SDK, and then configure the operating system folders, environment variables,
and paths.

To download the SDK, do the following:

1. Log in to the Audit Vault Server console as an administrator.

2. Click the Settings tab.

3. Click the System tab in the left navigation menu.

4. Click the Plug-ins link under the Monitoring section on the main page.

2-1



5. In the Plug-ins dialog, click Download SDK.

6. Unzip the SDK into an empty directory.

1. Set the AV_SDK_HOME variable to the directory to which you extracted the SDK.

For example:

$ export AV_SDK_HOME=/home/username/avsdk
2. Set the PATH environment variable to bin directory of the Audit Vault Server.

For example:

$ export PATH=$AV_SDK_HOME/bin:$PATH
This setting enables you to use existing scripts during the development cycle.

3. Set the CLASSPATH environment variable to include the $AV_AGENT_HOME/av/
jlib/agentre.jar for your collection plug-in project.

For example:

$ export CLASSPATH=$AV_SDK_HOME/av/jlib/av.jar:$AV_SDK_HOME/av/
jlib/av-common.jar:$AV_AGENT_HOME/av/jlib/agentre.jar

4. Create directories as necessary.

5. If you are using Java, ensure that the environment is set to point to the appropriate
JDK (PATH and JAVA_HOME variables).

Compile your classes with JDK by setting the -target option of the javac compiler
to the same version. Refer to the JDK documentation for details.

Related Topics

• Audit Collection Plug-in Directory Structure
Learn about the Oracle Audit Vault collection plug-in directory structure, the
development environment, and how to stage plug-in manifest.xml files.

2.3 Audit Collection Plug-in Directory Structure
Learn about the Oracle Audit Vault collection plug-in directory structure, the
development environment, and how to stage plug-in manifest.xml files.

2.3.1 General Directory Structure
To create your own collection plug-ins, review the general directory structure for Oracle
Audit Vault collections.

The following figure shows a general directory structure.

Example 2-1    General Directory Structure

STAGE_DIR_ROOT
plugin-manifest.xml
      templates
          mapper.xml
       jars
          mycoll.jar
          myjdbc-lib.jar

Chapter 2
Audit Collection Plug-in Directory Structure

2-2



       config
          mycoll.properties
       bin
          mycoll.exe
       patches
          p3653288_GENERIC.zip

Explanation of General Directory Structure Components

In the example of a general directory structure, the STAGE_DIR_ROOT directory is the root
directory where you stage your collection plug-in files. Place the plugin-manifest.xml
directly in this directory. Under the STAGE_DIR_ROOT directory, create the following directories:

• jars: Holds all the binaries generated through the Java build process.

Place your collector binaries for a Java-based plug-in in the jars directory. You should
package the various collector Java classes into a jar file for easier access on the file
system. For collection plug-ins, you do not need to package the Collector.jar in to this
directory because it is part of the core agent and is automatically available for all
collectors that are managed by an agent.

• config: Holds any configuration files that the collection plug-in requires to function.
These configuration files can be resource bundles, property files, and so on.

• bin: Holds any native non-Java binary executables. For example, if your collector code
invokes any native non-Java binaries, place them in the bin directory.

Because the agent is supported on multiple platforms, you should build the non-Java
binaries on all platforms that the agent supports. In addition, the collector process locates
and loads the appropriate binary based on the execution platform, so use a similar
naming convention.

• patches: Holds any OPatch patches for target-specified event attributes that the collector
needs to function. If your collector adds new event attributes that are needed during run-
time, then contact Oracle Support. Oracle Support will provide you with a patch that adds
these events into the Audit Vault Server repository. This approval process is necessary to
avoid collisions with other event attribute names across multiple plug-ins. After you have
obtained these patches, place them in the patches directory. Then they will automatically
be applied to the server during collection plug-in deployment.

• templates: This directory contains the mapper file which has the field mapping from
source field to Oracle AVDF field.

Related Topics

• Description of Plug-in Manifest File
The plugin-manifest.xml file is a core XML file that describes the collection plug-in.

2.3.2 Audit Collection Plug-In Directory Structure
Learn about the structure of a stage directory for a collection plug-in for Oracle Audit Vault
and Database Firewall.

For a collection plug-in, place all mapper files in the templates directory, as shown in this
example. This placement directs the collection plug-in to load the relevant template file based
on the information that the file contains.

Chapter 2
Audit Collection Plug-in Directory Structure

2-3



Example 2-2    Directory Structure For Collection Plug-In

STAGE_DIR_ROOT
plugin-manifest.xml
       templates
          mycoll-template.xml
       config
          mycoll.properties
       patches
          p3653288_GENERIC.zip

Related Topics

• Description of Plug-in Manifest File
The plugin-manifest.xml file is a core XML file that describes the collection plug-
in.

2.3.3 Java-Based Collection Plug-in Directory Structure
The structure of Java-based Collection plug-ins for Oracle Audit Vault and Database
Firewall is very similar to the general directory structure.

The following example shows the structure of a stage directory for Java-based
Collection plug-ins.

Example 2-3    Directory Structure for Java-Based Collection Plug-in

STAGE_DIR_ROOT
plugin-manifest.xml
       jars
          mycoll.jar
          myjdbc-lib.jar
       config
          mycoll.properties
       bin
          mycoll.exe 
       patches
          p3653288_GENERIC.zip

2.3.4 Staging a plugin-manifest.xml File
You must stage the plugin-manifest.xml file directly under the STAGE_DIR_ROOT
directory.

The plugin-manifest.xml file for Oracle Audit Vault and Database Firewall is a core
XML file that describes the collection plug-in, and defines its attributes. The location
where you place the plugin-manifest.xml file depends on which operating system your
server is running.

Locations for Staging a plugin-manifest.xml File

• On UNIX systems: If your stage directory is /opt/final-plugin-stage/, then
stage the plugin-manifest.xml file at /opt/final-plugin-stage/plugin-
manifest.xml.

Chapter 2
Audit Collection Plug-in Directory Structure

2-4



• On Microsoft Windows systems: If your stage directory is c:\myplugin\final-stage-
dir, then stage the plugin-manifest.xml file at c:\myplugin\final-stage-dir\plugin-
manifest.xml.

See Also:

• Description of Plug-in Manifest File for description and lists of attributes.

• Example Code for a complete sample file.

• Sample Schema for a plugin-manifest.xml file

2.3.5 About Mapper Files
Mapper files are XML files that mainly contain information about which target fields you must
collect from the audit trail, and how these target fields map to Oracle Audit Vault Server fields.

Mapper files are specific to a target type, and contains target information, such as
securedTargetType, securedTargetVersion, and so on.

Mapper files cover these details:

• The supported target name and target version.

• Mapping information from target fields to Audit Vault Server fields.

• Target fields for constructing markers, which uniquely identify each audit record.

• Audit table and datasource class names, where the audit trail type is database table.

• Event time timestamp format, where the audit trail type is XML file.

Package the mapper files as part of the collection plug-in. Place mapper files in the
templates folder during the plug-in packaging process.

Related Topics

• Database Table Collection Plug-ins
To use Oracle Audit Vault to collect audit data from the table type of trail, you can use
database table collection plug-ins

• XML File Collection Plug-ins
Learn how to use Oracle AVDF XML file collection plug-ins to collect audit data from an
XML file type of trail.

• Audit Collection Plug-In Directory Structure
Learn about the structure of a stage directory for a collection plug-in for Oracle Audit
Vault and Database Firewall.

2.3.6 Description of Plug-in Manifest File
The plugin-manifest.xml file is a core XML file that describes the collection plug-in.

The plugin-manifest.xml defines the following elements and attributes:

• The plugin element represents the plug-in object with these attributes:

– Name: A descriptive name for the collection plug-in.

Chapter 2
Audit Collection Plug-in Directory Structure

2-5



– version: The version should be updated along with each update to the
collection plug-in, and should monotonically increase based on some ordering
scheme. For instance, AVDF uses a versioning scheme comprising of five
digits, delimited by periods: majr.minr.minr.patch.hotfix.

– provider: The name of the provider. Typically, this name is the company or
organization.

– copyright: Any copyright notices for the collection plug-in.

• TargetVersion: Oracle Audit Vault and Database Firewall Version with which the
collection plug-in is compatible. The min attribute represents the minimum version
of the target.

• extensionSet: A set of extensionPoints.

• ExtensionPoint: Each extensionPoint uniquely identifies the area of Oracle
Audit Vault and Database Firewall (Oracle AVDF) that is being extended by the
collection plug-in. Currently, Oracle AVDF supports one Extension Point,
securedTargetType, as indicated by the type attribute.

– fileList: A list of all the files that ship with the collection plug-in.

* jars: A directory that contains Java files ending with the extension .jar, in
the element file.

* templates: A directory that contains the mapper files for a collection plug-
in, in the element file.

* bin: A directory that contains executable files, typically those that end
with .exe, in the element file.

* config: A directory that contains plug-in specific configuration files, in the
element file.

* shell: A directory that contains shell or batch command files, in the
element file.

* patch: A directory that contains event patches for the collection plug-in, in
the element file.

* unresolved-external: A directory that contains files that cannot be
packaged with the collection plug-in for some reason, but are needed at
run-time. Packaging succeeds but the plug-in deployment will fail until
these files are made available in the $OH/av/dropins folder of Oracle
Audit Vault Server. These files are in the element file.

– securedTargetTypeInfo: This is a mandatory field that indicates the source
type that this collection plug-in supports. Specify the source type by filling in
the name attribute of this element.

– trailInfo: A mandatory field that indicates the type of audit trails, on this source
type, that the collection plug-in supports.

* trailType: A mandatory field that indicates the type of trail described by
this entry. Oracle Audit Vault and Database Firewall 12.1.1 supports these
trail types: TABLE, DIRECTORY, TRANSACTIONLOG, SYSLOG, and EVENTLOG.

trailType can also be any arbitrary string. In that case, it is treated as a
custom trail type.

Chapter 2
Audit Collection Plug-in Directory Structure

2-6



* trailLocation: Specifies the location of the trail; this is applicable only for TABLE
and CUSTOM type trails only. This field must not be set for other trail types. If set
for other types, then it is ignored.

* className: Specifies the Java class that handles the task of retrieving the audit
data from this trail. Use the following:

-
oracle.av.platform.agent.collfwk.ezcollector.table.DatabaseTableColle
ctor for database table collection plug-ins.

-oracle.av.platform.agent.collfwk.ezcollector.xml.XMLFileCollector for
XML file collection plug-ins.

oracle.av.platform.agent.collfwk.ezcollector.json.MultiJSONFileCollec
torFactory for JSON file collection plug-ins which reads from JSON files having
one fully formed JSON per line.

oracle.av.platform.agent.collfwk.ezcollector.json.JSONFileCollectorFa
ctory for JSON file collection plug-ins which reads from JSON files having only
one fully formed JSON per file, and this single JSON contains an array of JSON
records.

To handle audit trails of different source versions of the same source type, you
can optionally set the srcVersion attribute.

– eventPatch: This is an optional field containing any event patches that must be
applied as part of the collection plug-in deployment. These patches are in the
eventPatch element with the name attribute as the file name and an order attribute
that indicates the order to apply the patches.

Events attributes to be added are extended through patches generated by Oracle
Audit Vault and Database Firewall Development. Partner developers can request
specific events and attributes or both, to be added to the Oracle Audit Vault Event
dictionary. If the core development team determines that a request is justified, it may
issue a patch. You can bundle these patches with the collection plug-in for application
during plug-in deployment.

See Also:

• Database Table Collection Plug-in Manifest File

• XML File Collection Plug-In Manifest File

• Java Based Collection Plug-in Manifest File

• External Dependencies

Chapter 2
Audit Collection Plug-in Directory Structure

2-7



3
Audit Collection Plug-ins

Learn about Audit Collection Plug-ins, and how to create them for Oracle Audit Vault.

3.1 About Audit Collection Plug-ins
Find out about the different types of collection plug-ins: What they do, how they collect audit
trails, and where to find out more about them.

Collection plug-ins can retrieve audit data stored in either database tables or XML file audit
trails, without the need for writing code.

Collection plug-ins are template-based generalized collectors. Users must provide a mapper
file to collect audit data from a trail.

These collection plug-ins are created by preparing an XML Mapper file that supplies the
mapping information for target fields to Audit Vault Server fields and other details for target
types and audit trails.

This process does not require any coding. Audit Vault contains all the code necessary to
interpret Mapper files and use them to collect the audit data from the audit trail appropriately.

Collection plug-ins support two types of audit trails:

• Database Table: database table collection plug-ins can collect audit data from an audit
table, using the information from the Mapper file.

• XML File: XML file collection plug-ins can collect audit data from XML audit files present
in a single directory, using the information from the Mapper file.

To use the collection plug-in for Database tables or XML file trails, you perform the following
steps:

1. Create an XML Mapper file for a target audit trail. This chapter discusses Mapper files in
general and focuses on their creation.

2. Create a plugin-manifest file for this target type.

3. Create the collection plug-in by packaging the mapper file and plugin-manifest file.

You can now deploy this collection plug-in at the Audit Vault Server and use it to collect audit
data after adding the target and any necessary collection attributes for this target.

3-1



See Also:

• Database Table Collection Plug-in Mapper File

• XML File Collection Plug-In Mapper File

• Target Collection Attributes

• Packaging Audit Collection Plug-ins

• Description of Plug-in Manifest File

• Creating a Database Table Mapper File

• Creating the XML File Audit Collection Mapper File

3.2 Database Table Collection Plug-ins
To use Oracle Audit Vault to collect audit data from the table type of trail, you can use
database table collection plug-ins

Database table collection plug-ins support the collection of audit data from the table
type of trail. They collect audit data from a single audit table. You can specify details of
the audit table in the mapper file. These mapper files must conform to the schema.

Related Topics

• Database Table Collection Plug-in Mapper File
See an example of an Oracle Audit Vault and Database Firewall database table
collection plug-in mapper file.

3.2.1 Requirements for Database Table Collection Plug-ins
To use database table collection plug-ins for reading audit trails from target database
tables, your data must meet Oracle Audit Vault and Database Firewall requirements.

You can use database table collection plug-ins for reading audit trails from target
database tables if your data meets the requirements for collection.

Data Requirements for Table Collection Plug-Ins to Oracle Audit Vault and
Database Firewall

• Audit data must be stored in a single database table.

• The target system has a user with privileges to read the audit data stored in this
table.

• The columns in the audit tables can be mapped to various Audit Vault core fields
and large fields.

Also single or multiple fields can be mapped to extension and marker fields. Fields
mapped to Audit Vault core fields, extension fields, and marker fields must be of
String data type or convertible to String. They cannot be of large data type, such
as a CLOB. Columns having CLOB data type should use large Audit Vault fields,
such as CommandText or CommandParam.

• The audit trail must contain fields which map to the CommandClass Audit Vault core
fields.

Chapter 3
Database Table Collection Plug-ins

3-2



The value of the CommandClass core field must not be null. If it is null, then the record is
treated as an invalid record, so you must provide the proper mapping.

• The audit file must have a field that can be mapped to the UserName core field. If a record
has its UserName field as null, then the record is treated as invalid.

• The collection plug-in can collect the text of any command issued, as well as any
parameters passed to the command, in large fields. No other fields can be mapped to
large fields in Audit Vault and Database Firewall.

• The audit trail must contain a single column or group of columns that uniquely identify
each audit record.

• The audit trail must contain a field of type Timestamp that is monotonically increasing, that
is, the value of the field increases with every new audit record inserted into the trail. This
field must mapped to the EventTimeUTC core field in the mapper file. If, for any audit
record, this field value becomes null, the collector treats this as an abnormal condition
and shuts down.

Related Topics

• Schemas
Oracle AVDF uses these schemas for plug-in manifest files and collection plug-ins.

3.2.2 Example Audit Trail for a Database Table Collection Plug-in
This example audit trail shows the details of audit trail. This example file is used in other
locations to demonstrate the creation and structure of a sample mapper file for Oracle Audit
Vault and Database Firewall.

The following table lists the structure for the hypothetical target type, DBSOURCE, that
generates and stores audit data in a table AUD:

Table 3-1    AUD Audit Table Data Fields and Mappings

Target Field Data Type Audit Vault Server Field Map to Field
Type

USER_ID varchar UserName core field

OS_USER_ID varchar OSUserName core field

ACTION int CommandClass core field

STATUS int EventStatus core field

EVENT_TIME timestamp EventTimeUTC core field

OBJ_NAME varchar TargetObject core field

OBJ_CREATOR varchar TargetOwner core field

USER_HOST varchar ClientHostName core field

SQL_TEXT clob CommandText core field

SQL_BIND clob CommandParam core field

TERMINAL varchar TerminalName extension field

DB_ID varchar extension field extension field

INSTANCE varchar extension field extension field

PROCESS int extension field extension field

Chapter 3
Database Table Collection Plug-ins

3-3



Table 3-1    (Cont.) AUD Audit Table Data Fields and Mappings

Target Field Data Type Audit Vault Server Field Map to Field
Type

SESSION_ID int marker field marker field

ENTRY_ID int marker field marker field

Not all of the target fields map to core fields. The target fields that do not map to core
fields map to extension fields, or to designated marker fields, which test the
uniqueness of an audit record.

3.2.3 Creating a Database Table Mapper File
Learn how to create an Oracle Audit Vault XML mapper file for a database table
collection plug-in, and learn about each XML element and attribute used in this type of
mapper file.

See Also:

• Database Table Collection Plug-in Mapper File for the complete
example.

• Example Audit Trail for a Database Table Collection Plug-in

• Oracle Audit Vault and Database Firewall Fields for descriptions of all
fields.

• Target Collection Attributes to make sure that the mandatory collection
attributes are set up for the target.

Example of Creating a Mapper File for Database Table Collection Plug-ins

• Top Level Element

<AVTableCollectorTemplate securedTargetType="DBSOURCE" 
minSecuredTargetVersion="10.2.0"
           maxSecuredTargetVersion="11.0" version="1.0" > 

The AVTableCollectorTemplate is the top level element, which marks the start of
the mapper file. It has these mandatory attributes: securedTargetType,
maxSecuredTargetVersion, and version. The minSecuredTargetVersion attribute
is optional.

The accepted format for the minSecuredTargetVersion,
maxSecuredTargetVersion, and version attributes uses numbers, separated by
dots, such as 12.2, 10.3.2, 11.2.3.0.

• Table Name Information

<TableName>AUD</TableName>  

Chapter 3
Database Table Collection Plug-ins

3-4



You must provide the TableName of the audit table. This is a mandatory field.

The TableName field in this file must match the trail location in the Add Audit Trail
screen.

Note:

The collector checks if the trail location matches the TableName specified in the
mapper file and does not start if they do not match.

The collector chooses the appropriate mapper file in the templates folder by
validating the target collection attribute av.collector.securedtargetversion
version and if it is within the range specified in the top level element
minSecuredTargetVersion and maxSecuredTargetVersion attributes.

For example, if the target collection attribute
av.collector.securedtargetversion = 11.1.0.0, then the collector picks a
mapper file that has a top level element in a range within the specified version:

<AVTableCollectorTemplate securedTargetType="Oracle Database" 
minSecuredTargetVersion="10.2.0" maxSecuredTargetVersion="12.3" 
version="1.0">

This enables multiple versions of the same plug in (different mapper files inside
the templates folder) to address different target versions.

• Target Connection Information

<ConnectionInfo>

   <DataSource>platform.jdbc.dbsource.DBSourceDataSource</DataSource>
</ConnectionInfo>  

You must provide the full name for the datasource class implementing
javax.sql.DataSource interface. This is a mandatory field.

• Field Mapping Information

<FieldMappingInfo>  

FieldMappingInfo must provide mapping information from target fields to various Audit
Vault fields, along with the value transformations if any. This is a mandatory element.

Field mappings include <Map> elements, which contain <Name> elements that hold target
field names, and <MapTo> elements that hold Audit Value field names to which targets are
mapped.

There should be no many-to-one mappings from target fields to Audit Vault Server fields.
For example, the following is invalid:

<!-- Invalid code
<Map>
    <Name>USER_ID</Name>

Chapter 3
Database Table Collection Plug-ins

3-5



    <MapTo>UserName</MapTo>
</Map>     
<Map>
    <Name>OS_USER_ID</Name>
    <MapTo>UserName</MapTo>
</Map>  -->
      

About Mappings for Core, Large, Extension, and Marker Fields

• The following sections explain mappings for core, large, extension, and marker
fields:

– Core Fields

<CoreFields>

CoreFields provides mapping from target fields to core fields of Audit Vault
Server. The data type of target fields specified must belong to either a SQL
string data type or a data type that can convert to a String.

The following elements contain core fields.

<Map>
  <Name>EVENT_TIME</Name>
  <MapTo>EventTimeUTC</MapTo>
</Map>

EventTimeUTC provides event time mapping information. It is a mandatory
field.

EVENT_TIME target fields must be of the SQL data type Timestamp.

<Map>
  <Name>USER_ID</Name>
  <MapTo>UserName</MapTo>
</Map>   
  

UserName represents the user who performs the action. If the mapping is not
provided, Audit Data Collection still starts successfully, but every audit record
will be treated as invalid.

<Map>
  <Name>OS_USER_ID</Name>
  <MapTo>OSUserName</MapTo>
</Map>  
    

<Map>
  <Name>ACTION</Name>

Chapter 3
Database Table Collection Plug-ins

3-6



  <MapTo>CommandClass</MapTo>
</Map>  

CommandClass represents the action of the event. If the mapping is not provided,
Audit Data Collection still starts successfully, but all audit records are treated as
invalid.

<Transformation>
          <ValueTransformation from="1" to="CREATE"/>
          <ValueTransformation from="2" to="INSERT"/>
          <ValueTransformation from="3" to="SELECT"/>
          <ValueTransformation from="4" to="CREATE"/>
          <ValueTransformation from="15" to="READ"/>
          <ValueTransformation from="30" to="LOGON"/>
          <ValueTransformation from="34" to="LOGOFF"/>
          <ValueTransformation from="35" to="ACQUIRE"/>
        </Transformation>
      </Map>    
  

CommandClass contains a Transformation field with ValueTransformation values,
from targets to the Audit Vault CommandClass field. These transformations are
mandatory.

The to attributes are values for the CommandClass field. If you can meaningfully map
an event to one of these values, then Oracle recommends that you do so. If this is
not possible, then use a value that appropriately reflects the action that generated the
audit event.

<Map>
  <Name> OBJ_NAME</Name>
  <MapTo>TargetObject</MapTo>
</Map>

<Map>
   <Name>TERMINAL</Name>
   <MapTo>TerminalName</MapTo>
</Map> 

<Map>
  <Name>USER_HOST</Name>
  <MapTo>ClientHostName</MapTo>
</Map>

<Map>
  <Name>OBJ_CREATOR</Name>

Chapter 3
Database Table Collection Plug-ins

3-7



  <MapTo>TargetOwner</MapTo>
 </Map>

<Map>
  <Name>STATUS</Name>
  <MapTo>EventStatus</MapTo>
        <Transformation>          
          <ValueTransformation from="0" to="FAILURE"/>
          <ValueTransformation from="1" to="SUCCESS"/>
          <ValueTransformation from="2" to="UNKNOWN"/>
        </Transformation>
 </Map>

EventStatus contains a Transformation field with ValueTransformation
values, from targets to Audit Vault EventStatus fields. These transformations
are mandatory.

</CoreFields>   
 

– Large Fields Information

<LargeFields>     
  <Map>
    <Name>SQL_TEXT</Name>
    <MapTo>CommandText</MapTo>
 </Map>
<Map>
   <Name>COMMAND_PARAMETER</Name>
   <MapTo>CommandParam</MapTo>
 </Map>        
</LargeFields>

LargeFields are target fields mapped to large fields in the Audit Vault Server,
such as CommandText or CommandParam. The specified target fields must be of
SQL data type CLOB or String, or be convertible to String.

– Extension Field

<ExtensionField>      
   <Name>DB_ID</Name>
   <Name>INSTANCE</Name>
   <Name>PROCESS</Name>
</ExtensionField>  
  

The ExtensionField is a target field name that must be stored as a name-
value pair in the Extension field in Audit Vault Server. Target columns specified
here should have a String value or a value that can be converted to String
without loss of information.

Chapter 3
Database Table Collection Plug-ins

3-8



ComplexName

<ExtensionField>
    <ComplexName>
        <Name>column_name</Name>
        <RegExp>exp</RegExp>
    </ComplexName>
</ExtensionField>

ComplexName is a tag in the ExtensionField.
The column_name is an audit table column name which is a string. For example:
comment$text
exp is the regular expression from which we get a list of key value pairs from the text
after processing. It should contain 2 groups, out of which one is for key and the other
one for value. For example: ([^;]+):([^;]+)

– Marker Field

<MarkerField>       
  <Name>SESSION_ID</Name>  
  <Name>ENTRY_ID</Name>
</MarkerField>

The MarkerField contains a list of target field names that uniquely identify each audit
record. The target fields specified must be of SQL data type String or convertible to
String. MarkerField is mandatory.

– End Tags

The field tags must be properly closed in order for the file to be valid. The following
are examples of field end tags:

</FieldMappingInfo>

</AVTableCollectorTemplate>

See Also:

• Core Fields

• Actions and Target Types

• Large Fields

• Extension Field

• Marker Field

Chapter 3
Database Table Collection Plug-ins

3-9



3.3 XML File Collection Plug-ins
Learn how to use Oracle AVDF XML file collection plug-ins to collect audit data from
an XML file type of trail.

XML file collection plug-ins support collection of audit data from an XML file type of
trail. All these XML audit files must be present in single directory. You can specify
details of the XML audit data in the mapper file. This XML mapper file must conform to
the schema.

Related Topics

• Schema For XML File Collection Plug-in Mapper File
See how to set up a schema for an XML file collection plug-in mapper file for
Oracle Audit Vault and Database Firewall.

3.3.1 Requirements for XML File Collection Plug-ins
To use XML collection plug-ins for reading audit trails from XML files, your data must
meet Oracle Audit Vault and Database Firewall requirements.

You can use collection plug-ins for reading audit trails from XML audit record files if the
XML files meet the requirements for collection.

XML File Audit Record File Requirements for Oracle Audit Vault and Database
Firewall

• The audit trail must be stored in one or more XML files in a single directory path.

• The user must have read permission on the directory containing the XML audit
files.

• XML files in this directory must be valid, well-formed XML documents, within the
constraints of the XML 1.0 specification.

• The file and record start elements must be as specified in the mapper file.

• All the audit record elements should be at the same level in Audit XML files.

• All the audit record elements in Audit XML files must be the same.

• Under every audit record element, all the field elements must be at the same level
and one level below the audit record start element.

• The XML audit file must have an element value that can be mapped to the
CommandClass core field. If a record has its CommandClass field as null, then the
record is treated as invalid.

• The XML audit file must have an element value that can be mapped to the
UserName core field. If a record has its UserName field as null, then the record is
treated as invalid.

• In the XML file, each audit record must have a timestamp as one of its element
values.

The value of the timestamp element must be monotonically increasing, that is, the
value of the field increases with every new audit record inserted into the trail. The
timestamp value should be strictly Not Null. Timestamp format must be according
to SimpleDateFormat Java class.

Chapter 3
XML File Collection Plug-ins

3-10



This field must mapped to the EventTimeUTC core field in the mapper file. If mapping for
event time is not specified in the mapper file, then the collection plug-in shuts down. If the
field value for the event time in audit records is found null, then the collection plug-in
takes the time of the record last sent from the same XML audit file.

• The audit trail must contain a single element value or group of element values in the audit
record that uniquely identify each audit record in XML Audit files.

• Common information shared by all audit records in XML file should be present in the
beginning of the XML file, under the file start element, at the same level as the audit
record elements.

• If an audit data target produces audit files with multiple XML formats, then the user must
provide a separate mapper file for each audit file format having a different start element.

• XML files in this directory should be of the same locale and encoding as the agent, as
described in the examples below:

– Valid: The user has an agent in a Chinese locale (env). XML files are also generated
in a Chinese locale with same encoding (for example, ZHS16GBK). This setup is valid.

– Invalid: The user has an agent in a German locale (env). XML files are generated/
moved from some other computer, which are Chinese encoded. The collectors fail to
start because of an encoding mismatch, as well as a locale mismatch, in this case.
This setup is invalid.

3.3.2 Example Audit Trail for an XML File Collection Plug-in
This example audit trail for an xml file collection plug-in shows the details of an XML file
collection plug-in.

This example file is used in other locations to demonstrate the creation and structure of a
sample mapper file for the creation and structure of a sample mapper file for an XML file
collection plug-in in Oracle Audit Vault and Database Fireewall documentation.

The following table lists the audit record structure and mappings to Oracle Audit Vault Server
fields for the hypothetical target type, XMLSOURCE, which generates and stores audit data in
XML audit files.

Table 3-2    Audit Data Fields in XML Audit Records and Mappings

Target Field Audit Vault Server Field Map to Field Type

USER_ID UserName core field

OS_USER_ID OSUserName core field

ACTION CommandClass core field

STATUS EventStatus core field

EVENT_TIME EventTimeUTC core field

OBJ_NAME TargetObject core field

OBJ_CREATOR TargetOwner core field

USER_HOST ClientHostName core field

SQL_TEXT CommandText core field

SQL_BIND CommandParam core field

TERMINAL TerminalName extension field

Chapter 3
XML File Collection Plug-ins

3-11



Table 3-2    (Cont.) Audit Data Fields in XML Audit Records and Mappings

Target Field Audit Vault Server Field Map to Field Type

DB_ID extension field extension field

INSTANCE extension field extension field

PROCESS extension field extension field

SESSION_ID marker field marker field

ENTRY_ID marker field marker field

Example 3-1    Sample XML Audit Record

<?xml version="1.0" encoding="UTF-8"?>
<Audit>
    <AuditRecord>
        <Audit_type>1</Audit_type>
        <User_id>scott</User_id>
        <Os_user_id>usr1</Os_user_id>
        <Action>select</Action>
        <Status>0</Status>
        <Event_time>2010-11-11 12:23:59.166</Event_time>
        <Obj_name>emp</Obj_name>
        <Terminal>t1</Terminal>
        <Db_id>136</Db_id>
        <Session_id>170191</Session_id>
        <Entry_id>1</Entry_id>
    </AuditRecord>
    <AuditRecord>
        <Audit_type>3</Audit_type>
        <User_id>scott</User_id>
        <Os_user_id>usr1</Os_user_id>
        <Action>delete</Action>
        <Status>1</Status>
        <Event_time>2010-11-11 12:33:59.166</Event_time>
        <Obj_name>emp</Obj_name>
        <Terminal>t1</Terminal>
        <Db_id>136</Db_id>
        <Session_id>170191</Session_id>
        <Entry_id>2</Entry_id>
    </AuditRecord>
</Audit>

3.3.3 Creating the XML File Audit Collection Mapper File
To create an XML file collection plug-in mapper file, you must describe the collection
plug-in mappings in this mapper file in accordance with Oracle Audit Vault and
Database Firewall standards.

You must describe the collection plug-in mappings in this mapper file as follows:

Chapter 3
XML File Collection Plug-ins

3-12



Standards for Collection Plug-in Mappings in Mapper Files for Oracle Audit Vault and
Database Firewall

• Top-Level Element

<AVXMLCollectorTemplate securedTargetType="XMLSOURCE"
    maxSecuredTargetVersion="11.0" version="1.0">

The AVXMLCollectorTemplate is the top level element and has these mandatory
attributes: securedTargetType, maxSecuredTargetVersion, and version. The
minSecuredTargetVersion attribute is optional.

The accepted format for the minSecuredTargetVersion, maxSecuredTargetVersion, and
version attributes uses numbers, separated by dots, such as 12.2,10.3.2, 11.2.3.0.

• Header Information

<HeaderInfo>
  <StartTag>Audit</StartTag>
</HeaderInfo>  
  

HeaderInfo is mandatory. It contains one child element, StartTag, which names the top-
level element of the audit record file.

• Record Information

<RecordInfo>
  <StartTag>AuditRecord</StartTag>    
</RecordInfo>

RecordInfo provides the starting element of audit records in XML audit files. RecordInfo
is mandatory.

StartTag is the starting element of each audit record in XML audit files.

• Field Mapping Information

<FieldMappingInfo>  

FieldMappingInfo provides mapping information from target fields to various Audit Vault
fields, contained in these child elements, CoreFields, LargeFields, ExtensionField,
and MarkerField.

Field mappings include <Map> elements, which contain <Name> elements that hold target
field names, and <MapTo> elements that hold Audit Value field names that targets are
mapped to.

There should be no many-to-one mappings from target fields to Audit Vault Server fields.
For example, the following is invalid:

<!-- Invalid code
<Map>
    <Name>USER_ID</Name>

Chapter 3
XML File Collection Plug-ins

3-13



    <MapTo>UserName</MapTo>
</Map>     
<Map>
    <Name>OS_USER_ID</Name>
    <MapTo>UserName</MapTo>
</Map>  -->
      

– Core Fields

<CoreFields>

CoreFields provides mapping from target fields to core fields of Audit Vault
Server. Target fields specified in core field mappings must be of SQL data
type, either a string or a data type that can convert to string.

The following elements contain core fields.

<Map>
 <Name>EVENT_TIME</Name>
  <MapTo>EventTimeUTC</MapTo>
  <TimestampPattern>yyyy-MM-dd HH:mm:ss.SSS</TimestampPattern>
</Map>

EventTimeUTC provides event time mapping information. The value in
TimestampPattern specifies the timestamp format for event time.
EventTimeUTC and TimestampPattern are mandatory.

When specifying the TimestampPattern, use the supported patterns and
characters of the Java SimpleDateFormat class, NOT Oracle Database
specific patterns.

For multibyte characters such as Chinese, specific words such as Month
should be added into the pattern as characters in SimpleDateFormat. The AM
and PM indicators are obtained based on locale, but should be explicitly
mentioned in the TimestampPattern that you provide in the mapper file.

<Map>
  <Name>USER_ID</Name>
  <MapTo>UserName</MapTo>
</Map>   
  

UserName represents the user who performed the action. If the mapping is not
provided, Audit Data Collection still starts successfully, but every audit record
is treated as invalid.

<Map>
  <Name>OS_USER_ID</Name>
  <MapTo>OSUserName</MapTo>
</Map>  
 <Map>
  <Name>ACTION</Name>

Chapter 3
XML File Collection Plug-ins

3-14



  <MapTo>CommandClass</MapTo>
</Map>    

CommandClass represents the action of the event. If the mapping is not provided,
Audit Data Collection still starts successfully, but all audit records are treated as
invalid.

        <Transformation>
          <ValueTransformation from="1" to="CREATE"/>
          <ValueTransformation from="2" to="INSERT"/>
          <ValueTransformation from="3" to="SELECT"/>
          <ValueTransformation from="4" to="CREATE"/>
          <ValueTransformation from="15" to="READ"/>
          <ValueTransformation from="30" to="LOGON"/>
          <ValueTransformation from="34" to="LOGOFF"/>
          <ValueTransformation from="35" to="ACQUIRE"/>
        </Transformation>   
  

CommandClass contains a Transformation field with ValueTransformation values,
from targets to the Audit Vault Server CommandClass field. These transformations are
mandatory.

The to attributes are values for the CommandClass field. If you can meaningfully map
an event to one of these values, Oracle recommends that you do so. If this is not
possible, use a value that appropriately reflects the action that generated the audit
event.

<Map>
  <Name>OBJ_NAME</Name>
  <MapTo>TargetObject</MapTo>
</Map>
<Map>
  <Name>USER_HOST</Name>
  <MapTo>ClientHostName</MapTo>
</Map>

<Map>
   <Name>TERMINAL</Name>
   <MapTo>TerminalName</MapTo>
</Map> 
<Map>
  <Name>OBJ_CREATOR</Name>
  <MapTo>TargetOwner</MapTo>
</Map>
<Map>
  <Name>STATUS</Name>
  <MapTo>EventStatus</MapTo>
        <Transformation>          
          <ValueTransformation from="0" to="FAILURE"/>
          <ValueTransformation from="1" to="SUCCESS"/>
          <ValueTransformation from="2" to="UNKNOWN"/>

Chapter 3
XML File Collection Plug-ins

3-15



        </Transformation>
</Map>

EventStatus contains a Transformation field with ValueTransformation
values, from targets to Audit Vault EventStatus fields. These transformations
are mandatory.

</CoreFields>   
 

– Large Fields Information

<LargeFields>     
  <Map>
    <Name>SQL_TEXT</Name>
    <MapTo>CommandText</MapTo>
  </Map>
<Map>
   <Name>COMMAND_PARAMETER</Name>
   <MapTo>CommandParam</MapTo>
  </Map>        
</LargeFields>

LargeFields are target fields mapped to large fields in the Audit Vault Server.
The specified target fields must be of SQL data type CLOB or String, or be
convertible to String.

– Extension Fields

<ExtensionField>      
   <Name>DB_ID</Name>
   <Name>INSTANCE</Name>
   <Name>PROCESS</Name>
</ExtensionField>  
  

ExtensionFields are target field names that must be stored as a name-value
pair in the Extension field in Audit Vault Server. Target fields specified must be
of SQL data type CLOB or String, or be convertible to String.

– Marker Fields

<MarkerField>       
  <Name>SESSION_ID</Name>  
  <Name>ENTRY_ID</Name>
</MarkerField> 
 

MarkerField contains a list of target fields that uniquely identify each audit
record. The target fields specified must be of SQL data type CLOB or String, or
be convertible to String. MarkerField is mandatory.

Chapter 3
XML File Collection Plug-ins

3-16



See Also:

• XML File Collection Plug-in Examples

• Core Fields

• Actions and Target Types

• Large Fields

• Extension Field

• Marker Field

3.3.4 XML Transformation for Non-Standard Audit Records
If you have audit records in a non-standard audit data format, you can apply XML
transformation using XSL on the XML audit records.

To apply XML transformation on the audit records, you provide an XSL file that can transform
the audit data from its original format to the format currently specified for the XML file
collection plug-ins. Doing this means that you can enhance file collection plug-ins to support
a variety of XML audit data formats.

Related Topics

• Example Audit Trail for an XML File Collection Plug-in
This example audit trail for an xml file collection plug-in shows the details of an XML file
collection plug-in.

3.3.4.1 Additional Requirement for XML Transformation Using XSL
To transform non-standard audit records into the current format, your transformer must follow
Oracle Audit Vault and Database Firewall standards.

The transformer must write to audit files in an incremental order. That is, the transformer must
write to one audit file until its maximum size is reached, and then move over to another file.
Therefore, only one file can be active at a time. If the transformer finds more than one
incomplete XML audit file, then the XML file collection plug-in stops.

3.3.4.2 Changes Required to Transform Non-Standard Audit Records
To transform non-standard audit records with Oracle Audit Vault and Database Firewall, you
must complete this procedure.

You must perform these steps:

1. Add a section such as this example to the mapper file after <RecordInfo>, specifying the
name of XSL file that you want to be used for transformation, and the
SourceFileStartTag for the file to be transformed.

<XslTransformation>
    <XslFile>test_template.xsl</XslFile>
    <SourceFileStartTag>AUDIT</SourceFileStartTag>
</XslTransformation>

Chapter 3
XML File Collection Plug-ins

3-17



2. Provide the XSL file and place it in the templates folder of the plugin directory.

3. You can also make calls to Java functions from within the XSL file. To do this,
place the jar file created in the jars folder of the plugin directory.

Related Topics

• Creating the XML File Audit Collection Mapper File
To create an XML file collection plug-in mapper file, you must describe the
collection plug-in mappings in this mapper file in accordance with Oracle Audit
Vault and Database Firewall standards.

• Sample Non-Standard XML Audit Data Record
See how to transform an XML data record to the proper XML format required for
an XML file collection plug-in.

• Creating an XSL File for Transformation
To create an XSL transformation file that defines transformation rules you must
create a version that can transform the source audit records that your system
creates, and place it in the templates folder of the plugin.

3.3.4.3 Sample Non-Standard XML Audit Data Record
See how to transform an XML data record to the proper XML format required for an
XML file collection plug-in.

As you review this example, note that your source system can produce audit records
with a different appearance.

Example 3-2    Audit.xml: Sample XML Audit Record

<?xml version="1.0" encoding="UTF-8"?>
<AUDIT>
 
   <AUDIT_RECORD TIMESTAMP="2013-06-07T08:27:53" NAME="Audit" 
   SERVER_ID="0" VERSION="1" STARTUP_OPTIONS="C:/Program Files/MySQL/
MySQL
   Server 5.6/bin\mysqld --defaults-file=C:\ProgramData\MySQL\MySQL 
Server
   5.6\my.ini" OS_VERSION="x86_64-Win64" MYSQL_VERSION=
   "5.6.11-enterprise-commercial-advanced"/>
 
   <AUDIT_RECORD TIMESTAMP="2013-06-07T08:30:46" NAME="Connect" 
CONNECTION_ID="1"
   STATUS="0" USER="root" PRIV_USER="root" OS_LOGIN="" PROXY_USER=""  
   HOST="localhost" IP="127.0.0.1" DB=""/>
 
   <AUDIT_RECORD TIMESTAMP="2013-06-07T08:31:21" NAME="Query" 
CONNECTION_ID="1"
   STATUS="0" SQLTEXT="CREATE USER 'admin'@'localhost' IDENTIFIED BY 
   'welcome_1'"/>
 
</AUDIT>

Chapter 3
XML File Collection Plug-ins

3-18



3.3.4.4 Creating an XSL File for Transformation
To create an XSL transformation file that defines transformation rules you must create a
version that can transform the source audit records that your system creates, and place it in
the templates folder of the plugin.

The Audit.xml transformed audit record file does not appear in your folder. It is just an
example showing the result of transforming the Audit.xml file into the required XML format,
using the XSL transformation file in the test_template.xsl example.

Example 3-3    test_template.xsl

<?xml version="1.0"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">
  <xsl:output indent="yes" />
     <xsl:template match="/">
        <ROOT_DEST>
          <xsl:for-each select="AUDIT/AUDIT_RECORD">
            <Record_Dest>
                <USER><xsl:value-of select="@USER"/></USER>
                <PRIV_USER><xsl:value-of select="@PRIV_USER"/></PRIV_USER>
                <OS_LOGIN><xsl:value-of select="@OS_LOGIN"/></OS_LOGIN>
                <PROXY_USER><xsl:value-of select="@PROXY_USER"/></PROXY_USER>
                <HOST><xsl:value-of select="@HOST"/></HOST>
                <IP><xsl:value-of select="@IP"/></IP>
                <DB><xsl:value-of select="@DB"/></DB>
                <SQLTEXT><xsl:value-of select="@SQLTEXT"/></SQLTEXT>
                <CONNECTION_ID><xsl:value-of select= 
                      "@CONNECTION_ID"/></CONNECTION_ID>
                <STATUS><xsl:value-of select="@STATUS"/></STATUS>
                <TIMESTAMP><xsl:value-of select="@TIMESTAMP"/></TIMESTAMP>
                <NAME><xsl:value-of select="@NAME"/></NAME>
                <SERVER_ID><xsl:value-of select="@SERVER_ID"/></SERVER_ID>
                <VERSION><xsl:value-of select="@VERSION" /></VERSION>
   <STARTUP_OPTIONS><xsl:value-of select="@STARTUP_OPTIONS"/> </
STARTUP_OPTIONS>
                <OS_VERSION><xsl:value-of select="@OS_VERSION"/></OS_VERSION>
                <MYSQL_VERSION><xsl:value-of select="@MYSQL_VERSION"/>
                    </MYSQL_VERSION>
            </Record_Dest>
          </xsl:for-each>
         </ROOT_DEST>
        </xsl:template>
  </xsl:stylesheet>
 

Example 3-4    Transformed Audit Record file

<ROOT_DEST>
     <Record_Dest>
         <USER></USER>
         <PRIV_USER></PRIV_USER>

Chapter 3
XML File Collection Plug-ins

3-19



         <OS_LOGIN></OS_LOGIN>
         <PROXY_USER></PROXY_USER>
         <HOST></HOST>
         <IP></IP>
         <DB></DB>
         <SQLTEXT></SQLTEXT>
         <CONNECTION_ID></CONNECTION_ID>
         <STATUS></STATUS>
         <TIMESTAMP>2013-06-07T08:27:53</TIMESTAMP>
         <NAME>Audit</NAME>
         <SERVER_ID>0</SERVER_ID>
         <VERSION>1</VERSION>
         <STARTUP_OPTIONS>C:/Program Files/MySQL/MySQL Server 5.6/
bin\mysqld
             --defaults-file=C:\ProgramData\MySQL\MySQL Server
             5.6\my.ini</STARTUP_OPTIONS>
         <OS_VERSION>x86_64-Win64</OS_VERSION>
         <MYSQL_VERSION>5.6.11-enterprise-commercial-advanced</
MYSQL_VERSION>
     </Record_Dest>
     <Record_Dest>
         <USER>root</USER>
         <PRIV_USER>root</PRIV_USER>
         <OS_LOGIN></OS_LOGIN>
         <PROXY_USER></PROXY_USER>
         <HOST>localhost</HOST>
         <IP>127.0.0.1</IP>
         <DB></DB>
         <SQLTEXT></SQLTEXT>
         <CONNECTION_ID>1</CONNECTION_ID>
         <STATUS>0</STATUS>
         <TIMESTAMP>2013-06-07T08:30:46</TIMESTAMP>
         <NAME>Connect</NAME>
         <SERVER_ID></SERVER_ID>
         <VERSION></VERSION>
         <STARTUP_OPTIONS></STARTUP_OPTIONS>
         <OS_VERSION></OS_VERSION>
         <MYSQL_VERSION></MYSQL_VERSION>
     </Record_Dest>
     <Record_Dest>
         <USER></USER>
         <PRIV_USER></PRIV_USER>
         <OS_LOGIN></OS_LOGIN>
         <PROXY_USER></PROXY_USER>
         <HOST></HOST>
         <IP></IP>
         <DB></DB>
         <SQLTEXT>CREATE USER 'admin'@'localhost' IDENTIFIED BY 
                 'welcome_1'</SQLTEXT>
         <CONNECTION_ID>1</CONNECTION_ID>
         <STATUS>0</STATUS>
         <TIMESTAMP>2013-06-07T08:31:21</TIMESTAMP>
         <NAME>Query</NAME>
         <SERVER_ID></SERVER_ID>
         <VERSION></VERSION>

Chapter 3
XML File Collection Plug-ins

3-20



         <STARTUP_OPTIONS></STARTUP_OPTIONS>
         <OS_VERSION></OS_VERSION>
         <MYSQL_VERSION></MYSQL_VERSION>
     </Record_Dest>
</ROOT_DEST>

3.4 JSON File Collection Plug-ins
Learn how to use Oracle AVDF JSON file collection plug-ins to collect audit data from a
JSON file type of trail.

JSON file collection plug-ins support collection of audit data from an JSON file type of trail. All
these JSON audit files must be present in single directory. You can specify details of the
JSON audit data in the mapper file.

Related Topics

• Schema For JSON File Collection Plug-in Mapper File
See how to set up a schema for a JSON file collection plug-in mapper file for Oracle Audit
Vault and Database Firewall.

3.4.1 Requirements for JSON File Collection Plug-ins
To use JSON collection plug-ins for reading audit trails from JSON files, your data must meet
Oracle Audit Vault and Database Firewall requirements.

You can use collection plug-ins for reading audit trails from JSON audit record files if the
JSON files meet the requirements for collection.

JSON File Audit Record File Requirements for Oracle Audit Vault and Database
Firewall

• The audit trail must be stored in one or more JSON files in a single directory path.

• The user must have read permission on the directory containing the JSON audit files.

• JSON files in this directory must be valid, well-formed JSON documents, within the
constraints of the JSON specification.

• The file and record start elements must be as specified in the mapper file.

• The JSON audit file must have a field whose JSONPath can be mapped to the
CommandClass core field. If a record has its CommandClass field as null, then the record is
treated as invalid.

• In the JSON file, each audit record must have a timestamp as one of its element values.

The value of the timestamp element must be monotonically increasing, that is, the value
of the field increases with every new audit record inserted into the trail. The timestamp
value should be strictly Not Null. Timestamp format must be according to
SimpleDateFormat Java class.

This field must mapped to the EventTimeUTC core field in the mapper file. If mapping for
event time is not specified in the mapper file, then the collection plug-in shuts down. If the
field value for the event time in audit records is found null, then the collection plug-in
takes the time of the record last sent from the same JSON audit file.

• The audit trail must contain a single element value or group of element values in the audit
record that uniquely identify each audit record in JSON Audit files.

Chapter 3
JSON File Collection Plug-ins

3-21



• If an audit data target produces audit files with multiple JSON formats, then the
user must provide a separate mapper file for each audit file format having a
different start element.

• JSON files in this directory should be of the same locale and encoding as the
agent, as described in the examples below:

– Valid: The user has an agent in a Chinese locale (env). JSON files are also
generated in a Chinese locale with same encoding (for example, ZHS16GBK).
This setup is valid.

– Invalid: The user has an agent in a German locale (env). JSON files are
generated/moved from some other computer, which are Chinese encoded.
The collectors fail to start because of an encoding mismatch, as well as a
locale mismatch, in this case. This setup is invalid.

3.4.2 Example Audit Trail for a JSON File Collection Plug-in
This example audit trail for a JSON file collection plug-in shows the details of a JSON
file collection plug-in.

This example file is used in other locations to demonstrate the creation and structure
of a sample mapper file for the creation and structure of a sample mapper file for a
JSON file collection plug-in, in the Oracle Audit Vault and Database Firewall
documentation.

The following table lists the audit record structure and mappings to Oracle Audit Vault
Server fields for the hypothetical target type, JSONSOURCE, which generates and stores
audit data in JSON audit files.

Table 3-3    Audit Data Fields in JSON Audit Records and Mappings

Target Field Audit Vault Server Field Map to Field Type

USER_ID UserName core field

OS_USER_ID OSUserName core field

ACTION CommandClass core field

STATUS EventStatus core field

EVENT_TIME EventTimeUTC core field

OBJ_NAME TargetObject core field

OBJ_CREATOR TargetOwner core field

USER_HOST ClientHostName core field

SQL_TEXT CommandText core field

SQL_BIND CommandParam core field

TERMINAL TerminalName extension field

DB_ID extension field extension field

INSTANCE extension field extension field

PROCESS extension field extension field

SESSION_ID marker field marker field

ENTRY_ID marker field marker field

Chapter 3
JSON File Collection Plug-ins

3-22



Example 3-5    Sample JSON Audit Record

{
   "ITEMS":[
      {
         "SESSION_ID":123,
         "AUDIT_TYPE":1,
         "USER_ID":"scott",
         "OS_USER_ID":"usr1",
         "ACTION":"select",
         "STATUS":0,
         "EVENT_TIME":"2020-11-28 12:23:59.166",
         "OBJ_NAME":"emp",
         "OBJ_CREATOR":"scott",
         "TERMINAL":"t1",
         "DB_ID":136,
         "ENTRY_ID":1
      },
      {
         "SESSION_ID":123,
         "AUDIT_TYPE":1,
         "USER_ID":"scott",
         "OS_USER_ID":"usr1",
         "ACTION":"delete",
         "STATUS":0,
         "EVENT_TIME":"2020-11-28 12:24:22.177",
         "OBJ_NAME":"emp",
         "OBJ_CREATOR":"scott",
         "TERMINAL":"t1",
         "DB_ID":136,
         "ENTRY_ID":2
      }
   ]
}

3.4.3 Creating the JSON File Audit Collection Mapper File
To create a JSON file collection plug-in mapper file, you must describe the collection plug-in
mappings in this mapper file in accordance with Oracle Audit Vault and Database Firewall
standards.

You must describe the collection plug-in mappings in this mapper file as follows:

Standards for Collection Plug-in Mappings in Mapper Files for Oracle Audit Vault and
Database Firewall

• Top-Level Element

<AVJSONCollectorTemplate securedTargetType="JSONSOURCE"
      maxSecuredTargetVersion="11.0"
      version="1.0">

Chapter 3
JSON File Collection Plug-ins

3-23



The AVJSONCollectorTemplate is the top level element and has these mandatory
attributes: securedTargetType, maxSecuredTargetVersion, and version. The
minSecuredTargetVersion attribute is optional.

The accepted format for the minSecuredTargetVersion,
maxSecuredTargetVersion, and version attributes uses numbers, separated by
dots, such as 12.2,10.3.2, 11.2.3.0.

• Header Information

<HeaderInfo>
  <StartTag>ITEMS</StartTag>
</HeaderInfo>  
  

HeaderInfo is mandatory. It contains one child element, StartTag, which names
the top-level element of the audit record file.

• Record Information

<RecordInfo>
  <StartTag>SESSION_ID</StartTag>
</RecordInfo>

RecordInfo provides the starting element of audit records in JSON audit files.
RecordInfo is mandatory.

StartTag is the starting element of each audit record in JSON audit files. If the
JSON file has one fully formed JSON record per line, then the HeaderInfo and
RecordInfo also have the same start tag, which is the first element of the JSON
record.

• Field Mapping Information

<FieldMappingInfo>  

FieldMappingInfo provides mapping information from target fields to various Audit
Vault fields, contained in these child elements, CoreFields, LargeFields,
ExtensionField, and MarkerField.

Field mappings include <Map> elements, which contain <Name> elements that hold
target field names, and <MapTo> elements that hold Audit Value field names that
targets are mapped to.

There should be no many-to-one mappings from target fields to Audit Vault Server
fields. For example, the following is invalid:

<!-- Invalid code
<Map>
    <Name>$.USER_ID</Name>
    <MapTo>UserName</MapTo>
</Map>     
<Map>

Chapter 3
JSON File Collection Plug-ins

3-24



    <Name>$.OS_USER_ID</Name>
    <MapTo>UserName</MapTo>
</Map>  -->
      

– Core Fields

<CoreFields>

CoreFields provides mapping from target fields to core fields of Audit Vault Server.
Target fields specified in core field mappings must be of SQL data type, either a
string or a data type that can convert to string.

The following elements contain core fields.

<Map>
 <Name>$.EVENT_TIME</Name>
  <MapTo>EventTimeUTC</MapTo>
  <TimestampPattern>yyyy-MM-dd HH:mm:ss.SSS</TimestampPattern>
</Map>

EventTimeUTC provides event time mapping information. The value in
TimestampPattern specifies the timestamp format for event time. EventTimeUTC and
TimestampPattern are mandatory.

When specifying the TimestampPattern, use the supported patterns and characters
of the Java SimpleDateFormat class, NOT Oracle Database specific patterns.

For multibyte characters such as Chinese, specific words such as Month should be
added into the pattern as characters in SimpleDateFormat. The AM and PM
indicators are obtained based on locale, but should be explicitly mentioned in the
TimestampPattern that you provide in the mapper file.

<Map>
  <Name>$.USER_ID</Name>
  <MapTo>UserName</MapTo>
</Map>   
  

UserName represents the user who performed the action. If the mapping is not
provided, Audit Data Collection still starts successfully, but every audit record is
treated as invalid.

<Map>
  <Name>$.OS_USER_ID</Name>
  <MapTo>OSUserName</MapTo>
</Map>  
 <Map>
  <Name>$.ACTION</Name>
  <MapTo>CommandClass</MapTo>
</Map>    

Chapter 3
JSON File Collection Plug-ins

3-25



CommandClass represents the action of the event. If the mapping is not
provided, Audit Data Collection still starts successfully, but all audit records are
treated as invalid.

        <Transformation>
          <ValueTransformation from="1" to="CREATE"/>
          <ValueTransformation from="2" to="INSERT"/>
          <ValueTransformation from="3" to="SELECT"/>
          <ValueTransformation from="4" to="CREATE"/>
          <ValueTransformation from="15" to="READ"/>
          <ValueTransformation from="30" to="LOGON"/>
          <ValueTransformation from="34" to="LOGOFF"/>
          <ValueTransformation from="35" to="ACQUIRE"/>
        </Transformation>   
  

CommandClass contains a Transformation field with ValueTransformation
values, from targets to the Audit Vault Server CommandClass field. These
transformations are mandatory.

The to attributes are values for the CommandClass field. If you can meaningfully
map an event to one of these values, Oracle recommends that you do so. If
this is not possible, use a value that appropriately reflects the action that
generated the audit event.

<Map>
  <Name>$.OBJ_NAME</Name>
  <MapTo>TargetObject</MapTo>
</Map>
<Map>
  <Name>$.USER_HOST</Name>
  <MapTo>ClientHostName</MapTo>
</Map>

<Map>
   <Name>$.TERMINAL</Name>
   <MapTo>TerminalName</MapTo>
</Map> 
<Map>
  <Name>$.OBJ_CREATOR</Name>
  <MapTo>TargetOwner</MapTo>
</Map>
<Map>
  <Name>$.STATUS</Name>
  <MapTo>EventStatus</MapTo>
        <Transformation>          
          <ValueTransformation from="0" to="FAILURE"/>
          <ValueTransformation from="1" to="SUCCESS"/>
          <ValueTransformation from="2" to="UNKNOWN"/>
        </Transformation>
</Map>

Chapter 3
JSON File Collection Plug-ins

3-26



EventStatus contains a Transformation field with ValueTransformation values,
from targets to Audit Vault EventStatus fields. These transformations are mandatory.

</CoreFields>   
 

– Large Fields Information

<LargeFields>     
  <Map>
    <Name>$.SQL_TEXT</Name>
    <MapTo>CommandText</MapTo>
  </Map>
<Map>
   <Name>$.COMMAND_PARAMETER</Name>
   <MapTo>CommandParam</MapTo>
  </Map>        
</LargeFields>

LargeFields are target fields mapped to large fields in the Audit Vault Server. The
specified target fields must be of SQL data type CLOB or String, or be convertible to
String.

– Extension Fields

<ExtensionField>      
   <Name>$.DB_ID</Name>
   <Name>$.INSTANCE</Name>
   <Name>$.PROCESS</Name>
</ExtensionField>  
  

ExtensionFields are target field names that must be stored as a name-value pair in
the Extension field in Audit Vault Server. Target fields specified must be of SQL data
type CLOB or String, or be convertible to String.

– Marker Fields

<MarkerField>       
  <Name>$.SESSION_ID</Name>  
  <Name>$.ENTRY_ID</Name>
</MarkerField> 
 

MarkerField contains a list of target fields that uniquely identify each audit record.
The target fields specified must be of SQL data type CLOB or String, or be
convertible to String. MarkerField is mandatory.

Chapter 3
JSON File Collection Plug-ins

3-27



See Also:

• JSON File Collection Plug-in Example

• Core Fields

• Actions and Target Types

• Large Fields

• Extension Field

• Marker Field

3.5 CSV File Collection Plug-ins
Learn how to use Oracle AVDF CSV file collection plug-ins to collect audit data from a
CSV file type of trail.

CSV file collection plug-ins support collection of audit data from an CSV file type of
trail. All these CSV audit files must be present in single directory. You can specify
details of the CSV audit data in the mapper file.

3.5.1 Requirements for CSV File Collection Plug-ins
To use CSV collection plug-ins for reading audit trails from CSV files, your data must
meet Oracle Audit Vault and Database Firewall requirements.

You can use collection plug-ins for reading audit trails from CSV audit record files if the
CSV files meet the requirements for collection.

CSV File Audit Record File Requirements for Oracle Audit Vault and Database
Firewall

• The audit trail must be stored in one or more CSV files in a single directory path.

• The user must have read permission on the directory containing the CSV audit
files.

• CSV files in this directory must be valid, well formed CSV documents, with COMMA
as the field delimiter.

• If a record has its CommandClass field as null, then the record is treated as invalid.

• In the CSV file, each audit record must have a timestamp as one of its element
values.

The value of the timestamp element must be monotonically increasing, that is, the
value of the field increases with every new audit record inserted into the trail. The
timestamp value should be strictly Not Null. Timestamp format must be according
to SimpleDateFormat Java class.

This field must mapped to the EventTimeUTC core field in the mapper file. If
mapping for event time is not specified in the mapper file, then the collection plug-
in shuts down.

• CSV files in this directory should be of the same locale and encoding as the agent,
as described in the examples below:

Chapter 3
CSV File Collection Plug-ins

3-28



– Valid: The user has an agent in a Chinese locale (env). CSV files are also generated
in a Chinese locale with same encoding (for example, ZHS16GBK). This setup is valid.

– Invalid: The user has an agent in a German locale (env). CSV files are generated/
moved from some other computer, which are Chinese encoded. The collectors fail to
start because of an encoding mismatch, as well as a locale mismatch, in this case.
This setup is invalid.

3.5.2 Example Audit Trail for a CSV File Collection Plug-in
This example audit trail for a CSV file collection plug-in shows the details of a CSV file
collection plug-in.

This example file is used in other locations to demonstrate the creation and structure of a
sample mapper file for the creation and structure of a sample mapper file for a CSV file
collection plug-in, in the Oracle Audit Vault and Database Firewall documentation.

The following table lists the audit record structure and mappings to Oracle Audit Vault Server
fields for the hypothetical target type, CSVSOURCE, which generates and stores audit data in
CSV audit files.

Table 3-4    Audit Data Fields in CSV Audit Records and Mappings

Target Field Audit Vault Server Field Map to Field Type

EVENT_NAME CommandClass core field

EVENT_TIME EventTimeUTC core field

CLIENT_IP ClientIP core field

USER_ID UserName core field

TARGET_OBJECT TargetObject core field

EVENT_STATUS EventStatus core field

SESSION_ID marker field marker field

ENTRY_ID marker field marker field

COMMAND_TEXT CommandText large field

COMMAND_PARAM CommandParam large field

SESSION_ID extension field extension field

ENTRY_ID extension field extension field

Example 3-6    Sample CSV Audit Record

5678,createUser,2020-10-01T16:11:23.661+0530,127.0.0.1,1234,admin,user1,0,0,n
ot applicable,1234,"insert into foo.bar","foobar",111
5679,dropUser,2020-10-02T16:11:23.661+0530,127.0.0.1,1234,admin,user2,0,0,not
 applicable,1234,"delete from foo.bar","foobar",222
5680,createCollection,2020-10-03T16:11:23.661+0530,127.0.0.1,1234,admin,colle
ction1,100,18,authentication failed,1234,"insert into foo.bar","foobar",333
5681,dropCollection,2020-10-04T16:11:23.661+0530,127.0.0.1,1234,admin,collect

Chapter 3
CSV File Collection Plug-ins

3-29



ion2,200,13,not authorized to perform operation,1234,"delete from 
foo.bar","foobar",444

Below is the index corresponding to each field:
EVENT_ID field has index 0
EVENT_NAME field has index 1
EVENT_TIME field has index 2
CLIENT_IP field has index 3
CLIENT_PORT field has index 4
USER_ID field has index 5
TARGET_OBJECT field has index 6
EVENT_STATUS field has index 7
ERROR_ID field has index 8
ERROR_MESSAGE field index 9
SESSION_ID field has index 10
COMMAND_TEXT field has index 11
COMMAND_PARAM field has index 12
ENTRY_ID field has index 13

3.5.3 Creating the CSV File Audit Collection Mapper File
To create a CSV file collection plug-in mapper file, you must describe the collection
plug-in mappings in this mapper file in accordance with Oracle Audit Vault and
Database Firewall standards.

You must describe the collection plug-in mappings in this mapper file as follows:

Standards for Collection Plug-in Mappings in Mapper Files for Oracle Audit Vault
and Database Firewall

• Top-Level Element

<AVCSVCollectorTemplate securedTargetType="CSVSOURCE"
      maxSecuredTargetVersion="11.0"
      version="1.0">

The AVCSVCollectorTemplate is the top level element and has these mandatory
attributes: securedTargetType, maxSecuredTargetVersion, and version. The
minSecuredTargetVersion attribute is optional.

The accepted format for the minSecuredTargetVersion,
maxSecuredTargetVersion, and version attributes uses numbers, separated by
dots, such as 12.2,10.3.2, 11.2.3.0.

• Header Information

<HeaderInfo>
  <StartTag>CSV</StartTag>
</HeaderInfo>  
  

Chapter 3
CSV File Collection Plug-ins

3-30



HeaderInfo is mandatory. The StartTag must be set to CSV.

• Record Information

<RecordInfo>
  <StartTag>CSV</StartTag>
</RecordInfo>

RecordInfo is mandatory. StartTag must be set to CSV.

• Field Mapping Information

<FieldMappingInfo>  

FieldMappingInfo provides mapping information from target fields to various Audit Vault
fields, contained in these child elements, CoreFields, LargeFields, ExtensionField,
and MarkerField.

Field mappings include <Map> elements, which contain <Name> elements that hold target
field names, and <MapTo> elements that hold Audit Value field names that targets are
mapped to.

In CSV Plugin Mapper file, the Name element must contain the index of the field in the
CSV file. In our sample, below are the index corresponding to each field:

EVENT_ID field has index 0
EVENT_NAME field has index 1
EVENT_TIME field has index 2
CLIENT_IP field has index 3
CLIENT_PORT field has index 4
USER_ID field has index 5
TARGET_OBJECT field has index 6
EVENT_STATUS field has index 7
ERROR_ID field has index 8
ERROR_MESSAGE field index 9
SESSION_ID field has index 10
COMMAND_TEXT field has index 11
COMMAND_PARAM field has index 12
ENTRY_ID field has index 13

There should be no many-to-one mappings from target fields to Audit Vault Server fields.
For example, the following is invalid:

<!-- Invalid code
<Map>
    <Name>0</Name>
    <MapTo>UserName</MapTo>
</Map>
<Map>
    <Name>1</Name>
    <MapTo>UserName</MapTo>

Chapter 3
CSV File Collection Plug-ins

3-31



</Map> -->
      

– Core Fields

<CoreFields>

CoreFields provides mapping from target fields to core fields of Audit Vault
Server. Target fields specified in core field mappings must either be a string or
a data type that can be converted to string.

The following elements contain core fields.

<Map>
            <Name>2</Name>
            <MapTo>EventTimeUTC</MapTo>
            <TimestampPattern>yyyy-MM-dd'T'HH:mm:ss.SSSZ</
TimestampPattern>
         </Map>

EventTimeUTC provides event time mapping information. The value in
TimestampPattern specifies the timestamp format for event time.
EventTimeUTC and TimestampPattern are mandatory.

When specifying the TimestampPattern, use the supported patterns and
characters of the Java SimpleDateFormat class, NOT Oracle Database
specific patterns.

For multibyte characters such as Chinese, specific words such as Month
should be added into the pattern as characters in SimpleDateFormat. The AM
and PM indicators are obtained based on locale, but should be explicitly
mentioned in the TimestampPattern that you provide in the mapper file.

         <Map>
            <Name>5</Name>
            <MapTo>UserName</MapTo>
         </Map> 
  

UserName represents the user who performed the action. If the mapping is not
provided, Audit Data Collection still starts successfully, but every audit record
is treated as invalid.

 <Map>
  <Name>1</Name>
  <MapTo>CommandClass</MapTo>
</Map>

Chapter 3
CSV File Collection Plug-ins

3-32



CommandClass represents the action of the event. If the mapping is not provided,
Audit Data Collection still starts successfully, but all audit records are treated as
invalid.

            <Transformation>
               <ValueTransformation from="createUser" to="CREATE" />
               <ValueTransformation from="createCollection" 
to="CREATE" />
               <ValueTransformation from="authenticate" 
to="AUTHENTICATE" />
               <ValueTransformation from="dropCollection" to="DROP" />
               <ValueTransformation from="dropUser" to="DROP" />
            </Transformation>  
  

CommandClass contains a Transformation field with ValueTransformation values,
from targets to the Audit Vault Server CommandClass field. These transformations are
mandatory.

The to attributes are values for the CommandClass field. If you can meaningfully map
an event to one of these values, Oracle recommends that you do so. If this is not
possible, use a value that appropriately reflects the action that generated the audit
event.

         <Map>
            <Name>1</Name>
            <MapTo>TargetObject</MapTo>
            <Transformation>
               <FieldTransformation from="createUser" to="6" />
               <FieldTransformation from="createCollection" to="6" />
               <FieldTransformation from="authenticate" to="6" />
               <FieldTransformation from="dropCollection" to="6" />
               <FieldTransformation from="dropUser" to="6" />
            </Transformation>
         </Map>
             <Map>
            <Name>1</Name>
            <MapTo>TargetType</MapTo>
            <Transformation>
               <ValueTransformation from="createUser" to="USER" />
               <ValueTransformation from="createCollection" 
to="COLLECTION" />
               <ValueTransformation from="authenticate" to="USER" />
               <ValueTransformation from="dropCollection" 
to="COLLECTION" />
               <ValueTransformation from="dropUser" to="USER" />
            </Transformation>
         </Map>
         <Map>
            <Name>3</Name>
            <MapTo>ClientIP</MapTo>
         </Map>

Chapter 3
CSV File Collection Plug-ins

3-33



         <Map>
            <Name>7</Name>
            <MapTo>EventStatus</MapTo>
            <!-- Specifying value transformation for Status 
source field value.
            Mandatory: EventStatus value transformation.
            There are three possible values for EventStatus:
            SUCCESS, FAILURE, UNKNOWN -->
            <Transformation>
               <ValueTransformation from="0" to="FAILURE" />
               <ValueTransformation from="100" to="SUCCESS" />
               <ValueTransformation from="200" to="UNKNOWN" />
            </Transformation>
         </Map>

EventStatus contains a Transformation field with ValueTransformation
values, from targets to Audit Vault EventStatus fields. These transformations
are mandatory.

– Large Fields Information

      <LargeFields>
         <Map>
            <Name>11</Name>
            <MapTo>CommandText</MapTo>
         </Map>
         <Map>
            <Name>12</Name>
            <MapTo>CommandParam</MapTo>
         </Map>
      </LargeFields>

LargeFields are target fields mapped to large fields in the Audit Vault Server.
The specified target fields must be of type String or convertible to String.

– Extension Fields

      <ExtensionField>
         <ComplexName>
            <Name>10</Name>
            <DisplayName>sessionid</DisplayName>
         </ComplexName>
         <ComplexName>
            <Name>13</Name>
            <DisplayName>entryid</DisplayName>
         </ComplexName>
      </ExtensionField>  
  

Chapter 3
CSV File Collection Plug-ins

3-34



ExtensionFields are target field names that must be stored as a name-value pair in
the Extension field in Audit Vault Server. Target fields specified must be of type
String or convertible to String.

– Marker Fields

      <MarkerField>
         <Name>10</Name>
         <Name>13</Name>
      </MarkerField> 
 

MarkerField contains a list of target fields that uniquely identify each audit record.

See Also:

• JSON File Collection Plug-in Example

• Core Fields

• Actions and Target Types

• Large Fields

• Extension Field

• Marker Field

3.6 JSON REST Collection Plug-ins
Learn how to use Oracle AVDF JSON collection plug-ins to collect audit data from a JSON
type of trail.

JSON collection plug-ins support collection of audit data from an JSON type of trail. All these
JSON audit files must be present in single directory. You can specify details of the JSON
audit data in the mapper file.

Related Topics

• Schema For JSON REST Collection Plug-in Mapper File
See how to set up a schema for a JSON REST collection plug-in mapper file for Oracle
Audit Vault and Database Firewall.

3.6.1 Requirements for JSON REST Collection Plug-ins
To use JSON collection plug-ins for reading audit trails from JSON files, your data must meet
Oracle Audit Vault and Database Firewall requirements.

You can use collection plug-ins for reading audit trails from JSON audit record files if the
JSON files meet the requirements for collection.

JSON Audit Record File Requirements for Oracle Audit Vault and Database Firewall

• The audit trail must be stored in one or more JSON files in a single directory path.

Chapter 3
JSON REST Collection Plug-ins

3-35



• The user must have read permission on the directory containing the JSON audit
files.

• JSON files in this directory must be valid, well-formed JSON documents, within the
constraints of the JSON specification.

• The file and record start elements must be as specified in the mapper file.

• The JSON audit file must have a field whose JSONPath can be mapped to the
CommandClass core field. If a record has its CommandClass field as null, then the
record is treated as invalid.

• In the JSON file, each audit record must have a timestamp as one of its element
values.

The value of the timestamp element must be monotonically increasing, that is, the
value of the field increases with every new audit record inserted into the trail. The
timestamp value should be strictly Not Null. Timestamp format must be according
to SimpleDateFormat Java class.

This field must mapped to the EventTimeUTC core field in the mapper file. If
mapping for event time is not specified in the mapper file, then the collection plug-
in shuts down. If the field value for the event time in audit records is found null,
then the collection plug-in takes the time of the record last sent from the same
JSON audit file.

• The audit trail must contain a single element value or group of element values in
the audit record that uniquely identify each audit record in JSON audit files.

• If an audit data target produces audit files with multiple JSON formats, then the
user must provide a separate mapper file for each audit file format having a
different start element.

• JSON files in this directory should be of the same locale and encoding as the
agent, as described in the examples below:

– Valid: The user has an agent in a Chinese locale (env). JSON REST files are
also generated in a Chinese locale with same encoding (for example,
ZHS16GBK). This setup is valid.

– Invalid: The user has an agent in a German locale (env). JSON REST files are
generated/moved from some other computer, which are Chinese encoded.
The collectors fail to start because of an encoding mismatch, as well as a
locale mismatch, in this case. This setup is invalid.

3.6.2 Example Audit Trail for a JSON REST Collections Plug-in
This example audit trail for a JSON collection plug-in shows the details of a JSON
collection plug-in.

This example file is used in other locations to demonstrate the creation and structure
of a sample mapper file for the creation and structure of a sample mapper file for a
JSON collection plug-in, in the Oracle Audit Vault and Database Firewall
documentation.

The following table lists the audit record structure and mappings to Oracle Audit Vault
Server fields for the hypothetical target type, JSONSOURCE, which generates and stores
audit data in JSON audit files.

Chapter 3
JSON REST Collection Plug-ins

3-36



Table 3-5    Audit Data Fields in JSON Audit Records and Mappings

Target Field Audit Vault Server Field Map to Field Type

USER_ID UserName core field

OS_USER_ID OSUserName core field

ACTION CommandClass core field

STATUS EventStatus core field

EVENT_TIME EventTimeUTC core field

OBJ_NAME TargetObject core field

OBJ_CREATOR TargetOwner core field

USER_HOST ClientHostName core field

SQL_TEXT CommandText core field

SQL_BIND CommandParam core field

TERMINAL TerminalName extension field

DB_ID extension field extension field

INSTANCE extension field extension field

PROCESS extension field extension field

SESSION_ID marker field marker field

ENTRY_ID marker field marker field

Example 3-7    Sample JSON Audit Record

{
   "ITEMS":[
      {
         "SESSION_ID":123,
         "AUDIT_TYPE":1,
         "USER_ID":"scott",
         "OS_USER_ID":"usr1",
         "ACTION":"select",
         "STATUS":0,
         "EVENT_TIME":"2020-11-28 12:23:59.166",
         "OBJ_NAME":"emp",
         "OBJ_CREATOR":"scott",
         "TERMINAL":"t1",
         "DB_ID":136,
         "ENTRY_ID":1
      },
      {
         "SESSION_ID":123,
         "AUDIT_TYPE":1,
         "USER_ID":"scott",
         "OS_USER_ID":"usr1",
         "ACTION":"delete",
         "STATUS":0,
         "EVENT_TIME":"2020-11-28 12:24:22.177",

Chapter 3
JSON REST Collection Plug-ins

3-37



         "OBJ_NAME":"emp",
         "OBJ_CREATOR":"scott",
         "TERMINAL":"t1",
         "DB_ID":136,
         "ENTRY_ID":2
      }
   ]
}

3.6.3 Creating the JSON REST Audit Collection Mapper File
To create a JSON file collection plug-in mapper file, you must describe the collection
plug-in mappings in this mapper file in accordance with Oracle Audit Vault and
Database Firewall standards.

You must describe the collection plug-in mappings in this mapper file as follows:

Standards for Collection Plug-in Mappings in Mapper Files for Oracle Audit Vault
and Database Firewall

• Top-Level Element

<AVJSONCollectorTemplate securedTargetType="JSONSOURCE"
      maxSecuredTargetVersion="11.0"
      version="1.0">

The AVJSONCollectorTemplate is the top level element and has these mandatory
attributes: securedTargetType, maxSecuredTargetVersion, and version. The
minSecuredTargetVersion attribute is optional.

The accepted format for the minSecuredTargetVersion,
maxSecuredTargetVersion, and version attributes uses numbers, separated by
dots, such as 12.2,10.3.2, 11.2.3.0.

• Header Information

<HeaderInfo>
  <StartTag>ITEMS</StartTag>
</HeaderInfo>  
  

HeaderInfo is mandatory. It contains one child element, StartTag, which names
the top-level element of the audit record file.

• Record Information

<RecordInfo>
  <StartTag>SESSION_ID</StartTag>
</RecordInfo>

Chapter 3
JSON REST Collection Plug-ins

3-38



RecordInfo provides the starting element of audit records in JSON audit files.
RecordInfo is mandatory.

StartTag is the starting element of each audit record in JSON audit files. If the JSON file
has one fully formed JSON record per line, then the HeaderInfo and RecordInfo also
have the same start tag, which is the first element of the JSON record.

• Service Details

<ServiceDetails>

Example code:

 <!-- Query format for providing the start time and end time query 
parameters -->
      <QueryFormat>{startTime}/{endTime}</QueryFormat>
        <!-- Timestamp format for start time and end time -->
      <TimeFormat>yyyy-MM-dd hh:mm:ss.SSS</TimeFormat>
      <NextLink>
           <!-- Next link start tag -->
         <NextLinkStartTag>next</NextLinkStartTag>
             <!-- Next link pattern -->
         <NextLinkPattern>$.next.$ref</NextLinkPattern>
      </NextLink>
        <!-- Authentication mechanism for REST Service -->
      <RESTAuthentication>
           <!-- Username and password based Basic Authentication -->
         <BasicAuth/>
      </RESTAuthentication>
   </ServiceDetails>

Here is the explanation of the fields. All the fields are mandatory.

Service Details provides information about REST service corresponding to the audit
trail.

Query Format describes the format of the REST query for providing the start time and
end time query parameters.

Time Format describes timestamp format for start time and end time.

Next Link Start Tag provides the next link start tag of the REST URL.

Next Link Pattern provides JSON path expression of the next link of the REST URL.

REST Authentication describes the authentication mechanism used to connect to the
target.

BasicAuth indicates the authentication mechanism is Basic Authentication.

• Field Mapping Information

<FieldMappingInfo>  

Chapter 3
JSON REST Collection Plug-ins

3-39



FieldMappingInfo provides mapping information from target fields to various Audit
Vault fields, contained in these child elements, CoreFields, LargeFields,
ExtensionField, and MarkerField.

Field mappings include <Map> elements, which contain <Name> elements that hold
target field names, and <MapTo> elements that hold Audit Value field names that
targets are mapped to.

There should be no many-to-one mappings from target fields to Audit Vault Server
fields. For example, the following is invalid:

<!-- Invalid code
<Map>
    <Name>$.USER_ID</Name>
    <MapTo>UserName</MapTo>
</Map>     
<Map>
    <Name>$.OS_USER_ID</Name>
    <MapTo>UserName</MapTo>
</Map>  -->
      

– Core Fields

<CoreFields>

CoreFields provides mapping from target fields to core fields of Audit Vault
Server. Target fields specified in core field mappings must be of SQL data
type, either a string or a data type that can convert to string.

The following elements contain core fields.

<Map>
 <Name>$.EVENT_TIME</Name>
  <MapTo>EventTimeUTC</MapTo>
  <TimestampPattern>yyyy-MM-dd HH:mm:ss.SSS</TimestampPattern>
</Map>

EventTimeUTC provides event time mapping information. The value in
TimestampPattern specifies the timestamp format for event time.
EventTimeUTC and TimestampPattern are mandatory.

When specifying the TimestampPattern, use the supported patterns and
characters of the Java SimpleDateFormat class, NOT Oracle Database
specific patterns.

For multibyte characters such as Chinese, specific words such as Month
should be added into the pattern as characters in SimpleDateFormat. The AM
and PM indicators are obtained based on locale, but should be explicitly
mentioned in the TimestampPattern that you provide in the mapper file.

<Map>
  <Name>$.USER_ID</Name>
  <MapTo>UserName</MapTo>

Chapter 3
JSON REST Collection Plug-ins

3-40



</Map>   
  

UserName represents the user who performed the action. If the mapping is not
provided, Audit Data Collection still starts successfully, but every audit record is
treated as invalid.

<Map>
  <Name>$.OS_USER_ID</Name>
  <MapTo>OSUserName</MapTo>
</Map>  
 <Map>
  <Name>$.ACTION</Name>
  <MapTo>CommandClass</MapTo>
</Map>    

CommandClass represents the action of the event. If the mapping is not provided,
Audit Data Collection still starts successfully, but all audit records are treated as
invalid.

        <Transformation>
          <ValueTransformation from="1" to="CREATE"/>
          <ValueTransformation from="2" to="INSERT"/>
          <ValueTransformation from="3" to="SELECT"/>
          <ValueTransformation from="4" to="CREATE"/>
          <ValueTransformation from="15" to="READ"/>
          <ValueTransformation from="30" to="LOGON"/>
          <ValueTransformation from="34" to="LOGOFF"/>
          <ValueTransformation from="35" to="ACQUIRE"/>
        </Transformation>   
  

CommandClass contains a Transformation field with ValueTransformation values,
from targets to the Audit Vault Server CommandClass field. These transformations are
mandatory.

The to attributes are values for the CommandClass field. If you can meaningfully map
an event to one of these values, Oracle recommends that you do so. If this is not
possible, use a value that appropriately reflects the action that generated the audit
event.

<Map>
  <Name>$.OBJ_NAME</Name>
  <MapTo>TargetObject</MapTo>
</Map>
<Map>
  <Name>$.USER_HOST</Name>
  <MapTo>ClientHostName</MapTo>
</Map>

<Map>
   <Name>$.TERMINAL</Name>
   <MapTo>TerminalName</MapTo>

Chapter 3
JSON REST Collection Plug-ins

3-41



</Map> 
<Map>
  <Name>$.OBJ_CREATOR</Name>
  <MapTo>TargetOwner</MapTo>
</Map>
<Map>
  <Name>$.STATUS</Name>
  <MapTo>EventStatus</MapTo>
        <Transformation>          
          <ValueTransformation from="0" to="FAILURE"/>
          <ValueTransformation from="1" to="SUCCESS"/>
          <ValueTransformation from="2" to="UNKNOWN"/>
        </Transformation>
</Map>

EventStatus contains a Transformation field with ValueTransformation
values, from targets to Audit Vault EventStatus fields. These transformations
are mandatory.

</CoreFields>   
 

– Large Fields Information

<LargeFields>     
  <Map>
    <Name>$.SQL_TEXT</Name>
    <MapTo>CommandText</MapTo>
  </Map>
<Map>
   <Name>$.COMMAND_PARAMETER</Name>
   <MapTo>CommandParam</MapTo>
  </Map>        
</LargeFields>

LargeFields are target fields mapped to large fields in the Audit Vault Server.
The specified target fields must be of SQL data type CLOB or String, or be
convertible to String.

– Extension Fields

<ExtensionField>      
   <Name>$.DB_ID</Name>
   <Name>$.INSTANCE</Name>
   <Name>$.PROCESS</Name>
</ExtensionField>  
  

ExtensionFields are target field names that must be stored as a name-value
pair in the Extension field in Audit Vault Server. Target fields specified must be
of SQL data type CLOB or String, or be convertible to String.

Chapter 3
JSON REST Collection Plug-ins

3-42



– Marker Fields

<MarkerField>       
  <Name>$.SESSION_ID</Name>  
  <Name>$.ENTRY_ID</Name>
</MarkerField> 
 

MarkerField contains a list of target fields that uniquely identify each audit record.
The target fields specified must be of SQL data type CLOB or String, or be
convertible to String. MarkerField is mandatory.

See Also:

• JSON REST Collection Plug-in Example

• Core Fields

• Actions and Target Types

• Large Fields

• Extension Field

• Marker Field

3.7 Target Collection Attributes
You must define collection attributes before you can use Oracle AVDF plug-ins to collect data
from the audit trail.

For Database Table plug-in, JSON, CSV, XML file collection plug-ins, and REST plug-in, you
need to set the audit collection attributes during target registration. This has to be completed
after deploying the collection plug-in in the Audit Vault Server and before starting the audit
trail which uses the plug-in.

You define collection attributes using the AVCLI command ALTER SECURED TARGET.

Required target attributes are:

• av.collector.securedtargetversion (Mandatory): Current version of the target. This
version information helps in choosing the correct mapper file for the audit trail if there are
multiple mapper files in the templates directory of the collection plug-in.

• av.collector.atcintervaltime: The collection plug-in writes the time, up to which audit
data has been collected from the trail, to a file. This file will be present in the av/atc
directory in the agent home. Also, this file contains the time in UTC time zone. This
information can help some third party utilities to clean up audit data from a trail. Note that
collection plug-in does not perform the audit data clean-up, it just writes this information
to a file. atcintervaltime: specifies how frequently the collection plug-in should update
the time information in the file. The value of the attribute is in minutes.

• av.collector.timezoneoffset (Mandatory): Offset of the target event time from UTC
time zone. This helps the collector to report event time correctly to the Audit Vault Server
by adjusting the time zones. This attribute is not needed for an XML file collection plug-in

Chapter 3
Target Collection Attributes

3-43



if the event time itself contains the time zone information. An example of this
setting is as follows:

av.collector.TimeZoneOffset = +5:30
• av.collector.enableArchivedTime (Optional): This attribute is applicable only

for Oracle table trail. It is set to true by default. When enableArchivedTime is set
to true and if INIT_CLEANUP procedure is called for the trail, then the last archived
timestamp in dbms_audit_mgmt package is updated to the current checkpoint time
based on the ATC interval time. When set to false, the last archived timestamp for
the trail is not updated in the target database. In that case, the user must ensure
that the audit records with timestamps less than the checkpoint time should not be
purged from the audit table. The user can view the Audit Vault Server database
checkpoint table in AVSYS schema to verify the checkpoint time of the trail until the
records have been collected. If you want to change the attribute value, then the
trail must be restarted after the attribute has been updated.

3.8 Preprocessing Audit Data
Learn about the requirements to use Oracle AVDF collection plug-ins.

In general, collection plug-ins can only be used to collect audit trails that conform to
the requirements presented in this chapter.

For other audit trails, you can use the Audit Vault Java API.

However, there can be other reasons why you cannot collect audit records directly with
a collection plug-in, but you can collection them indirectly.

It can be possible to preprocess these audit trails to generate entries in database
tables or XML files in a format that allows collection plug-ins to collect them. For
example, IBM DB2 on Linux, Unix, and Microsoft Windows all require you to execute
the db2audit program to extract audit records from a proprietary binary format into a
text file. To extract new records, you must run this program periodically as the user
who owns the DB2 software.

While you cannot define a collection plug-in to read the file directly, It is possible that
you can write a program that reads the file periodically, extracts new audit records, and
writes them to a new XML file in a directory. Each run of this program can create a new
XML file that contains only the new records. You can then define a collection plug-in to
read these XML files, and collect the audit records into Oracle Audit Vault Server.

Related Topics

• Java-Based Audit Trail Collection Plug-ins
Oracle Audit Vault and Database Firewall provides a set of Java-based audit trial
collection plug-in, which enable you to create custom plug-ins.

Chapter 3
Preprocessing Audit Data

3-44



4
Java-Based Audit Trail Collection Plug-ins

Oracle Audit Vault and Database Firewall provides a set of Java-based audit trial collection
plug-in, which enable you to create custom plug-ins.

4.1 About Java-Based Collection Plug-ins
For situations where a template-based collection plug-in cannot easily handle audit data, you
can use Java-based collection plug-ins

Creating a custom collection plug-in using the Java APIs gives you much flexibility in how you
design your collection plug-in.

In general, use the Java type of collection plug-in if you need it to:

• Read trails not written in database tables or XML files.

• Read complex trails written to tables or XML files.

4.2 JDK Requirement for Using the Java-Based Collection Plug-
in

To use a Java-based collection plug-in with Oracle Audit Vault and Database Firewall, you
must have the JDK to compile and test your code.

Because the collection plug-in runs under the same JVM after it is shipped, Oracle
recommends that you use the same JDK as the JDK that you use to start the agent. Compile
your classes with the JDK by setting the -target option of the javac compiler to the same
JDK version. Refer to the JDK documentation for details.

4.3 About the Flow of Control Inside the Java-Based Collection
Plug-in

Learn how Oracle Audit Vault accesses an audit trail, maps the trail to Oracle Audit Vault
events, starts the correct Java-based collection plug-in, and creates audit records.

When a collection plug-in accesses an audit trail, it extracts an audit record and its related
fields from the audit trail. Next, it maps the audit record to an Oracle Audit Vault event, and all
the fields to Oracle Audit Vault fields. The collection plug-in then passes the Oracle Audit
Vault event and fields to the Collection Framework, which sends the information to the Oracle
Audit Vault Server.

The sequence of control processes for the audit trail collection is as follows.

Control Process Sequence for Audit Trail Collection

1. The Oracle Audit Vault Server commands the Agent Framework to create a thread to
collect from a specific audit trail.

4-1



2. The new thread, just created by the agent, collects a specific audit trail.

At this point, control is handed to the Collection Framework.

3. Within the thread, the Collection Framework connects to the Oracle Audit Vault
Server, and queries for configuration information for the audit trail being collected.

In addition, it requests information for the last checkpoint set for that trail.

4. With the information it now has, the Collection Framework uses the plug-in
manifest file to determine the correct Java class to start within the correct
collection plug-in. It passes the configuration information to this class, and asks it
to initialize itself.

5. After the collection plug-in has initialized itself, the Collection Framework loops
repeatedly. Within each loop, the Collection Framework does the following:

• Asks the collection plug-in for any additional audit records in the audit trail.

The collection plug-in transforms (by mapping) any further audit records into
the form of audit records that Audit Vault expects, and hands them to the
Collection Framework through the Collection API.

6. The collection plug-in can periodically send Checkpoint and metric information to
the Collection Framework. The collection plug-in can do so in the same flow when
it has the control, for example when the Collection Framework calls hasNext().

7. If the Oracle Audit Vault Server sends commands to the Collection Framework, the
Collection Framework passes them to the collection plug-in to act on.

If the Collection Framework receives a STOP command from the Audit Vault Server,
it notifies the collection plug-in to stop sending record. Then it exits the collection
thread and shuts itself down.

If the Collection Framework receives a RECONFIGURE command from the Audit
Vault Server, it notifies the collection plug-in to set an attribute using
setAttribute().

Related Topics

• Collection Thread
Learn about how Oracle Audit Vault collection threads are run.

• Collection Phase
The collection phase is the phase in which Audit Vault collects audit trail records.

• Checkpoint of a Trail
A Checkpoint, or a checkpoint of a trail, is the point up to which audit records
were committed to the Oracle Audit Vault Server.

• Mapping
The mappings required from targets to Audit Vault Server depends on the fields in
the target records.

4.4 Useful Classes and Interfaces in the Collection
Framework

Learn about Oracle Audit Vault Java-based collection plug-in classes and interfaces
that can be particularly useful for your own collections

Chapter 4
Useful Classes and Interfaces in the Collection Framework

4-2



The image below shows the relationships between the classes and interfaces from the
AuditService, CollectorContext, and Class AVLogger.

Figure 4-1    Classes and Interfaces from AuditService, CollectorContext, and Class
AVLogger

<<Interface>>
AuditService

+ void setCheckpoint(Timestamp 
checkPoint)
+ boolean 
setMetric(StringmetricName, String 
metricValue)

<<Interface>>
CollectorContext

+ Timestamp getCheckpoint()
+ Timestamp getMaxEventTime()
+ String getSecuredTargetUser()
+ char[] getSecuredTargetPassword()
+ String getSecuredTargetLocation()
+ String getPluginPath()
+ String getSecuredTargetName()
+ String getTrailType()
+ String getTrailLocation()
+ AVLogger getLogger()
+ AuditService getAuditService()
+ String getAttribute(String 
attributeName)

<<Class>>
AVLogger

+ void logInfo(String className, 
String methodName, String message)
+ void logDebug(String className, 
String methodName, String message)
+ void logWarn(String className, 
String methodName, String message)
+ void logError(String className, 
String methodName, String message)
+ void logDebugMethodEntered()
+ void logDebugMethodExited()

2

1

3

The following diagram shows the various classes and interfaces in the Collection Framework
that you need to know about to write a Java-based collection plug-in.

Chapter 4
Useful Classes and Interfaces in the Collection Framework

4-3



Figure 4-2    Classes and Interfaces from Collection Framework Used in
Collection Plug-in

<<Class>>
SampleEventCollector

- eventNameMap Map<Integer, Integer>
- m_connectionManager ConnectionManager
- m_resultSet ResultSet
- m_auditService AuditService
- m_previousCheckpoint Timestamp
- m_nextCheckpoint Timestamp
- m_logger AVLogger
- m_collectorContext CollectorContext
- m_timeZoneOffset long

+ void initializeCollector(CollectorContext trailContext) 
throws AuditEventCollectorException
+ boolean hasNext() throws AuditEventCollectorException
+ String getUserName() throws 
AuditEventCollectorException
+ String getOSUserName() throws 
AuditEventCollectorException
+ String getCommandClass() throws 
AuditEventCollectorException
+ String getEventName() throws 
AuditEventCollectorException
+ EventStatus getEventStatus() throws 
AuditEventCollectorException
+ Timestamp getEventTimeUTC() throws 
AuditEventCollectorException
+ String getErrorMessage() throws 
AuditEventCollectorException
+ String getErrorId() throws AuditEventCollectorException
+ String getTargetObject() throws 
AuditEventCollectorException
+ String getTargetOwner() throws 
AuditEventCollectorException
+ String getTargetType() throws 
AuditEventCollectorException
+ String getClientHostName() throws 
AuditEventCollectorException
+ String getClientIP() throws AuditEventCollectorException
+ String getClientProgramName() throws 
AuditEventCollectorException
+ String getTerminalName() throws 
AuditEventCollectorException
+ String getClientId() throws AuditEventCollectorException
+ String getExtension() throws AuditEventCollectorException
+ Reader getCommandText() throws 
AuditEventCollectorException
+ Reader getCommandParam() throws 
AuditEventCollectorException
+ String getMarker() throws AuditEventCollectorException
+ String[] getAttributeNames() throws 
AuditEventCollectorException
+ void setAttribute(String name, String value) throws 
SetAttributeException
+ void close()

7
<<Abstract Class>>

AuditEventCollector

+ abstract void initializeCollector(CollectorContext trailContext) 
throws AuditEventCollectorException
+ abstract boolean hasNext() throws 
AuditEventCollectorException
+ abstract String getUserName() throws 
AuditEventCollectorException
+ abstract String getOSUserName() throws 
AuditEventCollectorException
+ abstract String getCommandClass() throws 
AuditEventCollectorException
+ abstract String getEventName() throws 
AuditEventCollectorException
+ abstract EventStatus getEventStatus() throws 
AuditEventCollectorException
+ abstract Timestamp getEventTimeUTC() throws 
AuditEventCollectorException
+ abstract String getErrorMessage() throws 
AuditEventCollectorException
+ abstract String getErrorId() throws 
AuditEventCollectorException
+ abstract String getTargetObject() throws 
AuditEventCollectorException
+ abstract String getTargetOwner() throws 
AuditEventCollectorException
+ abstract String getTargetType() throws 
AuditEventCollectorException
+ abstract String getClientHostName() throws 
AuditEventCollectorException
+ abstract String getClientIP() throws 
AuditEventCollectorException
+ String getClientProgramName() throws 
AuditEventCollectorException
+ String getTerminalName() throws 
AuditEventCollectorException
+ String getClientId() throws 
AuditEventCollectorException
+ abstract String getExtension() throws 
AuditEventCollectorException
+ abstract Reader getCommandText() throws 
AuditEventCollectorException
+ abstract Reader getCommandParam() throws 
AuditEventCollectorException
+ abstract String getMarker() throws 
AuditEventCollectorException
+ String[] getAttributeNames() throws 
AuditEventCollectorException
+ void setAttribute(String name, String value) throws 
SetAttributeException
+ abstract void close()

<<Interface>>
AuditEventCollectorFactory

+ AuditEventCollector 
createAuditCollection(CollectorContext 
trailContext) throws 
AuditEventCollectorException

<<Class>>
SampleEventCollectorFactory

+ AuditEventCollector 
createAuditCollection(CollectorContext 
trailContext) throws 
AuditEventCollectorException

<<Implements>>

2

5

4 6

<<extends>>

4.5 How to Create a Java-Based Collection Plug-in
Review the tasks required to create and use Java-based collection plug-ins for Oracle
AVDF.

Chapter 4
How to Create a Java-Based Collection Plug-in

4-4



4.5.1 About Creating a Java-Based Collection Plug-in
The Oracle Audit Vault documentation provides examples of a Java-based collection plug-in
implementation, including a hypothetical source that writes events to a table named AUD.

Implementing Oracle Audit Vault and Database Firewall involves writing Java classes that
implement the AuditEventCollectorFactory interface, and that extend the
AuditEventCollector class, which are part of the Audit Vault Collection Framework. The
same Java class can both extend the AuditEventCollector class. and implement the
AuditEventCollectorFactory interface. Alternately, you can choose to write two separate
classes.The sample consists of two classes, SampleEventCollectorFactory which
implements the AuditEventCollectorFactory interface and SampleEventCollector which
extends from the AuditEventCollector class.

Related Topics

• Example Audit Trail for a Database Table Collection Plug-in
This example audit trail shows the details of audit trail. This example file is used in other
locations to demonstrate the creation and structure of a sample mapper file for Oracle
Audit Vault and Database Firewall.

• Java Collection Plug-in Code
This examples shows a complete Java-based collection plug-in.

4.5.2 Using the AuditEventCollectorFactory to Get the AuditEventCollector
Object

During runtime the collection plug-in can require multiple implementations of
AuditEventCollector. The AuditEventCollectorFactory object enables this capability for Oracle
Audit Vault and Database Firewall.

The Collection Framework does not create an instance of the AuditEventCollector object
directly. Instead, it creates an instance of the AuditEventCollectorFactory class and using
the factory object, gets the AuditEventCollector object. This is because the collection plug-
in may require multiple implementations of AuditEventCollector. The collection plug-in
decides at run time which implementation to use. Therefore, every collection plug-in should
have an implementation of AuditEventCollectorFactory.

In the following example, the createAuditEventCollector() always creates and returns an
instance of the SampleAuditEventCollector class.

Example 4-1    Creating a SampleAuditEventCollector Class

public class SampleEventCollectorFactory implements 
AuditEventCollectorFactory {
 
   public AuditEventCollector createAuditCollection(
         CollectorContext collectorContext) throws 
AuditEventCollectorException {
      return new SampleEventCollector();
   }
}

Chapter 4
How to Create a Java-Based Collection Plug-in

4-5



4.5.3 Using the CollectorContext Class When Creating a Java-Based
Collection Plug-in

Learn how to use source attributes, which provide the Oracle AVDF collection plug-in
with information about the source that is needed to collect the audit trail effectively.

The Collection Framework passes an instance of the CollectorContext class to the
collection plug-in through the initializeCollector method. This instance can be
queried by the collection plug-in to obtain information needed to collect the audit trails
generated by the source.

4.5.3.1 Basic Source Attributes
To obtain audit trail collection successfully, there are basic source attributes that
provide the collection plug-in with information about the source for Oracle Audit Vault
and Database Firewall.

Basic source attributes for Oracle Audit Vault and Database Firewall include the user
name, password, and connection string. These attributes are returned by these
methods respectively: getSecuredTargetUser, getSecuredTargetPassword, and
getSecuredTargetLocation. You can retrieve pther source attributes by using
getAttributes.

When the Oracle Audit Vault administrator registers the source, you can require the
Oracle Audit Vault administrator to provide the required information, in the form of
source attributes. Oracle Audit Vault stores these attributes in the Oracle Audit Vault
Server repository, and provides them to the collector code on startup.

Some collection plug-ins do not need to connect to the source and in these cases, the
Collection Framework may return null for these methods.

Related Topics

• Additional Source or Trail Attributes
You can retreive other attributes that you find the Oracle Audit Vault and Database
Firewall collector needs by passing the attribute name to the getAttribute
method.

4.5.3.2 Basic Trail Attributes
The checkpoint and trail name attributes are the basic attributes that Oracle Audit Vault
and Database Firewall obtains.

Checkpoint attributes are returned by the getCheckpoint method, and trail name
attributes are returned by the getTrailLocation method. The collection plug-in should
use these attributes as follows:

• The checkpoint returned is the last checkpoint the collection plug-in has set for this
trail when it ran the last time. The collection plug-in should start sending only those
records which have an event time greater than or equal to the checkpoint. If the
collection plug-in is starting for the first time, the collection plug-in receives this
value as null. In this case, the collection plug-in must send the records from the
beginning.

Chapter 4
How to Create a Java-Based Collection Plug-in

4-6



• Trail name indicates the target containing the audit events, typically, a table or directory
name.

You can retrieve other trail attributes by using getAttributes.

Related Topics

• Additional Source or Trail Attributes
You can retreive other attributes that you find the Oracle Audit Vault and Database
Firewall collector needs by passing the attribute name to the getAttribute method.

4.5.3.3 Utility Instances
Learn how to use the AVLogger and AuditService attributes with the Oracle Audit Vault
collector.

AVLogger and AuditService are returned by the getLogger and getAuditService methods,
respectively. The collector should use these attributes as follows:

• The AVLogger instance logs various messages.

• The AuditService instance sends checkpoints and metrics to the Audit Vault Server.

These methods never return null.

Related Topics

• Java-Based Collection Plug-in Utility APIs
In addition to the Collection Framework, the Oracle Audit Vault API includes Java utility
APIs that make the task of writing a collector easier.

4.5.3.4 Additional Source or Trail Attributes
You can retreive other attributes that you find the Oracle Audit Vault and Database Firewall
collector needs by passing the attribute name to the getAttribute method.

For example, suppose that a source required SourceVersion to collect audit data. In that
scenario, to obtain the value of SourceVersion. the collector for the source calls
collectorContext.getAttribute('SourceVersion').

If the attribute is present, then the getAttribute method returns the attribute value as a
String. Otherwise, the method returns null.

If the collector receives a null or an invalid value for any mandatory attribute, then it must
throw an AuditEventCollectorException exception from the initializeCollector method.
After throwing an exception, the Collection Framework shuts down.

Related Topics

• Changing Oracle AVDF Attributes at Run Time
If you are an administrator, then you can change the attributes that a Java-based
collector plug-in uses during Oracle AVDF audit trail collection.

Chapter 4
How to Create a Java-Based Collection Plug-in

4-7



4.5.4 Initializing the Java-Based Collection Plug-in
Use these examples to understand how to initialize a Java-based collection plug-in,
and how to start audit events collection with Oracle Audit Vault and Database Firewall.

The first thing the Collection Framework does after the collection thread starts is to
initialize the collector.

The Collection Framework calls the initializeCollector() method of the
AuditEventCollector class. The collector sets up the environment appropriately to
enable it to start collecting audit events. For example, for a database table collection
plug-in, this method connects to the database. For an XML file collection plug-in, this
method parses the file mask and may open a particular file to start with. The collection
plug-in may also want to retrieve various attributes from the collector context at this
point. If there is an error in setting up the environment, this method throws
AuditEventCollectorException with an appropriate error message.

Example 4-2    Initializing a Java-Based Collection Plug-in

The following is a example of how to initialize a Java-based collection plug-in:

private AVLogger m_logger;
   private CollectorContext m_collectorContext;
   private long m_timeZoneOffset;
   private AuditService m_auditService;
   private Timestamp m_previousCheckpoint;
 
   public void initializeCollector(CollectorContext collectorContext)
         throws AuditEventCollectorException {
      m_collectorContext = collectorContext;
      m_auditService = m_collectorContext.getAuditService();
      m_previousCheckpoint = m_collectorContext.getCheckpoint();
      m_logger = m_collectorContext.getLogger();
      // Get other attributes of the Source.
      String offset = 
m_collectorContext.getAttribute("TimeZoneOffset");
      if (offset != null) {          m_timeZoneOffset = 
getTimeZoneOffsetInMs(offset);
      }
      connectToSource();
 }

Example 4-3    Using the ConnectionManager Utility to Connect and Retrieve
Audit Records From a Database

If a collector must connect to a database to retrieve audit records, then it must use the
ConnectionManager utility API provided with Oracle Audit Vault. The following example
shows how to use the ConnectionManager utilityL

private ConnectionManager m_connectionManager;
   
   private void connectToSource() throws AuditEventCollectorException {
      m_logger.logDebugMethodEntered();
      // Get connection information from collector context.

Chapter 4
How to Create a Java-Based Collection Plug-in

4-8



      String user = m_collectorContext.getSecuredTargetUser();
      String password = new 
String(m_collectorContext.getSecuredTargetPassword());
      String connectionString = 
m_collectorContext.getSecuredTargetLocation();
      // Create a ConnectionManager object.
      try {
         m_connectionManager = new ConnectionManagerImpl(connectionString,
               user, password.toCharArray());
         m_connection = m_connectionManager.getConnection();
      } catch (AuditException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.FAILED_CONNECT_TO_SOURCE,
               new Object[] { connectionString }, ex);
      }
      m_logger.logDebugMethodExited();
   }

Related Topics

• Using the AVLogger API to Log Messages
To log errors, warnings, informational, and debug messages into the Oracle Audit Vault
and Database Firewall logs, you can use the AVLogger API.

• Example of Using the ConnectionManager API to Connect to Database Sources
See how to use the ConnectionManager API to manage Oracle Audit Vault and Database
Firewall Java compnent connections to databases.

4.5.5 Connecting, Fetching Events, and Setting Checkpoints
Use these examples to understand how to connect a Java-based collection plug-in, how to
fetch events, and how to set checkpoints with Oracle Audit Vault and Database Firewall.

After initialization, the Collection Framework repeatedly calls the hasNext() method of the
collector, which internally calls the fetchEvents() method. In this method, the collector
fetches audit records from the audit trail in the form of a ResultSet.

The range that is fetched starts from the point that was just finished to nearly the current time.
The next fetch is performed when the current ResultSet is exhausted

The collection plug-in sets the checkpoint whenever one ResultSet finishes processing, but
before the next one starts. The timing of this is important. When a collection plug-in sets the
checkpoint with Timestamp t, the collection plug-in must ensure that all records with an event
time less than t are already sent to Collection Framework. However, because ResultSet
does not give records in any particular order, setting the checkpoint before the end of a
ResultSet can be incorrect. Additionally, the collection plug-in does not use the current time
as the upper bound of the range, but rather uses the current time minus the delta time. Using
this time method allows for possible delays between generating the event, and inserting the
event into the table. When the collection plug-in runs the query, all events up to the upper
bound are fetched in the ResultSet to honor the checkpoint contract. The 5-second delay
time (the delta) ensures that all of the records, up to the upper bound, are already in the
table.

Chapter 4
How to Create a Java-Based Collection Plug-in

4-9



Example 4-4    Fetching ResultSets and Setting Checkpoints

This example shows how collectors should obtain the Connection from
ConnectionManager whenever they need one.

   private ResultSet m_resultSet;
   private Timestamp m_nextCheckpoint;
 
   private void fetchEvents() throws AuditEventCollectorException {
      m_logger.logDebugMethodEntered();
      if (m_nextCheckpoint != null) {
         m_auditService.setCheckpoint(m_nextCheckpoint);
         m_previousCheckpoint = m_nextCheckpoint;
      }
     // It is not good to hold on to the Connection for long. As this 
is the
      // only place we can release the connection, we release and 
reacquire the
      // connection.
      try {
         if (m_connection != null) {
            m_connectionManager.releaseConnection(m_connection);
         }
      } catch (AuditException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.FAILED_TO_RELEASE_CONNECTION_TO_DB, null, 
ex);
      }
 
      try {
         m_connection = m_connectionManager.getConnection();
      } catch (AuditException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.FAILED_TO_GET_CONNECTION_TO_DB, null, ex);
      }
 
     // This is the upper bound which is current time minus 5 seconds.
      m_nextCheckpoint = new Timestamp(System.currentTimeMillis() - 
5000);
     String query = null;
      try {
         if (m_previousCheckpoint == null) {
            query = "select * from AUD where EVENT_TIME <= ?";
            m_preparedStatement = m_connection.prepareStatement(query);
            m_preparedStatement.setTimestamp(1, m_nextCheckpoint);
         } else {
            query = "select * from AUD where EVENT_TIME > ? and 
EVENT_TIME <= ?";
            m_preparedStatement = m_connection.prepareStatement(query);
            m_preparedStatement.setTimestamp(1, m_previousCheckpoint);
            m_preparedStatement.setTimestamp(2, m_nextCheckpoint);
         }
         m_resultSet = m_preparedStatement.executeQuery();
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(

Chapter 4
How to Create a Java-Based Collection Plug-in

4-10



               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE,
               new Object[] { query }, ex);
      }
      m_logger.logDebugMethodExited();
   }

Example 4-5    Using hasNext to Fetch Records

hasNext()fetchEvents()

     public boolean hasNext() throws AuditEventCollectorException {
      boolean hasMore;
      try {
         if(m_resultSet == null) {
            fetchEvents();
            return m_resultSet.next();
         }
         hasMore = m_resultSet.next();
         if (!hasMore) {
            fetchEvents();
            hasMore = m_resultSet.next();
         }
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
      return hasMore;
   }

4.5.6 Transforming Source Event Values to Audit Vault Event Values
Learn about when and how the Oracle AVDF collection plug-in transforms source event
values to Oracle AVDF values.

The collector retrieves values of specific fields from source. For some fields, in addition to
retrieving the values, the collection plug-in must transform the values in certain ways. This
section discusses transformations that are required for all source types.

4.5.6.1 Event Time to UTC
See how Oracle Audit Vault and Database Firewall transforms an event time from a source
time zone to Coordinated Universal Time (UTC).

Event Time should be sent only in UTC time zone. Therefore, it must be transformed from the
source time zone to the UTC time zone before returning a value. If the column from the
source database is timezone aware, then this transformation is not necessary.

Example 4-6    Transforming EventTime from Source Time Zone to UTC

   public Timestamp getEventTimeUTC() throws AuditEventCollectorException {
      try {
         Timestamp eventTime = m_resultSet.getTimestamp("EVENT_TIME");
         // As the method name suggests, the timestamp must be returned only 
in

Chapter 4
How to Create a Java-Based Collection Plug-in

4-11



         // UTC timone.
         return new Timestamp(eventTime.getTime() - m_timeZoneOffset);
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }

4.5.6.2 Source Event Name to Audit Vault Event Name
Use this example to create your own source event names to Oracle Audit Vault event
names mapping.

Each source event name maps to one Oracle Audit Vault event name. The
getCommandClass() method should transform the source event name into a value that
Oracle Audit Vault can accept.

Example 4-7    Mapping Source Event Names to Audit Vault Event Names

private static final Map<Integer, String> eventNameMap = new 
HashMap<Integer,
         String>();
static {
      eventNameMap.put(1, "CREATE");
      eventNameMap.put(2, "INSERT");
      eventNameMap.put(3, "SELECT");
      eventNameMap.put(4, "CREATE");
      eventNameMap.put(15, "ALTER");
      eventNameMap.put(30, "AUDIT");
      eventNameMap.put(34, "CREATE");
      eventNameMap.put(35, "ALTER");
      eventNameMap.put(51, "CREATE");
      eventNameMap.put(52, "CREATE");
   }
 
   public String getCommandClass() throws AuditEventCollectorException 
{
      try {
         int eventId = m_resultSet.getInt("ACTION");
         return eventNameMap.get(eventId);
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }

Related Topics

• Oracle Audit Vault and Database Firewall Fields
Oracle Audit Vault and Database Firewall values consist of core fields, large fields,
marker fields, and extension fields.

Chapter 4
How to Create a Java-Based Collection Plug-in

4-12



4.5.6.3 Source Event ID to Source Event Name
Learn how to map the source event identifiers (IDs) to descriptive source event names in
Oracle Audit Vault and Database Firewall.

For some sources, events reported as IDs may not mean anything if users are unfamiliar with
the IDs. Therefore, it may be best to map the source event IDs to descriptive source event
names. If the audit record itself contains descriptive event names, then they can directly be
returned without any mapping. The source event name is optional, so the collection plug-in
can return null if it does not have the information.

In the following example, you can see how to map the source event IDs to descriptive source
event names.

Example 4-8    Mapping Source Event Ids to Source Event Names

private static final Map<Integer, String> sourceEventMap = 
        new HashMap<Integer, String>();
 
   static {
      targetTypeMap.put(1, "OBJECT:CREATED:TABLE");
      targetTypeMap.put(2, "INSERT INTO TABLE");
      targetTypeMap.put(3, "SELECT FROM TABLE");
      targetTypeMap.put(4, "OBJECT:CREATED:TABLE");
      targetTypeMap.put(15, "OBJECT:ALTERED:TABLE");
      targetTypeMap.put(30, "AUDIT OBJECT");
      targetTypeMap.put(34, "OBJECT:CREATED:DATABASE");
      targetTypeMap.put(35, "OBJECT:ALTERED:DATABASE");
      targetTypeMap.put(51, "OBJECT:CREATED:USER");
      targetTypeMap.put(52, "OBJECT:CREATED:ROLE");
   }
 
   public String getEventName() throws AuditEventCollectorException {
      try {
         int eventId = m_resultSet.getInt("ACTION");
         return sourceEventMap.get(eventId);
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }

4.5.6.4 Mapping Source Event Name or ID to Target Type
Learn how to map source event identifiers (IDs) to Oracle Audit Vault target types.

A target type is the type of the object on which an event has taken place. For example, if the
event is a SELECT operation on a table, then the target type is table. In some sources, the
target type can be present within the source event name and ID. For example, an event
name can be select table, which implies that the target type is a table. In this case, you
must map the source event name or ID to a target type. Target type is an optional field, so the
collection plug-in can return null if there is no such information.

In the following example, source event IDs are mapped to Oracle Audit Vault target types.

Chapter 4
How to Create a Java-Based Collection Plug-in

4-13



Example 4-9    Mapping Source ID to Target Type

private static final Map<Integer, String> targetTypeMap = 
      new HashMap<Integer, String>();
 
   static {
      targetTypeMap.put(1, "TABLE");
      targetTypeMap.put(2, "TABLE");
      targetTypeMap.put(3, "TABLE");
      targetTypeMap.put(4, "CLUSTER");
      targetTypeMap.put(15, "TABLE");
      targetTypeMap.put(30, "OBJECT");
      targetTypeMap.put(34, "DATABASE");
      targetTypeMap.put(35, "DATABASE");
      targetTypeMap.put(51, "USER");
      targetTypeMap.put(52, "ROLE");
   }
 
   public String getTargetType() throws AuditEventCollectorException {
      try {
         int eventId = m_resultSet.getInt("ACTION");
         return targetTypeMap.get(eventId);
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }

4.5.6.5 Source Event Status to Oracle Audit Vault Event Status
Oracle Audit Vault has three EventStatus values. See how you can transform source
event status values to the Oracle Audit Vault values.

There are only three allowed values for EventStatus. They are SUCCESS, FAILURE, and
UNKNOWN. You must configure transformations of any source event values to one of the
three supported Oracle Audit Vault values. In the following example, you can see how
source values are transformed to Oracle Audit Vault values.

Example 4-10    Transforming Source Values to Oracle Audit Vault EventStatus
Values

   public EventStatus getEventStatus() throws 
AuditEventCollectorException {
      try {
         int status = m_resultSet.getInt("STATUS");
         if (status == 1) {
            return EventStatus.SUCCESS;
         } else if (status == 0) {
            return EventStatus.FAILURE;
         } else {
            return EventStatus.UNKNOWN;
         }
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(

Chapter 4
How to Create a Java-Based Collection Plug-in

4-14



            ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }

4.5.7 Retrieving Other Audit Field Values
When field values do not require transformations, the Oracle Audit Vault Java-based
collection plug-in returns the value it obtains from the source.

In the following example, the Oracle Audit Vault collection plug-in obtains a user name, and
returns it.

Example 4-11    Returning Values that Do Not Need Transformation

   public String getUserName() throws AuditEventCollectorException {
      try {
         return m_resultSet.getString("USER_ID");
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }

4.5.8 Changing Oracle AVDF Attributes at Run Time
If you are an administrator, then you can change the attributes that a Java-based collector
plug-in uses during Oracle AVDF audit trail collection.

If you are an Oracle AVDF administrator, then you can update attributes, including source
attributes, at any time. To update attributes, you can use either the Audit Vault Server
console, or you can use the AVCLI command-line tool.

How Audit Vault Server Manages Attribute Updates

If the update occurs while collectors are collecting audit trails, then first Audit Vault Server
notifies all running collectors dynamically, by calling the setAttribute method of the
collector. Next, the collection plug-in must start using the new value immediately. If the
collection plug-in is not configured for the attribute value, or if the value cannot be used, then
the collector responds with the message SetAttributeException.

In the following example, the collection plug-in receives and handles a new time zone offset
to use in converting the EventTime to Coordinated Universal Time (UTC) time zone for all
subsequent events.

Example 4-12    Changing an Oracle Audit Vault and Database Firewall Attribute

public void setAttribute(String name, String value)
         throws SetAttributeException {
           if (name.equalsIgnoreCase("TimeZoneOffset")) {
              m_timeZoneOffset = getTimeZoneOffsetInMs(value);
      } else {
         throw new SetAttributeException(ErrorCodes.INVALID_ATTRIBUTE_NAME,
               new Object[] { name, value }, null);

Chapter 4
How to Create a Java-Based Collection Plug-in

4-15



      }
   }

Effects After Modifying Attributes

Use the preceding example to understand how the time zone offset transformation is
affected in the example you can find in the following topic:

Event Time to UTC

Related Topics

• Using the CollectorContext Class When Creating a Java-Based Collection Plug-in
Learn how to use source attributes, which provide the Oracle AVDF collection
plug-in with information about the source that is needed to collect the audit trail
effectively.

• Using Exceptions in Collection Plug-ins
An Oracle Audit Vault and Database Firewall collector can generate several
different types of exceptions.

4.5.9 Changing Custom Attributes at Run Time
See how administrators can change custom collector plug-in attributes at runtime while
Oracle Audit Vault and Database Firewall collects the audit trail.

As with Oracle Audit Vault and Database Firewall (Oracle AVDF) attributes, you can
also change custom attributes at runtime.

If you want to change custom attributes, then you must implement the following
methods to validate the custom attributes before you can use custom attributes in the
setAttribute method.

Example 4-13    Changing a Custom Attribute

private static final String[] s_attributes = new String[] 
{ "av.collector.configureParameter1", 
"av.collector.configureParameter2" };
public String[] getAttributeNames() throws 
AuditEventCollectorException {
         return s_attributes.clone();
 }
 
public void setAttribute(String name, String value)
         throws SetAttributeException {
           if (name.equalsIgnoreCase("configureParameter1")) {
           // use value
           }else if (name.equalsIgnoreCase("configureParameter2"))
           {
           // use value
           }else {
         throw new 
SetAttributeException(ErrorCodes.INVALID_ATTRIBUTE_NAME,
               new Object[] { name, value }, null);
      }
   }

Chapter 4
How to Create a Java-Based Collection Plug-in

4-16



4.5.10 Creating Extension Fields
See an example of how to create an extension field for Java-based collection plug-ins in
Oracle Audit Vault and Database Firewall.

The extension field contains all the fields of the source event which are of interest to the
user, but do not correspond to any of the core or large fields. The collector must form one
string which contains the names and values of these extra fields. The format of this string is
up to the collection plug-in. The Collection Framework never tries to parse this string. In this
example of creating an extension field, it uses the following format, repeating as needed:

 <field_name>=<field_value>;

Note that this example extension file sends three fields:

Example 4-14    Creating an Extension Field

  public String getExtension() throws AuditEventCollectorException {
      try {
         StringBuilder sb = new StringBuilder();
         sb.append("DB_ID=" + m_resultSet.getString("DB_ID") + ";");
         sb.append("INSTANCE=" + m_resultSet.getString("INSTANCE") + ";");
         sb.append("PROCESS=" + m_resultSet.getString("PROCESS"));
         return sb.toString();
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }

4.5.11 Handling Large Audit Fields
See an example of how Oracle Audit Vault and Database Firewall handles very large audit
record fields.

Some audit record fields can be very large, so that returning them as a string is not feasible.
Therefore, methods corresponding to those fields return an object of type Reader. If the
source field is a character large object (aCLOB), then the Reader can be obtained by using
clob.getCharacterStream().

Note:

The Reader is only valid as long as the Connection to the source is alive.

You must design the collection plug-in to keep the connection to the source alive until all
events using readers have been sent to the Audit Vault Server.

If the collector wants to reset the Connection to the source, it must do so immediately after
setting the checkpoint. This is because the Collection Framework sends batches of records,
and then sets the checkpoint. The time the ckeckpoint is sent is the only time that the

Chapter 4
How to Create a Java-Based Collection Plug-in

4-17



collector knows that all records are flushed to Oracle Audit Vault Server. Note that
there are other occasions that records are sent to the Oracle Audit Vault Server, but
this is the only one with a checkpoint.

If the Reader instance cannot be obtained directly, then the collector must create and
return a Reader.

Example 4-15    Creating Large Fields

   public Reader getCommandText() throws AuditEventCollectorException {
      try {
         Clob clob = m_resultSet.getClob("SQL_TEXT");
         return clob.getCharacterStream();
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }

4.5.12 Creating Markers to Uniquely Identify Records
See an example of how to create a marker, and review guidelines for how to create
markers for Oracle Audit Vault and Database Firewall.

The collector must generate markers which the collection framework uses to uniquely
identify a record.

The collector must generate a unique marker for each record in a particular trail. It can
use more than one event field to create a marker. It can even use information not
present in the audit event, such as, table name, file name, file creation time, and so on
if it is not a template-based collection plug-in. Smaller sized markers are preferred
because they take less time to create, less space in recovery phase, and less time to
match. Markers are useful in certain scenarios, particularly in the recovery phase,
where any records which were sent after the last checkpoint must be filtered. When
the collection plug-in starts collecting events, it starts from the last checkpoint of the
last run. However, some records might have been collected after that checkpoint and
sent to the Audit Vault Server. To prevent duplication, the Collection Framework
compares incoming records against existing records in the Audit Vault Server using the
record markers.

In the following example, The strings Session_ID and Entry_ID are used to form a
marker.

Example 4-16    Creating Markers

public String getMarker() throws AuditEventCollectorException {
      // ENTRY_ID will identify an audit event uniquely with in a 
session. Hence
      // ENTRY_ID along with SESSION_ID will uniquely identify an 
audit event
      // across sessions.
      try {
         return m_resultSet.getString("SESSION_ID") + ":"
               + m_resultSet.getString("ENTRY_ID");
      } catch (SQLException ex) {
           throw new AuditEventCollectorException(

Chapter 4
How to Create a Java-Based Collection Plug-in

4-18



               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }

4.5.13 Closing the Java-Based Collection Plug-in
See how you can close a Java-based collection plug-in for Oracle Audit Vault and Database
Firewall.

The process of closing a Java-based collection plug-in begins when the Collection
Framework receives a command to stop collecting a particular audit trail, causing the
Collection Framework to notify the collector using the close() method. In this method, the
collector performs clean-up tasks, such as closing database connections or file handles.
Once the close() method returns control to the Collection Framework, the collection thread
ends.

This method should not result in any exceptions errors. In case of an exception, it should log
an error message, as shown in the following example.

Example 4-17    Calling Close and Releasing Resources

public void close() {
      try {
         if (m_resultSet != null) {
            m_resultSet.close();
            m_resultSet = null;
         }
         if (m_connectionManager != null) {
            m_connectionManager.destroy();
            m_connectionManager = null;
         }
         m_previousCheckpoint = null;
         m_nextCheckpoint = null;
         m_logger = null;
      } catch (SQLException ex) {
         m_logger.logError("SampleEventCollector", "close",
               "SQLException occurred. ", ex);
      } catch (AuditException ex) {
         m_logger.logError("SampleEventCollector", "close",
               "AuditException occurred. ", ex);
      }
   }  

4.5.14 Using Exceptions in Collection Plug-ins
An Oracle Audit Vault and Database Firewall collector can generate several different types of
exceptions.

The collector can throw the following two checked exceptions:
AuditEventCollectorException and SetAttributeException.

The setAttribute method can throw the SetAttributeException exception when the
method cannot set a new attribute. Upon receiving this exception, it is possible that the

Chapter 4
How to Create a Java-Based Collection Plug-in

4-19



Collection Framework does not stop the collector (see an example in "Changing Audit
Vault and Database Firewall Attributes at Run Time").

The rest of the methods except the close method throw
AuditEventCollectorException. This exception must be thrown only if an
unrecoverable condition has occurred. Upon receiving this exception, the Collection
Framework stops the collector. Before stopping the collector, the Collection Framework
calls close method. See the previous sections for sample code to create and throw
these exceptions.

Related Topics

• Changing Oracle AVDF Attributes at Run Time
If you are an administrator, then you can change the attributes that a Java-based
collector plug-in uses during Oracle AVDF audit trail collection.

4.6 Java-Based Collection Plug-in Utility APIs
In addition to the Collection Framework, the Oracle Audit Vault API includes Java utility
APIs that make the task of writing a collector easier.

4.6.1 About Connection to Database Sources Using
ConnectionManager API

All of the Oracle Audit Vault and Database Firewall components (collectors, agents,
and server) that are written in Java must use the ConnectionManager API to manage
their connections to databases.

You use the ConnectionManager API to manage connections to source databases,
such as Oracle Database, Microsoft SQL Server, Sybase Adaptive Server, and IBM
DB2.

Benefits of Using the ConnectionManager API

• It reduces the resource usage on the database server.

• It makes client-side operations more graceful, so clients do not hang or die
abruptly.

• It provides better performance.

You must instantiate a concrete implementation of the connection manager with the
appropriate parameters required for setting up a connection pool. Several constructors
are available for use. All optional parameters that are not supplied by the caller take
default Oracle Audit Vault-specific values, as follows:

• CONNECTION_FACTORY_CLASSNAME=oracle.jdbc.pool.OracleDataSource
• MIN_POOL_SIZE=0
• INACTIVE_CONNECTION_TIMEOUT=1800
• INITIAL_POOL_SIZE=0
• VALIDATE_CONNECTION_ON_BORROW=true

Chapter 4
Java-Based Collection Plug-in Utility APIs

4-20



4.6.2 Example of Using the ConnectionManager API to Connect to
Database Sources

See how to use the ConnectionManager API to manage Oracle Audit Vault and Database
Firewall Java compnent connections to databases.

The ConnectionManager API is based on the acquire, use, and release model for managing
the database connections. All of the Oracle Audit Vault and Database Firewall components
(collectors, agents, and server) that are written in Java must use the ConnectionManager API
to manage their connections to databases.

The caller is expected to complete these steps in the order shown:

1. Create an instance of ConnectionManager API.

2. Get a connection to a database.

3. Use the connection

4. Release the connection back to the pool.

5. Repeat steps 2 through 4 as many times as needed.

6. Destroy the Connection Manager instance.

Example 4-18    Using the Connection Manager to Handle Connection Pooling

//Connection Manager
ConnectionManager cManager = null;
 
try {
  /*
   * Connection Pool Properties.
   * Set the pool properties such as URL
   * Initial pool size, Min pool size, etc.
   * The set of supported connection pool properties are
   * documented in the Oracle UCP documentation
   */
  Properties pProps = new Properties(); 
  pProps.put(URL, "jdbc:oracle:thin:@hostname:port:sid");
 
  /*
   *  Connection Properties
   *
   *  Set the connection properties here.
   *  The set of connection properties that can be set
   *  depends on the driver.  To enable SSL using the
   *  the oracle jdbc driver, you need to set the following
   *     Properties cProps = new Properties();
   *     String walletLoc =    "/path/to/walletdirectory/cwallet.sso";
   *     cProps.setProperty("oracle.net.authentication_services","(TCPS)");
   *     cProps.setProperty("javax.net.ssl.trustStore", walletLoc);
   *     cProps.setProperty("oracle.net.ssl_server_dn_match", "true")  ;
   *     cProps.setProperty("javax.net.ssl.trustStoreType","SSO");
   *     cProps.setProperty("javax.net.ssl.keyStore", walletLoc);
   *     cProps.setProperty("javax.net.ssl.keyStoreType","SSO");
   */

Chapter 4
Java-Based Collection Plug-in Utility APIs

4-21



  Properties cProps = new Properties();
 
  cManager =  new ConnectionManagerImpl(pProps, cProps);
           
  String username;
  char[] passwd;
  Connection conn = null;
 
  /* Do something */
  ...
 
  /* Retrieve and set the username and password for user1 */
  username = "user1";
  passwd   = "user1passwd".toCharArray();
 
  /* Get a connection as "user1"*/
  conn = cManager.getConnection(username, passwd);      
 
 
  /* Use the "user1" connection and do something useful */
  ...         
 
  /* Release the connection */
  cManager.releaseConnection(conn);
          
  /* Retrieve and set the username and password for user2 */
  username = "user2";
  passwd   = "user2passwd".toCharArray();
 
  /* Get a connection as "user2" */
  conn = cManager.getConnection(username, passwd);      
 
 
  /* Use the "user2" connection and do something useful */
  ...         
 
  /* Release the connection */
  cManager.releaseConnection(conn);
 
} catch (Exception e) {
  /* Take appropriate action here */
 
} finally {
  if (cManager != null) {
    try {
      cManager.destroy();
    } catch (AuditException ae) {
      /* Take appropriate action here */
    }
} 

The ConnectionManager API is designed so that a caller can acquire and release
database connections using different user credentials at any point in time. For
example, a caller can acquire a connection using alice's database credentials, and

Chapter 4
Java-Based Collection Plug-in Utility APIs

4-22



then later on acquire a connection with robert's database credentials using the same
connection manager.

Note:

Ensure that the caller does not do the following:

• Keep a reference to the connection locally (through an instance or class
variable).

• Hold on to the connection for a long time.

These requirements enable the connection pool to automatically recover
connections that have the following behaviors:

• They have exceeded the TIME_TO_LIVE time limit.

• They have abandoned connections, that is, connections that have not been in
use for a while.

• There are connections that have been borrowed too many times. This
requirement ensures that they to avoid resource leaks.

Related Topics

• Initializing the Java-Based Collection Plug-in
Use these examples to understand how to initialize a Java-based collection plug-in, and
how to start audit events collection with Oracle Audit Vault and Database Firewall.

4.6.3 Using the Windows Event Log Access API
To parse Microsoft Windows event logs, you can use the Microsoft Windows EventLog API.

The Windows EventLog API is a wrapper on Windows APIs that access the Windows Event
Log. This API is available only on the Windows platform, for collectors that need to extract
audit records.

The following diagram shows the classes that you can use to parse the Windows event logs.

Chapter 4
Java-Based Collection Plug-in Utility APIs

4-23



Figure 4-3    Structure of Windows Event Logs

<<Class>>
EventLogReader

<<Abstract Class>>
Operator

+ static final Integer LENGTH
+ static final Integer RESERVED
+ static final Integer RECORD_NUMBER
+ static final Integer TIME_GENERATED
+ static final Integer TIME_WRITTEN
+ static final Integer EVENT_ID
+ static final Integer EVENT_TYPE
+ static final Integer NUM_STRINGS
+ static final Integer EVENT_CATEGORY
+ static final Integer RESERVED_FLAGS
+ static final Integer CLOSING_RECORD_NUMBER
+ static final Integer SOURCE_NAME
+ static final Integer COMPUTER_NAME
+ static final Integer USER_SID
+ static final Integer EVENT_DATA_VALUES

+ EventLogReader() throws AuditException
+ void openLog()
+ void openLog(String log)
+ void openLog(int startRecNum)
+ void openLog(String log, int startRecNum)
+ void closeLog()
+ boolean hasNext()
+ Object next()
+ boolean addFilter(Integer field, Operator op, Object 
value) throws AuditException
+ boolean addFilter(Integer field, Operator op, Object 
value1, Object value2) throws AuditException

<<Class>>
EventLogRecord

+ Long getLength()
+ Long getReserved()
+ Long getRecordNumber()
+ Date getTimeGenerated()
+ Date getTimeWritten()
+ Long getEventId()
+ Long getEventType()
+ Long getNumStrings()
+ String [] getEventDataValues()
+ Long getEventCategory()
+ Long getReservedFlags()
+ Long getClosingRecordNumber()
+ String getSourceName()
+ String getComputerName()
+ String getUserSid()

<<Class>>
Equals

<<extends>>

+ static Operator getInstance()

<<Class>>
GreaterThan

+ static Operator getInstance()

<<Class>>
LessThan

+ static Operator getInstance()

<<Class>>
RegEx

+ static Operator getInstance()

<<Class>>
OutsideRange

+ static Operator getInstance()

<<Class>>
InRange

+ static Operator getInstance()

<<extends>>

<<extends>>

<<extends>>

<<extends>>

The EventLogRecord class contains one record in the event log. The EventLogReader
class helps to fetch event log records one by one. Operator classes help filter the
event log records. An operator works on a particular field of event log record and
determines whether the record is to be filtered based on the value of the field. For
example, you can use the Equals operator to filter all event log records where the
value of the field does not equal the value specified. The InRange and OutsideRange
operators are ternary operators. The rest are binary operators.

To collect event log records, follow these steps:

1. Create the EventLogReader instance.

For example, to open the application event log:

EventLogReader eventLogReader = new EventLogReader();
eventLogReader.openLog()

Chapter 4
Java-Based Collection Plug-in Utility APIs

4-24



To open other event logs such security or system event logs, use the overloaded method
openLog(String log). For example, to open a security event log:

EventLogReader eventLogReader = new EventLogReader();
eventLogReader.openLog("Security");

To open an application event log from a specific record number, use the openLog(int
startRecNum) overloaded method. For example, to open an application event log from
audit record number 1234:

EventLogReader eventLogReader = new EventLogReader();
eventLogReader.openLog(1234);

To open security or system event logs from a specific record number, use the overloaded
method, openLog(String log, int startRecNum). For example, to open a security
event log from record number 4321:

EventLogReader eventLogReader = new EventLogReader();
eventLogReader.openLog("Security",4321);

2. Add the appropriate filters.

For example, to bind an equals filter to the SourceName field, so that the EventLogReader
only receives records that have the source name MSSQL$SQLEXPRESS:

eventLogReader.addFilter(EventLogReader.SOURCE_NAME,
Equals.getInstance(), "MSSQL$SQLEXPRESS");

To get event records between Timestamp, m_lowerBoundTime, and m_upperBoundTime,
use following filters:

m_eventLogReader.addFilter(EventLogReader.TIME_GENERATED, 
GreaterThan.getInstance(), m_lowerBoundTime);

m_eventLogReader.addFilter(EventLogReader.TIME_GENERATED, 
LessThan.getInstance(), m_upperBoundTime);

3. Fetch and process the EventLogRecord.

The following example code obtains the next EventLogRecord, and extracts various fields
from it.

if(eventLogReader.hasNext()) {
              EventLogRecord record = 
(EventLogRecord)eventLogReader.next();
              Long eventID = record.getEventId(); 
              String userID = record.getUserSid();
              String hostName = record.getComputerName();
  ...
   }

4. Close the EventLogReader instance.

Chapter 4
Java-Based Collection Plug-in Utility APIs

4-25



When the collector is stopped, use the following code to close down the
EventLogReader instance:

eventLogReader.closeLog();
Related Topics

• Closing the Java-Based Collection Plug-in
See how you can close a Java-based collection plug-in for Oracle Audit Vault and
Database Firewall.

4.6.4 Using Windows EventMetaData API
To obtain metadata of events, you can use this Microsoft Windows Metadata Java API
procedure.

Microsoft Windows provides a new API that can obtain metadata of events from
version 2008 and on. Given a publisher name, this API obtains metadata for each
event. The following figure illustrates how the Windows Metadata Java is a wrapper
over the Windows API.

Figure 4-4    EventMetaData_Classes

<<Class>>

EventMetaDataReader

+ EventMetaDataReader throws 

AuditException

+ Map<Long, List<EventMetaDataRecord>> 

getEventMetaData(String publisherName) 

throws AuditException

+ EventMetaDataRecord()

+ Long getEventId()

+ int getNumEventDataNames()

+ String [] getEventDataNames()

+ String getEventDataName(int index)

<<Class>>

EventMetaDataRecord

The EventMetaDataRecord contains the metadata of one event. The
EventMetaDataReader helps to fetch event metadata records one by one. Use this API
as follows:

1. Create an instance of EventMetaDataReader.

EventMetaDataReader eventMetaDataReader = new EventMetaDataReader();
 

2. Obtain metadata of all events for a publisher.

Map<Long, List<EventMetaDataRecord>> eventLogRecordMap = 
eventMetaDataReader 
   getEventMetaData("Microsoft-Windows-Security-Auditing");

3. Obtain the metadata list of a particular event from the map.

List<EventMetaDataRecord> eventRecordList = m_eventRecordMap
   get(m_eventLogRecord.getEventId());

Chapter 4
Java-Based Collection Plug-in Utility APIs

4-26



4. Obtain metadata from the list, and obtain event data names from it.

EventMetaDataRecord eventMetaDataRecord = eventRecordList.get(i);
for(int i=0; i<eventMetaDataRecord.getNumEventDataNames(); i++) {
   String eventDataName = eventMetaDataRecord.getEventDataName(i);
   ....
}

4.6.5 Using the AVLogger API to Log Messages
To log errors, warnings, informational, and debug messages into the Oracle Audit Vault and
Database Firewall logs, you can use the AVLogger API.

Example 4-19    Using the AVLogger API

import oracle.av.platform.common.util.AVLogger;
import oracle.av.platform.common.exception.AuditException;
import oracle.av.platform.common.AuditErrorCodes;
 
public class Test
{
  public static void main(String[] args)  {
     /* Logger objects */
     AVLogger myModule = null;
     try {
       /* get Logger instances; this will auto-create the logger instance */
       /* if one does not exist */
       myModule = AVLogger.getLogger("someModule");
       /* print INFO level message */
       /* check log level if you are concatenating strings to avoid 
expensive */
       /* string operations */
       if(myModule.isInfoEnabled()) {
           avServer.logInfo("Testing INFO level message...." + "another 
String" +
             "one more string"); 
       }
       /* No need to check the log level if there is no string concatenation 
*/
       myModule.logInfo("Testing INFO level message for another 
component....");
       /* changing the log level dynamically */
       myModule.setLogLevel(AVLogger.AV_LOG_LEVEL_DEBUG);
       myModule.logWarn("Testing WARN level message ....");
       myModule.logDebug("Testing DEBUG level message ....");
       /* Reset the log level back to INFO */
       myModule.setLogLevel(AVLogger.AV_LOG_LEVEL_INFO);
       /* Testing Exceptions: For now on, all exceptions will have */
       /* an OAV-XXXX error code printed out automatically as long as */
       /* they derive from AuditException object */
       throw new AuditException (ErrorCodes.INTERNAL_ERROR, null, null);
     } catch (Exception e) {
       myModule.logError(e);
     }

Chapter 4
Java-Based Collection Plug-in Utility APIs

4-27



  }
}

Related Topics

• Initializing the Java-Based Collection Plug-in
Use these examples to understand how to initialize a Java-based collection plug-
in, and how to start audit events collection with Oracle Audit Vault and Database
Firewall.

4.6.6 Using the Oracle XML Developer's Kit to Parse XML Files
If you are developing collections, then you can use the Oracle XML Developer's Kit to
parse XML files and extract audit records from them.

The Oracle XML Developer's Kit is included. and available to use to develop
collections.

See Also:

Oracle XML Developer's Kit Programmer's Guide for detailed information.

4.7 Using an Audit Trail Cleanup with Java-Based Collection
Plug-ins

Learn how you can enable audit trail clean-up on the source after Oracle Audit Vault
and Database Firewall has archived an audit trail.

Audit trail clean-up is a feature that some sources provide to remove audit records
after they have been archived. If this type of feature exists in the source, then an
Oracle Audit Vault collection plug-in can integrate with the feature, to tell the source to
what extent the audit trail has been archived. When Oracle Audit Vault provides
archive status information, a source is enabled to clean up the audit trail (remove the
original audit data) to that point, because the Oracle Audit Vault status indicates that
the audit trail is archived, and deleting the audit trail to the point of the archive record
results in no loss of data. The Oracle Audit Vault collection plug-in gives the clean-up
utility information about the checkpoint, which is he point up to which data has been
collected.

The collection plug-in can write archive status information into the directory
agent_home\av\atc, to a file with a trail-specific name, using the following syntax
SecuredTargetName_TrailID.atc (for example, oracl_1.atc).

The content of the atc file should consist of the following:

• securedTargetType=Oracle
• SecuredTargetName=orcl
• TrailType=TABLE
• TrailName=sys.aud$

Chapter 4
Using an Audit Trail Cleanup with Java-Based Collection Plug-ins

4-28



• 2016-04-15 10:26:53.7 (This time stamp represents the last checkpoint for these
settings.)

The target clean-up utility can parse the checkpoint from the atc file and purge audit records
till this timestamp from audit trail.

For example, Oracle Database sources provide a target cleanup utility, in the
DMBS_AUDIT_MGMT PL/SQL package. The Oracle Database prepackaged collection plug-ins
integrate with the DMBS_AUDIT_MGMT package, which enables audit trail cleanup operations on
the source.

4.8 Java-Based Collection Plug-in Security Considerations
Oracle strongly recommends that you review security guidelines before developing Java-
based collection plug-ins.

For sources, such as databases, that require a connection in order to extract audit records, it
is your responsibility, as the developer, to properly document the privileges needed to perform
this task. Oracle recommends that the account used for connection have only the minimal
privileges needed for the job. Any extra privileges can create a security issue.

You must also parse the input audit records properly, and protect Oracle Audit Vault and
Database Firewall (Oracle AVDV) from malicious data. For instance, audit records can be
crafted to inject SQL or HTML into the audit trail, which could expose data stored in Oracle
AVDF to attacks. You must ensure that all incoming audit data is sanitized properly before it is
given to the Collection Framework.

Chapter 4
Java-Based Collection Plug-in Security Considerations

4-29



5
Packaging Audit Collection Plug-ins

Learn about the steps you need to perform to package collection plug-ins.

5.1 Flow of Packaging
Review the flow of packaging audit trails with Oracle Audit Vault and Database Firewall. The
tools required for packaging the plug-in are available in the SDK.

Setting Up Your Development Environment described the directory structure of the staging
area, all the shipping objects such as the JDBC driver (if needed), the mapper file, any
executables, and any Oracle-supplied patches.

For Java collectors, it also includes appropriate locations for the compiled code and Java
JAR files.

Audit Collection Plug-ins described the mapper file.

Java-Based Audit Trail Collection Plug-ins describes how to create Java-based collection
plug-ins.

For Java collectors, it also includes Java code

Now you are in a position to create a plugin-manifest.xml file that describes where
everything resides, what Audit Vault and Database Firewall should do with it, and then
package everything into a .zip file to ship to the Audit Vault and Database Firewall
Administrator.

5.2 Creating a plugin_manifest.xml File for Shipping
After you have created packaging for your audit trails, you are in a position to create a
plugin-manifest.xml file for Oracle Audit Vault and Database Firewall.

The plugin-manifest.xml file describes where everything resides, indicates what Oracle
Audit Vault and Database Firewall should do with it, and then how to package everything into
a .zip file that can be shipped to the Oracle Audit Vault and Database Firewall Administrator.

1. When the collection plug-in program is ready to be packaged, create a directory
structure.

Note that the directory structure is slightly different for Java-based plug-ins than for
collection plug-ins.

2. Create a plugin-manifest.xml file. This file describes the collection plug-in and the
relevant parameters that provide the Audit Vault Collection Framework necessary
information to instantiate and run the collection plug-in.

3. Package the collection plug-in files, the plugin-manifest.xml file, and any additional jars
that collection plug-in depends on at run-time.

4. Run the avpack tool. The avpack tool validates and generates a .zip package that
represents an collection plug-in package.

5-1



The avpack tool runs a number of validity checks (such as whether the directory
structure is correctly populated, the manifest file is well-formed, and is without
errors, and so on), then generates the collection plug-in package, in the form of a
zip file, for deployment.

See Also:

• Audit Collection Plug-in Directory Structure

• Description of Plug-in Manifest File

• Example Code for example plugin-manifest.xml files specific to your
type of collection plug-in.

• avpack Tool

5.3 External Dependencies
In the packaging process, external dependencies are files that are needed during
runtime, but that can be unavailable when you package Oracle Audit Vault collection
plug-ins.

An example of an external dependey is if your collection plug-in depends on a third-
party component that the end-user licenses, or a component that has an issue related
to licensing or copyright. In that scenario, it is possible that you are unable to package
this component. If you cannot package the required component, then this is an
external dependency. To resolve this dependency, you expect that the end-user
provides the required compnent during collection plug-in deployment.

For these scenarios, the plugin-manifest.xml exposes the unresolved-external
element. avpack does not file-check files under this element, but during deployment
time, avpack will fail to deploy the collection plug-in if the $OH/av/dropins folder does
not contain these files.

In the following example, foo.jar is an external dependency:

<unresolved-external>
   <file>foo.jar</file>
</unresolved-external>

During deployment, avpack checks to see if the file foo.jar is present in the $OH/av/
dropins folder on the Oracle Audit Vault Server. If the file is missing, then avpack fails
to deploy the collection plug-in. Instead, it issues a message stating that external
dependencies are not being met.

To resolve the issue, the user must acquire the file, and make it available in
the $OH/av/dropins folder. After the external dependency is provided, avpack can
deploy the collection plug-in successfully.

5.4 Creating New Versions of Your Audit Collection Plug-ins
If you create new versions of the collection plug-ins, then you can easily plug them in
to replace existing versions without difficulty in Oracle Audit Vault and Database
Firewall.

Chapter 5
External Dependencies

5-2



To update an existing collection plug-in to a newer version, use the avcli command-line tool
with the DEPLOY PLUGIN command,

Collection plug-ins are cumulative in nature. All necessary files are created and updated.

To remove or undeploy collection plug-ins, use the avcli tool and the UNDEPLOY PLUGIN
commands. These commands are atomic; that is, they are all or nothing transaction, which
helps maintain a high degree of system stability.

Related Topics

• Oracle Audit Vault and Database Firewall Administrator's Guide

• Oracle Audit Vault and Database Firewall Administrator's Guide

5.5 avpack Tool
The avpack tool is a command-line based tool written in Java that packages the various
collection plug-in objects such as code files, configuration files, and so on.

Prerequisites

You must complete the following prerequsites for using the avtool:

• Install and package (run) the avpack plug-in tool on the same platform on which the agent
will run.

The packaged avpack plug-in for Linux can be used for all platforms, but the packaged
avpack plug-in for Windows can only be used for Windows platforms.

• Place collection plug-in artifacts following the recommended directory structure. Then,
you can use avpack to generate a collection plug-in package.

File Path

You can stage the collection plug-in files in any directory that is accessible by the avpack tool.
The avpack tool validates the directory structure, and then parses and verifies the plugin-
manifest.xml file. The tool also performs some basic verifications, such as verifying that all
the files specified in the plugin-manifest.xml are staged in their corresponding directories,
and so on.

Syntax

avpack -stagedir directory name -o archive filename [-l loglevel ]
[-h]

Options

Each option must be prefixed with a minus sign (-).

Option Description

-stagedir The directory under which the collection plug-in
artifacts are staged. Contents of this directory will
be archived in the generated plug-in archive.

Chapter 5
avpack Tool

5-3



Option Description

-o The name for the generated plug-in archive file. It
should end with a .zip extension. (for example,
myplugin.zip).

-l (Optional) Sets the log level to the level specified.
Supported log levels: INFO, WARNING, ERROR, and
DEBUG. Default log level is INFO.

-h (Optional) Display help for the avpack tool.

Usage Notes

You use the plugin-manifest.xml file to specify the key files that the collection plug-in
must have to run. The avpack utility checks for the existence of these files, but zips
everything contained in stagedir, so you do not need to list every file unless you want
it to be verified by avpack.

After validation is complete, the tool packages the files into a .zip plug-in package
suitable for deployment with Oracle Audit Vault and Database Firewall.

Related Topics

• Audit Collection Plug-in Directory Structure
Learn about the Oracle Audit Vault collection plug-in directory structure, the
development environment, and how to stage plug-in manifest.xml files.

Chapter 5
avpack Tool

5-4



6
Testing Audit Collection Plug-ins

Find out about the testing you can do for your collection plug-ins.

Be sure to analyze your database and audit trails for other issues that require testing.

6.1 Requirements for Testing Audit Collection Plug-ins
To prepare for testing, deploy the Audit Vault Server and an Audit Vault Agent, and check
your systems and audit trails.

You should prepare for testing by performing the following:

• Deploy the Audit Vault Server and an Audit Vault Agent.

• Have an available source system, a system that generates the audit events.

• Ensure that the agent is deployed on the same computer where the audit trail resides if
the audit trail must be collected locally (for example, if it is written to operating system
files).

Related Topics

• Before Setting Up the Development Environment
To develop audit collection plug-ins, you must first set up the development environment.
This set up provides a consistent environment for developing and testing the collection
plug-ins.

6.2 Typical Audit Collection Plug-in Testing Processes
A typical audit collection testing process for collections plug-ins should look like this.

When you are testing procedures, your sequence of tasks should be similar to the following:

1. Perform functional testing:

a. Deploy the collection plug-in in the generated .zip archive that you created earlier in
your test Oracle Audit Vault Server environment.

b. Redeploy the agent (containing the updated plug-in artifacts) into your test Oracle
Audit Vault agent environment.

c. Register the source using the AVCLI utility.

d. Issue an AVCLI START COLLECTION command to start gathering records from the
audit trail supported by this collection plug-in.

e. Validate the process, by looking at the data reports through the AVDF Console, to
ensure that:

- Records in the source are now in the Oracle Audit Vault Server.

- The data makes sense.

- Fields are correctly mapped.

6-1



- Values are valid.

f. Issue an AVCLI STOP COLLECTION command.

g. Undeploy the collection plug-in..

h. Redeploy the agent as described in Step 1b.

2. Perform failure testing to see what happens when various things go wrong.

Some examples of failure are network failure, a source shutting down in the middle
of collection, a power outage, and malformed input data. In all cases, the collection
plug-in should not crash, and should be able to recover gracefully, continuing
collection from where it left off. The guarantee you need to provide is that each
audit record is sent to the Audit Vault Server once, and exactly once, regardless of
failure.

3. Analyze performance by checking how many of these components the collection
plug-in uses:

• The CPU

• The memory

• The disk I/O

• The network I/O

4. Check the performance under stress.

Some examples of stress are thirty days of continuous use, heavy event volume,
or collection of trails for multiple sources at the same time, both on the same host,
and on multiple hosts.

5. Perform security testing (for example, see if you can inject HTML or SQL).

6. Perform internationalization testing. Test the ability to handle data in multiple input
languages.

7. If bugs are found, fix them and then repeat these steps.

See Also:

• Oracle Audit Vault and Database Firewall Administrator's Guide to
register the source

• Oracle Audit Vault and Database Firewall Administrator's Guide to
start gathering records from the audit trail supported by this
collection plug-in

• Oracle Audit Vault and Database Firewall Administrator's Guide to
undeploy the collection plug-in

Related Topics

• STOP COLLECTION FOR TARGET

• Packaging Audit Collection Plug-ins
Learn about the steps you need to perform to package collection plug-ins.

Chapter 6
Typical Audit Collection Plug-in Testing Processes

6-2



• Redeploying the Oracle Audit Vault Agent
While testing the collection plug-in, it can be necessary to redeploy the agent for various
reasons.

6.3 Deploying an Audit Vault Agent
See how you register an Agent, create an Agent home directory, install the Agent, and start
the Agent.

This Agent can be on the same computer as the Audit Vault Server, or on a different one.

1. Register the Agent host using the AVCLI command REGISTER HOST.

2. Create a directory ($AGENT_HOME) on the Agent host.

3. Copy the agent.jar from the Audit Vault Server $ORACLE_HOME/av/jlib/agent.jar to
the $AGENT_HOME.

4. Install the Agent using following command:

$ java -jar agent.jar -d $AGENT_HOME

5. Start the Agent using -key option. When prompted, enter the activation key that was
provided by the Oracle AVDF administrator. As you type it, this key is not displayed.

$ $AGENT_HOME/bin/agentctl start -key
Enter activation key: 

Subsequently, starting the Agent does not require the user to provide the activation key.
The Agent can be started using the following command:

$ $AGENT_HOME/bin/agentctl start

It can take several seconds before the Agent comes to a complete stop, and the Agent
process is shut down.

Activation is a one time activity. You do not have to do it again.

You can stop the Agent at any time by using the following command:

$ $AGENT_HOME/bin/agentctl stop

Related Topics

• REGISTER HOST

• About Registering Hosts

6.4 Redeploying the Oracle Audit Vault Agent
While testing the collection plug-in, it can be necessary to redeploy the agent for various
reasons.

Before you redeploy an agent, .the agent must be already set up, and a directory created.

1. Copy the agent.jar from the Audit Vault Server to a local directory.

Chapter 6
Deploying an Audit Vault Agent

6-3



2. Update the agent by using the following command:

$ java -jar agent.jar -d $AGENT_HOME

3. Start the agent with the $AGENT_HOME/bin/agentctl start command.

Note:

The agent automatically determines if it is an upgrade or a new install
depending on the destination directory provided to the java -jar agent.jar
command.

Chapter 6
Redeploying the Oracle Audit Vault Agent

6-4



A
Audit Vault Server Fields

You can map Oracle Audit Vault and Database Firewall events and fields in your collection
plug-ins.

A.1 Oracle Audit Vault and Database Firewall Fields
Oracle Audit Vault and Database Firewall values consist of core fields, large fields, marker
fields, and extension fields.

A.1.1 Core Fields
To monitor and filter audit records for all source types in Oracle Audit Vault, you use core
fields.

Core fields are fundamental to all source types. They are central to the description of an
event. These fields are present in most audit records, for reporting, filtering, and so on.

Core Field Definitions

EventTimeUTC: Required: The time stamp that indicates when the event occurred. If the
event has more than one time stamp (for example, an event start time stamp and an event
end time stamp), then the collection plug-in must assign a time stamp to this field. If this
field contains NULL, then Oracle Audit Vault shuts down the collection plug-in.

UserName: Required: The user who performed the action in the application or system that
generated the audit record. If this field contains NULL, then the audit record is invalid.

CommandClass: Required: The action performed in the event (for example, SELECT or
DELETE). If this field contains NULL, then the audit record is invalid.

OSUserName: The user who logged into the operating system that generated the audit
record. If the user logged into the operating system as JOHN but performed the action as
SCOTT, then this field contains JOHN and the User Name field contains SCOTT.

TargetType: The type of the target object on which the action was performed. For example, if
the user selected from a table, then the target type is TABLE.

TargetObject: The name of the object on which the action was performed. For example, if
the user selected from a table, then the Target Object field contains the name of the table.

TargetOwner: The name of the owner of the target on which the action was performed. For
example, if the user had selected from a table owned by user JOHN, then the Target Owner
field contains the user name JOHN.

ClientIP: The IP address of the host (Host Name) from where the user initiated the action.

ClientId: Client identifier of the user whose actions were audited.

A-1



ClientHostName: The host computer from where the user initiated the action. For
example, if the user performed the action from an application on a server, then this
field contains the name of the server.

TerminalName: Name of the UNIX terminal that was the source of the event.

EventName: The name of the event as is from the audit trail.

EventStatus: The status of the event. There are three possible values for
EventStatus: SUCCESS, FAILURE, and UNKNOWN.

ErrorId: The error code of an action.

ErrorMessage: The error message of an action.

Related Topics

• Actions
The Action field describes the nature of user activity that triggers generation of an
audit record. It is similar to the verb part of a sentence, it describes the activity.

• Target Types
The TargetType field describes the type of object on which a user action operates.
It is similar to a noun that describes the object of a user action.

A.1.2 Large Fields
In Oracle Audit Vault, Large fields are fields that can contain arbitrarily large amounts
of data.

Large Field Definitions

For large fields, use the following:

• CommandText: Contains the text of the command that caused the event, which
can be a SQL statement, a PL/SQL statement, and so on. This is also a core field.

• CommandParam: Contains the parameters of the command that caused the
event. This is also a core field.

A.1.3 Marker Field
In Oracle Audit Vault, marker fields are fields that uniquely identify a record in a trail.

Marker Field Definitions

Marker Field of a Record: The marker is a string that uniquely identifies a record in a
trail. During the recovery process, Oracle Audit Vault uses this field to filter the
duplicate records. The collection plug-in provides the marker field, which is typically a
concatenated subset of the fields of an audit record. For example, with Oracle
Database, the session ID and Entry ID (a unique identifier within a session) define a
marker.

Appendix A
Oracle Audit Vault and Database Firewall Fields

A-2



A.1.4 Extension Field
Extension fields store fields that cannot be accommodated in core or large fields, as name-
value pairs, separated by delimiter, inside a single Audit Vault field.

Extension Field Definition

The extension field contains character large object (CLOB) columns. The RLS$INFO column
describes the configured row level security policies. The RLS$INFO information is mapped to
the extension field in Oracle Audit Vault and Database Firewall.

Extension Field Values

To populate the extension field column, you must set the AUDIT_TRAIL parameter of the
target to DB EXTENDED.

A.2 Actions and Target Types
When you build collection plug-ins, you can use the target types and actions that Oracle Audit
Vault can detect.

If you are building a collection plug-in, then you should use these fields in your mapper file, if
the fields mapped semantically. Otherwise, you can use your own values.

A.2.1 Actions
The Action field describes the nature of user activity that triggers generation of an audit
record. It is similar to the verb part of a sentence, it describes the activity.

Purpose

Describes the nature of user activity that triggers generation of an audit record.

Oracle Audit Vault and Database Firewall strongly recommends mapping audit events to an
appropriate value for the Action field, if the user activity semantically maps to it.

Permitted Actions

Audit Vault Server is currently aware of the following actions:

END
ACCESS
ACQUIRE
ALTER
ANALYZE
APPLY
ARCHIVE
ASSIGN
ASSOCIATE
AUDIT
AUTHENTICATE
AUTHORIZE
BACKUP

Appendix A
Actions and Target Types

A-3



BIND
BLOCK
CACHE
CALCULATE
CALL
CANCEL
CLOSE
COMMIT
COMMUNICATE
COMPARE
CONFIGURE
CONNECT
CONTROL
CONVERT
COPY
CREATE 
DDL
DEADLOCK
DELETE
DEMOTE
DENY
DENY
DISABLE
DISASSOCIATE
DISCONNECT
DML
DROP
ENABLE
EXCEED
EXECUTE
EXPIRE
EXPORT
FAIL
FILTER
FINISH
GET
GRANT
IMPORT
INHERIT
INITIALIZE
INSERT
INSTALL
INVALID
INVALIDATE
LOAD
LOCK
LOGIN
LOGOUT
MIGRATE
MOUNT
MOVE
NOAUDIT
NOTIFY
NOTIFY
OPEN

Appendix A
Actions and Target Types

A-4



PAUSE
PROMOTE
PROXY
PUBLISH
QUARANTINE
RAISE
READ
RECEIVE
RECOVER
REDO
REFRESH
REGISTER
RELEASE
REMOTE CALL
RENAME
RENEW
REQUEST
RESET
RESTORE
RESUME
RETRIEVE
REVOKE
ROLLBACK
ROLLFORWARD
SAVEPOINT
SEARCH
SELECT
SEND
SET
START
STOP
SUBMIT
SUBSCRIBE
SUSPEND
SYNCHRONIZE
TRANSACTION MANAGEMENT
TRUNCATE
UNDO
UNINSTALL
UNKNOWN
UNLOCK
UNMOUNT
UNREGISTER
UNSUBSCRIBE
UPDATE
VALIDATE
VIOLATE
WAIT
WRITE

Appendix A
Actions and Target Types

A-5



A.2.2 Target Types
The TargetType field describes the type of object on which a user action operates. It is
similar to a noun that describes the object of a user action.

Purpose

Describes the type of object on which a user action operates.

Oracle Audit Vault and Database Firewall strongly recommends mapping audit events
to an appropriate value for the TargetType field, if the user activity semantically maps
to it.

Permitted Objects

Oracle Audit Vault Server is currently aware of the following target types:

ALL TRIGGERS
APP ROLE
APPLICATION
ASSEMBLY
AUTHORIZATION
BROKER QUEING
BUFFERPOOL
CHECKPOINT
CLUSTER
CONNECTION
CONTEXT
CONTROL FILE
DATABASE
DATABASE LINK
DBA_RECYCLEBIN
DEFAULT
DIMENSION
DIRECTORY
EDITION
EVALUATION
EVENT MONITOR
EXPRESSION
FLASHBACK
FLASHBACK ARCHIVE
FUNCTION
INDEX
INDEXES
INDEXTYPE
INSTANCE
JAVA
LIBRARY
MATERIALIZED VIEW
MATERIALIZED VIEW LOG
MESSAGE
METHOD
MINING MODEL
NODE

Appendix A
Actions and Target Types

A-6



NODEGROUP
OBJECT
OPERATOR
OUTLINE
PACKAGE
PACKAGE BODY
PRIVILEGE
PROCEDURE
PROFILE
PUBLIC DATABASE LINK
PUBLIC SYNONYM
RESOURCE COST
RESTORE POINT
REVOKE
REWRITE EQUIVALENCE
ROLE
ROLLBACK SEG
RULE
SAVEPOINT
SAVEPOINT
SCHEMA
SEQUENCE
SESSION
STATISTICS
SUBSCRIPTION
SUMMARY
SYNONYM
SYSTEM
TABLE
TABLE OR SCHEMA POLICY
TABLESPACE
TAPE
TRACE
TRANSACTION
TRIGGER
TYPE
TYPE BODY
UNKNOWN
USER
USER LOGON
USER OR PROGRAM UNIT LABEL
USER_RECYCLEBIN
VIEW

Appendix A
Actions and Target Types

A-7



B
Schemas

Oracle AVDF uses these schemas for plug-in manifest files and collection plug-ins.

B.1 Sample Schema for a plugin-manifest.xml file
To validate any plugin-manifest.xml file that you author, Oracle recommends that you use
the sample schema for a plugin-manifest.xml file.

Example B-1    Sample plugin-manifest.xsd file

<?xml version="1.0" encoding="utf-8"?>
<!-- This schema defines the structure of the Oracle Audit Vault Plugin -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
           xmlns="http://foobar.example.com/av/plugin"
           targetNamespace="http://foobar.example.com/av/plugin"
           elementFormDefault="qualified">
 
  <xs:element name="plugin">
    <xs:complexType>
      <xs:sequence>
        <xs:element name="targetVersion">
          <xs:complexType>
            <xs:attribute name="min" type="xs:string" use="required" />
          </xs:complexType>
        </xs:element>
        <xs:element name="extensionSet">
          <xs:complexType>
            <xs:sequence>
              <xs:element name="extensionPoint">
                <xs:complexType>
                  <xs:sequence>
                    <xs:element name="fileList">
                      <xs:complexType>
                        <xs:sequence>
                          <xs:element name="jars" minOccurs="0" maxOccurs="1">
                            <xs:complexType>
                              <xs:sequence>
                                <xs:element minOccurs="0" maxOccurs="unbounded" name="include">
                                  <xs:complexType>
                                    <xs:attribute name="file" type="xs:string" use="required" />
                                    <xs:attribute name="permission" type="xs:string" use="optional" />
                                  </xs:complexType>
                                </xs:element>
                              </xs:sequence>
                            </xs:complexType>
                          </xs:element>
                          <xs:element name="templates" minOccurs="0" maxOccurs="1">
                            <xs:complexType>
                              <xs:sequence>
                                <xs:element minOccurs="0" maxOccurs="unbounded" name="include">
                                  <xs:complexType>
                                    <xs:attribute name="file" type="xs:string" use="required" />
                                    <xs:attribute name="permission" type="xs:string" use="optional" />

B-1



                                  </xs:complexType>
                                </xs:element>
                              </xs:sequence>
                            </xs:complexType>
                          </xs:element>
                          <xs:element name="bin" minOccurs="0" maxOccurs="1">
                            <xs:complexType>
                              <xs:sequence>
                                <xs:element minOccurs="0" maxOccurs="unbounded" name="include">
                                  <xs:complexType>
                                    <xs:attribute name="file" type="xs:string" use="required" />
                                    <xs:attribute name="permission" type="xs:string" 
use="optional" />
                                  </xs:complexType>
                                </xs:element>
                              </xs:sequence>
                            </xs:complexType>
                          </xs:element>
                          <xs:element name="config" minOccurs="0" maxOccurs="1">
                            <xs:complexType>
                              <xs:sequence>
                                <xs:element minOccurs="0" maxOccurs="unbounded" name="include">
                                  <xs:complexType>
                                    <xs:attribute name="file" type="xs:string" use="required" />
                                    <xs:attribute name="permission" type="xs:string" 
use="optional" />
                                  </xs:complexType>
                                </xs:element>
                              </xs:sequence>
                            </xs:complexType>
                          </xs:element>
                          <xs:element name="shell" minOccurs="0" maxOccurs="1">
                            <xs:complexType>
                              <xs:sequence>
                                <xs:element minOccurs="0" maxOccurs="unbounded" name="include">
                                  <xs:complexType>
                                    <xs:attribute name="file" type="xs:string" use="required" />
                                    <xs:attribute name="permission" type="xs:string" 
use="optional" />
                                  </xs:complexType>
                                </xs:element>
                              </xs:sequence>
                            </xs:complexType>
                          </xs:element>
                          <xs:element name="patch" minOccurs="0" maxOccurs="1">
                            <xs:complexType>
                              <xs:sequence>
                                <xs:element minOccurs="0" maxOccurs="unbounded" name="include">
                                  <xs:complexType>
                                    <xs:attribute name="file" type="xs:string" use="required" />
                                    <xs:attribute name="permission" type="xs:string" 
use="optional" />
                                  </xs:complexType>
                                </xs:element>
                              </xs:sequence>
                            </xs:complexType>
                          </xs:element>
                          <xs:element name="unresolved-external" minOccurs="0" maxOccurs="1">
                            <xs:complexType>
                              <xs:sequence>
                                <xs:element minOccurs="0" maxOccurs="unbounded" name="include">

Appendix B
Sample Schema for a plugin-manifest.xml file

B-2



                                  <xs:complexType>
                                    <xs:attribute name="file" type="xs:string" use="required" />
                                    <xs:attribute name="permission" type="xs:string" use="optional" />
                                  </xs:complexType>
                                </xs:element>
                              </xs:sequence>
                            </xs:complexType>
                          </xs:element>
                        </xs:sequence>
                      </xs:complexType>
                    </xs:element>
                    <xs:element name="securedTargetTypeInfo">
                      <xs:complexType>
                        <xs:attribute name="name" type="xs:string" use="required" />
                      </xs:complexType>
                    </xs:element>
                    <xs:element minOccurs="0" maxOccurs="unbounded" name="trailInfo">
                      <xs:complexType>
                        <xs:sequence>
                          <xs:element name="trailType" type="xs:string" />
                          <xs:element minOccurs="0" name="trailLocation" type="xs:string" />
                          <xs:element maxOccurs="unbounded" name="className">
                            <xs:complexType>
                              <xs:attribute name="name" type="xs:string" use="required" />
                              <xs:attribute name="securedTargetVersion" type="xs:decimal" 
use="optional" />
                            </xs:complexType>
                          </xs:element>
                        </xs:sequence>
                      </xs:complexType>
                    </xs:element>
                    <xs:element minOccurs="0" maxOccurs="unbounded" name="eventPatch">
                      <xs:complexType>
                        <xs:attribute name="name" type="xs:string" use="required" />
                        <xs:attribute name="order" type="xs:unsignedByte" use="required" />
                      </xs:complexType>
                    </xs:element>
                  </xs:sequence>
                  <xs:attribute name="type" type="xs:string" use="required" />
                </xs:complexType>
              </xs:element>
            </xs:sequence>
          </xs:complexType>
        </xs:element>
      </xs:sequence>
      <xs:attribute name="name" type="xs:string" use="required" />
      <xs:attribute name="id" type="xs:string" use="required" />
      <xs:attribute name="version" type="xs:string" use="required" />
      <xs:attribute name="provider-name" type="xs:string" use="required" />
      <xs:attribute name="copyright" type="xs:string" use="optional" />
    </xs:complexType>
  </xs:element>
</xs:schema>

Related Topics

• Example Code
Learn from examples the different types of collection plug-ins, including database tables,
XML files, and Java-based file collection plug-ins.

Appendix B
Sample Schema for a plugin-manifest.xml file

B-3



• Staging a plugin-manifest.xml File
You must stage the plugin-manifest.xml file directly under the STAGE_DIR_ROOT
directory.

B.2 Database Table Collection Plug-in Mapper File
See an example of an Oracle Audit Vault and Database Firewall database table
collection plug-in mapper file.

To see how to create your own plug-in mapper file, review the structure of this
example.

Example B-2    Database Table Collection Plug-in Mapper Schema

<?xml version="1.0"?>
 
<!--
 Copyright (c) 2013, 2015, Oracle and/or its affiliates. All rights reserved.
-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:tnp="http://
foobar.example.com/avdf/ezcollector/namepattern" elementFormDefault="qualified">
<xsd:include schemaLocation="ezCollectorTemplate_schema.xsd"/>
<xsd:import schemaLocation="NamePattern_schema.xsd" namespace="http://
foobar.example.com/avdf/ezcollector/namepattern" />

<!-- XML Document Structure-->
<xsd:element name="AVTableCollectorTemplate" >
    <xsd:complexType>
        <xsd:all>
            <!-- Audit table name -->    
            <xsd:element name="TableName" type="xsd:string" minOccurs="1" 
maxOccurs="1"/>
            <xsd:element name="NamePattern" type="tnp:NamePatternType" minOccurs="0" 
maxOccurs="1"/>
            <!-- Database connection information -->        
            <xsd:element name="ConnectionInfo" minOccurs="1" maxOccurs="1">
                <xsd:complexType>
                    <xsd:sequence>    
                        <!-- JDBC datasource class -->
                        <xsd:element name="DataSource" type="xsd:string"  
minOccurs="1" maxOccurs="1"/>
                     </xsd:sequence>
                </xsd:complexType>
            </xsd:element>
            <!-- Secured Target to AV server fields Mapping for Core, Large, 
Extension fields and Marker-->
            <xsd:element name="FieldMappingInfo" type="FieldMappingInfoType" 
minOccurs="1" maxOccurs="1"/>
            <!-- Event Filter. This is optional. If it is not used, all the audit 
events will be collected-->
            <xsd:element name="EventFilter" type="EventFilterType" minOccurs="0" 
maxOccurs="1"/>
        </xsd:all>
        <!-- Secured Target Type-->

Appendix B
Database Table Collection Plug-in Mapper File

B-4



        <xsd:attribute name="securedTargetType" type="xsd:string" use="required"/>
        <!-- Max Secured Target version supported by the template-->
        <xsd:attribute name="maxSecuredTargetVersion" type="xsd:string" use="required"/>
        <!-- Min Secured Target version supported by the template-->
        <xsd:attribute name="minSecuredTargetVersion" type="xsd:string"/>
        <!-- Template file version-->
        <xsd:attribute name="version" type="xsd:string" use="required"/>        
    </xsd:complexType>
</xsd:element>
</xsd:schema>

B.3 Schema For XML File Collection Plug-in Mapper File
See how to set up a schema for an XML file collection plug-in mapper file for Oracle Audit
Vault and Database Firewall.

In the following example, you can see how to set up a mapper schema:

Example B-3    XML file collection plug-in Mapper Schema

<?xml version="1.0"?>

<!--
 Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved.
-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:include schemaLocation="ezCollectorTemplate_schema.xsd"/>

<!-- XML Document Structure-->
<xsd:element name="AVXMLCollectorTemplate" >
    <xsd:complexType>
        <xsd:all>    
            <xsd:element name="HeaderInfo"  minOccurs="1" maxOccurs="1">
                <xsd:complexType>
                    <xsd:all>
                        <!-- StartTag tag contains Root element of XML Audit data file-->
                        <xsd:element name="StartTag" type="xsd:string" minOccurs="1" 
maxOccurs="1"/>
                    </xsd:all>
                </xsd:complexType>
            </xsd:element>            
            <xsd:element name="RecordInfo"  minOccurs="1" maxOccurs="1">
                <xsd:complexType>
                    <xsd:all>
                        <!-- start tag of xml audit record in XML audit file-->
                        <xsd:element name="StartTag" type="xsd:string" minOccurs="1" 
maxOccurs="1"/>                
                    </xsd:all>
                </xsd:complexType>
            </xsd:element>
            <!-- tag for specifying xsl transformation related information -->
            <xsd:element name="XslTransformation" minOccurs="0" maxOccurs="1">

Appendix B
Schema For XML File Collection Plug-in Mapper File

B-5



                <xsd:complexType>
                                        <xsd:all>
                                                <!-- tag to specify name of XSL file--
>
                                                <xsd:element name="XslFile" 
type="xsd:string" minOccurs="1" maxOccurs="1"/>
                                                <!-- tag for specifying Root element 
of source XML Audit data file to be transformed-->
                                                <xsd:element 
name="SourceFileStartTag" type="xsd:string" minOccurs="1" maxOccurs="1"/>
                                        </xsd:all>
                                </xsd:complexType>
            </xsd:element>
            <!-- Secured Target to AV server fields Mapping for Core, Large, 
Extension fields and Marker-->
            <xsd:element name="FieldMappingInfo" type="FieldMappingInfoType" 
minOccurs="1" maxOccurs="1"/>
            <!-- Event Filter. This is optional. If it is not used, all the audit 
events will be collected-->
            <xsd:element name="EventFilter" type="EventFilterType" minOccurs="0" 
maxOccurs="1"/>
        </xsd:all>
        <!-- Secured Target Type-->
        <xsd:attribute name="securedTargetType" type="xsd:string" use="required"/>
        <!-- Max Secured Target version supported by the template-->
        <xsd:attribute name="maxSecuredTargetVersion" type="xsd:string" 
use="required"/>
        <!-- Min Secured Target version supported by the template-->
        <xsd:attribute name="minSecuredTargetVersion" type="xsd:string"/>
        <!-- Template file version-->
        <xsd:attribute name="version" type="xsd:string" use="required"/>        
    </xsd:complexType>
</xsd:element>
</xsd:schema>

B.4 Schema For JSON File Collection Plug-in Mapper File
See how to set up a schema for a JSON file collection plug-in mapper file for Oracle
Audit Vault and Database Firewall.

In the following example, you can see how to set up a mapper schema:

Example B-4    JSON file collection plug-in Mapper Schema

<?xml version="1.0"?>

<!--
 Copyright (c) 2013, 2017, Oracle and/or its affiliates. All rights reserved.

-->

<xsd:schema xmlns:xsd="http://foobar.example.org/2001/XMLSchema">
<xsd:include schemaLocation="ezCollectorTemplate_schema.xsd"/>

Appendix B
Schema For JSON File Collection Plug-in Mapper File

B-6



<!-- XML Document Structure-->
<xsd:element name="AVJSONCollectorTemplate" >
    <xsd:complexType>
        <xsd:all>    
            <xsd:element name="HeaderInfo"  minOccurs="0" maxOccurs="1">
                <xsd:complexType>
                    <xsd:all>
                        <!-- StartTag tag contains Root element of XML Audit data file-->
                        <xsd:element name="StartTag" type="xsd:string" minOccurs="0" 
maxOccurs="1"/>
                    </xsd:all>
                </xsd:complexType>
            </xsd:element>            
            <xsd:element name="RecordInfo"  minOccurs="1" maxOccurs="1">
                <xsd:complexType>
                    <xsd:all>
                        <!-- start tag of xml audit record in XML audit file-->
                        <xsd:element name="StartTag" type="xsd:string" minOccurs="1" 
maxOccurs="1"/>                
                    </xsd:all>
                </xsd:complexType>
            </xsd:element>
            <!-- Secured Target to AV server fields Mapping for Core, Large, Extension 
fields and Marker-->
            <xsd:element name="FieldMappingInfo" type="FieldMappingInfoType" minOccurs="1" 
maxOccurs="1"/>
            <!-- Event Filter. This is optional. If it is not used, all the audit events 
will be collected-->
            <xsd:element name="EventFilter" type="EventFilterType" minOccurs="0" 
maxOccurs="1"/>
        </xsd:all>
        <!-- Secured Target Type-->
        <xsd:attribute name="securedTargetType" type="xsd:string" use="required"/>
        <!-- Max Secured Target version supported by the template-->
        <xsd:attribute name="maxSecuredTargetVersion" type="xsd:string" use="required"/>
        <!-- Min Secured Target version supported by the template-->
        <xsd:attribute name="minSecuredTargetVersion" type="xsd:string"/>
        <!-- Template file version-->
        <xsd:attribute name="version" type="xsd:string" use="required"/>        
    </xsd:complexType>
</xsd:element>
</xsd:schema>

B.5 Schema For CSV File Collection Plug-in Mapper File
See how to set up a schema for a CSV file collection plug-in mapper file for Oracle Audit
Vault and Database Firewall.

In the following example, you can see how to set up a mapper schema:

Appendix B
Schema For CSV File Collection Plug-in Mapper File

B-7



Example B-5    CSV file collection plug-in Mapper Schema

<?xml version="1.0"?>

<!--
 Copyright (c) 2013, 2017, Oracle and/or its affiliates. All rights reserved.

-->

<xsd:schema xmlns:xsd="http://foobar.example.org/2001/XMLSchema">
<xsd:include schemaLocation="ezCollectorTemplate_schema.xsd"/>

<!-- XML Document Structure-->
<xsd:element name="AVCSVCollectorTemplate" >
    <xsd:complexType>
        <xsd:all>    
            <xsd:element name="HeaderInfo"  minOccurs="0" maxOccurs="1">
                <xsd:complexType>
                    <xsd:all>
                        <!-- StartTag tag contains Root element of XML Audit data 
file-->
                        <xsd:element name="StartTag" type="xsd:string" minOccurs="0" 
maxOccurs="1"/>
                    </xsd:all>
                </xsd:complexType>
            </xsd:element>            
            <xsd:element name="RecordInfo"  minOccurs="1" maxOccurs="1">
                <xsd:complexType>
                    <xsd:all>
                        <!-- start tag of xml audit record in XML audit file-->
                        <xsd:element name="StartTag" type="xsd:string" minOccurs="1" 
maxOccurs="1"/>                
                    </xsd:all>
                </xsd:complexType>
            </xsd:element>
            <!-- Secured Target to AV server fields Mapping for Core, Large, 
Extension fields and Marker-->
            <xsd:element name="FieldMappingInfo" type="FieldMappingInfoType" 
minOccurs="1" maxOccurs="1"/>
            <!-- Event Filter. This is optional. If it is not used, all the audit 
events will be collected-->
            <xsd:element name="EventFilter" type="EventFilterType" minOccurs="0" 
maxOccurs="1"/>
        </xsd:all>
        <!-- Secured Target Type-->
        <xsd:attribute name="securedTargetType" type="xsd:string" use="required"/>
        <!-- Max Secured Target version supported by the template-->
        <xsd:attribute name="maxSecuredTargetVersion" type="xsd:string" 
use="required"/>
        <!-- Min Secured Target version supported by the template-->
        <xsd:attribute name="minSecuredTargetVersion" type="xsd:string"/>
        <!-- Template file version-->
        <xsd:attribute name="version" type="xsd:string" use="required"/>        
    </xsd:complexType>

Appendix B
Schema For CSV File Collection Plug-in Mapper File

B-8



</xsd:element>
</xsd:schema>

B.6 Schema For JSON REST Collection Plug-in Mapper File
See how to set up a schema for a JSON REST collection plug-in mapper file for Oracle Audit
Vault and Database Firewall.

In the following example, you can see how to set up a mapper schema:

Example B-6    JSON REST collection plug-in Mapper Schema

<?xml version="1.0"?>

<!--
 Copyright (c) 2013, 2017, Oracle and/or its affiliates. All rights reserved.
-->

<xsd:schema xmlns:xsd="http://foobar.example.org/2001/XMLSchema">
    <xsd:include schemaLocation="ezCollectorTemplate_schema.xsd" />
    
    <!-- Field ValueTransformation Type-->
    <xsd:complexType name="ParamType">
        <xsd:attribute name="Name" type="xsd:string" use="required"/>
        <xsd:attribute name="Value" type="xsd:string" use="required"/>
    </xsd:complexType>
    <!-- Field Transformation Type-->
    <xsd:complexType name="AuthenticationParamType">
        <xsd:sequence>
            <xsd:element name="Param" type="ParamType" minOccurs="0" maxOccurs="20" />
        </xsd:sequence>
    </xsd:complexType>
    <!-- XML Document Structure -->
    <xsd:element name="AVRESTCollectorTemplate">
        <xsd:complexType>
            <xsd:all>
                <xsd:element name="ResourceName" type="xsd:string"
                    minOccurs="1" maxOccurs="1" />
                <xsd:element name="HeaderInfo" minOccurs="0" maxOccurs="1">
                    <xsd:complexType>
                        <xsd:all>
                            <!-- StartTag tag contains Root element of XML Audit data file 
-->
                            <xsd:element name="StartTag" type="xsd:string"
                                minOccurs="0" maxOccurs="1" />
                        </xsd:all>
                    </xsd:complexType>
                </xsd:element>
                <xsd:element name="RecordInfo" minOccurs="1" maxOccurs="1">
                    <xsd:complexType>
                        <xsd:all>
                            <!-- start tag of xml audit record in XML audit file -->
                            <xsd:element name="StartTag" type="xsd:string"

Appendix B
Schema For JSON REST Collection Plug-in Mapper File

B-9



                                minOccurs="1" maxOccurs="1" />
                        </xsd:all>
                    </xsd:complexType>
                </xsd:element>
                <xsd:element name="ServiceDetails" minOccurs="1"
                    maxOccurs="1">
                    <xsd:complexType>
                        <xsd:all>
                            <xsd:element name="QueryFormat" type="xsd:string"
                                minOccurs="1" maxOccurs="1" />
                            <xsd:element name="TimeFormat" type="xsd:string"
                                minOccurs="1" maxOccurs="1" />
                            <xsd:element name="NextLink" minOccurs="0" maxOccurs="1">
                                <xsd:complexType>
                                    <xsd:all>
                                        <xsd:element name="NextLinkStartTag" 
type="xsd:string"
                                            minOccurs="0" maxOccurs="1" />
                                        <xsd:element name="NextLinkPattern" 
type="xsd:string"
                                            minOccurs="1" maxOccurs="1" />
                                    </xsd:all>
                                </xsd:complexType>
                            </xsd:element>
                            <xsd:element name="RESTAuthentication" minOccurs="1"
                                maxOccurs="1">
                                <xsd:complexType>
                                    <xsd:all>
                                        <xsd:element name="BasicAuth" minOccurs="0" 
maxOccurs="1"> </xsd:element>
                                        <xsd:element name="OAuth2.0" minOccurs="0"
                                            maxOccurs="1">
                                            <xsd:complexType>
                                                <xsd:all>
                                                   <xsd:element name="grant_type" 
type="xsd:string"
                                                        minOccurs="0" maxOccurs="1" />
                                                   <xsd:element name="scope" 
type="xsd:string"
                                                        minOccurs="0" maxOccurs="1" />
                                                </xsd:all>
                                            </xsd:complexType>
                                        </xsd:element>
                                        <xsd:element name="Custom" minOccurs="0" 
maxOccurs="1">
                                            <xsd:complexType>
                                                <xsd:all>
                                                    <xsd:element 
name="authentication_class" type="xsd:string"
                                                        minOccurs="1" maxOccurs="1" />
                                                    <xsd:element 
name="AuthenticationParam" type="AuthenticationParamType"
                                                        minOccurs="0" maxOccurs="1" />
                                                </xsd:all>
                                            </xsd:complexType>

Appendix B
Schema For JSON REST Collection Plug-in Mapper File

B-10



                                        </xsd:element>
                                    </xsd:all>
                                </xsd:complexType>
                            </xsd:element>
                        </xsd:all>
                    </xsd:complexType>
                </xsd:element>
                <!-- Secured Target to AV server fields Mapping for Core, Large, Extension 
                    fields and Marker -->
                <xsd:element name="FieldMappingInfo" type="FieldMappingInfoType"
                    minOccurs="1" maxOccurs="1" />
                <!-- Event Filter. This is optional. If it is not used, all the audit 
                    events will be collected -->
                <xsd:element name="EventFilter" type="EventFilterType"
                    minOccurs="0" maxOccurs="1" />
            </xsd:all>
            <!-- Secured Target Type -->
            <xsd:attribute name="securedTargetType" type="xsd:string"
                use="required" />
            <!-- Max Secured Target version supported by the template -->
            <xsd:attribute name="maxSecuredTargetVersion" type="xsd:string"
                use="required" />
            <!-- Min Secured Target version supported by the template -->
            <xsd:attribute name="minSecuredTargetVersion" type="xsd:string" />
            <!-- Template file version -->
            <xsd:attribute name="version" type="xsd:string" use="required" />
        </xsd:complexType>
    </xsd:element>
</xsd:schema>

B.7 Schema For REST Collector Plug-in Mapper File
See how to set up a schema for a REST collector plug-in mapper file for Oracle Audit Vault
and Database Firewall.

In the following example, you can see how to set up a schema:

Example B-7    REST Collector Plug-in Mapper File

<?xml version="1.0"?>

<!--
 Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved.
-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
    <xsd:include schemaLocation="ezCollectorTemplate_schema.xsd" />
    
    <!-- Field ValueTransformation Type-->
    <xsd:complexType name="ParamType">
        <xsd:attribute name="Name" type="xsd:string" use="required"/>
        <xsd:attribute name="Value" type="xsd:string" use="required"/>
    </xsd:complexType>
    <!-- Field Transformation Type-->

Appendix B
Schema For REST Collector Plug-in Mapper File

B-11



    <xsd:complexType name="AuthenticationParamType">
        <xsd:sequence>
            <xsd:element name="Param" type="ParamType" minOccurs="0" maxOccurs="20" />
        </xsd:sequence>
    </xsd:complexType>
    <!-- XML Document Structure -->
    <xsd:element name="AVRESTCollectorTemplate">
        <xsd:complexType>
            <xsd:all>
                <xsd:element name="ResourceName" type="xsd:string"
                    minOccurs="1" maxOccurs="1" />
                <xsd:element name="HeaderInfo" minOccurs="0" maxOccurs="1">
                    <xsd:complexType>
                        <xsd:all>
                            <!-- StartTag tag contains Root element of XML Audit data 
file -->
                            <xsd:element name="StartTag" type="xsd:string"
                                minOccurs="0" maxOccurs="1" />
                        </xsd:all>
                    </xsd:complexType>
                </xsd:element>
                <xsd:element name="RecordInfo" minOccurs="1" maxOccurs="1">
                    <xsd:complexType>
                        <xsd:all>
                            <!-- start tag of xml audit record in XML audit file -->
                            <xsd:element name="StartTag" type="xsd:string"
                                minOccurs="1" maxOccurs="1" />
                        </xsd:all>
                    </xsd:complexType>
                </xsd:element>
                <xsd:element name="ServiceDetails" minOccurs="1"
                    maxOccurs="1">
                    <xsd:complexType>
                        <xsd:all>
                            <xsd:element name="QueryFormat" type="xsd:string"
                                minOccurs="1" maxOccurs="1" />
                            <xsd:element name="TimeFormat" type="xsd:string"
                                minOccurs="1" maxOccurs="1" />
                            <xsd:element name="NextLink" minOccurs="0" maxOccurs="1">
                                <xsd:complexType>
                                    <xsd:all>
                                        <xsd:element name="NextLinkStartTag" 
type="xsd:string"
                                            minOccurs="0" maxOccurs="1" />
                                        <xsd:element name="NextLinkPattern" 
type="xsd:string"
                                            minOccurs="1" maxOccurs="1" />
                                    </xsd:all>
                                </xsd:complexType>
                            </xsd:element>
                            <xsd:element name="RESTAuthentication" minOccurs="1"
                                maxOccurs="1">
                                <xsd:complexType>
                                    <xsd:all>
                                        <xsd:element name="BasicAuth" minOccurs="0" 

Appendix B
Schema For REST Collector Plug-in Mapper File

B-12



maxOccurs="1"> </xsd:element>
                                        <xsd:element name="OAuth2.0" minOccurs="0"
                                            maxOccurs="1">
                                            <xsd:complexType>
                                                <xsd:all>
                                                   <xsd:element name="grant_type" 
type="xsd:string"
                                                        minOccurs="0" maxOccurs="1" />
                                                   <xsd:element name="scope" 
type="xsd:string"
                                                        minOccurs="0" maxOccurs="1" />
                                                </xsd:all>
                                            </xsd:complexType>
                                        </xsd:element>
                                        <xsd:element name="Custom" minOccurs="0" 
maxOccurs="1">
                                            <xsd:complexType>
                                                <xsd:all>
                                                    <xsd:element 
name="authentication_class" type="xsd:string"
                                                        minOccurs="1" maxOccurs="1" />
                                                    <xsd:element name="AuthenticationParam" 
type="AuthenticationParamType"
                                                        minOccurs="0" maxOccurs="1" />
                                                </xsd:all>
                                            </xsd:complexType>
                                        </xsd:element>
                                    </xsd:all>
                                </xsd:complexType>
                            </xsd:element>
                        </xsd:all>
                    </xsd:complexType>
                </xsd:element>
                <!-- Secured Target to AV server fields Mapping for Core, Large, Extension 
                    fields and Marker -->
                <xsd:element name="FieldMappingInfo" type="FieldMappingInfoType"
                    minOccurs="1" maxOccurs="1" />
                <!-- Event Filter. This is optional. If it is not used, all the audit 
                    events will be collected -->
                <xsd:element name="EventFilter" type="EventFilterType"
                    minOccurs="0" maxOccurs="1" />
            </xsd:all>
            <!-- Secured Target Type -->
            <xsd:attribute name="securedTargetType" type="xsd:string"
                use="required" />
            <!-- Max Secured Target version supported by the template -->
            <xsd:attribute name="maxSecuredTargetVersion" type="xsd:string"
                use="required" />
            <!-- Min Secured Target version supported by the template -->
            <xsd:attribute name="minSecuredTargetVersion" type="xsd:string" />
            <!-- Template file version -->
            <xsd:attribute name="version" type="xsd:string" use="required" />
        </xsd:complexType>
    </xsd:element>

Appendix B
Schema For REST Collector Plug-in Mapper File

B-13



</xsd:schema>

B.8 Schema For Name Pattern Collection Plug-in Mapper
File

See how to set up a schema for a name pattern collection plug-in mapper file for
Oracle Audit Vault and Database Firewall.

In the following example, you can see how to set up a schema:

Example B-8    Name Pattern Collection Plug-in Mapper File

<?xml version="1.0"?>

<!--
 Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved.
-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://
foobar.example.com/avdf/ezcollector/namepattern" targetNamespace="http://
foobar.example.com/avdf/ezcollector/namepattern" elementFormDefault="qualified" >
<!--Name Pattern-->
<xsd:simpleType name="DateFormatValues">
    <xsd:restriction base="xsd:string">        
        <xsd:enumeration value="yyyy_MM_dd"/>
        <xsd:enumeration value="dd_MM_yyyy"/>
    </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="NameFormatDateType">
    <xsd:all>
         <xsd:element name="Format" type="DateFormatValues" minOccurs="1" 
maxOccurs="1"/>
     <xsd:element name="Inc" type="xsd:string" minOccurs="1" maxOccurs="1"/>
    </xsd:all>
</xsd:complexType>            

<xsd:complexType name="NameFormatNumberType">
    <xsd:all>
         <xsd:element name="Format" type="xsd:string" minOccurs="1" maxOccurs="1"/>
     <xsd:element name="Inc" type="xsd:string" minOccurs="1" maxOccurs="1"/>
    </xsd:all>
</xsd:complexType>            

<xsd:complexType name="NameFormat">
    <xsd:choice>
         <xsd:element name="DateFormat" type="NameFormatDateType"/>
         <xsd:element name="NumberFormat" type="NameFormatNumberType"/>
         <xsd:element name="StringFormat" type="xsd:string"/>        
    </xsd:choice>
</xsd:complexType>            

Appendix B
Schema For Name Pattern Collection Plug-in Mapper File

B-14



<xsd:complexType name="NamePatternType">
    <xsd:choice>
        <xsd:element name="RollNamePattern">
            <xsd:complexType>
                <xsd:sequence>
                    <xsd:element name="Name" type="xsd:string" minOccurs="1" 
maxOccurs="1000"/>
                </xsd:sequence>
            </xsd:complexType>
        </xsd:element>
        <xsd:element name="IncrementNamePattern">
            <xsd:complexType>
                <xsd:all>
                    <!-- Type and Format of the pattern Type Date, Format yyyy_MM_dd -->
                    <xsd:element name="NamePrefix" type="NameFormat" minOccurs="1" 
maxOccurs="1"/>
                    <xsd:element name="Name" type="NameFormat" minOccurs="1" maxOccurs="1"/>
                    <xsd:element name="NameSuffix" type="NameFormat" minOccurs="1" 
maxOccurs="1"/>
                </xsd:all>
            </xsd:complexType>
        </xsd:element>
    </xsd:choice>
</xsd:complexType>
</xsd:schema>

B.9 Schema For JSON Collector Plug-in Mapper File
See how to set up a schema for JSON collector plug-in mapper file for Oracle Audit Vault and
Database Firewall.

In the following example, you can see how to set up a schema:

Example B-9    JSON Collector Plug-in Mapper File

<?xml version="1.0"?>

<!--
 Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved.
-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:include schemaLocation="ezCollectorTemplate_schema.xsd"/>

<!-- XML Document Structure-->
<xsd:element name="AVJSONCollectorTemplate" >
    <xsd:complexType>
        <xsd:all>    
            <xsd:element name="HeaderInfo"  minOccurs="0" maxOccurs="1">
                <xsd:complexType>
                    <xsd:all>
                        <!-- StartTag tag contains Root element of XML Audit data file-->
                        <xsd:element name="StartTag" type="xsd:string" minOccurs="0" 

Appendix B
Schema For JSON Collector Plug-in Mapper File

B-15



maxOccurs="1"/>
                    </xsd:all>
                </xsd:complexType>
            </xsd:element>            
            <xsd:element name="RecordInfo"  minOccurs="1" maxOccurs="1">
                <xsd:complexType>
                    <xsd:all>
                        <!-- start tag of xml audit record in XML audit file-->
                        <xsd:element name="StartTag" type="xsd:string" minOccurs="1" 
maxOccurs="1"/>                
                    </xsd:all>
                </xsd:complexType>
            </xsd:element>
            <!-- Secured Target to AV server fields Mapping for Core, Large, 
Extension fields and Marker-->
            <xsd:element name="FieldMappingInfo" type="FieldMappingInfoType" 
minOccurs="1" maxOccurs="1"/>
            <!-- Event Filter. This is optional. If it is not used, all the audit 
events will be collected-->
            <xsd:element name="EventFilter" type="EventFilterType" minOccurs="0" 
maxOccurs="1"/>
        </xsd:all>
        <!-- Secured Target Type-->
        <xsd:attribute name="securedTargetType" type="xsd:string" use="required"/>
        <!-- Max Secured Target version supported by the template-->
        <xsd:attribute name="maxSecuredTargetVersion" type="xsd:string" 
use="required"/>
        <!-- Min Secured Target version supported by the template-->
        <xsd:attribute name="minSecuredTargetVersion" type="xsd:string"/>
        <!-- Template file version-->
        <xsd:attribute name="version" type="xsd:string" use="required"/>        
    </xsd:complexType>
</xsd:element>
</xsd:schema>

B.10 Schema For EZCollector Plug-in Mapper File
See how to set up a schema for an EZCollector plug-in mapper file for Oracle Audit
Vault and Database Firewall.

In the following example, you can see how to set up a schema:

Example B-10    EZCollector Plug-in Mapper File

<?xml version="1.0"?>

<!--
 Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved.
-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<!--Existing Set of Core Fields-->
<xsd:simpleType name="CoreFieldValues">

Appendix B
Schema For EZCollector Plug-in Mapper File

B-16



    <xsd:restriction base="xsd:string">
    <xsd:enumeration value="EventTimeUTC"/>    
    <xsd:enumeration value="UserName"/>
    <xsd:enumeration value="OSUserName"/>
    <xsd:enumeration value="CommandClass"/>        
    <xsd:enumeration value="TargetObject"/>
    <xsd:enumeration value="ClientHostName"/>
    <xsd:enumeration value="ClientIP"/>
    <xsd:enumeration value="ClientProgramName"/>
    <xsd:enumeration value="TargetOwner"/>
    <xsd:enumeration value="ErrorId"/>
    <xsd:enumeration value="ErrorMessage"/>
    <xsd:enumeration value="EventStatus"/>
    <xsd:enumeration value="EventName"/>
    <xsd:enumeration value="TargetType"/>
    <xsd:enumeration value="TerminalName"/>
    <xsd:enumeration value="ClientId"/>
    </xsd:restriction>
</xsd:simpleType>

<!--Existing Set of Large Fields-->
<xsd:simpleType name="LargeFieldValues">
    <xsd:restriction base="xsd:string">        
        <xsd:enumeration value="CommandText"/>
        <xsd:enumeration value="CommandParam"/>
    </xsd:restriction>
</xsd:simpleType>

<!-- Field ValueTransformation Type-->
<xsd:complexType name="ValueTransformationType">
    <xsd:attribute name="from" type="xsd:string" use="required"/>
    <xsd:attribute name="to" type="xsd:string" use="required"/>
</xsd:complexType>

<!-- Field FieldTransformation Type-->
<xsd:complexType name="FieldTransformationType">
    <xsd:attribute name="from" type="xsd:string" use="required"/>
    <xsd:attribute name="to" type="xsd:string" use="required"/>
</xsd:complexType>

<!-- Field Transformation Type-->
<xsd:complexType name="TransformationType">
    <xsd:sequence>
        <xsd:element name="ValueTransformation" type="ValueTransformationType" 
minOccurs="0" maxOccurs="2000" />
        <xsd:element name="FieldTransformation" type="FieldTransformationType" 
minOccurs="0" maxOccurs ="2000" />
    </xsd:sequence>
</xsd:complexType>

<!--FieldMappingInfo-->
<xsd:complexType name="FieldMappingInfoType">
    <xsd:all>
        <!-- Core Field Mapping-->
        <xsd:element name="CoreFields" minOccurs="1" maxOccurs="1">

Appendix B
Schema For EZCollector Plug-in Mapper File

B-17



            <xsd:complexType>
                <xsd:sequence>
                    <xsd:element name="Map" minOccurs="1" maxOccurs ="14">
                        <xsd:complexType>
                            <xsd:all>
                                <xsd:element name="Name" type="xsd:string" />
                                <xsd:element name="MapTo" 
type="CoreFieldValues" />    
                                <xsd:element name="TimestampPattern" 
type="xsd:string" minOccurs="0" maxOccurs="1" />    
                                <xsd:element name="Transformation" 
type="TransformationType" minOccurs="0" maxOccurs="1" />
                            </xsd:all>
                        </xsd:complexType>
                    </xsd:element>
                </xsd:sequence>
            </xsd:complexType>
        </xsd:element>    
        <!-- Large Field Mapping -->
        <xsd:element name="LargeFields" minOccurs="0" maxOccurs="1">
            <xsd:complexType>
                <xsd:sequence>
                    <xsd:element name="Map" minOccurs="0" maxOccurs="2">
                        <xsd:complexType>
                            <xsd:all> 
                                <xsd:element name="Name" type="xsd:string" />
                                <xsd:element name="MapTo" type="LargeFieldValues" />
                                <xsd:element name="Transformation" 
type="TransformationType" minOccurs="0" maxOccurs="1" />
                            </xsd:all>
                        </xsd:complexType>
                    </xsd:element>
                </xsd:sequence>
            </xsd:complexType>
        </xsd:element>    
        <!-- List of fields to be mapped to extensible fields-->
        <xsd:element name="ExtensionField" minOccurs="0" maxOccurs="1">
            <xsd:complexType>
                <xsd:sequence>                                     
                    <xsd:element name="Name" type="xsd:string" minOccurs="0" 
maxOccurs ="500" />
                    <xsd:element name="ComplexName" minOccurs="0" maxOccurs ="500" >
                        <xsd:complexType>
                            <xsd:all> 
                                <xsd:element name="Name" type="xsd:string" />
                                <xsd:element name="RegExp" type="xsd:string" />
                            </xsd:all>
                        </xsd:complexType>
                    </xsd:element>
                </xsd:sequence> 
            </xsd:complexType>
        </xsd:element>    
        <!-- List of fields which uniquely identify each audit record-->
        <xsd:element name="MarkerField" minOccurs="1" maxOccurs="1">
            <xsd:complexType>

Appendix B
Schema For EZCollector Plug-in Mapper File

B-18



                <xsd:sequence>                           
                    <xsd:element name="Name" type="xsd:string"  minOccurs="1" 
maxOccurs="20"/>
                </xsd:sequence> 
            </xsd:complexType>
        </xsd:element>
    </xsd:all>
</xsd:complexType>

<!-- Filter Type-->
<xsd:complexType name="FilterType">
    <xsd:sequence>
        <!-- Provide all Included or Excluded values for given source field name-->
        <xsd:element name="Value" minOccurs="1" maxOccurs="1000" type="xsd:string"/>
    </xsd:sequence>
</xsd:complexType>
        
<!-- Event Filter Type-->
<xsd:complexType name="EventFilterType">
    <xsd:sequence>
    <!-- Source Field Name through which audit events will be filtered-->
    <xsd:element name="FieldName" type="xsd:string"/>
    <xsd:choice>
        <!-- Use either Include or Exclude to filter audit events-->
        <xsd:element name="Include" type="FilterType" minOccurs="1" maxOccurs="1"/>
        <xsd:element name="Exclude" type="FilterType" minOccurs="1" maxOccurs="1"/>
    </xsd:choice>
    </xsd:sequence>
</xsd:complexType>
</xsd:schema>

Appendix B
Schema For EZCollector Plug-in Mapper File

B-19



C
Example Code

Learn from examples the different types of collection plug-ins, including database tables, XML
files, and Java-based file collection plug-ins.

C.1 Database Table Collection Plug-in Example
See examples of Oracle Audit Vault database table collection plug-in mapper files and
database table plug-in manifest files.

C.1.1 Database Table Collection Plug-in Mapper File
Learn which Oracle Audit Vault attributes and fields are mandatory and which are optional for
database table collection plug-in mapper files.

Oracle Audit Vault database table collection plug-in mapper files have certain mandatory
fields. S

Mandatory Fields

These attributes and fields are mandatory:

• securedTargetType
• maxSecuredTargetVersion
• version
• TableName
• Driver
• EventTimeUTC
• CommandClass transformations

• EventStatus transformations

• MarkerField

Optional Fields

Source names that map to Oracle Audit Vault Server fields are not mandatory. However, if the
information is not provided when data collection starts, then all audit records are treated as
invalid:

• UserName
• CommandClass
Example C-1    Sample XML Mapper File for a Database Table Collection Plug-in

<AVTableCollectorTemplate securedTargetType="DBSOURCE" 
minSecuredTargetVersion="10.2.0"

C-1



           maxSecuredTargetVersion="11.0" version="1.0" >
               <!--Example Template for a database Collector-->
               <!-- Attributes: securedTargetType, 
maxSecuredTargetVersion, 
                          and version are mandatory;
                          minSecuredTargetVersion attribute is 
optional -->
               <!-- Accepted Format for min/maxSecuredTargetVersion and
                         version attribute value is numbers separated 
by
                         dots (For example: 12.2,10.3.2, 11.2.3.0 
etc..)-->
              <!-- Audit Table Information  -->
              <!-- Name of Audit Table: Mandatory information -->
  <TableName>dummy_auditTable</TableName>  
              <!-- Source Connection Information -->
  <ConnectionInfo>
              <DataSource>oracle.jdbc.pool.OracleDataSource</
DataSource>
    <!--Datasource class name for current secured target type: 
                   Mandatory information -->
    </ConnectionInfo>  
              <!-- This Gives Mapping Information of Source Fields to 
various AV 
                    Fields(core and large fields)  -->
              <!-- There should be no many-to-one mappings from source 
fields to 
                    AV Server fields --> 
  <FieldMappingInfo>  
              <!-- Mapping of Source Fields to Core Fields of AV 
server  -->
              <!-- Source fields specified in core field mappings must 
be of SQL 
                   Datatype: String OR convertible to String-->
      <CoreFields>
           <Map>
              <!-- Mandatory: EventTime mapping information -->
        <Name>EVENT_TIME</Name>
        <MapTo>EventTimeUTC</MapTo>
      </Map>
         <Map>
              <!-- If UserName core field mapping is not provided, 
Audit Data
                Collection still starts successfully, but every audit 
record 
                will be treated as invalid -->
        <Name>USER_ID</Name>
        <MapTo>UserName</MapTo>
      </Map>     
      <Map>
        <Name>OS_USER_ID</Name>
        <MapTo>OSUserName</MapTo>
      </Map>      
      <Map>

Appendix C
Database Table Collection Plug-in Example

C-2



              <!-- If source name, the ACTION field, for CommandClass core 
field
                mapping is not  provided, Audit Data Collection still starts 
                successfully, but all audit records are treated as invalid --
>
                 
        <Name>ACTION</Name>
        <MapTo>CommandClass</MapTo>

              <!-- Mandatory: value transformation from secured target field 
value
                  to command class field value. Value of "to" Attribute is 
from AV
                  Event set  -->
                    
        <Transformation>
          <ValueTransformation from="1" to="CREATE"/>
          <ValueTransformation from="2" to="INSERT"/>
          <ValueTransformation from="3" to="SELECT"/>
          <ValueTransformation from="4" to="CREATE"/>
          <ValueTransformation from="15" to="READ"/>
          <ValueTransformation from="30" to="LOGON"/>
          <ValueTransformation from="34" to="LOGOFF"/>
          <ValueTransformation from="35" to="ACQUIRE"/>
        </Transformation>
      </Map>      
      <Map>
        <Name>OBJ_NAME</Name>
        <MapTo>TargetObject</MapTo>
      </Map>
      <Map>
        <Name>USER_HOST</Name>
        <MapTo>ClientHostName</MapTo>
      </Map>
      <Map>
        <Name>OBJ_CREATOR</Name>
        <MapTo>TargetOwner</MapTo>
      </Map>
      <Map>
        <Name>STATUS</Name>
        <MapTo>EventStatus</MapTo>

              <!-- Value transformation for "STATUS" source field value.
                Mandatory: EventStatus value transformation.
                There are three possible values for EventStatus: 
                SUCCESS, FAILURE, UNKNOWN -->
        <Transformation>          
          <ValueTransformation from="0" to="FAILURE"/>
          <ValueTransformation from="1" to="SUCCESS"/>
          <ValueTransformation from="2" to="UNKNOWN"/>
        </Transformation>
      </Map>
    </CoreFields>    
    
            <!-- Mapping of Source Fields to Large Fields of AV server i.e 

Appendix C
Database Table Collection Plug-in Example

C-3



fields 
                 with huge content  -->
            <!-- Secured target fields specified in large field 
mappings must be
                of SQL Datatype:CLOB OR SQL Datatype:String OR 
convertible to
                String -->
    <LargeFields>     
      <Map>
        <Name>SQL_TEXT</Name>
        <MapTo>CommandText</MapTo>
      </Map>
      <Map>
        <Name>COMMAND_PARAMETER</Name>
        <MapTo>CommandParam</MapTo>
      </Map>        
    </LargeFields>  
    
            <!-- These secured target fields are collected in a single 
extension  
               field, all name-value pairs separated by standard 
delimiter -->
            <!-- Secured target fields specified in extension field 
mapping must 
                  be of SQL Datatype:String OR convertible to String --
>
    <ExtensionField>      
      <Name>DB_ID</Name>
      <Name>INSTANCE</Name>
      <Name>PROCESS</Name>
      <Name>TERMINAL</Name>
    </ExtensionField>    
    
            <!-- Mandatory: Secured target fields for MarkerField 
               A group of secured target fields to uniquely identify 
each Audit 
               Record -->
            <!-- Secured target fields specified to be used as 
MarkerField mapping
                  must be of SQL Datatype:String OR convertible to 
String -->
    <MarkerField>       
      <Name>SESSION_ID</Name>  
      <Name>ENTRY_ID</Name>
    </MarkerField>  
  </FieldMappingInfo>
</AVTableCollectorTemplate>

Related Topics

• Audit Vault Server Fields
You can map Oracle Audit Vault and Database Firewall events and fields in your
collection plug-ins.

Appendix C
Database Table Collection Plug-in Example

C-4



C.1.2 Database Table Collection Plug-in Manifest File
See an example of a database table collection plug-in manifest file.

This is a sample manifest file for a database table collection plug-in.

Example C-2    Sample Manifest File for a Database Table Collection Plug-in

<?xml version="1.0"?>
 
<plugin xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://xmlns.oracle.com/av/plugin plugin-
manifest.xsd"
        xmlns="http://xmlns.oracle.com/av/plugin"
        name="HRMS-Template"
        id="com.oracle.av.plugin"
        version="1.0"
        provider-name="Oracle Corp."
        copyright="Copyright Oracle Corp. 2011">
 
               <!-- targetVersion: Version of Oracle Audit Vault supported 
by this
                      plugin. This is represented by the "min"  attribute of 
                      <targetVersion> tag      -->        
   <targetVersion min="11.1.0.0.0"/> 
 
   <extensionSet>
      <extensionPoint type= "securedTargetType">
               <!-- Tag: fileList: Lists all files that ship with the 
plugin   -->
         <fileList>
            <jars></jars>
            <templates>
               <include file="DBSource-Mapper.xml"/>
            </templates>
            <bin></bin>
            <config></config>
            <shell></shell>
            <patch></patch>
            <unresolved-external>
            </unresolved-external>
         </fileList>
               <!-- Tag:  securedTargetTypeInfo: Contains secured target 
type and 
                     trail information  -->
         <securedTargetTypeInfo name="DBSOURCE"/>
      
               <!-- Tag:  trailType: contains trail type, location , 
classname for
                    source type testSource -->
         <trailInfo>
            <trailType>TABLE</trailType>
            <className 
name="oracle.av.platform.agent.collfwk.Collector.table.DatabaseTableCollector

Appendix C
Database Table Collection Plug-in Example

C-5



"/>          
         </trailInfo>        
        
               <!-- eventPatch: OPTIONAL field that indicates any 
event patches    
                  that need to be applied as part of plugin deployment
                  The files listed here must be present in the <patch>
                  tag entries. The order in which the patches need to 
                  applied can be controlled via the "order" attribute 
                  Patches with lower "order" value will be applied    
                  first             --
>                                  
         <eventPatch name="p6753288_11.1.2.0.0_GENERIC.zip" order="2"/>
      </extensionPoint>     
   </extensionSet>
</plugin>

C.2 XML File Collection Plug-in Examples
Learn about the plug-in mapper file and plug-in manifest file attributes and fields for
Oracle Audit Vault and Database Firewall.

C.2.1 XML File Collection Plug-In Mapper File
See an XML template collector file example, and find out about the attributes and
fields used with XML file collection in Oracle Audit Vault and Database Firewall.

There are both mandatory attributes and fields, and fields that are not mandatory, but
that can cause your audit records to be treated as invalid.

Mandatory Attributes and Fields for XML File Collection Plug-In Mapper Files

• securedTargetType
• maxSecuredTargetVersion
• version
• HeaderInfo
• RecordInfo
• EventTimeUTC
• CommandClass transformations

• EventStatus transformations

• MarkerField

Standard Fields for XML File Collection Plug-In Mapper Files

Source names that map to these Oracle Audit Vault Server fields are not mandatory.
However, if the information specified by these fields is not provided, then when data
collection starts, all audit records are treated as invalid:

• UserName

Appendix C
XML File Collection Plug-in Examples

C-6



• CommandClass
Example C-3    Sample XML File Collection Plug-in Mapper File

<AVXMLCollectorTemplate securedTargetType="XMLSOURCE"
  maxSecuredTargetVersion="11.0"
         version="1.0">
            <!--Example Template for XML template collector-->
            <!-- Attributes: "securedTargetType", "maxSecuredTargetVersion" 
and
                 "version" are mandatory attributes, 
"minSecuredTargetVersion" 
                  attribute is optional -->
            <!-- Accepted Format for min/maxSecuredTargetVersion and version
                  attribute value is numbers separated by dots (For example:
                  12.2,10.3.2, 11.2.3.0 etc..)-->
            <!-- Header Information like XML Header start tag  -->
  <HeaderInfo>
            <!-- Mandatory: HeaderInfo-->
            <!-- Value in this tag gives Root tag of the XML audit file-->
    <StartTag>Audit</StartTag>
  </HeaderInfo>    
  
            <!-- Record Information like Record Start tag and conformation 
to hold
                 original record  -->
  <RecordInfo>
            <!-- Mandatory: RecordInfo -->
            <!-- Provides starting tag of audit record in XML audit file -->
    <StartTag>AuditRecord</StartTag>    
  </RecordInfo>
  
            <!-- Gives Mapping Information of Source Fields to various  AV 
Fields
                   (core and large fields)  -->
            <!-- Not Allowed: many-to-one mapping from source field to 
              AV Server fields --> 
  <FieldMappingInfo>  
            <!-- Mapping of Source Fields to Core Fields of AV server  
                Source fields specified in core field mappings must be of 
SQL 
                Datatype: String OR convertible to String -->
      <CoreFields>
         <Map>
        <Name>EVENT_TIME</Name>
        <MapTo>EventTimeUTC</MapTo>
        <TimestampPattern>yyyy-MM-dd HH:mm:ss.SSS</TimestampPattern>
         </Map>
         <Map>
            <!-- If UserName core field mapping is not provided, Audit Data
               Collection still starts successfully, but every audit record 
               will be treated as invalid -->
        <Name>USER_ID</Name>
        <MapTo>UserName</MapTo>
      </Map>     

Appendix C
XML File Collection Plug-in Examples

C-7



      <Map>
        <Name>OS_USER_ID</Name>
        <MapTo>OSUserName</MapTo>
      </Map>      
      <Map>
                 <!-- If source name, the ACTION field, for 
CommandClass
                    core field mapping is not provided, Audit Data 
Collection
                    still starts successfully, but all audit records 
are treated
                    as invalid -->
        <Name>ACTION</Name>
        <MapTo>CommandClass</MapTo>
              <!-- Mandatory: value transformations from source to 
Action
                   field value. Value of "to" Attribute is from AV 
Event set  -->
        <Transformation>
          <ValueTransformation from="1" to="CREATE"/>
          <ValueTransformation from="2" to="INSERT"/>
          <ValueTransformation from="3" to="SELECT"/>
          <ValueTransformation from="4" to="CREATE"/>
          <ValueTransformation from="15" to="READ"/>
          <ValueTransformation from="30" to="LOGON"/>
          <ValueTransformation from="34" to="LOGOFF"/>
          <ValueTransformation from="35" to="ACQUIRE"/>
        </Transformation>
      </Map>      
      <Map>
        <Name> OBJ_NAME</Name>
        <MapTo>TargetObject</MapTo>
      </Map>
      <Map>
        <Name>USER_HOST</Name>
        <MapTo>ClientHostName</MapTo>
      </Map>
      <Map>
        <Name>OBJ_CREATOR</Name>
        <MapTo>TargetOwner</MapTo>
      </Map>
      <Map>
        <Name>STATUS</Name>
        <MapTo>EventStatus</MapTo>
            <!-- Specifying value transformation for Status source 
field value.
                Mandatory: EventStatus value transformation.
                There are three possible values for EventStatus: 
                SUCCESS, FAILURE, UNKNOWN -->
        <Transformation>          
          <ValueTransformation from="0" to="FAILURE"/>
          <ValueTransformation from="1" to="SUCCESS"/>
          <ValueTransformation from="2" to="UNKNOWN"/>
        </Transformation>
      </Map>

Appendix C
XML File Collection Plug-in Examples

C-8



    </CoreFields>    
    
            <!-- Mapping of Source Fields to Large Fields of AV server i.e 
fields
                with huge content  -->
            <!-- Source fields specified in large field mappings must be of 
SQL
                Datatype:CLOB OR SQL Datatype:String OR convertible to 
String -->
    <LargeFields>     
      <Map>
        <Name>SQL_TEXT</Name>
        <MapTo>CommandText</MapTo>
      </Map>
      <Map>
        <Name>COMMAND_PARAMETER</Name>
        <MapTo>CommandParam</MapTo>
      </Map>        
    </LargeFields>  
    
            <!-- These Source fields will be collected in a single extension
               field, all name-value pairs are separated by standard 
delimiter -->
            <!-- Source fields specified in extension field mapping must be 
of
               SQL Datatype:String OR convertible to String -->
    <ExtensionField>      
      <Name>DB_ID</Name>
      <Name>INSTANCE</Name>
      <Name>PROCESS</Name>
      <Name>TERMINAL</Name>
    </ExtensionField>    
    
            <!-- This is group of source fields for uniquely identifying 
each  
                 Audit Record Marker -->
            <!-- Source fields specified to be used as Marker field mapping 
must 
                 be of SQL Datatype:String OR convertible to String -->
            <!-- Mandatory: Source fields for MarkerField -->
    <MarkerField>       

      <Name>SESSION_ID</Name>  
      <Name>ENTRY_ID</Name>
    </MarkerField>  
  </FieldMappingInfo>
</AVXMLCollectorTemplate>

Related Topics

• Audit Vault Server Fields
You can map Oracle Audit Vault and Database Firewall events and fields in your
collection plug-ins.

Appendix C
XML File Collection Plug-in Examples

C-9



C.2.2 XML File Collection Plug-In Manifest File
See an XML file collection plug-in manifest file example used with XML file collection in
Oracle Audit Vault and Database Firewall.

This is a sample manifest file for an XML file collection plug-in.

Example C-4    Sample Manifest File for an XML File Collection Plug-in

<?xml version="1.0"?>
 
<plugin xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://xmlns.oracle.com/av/plugin plugin-
manifest.xsd"
        xmlns="http://xmlns.oracle.com/av/plugin"
        name="Oracle-XML-Template"
        id="com.oracle.av.plugin"
        version="1.0"
        provider-name="Oracle Corp."
        copyright="Copyright Oracle Corp. 2011">
 
            <!-- targetVersion: Version of Oracle Audit Vault 
supported by 
              this plugin. This is represented by the "min" attribute 
of 
              targetVersion> tag                 -->
   <targetVersion min="11.1.0.0.0"/> 
 
   <extensionSet>
      <extensionPoint type= "securedTargetType">
            <!-- fileList: Lists *all* the files that ship with the 
plugin  -->    
         <fileList>
            <jars></jars>
            <templates>
                 <include file="XMLSource-Mapper.xml"/>
            </templates>
            <bin></bin>
            <config></config>
            <shell></shell>
            <patch></patch>
            <unresolved-external></unresolved-external>
            
          
         </fileList>
 
            <!-- securedTargetTypeInfo: Contains source type and trail 
information 
                    -->
         <securedTargetTypeInfo name="oracle"/>
      
            <!-- trailType: contains trail type, location , classname 
for
               source type testSource -->

Appendix C
XML File Collection Plug-in Examples

C-10



         <trailInfo>
            <trailType>DIRECTORY</trailType>
            <className 
name="oracle.av.platform.agent.collfwk.ezcollector.xml.XMLFileCollector"/>   
       
         </trailInfo>        
        
            <!-- eventPatch: OPTIONAL field that indicates any event 
patches  
               that need to be applied as part of plugin deployment-->
               The files listed here must be present in the <patch>-->
               tag entries. The order in which the patches need to -->
               applied can be controlled via the "order" attribute -->
               Patches with lower "order" value will be applied    -->
               first                                               -->
         <eventPatch name="p6753288_11.1.2.0.0_GENERIC.zip" order="2"/>
      </extensionPoint>     
   </extensionSet>
</plugin>

C.3 JSON File Collection Plug-in Example
Learn about the JSON plug-in mapper file and plug-in manifest file attributes and fields for
Oracle Audit Vault and Database Firewall.

C.3.1 JSON File Collection Plug-In Mapper File
See a JSON template collector file example, and find out about the attributes and fields used
with JSON file collection in Oracle Audit Vault and Database Firewall.

There are both mandatory attributes and fields, and fields that are not mandatory, but that can
cause your audit records to be treated as invalid.

Mandatory Attributes and Fields for JSON File Collection Plug-In Mapper Files

• securedTargetType
• maxSecuredTargetVersion
• version
• HeaderInfo
• RecordInfo
• EventTimeUTC
• CommandClass transformations

• EventStatus transformations

• MarkerField

Standard Fields for JSON File Collection Plug-In Mapper Files

Source names that map to these Oracle Audit Vault Server fields are not mandatory.
However, if the information specified by these fields is not provided, then when data collection
starts, all audit records are treated as invalid:

Appendix C
JSON File Collection Plug-in Example

C-11



• UserName
• CommandClass
Example C-5    Sample JSON File Collection Plug-in Mapper File

<?xml version="1.0" encoding="UTF-8"?>
<AVJSONCollectorTemplate securedTargetType="JSONSOURCE" 
maxSecuredTargetVersion="11.0" version="1.0">
   <!--Example Template for JSON template collector-->
   <!-- Attributes: "securedTargetType", "maxSecuredTargetVersion" and
   "version" are mandatory attributes, "minSecuredTargetVersion"
   attribute is optional -->
   <!-- Accepted Format for min/maxSecuredTargetVersion and version
   attribute value is numbers separated by dots (For example:
   12.2,10.3.2, 11.2.3.0 etc..)-->
   <!-- Header Information like JSON Header start tag -->
   <HeaderInfo>
      <!-- Mandatory: HeaderInfo-->
      <!-- Value in this tag gives Root tag of the JSON audit file-->
      <StartTag>ITEMS</StartTag>
   </HeaderInfo>
   <!-- Record Information like Record Start tag and conformation to 
hold
   original record -->
   <RecordInfo>
      <!-- Mandatory: RecordInfo -->
      <!-- Provides starting tag of audit record in JSON audit file -->
      <StartTag>SESSION_ID</StartTag>
   </RecordInfo>
   <!-- Gives Mapping Information of Source Fields to various AV Fields
   (core and large fields) -->
   <!-- Not Allowed: many-to-one mapping from source field to
   AV Server fields -->
   <FieldMappingInfo>
      <!-- Mapping of Source Fields to Core Fields of AV server
      Source fields specified in core field mappings must be of SQL
      Datatype: String OR convertible to String -->
      <CoreFields>
         <Map>
            <Name>$.EVENT_TIME</Name>
            <MapTo>EventTimeUTC</MapTo>
            <TimestampPattern>yyyy-MM-dd HH:mm:ss.SSS</
TimestampPattern>
         </Map>
         <Map>
            <!-- If UserName core field mapping is not provided, Audit 
Data
            Collection still starts successfully, but every audit 
record
            will be treated as invalid -->
            <Name>$.USER_ID</Name>
            <MapTo>UserName</MapTo>
         </Map>
         <Map>

Appendix C
JSON File Collection Plug-in Example

C-12



            <Name>$.OS_USER_ID</Name>
            <MapTo>OSUserName</MapTo>
         </Map>
         <Map>
            <!-- If source name, the ACTION field, for CommandClass
            core field mapping is not provided, Audit Data Collection
            still starts successfully, but all audit records are treated
            as invalid -->
            <Name>$.ACTION</Name>
            <MapTo>CommandClass</MapTo>
            <!-- Mandatory: value transformations from source to Action
            field value. Value of "to" Attribute is from AV Event set -->
            <Transformation>
               <ValueTransformation from="1" to="CREATE" />
               <ValueTransformation from="2" to="INSERT" />
               <ValueTransformation from="3" to="SELECT" />
               <ValueTransformation from="4" to="CREATE" />
               <ValueTransformation from="15" to="READ" />
               <ValueTransformation from="30" to="LOGON" />
               <ValueTransformation from="34" to="LOGOFF" />
               <ValueTransformation from="35" to="ACQUIRE" />
            </Transformation>
         </Map>
         <Map>
            <Name>$.OBJ_NAME</Name>
            <MapTo>TargetObject</MapTo>
         </Map>
         <Map>
            <Name>$.USER_HOST</Name>
            <MapTo>ClientHostName</MapTo>
         </Map>
         <Map>
            <Name>$.OBJ_CREATOR</Name>
            <MapTo>TargetOwner</MapTo>
         </Map>
         <Map>
            <Name>$.STATUS</Name>
            <MapTo>EventStatus</MapTo>
            <!-- Specifying value transformation for Status source field 
value.
            Mandatory: EventStatus value transformation.
            There are three possible values for EventStatus:
            SUCCESS, FAILURE, UNKNOWN -->
            <Transformation>
               <ValueTransformation from="0" to="FAILURE" />
               <ValueTransformation from="1" to="SUCCESS" />
               <ValueTransformation from="2" to="UNKNOWN" />
            </Transformation>
         </Map>
      </CoreFields>
      <!-- Mapping of Source Fields to Large Fields of AV server i.e fields
      with huge content -->
      <!-- Source fields specified in large field mappings must be of SQL
      Datatype:CLOB OR SQL Datatype:String OR convertible to String -->
      <LargeFields>

Appendix C
JSON File Collection Plug-in Example

C-13



         <Map>
            <Name>$.SQL_TEXT</Name>
            <MapTo>CommandText</MapTo>
         </Map>
         <Map>
            <Name>$.COMMAND_PARAMETER</Name>
            <MapTo>CommandParam</MapTo>
         </Map>
      </LargeFields>
      <!-- These Source fields will be collected in a single extension
      field, all name-value pairs are separated by standard delimiter 
-->
      <!-- Source fields specified in extension field mapping must be 
of
      SQL Datatype:String OR convertible to String -->
      <ExtensionField>
         <Name>$.DB_ID</Name>
         <Name>$.INSTANCE</Name>
         <Name>$.PROCESS</Name>
         <Name>$.TERMINAL</Name>
      </ExtensionField>
      <!-- This is group of source fields for uniquely identifying each
      Audit Record Marker -->
      <!-- Source fields specified to be used as Marker field mapping 
must
      be of SQL Datatype:String OR convertible to String -->
      <!-- Mandatory: Source fields for MarkerField -->
      <MarkerField>
         <Name>$.SESSION_ID</Name>
         <Name>$.ENTRY_ID</Name>
      </MarkerField>
   </FieldMappingInfo>
</AVJSONCollectorTemplate>

Related Topics

• Audit Vault Server Fields
You can map Oracle Audit Vault and Database Firewall events and fields in your
collection plug-ins.

C.3.2 JSON File Collection Plug-In Manifest File
See a JSON file collection plug-in manifest file example used with JSON file collection
in Oracle Audit Vault and Database Firewall.

This is a sample manifest file for an JSON file collection plug-in.

Example C-6    Sample Manifest File for a JSON File Collection Plug-in

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns="http://foobar.example.com/av/plugin" xmlns:xsi="http://
foobar.example.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
xmlns.oracle.com/av/plugin plugin-manifest.xsd" name="Oracle-XML-
Template" id="com.oracle.av.plugin" version="1.0" provider-

Appendix C
JSON File Collection Plug-in Example

C-14



name="Oracle Corp." copyright="Copyright Oracle Corp. 2011">
   <!-- targetVersion: Version of Oracle Audit Vault supported by
   this plugin. This is represented by the "min" attribute of
   targetVersion> tag -->
   <targetVersion min="11.1.0.0.0" />
   <extensionSet>
      <extensionPoint type="securedTargetType">
         <!-- fileList: Lists *all* the files that ship with the plugin -->
         <fileList>
            <jars />
            <templates>
               <include file="JSONSource-Mapper.xml" />
            </templates>
            <bin />
            <config />
            <shell />
            <patch />
            <unresolved-external />
         </fileList>
         <!-- securedTargetTypeInfo: Contains source type and trail 
information-->
         <securedTargetTypeInfo name="json_file_secured_target" />
         <!-- trailType: contains trail type, location , classname for
         source type testSource -->
         <trailInfo>
            <trailType>DIRECTORY</trailType>
            <className 
name="oracle.av.platform.agent.collfwk.ezcollector.json.MultiJSONFileCollecto
rFactory" />
         </trailInfo>
         <!-- eventPatch: OPTIONAL field that indicates any event patches
         that need to be applied as part of plugin deployment
         The files listed here must be present in the patch
         tag entries. The order in which the patches need to
         applied can be controlled via the "order" attribute
         Patches with lower "order" value will be applied first -->
         <eventPatch name="p6753288_11.1.2.0.0_GENERIC.zip" order="2" />
      </extensionPoint>
   </extensionSet>
</plugin>

C.4 CSV File Collection Plug-in Example
Learn about the CSV plug-in mapper file and plug-in manifest file attributes and fields for
Oracle Audit Vault and Database Firewall.

C.4.1 CSV File Collection Plug-In Mapper File
See a CSV template collector file example, and find out about the attributes and fields used
with CSV file collection in Oracle Audit Vault and Database Firewall.

There are both mandatory attributes and fields, and fields that are not mandatory, but that can
cause your audit records to be treated as invalid.

Appendix C
CSV File Collection Plug-in Example

C-15



Mandatory Attributes and Fields for CSV File Collection Plug-In Mapper Files

• securedTargetType
• maxSecuredTargetVersion
• version
• HeaderInfo
• RecordInfo
• EventTimeUTC
• CommandClass transformations

• EventStatus transformations

• MarkerField

Standard Fields for CSV File Collection Plug-In Mapper Files

Source names that map to these Oracle Audit Vault Server fields are not mandatory.
However, if the information specified by these fields is not provided, then when data
collection starts, all audit records are treated as invalid:

• UserName
• CommandClass
Example C-7    Sample CSV File Collection Plug-in Mapper File

<?xml version="1.0" encoding="UTF-8"?>
<AVCSVCollectorTemplate securedTargetType="csv_file_secured_target" 
maxSecuredTargetVersion="11.0" version="1.0">
   <!--Example Template for CSV template collector-->
   <!-- Attributes: "securedTargetType", "maxSecuredTargetVersion" and
   "version" are mandatory attributes, "minSecuredTargetVersion"
   attribute is optional -->
   <!-- Accepted Format for min/maxSecuredTargetVersion and version
   attribute value is numbers separated by dots (For example:
   12.2,10.3.2, 11.2.3.0 etc..)-->
   <!-- Header Information like CSV Header start tag -->
   <HeaderInfo>
      <!-- Mandatory: HeaderInfo-->
      <!-- Hardcoded to CSV -->
      <StartTag>CSV</StartTag>
   </HeaderInfo>
   <!-- Record Information like Record Start tag and conformation to 
hold
   original record -->
   <RecordInfo>
      <!-- Mandatory: RecordInfo -->
      <!-- Hardcoded to CSV -->
      <StartTag>CSV</StartTag>
   </RecordInfo>
   <!-- Gives Mapping Information of Source Fields to various AV Fields
   (core and large fields) -->

Appendix C
CSV File Collection Plug-in Example

C-16



   <!-- Not Allowed: many-to-one mapping from source field to
   AV Server fields -->
   <FieldMappingInfo>
      <!-- Mapping of Source Fields to Core Fields of AV server
      Source fields specified in core field mappings must be
      either string OR convertible to string -->
      
      <!-- CSV files have "COMMA" as field delimiter -->
      <!-- The first field has index 0, second field has index 1 and so on --
>      
      
      <CoreFields>
         <!-- In our CSV sample data, EVENT_TIME field has index 2 -->
         <!-- Hence 2 is used in below EventTimeUTC mapping -->
         <Map>
            <Name>2</Name>
            <MapTo>EventTimeUTC</MapTo>
            <TimestampPattern>yyyy-MM-dd'T'HH:mm:ss.SSSZ</TimestampPattern>
         </Map>
         <Map>
            <!-- If UserName core field mapping is not provided, Audit Data
            Collection still starts successfully, but every audit record
            will be treated as invalid -->
            <Name>5</Name>
            <MapTo>UserName</MapTo>
         </Map>

         <Map>
            <!-- If source name, the ACTION field, for CommandClass
            core field mapping is not provided, Audit Data Collection
            still starts successfully, but all audit records are treated
            as invalid -->
            <Name>1</Name>
            <MapTo>CommandClass</MapTo>
            <!-- Mandatory: value transformations from source to Action
            field value. Value of "to" Attribute is from AV Event set -->
            <Transformation>
               <ValueTransformation from="createUser" to="CREATE" />
               <ValueTransformation from="createCollection" to="CREATE" />
               <ValueTransformation from="authenticate" to="AUTHENTICATE" />
               <ValueTransformation from="dropCollection" to="DROP" />
               <ValueTransformation from="dropUser" to="DROP" />
            </Transformation>
         </Map>
         <Map>
            <Name>1</Name>
            <MapTo>TargetObject</MapTo>
            <Transformation>
               <FieldTransformation from="createUser" to="6" />
               <FieldTransformation from="createCollection" to="6" />
               <FieldTransformation from="authenticate" to="6" />
               <FieldTransformation from="dropCollection" to="6" />
               <FieldTransformation from="dropUser" to="6" />
            </Transformation>
         </Map>

Appendix C
CSV File Collection Plug-in Example

C-17



         <Map>
            <Name>1</Name>
            <MapTo>TargetType</MapTo>
            <Transformation>
               <ValueTransformation from="createUser" to="USER" />
               <ValueTransformation from="createCollection" 
to="COLLECTION" />
               <ValueTransformation from="authenticate" to="USER" />
               <ValueTransformation from="dropCollection" 
to="COLLECTION" />
               <ValueTransformation from="dropUser" to="USER" />
            </Transformation>
         </Map>
         <Map>
            <Name>3</Name>
            <MapTo>ClientIP</MapTo>
         </Map>

         <Map>
            <Name>7</Name>
            <MapTo>EventStatus</MapTo>
            <!-- Specifying value transformation for Status source 
field value.
            Mandatory: EventStatus value transformation.
            There are three possible values for EventStatus:
            SUCCESS, FAILURE, UNKNOWN -->
            <Transformation>
               <ValueTransformation from="0" to="FAILURE" />
               <ValueTransformation from="100" to="SUCCESS" />
               <ValueTransformation from="200" to="UNKNOWN" />
            </Transformation>
         </Map>
      </CoreFields>
      <!-- Mapping of Source Fields to Large Fields of AV server i.e 
fields
      with huge content -->
      <!-- Source fields specified in large field mappings must be of 
SQL
      Datatype:CLOB OR SQL Datatype:String OR convertible to String -->
      <LargeFields>
         <Map>
            <Name>11</Name>
            <MapTo>CommandText</MapTo>
         </Map>
         <Map>
            <Name>12</Name>
            <MapTo>CommandParam</MapTo>
         </Map>
      </LargeFields>
      <!-- These Source fields will be collected in a single extension
      field, all name-value pairs are separated by standard delimiter 
-->
      <!-- Source fields specified in extension field mapping must be 
of
      SQL Datatype:String OR convertible to String -->

Appendix C
CSV File Collection Plug-in Example

C-18



      <ExtensionField>
         <ComplexName>
            <Name>10</Name>
            <DisplayName>sessionid</DisplayName>
         </ComplexName>
         <ComplexName>
            <Name>13</Name>
            <DisplayName>entryid</DisplayName>
         </ComplexName>
      </ExtensionField>
      <!-- This is group of source fields for uniquely identifying each
      Audit Record Marker -->
      <!-- Source fields specified to be used as Marker field mapping must
      be of SQL Datatype:String OR convertible to String -->
      <!-- Mandatory: Source fields for MarkerField -->
      <MarkerField>
         <Name>10</Name>
         <Name>13</Name>
      </MarkerField>
   </FieldMappingInfo>
</AVCSVCollectorTemplate>

Related Topics

• Audit Vault Server Fields
You can map Oracle Audit Vault and Database Firewall events and fields in your
collection plug-ins.

C.4.2 CSV File Collection Plug-In Manifest File
See a CSV file collection plug-in manifest file example used with CSV file collection in Oracle
Audit Vault and Database Firewall.

This is a sample manifest file for an CSV file collection plug-in.

Example C-8    Sample Manifest File for a CSV File Collection Plug-in

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns="http://xmlns.oracle.com/av/plugin" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
xmlns.oracle.com/av/plugin plugin-manifest.xsd" name="Oracle-XML-Template" 
id="com.oracle.av.plugin" version="1.0" provider-name="Oracle Corp." 
copyright="Copyright Oracle Corp. 2011">
   <!-- targetVersion: Version of Oracle Audit Vault supported by
   this plugin. This is represented by the "min" attribute of
   targetVersion> tag -->
   <targetVersion min="20.4.0.0.0" />
   <extensionSet>
      <extensionPoint type="securedTargetType">
         <!-- fileList: Lists *all* the files that ship with the plugin -->
         <fileList>
            <jars />
            <templates>
               <include file="CSVSource-Mapper.xml" />

Appendix C
CSV File Collection Plug-in Example

C-19



            </templates>
            <bin />
            <config />
            <shell />
            <patch />
            <unresolved-external />
         </fileList>
         <!-- securedTargetTypeInfo: Contains source type and trail 
information-->
         <securedTargetTypeInfo name="csv_file_secured_target" />
         <!-- trailType: contains trail type, location , classname for
         source type testSource -->
         <trailInfo>
            <trailType>DIRECTORY</trailType>
            <className 
name="oracle.av.platform.agent.collfwk.ezcollector.csv.GenericCSVFileCo
llectorFactory" />
         </trailInfo>
      </extensionPoint>
   </extensionSet>
</plugin>

C.5 JSON REST Collection Plug-in Example
Learn about the JSON REST plug-in mapper file and plug-in manifest file attributes
and fields for Oracle Audit Vault and Database Firewall.

C.5.1 JSON REST Collection Plug-In Mapper File
See a JSON REST template collector file example, and find out about the attributes
and fields used with JSON file collection in Oracle Audit Vault and Database Firewall.

There are both mandatory attributes and fields, and fields that are not mandatory, but
that can cause your audit records to be treated as invalid.

Mandatory Attributes and Fields for JSON REST Collection Plug-In Mapper Files

• securedTargetType
• maxSecuredTargetVersion
• version
• HeaderInfo
• RecordInfo
• EventTimeUTC
• CommandClass transformations

• EventStatus transformations

• MarkerField
• QueryFormat
• TimeFormat

Appendix C
JSON REST Collection Plug-in Example

C-20



• NextLinkStartTag
• NextLinkPattern
• RESTAuthentication
• BasicAuth

Standard Fields for JSON REST Collection Plug-In Mapper Files

Source names that map to these Oracle Audit Vault Server fields are not mandatory.
However, if the information specified by these fields is not provided, then when data collection
starts, all audit records are treated as invalid:

• UserName
• CommandClass
Example C-9    Sample JSON REST Collection Plug-in Mapper File

<?xml version="1.0" encoding="UTF-8"?>
<AVJSONCollectorTemplate securedTargetType="JSONSOURCE" 
maxSecuredTargetVersion="11.0" version="1.0">
   <!--Example Template for JSON template collector-->
   <!-- Attributes: "securedTargetType", "maxSecuredTargetVersion" and
   "version" are mandatory attributes, "minSecuredTargetVersion"
   attribute is optional -->
   <!-- Accepted Format for min/maxSecuredTargetVersion and version
   attribute value is numbers separated by dots (For example:
   12.2,10.3.2, 11.2.3.0 etc..)-->
   
   <!-- REST url corresponding to the the specific audit trail -->
   <ResourceName>/audit_events/get_events/</ResourceName>
   <!-- Header Information like JSON Header start tag -->
   <HeaderInfo>
      <!-- Mandatory: HeaderInfo-->
      <!-- Value in this tag gives Root tag of the JSON audit file-->
      <StartTag>ITEMS</StartTag>
   </HeaderInfo>
   <!-- Record Information like Record Start tag and conformation to hold
   original record -->
   <RecordInfo>
      <!-- Mandatory: RecordInfo -->
      <!-- Provides starting tag of audit record in JSON audit file -->
      <StartTag>SESSION_ID</StartTag>
   </RecordInfo>
   <!-- Details of the REST Service -->
   <ServiceDetails>
      <!-- Query format for providing the start time and end time query 
parameters -->
      <QueryFormat>{startTime}/{endTime}</QueryFormat>
      <!-- Timestamp format for start time and end time -->
      <TimeFormat>yyyy-MM-dd hh:mm:ss.SSS</TimeFormat>
      <NextLink>
         <!-- Next link start tag -->
         <NextLinkStartTag>next</NextLinkStartTag>    
         <!-- Next link pattern -->

Appendix C
JSON REST Collection Plug-in Example

C-21



         <NextLinkPattern>$.next.$ref</NextLinkPattern>    
      </NextLink>
      <!-- Authentication mechanism for REST Service -->
      <RESTAuthentication>
         <!-- Username and password based Basic Authentication -->
         <BasicAuth/>
      </RESTAuthentication>
   </ServiceDetails>
   <!-- Gives Mapping Information of Source Fields to various AV Fields
   (core and large fields) -->
   <!-- Not Allowed: many-to-one mapping from source field to
   AV Server fields -->
   <FieldMappingInfo>
      <!-- Mapping of Source Fields to Core Fields of AV server
      Source fields specified in core field mappings must be of SQL
      Datatype: String OR convertible to String -->
      <CoreFields>
         <Map>
            <Name>$.EVENT_TIME</Name>
            <MapTo>EventTimeUTC</MapTo>
            <TimestampPattern>yyyy-MM-dd HH:mm:ss.SSS</
TimestampPattern>
         </Map>
         <Map>
            <!-- If UserName core field mapping is not provided, Audit 
Data
            Collection still starts successfully, but every audit 
record
            will be treated as invalid -->
            <Name>$.USER_ID</Name>
            <MapTo>UserName</MapTo>
         </Map>
         <Map>
            <Name>$.OS_USER_ID</Name>
            <MapTo>OSUserName</MapTo>
         </Map>
         <Map>
            <!-- If source name, the ACTION field, for CommandClass
            core field mapping is not provided, Audit Data Collection
            still starts successfully, but all audit records are 
treated
            as invalid -->
            <Name>$.ACTION</Name>
            <MapTo>CommandClass</MapTo>
            <!-- Mandatory: value transformations from source to Action
            field value. Value of "to" Attribute is from AV Event set 
-->
            <Transformation>
               <ValueTransformation from="1" to="CREATE" />
               <ValueTransformation from="2" to="INSERT" />
               <ValueTransformation from="3" to="SELECT" />
               <ValueTransformation from="4" to="CREATE" />
               <ValueTransformation from="15" to="READ" />
               <ValueTransformation from="30" to="LOGON" />
               <ValueTransformation from="34" to="LOGOFF" />

Appendix C
JSON REST Collection Plug-in Example

C-22



               <ValueTransformation from="35" to="ACQUIRE" />
            </Transformation>
         </Map>
         <Map>
            <Name>$.OBJ_NAME</Name>
            <MapTo>TargetObject</MapTo>
         </Map>
         <Map>
            <Name>$.USER_HOST</Name>
            <MapTo>ClientHostName</MapTo>
         </Map>
         <Map>
            <Name>$.OBJ_CREATOR</Name>
            <MapTo>TargetOwner</MapTo>
         </Map>
         <Map>
            <Name>$.STATUS</Name>
            <MapTo>EventStatus</MapTo>
            <!-- Specifying value transformation for Status source field 
value.
            Mandatory: EventStatus value transformation.
            There are three possible values for EventStatus:
            SUCCESS, FAILURE, UNKNOWN -->
            <Transformation>
               <ValueTransformation from="0" to="FAILURE" />
               <ValueTransformation from="1" to="SUCCESS" />
               <ValueTransformation from="2" to="UNKNOWN" />
            </Transformation>
         </Map>
      </CoreFields>
      <!-- Mapping of Source Fields to Large Fields of AV server i.e fields
      with huge content -->
      <!-- Source fields specified in large field mappings must be of SQL
      Datatype:CLOB OR SQL Datatype:String OR convertible to String -->
      <LargeFields>
         <Map>
            <Name>$.SQL_TEXT</Name>
            <MapTo>CommandText</MapTo>
         </Map>
         <Map>
            <Name>$.COMMAND_PARAMETER</Name>
            <MapTo>CommandParam</MapTo>
         </Map>
      </LargeFields>
      <!-- These Source fields will be collected in a single extension
      field, all name-value pairs are separated by standard delimiter -->
      <!-- Source fields specified in extension field mapping must be of
      SQL Datatype:String OR convertible to String -->
      <ExtensionField>
         <Name>$.DB_ID</Name>
         <Name>$.INSTANCE</Name>
         <Name>$.PROCESS</Name>
         <Name>$.TERMINAL</Name>
      </ExtensionField>
      <!-- This is group of source fields for uniquely identifying each

Appendix C
JSON REST Collection Plug-in Example

C-23



      Audit Record Marker -->
      <!-- Source fields specified to be used as Marker field mapping 
must
      be of SQL Datatype:String OR convertible to String -->
      <!-- Mandatory: Source fields for MarkerField -->
      <MarkerField>
         <Name>$.SESSION_ID</Name>
         <Name>$.ENTRY_ID</Name>
      </MarkerField>
   </FieldMappingInfo>
</AVJSONCollectorTemplate>

Related Topics

• Audit Vault Server Fields
You can map Oracle Audit Vault and Database Firewall events and fields in your
collection plug-ins.

C.5.2 JSON REST Collection Plug-In Manifest File
See a JSON REST collection plug-in manifest file example used with JSON file
collection in Oracle Audit Vault and Database Firewall.

This is a sample manifest file for an JSON REST collection plug-in.

Example C-10    Sample Manifest File for a JSON REST Collection Plug-in

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns="http://foobar.example.com/av/plugin" xmlns:xsi="http://
foobar.example.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
xmlns.oracle.com/av/plugin plugin-manifest.xsd" name="Oracle-XML-
Template" id="com.oracle.av.plugin" version="1.0" provider-
name="Oracle Corp." copyright="Copyright Oracle Corp. 2011">
   <!-- targetVersion: Version of Oracle Audit Vault supported by
   this plugin. This is represented by the "min" attribute of
   targetVersion> tag -->
   <targetVersion min="11.1.0.0.0" />
   <extensionSet>
      <extensionPoint type="securedTargetType">
         <!-- fileList: Lists *all* the files that ship with the 
plugin -->
         <fileList>
            <jars />
            <templates>
               <include file="RESTJSONSource-Mapper.xml" />
            </templates>
            <bin />
            <config />
            <shell />
            <patch />
            <unresolved-external />
         </fileList>
         <!-- securedTargetTypeInfo: Contains source type and trail 
information-->

Appendix C
JSON REST Collection Plug-in Example

C-24



         <securedTargetTypeInfo name="json_rest_secured_target" />
         <!-- trailType: contains trail type, location , classname for
         source type testSource -->
         <trailInfo>
            <trailType>REST</trailType>
            <className 
name="oracle.av.platform.agent.collfwk.ezcollector.json.JSONRESTCollectorFact
ory" />
         </trailInfo>
         <!-- eventPatch: OPTIONAL field that indicates any event patches
         that need to be applied as part of plugin deployment
         The files listed here must be present in the patch
         tag entries. The order in which the patches need to
         applied can be controlled via the "order" attribute
         Patches with lower "order" value will be applied first -->
         <eventPatch name="p6753288_11.1.2.0.0_GENERIC.zip" order="2" />
      </extensionPoint>
   </extensionSet>
</plugin>

C.6 Java-Based Collection Plug-in Example
Learn about the Java plug-in code and Java-based collection plug-in manifest file packages
and structure for Oracle Audit Vault and Database Firewall.

C.6.1 Java Collection Plug-in Code
This examples shows a complete Java-based collection plug-in.

This example is the end result of the discussion, "How to Create a Java-Based Collection
Plug-in".

Example C-11    SampleEventCollectorFactory.java

 package oracle.av.plugin.sample.collector;
 
import oracle.av.platform.agent.collfwk.AuditEventCollector;
import oracle.av.platform.agent.collfwk.AuditEventCollectorException;
import oracle.av.platform.agent.collfwk.AuditEventCollectorFactory;
import oracle.av.platform.agent.collfwk.CollectorContext;
 
public class SampleEventCollectorFactory implements 
AuditEventCollectorFactory {
 
   public AuditEventCollector createAuditCollection(
         CollectorContext collectorContext) throws 
AuditEventCollectorException {
      // It simply creates and returns an instance of SampleEventCollector
      return new SampleEventCollector();
   }
 
}

Appendix C
Java-Based Collection Plug-in Example

C-25



Example C-12    SampleEventCollector.java

package oracle.av.plugin.sample.collector;
 
import java.io.Reader;
import java.sql.Clob;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Timestamp;
import java.util.HashMap;
import java.util.Map;
 
 
import oracle.av.platform.agent.collfwk.AuditEventCollector;
import oracle.av.platform.agent.collfwk.AuditEventCollectorException;
import oracle.av.platform.agent.collfwk.AuditService;
import oracle.av.platform.agent.collfwk.CollectorContext;
import oracle.av.platform.agent.collfwk.SetAttributeException;
import oracle.av.platform.common.ErrorCodes;
import oracle.av.platform.common.dao.ConnectionManager;
import oracle.av.platform.common.dao.ConnectionManagerImpl;
import oracle.av.platform.common.exception.AuditException;
import oracle.av.platform.common.util.AVLogger;
 
/**
 * This collector collects events from AUD table and sends them to 
Collection
 * Framework. It connects to the Source database during initialization 
and uses
 * the same connection till close() is called. It maintains one 
ResultSet
 * containing events. Once the ResultSet gets exhausted, the Collector 
sets a
 * checkpoint and creates another ResultSet.
 * 
 * @author myellu
 * 
 */
public class SampleEventCollector extends AuditEventCollector {
 
   // The delay used when querying events.
   private static final long DELAY = 5 * 1000;
 
   private static final Map<Integer, String> eventNameMap = 
               new HashMap<Integer, String>();
   static {
      eventNameMap.put(1, "CREATE");
      eventNameMap.put(2, "INSERT");
      eventNameMap.put(3, "SELECT");
      eventNameMap.put(4, "CREATE");
      eventNameMap.put(15, "ALTER");
      eventNameMap.put(30, "AUDIT");
      eventNameMap.put(34, "CREATE");

Appendix C
Java-Based Collection Plug-in Example

C-26



      eventNameMap.put(35, "ALTER");
      eventNameMap.put(51, "CREATE");
      eventNameMap.put(52, "CREATE");
   }
 
   // This map contains mapping from the source event ids to Audit Vault 
target
   // types.
 
 
private static final Map<Integer, String> targetTypeMap = new 
HashMap<Integer,
    String>();
 
   static {
      targetTypeMap.put(1, "TABLE");
      targetTypeMap.put(2, "TABLE");
      targetTypeMap.put(3, "TABLE");
      targetTypeMap.put(4, "CLUSTER");
      targetTypeMap.put(15, "TABLE");
      targetTypeMap.put(30, "OBJECT");
      targetTypeMap.put(34, "DATABASE");
      targetTypeMap.put(35, "DATABASE");
      targetTypeMap.put(51, "USER");
      targetTypeMap.put(52, "ROLE");
   }
 
   // This map contains mapping from the source event ids to Source Event 
Names.
   // This is necessary since source event ids do not describe the Source 
Event.
   private static final Map<Integer, String> sourceEventMap = new 
HashMap<Integer,
      String>();
 
   static {
      targetTypeMap.put(1, "OBJECT:CREATED:TABLE");
      targetTypeMap.put(2, "INSERT INTO TABLE");
      targetTypeMap.put(3, "SELECT FROM TABLE");
      targetTypeMap.put(4, "OBJECT:CREATED:TABLE");
      targetTypeMap.put(15, "OBJECT:ALTERED:TABLE");
      targetTypeMap.put(30, "AUDIT OBJECT");
      targetTypeMap.put(34, "OBJECT:CREATED:DATABASE");
      targetTypeMap.put(35, "OBJECT:ALTERED:DATABASE");
      targetTypeMap.put(51, "OBJECT:CREATED:USER");
      targetTypeMap.put(52, "OBJECT:CREATED:ROLE");
   }
 
 
   // holds a connection to the Source database.
   private ConnectionManager m_connectionManager;
 
   // Connection to the Source.
   private Connection m_connection;
 

Appendix C
Java-Based Collection Plug-in Example

C-27



   // PreparedStatement used to get ResultSet.
   private PreparedStatement m_preparedStatement;
 
 
   // holds the ResultSet containing records.
   private ResultSet m_resultSet;
 
   // AuditService will be used to set checkpoint.
   private AuditService m_auditService;
 
   // previous checkpoint set.
   private Timestamp m_previousCheckpoint;
 
   // next checkpoint to be set.
   private Timestamp m_nextCheckpoint;
 
   private AVLogger m_logger;
 
   // The CollectorContext received from the Collection Framework.
   private CollectorContext m_collectorContext;
 
   private long m_timeZoneOffset;
 
   /**
    * It connects to the database using the credentials and Connection 
String
    * from the CollectorContext.
    * 
    * @throws AuditEventCollectorException
    */
   private void connectToSource() throws AuditEventCollectorException {
      m_logger.logDebugMethodEntered();
      // Get connection information from collector context.
      String user = m_collectorContext.getSecuredTargetUser();
      String password = new 
String(m_collectorContext.getSecuredTargetPassword());
      String connectionString = 
m_collectorContext.getSecuredTargetLocation();
      // Create a ConnectionManager object.
      try {
         m_connectionManager = new 
ConnectionManagerImpl(connectionString,
               user, password.toCharArray());
         m_connection = m_connectionManager.getConnection();
      } catch (AuditException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.FAILED_CONNECT_TO_SOURCE,
               new Object[] { connectionString }, ex);
      }
      m_logger.logDebugMethodExited();
   }
 
/**
    * converts the timone offset specified in String to a number of
    * milliseconds.

Appendix C
Java-Based Collection Plug-in Example

C-28



    *
    */
   private long getTimeZoneOffsetInMs(String offset) {
      if (offset == null)
         return 0;
      long timeZoneOffset;
      /** process offset to get value in milliseconds */
      int hour = Integer.parseInt(offset.substring(1, 3));
      int min = Integer.parseInt(offset.substring(4, 6));
      timeZoneOffset = (hour * 60 * 60 + min * 60) * 1000;
      if (offset.charAt(0) == '-')
         timeZoneOffset *= -1;
      return timeZoneOffset;
   }
 
   /**
    * Initializes the Collector with the values from CollectorContext. It 
also
    * connects to the database.
    */
   public void initializeCollector(CollectorContext collectorContext)
         throws AuditEventCollectorException {
      m_collectorContext = collectorContext;
      m_auditService = m_collectorContext.getAuditService();
      m_previousCheckpoint = m_collectorContext.getCheckpoint();
      m_logger = m_collectorContext.getLogger();
      // Get the timone offset for the Source.
      String offset = m_collectorContext.getAttribute("TimeZoneOffset");
      if (offset != null) {
         m_timeZoneOffset = getTimeZoneOffsetInMs(offset);
     }
      connectToSource();
      fetchEvents();
   }
 
   /**
    * Queries the Source to get audit events that occurred from previous
    * checkpoint to the current time. Apart from during the initialization, 
this
    * method should be called only when ResultSet is exhausted. There are two
    * reasons for this. <br>
    * 1. This method will set the checkpoint. Checkpoint should only be set 
when
    * the ResultSet is exhausted as the results with in the ResultSet can be 
in
    * random order.<br>
    * 2. This method will create a new ResultSet. Hence the contents of the 
old
    * ResultSet will be inaccessible after this function is called.
    * 
    * @throws AuditEventCollectorException
    */
   private void fetchEvents() throws AuditEventCollectorException {
      m_logger.logDebugMethodEntered();
      if (m_nextCheckpoint != null) {

Appendix C
Java-Based Collection Plug-in Example

C-29



         m_auditService.setCheckpoint(m_nextCheckpoint);
         m_previousCheckpoint = m_nextCheckpoint;
      }
 
     // It is not good to hold on to the Connection for long. As this 
is the
      // only place we can release the connection, we release and 
reacquire the
      // connection.
      try {
         if (m_connection != null) {
            m_connectionManager.releaseConnection(m_connection);
         }
      } catch (AuditException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.FAILED_TO_RELEASE_CONNECTION_TO_DB, null, 
ex);
      }
 
      try {
         m_connection = m_connectionManager.getConnection();
      } catch (AuditException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.FAILED_TO_GET_CONNECTION_TO_DB, null, ex);   
      }
 
      // Now we need to aim for the next checkpoint. We will query for 
all
      // events from previous checkpoint to the next checkpoint. So we 
want to
      // make sure that all the events with event time lesser than the 
next
      // checkpoint are already available in the table. However, the 
events
      // might take a small amount of time before they are present in 
the table.
      // Hence the next checkpoint we aim will be current time minus 
delta time.
      m_nextCheckpoint = new Timestamp(System.currentTimeMillis() - 
DELAY);
      String query = null;
      try {
         if (m_previousCheckpoint == null) {
            query = "select * from AUD where EVENT_TIME <= ?";
            m_preparedStatement = m_connection.prepareStatement(query);
            m_preparedStatement.setTimestamp(1, m_nextCheckpoint);
         } else {
            query = "select * from AUD where EVENT_TIME > ? and 
EVENT_TIME <= ?";
            m_preparedStatement = m_connection.prepareStatement(query);
            m_preparedStatement.setTimestamp(1, m_previousCheckpoint);
            m_preparedStatement.setTimestamp(2, m_nextCheckpoint);
         }
         m_resultSet = m_preparedStatement.executeQuery();
      } catch (SQLException ex) {

Appendix C
Java-Based Collection Plug-in Example

C-30



         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE,
               new Object[] { query }, ex);
      }
      m_logger.logDebugMethodExited();
   }
 
   /**
    * If the result set is not exhausted this will return true. If it has
    * exhausted, it will query to get the events till the current time. If it
    * could get any events, it will return true, false otherwise.
    */
   public boolean hasNext() throws AuditEventCollectorException {
      boolean hasMore;
      try {
         if(m_resultSet == null) {
            fetchEvents();
            return m_resultSet.next();
         }
         hasMore = m_resultSet.next();
         if (!hasMore) {
            fetchEvents();
            hasMore = m_resultSet.next();
         }
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
      return hasMore;
   }
 
   // All the getter methods make use of the ResultSet get methods and return
   // the value appropriately.
 
   public String getUserName() throws AuditEventCollectorException {
      try {
         return m_resultSet.getString("USER_ID");
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }
 
   public String getOSUserName() throws AuditEventCollectorException {
      try {
         return m_resultSet.getString("OS_USER_ID");
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }
 
   public String getCommandClass() throws AuditEventCollectorException {
      try {
         int eventId = m_resultSet.getInt("ACTION");

Appendix C
Java-Based Collection Plug-in Example

C-31



         return eventNameMap.get(eventId);
      } catch (SQLException ex) {
        throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }
 
   public String getEventName() throws AuditEventCollectorException {
      try {
         int eventId = m_resultSet.getInt("ACTION");
         return sourceEventMap.get(eventId);
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }
 
   public EventStatus getEventStatus() throws 
AuditEventCollectorException {
      try {
         int status = m_resultSet.getInt("STATUS");
         if (status == 1) {
            return EventStatus.SUCCESS;
         } else if (status == 0) {
            return EventStatus.FAILURE;
         } else {
            return EventStatus.UNKNOWN;
         }
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }
 
   public Timestamp getEventTimeUTC() throws 
AuditEventCollectorException {
      try {
         Timestamp eventTime = m_resultSet.getTimestamp("EVENT_TIME");
         // As the method name suggests, the timestamp must be 
returned only in
         // UTC timone.
         return new Timestamp(eventTime.getTime() - m_timeZoneOffset);
      } catch (SQLException ex) {
         throw new 
AuditEventCollectorException(               ErrorCodes.ERROR_GETTING_DA
TA_FROM_SOURCE, null, ex);
      }
   }
 
   public String getErrorMessage() throws AuditEventCollectorException 
{
      // There is no corresponding field for ErrorMessage. Hence we
      // return NULL always.
      return null;
   }

Appendix C
Java-Based Collection Plug-in Example

C-32



 
   public String getErrorId() throws AuditEventCollectorException {
      // There is no corresponding field for ErrorId. Hence we
      // return NULL always.
      return null;
   }
 
   public String getTargetObject() throws AuditEventCollectorException {
      try {
         return m_resultSet.getString("OBJ_NAME");
      } catch (SQLException ex) {
         throw new 
AuditEventCollectorException(               ErrorCodes.ERROR_GETTING_DATA_FRO
M_SOURCE, null, ex);
      }
   }
 
   public String getTargetType() throws AuditEventCollectorException {
       try {
         int eventId = m_resultSet.getInt("ACTION");
         return targetTypeMap.get(eventId);
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
}
 
   public String getTargetOwner() throws AuditEventCollectorException {
      try {
         return m_resultSet.getString("OBJ_CREATOR");
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }
 
   public String getClientHostName() throws AuditEventCollectorException {
      try {
         return m_resultSet.getString("USER_HOST");
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }
 
   public String getClientIP() throws AuditEventCollectorException {
      // There is no corresponding field for IP address. Hence we
      // return NULL always.
      return null;
   }
 
   public String getExtension() throws AuditEventCollectorException {
      try {
         StringBuilder sb = new StringBuilder();
         // Here we will put those fields which are not sent in other getter

Appendix C
Java-Based Collection Plug-in Example

C-33



         // methods.
         sb.append("DB_ID=" + m_resultSet.getString("DB_ID") + ";");
         sb.append("INSTANCE=" + m_resultSet.getString("INSTANCE") + 
";");
         sb.append("PROCESS=" + m_resultSet.getString("PROCESS"));
         return sb.toString();
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }
 
   public Reader getCommandText() throws AuditEventCollectorException {
      try {
         // Clobs and the Readers contained in the Clobs are alive only
         // as long as the Connection to the Source is alive. So if 
the Source
         // Connection is closed, Collection Framework will fail when 
it tries
         // to send the events to AV Server. If there is any need to 
close and
         // recreate a connection that should be done immediately 
after setting
         // the checkpoint. Setting the checkpoint causes the 
Collection
         // Framework to flush all the events it is holding. So 
immediately
         // after setting the checkpoint, we are sure that the 
Framework is not
         // holding any events.
         Clob clob = m_resultSet.getClob("SQL_TEXT");
         return clob.getCharacterStream();
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }
 
   public Reader getCommandParam() throws AuditEventCollectorException 
{
      try {
         Clob clob = m_resultSet.getClob("SQL_BIND");
         return clob.getCharacterStream();
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }
 
   public String getMarker() throws AuditEventCollectorException {
      // ENTRY_ID will identify an audit event uniquely with in a 
session. Hence
      // ENTRY_ID along with SESSION_ID will uniquely identify an 
audit event
      // across sessions.

Appendix C
Java-Based Collection Plug-in Example

C-34



      try {
         return m_resultSet.getString("SESSION_ID") + ":"
               + m_resultSet.getString("ENTRY_ID");
      } catch (SQLException ex) {
         throw new AuditEventCollectorException(
               ErrorCodes.ERROR_GETTING_DATA_FROM_SOURCE, null, ex);
      }
   }
 
   public void setAttribute(String name, String value)
         throws SetAttributeException {
      if (name.equalsIgnoreCase("TimeZoneOffset")) {
               m_timeZoneOffset = getTimeZoneOffsetInMs(value);
      } else {
         throw new SetAttributeException(ErrorCodes.INVALID_ATTRIBUTE_NAME,
               new Object[] { name, value }, null);
      }
   }
 
   public void close() {
      try {
         if (m_resultSet != null) {
            m_resultSet.close();
            m_resultSet = null;
         }
         if (m_connectionManager != null) {
            m_connectionManager.destroy();
            m_connectionManager = null;
         }
         m_previousCheckpoint = null;
         m_nextCheckpoint = null;
         m_logger = null;
      } catch (SQLException ex) {
         m_logger.logError("SampleEventCollector", "close",
               "SQLException occurred. ", ex);
      } catch (AuditException ex) {
         m_logger.logError("SampleEventCollector", "close",
               "AuditException occurred. ", ex);
      }
   }
}

C.6.2 Java Based Collection Plug-in Manifest File
See how to set up a Java-based collection plug-in for Oracle Audit Vault and Database
Firewall.

This is a sample manifest file for a Java-based collection.

Example C-13    Java-Based Manifest File

<?xml version="1.0"?>
 
<plugin xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://xmlns.oracle.com/av/plugin plugin-manifest.xsd"
        xmlns="http://xmlns.oracle.com/av/plugin"

Appendix C
Java-Based Collection Plug-in Example

C-35



        name="Sample Plugin"
        id="com.oracle.av.plugin.sample"
        version="12.1.0.0.0"
        provider-name="Oracle Corp."
        copyright="Copyright Oracle Corp. 2011">
 
            <!-- targetVersion: Version of Oracle Audit Vault supported by
              this plugin. This is represented by the "min" attribute of
              targetVersion> tag                 -->
 
   <targetVersion min="12.1.0.0.0"/>
 
   <extensionSet>
      <extensionPoint type= "securedTargetType">
            <!-- fileList: Lists *all* the files that ship with the plugin -->   
         <fileList>
            <jars>
               <include file="samplecollector.jar"/>
               <!-- All your collector Java jar binaries go here -->
            </jars>
            <templates>
            <bin>
               <!-- All your collector native binaries go here -->         
            </bin>
            <config>
               <!-- Any configuration information (such as .properites files)
                    go here -->
            </config>
            <shell>
               <!-- Any shell scripts that your collector relies on go here -->
            </shell>
            <patch>
               <!-- Oracle provided patches go here -->
            </patch>
            <unresolved-external>
               <!-- Any files belonging to the unresolved-external category here 
-->
            </unresolved-external>
         
         </fileList>
            <!-- securedTargetTypeInfo: Contains source type and trail 
information 
                 -->
         <securedTargetTypeInfo name="Sample"/>
            <!-- trailType: contains trail type, location , classname for
               source type testSource -->
         <trailInfo>
           <trailType>TABLE</trailType>
            <className 
name="oracle.av.plugin.sample.collector.SampleEventCollectorFactory" />
         </trailInfo >
      </extensionPoint>    
   </extensionSet>
</plugin>
 
 

Appendix C
Java-Based Collection Plug-in Example

C-36



D
Bundled JDBC Drivers

Learn about the JDBC drivers that are bundled with the Oracle Audit Vault and Database
Firewall (Oracle AVDF) SDK.

D.1 About Bundled JDBC Drivers
Learn about the five JDBC drivers that are bundled with Oracle Audit Vault and Database
Firewall.

When you create a collection plug-in, you can use it to extract audit records from a database
table. To do this, you must have a JDBC driver to connect to the database. Drivers for most
common databases are bundled with the SDK.

The Oracle AVDF SDK ships with 5 different JDBC drivers, some that are standard to the
product and some that are proprietary drivers provided by Oracle for specific third-party
databases.

• Standard

– Oracle

– MySQL

• Proprietary

– Sybase

– Microsoft SQL Server

– DB2

You are not required to use any of these JDBC drivers. You can use drivers that you have
acquired elsewhere. However, if you plan to use any of the listed drivers, then in your mapper
file, and when registering a target, you must provide the information in the following table:

Table D-1    JDBC Drivers and Connecting URLs

Database Driver Class Connecting URL

Oracle oracle.jdbc.pool.OracleDataSource jdbc:oracle:thin:@host:port:
sid

MySQL N/A jdbc:av:mysql://host:port
SQLServer oracle.av.platform.jdbcx.sqlserver.SQLServerData

Source
jdbc:av:sqlserver://
host:port

DB2 oracle.av.platform.jdbcx.db2.DB2DataSource jdbc:av:db2://host:port/
dbname

Sybase oracle.av.platform.jdbcx.sybase.SybaseDataSource jdbc:av:sybase://host:port

D-1



D.2 Connecting URLs
Use the correct Connection URL for the type of JDBC driver that you use with Oracle
Audit Vault and Database Firewall.

You use Connection URLs to specify the location of a database target when you
register the target on the GUI or through AVCLI. The format of the Connection URL
depends on the JDBC driver that you use. Each of the JDBC drivers shipped with
Oracle Audit Vault and Database Firewall specifies the format required by the JDBC
driver in question in the table in "About JDBC Drivers and Connecting URLs." .

Additionally, to use specific encryption methods in the connecting URL, you must set
the EncryptionMethod property. In the following syntax example, note that the variable
encryptionmethod can be SSL, requestSSL, or loginSSL:

jdbc:av:[sqlserver]://hostname: port;
[EncryptionMethod=encryptionmethod].

Use this url to register a Target, by entering it into the Target Location field, with the
Advanced mode selected.

Related Topics

• About Bundled JDBC Drivers
Learn about the five JDBC drivers that are bundled with Oracle Audit Vault and
Database Firewall.

• Creating a Database Table Mapper File
Learn how to create an Oracle Audit Vault XML mapper file for a database table
collection plug-in, and learn about each XML element and attribute used in this
type of mapper file.

See Also:

Target Connection Information block in "Creating a Database Table Mapping
File. Creating a Database Table Mapper File.

D.3 DataSource Class
To enable a Java application to interact with the Oracle Audit Vault platform, use this
JDBC DataSource class.

oracle.av.platform.jdbcx.dbsource.DBSourceDataSource

Appendix D
Connecting URLs

D-2



Glossary

audit record
A record that represents a database event.

audit record field
A component of an audit record. Each audit record field represents an attribute of the event
that the record represents. If the record is in a table, then its fields are columns.

audit trail
A location of audit records on the secured target. For example:

• If the secured target writes audit records into files (called audit files), then the directory
path plus the file mask is an audit trail.

• If the source writes audit records into a database table (called an audit table), then the
name of the table is an audit trail.

• If the source writes some audit records into files of directory x, some into database table
y, and some into files of directory z, then the source has three different audit trails:
directory x plus the file mask, table y, and directory z plus the file mask.

audit trail cleanup
The process that purges audit records from the secured target after they are stored in Audit
Vault Server repository. The collection plug-in provides the checkpoint to either the source or
a utility that has permission to delete records from the source, and the source or utility purges
the original records.

Audit Vault Server field
An audit record field in Oracle Audit Vault and Database Firewall, as opposed to an audit
record field on a secured target (see collection plug-in). An Audit Vault Server field is either a 
core field, an extension field, or a large field.

checkpoint
The point in an audit trail after which a collection plug-in will start collecting audit records. If
the collection plug-in has collected no records from the audit trail, then the checkpoint is

Glossary-1



immediately before the first record. If the collection plug-in started collecting records
and then stopped, then the checkpoint is immediately after the last record that it
collected.

collection plug-in
A plug-in that adds an audit trail collection capability to Oracle Audit Vault and
Database Firewall. It gets audit record semantics from a mapper file and reads audit
records from either an audit table or XML audit files.

Command Text field
A large field that contains the text of the command that caused the event.

Command Parameter field
A large field that contains the parameters of the command that caused the event.

core field
An Audit Vault Server field that has a corresponding field in audit records generated by
almost every source. That is, almost every collection plug-in maps a source audit
record field to each core field. Oracle Audit Vault and Database Firewall uses core
fields for filtering and reporting. The core fields are described and listed in "Core
Fields".

extension field
An Audit Vault Server field that is not a core field but must be stored in Oracle Audit
Vault Server.

large field
An Audit Vault Server field of the data type CLOB (described in Oracle Database SQL
Language Reference). A large field is either a Command Text field or a Command
Parameter field.

mapper file
An XML file that describes the audit records that a specific secured target writes into
either an audit table or XML audit files. The mapper file specifies the audit record fields
to collect from the source, how to map them to Audit Vault Server fields, and which
fields to use for recovery. A mapper file always specifies the secured target, the
maximum version of the source type that the mapper file supports, and the mapper file
version. A mapper file can also specify the minimum version of the source type that it

Glossary

Glossary-2



supports and an incremental field for calculating the checkpoint. The default for the
incremental field is the event time field.

Marker field
An audit record field that uniquely identifies the record within an audit trail. An collection plug-
in uses marker fields to avoid collecting duplicate records during recovery.

plug-in
An application that adds a capability to another application (and usually cannot run
independently).

recovery
The phase of data collection where an collection plug-in that stopped and restarted tries to
reach its checkpoint. Resuming collection immediately after the checkpoint ensures that the
collector does not miss any records. To avoid collecting duplicate records during recovery, the
collector checks the Marker field of each record.

secured target
A secured target is a supported database or non-database product that you secure using an
Audit Vault Agent, a Database Firewall, or both.

secured target type
A category of auditing source. For example, Oracle Database is a secured target type, a
collection of Oracle Database instances that generate audit records with the same fields.
Secured target types generate semantically identical audit records (that is, audit records that
have the same fields).

Glossary

Glossary-3



Index

A
about Audit Collection Plug-ins, 3-1
about XML mapper files, 2-5
Action fields, A-3
actions and target types, A-3
agents

redeploying, 6-3
Agents

deploying, 6-3
audit collection plug-in

packaging, 5-1
setting up development environment for, 2-1

audit collection plug-ins
types of, 1-2

audit collection Plug-ins
determining which to use, 1-3

Audit Collection Plug-ins, 3-1
audit records, 1-4

storing, 1-6
audit trail, 1-1

clean-up, 1-10
audit trail cleanup

Java-based collection plug-ins, 4-28
Audit Vault Agent

deploying, 6-3
how it works, 1-1

Audit Vault and Database Firewall core fields, A-1
Audit Vault and Database Firewall fields, A-1
Audit Vault and Database Firewall SDK

downloading, 2-1
Audit Vault Server

how it works, 1-1
Audit Vault Server events

about, 1-4
Audit Vault Server fields

about, 1-4
AuditEventCollectorException exception, 4-19
AuditEventCollectorFactory, 4-5
av.collector.atcintervaltime, 3-43
av.collector.securedtargetversion (Mandatory),

3-43
av.collector.timezoneoffset (Mandatory), 3-43
avcli commands, 6-1
AVCLI commands, 3-43

AVDF extension fields, A-3
AVDF large fields, A-2
AVLogger API, 4-27
avpack tool

how to use, 5-3

C
checkpoint

of a trail, 1-9
clean-up

audit trail, 1-10
closing Java-based collection plug-ins, 4-19
CollectContext class, 4-6
collection concepts, 1-8
collection phase, 1-9
collection plug-in

directory structure, 2-3
Java-based

See Java-based collection plug-in, 1-3
upgrading (creating new versions), 5-2

collection plug-in directory structure, 2-2
collection plug-in example

CSV, C-15
Java file, C-25
JSON, C-11
JSON REST, C-20
XML file, C-6

collection plug-in manifest file
CSV file, C-19
JSON file, C-14
JSON REST, C-24
XML file, C-10

collection plug-in mapper file
CSV file, C-15
JSON file, C-11
JSON REST, C-20
XML file, C-6

collection plug-ins
what are they?, 1-2

collection process
overview of the whole process, 1-7

collection thread, 1-8
ConnectionManager API, 4-21
creating a database table mapper file, 3-4

Index-1



creating the CSV file audit collection mapper file,
3-30

creating the JSON file audit collection mapper
file, 3-23

creating the JSON REST audit collection mapper
file, 3-38

creating the XML file audit collection mapper file,
3-12

CSV file audit collection mapper file
creating, 3-30

CSV file collection plug-in
example audit trail for, 3-29

CSV file collection plug-in example, C-15
CSV file collection plug-in manifest file, C-19
CSV file collection plug-in mapper file, C-15

schema, B-7
CSV file collection plug-ins, 3-28

requirements for, 3-28

D
data collection

recovery phase, 1-10
database table collection plug-in example, C-1
database table collection plug-in manifest file,

C-5
database table collection plug-in mapper file, B-4,

C-1
database table collection plug-ins, 3-2

requirements, 3-2
database table mapper file

creating, 3-4
deploy plugin command, 5-2
deploying an Audit Vault Agent, 6-3
development environment, 2-2

directory structure, 2-2, 2-3
Java-based collection plug-in, 2-4

plugin-manifest.xml file staging, 2-4
requirements, 2-1
setting up, 2-1

directory structure
collection plug-in, 2-2
collection plug-ins, 2-2
general, 2-2

E
errors

exception to use, 4-19
unrecoverable condition, 4-19

event logs
Java-based collection plug-ins, 4-23
Windows, 4-23

Event Time to UTC, 4-11
EventLog API, 4-23

EventMetaData API, 4-26
example

database table collection plug-in, C-1
example audit trail for a CSV file collection plug-

in, 3-29
example audit trail for a database table collection

plug-in, 3-3
example audit trail for a JSON file collection plug-

in, 3-22
example audit trail for a JSON REST collection

plug-in, 3-36
example audit trail for an xml file collection plug-

in, 3-11
exceptions

AuditEventCollectorException, 4-19
SetAttributeException, 4-19
types the collection plug-in can throw, 4-19

extension fields, A-3
external dependencies, 5-2
ezcollector plug-in mapper file

schema, B-16

F
fields, large, 4-17
flow of control

inside the collection plug-in, 1-8
flow of packaging, 5-1

G
general procedure

for writing collection plug-is, 1-11

H
handling large fields, 4-17

I
initializing the collector plug-in, 4-8

J
Java-based audit collection plug-in

directory structure, 2-4
writing, 4-1

Java-Based Collection Plug-in, 4-1
Java-based collection plug-ins

about, 4-1
about creating, 4-5
audit trail cleanup, 4-28
classes and interfaces, useful, 4-2
closing, 4-19

Index

Index-2



Java-based collection plug-ins (continued)
CollectContext class, 4-6
collection factory, 4-5
connecting, 4-9
creating, 4-4
creating markers, 4-18
description of, 1-3
event logs, 4-23
extension fields, 4-17
fetching events, 4-9
flow of control process, 4-1
how they work, 4-1
intializing, 4-8
large fields, 4-17
retrieving other field values, 4-15
security considerations, 4-29
setting checkpoints, 4-9
source connections, 4-21
transforming source event values to Audit

Vault values, 4-11
utility APIs, 4-20

Java-based collector plug-ins, 4-1
changing attributes at run time, 4-15, 4-16

Java-based file collection plug-in example, C-25
JDK requirement for Java-Based Collection Plug-

in, 4-1
JDK requirements for, 4-1
JSON collector plug-in mapper file

schema, B-15
JSON file audit collection mapper file

creating, 3-23
JSON file collection plug-in

example audit trail for, 3-22
JSON file collection plug-in example, C-11
JSON file collection plug-in manifest file, C-14
JSON file collection plug-in mapper file, C-11

schema, B-6
JSON file collection plug-ins, 3-21

requirements for, 3-21
JSON REST audit collection mapper file

creating, 3-38
JSON REST collection plug-in

example audit trail for, 3-36
JSON REST collection plug-in manifest file, C-24
JSON REST collection plug-in mapper file, C-20

schema, B-9
JSON REST collection plug-ins, 3-35

requirements for, 3-35
JSON REST file collection plug-in example, C-20

L
large fields, A-2

M
mapper file

database table collection plug-in, B-4, C-1
mapper files, 2-5
mappings

from target to Audit Vault Server, 1-9
marker fields, A-2
markers in Java-based collection plug-ins, 4-18

N
name pattern collection plug-in mapper file

schema, B-14

O
Oracle Audit Vault and Database Firewall

what is it?, 1-1
Oracle AVDF marker fields, A-2
Oracle XML Developer’s Kit, 4-28

P
packaging, 5-1

external dependencies, 5-2
flow of, 5-1

plug-in manifest file
database table collection, C-5

plug-ins
redeploying agent, 6-3
requirements for testing, 6-1
testing procedure, 6-1

plugin id, 2-5
plugin-manifest.xml file

about, 2-4
description of, 2-5
sample schema, B-1
staging, 2-4

pre-processing audit data, 3-44

R
recovery phase

of data collection, 1-10
requirements for CSV file collection plug-ins,

3-28
requirements for database table collection plug-

ins, 3-2
requirements for JSON file collection plug-ins,

3-21
requirements for JSON REST collection plug-ins,

3-35
requirements for xml file collection plug-ins, 3-10

Index

Index-3



REST collector plug-in mapper file
schema, B-11

S
sample schema for a plugin-manifest.xml file, B-1
schema for CSV file collection plug-in mapper

file, B-7
schema for ezcollector plug-in mapper file, B-16
schema for JSON collector plug-in mapper file,

B-15
schema for JSON file collection plug-in mapper

file, B-6
schema for JSON REST collection plug-in

mapper file, B-9
schema for name pattern collection plug-in

mapper file, B-14
schema for REST collector plug-in mapper file,

B-11
schema for xml file collection plug-in mapper file,

B-5
SDK

downloading, 2-1
security considerations

Java-based collection plug-ins, 4-29
SetAttributeException exception, 4-19
setting up development environment, 2-1
source attributes

additional, 4-7
Java based, 4-6

source attributes, changing custom at run time,
4-16

source attributes, changing Oracle AVDF at run
time, 4-15

source database
connections to Java-based collection plug-in,

4-21
source event id to source event name, 4-13
source event ID to target type, 4-13
source event name to Audit Vault event name,

4-12
source event name to target type, 4-13
source event status to Audit Vault event status,

4-14
source event values, transforming to Audit Vault

event values, 4-11
staging

plugin-manifest.xml file, 2-4
storing audit records, 1-6

T
target, 1-1

target collection attributes, 3-43
target type, 1-1
target types, A-6
trail

checkpoint, 1-9
trail attributes

additional, 4-7
trail-related attributes, 4-6

U
undeploy plugin command, 5-2
unresolved-external tag, 5-2
upgrading

collection plug-ins, 5-2
utilities

AVLogger API, 4-27
Oracle XML Developer’s Kit, 4-28

utility APIs
Java-based collection plug-ins, 4-20

utility instances, 4-7

W
what are collection plug-Ins?, 1-2
Windows

EventMetaData API, 4-26
Windows EventLog, 4-23
Windows EventLog API, 4-23
Windows Metadata Java API, 4-26
writing collection plug-Ins

general procedures for, 1-11

X
xml file audit collection mapper file

creating, 3-12
xml file collection plug-in

example audit trail for, 3-11
XML file collection plug-in example, C-6
XML file collection plug-in manifest file, C-10
xml file collection plug-in mapper file

schema, B-5
XML file collection plug-in mapper file, C-6
xml file collection plug-ins

requirements for, 3-10
XML file collection plug-ins, 3-10
XML mapper files, 3-1

about, 2-5

Index

Index-4


	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions
	Translation

	Changes in This Release for Oracle Audit Vault and Database Firewall
	Changes In Oracle Audit Vault and Database Firewall Release 20

	1 What is Oracle Audit Vault and Database Firewall
	1.1 Overview of Oracle Audit Vault and Database Firewall
	1.2 How Oracle Audit Vault Server and Agent Work
	1.3 Types of Audit Collection Plug-Ins
	1.3.1 What Are Audit Collection Plug-ins?
	1.3.2 About Oracle AVDF Plug-In Types
	1.3.3 Determining Which Audit Collection Plug-in Type to Create
	1.3.4 Java-Based Collection Plug-ins

	1.4 Audit Vault Server Events and their Attributes
	1.4.1 About Audit Vault Server Events and Attributes
	1.4.2 Understanding Core Fields
	1.4.3 CommandClass and Target Types
	1.4.4 Other Oracle Audit Vault Fields
	1.4.4.1 About Large Fields
	1.4.4.2 About Extension Field
	1.4.4.3 About Marker Fields

	1.4.5 Storing Audit Records in Audit Vault

	1.5 The Collection Process
	1.5.1 Flow of Collection: User
	1.5.2 Flow of Control Inside the Audit Collection Plug-in
	1.5.3 Collection Concepts
	1.5.3.1 Collection Thread
	1.5.3.2 Collection Phase
	1.5.3.3 Mapping
	1.5.3.4 Checkpoint of a Trail
	1.5.3.5 Recovery Phase Of Data Collection
	1.5.3.6 Audit Trail Clean Up


	1.6 General Procedure for Writing Audit Collection Plug-ins

	2 Setting Up Your Development Environment
	2.1 Before Setting Up the Development Environment
	2.2 Setting Up the Development Environment
	2.3 Audit Collection Plug-in Directory Structure
	2.3.1 General Directory Structure
	2.3.2 Audit Collection Plug-In Directory Structure
	2.3.3 Java-Based Collection Plug-in Directory Structure
	2.3.4 Staging a plugin-manifest.xml File
	2.3.5 About Mapper Files
	2.3.6 Description of Plug-in Manifest File


	3 Audit Collection Plug-ins
	3.1 About Audit Collection Plug-ins
	3.2 Database Table Collection Plug-ins
	3.2.1 Requirements for Database Table Collection Plug-ins
	3.2.2 Example Audit Trail for a Database Table Collection Plug-in
	3.2.3 Creating a Database Table Mapper File

	3.3 XML File Collection Plug-ins
	3.3.1 Requirements for XML File Collection Plug-ins
	3.3.2 Example Audit Trail for an XML File Collection Plug-in
	3.3.3 Creating the XML File Audit Collection Mapper File
	3.3.4 XML Transformation for Non-Standard Audit Records
	3.3.4.1 Additional Requirement for XML Transformation Using XSL
	3.3.4.2 Changes Required to Transform Non-Standard Audit Records
	3.3.4.3 Sample Non-Standard XML Audit Data Record
	3.3.4.4 Creating an XSL File for Transformation


	3.4 JSON File Collection Plug-ins
	3.4.1 Requirements for JSON File Collection Plug-ins
	3.4.2 Example Audit Trail for a JSON File Collection Plug-in
	3.4.3 Creating the JSON File Audit Collection Mapper File

	3.5 CSV File Collection Plug-ins
	3.5.1 Requirements for CSV File Collection Plug-ins
	3.5.2 Example Audit Trail for a CSV File Collection Plug-in
	3.5.3 Creating the CSV File Audit Collection Mapper File

	3.6 JSON REST Collection Plug-ins
	3.6.1 Requirements for JSON REST Collection Plug-ins
	3.6.2 Example Audit Trail for a JSON REST Collections Plug-in
	3.6.3 Creating the JSON REST Audit Collection Mapper File

	3.7 Target Collection Attributes
	3.8 Preprocessing Audit Data

	4 Java-Based Audit Trail Collection Plug-ins
	4.1 About Java-Based Collection Plug-ins
	4.2 JDK Requirement for Using the Java-Based Collection Plug-in
	4.3 About the Flow of Control Inside the Java-Based Collection Plug-in
	4.4 Useful Classes and Interfaces in the Collection Framework
	4.5 How to Create a Java-Based Collection Plug-in
	4.5.1 About Creating a Java-Based Collection Plug-in
	4.5.2 Using the AuditEventCollectorFactory to Get the AuditEventCollector Object
	4.5.3 Using the CollectorContext Class When Creating a Java-Based Collection Plug-in
	4.5.3.1 Basic Source Attributes
	4.5.3.2 Basic Trail Attributes
	4.5.3.3 Utility Instances
	4.5.3.4 Additional Source or Trail Attributes

	4.5.4 Initializing the Java-Based Collection Plug-in
	4.5.5 Connecting, Fetching Events, and Setting Checkpoints
	4.5.6 Transforming Source Event Values to Audit Vault Event Values
	4.5.6.1 Event Time to UTC
	4.5.6.2 Source Event Name to Audit Vault Event Name
	4.5.6.3 Source Event ID to Source Event Name
	4.5.6.4 Mapping Source Event Name or ID to Target Type
	4.5.6.5 Source Event Status to Oracle Audit Vault Event Status

	4.5.7 Retrieving Other Audit Field Values
	4.5.8 Changing Oracle AVDF Attributes at Run Time
	4.5.9 Changing Custom Attributes at Run Time
	4.5.10 Creating Extension Fields
	4.5.11 Handling Large Audit Fields
	4.5.12 Creating Markers to Uniquely Identify Records
	4.5.13 Closing the Java-Based Collection Plug-in
	4.5.14 Using Exceptions in Collection Plug-ins

	4.6 Java-Based Collection Plug-in Utility APIs
	4.6.1 About Connection to Database Sources Using ConnectionManager API
	4.6.2 Example of Using the ConnectionManager API to Connect to Database Sources
	4.6.3 Using the Windows Event Log Access API
	4.6.4 Using Windows EventMetaData API
	4.6.5 Using the AVLogger API to Log Messages
	4.6.6 Using the Oracle XML Developer's Kit to Parse XML Files

	4.7 Using an Audit Trail Cleanup with Java-Based Collection Plug-ins
	4.8 Java-Based Collection Plug-in Security Considerations

	5 Packaging Audit Collection Plug-ins
	5.1 Flow of Packaging
	5.2 Creating a plugin_manifest.xml File for Shipping
	5.3 External Dependencies
	5.4 Creating New Versions of Your Audit Collection Plug-ins
	5.5 avpack Tool

	6 Testing Audit Collection Plug-ins
	6.1 Requirements for Testing Audit Collection Plug-ins
	6.2 Typical Audit Collection Plug-in Testing Processes
	6.3 Deploying an Audit Vault Agent
	6.4 Redeploying the Oracle Audit Vault Agent

	A Audit Vault Server Fields
	A.1 Oracle Audit Vault and Database Firewall Fields
	A.1.1 Core Fields
	A.1.2 Large Fields
	A.1.3 Marker Field
	A.1.4 Extension Field

	A.2 Actions and Target Types
	A.2.1 Actions
	A.2.2 Target Types


	B Schemas
	B.1 Sample Schema for a plugin-manifest.xml file
	B.2 Database Table Collection Plug-in Mapper File
	B.3 Schema For XML File Collection Plug-in Mapper File
	B.4 Schema For JSON File Collection Plug-in Mapper File
	B.5 Schema For CSV File Collection Plug-in Mapper File
	B.6 Schema For JSON REST Collection Plug-in Mapper File
	B.7 Schema For REST Collector Plug-in Mapper File
	B.8 Schema For Name Pattern Collection Plug-in Mapper File
	B.9 Schema For JSON Collector Plug-in Mapper File
	B.10 Schema For EZCollector Plug-in Mapper File

	C Example Code
	C.1 Database Table Collection Plug-in Example
	C.1.1 Database Table Collection Plug-in Mapper File
	C.1.2 Database Table Collection Plug-in Manifest File

	C.2 XML File Collection Plug-in Examples
	C.2.1 XML File Collection Plug-In Mapper File
	C.2.2 XML File Collection Plug-In Manifest File

	C.3 JSON File Collection Plug-in Example
	C.3.1 JSON File Collection Plug-In Mapper File
	C.3.2 JSON File Collection Plug-In Manifest File

	C.4 CSV File Collection Plug-in Example
	C.4.1 CSV File Collection Plug-In Mapper File
	C.4.2 CSV File Collection Plug-In Manifest File

	C.5 JSON REST Collection Plug-in Example
	C.5.1 JSON REST Collection Plug-In Mapper File
	C.5.2 JSON REST Collection Plug-In Manifest File

	C.6 Java-Based Collection Plug-in Example
	C.6.1 Java Collection Plug-in Code
	C.6.2 Java Based Collection Plug-in Manifest File


	D Bundled JDBC Drivers
	D.1 About Bundled JDBC Drivers
	D.2 Connecting URLs
	D.3 DataSource Class

	Glossary
	audit record
	audit record field
	audit trail
	audit trail cleanup
	Audit Vault Server field
	checkpoint
	collection plug-in
	Command Text field
	Command Parameter field
	core field
	extension field
	large field
	mapper file
	Marker field
	plug-in
	recovery
	secured target
	secured target type

	Index

