ORACLE"

Oracle® Spatial and Graph
Developer's Guide

12c Release 1 (12.1)

E49172-07

January 2017

Provides usage and reference information for indexing and
storing spatial data and for developing spatial applications
using Oracle Spatial and Graph and Oracle Locator.

Oracle Spatial and Graph Developer's Guide, 12c Release 1 (12.1)
E49172-07

Copyright © 1999, 2017, Oracle and/or its affiliates. All rights reserved.
Primary Author: Chuck Murray

Contributors: Dan Abugov, Nicole Alexander, Bruce Blackwell, Raja Chatterjee, Dan Geringer, Mike
Horhammer, Ying Hu, Baris Kazar, Ravi Kothuri, Siva Ravada, Jack Wang, Ji Yang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ..o XXvii
AUAIEIICE ..o XXVii
Documentation AcCesSIbIlity ... XXVii
Related DOCUINENLS........c.ciuiiiiiiiciciiicec e XXVii
CONVENEIONS ...ttt b e nesaene XXViii

Changes in This Release for Oracle Spatial and Graph Developer's Guide................ XXiX
Changes in Oracle Database 12c Release 1 (12.1.0.2) c.c.ccvueueiiuiurirrieieicneeeicieieeeeeeeeeieeeeeeeeeneeeeennes XXiX

Routing Engine Information Revised...........cccccociiiiiiiiiiiiiiicccccccecccccee XXiX
Change in Behavior for SDO_GEOM.SDO_CLOSEST_POINTSccccccceviiiniiiiiiiiniins XXIX
GeoRaster Not Enabled by Default............coooiiiii e XXIX
Changes in Oracle Database 12c Release 1 (12.1.0.1) c.c.ccocovvviiiiiieiiiiiiiiiiiiiciiicicccccceccs XXX
INEW FEALULIES ..c.vviniiiiiiiiii e XXX
Other CRanGESccouiiiiiiiiiiice et XXXiii

Part I Conceptual and Usage Information

1 Spatial Concepts

1.1 What Is Oracle Spatial and Graph?..........cccccoovvvninnnninrncinreeecer s 1-2
1.2 Object-Relational MOdel ..o s 1-2
1.3 Introduction to Spatial Data.........cccoceueiiiiriiiic 1-3
1.4 GeOMELTY TYPES ...ucuiiiieiitt et 1-3
1.5 Data MOdel ..o 1-5
1.5.1 EIEMENL c.oiiiiiiiiici s 1-5
1.5.2 GEOIMELTY ..ottt 1-5
153 LaY@T ottt 1-5
1.5.4 Coordinate SyStemcouiuiiiiiiiiiciec e 1-5
1.5.5 TOLETANCE......ouieieiiiiiiicie s 1-6
1.6 QUETY MOAEL.....oiiiiiiiii s 1-9
1.7 Indexing of Spatial Data ... 1-10
1.7.1 R-Tree INAeXINgcooourviiiiiiciiect s 1-10

1.7.2 R-Tree QUAlity ... e 1-11

1.8 Spatial Relationships and FIltering ... 1-11
1.9 Spatial Operators, Procedures, and FUNCHONSccccooiiiiiiiiiiiiiiiccccccccenes 1-14
1.10 Spatial Aggregate FUNCHONSccccciiiiiiiiiiiicccc e 1-15

1.10.1 SDOAGGRTYPE Object TYPeccvvuriiiriiriiiiiiiiiiccic s 1-15
1.11 Three-Dimensional Spatial ObjJects...........cceoiiririiiiiiiiiic 1-16

1.11.1 MOdElNG SUTLACEScucummiiiimiicieieiciccicieeece e 1-19

1.11.2 Modeling SOLASoeveviiiirieiiiciec s 1-20

1.11.3 Three-Dimensional Optimized Rectangles............ccccccceiiiiiiiiiiiiiiiiiciciicnes 1-22

1.11.4 Using Texture Data ...t 1-22

1.11.5 Validation Checks for Three-Dimensional Geometries...........cccoovviirvviniiniiininnnnn, 1-26
112 GEOCOMINE ...t 1-26
1.13 NURBS Curve Support in Oracle Spatial and Graph.........ccccccoooveeeiiniinece 1-27
1.14 Spatial and Graph Java Application Programming Interfacecccoooeeeiiiiiinn 1-29
1.15 Predefined User Accounts Created by Spatial and Graphc..ccooeiviiiiiniincncne 1-29
1.16 Performance and Tuning INformation............ccoevviiiiiiiiiiiiias 1-30
1.17 OGC and ISO COMPLANCE.......c.crimimimiiiiiiiiiiiitcceeeecce e 1-30
1.18 Spatial and Graph Release (Version) NUMDeTcccccooioiieiiiiiiiieiiceecc e 1-31
1.19 SPATIAL_VECTOR_ACCELERATION System Parameter..........ccccoeeiiiiiiiiiininiinnnes 1-31
1.20 Spatially Enabling @ Tablecccoooiiiiiiiiii s 1-32
1.21 Moving Spatial Metadata (MDSYS.MOVE_SDO)cccccviiiiiiiiiicieeeeeeeeeeeeenenas 1-34
1.22 Spatial Application Hardware Requirement Considerations.............ccccccccuieccccciccnenns 1-34
1.23 Spatial and Graph Error MeSsages. ... 1-34
1.24 Spatial EXamPIES.........cooouiiiiiiieiic s 1-35
1.25 README File for Spatial and Graph and Related Features............c.cccooovrinininiiinicinicne 1-35

Spatial Data Types and Metadata

2.1 Simple Example: Inserting, Indexing, and Querying Spatial Datac.cccoooeeieiiiirienninnne. 2-1
2.2 SDO_GEOMETRY ODJECt TYPEvcviieiiiririeiicieieeeireceeieeeeseeieeeeeeeeseeeeee s eeeees 2-5
2.2.1 SDO_GTYPE....oioiiic e 2-5
2.2.2 SDO_SRID ..ottt 2-7
2.2.3 SDO_POINT ..ottt 2-7
2.2.4 SDO_ELEM_INFOcoiiiiiiiiiiieiiieie e 2-8
2.2.5 SDO_ORDINATES.........cooiiiriiriiicte s 2-11
2.2.6 Usage Considerations ... 2-12
2.3 SDO_GEOMETRY Methods.........cccoeuiiuriiiniiiniiiieiiiciiicieci i 2-12
2.4 SDO_GEOMETRY CONSIIUCLOTLS .oeoouvviiiieieiieieeeiieeeteeeeeteeeesteeesaeeesaaesssaaeesssseesssseesnseesssnsesesnees 2-14
2.5 TIN-Related ObJect TYPES ...cccvvimiviiiiiriniiiiiiiiciin s 2-15
2.5.1 SDO_TIN ODJECt TYPE ...emmmiiieimiiiiiiiiicciiieeeccecc et 2-15
2.5.2 SDO_TIN_BLK_TYPE and SDO_TIN_BLK Object Types..........ccceevsrrurrrrrrrrriircrarernnes 2-19
2.6 Point Cloud-Related Object TYPescccouiiiiiiiiiciic 2-19
2.6.1 SDO_PC ObjJect TYPecueiiieeieieiiiiicieecec ettt 2-19
2.6.2 SDO_PC_BLK_TYPE and SDO_PC_BLK Object Typeccccevrurrrmreirmieirierieiicinee. 2-21

2.7 Geometry EXamPIEScooiiiiiiiiiiii e 2-21

2.7.1 ReCANGIE.....omiiiiiiiiicc et 2-22
2.7.2 Polygon with @ HOLEccccoiiiiiiiiii e 2-23
2.7.3 Compound Line SHNEcccoiiiiiiiiiiiii s 2-24
2.7.4 Compound POLYZOM........coiiiiiiiiciic 2-26
2.7.5 POIML.coiiiiiiiiiiiiiiic s 2-27
2.7.6 Oriented POINL.......ccccoiiiiiiiiiiiii e 2-28
2.7.7 Type 0 (Zero) EIement ..o 2-31
2.7.8 NURBS CUIVE ..ottt 2-32
2.7.9 Several Two-Dimensional Geometry Types.........cccooeeiiiiiiriiiiiiiicieeccec 2-34
2.7.10 Three-Dimensional Geometry TYPescccocoviiiiiiiiiiniiiii e, 2-38
2.8 Geometry Metadata VIEWS.......ccceuiuiiiiriiiiiiiiiciiiciicccceeeeeee e 2-47
2.8.1 TABLE_NAME ..ottt et 2-48
2.82 COLUMN_NAME.......ccceoiiiiiiiiiiniice et 2-48
2.8.3 DIMINFO......coioiiiiiiiiiiiiiii s 2-48
2.84 SRID ...t 2-49
2.9 Other Spatial Metadata VIEWSccccccvuiiiiiiiiiiiiicccrrcee s 2-49
2.9.1 xXX_SDO_3DTHEMES VIEWS........ccccceuriiuirerririiieieiriniiieissiscie et ssesscseseeean 2-49
2.9.2 XXX_SDO_SCENES VIEWSc.corurimiiiiriinimiiiiiiiiereise s 2-50
2.9.3 xxX_SDO_VIEWFRAMES VIEWSccooeiiiiiimiiiiniiiiiiiiisssssssensssisssesssssnnns 2-50
2.10 Spatial Index-Related StruCtUIESccecueuririiiiiiiiiiiciceceeeeeeeeee s 2-51
2.10.1 Spatial INdeX VIEWS......ccccciimiiiiiiiiiciccccc e 2-51
2.10.2 Spatial Index Table Definition ..., 2-54
2.10.3 R-Tree Index Sequence Objectoooiuiiiiiiiiii 2-55
2.11 Unit of Measurement SUPPOItcoeueiruiiiiriiieiiece e 2-55
2.11.1 Creating a User-Defined Unit of Measurement...............ccccceeeiiienieniniinencncennenenen. 2-56

SQL Multimedia Type Support

3.1 ST_GEOMETRY and SDO_GEOMETRY Interoperability...........cccccceeurrurrnrvrrrrnnrrreenes 3-1
3.2 ST_xxx Functions and Spatial and Graph Counterparts............cccccovuvvrivnvninnnnniinnene 3-7
3.3 Tolerance Value with SQL Multimedia Typescccceoeuriimiiiniiiiiieiiciecce e 3-8
3.4 Avoiding Name CONfIiCtScooviuriiiiiiciec e 3-8
3.5 Annotation Text Type and VIeWs........cccoooiiiiiicic e 3-8

3.5.1 Using the ST_ANNOTATION_TEXT CONStIUCLOTcceururmimimimieiiiiciiiieccccceenene 3-9

3.5.2 Annotation Text Metadata VIEWSccccoviiinniiiciinieiciccineccereeeeeereee e 3-10

Loading Spatial Data

4.1 Bulk LOAdING ..o 4-1
4.1.1 Bulk Loading SDO_GEOMETRY ODbjects.......cccccooiiieiiiiiiiieiicicieecci e 4-1
4.1.2 Bulk Loading Point-Only Data in SDO_GEOMETRY Objectscccoouvirriiiiiinnnnne. 4-3

4.2 Transactional Insert Operations Using SQLccccccviiiininiiiiiniiiiiiccces 4-3

4.3 Recommendations for Loading and Validating Spatial Datacccoviiiinnnnininnn. 4-4

5

Indexing and Querying Spatial Data

51

52

Creating a Spatial INdeX...........cooiuiiiiiiii 5-1
5.1.1 Constraining Data to a Geometry Typecccccoviiiiiiiiiiiiii e, 5-2
5.1.2 Creating a Cross-Schema INAeX ... 5-2
5.1.3 Using Partitioned Spatial IndeXes.........c.cccovvririiiiiiiiii e, 5-3
5.1.4 Exchanging Partitions Including Indexes............ccccoooiiiiiiiie, 5-6
5.1.5 Export and Import Considerations with Spatial Indexes and Data...........cccccccooeenrnee.. 5-6
5.1.6 Distributed Transactions and Spatial Index Consistency..........ccccceeeueveiniirieiiiininnn. 5-7
5.1.7 Enabling Access to Spatial Index Statistics...........cccoiiiiiiiiiiiiiiicciicccccceeee 5-7
5.1.8 Rollback Segments and Sort Area Size...........cccociiiiiiiiiiiiiiiics 5-7
Querying Spatial Data...........cooiiiiiii e 5-8
5.2.1 Spatial QUETY ...cueviieiiiiicec 5-8
522 Spatial JOIMN....ccoiiiiiiiiiii 5-13
5.2.3 Data and Index Dimensionality, and Spatial Queries...........ccccoouvieiininininnnnininnnnnnee. 5-14

6 Coordinate Systems (Spatial Reference Systems)

Vi

6.1

6.2

6.3
6.4
6.5

6.6
6.7

Terms and CONCEPLS........cccocuiiiiiic e 6-1
6.1.1 Coordinate System (Spatial Reference System)cccooevioiriiiiicinicc, 6-1
6.1.2 Cartesian Coordinatesccoceviviviiiiiiiiiiiiiiii s 6-2
6.1.3 Geodetic Coordinates (Geographic Coordinates)..........cccceueuiurieieiiiicieiniiiciciece, 6-2
6.1.4 Projected COOrdINAtes.........cccovvvrirereriririririrreerrree s 6-2
6.1.5 Local CoOTdinates.........cccovrviiiuimiieiiiiiiieiiccie e 6-2
6.1.6 GeodetiC Dattm........cciiiiiiiiiiiiiiice et 6-2
6.1.7 Transformation ... 6-2
Geodetic Coordinate SUPPOTtcciiiiiiiiic e 6-2
6.2.1 Geodesy and Two-Dimensional GEOMELIYcccccovvvvveriiiriririreinrrrcccreeeeeeenes 6-3
6.2.2 Choosing a Geodetic or Projected Coordinate Systemccccccvvuvvvvrvnnninnnenenes 6-3
6.2.3 Choosing Non-Ellipsoidal or Ellipsoidal Height..........c.cccccocovninnnnninnnniinn 6-3
6.2.4 Geodetic MBRS........ccccoviiiiiiiiiiiiiiic s 6-5
6.2.5 Other Considerations and Requirements with Geodetic Data...........ccccceevvvvviiviinnnnn 6-6
Local Coordinate SUPPOTLc.cciuimiiiiiiiiiiiiccccccrcee e 6-8
EPSG Model and Spatial and Graph............ccccciiiiiiiiiiiicccccccces 6-8
Three-Dimensional Coordinate Reference System Support............coooeueiiiiiiiiiiii, 6-9
6.5.1 Geographic 3D Coordinate Reference Systemscccoouevoiiiiiiiiiiiiiicc, 6-10
6.5.2 Compound Coordinate Reference Systems...........cccccovvvviviviiiiiniiiinni, 6-10
6.5.3 Three-Dimensional Transformationsc.ccccceoveeniiiiiiiie, 6-11
6.5.4 Cross-Dimensionality Transformations...........ccccecevvviviiinniniinninncccene 6-16
6.5.5 3D Equivalent for WGS 847..........c.ooiiii 6-17
TEFM_PLAN ODbJect TYPE ...oovviiiiiiiiiiiniciiiics s 6-19
Coordinate Systems Data StIUCIUIESc.ccoeueueuiuiuiiiieiiiciceieeeeeeeeeeee e 6-20
6.7.1 SDO_COORD_AXES Table.......c.cccovimiiiiiiniieiiiieecen e 6-21
6.7.2 SDO_COORD_AXIS_NAMES Table........cccceuviiimerririiciniriiicierieciessesieeseecae s 6-21

6.7.3 SDO_COORD_OP_METHODS Table..........ccccoeciviiiiiiiiiiiiiiiiiiiccnciccce s 6-22

6.7.4 SDO_COORD_OP_PARAM_USE Table.......cccccoouvvririiiiiiiiniiiinieenccnne, 6-22
6.7.5 SDO_COORD_OP_PARAM_VALS Table........cccccoerurriiririiiniieiniccneecneecen e, 6-23
6.7.6 SDO_COORD_OP_PARAMS Tablecocoemiiiiiiriiiicieiiiicieniccesesesie e 6-24
6.7.7 SDO_COORD_OP_PATHS Table.......ccccceviimiiiiiiiiiiiiiisiiciccssssscsenns 6-24
6.7.8 SDO_COORD_OPS Tablecccceviiiiiiiiiiiniiiiiiiiniscrcse s 6-25
6.7.9 SDO_COORD_REF_SYS Table........ccccceoviviimiiiiiiniiieiiiciicsiesscse e 6-27
6.7.10 SDO_COORD_REF_SYSTEM VI€Wccceceuiiiiimiiiiiiiiniciicci s 6-29
6.7.11 SDO_COORD_SYS Table.......cccceriiiiiiiiciiiiicieieiiniciicecieie s 6-29
6.7.12 SDO_CRS_COMPOUND VIEWcceuiiiimiiiiiiiiiiiiniiiiiisessise s 6-30
6.7.13 SDO_CRS_ENGINEERING VIeWccccoviiiiiiiminiiiiiiiiiiniisnsscnenes 6-30
6.7.14 SDO_CRS_GEOCENTRIC VIEWcceviiirrmiiiiiininireiniieisicscnsscneese e 6-31
6.7.15 SDO_CRS_GEOGRAPHIC2D VIEWccociuiriiiiiiciiiriicieiriiecicienseee e 6-31
6.7.16 SDO_CRS_GEOGRAPHIC3D VIEWccociuiiiiiiiiiiiiiiiciiriiccrccesses s 6-32
6.7.17 SDO_CRS_PROJECTED VIEWcccociviiiimiiiiiiiicininiiiicssis s 6-33
6.7.18 SDO_CRS_VERTICAL VIEWccceoiiiiiiiiimiiiiiise s 6-33
6.7.19 SDO_DATUM_ENGINEERING VIEWccecvvvimimiriiiiiiiiicciiicecn e, 6-34
6.7.20 SDO_DATUM_GEODETIC VIEWccecsiriuiiiiriiiieiririicieiricicieesieesessesesie s 6-35
6.7.21 SDO_DATUM_VERTICAL VIEW.....cceceuriiiiriiiiieiciniicireiccsice s 6-36
6.7.22 SDO_DATUMS Tableccoiiiiiviiiiiiiiiniiis s 6-37
6.7.23 SDO_ELLIPSOIDS Table........ccccoiiimiiiiiiininiiniiiciiiscessssssscse s 6-38
6.7.24 SDO_PREFERRED_OPS_SYSTEM Table.........cccceoevriiiiiiiniiiiiieeeceene, 6-39
6.7.25 SDO_PREFERRED_OPS_USER Table........cccocoeciueuririiiiririiicieirinccerneseeseecenne 6-40
6.7.26 SDO_PRIME_MERIDIANS Table.......cccccoioiuiiiiiiiiiiiiiiiiiiciniccesssesseescenns 6-40
6.7.27 SDO_UNITS_OF_MEASURE Tableccccccoviinniiiiiiiiiiiiesnnns 6-41
6.7.28 Relationships Among Coordinate System Tables and Views.........c.cccccccevuvverurunnnne 6-42
6.7.29 Finding Information About EPSG-Based Coordinate Systemsccccccuvuvururunnnee. 6-43
6.8 Legacy Tables and VIEWS.........ccccoiiiiiiiiiiiiiiiiiiiiiiiiic s 6-47

6.8.1 MDSYS.CS_SRS Table......cciuiiiiiiiiiiiiiiciiciices s 6-48
6.8.2 MDSYS.SDO_ANGLE_UNITS VIEW.....ccoiimiiiiimiiiiiiiiiiinsssscsnnns 6-52
6.8.3 MDSYS.SDO_AREA_UNITS VIEWccccoiiiiiiiiiiiiiiiiicse e, 6-52
6.8.4 MDSYS.SDO_DATUMS_OLD_FORMAT and SDO_DATUMS_OLD_SNAPSHOT

TADLES ...t 6-53
6.8.5 MDSYS.SDO_DIST_UNITS VIEWcovviiinimiiiiiiiiieieiiicnscenesssscse s 6-53
6.8.6 MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and

SDO_ELLIPSOIDS_OLD_SNAPSHOT Tables........ccccccouiuiiiiiiiiiiiciiiiicsiieiiinns 6-54
6.8.7 MDSYS.SDO_PROJECTIONS_OLD_FORMAT and

SDO_PROJECTIONS_OLD_SNAPSHOT Tables........ccccceururiiimeininiieieiririnicnesiccneneeeans 6-55

6.9 Creating a User-Defined Coordinate Reference System...........cccoooiriiiiin 6-55

6.9.1 Creating a Geodetic CRS........cccooiiiiii 6-56
6.9.2 Creating a Projected CRSccooiiiiiircccrece e 6-57
6.9.3 Creating a Vertical CRSccccouiiiiiiiriiiiiicrccrr s 6-66
6.9.4 Creating a Compound CRS...........ccccoviviiiiiiiniiiiis 6-67

Vii

viii

6.9.5 Creating a Geographic 3D CRS.........ccccoiiiiiii e, 6-68

6.9.6 Creating a Transformation Operation............cocoeeeeeeerrirerrnirnnereerreeeeeeeeeeeeees 6-68
6.9.7 Using British Grid Transformation OSTN02/OSGMO02 (EPSG Method 9633)........... 6-71
6.10 Notes and Restrictions with Coordinate Systems Supportcooooveiieiiniiciene, 6-73
6.10.1 Different Coordinate Systems for Geometries with Operators and Functions........ 6-73
6.10.2 3D LRS Functions Not Supported with Geodetic Datacccccoevvviiiiiiiininennnn, 6-73
6.10.3 Functions Supported by Approximations with Geodetic Data.........cccccceceuvevurueunnnene. 6-73
6.10.4 Unknown CRS and NaC Coordinate Reference Systems...........ccccceuvuviverviriricnnunnnenes 6-74
6.11 U.S. National Grid SUPPOTt......ccccceuririiiiiiiiiiiiiiiii s 6-74
6.12 Google Maps Considerations...........coerueieiiiieieiniiicic e 6-74
6.13 Example of Coordinate System Transformation............ccccooeuvirininiiineiceccceee, 6-76

Linear Referencing System

7.1 Terms and CONCEPLS.......oouviviiiiiiiiiii s 7-1
7.1.1 Geometric Segments (LRS SeZMENLtS)cccovvuviviriiiiiririiiiiiirrcccerccereeeeeas 7-2
7.1.2 Shape POINEScocvviiiiiiiiiicici s 7-2
7.1.3 Direction of a Geometric SEZMeNtc.covueiiiiiiieiiiiicc e 7-3
7.1.4 Measure (LInear MEASULE)coccerueerieirieirieinieninieteieneeeneeie et ettt sesnesessesene 7-3
705 OffSEt i 7-3
7.1.6 Measure POPUlating..........cccooviviiiiiiiiiiiiiiiiicicccecee s 7-4
7.1.7 Measure Range of a Geometric Segmentcccccovuviviviiiiininniinnniine 7-5
7.1.8 ProOjectiOnc.coieieiiiiiii s 7-5
7.1.9 LRSS POINL ..ot 7-5
7.1.10 Linear FEatUIEScooeiiiiiciiiietctc s 7-5
7.1.11 Measures with Multiline Strings and Polygons with Holesc.ccccccevvvnnnnnne. 7-5

7.2 LRS Data MOdelcooiiiiiiiiiiiiiceecte ettt e 7-6

7.3 Indexing of LRS Datacouoiiiuiiiiicie s 7-7

7.4 3D Formats of LRS FUNCHONS.........cooviiiiimiiiiiiiiiic e 7-7

7.5 LRS OPerations ..ot 7-8
7.5.1 Defining a Geometric SEZMENtccoovviiriiriiiiiiieicec e 7-8
7.5.2 Redefining a Geometric Segment............cccovvviviiiiiiiiininiiiiiiii 7-9
7.5.3 Clipping a Geometric SEZMEeNLtcccceuiiriiiiiiiicie e 7-9
7.5.4 Splitting a Geometric Segmentc.ccouoiiiiiiiiiiiiciec 7-10
7.5.,5 Concatenating Geometric SEegments............ccccceiviviiiiiiniiiiiiii 7-10
7.5.6 Scaling a Geometric SEGMENtcccovvviviiiiiriiiiiiiiiiiici s 7-11
7.5.7 Offsetting a Geometric SEgmentcocoerueiiiiiiieiiiccc e 7-12
7.5.8 Locating a Point on a Geometric Segment...........cccooviiiiiiiiiiiiicce, 7-12
7.5.9 Projecting a Point onto a Geometric Segment............ccccoveviviiiiiiiiiiii 7-13
7.5.10 Converting LRS Geometriesccccoviiiiiiiiiiiiiiiiiiccics 7-13

7.6 Tolerance Values with LRS FUNCHONSc.cooiviiieiiinirieiciiniccciiciceeeeee e 7-15

7.7 Example of LRS FUNCHONS........ccouoiiiieiieiicc et 7-15

Spatial Analysis and Mining

8.1 Spatial Information and Data Mining Applications............cccevoiieieieiniicieicccece 8-1
8.2 Spatial Binning for Detection of Regional Patternscccococevoeeiiieiiniiciiccce 8-3
8.3 Materializing Spatial Correlationccccevueiririerirriiiniicreeeereeee s 8-4
8.4 ColoCation MININEcvviviiiiiiiiice s 8-4
8.5 Spatial CIUSLEIING......ccoviiiiiiiiiiiiiiiiiiic s 8-5
8.6 Location ProSpecting..........ccceeieieieiiiiieiiiiiiieieie s 8-5

Extending Spatial Indexing Capabilities

9.1 SDO_GEOMETRY Objects in User-Defined Type Definitionscccccoeveerieririninicinicinnnne 9-1
9.2 SDO_GEOMETRY Objects in Function-Based Indexes...........cccccevururevururirnnenvnnrreeeene 9-3
9.2.1 Example: Function with Standard Types........ccccccoiiiiiiiiiiiiiiciicccccceeee 9-3
9.2.2 Example: Function with a User-Defined Object Typecccoeiiiiiiiiiiiiiiiae, 9-5

Part Il Spatial Web Services

10

11

Introduction to Spatial Web Services
10.1 Types of Spatial Web SErvices ... 10-1
10.2 Types of Users of Spatial Web Services..........cccoceivviiiiiiiiiciiiceccc 10-2
10.3 Deploying and Configuring Spatial Web Servicescoeuiiiiiiiiiiiieiiccc 10-2
10.4 Demo Files for Sample Java CHenNtcocccvviiiiiiiiiiiiiiiiiis 10-5
Geocoding Address Data
11.1 Concepts fOr GEOCOINGcvviviiiiiiiiiiiiiiiii s 11-1
11.1.1 Address Representation ..o enenenas 11-1
11.1.2 MatCh MOAES....o.oiiiiiiiciiieicctee ettt ettt 11-2
11.1.3 Match Codes.....c.ouiumimiiiiiiicicii e 11-3
11.1.4 Error Messages for Output Geocoded Addresses..........cccooeuirieiiiiinieieiniciciene 11-4
11.1.5 Match Vector for Output Geocoded Addresses...........ccooovuvvviimivvinininiiiiniiiinnnn, 11-5
11.2 Data Types for GEOCOAING.........cooiimimimiiiiiiiiiiiceeeece e 11-6
11.2.1 SDO_GEO_ADDR TYPE ...ucuiiiieiiciririiieieiriiesieisieeieie ettt essasans 11-6
11.2.2 SDO_ADDR_ARRAY TYPE ..ottt 11-9
11.2.3 SDO_KEYWORDARRAY TYPE ...covviimiiiiiiiniiiiiiieiisscess s 11-9
11.3 Using the Geocoding Capabilities...........ccccouiiiiiiiiiiiiiiiiceeereceeeeeeeee e 11-10
11.4 Geocoding from a Place NAIMNEccccoiiiiiiiiiiiiiicccccceceece e 11-10
11.5 Data Structures for GEOCOINGcccviiiimiiiiiiiiiiiicce e 11-11
11.5.1 GC_ADDRESS _POINT_<suffix> Table and INdeXcccceovvveviveeeiiieiiieeeeeeee e 11-12
11.5.2 GC_AREA_<suffix> Table ... 11-13
11.5.3 GC_COUNTRY_PROFILE Tablecccecevviimiiiiiiiriiiiiiiieicriiic s 11-15
11.5.4 GC_INTERSECTION_<suffix> Table.........cccccovuviriririiieeriiceeccecces 11-17
11.5.5 GC_PARSER_PROFILES Table.........cccceoeuviiiiiiriiiicriiriicerincsecceieee s 11-18
11.5.6 GC_PARSER_PROFILEAFS Table.......cccccccouviiiiiiiiiiiiiiiiiieisceeceesaes 11-21

12

13

11.5.7 GC_POI_<SULFIX> TaDL.....ooiieiiieiiceiiieeeeeeee ettt ettt e 11-24

11.5.8 GC_POSTAL_CODE_<suffix> Tableccccccevvviiiiiiiiiiiiniccees 11-26
11.5.9 GC_ROAD_<SUFFIXS TaADLE ..eevieieeeeeeeeeeeeeeeeeeeeeeeee ettt e s s eeaneeseveeas 11-27
11.5.10 GC_ROAD_SEGMENT_<suffix> Table.........cccooeeueiriieieiririicriccierncceesees 11-30
11.5.11 Indexes on Tables for GEOCOAING........cccueviurieiiiiiicieicct e 11-32
11.6 Installing the Profile Tables.........c...cccooriiiiiiiiiiiiii e, 11-33
11.7 Using the Geocoding Service (XML API)......ccocooiiiiiiiiiiiiicccicceececeeee e 11-33
11.7.1 Deploying and Configuring the J2EE Geocoder ... 11-35
11.7.2 Geocoding Request XML Schema Definition and Example..........ccccoooviiiinnnnns 11-36
11.7.3 Geocoding Response XML Schema Definition and Example.........c.cccccooorriennnnne. 11-39
Business Directory (Yellow Pages) Support
12.1 Business Directory CONCePtS........coriiuiiiiicieiiiicie et 12-1
12.2 Using the Business Directory Capabilitiesccccoviiiiiiiiiiiiiiiccccccccnes 12-1
12.3 Data Structures for Business Directory SUPPOTItcccccoiiiiiiiiiiiiiccccccceeceenenes 12-2
12.3.1 OPENLS_DIR_BUSINESSES Table........cccoceocieuriiimcieirinicieiririicieieecie e 12-2
12.3.2 OPENLS_DIR_BUSINESS_CHAINS Tablec.cccceceviniiiiiriiiiiiiiicecniieescens 12-3
12.3.3 OPENLS_DIR_CATEGORIES Table.........ccccoeceuvirimimiriiiiiiiiiiiiiesencneens 12-4
12.3.4 OPENLS_DIR_CATEGORIZATIONS Table.......cccccevviiiiiiiiniiiiiiinicnnens 12-4
12.3.5 OPENLS_DIR_CATEGORY_TYPES Table........ccccccoouiivimiriiiiieiiececeeenes 12-5
12.3.6 OPENLS_DIR_SYNONYMS Table.......ccccouviiiiriicieiriicieirriiceece e seenens 12-5
Routing Engine
131 ROULING oot 13-2
13.1.1 Simple Route ReqUESE.........c.cvoiiiiiiii e 13-3
13.1.2 Simple Multi-address Route Requestccccoiiiiiiiiiiniiiiiicccccccnes 13-3
13.1.3 Traveling Salesperson (TSP) Route Request..........ccccccocuiueiiiiiiiiccciciccccecenenes 13-4
13.1.4 Batched Route ReqUEStccoemiieiiiiiiiiiicicc s 13-5
13.1.5 Batch Mode Route ReqUEStccccoiuiiiiiiiiiiiiiiiiiiiiiccc e 13-5
13.2 Deploying the Routing ENGINecccoooiuiiiiiiiiiiicc i 13-6
13.2.1 Preparing WebLogic SEIVer ...t 13-6
13.2.2 Unpacking the routeserver.ear Fileccccccooiiiiiiiiiiiiiiiccccceeecenenes 13-6
13.2.3 Editing the web.xml File..........cccccocoiiiiiiiiiiiccceeceeenne 13-7
13.2.4 Deploying the Routing Engine on WebLogic Serverccoooeiiiiiiicicene. 13-8
13.3 Routing Engine XML APL........ccooiiiiiiiiiiiiiiiiiiist e 13-8
13.3.1 Route Request and Response EXamplescccocvviviiniiiniiiiiiinne, 13-11
13.3.2 Route Request XML Schema Definition...........cccccoceeiiiiiiiiiciiiiiccccccenes 13-37
13.3.3 Route Response XML Schema Definitioncccoeeviiieiiiniciiicecceeee 13-44
13.3.4 Batch Mode Route Request and Response Examplesccccouviiriiieiiicniennenne. 13-48
13.3.5 Batch Route Request XML Schema Definition..........ccccooevieiiieiiininiciicicce, 13-50
13.3.6 Batch Route Response XML SChemacccccciiuiiiiiiiiiieiiiicceeceeeeeeenenenes 13-53
13.4 Data Structures Used by the Routing Engine............ccoccooiiiiiiiiiiiiiiiccciccenns 13-54
13.4.1 EDGE Tablecooviiiiiiiiiiiciiiiceiee et 13-54

14

15

16

13.4.2 NODE TabIecvriiiriiieiirieieicenieerteerteertetstetetet ettt sae st sae st et et s e enenees 13-55

13.4.3 PARTITION Table......c.coimiiiiiiiiiiiiiiicii s 13-56
13.4.4 SIGN_POST TabIecoovoiiiriiiiiiiiiciee s 13-56
13.5 User Data Structures Used by the Routing Engine...........c.cooeeiiiiiiie 13-57
13.5.1 Turn Restriction User Dataccccccoveieiiiininiiiiiicceccec e 13-57
13.5.2 Trucking User Dataccoououiiiiieiiiicic e 13-59
OpenLS Support
14.1 Supported OPenLsS SEIVICES ... aanes 14-1
14.2 OpenLS Application Programming Interfaces............cococeiiiiiiiiiiiiciecccceceenenas 14-2
14.3 OpenLS Service Support and EXamples...........cccciiiiiiiiiiiiiiicicccecceeieeeennes 14-2
14.3.1 OpenLS GeOCOAINGcoeuriiiiiicieieieiceie s 14-2
14.3.2 OpenLS Mappingcccouiurieiiiiiicieiiecieie et 14-4
14.3.3 OpenLS ROULINGc.ovuiuiiiriiiiiiiicicicicictctccs et sanne 14-6
14.3.4 OpenLS Directory Service (YP)ccocciiiiiiiiiiiciicccceeeeceeecene e 14-8
Web Feature Service (WFS) Support
151 WES ENGINE....coiiiiiiiiiiii e 15-1
15.2 Managing Feature TYPes ... 15-2
15.2.1 Capabilities DOCUMENLS..........coomuiiiiiiieiic e 15-3
15.3 Request and Response XML EXamplesccoceuiiiiiiiiiiiiiciinceee i 15-4
15.4 Java API for WFS AdminiStrationccecvevuerievierieieieieieesesessesesiessessessessessessessessesessassessens 15-13
15.4.1 createXMLTableIndex methodccccoiiiiiiiiiiiiiiiicccccccccnes 15-13
15.4.2 dropFeatureType method ... 15-13
15.4.3 dropXMLTableIndex method..........cooeuiiiiiiiiiiii 15-13
15.4.4 getlsXMLTableIndexCreated methodccccoviiiiiiiiiii 15-14
15.4.5 grantFeatureTypeToUser method ... 15-14
15.4.6 grantMDAccessToUser methodccccoiiiiiiiiiiiiiiiiicccccccccceenes 15-14
15.4.7 publishFeatureType method ... 15-14
15.4.8 revokeFeatureTypeFromUser method..........ccoooiiii 15-22
15.4.9 revokeMDAccessFromUser method ... 15-23
15.4.10 setXMLTableIndexInfo method ... 15-23
15.5 Using WFS with Oracle Workspace Managercccceueviieeeieinicneeieiceeceeeeenes 15-24
Catalog Services for the Web (CSW) Support
16.1 CSW Engine and ArchiteCture ... 16-1
16.2 CSW APIs and Configuration.........cccouieucieiiiciciecci et 16-2
16.2.1 Capabilities Documents (CSW)ccooouemiiiiiiiiiiiic e 16-2
16.2.2 Spatial Path Extractor Function (extractSDO).........cccccoeuiiiuiieiiicceicceceeeeenenes 16-3
16.3 Request and Response XML EXamPpIescccooiiiiiiiiiiiiiiiiiicceecccceeeeenenenes 16-5
16.4 Java API for CSW AdmIniStrationcccceeeerierierierieieieeeieeeeie ettt et eee e eseeseesens 16-14
16.4.1 createXMLTableIndex method ... 16-15
16.4.2 deleteDomainInfo Methodccccoeiiiiiiiiiiiiiccceccccereee e 16-15

Xi

16.4.3 deleteRecordViewMap methodcccoveiiiiiiiiiicii
16.4.4 disableVersioning method ...
16.4.5 dropRecordType method ...,
16.4.6 dropXMLTableIndex method...........cccccoviiiiiiiiiiiiiiin,
16.4.7 enableVersioning method ...
16.4.8 getlsXMLTableIndexCreated method. ..o,
16.4.9 getRecordTypeld method ...
16.4.10 grantMDAccessToUser method.......c.c.cccovvveiiiccininiinenne.
16.4.11 grantRecordTypeToUser methodcccccceuiiiiiiiiiiiinnnnnn.
16.4.12 publishRecordType methodccooeveiiiiiiiiii
16.4.13 registerTypePluginMap method..........ccoooviiiiiniiiinnnnn.
16.4.14 revokeMDAccessFromUser methodcccccoveiniiiiinninnnnne.
16.4.15 revokeRecordTypeFromUser method..........c.cccoovriniiiinnnnnnn.
16.4.16 setCapabilitiesInfo methodcoooiiiii
16.4.17 setDomainInfo method..........ccccoeiviviiniviiiiiiciic,
16.4.18 setRecordViewMap methodccccooovvvviiiiniiniiininnen,
16.4.19 setXMLTableIndexInfo methodcccccoovieviiirniiniininnnne.

Part Il Reference Information

17 SQL Statements for Indexing Spatial Data

17.1 ALTER INDEX ..ottt eenes
17.2 ALTER INDEX REBUILD......c.ccooeiiiiniiniiriirieeeeeeceeeeeeeeeee
17.3 ALTER INDEX RENAME TO.....cccociiiiiiiiiiiiinintneneneeeseeeeveeeneen
174 CREATE INDEXccoriririinieiinieiinietnietnetnieteretereseesessesesees et esaes
17.5 DROP INDEXccsiioriiriinieiineiinetnietnietnetereeeseseeneseesessesessesesseessesesnes

18 Spatial Operators

18.1 SDO_ANYINTERACTooveiiieiiieireerctrcenreeerereieeeneeereneees e esneenes
18.2 SDO_CONTAINSootiiiiietieeerteereereeneeeree et
18.3 SDO_COVEREDBYccctrtririiriiniinieieteieteteteteeeeteieseseesvesseseeseeneeenees
184 SDO_COVERS......ooiiiiiiieiic ettt
18.5 SDO_EQUAL...cocoiiiiiriiieieneiinietntetntetstetseet ettt aesesse st se e sneesnes
18.6 SDO_FILTER ...coeciriiiriiieiiieiiieienieinictnietrteetereeereeeseseesesne et esneeenes
18.7 SDO_INSIDEccoriiiiiiiiieieireeereeretee ettt
18.8 SDO_JOIN ...ceiuiiieuieiirtriertieienie sttt sttt ettt sa e sbe b st seeseaeneen
18.9 SDO_INN ..ottt ettt et enes
18.10 SDO_NN_DISTANCE.......coccoiiiiiiiiiiiiic s
18.11 SDIO_ON ..ottt ese s s st s st st ne e enes
18.12 SDO_OVERLAPBDYDISJOINTccooeoimiiriiniieeieeineeeeeeereeeneenes
18.13 SDO_OVERLAPBDYINTERSECT.......cccoccciniiiiiiiiciiciciccnceee
18.14 SDO_OVERLAPS.......ccoiiiiiiincinctnctneteteteteteieseeieeei et
18.15 SDO_POINTINPOLYGONcccooviiiiiniiiiiiniicinicecieceennes

Xii

19

20

18.16 SDO_RELATE ...ttt sttt ettt ettt st sa e n e ene e 18-30

18.17 SDO_TOUCH ..o sseesesseeseees 18-35
18.18 SDO_WITHIN_DISTANCEooviiieeeeeeeeeeeeeeeseeeeeeeeees s sese s sessessassees s ssesnesssaseees 18-36
Spatial Aggregate Functions

19.1 SDO_AGGR_CENTROID.......ooouiieeeeeeeeeeeeeeeseesesesseesees s sessessess s sssssessass s sassesnass e 19-2
19.2 SDO_AGGR_CONCAT_LINES......oouooieieteeeeeeeeeeeeeeese s seesees s eeveseeses s e seeseeseese s eseenaees 19-3
19.3 SDO_AGGR_CONVEXHULLocvuivitieeieeeeeeeeee e eees s seesees e ees s s s seenees 19-4
19.4 SDO_AGGR_LRS_CONGCATcomieeeeeeeeeeeeeeeeee e s s s s essesse s esssssa e sesaenees 19-4
19.5 SDO_AGGR_MBRovuvieeeeeeeeeeeee e sn s 19-6
19.6 SDO_AGGR_SET UNION ..o ouiuieeeeeeeeeteeeeeeeeeeeeeeeseseesseeseeseseeseseeseeseseseseeseesesseseeseeseesaees 19-7
19.7 SDO_AGGR_UNIONoooieeeeeeeeeeeeeeeee et e s es e s ees e ees s s s seesesseseeseeseenaees 19-9
SDO_CS Package (Coordinate System Transformation)

20.1 SDO_CS.ADD_PREFERENCE_FOR_OPcottiuieeeieeeeeeeeeeeeeeeeseeseeseseeseeses s eneenen 20-3
20.2 SDO_CS.CONVERT_3D_SRID_TO_2Douiiiueieeeeeeeeeeeeeeeeieeeeeeseseeseesesse e en s eneenen 20-4
20.3 SDO_CS.CONVERT_NADCON_TO_XML.....c.etiireiuieueeeeereseeseeeseesessesseseeseeseessessessesenes 20-6
20.4 SDO_CS.CONVERT_NTV2_TO_XML ...covviiiiieeieeieeieeeeeeessseeseesesseseessesssessessessessessssssessnes 20-7
20.5 SDO_CS.CONVERT_XML_TO_NADCONooeuieeireeeeeeeereeeeeeseeesessseseeseseseeeesesesenes 20-9
20.6 SDO_CS.CONVERT_XML_TO_NTV2 ...cootimiiieeeeeeeeeeeeeeeeseee s eses s sees s s 20-10
20.7 SDO_CS.CREATE_CONCATENATED_OP......ooiiiiieieeeeeeeseeeeseeseseeseesesessss s 20-12
20.8 SDO_CS.CREATE_OBVIOUS_EPSG_RULES........cceoceiuieeeeieeieeeseeeeseeeeseeeseseseessessessees oo 20-12
20.9 SDO_CS.CREATE_PREF_CONCATENATED_OPcoosiiiiiieeeeseeeseseeseeseeseseesseesenoos 20-13
20.10 SDO_CS.DELETE_ALL_EPSG_RULES........coiieeieteeeeeeeeeeeeeeeeeeseee s eseese s 20-15
20.11 SDO_CS.DELETE_OP ..ot ee e ene s 20-15
20.12 SDO_CS.DETERMINE_CHAINcoiieiriiriieeeeieeeeeeeeeeeeeeeeseseesesseseesesses s sesessesse s sseseesesees 20-16
20.13 SDO_CS.DETERMINE_DEFAULT_CHAINooiiviveeeeeeeeeeeeeeeeeseesesees s 20-17
20.14 SDO_CS.FIND_GEOG_CRS.......ooivieeieeeieieeeeeeeseeseeeseessessessessessses s ssessessessssssssssessessasssesons 20-18
20.15 SDO_CS.FIND_PROJ_CRS.....oueeeeeeeeeeeeeeeeeeeeeeeeeeeeee e es s es s sees s s ses s eeeans 20-20
20.16 SDO_CS.FIND_SRID......coiuiuieeeeeeeeeeeeeseeeeeeeeeee s eesesee s es e ees s s ses s s s 20-21
20.17 SDO_CS.FROM_OGC_SIMPLEFEATURE_SRScoceoiiiiieeeeeeeereeeeesesessssee e 20-24
20.18 SDO_CS.FROM_USNG.......couiuieeeeeeieeeseeeeeeeeseseesseesees s sssessess s s ssassessess s ssassessess s 20-25
20.19 SDO_CS.GET_EPSG_DATA_VERSIONooueiueieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeses s seeeeene 20-26
20.20 SDO_CS.LOAD_EPSG_MATRIXcouoeeeeeeeeeeeeeeeeeeeeeeeee e es e ese s 20-26
2021 SDO_CSMAKE_2D ..ot s aes s eseens 20-27
20.22 SDO_CSMAKE_3D......ooiuiieieeeeeeeeeeeeeeeeesesee s esses s ss s sass s ssessesasnes 20-28
20.23 SDO_CS.MAP_EPSG_SRID_TO_ORACLEc.cevuiiueeeeeeeeeeeeeeeeeeeesesseeseseese s 20-29
2024 SDO_CS.MAP_ORACLE_SRID_TO_EPSGcouuiueeereeeeeeeeeeeeeeeeeeeeeeeseeeeesesesesees s 20-30
20.25 SDO_CS.REVOKE_PREFERENCE_FOR_OP.......coiiiiieeeieeeeeeeeeeeeseeseesesesesees e 20-30
20.26 SDO_CS.TO_OGC_SIMPLEFEATURE_SRS.......cceviiieeeeeeeeeeeeeeeeeeseseeeeseesesesssseeseeseenesees 20-31
20.27 SDO_CS.TO_USNG.....ocoeieeeeeeeeeeeeeeeeeeeeesee e eeeseseessees s s seess s s s ssess s ssa s s 20-32
20.28 SDO_CS.TRANSEORM.........coooveeeeeeeeieeeeeeeeesesseseesseesees s ssessess s ssassessess s ssessessess oo 20-33
20.29 SDO_CS.TRANSFORM_LAYERouiiuiueieeeeeeeeeeeeeeeeee e ees s es e ees s s 20-35

Xiii

21

22

23

Xiv

20.30 SDO_CS.UPDATE_WKTS_FOR_ALL_EPSG_CRSccccoviiiniiiiiininicccccccie,
20.31 SDO_CS.UPDATE_WKTS_FOR_EPSG_CRS......cccccveiriineineerieeeeeeeeeereereeeneennenes
20.32 SDO_CS.UPDATE_WKTS_FOR_EPSG_DATUMccoeceoimiiiiniiiniieeeeeeeereeeeenenes
20.33 SDO_CS.UPDATE_WKTS_FOR_EPSG_ELLIPS........cccccoiiiiiiiiiiiicncnccceee
20.34 SDO_CS.UPDATE_WKTS_FOR_EPSG_OPcccciiuiiiriiiiiiniiciiiiciceisececenec e
20.35 SDO_CS.UPDATE_WKTS_FOR_EPSG_PARAM.......ccccccviiiiiniiiiiccccecs
20.36 SDO_CS.UPDATE_WKTS_FOR_EPSG_PM......cccececmiimiinriirrennieeeeneeneeenenneesneesneesnens
20.37 SDO_CS.VALIDATE_EPSG_MATRIXc.ccceoiiiiiieicineneteeeeeeeeeeeene s
20.38 SDO_CS.VALIDATE_WKTc.cioiiiiiiiiiiiicceie s

SDO_CSW_PROCESS Package (CSW Processing)

21.1 SDO_CSW_PROCESS.DeleteCapabilitieSINfo...........ccooviiiiiiiiiiiiiccccccne,
21.2 SDO_CSW_PROCESS.DeleteDomainIngo.......c..coouviiieeeiiiieieeeeeeeeee e
21.3 SDO_CSW_PROCESS.DeletePIUuginMapcccceeueueurueueurirerieieieieieieieieieeeeeeeeeeeeeeeeeeeeseaeaeaeees
21.4 SDO_CSW_PROCESS.DeleteRecordVIEWMaPpcccceuvuviririririniriniciiiccirrceeeeeeeeeees
21.5 SDO_CSW_PROCESS.GetRecordTypeld..........ccooiiiiiiiiiiiiiiicccccccccccee
21.6 SDO_CSW_PROCESS.InsertCapabilitieSInfo..........ccooviiiiiiiniiie,
21.7 SDO_CSW_PROCESS.INSertDomainInfo........cccueeiiiuiiiiiiiiicieceeeete ettt
21.8 SDO_CSW_PROCESS.INSErtPIUGINMAPc.cvevveviriiiiiieiririeieieieieieeeeieeeeeee e
21.9 SDO_CSW_PROCESS.InsertRecordVIiEWMapccccceuvuriririririniriniiiiierirrcieeeeeeeeeees
21.10 SDO_CSW_PROCESS.InsertRtDataUpdated ..o,
21.11 SDO_CSW_PROCESS.InsertRtMDUpdated..........ccocoviiviiiniiiiiiicne,

SDO_GCDR Package (Geocoding)

22.1 SDO_GCDR.CREATE_PROFILE_TABLES........ccccociiiiiiiiiiiiniicciciccenceseeeees
22.2 SDO_GCDR.GEOCODEccoiiiiiiiiiiiiiciiriis s
22.3 SDO_GCDR.GEOCODE_ADDRcoctrtiiieiinreiinieinreinretsreeereeeneee et seesneeeseesneseeneseens
224 SDO_GCDR.GEOCODE_ADDR_ALLccooiiiiiiiicicnceeeieeeeee e
22.5 SDO_GCDR.GEOCODE_ALLccoviiiiiiiiiiiiieicce e
22.6 SDO_GCDR.GEOCODE_AS_GEOMETRYcccciiiiiiiiiiniiiiiniicciicccseeeeeeees
22.7 SDO_GCDR.REVERSE_GEOCODEcccooiiiiiiiiiiiiiiiiiice s

SDO_GEOM Package (Geometry)

23.1 SDO_GEOM.RELATEcciottrttireireteeeetee ettt et ne e e
23.2 SDO_GEOM.SDO_ALPHA _SHAPEooiiiieeereeeeeee et
23.3 SDO_GEOM.SDO_ARC_DENSIFYccccoiiiiiiiiiiiiiiinieineeneee et
23.4 SDO_GEOM.SDO_AREAc.coiiiiiiircc ettt
23.5 SDO_GEOM.SDO_BUFFERccccoiiiiiiiiiiiiiiieri et
23.6 SDO_GEOM.SDO_CENTROID......ccooceetrterrieieiireiinrentnneetneeetsreetsseessesesesesessesenesessesessesessenes
23.7 SDO_GEOM.SDO_CLOSEST_POINTS........ccceotreiiieircinierieertereeeeeeeeeeeese e
23.8 SDO_GEOM.SDO_CONCAVEHULLcccccoiiiiiiiiniiiceeeeeeeeee e
23.9 SDO_GEOM.SDO_CONCAVEHULL_BOUNDARYcccccoeiiiimiriiiiniicirinieeceniceeeenes
23.10 SDO_GEOM.SDO_CONVEXHULL.......ccccooiiiiiiiiiiiiiiniicciccicceesee e

24

23.11 SDO_GEOM.SDO_DIAMETER........ccccsitrtrtirtrrinieiinerinretntetrietsreeeseeeseseseseesesesessesessesessenes 23-21

23.12 SDO_GEOM.SDO_DIAMETER_LINEooiiiiitiiieeieieeeeeeeeeeeeeesesessssesesassesses s 23-22
23.13 SDO_GEOM.SDO_DIFFERENCEcooviiuiieieieeeeeeeeeeeeeeeeseesesessesessessessssesessessassssessssanens 23-24
23.14 SDO_GEOM.SDO_DISTANCEcovimoeeeeeeeeeeeeeeeeeeeeeee e eve s 23-25
23.15 SDO_GEOM.SDO_INTERSECTIONc.oooiuiiieeieeeeeeeeeeeeeesseseseeseseesesesse s eesesseseseesseenesnaes 23-27
23.16 SDO_GEOM.SDO_LENGTHcoooiiiiieieeeeeeeeeeeete et seses s 23-28
23.17 SDO_GEOM.SDO_MAX_MBR_ORDINATEc.coeuiieeeeieeseeeeseeseeeeseesesesessssessessesenens 23-30
23.18 SDO_GEOM.SDO_MAXDISTANCEcooiviiereereeeeeeeeeeeeeeessesessesessessssessesassessassssessssanens 23-31
23.19 SDO_GEOM.SDO_MAXDISTANCE_LINEcooviiieieteeeeeeeeeeeeeeeeeeeeee e 23-33
23.20 SDO_GEOM.SDO_MBC ...ttt st asse s s saenasaaes 23-34
23.21 SDO_GEOM.SDO_MBC_CENTERcc.eooiiiiueieeeeeeeeeeeeeeeeeeeseeesse s senesseeesaeessessaesaneas 23-35
23.22 SDO_GEOM.SDO_MBC_RADIUS.........coiiiiiieeeeeeeeeeeeeeeeeeeesseseessesessessessessesassessessssessesesens 23-37
23.23 SDO_GEOM.SDO_MBR ...ooviimieieeeeeeeeeeeeeee e esee s eveeeese s eve s eees s s seeseseesseenaseee 23-38
23.24 SDO_GEOM.SDO_MIN_MBR_ORDINATEcocoiveieeeteeeeeeeeeeeeeeeeeseeeseeeeseeee s 23-40
23.25 SDO_GEOM.SDO_POINTONSURFACE..........oeiiiieeeeeeeeeeeeeeeeseeeeeeeses s 23-41
23.26 SDO_GEOM.SDO_SELF_UNION......cocoiiiuiiiueieeeeeeeeeeeeesesseseesesessessesessssesessssessesssssesaesenens 23-42
23.27 SDO_GEOM.SDO_TRIANGULATE..........eoitiieieeeeeeeeeeeeeeeeeeeeesees s eesesessessesessesses s sanees 23-43
23.28 SDO_GEOM.SDO_UNIONccuimiuiiieeeeeeeeeeeeeeeseeeseeeseeesesesese s ses s ees s seesseensees 23-44
23.29 SDO_GEOM.SDO_VOLUMEooiiiiiiiieeeeeeeeeeeeeeeeeeves et 23-46
23.30 SDO_GEOM.SDO_WIDTHcocoiiiiiieeieeeeeeeeeee et sese s 23-47
23.31 SDO_GEOM.SDO_WIDTH_LINEcocoiiuiiiieieeeeeeeeeeeseeeeeesseseesses s sesassessess s ssesenees 23-49
23.32 SDO_GEOM.SDO_XOR......ocoomeiereeeeereeeeeseresressessessesessesessesssssssassssssssassessssessssessassssessssasens 23-50
23.33 SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT.......cociieeeeeeeeeeeeeeeeerennn 23-52
23.34 SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXTcoivitieeieeeeeeeeeeeeeeeeeeesenes 23-56
23.35 SDO_GEOM.WITHIN_DISTANCEcoooiiiieeeieeeeeeeeeeeee e sene e 23-58
SDO_LRS Package (Linear Referencing System)

24.1 SDO_LRS.CLIP_GEOM_SEGMENTcoeoeiitiieeieeeeeeeeeeeesee e sesessesessesassssssesasnns 24-5
242 SDO_LRS.CONCATENATE_GEOM_SEGMENTScoosviiiuieieeeeeeeeeeeseseesesseessssessenenes 24-6
24.3 SDO_LRS.CONNECTED_GEOM_SEGMENTS........coceiiierererreeeeeereeeeseeeesessesesessaesssessesesnes 24-8
244 SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY ...c.coimooiuieeeeeereeeeeeeeeeeeeeeeeeeseesesees e 24-9
24.5 SDO_LRS.CONVERT_TO_LRS_GEOMcocttiiieeeeeeeeeeeeeeeteseeeseeessee s esessesssessaensnes 24-11
24.6 SDO_LRS.CONVERT_TO_LRS_LAYERcceiitiieieeeeeeeeeeeeeeeeeeseeeeeessesessessses s 24-13
24.7 SDO_LRS.CONVERT_TO_STD_DIM_ARRAYc.coovveirrreerereeeeeeseeseeseesesessessssessessssenens 24-15
24.8 SDO_LRS.CONVERT_TO_STD_GEOMcooviueieeeeeeeeeeeeeeeeeeeeeeeeeeee e 24-16
24.9 SDO_LRS.CONVERT_TO_STD_LAYERcoiioiuieeieeeeeeeeeeeeeeeeeee e 24-17
24.10 SDO_LRS.DEFINE_GEOM_SEGMENTceeiiteiiieieeeteeeeeeeteeeseeeees st 24-18
24.11 SDO_LRS.DYNAMIC_SEGMENTooiiiiieeeeeeeeeeeeeeeeeeeeeeeseeese e sesesseeesses s s 24-20
2412 SDO_LRS.FIND_LRS_DIM_POS.......cocoeiriirerreereereeeseseeeeeeeeeesseseessesessessssessessssessessssessssesees 24-21
24.13 SDO_LRS.FIND_MEASUREc.oouiiieeieeeeeeeeeeeeeee e evee s sees 24-22
24.14 SDO_LRS.FIND_OFFSETovuiuiiieeeeeeeeeeeeeeeeee e eve vt ses s 24-23
24.15 SDO_LRS.GEOM_SEGMENT_END_MEASUREcoccceiiiieeieeeeeeeeeeeeeeeeeeeeeee s 24-25
24.16 SDO_LRS.GEOM_SEGMENT_END_PTcoiioiioirioieeieeeeeeeeeeeeesesesesessesesassessass s 24-25

XV

25

26

27

XVi

24.17 SDO_LRS.GEOM_SEGMENT_LENGTH..........ccccoeoiiiiiniiiiiiiiiiicccccecs 24-26

24.18 SDO_LRS.GEOM_SEGMENT_START _MEASUREccoocecmiiminieiecireereenreennenes 24-27
24.19 SDO_LRS.GEOM_SEGMENT _START _PTccciiiiiiiiiercrteeeeeeeeeeeeeeeeeneenenes 24-28
2420 SDO_LRS.GET_MEASUREcoctriiiiiniiiietctctetetetet ettt sttt ettt sae v 24-29
24.21 SDO_LRS.GET_NEXT_SHAPE _PT....c.ioiiiiiiniiiriiricineteieteeneetnietereesiesesieee e see e 24-30
2422 SDO_LRS.GET_NEXT_SHAPE_PT_MEASUREccccccconiiiiiiniiiinnicccces 24-31
24.23 SDO_LRS.GET_PREV_SHAPE_PTcooiiiiieieineircinreerieeereeeeeeeeeesenee e esnenes 24-33
2424 SDO_LRS.GET_PREV_SHAPE_PT_MEASUREcccccoccomiiiiieieeeeeceeeenenes 24-34
24.25 SDO_LRS.IS_GEOM_SEGMENT_DEFINEDcccccvviiiiiiiiiiiiiiciccncccees 24-36
24.26 SDO_LRS.IS_MEASURE_DECREASINGccccooiiiiiiiiniiiiniccciceeeeeeeee e 24-37
24.27 SDO_LRS.IS_MEASURE_INCREASINGcccociiiiiiiiiiiiiicc s 24-38
24.28 SDO_LRS.IS_SHAPE_PT_MEASUREccccceoiiiiiineincirreinteenreeeeee e esne s 24-39
24.29 SDO_LRS.LOCATE_PT ..ottt ettt sae st st se et ettt sae v 24-40
24.30 SDO_LRS.LRS_INTERSECTION......ccociiiiuiiiiiiiiiciciciirieiceisee e 24-41
24.31 SDO_LRS.MEASURE_RANGEccociiiiiiiiiiiiiincci e 24-43
24.32 SDO_LRS.MEASURE_TO_PERCENTAGEccccccouniniiiiiiiiicccccs 24-44
24.33 SDO_LRS.OFFSET_GEOM_SEGMENTcocciiiiiiiiiiirerieerieeeee e 24-45
24.34 SDO_LRS.PERCENTAGE_TO_MEASUREccccooiiiiiiiiiiiiccceeeceeeee e 24-47
24.35 SDO_LRS.PROJECT _PT ..ottt sesae et st bt seesesee e saeseseene 24-48
24.36 SDO_LRS.REDEFINE_GEOM_SEGMENTcccconiiiiiiiiiniiccccces 24-50
24.37 SDO_LRS.RESET_MEASUREccoocectriiriiieiieinecinetneetnretsneeesee e e sne e ns 24-52
24.38 SDO_LRS.REVERSE_GEOMETRYcccoviiiiiiiniinieinicnetneenieeeeee e 24-53
24.39 SDO_LRS.REVERSE_MEASUREccocccoiiiiiiiiiiiiiiccee e 24-55
2440 SDO_LRS.SCALE_GEOM_SEGMENTcocoiiiiiiiiiiniicinccicieceee e 24-56
2441 SDO_LRS.SET _PT _MEASUREccooceotitiiriiiriinieinetntetntetrretsseesseseeseseseseesesesessesesseessenes 24-58
2442 SDO_LRS.SPLIT_GEOM_SEGMENTcociiiiiiineincirreirteenteeeeeeeeeneneesne e esnenes 24-60
24.43 SDO_LRS.TRANSLATE_MEASUREcoccociiiiiieincetrteerteeeeee e 24-62
2444 SDO_LRS.VALID_GEOM_SEGMENTccoceiiiiiiiiiiiiiiiicicicce e 24-63
2445 SDO_LRS.VALID _LRS_PT ..ottt ettt bbb see e seene 24-64
2446 SDO_LRS.VALID_MEASUREccoocectiiiitiieineinetntetneetnretsreeeseteseseseseeses et ne s esnenes 24-65
2447 SDO_LRS.VALIDATE_LRS_GEOMETRYc.cccectmiiriineineinreeneeeeeeeeeeneeeneesneeenenes 24-66

SDO_MIGRATE Package (Upgrading)
25.1 SDO_MIGRATE.TO_CURRENTccevvuumiurmiitneissesiesesssssssssesssssssssssss s ssssssssssssssssssssssenens 25-1

SDO_OLS Package (OpenLS)

26.1 SDO_OLS.MakeOpenLSCIODREGUESLc.cceueuiiiuiiiiiiiiiiiiicicicicciecieeceeeeee s 26-1
26.2 SDO_OLS.MakeOpenLSREGUESL..........ccccvueuririiiiiiiiiciiiiiciciiciciei s 26-2

SDO_PC_PKG Package (Point Clouds)

27.1 SDO_PC_PKG.CLIP_PC ...ttt sttt sttt ettt et saesae s s saens 27-1
27.2 SDO_PC_PKG.CLIP_PC_FLAT ...ttt sttt ettt st 27-3
27.3 SDO_PC_PKG.CREATE_CONTOUR_GEOMETRIES.........cccccccoeoinininiiininiiiiinicccies 27-6

28

29

30

31

27.4 SDO_PC_PKG.CREATE_PCcccciiiiiiiiiiiiiiinciii s
27.5 SDO_PC_PKG.DROP_DEPENDENCIES........c.cccccosiecmiiminiieeeeenreenreenreesreeeneseeeeeneeene
27.6 SDO_PC_PKG.GET_PT_IDS......ccooioiiiieiieiicneieeneeeieee e
27.7 SDO_PC_PKG.INIT ..ottt ettt sttt sae st e sa et ne et sae s
27.8 SDO_PC_PKG.TO_GEOMETRYccccoiiiiiiiiiiiiiiiiinicc e

SDO_SAM Package (Spatial Analysis and Mining)

28.1 SDO_SAM.AGGREGATES_FOR_GEOMETRYcccceoiiiniiiiiniiiiiicicincccieeeneas
28.2 SDO_SAM.AGGREGATES_FOR_LAYERccccviiiiiiiiiiiiiiccs
28.3 SDO_SAM.BIN_GEOMETRYccootoiiiiiieiireinieireeereeneeereee et eene
28.4 SDO_SAM.BIN_LAYER.. ...ttt sttt ettt ettt st s sn e e
28.5 SDO_SAM.COLOCATED_REFERENCE_FEATUREScccccoviiiiiininiiininicccreceeenes
28.6 SDO_SAM.SIMPLIFY_GEOMETRYccooiiiiiiiiiiiiiiiccccis e
28.7 SDO_SAM.SIMPLIFY_LAYERooioirititiirtiieieeinetretreetnretsree et sne s
28.8 SDO_SAM.SPATIAL_CLUSTERS.......ccoettriiiieineeteeteeteretteeteeeeee e nens
28.9 SDO_SAM.TILED_AGGREGATES.........cccciiiiiiiiiiiiceeceee e
28.10 SDO_SAM.TILED_BINS......cociotireiirieiinieiintetnietnieteieteieste ettt seses bbb e saeseseene

SDO_TIN_PKG Package (TINS)

29.1 SDO_TIN_PKG.CLIP_TIN ..c.orttotrtiireiriererientniertetenterestesesteseseesestesesteestesessesessesessesessesesseseeseseene
29.2 SDO_TIN_PKG.CREATE_TIN ..ccooiotriieiirieiinieiinietnretnreenretereseesese et essesessesessesessesessesesseneene
29.3 SDO_TIN_PKG.DROP_DEPENDENCIES..........ccccecectmitniiniieereenreenreenreeereee e
29.4 SDO_TIN_PKG.INIT ..ot
29.5 SDO_TIN_PKG.PROJECT_ORDINATES_ONTO_TINccccoceciniiiiiiiiiiiiiiicnceeeen
29.6 SDO_TIN_PKG.TO_DEM......cocccmiiriiiriiinieninientnieneeienteiesteie ettt sttt sttt sse e s e s sessesaeseneene
29.7 SDO_TIN_PKG.TO_GEOMETRYccctvitriiiriineiinietretnietnietnseeeteeereseseseesessesessesesseesnenes

SDO_TUNE Package (Tuning)

30.1 SDO_TUNE.AVERAGE_MBRccccviiriieiinieiinieinetnretneeeieseereee ettt neee e seeseneene
30.2 SDO_TUNE.ESTIMATE_RTREE_INDEX_SIZEccccccovirminirineinreenreeneeeneeeeeeeeene
30.3 SDO_TUNE.EXTENT_OFcoiiiiiiiiiitiieteteteese sttt sttt sttt ettt et st sae v e
30.4 SDO_TUNE.MIX_INFO....c.ooiotriiriiriiieiinteienieittetsie sttt sttt ettt se e e ene

SDO_UTIL Package (Utility)

31.1 SDO_UTIL.AFFINETRANSFORMSccocooiiiiiiiiiiiniicctincee e
31.2 SDO_UTIL.APPEND......cotttitiietrtiieitteeete ettt sttt ettt n et e
31.3 SDO_UTIL.BEARING_TILT _FOR_POINTS.......ccccsieetmitreininiereeeenieenreenreesreeereeeeeeneeene
31.4 SDO_UTIL.CIRCLE_POLYGON......cocectriiriiiriieetineeieetseetrreesreeesse e esseesaenes
31.5 SDO_UTIL.CONCAT_LINEScooioiiiiiiiiiiicicice et
31.6 SDO_UTIL.CONVERT _UNIT.......ccociiiiiiiiiiiiiiiciirecee e
31.7 SDO_UTIL.CONVERT3007TO3008ccouriiiiiiriiiiiiiicciiiceciiiecsese s
31.8 SDO_UTIL.DROP_WORK_TABLES........cccecetireimeinreineinretnrennreeereeeneeeseneesne s esnenes
31.9 SDO_UTIL.ELLIPSE_POLYGONcccvioiriiiiiiieiinieineeirietsietsteesie e esnens

XVii

32

XViii

31.10 SDO_UTIL.EXTRACT ..ottt ettt et eeve st st be b ss s ess et essessessessessessessesesas 31-19
31.11 SDO_UTIL.EXTRACT _ALL .ottt sttt st esb s s ess s s essessesaesassesas 31-21
31.12 SDO_UTIL.EXTRACT3D ...c.uicioirieieieieeietet ettt eses et sessessessessessessensessessesessessenses 31-24
31.13 SDO_UTIL.EXTRUDE........coiotiitietieteteeteeeeeeeeeeeeeee ettt eve v ea et s s s easeasersenseseenes 31-26
31.14 SDO_UTIL.FROM_GML311IGEOMETRYccocoteiiietieierietieteciecteetetete oo ese s s eveeveenas 31-28
31.15 SDO_UTIL.FROM_GMLGEOMETRYccceoveiiiieieierieieeerietesiesresresesesessessessessessessessesenns 31-30
31.16 SDO_UTIL.FROM_KMLGEOMETRYcceotiiiieieieinineeesteriesresteieaeaesessessessessessesassenas 31-31
31.17 SDO_UTIL.FROM_WKBGEOMETRYccccceotrietirieirrerinierinreisteeeresereseessesesesessessssesessenes 31-33
31.18 SDO_UTIL.FROM_WKTGEOMETRYccocottiiiiieietieteere ettt eteeveeteeaeeteeses e es s s eaeeveenas 31-34
31.19 SDO_UTIL.GET_2D_FOOTPRINTccocoviieieteerreeietiereeteete ettt eveeteseaessessessessessessessesseseens 31-35
31.20 SDO_UTIL.GETNUMELEMccioiiiieieieietietteeeeeeteeeeie et sae vt ess s ssessessessessessasaessesensas 31-36
31.21 SDO_UTIL.GETNUMVERTICEScoteteieieieteeeieteeee ettt sa s ss s s esassannas 31-37
31.22 SDO_UTIL.GETNURBSAPPROX........coveeteeeeeeeeeeeeeeteeeee et ete e eveeseeaeesesesesesessessenseseens 31-38
31.23 SDO_UTIL.GETVERTICEScoootitiietetceeeeteeteeteeeeteete et ettt ettt eve et eas s eaneseenas 31-40
31.24 SDO_UTIL.INITIALIZE_INDEXES_FOR_TTSccocoiiitiieieiecieetecteteieeee et ve e 31-42
31.25 SDO_UTILINTERIOR_POINTc.cotiteieieietietieieeereeeeeeresreste e ssessessessessessessessessesessessenss 31-43
31.26 SDO_UTIL.POINT_AT_BEARINGcocecteteieieieietieenestestestessessesessessessessessessessssessessenss 31-44
31.27 SDO_UTIL.POLYGONTOLINEccoiotitieeeeeceeeeeeeeee ettt ettt eveenes 31-45
31.28 SDO_UTIL.RECTIFY_GEOMETRYcooiiiiiiieiieiieieteeteete ettt ettt ees e s evs v 31-46
31.29 SDO_UTIL.REMOVE_DUPLICATE_VERTICES.........ccccoeoieiitireetereteeeeeeeeeeee e 31-47
31.30 SDO_UTIL.REVERSE_LINESTRINGccceoteieieieieiieieeeietesie e stesessesessessessessessessesessenses 31-48
31.31 SDO_UTIL.SIMPLIFY ..ooutitiitietieierieeteieteteteteteeeeesseeessessessessessessessessessessessessessessesessensenses 31-49
31.32 SDO_UTIL.SIMPLIFYVW ..ottt ettt ettt ea s es s easens s enneseens 31-52
31.33 SDO_UTIL.THEME3D_GET_BLOCK_TABLEccoeitiiiieteeetieteeteeeeeteeee e 31-53
31.34 SDO_UTIL.THEME3D_HAS_LODcoiiieietieieiieieteeeee ettt essetessessessessess s eveeseenas 31-54
31.35 SDO_UTIL.THEME3D_HAS_TEXTUREccceoeitiirieieicteestesteieieiet e ees e eve v 31-56
31.36 SDO_UTIL.TO_GML311IGEOMETRYccoecteieiriiieieieteeetesieste ettt s es e ssesseenas 31-57
31.37 SDO_UTIL.TO_GMLGEOMETRYcoviititeiieeteeeeeeeteeteee ettt ettt ese s ean s eaeereenes 31-61
31.38 SDO_UTIL. TO_KMLGEOMETRYcceiiiiiiiietieeietieteeeee ettt evesveaessessessesesseesessesseseens 31-66
31.39 SDO_UTIL.TO_WKBGEOMETRYcceotiieiirieieeeietieeee ettt ssesessesessessessessessessessesenss 31-68
31.40 SDO_UTIL.TO_WKTGEOMETRYcoterieieieieieieieieisesesresiesressesessessessessessessssssssssessenses 31-69
31.41 SDO_UTIL.VALIDATE_3DTHEMEcocoisiiiieiieitetieteieteteteeeetes e ssse e sens 31-71
31.42 SDO_UTIL.VALIDATE_SCENE ...ttt ettt ettt eveenas 31-72
31.43 SDO_UTIL.VALIDATE_VIEWEFRAMEcoeititiietieieeetietecte ettt vs v 31-73
31.44 SDO_UTIL.VALIDATE_WKBGEOMETRYcccoceoiiiiiiiiiniesiesrestei et esesee e ees e eveevenas 31-74
31.45 SDO_UTIL.VALIDATE_WKTGEOMETRYccococsetririririniiriestesieieiesieeeneseseesensseesenas 31-76
SDO_WFS_LOCK Package (WFS)

32.1 SDO_WEFS_LOCK.ENADIEDBTXINS ..ccuvveiirieeeeeeeeeeeeeeeeeeeeeteeeeeeeeseaeeeseseesesssesssssessssseesssssessssesas 32-1
32.2 SDO_WEFS_LOCK RegisterFeatureTable.............cccccocouviiiiiininiiiiiiiiiiiiiiniicccceees 32-2
32.3 SDO_WEFS_LOCK.UnRegisterFeatureTableccccccevviviiiiiniinnniiiiicine 32-3

33 SDO_WFS_PROCESS Package (WFS Processing)

33.1 SDO_WEFS_PROCESS.DropFeatureTypecccccooirueiiiiiiiieieiicicece e 33-2
33.2 SDO_WEFS_PROCESS.DropFeatureTypes.........cccceeviiiiiiiiiiiiiiiiiiiiiiineceeeeeeeeees 33-3
33.3 SDO_WEFS_PROCESS.GenCoOlleCtionNPTIOCS c..uvveeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeeeeesereeeessseesesseessennesas 33-3
33.4 SDO_WEFS_PROCESS.GetFeatureTypeld..........cccccoviiiiiiiiiininiiiiiiiciicicccccceeeeeecees 33-4
33.5 SDO_WFS_PROCESS.GrantFeatureTypeTOUSerccccoeuiivinieiiiiiiciicicccceecne, 33-4
33.6 SDO_WEFS_PROCESS.GrantMDACCESSTOUSETccuvviieiiiicieieeeeeeeeeee et 33-5
33.7 SDO_WEFS_PROCESS.InsertCapabilitiesInfo.........ccccoeueueiririeieeiirriieccreeceeeeeeeeeeeees 33-6
33.8 SDO_WEFS_PROCESS.InsertFtDataUpdatedcccooeuiuririiiiiiiinriiicccccceeeeeeeees 33-6
33.9 SDO_WEFS_PROCESS.InsertFtMDUpdated...........cccovuiiririririiiiiiiiiiiiiiicirccicnrceeeenes 33-7
33.10 SDO_WEFS_PROCESS.PopulateFeatureTypeXMLINfo.........cccccvvviviiiniiiininiiiiiiine, 33-8
33.11 SDO_WEFS_PROCESS.PublishFeatureTypeccccoeuiiiviiiiiiiniiiiiiiiiiicciiiccccseeeas 33-9
33.12 SDO_WEFS_PROCESS.RegisterMTableView............cccoociininiiiinininiiiiiiciccne, 33-14
33.13 SDO_WEFS_PROCESS.RevokeFeatureTypeFromUser..........cccccccvueuiuiuiicininicicciciicccnne 33-16
33.14 SDO_WEFS_PROCESS.RevokeMDACCESSFIOMUSETeeivueiiieieeeeieeeeeeeeeeee et 33-17
33.15 SDO_WEFS_PROCESS.UnRegisterMTableVIiew ... 33-17

Part IV Supplementary Information

A Installation, Migration, Compatibility, and Upgrade

A.1 Migrating Spatial Data from One Database to Another.............ccccooovvioiiiiiic A-1
A.2 Ensuring That GeoRaster Works Properly After an Installation or Upgrade..........cccccooorrieinnne A-1
A.2.1 Enabling GEORASIETc.cviieiiiicict A-2
A.2.2 Ensuring Oracle XML DB Repository is Installedc.cccocoervvnniinnniiirnccceeene A-2
A.3 Index Maintenance Before and After an Upgrade (WEFS and CSW)........ccccooiiiiiiiniininnnnn. A-2
A4 Increasing the Size of Ordinate Arrays to Support Very Large Geometries..........ccccccevevrerennnnnes A-3

Oracle Locator
B.1 Installing and Deinstalling Locator or Spatial and Graph Manually............c.ccccooviiiniiiinnnan. B-5

C Complex Spatial Queries: Examples

C.1 Tables Used in the EXamples.........ccccouiiiiiiiiiiiicte et C-1
C.2 SDO_WITHIN_DISTANCE EXaMPIES.........coiiiiriiiiiiieiiieiiie i C-1
C.3 SDO_NN EXAMPIES.....cimimiiimimimimiiiiiiiiiceiiiiccicicieiecee ettt C-3

D Loading ESRI Shapefiles into Spatial and Graph

D.1 Usage of the Shapefile CONVETLETc.cccviiiuiiiiiiiiiiiiicccecccereeee e D-1
D.2 Examples of the Shapefile CONVETTETccoiiiiiiiiiiiiiicccc e D-2

E Routing Engine Administration

E.1 Logging Administration Operationsccccciiiiiiiiiiiiiicccec s E-1
E.1.1 CREATE_SDO_ROUTER_LOG_DIR Procedureccoooiiiiuieiiiieeeiee et et seeeeeeaee s E-1

Xix

E.1.2 VALIDATE_SDO_ROUTER_LOG_DIR Procedurec.ccccoceverreneeneeneeneineeneenreeenenenne E-2

E.2 Network Data Model (NDM) Network AdminiStrationcc.cceceevevierierierienierieieieieceeesresessessenns E-2
E2.1 CREATE_ROUTER_NETWORK Procedurecccccoeiririnimrenieinieirieerieenieesienessenesveeesenene E-3
E.2.2 DELETE_ROUTER_NETWORK Procedure..........cccectriririirienienieiesienieeeieeeeeeesese e seessesaens E-3
E.2.3 Network Creation EXamplecocoriiiiiiiiii e E-3

E.3 Routing ENgine Dataoooiiiiiiiiiiiiiiiiii s E-4
E.3.1 PARTITION _ROUTER PrOCEAUTE......cooeeeieeeieeeeeeeeeeeeeeeeeee et eeeeeeeeeaeeseeaeeesereeesssseeserseesssseessns E-6
E.3.2 CLEANUP_ROUTER PrOCEAUTIEc.ccervimirieiriiiieirieteiesteiesteiestee sttt sttt E-7
E.3.3 DUMP_PARTITIONS PrOCEAUTE.....cccesteuieuiririieeieieeiteteetestesiesiesteste et seeseente et ese e sseseessessessens E-7
E.3.4 VALIDATE_PARTITIONS ProCedUrecccecteiriririiniinienieniesiestete ettt E-7
E.3.5 GET_VERSION PrOCEAULE......ccooveiiieiieieieeeeee ettt eeeeeeaeeeeeaveeseaaeesensessensesssnneessneesennes E-8
E.3.6 Routing Engine Data EXamples.........cccccccevuririiiiiiiiniiiiiirrcccerreeeeeeeeeeeeeee s E-8

L BT I - | - VOO SRR STUTRPRRR E-13
E.4.1 Restricted Driving Maneuvers User Data............cccooooioiiiiiiiiicce E-14
E4.2 CREATE_TURN_RESTRICTION_DATA Procedure.......c..ccccoimenienienienieieieeneeecee e E-14
E.4.3 DUMP_TURN_RESTRICTION_DATA Procedurec..coceeerenenienienienieieieenenesesieseeiene E-15
E4.4 CREATE_TRUCKING_DATA Procedurecccccoveimerirenininieienieesieenieesieesieeeseseeseseese e E-15
E4.5 DUMP_TRUCKING_DATA ProCEAUTIE......cceecieiririrtirtiriieteniestesiesiesiesteaessenseeessesessessessessenns E-16
E.4.6 User Data EXamples ..o E-16

E.5 Other Functions and Procedures..............ooiiiiienieieiiieieeeeee ettt ettt E-21

Glossary

Index

XX

List of Figures

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
5-1
5-2
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
8-1
11-1
13-1
15-1
16-1
23-1
23-2
23-3
23-4

GeOMELTIC TYPES....ouiviviiiiiiiiiiiic st 1-4
QUErY MOdel.......oei e 1-9
MBR ENclosing @ GEOMELTY.......c.ccciuiuiiiiiiiiiiiiiiiiiiieeeeeceee s 1-10
R-Tree Hierarchical Index on MBRS..........cccccouiiiiiiiiiiiiices 1-10
The Nine-Intersection Model...........cccccovviiiiiiiiiiiiiiii s 1-12
Topological RelationShips..........cccoccuiiiiiiiiiiiiiiiiiiiiiccenes 1-13
Distance Buffers for Points, Lines, and Polygons..........cccccccevvvvininnnnninrrciiccens 1-13
Tolerance in an Aggregate Union Operation............cooeeviiieieiniiniciiincee 1-16
Frustum as Query Window for Spatial Objects...........cccoerueiiiiieieiniiiccc 1-21
Faces and TeXtUIEs........cccvviiieiiiiieiecci s 1-23
Texture Mapped t0 @ Face.........ccociiiiiiiiiiccccecccccecee e 1-24
Areas of Interest for the Simple Example...........cccoooiiiiiiiiic e 2-2
Storage of TIN Data........cccoviiiiiiiiiiiiiii e 2-17
RECLANGIE. ... 2-22
Polygon with @ HOle..........cocoiiiii s 2-23
Compound Line StrING.........coviiiiiieiiiceeec s 2-25
Compound POLYON......c.cciuiiiiiiiiiiiiiiiiccce e 2-26
Point-Only GEOMEITY.......ccviiiiiiiiiiiiii s 2-27
Oriented Point GEOMETIY.........c.oviiiiiiieiiicie e 2-29
Geometry with Type 0 (Zero) Element...........cccccccuiiiiiiiiiiiiiiiiicccccceccenes 2-31
Geometries With MBRS........ccccoiiiiiiiiiiic s 5-9
Layer with a Query Window...........coooiiiiii e 5-9
Geometric SEGMENT........c.oiiiiiiic 7-2
Describing a Point Along a Segment with a Measure and an Offset...........c.cccovvivinenncnee 7-3
Measures, Distances, and Their Mapping Relationship.........cccccocovvinnnnnnninn, 7-4
Measure Populating of a Geometric Segment..............cooereieiiiiciiieiiiccece e 7-4
Measure Populating with Disproportional Assigned Measures............c.ccccoeuevverininincncncnes 7-4
Linear Feature, Geometric Segments, and LRS Points...........cccoevevieinnnninnnnnncecnnercene. 7-5
Creating a Geometric Segment.........c.coueuriiiiiiiiciiiiicc 7-6
Defining a Geometric SEZMeNnt...........cccccciiiiiiiiiiiii s 7-8
Redefining a Geometric SEZMeNt...........cccocucuiiiiiiiiiiiiiiiiiiicccceecece e 7-9
Clipping, Splitting, and Concatenating Geometric Segments............cccccoooreueieiiircieininnne, 7-9
Measure Assignment in Geometric Segment Operations..........cccoeveeiveieieiicicicicicncnnne. 7-10
Segment Direction with Concatenation.............ccccceeiiiiiiiiiiiiicccceccceennes 7-11
Scaling a Geometric SEZMENt..........ccceiiviiiiiiiiiiiii s 7-11
Offsetting a Geometric SeZMeNt............coooueuiiiiiiiiiiiicc s 7-12
Locating a Point Along a Segment with a Measure and an Offset.............ccccocevvvninnnnnn 7-12
Ambiguity in Location Referencing with Offsets...........cccccoeueeriiiiiinniiinicicccens 7-13
Multiple Projection POINtS..........coviiuiiiiiiic s 7-13
Conversion from Standard to LRS Line String...........cccoeoiiiriiiiiiicccce, 7-14
Segment for Clip Operation Affected by Tolerance............ccooeeoieiiiiniininiininnniniiiene. 7-15
Simplified LRS Example: Highway.........ccccovviiiiiiiiiiiiceces 7-16
Spatial Mining and Oracle Data Mining...........ccccooimeieiiiicieeeccc e 8-2
Basic Flow of Action with the Spatial Geocoding Service.............ococoviveiniiiiiiiiinciennes 11-34
Basic Flow of Action with the Spatial and Graph Routing Engine..........cccccccceevvinnen. 13-2
Web Feature Service Architecture............cooviiiviiiiiiiiiiiiiiiiiiicce 15-2
CSW ATChIECTUTE. ...t 16-2
ATC TOIETANCE. ..ottt 23-8
SDO_GEOM.SDO_DIFFERENCE..........cccooiiiiniiiiiniiiiiiiieiscsssscsessnenns 23-25
SDO_GEOM.SDO_INTERSECTION.......c.cceoiiiriiimiiiiiiieieisiee s 23-28
SDO_GEOM.SDO_UNION......cciuiimiemriiieieiriiiiereesiteeesseseseieseesesesiessesesssesessessassessesessaes 23-45

XXi

XXii

23-5
24-1
31-1

SDO_GEOM.SDO_XOR.......coiuriiiriiinieinieisisisie s s
Translating a Geometric Segment...........cc.cooviiiiiiiiii e,

Simplification of a Geometry

List of Tables

1-1
1-2
1-3
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
3-1
3-2
5-1
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30

SDO_GEOMETRY Attributes for Three-Dimensional Geometries..........cccoevvvevvvevveennnnn. 1-16
How Geodetic 3D Calculations Are Performed............ccceeveeieeieeviinicnieceene e 1-19
Predefined User Accounts Created by Spatial and Graph.........ccccoovrniiiiiiiinnnnnnn, 1-30
Valid SDO_GTYPE VAlUES......eeoeeieeeeeeeeeeeeeeeeeeeeee et eeeeeeeeaeeseeaeesssstesesssesseaeesssseesesseessseeeas 2-6
Values and Semantics in SDO_ELEM_INFO.......ccooooiiiiiiiieeeeeeee e 2-9
SDO_GEOMETRY MeEthOS.......covieiiiiieiieiieeeieeeeeeeeeeee ettt ens v eneeeaseseenseneenes 2-12
SDO_TIN Type AttrIDULES......c.cccimimiiiiiiiiiiiicceeecccceeccee e 2-16
Columns in the TIN BIOCK Table........ooooiiiiiiiieieiceeeeeee ettt e e 2-17
SDO_PC Type AttribuLes. ..o 2-19
Columns in the Point Cloud Block Table.........cccoveiieiieiiieiieiiceecieceeeeeeeee et 2-20
XXX_SDO_BDTHEMES VIEWS....uuttiiiieiiiieeeeeeeeteeeeeeeireeeeeeseireeesesssssseesssssssssessssssssseessssssssseees 2-49
XXX_SDO_SCENES VICWS.....ooiiieiiiitiieeeeeee ettt eette e et e et s et e e saaeessaaeessaseessnaeessnseesnnes 2-50
XXX_SDO_VIEWFRAMES VICWS......ccuiiuiiieiireiitieneeeteeeeeteeeeeteeneeeseenesessenessssessssnsessssssesssessensens 2-50
Columns in the xxx_SDO_INDEX_INTFO VICWS....cooooitieeeeeeeieeeeeeeeeeeeeeeeeeeeseeeeeeeeeseeeenns 2-51
Columns in the xxx_SDO_INDEX_METADATA VIEWS...cccceooveeeeeieeeeee e 2-52
Columns in an R-Tree Spatial Index Data Table............ccccooemiiiriiiiii 2-55
SDO_UNITS_OF_MEASURE Table Entries for User-Defined Unit........ccccoeeevvviveuveernnen. 2-56
ST_xxx Functions and Spatial and Graph Counterparts............cccccocovvviviiieiniiniicnnnns 3-7
Columns in the Annotation Text Metadata VIEWS.......ccccocoveeeeeciieeiecceeceeecceeeee e 3-10
Data and Index Dimensionality, and Query SUPPOTrt........c.ccccecueuiiiiiiiiiiniiiiiiiieiciiceenes 5-14
SDO_COORD_AXES TabIe.....coccveivierierietieeteceeete ettt et eeve s ere s ereeseerseseerseseensennas 6-21
SDO_COORD_AXIS_NAMES TabIe.......ccoeriierieeeerieeeeteeee ettt eae e 6-21
SDO_COORD_OP_METHODS Table.......ccocoveieietierieteeieeieereeteeeeeeeeeeeceee e eseevs s eve s 6-22
SDO_COORD_OP_PARAM_USE Table........cocoieeeeieeeecteeeeereecteeteecteete et 6-22
SDO_COORD_OP_PARAM_VALS Table.......coioieriereerieeeereeeeete ettt eaeens 6-23
SDO_COORD_OP_PARAMS Table......cocieuieiiiiiiieieteeeeeeeeeeteee ettt neanas 6-24
SDO_COORD_OP_PATHS Table.....c.ooovieiietieeeeieeeeeeeeeeeeeeee ettt ens 6-24
SDO_COORD_OPS TaDIe.......coueeriereerieteeeeeeeeeteeeeeteecteete et eeve e v eas v e eas s eeaeenenas 6-25
SDO_COORD_REF_SYS TabIe.....c.ooouiiiiitieiictieeeeteeeeeteeeteete vttt evs e essesvesnseaeenseseensens 6-27
SDO_COORD_SYS TaDIe......ooviouiieieeieeeeeeeeteeeeeeeeee ettt et et ere s et enaesasenaeenseaean 6-29
SDO_CRS_COMPOUND VIEW.....oiotiiiicrieriereeiteeeeeteeeeete et ete et eseestesseesseessesseesseeseesseseessenns 6-30
SDO_CRS_ENGINEERING VIEW......coiertietieiiereeieeteeeteeteeeteeteeeseessesseeseeseeseeseessesssesesssesesns 6-30
SDO_CRS_GEOCENTRIC VIEW......coiiueierieteiteeteeteesteeteeeseeseesseeseesseeseeessessesssenssessensssssessesssens 6-31
SDO_CRS_GEOGRAPHIC2D VIEW.....ecotiiteeieereereereeteeteeete et eete et ereesvesseesaessseeseeseessesssenseens 6-32
SDO_CRS_GEOGRAPHIC3D VIEW.....ueooviitieieeteereeteeeteeteeeteeeeeteeveeseesvesseesseessesseeseesseeseenseens 6-32
SDO_CRS_PROJECTED VIEW.....c.cciiuieiiiiieieieieteeteeeeeeereeteeteetessessessesessessessessessessessessesessens 6-33
SDO_CRS_VERTICAL VIEW...oiotiiiiiriieieeeeete ettt et eseeetsentssasesesssensesnsensesseeseas 6-33
SDO_DATUM_ENGINEERING VIEW....ccveviiriiiierieiieteeiee ettt eeve e eeve e eere e ene e 6-34
SDO_DATUM_GEODETIC VIEW......covieiietierieeteeeeeteeeeeteeeeeeteeeveeseeeseessesseessensseseesssensenssensennns 6-35
SDO_DATUM_VERTICAL VICW.....ooouieeiitieiieeeeeteeeeeteeeeeteete et eeveeseesassssesssensesssensesssensesseens 6-36
SDO_DATUMS TabIE.....cuviotiiiieieiieeeeeteeteeteeeete ettt ettt eteeeae e eaeeaesbeeaesreeseereenseeseenens 6-37
SDO_ELLIPSOIDS TaADIE......cvietieieitiereeteeeieeeeeteeeeete et eeveereeeveeeessseesesseeseeseeseessenseerseneenes 6-38
SDO_PREFERRED_OPS_SYSTEM Table........cocoieiieriereieeieeeereeeeeteeeeeteeeve e eae s 6-39
SDO_PREFERRED_OPS_USER TabIe......ccuicuiiiieiieeieeieeeeteeeeeeeeeeeeteeeee et eeesaeessesseennenseens 6-40
SDO_PRIME_MERIDIANS Table......c.ccoveitieiiereeieeteeteereeete ettt eeve et eeve e eeneens 6-40
SDO_UNITS_OF_MEASURE TabIe.......ccoeoieiiirieeieiieeeeteeereeeeeteee et eeveeeesseennenveen 6-41
EPSG Table Names and Oracle Spatial and Graph Names..........cccccooviiiiiiiiiiiiiinnnen, 6-42
MDSYS.CS_SRS TaDIE.....c.oocueieeeieeeeeeecteeteeeeteeeete ettt ettt ettt et ea et e ae b eae b enreeaeenns 6-48
MDSYS.SDO_ANGLE_UNITS VIEW......coiiirietieteereereeeeeteeveereeeveereereeereesesessesseesseeseesesseensens 6-52
SDO_AREA_UNITS VIWcueitieeeietieeietieteetteete ettt eteeteeeeeveesvessseeveessenseessenssessenssensesseenseens 6-52

XXiii

XXiv

6-31

6-32
6-33

6-34

7-1
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16
12-1
12-2
12-3
12-4
12-5
12-6
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
14-1
17-1
18-1
18-2
18-3
18-4
18-5
19-1
20-1
20-2
21-1
22-1
23-1
24-1
24-2

MDSYS.SDO_DATUMS_OLD_FORMAT and SDO_DATUMS_OLD_SNAPSHOT

MDSYS.SDO_DIST_UNITS VIEW......cooiriiriiiiiiieiciece i
MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and
SDO_ELLIPSOIDS_OLD_SNAPSHOT Tables.........ccccccoovurmriminininicinicieicieicecieiees
MDSYS.SDO_PROJECTIONS_OLD_FORMAT and
SDO_PROJECTIONS_OLD_SNAPSHOT Tables.........cccccocoummrrerniiniireiiieeriicnennen,
Highway Features and LRS Counterparts...........ccccoceveriiiininiiiiiniiieccccccceeees
Attributes for Formal Address Representation...........c.c.coooooiiiiiiiiii,
Match Modes for Geocoding Operations.............ccccoeueveiirmnininieeieieiceeee e,
Match Codes for Geocoding Operations..........c.cccccuecucucucueieeieieueieeeereeeeeenereneneerenenenes
Geocoded Address Error Message Interpretation............coceoiiieiiininicc,
Geocoded Address Match Vector Interpretation.............oooeeeeiiiiiiiniccee
SDO_GEO_ADDR Type AttribULES........cccouviiiiiiririiiciciericeceeeee e
GC_ADDRESS_POINT _<SUffix> Table.....cc.ooooiiiieiiiiiieiiceeeeeeeeeeeeeeeeee et
GC_AREA_<SULTIXS TabDIO.....ooiieeieeeeieeeee ettt ettt s et saae e saeeeennes
GC_COUNTRY_PROFILE Table.........cccocevriiiiiiniiiiiiciicinici i
GC_INTERSECTION _<SUFFIXS TabLe...oeiieeeeeeeeeeeeeeeeeeeeeeee et eeeeeseeaeeeseeeeesneesenees
GC_PARSER_PROFILES Table.........ccceuoriririniiiiiiniiieiceeie s
GC_PARSER_PROFILEAFS Table........cccccooviimiiiiniiiiiiiiincccssc e
GC P OI_<SUIXS TaADL.c ettt ettt e et e eeae e s et e eeeateseeaaeeseaeessneesennees
GC_POSTAL_CODE_<SUfiX> Table...cc.ueiiiiieiieeiieceieeeeeeeeeeeeee ettt
GC_ROAD _<SUTTIXS TabIO....eeeioeeiieeeieeeeeeeeee ettt et s e e seaae e senaeessaeeeeans
GC_ROAD_SEGMENT_<suffix> Table.........ccccooiiviiiiiiiiieiceceeecene
OPENLS_DIR_BUSINESSES Table...........cccoeiiiiiiiiiriiiinicieicie s
OPENLS_DIR_BUSINESS_CHAINS Table.........ccccocoeuiiriiiiinininininciecce e
OPENLS_DIR_CATEGORIES Table.........cccocovriiiriiiniiiniiieiieicisicicsscs s
OPENLS_DIR_CATEGORIZATIONS Table.........cccocouriiriiiiiiiiiiiniciieeeicneicsnnes
OPENLS_DIR_CATEGORY_TYPES Table..........ccccocoririiiriiiniiiciieisecci s
OPENLS_DIR_SYNONYMS Table.........cccooriririininininicinicisicisici i
EDGE Table......oiiiiiiiiiiiciiecie s
INODE Table......c.oiiiiiiiiiiicitic s
PARTITION TabIe........ocoeiiieiiieiiieiieieie i
SIGN_POST TabIe........ooiiiiiiiiiiciicisici s
ROUTER_CONDITION Table.......ccoovuririmriiiiiiniiiiiiiiriniineiiieesescniscnee s ssnssssenen
ROUTER_NAV_STRAND Table.........cccceuoriiiriiiiiiieiiieice s
ROUTER_TURN_RESTRICTION_DATA Table.........cccccevsrrmmrimniiniiiniinniiesieinieiines
ROUTER_TRANSPORT Table........ccccovviiiriiimimiiiiiinieiiiec s
ROUTER_TRUCKING_DATA Table........c.ccceririiiriieiieiiieicsc e
Spatial and Graph OpenLS Services Dependencies.............cccoeeueioicieieiniiceiecccieee
Spatial Index Creation and Usage Statements............c.ccccccuiuiuiiiiiiiiiiiiciceccccenes
Main Spatial OPerators..........cocociiiiiiiiiiicieeireeeee e e senne
Convenience Operators for SDO_RELATE Operations............cccocoeeieiiiicieiciiiccieecne
params Keywords for the SDO_JOIN Operator..........cc.ococvueieiiineiniiicieeicceeecnnes
Keywords for the SDO_NN Param Parameter...........c.cccoccoieeiiiieecieicceeeeeenenes
params Keywords for the SDO_POINTINPOLYGON Operator...........cccoevurrruerrinennnnn.
Spatial Aggregate FUNCHONS.coooioiiiiic
Subprograms for Coordinate System Transformation............ccccceevvvevvnrnnnnnnnnenenes
Table to Hold Transformed Layer............cccoovviiminiiiiiiieccn e
Subprograms for CSW Processing Operations.............cccocceueiiiccieieiicicieieicceecce
Subprograms for Geocoding Address Data..........ccccoeueiiiiiiiiciiiicc e,
GeOomMEtTy SUDPTOGIAMS.cvviiiiiicicieieieictcieeeeee et
Subprograms for Creating and Editing Geometric Segments............ccccoovirinirinicniinnnn.
Subprograms for Querying and Validating Geometric Segments............c.cccoeeeviirinnnnnce.

24-3
26-1
27-1
28-1
29-1
30-1
31-1
32-1
33-1
33-2
33-3
B-1

B-2

B-3

Subprograms for Converting Geometric SEgments...........ccccccueueueueuemeeueueecceeeeeeenenes 24-4

Subprograms for OpenLS SUPPOTt........ccccceiiieiiieiiieic e 26-1
Point Cloud SUDPIOZIams.........ccoviiiiiiiniiiiii s 27-1
Subprograms for Spatial Analysis and MINing..........cccccceveiciiiiiiieiiicceeeceenenens 28-1
TIN SUDPIOZIAMS. ..ottt e 29-1
Tuning SUDPIOZIAMS.........cooiiiiiiiicie et 30-1
Spatial Utility SUDPIOZIamS........ccccoiiiiiiiiiiiiiciicccc e 31-1
Subprograms for WES SUPPOTL........coviiriiiiie s 32-1
Subprograms for WES Processing Operations...........c.ccoceueueiiueiniieinieinieicee e 33-1
Geometry Types and columnInfo Parameter Values (WFS 1.0.n)........cccccoeuvivivinivininnne 33-12
Geometry Types and columnInfo Parameter Values (WFS 1.1.1n)......cccccovuvvivvirinnnnne. 33-13
Features Included with LOCAtOr.........cccoiiiiiiiiiic e B-2
Features Not Included with LOCAtOT.........c..c.ovoiiiiiii B-3
Feature Availability with Standard or Enterprise Edition...........ccccooeviviiniiininiiicnn, B-5

XXV

XXVi

Audience

Preface

Oracle Spatial and Graph Developer’s Guide provides usage and reference information for
indexing and storing spatial data and for developing spatial applications using Oracle
Spatial and Graph and Oracle Locator.

Oracle Spatial and Graph requires the Enterprise Edition of Oracle Database. It is a
foundation for the deployment of enterprise-wide spatial information systems, and
Web-based and wireless location-based applications requiring complex spatial data
management. Oracle Locator is a feature of the Standard and Enterprise Editions of
Oracle Database. It offers a subset of Oracle Spatial and Graph capabilities (see Oracle
Locator (page B-1) for a list of Locator features) typically required to support Internet
and wireless service applications and partner-based geographic information system
(GIS) solutions.

The Standard and Enterprise Editions of Oracle Database have the same basic features.
However, several advanced features, such as extended data types, are available only
with the Enterprise Edition, and some of these features are optional. For example, to
use Oracle Database table partitioning, you must have the Enterprise Edition and the
Partitioning Option.

This guide is intended for anyone who needs to store spatial data in an Oracle
database.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http:/ /www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http:/ /www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents:

® Oracle Spatial and Graph GeoRaster Developer’s Guide

XXVii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions

The following text conventions are used in this document:

XXViii

Oracle Spatial and Graph Topology Data Model and Network Data Model Graph
Developer’s Guide

Oracle Database SQL Language Reference
Oracle Database Administrator’s Guide
Oracle Database Development Guide

Oracle Database Error Messages - Spatial and Graph messages are in the range of
13000 to 13499.

Oracle Database Performance Tuning Guide
Oracle Database SQL Tuning Guide

Oracle Database Utilities

Oracle Database Advanced Replication

Oracle Database Data Cartridge Developer’s Guide

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated

with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for

which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

Changes in This Release for Oracle Spatial
and Graph Developer's Guide

This preface contains:
® Changes in Oracle Database 12c Release 1 (12.1.0.2) (page xxix)

* Changes in Oracle Database 12c Release 1 (12.1.0.1) (page xxx)

Changes in Oracle Database 12¢ Release 1 (12.1.0.2)

The following are changes in Oracle Spatial and Graph Developer’s Guide for Oracle
Database 12¢ Release 1 (12.1.0.2).
Routing Engine Information Revised

The information for the Spatial and Graph routing engine (often referred to as the
routing engine) has been substantially updated and reorganized. It appears in the
following locations:

¢ Routing Engine (page 13-1) describes concepts and techniques relevant to all users
of the routing engine.

* Routing Engine Administration (page E-1) is for advanced users who need to
administer the routing engine. It is not intended for most routing users. (It assumes
that you are already familiar with the material in Routing Engine (page 13-1).)

Change in Behavior for SDO_GEOM.SDO_CLOSEST_POINTS

For SDO_GEOM.SDO_CLOSEST_POINTS (page 23-14), if the distance between the two
points is 0 (zero), the output geometries (Jeoma and geomb) was null in the previous
release. Now, the output geometries depend on whether the input geometries are two-
dimensional or three-dimensional, as explained in the Usage Notes for that procedure.

GeoRaster Not Enabled by Default

By default the GeoRaster feature is disabled after the Oracle Spatial and Graph is
initially installed. To enable GeoRaster, follow these steps:

1. Connect to the database as SYS AS SYSDBA.

2. Enter the following statement:

EXECUTE MDSYS.enableGeoRaster;

XXiX

For more information, see Ensuring That GeoRaster Works Properly After an
Installation or Upgrade (page A-1)

Changes in Oracle Database 12¢ Release 1 (12.1.0.1)

New Features

XXX

The following are changes in Oracle Spatial and Graph Developer’s Guide for Oracle
Database 12¢ Release 1 (12.1.0.1).

The following features are new in this release:

* New and Changed SDO_GEOM Subprograms (Release 12.1.0.2) (page xxx)

¢ NURBS Curve Support (page xxx)

* Height Information Approximated for Certain 3D Geodetic Operations (page xxxi)
* New Spatial Metadata Views (3D Themes_ Scenes_ Viewframes) (page xxxi)

e New and Changed Aggregate Functions (page xxxi)

¢ New and Changed SDO_CS Subprograms (page xxxi)

* New and Changed SDO_UTIL Subprograms (page xxxii)

¢ New SDO_GEOM_MBR Operator (page xxxiii)

e SPATIAL_VECTOR_ACCELERATION System Parameter (VPA) (page xxxiii)
New and Changed SDO_GEOM Subprograms (Release 12.1.0.2)

Effective with Oracle Database Release 12.1.0.2, the following new subprograms have
been added to the SDO_GEOM package, which is documented in SDO_GEOM
Package (Geometry) (page 23-1):

e SDO_GEOM.SDO_DIAMETER (page 23-21)

* SDO_GEOM.SDO_DIAMETER_LINE (page 23-22)

e SDO_GEOM.SDO_MAXDISTANCE (page 23-31)

e SDO_GEOM.SDO_MAXDISTANCE_LINE (page 23-33)
¢ SDO_GEOM.SDO_MBC (page 23-34)

e SDO_GEOM.SDO_MBC_CENTER (page 23-35)

e SDO_GEOM.SDO_MBC_RADIUS (page 23-37)

e SDO_GEOM.SDO_WIDTH (page 23-47)

e SDO_GEOM.SDO_WIDTH_LINE (page 23-49)

NURBS Curve Support

Support for non-uniform rational B-spline (NURBS) curve geometries is included in
this release. NURBS curves allow representation of free-form shapes with arbitrary
shapes. NURBS representation allows control over the shape of the curve because

control points and knots guide the shape of the curve, and they allow complex shapes
to be represented with little data.

For more information, see NURBS Curve Support in Oracle Spatial and Graph
(page 1-27).
Height Information Approximated for Certain 3D Geodetic Operations

In the previous release, height information was ignored for certain operations on
three-dimensional geodetic geometries. With this release, the height is approximated
and included in calculations for these operations.

For more information, see Three-Dimensional Spatial Objects (page 1-16), including
Table 1-2 (page 1-19).

New Spatial Metadata Views (3D Themes, Scenes, Viewframes)

ALL_SDO_xxx and USER_SDO_xxx metadata views have been added for 3D themes,
scenes, and viewframes. For descriptions of these views, see Other Spatial Metadata
Views (page 2-49).

These views are relevant to several new functions listed under "New and Changed
SDO_UTIL Subprograms (page xxxii)".

New and Changed Aggregate Functions

The following new spatial aggregate function has been added (spatial aggregate
functions are documented in Spatial Aggregate Functions (page 19-1)):

¢ SDO_AGGR_SET_UNION (page 19-7)

New and Changed SDO_CS Subprograms

The following new subprograms have been added to the SDO_CS package, which is
documented in SDO_CS Package (Coordinate System Transformation) (page 20-1):

e SDO_CS.CONVERT_3D_SRID_TO_2D (page 20-4)
e SDO_CS.LOAD_EPSG_MATRIX (page 20-26)
e SDO_CS.VALIDATE_EPSG_MATRIX (page 20-42)

New and Changed SDO_GEOM Subprograms

The following new subprogram has been added to the SDO_GEOM package, which is
documented in SDO_GEOM Package (Geometry) (page 23-1):

e SDO_GEOM.SDO_SELF_UNION (page 23-42)

New and Changed SDO_PC_PKG Subprograms

The following new subprograms have been added to the SDO_PC_PKG package,
which is documented in SDO_PC_PKG Package (Point Clouds) (page 27-1):

e SDO_PC_PKG.CLIP_PC_FLAT (page 27-3)
e SDO_PC_PKG.CREATE_CONTOUR_GEOMETRIES (page 27-6)

The following significant changes have also been made:

XXXi

XXXii

e For SDO_PC_PKG.CLIP_PC (page 27-1), the include_custom_dims parameter
can be used to return point cloud blocks that contain custom dimensions in
addition to regular dimensions.

e For SDO_PC_PKG.INIT (page 27-10), the pc_other_attrs parameter can be used
to specify metadata for point cloud pyramiding.

New and Changed SDO_TIN_PKG Subprograms

The following new subprograms have been added to the SDO_TIN_PKG package,
which is documented in SDO_TIN_PKG Package (TINs) (page 29-1):

e SDO_TIN_PKG.PROJECT_ORDINATES_ONTO_TIN (page 29-8)
e SDO_TIN_PKG.TO_DEM (page 29-9)
The following significant changes have also been made:

e For SDO_TIN_PKG.INIT (page 29-5), the tin_other_attrs parameter can be
used to specify metadata for TIN pyramiding.

New and Changed SDO_UTIL Subprograms

The following new subprograms have been added to the SDO_UTIL package, which is
documented in SDO_UTIL Package (Utility) (page 31-1):

e SDO_UTIL.CONVERT3007TO3008 (page 31-16)

e SDO_UTIL.GET_2D_FOOTPRINT (page 31-35)

e SDO_UTIL.SIMPLIFYVW (page 31-52)

e SDO_UTIL. THEME3D_GET_BLOCK_TABLE (page 31-53)
e SDO_UTIL.THEME3D_HAS_LOD (page 31-54)

e SDO_UTIL.THEME3D_HAS_TEXTURE (page 31-56)

e SDO_UTIL.VALIDATE_3DTHEME (page 31-71)

e SDO_UTIL.VALIDATE_SCENE (page 31-72)

e SDO_UTIL.VALIDATE_VIEWFRAME (page 31-73)

The following significant changes have also been made:

e SDO_UTIL.AFFINETRANSFORMS (page 31-3) has default values for all
parameters except the first (geometry). This can simplify coding when you need
to specify nondefault values for only a few parameters.

¢ SDO_UTIL.CIRCLE_POLYGON (page 31-11) has an additional format that includes
the start_azimuth and end_azimuth parameters.

e SDO_UTIL.SIMPLIFY (page 31-49) has the new optional parameter remove_loops,
which enables you to ensure that a simplified line string geometry for not contain
any self-crossing loops in the middle. (SDO_UTIL.SIMPLIFYVW (page 31-52) also
has the remove_loops parameter.)

New SDO_GEOM_MBR Operator

SDO_GEOM_MBR is a SQL operator that is functionally identical to the
SDO_GEOM.SDO_MBR (page 23-38) function, but provides better performance.

For SDO_GEOM_MBR operator usage information and an example, see the
SDO_GEOM.SDO_MBR (page 23-38) function reference section.

New SDO_POINTINPOLYGON Operator

The new SDO_POINTINPOLYGON (page 18-28) operator (technically a table function
takes a set of rows whose first column is a point's x-coordinate value and the second
column is a point's y-coordinate value, and returns those rows that are within a
specified polygon geometry.

SPATIAL_VECTOR_ACCELERATION System Parameter (VPA)

To accelerate the performance of spatial operators, it is recommended that you enable
the Vector Performance Accelerator (VPA) feature by setting the
SPATIAL_VECTOR_ACCELERATION database system parameter to the value TRUE.
(This feature and associated system parameter are authorized for use only by licensed
Oracle Spatial and Graph users, and the default value for the parameter is FALSE.)
You can set this parameter for the whole system or for a single session.

For more information, see SPATIAL_VECTOR_ACCELERATION System Parameter
(page 1-31).

Other Changes

The following other changes have been made in this book:

¢ The product name has been changed from Oracle Spatial to Oracle Spatial and
Graph, also referred to as Spatial and Graph.

® The section previously titled "SDO_AGGR_UNION Example" in Complex Spatial
Queries: Examples (page C-1) has been deleted. That section had recommended:
"For better performance when aggregating many rows, break your aggregation into
groupings so that each is always 50 geometries or fewer." However, because of
enhancements to SDO_AGGR_UNION (page 19-9) effective with Release 12.1, if
you are using Spatial and Graph with SPATIAL_VECTOR_ACCELERATION=TRUE
(see SPATIAL_VECTOR_ACCELERATION System Parameter (page 1-31)), that
statement and the example using nested aggregates are no longer recommended,
and nested aggregates can actually be slower than a single aggregate.

However, if you are using Oracle Locator, nested aggregates or
SDO_AGGR_SET_UNION (page 19-7) are recommended. For more information,
see Section C.4 ("SDO_AGGR_UNION Example") in the Release 11.2 version of
Oracle Spatial Developer’s Guide.

XXXiii

Part |

Conceptual and Usage Information

This document has the following parts:

® Part I provides conceptual and usage information about Oracle Spatial and Graph.

® Spatial Web Services (page 1) provides conceptual and usage information about
Oracle Spatial and Graph web services.

* Reference Information (page 1) provides reference information about Oracle
Spatial and Graph operators, functions, and procedures.

* Supplementary Information (page 1) provides supplementary information
(appendixes and a glossary).

Part I is organized for efficient learning about Oracle Spatial and Graph. It covers basic
concepts and techniques first, and proceeds to more advanced material, such as
coordinate systems, the linear referencing system, geocoding, and extending spatial
indexing. Part I contains the following chapters:

¢ Spatial Concepts (page 1-1)

e Spatial Data Types and Metadata (page 2-1)

¢ SQL Multimedia Type Support (page 3-1)

¢ Loading Spatial Data (page 4-1)

¢ Indexing and Querying Spatial Data (page 5-1)

e Coordinate Systems (Spatial Reference Systems) (page 6-1)
¢ Linear Referencing System (page 7-1)

® Spatial Analysis and Mining (page 8-1)

¢ Extending Spatial Indexing Capabilities (page 9-1)

1

Spatial Concepts

Oracle Spatial and Graph is an integrated set of functions, procedures, data types and
data models that support spatial and graph analytics. The spatial features enable
spatial data to be stored, accessed, and analyzed quickly and efficiently in an Oracle
database.

Spatial data represents the essential location characteristics of real or conceptual
objects as those objects relate to the real or conceptual space in which they exist.

This chapter contains the following major sections:

What Is Oracle Spatial and Graph? (page 1-2)

Object-Relational Model (page 1-2)

¢ Introduction to Spatial Data (page 1-3)

* Geometry Types (page 1-3)

¢ Data Model (page 1-5)

* Query Model (page 1-9)

* Indexing of Spatial Data (page 1-10)

¢ Spatial Relationships and Filtering (page 1-11)

* Spatial Operators_ Procedures_ and Functions (page 1-14)

® Spatial Aggregate Functions (page 1-15)

* Three-Dimensional Spatial Objects (page 1-16)

* Geocoding (page 1-26)

* NURBS Curve Support in Oracle Spatial and Graph (page 1-27)

¢ Spatial and Graph Java Application Programming Interface (page 1-29)
® Predefined User Accounts Created by Spatial and Graph (page 1-29)
® Performance and Tuning Information (page 1-30)

* OGC and ISO Compliance (page 1-30)

® Spatial and Graph Release (Version) Number (page 1-31)

e SPATIAL_VECTOR_ACCELERATION System Parameter (page 1-31)
® Spatially Enabling a Table (page 1-32)

* Moving Spatial Metadata (MDSYS.MOVE_SDO) (page 1-34)

Spatial Concepts 1-1

What Is Oracle Spatial and Graph?

® Spatial Application Hardware Requirement Considerations (page 1-34)
® Spatial and Graph Error Messages (page 1-34)
® Spatial Examples (page 1-35)

e README File for Spatial and Graph and Related Features (page 1-35)

1.1 What Is Oracle Spatial and Graph?

Oracle Spatial and Graph, often referred to as Spatial and Graph, includes advanced
features for spatial data and analysis and for physical, logical, network, and social and
semantic graph applications. The spatial features provide a schema and functions that
facilitate the storage, retrieval, update, and query of collections of spatial features in an
Oracle database. Spatial and Graph consists of the following:

* A schema (MDSYS) that prescribes the storage, syntax, and semantics of supported
geometric data types

* A spatial indexing mechanism

® Operators, functions, and procedures for performing area-of-interest queries,
spatial join queries, and other spatial analysis operations

¢ Functions and procedures for utility and tuning operations

¢ Topology data model for working with data about nodes, edges, and faces in a
topology (described in Oracle Spatial and Graph Topology Data Model and Network
Data Model Graph Developer's Guide).

¢ Network data model for representing capabilities or objects that are modeled as
nodes and links (vertices and edges) in a graph (described in Oracle Spatial and
Graph Topology Data Model and Network Data Model Graph Developer’s Guide).

* GeoRaster, a feature that lets you store, index, query, analyze, and deliver
GeoRaster data, that is, raster image and gridded data and its associated metadata
(described in Oracle Spatial and Graph GeoRaster Developer’s Guide).

The spatial component of a spatial feature is the geometric representation of its shape
in some coordinate space. This is referred to as its geometry.

Note:

Do not modify any packages, tables, or other objects under the MDSYS
schema. (The only exception is if you need to create a user-defined coordinate
reference system, as explained in Creating a User-Defined Coordinate
Reference System (page 6-55).)

1.2 Object-Relational Model

Spatial and Graph supports the object-relational model for representing geometries.
This model stores an entire geometry in the Oracle native spatial data type for vector
data, SDO_GEOMETRY. An Oracle table can contain one or more SDO_GEOMETRY
columns. The object-relational model corresponds to a "SQL with Geometry Types"
implementation of spatial feature tables in the Open GIS ODBC/SQL specification for
geospatial features.

1-2 Developer's Guide

Introduction to Spatial Data

The benefits provided by the object-relational model include:

¢ Support for many geometry types, including arcs, circles, compound polygons,
compound line strings, and optimized rectangles

* Ease of use in creating and maintaining indexes and in performing spatial queries
¢ Index maintenance by the Oracle database
* Geometries modeled in a single column

¢ Optimal performance

1.3 Introduction to Spatial Data

Oracle Spatial and Graph is designed to make spatial data management easier and
more natural to users of location-enabled applications and geographic information
system (GIS) applications. Once spatial data is stored in an Oracle database, it can be
easily manipulated, retrieved, and related to all other data stored in the database.

A common example of spatial data can be seen in a road map. A road map is a two-
dimensional object that contains points, lines, and polygons that can represent cities,
roads, and political boundaries such as states or provinces. A road map is a
visualization of geographic information. The location of cities, roads, and political
boundaries that exist on the surface of the Earth are projected onto a two-dimensional
display or piece of paper, preserving the relative positions and relative distances of the
rendered objects.

The data that indicates the Earth location (such as longitude and latitude) of these
rendered objects is the spatial data. When the map is rendered, this spatial data is used
to project the locations of the objects on a two-dimensional piece of paper. A GIS is
often used to store, retrieve, and render this Earth-relative spatial data.

Types of spatial data (other than GIS data) that can be stored using Spatial and Graph
include data from computer-aided design (CAD) and computer-aided manufacturing
(CAM) systems. Instead of operating on objects on a geographic scale, CAD/CAM
systems work on a smaller scale, such as for an automobile engine or printed circuit
boards.

The differences among these systems are in the size and precision of the data, not the
data's complexity. The systems might all involve the same number of data points. On a
geographic scale, the location of a bridge can vary by a few tenths of an inch without
causing any noticeable problems to the road builders, whereas if the diameter of an
engine's pistons is off by a few tenths of an inch, the engine will not run.

In addition, the complexity of data is independent of the absolute scale of the area
being represented. For example, a printed circuit board is likely to have many
thousands of objects etched on its surface, containing in its small area information that
may be more complex than the details shown on a road builder's blueprints.

These applications all store, retrieve, update, or query some collection of features that
have both nonspatial and spatial attributes. Examples of nonspatial attributes are
name, soil_type, landuse_classification, and part_number. The spatial attribute is a
coordinate geometry, or vector-based representation of the shape of the feature.

1.4 Geometry Types

A geometry is an ordered sequence of vertices that are connected by straight line
segments or circular arcs. The semantics of the geometry are determined by its type.

Spatial Concepts 1-3

Geometry Types

Spatial and Graph supports several primitive types, and geometries composed of
collections of these types, including two-dimensional:

¢ Points and point clusters

¢ Line strings

¢ n-point polygons

® Arc line strings (All arcs are generated as circular arcs.)
* Arc polygons

e Compound polygons

¢ Compound line strings

¢ Circles

¢ Optimized rectangles

Two-dimensional points are elements composed of two ordinates, X and Y, often
corresponding to longitude and latitude. Line strings are composed of one or more
pairs of points that define line segments. Polygons are composed of connected line
strings that form a closed ring, and the area of the polygon is implied. For example, a
point might represent a building location, a line string might represent a road or flight
path, and a polygon might represent a state, city, zoning district, or city block.

Self-crossing polygons are not supported, although self-crossing line strings are
supported. If a line string crosses itself, it does not become a polygon. A self-crossing
line string does not have any implied area.

The following figure illustrates the geometric types.

Figure 1-1 Geometric Types

Point Line String Polygon
°

L\l

Arc Polygon Compound Polygon
Arc Line String

L/

Compound Line String

L/

Spatial and Graph also supports the storage and indexing of three-dimensional and
four-dimensional geometric types, where three or four coordinates are used to define
each vertex of the object being defined. For information about support for three-
dimensional geometries, see Three-Dimensional Spatial Objects (page 1-16).

O

Circle
Rectangle

O

1-4 Developer's Guide

Data Model

1.5 Data Model

1.5.1 Element

The spatial data model in Oracle Spatial and Graph is a hierarchical structure
consisting of elements, geometries, and layers. Layers are composed of geometries,
which in turn are made up of elements.

An element is the basic building block of a geometry. The supported spatial element
types are points, line strings, and polygons. For example, elements might model star
constellations (point clusters), roads (line strings), and county boundaries (polygons).
Each coordinate in an element is stored as an X,Y pair. The exterior ring and zero or
more interior rings (holes) of a complex polygon are considered a single element.

Point data consists of one coordinate. Line data consists of two coordinates
representing a line segment of the element. Polygon data consists of coordinate pair
values, one vertex pair for each line segment of the polygon. Coordinates are defined
in order around the polygon (counterclockwise for an exterior polygon ring, clockwise
for an interior polygon ring).

1.5.2 Geometry

1.5.3 Layer

A geometry (or geometry object) is the representation of a spatial feature, modeled as
an ordered set of primitive elements. A geometry can consist of a single element,
which is an instance of one of the supported primitive types, or a homogeneous or
heterogeneous collection of elements. A multipolygon, such as one used to represent a
set of islands, is a homogeneous collection. A heterogeneous collection is one in which
the elements are of different types, for example, a point and a polygon.

An example of a geometry might describe the buildable land in a town. This could be
represented as a polygon with holes where water or zoning prevents construction.

A layer is a collection of geometries having the same attribute set. For example, one
layer in a GIS might include topographical features, while another describes
population density, and a third describes the network of roads and bridges in the area
(lines and points). The geometries and associated spatial index for each layer are
stored in the database in standard tables.

1.5.4 Coordinate System

A coordinate system (also called a spatial reference system) is a means of assigning
coordinates to a location and establishing relationships between sets of such
coordinates. It enables the interpretation of a set of coordinates as a representation of a
position in a real world space.

Any spatial data has a coordinate system associated with it. The coordinate system can
be georeferenced (related to a specific representation of the Earth) or not georeferenced
(that is, Cartesian, and not related to a specific representation of the Earth). If the
coordinate system is georeferenced, it has a default unit of measurement (such as
meters) associated with it, but you can have Spatial and Graph automatically return
results in another specified unit (such as miles). (For more information about unit of
measurement support, see Unit of Measurement Support (page 2-55).)

Spatial Concepts 1-5

Data Model

Spatial data can be associated with a Cartesian, geodetic (geographical), projected, or
local coordinate system:

¢ Cartesian coordinates are coordinates that measure the position of a point from a
defined origin along axes that are perpendicular in the represented two-
dimensional or three-dimensional space.

If a coordinate system is not explicitly associated with a geometry, a Cartesian
coordinate system is assumed.

¢ Geodetic coordinates (sometimes called geographic coordinates) are angular
coordinates (longitude and latitude), closely related to spherical polar coordinates,
and are defined relative to a particular Earth geodetic datum. (A geodetic datum is
a means of representing the figure of the Earth and is the reference for the system
of geodetic coordinates.)

* Projected coordinates are planar Cartesian coordinates that result from performing
a mathematical mapping from a point on the Earth's surface to a plane. There are
many such mathematical mappings, each used for a particular purpose.

* Local coordinates are Cartesian coordinates in a non-Earth (non-georeferenced)
coordinate system. Local coordinate systems are often used for CAD applications
and local surveys.

When performing operations on geometries, Spatial and Graph uses either a Cartesian
or curvilinear computational model, as appropriate for the coordinate system
associated with the spatial data.

For more information about coordinate system support in Spatial and Graph,
including geodetic, projected, and local coordinates and coordinate system
transformation, see Coordinate Systems (Spatial Reference Systems) (page 6-1).

1.5.5 Tolerance

Tolerance is used to associate a level of precision with spatial data. Tolerance reflects
the distance that two points can be apart and still be considered the same (for example, to
accommodate rounding errors). The tolerance value must be a positive number greater
than zero. The significance of the value depends on whether or not the spatial data is
associated with a geodetic coordinate system. (Geodetic and other types of coordinate
systems are described in Coordinate System (page 1-5).)

* For geodetic data (such as data identified by longitude and latitude coordinates),
the tolerance value is a number of meters. For example, a tolerance value of 100
indicates a tolerance of 100 meters. The tolerance value for geodetic data must be
0.05 (5 centimeters) or greater. Spatial and Graph uses 0.05 as the tolerance value
for geodetic data if you specify a smaller value with the following functions:
SDO_GEOM.RELATE (page 23-4), SDO_GEOM.SDO_DIFFERENCE (page 23-24),
SDO_GEOM.SDO_INTERSECTION (page 23-27), SDO_GEOM.SDO_UNION
(page 23-44), and SDO_GEOM.SDO_XOR (page 23-50); however, the geometries
must be valid at the 0.05 tolerance.

¢ For non-geodetic data, the tolerance value is a number of the units that are
associated with the coordinate system associated with the data. For example, if the
unit of measurement is miles, a tolerance value of 0.005 indicates a tolerance of
0.005 (that is, 1/200) mile (approximately 26 feet or 7.9 meters), and a tolerance
value of 2 indicates a tolerance of 2 miles.

1-6 Developer's Guide

Data Model

In both cases, the smaller the tolerance value, the more precision is to be associated
with the data.

For geodetic and projected data, the tolerance value should be less than 10. In
addition, ensure that geometries are valid at the specified tolerance.

For geometries that have 16 or more digits of precision, Spatial and Graph boolean
operations (such as SDO_GEOM.SDO_UNION (page 23-44) and
SDO_GEOM.SDO_INTERSECTION (page 23-27)) and the SDO_GEOM.RELATE
(page 23-4) function might produce inconsistent results due to the loss of precision in
floating point arithmetic. The number of digits of precision is calculated as in the
following example: if the tolerance is set to 0.0000000005 and the coordinates have 6
digits to the left of decimal (for example, 123456.4321), the precision is 10 + 6 digits
(16). In such cases, it is better to use a larger tolerance value (fewer leading zeros after
the decimal) to get consistent results using spatial operations.

Note:

Floating point operations tend to lose precision when the number of digits
used in the computation is more than 15, so make sure the number of digits
specified for computations is less than 15. For example, if the number is
123456.789 and the tolerance is 10E-10, then this effectively means 16 (10+6)
digits of precision, which is more than the recommended 15.

A tolerance value is specified in two cases:

¢ In the geometry metadata definition for a layer (see Tolerance in the Geometry
Metadata for a Layer (page 1-7))

* As an input parameter to certain functions (see Tolerance as an Input Parameter

(page 1-8))

For additional information about tolerance with linear referencing system (LRS) data,
see Tolerance Values with LRS Functions (page 7-15).

1.5.5.1 Tolerance in the Geometry Metadata for a Layer

The dimensional information for a layer includes a tolerance value. Specifically, the
DIMINFO column (described in DIMINFO (page 2-48)) of the
xxx_SDO_GEOM_METADATA views includes an SDO_TOLERANCE value for each
dimension, and the value should be the same for each dimension.

If a function accepts an optional tolerance parameter and this parameter is null or
not specified, the SDO_TOLERANCE value of the layer is used. Using the non-
geodetic data from the example in Simple Example: Inserting_ Indexing_ and
Querying Spatial Data (page 2-1), the actual distance between geometries cola_b
and cola_d is 0.846049894. If a query uses the SDO_GEOM.SDO_DISTANCE

(page 23-25) function to return the distance between cola_b and cola_d and does
not specify a tolerance parameter value, the result depends on the
SDO_TOLERANCE value of the layer. For example:

e If the SDO_TOLERANCE value of the layer is 0.005, this query returns .846049894.
o If the SDO_TOLERANCE value of the layer is 0.5, this query returns 0.

The zero result occurs because Spatial and Graph first constructs an imaginary
buffer of the tolerance value (0.5) around each geometry to be considered, and the
buffers around cola_b and cola_d overlap in this case. (If the two geometries

Spatial Concepts 1-7

Data Model

being considered have different tolerance values, the higher value is used for the
imaginary buffer.)

You can, therefore, take either of two approaches in selecting an SDO_TOLERANCE
value for a layer:

* The value can reflect the desired level of precision in queries for distances between
objects. For example, if two non-geodetic geometries 0.8 units apart should be
considered as separated, specify a small SDO_TOLERANCE value such as 0.05 or
smaller.

¢ The value can reflect the precision of the values associated with geometries in the
layer. For example, if all geometries in a non-geodetic layer are defined using
integers and if two objects 0.8 units apart should not be considered as separated, an
SDO_TOLERANCE value of 0.5 is appropriate. To have greater precision in any
query, you must override the default by specifying the tolerance parameter.

With non-geodetic data, the guideline to follow for most instances of the second case
(precision of the values of the geometries in the layer) is: take the highest level of
precision in the geometry definitions, and use .5 at the next level as the
SDO_TOLERANCE value. For example, if geometries are defined using integers (as in
the simplified example in Simple Example: Inserting_ Indexing_ and Querying Spatial
Data (page 2-1)), the appropriate value is 0.5; however, if geometries are defined
using numbers up to four decimal positions (for example, 31.2587), the appropriate
value is 0.00005.

Note:

This guideline should not be used if the geometries include any polygons that
are so narrow at any point that the distance between facing sides is less than
the proposed tolerance value. Be sure that the tolerance value is less than the
shortest distance between any two sides in any polygon.

Moreover, if you encounter "invalid geometry" errors with inserted or
updated geometries, and if the geometries are in fact valid, consider
increasing the precision of the tolerance value (for example, changing 0.00005
to 0.000005).

1.5.5.2 Tolerance as an Input Parameter

Many spatial functions accept a tolerance parameter, which (if specified) overrides
the default tolerance value for the layer (explained in Tolerance in the Geometry
Metadata for a Layer (page 1-7)). If the distance between two points is less than or
equal to the tolerance value, Spatial and Graph considers the two points to be a single
point. Thus, tolerance is usually a reflection of how accurate or precise users perceive
their spatial data to be.

For example, assume that you want to know which restaurants are within 5 kilometers
of your house. Assume also that Maria's Pizzeria is 5.1 kilometers from your house. If
the spatial data has a geodetic coordinate system and if you ask, Find all restaurants
within 5 kilometers and use a tolerance of 100 (or greater, such as 500), Maria's Pizzeria
will be included, because 5.1 kilometers (5100 meters) is within 100 meters of 5
kilometers (5000 meters). However, if you specify a tolerance less than 100 (such as
50), Maria's Pizzeria will not be included.

Tolerance values for spatial functions are typically very small, although the best value
in each case depends on the kinds of applications that use or will use the data. See also

1-8 Developer's Guide

Query Model

the tolerance guidelines in Tolerance in the Geometry Metadata for a Layer (page 1-7),
and ensure that all input geometries are valid. (Spatial functions may not work as
expected if the geometry data is not valid.)

If you explicitly want to use the tolerance value from the dimensional information
array for the geometry layer, and if a subprogram has separate formats with
tolerance (or tol) and dim parameters, use the format with dim. In the following
example, the first statement uses the tolerance value from the dimensional information
array, and the second statement specifies a numeric tolerance value (0.005):

-- Return the area of the cola_a geometry.

SELECT c.name, SDO_GEOM.SDO_AREA(c.shape, m.diminfo)
FROM cola_markets c, user_sdo_geom_metadata m
WHERE m.table_name = "COLA_MARKETS®" AND m.column_name = *SHAPE"
AND c.name = "cola_a";

SELECT c.name, SDO_GEOM.SDO_AREA(c.shape, 0.005) FROM cola_markets c
WHERE c.name = "cola_a";

1.6 Query Model

Spatial and Graph uses a two-tier query model to resolve spatial queries and spatial
joins. The term is used to indicate that two distinct operations are performed to resolve
queries. The output of the two combined operations yields the exact result set.

The two operations are referred to as primary and secondary filter operations.

¢ The primary filter permits fast selection of candidate records to pass along to the
secondary filter. The primary filter compares geometry approximations to reduce
computation complexity and is considered a lower-cost filter. Because the primary
filter compares geometric approximations, it returns a superset of the exact result
set.

* The secondary filter applies exact computations to geometries that result from the
primary filter. The secondary filter yields an accurate answer to a spatial query.
The secondary filter operation is computationally expensive, but it is only applied
to the primary filter results, not the entire data set.

Figure 1-2 (page 1-9) illustrates the relationship between the primary and secondary
filters.

Figure 1-2 Query Model

Primary Secondary
Filter Filter

e
andidate esu
Large Input Data Set Set Set

As shown in Figure 1-2 (page 1-9), the primary filter operation on a large input data
set produces a smaller candidate set, which contains at least the exact result set and
may contain more records. The secondary filter operation on the smaller candidate set
produces the exact result set.

Spatial and Graph uses a spatial index to implement the primary filter. Spatial and
Graph does not require the use of both the primary and secondary filters. In some

Spatial Concepts 1-9

Indexing of Spatial Data

cases, just using the primary filter is sufficient. For example, a zoom feature in a
mapping application queries for data that has any interaction with a rectangle
representing visible boundaries. The primary filter very quickly returns a superset of
the query. The mapping application can then apply clipping routines to display the
target area.

The purpose of the primary filter is to quickly create a subset of the data and reduce
the processing burden on the secondary filter. The primary filter, therefore, should be
as efficient (that is, selective yet fast) as possible. This is determined by the
characteristics of the spatial index on the data.

For more information about querying spatial data, see Querying Spatial Data
(page 5-8).

1.7 Indexing of Spatial Data

The introduction of spatial indexing capabilities into the Oracle database engine is a
key feature of the Spatial and Graph product. A spatial index, like any other index,
provides a mechanism to limit searches, but in this case the mechanism is based on
spatial criteria such as intersection and containment. A spatial index is needed to:

¢ Find objects within an indexed data space that interact with a given point or area of
interest (window query)

¢ Find pairs of objects from within two indexed data spaces that interact spatially
with each other (spatial join)

Testing of spatial indexes with many workloads and operators is ongoing, and results
and recommendations will be documented as they become available.

The following sections explain the concepts and options associated with R-tree
indexing.
1.7.1 R-Tree Indexing

A spatial R-tree index can index spatial data of up to four dimensions. An R-tree index
approximates each geometry by a single rectangle that minimally encloses the
geometry (called the minimum bounding rectangle, or MBR), as shown in Figure 1-3
(page 1-10).

Figure 1-3 MBR Enclosing a Geometry

MBR——
Geometry—

For a layer of geometries, an R-tree index consists of a hierarchical index on the MBRs
of the geometries in the layer, as shown in Figure 1-4 (page 1-10).

Figure 1-4 R-Tree Hierarchical Index on MBRs

1 a R-tree
=0 Ry Eip
i
ﬂIill’ﬁ(‘) T A B
B 9|
c[7 Laf[bf[c][d]

1-10 Developer's Guide

Spatial Relationships and Filtering

In Figure 1-4 (page 1-10):
¢ 1 through 9 are geometries in a layer.

® 4,b,c, and d are the leaf nodes of the R-tree index, and contain minimum bounding
rectangles of geometries, along with pointers to the geometries. For example, a
contains the MBR of geometries 1 and 2, b contains the MBR of geometries 3 and 4,
and so on.

¢ A contains the MBR of a2 and b, and B contains the MBR of ¢ and d.

e The root contains the MBR of A and B (that is, the entire area shown).

An R-tree index is stored in the spatial index table (SDO_INDEX_TABLE in the
USER_SDO_INDEX_METADATA view, described in Spatial Index-Related Structures
(page 2-51)). The R-tree index also maintains a sequence object
(SDO_RTREE_SEQ_NAME in the USER_SDO_INDEX_METADATA view) to ensure
that simultaneous updates by concurrent users can be made to the index.

1.7.2 R-Tree Quality

A substantial number of insert and delete operations affecting an R-tree index may
degrade the quality of the R-tree structure, which may adversely affect query
performance.

The R-tree is a hierarchical tree structure with nodes at different heights of the tree.
The performance of an R-tree index structure for queries is roughly proportional to the
area and perimeter of the index nodes of the R-tree. The area covered at level 0
represents the area occupied by the minimum bounding rectangles of the data
geometries, the area at level 1 indicates the area covered by leaf-level R-tree nodes,
and so on. The original ratio of the area at the root (topmost level) to the area at level 0
can change over time based on updates to the table; and if there is a degradation in
that ratio (that is, if it increases significantly), rebuilding the index may help the
performance of queries.

If the performance of SDO_FILTER (page 18-8) operations has degraded, and if there
have been a large number of insert, update, or delete operations affecting geometries,
the performance degradation may be due to a degradation in the quality of the
associated R-tree index.

To rebuild an R-tree index, use the ALTER INDEX REBUILD (page 17-3) statement,
which is described in SQL Statements for Indexing Spatial Data (page 17-1).

1.8 Spatial Relationships and Filtering

Spatial and Graph uses secondary filters to determine the spatial relationship between
entities in the database. The spatial relationship is based on geometry locations. The
most common spatial relationships are based on topology and distance. For example,
the boundary of an area consists of a set of curves that separates the area from the rest
of the coordinate space. The interior of an area consists of all points in the area that are
not on its boundary. Given this, two areas are said to be adjacent if they share part of a
boundary but do not share any points in their interior.

The distance between two spatial objects is the minimum distance between any points
in them. Two objects are said to be within a given distance of one another if their
distance is less than the given distance.

To determine spatial relationships, Spatial and Graph has several secondary filter
methods:

Spatial Concepts 1-11

Spatial Relationships and Filtering

e The SDO_RELATE (page 18-30) operator evaluates topological criteria.

e The SDO_WITHIN_DISTANCE (page 18-36) operator determines if two spatial
objects are within a specified distance of each other.

¢ The SDO_NN (page 18-17) operator identifies the nearest neighbors for a spatial
object.

The syntax of these operators is given in Spatial Operators (page 18-1).

The SDO_RELATE (page 18-30) operator implements a nine-intersection model for
categorizing binary topological relationships between points, lines, and polygons.
Each spatial object has an interior, a boundary, and an exterior. The boundary consists
of points or lines that separate the interior from the exterior. The boundary of a line
string consists of its end points; however, if the end points overlap (that is, if they are
the same point), the line string has no boundary. The boundaries of a multiline string
are the end points of each of the component line strings; however, if the end points
overlap, only the end points that overlap an odd number of times are boundaries. The
boundary of a polygon is the line that describes its perimeter. The interior consists of
points that are in the object but not on its boundary, and the exterior consists of those
points that are not in the object and are not on its boundary.

Given that an object A has three components (a boundary Ab, an interior Ai, and an
exterior Ae), any pair of objects has nine possible interactions between their
components. Pairs of components have an empty (0) or not empty (1) set intersection.
The set of interactions between two geometries is represented by a nine-intersection
matrix that specifies which pairs of components intersect and which do not. Figure 1-5
(page 1-12) shows the nine-intersection matrix for two polygons that are adjacent to
one another. This matrix yields the following bit mask, generated in row-major form:
"101001111".

Figure 1-5 The Nine-Intersection Model

B
b i e
b |1 0 1
A i jJo o0 1
e 1 1 1
ATOUCHB 9-Intersection Matrix

Some of the topological relationships identified in the seminal work by Professor Max
Egenhofer (University of Maine, Orono) and colleagues have names associated with
them. Spatial and Graph uses the following names:

e DISJOINT: The boundaries and interiors do not intersect.
e TOUCH: The boundaries intersect but the interiors do not intersect.

¢ OVERLAPBDYDISJOINT: The interior of one object intersects the boundary and
interior of the other object, but the two boundaries do not intersect. This
relationship occurs, for example, when a line originates outside a polygon and ends
inside that polygon.

e OVERLAPBDYINTERSECT: The boundaries and interiors of the two objects
intersect.

1-12 Developer's Guide

Spatial Relationships and Filtering

¢ EQUAL: The two objects have the same boundary and interior.

¢ CONTAINS: The interior and boundary of one object is completely contained in the
interior of the other object.

¢ COVERS: The boundary and interior of one object is completely contained in the
interior or the boundary of the other object, their interiors intersect, and the
boundary or the interior of one object and the boundary of the other object
intersect.

e INSIDE: The opposite of CONTAINS. A INSIDE B implies BCONTAINS A.
e COVEREDBY: The opposite of COVERS. A COVEREDBY B implies B COVERS A.

* ON: The interior and boundary of one object is on the boundary of the other object.
This relationship occurs, for example, when a line is on the boundary of a polygon.

¢ ANYINTERACT: The objects are non-disjoint.

Figure 1-6 (page 1-13) illustrates these topological relationships.

Figure 1-6 Topological Relationships

A A A 5
— o
A CONTAINSB A COVERSB ATOUCH B

B INSIDE A B COVEREDBY A B TOUCH A

= e

A OVERLAPBDYINTERSECT B A OVERLAPBDYDISJOINT B
B OVERLAPBDYINTERSECT A B OVERLAPBDYDISJOINT A

A EQUAL B A DISJOINT B BONA
B EQUAL A B DISJOINT A ATOUCH B
(2 polygons with

identical coordinates)

The SDO_WITHIN_DISTANCE (page 18-36) operator determines if two spatial
objects, A and B, are within a specified distance of one another. This operator first
constructs a distance buffer, Dy, around the reference object B. It then checks that A
and Dy, are non-disjoint. The distance buffer of an object consists of all points within
the given distance from that object. Figure 1-7 (page 1-13) shows the distance buffers
for a point, a line, and a polygon.

Figure 1-7 Distance Buffers for Points, Lines, and Polygons

s T Em o Em Em o o o o oy

== -

= -a-a--e= o=

In the point, line, and polygon geometries shown in Figure 1-7 (page 1-13):

Spatial Concepts 1-13

Spatial Operators, Procedures, and Functions

¢ The dashed lines represent distance buffers. Notice how the buffer is rounded near
the corners of the objects.

¢ The geometry on the right is a polygon with a hole: the large rectangle is the
exterior polygon ring and the small rectangle is the interior polygon ring (the hole).
The dashed line outside the large rectangle is the buffer for the exterior ring, and
the dashed line inside the small rectangle is the buffer for the interior ring.

The SDO_NN (page 18-17) operator returns a specified number of objects from a
geometry column that are closest to a specified geometry (for example, the five closest
restaurants to a city park). In determining how close two geometry objects are, the
shortest possible distance between any two points on the surface of each object is used.

1.9 Spatial Operators, Procedures, and Functions

The Spatial and Graph PL/SQL application programming interface (API) includes
several operators and many procedures and functions.

Spatial operators, such as SDO_FILTER (page 18-8) and SDO_RELATE (page 18-30),
provide optimum performance because they use the spatial index. (Spatial operators
require that the geometry column in the first parameter have a spatial index defined
on it.) Spatial operators must be used in the WHERE clause of a query. The first
parameter of any operator specifies the geometry column to be searched, and the
second parameter specifies a query window. If the query window does not have the
same coordinate system as the geometry column, Spatial and Graph performs an
implicit coordinate system transformation. For detailed information about the spatial
operators, see Spatial Operators (page 18-1).

Spatial procedures and functions are provided as subprograms in PL/SQL packages,
such as SDO_GEOM, SDO_CS, and SDO_LRS. These subprograms do not require that
a spatial index be defined, and they do not use a spatial index if it is defined. These
subprograms can be used in the WHERE clause or in a subquery. If two geometries are
input parameters to a spatial procedure or function, both must have the same
coordinate system.

Note:

For any numbers in string (VARCHAR?2) parameters to Spatial and Graph
operators and subprograms, the period (.) must be used for any decimal
points regardless of the locale. Example: "distance=3.7"

The following performance-related guidelines apply to the use of spatial operators,
procedures, and functions:

e [If an operator and a procedure or function perform comparable operations, and if
the operator satisfies your requirements, use the operator. For example, unless you
need to do otherwise, use SDO_RELATE (page 18-30) instead of
SDO_GEOM.RELATE (page 23-4), and use SDO_WITHIN_DISTANCE
(page 18-36) instead of SDO_GEOM.WITHIN_DISTANCE (page 23-58).

e With operators, always specify TRUE in uppercase. That is, specify = "TRUE®", and
do not specify <> "FALSE® or= “true”.

¢ With operators, use the /7*+ ORDERED */ optimizer hint if the query window
comes from a table. (You must use this hint if multiple windows come from a

1-14 Developer's Guide

Spatial Aggregate Functions

table.) See the Usage Notes and Examples for specific operators for more
information.

For information about using operators with topologies, see Oracle Spatial and Graph
Topology Data Model and Network Data Model Graph Developer’s Guide.

1.10 Spatial Aggregate Functions

SQL has long had aggregate functions, which are used to aggregate the results of a
SQL query. The following example uses the SUM aggregate function to aggregate
employee salaries by department:

SELECT SUM(salary), dept
FROM employees
GROUP BY dept;

Spatial aggregate functions aggregate the results of SQL queries involving geometry
objects. Spatial aggregate functions return a geometry object of type
SDO_GEOMETRY. For example, the following statement returns the minimum
bounding rectangle of all geometries in a table (using the definitions and data from
Simple Example: Inserting_ Indexing_ and Querying Spatial Data (page 2-1)):

SELECT SDO_AGGR_MBR(shape) FROM cola_markets;

The following example returns the union of all geometries except cola_d:

SELECT SDO_AGGR_UNION(SDOAGGRTYPE(c.shape, 0.005))
FROM cola_markets ¢ WHERE c.name <> "cola_d";

For reference information about the spatial aggregate functions and examples of their
use, see Spatial Aggregate Functions (page 19-1).

Note:

Spatial aggregate functions are supported for two-dimensional geometries
only, except for SDO_AGGR_MBR (page 19-6), which is supported for both
two-dimensional and three-dimensional geometries.

1.10.1 SDOAGGRTYPE Obiject Type

Many spatial aggregate functions accept an input parameter of type SDOAGGRTYPE.
Oracle Spatial and Graph defines the object type SDOAGGRTYPE as:

CREATE TYPE sdoaggrtype AS OBJECT (
geometry SDO_GEOMETRY,
tolerance NUMBER);

Note:

Do not use SDOAGGRTYPE as the data type for a column in a table. Use this
type only in calls to spatial aggregate functions.

The tolerance value in the SDOAGGRTYPE definition should be the same as the
SDO_TOLERANCE value specified in the DIMINFO column in the
xxx_SDO_GEOM_METADATA views for the geometries, unless you have a specific
reason for wanting a different value. For more information about tolerance, see

Spatial Concepts 1-15

Three-Dimensional Spatial Objects

Tolerance (page 1-6); for information about the xxx_SDO_GEOM_METADATA views,
see Geometry Metadata Views (page 2-47).

The tolerance value in the SDOAGGRTYPE definition can affect the result of a
spatial aggregate function. Figure 1-8 (page 1-16) shows a spatial aggregate union
(SDO_AGGR_UNION (page 19-9)) operation of two geometries using two different
tolerance values: one smaller and one larger than the distance between the geometries.

Figure 1-8 Tolerance in an Aggregate Union Operation

SDO_AGGR_
UNION

geom1 geom2

A
tolerance

SDO_AGGR_
UNION

geom1 geom2

A

tolerance

In the first aggregate union operation in Figure 1-8 (page 1-16), where the tolerance is
less than the distance between the rectangles, the result is a compound geometry
consisting of two rectangles. In the second aggregate union operation, where the
tolerance is greater than the distance between the rectangles, the result is a single
geometry.

1.11 Three-Dimensional Spatial Objects

Oracle Spatial and Graph supports the storage and retrieval of three-dimensional
spatial data, which can include points, point clouds (collections of points), lines,
polygons, surfaces, and solids. Table 1-1 (page 1-16) shows the SDO_GTYPE and
element-related attributes of the SDO_GEOMETRY type that are relevant to three-
dimensional geometries. (The SDO_GEOMETRY type is explained in
SDO_GEOMETRY Object Type (page 2-5).)

Table 1-1 SDO_GEOMETRY Attributes for Three-Dimensional Geometries

Type of 3-D Data SDO_GTYPE Element Type, Interpretation
in SDO_ELEM_INFO

Point 3001 Does not apply. Specify all 3
dimension values in the
SDO_POINT_TYPE attribute.

Line 3002 2,1

Polygon 3003 1003, 1: planar exterior
polygon
2003, 1: planar interior
polygon
1003, 3: planar exterior
rectangle

2003, 3: planar interior
rectangle

1-16 Developer's Guide

Three-Dimensional Spatial Objects

Table 1-1 (Cont.) SDO_GEOMETRY Attributes for Three-Dimensional Geometries
. __|

Type of 3-D Data SDO_GTYPE Element Type, Interpretation
in SDO_ELEM_INFO

Surface 3003 1006, 1: surface (followed by
element information for the
polygons)

Collection 3004 Same considerations as for

two-dimensional

Multipoint (point cloud) 3005 1, n (where 7 is the number of
points)

Multiline 3006 2,1 (same as for Line)

Multisurface 3007 Element definitions for one

or more surfaces

Solid 3008 Simple solid formed by a

single closed surface: one
element type 1007, followed
by one element type 1006 (the
external surface) and
optionally one or more
element type 2006 (internal
surfaces)

Composite solid formed by
multiple adjacent simple
solids: one element type 1008
(holding the count of simple
solids), followed by any
number of element type 1007
(each describing one simple
solid)

Multisolid 3009 Element definitions for one

or more simple solids
(element type 1007) or
composite solids (element
type 1008)

The following spatial operators consider all three dimensions in their computations:

SDO_ANYINTERACT (page 18-2)

SDO_FILTER (page 18-8)

SDO_INSIDE (page 18-11) (for solid geometries only)
SDO_NN (page 18-17)

SDO_WITHIN_DISTANCE (page 18-36)

The other operators consider only the first two dimensions. For some of preceding
operators the height information is ignored when dealing with geodetic data, as
explained later in this section. (Spatial operators are described in Spatial Operators

(page 18-1).)

Spatial Concepts 1-17

Three-Dimensional Spatial Objects

The SDO_GEOM.SDO_VOLUME (page 23-46) function applies only to solid
geometries, which are by definition three-dimensional; however, this function cannot
be used with geodetic data. (This function is described in SDO_GEOM Package
(Geometry) (page 23-1).) For information about support for three-dimensional
geometries with other SDO_GEOM subprograms, see the usage information after
Table 23-1 (page 23-1).

For distance computations with three-dimensional geometries:

¢ If the data is geodetic (geographic 3D), the distance computations are done on the
geodetic surface.

e [f the data is non-geodetic (projected or local), the distance computations are valid
only if the unit of measure is the same for all three dimensions.

To have any functions, procedures, or operators consider all three dimensions, you
must specify PARAMETERS ("sdo_indx_dims=3") in the CREATE INDEX

(page 17-7) statement when you create the spatial index on a spatial table containing
Geographic3D data (longitude, latitude, ellipsoidal height). If you do not specify that
parameter in the CREATE INDEX (page 17-7) statement, a two-dimensional index is
created.

For spatial functions, procedures, and operators that consider all three dimensions,
distance and length computations correctly factor in the height or elevation. For
example, consider two three-dimensional points, one at the origin of a Cartesian space
(0,0,0), and the other at X=3 on the Y axis and a height (Z) of 4 (3,0,4).

¢ If the operation considers all three dimensions, the distance between the two points
is 5. (Think of the hypotenuse of a 3-4-5 right triangle.)

¢ If the operation considers only two dimensions, the distance between the two
points is 3. (That is, the third dimension, or height, is ignored.)

However, for the following operators and subprograms, when dealing with geodetic
data, the distances with three-dimensional geometries are computed between the
"ground" representations (for example, the longitude/latitude extent of the footprint
of a building), and the height information is approximated:

e SDO_NN (page 18-17) operator

e SDO_WITHIN_DISTANCE (page 18-36) operator

e SDO_GEOM.SDO_DISTANCE (page 23-25) function

e SDO_GEOM.WITHIN_DISTANCE (page 23-58) function

For a two-dimensional query window with three-dimensional data, you can use the
SDO_FILTER (page 18-8) operator, but not any other spatial operators.

For examples of creating different types of three-dimensional spatial geometries, see
Three-Dimensional Geometry Types (page 2-38). That section also includes an
example showing how to update the spatial metadata and create spatial indexes for
three-dimensional geometries.

For information about support for three-dimensional coordinate reference systems, see
Three-Dimensional Coordinate Reference System Support (page 6-9).

Three-dimensional support does not apply to many spatial aggregate functions and
PL/SQL packages and subprograms. The following are supported for two-
dimensional geometries only:

1-18 Developer's Guide

Three-Dimensional Spatial Objects

* Spatial aggregate functions, except for SDO_AGGR_MBR (page 19-6), which is
supported for both two-dimensional and three-dimensional geometries.

¢ SDO_GEOM (geometry) subprograms, except for the following, which are
supported for both two-dimensional and three-dimensional geometries:

SDO_GEOM.RELATE (page 23-4) with the ANYINTERACT mask
SDO_GEOM.SDO_AREA (page 23-9)
SDO_GEOM.SDO_DISTANCE (page 23-25)
SDO_GEOM.SDO_LENGTH (page 23-28)
SDO_GEOM.SDO_MAX_MBR_ORDINATE (page 23-30)
SDO_GEOM.SDO_MBR (page 23-38)
SDO_GEOM.SDO_MIN_MBR_ORDINATE (page 23-40)
SDO_GEOM.SDO_VOLUME (page 23-46)
SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT (page 23-52)
SDO_GEOM.VALIDATE_LAYER _WITH_CONTEXT (page 23-56)
SDO_GEOM.WITHIN_DISTANCE (page 23-58)

¢ SDO_SAM (spatial analysis and mining) subprograms

e SDO_MIGRATE.TO_CURRENT (page 25-1) procedure

Table 1-2 (page 1-19) describes how Oracle Spatial and Graph internally performs
certain geodetic three-dimensional calculations.

Table

1-2 How Geodetic 3D Calculations Are Performed

___|
Type of Calculation Internal Calculations Performed

ANYINTERACT The input geometries are transformed using Gnomonic transformation;

Area

then the ANYINTERACT relationship is computed with the resulting
geometries.

The input geometry is projected onto a local tangent plane; then the
area is computed with the resulting input geometry.

Distance or Length ~ The 2D precise ellipsoidal distance is computed using the longitude/

latitude of the two closest points of approach; then the height or length
difference is included using an approximation.

Volume The input geometry is projected onto a local tangent plane; then the

volume is computed with the resulting input geometry.

1.11.1 Modeling Surfaces

A surface contains an area but not a volume, and it can have two or three dimensions.
A surface is often constructed by a set of planar regions.

Surfaces can be modeled as surface-type SDO_GEOMETRY objects or, if they are very
large, as SDO_TIN objects. The surface-type in SDO_GEOMETRY can be an arbitrary
surface defining a contiguous area bounded by adjacent three-dimensional polygons.

Spatial Concepts 1-19

Three-Dimensional Spatial Objects

The number of polygons in the SDO_GEOMETRY is limited by the number of
ordinates that can be in the SDO_ORDINATES_ARRAY. An SDO_TIN object, on the
other hand, models the surface as a network of triangles with no explicit limit on the
number of triangles.

Surfaces are stored as a network of triangles, called triangulated irregular networks, or
TINs. The TIN model represents a surface as a set of contiguous, non-overlapping
triangles. Within each triangle the surface is represented by a plane. The triangles are
made from a set of points called mass points. If mass points are carefully selected, the
TIN represents an accurate representation of the model of the surface. Well-placed
mass points occur where there is a major change in the shape of the surface, for
example, at the peak of a mountain, the floor of a valley, or at the edge (top and
bottom) of cliffs.

TINs are generally computed from a set of three-dimensional points specifying
coordinate values in the longitude (x), latitude (y), and elevation (z) dimensions.
Oracle TIN generation software uses the Delaunay triangulation algorithm, but it is
not required that TIN data be formed using only Delaunay triangulation techniques.

The general process for working with a TIN is as follows:
1. Initialize the TIN, using the SDO_TIN_PKG.INIT (page 29-5) function.
2. Create the TIN, using the SDO_TIN_PKG.CREATE_TIN (page 29-3) procedure.

3. Asneeded for queries, clip the TIN, using the SDO_TIN_PKG.CLIP_TIN
(page 29-1) function.

4. If necessary, use the SDO_TIN_PKG.TO_GEOMETRY (page 29-10) function (for
example, to convert the result of a clip operation into a single SDO_GEOMETRY
object).

The PL/SQL subprograms for working with TINs are described in SDO_TIN_PKG
Package (TINs) (page 29-1).

For a Java example of working with TINS, see the following files:

$ORACLE_HOME/md/demo/T IN/examples/java/README . txt
$ORACLE_HOME/md/demo/TIN/examples/java/readTIN. java

1.11.2 Modeling Solids

The simplest types of solids can be represented as cuboids, such as a cube or a brick. A
more complex solid is a frustum, which is a pyramid formed by cutting a larger
pyramid (with three or more faces) by a plane parallel to the base of that pyramid.
Frustums are sometimes used as query windows to spatial operators. Frustums and
cubes are typically modeled as solid-type SDO_GEOMETRY objects. Figure 1-9

(page 1-21) shows a frustum as a query window, with two spatial objects at different
distances from the view point.

1-20 Developer's Guide

Three-Dimensional Spatial Objects

Figure 1-9 Frustum as Query Window for Spatial Objects

B

View Frustum

View A
Point

Point clouds, which are large collections of points, can sometimes be used to model
the shape or structure of solid and surface geometries. Most applications that use
point cloud data contain queries based on location. Applications can also go outside
Spatial and Graph to add visibility logic to perform queries based on both location and
visibility.

Most applications that use point cloud data seek to minimize data transfer by
retrieving objects based on their distance from a view point. For example, in Figure 1-9
(page 1-21), object B is farther from the view point than object A, and therefore the
application might retrieve object A in great detail (high resolution) and object B in less
detail (low resolution). In most scenarios, the number of objects or points increases
significantly as the distance from the view point increases; and if farther objects are
retrieved at lower resolutions than nearer objects, the number of bytes returned by the
query and the rendering time for the objects decrease significantly.

For storage of point cloud data, you can use either an SDO_PC object or is a flat table.
The approach to use depends on your hardware environment and usage patterns. An
advantage of the flat format is its efficient and dynamic nature, because updates to the
point data do not require reblocking.

The general process for working with a point cloud is as follows, depending on
whether the point cloud data will be stored in an SDO_PC object or in a flat table.

* To use point cloud data stored as an SDO_PC object:
1. Initialize the point cloud, using the SDO_PC_PKG.INIT (page 27-10) function.

2. Create the point cloud, using the SDO_PC_PKG.CREATE_PC (page 27-7)
procedure.

3. Asneeded for queries, clip the point cloud, using the SDO_PC_PKG.CLIP_PC
(page 27-1) function.

4. If necessary, use the SDO_PC_PKG.TO_GEOMETRY (page 27-13) function (for
example, to convert the result of a clip operation into a single
SDO_GEOMETRY object).

e To use point cloud data stored in a flat table:

1. Create the table (or a view based on an appropriate table) for the point cloud
data.

Spatial Concepts 1-21

Three-Dimensional Spatial Objects

Each row will contain the values of the first three spatial dimensions of a point,
and optionally values for nonspatial dimensions. The table or view definition
must start with the following columns: VAL_D1 NUMBER, VAL_D2
NUMBER, VAL_D3 NUMBER. It can also contain columns for point cloud
nonspatial dimensions.

2. Populate the table with point data.

3. Asneeded for queries, clip the point cloud, using the
SDO_PC_PKG.CLIP_PC_FLAT (page 27-3) function.

The PL/SQL subprograms for working with point clouds are described in
SDO_PC_PKG Package (Point Clouds) (page 27-1).

For a Java example of working with point clouds, see the following files:

$ORACLE_HOME/md/demo/PointCloud/examples/java/README . txt
$ORACLE_HOME/md/demo/PointCloud/examples/java/readPointCloud. java

1.11.3 Three-Dimensional Optimized Rectangles

Instead of specifying all the vertices for a three-dimensional rectangle (a polygon in
the shape of rectangle in three-dimensional space), you can represent the rectangle by
specifying just the two corners corresponding to the minimum ordinate values (min-
corner) and the maximum ordinate values (max-corner) for the X, Y, and Z dimensions.

The orientation of a three-dimensional rectangle defined in this way is as follows:

e If the rectangle is specified as <min-corner, max-corner>, the normal points in the
positive direction of the perpendicular third dimension.

o If the rectangle is specified as <max-corner, min-corner>, the normal points in the
negative direction of the perpendicular third dimension.

For example, if the rectangle is in the XY plane and the order of the vertices is <min-
corner, max-corner>, the normal is along the positive Z-axis; but if the order is <max-
corner, min-corner>, the normal is along the negative Z-axis.

Using these orientation rules for rectangles, you can specify the order of the min-corner
and max-corner vertices for a rectangle appropriately so that the following
requirements are met:

¢ The normal for each polygon in a solid always points outward from the solid when
the rectangle is part of the solid.

* An inner rectangle polygon is oriented in the reverse direction as its outer when the
rectangle is part of a surface.

1.11.4 Using Texture Data

Note:

This section describes concepts that you will need to understand for using
texture data with Spatial and Graph. However, the texture metadata is not yet
fully implemented in Oracle Spatial and Graph, and a viewer is not yet
supported. This section will be updated when texture support is released.

1-22 Developer's Guide

Three-Dimensional Spatial Objects

A texture is an image that represents one or more parts of a feature. Textures are
commonly used with visualizer applications (viewers) that display objects stored as
spatial geometries. For example, a viewer might display an office building (three-
dimensional solid) using textures, to allow a more realistic visualization than using
just colors. Textures can be used with two-dimensional and three-dimensional
geometries.

In the simplest case, a rectangular geometry can be draped with a texture bitmap.
However, often only a subregion of a texture bitmap is used, as in the following
example cases:

o [f the texture bitmap contains multiple sides of the same building, as well as the
roof and roof gables. In this case, each bitmap portion is draped over one of the
geometry faces.

o If the texture bitmap represents a single panel or window on the building surface,
and a geometric face represents a wall with 15 such panels or windows (five on
each of three floors). In this case, the single texture bitmap is tiled 15 times over the
face.

o [f the face is non-rectangular sub-faces, such as roof gables. In this case, only a
portion (possible triangular) of the texture bitmap is used.

Figure 1-10 (page 1-23) shows a large rectangular surface that, when viewed, appears
to consist of three textures, each of which is repeated multiple times in various places
on the surface.

Figure 1-10 Faces and Textures

b ok mh ok ok =

o K] T K

0 1 23456 7891011121314 15
Texture bitmaps (images):

=

As shown in Figure 1-10 (page 1-23):

¢ The entire image is a large surface that consists of 12 smaller rectangular faces
(surface geometries), each of which can be represented by one of three images
(labeled A, B, and C).

Spatial Concepts 1-23

Three-Dimensional Spatial Objects

® Three texture bitmaps (labeled A, B, and C) can be used to visualize all of the faces.
In this case, bitmap A is used 3 times, bitmap B is used 6 times, and bitmap C is
used 3 times.

Figure 1-11 (page 1-24) shows a texture bitmap mapped to a triangular face.

Figure 1-11 Texture Mapped to a Face

Texture Texture mapped
Face bitmap: to face:
geometry: “‘ :
(image) (imerge) =
t“’ :

As shown in Figure 1-11 (page 1-24):

® The face (surface geometry) is a triangle. (For example, a side or roof of a building
may contain several occurrences of this face.)

¢ The texture bitmap (image) is a rectangle, shown in the box in the middle.

® A portion of the texture bitmap represents an image of the face. This portion is
shown by a dashed line in the box on the right.

In your application, you will need to specify coordinates within the texture bitmap
to map the appropriate portion to the face geometry.

To minimize the storage requirements for image data representing surfaces, you
should store images for only the distinct textures that will be needed. The data type for
storing a texture is SDO_ORDINATE_ARRAY, which is used in the SDO_GEOMETRY
type definition (explained in SDO_GEOMETRY Object Type (page 2-5)).

For example, assume that the large surface in Figure 1-10 (page 1-23) has the following
definition:

SDO_GEOMETRY (
2003, -- two-dimensional polygon
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
SDO_ORDINATE_ARRAY(1,1. 1,13, 13,13, 1,13, 1,1)
)

Assume that you have a MY_TEXTURE_COORDINATES table with the following
definition:

CREATE TABLE my_texture_coordinates (
texture_coord_id NUMBER PRIMARY KEY,
texture_name VARCHAR2(32),
texture_coordinates SDO_ORDINATE_ARRAY);

Example 1-1 (page 1-25) inserts three texture coordinate definitions into this table. For
each texture, its coordinates reflect one of the appropriate smaller rectangles shown in
Figure 1-10 (page 1-23); however, you can choose any one of the appropriate
rectangles for each texture. In Example 1-1 (page 1-25), the
SDO_ORDINATE_ARRAY definitions for each texture reflect a polygon near the top
of Figure 1-10 (page 1-23).

1-24 Developer's Guide

Three-Dimensional Spatial Objects

Example 1-1 Inserting Texture Coordinate Definitions

INSERT INTO my_texture_coordinates VALUES(

1,

"Texture_A",
SDO_ORDINATE_ARRAY(1,9, 1,5, 5,12, 1,12, 1,9)
);

INSERT INTO my_texture_coordinates VALUES(
2,
"Texture_B",
SDO_ORDINATE_ARRAY(5,9, 9,9, 9,12, 5,12, 5,9)
);

INSERT INTO my_texture_coordinates VALUES(
3,
"Texture _C*",
SDO_ORDINATE_ARRAY(1,12, 13,12, 13,13, 1,13, 1,12)
);

1.11.4.1 Schema Considerations with Texture Data

Texture bitmaps (stored as BLOBs or as URLs in VARCHAR?2 format) and texture
coordinate arrays (stored using type SDO_ORDINATE_ARRAY) can be stored in the
same table as the SDO_GEOMETRY column or in separate tables; however, especially
for the texture bitmaps, it is usually better to use separate tables. Texture bitmaps are
likely to be able to be shared among features (such as different office buildings), but
texture coordinate definitions are less likely to be sharable among features. (For
example, many office buildings may share the same general type of glass exterior, but
few of the buildings have the same number of windows and floors. In designing your
textures and applications, you must consider how many buildings use the same
texture subregion or drape the texture in the same size of repetitive matrix.)

An exception is a texture coordinate array that drapes an entire texture bitmap over a
rectangular geometric face. In this case, the texture coordinate array can be specified as
0,0,1,0,1,1,0,1, 1,1), defined by vertices "lower left", "lower right", "upper right",
"upper left", and closing with "lower left". Many data sets use this texture coordinate
array extensively, because they have primarily rectangular faces and they store one
facade for each texture bitmap.

If you used separate tables, you could link them to the surface geometries using
foreign keys, as in Example 1-2 (page 1-25).

Example 1-2 Creating Tables for Texture Coordinates, Textures, and Surfaces

-- One row for each texture coordinates definition.

CREATE TABLE my_texture_coordinates (
texture_coord_id NUMBER PRIMARY KEY,
texture_coordinates SDO_ORDINATE_ARRAY);

-- One row for each texture.

CREATE TABLE my_textures(
texture_id NUMBER PRIMARY KEY,
texture BLOB);

-- One row for each surface (each individual "piece” of a
-- potentially larger surface).
CREATE TABLE my_surfaces(

surface_id NUMBER PRIMARY KEY,

surface_geometry SDO_GEOMETRY,

texture_id NUMBER,

Spatial Concepts 1-25

Geocoding

texture_coord_id NUMBER,
CONSTRAINT texture_id_fk
FOREIGN KEY (texture_id) REFERENCES my textures(texture_id),
CONSTRAINT texture_coord_id_fk
FOREIGN KEY (texture_coord_id) REFERENCES
my_texture_coordinates(texture_coord_id));

1.11.5 Validation Checks for Three-Dimensional Geometries

The SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT (page 23-52) and
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT (page 23-56) subprograms can
validate two-dimensional and three-dimensional geometries. For a three-dimensional
geometry, these subprograms perform any necessary checks on any two-dimensional
geometries (see the Usage Notes for
SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT (page 23-52)) within the
overall three-dimensional geometry, but also several checks specific to the three-
dimensional nature of the overall object.

For a simple solid (one outer surface and any number of inner surfaces), these
subprograms perform the following checks:

e (Closedness: The solid must be closed.

¢ Reachability: Each face of a solid must have a full-edge intersection with its
neighboring faces, and all faces must be reachable from any face. (However, inner
shells are ignored, because inner shells can, by definition, be not connected to the
other shells.)

¢ Inner-outer disjointedness: An inner surface must not intersect the outer surface at
more than a point or a line; that is, there must be no overlapping areas with inner
surfaces.

* No surface patch: No additional surfaces can be defined on the surfaces that make
up the solid.

* Orientation: For all surfaces, the vertices must be aligned so that the normal vector
(or surface normal, or "the normal") points to the outside of (away from) the outer
solid. Thus, the volume of the outer solid must be greater than zero, and the
volume of any inner solid must be less than zero.

For a composite solid (one or more solids connected to each other), these subprograms
perform the following checks:

* Connectedness: All solids of a composite solid must share at least one face.

* Zero-volume intersections: Any intersections of the solids in a composite solid
must have a volume of zero.

For a multisolid (one or more solids, each of which is a simple or composite solid),
these subprograms perform the following check:

¢ Disjointedness: Any two solids of a multisolid can share points or lines, but must
not intersect in any other manner.

1.12 Geocoding

Geocoding is the process of converting tables of address data into standardized
address, location, and possibly other data. The result of a geocoding operation
includes the pair of longitude and latitude coordinates that correspond with the input

1-26 Developer's Guide

NURBS Curve Support in Oracle Spatial and Graph

address or location. For example, if the input address is 22 Monument Square, Concord,
MA 01742, the longitude and latitude coordinates in the result of the geocoding
operation may be (depending on the geocoding data provider) -71.34937 and 42.46101,
respectively.

Given a geocoded address, you can perform proximity or location queries using a
spatial engine, such as Oracle Spatial and Graph, or demographic analysis using tools
and data from Oracle's business partners. In addition, you can use geocoded data with
other spatial data such as block group, postal code, and county code for association
with demographic information. Results of analyses or queries can be presented as
maps, in addition to tabular formats, using third-party software integrated with
Oracle Spatial and Graph.

For conceptual and usage information about the geocoding capabilities of Oracle
Spatial and Graph, see Geocoding Address Data (page 11-1). For reference
information about the MDSYS.SDO_GCDR PL/SQL package, see SDO_GCDR
Package (Geocoding) (page 22-1).

1.13 NURBS Curve Support in Oracle Spatial and Graph

Spatial and Graph supports non-uniform rational B-spline (NURBS) curve geometries.
NURBS curves allow representation of free-form shapes with arbitrary shapes. NURBS
representation allows control over the shape of the curve because control points and
knots guide the shape of the curve, and they allow complex shapes to be represented
with little data.

Support for NURBS curves in Spatial and Graph includes the following;:

¢ WKT/WKB and GML functions for loading and storing of NURBS curve
geometries in Oracle Spatial and Graph.

* Validation of NURBS curve geometries.

¢ Spatial indexing of NURBS curve geometries along with the SDO_FILTER,
SDO_RELATE, and other operators. Spatial operators use an approximation of the
curve for computation.

A NURBS representation requires specification of the control points and the basis
functions. The basis functions, in turn, are defined using the knot vector and the
degree of the curve. The control points are used to determine the shape of the NURBS
curve. The knot vector does not directly control the shape of the curve, but is used to
control the exact placement of end points. The knot vector is also used to create curves
with kinks and corners. Non-uniform knot vectors are used for manipulating the
curve.

To represent a NURBS curve, the following data must be stored: the control points, the
knot vector, and the degree of the curve. The set of control points can be represented
in either the Euclidean form as (X, y, z, W) where w represents the weight of the
control point or in the homogeneous form as (Wx, wy, wz, w).Ifwi=1forall i, the
curve is non-rational. The control points are specified in the weighted Euclidean form.
Basis functions can be uniform or non-uniform based on the knot vector. A non-
uniform knot vector is useful for placement of end points and creating kinks or
corners. A normalized knot vector must be specified, that is, the first knot in the knot
vector must be zero and the last knot in the knot vector must be one. It is also required
that the knot vector is "clamped" at the end points. This requirement is enforced by
ensuring that the first d+1 values in the knot vector are all zeros and the last d+1
values are all ones, where d represents the degree of the NURBS curve.

Spatial Concepts 1-27

NURBS Curve Support in Oracle Spatial and Graph

The implementation of NURBS curves in Oracle Spatial and Graph follows the
SQL/MM standards. The SQL/MM standards for NURBS curves are used to represent
splines, polynomial splines, cubic splines, B-splines, and Bezier curves. In Oracle
Spatial and Graph, the SDO_GEOMETRY object type is used for NURBS
representation. NURBS curves can be included in the Line, Multiline, and Collection
type geometry objects. In these geometries, the simple line string and compound line
string type elements can contain NURBS.

For compound line strings containing at least one NURBS segment, the last point of
the previous segment is the same as the "clamped" first control point of a NURBS
segment, and the last "clamped" control point of a NURBS segment is the same as the
first point of the next segment. That is, the vertices will be repeated.

For geometry elements with element type value 2 representing a line string, the
interpretation value of 3 is used to represent a NURBS curve; interpretation values of 1
and 2 represent linear segments and arcs. The SDO_ELEM_INFO_ARRAY for a
NURBS curve is stored as (offset, 2, 3), which represents the offset, element type, and
the interpretation value.

The SDO_ORDINATE_ARRAY stores the degree of the curve d, the set of m control
points and a knot vector of size n. So, the ordinate array is stored as a sequence of
values (d, m, x1, y1, z1, wl... xm, ym, zm, wm, n, ki1...kn).The
control points are stored in the Euclidean form as specified in the SQL/MM standards.
Note that for a NURBS curve the number of knots is equal to the sum of the degree,
the number of control points, and 1. Therefore, n=d+m+1, an equation which is useful
for validating NURBS curve geometries.

The following considerations apply to defining a NURBS curve:

¢ The degree of the curve should be greater than 1, because a curve of degree 1
represents polylines.

® The number of control points must be greater than or equal to 3, and must be
greater than the degree.

¢ The number of knots must be equal to the (number of control points + degree + 1).
* The weight component of each control point must be positive.

¢ Control points are represented in "weighted Euclidean" form [wx, wy, (wz),

w].
e Knot values should be specified in non-decreasing order, and the knot vector must
be a normalized knot vector [0,, 1].

e If dis the degree of the curve, there must be d+1 consecutive equal knots at the
beginning of the curve (value 0) and d+1 consecutive equal knots at the end of the
curve (value 1). This is to ensure that the curve is clamped at the end points.

e [If dis the degree of the curve, there must not be more than d consecutive equal
knots except at the beginning or end of the curve where d+1 knots must be present.

Be sure to validate geometries with NURBS segments before creating the spatial index
or performing any spatial operations on them. (This recommendation applies to all
geometry types, NURBS or otherwise.)

For examples that specify NURBS curve geometries, see NURBS Curve (page 2-32).

To get a line string geometry that is an approximation of an input NURBS curve
geometry, use the SDO_UTIL.GETNURBSAPPROX (page 31-38) function.

1-28 Developer's Guide

Spatial and Graph Java Application Programming Interface

1.14 Spatial and Graph Java Application Programming Interface

Oracle Spatial and Graph provides a Java application programming interface (API)
that includes the following packages:

oracle.spatial .geometry provides support for the Spatial and Graph SQL
SDO_GEOMETRY data type, which is documented in this guide.

oracle_spatial .georaster provides support for the core GeoRaster features,
which are documented in Oracle Spatial and Graph GeoRaster Developer’s Guide.

oracle.spatial .georaster. image provides support for generating Java
images from a GeoRaster object or subset of a GeoRaster object, and for processing
the images. These features are documented in Oracle Spatial and Graph GeoRaster
Developer’s Guide.

oracle_spatial _georaster.sql provides support for wrapping the
GeoRaster PL/SQL API, which is documented in Oracle Spatial and Graph GeoRaster
Developer’s Guide.

oracle.spatial .network provides support for the Oracle Spatial and Graph
Network Data Model Graph, which is documented in Oracle Spatial and Graph
Topology Data Model and Network Data Model Graph Developer’s Guide.

oracle_spatial .network. lod provides support for the load-on-demand
(LOD) approach of network analysis in the Oracle Spatial and Graph Network Data
Model Graph, which is documented in Oracle Spatial and Graph Topology Data Model
and Network Data Model Graph Developer’s Guide.

oracle.spatial .network.lod.config provides support for the
configuration of load-on-demand (LOD) network analysis in the Oracle Spatial and
Graph Network Data Model Graph, which is documented in Oracle Spatial and
Graph Topology Data Model and Network Data Model Graph Developer’s Guide.

oracle_spatial . topo provides support for the Oracle Spatial and Graph
topology data model, which is documented in Oracle Spatial and Graph Topology
Data Model and Network Data Model Graph Developer’s Guide.

oracle.spatial .util provides classes that perform miscellaneous operations.

For detailed reference information about the classes and interfaces in these packages,
see Oracle Spatial and Graph Java API Reference (Javadoc).

The Spatial and Graph Java class libraries are in . jar files under the
<ORACLE_HOME>/md/jlib/ directory.

1.15 Predefined User Accounts Created by Spatial and Graph

During installation, Spatial and Graph creates user accounts that have the minimum
privileges needed to perform their jobs. These accounts are created locked and
expired; so if you need to use the accounts, you must unlock them. Table 1-3

(page 1-30) lists the predefined user accounts created by Spatial and Graph.

Spatial Concepts 1-29

Performance and Tuning Information

Table 1-3 Predefined User Accounts Created by Spatial and Graph
- - -~ - -]

User Account Description

MDDATA The schema used by Oracle Spatial and Graph for storing data
used by geocoding and routing applications. This is the
default schema for Oracle software that accesses geocoding
and routing data.

SPATIAL_CSW_ADMIN_US The Catalog Services for the Web (CSW) account. It is used by
R the Oracle Spatial and Graph CSW cache manager to load all
record type metadata and all record instances from the

database into main memory for the record types that are
cached.

SPATIAL_WFS_ADMIN_US The Web Feature Service (WFS) account. It is used by the

R Oracle Spatial and Graph WFS cache manager to load all
feature type metadata and all feature instances from the
database into main memory for the feature types that are
cached.

For information about Oracle Database predefined user accounts, including how to
secure these accounts, see Oracle Database 2 Day + Security Guide.

1.16 Performance and Tuning Information

Many factors can affect the performance of Oracle Spatial and Graph applications,
such as the use of optimizer hints to influence the plan for query execution. This guide
contains some information about performance and tuning where it is relevant to a
particular topic. For example, R-Tree Quality (page 1-11) discusses R-tree quality and
its possible effect on query performance, and Spatial Operators_ Procedures_ and
Functions (page 1-14) explains why spatial operators provide better performance than
procedures and functions.

In addition, more spatial performance and tuning information is available in one or
more white papers through the Oracle Technology Network (OTN). That information
is often more detailed than what is in this guide, and it is periodically updated as a
result of internal testing and consultations with Spatial and Graph users. To find that
information on the OTN, go to

http://www.oracle.com/technetwork/database/options/
spatialandgraph/

Look for material relevant to spatial performance and tuning.

1.17 OGC and ISO Compliance

Oracle Spatial and Graph is conformant with Open Geospatial Consortium (OGC)
Simple Features Specification 1.1.1 (Document 99-049), starting with Oracle Database
release 10g (version 10.1.0.4). Conformance with the Geometry Types Implementation
means that Oracle Spatial and Graph supports all the types, functions, and language
constructs detailed in Section 3.2 of the specification.

Synonyms are created to match all OGC function names except for X(p Point) and
Y(p Point). For these functions, you must use the names OGC_X and OGC_Y instead
of just Xand Y.

1-30 Developer's Guide

http://www.oracle.com/technetwork/database/options/spatialandgraph/
http://www.oracle.com/technetwork/database/options/spatialandgraph/

Spatial and Graph Release (Version) Number

Oracle Spatial and Graph is conformant with the following International Organization
for Standardization (ISO) standards:

¢ SO 13249-3 SQL Multimedia and Application Packages - Part 3: Spatial

e [SO 19101: Geographic information - Reference model (definition of terms and
approach)

¢ ISO 19109: Geographic information - Rules for application schema (called the
General Feature Model)

e [SO 19111: Geographic information - Spatial referencing by coordinates (also OGC
Abstract specification for coordinate reference systems)

e [SO 19118: Geographic information - Encoding (GML 2.1 and GML 3.1.1)

e [SO 19107: Geographic information - Spatial schema (also OGC Abstract
specification for Geometry)

However, standards compliance testing for Oracle Spatial and Graph is ongoing, and
compliance with more recent versions of standards or with new standards might be
announced at any time. For current information about compliance with standards, see
http://www.oracle.com/technetwork/database/options/
spatialandgraph/documentation/.

1.18 Spatial and Graph Release (Version) Number

To check which release of Spatial and Graph you are running, use the SDO_VERSION
function. For example:

SELECT SDO_VERSION FROM DUAL;

SDO_VERSION

12.1.0.1.0

1.19 SPATIAL_VECTOR_ACCELERATION System Parameter

To accelerate the performance of spatial operators, it is recommended that you enable
the Vector Performance Accelerator (VPA) feature by setting the
SPATIAL_VECTOR_ACCELERATION database system parameter to the value TRUE.
(This feature and associated system parameter are authorized for use only by licensed
Oracle Spatial and Graph users, and the default value for the parameter is FALSE.)

The benefits of setting the SPATIAL_VECTOR_ACCELERATION parameter to TRUE
include:

¢ Improved spatial algorithms for spatial operators and functions

® Metadata caching for all spatial operators and functions, which improves their
overall performance

® Metadata caching for all DML operations, which makes insert, update, and delete
operations on spatial tables run faster

You can set this parameter for the whole system or for a single session. To set the
value for the whole system, do either of the following:

¢ Enter the following statement from a suitably privileged account:

Spatial Concepts 1-31

http://www.oracle.com/technetwork/database/options/spatialandgraph/documentation/
http://www.oracle.com/technetwork/database/options/spatialandgraph/documentation/

Spatially Enabling a Table

ALTER SYSTEM SET SPATIAL_VECTOR_ACCELERATION = TRUE;

¢ Add the following to the database initialization file (xxxinit.ora):
SPATIAL_VECTOR_ACCELERATION = TRUE;

To set the value for the current session, enter the following statement from a suitably
privileged account:

ALTER SESSION SET SPATIAL_VECTOR_ACCELERATION = TRUE;

See Also:

® Oracle Database Reference for reference and usage information about the
SPATIAL_VECTOR_ACCELERATION database initialization parameter

1.20 Spatially Enabling a Table

If you have a regular Oracle table without an SDO_GEOMETRY column, but
containing location-related information (such as latitude/longitude values for points),
you can spatially enable the table by adding an SDO_GEOMETRY column and using
existing (and future) location-related information in records to populate the
SDO_GEOMETRY column values.

The following are the basic steps for spatially enabling a regular table. They assume
that the regular table has columns that contain location-related values associated with
each record in the table.

1. Alter the table to add a geometry (SDO_GEOMETRY) column.

2. Update the table to populate the SDO_GEOMETRY objects using existing location-
related data values.

3. Update the spatial metadata (USER_SDO_GEOM_METADATA).

4. Create the spatial index on the table.

Example 1-3 Spatially Enabling a Table

-- Original table without a spatial geometry column.
CREATE TABLE city_points (

city_id NUMBER PRIMARY KEY,

city_name VARCHAR2(25),

latitude NUMBER,

longitude NUMBER);

-- Original data for the table.

-- (The sample coordinates are for a random point in or near the city.)

INSERT INTO city_points (city_id, city _name, latitude, longitude)
VALUES (1, "Boston®, 42.207905, -71.015625);

INSERT INTO city_points (city_id, city _name, latitude, longitude)
VALUES (2, "Raleigh®, 35.634679, -78.618164);

INSERT INTO city_points (city_id, city_name, latitude, longitude)
VALUES (3, "San Francisco", 37.661791, -122.453613);

INSERT INTO city_points (city_id, city_name, latitude, longitude)
VALUES (4, “Memphis®, 35.097140, -90.065918);

-- Add a spatial geometry column.
ALTER TABLE city_points ADD (shape SDO_GEOMETRY);

1-32 Developer's Guide

Spatially Enabling a Table

-- Update the table to populate geometry objects using existing
-- latutide and longitude coordinates.
UPDATE city_points SET shape =
SDO_GEOMETRY (
2001,
8307,
SDO_POINT_TYPE(LONGITUDE, LATITUDE, NULL),
NULL,
NULL
):

-- Update the spatial metadata.
INSERT INTO user_sdo_geom_metadata VALUES (

"city_points”®,

"SHAPE",

SDO_DIM_ARRAY(
SDO_DIM_ELEMENT("Longitude®,-180,180,0.5),
SDO_DIM_ELEMENT("Latitude®,-90,90,0.5)

).

8307

);

-- Create the spatial index.
CREATE INDEX city_points_spatial_idx on city_points(SHAPE)
INDEXTYPE 1S MDSYS.SPATIAL_INDEX;

-- Later, add new records to the table, using original INSERT format

-- (latitude and longitude, no spatial geometry object data).

-- Then update to include spatial geometry object information.

-- Tip: For efficiency, keep track of existing and new records, and use
-- a WHERE clause to restrict the UPDATE to new records (not shown here).

INSERT INTO city_points (city_id, city_name, latitude, longitude)
VALUES (5, "Chicago”, 41.848832, -87.648926);

INSERT INTO city_points (city_id, city_name, latitude, longitude)
VALUES (6, "Miami®, 25.755043, -80.200195);

UPDATE city_points SET shape =
SDO_GEOMETRY (

2001,
8307,
SDO_POINT_TYPE(LONGITUDE, LATITUDE, NULL),
NULL,

NULL

);

Example 1-3 (page 1-32) creates a table (CITY_POINTS) that initially does not contain
an SDO_GEOMETRY column but does contain latitude and longitude values for each
record (a point in or near a specified city). It spatially enables the table, updating the
existing records to include the SDO_GEOMETRY information, and it also inserts new
records and updates those.

Notes on Example 1-3 (page 1-32):
¢ It does not matter that the original table has the LATITUDE and LONGITUDE
values in that order, as long as the column names are specified in the correct order

in the geometry constructor (SDO_POINT in this case) in the UPDATE statement.
(SDO_GEOMETRY objects have longitude first, then latitude for points.)

Spatial Concepts 1-33

Moving Spatial Metadata (MDSYS.MOVE_SDO)

* Geometry validation is not included in the example because validation is not
relevant for points. However, if you spatially enable a table with other types of
geometries, you should validate all initial and added geometries. (To perform
validation, use SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT (page 23-56)
or SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT (page 23-52).)

1.21 Moving Spatial Metadata (MDSYS.MOVE_SDO)

Database administrators (DBAs) can use the MDSYS.MOVE_SDO procedure to move
all Oracle Spatial and Graph metadata tables to a specified target tablespace. By
default, the spatial metadata tables are created in the SYSAUX tablespace in Release
11.1 and later releases, and in the SYSTEM tablespace in releases before 11.1.

The MDSYS.MOVE_SDO procedure has the following syntax:

MDSYS.MOVE_SDO(
target_tablespace_name IN VARCHAR2);

The required target_tablespace_name parameter specifies the name of the
tablespace to which to move the spatial metadata tables.

This procedure should be used only by DBAs.

During the move operation, all other Oracle Spatial and Graph capabilities are
disabled.

The following example moves the spatial metadata tables to the SYSAUX tablespace.
EXECUTE MDSYS.MOVE_SDO("SYSAUX");

1.22 Spatial Application Hardware Requirement Considerations

This section discusses some general guidelines that affect the amount of disk storage
space and CPU power needed for applications that use Oracle Spatial and Graph.
These guidelines are intended to supplement, not replace, any other guidelines you
use for general application sizing.

The following characteristics of spatial applications can affect the need for storage
space and CPU power:

¢ Data volumes: The amount of storage space needed for spatial objects depends on
their complexity (precision of representation and number of points for each object).
For example, storing one million point objects takes less space than storing one
million road segments or land parcels. Complex natural features such as coastlines,
seismic fault lines, rivers, and land types can require significant storage space if
they are stored at a high precision.

* Query complexity: The CPU requirements for simple mapping queries, such as
Select all features in this rectangle, are lower than for more complex queries, such as
Find all seismic fault lines that cross this coastline.

1.23 Spatial and Graph Error Messages

Spatial and Graph error messages are documented in Oracle Database Error Messages.

Oracle error message documentation is only available in HTML. You can browse the
error messages by range; and once you find the specific range, use your browser's
"find in page" feature to locate the specific message. You can also search for a specific

1-34 Developer's Guide

Spatial Examples

error message using the error message search feature of the Oracle online
documentation.

1.24 Spatial Examples

Oracle Spatial and Graph provides examples that you can use to reinforce your
learning and to create models for coding certain operations. If you installed the demo
files from the Oracle Database Examples media (see Oracle Database Examples
Installation Guide), several examples are provided in the following directory:

$ORACLE_HOVE/md/demo/examples

The following files in that directory are helpful for applications that use the Oracle
Call Interface (OCI):

e readgeom.c and readgeom.h

e writegeom.c and writegeom.h

This guide also includes many examples in SQL and PL/SQL. One or more examples
are usually provided with the reference information for each function or procedure,
and several simplified examples are provided that illustrate table and index creation,
combinations of functions and procedures, and advanced features:

* Inserting, indexing, and querying spatial data (Simple Example: Inserting
Indexing_ and Querying Spatial Data (page 2-1))

¢ Coordinate systems (spatial reference systems) (Example of Coordinate System
Transformation (page 6-76))

¢ Linear referencing system (LRS) (Example of LRS Functions (page 7-15))

e SDO_GEOMETRY objects in function-based indexes (SDO_GEOMETRY Objects in
Function-Based Indexes (page 9-3))

* Complex queries (Complex Spatial Queries: Examples (page C-1))

1.25 README File for Spatial and Graph and Related Features

A README . txt file supplements the information in the following manuals: Oracle
Spatial and Graph Developer’s Guide (this manual), Oracle Spatial and Graph GeoRaster
Developer’s Guide, and Oracle Spatial and Graph Topology Data Model and Network Data
Model Graph Developer's Guide. This file is located at:

$ORACLE_HOVE/md/doc/README. txt

Spatial Concepts 1-35

README File for Spatial and Graph and Related Features

1-36 Developer's Guide

2

Spatial Data Types and Metadata

The spatial features in Oracle Spatial and Graph consist of a set of object data types,
type methods, and operators, functions, and procedures that use these types. A
geometry is stored as an object, in a single row, in a column of type SDO_GEOMETRY.
Spatial index creation and maintenance is done using basic DDL (CREATE, ALTER,
DROP) and DML (INSERT, UPDATE, DELETE) statements.

This chapter starts with a simple example that inserts, indexes, and queries spatial
data. You may find it helpful to read this example quickly before you examine the
detailed data type and metadata information later in the chapter.

This chapter contains the following major sections:
* Simple Example: Inserting_ Indexing_ and Querying Spatial Data (page 2-1)
* SDO_GEOMETRY Object Type (page 2-5)

¢ SDO_GEOMETRY Methods (page 2-12)

¢ SDO_GEOMETRY Constructors (page 2-14)

¢ TIN-Related Object Types (page 2-15)

* Point Cloud-Related Object Types (page 2-19)

* Geometry Examples (page 2-21)

¢ Geometry Metadata Views (page 2-47)

® Other Spatial Metadata Views (page 2-49)

¢ Spatial Index-Related Structures (page 2-51)

¢ Unit of Measurement Support (page 2-55)

2.1 Simple Example: Inserting, Indexing, and Querying Spatial Data

This section presents a simple example of creating a spatial table, inserting data,
creating the spatial index, and performing spatial queries. It refers to concepts that
were explained in Spatial Concepts (page 1-1) and that will be explained in other
sections of this chapter.

The scenario is a soft drink manufacturer that has identified geographical areas of
marketing interest for several products (colas). The colas could be those produced by
the company or by its competitors, or some combination. Each area of interest could
represent any user-defined criterion: for example, an area where that cola has the
majority market share, or where the cola is under competitive pressure, or where the
cola is believed to have significant growth potential. Each area could be a
neighborhood in a city, or a part of a state, province, or country.

Spatial Data Types and Metadata 2-1

Simple Example: Inserting, Indexing, and Querying Spatial Data

Figure 2-1 (page 2-2) shows the areas of interest for four colas.

Figure 2-1 Areas of Interest for the Simple Example

b ok ok ok =h

® oo

cola_d

cola a cola_b

AOBI_C

0 1 284656 789101112131415

Example 2-1 (page 2-2) performs the following operations:

= N ® Hh 01 O N

* Creates a table (COLA_MARKETS) to hold the spatial data
e Inserts rows for four areas of interest (cola_a, cola_b, cola_c, cola_d)

e Updates the USER_SDO_GEOM_METADATA view to reflect the dimensional
information for the areas

* Creates a spatial index (COLA_SPATIAL_IDX)

* Performs some spatial queries

Many concepts and techniques in Example 2-1 (page 2-2) are explained in detail in
other sections of this chapter.

Example 2-1 Simple Example: Inserting, Indexing, and Querying Spatial Data

-- Create a table for cola (soft drink) markets in a

-- given geography (such as city or state).

-- Each row will be an area of interest for a specific

-- cola (for example, where the cola is most preferred

-- by residents, where the manufacturer believes the

-- cola has growth potential, and so on).

-- (For restrictions on spatial table and column names, see
-- TABLE_NAME (page 2-48) and COLUMN_NAME (page 2-48).)

CREATE TABLE cola_markets (
mkt_id NUMBER PRIMARY KEY,
name VARCHAR2(32),
shape SDO_GEOMETRY);

-- The next INSERT statement creates an area of interest for
-- Cola A. This area happens to be a rectangle.

-- The area could represent any user-defined criterion: for
-- example, where Cola A is the preferred drink, where

-- Cola A is under competitive pressure, where Cola A

2-2 Developer's Guide

Simple Example: Inserting, Indexing, and Querying Spatial Data

-- has strong growth potential, and so on.

INSERT INTO cola_markets VALUES(

1,

"cola_a”",

SDO_GEOMETRY (
2003, -- two-dimensional polygon
NULL,
NULL,

SDO_ELEM_INFO_ARRAY(1,1003,3), -- one rectangle (1003 = exterior)
SDO_ORDINATE_ARRAY(1,1, 5,7) -- only 2 points needed to
-- define rectangle (lower left and upper right) with
-- Cartesian-coordinate data
)
);

-- The next two INSERT statements create areas of interest for
-- Cola B and Cola C. These areas are simple polygons (but not
-- rectangles).

INSERT INTO cola_markets VALUES(
2

"cola_b”,

SDO_GEOMETRY (
2003, -- two-dimensional polygon
NULL,
NULL,

SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
SDO_ORDINATE_ARRAY(5,1, 8,1, 8,6, 5,7, 5,1)

)
);
INSERT INTO cola_markets VALUES(
3,
"cola_c”,
SDO_GEOMETRY (
2003, -- two-dimensional polygon
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
SDO_ORDINATE_ARRAY(3,3, 6,3, 6,5, 4,5, 3,3)
)
);

-- Now insert an area of interest for Cola D. This is a
-- circle with a radius of 2. It is completely outside the
-- first three areas of interest.

INSERT INTO cola_markets VALUES(
4

"cola_d”,

SDO_GEOMETRY (
2003, -- two-dimensional polygon
NULL,
NULL,

SDO_ELEM_INFO_ARRAY(1,1003,4), -- one circle
SDO_ORDINATE_ARRAY(8,7, 10,9, 8,11)

Spatial Data Types and Metadata 2-3

Simple Example: Inserting, Indexing, and Querying Spatial Data

-- UPDATE METADATA VIEW --

-- Update the USER_SDO_GEOM_METADATA view. This is required

-- before the spatial index can be created. Do this only once for each

-- layer (that is, table-column combination; here: COLA MARKETS and SHAPE).

INSERT INTO user_sdo_geom_metadata

(TABLE_NAME,
COLUMN_NAME,
DIMINFO,
SRID)

VALUES (

"cola_markets",

"shape”,

SDO_DIM_ARRAY(-- 20X20 grid
SDO_DIM_ELEMENT(*X*, 0, 20, 0.005),
SDO_DIM_ELEMENT(*Y*, 0, 20, 0.005)

),
NULL -- SRID
);

CREATE INDEX cola_spatial_idx
ON cola_markets(shape)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;
-- Preceding statement created an R-tree index.

-- Return the topological intersection of two geometries.
SELECT SDO_GEOM.SDO_INTERSECTION(c_a.shape, c_c.shape, 0.005)
FROM cola_markets c_a, cola_markets c_c
WHERE c_a.name = "cola_a" AND c_c.name = "cola_c";

-- Do two geometries have any spatial relationship?

SELECT SDO_GEOM.RELATE(c_b.shape, "anyinteract®, c_d.shape, 0.005)
FROM cola_markets c_b, cola_markets c_d
WHERE c_b.name = "cola_b" AND c_d.name = "cola_d";

-- Return the areas of all cola markets.
SELECT name, SDO_GEOM.SDO_AREA(shape, 0.005) FROM cola_markets;

-- Return the area of just cola_a.
SELECT c.name, SDO_GEOM.SDO_AREA(c.shape, 0.005) FROM cola_markets c
WHERE c.name = "cola_a";

-- Return the distance between two geometries.

SELECT SDO_GEOM.SDO_DISTANCE(c_b.shape, c_d.shape, 0.005)
FROM cola_markets c_b, cola_markets c_d
WHERE c_b.name = "cola_b" AND c_d.name = "cola_d";

-- Is a geometry valid?
SELECT c.name, SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT(c.shape, 0.005)
FROM cola_markets ¢ WHERE c.name = "cola_c";

-- Is a layer valid? (First, create the results table.)

CREATE TABLE val_results (sdo_rowid ROWID, result VARCHAR2(2000));
CALL SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT("COLA_MARKETS®", "SHAPE",

2-4 Developer's Guide

SDO_GEOMETRY Object Type

*VAL_RESULTS®, 2);
SELECT * from val_results;

2.2 SDO_GEOMETRY Object Type

With Spatial and Graph, the geometric description of a spatial object is stored in a
single row, in a single column of object type SDO_GEOMETRY in a user-defined table.
Any table that has a column of type SDO_GEOMETRY must have another column, or
set of columns, that defines a unique primary key for that table. Tables of this sort are
sometimes referred to as spatial tables or spatial geometry tables.

Oracle Spatial and Graph defines the object type SDO_GEOMETRY as:

CREATE TYPE sdo_geometry AS OBJECT (
SDO_GTYPE NUMBER,

SDO_SRID NUMBER,

SDO_POINT SDO_POINT_TYPE,
SDO_ELEM_INFO SDO_ELEM_INFO_ARRAY,
SDO_ORDINATES SDO_ORDINATE_ARRAY);

Oracle Spatial and Graph also defines the SDO_POINT_TYPE,
SDO_ELEM_INFO_ARRAY, and SDO_ORDINATE_ARRAY types, which are used in
the SDO_GEOMETRY type definition, as follows:

CREATE TYPE sdo_point_type AS OBJECT (

X NUMBER,

Y NUMBER,

Z NUMBER);
CREATE TYPE sdo_elem_info_array AS VARRAY (1048576) of NUMBER;
CREATE TYPE sdo_ordinate_array AS VARRAY (1048576) of NUMBER;

Because the maximum SDO_ORDINATE_ARRAY size is 1,048,576 numbers, the
maximum number of vertices in an SDO_GEOMETRY object depends on the number
of dimensions per vertex: 524,288 for two dimensions, 349,525 for three dimensions,
and 262,144 for four dimensions.

The sections that follow describe the semantics of each SDO_GEOMETRY attribute,
and then describe some usage considerations (Usage Considerations (page 2-12)).

The SDO_GEOMETRY object type has methods that provide convenient access to
some of the attributes. These methods are described in SDO_GEOMETRY Methods
(page 2-12).

Some Spatial and Graph data types are described in locations other than this section:
¢ Data Types for Geocoding (page 11-6) describes data types for geocoding.

® Oracle Spatial and Graph GeoRaster Developer’s Guide describes data types for Oracle
Spatial and Graph GeoRaster.

® Oracle Spatial and Graph Topology Data Model and Network Data Model Graph
Developer’s Guide describes data types for the Oracle Spatial and Graph topology
data model.

2.2.1 SDO_GTYPE

The SDO_GTYPE attribute indicates the type of the geometry. Valid geometry types
correspond to those specified in the Geometry Object Model for the OGIS Simple Features
for SQL specification (with the exception of Surfaces). The numeric values differ from

Spatial Data Types and Metadata 2-5

SDO_GEOMETRY Object Type

those given in the OGIS specification, but there is a direct correspondence between the
names and semantics where applicable.

The SDO_GTYPE value is 4 digits in the format DLTT, where:
e D identifies the number of dimensions (2, 3, or 4)

¢ [identifies the linear referencing measure dimension for a three-dimensional linear
referencing system (LRS) geometry, that is, which dimension (3 or 4) contains the
measure value. For a non-LRS geometry, or to accept the Spatial and Graph default
of the last dimension as the measure for an LRS geometry, specify 0. For
information about the linear referencing system (LRS), see Linear Referencing
System (page 7-1).

¢ TT identifies the geometry type (00 through 09, with 10 through 99 reserved for
future use).

Table 2-1 (page 2-6) shows the valid SDO_GTYPE values. The Geometry Type and
Description values reflect the OGIS specification.

Table 2-1 Valid SDO_GTYPE Values

Value Geometry Type Description
DL00 UNKNOWN_GEOM Spatial and Graph ignores this geometry.
ETRY
DL01 POINT Geometry contains one point.
DL02 LINE or CURVE Geometry contains one line string that can contain

straight or circular arc segments, or both. (LINE and
CURVE are synonymous in this context.)

DL03 POLYGON or Geometry contains one polygon with or without holes,!
SURFACE or one surface consisting of one or more polygons. In a
three-dimensional polygon, all points must be on the
same plane.

DL04 COLLECTION Geometry is a heterogeneous collection of elements.
COLLECTION is a superset that includes all other
types.

DL05 MULTIPOINT Geometry has one or more points. (MULTIPOINT is a
superset of POINT.)

DL06 MULTILINE or Geometry has one or more line strings. (MULTILINE

MULTICURVE and MULTICURVE are synonymous in this context, and

each is a superset of both LINE and CURVE.)

DL07 MULTIPOLYGON Geometry can have multiple, disjoint polygons (more
or MULTISURFACE than one exterior boundary). or surfaces
(MULTIPOLYGON is a superset of POLYGON, and
MULTISURFACE is a superset of SURFACE.)

DL08 SOLID Geometry consists of multiple surfaces and is
completely enclosed in a three-dimensional space. Can
be a cuboid or a frustum.

DL09 MULTISOLID Geometry can have multiple, disjoint solids (more than
one exterior boundary). (MULTISOLID is a superset of
SOLID.)

2-6 Developer's Guide

SDO_GEOMETRY Object Type

1 For a polygon with holes, enter the exterior boundary first, followed by any interior boundaries.

The D in the Value column of Table 2-1 (page 2-6) is the number of dimensions: 2, 3, or
4. For example, an SDO_GTYPE value of 2003 indicates a two-dimensional polygon.
The number of dimensions reflects the number of ordinates used to represent each
vertex (for example, X,Y for two-dimensional objects).

In any given layer (column), all geometries must have the same number of
dimensions. For example, you cannot mix two-dimensional and three-dimensional
data in the same layer.

The following methods are available for returning the individual DLTT components of
the SDO_GTYPE for a geometry object: Get_Dims, Get_LRS_Dim, and Get_Gtype.
These methods are described in SDO_GEOMETRY Methods (page 2-12).

For more information about SDO_GTYPE values for three-dimensional geometries, see
Table 1-1 (page 1-16) in Three-Dimensional Spatial Objects (page 1-16).

2.2.2 SDO_SRID

The SDO_SRID attribute can be used to identify a coordinate system (spatial reference
system) to be associated with the geometry. If SDO_SRID is null, no coordinate system
is associated with the geometry. If SDO_SRID is not null, it must contain a value from
the SRID column of the SDO_COORD_REF_SYS table (described in
SDO_COORD_REF_SYS Table (page 6-27)), and this value must be inserted into the
SRID column of the USER_SDO_GEOM_METADATA view (described in Geometry
Metadata Views (page 2-47)).

All geometries in a geometry column must have the same SDO_SRID value if a spatial
index will be built on that column.

For information about coordinate systems, see Coordinate Systems (Spatial Reference
Systems) (page 6-1).

2.2.3 SDO_POINT

The SDO_POINT attribute is defined using the SDO_POINT_TYPE object type, which
has the attributes X, Y, and Z, all of type NUMBER. (The SDO_POINT_TYPE
definition is shown in SDO_GEOMETRY Object Type (page 2-5).) If the
SDO_ELEM_INFO and SDO_ORDINATES arrays are both null, and the SDO_POINT
attribute is non-null, then the X, Y, and Z values are considered to be the coordinates
for a point geometry. Otherwise, the SDO_POINT attribute is ignored by Spatial and
Graph. You should store point geometries in the SDO_POINT attribute for optimal
storage; and if you have only point geometries in a layer, it is strongly recommended
that you store the point geometries in the SDO_POINT attribute.

Point (page 2-27) illustrates a point geometry and provides examples of inserting and
querying point geometries.

Note:

Do not use the SDO_POINT attribute in defining a linear referencing system
(LRS) point or an oriented point. For information about LRS, see Linear
Referencing System (page 7-1). For information about oriented points, see
Oriented Point (page 2-28).

Spatial Data Types and Metadata 2-7

SDO_GEOMETRY Object Type

2.2.4 SDO_ELEM_INFO

The SDO_ELEM_INFO attribute is defined using a varying length array of numbers.
This attribute lets you know how to interpret the ordinates stored in the
SDO_ORDINATES attribute (described in SDO_ORDINATES (page 2-11)).

Each triplet set of numbers is interpreted as follows:

SDO_STARTING_OFFSET -- Indicates the offset within the SDO_ORDINATES
array where the first ordinate for this element is stored. Offset values start at 1 and
not at 0. Thus, the first ordinate for the first element will be at
SDO_GEOMETRY.SDO_ORDINATES(1). If there is a second element, its first
ordinate will be at SDO_GEOMETRY.SDO_ORDINATES(n), where n reflects the
position within the SDO_ORDINATE_ARRAY definition (for example, 19 for the
19th number, as in Polygon with a Hole (page 2-23)).

SDO_ETYPE -- Indicates the type of the element. Valid values are shown in
Table 2-2 (page 2-9).

SDO_ETYPE values 1, 2, 1003, and 2003 are considered simple elements. They are
defined by a single triplet entry in the SDO_ELEM_INFO array. For SDO_ETYPE
values 1003 and 2003, the first digit indicates exterior (1) or interior (2):

1003: exterior polygon ring (must be specified in counterclockwise order)

2003: interior polygon ring (must be specified in clockwise order)

Note:

The use of 3 as an SDO_ETYPE value for polygon ring elements in a single
geometry is discouraged. You should specify 3 only if you do not know if the
simple polygon is exterior or interior, and you should then upgrade the table
or layer to the current format using the SDO_MIGRATE.TO_CURRENT
(page 25-1) procedure, described in SDO_MIGRATE Package (Upgrading)
(page 25-1).

You cannot mix 1-digit and 4-digit SDO_ETYPE values in a single geometry.

SDO_ETYPE values 4, 1005, 2005, 1006, and 2006 are considered compound elements.
They contain at least one header triplet with a series of triplet values that belong to
the compound element. For 4-digit SDO_ETYPE values, the first digit indicates
exterior (1) or interior (2):

1005: exterior polygon ring (must be specified in counterclockwise order)
2005: interior polygon ring (must be specified in clockwise order)

1006: exterior surface consisting of one or more polygon rings

2006: interior surface in a solid element

1007: solid element

The elements of a compound element are contiguous. The last point of a
subelement in a compound element is the first point of the next subelement. The
point is not repeated.

SDO_INTERPRETATION -- Means one of two things, depending on whether or
not SDO_ETYPE is a compound element.

2-8 Developer's Guide

SDO_GEOMETRY Object Type

If SDO_ETYPE is a compound element (4, 1005, or 2005), this field specifies how
many subsequent triplet values are part of the element.

If the SDO_ETYPE is not a compound element (1, 2, 1003, or 2003), the
interpretation attribute determines how the sequence of ordinates for this element
is interpreted. For example, a line string or polygon boundary may be made up of a
sequence of connected straight line segments or circular arcs.

Descriptions of valid SDO_ETYPE and SDO_INTERPRETATION value pairs are
given in Table 2-2 (page 2-9).

If a geometry consists of more than one element, then the last ordinate for an element
is always one less than the starting offset for the next element. The last element in the
geometry is described by the ordinates from its starting offset to the end of the
SDO_ORDINATES varying length array.

For compound elements (SDO_ETYPE values 4, 1005, or 2005), a set of # triplets (one
for each subelement) is used to describe the element. It is important to remember that
subelements of a compound element are contiguous. The last point of a subelement is
the first point of the next subelement. For subelements 1 through n-1, the end point of
one subelement is the same as the starting point of the next subelement. The starting
point for subelements 2...n-2 is the same as the end point of subelement 1...n-1. The last
ordinate of subelement # is either the starting offset minus 1 of the next element in the
geometry, or the last ordinate in the SDO_ORDINATES varying length array.

The current size of a varying length array can be determined by using the function
varray_variable.Count in PL/SQL or OCICollSize in the Oracle Call Interface (OCI).

The semantics of each SDO_ETYPE element and the relationship between the
SDO_ELEM_INFO and SDO_ORDINATES varying length arrays for each of these
SDO_ETYPE elements are given in Table 2-2 (page 2-9).

Table 2-2 Values and Semantics in SDO_ELEM_INFO
|

SDO_ET SDO_INTERPRET Meaning

YPE ATION
0 (any numeric Type 0 (zero) element. Used to model geometry types not
value) supported by Oracle Spatial and Graph. For more

information, see Type 0 (Zero) Element (page 2-31).

1 1 Point type.

1 0 Orientation for an oriented point. For more information, see
Oriented Point (page 2-28).

1 n>1 Point cluster with n points.

2 1 Line string whose vertices are connected by straight line
segments.

2 2 Line string made up of a connected sequence of circular arcs.

Each circular arc is described using three coordinates: the
start point of the arc, any point on the arc, and the end point
of the arc. The coordinates for a point designating the end of
one arc and the start of the next arc are not repeated. For
example, five coordinates are used to describe a line string
made up of two connected circular arcs. Points 1, 2, and 3
define the first arc, and points 3, 4, and 5 define the second
arc, where point 3 is only stored once.

Spatial Data Types and Metadata 2-9

SDO_GEOMETRY Object Type

Table 2-2 (Cont.) Values and Semantics in SDO_ELEM_INFO
__ |

SDO_ET SDO_INTERPRET Meaning
YPE ATION

2 3 NURBS (non-uniform rational B-spline) curve. For more
information, see NURBS Curve Support in Oracle Spatial
and Graph (page 1-27).

1003or 1 Simple polygon whose vertices are connected by straight

2003 line segments. You must specify a point for each vertex; and
the last point specified must be exactly the same point as the
first (within the tolerance value), to close the polygon. For
example, for a 4-sided polygon, specify 5 points, with point 5
the same as point 1.

10030r 2 Polygon made up of a connected sequence of circular arcs
2003 that closes on itself. The end point of the last arc is the same
as the start point of the first arc.

Each circular arc is described using three coordinates: the
start point of the arc, any point on the arc, and the end point
of the arc. The coordinates for a point designating the end of
one arc and the start of the next arc are not repeated. For
example, five coordinates are used to describe a polygon
made up of two connected circular arcs. Points 1, 2, and 3
define the first arc, and points 3, 4, and 5 define the second
arc. The coordinates for points 1 and 5 must be the same
(tolerance is not considered), and point 3 is not repeated.

10030r 3 Rectangle type (sometimes called optimized rectangle). A

2003 bounding rectangle such that only two points, the lower-left
and the upper-right, are required to describe it. The
rectangle type can be used with geodetic or non-geodetic
data. However, with geodetic data, use this type only to
create a query window (not for storing objects in the
database).

For information about using this type with geodetic data,
including examples, see Geodetic MBRs (page 6-5). For
information about creating three-dimensional optimized
rectangles, see Three-Dimensional Optimized Rectangles
(page 1-22).

1003 or 4 Circle type. Described by three distinct non-colinear points,
2003 all on the circumference of the circle.

4 n>1 Compound line string with some vertices connected by
straight line segments and some by circular arcs. The value n
in the Interpretation column specifies the number of
contiguous subelements that make up the line string.

The next n triplets in the SDO_ELEM_INFO array describe
each of these subelements. The subelements can only be of
SDO_ETYPE 2. The last point of a subelement is the first
point of the next subelement, and must not be repeated.
See Compound Line String (page 2-24) and Figure 2-5
(page 2-25) for an example of a compound line string
geometry.

2-10 Developer's Guide

SDO_GEOMETRY Object Type

Table 2-2 (Cont.) Values and Semantics in SDO_ELEM_INFO
__ |

SDO_ET SDO_INTERPRET Meaning

YPE

ATION

1005 or
2005

1006 or
2006

1007

n>1

n>1

n=1or3

Compound polygon with some vertices connected by
straight line segments and some by circular arcs. The value n
in the Interpretation column specifies the number of
contiguous subelements that make up the polygon.

The next n triplets in the SDO_ELEM_INFO array describe
each of these subelements. The subelements can only be of
SDO_ETYPE 2. The end point of a subelement is the start
point of the next subelement, and it must not be repeated.
The start and end points of the polygon must be exactly the
same point (tolerance is ignored).

See Compound Polygon (page 2-26) for an example of a
compound polygon geometry.

Surface consisting of one or more polygons, with each edge
shared by no more than two polygons. A surface contains an
area but not a volume. The value # in the Interpretation
column specifies the number of polygons that make up the
surface.

The next n triplets in the SDO_ELEM_INFO array describe
each of these polygon subelements.

A surface must be three-dimensional. For an explanation of
three-dimensional support in Spatial and Graph, see Three-
Dimensional Spatial Objects (page 1-16).

Solid consisting of multiple surfaces that are completely
enclosed in a three-dimensional space, so that the solid has
an interior volume. A solid element can have one exterior
surface defined by the 1006 elements and zero or more
interior boundaries defined by the 2006 elements. The value
n in the Interpretation column must be 1 or 3.

Subsequent triplets in the SDO_ELEM_INFO array describe
the exterior 1006 and optional interior 2006 surfaces that
make up the solid element.

If n is 3, the solid is an optimized box, such that only two
three-dimensional points are required to define it: one with
minimum values for the box in the X, Y, and Z dimensions
and another with maximum values for the box in the X, Y,
and Z dimensions. For example: SDO_GEOMETRY (3008,
NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1007,3),
SDO_ORDINATE_ARRAY(1,1,1, 3,3,3))

For an explanation of three-dimensional support in Spatial
and Graph, see Three-Dimensional Spatial Objects

(page 1-16).

2.2.5 SDO_ORDINATES

The SDO_ORDINATES attribute is defined using a varying length array (1048576) of
NUMBER type that stores the coordinate values that make up the boundary of a
spatial object. This array must always be used in conjunction with the
SDO_ELEM_INFO varying length array. The values in the array are ordered by
dimension. For example, a polygon whose boundary has four two-dimensional points
is stored as {X1, Y1, X2, Y2, X3, Y3, X4, Y4, X1, Y1}. If the points are three-dimensional,

Spatial Data Types and Metadata 2-11

SDO_GEOMETRY Methods

then they are stored as {X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, X4, Y4, Z4, X1, Y1, Z1}. The
number of dimensions associated with each point is stored as metadata in the
xxx_SDO_GEOM_METADATA views, described in Geometry Metadata Views
(page 2-47).

The values in the SDO_ORDINATES array must all be valid and non-null. There are
no special values used to delimit elements in a multielement geometry. The start and
end points for the sequence describing a specific element are determined by the
STARTING_OFFSET values for that element and the next element in the
SDO_ELEM_INFO array, as explained in SDO_ELEM_INFO (page 2-8). The offset
values start at 1. SDO_ORDINATES(1) is the first ordinate of the first point of the first
element.

2.2.6 Usage Considerations

You should use the SDO_GTYPE values as shown in SDO_GTYPE (page 2-5);
however, Spatial and Graph does not check or enforce all geometry consistency
constraints. Spatial and Graph does check the following:

e For SDO_GTYPE values 4001 and 4005, any subelement not of SDO_ETYPE 1 is
ignored.

¢ For SDO_GTYPE values 4002 and 4006, any subelement not of SDO_ETYPE 2 or 4
is ignored.

e For SDO_GTYPE values 4003 and 4007, any subelement not of SDO_ETYPE 3 or 5
is ignored. (This includes SDO_ETYPE variants 1003, 2003, 1005, and 2005, which
are explained in SDO_ELEM_INFO (page 2-8)).

The SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT (page 23-52) function
can be used to evaluate the consistency of a single geometry object or of all geometry
objects in a specified feature table.

2.3 SDO_GEOMETRY Methods

The SDO_GEOMETRY object type (described in SDO_GEOMETRY Object Type
(page 2-5)) has methods (member functions) that retrieve information about a
geometry object. Table 2-3 (page 2-12) lists these methods.

Table 2-3 SDO_GEOMETRY Methods
I

Name Returns Description

Get_Dims NUMBER Returns the number of dimensions of a geometry object, as
specified in its SDO_GTYPE value. In Oracle Spatial and Graph,
the Get_Dims and ST_CoordDim methods return the same result.

Get_GType NUMBER Returns the geometry type of a geometry object, as specified in its
SDO_GTYPE value.

Get_LRS_Di NUMBER Returns the measure dimension of an LRS geometry object, as
m specified in its SDO_GTYPE value.

A return value of 0 indicates that the geometry is a standard
(non-LRS) geometry, or is an LRS geometry in the format before
release 9.0.1 and with measure as the default (last) dimension; 3
indicates that the third dimension contains the measure
information; 4 indicates that the fourth dimension contains the
measure information.

2-12 Developer's Guide

SDO_GEOMETRY Methods

Table 2-3 (Cont.) SDO_GEOMETRY Methods
. __|

Name Returns

Description

Get_WKB BLOB

Get_WKT CLOB

ST _CoordDi NUMBER
m

ST_IsValid NUMBER

Returns the well-known binary (WKB) format of a geometry
object. (The returned object does not include any SRID
information.)

Returns the well-known text (WKT) format (explained in Well-
Known Text (WKT) (page 6-48)) of a geometry object. (The
returned object does not include any SRID information.)

Returns the coordinate dimension (as defined by the ISO/IEC
SQL Multimedia standard) of a geometry object. In Oracle Spatial
and Graph, the Get_Dims and ST_CoordDim methods return the
same result.

Returns 0 if a geometry object is invalid or 1 if it is valid. (The
ISO/IEC SQL Multimedia standard uses the term well formed for
valid in this context.)

This method uses 0.001 as the tolerance value. (Tolerance is
explained in Tolerance (page 1-6).) To specify a different
tolerance value or to learn more about why a geometry is invalid,
use the
SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

(page 23-52) function, which is documented in SDO_GEOM
Package (Geometry) (page 23-1).

Example 2-2 (page 2-13) shows most of the SDO_GEOMETRY methods. (The
Get_WKB method is not included because its output cannot be displayed by

SQL*Plus.)

Example 2-2 SDO_GEOMETRY Methods

SELECT c.shape.Get_Dims()

FROM cola_markets ¢ WHERE c.name = "cola b";

C.SHAPE.GET_DINS()

SELECT c.shape.Get_GType()

FROM cola_markets ¢ WHERE c.name = "cola b";

C.SHAPE.GET_GTYPE()

SELECT a.route_geometry.Get LRS _Dim()

FROM Irs_routes a WHERE

a.route_id = 1;

A.ROUTE_GEOMETRY.GET_LRS_DIM()

SELECT c.shape.Get WKT()

FROM cola_markets ¢ WHERE c.name = "cola b";

C.SHAPE.GET_WKT()

Spatial Data Types and Metadata 2-13

SDO_GEOMETRY Constructors

POLYGON ((5.0 1.0, 8.0 1.0, 8.0 6.0, 5.0 7.0, 5.0 1.0))

SELECT c.shape.ST_CoordDim()
FROM cola_markets ¢ WHERE c.name = "cola_b";

C.SHAPE.ST_COORDDIM()

SELECT c.shape.ST_IsValid()
FROM cola_markets ¢ WHERE c.name = "cola_b";

C.SHAPE.ST_ISVALID()

2.4 SDO_GEOMETRY Constructors

The SDO_GEOMETRY object type (described in SDO_GEOMETRY Object Type
(page 2-5)) has constructors that create a geometry object from a well-known text
(WKT) string in CLOB or VARCHAR? format, or from a well-known binary (WKB)
object in BLOB format. The following constructor formats are available:

SDO_GEOMETRY(wkt CLOB, srid NUMBER DEFAULT NULL);
SDO_GEOMETRY(wkt VARCHAR2, srid NUMBER DEFAULT NULL);
SDO_GEOMETRY(wkb BLOB, srid NUMBER DEFAULT NULL);

If the created geometry is inserted into a table, the SRID value used with the
constructor must match the SDO_SRID value of the geometries in the table.

The following simple example constructs a point geometry using a well-known text
string. (In a WKT, spaces separate ordinates of a vertex, and commas separate
vertices.)

SELECT SDO_GEOMETRY(*POINT(-79 37)") FROM DUAL;

SDO_GEOMETRY (*POINT(-7937)")(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_I

SDO_GEOMETRY(2001, NULL, SDO_POINT TYPE(-79, 37, NULL), NULL, NULL)

Example 2-3 (page 2-14) shows SDO_GEOMETRY constructors that create geometry
objects, insert the objects into a table, and display the objects that were added to the
table.

Example 2-3 SDO_GEOMETRY Constructors to Create Geometries

DECLARE

cola_b_wkb BLOB;
cola_b_wkt_clob CLOB;
cola_b_wkt_varchar VARCHAR2(255);
cola_b_geom SDO_GEOMETRY;

BEGIN
-- Get cola_b geometry into CLOB, VARCHAR2, and BLOB objects,
-- for use by the constructor.
SELECT c.shape.Get_WKT() INTO cola_b_wkt_clob

FROM cola_markets ¢ WHERE c.name = "cola_b";
cola_b_wkt_varchar := cola_b_wkt_clob;
SELECT c.shape.Get_WKB() INTO cola_b_wkb

FROM cola_markets ¢ WHERE c.name = "cola_b";

2-14 Developer's Guide

TIN-Related Object Types

-- Use some SDO_GEOMETRY constructors;

-- insert 3 geometries into the table; display the geometries later.
cola_b_geom := SDO_GEOMETRY(cola_b_wkt_clob);

INSERT INTO cola_markets VALUES (101, "cola_b_from_clob®, cola_b_geom);
cola_bh_geom := SDO_GEOMETRY(cola_b_wkt_varchar);

INSERT INTO cola_markets VALUES (102, "cola_b_from_varchar®, cola_b_geom);
cola_bh_geom := SDO_GEOMETRY(cola_b_wkb);

INSERT INTO cola_markets VALUES (103, "cola_b_from_wkb®, cola_b_geom);
END;

/

PL/SQL procedure successfully completed.

-- Display the geometries created using SDO_GEOMETRY constructors.
-- All three geometries are identical.
SELECT name, shape FROM cola_markets WHERE mkt_id > 100;

cola_bh_from_clob
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(, 1, 8,1, 8, 6,5, 7, 5, 1))

cola_h_from_varchar

SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5, 1, 8,1, 8,6, 5, 7, 5, 1))

cola_h_from_wkb

SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5, 1, 8,1, 8,6, 5, 7,5, 1))

2.5 TIN-Related Object Types

This section describes the following object types related to support for triangulated
irregular networks (TINs):

e SDO_TIN
e SDO_TIN_BLK_TYPE
e SDO_TIN_BLK

2.5.1 SDO_TIN Obiject Type

The description of a TIN is stored in a single row, in a single column of object type
SDO_TIN in a user-defined table. The object type SDO_TIN is defined as:

CREATE TYPE sdo_tin AS OBJECT

(base_table VARCHAR2(70),
base_table_col VARCHAR2(1024),
tin_id NUMBER.
blk_table VARCHAR2(70),
ptn_params VARCHAR2(1024),
tin_extent SDO_GEOMETRY,
tin_tol NUMBER,
tin_tot_dimensions NUMBER,
tin_domain SDO_ORGSCL_TYPE,
tin_break_lines SDO_GEOMETRY,
tin_stop_lines SDO_GEOMETRY,

Spatial Data Types and Metadata 2-15

TIN-Related Object Types

tin_void_rgns

SDO_GEOMETRY,

tin_val_attr_tables SDO_STRING_ARRAY,

tin_other_attrs

XMLTYPE) ;

The SDO_TIN type has the attributes shown in Table 2-4 (page 2-16).

Table 2-4 SDO_TIN Type Attributes
- ___|

Attribute Explanation

BASE_TABLE Name of the base table containing a column of type SDO_TIN

BASE_TABLE_ Name of the column of type SDO_TIN in the base table

COL

TIN_ID ID number for the TIN. (This unique ID number is generated by Spatial and
Graph. It is unique within the schema for base tables containing a column
of type SDO_TIN.)

BLK_TABLE Name of the table that contains information about each block in the TIN.
This table contains the columns shown in Table 2-5 (page 2-17).

PTN_PARAMS Parameters for partitioning the TIN

TIN_EXTENT SDO_GEOMETRY object representing the spatial extent of the TIN (the
minimum bounding object enclosing all objects in the TIN)

TIN_TOL Tolerance value for objects in the TIN. (For information about spatial
tolerance, see Tolerance (page 1-6).)

TIN_TOT_DIM Total number of dimensions in the TIN. Includes spatial dimensions and

ENSIONS any nonspatial dimensions, up to a maximum total of 9.

TIN_DOMAIN (Not currently used.)

TIN_BREAK_L (Not currently used.)

INES

TIN_STOP_LIN
ES

TIN_VOID_RG
NS

TIN_VAL_ATT
R_TABLES

TIN_OTHER_A
TTRS

(Not currently used.)

(Not currently used.).

SDO_STRING_ARRAY object specifying the names of any value attribute
tables for the TIN. Type SDO_STRING_ARRAY is defined as
VARRAY (1048576) OF VARCHAR2(32).

XMLTYPE object specifying any other attributes of the TIN. (For more
information, see the Usage Notes for the SDO_TIN_PKG.INIT (page 29-5)
function.)

Figure 2-2 (page 2-17) shows the storage model for TIN data, in which the TIN block
table (specified in the BLK_TABLE attribute of the SDO_TIN type) stores the blocks
associated with the SDO_TIN object.

2-16 Developer's Guide

TIN-Related Object Types

Figure 2-2 Storage of TIN Data
Spatial table containing TIN data, for each row:

SDO_TIN object
(such as a large surface)

A

(Various user-defined columns...)

pa

SDO_TIN object

—_

Blk_Table . . .

Base_ Table Base Table Col

e

Each Row = Table of TIN Block
(with one row of SDO_PC_BLK object type for each block)

TIN_Id

Obj_ID | Blk_ID | Blk_Extent] Blk_Domain | PCBIk_Min_Res . . .
Obj_ID | Blk_ID | Blk_Extent] Blk_Domain | PCBIk_Min_Res . . .
Obj_ID | Blk_ID | Blk_Extent] Blk_Domain | PCBIk_Min_Res e e .

The TIN block table contains the columns shown in Table 2-5 (page 2-17).

Table 2-5 Columns in the TIN Block Table

Column Name Data Type Purpose
BLK_ID NUMBER ID number of the block.
BLK_EXTENT SDO_GEOM Spatial extent of the block.
ETRY
BLK_DOMAIN SDO_ORGSC (Not currently used.)
L_TYPE
PCBLK_MIN_RES NUMBER For point cloud data, the minimum resolution

level at which the block is visible in a query.
The block is retrieved only if the query
window intersects the spatial extent of the
block and if the minimum - maximum
resolution interval of the block intersects the
minimum - maximum resolution interval of
the query. Usually, lower values mean farther
from the view point, and higher values mean
closer to the view point.

Spatial Data Types and Metadata 2-17

TIN-Related Object Types

Table 2-5 (Cont.) Columns in the TIN Block Table
___|

Column Name Data Type Purpose

PCBLK_MAX_RES NUMBER For point cloud data, the maximum
resolution level at which the block is visible
in a query. The block is retrieved only if the
query window intersects the spatial extent of
the block and if the minimum - maximum
resolution interval of the block intersects the
minimum - maximum resolution interval of
the query. Usually, lower values mean farther
from the view point, and higher values mean
closer to the view point.

NUM_POINTS NUMBER For point cloud data, the total number of
points in the POINTS BLOB

NUM_UNSORTED_POINTS NUMBER For point cloud data, the number of unsorted
points in the POINTS BLOB

PT_SORT_DIM NUMBER For point cloud data, the number of spatial
dimensions for the points (2 or 3)

POINTS BLOB For point cloud data, BLOB containing the
points. Consists of an array of points, with
the following information for each point:

* d 8-byte IEEE doubles, where d is the
point cloud total number of dimensions
* 4-byte big-endian integer for the BLK_ID

value
* 4-byte big-endian integer for the PT_ID
value
TR_LVL NUMBER (Not currently used.)
TR_RES NUMBER (Not currently used.)
NUM_TRIANGLES NUMBER Number of triangles in the TRIANGLES
BLOB.
TR_SORT_DIM NUMBER (Not currently used.)
TRIANGLES BLOB BLOB containing the triangles. Consists of an

array of triangles for the block:
* Each triangle is specified by three vertices.

* Each vertex is specified by the pair
(BLK_ID, PT_ID), with each value being a
4-byte big-endian integer.

For each BLOB in the POINTS column of the TIN block table:
* The total size is (tdim+1)*8, where tdim is the total dimensionality of each block.

e The total size should be less than 5 MB for Oracle Database Release 11.1.0.6 or
earlier; it should be less than 12 MB for Oracle Database Release 11.1.0.7 or later.

2-18 Developer's Guide

Point Cloud-Related Object Types

You can use an attribute name in a query on an object of SDO_TIN. Example 2-4
(page 2-19) shows part of a SELECT statement that queries the TIN_EXTENT
attribute of the TERRAIN column of a hypothetical LANDSCAPES table.

Example 2-4 SDO_TIN Attribute in a Query

SELECT I.terrain.tin_extent FROM landscapes | WHERE ...;

2.5.2 SDO_TIN_BLK_TYPE and SDO_TIN_BLK Object Types

When you perform a clip operation using the SDO_TIN_PKG.CLIP_TIN (page 29-1)
function, an object of SDO_TIN_BLK_TYPE is returned, which is defined as TABLE
OF SDO_TIN_BLK.

The attributes of the SDO_TIN_BLK object type are the same as the columns in the
TIN block table, which is described in Table 2-5 (page 2-17) in SDO_TIN_BLK_TYPE
and SDO_TIN_BLK Object Types (page 2-19).

2.6 Point Cloud-Related Object Types

This section describes the following object types related to support for point clouds:
e SDO_PC
e SDO_PC_BLK

2.6.1 SDO_PC Obiject Type

The description of a point cloud is stored in a single row, in a single column of object
type SDO_PC in a user-defined table. The object type SDO_PC is defined as:

CREATE TYPE sdo_pc AS OBJECT

(base_table VARCHAR2(70),
base_table_col VARCHAR2(1024),
pc_id NUMBER.
blk_table VARCHAR2(70),
ptn_params VARCHAR2(1024),
pc_extent SDO_GEOMETRY,
pc_tol NUMBER,
pc_tot_dimensions NUMBER,
pc_domain SDO_ORGSCL_TYPE,

pc_val_attr_tables SDO_STRING_ARRAY,
pc_other_attrs XMLTYPE) ;

The SDO_PC type has the attributes shown in Table 2-6 (page 2-19).

Table 2-6 SDO_PC Type Attributes

Attribute Explanation

BASE_TABLE Name of the base table containing a column of type SDO_PC

BASE_TABLE_ Name of the column of type SDO_PC in the base table
CoL

PC_ID ID number for the point cloud. (This unique ID number is generated by

Spatial and Graph. It is unique within the schema for base tables containing
a column of type SDO_PC.)

Spatial Data Types and Metadata 2-19

Point Cloud-Related Object Types

Table 2-6 (Cont.) SDO_PC Type Attributes
. __|

Attribute Explanation

BLK_TABLE Name of the table that contains information about each block in the point
cloud. This table contains the columns shown in Table 2-7 (page 2-20).

PTN_PARAMS Parameters for partitioning the point cloud

PC_EXTENT SDO_GEOMETRY object representing the spatial extent of the point cloud
(the minimum bounding object enclosing all objects in the point cloud)

PC_TOL Tolerance value for points in the point cloud. (For information about spatial
tolerance, see Tolerance (page 1-6).)

PC_TOT_DIME Total number of dimensions in the point cloud. Includes spatial dimensions
NSIONS and any nonspatial dimensions, up to a maximum total of 9.

PC_DOMAINS (Not currently used.)

PC_VAL_ATTR SDO_STRING_ARRAY object specifying the names of any value attribute
_TABLES tables for the point cloud. Type SDO_STRING_ARRAY is defined as
VARRAY (1048576) OF VARCHAR2(32).

PC_OTHER_A XMLTYPE object specifying any other attributes of the point cloud. (For
TTRS more information, see the Usage Notes for the SDO_PC_PKG.INIT
(page 27-10) function.)

The point cloud block table (specified in the BLK_TABLE attribute of the SDO_PC
type) contains the columns shown in Table 2-7 (page 2-20).

Table 2-7 Columns in the Point Cloud Block Table
- |

Column Name Data Type Purpose
OBJ_ID NUMBER ID number of the point cloud object.
BLK_ID NUMBER ID number of the block.
BLK_EXTENT SDO_GEO Spatial extent of the block.

METRY
BLK_DOMAIN SDO_ORGS (Not currently used.)

CL_TYPE

PCBLK_MIN_RES NUMBER For point cloud data, the minimum resolution level at
which the block is visible in a query. The block is
retrieved only if the query window intersects the spatial
extent of the block and if the minimum - maximum
resolution interval of the block intersects the minimum -
maximum resolution interval of the query. Usually,
lower values mean farther from the view point, and
higher values mean closer to the view point.

2-20 Developer's Guide

Geometry Examples

Table 2-7 (Cont.) Columns in the Point Cloud Block Table

Column Name Data Type Purpose

PCBLK_MAX_RES NUMBER For point cloud data, the maximum resolution level at
which the block is visible in a query. The block is
retrieved only if the query window intersects the spatial
extent of the block and if the minimum - maximum
resolution interval of the block intersects the minimum -
maximum resolution interval of the query. Usually,
lower values mean farther from the view point, and
higher values mean closer to the view point.

NUM_POINTS NUMBER For point cloud data, the total number of points in the
POINTS BLOB

NUM_UNSORTED_ NUMBER For point cloud data, the number of unsorted points in

POINTS the POINTS BLOB

PT_SORT_DIM NUMBER Number of the dimension (1 for the first dimension, 2

for the second dimension, and so on) on which the
points are sorted.

POINTS BLOB BLOB containing the points. Consists of an array of
points, with the following information for each point:
* d8-byte IEEE doubles, where d is the
PC_TOT_DIMENSIONS value
¢ 4-byte big-endian integer for the BLK_ID value
* 4-byte big-endian integer for the PT_ID value

You can use an attribute name in a query on an object of SDO_PC. Example 2-5
(page 2-21) shows part of a SELECT statement that queries the PC_EXTENT attribute
of the OCEAN_FLOOR column of a hypothetical OCEAN_FLOOR_MODEL table.

Example 2-5 SDO_PC Attribute in a Query

SELECT o.ocean_floor.pc_extent FROM ocean_floor_model o WHERE ...;

2.6.2SDO_PC_BLK_TYPE and SDO_PC_BLK Object Type

When you perform a clip operation using the SDO_PC_PKG.CLIP_PC (page 27-1)
function, an object of SDO_PC_BLK_TYPE is returned, which is defined as TABLE OF
SDO_PC_BLK.

The attributes of the SDO_PC_BLK object type are the same as the columns in the
point cloud block table, which is described in Table 2-7 (page 2-20) in SDO_PC Object
Type (page 2-19).

2.7 Geometry Examples
This section contains examples of many geometry types:
¢ Rectangle (page 2-22)
¢ Polygon with a Hole (page 2-23)
e Compound Line String (page 2-24)

e Compound Polygon (page 2-26)

Spatial Data Types and Metadata 2-21

Geometry Examples

¢ Point (page 2-27)

* Oriented Point (page 2-28)

¢ Type 0 (Zero) Element (page 2-31)

¢ Several Two-Dimensional Geometry Types (page 2-34)

® Three-Dimensional Geometry Types (page 2-38)

2.7.1 Rectangle

Figure 2-3 (page 2-22) illustrates the rectangle that represents cola_a in the example
in Simple Example: Inserting_ Indexing_ and Querying Spatial Data (page 2-1).

Figure 2-3 Rectangle

(1,7) (5,7)

(1.1) (5.1)

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2-3

(page 2-22):

e SDO_GTYPE = 2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

e SDO_SRID = NULL.

e SDO_POINT = NULL.

e SDO_ELEM_INFO = (1, 1003, 3). The final 3 in 1,1003,3 indicates that this is a
rectangle. Because it is a rectangle, only two ordinates are specified in
SDO_ORDINATES (lower-left and upper-right).

* SDO_ORDINATES = (1,1, 5,7). These identify the lower-left and upper-right
ordinates of the rectangle.

Example 2-6 (page 2-22) shows a SQL statement that inserts the geometry illustrated
in Figure 2-3 (page 2-22) into the database.

Example 2-6 SQL Statement to Insert a Rectangle

INSERT INTO cola_markets VALUES(

1,

"cola_a”",

SDO_GEOMETRY (
2003, -- two-dimensional polygon
NULL,
NULL,

SDO_ELEM_INFO_ARRAY(1,1003,3), -- one rectangle (1003 = exterior)
SDO_ORDINATE_ARRAY(1,1, 5,7) -- only 2 points needed to

-- define rectangle (lower left and upper right) with

-- Cartesian-coordinate data

2-22 Developer's Guide

Geometry Examples

)
);

2.7.2 Polygon with a Hole

Figure 2-4 (page 2-23) illustrates a polygon consisting of two elements: an exterior
polygon ring and an interior polygon ring. The inner element in this example is
treated as a void (a hole).

Fig

ure 2-4 Polygon with a Hole

bk ok mh mh mh b

== N @O b O1ONO®O

(5,13) (11,13)

(7,10) (10,10)
(13,9)
(7,8) (10,5) (13,5)
2,4 \
(4,3) (10,3)

0

1 234 5678 9101112 1314 15

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2-4
(page 2-23):

SDO_GTYPE = 2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

SDO_SRID = NULL.
SDO_POINT = NULL.

SDO_ELEM_INFO = (1,1003,1, 19,2003,1). There are two triplet elements: 1,1003,1
and 19,2003,1.

1003 indicates that the element is an exterior polygon ring; 2003 indicates that the
element is an interior polygon ring.

19 indicates that the second element (the interior polygon ring) ordinate
specification starts at the 19th number in the SDO_ORDINATES array (that is, 7,
meaning that the first point is 7,5).

SDO_ORDINATES = (2,4, 4,3,10,3, 135,139, 11,13, 5,13, 2,11, 2,4, 7,5, 7,10, 10,10,
10,5,7,5).

The area (SDO_GEOM.SDO_AREA (page 23-9) function) of the polygon is the
area of the exterior polygon minus the area of the interior polygon. In this example,
the area is 84 (99 - 15).

Spatial Data Types and Metadata 2-23

Geometry Examples

® The perimeter (SDO_GEOM.SDO_LENGTH (page 23-28) function) of the polygon
is the perimeter of the exterior polygon plus the perimeter of the interior polygon.
In this example, the perimeter is 52.9193065 (36.9193065 + 16).

Example 2-7 SQL Statement to Insert a Polygon with a Hole

Example 2-7 (page 2-24) shows a SQL statement that inserts the geometry illustrated in
Figure 2-4 (page 2-23) into the database.

INSERT INTO cola_markets VALUES(
10,
"polygon_with_hole*,
SDO_GEOMETRY (
2003, -- two-dimensional polygon
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1, 19,2003,1), -- polygon with hole
SDO_ORDINATE_ARRAY(2,4, 4,3, 10,3, 13,5, 13,9, 11,13, 5,13, 2,11, 2,4,
7,5, 7,10, 10,10, 10,5, 7,5)
)
);

An example of such a "polygon with a hole" might be a land mass (such as a country
or an island) with a lake inside it. Of course, an actual land mass might have many
such interior polygons: each one would require a triplet element in SDO_ELEM_INFO,
plus the necessary ordinate specification.

Exterior and interior rings cannot be nested. For example, if a country has a lake and
there is an island in the lake (and perhaps a lake on the island), a separate polygon
must be defined for the island; the island cannot be defined as an interior polygon ring
within the interior polygon ring of the lake.

In a multipolygon (polygon collection), rings must be grouped by polygon, and the
first ring of each polygon must be the exterior ring. For example, consider a polygon
collection that contains two polygons (A and B):

* Polygon A (one interior "hole"): exterior ring A0, interior ring Al

¢ Polygon B (two interior "holes"): exterior ring B0, interior ring B1, interior ring B2

The elements in SDO_ELEM_INFO and SDO_ORDINATES must be in one of the
following orders (depending on whether you specify Polygon A or Polygon B first):

e A0, Al; B0, B1, B2
e B0, Bl, B2; A0, Al

2.7.3 Compound Line String

Figure 2-5 (page 2-25) illustrates a crescent-shaped object represented as a compound
line string made up of one straight line segment and one circular arc. Four points are
required to represent this shape: points (10,10) and (10,14) describe the straight line
segment, and points (10,14), (6,10), and (14,10) describe the circular arc.

2-24 Developer's Guide

Geometry Examples

Figure 2-5 Compound Line String

1
1
1
1
1
1

= N DO h O1LONO®O

(10,14)

(6,10) (14,10)
(10,110)

0

In

the SDO_GEOMETRY definition of the geometry illustrated in Figure 2-5

(page 2-25):

SDO_GTYPE = 2002. The first 2 indicates two-dimensional, and the second 2
indicates one or more line segments.

SDO_SRID = NULL.
SDO_POINT = NULL.

SDO_ELEM_INFO = (14,2,1,2,1, 3,2,2). There are three triplet elements: 1,4,2,1,2,1,
and 3,2,2.

The first triplet indicates that this element is a compound line string made up of
two subelement line strings, which are described with the next two triplets.

The second triplet indicates that the line string is made up of straight line segments
and that the ordinates for this line string start at offset 1. The end point of this line
string is determined by the starting offset of the second line string, 3 in this
instance.

The third triplet indicates that the second line string is made up of circular arcs
with ordinates starting at offset 3. The end point of this line string is determined by
the starting offset of the next element or the current length of the
SDO_ORDINATES arrayj, if this is the last element.

SDO_ORDINATES = (10,10, 10,14, 6,10, 14,10).

Example 2-8 (page 2-25) shows a SQL statement that inserts the geometry illustrated

in

Figure 2-5 (page 2-25) into the database.

Example 2-8 SQL Statement to Insert a Compound Line String

INSERT INTO cola_markets VALUES(
11,
"compound_line_string”,
SDO_GEOMETRY (

2002,
NULL,

Spatial Data Types and Metadata 2-25

Geometry Examples

);

NULL,
SDO_ELEM_INFO_ARRAY(1,4,2, 1,2,1, 3,2,2), -- compound line string
SDO_ORDINATE_ARRAY(10,10, 10,14, 6,10, 14,10)

)

2.7.4 Compound Polygon

Figure 2-6 (page 2-26) illustrates an ice cream cone-shaped object represented as a
compound polygon made up of one straight line segment and one circular arc. Five
points are required to represent this shape: points (6,10), (10,1), and (14,10) describe
one acute angle-shaped line string, and points (14,10), (10,14), and (6,10) describe the
circular arc. The starting point of the line string and the ending point of the circular arc
are the same point (6,10). The SDO_ELEM_INFO array contains three triplets for this
compound line string. These triplets are {(1,1005,2), (1,2,1), (5,2,2)}.

Figure 2-6 Compound Polygon

15|

1 (10,14)

1 P TN

1 /[AN

I (\
10| (6,10) 14,10)
9|

; \ /

7

el \ /

4 \ /

3 \ /

2

1 (1041)

0 234056 789101112 1314 15

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2-6
(page 2-26):

SDO_GTYPE = 2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

SDO_SRID = NULL.
SDO_POINT = NULL.

SDO_ELEM_INFO = (1,1005,2, 1,2,1, 5,2,2). There are three triplet elements:
1,1005,2,1,2,1, and 5,2,2.

The first triplet indicates that this element is a compound polygon made up of two
subelement line strings, which are described using the next two triplets.

The second triplet indicates that the first subelement line string is made up of
straight line segments and that the ordinates for this line string start at offset 1. The
end point of this line string is determined by the starting offset of the second line
string, 5 in this instance. Because the vertices are two-dimensional, the coordinates
for the end point of the first line string are at ordinates 5 and 6.

2-26 Developer's Guide

Geometry Examples

2.7.5 Point

The third triplet indicates that the second subelement line string is made up of a
circular arc with ordinates starting at offset 5. The end point of this line string is
determined by the starting offset of the next element or the current length of the
SDO_ORDINATES arrayj, if this is the last element.

e SDO_ORDINATES = (6,10, 10,1, 14,10, 10,14, 6,10).

Example 2-9 (page 2-27) shows a SQL statement that inserts the geometry illustrated
in Figure 2-6 (page 2-26) into the database.

Example 2-9 SQL Statement to Insert a Compound Polygon

INSERT INTO cola_markets VALUES(

12,

"compound_polygon®,

SDO_GEOMETRY (
2003, -- two-dimensional polygon
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1,1005,2, 1,2,1, 5,2,2), -- compound polygon
SDO_ORDINATE_ARRAY(6,10, 10,1, 14,10, 10,14, 6,10)

Figure 2-7 (page 2-27) illustrates a point-only geometry at coordinates (12,14).

Figure 2-7 Point-Only Geometry

1
1
] (1214)
1
1

1

- N OLANNDNDO

0 1 23456 789111121314 15

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2-7
(page 2-27):

e SDO_GTYPE = 2001. The 2 indicates two-dimensional, and the 1 indicates a single
point.

e SDO_SRID = NULL.

Spatial Data Types and Metadata 2-27

Geometry Examples

e SDO_POINT = SDO_POINT_TYPE(12, 14, NULL). The SDO_POINT attribute is
defined using the SDO_POINT_TYPE object type, because this is a point-only
geometry.

For more information about the SDO_POINT attribute, see SDO_POINT (page 2-7).

e SDO_ELEM_INFO and SDO_ORDINATES are both NULL, as required if the
SDO_POINT attribute is specified.

Example 2-10 (page 2-28) shows a SQL statement that inserts the geometry illustrated
in Figure 2-7 (page 2-27) into the database.

Example 2-10 SQL Statement to Insert a Point-Only Geometry

INSERT INTO cola_markets VALUES(
90,
"point_only",
SDO_GEOMETRY (
2001,
NULL,
SDO_POINT_TYPE(12, 14, NULL),
NULL,
NULL));

You can search for point-only geometries based on the X, Y, and Z values in the
SDO_POINT_TYPE specification. Example 2-11 (page 2-28) is a query that asks for all
points whose first coordinate (the X value) is 12, and it finds the point that was
inserted in Example 2-10 (page 2-28).

Example 2-11 Query for Point-Only Geometry Based on a Coordinate Value

SELECT * from cola_markets c WHERE c.shape.SDO_POINT.X = 12;

MKT_ID NAME

90 point_only
SDO_GEOMETRY (2001, NULL, SDO_POINT_TYPE(12, 14, NULL), NULL, NULL)

2.7.6 Oriented Point

An oriented point is a special type of point geometry that includes coordinates
representing the locations of the point and a virtual end point, to indicate an
orientation vector that can be used for rotating a symbol at the point or extending a
label from the point. The main use for an oriented point is in map visualization and
display applications that include symbols, such as a shield symbol to indicate a
highway.

To specify an oriented point:

* Use an SDO_GTYPE value (explained in SDO_GTYPE (page 2-5)) for a point or
multipoint geometry.

* Specify a null value for the SDO_POINT attribute.

® In the SDO_ELEM_INFO array (explained in SDO_ELEM_INFO (page 2-8)),
specify an additional triplet, with the second and third values (SDO_ETYPE and
SDO_INTERPRETATION) as 1 and 0. For example, a triplet of 3,1,0 indicates that
the point is an oriented point, with the third number in the SDO_ORDINATES

2-28 Developer's Guide

Geometry Examples

array being the first coordinate, or x-axis value, of the end point reflecting the
orientation vector for any symbol or label.

¢ In the SDO_ORDINATES array (explained in SDO_ORDINATES (page 2-11)),
specify the coordinates of the end point for the orientation vector from the point,
with values between -1 and 1. The orientation start point is assumed to be (0,0), and
it is translated to the location of the physical point to which it corresponds.

Figure 2-8 (page 2-29) illustrates an oriented point geometry at coordinates (12,14),
with an orientation vector of approximately 34 degrees (counterclockwise from the x-
axis), reflecting the orientation coordinates 0.3,0.2. (To have an orientation that more
precisely matches a specific angle, refer to the cotangent or tangent values in the tables
in a trigonometry textbook.) The orientation vector in this example goes from (0,0) to
(0.3,0.2) and extends onward. Assuming i=0.3 and j=0.2, the angle in radians can be
calculated as follows: angle in radians = arctan (j/i). The angle is then applied to the
physical point associated with the orientation vector.

Figure 2-8 Oriented Point Geometry

Y

2
’
s

1

1 .,

1 (12,14,00.3,0.2)
1

1

1

1

- N OANNDN®O

0 1 23456 789111121314 15

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2-8
(page 2-29):

e SDO_GTYPE =2001. The 2 indicates two-dimensional, and the 1 indicates a single
point.

e SDO_SRID = NULL.
e SDO_POINT = NULL.

e SDO_ELEM_INFO = (1,1,1, 3,1,0). The final 1,0 in 3,1,0 indicates that this is an
oriented point.

e SDO_ORDINATES = (12,14, 0.3,0.2). The 12,14 identifies the physical coordinates of
the point; and the 0.3,0.2 identifies the x and y coordinates (assuming 12,14 as the
origin) of the end point of the orientation vector. The resulting orientation vector
slopes upward at about a 34-degree angle.

Example 2-12 (page 2-30) shows a SQL statement that inserts the geometry illustrated
in Figure 2-8 (page 2-29) into the database.

Spatial Data Types and Metadata 2-29

Geometry Examples

Example 2-12 SQL Statement to Insert an Oriented Point Geometry

INSERT INTO cola_markets VALUES(

91,

"oriented_point”®,

SDO_GEOMETRY (
2001,
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1,1,1, 3,1,0),
SDO_ORDINATE_ARRAY (12,14, 0.3,0.2)));

The following guidelines apply to the definition of an oriented point:

¢ The numbers defining the orientation vector must be between -1 and 1. (In
Example 2-12 (page 2-30), these numbers are 0.3 and 0.2.)

e Multipoint oriented points are allowed (see Example 2-13 (page 2-30)), but the
orientation information must follow the point being oriented.

The following considerations apply to the dimensionality of the orientation vector for
an oriented point:

¢ A two-dimensional point has a two-dimensional orientation vector.

* A two-dimensional point with an LRS measure (SDO_GTYPE=3301) has a two-
dimensional orientation vector.

¢ A three-dimensional point (SDO_GTYPE=3001) has a three-dimensional
orientation vector.

* A three-dimensional point with an LRS measure (SDO_GTYPE=4401) has a three-
dimensional orientation vector.

¢ A four-dimensional point (SDO_GTYPE=4001) has a three-dimensional orientation
vector.

Example 2-13 SQL Statement to Insert an Oriented Multipoint Geometry

Example 2-13 (page 2-30) shows a SQL statement that inserts an oriented multipoint
geometry into the database. The multipoint geometry contains two points, at
coordinates (12,14) and (12, 10), with the two points having different orientation
vectors. The statement is similar to the one in Example 2-12 (page 2-30), but in
Example 2-13 (page 2-30) the second point has an orientation vector pointing down
and to the left at 45 degrees (or, 135 degrees clockwise from the x-axis), reflecting the
orientation coordinates -1,-1.

-- Oriented multipoint: 2 points, different orientations
INSERT INTO cola_markets VALUES(
92,
"oriented_multipoint”®,
SDO_GEOMETRY (
2005, -- Multipoint
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1,1,1, 3,1,0, 5,1,1, 7,1,0),
SDO_ORDINATE_ARRAY(12,14, 0.3,0.2, 12,10, -1,-1)));

2-30 Developer's Guide

Geometry Examples

2.7.7 Type 0 (Zero) Element

Type 0 (zero) elements are used to model geometry types that are not supported by
Oracle Spatial and Graph, such as curves and splines. A type 0 element has an
SDO_ETYPE value of 0. (See SDO_ELEM_INFO (page 2-8) for information about the
SDO_ETYPE.) Type 0 elements are not indexed by Oracle Spatial and Graph, and they
are ignored by spatial functions and procedures.

Geometries with type 0 elements must contain at least one nonzero element, that is, an
element with an SDO_ETYPE value that is not 0. The nonzero element should be an
approximation of the unsupported geometry, and therefore it must have both:

* An SDO_ETYPE value associated with a geometry type supported by Spatial and
Graph

e An SDO_INTERPRETATION value that is valid for the SDO_ETYPE value (see
Table 2-2 (page 2-9))

(The SDO_INTERPRETATION value for the type 0 element can be any numeric
value, and applications are responsible for determining the validity and
significance of the value.)

The nonzero element is indexed by Spatial and Graph, and it will be returned by the
spatial index.

The SDO_GTYPE value for a geometry containing a type 0 element must be set to the
value for the geometry type of the nonzero element.

Figure 2-9 (page 2-31) shows a geometry with two elements: a curve (unsupported
geometry) and a rectangle (the nonzero element) that approximates the curve. The
curve looks like the letter S, and the rectangle is represented by the dashed line.

Figure 2-9 Geometry with Type 0 (Zero) Element
X7,y7

In the example shown in Figure 2-9 (page 2-31):
® The SDO_GTYPE value for the geometry is 2003 (for a two-dimensional polygon).

e The SDO_ELEM_INFO array contains two triplets for this compound line string.
For example, the triplets might be {(1,0,57), (11,1003,3)}. That is:

Ordinate Starting Offset Element Type Interpretation
(SDO_STARTING_OFFSET) (SDO_ETYPE) (SDO_INTERPRETATION)
1 0 57

11 1003 3

In this example:

Spatial Data Types and Metadata 2-31

Geometry Examples

¢ The type 0 element has an SDO_ETYPE value of 0.

¢ The nonzero element (rectangle) has an SDO_ETYPE value of 1003, indicating an
exterior polygon ring.

e The nonzero element has an SDO_STARTING_OFFSET value of 11 because
ordinate x6 is the eleventh ordinate in the geometry.

* The type 0 element has an SDO_INTERPRETATION value whose significance is
application-specific. In this example, the SDO_INTERPRETATION value is 57.

* The nonzero element has an SDO_INTERPRETATION value that is valid for the
SDO_ETYPE of 1003. In this example, the SDO_INTERPRETATION value is 3,
indicating a rectangle defined by two points (lower-left and upper-right).

Example 2-14 (page 2-32) shows a SQL statement that inserts the geometry with a
type 0 element (similar to the geometry illustrated in Figure 2-9 (page 2-31)) into the
database. In the SDO_ORDINATE_ARRAY structure, the curve is defined by points
(6,6), (12,6), (9,8), (6,10), and (12,10), and the rectangle is defined by points (6,4) and
(12,12).

Example 2-14 SQL Statement to Insert a Geometry with a Type 0 Element

INSERT INTO cola_markets VALUES(
13,
“type_zero_element_geom®,
SDO_GEOMETRY (
2003, -- two-dimensional polygon
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1,0,57, 11,1003,3), -- 1st is type 0 element
SDO_ORDINATE_ARRAY(6,6, 12,6, 9,8, 6,10, 12,10, 6,4, 12,12)
)
);

2.7.8 NURBS Curve

A NURBS (non-uniform rational B-spline) curve allows the representation of free-form
shapes with arbitrary shapes. NURBS representation allows control over the shape of
the curve because control points and knots guide the shape of the curve, and they
allow complex shapes to be represented with little data. For an explanation of NURBS
curves and the requirements for defining a NURBS curve geometry, see NURBS Curve
Support in Oracle Spatial and Graph (page 1-27).

Example 2-15 (page 2-33) shows a SQL statement that inserts a NURBS curve
geometry into the database.

In the SDO_GEOMETRY definition of the geometry illustrated in Example 2-15
(page 2-33):

e SDO_GTYPE = 2002. The first 2 indicates two-dimensional, and the second 2
indicates a single line string.

e SDO_SRID = NULL. Note that geodetic NURBS curves are not permitted in Oracle
Spatial and Graph.

e SDO_POINT = NULL.

e SDO_ELEM_INFO_ARRAY = (1,2,3). The SDO_INTERPRETATION value of 3
indicates a NURBS curve.

2-32 Developer's Guide

Geometry Examples

¢ In the SDO_ORDINATE_ARRAY, 3 is the degree of the NURBS curve, 7 is the
number of weighted control points, and 11 in the number of knot values.

Example 2-15 SQL Statement to Insert a NURBS Curve Geometry
CREATE TABLE nurbs_test (gid integer, geom sdo_geometry);

INSERT INTO nurbs_test values(
1,
SDO_GEOMETRY (
2002,
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1, 2, 3), /* Element type 2 = SDO_ETYPE_CURVE and
Interpretation value 3 = NURBS curve */
SDO_ORDINATE_ARRAY
@G, /* Degree of the NURBS curve */
7, /* Number of weighted Control Points */
0, 0, 1, /* x1, yl, wl where wl denotes the weight of the control point and
x1, yl are weighted values. Implies the actual coordinate values have been
multiplied by wl */

-0.5, 1, 1,

0.2, 2, 1,

0.5, 3.5, 1,

0.8, 2, 1,

0.9, 1, 1,

0.3, 0, 1,

11, /* Number of knot values = Number of control points + degree + 1 */
0, 0, 0, 0, 0.25, 0.5, 0.75, 1.0, 1.0, 1.0, 1.0))); /* Normalized knot

vector; values start at zero and end at 1. Clamped at end points as multiplicity of
zero and one is 4, which is equal to the degree of the curve + 1 */

Example 2-16 SQL Statement to Insert a NURBS Compound Curve Geometry

Example 2-16 (page 2-33) shows the insertion of a compound curve geometry that has
a NURBS segment. It uses the same NURBS_TEST table created in Example 2-15
(page 2-33) .

INSERT INTO nurbs_test VALUES(
1,
SDO_GEOMETRY (2002, NULL, NULL,
SDO_ELEM_INFO_ARRAY(1, 4, 2, 1, 2, 1, 5, 2, 3),
SDO_ORDINATE_ARRAY(-1, -1, 0, 0, 3, 7, 0, 0, 1, -0.5, 1, 1,
0.2, 2, 1, 0.5, 3.5, 1, 0.8, 2, 1, 0.9, 1, 1, 0.3,
0, 1, 11, 0, 0, 0, 0, 0.25, 0.5, 0.75, 1.0, 1.0, 1.0, 1.0)
));

In the SDO_GEOMETRY definition of the geometry illustrated in Example 2-16
(page 2-33):

e SDO_GTYPE = 2002. The first 2 indicates two-dimensional, and the second 2
indicates a single line string.

e SDO_SRID = NULL. Note that geodetic NURBS curves are not permitted in Oracle
Spatial and Graph.

e SDO_POINT = NULL.

e SDO_ELEM_INFO_ARRAY =(1,4,2,1,2,1,5,2,3). The first triplet indicates a
compound line string (interpretation = 4) with two elements. The next two triplets
define the segments of the compound line string: the first segment is a line string

Spatial Data Types and Metadata 2-33

Geometry Examples

beginning at offset 1; the second segment is a NURBS segment beginning at offset
5.

¢ In the SDO_ORDINATE_ARRAY, the first 4 values define the first segment, which
is a simple line string. For compound line strings containing at least one NURBS
segment, the common vertices will be repeated across segments. In this example,
the last point of the line string (0,0) must be equal to the first "clamped" point of the
NURBS curve (0,0). The NURBS segment is defined beginning at offset 5 and the
first control point is (0,0), which follows the degree (3) and the number of control
points (7). The NURBS segment has 11 knot values.

2.7.9 Several Two-Dimensional Geometry Types

Example 2-17 (page 2-34) creates a table and inserts various two-dimensional
geometries, including multipoints (point clusters), multipolygons, and collections. At
the end, it calls the SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

(page 23-52) function to validate the inserted geometries. Note that some geometries
are deliberately invalid, and their descriptions include the string INVALID.

Example 2-17 SQL Statements to Insert Various Two-Dimensional Geometries

CREATE TABLE t1 (
i NUMBER,
d VARCHAR2(50),
g SDO_GEOMETRY
);
INSERT INTO t1 (i, d, g)
VALUES (
1,
"Point”,
sdo_geometry (2001, null, null, sdo_elem_info_array (1,1,1),
sdo_ordinate_array (10,5))
);
INSERT INTO t1 (i, d, g)
VALUES (
2,
"Line segment”,
sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,1),
sdo_ordinate_array (10,10, 20,10))
);
INSERT INTO t1 (i, d, g)
VALUES (
3,
*Arc segment”,
sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,2),
sdo_ordinate_array (10,15, 15,20, 20,15))
);
INSERT INTO t1 (i, d, g)
VALUES (
4,
"Line string”,
sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,1),
sdo_ordinate_array (10,25, 20,30, 25,25, 30,30))
);
INSERT INTO t1 (i, d, g)
VALUES (
5,
"Arc string”,
sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,2),
sdo_ordinate_array (10,35, 15,40, 20,35, 25,30, 30,35))

2-34 Developer's Guide

Geometry Examples

);
INSERT INTO t1 (i, d, g)
VALUES (

6,

"Compound line string”,

sdo_geometry (2002, null, null,

sdo_elem_info_array (1,4,3, 1,2,1, 3,2,2, 7,2,1),
sdo_ordinate_array (10,45, 20,45, 23,48, 20,51, 10,51))

);
INSERT INTO t1 (i, d, g)
VALUES (

7,

"Closed line string”®,

sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,1),
sdo_ordinate_array (10,55, 15,55, 20,60, 10,60, 10,55))

);
INSERT INTO t1 (i, d, g)
VALUES (

8,

"Closed arc string”,

sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,2),
sdo_ordinate_array (15,65, 10,68, 15,70, 20,68, 15,65))

);
INSERT INTO t1 (i, d, g)
VALUES (

9,

"Closed mixed line",

sdo_geometry (2002, null, null, sdo_elem_info_array (1,4,2, 1,2,1, 7,2,2),
sdo_ordinate_array (10,78, 10,75, 20,75, 20,78, 15,80, 10,78))

);
INSERT INTO t1 (i, d, g)
VALUES (

10,

"Self-crossing line",

sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,1),
sdo_ordinate_array (10,85, 20,90, 20,85, 10,90, 10,85))

);
INSERT INTO t1 (i, d, g)
VALUES (

11,

"Polygon®,

sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,1),
sdo_ordinate_array (10,105, 15,105, 20,110, 10,110, 10,105))

);
INSERT INTO t1 (i, d, @)
VALUES (

12,

"Arc polygon®,

sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,2),
sdo_ordinate_array (15,115, 20,118, 15,120, 10,118, 15,115))

);
INSERT INTO t1 (i, d, g)
VALUES (

13,

"Compound polygon®,

sdo_geometry (2003, null, null, sdo_elem_info_array (1,1005,2, 1,2,1, 7,2,2),
sdo_ordinate_array (10,128, 10,125, 20,125, 20,128, 15,130, 10,128))

);
INSERT INTO t1 (i, d, @)
VALUES (

14,

Spatial Data Types and Metadata 2-35

Geometry Examples

"Rectangle”,
sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,3),
sdo_ordinate_array (10,135, 20,140))

);
INSERT INTO t1 (i, d, g)
VALUES (
15,
"Circle”,
sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,4),
sdo_ordinate_array (15,145, 10,150, 20,150))
);
INSERT INTO t1 (i, d, g)
VALUES (
16,
"Point cluster”,
sdo_geometry (2005, null, null, sdo_elem_info_array (1,1,3),
sdo_ordinate_array (50,5, 55,7, 60,5))
);
INSERT INTO t1 (i, d, g)
VALUES (
17,
"Multipoint”®,
sdo_geometry (2005, null, null, sdo_elem_info_array (1,1,1, 3,1,1, 5,1,1),
sdo_ordinate_array (65,5, 70,7, 75,5))
);
INSERT INTO t1 (i, d, g)
VALUES (
18,
*Multiline®,
sdo_geometry (2006, null, null, sdo_elem_info_array (1,2,1, 5,2,1),
sdo_ordinate_array (50,15, 55,15, 60,15, 65,15))
);
INSERT INTO t1 (i, d, g)
VALUES (
19,
"Multiline - crossing”,
sdo_geometry (2006, null, null, sdo_elem_info_array (1,2,1, 5,2,1),
sdo_ordinate_array (50,22, 60,22, 55,20, 55,25))
);
INSERT INTO t1 (i, d, g)
VALUES (
20,
"Multiarc”,
sdo_geometry (2006, null, null, sdo_elem_info_array (1,2,2, 7,2,2),
sdo_ordinate_array (50,35, 55,40, 60,35, 65,35, 70,30, 75,35))
);
INSERT INTO t1 (i, d, g)
VALUES (
21,
"Multiline - closed”,
sdo_geometry (2006, null, null, sdo_elem_info_array (1,2,1, 9,2,1),
sdo_ordinate_array (50,55, 50,60, 55,58, 50,55, 56,58, 60,55, 60,60, 56,58))
);
INSERT INTO t1 (i, d, g)
VALUES (
22,
"Multiarc - touching”®,
sdo_geometry (2006, null, null, sdo_elem_info_array (1,2,2, 7,2,2),
sdo_ordinate_array (50,65, 50,70, 55,68, 55,68, 60,65, 60,70))
);

INSERT INTO t1 (i, d, @)

2-36 Developer's Guide

Geometry Examples

VALUES (
23,
"Multipolygon - disjoint®,
sdo_geometry (2007, null, null, sdo_elem_info_array (1,1003,1, 11,1003,3),
sdo_ordinate_array (50,105, 55,105, 60,110, 50,110, 50,105, 62,108, 65,112))
);
INSERT INTO t1 (i, d, g)
VALUES (
24,
"Multipolygon - touching”®,
sdo_geometry (2007, null, null, sdo_elem_info_array (1,1003,3, 5,1003,3),
sdo_ordinate_array (50,115, 55,120, 55,120, 58,122))
);
INSERT INTO t1 (i, d, g)
VALUES (
25,
"Multipolygon - tangent * INVALID 13351°,
sdo_geometry (2007, null, null, sdo_elem_info_array (1,1003,3, 5,1003,3),
sdo_ordinate_array (50,125, 55,130, 55,128, 60,132))
);
INSERT INTO t1 (i, d, g)
VALUES (
26,
"Multipolygon - multi-touch®,
sdo_geometry (2007, null, null, sdo_elem_info_array (1,1003,1, 17,1003,1),
sdo_ordinate_array (50,95, 55,95, 53,96, 55,97, 53,98, 55,99, 50,99, 50,95,
55,100, 55,95, 60,95, 60,100, 55,100))
);
INSERT INTO t1 (i, d, g)
VALUES (
27,
"Polygon with void",
sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,3, 5,2003,3),
sdo_ordinate_array (50,135, 60,140, 51,136, 59,139))
);
INSERT INTO t1 (i, d, g)
VALUES (
28,
"Polygon with void - reverse”,
sdo_geometry (2003, null, null, sdo_elem_info_array (1,2003,3, 5,1003,3),
sdo_ordinate_array (51,146, 59,149, 50,145, 60,150))
);
INSERT INTO t1 (i, d, g)
VALUES (
29,
"Crescent (straight lines) * INVALID 13349",
sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,1),
sdo_ordinate_array (10,175, 10,165, 20,165, 15,170, 25,170, 20,165,
30,165, 30,175, 10,175))
);
INSERT INTO t1 (i, d, g)
VALUES (
30,
"Crescent (arcs) * INVALID 13349°,
sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,2),
sdo_ordinate_array (14,180, 10,184, 14,188, 18,184, 14,180, 16,182,
14,184, 12,182, 14,180))
);
INSERT INTO t1 (i, d, g)
VALUES (
31,

Spatial Data Types and Metadata 2-37

Geometry Examples

"Heterogeneous collection®,
sdo_geometry (2004, null, null, sdo_elem_info_array (1,1,1, 3,2,1, 7,1003,1),
sdo_ordinate_array (10,5, 10,10, 20,10, 10,105, 15,105, 20,110, 10,110,
10,105))
);
INSERT INTO t1 (i, d, g)
VALUES (
32,
"Polygon+void+island touch”,
sdo_geometry (2007, null, null,
sdo_elem_info_array (1,1003,1, 11,2003,1, 31,1003,1),
sdo_ordinate_array (50,168, 50,160, 55,160, 55,168, 50,168, 51,167,
54,167, 54,161, 51,161, 51,162, 52,163, 51,164, 51,165, 51,166, 51,167,
52,166, 52,162, 53,162, 53,166, 52,166))
);
COMMIT;
SELECT i, d, SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT (g, 0.5) FROM t1;

2.7.10 Three-Dimensional Geometry Types

Example 2-18 (page 2-38) creates several tables (POINTS3D, LINES3D, and
POLYGONS3D), and inserts three-dimensional objects into each table as appropriate
(points into POINTS3D; lines into LINES3D; and polygons, surfaces, and solids into
POLYGONS3D). Example 2-19 (page 2-46) then creates the metadata and spatial
indexes for the tables.

For information about support for three-dimensional geometries, see Three-
Dimensional Spatial Objects (page 1-16).

Example 2-18 SQL Statements to Insert Three-Dimensional Geometries

create table points3d(id number, geometry sdo_geometry);

insert into points3d values(1, sdo_geometry(3001,null,
sdo_point_type(0,0,0), null, null));

insert into points3d values(2, sdo_geometry(3001,null,
sdo_point_type(1,1,1), null, null));

insert into points3d values(3, sdo_geometry(3001,null,
sdo_point_type(0,1,1), null, null));

insert into points3d values(4, sdo_geometry(3001,null,
sdo_point_type(0,0,1), null, null));

insert into points3d values(5, sdo_geometry(3001,null,
sdo_point_type(1,1,0), null, null));

insert into points3d values(6, sdo_geometry(3001,null,
sdo_point_type(1,0,1), null, null));

insert into points3d values(7, sdo_geometry(3001,null,
sdo_point_type(1,0,0), null, null));

insert into points3d values(8, sdo_geometry(3001,null,
sdo_point_type(0,1,0), null, null));

insert into points3d values(9, sdo_geometry(3005,null, null,
sdo_elem_info_array(1,1,1, 4,1,1),
sdo_ordinate_array(1,1,1, 0,0,0)));

create table lines3d(id number, geometry sdo_geometry);

insert into lines3d values(l, sdo_geometry(3002,null, null,
sdo_elem_info_array(1,2,1),
sdo_ordinate_array(1,1,1, 0,0,0)));

insert into lines3d values(2, sdo_geometry(3002,null, null,
sdo_elem_info_array(1,2,1),
sdo_ordinate_array(1,0,1, 0,1,0)));

insert into lines3d values(2, sdo_geometry(3002,null, null,
sdo_elem_info_array(1,2,1),

2-38 Developer's Guide

Geometry Examples

sdo_ordinate_array(0,1,1, 1,0,0)));

insert into lines3d values(3, sdo_geometry(3002,null, null,
sdo_elem_info_array(1,2,1),
sdo_ordinate_array(0,1,1, 1,0,0)));

insert into lines3d values(4, sdo_geometry(3002,null, null,
sdo_elem_info_array(1,2,1),
sdo_ordinate_array(0,1,0, 1,0,1)));

create table polygons3d(id number, geometry sdo_geometry);

-- Simple Polygon

-- All points have to be on the same plane.
insert into polygons3d values(l,
SDO_Geometry (3003,NULL,NULL ,
SDO_Elem_Info_Array(1,1003,1),
SDO_Ordinate_Array(0.5,0.0,0.0,

0.5,1.0,0.0,
0.0,1.0,1.0,
0.0,0.0,1.0,
0.5,0.0,0.0
E

insert into polygons3d values(2,
SDO_Geometry (3003,NULL,NULL ,
SDO_Elem_Info_Array(1,1003,1),
SDO_Ordinate_Array(6.0,6.0,6.0,
0.0,

.0,6.
.0,4.
.0,4.
.0,6.

));

insert into polygons3d values(3,
SDO_Geometry (3007,NULL,NULL ,
SDO_Elem_Info_Array(1,1003,1,16,1003,1),
SDO_Ordinate_Array(6.0,6.0,6.0,

.0,10.0,

OO RrProOoOoOMNMMNOI
OOOOOOOO
OI—\I—\OOG)-bOO

[eNeoNeoNeoNolNoNeNel

" OO OO OOM~wWOouu
V(J'IOO(J'I(J'IOOOO

o

-- Polygon with a Hole (same rules as 2D) plus all points on the same plane
insert into polygons3d values(4,

SDO_Geometry (3003,NULL,NULL ,

SDO_Elem_Info_Array(1,1003,1,16,2003,1),

SDO_Ordinate_Array(0.5,0.0,0.0,

0.5,1.0,0.0,
0.0,1.0,1.0,
0.0,0.0,1.0,
0.5,0.0,0.0,
0.25,0.5,0.5,
0.15,0.5,0.7,
0.15,0.6,0.7,
0.25,0.6,0.5,
0.25,0.5,0.5
));

-- Surface with 2 3D polygons (on same plane)
insert into polygons3d values(5,

Spatial Data Types and Metadata 2-39

Geometry Examples

SDO_Geometry (3003,NULL,NULL ,
SDO_Elem_Info_Array(1,1006,2,1,1003,1,16,1003,1),
SDO_Ordinate_Array(0.5,0.0,0.0,

OONNEF OOOLR K|

.0,0.

[eNeNeoNeoNeoNoNeNeNe)
[eNeoNeoNeoNeoNoNeNeNel

[eNeNeoNeoNelNoNeNoNe)

o

" P OOFNF OOOO

N e e e
N/ U1 0101010101 01O O Ul

urface with 2 3D polygons (on two planes)
insert into polygons3d values(5,
SDO_Geometry(3003,NULL,NULL ,
SDO_Elem_Info_Array(1,1006,2,1,1003,3,7,1003,3),
SDO_Ordinate_Array(2,2,2,

4,2
2,2,
2,4
)

)
-- Surface with 2 3D polygons

-- First polygon has one ext and one int.
insert into polygons3d values(6,

SDO_Geometry (3003,NULL,NULL ,
SDO_Elem_Info_Array(1,1006,2,1,1003,1,16,2003,1,31,1003,1),

~ BN D

P OOFRPNPFPOOODOOOOOOo

N);
--3D Surface with 3 3D polygons

insert into polygons3d values(7,

SDO_Geometry (3003,NULL,NULL ,
SDO_Elem_Info_Array(1,1006,3,1,1003,1,16,1003,1,34,1003,1),
SDO_Ordinate_Array(0.5,0.0,0.0,

OOl olololo OO
OOONNREF OOOLR]|

P RPOOFRPNRPFPFOOOO

2-40 Developer's Guide

[eNeoNeoNeoNeoNoNeNeNeNe)

.0,0.

[eNeoNeoNoNoNolNeNoll Sl

eNeoNeoNeoNeoNoNeNeNeNel

o

Geometry Examples

o r o
ocoo
o oo
ocoo

N~ = NN
N U1 01 U1

)

-- 3D surface with 3 3D polygons
insert into polygons3d values(8,
SDO_Geometry (3003,NULL,NULL ,

SDO_Elem_Info_Array(1,1006,3,1,1003,1,16,2003,1,31,1003,1,49,1003,1),

SDO_Ordinate_Array(0.5,0.0,0.0,

O O r k|

g1 o1 o101 O .
O O O oo

P PNNPFPOONNEO-

g1 o O 01 Ol
O O O oo

[eoNeNeoNeNoNoNeNoNeNe NN

[oNeoNeoNeoNeoNeNeNeNeNe NN
eNeoNeoNeoNeoNolNelNolNolNelNeR

N OO O0OO0OO0OFRROOFRRNFPOOODODODOOOOo

o/
N/ OO O UCTUTOUTOUITOUITOUITOUITOINNEERERNOOOOOO

-- SOLID with 6 polygons
insert into polygons3d values(10,
SDO_Geometry (3008,NULL,NULL ,

-- Simple 3D polygon

insert into polygons3d values(9,
SDO_Geometry (3003,NULL,NULL ,
SDO_Elem_Info_Array(1,1003,1),
SDO_Ordinate_Array(0.0,-4.0,1.0,

SDO_Elem_Info_Array(1,1007,1,1,1006,6,1,1003,1,16,1003,1,31,1003,1,46,1003,1,61,1003,

1,76,1003,1),

SDO_Ordinate_Array(1.0,0.0,-1.0,

,-1.0,

.
= e

.0
.0

O O

1 =
[REN .
O

CO R R RLREE
OO OO OoOoOoOo
OO O OO K|

[eNeoNoNeNoNeNo)
1
[EY
o)

Spatial Data Types and Metadata 2-41

Geometry Examples

1
[EN
o

NN

LN S
=R-RIRIE-R=-1
=R=LE N

O O

u
h h

=
=

= e
o O

1
[EN
O

e e
OO OO o

1
N N =
OO0 o0oOoO-

PP OORRFPROORRPRRPRREPRPRRPRELPRPRLRPOORRERLOO
[eNeoloNoNeololNolNolololNolololNoelNoelNololololololNo]

" P OOPFRPRFRPPFPPFPOOFRPFRPPFPOOFPROOOOORPF

N e e e e e e e e e e e et e
i =NeoloNoNoNeoNoNoNoNoNoloNoNoNoNoeNoNoNolNoNolNo)

-- Simple SOLID with 6 polygons

--— All polygons are described using the optimized rectangle representation.

insert into polygons3d values(11,

SDO_Geometry (3008,NULL,NULL ,
SDo_Elem_Info_Array(1,1007,1,1,1006,6,1,1003,3,7,1003,3,13,1003,3,19,1003, 3, 25,1003, 3
,31,1003,3),

SDO_Ordinate_Array(1.0,0.0,-1.0,

1.0,1.0,1.0,

.0,1.0,

o
=

[REY
O

o

uuu
B
[

O O O

e
O O

u
=

OFRPRRFPFORFRRFPRORFR OO
[eNeoNeoNeoNolNoNeNel

" OFRPFPOFRPOOOOLRr

N
N O OO OOO0OOOO0OOoO

-- Multi-Solid

-- Both solids use optimized representation.
insert into polygons3d values(12,
SDO_Geometry (3009,NULL,NULL ,
SDO_Elem_Info_Array(1,1007,3,7,1007,3),
SDO_Ordinate_Array(-2.0,1.0,3.0,
-3.0,-1.0,0.0,

));
-- Multi-Solid - like multipolygon in 2D

-- disjoint solids

insert into polygons3d values(13,

SDO_Geometry (3009,NULL,NULL ,
SDO_Elem_Info_Array(1,1007,1,1,1006,6,1,1003,1,16,1003,1,31,1003,1,46,1003,1,61,1003,
1,76,1003,1,91,1007,1,91,1006,7,91,1003,1,106,1003,1,121,1003,1,136,1003,1,151,1003,1
,166,1003,1,184,1003,1),

SDO_Ordinate_Array(1.0,0.0,4.0,

1.0,1.0,4.0,

2-42 Developer's Guide

Geometry Examples

C0O00O0O0O0O0O0O0O0O000000000c0c0cococococococococococn S0 mwo
&&4&&44&&44&&44&&4&&&&&444443.0.0.3.3.,M,M,0.,3.,M,M,0.0.
R A A A e e R R e e B e e e A A e e e e R e A e A I UL
T O OO0 0000 A 100 A dd A cdcd1 OO0 A1 00O OONNO I I OO I I non
CO0O0O0O0O0O0O0O0O0O0O0O00000000000O0O0O0O0O00O0OOWw0S oW o o
ddddooddo0o0cO0cO0O0dO0O0rdddOoO0rdddHdoOodaaNYtTNSILTNNS TN

Spatial Data Types and Metadata 2-43

Geometry Examples

2007 are described as 2003"s.

y(1,1007,1,1,1006,7,1,1003,1,16,1003,1,31,1003,1,46,1003,1,61,1003,

1,76,1003,1,94,1003,1,112,2006,6,112,2003,1,127,2003,1,142,2003,1,157,2003,1,172,2003

,1,187,2003,1),

ay(2.0,0.0,3.0,

y (3008, NULL,NULL ,

-- etype = 1007 exterior solid

-- etype = 2007 is interior solid

-- All polygons of etype
insert into polygons3d values(14,

—-- SOLID with a hole
SDO_Geometr

SDO_Elem Info Arra
SDO Ordinate Arr

2-44 Developer's Guide

Geometry Examples

1.0,1.0,0.5
D)E

-- Gtype = SOLID

-- The elements make up one composite solid (non-disjoint solids) like a cube

-- on a cube on a cube.

-- This is made up of two solid elements.

-- Each solid element here is a simple solid.
insert into polygons3d values(15,
SDO_Geometry (3008,NULL,NULL ,

SDO_Elem_Info_Array(1,1008,2,1,1007,1,1,1006,6,1,1003,1,16,1003,1,31,1003,1,46,1003, 1

61,1003,1,76,1003,1,91,1007,1,91,1006,7,91,1003,1,106,1003,1,121,1003,1,136,1003,1,15

1,1003,1,166,1003,1,184,1003,1),
SDO_Ordinate_Array(-2.0,1.0,3.0,

-2.0,1.0,0.0,
-3.0
-3.0
-2.0
-3.0
-3.0
-3.0
-3.0
-3.0
-3.0,-1
-3.0,-1
-2.0,-1.
-2.0,-1.
-3.0,-1
-2.0,-1
-2.0,-1
-2.0
-2.0
-2.0
-2.0
-2.0
-3.0
-3.0
-2.0
-2.0

Spatial Data Types and Metadata 2-45

Geometry Examples

-2.0,-2.0,3.0,
-2.0,2.0,3.0,
-2.0,2.0,0.0,
-2.0,-2.0,0.0,
-2.0,-2.0,3.0,
4.0,2.0,3.0,
4.0,2.0,0.0,
-2.0,2.0,0.0,
-2.0,2.0,3.0

Example 2-19 Updating Metadata and Creating Indexes for 3-Dimensional
Geometries

Example 2-19 (page 2-46) updates the USER_SDO_GEOM_METADATA view with the
necessary information about the tables created in Example 2-18 (page 2-38)
(POINTS3D, LINES3D, and POLYGONS3D), and it creates a spatial index on the
geometry column (named GEOMETRY) in each table. The indexes are created with the
PARAMETERS ("sdo_indx_dims=3") clause, to ensure that all three dimensions are
considered in operations that are supported on three-dimensional geometries.

INSERT INTO user_sdo_geom_metadata VALUES("POINTS3D", "GEOMETRY",
sdo_dim_array(sdo_dim_element("X", -100,100, 0.000005),
sdo_dim_element("Y", -100,100, 0.000005),
sdo_dim_element(*Z", -100,100, 0.000005)), NULL);

CREATE INDEX points3d_sidx on points3d(geometry)

INDEXTYPE 1S mdsys.spatial_index
PARAMETERS ("sdo_indx_dims=3");

2-46 Developer's Guide

Geometry Metadata Views

INSERT INTO user_sdo_geom_metadata VALUES("LINES3D", "GEOMETRY",
sdo_dim_array(sdo_dim_element("X", -100,100, 0.000005),
sdo_dim_element("Y", -100,100, 0.000005),
sdo_dim_element(*Z", -100,100, 0.000005)), NULL);

CREATE INDEX lines3d_sidx on lines3d(geometry)
INDEXTYPE 1S mdsys.spatial_index
PARAMETERS ("sdo_indx_dims=3");

INSERT INTO user_sdo_geom_metadata VALUES("POLYGONS3D", "GEOMETRY®,
sdo_dim_array(sdo_dim_element("X", -100,100, 0.000005),
sdo_dim_element("Y", -100,100, 0.000005),
sdo_dim_element(*Z", -100,100, 0.000005)), NULL);

CREATE INDEX polygons3d_sidx on polygons3d(geometry)
INDEXTYPE 1S mdsys.spatial_index
PARAMETERS ("sdo_indx_dims=3");

2.8 Geometry Metadata Views

The geometry metadata describing the dimensions, lower and upper bounds, and
tolerance in each dimension is stored in a global table owned by MDSYS (which users
should never directly update). Each Spatial and Graph user has the following views
available in the schema associated with that user:

¢ USER_SDO_GEOM_METADATA contains metadata information for all spatial
tables owned by the user (schema). This is the only view that you can update, and
it is the one in which Spatial and Graph users must insert metadata related to
spatial tables.

e ALL_SDO_GEOM_METADATA contains metadata information for all spatial
tables on which the user has SELECT permission.

Spatial and Graph users are responsible for populating these views. For each spatial
column, you must insert an appropriate row into the
USER_SDO_GEOM_METADATA view. Oracle Spatial and Graph ensures that the
ALL_SDO_GEOM_METADATA view is also updated to reflect the rows that you
insert into USER_SDO_GEOM_METADATA.

Each metadata view has the following definition:

TABLE_NAME ~ VARCHAR2(32),
COLUMN_NAME ~ VARCHAR2(32),
DIMINFO SDO_DIM_ARRAY,
SRID NUMBER

);

In addition, the ALL_SDO_GEOM_METADATA view has an OWNER column
identifying the schema that owns the table specified in TABLE_NAME.

The following considerations apply to schema, table, and column names, and to any
SDO_DIMNAME values, that are stored in any Oracle Spatial and Graph metadata
views:

¢ They must contain only letters, numbers, and underscores. For example, such a
name cannot contain a space (), an apostrophe ("), a quotation mark (**), or a
comma (,).

Spatial Data Types and Metadata 2-47

Geometry Metadata Views

* All letters in the names are converted to uppercase before the names are stored in
geometry metadata views or before the tables are accessed. This conversion also
applies to any schema name specified with the table name.

2.8.1 TABLE_NAME

The TABLE_NAME column contains the name of a feature table, such as
COLA_MARKETS, that has a column of type SDO_GEOMETRY.

The table name is stored in the spatial metadata views in all uppercase characters.

The table name cannot contain spaces or mixed-case letters in a quoted string when
inserted into the USER_SDO_GEOM_METADATA view, and it cannot be in a quoted
string when used in a query (unless it is in all uppercase characters).

The spatial feature table cannot be an index-organized table if you plan to create a
spatial index on the spatial column.

2.8.2 COLUMN_NAME

The COLUMN_NAME column contains the name of the column of type
SDO_GEOMETRY. For the COLA_MARKETS table, this column is called SHAPE.

The column name is stored in the spatial metadata views in all uppercase characters.

The column name cannot contain spaces or mixed-case letters in a quoted string when
inserted into the USER_SDO_GEOM_METADATA view, and it cannot be in a quoted
string when used in a query (unless it is in all uppercase characters).

2.8.3 DIMINFO

The DIMINFO column is a varying length array of an object type, ordered by
dimension, and has one entry for each dimension. The SDO_DIM_ARRAY type is
defined as follows:

Create Type SDO_DIM_ARRAY as VARRAY(4) of SDO_DIM_ELEMENT;

The SDO_DIM_ELEMENT type is defined as:

Create Type SDO_DIM_ELEMENT as OBJECT (
SDO_DIMNAME VARCHAR2(64),
SDO_LB NUMBER,
SDO_UB NUMBER,
SDO_TOLERANCE NUMBER);

The SDO_DIM_ARRAY instance is of size n if there are n dimensions. That is,
DIMINFO contains 2 SDO_DIM_ELEMENT instances for two-dimensional
geometries, 3 instances for three-dimensional geometries, and 4 instances for four-
dimensional geometries. Each SDO_DIM_ELEMENT instance in the array must have
valid (not null) values for the SDO_LB, SDO_UB, and SDO_TOLERANCE attributes.

Note:

The number of dimensions reflected in the DIMINFO information must match
the number of dimensions of each geometry object in the layer.

2-48 Developer's Guide

Other Spatial Metadata Views

2.8.4 SRID

For an explanation of tolerance and how to determine the appropriate
SDO_TOLERANCE value, see Tolerance (page 1-6), especially Tolerance in the
Geometry Metadata for a Layer (page 1-7).

Spatial and Graph assumes that the varying length array is ordered by dimension. The
DIMINEFO varying length array must be ordered by dimension in the same way the
ordinates for the points in SDO_ORDINATES varying length array are ordered. For
example, if the SDO_ORDINATES varying length array contains {X1, Y1, ..., Xn, Yn},
then the first DIMINFO entry must define the X dimension and the second DIMINFO
entry must define the Y dimension.

Simple Example: Inserting_ Indexing_ and Querying Spatial Data (page 2-1) shows the
use of the SDO_GEOMETRY and SDO_DIM_ARRAY types. This example
demonstrates how geometry objects (hypothetical market areas for colas) are
represented, and how the COLA_MARKETS feature table and the
USER_SDO_GEOM_METADATA view are populated with the data for those objects.

The SRID column should contain either of the following: the SRID value for the
coordinate system for all geometries in the column, or NULL if no specific coordinate
system should be associated with the geometries. (For information about coordinate
systems, see Coordinate Systems (Spatial Reference Systems) (page 6-1).)

2.9 Other Spatial Metadata Views

Oracle Spatial and Graph uses the following other metadata views:

e USER_SDO_3DTHEMES and ALL_SDO_3DTHEMES contain information about
three-dimensional themes. These views are described in xxx_SDO_3DTHEMES
Views (page 2-49).

e USER_SDO_SCENES and ALL_SDO_SCENES contain information about scenes.
These views are described in xxx_SDO_SCENES Views (page 2-50).

e USER_SDO_VIEWFRAMES and ALL_SDO_VIEWFRAMES contain information
about viewframes. These views are described in xxx_SDO_VIEWFRAMES Views
(page 2-50).

The USER_SDO_xxx views contain metadata information about objects owned by the
user (schema), and the ALL_SDO_xxx views contain metadata information about
objects on which the user has SELECT permission.

The ALL_SDOQO_xxx views include an OWNER column that identifies the schema of the
owner of the object. The USER_SDO_xxx views do not include an OWNER column.

2.9.1 xxx_SDO_3DTHEMES Views

The USER_SDO_3DTHEMES and ALL_SDO_3DTHEMES views have the columns
listed in Table 2-8 (page 2-49).

Table 2-8 xxx_SDO_3DTHEMES Views
L

Column Name Data Type Description
OWNER VARCHAR2(32) Schema that owns the theme (ALL_SDO_3DTHEMES
only)

Spatial Data Types and Metadata 2-49

Other Spatial Metadata Views

Table 2-8 (Cont.) xxx_SDO_3DTHEMES Views

Column Name Data Type Description

NAME VARCHAR2(32) Unique name to be associated with the theme

DESCRIPTION VARCHAR2(4000 Optional descriptive text about the theme
)

BASE_TABLE = VARCHAR2(64) Table or view containing the spatial geometry column

THEME_COL VARCHAR2(2048 Name of the theme column
UMN)

STYLE_COLU VARCHAR2(32) Name of the style column
MN

THEME_TYPE VARCHAR2(32) Theme type

DEFINITION CLOB XML definition of the theme

2.9.2 xxx_SDO_SCENES Views

The USER_SDO_SCENES and ALL_SDO_SCENES views have the columns listed in
Table 2-9 (page 2-50).

Table 2-9 xxx_SDO_SCENES Views

Column Name Data Type Description
OWNER VARCHAR2(32) Schema that owns the scene (ALL_SDO_SCENES only)
NAME VARCHAR2(32) Unique name to be associated with the scene
DESCRIPTION VARCHAR2(400 Optional descriptive text about the scene

0)
DEFINITION CLOB XML definition of the scene

2.9.3 xxx_SDO_VIEWFRAMES Views

The USER_SDO_VIEWFRAMES and ALL_SDO_VIEWFRAMES views have the
columns listed in Table 2-10 (page 2-50).

Table 2-10 xxx_SDO_VIEWFRAMES Views

Column Name Data Type Description

OWNER VARCHAR2(32) Schema that owns the scene (ALL_SDO_VIEWFRAMES
only)

NAME VARCHAR2(32) Unique name to be associated with the viewframe

DESCRIPTIO VARCHAR2(4000 Optional descriptive text about the viewframe
N)

SCENE_NAM VARCHAR2(32) Name of the scene associated with the viewframe
E

2-50 Developer's Guide

Spatial Index-Related Structures

Table 2-10 (Cont.) xxx_SDO_VIEWFRAMES Views
. ___|

Column Name Data Type Description

DEFINITION CLOB XML definition of the viewframe

2.10 Spatial Index-Related Structures

This section describes the structure of the tables containing the spatial index data and
metadata. Concepts and usage notes for spatial indexing are explained in Indexing of
Spatial Data (page 1-10). The spatial index data and metadata are stored in tables that
are created and maintained by the Spatial and Graph indexing routines. These tables
are created in the schema of the owner of the feature (underlying) table that has a
spatial index created on a column of type SDO_GEOMETRY.

2.10.1 Spatial Index Views

There are two sets of spatial index metadata views for each schema (user):
xxx_SDO_INDEX_INFO and xxx_SDO_INDEX METADATA, where xxx can be USER
or ALL. These views are read-only to users; they are created and maintained by the
Spatial and Graph indexing routines.

2.10.1.1 xxx_SDO_INDEX_INFO Views

The following views contain basic information about spatial indexes:

¢ USER_SDO_INDEX_INFO contains index information for all spatial tables owned
by the user.

e ALL_SDO_INDEX_INFO contains index information for all spatial tables on which
the user has SELECT permission.

The USER_SDO_INDEX_INFO and ALL_SDO_INDEX_INFO views contain the same
columns, as shown Table 2-11 (page 2-51), except that the USER_SDO_INDEX_INFO
view does not contain the SDO_INDEX_OWNER column. (The columns are listed in
their order in the view definition.)

Table 2-11 Columns in the xxx_SDO_INDEX_INFO Views
- - - - |

Column Name Data Type Purpose
SDO_INDEX_OWNER VARCHAR Owner of the index (ALL_SDO_INDEX_INFO view
2 only).
INDEX_NAME VARCHAR Name of the index.
2
TABLE_OWNER VARCHAR Name of the owner of the table containing the
2 column on which this index is built.
TABLE_NAME VARCHAR Name of the table containing the column on which
2 this index is built.
COLUMN_NAME VARCHAR Name of the column on which this index is built.
2

Spatial Data Types and Metadata 2-51

Spatial Index-Related Structures

Table 2-11 (Cont.) Columns in the xxx_SDO_INDEX_INFO Views
. |

Column Name Data Type Purpose
SDO_INDEX_TYPE VARCHAR Contains RTREE (for an R-tree index).
2
SDO_INDEX_TABLE VARCHAR Name of the spatial index table (described in Spatial
2 Index Table Definition (page 2-54)).
SDO_INDEX_STATUS VARCHAR (Reserved for Oracle use.)
2

2.10.1.2 xxx_SDO_INDEX_METADATA Views

The following views contain detailed information about spatial index metadata:

e USER_SDO_INDEX_METADATA contains index information for all spatial tables

owned by the user.

e ALL_SDO_INDEX_METADATA contains index information for all spatial tables
on which the user has SELECT permission.

The USER_SDO_INDEX_METADATA and ALL_SDO_INDEX_METADATA views
contain the same columns, as shown Table 2-12 (page 2-52). (The columns are listed
in their order in the view definition.)

Table 2-12 Columns in the xxx_SDO_INDEX_METADATA Views
- - - - - |

Column Name Data Type Purpose

SDO_INDEX_OWNER VARCHAR2 Owner of the index.

SDO_INDEX_TYPE VARCHAR?2 Contains RTREE (for an R-tree index).

SDO_LEVEL NUMBER (No longer relevant; applies to a desupported
feature.)

SDO_NUMTILES NUMBER (No longer relevant; applies to a desupported
feature.)

SDO_MAXLEVEL NUMBER (No longer relevant; applies to a desupported
feature.)

SDO_COMMIT_INTERVA NUMBER (No longer relevant; applies to a desupported

L feature.)

SDO_INDEX_TABLE VARCHAR2 Name of the spatial index table (described in
Spatial Index Table Definition (page 2-54)).

SDO_INDEX_NAME VARCHAR2 Name of the index.

SDO_INDEX_PRIMARY NUMBER Indicates if this is a primary or secondary index.
1 = primary, 2 = secondary.

SDO_TSNAME VARCHAR2 Schema name of the SDO_INDEX_TABLE.

SDO_COLUMN_NAME VARCHAR2 Name of the column on which this index is built.

SDO_RTREE_HEIGHT NUMBER Height of the R-tree.

2-52 Developer's Guide

Spatial Index-Related Structures

Table 2-12 (Cont.) Columns in the xxx_SDO_INDEX_METADATA Views
. |

Column Name Data Type Purpose

SDO_RTREE_NUM_NOD NUMBER Number of nodes in the R-tree.

ES

SDO_RTREE_DIMENSIO NUMBER Number of dimensions used internally by

NALITY Spatial and Graph. This may be different from
the number of dimensions indexed, which is
controlled by the sdo_indx_dims keyword in
the CREATE INDEX (page 17-7) or ALTER
INDEX (page 17-1) statement, and which is
stored in the SDO_INDEX_DIMS column in this
view. For example, for an index on geodetic
data, the SDO_RTREE_DIMENSIONALITY
value is 3, but the SDO_INDEX_DIMS value is 2.

SDO_RTREE_FANOUT NUMBER Maximum number of children in each R-tree
node.

SDO_RTREE_ROOT VARCHAR2 Rowid corresponding to the root node of the R-
tree in the index table.

SDO_RTREE_SEQ NAME VARCHAR2 Sequence name associated with the R-tree.

SDO_FIXED_META RAW If applicable, this column contains the metadata
portion of the SDO_GROUPCODE or
SDO_CODE for a fixed-level index.

SDO_TABLESPACE VARCHAR2 Same as in the SQL CREATE TABLE statement.
Tablespace in which to create the SDOINDEX
table.

SDO_INITIAL_EXTENT VARCHAR2 Same as in the SQL CREATE TABLE statement.

SDO_NEXT_EXTENT VARCHAR2 Same as in the SQL. CREATE TABLE statement.

SDO_PCTINCREASE NUMBER Same as in the SQL CREATE TABLE statement.

SDO_MIN_EXTENTS NUMBER Same as in the SQL CREATE TABLE statement.

SDO_MAX_EXTENTS NUMBER Same as in the SQL CREATE TABLE statement.

SDO_INDEX_DIMS NUMBER Number of dimensions of the geometry objects
in the column on which this index is built, as
determined by the value of the sdo_indx_dims
keyword in the CREATE INDEX (page 17-7) or
ALTER INDEX (page 17-1) statement.

SDO_LAYER_GTYPE VARCHAR2 Contains DEFAULT if the layer can contain both
point and polygon data, or a value from the
Geometry Type column in SDO_GTYPE
(page 2-5).

SDO_RTREE_PCTFREE NUMBER Minimum percentage of slots in each index tree
node to be left empty when an R-tree index is
created.

SDO_INDEX_PARTITION VARCHAR2 For a partitioned index, name of the index

partition.

Spatial Data Types and Metadata 2-53

Spatial Index-Related Structures

Table 2-12 (Cont.) Columns in the xxx_SDO_INDEX_METADATA Views
. |

Column Name Data Type Purpose

SDO_PARTITIONED NUMBER Contains 0 if the index is not partitioned or 1 if
the index is partitioned.

SDO_RTREE_QUALITY NUMBER Quality score for an index. See the information
about R-tree quality in R-Tree Quality

(page 1-11).
SDO_INDEX_VERSION NUMBER Internal version number of the index.

SDO_INDEX_GEODETIC =~ VARCHAR2 Contains TRUE if the index is geodetic and
FALSE if the index is not geodetic.

SDO_INDEX_STATUS VARCHAR2 (Reserved for Oracle use.)

SDO_NL_INDEX_TABLE = VARCHAR2 Name of a separate index table (with a name in
the form MDNT _...$) for nonleaf nodes of the
index. For more information, see the description
of the sdo_non_leaf_tbl parameter for the
CREATE INDEX (page 17-7) statement in SQL
Statements for Indexing Spatial Data
(page 17-1).

SDO_DML_BATCH_SIZE NUMBER Number of index updates to be processed in
each batch of updates after a commit operation.
For more information, see the description of the
sdo_dml_batch_size parameter for the
CREATE INDEX (page 17-7) statement in SQL
Statements for Indexing Spatial Data
(page 17-1).

SDO_RTREE_EXT_XPND NUMBER (Reserved for future use.)
SDO_NUM_ROWS NUMBER Number of rows (with non-null geometries) in

the base spatial table (table containing the
column on which this index is built).

SDO_NUM_BLKS NUMBER Number of blocks in the spatial index table
(SDO_INDEX_TABLE),
SDO_ROOT_MBR SDO_GEOM Minimum bounding rectangle of the maximum
ETRY extent of the spatial layer. This is greater than or

equal to the MBR of the current extent, and is
reset to reflect the current extent when the index
is rebuilt.

2.10.2 Spatial Index Table Definition

For an R-tree index, a spatial index table (each SDO_INDEX_TABLE entry as
described in xxx_SDO_INDEX_METADATA Views (page 2-52)) contains the columns
shown in Table 2-13 (page 2-55).

2-54 Developer's Guide

Unit of Measurement Support

Table 2-13 Columns in an R-Tree Spatial Index Data Table
- - |

Column Name Data Type Purpose

NODE_ID NUMBER Unique ID number for this node of the tree.

NODE_LEVEL NUMBER Level of the node in the tree. Leaf nodes (nodes whose
entries point to data items in the base table) are at level 1,
their parent nodes are at level 2, and so on.

INFO BLOB Other information in a node. Includes an array of
<child_mbr, child_rowid> pairs (maximum of fanout
value, or number of children for such pairs in each R-tree
node), where chi ld_rowid is the rowid of a child node, or
the rowid of a data item from the base table.

2.10.3 R-Tree Index Sequence Object

Each R-tree spatial index table has an associated sequence object
(SDO_RTREE_SEQ_NAME in the USER_SDO_INDEX_METADATA view, described
in xxx_SDO_INDEX_METADATA Views (page 2-52)). The sequence is used to ensure
that simultaneous updates can be performed to the index by multiple concurrent
users.

The sequence name is the index table name with the letter S replacing the letter T
before the underscore (for example, the sequence object MDRS_5C01% is associated
with the index table MDRT_5C01$).

2.11 Unit of Measurement Support

Geometry functions that involve measurement allow an optional unit parameter to
specify the unit of measurement for a specified distance or area, if a georeferenced
coordinate system (SDO_SRID value) is associated with the input geometry or
geometries. The unit parameter is not valid for geometries with a null SDO_SRID
value (that is, an orthogonal Cartesian system). For information about support for
coordinate systems, see Coordinate Systems (Spatial Reference Systems) (page 6-1).

The default unit of measure is the one associated with the georeferenced coordinate
system. The unit of measure for most coordinate systems is the meter, and in these
cases the default unit for distances is meter and the default unit for areas is square
meter. By using the unit parameter, however, you can have Spatial and Graph
automatically convert and return results that are more meaningful to application
users, for example, displaying the distance to a restaurant in miles.

The unit parameter must be enclosed in single quotation marks and contain the
string unit= and a valid UNIT_OF_MEAS_NAME value from the
SDO_UNITS_OF_MEASURE table (described in SDO_UNITS_OF_MEASURE Table
(page 6-41)). For example, 'unit=KM' in the following example (using data and
definitions from Example 6-17 (page 6-76) in Example of Coordinate System
Transformation (page 6-76)) specifies kilometers as the unit of measurement:

SELECT c.name, SDO_GEOM.SDO_LENGTH(c.shape, m.diminfo, "unit=KM®)
FROM cola_markets_cs c, user_sdo_geom_metadata m
WHERE m.table_name = "COLA_MARKETS_CS®" AND m.column_name = "SHAPE";

Spatial and Graph uses the information in the SDO_UNITS_OF_MEASURE table
(described in SDO_UNITS_OF_MEASURE Table (page 6-41)) to determine which

Spatial Data Types and Metadata 2-55

Unit of Measurement Support

unit names are valid and what ratios to use in comparing or converting between
different units. For convenience, you can also use the following legacy views to see the
angle, area, and distance units of measure:

e MDSYS.SDO_ANGLE_UNITS (described in MDSYS.SDO_ANGLE_UNITS View
(page 6-52))

e MDSYS.SSDO_AREA_UNITS (described in MDSYS.SDO_AREA_UNITS View
(page 6-52))

e MDSYS.SSDO_DIST_UNITS (described in MDSYS.SDO_DIST_UNITS View
(page 6-53))

2.11.1 Creating a User-Defined Unit of Measurement

If the area and distance units of measurement supplied by Oracle are not sufficient for
your needs, you can create user-defined area and distance units. (You cannot create a
user-defined angle unit.) To do so, you must connect to the database as a user that has
been granted the DBA role, and insert a row for each desired unit to the
SDO_UNITS_OF_MEASURE table (described in SDO_UNITS_OF_MEASURE Table
(page 6-41))

Table 2-14 (page 2-56) lists the columns in the SDO_UNITS_OF_MEASURE table and
the requirements and recommendations for each if you are inserting a row for a user-
defined unit of measurement.

Table 2-14 SDO_UNITS_OF_MEASURE Table Entries for User-Defined Unit
|

Column Name Description

UOM_ID Any unit of measure ID number not currently used for an Oracle-
supplied unit or another user-defined unit. Example: 1000001

UNIT_OF_MEAS_ Name of the user-defined unit of measurement. Example: HALF_METER
NAME

SHORT_NAME Optional short name (if any) of the unit of measurement.

UNIT_OF_MEAS_ Type of measure for which the unit is used. Must be either area (for an
TYPE area unit) or length (for a distance unit).

TARGET_UOM_I Optional, but for support purposes you should enter one of the
D following: 10008 for an area unit (10008 = UOM_ID for SQ_METER) or
10032 for a distance unit (10032 = UOM_ID for METER).

FACTOR_B For a value that can be expressed as a floating point number, specify
how many square meters (for an area unit) or meters (for a distance
unit) are equal to one of the user-defined unit. For example, for a unit
defined as one-half of a standard meter, specify: .5

For a value that cannot be expressed as a simple floating point number,
specify the dividend for the expression FACTOR_B/FACTOR_C that
determines how many square meters (for an area unit) or meters (for a
distance unit) are equal to one of the user-defined unit.

FACTOR_C For a value that can be expressed as a floating point number, specify 1.

For a value that cannot be expressed as a simple floating point number,
specify the divisor for the expression FACTOR_B/FACTOR_C that
determines how many square meters (for an area unit) or meters (for a
distance unit) are equal to one of the user-defined unit.

2-56 Developer's Guide

Unit of Measurement Support

Table 2-14 (Cont.) SDO_UNITS_OF_MEASURE Table Entries for User-Defined Unit
. __|

Column Name Description

INFORMATION_S Specify the following: USER_DEFINED
OURCE

DATA_SOURCE A phrase briefly describing the unit. Example: User-defined half

meter
IS_LEGACY Specify the following: FALSE.

LEGACY_CODE (Do not use this for a user-defined unit.)

Example 2-20 (page 2-57) creates a user-defined distance unit named HALF_METER,
and uses it in a query to find all customers within 400,000 half-meters (200 kilometers)

of a specified store.

Example 2-20 Creating and Using a User-Defined Unit of Measurement

-- Distance unit: HALF_METER
-- FACTOR_B specifies how many meters = one of this unit.

INSERT INTO MDSYS.SDO_UNITS_OF MEASURE
(UOM_ID, UNIT_OF MEAS_NAME, UNIT_OF MEAS TYPE, TARGET UOM_ID,

FACTOR_B, FACTOR_C, INFORMATION_SOURCE, DATA_SOURCE, IS_LEGACY)

VALUES
(100001, "HALF_METER®, "length®, 100001,
.5, 1, "User-defined half meter®, "USER_DEFINED", "FALSE");

-- Find all the customers within 400,000 half-meters of store_id = 101

SELECT /*+ordered*/
c.customer_id,
c.first_name,
c.last_name
FROM stores s,
customers ¢
WHERE s._store_id = 101
AND sdo_within_distance (c.cust_geo_location,
s.store_geo_location,
"distance = 400000 unit = HALF_METER") = "TRUE";

CUSTOMER_ID FIRST_NAME LAST_NAME
1005 Carla Rodriguez
1004 Thomas Williams
1003 Marian Chang
1001 Alexandra Nichols

Spatial Data Types and Metadata 2-57

Unit of Measurement Support

2-58 Developer's Guide

3

SQL Multimedia Type Support

This chapter explains the support within Oracle Spatial and Graph for the use of the
ST_xxx types specified in ISO 13249-3, Information technology - Database languages - SQL
Multimedia and Application Packages - Part 3: Spatial. This chapter contains the following
major sections:

ST_GEOMETRY and SDO_GEOMETRY Interoperability (page 3-1)

Tolerance Value with SQL Multimedia Types (page 3-8)

¢ Avoiding Name Conflicts (page 3-8)

Annotation Text Type and Views (page 3-8)

3.1 ST_GEOMETRY and SDO_GEOMETRY Interoperability

The SQL Multimedia ST_GEOMETRY root type, including its subtypes, and the Oracle
Spatial and Graph SDO_GEOMETRY type (described in SDO_GEOMETRY Object
Type (page 2-5)) are essentially interoperable. The ST_GEOMETRY subtypes are:

e ST_CIRCULARSTRING

¢ ST_COMPOUNDCURVE
e ST_CURVE

e ST _CURVEPOLYGON

e ST_GEOMCOLLECTION
e ST _LINESTRING

e ST_MULTICURVE

e ST _MULTILINESTRING
e ST_MULTIPOINT

e ST _MULTIPOLYGON

e ST_MULTISURFACE

e ST _POINT

e ST_POLYGON

e ST _SURFACE

SQL Multimedia Type Support 3-1

ST_GEOMETRY and SDO_GEOMETRY Interoperability

The ST_GEOMETRY type has an additional constructor method (that is, in addition to
the constructors defined in the ISO standard) for creating an instance of the type using
an SDO_GEOMETRY object. This constructor has the following format:

ST_GEOMETRY(geom SDO_GEOMETRY);

Example 3-1 Using the ST_GEOMETRY Type for a Spatial Column

Example 3-1 (page 3-2) creates a table using the ST_GEOMETRY type for a spatial
column instead of the SDO_GEOMETRY type, and it uses the ST_GEOMETRY
constructor to specify the SHAPE column value when inserting a row into that table.

CREATE TABLE cola_markets (
mkt_id NUMBER PRIMARY KEY,
name VARCHAR2(32),
shape ST_GEQVETRY);

INSERT INTO cola_markets VALUES(

1,
"cola_a”",
ST_GEQOVETRY(
SDO_GEOMETRY (
2003, -- two-dimensional polygon
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3), -- one rectangle (1003 = exterior)
SDO_ORDINATE_ARRAY(1,1, 5,7) -- only 2 points needed to
-- define rectangle (lower left and upper right) with
-- Cartesian-coordinate data
)
)

);

If you create a table with a spatial column of type ST_GEOMETRY, you should add its
information to the USER_SDO_GEOM_METADATA view and create a spatial index
on the ST_GEOMETRY column, just as you would for spatial data defined using the
SDO_GEOMETRY type. After you have performed these operations, you can use
Oracle Spatial and Graph operators (described in Spatial Operators (page 18-1)) in the
ST_GEOMETRY data. In addition to the operators defined in the standard, you can
use the SDO_NN (page 18-17) and SDO_WITHIN_DISTANCE (page 18-36) operators.

Example 3-2 Creating, Indexing, Storing, and Querying ST_GEOMETRY Data

Example 3-2 (page 3-2) performs many of the same basic operations as in Example 2-1
(page 2-2) in Simple Example: Inserting_ Indexing_ and Querying Spatial Data

(page 2-1), but it uses the ST_GEOMETRY type instead of the SDO_GEOMETRY type
for the spatial column.

CREATE TABLE cola_markets (
mkt_id NUMBER PRIMARY KEY,
name VARCHAR2(32),
shape ST_GEOMETRY);

INSERT INTO cola_markets VALUES(

1,

"cola_a”",

ST_GEOMETRY(

SDO_GEOMETRY (

2003, -- two-dimensional polygon
NULL,
NULL,

3-2 Developer's Guide

ST_GEOMETRY and SDO_GEOMETRY Interoperability

SDO_ELEM_INFO_ARRAY(1,1003,3), -- one rectangle (1003 = exterior)
SDO_ORDINATE_ARRAY(1,1, 5,7) -- only 2 points needed to
-- define rectangle (lower left and upper right) with
-- Cartesian-coordinate data
)
)
);

INSERT INTO cola_markets VALUES(
2,
"cola_b”,
ST_GEOMETRY(
SDO_GEOMETRY (
2003, -- two-dimensional polygon
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
SDO_ORDINATE_ARRAY(5,1, 8,1, 8,6, 5,7, 5,1)
)
)
);

INSERT INTO cola_markets VALUES(
3,
"cola_c”,
ST_GEOMETRY(
SDO_GEOMETRY (
2003, -- two-dimensional polygon
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
SDO_ORDINATE_ARRAY(3,3, 6,3, 6,5, 4,5, 3,3)
)
)
);

INSERT INTO cola_markets VALUES(

4,

"cola_d”,

ST_GEOMETRY(

SDO_GEOMETRY (

2003, -- two-dimensional polygon
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1,1003,4), -- one circle
SDO_ORDINATE_ARRAY(8,7, 10,9, 8,11)

-- Update the USER_SDO_GEOM_METADATA view. This is required before
-- the spatial index can be created. Do this only once for each layer
-- (that is, table-column combination; here: cola_markets and shape).

INSERT INTO user_sdo_geom_metadata

(TABLE_NAVME,
COLUMN_NAME,

SQL Multimedia Type Support 3-3

ST_GEOMETRY and SDO_GEOMETRY Interoperability

DIMINFO,
SRID)

VALUES (

"cola_markets",

"shape”,

SDO_DIM_ARRAY(-- 20X20 grid
SDO_DIM_ELEMENT(*X*, 0, 20, 0.005),
SDO_DIM_ELEMENT(*Y*, 0, 20, 0.005)

).
NULL -- SRID
):

CREATE INDEX cola_spatial_idx
ON cola_markets(shape)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

-- SDO_NN operator.

SELECT /*+ INDEX(c cola_spatial_idx) */ c.mkt_id, c.name
FROM cola_markets c
WHERE SDO_NN(c.shape, sdo_geometry(2001, NULL,
sdo_point_type(10,7,NULL), NULL, NULL), “sdo_num_res=2") = "TRUE";

-- SDO_NN_DISTANCE ancillary operator

SELECT /*+ INDEX(c cola_spatial_idx) */
c.mkt_id, c.name, SDO_NN_DISTANCE(1) dist
FROM cola_markets c
WHERE SDO_NN(c.shape, sdo_geometry(2001, NULL,
sdo_point_type(10,7,NULL), NULL, NULL),
"sdo_num_res=2", 1) = "TRUE" ORDER BY dist;

-- SDO_WITHIN_DISTANCE operator (two examples)

SELECT c.name FROM cola_markets ¢ WHERE SDO_WITHIN_DISTANCE(c.shape,
SDO_GEOMETRY (2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),
SDO_ORDINATE_ARRAY(4,6, 8,8)),
"distance=10") = "TRUE";

-- What geometries are within a distance of 10 from a query window

-- (here, a rectangle with lower-left, upper-right coordinates 4,6, 8,8)7?

-- But exclude geoms with MBRs with both sides < 4.1, i.e., cola_c and cola_d.

SELECT c.name FROM cola_markets ¢ WHERE SDO_WITHIN_DISTANCE(c.shape,
SDO_GEOMETRY (2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),

SDO_ORDINATE_ARRAY(4,6, 8,8)),
"distance=10 min_resolution=4.1") = "TRUE";

SELECT c.shape.GET_WKB()

3-4 Developer's Guide

ST_GEOMETRY and SDO_GEOMETRY Interoperability

FROM

SELECT
FROM

SELECT
FROM

SELECT
FROM

SELECT
FROM

SELECT
FROM

SELECT
FROM

SELECT
FROM

SELECT
FROM

SELECT
FROM

SELECT
FROM

SELECT
FROM

SELECT
FROM

SELECT
FROM

SELECT
FROM

cola_markets ¢ WHERE c.name

c.shape.GET_WKTQ)
cola_markets ¢ WHERE c.name

c.shape.ST_COORDDIM()
cola_markets ¢ WHERE c.name

c.shape.ST_ISVALID()
cola_markets ¢ WHERE c.name

c.shape.ST_SRID()
cola_markets ¢ WHERE c.name

c.shape.ST_SRID(8307)
cola_markets ¢ WHERE c.name

c.shape.ST_ISEMPTY()
cola_markets ¢ WHERE c.name

c.shape.ST_ENVELOPE()
cola_markets ¢ WHERE c.name

c.shape.ST_BOUNDARY()
cola_markets ¢ WHERE c.name

c.shape.ST_GEOMETRYTYPE()
cola_markets ¢ WHERE c.name

c.shape.ST_ISSIMPLEQ)
cola_markets ¢ WHERE c.name

c.shape.ST_DIMENSIONQ)
cola_markets ¢ WHERE c.name

c.shape.ST_CONVEXHULLQ)
cola_markets ¢ WHERE c.name

c.shape.ST_CENTROID()
cola_markets ¢ WHERE c.name

c.shape.ST_GETTOLERANCE()
cola_markets ¢ WHERE c.name

"cola_b”;

"cola_b”;

"cola_b”;

"cola_b”;

"cola_b”;

"cola_b”;

"cola_b”;

"cola_b”;

"cola_b”;

"cola_b”;

"cola_b”;

"cola_b”;

"cola_b”;

"cola_b”;

"cola_b”;

-- Some member functions that require a parameter

DECLARE
cola_
cola_|
cola_
cola_

a_geom ST_GEOMETRY;
b_geom ST_GEOMETRY;
c_geom ST_GEOMETRY;
d_geom ST_GEOMETRY;

returned_geom ST_GEOMETRY;
returned_number NUMBER;

BEGIN

-- Populate geometry variables with cola market shapes.
SELECT c.shape INTO cola_a geom FROM cola_markets c
WHERE c.name = "cola_a";
SELECT c.shape INTO cola_b_geom FROM cola_markets c
WHERE c.name = "cola_b";
SELECT c.shape INTO cola_c_geom FROM cola_markets c

SQL Multimedia Type Support 3-5

ST_GEOMETRY and SDO_GEOMETRY Interoperability

WHERE c.name = "cola_c”;
SELECT c.shape INTO cola_d _geom FROM cola_markets c
WHERE c.name = "cola_d*;

SELECT c.shape.ST_EQUALS(cola_a_geom) INTO returned_number
FROM cola_markets ¢ WHERE c.name = "cola_b";
DBMS_OUTPUT.PUT_LINE("Is cola_b equal to cola_a?: " || returned_number);

SELECT c.shape.ST_SYMMETRICDIFFERENCE(cola_a_geom) INTO returned_geom
FROM cola_markets ¢ WHERE c.name = "cola_b";

SELECT c.shape.ST_DISTANCE(cola_d_geom) INTO returned_number
FROM cola_markets ¢ WHERE c.name = "cola_b";
DBMS_OUTPUT.PUT_LINE("Distance between cola_b equal to cola_d: " || returned_number);

SELECT c.shape.ST_INTERSECTS(cola_a_geom) INTO returned_number
FROM cola_markets ¢ WHERE c.name = "cola_b";
DBMS_OUTPUT.PUT_LINE("Does cola_b intersect cola_a?: " || returned_number);

SELECT c.shape.ST_CROSS(cola_a_geom) INTO returned_number
FROM cola_markets ¢ WHERE c.name = "cola_b";
DBMS_OUTPUT.PUT_LINE("Does cola_b cross cola_a?: " || returned_number);

SELECT c.shape.ST_DISJOINT(cola_a_geom) INTO returned_number
FROM cola_markets ¢ WHERE c.name = "cola_b";
DBMS_OUTPUT.PUT_LINE("Is cola_b disjoint with cola_a?: " || returned_number);

SELECT c.shape.ST_TOUCH(cola_a_geom) INTO returned_number
FROM cola_markets ¢ WHERE c.name = "cola_b";
DBMS_OUTPUT.PUT_LINE("Does cola_b touch cola_a?: * || returned_number);

SELECT c.shape.ST_WITHIN(cola_a_geom) INTO returned_number
FROM cola_markets ¢ WHERE c.name = "cola_b";
DBMS_OUTPUT.PUT_LINE("Is cola_b within cola_a?: " || returned_number);

SELECT c.shape.ST_OVERLAP(cola_a_geom) INTO returned_number
FROM cola_markets ¢ WHERE c.name = "cola_b";
DBMS_OUTPUT.PUT_LINE("Does cola_b overlap cola_a?: * || returned_number);

SELECT c.shape.ST_CONTAINS(cola_a_geom) INTO returned_number
FROM cola_markets ¢ WHERE c.name = "cola_b";
DBMS_OUTPUT.PUT_LINE("Does cola_b contain cola_a?: * || returned_number);

SELECT c.shape.ST_INTERSECTION(cola_a_geom) INTO returned_geom
FROM cola_markets ¢ WHERE c.name = "cola_b";

SELECT c.shape.ST_DIFFERENCE(cola_a_geom) INTO returned_geom
FROM cola_markets ¢ WHERE c.name = "cola_b";

SELECT c.shape.ST_UNION(cola_a_geom) INTO returned_geom
FROM cola_markets ¢ WHERE c.name = "cola_b";

SELECT c.shape.ST_SYMDIFFERENCE(cola_a_geom) INTO returned_geom
FROM cola_markets ¢ WHERE c.name = "cola_b";

SELECT c.shape.ST_TOUCHES(cola_a_geom) INTO returned_number
FROM cola_markets ¢ WHERE c.name = "cola_b";
DBMS_OUTPUT.PUT_LINE("Does cola_b touch cola_a?: * || returned_number);

SELECT c.shape.ST_CROSSES(cola_a_geom) INTO returned_number
FROM cola_markets ¢ WHERE c.name = "cola_b";

3-6 Developer's Guide

ST_xxx Functions and Spatial and Graph Counterparts

DBMS_OUTPUT.PUT_LINE("Does cola_b cross cola_a?: *

END;
/

|| returned_number);

3.2 ST_xxx Functions and Spatial and Graph Counterparts

Table 3-1 (page 3-7) lists SQL Multimedia functions and the comparable Oracle
Spatial and Graph SDO_GEOMETRY method or Spatial and Graph function,

procedure, operator. Note that in some cases the Oracle Spatial and Graph counterpart

has more features than the SQL Multimedia function.

Table 3-1 ST_xxx Functions and Spatial and Graph Counterparts

SQL Multimedia Function Comparable Oracle Spatial and Graph Interface

FROM_WKB
FROM_WKT
GET_WKB
GET_WKT
ST_BUFFER
ST_CENTROID
ST_CONTAINS
ST_CONVEXHULL

ST_COORDDIM

ST_CROSS

ST_CROSSES

ST_DIFFERENCE
ST_DIMENSION
ST_DISJOINT
ST_DISTANCE
ST_ENVELOPE
ST_EQUALS
ST_GEOMETRYTYPE
ST_INTERSECTION

ST_INTERSECTS

SDO_UTIL.FROM_WKBGEOMETRY (page 31-33)
SDO_UTIL.FROM_WKTGEOMETRY (page 31-34)
SDO_GEOMETRY.Get_ WKB
SDO_GEOMETRY.Get_ WKT
SDO_GEOM.SDO_BUFFER (page 23-11)
SDO_GEOM.SDO_CENTROID (page 23-13)
SDO_GEOM.RELATE (page 23-4) with mask=CONTAINS
SDO_GEOM.SDO_CONVEXHULL (page 23-19)

SDO_GEOMETRY.Get_Dims and
SDO_GEOMETRY.ST_CoordDim (equivalent)

(None predefined; requires using SDO_GEOM.RELATE
(page 23-4) with a complex mask)

(None predefined; requires using SDO_GEOM.RELATE
(page 23-4) with a complex mask)

SDO_GEOM.SDO_DIFFERENCE (page 23-24)
SDO_GEOMETRY.Get_Dims

SDO_GEOM.RELATE (page 23-4) with mask=DISJOINT
SDO_GEOM.SDO_DISTANCE (page 23-25)
SDO_GEOM.SDO_MBR (page 23-38)
SDO_GEOM.RELATE (page 23-4) with mask=EQUAL
SDO_GEOMETRY.Get_GType
SDO_GEOM.SDO_INTERSECTION (page 23-27)

SDO_GEOM.RELATE (page 23-4) with
mask=0VERLAPBDYDISJOINT + OVERLAPBDYINTERSECT

SQL Multimedia Type Support 3-7

Tolerance Value with SQL Multimedia Types

Table 3-1 (Cont.) ST_xxx Functions and Spatial and Graph Counterparts

SQL Multimedia Function Comparable Oracle Spatial and Graph Interface

ST_ISVALID SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
(page 23-52)

ST_OVERLAP SDO_GEOM.RELATE (page 23-4) with mask=CONTAINS

ST_RELATE SDO_RELATE (page 18-30), SDO_GEOM.RELATE (page 23-4)

ST_SYMDIFFERENCE SDO_GEOM.SDO_XOR (page 23-50)

ST_SYMMETRICDIFFERE SDO_GEOM.SDO_XOR (page 23-50)

NCE

ST_TOUCH SDO_GEOM.RELATE (page 23-4) with mask=TOUCH

ST_TOUCHES SDO_GEOM.RELATE (page 23-4) with mask=TOUCH

ST_UNION SDO_GEOM.SDO_UNION (page 23-44)

ST_WITHIN SDO_GEOM.RELATE (page 23-4) with mask=COVERS

+CONTAINS

3.3 Tolerance Value with SQL Multimedia Types

Because the SQL Multimedia standard does not define how tolerance is to be used
with the ST_ xxx, Spatial and Graph uses a default value of 0.005 in all the member
methods of the ST_GEOMETRY type. If you want to specify a different tolerance value
to be used with ST_GEOMETRY member functions, override the default by inserting
the desired value into the SDO_ST_TOLERANCE table.

The SDO_ST_TOLERANCE table is a global temporary table that should have a single
row specifying the tolerance to be used with ST_GEOMETRY member methods. This
table has a single column, defined as (tolerance NUMBER).

For all spatial operators that use a spatial index, Spatial and Graph uses the tolerance
value specified for the spatial column in the USER_SDO_GEOM_METADATA view.

3.4 Avoiding Name Conflicts

Some third-party vendors support their own version of ST_xxx types on Oracle. For
example, a vendor might create its own version of the ST_GEOMETRY type.

To avoid possible conflicts between third-party names and Oracle-supplied names,
any third-party implementation of ST_xxx types on Oracle should use a schema prefix.
For example, this will ensure that if someone specifies a column type as just
ST_GEOMETRY, the column will be created with the Oracle implementation of the
ST_GEOMETRY type.

3.5 Annotation Text Type and Views

Oracle Spatial and Graph supports annotation text as specified in the OpenGIS
Implementation Specification for Geographic information - Simple feature access - Part 1:
Common architecture, which defines annotation text as "simply placed text that can
carry either geographically-related or ad-hoc data and process-related information as
displayable text. This text may be used for display in editors or in simpler maps. It is

3-8 Developer's Guide

Annotation Text Type and Views

usually lacking in full cartographic quality, but may act as an approximation to such
text as needed by any application.”

The ST_ANNOTATION_TEXT object type can be used to store annotation text. This
type has a constructor for inserting annotation text into a table, as explained in Using
the ST_ANNOTATION_TEXT Constructor (page 3-9).

The USER_ANNOTATION_TEXT_METADATA and
ALL_ANNOTATION_TEXT_METADATA views store metadata related to annotation
text, as explained in Annotation Text Metadata Views (page 3-10).

3.5.1 Using the ST_ANNOTATION_TEXT Constructor

An annotation text object contains an array of objects, where each object consists of a
text label, the point at which to start rendering the text label, a leader line (typically
from the text label to the associated point on the map), and optionally extra attribute
information. A single annotation text object may typically contain all the text labels for
a map.

Each text label object has the following definition:

Name Null? Type

PRIVATEVALUE VARCHAR2(4000)
PRIVATELOCATION MDSYS.SDO_GEOMETRY
PRIVATELEADERLINE MDSYS.SDO_GEOMETRY
PRIVATETEXTATTRIBUTES VARCHAR2(4000)

Example 3-3 Using the ST_ANNOTATION_TEXT Constructor

To insert the annotation for a single point, use the ST_ANNOTATION_TEXT
constructor. This constructor specifies the information for a single point using an
array, as shown in Example 3-3 (page 3-9), which creates a table with a column of type
ST_ANNOTATION_TEXT and inserts one row, using the ST_ANNOTATION_TEXT
constructor in the INSERT statement.

CREATE TABLE my_annotations (id NUMBER, textobj ST_ANNOTATION_TEXT);

INSERT INTO my_annotations VALUES (2,
ST_ANNOTATION_TEXT(
ST_ANNOTATIONTEXTELEMENT _ARRAY (
ST_ANNOT_TEXTELEMENT_ARRAY (
ST_ANNOTATIONTEXTELEMENT (
"Sample Label 27,
SDO_GEOMETRY(2001,null,sdo_point_type(10,10,null),null,null),
SDO_GEOMETRY (2002, null,null,
SDO_ELEM_INFO_ARRAY(1,2,1),
SDO_ORDINATE_ARRAY (5,10, 10,10)),
NULL))))):

In the ST_ANNOTATION_TEXT constructor in Example 3-3 (page 3-9), the
ST_ANNOTATIONTEXTELEMENT subelement specifies the following:

e The text for the label, in this case Sample Label 2

* A point geometry specifying where to start rendering the label, in this case location
(10,10)

* A line string geometry specifying the start and end points of the leader line
between the point of interest and the text label, in this case a line between locations
(5,10) and (10,10)

SQL Multimedia Type Support 3-9

Annotation Text Type and Views

* No text display attribute information (NULL), which means that the information
TEXT_ATTRIBUTES column of the annotation text metadata views is used (see
Table 3-2 (page 3-10) in Annotation Text Metadata Views (page 3-10))

3.5.2 Annotation Text Metadata Views

The annotation text metadata is stored in a global table owned by MDSYS (which
users should never directly update). Each Spatial and Graph user has the following
views available in the schema associated with that user:

e USER_ANNOTATION_TEXT METADATA contains metadata information for all
annotation text in tables owned by the user (schema). This is the only view that you
can update, and it is the one in which Spatial and Graph users must insert
metadata related to spatial tables.

e ALL ANNOTATION_TEXT_METADATA contains metadata information for all
annotation text in tables on which the user has SELECT permission.

Spatial and Graph users are responsible for populating these views. For each
annotation text object, you must insert an appropriate row into the
USER_ANNOTATION_TEXT_METADATA view. Oracle Spatial and Graph ensures
that the ALL_ANNOTATION_TEXT_METADATA view is also updated to reflect the
rows that you insert into USER_ANNOTATION_TEXT_METADATA.

The USER_ANNOTATION_TEXT_METADATA and
ALL_ANNOTATION_TEXT_METADATA views contain the same columns, as shown
Table 3-2 (page 3-10), except that the USER_ANNOTATION_TEXT_METADATA
view does not contain the OWNER column. (The columns are listed in their order in
the view definition.)

Table 3-2 Columns in the Annotation Text Metadata Views
- - - -~ -~ -~ -]

Column Name Data Type Purpose

OWNER VARCHAR2(32) Owner of the table specified in the TABLE_NAME column
(ALL_ANNOTATION_TEXT_METADATA view only).

TABLE_NAME VARCHAR2(32) Name of the table containing the column of type
ST_ANNOTATION_TEXT.

COLUMN_NAME VARCHAR2(1024 Name of the column of type ST_ANNOTATION_TEXT.
)

TEXT_EXPRESSIO VARCHAR2(4000 A value that can be used if text is not specified for a label. As

N) explained in the OpenGIS specification: "Text to place is first derived
from the contents of VALUE in the current element, if VALUE is not
null. Otherwise, text is derived from the first non-null preceding
element VALUE. If all preceding elements have null VALUE fields,
VALUE is derived from the TEXT_EXPRESSION in the metadata
table."

TEXT_ATTRIBUTE VARCHAR2(4000 Default text display attributes (font family and size, horizontal and

S) vertical spacing, and so on) for the label text style and layout, unless
overridden in the PRIVATETEXTATTRIBUTES attribute of the
ST_ANNOTATION_TEXT constructor (described in Using the
ST_ANNOTATION_TEXT Constructor (page 3-9)). Use the format
specified in the "XML for Text Attributes" section of the OpenGIS
specification.

3-10 Developer's Guide

A

Loading Spatial Data

This chapter describes how to load spatial data into a database, including storing the
data in a table with a column of type SDO_GEOMETRY. After you have loaded spatial
data, you can create a spatial index for it and perform queries on it, as described in
Indexing and Querying Spatial Data (page 5-1).

The process of loading data can be classified into two categories:

¢ Bulk loading of data (see Bulk Loading (page 4-1))

This process is used to load large volumes of data into the database and uses the
SQL*Loader utility to load the data.

* Transactional insert operations (see Transactional Insert Operations Using SQL
(page 4-3))

This process is typically used to insert relatively small amounts of data into the
database using the INSERT statement in SQL.

Recommendations for loading and validating spatial data are described in
Recommendations for Loading and Validating Spatial Data (page 4-4).

4.1 Bulk Loading

Bulk loading can import large amounts of data into an Oracle database. Bulk loading
is accomplished with the SQL*Loader utility. (For information about SQL*Loader, see
Oracle Database Utilities.)

4.1.1 Bulk Loading SDO_GEOMETRY Objects

Example 4-1 (page 4-1) is the SQL*Loader control file for loading four geometries.
When this control file is used with SQL*Loader, it loads the same cola market
geometries that are inserted using SQL statements in Example 2-1 (page 2-2) in Simple
Example: Inserting_ Indexing_ and Querying Spatial Data (page 2-1).

Example 4-1 Control File for a Bulk Load of Cola Market Geometries

LOAD DATA

INFILE *

TRUNCATE

CONTINUEIF NEXT(1:1) = "#°
INTO TABLE COLA MARKETS
FIELDS TERMINATED BY *|*"
TRAILING NULLCOLS (

mkt_id INTEGER EXTERNAL,
name CHAR,

shape COLUMN OBJECT

(

SDO_GTYPE INTEGER EXTERNAL,
SDO_ELEM_INFO VARRAY TERMINATED BY *|/®

Loading Spatial Data 4-1

Bulk Loading

(elements FLOAT EXTERNAL),
SDO_ORDINATES VARRAY TERMINATED BY *|/®
(ordinates FLOAT EXTERNAL)

)

)
begindata

1]cola_a]
#2003]1]1003]3}1/
#11115171/

2|cola_b]
#2003]1]1003] 1]/
#laslLisielsizisii/

3|cola_c]
#2003]1]1003] 1]/
#31316131615141513131/

4|cola_d]
#2003]1]1003]4]/
#l711019181111/

Notes on Example 4-1 (page 4-1):

¢ The EXTERNAL keyword in the definition mkt_id INTEGER EXTERNAL means
that each value to be inserted into the MKT_ID column (1, 2, 3, and 4 in this
example) is an integer in human-readable form, not binary format.

¢ In the data after begindata, each MKT_ID value is preceded by one space,
because the CONTINUEIF NEXT(1:1) = "# specification causes the first
position of each data line to be ignored unless it is the number sign (#) continuation
character.

Example 4-2 Control File for a Bulk Load of Polygons
Example 4-2 (page 4-2) assumes that a table named POLY_4PT was created as follows:

CREATE TABLE POLY_4PT (GID VARCHAR2(32),
GEOMETRY SDO_GEOMETRY);

Assume that the ASCII data consists of a file with delimited columns and separate
rows fixed by the limits of the table with the following format:

geometry rows: GID, GEOMETRY

The coordinates in the GEOMETRY column represent polygons. Example 4-2
(page 4-2) shows the control file for loading the data.

LOAD DATA
INFILE *
TRUNCATE
CONTINUEIF NEXT(1:1) = "#°
INTO TABLE POLY_4PT
FIELDS TERMINATED BY *|*
TRAILING NULLCOLS (
GID INTEGER EXTERNAL,
GEOMETRY COLUMN OBJECT

SDO_GTYPE INTEGER EXTERNAL,

SDO_ELEM_INFO VARRAY TERMINATED BY *|/*
(elements FLOAT EXTERNAL),

SDO_ORDINATES ~ VARRAY TERMINATED BY *|/*
(ordinates FLOAT EXTERNAL)

4-2 Developer's Guide

Transactional Insert Operations Using SQL

begindata

1]2003]1]1003]1]/
#-122.4215|37.7862|-122.422|37.7869] -122.421]37.789]-122.42]|37.7866]
#-122.4215|37.7862|/

2]2003]1]1003]1]/
#-122.4019]37.8052]-122.4027]37.8055]-122.4031]37.806]-122.4012] 37.8052|
#-122.4019|37.8052|/

3]2003]1]1003]1}/
#-122.426|37.803]-122.4242|37.8053|-122.42355]37.8044]-122.4235]37.8025]
#-122.426|37.803]/

4.1.2 Bulk Loading Point-Only Data in SDO_GEOMETRY Objects

The following example shows a control file for loading a table with point data.
Example 4-3 Control File for a Bulk Load of Point-Only Data

LOAD DATA
INFILE *
TRUNCATE
CONTINUEIF NEXT(1:1) = "#°
INTO TABLE POINT
FIELDS TERMINATED BY *|*"
TRAILING NULLCOLS (
GID INTEGER EXTERNAL,
GEOMETRY COLUMN OBJECT
(
SDO_GTYPE INTEGER EXTERNAL,
SDO_POINT COLUMN OBJECT
X FLOAT EXTERNAL,
Y FLOAT EXTERNAL)

)
)

BEGINDATA
1] 2001] -122.4215] 37.7862]

2| 2001] -122.4019] 37.8052]

3] 2001] -122.426] 37.803]

4] 2001] -122.4171] 37.8034]

5] 2001] -122.416151] 37.8027228]

4.2 Transactional Insert Operations Using SQL

Oracle Spatial and Graph uses standard Oracle tables that can be accessed or loaded
with standard SQL syntax. This section contains examples of transactional insertions
into columns of type SDO_GEOMETRY. This process is typically used to add
relatively small amounts of data into the database.

The INSERT statement in Oracle SQL has a limit of 999 arguments. Therefore, you
cannot create a variable-length array of more than 999 elements using the
SDO_GEOMETRY constructor inside a transactional INSERT statement; however, you
can insert a geometry using a host variable, and the host variable can be built using the
SDO_GEOMETRY constructor with more than 999 values in the
SDO_ORDINATE_ARRAY specification. (The host variable is an OCI, PL/SQL, or
Java program variable.)

To perform transactional insertions of geometries, you can create a procedure to insert
a geometry, and then invoke that procedure on each geometry to be inserted.
Example 4-4 (page 4-4) creates a procedure to perform the insert operation.

Loading Spatial Data 4-3

Recommendations for Loading and Validating Spatial Data

Example 4-4 Procedure to Perform a Transactional Insert Operation

CREATE OR REPLACE PROCEDURE
INSERT_GEOM(GEOM SDO_GEOMETRY)
IS

BEGIN
INSERT INTO TEST_1 VALUES (GEOM);
COMMIT;

END;

/

Using the procedure created in Example 4-4 (page 4-4), you can insert data by using a
PL/SQL block, such as the one in Example 4-5 (page 4-4), which loads a geometry
into the variable named geom and then invokes the INSERT_GEOM procedure to
insert that geometry.

Example 4-5 PL/SQL Block Invoking a Procedure to Insert a Geometry

DECLARE
geom SDO_geometry :=
SDO_geometry (2003, null, null,
SDO_elem_info_array (1,1003,3),
SDO_ordinate_array (-109,37,-102,40));
BEGIN
INSERT_GEOM(geom);
COMMIT;
END;
/

For additional examples with various geometry types, see the following:
¢ Rectangle: in Rectangle (page 2-22)

* Polygon with a hole: inPolygon with a Hole (page 2-23)

¢ Compound line string :in Compound Line String (page 2-24)

e Compound polygon: in Compound Polygon (page 2-26)

¢ Point: in Point (page 2-27)

® Oriented point: in Oriented Point (page 2-28)

* Type 0 (zero) element: in Type 0 (Zero) Element (page 2-31)

4.3 Recommendations for Loading and Validating Spatial Data

You should validate all geometry data, and fix any validation errors, before
performing any spatial operations on the data.

The recommended procedure for loading and validating spatial data is as follows:

1. Load the data, using a method described in Bulk Loading (page 4-1) or
Transactional Insert Operations Using SQL (page 4-3).

2. Use the SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT (page 23-52)
function or the SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT (page 23-56)
procedure on all spatial data loaded into the database.

4-4 Developer's Guide

Recommendations for Loading and Validating Spatial Data

3. For any geometries with the wrong orientation or an invalid ETYPE or GTYPE
value, use SDO_MIGRATE.TO_CURRENT (page 25-1) on these invalid
geometries to fix them.

4. For any geometries that are invalid for other reasons, use
SDO_UTIL.RECTIFY_GEOMETRY (page 31-46) to fix these geometries.

For detailed information about using any of these subprograms, see the usage notes in
its reference information section.

Loading Spatial Data 4-5

Recommendations for Loading and Validating Spatial Data

4-6 Developer's Guide

5

Indexing and Querying Spatial Data

After you have loaded spatial data (discussed in Loading Spatial Data (page 4-1)), you
should create a spatial index on it to enable efficient query performance using the
data. This chapter describes how to:

* Create a spatial index (see Creating a Spatial Index (page 5-1))

* Query spatial data efficiently, based on an understanding of the Oracle Spatial and
Graph query model and primary and secondary filtering (see Querying Spatial
Data (page 5-8))

5.1 Creating a Spatial Index

Once data has been loaded into the spatial tables through either bulk or transactional
loading, a spatial index (that is, a spatial R-tree index) must be created on each
geometry column in the tables for efficient access to the data. For example, the
following statement creates a spatial index named territory_idx using default
values for all parameters:

CREATE INDEX territory_idx ON territories (territory_geom)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

For detailed information about options for creating a spatial index, see the
documentation for the CREATE INDEX (page 17-7) statement in SQL Statements for
Indexing Spatial Data (page 17-1).

If the index creation does not complete for any reason, the index is invalid and must
be deleted with the DROP INDEX (page 17-12) <index_name> [FORCE] statement.

Within each geometry column to be indexed, all the geometries must have the same
SDO_SRID value.

Spatial indexes can be built on two, three, or four dimensions of data. The default
number of dimensions is two, but if the data has more than two dimensions, you can
use the sdo_indx_dims parameter keyword to specify the number of dimensions on
which to build the index. (For information about support for three-dimensional
geometries, see Three-Dimensional Spatial Objects (page 1-16). For an explanation of
support for various combinations of dimensionality in query elements, see Data and
Index Dimensionality_ and Spatial Queries (page 5-14).)

If you are not using the automatic undo management feature or the PGA memory
management feature, or both, of Oracle Database, see Rollback Segments and Sort
Area Size (page 5-7) for information about initialization parameter values that you
may need to set. Both automatic undo management and PGA memory management
are enabled by default, and their use is highly recommended.

The tablespace specified with the tablespace keyword in the CREATE INDEX
(page 17-7) statement (or the default tablespace if the tablespace keyword is not
specified) is used to hold both the index data table and some transient tables that are

Indexing and Querying Spatial Data 5-1

Creating a Spatial Index

created for internal computations. If you specify WORK_TABLESPACE as the
tablespace, the transient tables are stored in the work tablespace.

For large tables (over 1 million rows), a temporary tablespace may be needed to
perform internal sorting operations. The recommended size for this temporary
tablespace is 100*n bytes, where n is the number of rows in the table, up to a maximum
requirement of 1 gigabyte of temporary tablespace.

To estimate the space that will be needed to create a spatial index, use the
SDO_TUNE.ESTIMATE_RTREE_INDEX_SIZE (page 30-2) function, described in
SDO_TUNE Package (Tuning) (page 30-1).

This section also contains the following topics:

¢ Constraining Data to a Geometry Type (page 5-2)

® C(Creating a Cross-Schema Index (page 5-2)

¢ Using Partitioned Spatial Indexes (page 5-3)

* Exchanging Partitions Including Indexes (page 5-6)

* Export and Import Considerations with Spatial Indexes and Data (page 5-6)
¢ Distributed Transactions and Spatial Index Consistency (page 5-7)

¢ Enabling Access to Spatial Index Statistics (page 5-7)

Rollback Segments and Sort Area Size (page 5-7)

5.1.1 Constraining Data to a Geometry Type

When you create or rebuild a spatial index, you can ensure that all geometries that are
in the table or that are inserted later are of a specified geometry type. To constrain the
data to a geometry type in this way, use the layer_gtype keyword in the
PARAMETERS clause of the CREATE INDEX (page 17-7) or ALTER INDEX
REBUILD (page 17-3) statement, and specify a value from the Geometry Type

column in SDO_GTYPE (page 2-5). For example, to constrain spatial data in a layer to
polygons:

CREATE INDEX cola_spatial_idx

ON cola_markets(shape)

INDEXTYPE IS MDSYS.SPATIAL_INDEX
PARAMETERS (" layer_gtype=POLYGON");

The geometry types in SDO_GTYPE (page 2-5) are considered as a hierarchy when
data is checked:

e The MULTI forms include the regular form also. For example, specifying
"layer_gtype=MULTIPOINT" allows the layer to include both POINT and
MULTIPOINT geometries.

¢ COLLECTION allows the layer to include all types of geometries.

5.1.2 Creating a Cross-Schema Index

You can create a spatial index on a table that is not in your schema. Assume that user
B wants to create a spatial index on column GEOMETRY in table T1 under user A's
schema. Follow these steps:

5-2 Developer's Guide

Creating a Spatial Index

1.

Connect to the database as a privileged user (for example, as SYSTEM), and execute
the following statement:

GRANT create table, create sequence to B;

Connect as a privileged user or as user A (or have user A connect), and execute the
following statement:

GRANT select, index on A.T1 to B;
Connect as user B and execute a statement such as the following:

CREATE INDEX t1_spatial_idx on A.T1(geometry)
INDEXTYPE IS mdsys.spatial_index;

5.1.3 Using Partitioned Spatial Indexes

You can create a partitioned spatial index on a partitioned table. This section describes
usage considerations specific to Oracle Spatial and Graph. For a detailed explanation
of partitioned tables and partitioned indexes, see Oracle Database VLDB and Partitioning
Guide.

A partitioned spatial index can provide the following benefits:

Reduced response times for long-running queries, because partitioning reduces
disk I/O operations

Reduced response times for concurrent queries, because I/O operations run
concurrently on each partition

Easier index maintenance, because of partition-level create and rebuild operations

Indexes on partitions can be rebuilt without affecting the queries on other
partitions, and storage parameters for each local index can be changed independent
of other partitions.

Parallel query on multiple partition searching

The degree of parallelism is the value from the DEGREE column in the row for the
index in the USER_INDEXES view (that is, the value specified or defaulted for the
PARALLEL keyword with the CREATE INDEX (page 17-7), ALTER INDEX

(page 17-1), or ALTER INDEX REBUILD (page 17-3) statement).

Improved query processing in multiprocessor system environments

In a multiprocessor system environment, if a spatial operator is invoked on a table
with partitioned spatial index and if multiple partitions are involved in the query,
multiple processors can be used to evaluate the query. The number of processors
used is determined by the degree of parallelism and the number of partitions used
in evaluating the query.

The following restrictions apply to spatial index partitioning:

The partition key for spatial tables must be a scalar value, and must not be a spatial
column.

Only range partitioning is supported on the underlying table. All other kinds of
partitioning are not currently supported for partitioned spatial indexes.

Indexing and Querying Spatial Data 5-3

Creating a Spatial Index

To create a partitioned spatial index, you must specify the LOCAL keyword. (If you
do not specify the LOCAL keyword, a nonpartitioned spatial index is created on the
data in all table partitions.) The following example creates a partitioned spatial index:

CREATE INDEX counties_idx ON counties(geometry)
INDEXTYPE IS MDSYS.SPATIAL_INDEX LOCAL;

In this example, the default values are used for the number and placement of index
partitions, namely:

¢ Index partitioning is based on the underlying table partitioning. For each table
partition, a corresponding index partition is created.

e Each index partition is placed in the default tablespace.

If you do specify parameters for individual partitions, the following considerations
apply:

¢ The storage characteristics for each partition can be the same or different for each
partition. If they are different, it may enable parallel I/O (if the tablespaces are on
different disks) and may improve performance.

e The sdo_indx_dims value must be the same for all partitions.

¢ The layer_gtype parameter value (see Constraining Data to a Geometry Type
(page 5-2)) used for each partition may be different.

To override the default partitioning values, use a CREATE INDEX statement with the
following general format:

CREATE INDEX <indexname> ON <table>(<column>)
INDEXTYPE 1S MDSYS.SPATIAL_INDEX
[PARAMETERS ("<spatial-params>, <storage-params>")] LOCAL
[(PARTITION <index_partition>
PARAMETERS ("<spatial-params>, <storage-params>")
[, PARTITION <index_partition>
PARAMETERS ("<spatial-params>, <storage-params>")]

)]

Queries can operate on partitioned tables to perform the query on only one partition.
For example:

SELECT * FROM counties PARTITION(pl)
WHERE ...<some-spatial-predicate>;

Querying on a selected partition may speed up the query and also improve overall
throughput when multiple queries operate on different partitions concurrently.

When queries use a partitioned spatial index, the semantics (meaning or behavior) of
spatial operators and functions is the same with partitioned and nonpartitioned
indexes, except in the case of SDO_NN (page 18-17) (nearest neighbor). With SDO_NN
(page 18-17), the requested number of geometries is returned for each partition that is
affected by the query. (See the description of the SDO_NN (page 18-17) operator in
Spatial Operators (page 18-1) for more information.)

For example, if you request the 5 closest restaurants to a point and the spatial index
has 4 partitions, SDO_NN (page 18-17) returns up to 20 (5*4) geometries. In this case,
you must use the ROWNUM pseudocolumn (here, WHERE ROWNUM <=5) to return
the 5 closest restaurants, and the ORDER BY clause to sort the results by distance in
miles. Example 5-1 (page 5-5) returns the 5 nearest restaurants from a partitioned
spatial index.

5-4 Developer's Guide

Creating a Spatial Index

Note:

SDO_NN Examples (page C-3)for more examples of using the SDO_NN
(page 18-17) operator.

For a cross-schema query when a table has a partitioned spatial index, the user must
be granted SELECT or READ privilege on both the spatial table and the index table
(MDRT_xxx) for the spatial index that was created on the spatial table. For more
information and an example, see "Cross-Schema Invocation of SDO_JOIN

(page 18-16)" in the Usage Notes for the SDO_JOIN (page 18-12) operator in Spatial
Operators (page 18-1).

Example 5-1 SDO_NN Query with Partitioned Spatial Index

SELECT * FROM

(
SELECT r.name, r.location, SDO_NN_DISTANCE(1) distance_in_miles

FROM restaurants_part_table r

WHERE SDO_NN(r.location,
MDSYS.SDO_GEOMETRY (2001 ,8307,MDSYS.SDO_POINT TYPE(-110,35,Null),Nul I ,Null),
"SDO_NUM_RES=5 distance=2 unit=MILE", 1) = "TRUE"

ORDER BY distance_in_mles

)
WHERE ROWNUMK=5;

5.1.3.1 Creating a Local Partitioned Spatial Index

If you want to create a local partitioned spatial index, Oracle recommends that you use
the procedure in this section instead of using the PARALLEL keyword, to avoid
having to start over if the creation of any partition's index fails for any reason (for
example, because the tablespace is full). Follow these steps:

1. Create a local spatial index and specify the UNUSABLE keyword. For example:

CREATE INDEX sp_idx ON my table (location)
INDEXTYPE 1S mdsys.spatial_index
PARAMETERS ("tablespace=tb_name work_tablespace=work_tb_name®)
LOCAL UNUSABLE;

This statement executes quickly and creates metadata associated with the index.

2. Create scripts with ALTER INDEX REBUILD statements, but without the
PARALLEL keyword. For example, if you have 100 partitions and 10 processors,
create 10 scripts with 10 ALTER INDEX statements such as the following:

ALTER INDEX sp_idx REBUILD PARTITION ipl;
ALTER INDEX sp_idx REBUILD PARTITION ip2;

ALTER INDEX sp_idx REBUILD PARTITION ipl10;

3. Run all the scripts at the same time, so that each processor works on the index for a
single partition, but all the processors are busy working on their own set of ALTER
INDEX statements.

If any of the ALTER INDEX statements fails, you do not need to rebuild any partitions
for which the operation has successfully completed.

Indexing and Querying Spatial Data 5-5

Creating a Spatial Index

5.1.4 Exchanging Partitions Including Indexes

You can use the ALTER TABLE statement with the EXCHANGE PARTITION ...
INCLUDING INDEXES clause to exchange a spatial table partition and its index
partition with a corresponding table and its index. For information about exchanging
partitions, see the description of the ALTER TABLE statement in Oracle Database SQL
Language Reference.

This feature can help you to operate more efficiently in a number of situations, such
as:

* Bringing data into a partitioned table and avoiding the cost of index re-creation.

* Managing and creating partitioned indexes. For example, the data could be divided
into multiple tables. The index for each table could be built one after the other to
minimize the memory and tablespace resources needed during index creation.
Alternately, the indexes could be created in parallel in multiple sessions. The tables
(along with the indexes) could then be exchanged with the partitions of the original
data table.

* Managing offline insert operations. New data can be stored in a temporary table
and periodically exchanged with a new partition (for example, in a database with
historical data).

To exchange partitions including indexes with spatial data and indexes, the two
spatial indexes (one on the partition, the other on the table) must have the same
dimensionality (sdo_indx_dims value). If the indexes do not have the same
dimensionality, an error is raised. The table data is exchanged, but the indexes are not
exchanged and the indexes are marked as failed. To use the indexes, you must rebuild
them

5.1.5 Export and Import Considerations with Spatial Indexes and Data

If you use the Export utility to export tables with spatial data, the behavior of the
operation depends on whether or not the spatial data has been spatially indexed:

o If the spatial data has not been spatially indexed, the table data is exported.
However, you must update the USER_SDO_GEOM_METADATA view with the
appropriate information on the target system.

o [f the spatial data has been spatially indexed, the table data is exported, the
appropriate information is inserted into the USER_SDO_GEOM_METADATA
view on the target system, and the spatial index is built on the target system.
However, if the insertion into the USER_SDO_GEOM_METADATA view fails (for
example, if there is already a USER_SDO_GEOM_METADATA entry for the
spatial layer), the spatial index is not built.

If you use the Import utility to import data that has been spatially indexed, the
following considerations apply:

¢ If the index on the exported data was created with a TABLESPACE clause and if the
specified tablespace does not exist in the database at import time, the index is not
built. (This is different from the behavior with other Oracle indexes, where the
index is created in the user's default tablespace if the tablespace specified for the
original index does not exist at import time.)

5-6 Developer's Guide

Creating a Spatial Index

e If the import operation must be done by a privileged database user, and if the
FROMUSER and TOUSER format is used, the TOUSER user must be granted the
CREATE TABLE and CREATE SEQUENCE privileges before the import operation,
as shown in the following example (and enter the password for the SYSTEM
account when prompted):

sqlplus system

SQL> grant CREATE TABLE, CREATE SEQUENCE to CHRIS;

SQL> exit;

imp system file=spatl_data.dmp fromuser=SCOTT touser=CHRIS

For information about using the Export and Import utilities, see Oracle Database
Utilities.

5.1.6 Distributed Transactions and Spatial Index Consistency

In a distributed transaction, different branches of the transaction can execute in
different sessions. The branches can detach from their current session and migrate to
another within the transaction scope. To maintain the consistency of spatial indexes in
distributed transactions, you must follow the usage guidelines in this section.

When the first insert, update, or delete operation on a spatial table (one with a spatial
index) is performed in a distributed transaction, all subsequent insert, update, or
delete operations on the table, as well as any prepare to commit operation (the first
branch to prepare a commit), in the transaction should happen in the same session as the
tirst operation. The branches performing these subsequent operations will first have to
connect to the session in which the first operation was performed.

For more information about distributed transactions, see Oracle Database
Administrator’s Guide.

5.1.7 Enabling Access to Spatial Index Statistics

The Oracle Database optimizer collects statistics that describe details about the
database and its objects. Statistics are critical to the optimizer's ability to pick the best
execution plan for a SQL statement. For more information about optimizer statistics,
see Oracle Database SQL Tuning Guide.

To be able to use procedures such as DBMS_STATS . GATHER_INDEX_STATS and
DBMS_STATS .GATHER_SCHEMA_STATS to gather index statistics related to spatial
indexes, the CREATE TABLE privilege must be granted to all database users that will
perform the statistics collection.

When you run ANALYZE INDEX on a spatial domain index for a different schema
(user), the user performing the ANALYZE operation needs the following privileges:

e CREATE ANY TABLE to create missing temporary tables

e DROP ANY TABLE to truncate or remove existing temporary tables

If the statistics are successfully collected, a table with the name in the form MDXT_
%0bjID% will be created for each index for which the statistics are collected. Each such
table will be populated with spatial statistics data, 512 rows by default.

5.1.8 Rollback Segments and Sort Area Size

This section applies only if you (or the database administrator) are not using the
automatic undo management feature or the PGA memory management feature, or
both, of Oracle Database. Automatic memory management and PGA memory

Indexing and Querying Spatial Data 5-7

Querying Spatial Data

management are enabled by default, and their use is highly recommended. For
explanations of these features, see:

* The section about automatic undo management and undo segments in Oracle
Database Concepts

® The section about PGA memory management in Oracle Database Concepts

If you are not using automatic undo management and if the rollback segment is not
large enough, an attempt to create a spatial index will fail. The rollback segment
should be 100*n bytes, where 1 is the number of rows of data to be indexed. For
example, if the table contains 1 million (1,000,000) rows, the rollback segment size
should be 100,000,000 (100 million) bytes.

To ensure an adequate rollback segment, or if you have tried to create a spatial index
and received an error that a rollback segment cannot be extended, review (or have a
DBA review) the size and structure of the rollback segments. Create a public rollback
segment of the appropriate size, and place that rollback segment online. In addition,
ensure that any small inappropriate rollback segments are placed offline during large
spatial index operations.

If you are not using the PGA memory management feature, the database parameter
SORT_AREA_SIZE affects the amount of time required to create the index. The
SORT_AREA_SIZE value is the maximum amount, in bytes, of memory to use for a
sort operation. The optimal value depends on the database size, but a good guideline
is to make it at least 1 million bytes when you create a spatial index. To change the
SORT_AREA_SIZE value, use the ALTER SESSION statement. For example, to change
the value to 20 million bytes:

ALTER SESSION SET SORT_AREA_SIZE = 20000000;

5.2 Querying Spatial Data

This section describes how the structures of a spatial layer are used to resolve spatial
queries and spatial joins.

Spatial and Graph uses a two-tier query model with primary and secondary filter
operations to resolve spatial queries and spatial joins, as explained in Query Model
(page 1-9). The term two-tier indicates that two distinct operations are performed to
resolve queries. If both operations are performed, the exact result set is returned.

You cannot append a database link (dblink) name to the name of a spatial table in a
query if a spatial index is defined on that table.

This section also contains the following topics:
® Spatial Query (page 5-8)
® Spatial Join (page 5-13)

¢ Data and Index Dimensionality_ and Spatial Queries (page 5-14)

5.2.1 Spatial Query

In a spatial R-tree index, each geometry is represented by its minimum bounding
rectangle (MBR), as explained in R-Tree Indexing (page 1-10). Consider the following
layer containing several objects in Figure 5-1 (page 5-9). Each object is labeled with
its geometry name (geom_1 for the line string, geom_2 for the four-sided polygon,
geom_3 for the triangular polygon, and geom_4 for the ellipse), and the MBR around
each object is represented by a dashed line.

5-8 Developer's Guide

Querying Spatial Data

Figure 5-1 Geometries with MBRs

A typical spatial query is to request all objects that lie within a query window, that is,
a defined fence or window. A dynamic query window refers to a rectangular area that
is not defined in the database, but that must be defined before it is used. Figure 5-2
(page 5-9) shows the same geometries as in Figure 5-1 (page 5-9), but adds a query
window represented by the heavy dotted-line box.

Figure 5-2 Layer with a Query Window

-———m k- - - --

In Figure 5-2 (page 5-9), the query window covers parts of geometries geom_1 and
geom_2, as well as part of the MBR for geom_3 but none of the actual geom_3
geometry. The query window does not cover any part of the geom_4 geometry or its
MBR.

5.2.1.1 Primary Filter Operator

The SDO_FILTER (page 18-8) operator, described in Spatial Operators (page 18-1),
implements the primary filter portion of the two-step process involved in the Oracle
Spatial and Graph query processing model. The primary filter uses the index data to
determine only if a set of candidate object pairs may interact. Specifically, the primary
filter checks to see if the MBRs of the candidate objects interact, not whether the
objects themselves interact. The SDO_FILTER (page 18-8) operator syntax is as
follows:

SDO_FILTER(geometryl SDO_GEOMETRY, geometry2 SDO_GEOMETRY, param VARCHAR2)

In the preceding syntax:

Indexing and Querying Spatial Data 5-9

Querying Spatial Data

e geometryl is a column of type SDO_GEOMETRY in a table. This column must be
spatially indexed.

e geometry?2 is an object of type SDO_GEOMETRY. This object may or may not
come from a table. If it comes from a table, it may or may not be spatially indexed.

* paramis an optional string of type VARCHAR?2. It can specify either or both of the
min_resolution and max_resolution keywords.

The following examples perform a primary filter operation only (with no secondary
filter operation). They will return all the geometries shown in Figure 5-2 (page 5-9)
that have an MBR that interacts with the query window. The result of the following
examples are geometries geom_1, geom_2, and geom_3.

The following example performs a primary filter operation without inserting the
query window into a table. The window will be indexed in memory and performance
will be very good.

Example 5-2 Primary Filter with a Temporary Query Window

SELECT A.Feature_ID FROM TARGET A
WHERE sdo_filter(A.shape, SDO_geometry(2003,NULL,NULL,
SDO_elem_info_array(1,1003,3),
SDO_ordinate_array(x1l,yl, x2,y2))
) = "TRUE";

In the preceding example, (X1,y1) and (X2,y2) are the lower-left and upper-right
corners of the query window.

In the following example, a transient instance of type SDO_GEOMETRY was
constructed for the query window instead of specifying the window parameters in the
query itself.

Example 5-3 Primary Filter with a Transient Instance of the Query Window

SELECT A.Feature_ID FROM TARGET A
WHERE sdo_filter(A.shape, :theWindow) = "TRUE";

The following example assumes the query window was inserted into a table called
WINDOWS, with an ID of WINS_1.

Example 5-4 Primary Filter with a Stored Query Window

SELECT A.Feature_ID FROM TARGET A, WINDOWS B
WHERE B.ID = "WINS_1* AND
sdo_filter(A.shape, B.shape) = "TRUE";

If the B.SHAPE column is not spatially indexed, the SDO_FILTER (page 18-8)
operator indexes the query window in memory and performance is very good.

5.2.1.2 Primary and Secondary Filter Operator

The SDO_RELATE (page 18-30) operator, described in Spatial Operators (page 18-1),
performs both the primary and secondary filter stages when processing a query. The
secondary filter ensures that only candidate objects that actually interact are selected.
This operator can be used only if a spatial index has been created on two dimensions
of data. The syntax of the SDO_RELATE (page 18-30) operator is as follows:

SDO_RELATE(geometryl SDO_GEOMETRY,
geometry2 SDO_GEOMETRY,
param VARCHAR2)

5-10 Developer's Guide

Querying Spatial Data

In the preceding syntax:

¢ geometrylis a column of type SDO_GEOMETRY in a table. This column must be
spatially indexed.

* geometry2 is an object of type SDO_GEOMETRY. This object may or may not
come from a table. If it comes from a table, it may or may not be spatially indexed.

* paramis a quoted string with the mask keyword and a valid mask value, and
optionally either or both of the min_resolution and max_resolution
keywords, as explained in the documentation for the SDO_RELATE (page 18-30)
operator in Spatial Operators (page 18-1).

The following examples perform both primary and secondary filter operations. They
return all the geometries in Figure 5-2 (page 5-9) that lie within or overlap the query
window. The result of these examples is objects geom_1 and geom_2.

The following example performs both primary and secondary filter operations
without inserting the query window into a table. The window will be indexed in
memory and performance will be very good.

Example 5-5 Secondary Filter Using a Temporary Query Window

SELECT A.Feature_ID FROM TARGET A
WHERE sdo_relate(A.shape, SDO_geometry(2003,NULL,NULL,
SDO_elem_info_array(1,1003,3),
SDO_ordinate_array(xl,yl, x2,y2)),
"mask=anyinteract®) = "TRUE";

In the preceding example, (x1,y1) and (X2,y2) are the lower-left and upper-right
corners of the query window.

The following example assumes the query window was inserted into a table called
WINDOWS, with an ID value of WINS_1.

Example 5-6 Secondary Filter Using a Stored Query Window

SELECT A.Feature_ID FROM TARGET A, WINDOWS B
WHERE B.ID = "WINS_1* AND
sdo_relate(A.shape, B.shape,
"mask=anyinteract®) = "TRUE";

If the B.SHAPE column is not spatially indexed, the SDO_RELATE (page 18-30)
operator indexes the query window in memory and performance is very good.

5.2.1.3 Within-Distance Operator

The SDO_WITHIN_DISTANCE (page 18-36) operator, described in Spatial Operators
(page 18-1), is used to determine the set of objects in a table that are within n distance
units from a reference object. This operator can be used only if a spatial index has been
created on two dimensions of data. The reference object may be a transient or
persistent instance of SDO_GEOMETRY, such as a temporary query window or a
permanent geometry stored in the database. The syntax of the operator is as follows:

SDO_WITHIN_DISTANCE(geometryl SDO_GEOMETRY,
aGeom SDO_GEOMETRY,
params VARCHAR2) ;

In the preceding syntax:

e geometryl is a column of type SDO_GEOMETRY in a table. This column must be
spatially indexed.

Indexing and Querying Spatial Data 5-11

Querying Spatial Data

¢ aGeomis an instance of type SDO_GEOMETRY.

* params is a quoted string of keyword value pairs that determines the behavior of
the operator. See the SDO_WITHIN_DISTANCE (page 18-36) operator in Spatial
Operators (page 18-1) for a list of parameters.

The following example selects any objects within 1.35 distance units from the query
window:

SELECT A.Feature_ID
FROM TARGET A
WHERE SDO_WITHIN_DISTANCE(A.shape, :theWindow, "distance=1.35") = "TRUE";

The distance units are based on the geometry coordinate system in use. If you are
using a geodetic coordinate system, the units are meters. If no coordinate system is
used, the units are the same as for the stored data.

The SDO_WITHIN_DISTANCE (page 18-36) operator is not suitable for performing
spatial joins. That is, a query such as Find all parks that are within 10 distance units from
coastlines will not be processed as an index-based spatial join of the COASTLINES and
PARKS tables. Instead, it will be processed as a nested loop query in which each
COASTLINES instance is in turn a reference object that is buffered, indexed, and
evaluated against the PARKS table. Thus, the SDO_WITHIN_DISTANCE (page 18-36)
operation is performed n times if there are n rows in the COASTLINES table.

For non-geodetic data, there is an efficient way to accomplish a spatial join that
involves buffering all geometries of a layer. This method does not use the
SDO_WITHIN_DISTANCE (page 18-36) operator. First, create a new table
COSINE_BUFS as follows:

CREATE TABLE cosine_bufs UNRECOVERABLE AS
SELECT SDO_BUFFER (A.SHAPE, B.DIMINFO, 1.35)
FROM COSINE A, USER_SDO_GEOM_METADATA B
WHERE TABLE_NAME="COSINES®" AND COLUMN_NAME="SHAPE";

Next, create a spatial index on the SHAPE column of COSINE_BUFS. Then you can
perform the following query:

SELECT /*+ ordered */ a.gid, b.gid
FROM TABLE(SDO_JOIN("PARKS", "SHAPE",
"COSINE_BUFS*®, "SHAPE",
"mask=ANYINTERACT")) c,
parks a,
cosine_bufs b
WHERE c.rowidl = a.rowid AND c.rowid2 = b.rowid;

5.2.1.4 Nearest Neighbor Operator

The SDO_NN (page 18-17) operator, described in Spatial Operators (page 18-1), is
used to identify the nearest neighbors for a geometry. This operator can be used only
if a spatial index has been created on two dimensions of data. The syntax of the
operator is as follows:

SDO_NN(geometryl SDO_GEOMETRY,
geometry2 SDO_GEOMETRY,
param VARCHAR2
[, number NUMBER]);

In the preceding syntax:

5-12 Developer's Guide

Querying Spatial Data

e geometryl is a column of type SDO_GEOMETRY in a table. This column must be
spatially indexed.

e geometry?2 is an instance of type SDO_GEOMETRY.

* paramis a quoted string of keyword-value pairs that can determine the behavior of
the operator, such as how many nearest neighbor geometries are returned. See the
SDO_NN (page 18-17) operator in Spatial Operators (page 18-1) for information
about this parameter.

¢ number is the same number used in the call to SDO_NN_DISTANCE (page 18-21).
Use this only if the SDO_NN_DISTANCE (page 18-21) ancillary operator is
included in the call to SDO_NN (page 18-17). See the SDO_NN (page 18-17)
operator in Spatial Operators (page 18-1) for information about this parameter.

The following example finds the two objects from the SHAPE column in the
COLA_MARKETS table that are closest to a specified point (10,7). (Note the use of the
optimizer hint in the SELECT statement, as explained in the Usage Notes for the
SDO_NN (page 18-17) operator in Spatial Operators (page 18-1).)

SELECT /*+ INDEX(cola_markets cola_spatial_idx) */

c.mkt_id, c.name FROM cola_markets ¢ WHERE SDO_NN(c.shape,
SDO_geometry(2001, NULL, SDO_point_type(10,7,NULL), NULL,
NULL), “sdo_num_res=2") = "TRUE";

5.2.1.5 Spatial Functions

Spatial and Graph also supplies functions for determining relationships between
geometries, finding information about single geometries, changing geometries, and
combining geometries. These functions all take into account two dimensions of source
data. If the output value of these functions is a geometry, the resulting geometry will
have the same dimensionality as the input geometry, but only the first two dimensions
will accurately reflect the result of the operation.

5.2.2 Spatial Join

A spatial join is the same as a regular join except that the predicate involves a spatial
operator. In Spatial and Graph, a spatial join takes place when you compare all
geometries of one layer to all geometries of another layer. This is unlike a query
window, which compares a single geometry to all geometries of a layer.

Spatial joins can be used to answer questions such as Which highways cross national
parks?

The following table structures illustrate how the join would be accomplished for this
example:

PARKS(GID VARCHAR2(32), SHAPE SDO_GEOMETRY)
HIGHWAYS(GID VARCHAR2(32), SHAPE SDO_GEOMETRY)

To perform a spatial join, use the SDO_JOIN (page 18-12) operator, which is described
in Spatial Operators (page 18-1). The following spatial join query, to list the GID
column values of highways and parks where a highway interacts with a park,
performs a primary filter operation only ("mask=FILTER"), and thus it returns only
approximate results:

SELECT /*+ ordered */ a.gid, b.gid
FROM TABLE(SDO_JOIN("PARKS®, "SHAPE",
"HIGHWAYS™, "SHAPE",
"mask=FILTER")) c,

Indexing and Querying Spatial Data 5-13

Querying Spatial Data

parks a,
highways b
WHERE c.rowidl = a.rowid AND c.rowid2 = b.rowid;

The following spatial join query requests the same information as in the preceding
example, but it performs both primary and secondary filter operations
("mask=ANY INTERACT "), and thus it returns exact results:

SELECT /*+ ordered */ a.gid, b.gid

FROM TABLE(SDO_JOIN("PARKS®, "SHAPE®,

"HIGHWAYS", "SHAPE",
"mask=ANY INTERACT")) c,

parks a,
highways b
WHERE c.rowidl = a.rowid AND c.rowid2 = b.rowid;

5.2.3 Data and Index Dimensionality, and Spatial Queries

The elements of a spatial query can, in theory, have the following dimensionality:

* The base table geometries (or geometryl in spatial operator formats) can have
two, three, or more dimensions.

* The spatial index created on the base table (or geometry1) can be two-
dimensional or three-dimensional.

* The query window (or geometry? in spatial operator formats) can have two,
three, or more dimensions.

Some combinations of dimensionality among the three elements are supported and
some are not. Table 5-1 (page 5-14) explains what happens with the possible
combinations involving two and three dimensions.

Table 5-1 Data and Index Dimensionality, and Query Support

5-14 Developer's G

Base Table Spatial Query Query Result
(geometryl) Index Window
Dimensional Dimensional (geometry?2)
ity ity Dimensiona

lity
2- 2- 2- Performs a two-dimensional query.
dimensional dimensional dimensional
2- 2- 3- Supported if the query window has an
dimensional dimensional dimensional appropriate SDO_GTYPE value less than 3008.
2- 3- 2- Not supported: 3D index not permitted on 2D
dimensional dimensional dimensional data.
2- 3- 3- Not supported: 3D index not permitted on 2D
dimensional dimensional dimensional data.
3- 2- 2- Ignores the third (Z) dimension in each base
dimensional dimensional dimensional geometry and performs a two-dimensional

query.

3- 2- 3- Supported if the query window has an
dimensional dimensional dimensional appropriate SDO_GTYPE value less than 3008.

uide

Querying Spatial Data

Table 5-1 (Cont.) Data and Index Dimensionality, and Query Support

Base Table Spatial Query Query Result
(geometryl) Index Window
Dimensional Dimensional (geometry?2)
ity ity Dimensiona
lity
3- 3- 2- Converts the 2D query window to a 3D window

dimensional dimensional dimensional with zero Z values and performs a three-
dimensional query.

3- 3- 3- Performs a three-dimensional query.
dimensional dimensional dimensional

Indexing and Querying Spatial Data 5-15

Querying Spatial Data

5-16 Developer's Guide

6

Coordinate Systems (Spatial Reference
Systems)

This chapter describes in greater detail the Oracle Spatial and Graph coordinate
system support, which was introduced in Coordinate System (page 1-5). You can store
and manipulate SDO_GEOMETRY objects in a variety of coordinate systems.

For reference information about coordinate system transformation functions and
procedures in the MDSYS.SDO_CS package, see SDO_CS Package (Coordinate System
Transformation) (page 20-1).

This chapter contains the following major sections:

* Terms and Concepts (page 6-1)

* Geodetic Coordinate Support (page 6-2)

® Local Coordinate Support (page 6-8)

* EPSG Model and Spatial and Graph (page 6-8)

® Three-Dimensional Coordinate Reference System Support (page 6-9)
e TFM_PLAN Object Type (page 6-19)

¢ Coordinate Systems Data Structures (page 6-20)

¢ Legacy Tables and Views (page 6-47)

* Creating a User-Defined Coordinate Reference System (page 6-55)

* Notes and Restrictions with Coordinate Systems Support (page 6-73)
¢ U.S. National Grid Support (page 6-74)

¢ Google Maps Considerations (page 6-74)

¢ Example of Coordinate System Transformation (page 6-76)

6.1 Terms and Concepts

This section explains important terms and concepts related to coordinate system
support in Oracle Spatial and Graph.

6.1.1 Coordinate System (Spatial Reference System)

A coordinate system (also called a spatial reference system) is a means of assigning
coordinates to a location and establishing relationships between sets of such
coordinates. It enables the interpretation of a set of coordinates as a representation of a
position in a real world space.

Coordinate Systems (Spatial Reference Systems) 6-1

Geodetic Coordinate Support

The term coordinate reference system has the same meaning as coordinate system for
Spatial and Graph, and the terms are used interchangeably. European Petroleum
Survey Group (EPSG) specifications and documentation typically use the term
coordinate reference system. (EPSG has its own meaning for the term coordinate system,
as noted in SDO_COORD_SYS Table (page 6-29).)

6.1.2 Cartesian Coordinates

Cartesian coordinates are coordinates that measure the position of a point from a
defined origin along axes that are perpendicular in the represented two-dimensional
or three-dimensional space.

6.1.3 Geodetic Coordinates (Geographic Coordinates)

Geodetic coordinates (sometimes called geographic coordinates) are angular coordinates
(longitude and latitude), closely related to spherical polar coordinates, and are defined
relative to a particular Earth geodetic datum (described in Geodetic Datum

(page 6-2)). For more information about geodetic coordinate support, see Geodetic
Coordinate Support (page 6-2).

6.1.4 Projected Coordinates

Projected coordinates are planar Cartesian coordinates that result from performing a
mathematical mapping from a point on the Earth's surface to a plane. There are many
such mathematical mappings, each used for a particular purpose.

6.1.5 Local Coordinates

Local coordinates are Cartesian coordinates in a non-Earth (non-georeferenced)
coordinate system. Local Coordinate Support (page 6-8) describes local coordinate
support in Spatial and Graph.

6.1.6 Geodetic Datum

A geodetic datum (or datum) is a means of shifting and rotating an ellipsoid to
represent the figure of the Earth, usually as an oblate spheroid, that approximates the
surface of the Earth locally or globally, and is the reference for the system of geodetic
coordinates.

Each geodetic coordinate system is based on a datum.

6.1.7 Transformation

Transformation is the conversion of coordinates from one coordinate system to
another coordinate system.

If the coordinate system is georeferenced, transformation can involve datum
transformation: the conversion of geodetic coordinates from one geodetic datum to
another geodetic datum, usually involving changes in the shape, orientation, and
center position of the reference ellipsoid.

6.2 Geodetic Coordinate Support

Effective with Oracle9i, Spatial and Graph provides a rational and complete treatment
of geodetic coordinates. Before Oracle9i, spatial computations were based solely on
flat (Cartesian) coordinates, regardless of the coordinate system specified for the layer
of geometries. Consequently, computations for data in geodetic coordinate systems

6-2 Developer's Guide

Geodetic Coordinate Support

were inaccurate, because they always treated the coordinates as if they were on a flat
surface, and they did not consider the curvature of the surface.

Effective with release 9.2, ellipsoidal surface computations consider the curvatures of
the Earth in the specified geodetic coordinate system and return correct, accurate
results. In other words, spatial queries return the right answers all the time.

6.2.1 Geodesy and Two-Dimensional Geometry

A two-dimensional geometry is a surface geometry, but the important question is:
What is the surface? A flat surface (plane) is accurately represented by Cartesian
coordinates. However, Cartesian coordinates are not adequate for representing the
surface of a solid. A commonly used surface for spatial geometry is the surface of the
Earth, and the laws of geometry there are different than they are in a plane. For
example, on the Earth's surface there are no parallel lines: lines are geodesics, and all
geodesics intersect. Thus, closed curved surface problems cannot be done accurately
with Cartesian geometry.

Spatial and Graph provides accurate results regardless of the coordinate system or the
size of the area involved, without requiring that the data be projected to a flat surface.
The results are accurate regardless of where on the Earth's surface the query is
focused, even in "special” areas such as the poles. Thus, you can store coordinates in
any datum and projections that you choose, and you can perform accurate queries
regardless of the coordinate system.

6.2.2 Choosing a Geodetic or Projected Coordinate System

For applications that deal with the Earth's surface, the data can be represented using a
geodetic coordinate system or a projected plane coordinate system. In deciding which
approach to take with the data, consider any needs related to accuracy and
performance:

¢ Accuracy

For many spatial applications, the area is sufficiently small to allow adequate
computations on Cartesian coordinates in a local projection. For example, the New
Hampshire State Plane local projection provides adequate accuracy for most spatial
applications that use data for that state.

However, Cartesian computations on a plane projection will never give accurate
results for a large area such as Canada or Scandinavia. For example, a query asking
if Stockholm, Sweden and Helsinki, Finland are within a specified distance may
return an incorrect result if the specified distance is close to the actual measured
distance. Computations involving large areas or requiring very precise accuracy
must account for the curvature of the Earth's surface.

e Performance

Spherical computations use more computing resources than Cartesian
computations. Some operations using geodetic coordinates may take longer to
complete than the same operations using Cartesian coordinates.

It is important that you choose the correct type of coordinate system, because it affects
the point at which anomalies related to floating point arithmetic are likely to appear.

6.2.3 Choosing Non-Ellipsoidal or Ellipsoidal Height

This section discusses guidelines for choosing the appropriate type of height for three-
dimensional data: non-ellipsoidal or ellipsoidal. Although ellipsoidal height is widely

Coordinate Systems (Spatial Reference Systems) 6-3

Geodetic Coordinate Support

used and is the default for many GPS applications, and although ellipsoidal
computations incur less performance overhead in many cases, there are applications
for which a non-ellipsoidal height may be preferable or even necessary.

Also, after any initial decision, you can change the reference height type, because
transformations between different height datums are supported.

6.2.3.1 Non-Ellipsoidal Height

Non-ellipsoidal height is measured from some point other than the reference ellipsoid.
Some common non-ellipsoidal measurements of height are from ground level, mean
sea level (MSL), or the reference geoid.

* Ground level: Measuring height from the ground level is conceptually the simplest
approach, and it is common in very local or informal applications. For example,
when modeling a single building or a cluster of buildings, ground level may be
adequate.

Moreover, if you ever need to integrate local ground height with a global height
datum, you can achieve this with a transformation (EPSG method 9616) adding a
local constant reference height. If you need to model local terrain undulations, you
can achieve this with a transformation using an offset matrix (EPSG method 9635),
just as you can between the geoid and the ellipsoid.

¢ Mean sea level (MSL): MSL is a common variation of sea level that provides
conceptual simplicity, ignoring local variations and changes over time in sea level.
It can also be extrapolated to areas covered by land.

Height relative to MSL is useful for a variety of applications, such as those dealing
with flooding risk, gravitational potential, and how thin the air is. MSL is
commonly used for the heights of aircraft in flight.

* Geoid: The geoid, the equipotential surface closest to MSL, provides the most
precise measurements of height in terms of gravitational pull, factoring in such
things as climate and tectonic changes. The geoid can deviate from MSL by
approximately 2 meters (plus or minus).

If an application is affected more by purely gravitational effects than by actual local
sea level, you may want to use the geoid as the reference rather than MSL. To
perform transformations between MSL, geoid, or ellipsoid, you can use EPSG
method 9635 and the appropriate time-stamped offset matrix.

Because most non-ellipsoidal height references are irregular and undulating surfaces,
transformations between them are more complicated than with ellipsoidal heights.
One approach is to use an offset grid file to define the transformation. This approach is
implemented in EPSG method 9635. The grid file has to be acquired (often available
publicly from government websites). Moreover, because most such non-ellipsoidal
height datums (including the geoid, sea level, and local terrain) change over time, the
timestamp of an offset matrix may matter, even if not by much. (Of course, the same
principle applies to ellipsoids as well, since they are not static in the long term. After
all, they are intended to approximate the changing geoid, MSL, or terrain.)

Regarding performance and memory usage with EPSG method 9635, at runtime the
grid must be loaded before the transformation of a dataset. This load operation
temporarily increases the footprint in main memory and incurs one-time loading
overhead. If an entire dataset is transformed, the overhead can be relatively
insignificant; however, if frequent transformations are performed on single
geometries, the cumulative overhead can become significant.

6-4 Developer's Guide

Geodetic Coordinate Support

6.2.3.2 Ellipsoidal Height

Ellipsoidal height is measured from a point on the reference ellipsoid. The ellipsoid is
a convenient and relatively faithful approximation of the Earth. Although using an
ellipsoid is more complex than using a sphere to represent the Earth, using an
ellipsoid is, for most applications, simpler than using a geoid or local heights
(although with some sacrifice in precision). Moreover, geoidal and sea-level heights
are often not well suited for mathematical analysis, because the undulating and
irregular shapes would make certain computations prohibitively complex and
expensive.

GPS applications often assume ellipsoidal height as a reference and use it as the
default. Because the ellipsoid is chosen to match the geoid (and similar sea level),
ellipsoidal height tends not to deviate far from MSL height. For example, the geoid
diverges from the NADBS3 ellipsoid by only up to 50 meters. Other ellipsoids may be
chosen to match a particular country even more closely.

Even if different parties use different ellipsoids, a WKT can conveniently describe such
differences. A simple datum transformation can efficiently and accurately perform
transformations between ellipsoids. Because no offset matrix is involved, no loading
overhead is required. Thus, interoperability is simplified with ellipsoidal height,
although future requirements or analysis might necessitate the use of MSL, a geoid, or
other non-ellipsoidal height datums.

6.2.4 Geodetic MBRs

To create a query window for certain operations on geodetic data, use an MBR
(minimum bounding rectangle) by specifying an SDO_ETYPE value of 1003 or 2003
(optimized rectangle) and an SDO_INTERPRETATION value of 3, as described in
Table 2-2 (page 2-9) in SDO_ELEM_INFO (page 2-8). A geodetic MBR can be used
with the following operators: SDO_FILTER (page 18-8), SDO_RELATE (page 18-30)
with the ANY INTERACT mask, SDO_ANYINTERACT (page 18-2), and
SDO_WITHIN_DISTANCE (page 18-36).

Example 6-1 (page 6-5) requests the names of all cola markets that are likely to
interact spatially with a geodetic MBR.

Example 6-1 Using a Geodetic MBR

SELECT c.name FROM cola_markets_cs c¢ WHERE
SDO_FILTER(c.shape,

SDO_GEOMETRY (
2003,
8307, -- SRID for WGS 84 longitude/latitude
NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),
SDO_ORDINATE_ARRAY(6,5, 10,10))

) = "TRUE";

Example 6-1 (page 6-5) produces the following output (assuming the data as defined

in Example 6-17 (page 6-76) in Example of Coordinate System Transformation
(page 6-76)):

Coordinate Systems (Spatial Reference Systems) 6-5

Geodetic Coordinate Support

The following considerations apply to the use of geodetic MBRs:

Do not use a geodetic MBR with spatial objects stored in the database. Use it only
to construct a query window.

The lower-left Y coordinate (minY) must be less than the upper-right Y coordinate
(maxY). If the lower-left X coordinate (minX) is greater than the upper-right X
coordinate (maxX), the window is assumed to cross the date line meridian (that is,
the meridian "opposite" the prime meridian, or both 180 and -180 longitude). For
example, an MBR of (-10,10, -100, 20) with longitude/latitude data goes three-
fourths of the way around the Earth (crossing the date line meridian), and goes
from latitude lines 10 to 20.

When Spatial and Graph constructs the MBR internally for the query, lines along
latitude lines are densified by adding points at one-degree intervals. This might
affect results for objects within a few meters of the edge of the MBR (especially
objects in the middle latitudes in both hemispheres).

When an optimized rectangle spans more than 119 degrees in longitude, it is
internally divided into three rectangles; and as a result, these three rectangles share
an edge that is the common boundary between them. If you validate the geometry
of such an optimized rectangle, error code 13351 is returned because the internal
rectangles have a shared edge. You can use such an optimized rectangle for queries
with only the following: SDO_ANYINTERACT (page 18-2) operator,
SDO_RELATE (page 18-30) operator with the ANYINTERACT mask, or
SDO_GEOM.RELATE (page 23-4) function with the ANYINTERACT mask. (Any
other queries on such an optimized rectangle may return incorrect results.)

The following additional examples show special or unusual cases, to illustrate how a
geodetic MBR is interpreted with longitude/latitude data:

(10,0, -110,20) crosses the date line meridian and goes most of the way around the
world, and goes from the equator to latitude 20.

(10,-90, 40,90) is a band from the South Pole to the North Pole between longitudes
10 and 40.

(10,790, 40,50) is a band from the South Pole to latitude 50 between longitudes 10
and 40.

(-180,-10, 180,5) is a band that wraps the equator from 10 degrees south to 5 degrees
north.

(-180,-90, 180,90) is the whole Earth.
(-180,-90, 180,50) is the whole Earth below latitude 50.
(-180,50, 180,90) is the whole Earth above latitude 50.

6.2.5 Other Considerations and Requirements with Geodetic Data

The following geometries are not permitted if a geodetic coordinate system is used or
if any transformation is being performed (even if the transformation is from one
projected coordinate system to another projected coordinate system):

6-6 Developer's Guide

Circles

Circular arcs

Geodetic Coordinate Support

Geodetic coordinate system support is provided only for geometries that consist of
points or geodesics (lines on the ellipsoid). If you have geometries containing circles or
circular arcs in a projected coordinate system, you can densify them using the
SDO_GEOM.SDO_ARC_DENSIFY (page 23-7) function (documented in SDO_GEOM
Package (Geometry) (page 23-1)) before transforming them to geodetic coordinates,
and then perform spatial operations on the resulting geometries.

The following size limits apply with geodetic data:

¢ No polygon element can have an area larger than or equal to one-half the surface of
the Earth. Moreover, if the result of a union of two polygons is greater than one-
half the surface of the Earth, the operation will not produce a correct result. For
example, if A union B results in a polygon that is greater than one-half of the area
of the Earth, the operations A difference B, A intersection B, and A XOR B are not
supported, and only a relate operation with the ANYINTERACT mask is
supported between those two polygons.

* In a line, the distance between two adjacent coordinates cannot be greater than or
equal to one-half the perimeter (a great circle) of the Earth.

If you need to work with larger elements, first break these elements into multiple
smaller elements and work with them. For example, you cannot create a geometry
representing the entire ocean surface of the Earth; however, you can create multiple
geometries, each representing part of the overall ocean surface. To work with a line
string that is greater than or equal to one-half the perimeter of the Earth, you can add
one or more intermediate points on the line so that all adjacent coordinates are less
than one-half the perimeter of the Earth.

Tolerance is specified as meters for geodetic layers. If you use tolerance values that are
typical for non-geodetic data, these values are interpreted as meters for geodetic data.
For example, if you specify a tolerance value of 0.05 for geodetic data, this is
interpreted as precise to 5 centimeters. If this value is more precise than your
applications need, performance may be affected because of the internal computational
steps taken to implement the specified precision. (For more information about
tolerance, see Tolerance (page 1-6).)

For geodetic layers, you must specify the dimensional extents in the index metadata as
-180,180 for longitude and -90,90 for latitude. The following statement (from

Example 6-17 (page 6-76) in Example of Coordinate System Transformation

(page 6-76)) specifies these extents (with a 10-meter tolerance value in each
dimension) for a geodetic data layer:

INSERT INTO user_sdo_geom_metadata
(TABLE_NAME,
COLUMN_NAME,
DIMINFO,
SRID)
VALUES (
"cola_markets_cs”,
"shape”,
SDO_DIM_ARRAY(
SDO_DIM_ELEMENT("Longitude®, -180, 180, 10), -- 10 meters tolerance
SDO_DIM_ELEMENT("Latitude”, -90, 90, 10) -- 10 meters tolerance
),
8307 -- SRID for "Longitude / Latitude (WGS 84)" coordinate system

);

See Notes and Restrictions with Coordinate Systems Support (page 6-73) for
additional notes and restrictions relating to geodetic data.

Coordinate Systems (Spatial Reference Systems) 6-7

Local Coordinate Support

6.3 Local Coordinate Support

Spatial and Graph provides a level of support for local coordinate systems. Local
coordinate systems are often used in CAD systems, and they can also be used in local
surveys where the relationship between the surveyed site and the rest of the world is
not important.

Several local coordinate systems are predefined and included with Spatial and Graph
in the SDO_COORD_REF_SYS table (described in SDO_COORD_REF_SYS Table
(page 6-27)). These supplied local coordinate systems, whose names start with Non-
Earth, define non-Earth Cartesian coordinate systems based on different units of
measurement (Meter, Millimeter, Inch, and so on).

In the current release, you cannot perform coordinate system transformation between
local and Earth-based coordinate systems; and when transforming a geometry or layer
of geometries between local coordinate systems, you can only to convert coordinates
in a local coordinate system from one unit of measurement to another (for example,
inches to millimeters). However, you can perform all other spatial operations (for
example, using SDO_RELATE (page 18-30), SDO_WITHIN_DISTANCE (page 18-36),
and other operators) with local coordinate systems.

6.4 EPSG Model and Spatial and Graph

The Oracle Spatial and Graph coordinate system support is based on, but is not always
identical to, the European Petroleum Survey Group (EPSG) data model and dataset.
These are described in detail at http://www.epsg.org, and the download for the
EPSG geodetic parameter dataset includes a "Readme" that contains an entity-
relationship (E-R) diagram. The approach taken by Oracle Spatial and Graph provides
the benefits of standardization, expanded support, and flexibility:

¢ The EPSG model is a comprehensive and widely accepted standard for data
representation, so users familiar with it can more easily understand Spatial and
Graph storage and operations.

® Support is provided for more coordinate systems and their associated datums,
ellipsoids, and projections. For example, some of the EPSG geographic and
projected coordinate systems had no counterpart among coordinate systems
supported for previous Spatial and Graph releases. Their addition results in an
expanded set of supported coordinate systems.

* Data transformations are more flexible. Instead of there being only one possible
Oracle-defined transformation path between a given source and target coordinate
system, you can specify alternative paths to be used for a specific area of
applicability (that is, use case) or as the systemwide default.

The rest of this section describes this flexibility.

For data transformations (that is, transforming data from one coordinate system to
another), you can now control which transformation rules are to be applied. In
previous releases, and in the current release by default, Spatial and Graph performs
transformations based only on the specified source and target coordinate systems,
using predetermined intermediate transformation steps. The assumption behind that
default approach is that there is a single correct or preferable transformation chain.

By default, then, Spatial and Graph applies certain transformation methods for each
supported transformation between specific pairs of source and target coordinate
systems. For example, there are over 500 supported transformations from specific

6-8 Developer's Guide

http://www.epsg.org

Three-Dimensional Coordinate Reference System Support

coordinate systems to the WGS 84 (longitude/latitude) coordinate system, which has
the EPSG SRID value of 4326. As one example, for a transformation from SRID 4605 to
SRID 4326, Spatial and Graph can use the transformation method with the
COORD_OP_ID value 1445, as indicated in the SDO_COORD_OPS table (described in
SDO_COORD_OPS Table (page 6-25)), which contains one row for each
transformation operation between coordinate systems.

However, you can override the default transformation by specifying a different
method (from the set of Oracle-supplied methods) for the transformation for any given
source and target SRID combination. You can specify a transformation as the new
systemwide default, or you can associate the transformation with a named use case
that can be specified when transforming a layer of spatial geometries. (A use case is
simply a name given to a usage scenario or area of applicability, such as Project XYZ or
Mike's Favorite Transformations; there is no relationship between use cases and database
users or schemas.)

To specify a transformation as either the systemwide default or associated with a use
case, use the SDO_CS.ADD_PREFERENCE_FOR_OP (page 20-3) procedure. To
remove a previously specified preference, use the
SDO_CS.REVOKE_PREFERENCE_FOR_OP (page 20-30) procedure.

When it performs a coordinate system transformation, Spatial and Graph follows these
general steps to determine the specific transformation to use:

1. If a use case has been specified, the transformation associated with that use case is
applied.

2. If no use case has been specified and if a user-defined systemwide transformation
has been created for the specified source and target coordinate system pair, that
transformation is applied.

3. If no use case has been specified and if no user-defined transformation exists for
the specified source and target coordinate system pair, the behavior depends on
whether or not EPSG rules have been created, such as by the
SDO_CS.CREATE_OBVIOUS_EPSG_RULES (page 20-12) procedure:

e If the EPSG rules have been created and if an EPSG rule is defined for this
transformation, the EPSG transformation is applied.

¢ If the EPSG rules have not been created, or if they have been created but no
EPSG rule is defined for this transformation, the Oracle Spatial and Graph
default transformation is applied.

To return the version number of the EPSG dataset used by Spatial and Graph, use the
SDO_CS.GET_EPSG_DATA_VERSION (page 20-26) function.

6.5 Three-Dimensional Coordinate Reference System Support

The Oracle Spatial and Graph support for three-dimensional coordinate reference
systems complies with the EPSG model (described in EPSG Model and Spatial and
Graph (page 6-8)), which provides the following types of coordinate reference
systems:

* Geographic 2D
* Projected 2D

® Geographic 3D, which consists of Geographic 2D plus ellipsoidal height, with
longitude, latitude, and height based on the same ellipsoid and datum

Coordinate Systems (Spatial Reference Systems) 6-9

Three-Dimensional Coordinate Reference System Support

* Compound, which consists of either Geographic 2D plus gravity-related height or
Projected 2D plus gravity-related height

Thus, there are two categories of three-dimensional coordinate reference systems:
those based on ellipsoidal height (geographic 3D, described in Geographic 3D
Coordinate Reference Systems (page 6-10)) and those based on gravity-related height
(compound, described in Compound Coordinate Reference Systems (page 6-10)).

Three-dimensional computations are more accurate than their two-dimensional
equivalents, particularly when they are chained: For example, datum transformations
internally always are performed in three dimensions, regardless of the dimensionality
of the source and target CRS and geometries. When two-dimensional geometries are
involved, one or more of the following can occur:

1. When the input or output geometries and CRS are two-dimensional, the
(unspecified) input height defaults to zero (above the ellipsoid, depending on the
CRS) for any internal three-dimensional computations. This is a potential source
of inaccuracy, unless the height was intended to be exactly zero. (Data can be two-
dimensional because height values were originally either unavailable or not
considered important; this is different from representing data in two dimensions
because heights are known to be exactly zero.

2. The transformation might then internally result in a non-zero height. Since the
two-dimensional target CRS cannot accommodate the height value, the height
value must be truncated, resulting in further inaccuracy.

3. If further transformations are chained, the repeated truncation of height values
can result in increasing inaccuracies. Note that an inaccurate input height can
affect not only the output height of a transformation, but also the longitude and
latitude.

However, if the source and target CRS are three-dimensional, there is no repeated
truncation of heights. Consequently, accuracy is increased, particularly for
transformation chains.

For an introduction to support in Spatial and Graph for three-dimensional geometries,
see Three-Dimensional Spatial Objects (page 1-16).

6.5.1 Geographic 3D Coordinate Reference Systems

A geographic three-dimensional coordinate reference system is based on longitude
and latitude, plus ellipsoidal height. The ellipsoidal height is the height relative to a
reference ellipsoid, which is an approximation of the real Earth. All three dimensions
of the CRS are based on the same ellipsoid.

Using ellipsoidal heights enables Spatial and Graph to perform internal operations
with great mathematical regularity and efficiency. Compound coordinate reference
systems, on the other hand, require more complex transformations, often based on
offset matrixes. Some of these matrixes have to be downloaded and configured.

Furthermore, they might have a significant footprint, on disk and in main memory.

The supported geographic 3D coordinate reference systems are listed in the
SDO_CRS_GEOGRAPHIC3D view, described in SDO_CRS_GEOGRAPHIC3D View
(page 6-32).

6.5.2 Compound Coordinate Reference Systems

A compound three-dimensional coordinate reference system is based on a geographic
or projected two-dimensional system, plus gravity-related height. Gravity-related

6-10 Developer's Guide

Three-Dimensional Coordinate Reference System Support

height is the height as influenced by the Earth's gravitational force, where the base
height (zero) is often an equipotential surface, and might be defined as above or below
"sea level."

Gravity-related height is a more complex representation than ellipsoidal height,
because of gravitational irregularities such as the following:

* Orthometric height

Orthometric height is also referred to as the height above the geoid. The geoid is an
equipotential surface that most closely (but not exactly) matches mean sea level. An
equipotential surface is a surface on which each point is at the same gravitational
potential level. Such a surface tends to undulate slightly, because the Earth has
regions of varying density. There are multiple equipotential surfaces, and these
might not be parallel to each other due to the irregular density of the Earth.

* Height relative to mean sea level, to sea level at a specific location, or to a vertical
network warped to fit multiple tidal stations (for example, NGVD 29)

Sea level is close to, but not identical to, the geoid. The sea level at a given location
is often defined based on the "average sea level" at a specific port.

The supported compound coordinate reference systems are listed in the
SDO_CRS_COMPOUND view, described in SDO_CRS_COMPOUND View
(page 6-30).

You can create a customized compound coordinate reference system, which combines
a horizontal CRS with a vertical CRS. (The horizontal CRS contains two dimensions,
such as X and Y or longitude and latitude, and the vertical CRS contains the third
dimension, such as Z or height or altitude.) Creating a Compound CRS (page 6-67)
explains how to create a compound CRS.

6.5.3 Three-Dimensional Transformations

Spatial and Graph supports three-dimensional coordinate transformations for
SDO_GEOMETRY objects directly, and indirectly for point clouds and TINs. (For
example, a point cloud must be transformed to a table with an SDO_GEOMETRY
column.) The supported transformations include the following;:

e Three-dimensional datum transformations

* Transformations between ellipsoidal and gravity-related height

For three-dimensional datum transformations, the datum transformation between the
two ellipsoids is essentially the same as for two-dimensional coordinate reference
systems, except that the third dimension is considered instead of ignored. Because
height values are not ignored, the accuracy of the results increases, especially for
transformation chains.

For transformations between ellipsoidal and gravity-related height, computations are
complicated by the fact that equipotential and other gravity-related surfaces tend to
undulate, compared to any ellipsoid and to each other. Transformations might be
based on higher-degree polynomial functions or bilinear interpolation. In either case, a
significant parameter matrix is required to define the transformation.

For transforming between gravity-related and ellipsoidal height, the process usually
involves a transformation, based on an offset matrix, between geoidal and ellipsoidal
height. Depending on the source or target definition of the offset matrix, a common
datum transformation might have to be appended or prefixed.

Coordinate Systems (Spatial Reference Systems) 6-11

Three-Dimensional Coordinate Reference System Support

Example 6-2 Three-Dimensional Datum Transformation
Example 6-2 (page 6-12) shows a three-dimensional datum transformation.

set numwidth 9

CREATE TABLE source_geoms (
mkt_id NUMBER PRIMARY KEY,
name VARCHAR2(32),
GEOMETRY SDO_GEOMETRY);

INSERT INTO source_geoms VALUES(
1,
"reference geom®,
SDO_GEOMETRY/(
3001,
4985,
SDO_POINT_TYPE(
4.0,
55.0,
1.0),
NULL,
NULL));

INSERT INTO USER_SDO_GEOM_METADATA VALUES (

"source_geoms”,

"GEOMETRY ",

SDO_DIM_ARRAY (
SDO_DIM_ELEMENT("Longitude®, -180, 180, 10),
SDO_DIM_ELEMENT("Latitude*, -90, 90, 10),
SDO_DIM_ELEMENT("Height®, -1000,1000, 10)),

4985);

commit;

CALL SDO_CS.TRANSFORM_LAYER(
"source_geoms”,
"GEOMETRY ",

"GEO_CS_4979",
4979);

INSERT INTO USER_SDO_GEOM_METADATA VALUES (

"GEO_CS_4979",

"GEOMETRY ",

SDO_DIM_ARRAY (
SDO_DIM_ELEMENT("Longitude®, -180, 180, 10),
SDO_DIM_ELEMENT("Latitude*, -90, 90, 10),
SDO_DIM_ELEMENT("Height®, -1000,1000, 10)),

4979);

set lines 210;

CALL SDO_CS.TRANSFORM_LAYER(
"GEO_CS_4979",
"GEOMETRY ",
"source_geoms2",
4985);

6-12 Developer's Guide

Three-Dimensional Coordinate Reference System Support

INSERT INTO USER_SDO_GEOM_METADATA VALUES (

*source_geoms2®,
"GEOMETRY ",
SDO_DIM_ARRAY(

SDO_DIM_ELEMENT("Longitude®,

SDO_DIM_ELEMENT("Latitude”,
SDO_DIM_ELEMENT("Height",
4985);

DELETE FROM USER_SDO_GEOM_METADATA WHERE table_name
DELETE FROM USER_SDO_GEOM_METADATA WHERE table_name
DELETE FROM USER_SDO_GEOM_METADATA WHERE table_name

drop table GEO_CS_4979;
drop table source_geoms;
drop table source_geoms2;

-180, 180, 10),

-90, 90, 10),

-1000,1000, 10)),

*GEO_CS_4979";
*SOURCE_GEOMS";
*SOURCE_GEOMS2";

As a result of the transformation in Example 6-2 (page 6-12), (4, 55, 1) is transformed to

(4.0001539, 55.0000249, 4.218).

Example 6-3 Transformation Between Geoidal And Ellipsoidal Height

Example 6-3 (page 6-13) configures a transformation between geoidal and ellipsoidal
height, using a Hawaii offset grid. Note that without the initial creation of a rule
(using the SDO_CS.CREATE_PREF_CONCATENATED_OP (page 20-13) procedure),

the grid would not be used.

-- Create Sample operation:

insert into mdsys.sdo_coord_ops (

COORD_OP_ID,
COORD_OP_NAME,
COORD_OP_TYPE,
SOURCE_SRID,
TARGET_SRID,
COORD_TFM_VERSION,
COORD_OP_VARIANT,
COORD_OP_METHOD_ID,
UOM_ID_SOURCE_OFFSETS,
UOM_ID_TARGET_OFFSETS,
INFORMATION_SOURCE,
DATA_SOURCE,
SHOW_OPERATION,
IS_LEGACY,
LEGACY_CODE,
REVERSE_OP,
IS_IMPLEMENTED_FORWARD,
IS_IMPLEMENTED_REVERSE)
values (
1000000005,

"Test Bi-linear Interpolation®,

"CONVERSION",
null,

null,

null,

null,

9635,

null,

null,
"Oracle”,
"Oracle”,

Coordinate Systems (Spatial Reference Systems) 6-13

Three-Dimensional Coordinate Reference System Support

1,
"FALSE",
null,

1,

1,

1;

--Create sample parameters, pointing to the offset file
--(in this case reusing values from an existing operation):
insert into mdsys.sdo_coord_op_param_vals (
coord_op_id,
COORD_OP_METHOD_ID,
PARAMETER_ID,
PARAMETER_VALUE,
PARAM_VALUE_FILE_REF,
PARAM_VALUE_FILE,
PARAM_VALUE_XML,
uoMm_ID) (
select
1000000005,
9635,
8666,
PARAMETER_VALUE,
PARAM_VALUE_FILE_REF,
PARAM_VALUE_FILE,
PARAM_VALUE_XML,
UOM_ID
from
mdsys.sdo_coord_op_param_vals
where
coord_op_id = 999998 and
parameter_id = 8666);

--Create a rule to use this operation between SRIDs 7406 and 4359:
call sdo_cs.create_pref_concatenated_op(

300,

"CONCATENATED OPERATION",

TFM_PLAN(SDO_TFM_CHAIN(7406, 1000000005, 4359)),

NULL);

-- Now, actually perform the transformation:
set numformat 999999.99999999

-- Create the source table

CREATE TABLE source_geoms (
mkt_id NUMBER PRIMARY KEY,
name VARCHAR2(32),
GEOMETRY SDO_GEOMETRY);

INSERT INTO source_geoms VALUES(

1,
"reference geom®,
SDO_GEOMETRY/(
3001,
7406,
SDO_POINT_TYPE(

-161,

18,

0),

NULL,

6-14 Developer's Guide

Three-Dimensional Coordinate Reference System Support

NULL));

INSERT INTO USER_SDO_GEOM_METADATA VALUES (

"source_geoms”,

"GEOMETRY ",

SDO_DIM_ARRAY (
SDO_DIM_ELEMENT("Longitude®, -180, 180, 10),
SDO_DIM_ELEMENT("Latitude*, -90, 90, 10),
SDO_DIM_ELEMENT("Height®, -100, 100, 10)),

7406);

commit;

SELECT GEOMETRY "Source™ FROM source_geoms;

--Perform the transformation:
CALL SDO_CS.TRANSFORM_LAYER(
"source_geoms”,
"GEOMETRY",
"GEO_CS_4359",
4359);

INSERT INTO USER_SDO_GEOM_METADATA VALUES (

"GEO_CS_4359",

"GEOMETRY ",

SDO_DIM_ARRAY (
SDO_DIM_ELEMENT("Longitude®, -180, 180, 10),
SDO_DIM_ELEMENT("Latitude®, -90, 90, 10),
SDO_DIM_ELEMENT("Height®, -100, 100, 10)),

4359);

set lines 210;

SELECT GEOMETRY "Target™ FROM GEO_CS_4359;

--Transform back:

CALL SDO_CS.TRANSFORM_LAYER(
"GEO_CS_4359",
"GEOMETRY",
"source_geoms2*,
7406);

INSERT INTO USER_SDO_GEOM_METADATA VALUES (

"source_geoms2*,

"GEOMETRY ",

SDO_DIM_ARRAY(
SDO_DIM_ELEMENT("Longitude®, -180, 180, 10),
SDO_DIM_ELEMENT("Latitude®, -90, 90, 10),
SDO_DIM_ELEMENT("Height®, -100, 100, 10)),

7406);

SELECT GEOMETRY "Source2™ FROM source_geoms2;

--Clean up (regarding the transformation):

DELETE FROM USER_SDO_GEOM_METADATA WHERE table_name = "GEO_CS_4359";

Coordinate Systems (Spatial Reference Systems) 6-15

Three-Dimensional Coordinate Reference System Support

DELETE FROM USER_SDO_GEOM_METADATA WHERE table_name
DELETE FROM USER_SDO_GEOM_METADATA WHERE table_name

" SOURCE_GEOMS™;
"SOURCE_GEOMS2* ;

drop table GEO_CS_4359;
drop table source_geoms;
drop table source_geoms2;

--Clean up (regarding the rule):
CALL sdo_cs.delete_op(300);

delete from mdsys.sdo_coord_op_param_vals where coord_op_id = 1000000005;
delete from mdsys.sdo_coord_ops where coord_op_id = 1000000005;

COMMIT;

With the configuration in Example 6-3 (page 6-13):

e Without the rule, (-161.00000000, 18.00000000, .00000000) is transformed to
(-161.00127699, 18.00043360, 62.03196364), based simply on a datum
transformation.

e With the rule, (-161.00000000, 18.00000000, .00000000) is transformed to
(-161.00000000, 18.00000000, 6.33070000).

6.5.4 Cross-Dimensionality Transformations

You cannot directly perform a cross-dimensionality transformation (for example, from
a two-dimensional geometry to a three-dimensional geometry) using the
SDO_CS.TRANSFORM (page 20-33) function or the SDO_CS. TRANSFORM_LAYER
(page 20-35) procedure. However, you can use the SDO_CS.MAKE_3D (page 20-28)
function to convert a two-dimensional geometry to a three-dimensional geometry, or
the SDO_CS.MAKE_2D (page 20-27) function to convert a three-dimensional geometry
to a two-dimensional geometry; and you can use the resulting geometry to perform a
transformation into a geometry with the desired number of dimensions.

For example, transforming a two-dimensional geometry into a three-dimensional
geometry involves using the SDO_CS.MAKE_3D (page 20-28) function. This function
does not itself perform any coordinate transformation, but simply adds a height value
and sets the target SRID. You must choose an appropriate target SRID, which should
be the three-dimensional equivalent of the source SRID. For example, three-
dimensional WGS 84 (4327) is the equivalent of two-dimensional WGS 84 (4326). If
necessary, modify height values of vertices in the returned geometry.

There are many options for how to use the SDO_CS.MAKE_3D (page 20-28) function,
but the simplest is the following:

1. Transform from the two-dimensional source SRID to two-dimensional WGS 84
(4326).

2. Call SDO_CS.MAKE_3D (page 20-28) to convert the geometry to three-
dimensional WGS 84 (4327)

3. Transform from three-dimensional WGS 84 (4327) to the three-dimensional target
SRID.

Example 6-4 (page 6-17) transforms a two-dimensional point from SRID 27700 to two-
dimensional SRID 4326, converts the result of the transformation to a three-

6-16 Developer's Guide

Three-Dimensional Coordinate Reference System Support

dimensional point with SRID 4327, and transforms the converted point to three-
dimensional SRID 4327.

Example 6-4 Cross-Dimensionality Transformation

SELECT
SDO_CS. TRANSFORM(
SDO_CS.MAKE_3D(
SDO_CS. TRANSFORM(
SDO_GEOMETRY (
2001,
27700,
SDO_POINT_TYPE(577274.984, 69740.4923, NULL),
NULL,
NULL),
4326),
height => 0,
target_srid => 4327),
4327) "27700 > 4326 > 4327 > 4327"
FROM DUAL;

27700 > 4326 > 4327 > 4327(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INF

SDO_GEOMETRY(3001, 4327, SDO_POINT TYPE(.498364058, 50.5006366, 0), NULL, NULL)

6.5.5 3D Equivalent for WGS 84?

There are two possible answers to the question What is 3D equivalent for the WGS 84
coordinate system? (that is, 2D Oracle SRID 8308 or EPSG SRID 4326):

* 4979 (in many or most cases), or

¢ It depends on what you mean by height (for example, above ground level, above or
below sea level, or something else).

There are many different height datums. Height can be relative to:

* The ellipsoid, which requires the use of a coordinate system of type
GEOGRAPHIC3d, for which SRID values 4327, 43229, and 4979 are predefined in
Oracle Spatial and Graph.

¢ A non-ellipsoidal height datum, which requires the use of a coordinate system of
type COMPOUND, for which a custom SRID must usually be defined. The non-
ellipsoidal height may be specified in relation to the geoid, to some local or mean
sea level (or a network of local sea levels), or to some other definition of height
(such as above ground surface).

To define a compound coordinate system (see Compound Coordinate Reference
Systems (page 6-10)) based on the two dimensions of the WGS 84 coordinate system,
you must first select a predefined or custom vertical coordinate reference system (see
Creating a Vertical CRS (page 6-66)). To find the available vertical coordinate
reference systems, enter the following statement:

SELECT srid, COORD_REF_SYS NAME from sdo_coord_ref_sys
WHERE COORD_REF_SYS_KIND = "VERTICAL® order by srid;

SRID COORD_REF_SYS_NAME

3855 EGM2008 geoid height
3886 Fao 1979 height
4440 NZVD2009 height

Coordinate Systems (Spatial Reference Systems) 6-17

Three-Dimensional Coordinate Reference System Support

4458 Dunedin-Bluff 1960 height
5600 NGPF height

5601 IGN 1966 height

5602 Moorea SAU 1981 height

5795 Guadeloupe 1951 height
5796 Lagos 1955 height
5797 AI0OC95 height

5798 EGM84 geoid height
5799 DVRI0 height

123 rows selected.

After selecting a vertical coordinate reference system, create the compound SRID by
entering a statement in the following form:

INSERT INTO sdo_coord_ref _system (
SRID,
COORD_REF_SYS_NAME,
COORD_REF_SYS_KIND,
COORD_SYS_ID,
DATUM_ID,
GEOG_CRS_DATUM_ID,
SOURCE_GEOG_SRID,
PROJECTION_CONV_ID,
CMPD_HORIZ_SRID,
CMPD_VERT_SRID,
INFORMATION_SOURCE,
DATA_SOURCE,
IS_LEGACY,
LEGACY_CODE,
LEGACY_WKTEXT,
LEGACY_CS_BOUNDS,
IS_VALID,
SUPPORTS_SDO_GEOMETRY)

values (
custom SRI D,

' cust om nane' ,
"COMPOUND" ,

NULL,

NULL,

6326,

NULL,

NULL,

4326,

vertical -SRI D,

" customi nformation-source',
' cust om dat a- source' ,
"FALSE",

NULL,

NULL,

NULL,

"TRUE",

*TRUE");

You can check the definition, based on the generated WKT, by entering a statement in
the following form:

SELECT wktext3d FROM cs_srs WHERE srid = custom SR D;

WKTEXT3D

6-18 Developer's Guide

TFM_PLAN Obiect Type

COMPD_CS[
"NTF (Paris) + NGF IGN69",
GEOGCS['NTF (Paris)",
DATUM[""Nouvelle Triangulation Francaise (Paris)",
SPHEROID[
"Clarke 1880 (IGN)",
6378249.2,
293.4660212936293951,
AUTHORITY["EPSG", "7011"]],
TOWGS84[-168.0, -60.0, 320.0, 0.0, 0.0, 0.0, 0.071,
AUTHORITY["EPSG", "6807"1],
PRIMEM["Paris", 2.337229, AUTHORITY["EPSG","8903"]],
UNIT["grad", 0.015707963267949, AUTHORITY["EPSG", "9105"]],
AXIS["Lat", NORTH],
AXIS["'Long", EAST],
AUTHORITY["EPSG", "4807"]],
VERT_CS["NGF I1GN69",
VERT_DATUM["Nivellement general de la France - IGN69", 2005,
AUTHORITY["EPSG", "5119"1],
UNIT["metre™, 1.0, AUTHORITY["EPSG", "9001"]],
AXIS["H", UP],
AUTHORITY["EPSG", "5720"]],
AUTHORITY["EPSG","7400"]]

When transforming between different height datums, you might use a VERTCON
matrix. For example, between the WGS 84 ellipsoid and geoid, there is an offset matrix
that allows height transformation. For more information, see the following:

¢ Example 6-3 (page 6-13) in Three-Dimensional Transformations (page 6-11)
* C(reating a Transformation Operation (page 6-68)

® Using British Grid Transformation OSTN02/OSGMO02 (EPSG Method 9633)
(page 6-71)

6.6 TFM_PLAN Object Type

The object type TFM_PLAN is used is by several SDO_CS package subprograms to
specify a transformation plan. For example, to create a concatenated operation that
consists of two operations specified by a parameter of type TFM_PLAN, use the
SDO_CS.CREATE_CONCATENATED_OP (page 20-12) procedure.

Oracle Spatial and Graph defines the object type TFM_PLAN as:

CREATE TYPE tfm_plan AS OBJECT (
THE_PLAN SDO_TFM_CHAIN);

The SDO_TFM_CHAIN type is defined as VARRAY (1048576) OF NUMBER.
Within the SDO_TFM_CHAIN array:

e The first element specifies the SRID of the source coordinate system.

* Each pair of elements after the first element specifies an operation ID and the SRID
of a target coordinate system.

Coordinate Systems (Spatial Reference Systems) 6-19

Coordinate Systems Data Structures

6.7 Coordinate Systems Data Structures

The coordinate systems functions and procedures use information provided in the
tables and views supplied with Oracle Spatial and Graph. The tables and views are
part of the MDSYS schema; however, public synonyms are defined, so you do not
need to specify MDSYS. before the table or view name. The definitions and data in
these tables and views are based on the EPSG data model and dataset, as explained in
EPSG Model and Spatial and Graph (page 6-8).

The coordinate system tables fit into several general categories:

¢ Coordinate system general information: SDO_COORD_SYS,
SDO_COORD_REF_SYS

¢ Elements or aspects of a coordinate system definition: SDO_DATUMS,
SDO_ELLIPSOIDS, SDO_PRIME_MERIDIANS

¢ Datum transformation support: SDO_COORD_OPS,
SDO_COORD_OP_METHODS, SDO_COORD_OP_PARAM_USE,
SDO_COORD_OP_PARAM_VALS, SDO_COORD_OP_PARAMS,
SDO_COORD_OP_PATHS, SDO_PREFERRED_OPS_SYSTEM,
SDO_PREFERRED_OPS_USER

® Others related to coordinate system definition: SDO_COORD_AXES,
SDO_COORD_AXIS_NAMES, SDO_UNITS_OF_MEASURE

Several views are provided that are identical to or subsets of coordinate system tables:

e SDO_COORD_REF_SYSTEM, which contains the same columns as the
SDO_COORD_REF_SYS table. Use the SDO_COORD_REF_SYSTEM view instead
of the COORD_REF_SYS table for any insert, update, or delete operations.

* Subsets of SDO_DATUMS, selected according to the value in the DATUM_TYPE
column: SDO_DATUM_ENGINEERING, SDO_DATUM_GEODETIC,
SDO_DATUM_VERTICAL.

* Subsets of SDO_COORD_REF_SYS, selected according to the value in the
COORD_REF_SYS_KIND column: SDO_CRS_COMPOUND,
SDO_CRS_ENGINEERING, SDO_CRS_GEOCENTRIC,
SDO_CRS_GEOGRAPHIC2D, SDO_CRS_GEOGRAPHIC3D,
SDO_CRS_PROJECTED, SDO_CRS_VERTICAL.

Most of the rest of this section explains these tables and views, in alphabetical order.
(Many column descriptions are adapted or taken from EPSG descriptions.)
Relationships Among Coordinate System Tables and Views (page 6-42) describes
relationships among the tables and views, and it lists EPSG table names and their
corresponding Oracle Spatial and Graph names. Finding Information About EPSG-
Based Coordinate Systems (page 6-43) describes how to find information about
EPSG-based coordinate systems, and it provides several examples.

In addition to the tables and views in this section, Spatial and Graph provides several
legacy tables whose definitions and data match those of certain Spatial and Graph
system tables used in previous releases. Legacy Tables and Views (page 6-47)
describes the legacy tables.

6-20 Developer's Guide

Coordinate Systems Data Structures

Note:

You should not modify or delete any Oracle-supplied information in any of
the tables or views that are used for coordinate system support.

If you want to create a user-defined coordinate system, see Creating a User-
Defined Coordinate Reference System (page 6-55).

6.7.1 SDO_COORD_AXES Table

The SDO_COORD_AXES table contains one row for each coordinate system axis
definition. This table contains the columns shown in Table 6-1 (page 6-21).

Table 6-1 SDO_COORD_AXES Table

Column Name Data Type Description

COORD_SYS_ID NUMBER(10) ID number of the coordinate system to which this axis
applies.

COORD_AXIS_.N NUMBER(10) ID number of a coordinate system axis name.

AME_ID Matches a value in the COORD_AXIS_NAME_ID
column of the SDO_COORD_AXIS_NAMES table
(described in SDO_COORD_AXIS_NAMES Table
(page 6-21)). Example: 9901 (for Geodetic
latitude)

COORD_AXIS_.O VARCHAR2(24 The direction of orientation for the coordinate system

RIENTATION) axis. Example: east

COORD_AXIS_AB VARCHAR2(24 The abbreviation for the coordinate system axis

BREVIATION) orientation. Example: E

UOM_ID NUMBER(10) ID number of the unit of measurement associated
with the axis. Matches a value in the UOM_ID
column of the SDO_UNITS_OF_MEASURE table
(described in SDO_UNITS_OF_MEASURE Table
(page 6-41)).

ORDER NUMBER(5) Position of this axis within the coordinate system (1,

2, or 3).

6.7.2 SDO_COORD_AXIS_NAMES Table

The SDO_COORD_AXIS_NAMES table contains one row for each axis that can be
used in a coordinate system definition. This table contains the columns shown in
Table 6-2 (page 6-21).

Table 6-2 SDO_COORD_AXIS_NAMES Table
I

Column Name Data Type Description

COORD_AXIS_N NUMBER(10) ID number of the coordinate axis name. Example:
AME_ID 9926

COORD_AXIS_.N VARCHAR2(80 Name of the coordinate axis. Example: Spherical

AME

)

latitude

Coordinate Systems (Spatial Reference Systems) 6-21

Coordinate Systems Data Structures

6.7.3 SDO_COORD_OP_METHODS Table

The SDO_COORD_OP_METHODS table contains one row for each coordinate
systems transformation method. This table contains the columns shown in Table 6-3

(page 6-22).

Table 6-3 SDO_COORD_OP_METHODS Table

Column Name Data Type

Description

COORD_OP_MET NUMBER(10)

HOD_ID

COORD_OP_MET VARCHAR2(50)
HOD_NAME

LEGACY_NAME VARCHAR2(50)
REVERSE_OP NUMBER(1)

INFORMATION_S VARCHAR2(254

OURCE)

DATA_SOURCE

IS_IMPLEMENTE NUMBER(1)

D_FORWARD

IS_ IMPLEMENTE NUMBER(1)

D_REVERSE

VARCHAR2(40)

ID number of the coordinate system transformation
method. Example: 9613

Name of the method. Example: NADCON

Name for this transformation method in the legacy
WKT strings. This name might differ syntactically
from the name used by EPSG.

Contains 1 if reversal of the transformation (from
the current target coordinate system to the source
coordinate system) can be achieved by reversing the
sign of each parameter value; contains O if a separate
operation must be defined for reversal of the
transformation.

Origin of this information. Example: US Coast
and geodetic Survey - http://
Www . Ngs . noaa.gov

Organization providing the data for this record.
Example: EPSG

Contains 1 if the forward operation is implemented;
contains O if the forward operation is not
implemented.

Contains 1 if the reverse operation is implemented;
contains O if the reverse operation is not
implemented.

6.7.4 SDO_COORD_OP_PARAM_USE Table

The SDO_COORD_OP_PARAM_USE table contains one row for each combination of
transformation method and transformation operation parameter that is available for
use. This table contains the columns shown in Table 6-4 (page 6-22).

Table 6-4 SDO_COORD_OP_PARAM_USE Table

Column Name Data Type

Description

COORD_OP_MET NUMBER(10)

HOD_ID

6-22 Developer's Guide

ID number of the coordinate system transformation
method. Matches a value in the
COORD_OP_METHOD _ID column of the
COORD_OP_METHODS table (described in
SDO_COORD_OP_METHODS Table (page 6-22)).

Coordinate Systems Data Structures

Table 6-4 (Cont.) SDO_COORD_OP_PARAM_USE Table
. ______ |

Column Name Data Type Description

PARAMETER_ID NUMBER(10) ID number of the parameter for transformation
operations. Matches a value in the PARAMETER_ID
column of the SDO_COORD_OP_PARAMS table
(described in SDO_COORD_OP_PARAMS Table
(page 6-24)).

LEGACY_PARAM VARCHAR2(80) Open GeoSpatial Consortium (OGC) name for the

_NAME parameter.

SORT_ORDER NUMBER(5) A number indicating the position of this parameter
in the sequence of parameters for this method.
Example: 2 for the second parameter

PARAM_SIGN_R VARCHAR?2(3) Yes if reversal of the transformation (from the

EVERSAL

current target coordinate system to the source
coordinate system) can be achieved by reversing the
sign of each parameter value; NoO if a separate
operation must be defined for reversal of the
transformation.

6.7.5 SDO_COORD_OP_PARAM_VALS Table

The SDO_COORD_OP_PARAM_VALS table contains information about parameter
values for each coordinate system transformation method. This table contains the
columns shown in Table 6-5 (page 6-23).

Table 6-5 SDO_COORD_OP_PARAM_VALS Table
|

Column Name Data Type Description

COORD_OP_ID NUMBER(10) ID number of the coordinate transformation
operation. Matches a value in the COORD_OP_ID
column of the SDO_COORD_OPS table (described
in SDO_COORD_OPS Table (page 6-25)).

COORD_OP_MET NUMBER(10) Coordinate operation method ID. Must match a

HOD_ID COORD_OP_METHOD_ID value in the
SDO_COORD_OP_METHODS table (see
SDO_COORD_OP_METHODS Table (page 6-22)).

PARAMETER_ID NUMBER(10) ID number of the parameter for transformation
operations. Matches a value in the PARAMETER_ID
column of the SDO_COORD_OP_PARAMS table
(described in SDO_COORD_OP_PARAMS Table
(page 6-24)).

PARAMETER_VA FLOAT(49) Value of the parameter for this operation.

LUE

PARAM_VALUE_ VARCHAR2(254 Name of the file (as specified in the original EPSG

FILE_REF

)

database) containing the value data, if a single value
for the parameter is not sufficient.

Coordinate Systems (Spatial Reference Systems) 6-23

Coordinate Systems Data Structures

Table 6-5 (Cont.) SDO_COORD_OP_PARAM_VALS Table

Column Name Data Type Description
PARAM_VALUE_ CLOB The ASCII content of the file specified in the
FILE PARAM_VALUE_FILE_REF column. Used only for

grid file parameters (for NADCON, NTv2, and
height transformations "Geographic3D to
Geographic2D+GravityRelatedHeight").

PARAM_VALUE_ XMLTYPE An XML representation of the content of the file

XML specified in the PARAM_VALUE_FILE_REF
column. (Optional, and currently only used for
documentation.)

UOM_ID NUMBER(10) ID number of the unit of measurement associated
with the operation. Matches a value in the UOM_ID
column of the SDO_UNITS_OF_MEASURE table
(described in SDO_UNITS_OF_MEASURE Table
(page 6-41)).

6.7.6 SDO_COORD_OP_PARAMS Table

The SDO_COORD_OP_PARAMS table contains one row for each available parameter

for transformation operations. This table contains the columns shown in Table 6-6
(page 6-24).

Table 6-6 SDO_COORD_OP_PARAMS Table

Column Name Data Type Description

PARAMETER_ID NUMBER(10) ID number of the parameter. Example: 8608

PARAMETER_NA VARCHAR2(80) Name of the operation. Example: X-axis
ME rotation

INFORMATION_S VARCHAR2(254 Origin of this information. Example: EPSG
OURCE) guidance note number 7.

DATA_SOURCE VARCHAR2(40) Organization providing the data for this record.
Example: EPSG

6.7.7 SDO_COORD_OP_PATHS Table

The SDO_COORD_OP_PATHS table contains one row for each atomic step in a

concatenated operation. This table contains the columns shown in Table 6-7
(page 6-24).

Table 67 SDO_COORD_OP_PATHS Table

Column Name Data Type Description

CONCAT_OPERA NUMBER(10) ID number of the concatenation operation. Must

TION_ID match a COORD_OP_ID value in the
SDO_COORD_OPS table (described in
SDO_COORD_OPS Table (page 6-25)) for which
the COORD_OP_TYPE value is CONCATENAT ION.

6-24 Developer's Guide

Coordinate Systems Data Structures

Table 6-7 (Cont.) SDO_COORD_OP_PATHS Table
|

Column Name Data Type Description
SINGLE_OPERAT NUMBER(10) ID number of the single coordinate operation for this
ION_ID step (atomic operation) in a concatenated operation.

SINGLE_OP_SOU NUMBER(10)
RCE_ID

SINGLE_OP_TAR NUMBER(10)
GET_ID

OP_PATH_STEP NUMBER(5)

Must match a COORD_OP_ID value in the
SDO_COORD_OPS table (described in
SDO_COORD_QOPS Table (page 6-25)).

ID number of source coordinate reference system for
the single coordinate operation for this step. Must
match an SRID value in the SDO_COORD_REF_SYS
table (described in SDO_COORD_REF_SYS Table

(page 6-27)).

ID number of target coordinate reference system for
the single coordinate operation for this step. Must
match an SRID value in the SDO_COORD_REF_SYS
table (described in SDO_COORD_REF_SYS Table

(page 6-27)).

Sequence number of this step (atomic operation)
within this concatenated operation.

6.7.8 SDO_COORD_OPS Table

The SDO_COORD_QOPS table contains one row for each transformation operation
between coordinate systems. This table contains the columns shown in Table 6-8

(page 6-25).

Table 6-8 SDO_COORD_OPS Table
L

Column Name Data Type

Description

COORD_OP_ID NUMBER(10)
COORD_OP_NA VARCHAR2(80)
ME

COORD_OP_TYP VARCHAR2(24)
E

SOURCE_SRID NUMBER(10)
TARGET_SRID NUMBER(10)
COORD_TFM_VE VARCHAR2(24)

RSION

COORD_OP_VAR NUMBER(5)
IANT

ID number of the coordinate transformation
operation. Example: 101

Name of the operation. Example: EDSO to WGS 84
as

Type of operation. One of the following:
CONCATENATED OPERATION, CONVERSION, or
TRANSFORMAT ION

SRID of the coordinate system from which to
perform the transformation. Example: 4230

SRID of the coordinate system into which to perform
the transformation. Example: 4326

Name assigned by EPSG to the coordinate
transformation. Example: 5Nat-NSea90

A variant of the more generic method specified in
COORD_OP_METHOD_ID. Example: 14

Coordinate Systems (Spatial Reference Systems) 6-25

Coordinate Systems Data Structures

Table 6-8 (Cont.) SDO_COORD_OPS Table
. ___|

Column Name Data Type Description

COORD_OP_MET NUMBER(10) Coordinate operation method ID. Must match a

HOD_ID COORD_OP_METHOD_ID value in the
SDO_COORD_OP_METHODS table (see
SDO_COORD_OP_METHODS Table (page 6-22)).
Several operations can use a method. Example:
9617

UOM_ID_SOURC NUMBER(10) ID number of the unit of measurement for offsets in

E_OFFSETS the source coordinate system. Matches a value in the
UOM_ID column of the
SDO_UNITS_OF_MEASURE table (described in
SDO_UNITS_OF_MEASURE Table (page 6-41)).

UOM_ID_TARGE NUMBER(10) ID number of the unit of measurement for offsets in

T_OFFSETS the target coordinate system. Matches a value in the
UOM_ID column of the
SDO_UNITS_OF_MEASURE table (described in
SDO_UNITS_OF_MEASURE Table (page 6-41)).

INFORMATION_S VARCHAR2(254 Origin of this information. Example: Institut de
OURCE) Geomatica; Barcelona

DATA_SOURCE VARCHAR2(40) Organization providing the data for this record.
Example: EPSG

SHOW_OPERATI NUMBER(3) (Not currently used.)
ON
IS_LEGACY VARCHAR2(5) TRUE if the operation was included in Oracle

Spatial before release 10.2; FALSE if the operation
was new in Oracle Spatial release 10.2.

LEGACY_CODE NUMBER(10) For any EPSG coordinate transformation operation
that has a semantically identical legacy (in Oracle
Spatial before release 10.2) counterpart, the
COORD_OP_ID value of the legacy coordinate
transformation operation.

REVERSE_OP NUMBER(1) Contains 1 if reversal of the transformation (from
the current target coordinate system to the source
coordinate system) is defined as achievable by
reversing the sign of each parameter value; contains
0 if a separate operation must be defined for reversal
of the transformation. If REVERSE_OP contains 1,
the operations that are actually implemented are
indicated by the values for
IS_IMPLEMENTED_FORWARD and
IS_IMPLEMENTED_REVERSE.

IS_IMPLEMENTE NUMBER(1) Contains 1 if the forward operation is implemented;

D_FORWARD contains O if the forward operation is not
implemented.

IS_IMPLEMENTE NUMBER(1) Contains 1 if the reverse operation is implemented;

D_REVERSE contains O if the reverse operation is not
implemented.

6-26 Developer's Guide

Coordinate Systems Data Structures

6.7.9 SDO_COORD_REF_SYS Table

The SDO_COORD_REF_SYS table contains one row for each coordinate reference
system. This table contains the columns shown in Table 6-9 (page 6-27). (The
SDO_COORD_REF_SYS table is roughly patterned after the EPSG Coordinate
Reference System table.)

Note:

If you need to perform an insert, update, or delete operation, you must
perform it on the SDO_COORD_REF_SYSTEM view, which contains the same
columns as the SDO_COORD_REF_SYS table. The
SDO_COORD_REF_SYSTEM view is described in
SDO_COORD_REF_SYSTEM View (page 6-29).

Table 6-9 SDO_COORD_REF_SYS Table
|

Column Name

Data Type

Description

SRID
COORD_REF_SYS
_NAME

COORD_REF_SYS
_KIND

COORD_SYS_ID

DATUM_ID

GEOG_CRS_DAT
UM_ID

SOURCE_GEOG_
SRID

NUMBER(10)

VARCHAR2(80)

VARCHAR2(24)

NUMBER(10)

NUMBER(10)

NUMBER(10)

NUMBER(10)

ID number of the coordinate reference system.
Example: 8307

Name of the coordinate reference system.
Example: Longitude / Latitude (WGS 84)

Category for the coordinate system. Example:
GEOGRAPHIC2D

ID number of the coordinate system used for the
coordinate reference system. Must match a
COORD_SYS_ID value in the SDO_COORD_SYS
table (see SDO_COORD_SYS Table (page 6-29)).

ID number of the datum used for the coordinate
reference system. Null for a projected coordinate
system. For a geodetic coordinate system, must
match a DATUM_ID value in the SDO_DATUMS
table (see SDO_DATUMS Table (page 6-37)).
Example: 10115

ID number of the datum used for the coordinate
reference system. For a projected coordinate
system, must match the DATUM_ID value (in the
SDO_DATUMS table, described in SDO_DATUMS
Table (page 6-37)) of the geodetic coordinate
system on which the projected coordinate system
is based. For a geodetic coordinate system, must
match the DATUM_ID value. Example: 10115

For a projected coordinate reference system, the ID
number for the associated geodetic coordinate
system.

Coordinate Systems (Spatial Reference Systems) 6-27

Coordinate Systems Data Structures

Table 6-9 (Cont.) SDO_COORD_REF_SYS Table
. __|

Column Name Data Type Description

PROJECTION_CO NUMBER(10) For a projected coordinate reference system, the

NV_ID COORD_OP_ID value of the conversion operation
used to convert the projected coordinated system
to and from the source geographic coordinate
system.

CMPD_HORIZ_S NUMBER(10) (EPSG-assigned value; not used by Oracle Spatial

RID and Graph. The EPSG description is: "For
compound CRS only, the code of the horizontal
component of the Compound CRS.")

CMPD_VERT_SRI NUMBER(10) (EPSG-assigned value; not used by Oracle Spatial

D and Graph. The EPSG description is: "For
compound CRS only, the code of the vertical
component of the Compound CRS.")

INFORMATION_ VARCHAR2(254) Provider of the definition for the coordinate

SOURCE system (Oracle for all rows supplied by Oracle).

DATA_SOURCE = VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle).

IS_ LEGACY VARCHAR2(5) TRUE if the coordinate system definition was
included in Oracle Spatial before release 10.2;
FALSE if the coordinate system definition was new
in Oracle Spatial release 10.2.

LEGACY_CODE NUMBER(10) For any EPSG coordinate reference system that has
a semantically identical legacy (in Oracle Spatial
before release 10.2) counterpart, the SRID value of
the legacy coordinate system.

LEGACY_WKTEX VARCHAR2(2046) If IS_LEGACY is TRUE, contains the well-known

T

LEGACY_CS_BO
UNDS

IS_VALID

SUPPORTS_SDO_
GEOMETRY

SDO_GEOMETRY

VARCHAR2(5)

VARCHAR2(5)

text description of the coordinate system.
Example: GEOGCS ["'Longitude / Latitude
(WGS 84)", DATUM ["'WGS 84", SPHEROID
['WGS 84", 6378137, 298.257223563]],
PRIMEM ["Greenwich'™, 0.000000],
UNIT ["Decimal Degree",
0.01745329251994330]]

For a legacy coordinate system, the dimensional
boundary (if any).

TRUE if the EPSG record for the coordinate
reference system is completely defined; FALSE if
the EPSG record for the coordinate reference
system is not completely defined.

TRUE if the COORD_REF_SYS_KIND column
contains ENGINEERING, GEOGRAPHIC2D, or
PROJECTED CRS; FALSE if the
COORD_REF_SYS_KIND column contains any
other value.

6-28 Developer's Guide

Coordinate Systems Data Structures

See also the information about the following views that are defined based on the value
of the COORD_REF_SYS_KIND column:

¢ SDO_CRS_COMPOUND (SDO_CRS_COMPOUND View (page 6-30))

¢ SDO_CRS_ENGINEERING (SDO_CRS_ENGINEERING View (page 6-30))

¢ SDO_CRS_GEOCENTRIC (SDO_CRS_GEOCENTRIC View (page 6-31))

¢ SDO_CRS_GEOGRAPHIC2D (SDO_CRS_GEOGRAPHIC2D View (page 6-31))
¢ SDO_CRS_GEOGRAPHIC3D (SDO_CRS_GEOGRAPHIC3D View (page 6-32))
¢ SDO_CRS_PROJECTED (SDO_CRS_PROJECTED View (page 6-33))

¢ SDO_CRS_VERTICAL (SDO_CRS_VERTICAL View (page 6-33))

6.7.10 SDO_COORD_REF_SYSTEM View

The SDO_COORD_REF_SYSTEM view contains the same columns as the
SDO_COORD_REF_SYS table, which is described in SDO_COORD_REF_SYS Table
(page 6-27). However, the SDO_COORD_REF_SYSTEM view has a trigger defined on
it, so that any insert, update, or delete operations performed on the view cause all
relevant Spatial and Graph system tables to have the appropriate operations
performed on them.

Therefore, if you need to perform an insert, update, or delete operation, you must
perform it on the SDO_COORD_REF_SYSTEM view, not the SDO_COORD_REF_SYS
table.

6.7.11 SDO_COORD_SYS Table

The SDO_COORD_SYS table contains rows with information about coordinate
systems. This table contains the columns shown in Table 6-10 (page 6-29). (The
SDO_COORD_SYS table is roughly patterned after the EPSG Coordinate System table,
where a coordinate system is described as "a pair of reusable axes.")

Table 6-10 SDO_COORD_SYS Table
L

Column Name Data Type Description

COORD_SYS_ID NUMBER(10) ID number of the coordinate system. Example: 6405

COORD_SYS_NA VARCHAR2(254 Name of the coordinate system. Example:

ME) Ellipsoidal 2D CS. Axes: latitude,
longitude. Orientations: north, east.
UoM: dec deg

COORD_SYS_TYP VARCHAR2(24) Type of coordinate system. Example: el lipsoidal

E

DIMENSION NUMBER(5) Number of dimensions represented by the

coordinate system.

INFORMATION_S VARCHAR2(254 Origin of this information.
OURCE)

DATA_SOURCE VARCHAR2(50) Organization providing the data for this record.

Coordinate Systems (Spatial Reference Systems) 6-29

Coordinate Systems Data Structures

6.7.12 SDO_CRS_COMPOUND View

The SDO_CRS_COMPOUND view contains selected information from the
SDO_COORD_REE_SYS table (described in SDO_COORD_REF_SYS Table

(page 6-27)) where the COORD_REF_SYS_KIND column value is COMPOUND. (For an
explanation of compound coordinate reference systems, see Compound Coordinate
Reference Systems (page 6-10).) This view contains the columns shown in Table 6-11
(page 6-30).

Table 6-11 SDO_CRS_COMPOUND View

Column Name Data Type Description

SRID NUMBER(10) ID number of the coordinate reference system.

COORD_REF_SYS VARCHAR2(80) Name of the coordinate reference system.

_NAME

CMPD_HORIZ_S = NUMBER(10) (EPSG-assigned value; not used by Oracle Spatial

RID and Graph. The EPSG description is: "For
compound CRS only, the code of the horizontal
component of the Compound CRS.")

CMPD_VERT_SRI NUMBER(10) (EPSG-assigned value; not used by Oracle Spatial

D and Graph. The EPSG description is: "For

compound CRS only, the code of the vertical
component of the Compound CRS.")

INFORMATION_S VARCHAR2(254) Provider of the definition for the coordinate system
OURCE (Oracle for all rows supplied by Oracle).

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle).

6.7.13 SDO_CRS_ENGINEERING View

The SDO_CRS_ENGINEERING view contains selected information from the
SDO_COORD_REF_SYS table (described in SDO_COORD_REF_SYS Table

(page 6-27)) where the COORD_REF_SYS_KIND column value is ENGINEERING. This
view contains the columns shown in Table 6-12 (page 6-30).

Table 6-12 SDO_CRS_ENGINEERING View
I

Column Name Data Type Description

SRID NUMBER(10) ID number of the coordinate reference system.
COORD_REF_SYS VARCHAR2(80) Name of the coordinate reference system.
_NAME

COORD_SYS_ID NUMBER(10) ID number of the coordinate system used for the

coordinate reference system. Must match a
COORD_SYS_ID value in the SDO_COORD_SYS
table (see SDO_COORD_SYS Table (page 6-29)).

6-30 Developer's Guide

Coordinate Systems Data Structures

Table 6-12 (Cont.) SDO_CRS_ENGINEERING View
. __|

Column Name Data Type

Description

DATUM_ID

INFORMATION_S VARCHAR2(254)

OURCE

DATA_SOURCE VARCHAR2(40)

NUMBER(10)

ID number of the datum used for the coordinate
reference system. Must match a DATUM_ID value
in the SDO_DATUMS table (see SDO_DATUMS
Table (page 6-37)).

Provider of the definition for the coordinate system
(Oracle for all rows supplied by Oracle).

Organization that supplied the data for this record
(if not Oracle).

6.7.14 SDO_CRS_GEOCENTRIC View

The SDO_CRS_GEOCENTRIC view contains selected information from the
SDO_COORD_REF_SYS table (described in SDO_COORD_REF_SYS Table

(page 6-27)) where the COORD_REF_SYS_KIND column value is GEOCENTRIC. This
view contains the columns shown in Table 6-13 (page 6-31).

Table 6-13 SDO_CRS_GEOCENTRIC View

Column Name Data Type

Description

SRID NUMBER(10)

COORD_REF_SYS VARCHAR2(80)

_NAME

COORD_SYS_ID NUMBER(10)

DATUM_ID

INFORMATION_S VARCHAR2(254)

OURCE

DATA_SOURCE VARCHAR2(40)

NUMBER(10)

ID number of the coordinate reference system.

Name of the coordinate reference system.

ID number of the coordinate system used for the
coordinate reference system. Must match a
COORD_SYS_ID value in the SDO_COORD_SYS
table (see SDO_COORD_SYS Table (page 6-29)).

ID number of the datum used for the coordinate
reference system. Must match a DATUM_ID value
in the SDO_DATUMS table (see SDO_DATUMS
Table (page 6-37)).

Provider of the definition for the coordinate system
(Oracle for all rows supplied by Oracle).

Organization that supplied the data for this record
(if not Oracle).

6.7.15 SDO_CRS_GEOGRAPHIC2D View

The SDO_CRS_GEOGRAPHIC2D view contains selected information from the
SDO_COORD_REE_SYS table (described in SDO_COORD_REF_SYS Table

(page 6-27)) where the COORD_REF_SYS_KIND column value is GEOGRAPHIC2D.
This view contains the columns shown in Table 6-14 (page 6-32).

Coordinate Systems (Spatial Reference Systems) 6-31

Coordinate Systems Data Structures

Table 6-14 SDO_CRS_GEOGRAPHIC2D View
L

Column Name Data Type Description

SRID NUMBER(10) ID number of the coordinate reference system.

COORD_REF_SYS VARCHAR2(80) Name of the coordinate reference system.

_NAME

COORD_SYS_ID NUMBER(10) ID number of the coordinate system used for the
coordinate reference system. Must match a
COORD_SYS_ID value in the SDO_COORD_SYS
table (see SDO_COORD_SYS Table (page 6-29)).

DATUM_ID NUMBER(10) ID number of the datum used for the coordinate
reference system. Must match a DATUM_ID value
in the SDO_DATUMS table (see SDO_DATUMS
Table (page 6-37)).

INFORMATION_S VARCHAR2(254) Provider of the definition for the coordinate system

OURCE (Oracle for all rows supplied by Oracle).

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record

(if not Oracle).

6.7.16 SDO_CRS_GEOGRAPHIC3D View

The SDO_CRS_GEOGRAPHIC3D view contains selected information from the
SDO_COORD_REF_SYS table (described in SDO_COORD_REF_SYS Table

(page 6-27)) where the COORD_REF_SYS_KIND column value is GEOGRAPHIC3D.
(For an explanation of geographic 3D coordinate reference systems, see Geographic 3D
Coordinate Reference Systems (page 6-10).) This view contains the columns shown in
Table 6-15 (page 6-32).

Table 6-15 SDO_CRS_GEOGRAPHIC3D View
L

Column Name Data Type Description

SRID NUMBER(10) ID number of the coordinate reference system.

COORD_REF_SYS VARCHAR2(80) Name of the coordinate reference system.

_NAME

COORD_SYS_ID NUMBER(10) ID number of the coordinate system used for the
coordinate reference system. Must match a
COORD_SYS_ID value in the SDO_COORD_SYS
table (see SDO_COORD_SYS Table (page 6-29)).

DATUM_ID NUMBER(10) ID number of the datum used for the coordinate
reference system. Must match a DATUM_ID value
in the SDO_DATUMS table (see SDO_DATUMS
Table (page 6-37)).

INFORMATION_S VARCHAR2(254) Provider of the definition for the coordinate system

OURCE (Oracle for all rows supplied by Oracle).

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record

(if not Oracle).

6-32 Developer's Guide

Coordinate Systems Data Structures

6.7.17 SDO_CRS_PROJECTED View

The SDO_CRS_PROJECTED view contains selected information from the
SDO_COORD_REE_SYS table (described in SDO_COORD_REF_SYS Table

(page 6-27)) where the COORD_REF_SYS_KIND column value is PROJECTED. This
view contains the columns shown in Table 6-16 (page 6-33).

Table 6-16 SDO_CRS_PROJECTED View
I

Column Name Data Type Description

SRID NUMBER(10) ID number of the coordinate reference system.

COORD_REF_SYS VARCHAR2(80) Name of the coordinate reference system.

_NAME

COORD_SYS_ID NUMBER(10) ID number of the coordinate system used for the
coordinate reference system. Must match a
COORD_SYS_ID value in the SDO_COORD_SYS
table (see SDO_COORD_SYS Table (page 6-29)).

SOURCE_GEOG_ NUMBER(10) ID number for the associated geodetic coordinate

SRID system.

PROJECTION_CO NUMBER(10) COORD_OP_ID value of the conversion operation

NV_ID used to convert the projected coordinated system to

and from the source geographic coordinate system.

INFORMATION_S VARCHAR2(254) Provider of the definition for the coordinate system
OURCE (Oracle for all rows supplied by Oracle).

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle).

6.7.18 SDO_CRS_VERTICAL View

The SDO_CRS_VERTICAL view contains selected information from the
SDO_COORD_REF_SYS table (described in SDO_COORD_REF_SYS Table

(page 6-27)) where the COORD_REF_SYS_KIND column value is VERT ICAL. This
view contains the columns shown in Table 6-17 (page 6-33).

Table 6-17 SDO_CRS_VERTICAL View
L

Column Name Data Type Description

SRID NUMBER(10) ID number of the coordinate reference system.
COORD_REF_SYS VARCHAR2(80) Name of the coordinate reference system.
_NAME

COORD_SYS_ID NUMBER(10) ID number of the coordinate system used for the

coordinate reference system. Must match a
COORD_SYS_ID value in the SDO_COORD_SYS
table (see SDO_COORD_SYS Table (page 6-29)).

Coordinate Systems (Spatial Reference Systems) 6-33

Coordinate Systems Data Structures

Table 6-17 (Cont.) SDO_CRS_VERTICAL View
. __|

Column Name Data Type Description

DATUM_ID NUMBER(10) ID number of the datum used for the coordinate
reference system. Must match a DATUM_ID value
in the SDO_DATUMS table (see SDO_DATUMS
Table (page 6-37)).

INFORMATION_S VARCHAR2(254) Provider of the definition for the coordinate system
OURCE (Oracle for all rows supplied by Oracle).

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle).

6.7.19 SDO_DATUM_ENGINEERING View

The SDO_DATUM_ENGINEERING view contains selected information from the
SDO_DATUMS table (described in SDO_DATUMS Table (page 6-37)) where the
DATUM_TYPE column value is ENGINEERING. This view contains the columns
shown in Table 6-18 (page 6-34).

Table 6-18 SDO_DATUM_ENGINEERING View

Column Name Data Type Description

DATUM_ID NUMBER(10) ID number of the datum.
DATUM_NAME VARCHAR2(80) Name of the datum.

ELLIPSOID_ID NUMBER(10) ID number of the ellipsoid used in the datum
definition. Must match an ELLIPSOID_ID value in
the SDO_ELLIPSOIDS table (see SDO_ELLIPSOIDS
Table (page 6-38)). Example: 8045

PRIME_MERIDIA NUMBER(10) ID number of the prime meridian used in the datum

N_ID definition. Must match a PRIME_MERIDIAN_ID
value in the SDO_PRIME_MERIDIANS table (see
SDO_PRIME_MERIDIANS Table (page 6-40)).
Example: 8950

INFORMATION_S VARCHAR2(254 Provider of the definition of the datum. Example:

OURCE) Ordnance Survey of Great Britain.

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle).

SHIFT_X NUMBER Number of meters to shift the ellipsoid center

relative to the center of the WGS 84 ellipsoid on the
X-axis.

SHIFT_Y NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
y-axis.

SHIFT_Z NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
Z-axis.

6-34 Developer's Guide

Coordinate Systems Data Structures

Table 6-18 (Cont.) SDO_DATUM_ENGINEERING View
|

Column Name Data Type Description

ROTATE_X NUMBER Number of arc-seconds of rotation about the x-axis.
ROTATE_Y NUMBER Number of arc-seconds of rotation about the y-axis.
ROTATE_Z NUMBER Number of arc-seconds of rotation about the z-axis.

SCALE_ADJUST NUMBER

A value to be used in adjusting the X, Y, and Z
values after any shifting and rotation, according to
the formula: 1.0 + (SCALE_ADJUST * 10°)

6.7.20 SDO_DATUM_GEODETIC View

The SDO_DATUM_GEODETIC view contains selected information from the
SDO_DATUMS table (described in SDO_DATUMS Table (page 6-37)) where the
DATUM_TYPE column value is GEODETIC. This view contains the columns shown in

Table 6-19 (page 6-35).

Table 6-19 SDO_DATUM_GEODETIC View

Column Name Data Type

Description

DATUM_ID NUMBER(10)
DATUM_NAME VARCHAR2(80)

ELLIPSOID_ID NUMBER(10)

PRIME_MERIDIA NUMBER(10)
N_ID

INFORMATION_S VARCHAR2(254)
OURCE

DATA_SOURCE VARCHAR2(40)

SHIFT_X NUMBER
SHIFT_Y NUMBER
SHIFT_Z NUMBER

ID number of the datum.
Name of the datum.

ID number of the ellipsoid used in the datum
definition. Must match an ELLIPSOID_ID value in
the SDO_ELLIPSOIDS table (see SDO_ELLIPSOIDS
Table (page 6-38)). Example: 8045

ID number of the prime meridian used in the
datum definition. Must match a
PRIME_MERIDIAN_ID value in the
SDO_PRIME_MERIDIANS table (see
SDO_PRIME_MERIDIANS Table (page 6-40)).
Example: 8950

Provider of the definition of the datum. Example:
Ordnance Survey of Great Britain.

Organization that supplied the data for this record
(if not Oracle).

Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
X-axis.

Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
y-axis.

Number of meters to shift the ellipsoid center

relative to the center of the WGS 84 ellipsoid on the
Z-axis.

Coordinate Systems (Spatial Reference Systems) 6-35

Coordinate Systems Data Structures

Table 6-19 (Cont.) SDO_DATUM_GEODETIC View
. __|

Column Name Data Type Description

ROTATE_X NUMBER Number of arc-seconds of rotation about the x-axis.
ROTATE_Y NUMBER Number of arc-seconds of rotation about the y-axis.
ROTATE_Z NUMBER Number of arc-seconds of rotation about the z-axis.
SCALE_ADJUST NUMBER A value to be used in adjusting the X, Y, and Z

values after any shifting and rotation, according to
the formula: 1.0 + (SCALE_ADJUST * 10°%)

6.7.21 SDO_DATUM_VERTICAL View

The SDO_DATUM_VERTICAL view contains selected information from the
SDO_DATUMS table (described in SDO_DATUMS Table (page 6-37)) where the
DATUM_TYPE column value is VERT ICAL. This view contains the columns shown in
Table 6-20 (page 6-36).

Table 6-20 SDO_DATUM_VERTICAL View

Column Name Data Type Description

DATUM_ID NUMBER(10) ID number of the datum.
DATUM_NAME VARCHAR2(80) Name of the datum.

ELLIPSOID_ID NUMBER(10) ID number of the ellipsoid used in the datum
definition. Must match an ELLIPSOID_ID value in
the SDO_ELLIPSOIDS table (see SDO_ELLIPSOIDS
Table (page 6-38)). Example: 8045

PRIME_MERIDIA NUMBER(10) ID number of the prime meridian used in the

N_ID datum definition. Must match a
PRIME_MERIDIAN_ID value in the
SDO_PRIME_MERIDIANS table (see
SDO_PRIME_MERIDIANS Table (page 6-40)).
Example: 8950

INFORMATION_S VARCHAR2(254) Provider of the definition of the datum. Example:
OURCE Ordnance Survey of Great Britain.

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle).

SHIFT_X NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
X-axis.

SHIFT_Y NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
y-axis.

SHIFT_Z NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
z-axis.

6-36 Developer's Guide

Coordinate Systems Data Structures

Table 6-20 (Cont.) SDO_DATUM_VERTICAL View
. __|

Column Name Data Type Description

ROTATE_X NUMBER Number of arc-seconds of rotation about the x-axis.
ROTATE_Y NUMBER Number of arc-seconds of rotation about the y-axis.
ROTATE_Z NUMBER Number of arc-seconds of rotation about the z-axis.
SCALE_ADJUST NUMBER A value to be used in adjusting the X, Y, and Z

values after any shifting and rotation, according to
the formula: 1.0 + (SCALE_ADJUST * 10)

6.7.22 SDO_DATUMS Table

The SDO_DATUMS table contains one row for each datum. This table contains the
columns shown in Table 6-21 (page 6-37).

Table 6-21 SDO_DATUMS Table
L

Column Name Data Type Description

DATUM_ID NUMBER(10) ID number of the datum. Example: 10115

DATUM_NAME VARCHAR2(80) Name of the datum. Example: WGS 84

DATUM_TYPE VARCHAR2(24) Type of the datum. Example: GEODETIC

ELLIPSOID_ID NUMBER(10) ID number of the ellipsoid used in the datum
definition. Must match an ELLIPSOID_ID value in
the SDO_ELLIPSOIDS table (see SDO_ELLIPSOIDS
Table (page 6-38)). Example: 8045

PRIME_MERIDIA NUMBER(10) ID number of the prime meridian used in the

N_ID datum definition. Must match a
PRIME_MERIDIAN_ID value in the
SDO_PRIME_MERIDIANS table (see
SDO_PRIME_MERIDIANS Table (page 6-40)).
Example: 8950

INFORMATION_ VARCHAR2(254) Provider of the definition of the datum. Example:

SOURCE Ordnance Survey of Great Britain.

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle). Example: EPSG

SHIFT_X NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
x-axis.

SHIFT_Y NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
y-axis.

SHIFT_Z NUMBER Number of meters to shift the ellipsoid center

relative to the center of the WGS 84 ellipsoid on the
Z-axis.

Coordinate Systems (Spatial Reference Systems) 6-37

Coordinate Systems Data Structures

Table 6-21 (Cont.) SDO_DATUMS Table
. ___|

Column Name Data Type Description

ROTATE_X NUMBER Number of arc-seconds of rotation about the x-axis.
ROTATE_Y NUMBER Number of arc-seconds of rotation about the y-axis.
ROTATE_Z NUMBER Number of arc-seconds of rotation about the z-axis.
SCALE_ADJUST NUMBER A value to be used in adjusting the X, Y, and Z

values after any shifting and rotation, according to
the formula: 1.0 + (SCALE_ADJUST * 10°%)

IS_LEGACY VARCHAR2(5) TRUE if the datum definition was included in
Oracle Spatial before release 10.2; FALSE if the

datum definition was new in Oracle Spatial release
10.2.

LEGACY_CODE NUMBER(10) For any EPSG datum that has a semantically
identical legacy (in Oracle Spatial before release
10.2) counterpart, the DATUM_ID value of the
legacy datum.

See also the information about the following views that are defined based on the value
of the DATUM_TYPE column: SDO_DATUM_ENGINEERING
(SDO_DATUM_ENGINEERING View (page 6-34)), SDO_DATUM_GEODETIC
(SDO_DATUM_GEODETIC View (page 6-35)), and SDO_DATUM_VERTICAL
(SDO_DATUM_VERTICAL View (page 6-36)).

6.7.23 SDO_ELLIPSOIDS Table

The SDO_ELLIPSOIDS table contains one row for each ellipsoid. This table contains
the columns shown in Table 6-22 (page 6-38).

Table 6-22 SDO_ELLIPSOIDS Table
e

Column Name Data Type Description

ELLIPSOID_ID NUMBER ID number of the ellipsoid (spheroid). Example:
8045

ELLIPSOID_NAM VARCHAR2(80) Name of the ellipsoid. Example: WGS 84

E

SEMI_MAJOR_AX NUMBER Radius in meters along the semi-major axis (one-

IS half of the long axis of the ellipsoid).

UOM_ID NUMBER ID number of the unit of measurement for the
ellipsoid. Matches a value in the UOM_ID column
of the SDO_UNITS_OF_MEASURE table (described
in SDO_UNITS_OF_MEASURE Table (page 6-41)).
Example: 9001

INV_FLATTENIN NUMBER Inverse flattening of the ellipsoid. That is, 1/,

G where T = (a-b)/a, and ais the semi-major axis

and b is the semi-minor axis.

6-38 Developer's Guide

Coordinate Systems Data Structures

Table 6-22 (Cont.) SDO_ELLIPSOIDS Table
. __|

Column Name Data Type Description

SEMI_MINOR_AX NUMBER Radius in meters along the semi-minor axis (one-

IS half of the short axis of the ellipsoid).

INFORMATION_ VARCHAR2(254) Origin of this information. Example: Kort og

SOURCE Matrikelstyrelsen (KMS), Copenhagen.

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle). Example: EPSG

IS_LEGACY VARCHAR2(5) TRUE if the ellipsoid definition was included in
Oracle Spatial before release 10.2; FALSE if the
ellipsoid definition was new in Oracle Spatial
release 10.2.

LEGACY_CODE NUMBER For any EPSG ellipsoid that has a semantically

identical legacy (in Oracle Spatial before release
10.2) counterpart, the ELLIPSOID_ID value of the
legacy ellipsoid.

6.7.24 SDO_PREFERRED_OPS_SYSTEM Table

The SDO_PREFERRED_OPS_SYSTEM table contains one row for each specification of
the user-defined default preferred coordinate transformation operation for a source
and target SRID combination. If you insert a row into the
SDO_PREFERRED_OPS_SYSTEM table, you are overriding the Oracle default
operation for transformations between the specified source and target coordinate
systems. The SDO_CS.CREATE_OBVIOUS_EPSG_RULES (page 20-12) procedure
inserts many rows into this table. The SDO_CS.DELETE_ALL_EPSG_RULES

(page 20-15) procedure deletes all rows from this table if the use_case parameter is
null. This table contains the columns shown in Table 6-23 (page 6-39).

Table 6-23 SDO_PREFERRED_OPS_SYSTEM Table

Column Name

Data Type

Description

SOURCE_SRID

COORD_OP_ID

TARGET_SRID

NUMBER(10)

NUMBER(10)

NUMBER(10)

ID number of the coordinate system (spatial
reference system) from which to perform coordinate
transformation, using the operation specified by
COORD_OP_ID as the default preferred method for
transforming to the specified target SRID.

ID number of the coordinate transformation
operation. Matches a value in the COORD_OP_ID
column of the SDO_COORD_OPS table (described
in SDO_COORD_OPS Table (page 6-25)).

ID number of coordinate system (spatial reference
system) into which to perform coordinate
transformation using the operation specified by
COORD_OP_ID.

Coordinate Systems (Spatial Reference Systems) 6-39

Coordinate Systems Data Structures

6.7.25 SDO_PREFERRED_OPS_USER Table

The SDO_PREFERRED_OPS_USER table contains one row for each specification of a
user-defined source and target SRID and coordinate transformation operation. If you
insert a row into the SDO_PREFERRED_OPS_USER table, you create a custom
transformation between the source and target coordinate systems, and you can specify
the name (the USE_CASE column value) of the transformation operation as the
use_case parameter value with several SDO_CS functions and procedures. If you
specify a use case with the SDO_CS.DELETE_ALL_EPSG_RULES (page 20-15)
procedure, rows associated with that use case are deleted from this table. This table
contains the columns shown in Table 6-24 (page 6-40).

Table 6-24 SDO_PREFERRED_OPS_USER Table

Column Name Data Type Description

USE_CASE VARCHAR2(32) Name of this specification of a source and target
SRID and coordinate transformation operation.

SOURCE_SRID NUMBER(10) ID number of the coordinate system (spatial
reference system) from which to perform the
transformation.

COORD_OP_ID NUMBER(10) ID number of the coordinate transformation
operation. Matches a value in the COORD_OP_ID
column of the SDO_COORD_OPS table (described
in SDO_COORD_OPS Table (page 6-25)).

TARGET_SRID NUMBER(10) ID number of the coordinate system (spatial
reference system) into which to perform the
transformation.

6.7.26 SDO_PRIME_MERIDIANS Table

The SDO_PRIME_MERIDIANS table contains one row for each prime meridian that
can be used in a datum specification. This table contains the columns shown in
Table 6-25 (page 6-40).

Table 6-25 SDO_PRIME_MERIDIANS Table
L

Column Name Data Type Description

PRIME_MERIDIAN NUMBER(10) ID number of the prime meridian. Example: 8907
_ID

PRIME_MERIDIAN VARCHAR2(80) Name of the prime meridian. Example: Bern
_NAME

GREENWICH_LON FLOAT(49) Longitude of the prime meridian as an offset from
GITUDE the Greenwich meridian. Example: 7.26225
UOM_ID NUMBER(10) ID number of the unit of measurement for the

prime meridian. Matches a value in the UOM_ID
column of the SDO_UNITS_OF_MEASURE table
(described in SDO_UNITS_OF_MEASURE Table
(page 6-41)). Example: 9110 for sexagesimal
degree

6-40 Developer's Guide

Coordinate Systems Data Structures

Table 6-25 (Cont.) SDO_PRIME_MERIDIANS Table
|

Column Name Data Type

Description

INFORMATION_S VARCHAR2(254)

OURCE

DATA_SOURCE

VARCHAR2(254)

Origin of this information. Example: Bundesamt
fur Landestopographie

Organization that supplied the data for this
record (if not Oracle). Example: EPSG

6.7.27 SDO_UNITS_OF_MEASURE Table

The SDO_UNITS_OF_MEASURE table contains one row for each unit of
measurement. This table contains the columns shown in Table 6-26 (page 6-41).

Table 6-26 SDO_UNITS_OF _MEASURE Table
|

Column Name Data Type

Description

UOM_ID

UNIT_OF_MEAS_ VARCHAR2(2083

NAME)

SHORT_NAME

UNIT_OF_MEAS_ VARCHAR2(50)

TYPE

TARGET_UOM_I NUMBER(10)

D
FACTOR_B NUMBER
FACTOR_C NUMBER

NUMBER(10)

VARCHAR2(80)

ID number of the unit of measurement. Example:
10032

Name of the unit of measurement; can also be a
URL or URI. Example: Meter

Short name (if any) of the unit of measurement.
Example: METER

Type of measure for which the unit is used: angle
for angle unit, area for area unit, length for
distance unit, scal e for scale unit, or volume for
volume unit.

ID number of a target unit of measurement.
Corresponds to the TARGET_UOM_CODE column
in the EPSG Unit of Measure table, which has the
following description: "Other UOM of the same
type into which the current UOM can be converted
using the formula (POSC); POSC factors A and D
always equal zero for EPSG supplied units of
measure."

Corresponds to the FACTOR_B column in the
EPSG Unit of Measure table, which has the
following description: "A quantity in the target
UOM (y) is obtained from a quantity in the current
UOM (x) through the conversion: y = (B/C).x"

In a user-defined unit of measurement, FACTOR_B
is usually the number of square meters or meters
equal to one of the unit. For information about
user-defined units, see Creating a User-Defined
Unit of Measurement (page 2-56).

Corresponds to the FACTOR_C column in the
EPSG Unit of Measure table.

For FACTOR_C in a user-defined unit of
measurement, see Creating a User-Defined Unit of
Measurement (page 2-56).

Coordinate Systems (Spatial Reference Systems) 6-41

Coordinate Systems Data Structures

Table 6-26 (Cont.) SDO_UNITS_OF_MEASURE Table
. __|

Column Name Data Type Description

INFORMATION_S VARCHAR2(254) Origin of this information. Example: ISO 1000.
OURCE

DATA_SOURCE VARCHAR2(40) Organization providing the data for this record.
Example: EPSG

IS_ LEGACY VARCHAR2(5) TRUE if the unit of measurement definition was
included in Oracle Spatial before release 10.2;
FALSE if the unit of measurement definition was
new in Oracle Spatial release 10.2.

LEGACY_CODE NUMBER(10) For any EPSG unit of measure that has a
semantically identical legacy (in Oracle Spatial
before release 10.2) counterpart, the UOM_ID value
of the legacy unit of measure.

6.7.28 Relationships Among Coordinate System Tables and Views

Because the definitions in Spatial and Graph system tables and views are based on the
EPSG data model and dataset, the EPSG entity-relationship (E-R) diagram provides a
good overview of the relationships among the Spatial and Graph coordinate system
data structures. The EPSG E-R diagram is included in the following document:
http://www. ihsenergy.com/epsg/geod_arch.html

However, Oracle Spatial and Graph does not use the following from the EPSG E-R
diagram:

* Area of Use (yellow box in the upper center of the diagram)

® Deprecation, Alias, and others represented by pink boxes in the lower right corner
of the diagram

In addition, Spatial and Graph changes the names of some tables to conform to its own
naming conventions, and it does not use some tables, as shown in Table 6-27
(page 6-42)

Table 6-27 EPSG Table Names and Oracle Spatial and Graph Names
- - - -~ - - |

EPSG Name Oracle Name

Coordinate System SDO_COORD_SYS
Coordinate Axis SDO_COORD_AXES
Coordinate Reference System SDO_COORD_REF_SYSTEM
Area Of Use (Not used)

Datum SDO_DATUMS

Prime Meridian SDO_PRIME_MERIDIANS
Ellipsoid SDO_ELLIPSOIDS

Unit Of Measure SDO_UNITS_OF_MEASURE

6-42 Developer's Guide

http://www.ihsenergy.com/epsg/geod_arch.html

Coordinate Systems Data Structures

Table 6-27 (Cont.) EPSG Table Names and Oracle Spatial and Graph Names
___|

EPSG Name Oracle Name
Coordinate Operation SDO_COORD_OPS

Coord. Operation Parameter ValueCoord SDO_COORD_OP_PARAM_VALS

Operation Parameter UsageCoord. SDO_COORD_OP_PARAM_USE
Operation Parameter SDO_COORD_OP_PARAMS
Coordinate Operation Path SDO_COORD_OP_PATHS
Coordinate Operation Method SDO_COORD_OP_METHODS
Change (Not used)

Deprecation (Not used)

Supersession (Not used)

Naming System (Not used)

Alias (Not used)

Any Entity (Not used)

6.7.29 Finding Information About EPSG-Based Coordinate Systems

This section explains how to query the Spatial and Graph coordinate systems data
structures for information about geodetic and projected EPSG-based coordinate
systems.

6.7.29.1 Geodetic Coordinate Systems
A human-readable summary of a CRS is the WKT string. For example:

SQL> select wktext from cs_srs where srid = 4326;

WKTEXT

GEOGCS ["WGS 84", DATUM ["World Geodetic System 1984 (EPSG ID 6326)", SPHEROID
["WGS 84 (EPSG ID 7030)", 6378137, 298.257223563]], PRIMEM ["Greenwich"™, 0.0000
00], UNIT ["Decimal Degree", 0.01745329251994328]]

EPSG WKTs have been automatically generated by Spatial and Graph, for backward
compatibility. Note that EPSG WKTs also contain numeric ID values (such as EPSG ID
6326 in the preceding example) for convenience. However, for more detailed
information you should access the EPSG data stored in the coordinate systems data
structures. The following example returns information about the ellipsoid, datum
shift, rotation, and scale adjustment for SRID 4123:

SQL> select
ell.semi_major_axis,
ell.inv_flattening,
ell.semi_minor_axis,
ell.uom_id,
dat.shift_x,
dat.shift_ y,

Coordinate Systems (Spatial Reference Systems) 6-43

Coordinate Systems Data Structures

dat.shift_z,
dat.rotate_x,
dat.rotate_y,
dat.rotate_z,
dat.scale_adjust
from
sdo_coord_ref_system crs,
sdo_datums dat,
sdo_ellipsoids ell
where
crs.srid = 4123 and
dat.datum_id = crs.datum_id and
ell_ellipsoid_id = dat.ellipsoid_id;

SEMI_MAJOR_AXIS INV_FLATTENING SEMI_MINOR_AXIS UOM_ID SHIFT_X SHIFT.Y
SHIFT Z ROTATE_X ROTATE.Y ROTATE_Z SCALE_ADJUST

6378388 297 6356911.95 9001 -90.7 -106.1
-119.2 4.09 .218 -1.05 1.37

In the preceding example, the UOM_ID represents the unit of measure for
SEMI_MAJOR_AXIS (a) and SEMI_MINOR_AXIS (b). INV_FLATTENING is a/ (a-
b) and has no associated unit. Shifts are in meters, rotation angles are given in arc
seconds, and scale adjustment in parts per million.

To interpret the UOM_ID, you can query the units table, as shown in the following
example:

SQL> select UNIT_OF _MEAS NAME from sdo_units_of measure where UOM_ID = 9001;

UNIT_OF_MEAS_NAME

Conversion factors for units of length are given relative to meters, as shown in the
following example:

SQL> select UNIT_OF _MEAS NAME, FACTOR_B/FACTOR_C from sdo_units_of measure where
UOM_ID = 9002;

UNIT_OF_MEAS_NAME

.3048

Conversion factors for units of angle are given relative to radians, as shown in the
following example:

SQL> select UNIT_OF _MEAS NAME, FACTOR_B/FACTOR_C from sdo_units_of measure where
UOM_ID = 9102;

UNIT_OF_MEAS_NAME

.017453293

6-44 Developer's Guide

Coordinate Systems Data Structures

6.7.29.2 Projected Coordinate Systems

As mentioned in Geodetic Coordinate Systems (page 6-43), the WKT is a human-
readable summary of a CRS, but the actual EPSG data is stored in the Spatial and
Graph coordinate systems data structures. The following example shows the WKT
string for a projected coordinate system:

SQL> select wktext from cs_srs where srid = 32040;

WKTEXT
PROJCS[""NAD27 / Texas South Central™, GEOGCS ["NAD27", DATUM [“North American D
atum 1927 (EPSG ID 6267)", SPHEROID [“Clarke 1866 (EPSG ID 7008)", 6378206.4, 29
4.978698213905820761610537123195175418]], PRIMEM [“Greenwich™, 0.000000], UNIT
["Decimal Degree", 0.01745329251994328]], PROJECTION ["Texas CS27 South Central
zone (EPSG OP 14204)'], PARAMETER [“Latitude Of Origin®, 27.8333333333333333333
3333333333333333333], PARAMETER [“Central_Meridian®, -98.99999999999999999999999
999999999999987], PARAMETER [“Standard_Parallel_1", 28.3833333333333333333333333
3333333333333], PARAMETER [“Standard_Parallel_2", 30.283333333333333333333333333
33333333333], PARAMETER ["False_Easting', 2000000], PARAMETER [“False_Northing",
0], UNIT ["U.S. Foot", .3048006096012192024384048768097536195072]]

To determine the base geographic CRS for a projected CRS, you can query the
SDO_COORD_REF_SYSTEM table, as in the following example:

SQL> select SOURCE_GEOG_SRID from sdo_coord ref _system where srid = 32040;

SOURCE_GEOG_SRID

The following example returns the projection method for the projected CRS 32040:

SQL> select
m.coord_op_method_name
from
sdo_coord_ref_sys crs,
sdo_coord_ops ops,
sdo_coord_op_methods m
where
crs.srid = 32040 and
ops.coord op_id = crs.projection_conv_id and
m.coord_op_method_id = ops.coord_op_method_id;

COORD_OP_METHOD_NAME

Lambert Conic Conformal (2SP)

The following example returns the projection parameters for the projected CRS 32040:

SQL> select
params.parameter_name || " = " ||
vals.parameter_value || " " ||
uom.unit_of_meas_name "Projection parameters"
from
sdo_coord_ref_sys crs,
sdo_coord_op_param vals vals,
sdo_units_of _measure uom,
sdo_coord_op_params params
where
crs.srid = 32040 and

Coordinate Systems (Spatial Reference Systems) 6-45

Coordinate Systems Data Structures

vals.coord_op_id = crs.projection_conv_id and
uom.uom_id = vals.uom_id and
params.parameter_id = vals.parameter_id;

Projection parameters

Latitude of false origin = 27.5 sexagesimal DMS

Longitude of false origin = -99 sexagesimal DMS

Latitude of 1st standard parallel = 28.23 sexagesimal DMS
Latitude of 2nd standard parallel = 30.17 sexagesimal DMS
Easting at false origin = 2000000 US survey foot

Northing at false origin = 0 US survey foot

The following example is essentially the same query as the preceding example, but it
also converts the values to the base unit:

SQL> select
params.parameter_name || " = " ||
vals._parameter_value || " " ||
uom.unit_of meas_name || " = " ||
sdo_cs.transform_to_base_unit(vals.parameter_value, vals.uom_id) || " " ||
decode(
uom.unit_of _meas_type,
"area”, "square meters",
"angle®, "radians”,
"length", "meters”,
"scale®, ", "") "Projection parameters"
from
sdo_coord_ref_sys crs,
sdo_coord_op_param_vals vals,
sdo_units_of _measure uom,
sdo_coord_op_params params
where
crs.srid = 32040 and
vals.coord_op_id = crs.projection_conv_id and
uom.uom_id = vals.uom_id and
params.parameter_id = vals.parameter_id;

Projection parameters

Latitude of false origin = 27.5 sexagesimal DMS = .
485783308471754564814814814814814814815 radians

Longitude of false origin = -99 sexagesimal DMS = -1.7278759594743845 radians
Latitude of 1st standard parallel = 28.23 sexagesimal DMS = .
495382619357723367592592592592592592593 radians

Latitude of 2nd standard parallel = 30.17 sexagesimal DMS = .
528543875145615595370370370370370370371 radians

Easting at false origin = 2000000 US survey foot =

609601 .219202438404876809753619507239014 meters

Northing at false origin = 0 US survey foot = 0 meters

The following example returns the projection unit of measure for the projected CRS
32040. (The projection unit might be different from the length unit used for the
projection parameters.)

SQL> select
axes.coord_axis_abbreviation || ": " ||
uom.unit_of_meas_name "Projection units"
from

6-46 Developer's Guide

Legacy Tables and Views

sdo_coord_ref_sys crs,
sdo_coord_axes axes,
sdo_units_of _measure uom
where
crs.srid = 32040 and
axes.coord_sys_id = crs.coord_sys_id and
uom.uom_id = axes.uom_id;

Projection units

X: US survey foot
Y: US survey foot

6.8 Legacy Tables and Views

In releases of Spatial and Graph before 10.2, the coordinate systems functions and
procedures used information provided in the following tables, some of which have
new names or are now views instead of tables:

¢ MDSYS.CS_SRS (see MDSYS.CS_SRS Table (page 6-48)) defined the valid
coordinate systems. It associates each coordinate system with its well-known text
description, which is in conformance with the standard published by the Open
Geospatial Consortium (http://www.opengeospatial .org).

e MDSYS.SDO_ANGLE_UNITS (see MDSYS.SDO_ANGLE_UNITS View
(page 6-52)) defines the valid angle units.

e MDSYS.SDO_AREA_UNITS (see MDSYS.SDO_AREA_UNITS View (page 6-52))
defines the valid area units.

e MDSYS.SDO_DIST_UNITS (see MDSYS.SDO_DIST_UNITS View (page 6-53))
defines the valid distance units.

e MDSYS.SDO_DATUMS_OLD_FORMAT and
MDSYS.SDO_DATUMS_OLD_SNAPSHOT (see
MDSYS.SDO_DATUMS_OLD_FORMAT and SDO_DATUMS_OLD_SNAPSHOT
Tables (page 6-53)) are based on the MDSYS.SDO_DATUMS table before release
10.2, which defined valid datums.

e MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and
MDSYS.SDO_ELLIPSOIDS_OLD_SNAPSHOT (see
MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and
SDO_ELLIPSOIDS_OLD_SNAPSHOT Tables (page 6-54)) are based on the
MDSYS.SDO_ELLIPSOIDS table before release 10.2, which defined valid ellipsoids.

e MDSYS.SDO_PROJECTIONS_OLD_FORMAT and
MDSYS.SDO_PROJECTIONS_OLD_SNAPSHOT (see
MDSYS.SDO_PROJECTIONS_OLD_FORMAT and
SDO_PROJECTIONS_OLD_SNAPSHOT Tables (page 6-55)) are based on the
MDSYS.SDO_PROJECTIONS table before release 10.2, which defined the valid
map projections.

Coordinate Systems (Spatial Reference Systems) 6-47

Legacy Tables and Views

Note:

You should not modify or delete any Oracle-supplied information in these
legacy tables.

If you refer to a legacy table in a SQL statement, you must include the
MDSYS. before the table name.

6.8.1 MDSYS.CS_SRS Table

The MDSYS.CS_SRS reference table contains over 4000 rows, one for each valid
coordinate system. This table contains the columns shown in Table 6-28 (page 6-48).

Table 6-28 MDSYS.CS_SRS Table

Column Name Data Type Description

CS_NAME VARCHAR2(68) A well-known name, often mnemonic, by which a user
can refer to the coordinate system.

SRID NUMBER(38) The unique ID number (Spatial Reference ID) for a
coordinate system. Currently, SRID values 1-999999 are
reserved for use by Oracle Spatial and Graph, and
values 1000000 (1 million) and higher are available for
user-defined coordinate systems.

AUTH_SRID NUMBER(38) An optional ID number that can be used to indicate
how the entry was derived; it might be a foreign key
into another coordinate table, for example.

AUTH_NAM VARCHAR2(256) An authority name for the coordinate system. Contains
E Oracle in the supplied table. Users can specify any
value in any rows that they add.

WKTEXT VARCHAR2(2046) The well-known text (WKT) description of the SRS, as
defined by the Open Geospatial Consortium. For more
information, see Well-Known Text (WKT) (page 6-48).

CS_BOUNDS SDO_GEOMETRY An optional SDO_GEOMETRY object that is a polygon
with WGS 84 longitude and latitude vertices,
representing the spheroidal polygon description of the
zone of validity for a projected coordinate system.
Must be null for a geographic or non-Earth coordinate
system. Is null in all supplied rows.

6.8.1.1 Well-Known Text (WKT)

The WKTEXT column of the MDSYS.CS_SRS table contains the well-known text
(WKT) description of the SRS, as defined by the Open Geospatial Consortium. The
following is the WKT EBNF syntax.

<coordinate system> ::=
<horz cs> | <local cs>

<horz cs> ::=

<geographic cs> | <projected cs>

<projected cs> ::=

6-48 Developer's Guide

Legacy Tables and Views

PROJCS ["<name>", <geographic cs>, <projection>,
{<parameter>,}* <linear unit>]

<projection> ::=
PROJECTION ["<name>"]

<parameter> ::=
PARAMETER ["<name>", <number>]

<geographic cs> ::=
GEOGCS ["<name>", <datum>, <prime meridian>, <angular unit>]

<datum> ::=
DATUM ["<name>", <spheroid>
{, <shift-x>, <shift-y>, <shift-z>
, <rot-x>, <rot-y>, <rot-z>, <scale_adjust>}

]

<spheroid> ::=
SPHEROID [“'<name>", <semi major axis>, <inverse flattening>]

<prime meridian> ::=
PRIMEM ["<name>", <longitude>]

<longitude> ::=
<number>

<semi-major axis> ::=
<number>

<inverse flattening> ::=

<number>
<angular unit> ::= <unit>
<linear unit> ::= <unit>
<unit> ::=

UNIT [“<name>", <conversion factor>]

<local cs> ::=
LOCAL_CS ["<name>", <local datum>, <linear unit>,
<axis> {, <axis>}*]

<local datum> ::=
LOCAL_DATUM ["'<name>", <datum type>
{, <shift-x>, <shift-y>, <shift-z>
, <rot-x>, <rot-y>, <rot-z>, <scale_adjust>}

]

<datum type> ::=
<number>

<axis> ::=
AXIS ["<name>", NORTH | SOUTH | EAST |
WEST | UP | DOWN | OTHER]

Each <parameter> specification is one of the following

e Standard_Parallel_1 (in decimal degrees)

Coordinate Systems (Spatial Reference Systems) 6-49

Legacy Tables and Views

e Standard_Parallel_2 (in decimal degrees)

e Central_Meridian (in decimal degrees)

e Latitude_of_Origin (in decimal degrees)

e Azimuth (in decimal degrees)

e False_Easting (in the unit of the coordinate system; for example, meters)
e False_Northing (in the unit of the coordinate system; for example, meters)

* Perspective_Point_Height (in the unit of the coordinate system; for example,
meters)

e Landsat_Number (mustbel, 2,3, 4, or 5)
e Path_Number

e Scale Factor

Note:

If the WKT uses European rather than US-American notation for datum
rotation parameters, or if the transformation results do not seem correct, see
US-American and European Notations for Datum Parameters (page 6-51).

The default value for each <parameter> specification is 0 (zero). That is, if a
specification is needed for a projection but no value is specified in the WKT, Spatial
and Graph uses a value of 0.

The prime meridian (PRIMEM) is specified in decimal degrees of longitude.
An example of the WKT for a geodetic (geographic) coordinate system is:

"GEOGCS ["Longitude / Latitude (Old Hawaiian)", DATUM ["Old Hawaiian", SPHEROID
["Clarke 1866", 6378206.400000, 294.978698]], PRIMEM ["Greenwich™, 0.000000],
UNIT ["Decimal Degree", 0.01745329251994330]]"

The WKT definition of the coordinate system is hierarchically nested. The Old
Hawaiian geographic coordinate system (GEOGCS) is composed of a named datum
(DATUM), a prime meridian (PRIMEM), and a unit definition (UNIT). The datum is in
turn composed of a named spheroid and its parameters of semi-major axis and inverse
flattening.

An example of the WKT for a projected coordinate system (a Wyoming State Plane) is:

"PROJCS["Wyoming 4901, Eastern Zone (1983, meters)", GEOGCS ["GRS 80", DATUM
["GRS 80", SPHEROID [“GRS 80", 6378137.000000, 298.257222]], PRIMEM [
"Greenwich™, 0.000000], UNIT ["Decimal Degree", 0.01745329251994330]],
PROJECTION ["Transverse Mercator'], PARAMETER ["Scale_Factor", 0.999938],
PARAMETER ["Central_Meridian", -105.166667], PARAMETER [“Latitude_Of Origin",
40.500000], PARAMETER [“False_Easting", 200000.000000], UNIT [“Meter",
1.0000000000001]1"

The projected coordinate system contains a nested geographic coordinate system as its
basis, as well as parameters that control the projection.

Oracle Spatial and Graph supports all common geodetic datums and map projections.

An example of the WKT for a local coordinate system is:

6-50 Developer's Guide

Legacy Tables and Views

LOCAL_CS ["Non-Earth (Meter)", LOCAL_DATUM ["Local Datum", 0], UNIT ["Meter", 1.0],
AXIS ["X*, EAST], AXIS["Y", NORTH]]

For more information about local coordinate systems, see Local Coordinate Support
(page 6-8).

You can use the SDO_CS.VALIDATE_WKT (page 20-43) function, described in
SDO_CS Package (Coordinate System Transformation) (page 20-1), to validate the
WKT of any coordinate system defined in the MDSYS.CS_SRS table.

6.8.1.2 US-American and European Notations for Datum Parameters

The datum-related WKT parameters are a list of up to seven Bursa Wolf
transformation parameters. Rotation parameters specify arc seconds, and shift
parameters specify meters.

Two different notations, US-American and European, are used for the three rotation
parameters that are in general use, and these two notations use opposite signs. Spatial
and Graph uses and expects the US-American notation. Therefore, if your WKT uses
the European notation, you must convert it to the US-American notation by inverting
the signs of the rotation parameters.

If you do not know if a parameter set uses the US-American or European notation,
perform the following test:

1. Select a single point for which you know the correct result.
2. Perform the transformation using the current WKT.

3. If the computed result does not match the known correct result, invert signs of the
rotation parameters, perform the transformation, and check if the computed result
matches the known correct result.

6.8.1.3 Procedures for Updating the Well-Known Text

If you insert or delete a row in the SDO_COORD_REF_SYSTEM view (described in
SDO_COORD_REF_SYSTEM View (page 6-29)), Spatial and Graph automatically
updates the WKTEXT column in the MDSYS.CS_SRS table. (The format of the
WXKTEXT column is described in Well-Known Text (WKT) (page 6-48).) However, if
you update an existing row in the SDO_COORD_REF_SYSTEM view, the well-known
text (WKT) value is not automatically updated.

In addition, information relating to coordinate reference systems is also stored in
several other system tables, including SDO_DATUMS (described in SDO_DATUMS
Table (page 6-37)), SDO_ELLIPSOIDS (described in SDO_ELLIPSOIDS Table

(page 6-38)), and SDO_PRIME_MERIDIANS (described in SDO_PRIME_MERIDIANS
Table (page 6-40)). If you add, delete, or modify information in these tables, the
WKTEXT values in the MDSYS.CS_SRS table are not automatically updated. For
example, if you update an ellipsoid flattening value in the SDO_ELLIPSOIDS table,
the well-known text string for the associated coordinate system is not updated.

However, you can manually update the WKTEXT values in the in the MDSYS.CS_SRS
table by using any of several procedures whose names start with
UPDATE_WKTS_FOR (for example, SDO_CS.UPDATE_WKTS_FOR_ALL_EPSG_CRS
(page 20-37) and SDO_CS.UPDATE_WKTS_FOR_EPSG_DATUM (page 20-38)). If the
display of SERVEROUTPUT information is enabled, these procedures display a
message identifying the SRID value for each row in the MDSYS.CS_SRS table whose
WKTEXT value is being updated. These procedures are described in SDO_CS Package
(Coordinate System Transformation) (page 20-1).

Coordinate Systems (Spatial Reference Systems) 6-51

Legacy Tables and Views

6.8.2 MDSYS.SDO_ANGLE_UNITS View

The MDSYS.SDO_ANGLE_UNITS reference view contains one row for each valid
angle UNIT specification in the well-known text (WKT) description in the coordinate
system definition. The WKT is described in Well-Known Text (WKT) (page 6-48).

The MDSYS.SDO_ANGLE_UNITS view is based on the SDO_UNITS_OF MEASURE
table (described in SDO_UNITS_OF_MEASURE Table (page 6-41)), and it contains the
columns shown in Table 6-29 (page 6-52).

Table 6-29 MDSYS.SDO_ANGLE_UNITS View
I

Column Name Data Type Description

SDO_UNIT VARCHAR2(32) Name of the angle unit (often a shortened form of the
UNIT_NAME value). Use the SDO_UNIT value with
the from_unit and to_unit parameters of the
SDO_UTIL.CONVERT_UNIT (page 31-15) function.

UNIT_NAME VARCHAR2(100) Name of the angle unit. Specify a value from this
column in the UNIT specification of the WKT for any
user-defined coordinate system. Examples: Decimal
Degree, Radian, Decimal Second, Decimal
Minute, Gon, Grad.

CONVERSION NUMBER The ratio of the specified unit to one radian. For
_FACTOR example, the ratio of Decimal Degree to Radian is
0.017453293.

6.8.3 MDSYS.SDO_AREA_UNITS View

The MDSYS.SDO_AREA_UNITS reference view contains one row for each valid area
UNIT specification in the well-known text (WKT) description in the coordinate system
definition. The WKT is described in Well-Known Text (WKT) (page 6-48).

The MDSYS.SDO_AREA_UNITS view is based on the SDO_UNITS_OF MEASURE
table (described in SDO_UNITS_OF_MEASURE Table (page 6-41)), and it contains the
columns shown in Table 6-30 (page 6-52).

Table 6-30 SDO_AREA_UNITS View

Column Name Data Type Purpose

SDO_UNIT VARCHAR2 Values are taken from the SHORT_NAME column of
the SDO_UNITS_OF MEASURE table.

UNIT_NAME VARCHAR?2 Values are taken from the UNIT_OF_MEAS_NAME
column of the SDO_UNITS_OF MEASURE table.

CONVERSION_FA NUMBER Ratio of the unit to 1 square meter. For example, the
CTOR conversion factor for a square meter is 1.0, and the
conversion factor for a square mile is 2589988.

6-52 Developer's Guide

Legacy Tables and Views

6.8.4 MDSYS.SDO_DATUMS_OLD_FORMAT and SDO_DATUMS_OLD_SNAPSHOT
Tables
The MDSYS.SDO_DATUMS_OLD_FORMAT and
MDSYS.SDO_DATUMS_OLD_SNAPSHOT reference tables contain one row for each

valid DATUM specification in the well-known text (WKT) description in the
coordinate system definition. (The WKT is described in Well-Known Text (WKT)

(page 6-48).)

e MDSYS.SDO_DATUMS_OLD_FORMAT contains the new data in the old format
(that is, EPSG-based datum specifications in a table using the format from before
release 10.2).

e MDSYS.SDO_DATUMS_OLD_SNAPSHOT contains the old data in the old format
(that is, datum specifications and table format from before release 10.2).

These tables contain the columns shown in the following table.

Table 6-31 MDSYS.SDO_DATUMS_OLD_FORMAT and
SDO_DATUMS_OLD_SNAPSHOT Tables

Column Name Data Type Description

NAME VARCHAR2(80) Name of the datum. Specify a value (Oracle-supplied
for OLD_FORMAT or user-defined) from this column in the DATUM
VARCHAR2(64) specification of the WKT for any user-defined
for coordinate system. Examples: Adindan, Afgooye,
OLD SNAPSHOT Ain el Abd 1970, Anna 1 Astro 1965, Arc
B 1950, Arc 1960, Ascension Island 1958.

SHIFT_X NUMBER Number of meters to shift the ellipsoid center relative

to the center of the WGS 84 ellipsoid on the x-axis.
SHIFT_Y NUMBER Number of meters to shift the ellipsoid center relative

to the center of the WGS 84 ellipsoid on the y-axis.
SHIFT_Z NUMBER Number of meters to shift the ellipsoid center relative

to the center of the WGS 84 ellipsoid on the z-axis.
ROTATE_X NUMBER Number of arc-seconds of rotation about the x-axis.
ROTATE_Y NUMBER Number of arc-seconds of rotation about the y-axis.
ROTATE_Z NUMBER Number of arc-seconds of rotation about the z-axis.
SCALE_ADJUS NUMBER A value to be used in adjusting the X, Y, and Z values
T after any shifting and rotation, according to the

formula: 1.0 + (SCALE_ADJUST * 10°)

To see the names of the datums in these tables, enter an appropriate SELECT
statement. For example:

SELECT name FROM MDSYS.SDO_DATUMS_OLD_FORMAT ORDER BY name;

6.8.5 MDSYS.SDO_DIST_UNITS View

The MDSYS.SDO_DIST_UNITS reference view contains one row for each valid
distance UNIT specification in the well-known text (WKT) description in the

Coordinate Systems (Spatial Reference Systems) 6-53

Legacy Tables and Views

coordinate system definition. The WKT is described in Well-Known Text (WKT)
(page 6-48).

The MDSYS.SDO_DIST_UNITS view is based on the SDO_UNITS_OF MEASURE
table (described in SDO_UNITS_OF_MEASURE Table (page 6-41)), and it contains the
columns shown in Table 6-32 (page 6-54).

Table 6-32 MDSYS.SDO_DIST_UNITS View

Column Name Data Type Description

SDO_UNIT VARCHAR2 Values are taken from the SHORT_NAME column of
the SDO_UNITS_OF MEASURE table.

UNIT_NAME VARCHAR2 Values are taken from the UNIT_OF_MEAS_NAME
column of the SDO_UNITS_OF MEASURE table.

CONVERSION_FA NUMBER Ratio of the unit to 1 meter. For example, the
CTOR conversion factor for a meter is 1.0, and the conversion
factor for a mile is 1609.344.

6.8.6 MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and
SDO_ELLIPSOIDS_OLD_SNAPSHOT Tables

The MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and
MDSYS.SDO_ELLIPSOIDS_OLD_SNAPSHOT reference tables contain one row for
each valid SPHEROID specification in the well-known text (WKT) description in the
coordinate system definition. (The WKT is described in Well-Known Text (WKT)
(page 6-48).)

e MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT contains the new data in the old
format (that is, EPSG-based ellipsoid specifications in a table using the format from
before release 10.2).

e MDSYS.SDO_ELLIPSOIDS_OLD_SNAPSHOT contains the old data in the old
format (that is, ellipsoid specifications and table format from before release 10.2).

These tables contain the columns shown in the following table.

Table 6-33 MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and

SDO_ELLIPSOIDS_OLD_SNAPSHOT Tables
|

Column Name Data Type Description

NAME VARCHAR2(80) Name of the ellipsoid (spheroid). Specify a value
for OLD_FORMAT from this column in the SPHEROID specification of
VARCHAR2(64) the WKT for any user-defined coordinate system.

for Examples: Clarke 1866, WGS 72,
OLD SNAPSHOT Australian, Krassovsky, International
- 1924.
SEMI_MAJOR_ NUMBER Radius in meters along the semi-major axis (one-half
AXIS of the long axis of the ellipsoid).
INVERSE_FLA NUMBER Inverse flattening of the ellipsoid. That is, 1/F, where
TTENING T = (a-b)/a, and ais the semi-major axis and b is

the semi-minor axis.

6-54 Developer's Guide

Creating a User-Defined Coordinate Reference System

To see the names of the ellipsoids in these tables, enter an appropriate SELECT
statement. For example:

SELECT name FROM MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT ORDER BY name;

6.8.7 MDSYS.SDO_PROJECTIONS_OLD_FORMAT and
SDO_PROJECTIONS_OLD_SNAPSHOT Tables

The MDSYS.SDO_PROJECTIONS_OLD_FORMAT and
MDSYS.SDO_PROJECTIONS_OLD_SNAPSHOT reference tables contain one row for
each valid PROJECTION specification in the well-known text (WKT) description in the
coordinate system definition. (The WKT is described in Well-Known Text (WKT)
(page 6-48).)

e MDSYS.SDO_PROJECTIONS_OLD_FORMAT contains the new data in the old

format (that is, EPSG-based projection specifications in a table using the format
from before release 10.2).

e MDSYS.SDO_PROJECTIONS_OLD_SNAPSHOT contains the old data in the old
format (that is, projection specifications and table format from before release 10.2).

These tables contains the column shown in the following table.

Table 6-34 MDSYS.SDO_PROJECTIONS_OLD_FORMAT and
SDO_PROJECTIONS_OLD_SNAPSHOT Tables

Column Name Data Type Description

NAME VARCHAR2(80) Name of the map projection. Specify a value from
for OLD_FORMAT this column in the PROJECTION specification of the
VARCHAR2(64) WKT for any user-defined coordinate system.
for Examples: Geographic (Lat/Long),
OLD SNAPSHOT Universal Transverse Mercator, State
a Plane Coordinates, Albers Conical Equal
Area.

To see the names of the projections in these tables, enter an appropriate SELECT
statement. For example:

SELECT name FROM MDSYS.SDO_PROJECTIONS_OLD_FORMAT ORDER BY name;

6.9 Creating a User-Defined Coordinate Reference System

If the coordinate systems supplied by Oracle are not sufficient for your needs, you can
create user-defined coordinate reference systems.

Note:

As mentioned in Coordinate System (Spatial Reference System) (page 6-1), the
terms coordinate system and coordinate reference system (CRS) are often used
interchangeably, although coordinate reference systems must be Earth-based.

The exact steps for creating a user-defined CRS depend on whether it is geodetic or
projected. In both cases, supply information about the coordinate system (coordinate
axes, axis names, unit of measurement, and so on). For a geodetic CRS, supply
information about the datum (ellipsoid, prime meridian, and so on), as explained in

Coordinate Systems (Spatial Reference Systems) 6-55

Creating a User-Defined Coordinate Reference System

Creating a Geodetic CRS (page 6-56). For a projected CRS, supply information about
the source (geodetic) CRS and the projection (operation and parameters), as explained
in Creating a Projected CRS (page 6-57).

For any user-defined coordinate system, the SRID value should be 1000000 (1 million)
or higher.

6.9.1 Creating a Geodetic CRS

If the necessary unit of measurement, coordinate axes, SDO_COORD_SYS table row,
ellipsoid, prime meridian, and datum are already defined, insert a row into the
SDO_COORD_REF_SYSTEM view (described in SDO_COORD_REF_SYSTEM View
(page 6-29)) to define the new geodetic CRS.

Example 6-5 (page 6-56) inserts the definition for a hypothetical geodetic CRS named
My Own NAD27 (which, except for its SRID and name, is the same as the NAD27 CRS
supplied by Oracle).

If the necessary information for the definition does not already exist, follow these
steps, as needed, to define the information before you insert the row into the
SDO_COORD_REF_SYSTEM view:

1. If the unit of measurement is not already defined in the
SDO_UNITS_OF_MEASURE table (described in SDO_UNITS_OF_MEASURE
Table (page 6-41)), insert a row into that table to define the new unit of
measurement.

2. If the coordinate axes are not already defined in the SDO_COORD_AXES table
(described in SDO_COORD_AXES Table (page 6-21)), insert one row into that table
for each new coordinate axis.

3. If an appropriate entry for the coordinate system does not already exist in the
SDO_COORD_SYS table (described in SDO_COORD_SYS Table (page 6-29)), insert
a row into that table. Example 6-6 (page 6-57) inserts the definition for a fictitious
coordinate system.

4. If the ellipsoid is not already defined in the SDO_ELLIPSOIDS table (described in
SDO_ELLIPSOIDS Table (page 6-38)), insert a row into that table to define the new
ellipsoid.

5. If the prime meridian is not already defined in the SDO_PRIME_MERIDIANS table
(described in SDO_PRIME_MERIDIANS Table (page 6-40)), insert a row into that
table to define the new prime meridian.

6. If the datum is not already defined in the SDO_DATUMS table (described in
SDO_DATUMS Table (page 6-37)), insert a row into that table to define the new
datum.

Example 6-5 Creating a User-Defined Geodetic Coordinate Reference System

INSERT INTO SDO_COORD_REF_SYSTEM (
SRID,
COORD_REF_SYS_NAWME,
COORD_REF_SYS_KIND,
COORD_SYS_ID,
DATUM_ID,
GEOG_CRS_DATUM_ID,
SOURCE_GEOG_SRID,
PROJECTION_CONV_ID,
CMPD_HORIZ_SRID,

6-56 Developer's Guide

Creating a User-Defined Coordinate Reference System

CMPD_VERT SRID,

INFORMAT I0ON_SOURCE,

DATA_SOURCE,

IS_LEGACY,

LEGACY_CODE,

LEGACY_WKTEXT,

LEGACY_CS_BOUNDS,

IS_VALID,

SUPPORTS_SDO_GEOMETRY)
VALUES (

9994267,

"My Own NAD27",

*GEOGRAPHIC2D"

6422,

6267,

6267,

NULL,

NULL,

NULL,

NULL,

NULL,

"EPSG",

"FALSE",

NULL,

NULL,

NULL,

"TRUE",

"TRUE");

Example 6-6 Inserting a Row into the SDO_COORD_SYS Table

INSERT INTO SDO_COORD_SYS (
COORD_SYS_ID,
COORD_SYS_NAME,
COORD_SYS_TYPE,
DIMENSION,

INFORMAT ION_SOURCE,
DATA_SOURCE)
VALUES (
9876543,
"My custom CS. Axes: lat, long. Orientations: north, east. UoM: deg”,
"ellipsoidal”,
2,
"Myself",
"Myself*");

6.9.2 Creating a Projected CRS

If the necessary unit of measurement, coordinate axes, SDO_COORD_SYS table row,
source coordinate system, projection operation, and projection parameters are already
defined, insert a row into the SDO_COORD_REF_SYSTEM view (described in
SDO_COORD_REF_SYSTEM View (page 6-29)) to define the new projected CRS.

Example 6-7 (page 6-58) inserts the definition for a hypothetical projected CRS named
My Own NAD27 / Cuba Norte (which, except for its SRID and name, is the same as
the NAD27 / Cuba Norte CRS supplied by Oracle).

If the necessary information for the definition does not already exist, follow these
steps, as needed, to define the information before you insert the row into the
SDO_COORD_REF_SYSTEM view:

Coordinate Systems (Spatial Reference Systems) 6-57

Creating a User-Defined Coordinate Reference System

1. If the unit of measurement is not already defined in the
SDO_UNITS_OF_MEASURE table (described in SDO_UNITS_OF MEASURE
Table (page 6-41)), insert a row into that table to define the new unit of
measurement.

2. If the coordinate axes are not already defined in the SDO_COORD_AXES table
(described in SDO_COORD_AXES Table (page 6-21)), insert one row into that table
for each new coordinate axis.

3. If an appropriate entry for the coordinate system does not already exist in
SDO_COORD_SYS table (described in SDO_COORD_SYS Table (page 6-29)), insert
a row into that table. (See Example 6-6 (page 6-57) in Creating a Geodetic CRS
(page 6-56)).

4. If the projection operation is not already defined in the SDO_COORD_OPS table
(described in SDO_COORD_OPS Table (page 6-25)), insert a row into that table to
define the new projection operation. Example 6-8 (page 6-59) shows the statement
used to insert information about coordinate operation ID 18061, which is supplied
by Oracle.

5. If the parameters for the projection operation are not already defined in the
SDO_COORD_OP_PARAM_VALS table (described in
SDO_COORD_OP_PARAM_VALS Table (page 6-23)), insert one row into that
table for each new parameter. Example 6-9 (page 6-59) shows the statement used
to insert information about parameters with ID values 8801, 8802, 8805, 8806, and
8807, which are supplied by Oracle.

Example 6-7 Creating a User-Defined Projected Coordinate Reference System

INSERT INTO SDO_COORD_REF _SYSTEM (
SRID,
COORD_REF_SYS_NAME,
COORD_REF_SYS_KIND,
COORD_SYS_ID,
DATUM_ID,
GEOG_CRS_DATUM_ID,
SOURCE_GEOG_SRID,
PROJECTION_CONV_ID,
CMPD_HORIZ_SRID,
CMPD_VERT_SRID,
INFORMAT ION_SOURCE,
DATA_SOURCE,
IS_LEGACY,
LEGACY_CODE,
LEGACY_WKTEXT,
LEGACY_CS_BOUNDS,
IS_VALID,
SUPPORTS_SDO_GEOMETRY)

VALUES (
9992085,
"My Own NAD27 / Cuba Norte",
"PROJECTED",
4532,
NULL,
6267,
4267,
18061,
NULL,
NULL,
"Institut Cubano di Hidrografia (ICH)",

6-58 Developer's Guide

Creating a User-Defined Coordinate Reference System

"EPSG",
"FALSE",
NULL,
NULL,
NULL,
"TRUE",
"TRUE");

Example 6-8 Inserting a Row into the SDO_COORD_OPS Table

INSERT INTO SDO_COORD_OPS (
COORD_OP_ID,
COORD_OP_NAME,
COORD_OP_TYPE,
SOURCE_SRID,
TARGET_SRID,
COORD_TFM_VERSION,
COORD_OP_VARIANT,
COORD_OP_METHOD_ID,
UOM_ID_SOURCE_OFFSETS,
UOM_ID_TARGET_OFFSETS,
INFORMAT ION_SOURCE,
DATA_SOURCE,
SHOW_OPERATION,
IS_LEGACY,
LEGACY_CODE,
REVERSE_OP,
IS_IMPLEMENTED_FORWARD,
IS_IMPLEMENTED_REVERSE)

VALUES (
18061,
"Cuba Norte*,
“CONVERSION®,
NULL,
NULL,
NULL,
NULL,
9801,
NULL,
NULL,
NULL,
"EPSG",
1,
"FALSE",
NULL,
1,
1,
1;
Example 6-9 Inserting a Row into the SDO_COORD_OP_PARAM_VALS Table

INSERT INTO SDO_COORD_OP_PARAM_VALS (
COORD_OP_ID,
COORD_OP_METHOD_ID,
PARAMETER_ID,
PARAMETER_VALUE,
PARAM_VALUE_FILE_REF,
UOM_1D)

VALUES (
18061,
9801,
8801,

Coordinate Systems (Spatial Reference Systems) 6-59

Creating a User-Defined Coordinate Reference System

22.21,
NULL,
9110);

INSERT INTO SDO_COORD_OP_PARAM_VALS (
COORD_OP_ID,
COORD_OP_METHOD_ID,
PARAMETER_ID,
PARAMETER_VALUE,
PARAM_VALUE_FILE_REF,
UOM_ID)

VALUES (

18061,
9801,
8802,
-81,
NULL,
9110);

INSERT INTO SDO_COORD_OP_PARAM_VALS (
COORD_OP_ID,
COORD_OP_METHOD_ID,
PARAMETER_ID,
PARAMETER_VALUE,
PARAM_VALUE_FILE_REF,
UOM_ID)

VALUES (

18061,
9801,
8805,
.99993602,
NULL,
9201);

INSERT INTO SDO_COORD_OP_PARAM_VALS (
COORD_OP_ID,
COORD_OP_METHOD_ID,
PARAMETER_ID,
PARAMETER_VALUE,
PARAM_VALUE_FILE_REF,
UOM_ID)

VALUES (
18061,
9801,
8806,
500000,
NULL,
9001);

INSERT INTO SDO_COORD_OP_PARAM_VALS (
COORD_OP_ID,
COORD_OP_METHOD_ID,
PARAMETER_ID,
PARAMETER_VALUE,
PARAM_VALUE_FILE_REF,
UOM_1D)

VALUES (
18061,
9801,
8807,
280296.016,

6-60 Developer's Guide

Creating a User-Defined Coordinate Reference System

NULL,
9001);

Example 6-10 Creating a User-Defined Projected CRS: Extended Example
-- Create an EPSG equivalent for the following CRS:

-- CS_NAME: VDOT_LAMBERT

-- SRID: 51000000

-- AUTH_SRID: 51000000

-- AUTH_NAME: VDOT Custom Lambert Conformal Conic
-- WKTEXT:

-- PROJCS[

-- "VDOT_Lambert",

-- GEOGCS[

-- "GCS_North_American_1983",

- DATUM[

-- "D_North_American_1983",

-- SPHEROID["'GRS_1980", 6378137.0, 298.257222101]],
- PRIMEM["Greenwich™, 0.0],

-- UNIT["Decimal Degree",0.0174532925199433]],
-- PROJECTION["Lambert_Conformal_Conic"],

-- PARAMETER[“False_Easting", 0.0],

-- PARAMETER["False_Northing", 0.0],

-- PARAMETER["Central_Meridian", -79.5],

-- PARAMETER["Standard_Parallel_1", 37.0],

-— PARAMETER["Standard_Parallel_2", 39.5],

-- PARAMETER["Scale_Factor", 1.0],

-- PARAMETER[“Latitude_Of Origin", 36.0],

- UNIT["Meter", 1.0]]

-- First, the base geographic CRS (GCS_North_American_1983) already exists in EPSG.
-- It is 4269:
-- Next, find the EPSG equivalent for PROJECTION["Lambert_Conformal_Conic"]:
select
coord_op_method_id,
legacy_name
from
sdo_coord_op_methods
where
not legacy name is null
order by
coord_op_method_id;

-- Result:

—-- COORD_OP_METHOD_ID LEGACY_NAME

- 9802 Lambert Conformal Conic

-- 9803 Lambert Conformal Conic (Belgium 1972)
- 9805 Mercator

- 9806 Cassini

- 9807 Transverse Mercator

-- 9829 Polar Stereographic

-- 6 rows selected.

-- It is EPSG method 9802. Create a projection operation 510000001, based on it:

insert into MDSYS.SDO_COORD_OPS (
COORD_OP_ID,

Coordinate Systems (Spatial Reference Systems) 6-61

Creating a User-Defined Coordinate Reference System

COORD_OP_NAME,

COORD_OP_TYPE,

SOURCE_SRID,

TARGET_SRID,

COORD_TFM_VERSION,

COORD_OP_VARIANT,

COORD_OP_METHOD_ID,

UOM_ID_SOURCE_OFFSETS,

UOM_ID_TARGET_OFFSETS,

INFORMAT ION_SOURCE,

DATA_SOURCE,

SHOW_OPERATION,

IS_LEGACY,

LEGACY_CODE,

REVERSE_OP,

IS_IMPLEMENTED_FORWARD,

IS_IMPLEMENTED_REVERSE)
VALUES (

510000001,

"VDOT_Lambert®,

"CONVERSION",

NULL,

NULL,

NULL,

NULL,

9802,

NULL,

NULL,

NULL,

NULL,

1,

"FALSE",

NULL,

1,

1,

1);

-- Now, set the parameters. See which are required:

select
use.parameter_id || ": " ||
use. legacy_param_name
from
sdo_coord_op_param_use use
where
use.coord_op_method_id = 9802;

-- result:

-- 8821: Latitude_Of Origin
-- 8822: Central_Meridian

-- 8823: Standard_Parallel_1
-- 8824: Standard_Parallel_2
-- 8826: False_Easting

-- 8827: False_Northing

-- 6 rows selected.
-- Also check the most common units we will need:

select
UwoM_ID || ": " 11

6-62 Developer's Guide

Creating a User-Defined Coordinate Reference System

UNIT_OF_MEAS_NAME
from

sdo_units_of _measure
where

uom_id in (9001, 9101, 9102, 9201)
order by

uom_id;

-- result:

-- 9001: metre
-- 9101: radian
-- 9102: degree
-- 9201: unity

-- Now, configure the projection parameters:
-- 8821: Latitude_Of Origin

insert into MDSYS.SDO_COORD_OP_PARAM_VALS (

COORD_OP_ID,
COORD_OP_METHOD_ID,
PARAMETER_ID,
PARAMETER_VALUE,
PARAM_VALUE_FILE_REF,
UOM_ID)

VALUES (
510000001,
9802,
8821,
36.0,
NULL,
9102);

-- 8822: Central_Meridian

insert into MDSYS.SDO_COORD_OP_PARAM_VALS (

COORD_OP_ID,
COORD_OP_METHOD_ID,
PARAMETER_ID,
PARAMETER_VALUE,
PARAM_VALUE_FILE_REF,
UOM_ID)

VALUES (
510000001,
9802,
8822,
-79.5,
NULL,
9102);

-- 8823: Standard_Parallel_1

insert into MDSYS.SDO_COORD_OP_PARAM_VALS (

COORD_OP_ID,
COORD_OP_METHOD_ID,
PARAMETER_ID,
PARAMETER_VALUE,
PARAM_VALUE_FILE_REF,
UOM_ID)

VALUES (
510000001,

Coordinate Systems (Spatial Reference Systems) 6-63

Creating a User-Defined Coordinate Reference System

9802,
8823,
37.0,
NULL,
9102);

-- 8824: Standard_Parallel_2

insert into MDSYS.SDO_COORD_OP_PARAM_VALS (

COORD_OP_ID,
COORD_OP_METHOD_ID,
PARAMETER_ID,
PARAMETER_VALUE,
PARAM_VALUE_FILE_REF,
UOM_ID)

VALUES (
510000001,
9802,
8824,
39.5,
NULL,
9102);

-- 8826: False_Easting

insert into MDSYS.SDO_COORD_OP_PARAM_VALS (

COORD_OP_ID,
COORD_OP_METHOD_ID,
PARAMETER_ID,
PARAMETER_VALUE,
PARAM_VALUE_FILE_REF,
UOM_1D)

VALUES (
510000001,
9802,
8826,
0.0,
NULL,
9001);

-- 8827: False_Northing

insert into MDSYS.SDO_COORD_OP_PARAM_VALS (

COORD_OP_ID,
COORD_OP_METHOD_ID,
PARAMETER_ID,
PARAMETER_VALUE,
PARAM_VALUE_FILE_REF,
UOM_1D)

VALUES (
510000001,
9802,
8827,
0.0,
NULL,
9001);

-- Now, create the actual projected CRS.Look at the GEOG_CRS_DATUM_ID

-- and COORD_SYS_ID first. The GEOG_CRS_DATUM_ID is the datum of
-- the base geog_crs (4269):

6-64 Developer's Guide

Creating a User-Defined Coordinate Reference System

select datum_id from sdo_coord_ref_sys where srid = 4269;

-- DATUM_ID

-- And the COORD_SYS_ID is the Cartesian CS used for the projected CRS.
-- We can use 4400, if meters will be the unit:

select COORD_SYS NAME from sdo_coord_sys where COORD_SYS_ID = 4400;

-- Cartesian 2D CS. Axes: easting, northing (E,N). Orientations: east, north.
-- UoM: m.

-- Now create the projected CRS:

insert into MDSYS.SDO_COORD REF_SYSTEM (
SRID,
COORD_REF_SYS_NAME,
COORD_REF_SYS_KIND,
COORD_SYS_ID,
DATUM_ID,
SOURCE_GEOG_SRID,
PROJECTION_CONV_ID,
CMPD_HORIZ_SRID,
CMPD_VERT SRID,
INFORMAT I0ON_SOURCE,
DATA_SOURCE,
IS_LEGACY,
LEGACY_CODE,
LEGACY_WKTEXT,
LEGACY_CS_BOUNDS,
GEOG_CRS_DATUM_ID)
VALUES (
51000000,
*VDOT_LAMBERT",
*PROJECTED",
4400,
NULL,
4269,
510000001,
NULL,
NULL,
NULL,
NULL,
"FALSE",
NULL,
NULL,
NULL,
6269);

-- To see the result:
select srid, wktext from cs_srs where srid = 51000000;

-~ 51000000
-~ PROJCS[

-- "VDOT_LAMBERT",
-~ GEOGCS [

-- “NADS3",

-- DATUM [

Coordinate Systems (Spatial Reference Systems) 6-65

Creating a User-Defined Coordinate Reference System

-- "North American Datum 1983 (EPSG ID 6269)",
-- SPHEROID [

- "GRS 1980 (EPSG ID 7019)",

- 6378137,

- 298.257222101]],

-- PRIMEM ["Greenwich™, 0.000000],

-- UNIT ["Decimal Degree", 0.01745329251994328]1],
-- PROJECTION ["VDOT Lambert"],

-- PARAMETER [“Latitude Of Origin", 36],

-- PARAMETER [“Central_Meridian™, -79.50000000000000000000000000000000000028],
-- PARAMETER ["Standard_Parallel_1", 37],

-- PARAMETER [“Standard_Parallel 2", 39.5],

-- PARAMETER ["False_Easting", 0],

-- PARAMETER ["False_Northing", 0],

- UNIT ["Meter", 1]]

Example 6-10 (page 6-61) provides an extended, annotated example of creating a user-
defined projected coordinate system

6.9.3 Creating a Vertical CRS

A vertical CRS has only one dimension, usually height. On its own, a vertical CRS is of
little use, but it can be combined with a two-dimensional CRS (geodetic or projected),
to result in a compound CRS. Example 6-11 (page 6-66) shows the statement that
created the vertical CRS with SRID 5701, which is included with Spatial and Graph.
This definition refers to an existing (one-dimensional) coordinate system (ID 6499; see
SDO_COORD_SYS Table (page 6-29)) and vertical datum (ID 5101; see
SDO_DATUMS Table (page 6-37)).

Example 6-11 Creating a Vertical Coordinate Reference System

INSERT INTO MDSYS.SDO_COORD_REF_SYSTEM (
SRID,
COORD_REF_SYS NAME,
COORD_REF_SYS KIND,
COORD _SYS I D,
DATUM | D,
SOURCE_GEOG_SRID,
PROJECTION_CONV_ID,
CMPD_HORIZ_SRID,
CMPD_VERT _SRID,
INFORMATION_SOURCE,
DATA SOURCE,
IS _LEGACY,
LEGACY_CODE,
LEGACY WKTEXT,
LEGACY_CS_BOUNDS)

VALUES (

5701,
“Newlyn®,
"VERTI CAL' ,
6499,
5101,
NULL,
NULL,
NULL,
NULL,
NULL,
"EPSG",
"FALSE",
NULL,

6-66 Developer's Guide

Creating a User-Defined Coordinate Reference System

NULL,
NULL);

A vertical CRS might define some undulating equipotential surface. The shape of that
surface, and its offset from some ellipsoid, is not actually defined in the vertical CRS
record itself (other than textually). Instead, that definition is included in an operation
between the vertical CRS and another CRS. Consequently, you can define several
alternative operations between the same pair of geoidal and WGS 84-ellipsoidal
heights. For example, there are geoid offset matrixes GEOID90, GEOID93, GEOID96,
GEOID99, GEOID03, GEOIDO06, and others, and for each of these variants there can be
a separate operation. Creating a Transformation Operation (page 6-68) describes such
an operation.

6.9.4 Creating a Compound CRS

A compound CRS combines an existing horizontal (two-dimensional) CRS and a
vertical (one-dimensional) CRS. The horizontal CRS can be geodetic or projected.
Example 6-12 (page 6-67) shows the statement that created the compound CRS with
SRID 7405, which is included with Spatial and Graph. This definition refers to an
existing projected CRS and vertical CRS (IDs 27700 and 5701, respectively; see
SDO_COORD_REF_SYS Table (page 6-27)).

Example 6-12 Creating a Compound Coordinate Reference System

INSERT INTO MDSYS.SDO_COORD_REF_SYSTEM (

SRID,
COORD_REF_SYS NAME,
COORD_REF_SYS KIND,
COORD_SYS 1D,
DATUM_ID,
SOURCE_GEOG_SRID,
PROJECTION_CONV_ID,
CWPD HORI Z SRI D,
CWPD_VERT SRID,
INFORMATION_SOURCE,
DATA SOURCE,
IS _LEGACY,
LEGACY_CODE,
LEGACY WKTEXT,
LEGACY_CS_BOUNDS)

VALUES (
7405,
"0SGB36 / British National Grid + ODN®,
" COVPOUND' ,
NULL,
NULL,
NULL,
NULL,
27700,
5701,
NULL,
"EPSG",
"FALSE",
NULL,
NULL,
NULL);

Coordinate Systems (Spatial Reference Systems) 6-67

Creating a User-Defined Coordinate Reference System

6.9.5 Creating a Geographic 3D CRS

A geographic 3D CRS is the combination of a geographic 2D CRS with ellipsoidal
height. Example 6-13 (page 6-68) shows the statement that created the geographic 3D
CRS with SRID 4327, which is included with Spatial and Graph. This definition refers
to an existing projected coordinate system (ID 6401; see SDO_COORD_SYS Table
(page 6-29)) and datum (ID 6326; see SDO_DATUMS Table (page 6-37)).

Example 6-13 Creating a Geographic 3D Coordinate Reference System

INSERT INTO MDSYS.SDO_COORD_REF_SYSTEM (
SRID,
COORD_REF_SYS_NAME,
COORD_REF_SYS_KI ND,
COORD_SYS_ I D,
DATUM I D,
GEQOG_CRS_DATUM | D,
SOURCE_GEOG_SRID,
PROJECTION_CONV_ID,
CMPD_HORIZ_SRID,
CMPD_VERT_SRID,
INFORMAT I0ON_SOURCE,
DATA_SOURCE,
IS_LEGACY,
LEGACY_CODE,
LEGACY_WKTEXT,
LEGACY_CS_BOUNDS,
IS_VALID,
SUPPORTS_SDO_GEOMETRY)

VALUES (

4327,

"WGS 84 (geographic 3D)",
' GEOGRAPHI C3D' ,

6401,

6326,

6326,

NULL,

NULL,

NULL,

NULL,

"NIMA TR8350.2 January 2000 revision. http://164.214_2.59/GandG/tr8350_2.html",
"EPSG",

"FALSE",

NULL,

NULL,

NULL,

"TRUE",

"TRUE");

6.9.6 Creating a Transformation Operation

Creating a Projected CRS (page 6-57) described the creation of a projection operation,
for the purpose of then creating a projected CRS. A similar requirement can arise
when using a compound CRS based on orthometric height: you may want to
transform from and to ellipsoidal height. The offset between the two heights is
undulating and irregular.

By default, Spatial and Graph transforms between ellipsoidal and orthometric height
using an identity transformation. (Between different ellipsoids, the default would
instead be a datum transformation.) The identity transformation is a reasonable

6-68 Developer's Guide

Creating a User-Defined Coordinate Reference System

approximation; however, a more accurate approach involves an EPSG type 9635
operation, involving an offset matrix. Example 6-14 (page 6-69) is a declaration of
such an operation:

Example 6-14 Creating a Transformation Operation

INSERT INTO MDSYS.SDO_COORD_OPS (
COORD_OP_1D,
COORD_OP_NAME,
COCRD_CP_TYPE,
SOURCE_SRID,
TARGET_SRID,
COORD_TFM_VERSION,
COORD_OP_VARIANT,
COORD_OP_METHOD_ID,
UOM_ID_SOURCE_OFFSETS,
UOM_ID_TARGET_OFFSETS,
INFORMATION_SOURCE,
DATA_SOURCE,
SHOW_OPERATION,
IS_LEGACY,
LEGACY_CODE,
REVERSE_OP,
IS_IMPLEMENTED_FORWARD,
IS_IMPLEMENTED_REVERSE)

VALUES (

999998,

"Test operation, based on GEOIDO3 model, using Hawaii grid®,
" TRANSFORMATI ON
NULL,

NULL,

NULL,

NULL,

9635,

NULL,

NULL,

“NGS™,

“NGS™,

1,

"FALSE",

NULL,

1,

1,

1);

INSERT INTO MDSYS.SDO_COORD_OP_PARAM_VALS (
COORD_OP_1D,
COORD_OP_METHOD | D,
PARAMETER_ID,
PARAMETER_VALUE,

PARAM VALUE FI LE_REF,
UOM_ID)
VALUES (
999998,
9635,
8666,
NULL,
' g2003h01. asc' ,
NULL);

Coordinate Systems (Spatial Reference Systems) 6-69

Creating a User-Defined Coordinate Reference System

The second INSERT statement in Example 6-14 (page 6-69) specifies the file name
g2003h01. asc, but not yet its actual CLOB content with the offset matrix. As with
NADCON and NTv2 matrixes, geoid matrixes have to be loaded into the
PARAM_VALUE_FILE column. Due to space and copyright considerations, Oracle
does not supply most of these matrixes; however, they are usually available for
download on the Web. Good sources are the relevant government websites, and you
can search by file name (such as g2003h01 in this example). Although some of these
files are available in both binary format (such as .gsb) and ASCII format (such as .gsa
or .asc), only the ASCII variant can be used with Spatial and Graph. The existing EPSG
operations include file names in standard use.

Example 6-15 Loading Offset Matrixes

DECLARE
ORCL_HOME_DIR VARCHAR2(128);
ORCL_WORK_DIR VARCHAR2(128);
Src_loc BFILE;
Dest_loc CLOB;
CURSOR PARAM_FILES IS
SELECT
COORD_OP_1D,
PARAMETER_ID,
PARAM_VALUE_FILE_REF
FROM
MDSYS.SDO_COORD_OP_PARAM_VALS
WHERE
PARAMETER_ID IN (8656, 8657, 8658, 8666);
PARAM_FILE PARAM_FILES%ROWTYPE;
ACTUAL_FILE_NAME VARCHAR2(128);
platform NUMBER;
BEGIN
EXECUTE IMMEDIATE "CREATE OR REPLACE DIRECTORY work_dir AS
"“"define_your_source_directory _here""";

FOR PARAM_FILE IN PARAM_FILES LOOP

CASE UPPER(PARAM_FILE.PARAM_VALUE_FILE_REF)
/* NTv2, fill in your files here */
WHEN *NTV2_0.GSB* THEN ACTUAL_FILE_NAME :
/* GEOIDO3, fill in your files here */
WHEN "G2003HO1.ASC® THEN ACTUAL_FILE_NAME :
ELSE ACTUAL_FILE_NAME

END CASE;

"ntv20.gsa“;

"g2003h01.asc";
NULL;

IF(NOT (ACTUAL_FILE_NAME 1S NULL)) THEN
BEGIN
dbms_output.put_line("Loading file " || actual_file_name || "...");
Src_loc := BFILENAME("WORK_DIR*, ACTUAL_FILE_NAME);
DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
END;

UPDATE
MDSYS.SDO_COORD_OP_PARAM_VALS
SET
PARAM_VALUE_FILE = EMPTY_CLOB()
WHERE
COORD_OP_ID = PARAM_FILE.COORD_OP_ID AND
PARAMETER_ID = PARAM_FILE.PARAMETER_ID
RETURNING
PARAM_VALUE_FILE INTO Dest_loc;

DBMS_LOB.OPEN(Dest_loc, DBMS_LOB.LOB_READWRITE);

6-70 Developer's Guide

Creating a User-Defined Coordinate Reference System

DBMS_LOB. LOADFROMFILE(Dest_loc, Src_loc, DBMS_LOB.LOBMAXSIZE);
DBMS_LOB.CLOSE(Dest_loc);
DBMS_LOB.CLOSE(Src_loc);
DBMS_LOB.FILECLOSE(Src_loc);
END IF;
END LOOP;
END;
/

Example 6-15 (page 6-70) is a script for loading a set of such matrixes. It loads
specified physical files (such as ntv20.gsa) into database CLOBs, based on the
official file name reference (such as NTV2_0.GSB).

6.9.7 Using British Grid Transformation OSTN02/0SGM02 (EPSG Method 9633)

To use British Grid Transformation OSTN02/OSGMO02 (EPSG method 9633) in a
projected coordinate reference system, you must first insert a modified version of the
OSTNO2_0SGM02_GB. txt grid file into the PARAM_VALUE_FILE column (type
CLOB) of the SDO_COORD_OP_PARAM_VALS table (described in
SDO_COORD_OP_PARAM_VALS Table (page 6-23)). The OSTNO2_0OSGMO2_GB. txt
file contains the offset matrix on which EPSG transformation method 9633 is based.

Follow these steps:

1. Download the following file: http://www.ordnancesurvey.co.uk/
docs/gps/ostn02-osgm02-Ffiles.zip

2. From this .zip file, extract the following file: OSTNO2_0SGM02_GB. txt

3. Edit your copy of OSTNO2_0OSGMO2_GB . txt, and insert the following lines before
the first line of the current file:

SDO Header

x: 0.0 - 700000.0
y: 0.0 - 1250000.0
x-intervals: 1000.0
y-intervals: 1000.0
End of SDO Header

The is, after the editing operation, the contents of the file will look like this:

SDO Header

x: 0.0 - 700000.0

y: 0.0 - 1250000.0
x-intervals: 1000.0
y-intervals: 1000.0

End of SDO Header
1,0,0,0.000,0.000,0.000,0
2,1000,0,0.000,0.000,0.000,0
3,2000,0,0.000,0.000,0.000,0
4,3000,0,0.000,0.000,0.000,0
5,4000,0,0.000,0.000,0.000,0

876949,698000,1250000,0.000,0.000,0.000,0
876950,699000,1250000,0.000,0.000,0.000,0
876951,700000,1250000,0.000,0.000,0.000,0

4. Save the edited file, perhaps using a different name (for example,
my_OSTNO2_OSGMO2_GB. txt).

Coordinate Systems (Spatial Reference Systems) 6-71

http://www.ordnancesurvey.co.uk/docs/gps/ostn02-osgm02-files.zip
http://www.ordnancesurvey.co.uk/docs/gps/ostn02-osgm02-files.zip

Creating a User-Defined Coordinate Reference System

5. In the SDO_COORD_OP_PARAM_VALS table, for each operation of EPSG method
9633 that has PARAM_VALUE_FILE_REF value OSTNO2_0SGM02_GB.TXT,
update the PARAM_VALUE_FILE column to be the contents of the saved file (for
example, the contents of my_0STNO2_0SGM02_GB. txt). You can use coding
similar to that in Example 6-16 (page 6-72).

Example 6-16 Using British Grid Transformation OSTN02/OSGMO02 (EPSG Method
9633)

DECLARE
ORCL_HOME_DIR VARCHAR2(128);
ORCL_WORK_DIR VARCHAR2(128);
Src_loc BFILE;
Dest_loc CLOB;
CURSOR PARAM_FILES IS
SELECT
COORD_OP_1D,
PARAMETER_ID,
PARAM_VALUE_FILE_REF
FROM
MDSYS.SDO_COORD _OP_PARAM_VALS
WHERE
PARAMETER_ID IN (8656, 8657, 8658, 8664, 8666)
order by
COORD_OP_1ID,
PARAMETER_ID;
PARAM_FILE PARAM_FILES%ROWTYPE;
ACTUAL_FILE_NAME VARCHAR2(128);
platform NUMBER;
BEGIN
EXECUTE IMMEDIATE "CREATE OR REPLACE DIRECTORY work_dir AS """ || system.geor_dir

wwww .
’

FOR PARAM_FILE IN PARAM_FILES LOOP

CASE UPPER(PARAM_FILE.PARAM_VALUE_FILE_REF)
/* NTv2 */
WHEN "NTV2_0.GSB" THEN ACTUAL_FILE_NAME :
/* GEOIDO3 */
WHEN "G2003H01.ASC" THEN ACTUAL_FILE_NAME := "g2003h0l.asc";
/* British Ordnance Survey (9633) */
WHEN ' OSTNO2_OSGWD2_GB. TXT

THEN ACTUAL_FI LE_NAME : = 'ny_OSTN02_OSGW2_GB. txt'

ELSE ACTUAL_FILE_NAME := NULL;

END CASE;

"ntv20.gsa”;

IF(NOT (ACTUAL_FILE_NAME IS NULL)) THEN
BEGIN
dbms_output.put_line("Loading file * || actual_file_name || "...7);
Src_loc := BFILENAME("WORK_DIR", ACTUAL_FILE_NAME);
DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
END;

UPDATE
MDSYS.SDO_COORD_OP_PARAM_VALS
SET
PARAM_VALUE_FILE = EMPTY_CLOB()
WHERE
COORD_OP_ID = PARAM_FILE.COORD_OP_ID AND
PARAMETER_ID = PARAM_FILE.PARAMETER_ID
RETURNING
PARAM_VALUE_FILE INTO Dest_loc;

6-72 Developer's Guide

Notes and Restrictions with Coordinate Systems Support

DBMS_LOB.OPEN(Dest_loc, DBMS_LOB.LOB_READWRITE);
DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, DBMS_LOB.LOBMAXSIZE);
DBMS_LOB.CLOSE(Dest_loc);
DBMS_LOB.CLOSE(Src_loc);
DBMS_LOB.FILECLOSE(Src_loc);
END IF;
END LOOP;
END;
/

Note that adding "header” information to a grid file is required only for British Grid
Transformation OSTN02/OSGMO02. It is not required for NADCON, NTv2, or
VERTCON matrixes, because they already have headers of varying formats.

See also the following for related information:
¢ Creating a Projected CRS (page 6-57)

* C(reating a Transformation Operation (page 6-68)

6.10 Notes and Restrictions with Coordinate Systems Support

The following notes and restrictions apply to coordinate systems support in the
current release of Oracle Spatial and Graph.

If you have geodetic data, see Geodetic Coordinate Support (page 6-2) for additional
considerations, guidelines, and restrictions.

6.10.1 Different Coordinate Systems for Geometries with Operators and Functions

For spatial operators (described in Spatial Operators (page 18-1)) that take two
geometries as input parameters, if the geometries are based on different coordinate
systems, the query window (the second geometry) is transformed to the coordinate
system of the first geometry before the operation is performed. This transformation is
a temporary internal operation performed by Spatial and Graph; it does not affect any
stored query-window geometry.

For SDO_GEOM package geometry functions (described in SDO_GEOM Package
(Geometry) (page 23-1)) that take two geometries as input parameters, both
geometries must be based on the same coordinate system.

6.10.2 3D LRS Functions Not Supported with Geodetic Data

In the current release, the 3D formats of LRS functions (explained in 3D Formats of
LRS Functions (page 7-7)) are not supported with geodetic data.

6.10.3 Functions Supported by Approximations with Geodetic Data

In the current release, the following functions are supported by approximations with
geodetic data:

e SDO_GEOM.SDO_BUFFER (page 23-11)
e SDO_GEOM.SDO_CENTROID (page 23-13)
¢ SDO_GEOM.SDO_CONVEXHULL (page 23-19)

When these functions are used on data with geodetic coordinates, they internally
perform the operations in an implicitly generated local-tangent-plane Cartesian

Coordinate Systems (Spatial Reference Systems) 6-73

U.S. National Grid Support

coordinate system and then transform the results to the geodetic coordinate system.
For SDO_GEOM.SDO_BUFFER (page 23-11), generated arcs are approximated by line
segments before the back-transform.

6.10.4 Unknown CRS and NaC Coordinate Reference Systems

The following coordinate reference systems are provided for Oracle internal use and
for other possible special uses:

e unknown CRS (SRID 999999) means that the coordinate system is unknown, and
its space could be geodetic or Cartesian. Contrast this with specifying a null
coordinate reference system, which indicates an unknown coordinate system with
a Cartesian space.

e NaC (SRID 999998) means Not-a-CRS. Its name is patterned after the NaN (Not-a-
Number) value in Java. It is intended for potential use with nonspatial geometries.

The following restrictions apply to geometries based on the unknown CRS and NaC
coordinate reference systems:

* You cannot perform coordinate system transformations on these geometries.

® Operations that require a coordinate system will return a null value when
performed on these geometries. These operations include finding the area or
perimeter of a geometry, creating a buffer, densifying an arc, and computing the
aggregate centroid.

6.11 U.S. National Grid Support

The U.S. National Grid is a point coordinate representation using a single
alphanumeric coordinate (for example, 185UJ2348316806479498). This approach
contrasts with the use of numeric coordinates to represent the location of a point, as is
done with Oracle Spatial and Graph and with EPSG. A good description of the U.S.
National Grid is available at http://www.ngs.noaa.gov/TOOLS/usng.html.

To support the U.S. National Grid in Spatial and Graph, the SDO_GEOMETRY type
cannot be used because it is based on numeric coordinates. Instead, a point in U.S.
National Grid format is represented as a single string of type VARCHAR?2. To allow
conversion between the SDO_GEOMETRY format and the U.S. National grid format,
the SDO_CS package (documented in SDO_CS Package (Coordinate System
Transformation) (page 20-1)) contains the following functions:

e SDO_CS.FROM_USNG (page 20-25)
e SDO_CS.TO_USNG (page 20-32)

6.12 Google Maps Considerations

Google Maps uses spherical math in its projections, as opposed to the ellipsoidal math
used by Oracle Spatial and Graph. This difference can lead to inconsistencies in
applications, such as when overlaying a map based on Google Maps with a map based
on an Oracle Spatial and Graph ellipsoidal projection. For example, an Oracle Spatial
and Graph transformation from the ellipsoidal SRID 8307 to the spherical SRID 3785
accounts, by default, for the different ellipsoidal shapes, whereas Google Maps does
not consider ellipsoidal shapes.

If you want Oracle Spatial and Graph to accommodate the Google Maps results,
consider the following options:

6-74 Developer's Guide

http://www.ngs.noaa.gov/TOOLS/usng.html

Google Maps Considerations

¢ Use the spherical SRID 4055 instead of the ellipsoidal SRID 8307. This may be the
simplest approach; however, if you need to accommodate SRID 8307-based data
(such as from a third-party tool) as if it were spherical, you must use another
option.

* Use SRID 3857 instead of SRID 3785. This more convenient than the next two
options, because using SRID 3857 does not require that you declare an EPSG rule or
that you specify the USE_SPHERICAL use case name in order to produce Google-
compatible results.

® Declare an EPSG rule between the ellipsoidal and spherical coordinate systems. For
example, declare an EPSG rule between SRIDs 8307 and 3785, ignoring the
ellipsoidal shape of SRID 8307, as in the following example:

CALL sdo_cs.create_pref_concatenated_op(
302,
"CONCATENATED OPERATION®,
TFM_PLAN(SDO_TFM_CHAIN(8307, 1000000000, 4055, 19847, 3785)),
NULL);

In this example, operation 1000000000 represents no-operation, causing the datum
transformation between ellipsoid and sphere to be ignored.

With this approach, you must declare a rule for each desired SRID pair (ellipsoidal
and spherical).

* Specify a use case name of USE_SPHERICAL with the SDO_CS.TRANSFORM
(page 20-33) function or the SDO_CS.TRANSFORM_LAYER (page 20-35)
procedure, as in the following examples:

SELECT
SDO_CS. TRANSFORM(
sdo_geometry/(
2001,
4326,
sdo_point_type(1, 1, null),
null,
null),
' USE_SPHERI CAL' ,
3785)
FROM DUAL;

CALL SDO_CS.TRANSFORM_LAYER(
"source_geoms”,
"GEOMETRY",

"GEO_CS_3785 SPHERICAL",
' USE_SPHERI CAL' ,
3785);

If you specify a use_case parameter value of USE_SPHERICAL in such cases, the
transformation defaults to using spherical math instead of ellipsoidal math, thereby
accommodating Google Maps and some other third-party tools that use spherical
math.

If you use this approach (specifying "USE_SPHERICAL ") but you have also
declared an EPSG rule requiring that ellipsoidal math be used in transformations
between two specified SRIDs, then the declared EPSG rule takes precedence and
ellipsoidal math is used for transformations between those two SRIDs.

Coordinate Systems (Spatial Reference Systems) 6-75

Example of Coordinate System Transformation

6.13 Example of Coordinate System Transformation

This section presents a simplified example that uses coordinate system transformation
functions and procedures. It refers to concepts that are explained in this chapter and
uses functions documented in SDO_CS Package (Coordinate System Transformation)
(page 20-1).

Example 6-17 Simplified Example of Coordinate System Transformation

Example 6-17 (page 6-76) uses mostly the same geometry data (cola markets) as in
Simple Example: Inserting_ Indexing_ and Querying Spatial Data (page 2-1), except
that instead of null SDO_SRID values, the SDO_SRID value 8307 is used. That is, the
geometries are defined as using the coordinate system whose SRID is 8307 and whose
well-known name is "Longitude / Latitude (WGS 84)". This is probably the most
widely used coordinate system, and it is the one used for global positioning system
(GPS) devices. The geometries are then transformed using the coordinate system
whose SRID is 8199 and whose well-known name is "Longitude / Latitude (Arc
1950)".

Example 6-17 (page 6-76) uses the geometries illustrated in Simple Example: Inserting_
Indexing_ and Querying Spatial Data (page 2-1), except that cola_d is a rectangle
(here, a square) instead of a circle, because arcs are not supported with geodetic
coordinate systems.

Example 6-17 (page 6-76) does the following:
¢ Creates a table (COLA_MARKETS_CS) to hold the spatial data

e Inserts rows for four areas of interest (cola_a, cola_b, cola_c, cola_d), using
the SDO_SRID value 8307

¢ Updates the USER_SDO_GEOM_METADATA view to reflect the dimension of the
areas, using the SDO_SRID value 8307

* Creates a spatial index (COLA_SPATIAL_IDX_CS)

¢ Performs some transformation operations (single geometry and entire layer)

-- Create a table for cola (soft drink) markets in a
-- given geography (such as city or state).

CREATE TABLE cola_markets_cs (
mkt_id NUMBER PRIMARY KEY,
name VARCHAR2(32),
shape SDO_GEOMETRY);

-- The next INSERT statement creates an area of interest for
-- Cola A. This area happens to be a rectangle.

-- The area could represent any user-defined criterion: for
-- example, where Cola A is the preferred drink, where

-- Cola A is under competitive pressure, where Cola A

-- has strong growth potential, and so on.

INSERT INTO cola_markets_cs VALUES(

1,

"cola_a”",

SDO_GEOMETRY/(
2003, -- two-dimensional polygon
8307, -- SRID for "Longitude / Latitude (WGS 84)" coordinate system
NULL,

6-76 Developer's Guide

Example of Coordinate System Transformation

SDO_ELEM_INFO_ARRAY(1,1003,1), -- polygon
SDO_ORDINATE_ARRAY(1,1, 5,1, 5,7, 1,7, 1,1) -- All vertices must
-- be defined for rectangle with geodetic data.
)
);

-- The next two INSERT statements create areas of interest for
-- Cola B and Cola C. These areas are simple polygons (but not
-- rectangles).

INSERT INTO cola_markets_cs VALUES(
2,
"cola_b”,
SDO_GEOMETRY (
2003, -- two-dimensional polygon
8307,
NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
SDO_ORDINATE_ARRAY(5,1, 8,1, 8,6, 5,7, 5,1)
)
);

INSERT INTO cola_markets_cs VALUES(
3,
"cola_c”,
SDO_GEOMETRY (
2003, -- two-dimensional polygon
8307,
NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1), --one polygon (exterior polygon ring)
SDO_ORDINATE_ARRAY(3,3, 6,3, 6,5, 4,5, 3,3)
)
);

-- Insert a rectangle (here, square) instead of a circle as in the original,
-- because arcs are not supported with geodetic coordinate systems.
INSERT INTO cola_markets_cs VALUES(
4,
"cola_d”,
SDO_GEOMETRY (
2003, -- two-dimensional polygon
8307, -- SRID for "Longitude / Latitude (WGS 84)" coordinate system
NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1), -- polygon
SDO_ORDINATE_ARRAY(10,9, 11,9, 11,10, 10,10, 10,9) -- All vertices must
-- be defined for rectangle with geodetic data.

-- Update the USER_SDO_GEOM_METADATA view. This is required
-- before the spatial index can be created. Do this only once for each
-- layer (table-column combination; here: cola_markets_cs and shape).

INSERT INTO user_sdo_geom_metadata
(TABLE_NAME,
COLUMN_NAME,
DIMINFO,
SRID)

Coordinate Systems (Spatial Reference Systems) 6-77

Example of Coordinate System Transformation

VALUES (

"cola_markets_cs”®,

"shape”,

SDO_DIM_ARRAY(
SDO_DIM_ELEMENT("Longitude®, -180, 180, 10), -- 10 meters tolerance
SDO_DIM_ELEMENT("Latitude®, -90, 90, 10) -- 10 meters tolerance
),

8307 -- SRID for "Longitude / Latitude (WGS 84)" coordinate system

CREATE INDEX cola_spatial_idx_cs
ON cola_markets_cs(shape)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

-- Return the transformation of cola_c using to_srid 8199
-- ("Longitude / Latitude (Arc 1950)")
SELECT c.name, SDO_CS.TRANSFORM(c.shape, 8199)

FROM cola_markets_cs ¢ WHERE c.name = "cola_c";

-- Same as preceding, but using to_srname parameter.
SELECT c.name, SDO_CS.TRANSFORM(c.shape, "Longitude / Latitude (Arc 1950)")
FROM cola_markets_cs ¢ WHERE c.name = "cola_c”;

-- Transform the entire SHAPE layer and put results in the table
-- named cola_markets_cs_8199, which the procedure will create.
CALL SDO_CS.TRANSFORM_LAYER("COLA_MARKETS CS*","SHAPE", "COLA_MARKETS_CS_8199",8199);

-- Select all from the old (existing) table.
SELECT * from cola_markets_cs;

-- Select all from the new (layer transformed) table.
SELECT * from cola_markets_cs_8199;

-- Show metadata for the new (layer transformed) table.
DESCRIBE cola_markets_cs_8199;

-- Use a geodetic MBR with SDO_FILTER.
SELECT c.name FROM cola_markets_cs ¢ WHERE
SDO_FILTER(c.shape,
SDO_GEOMETRY (
2003,
8307, -- SRID for WGS 84 longitude/latitude
NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),
SDO_ORDINATE_ARRAY(6,5, 10,10))
) = "TRUE";

Example 6-18 (page 6-79) shows the output of the SELECT statements in

Example 6-17 (page 6-76). Notice the slight differences between the coordinates in the
original geometries (SRID 8307) and the transformed coordinates (SRID 8199) -- for
example, (1,1,5,1,5,7,1,7,1, 1) and (1.00078604, 1.00274579, 5.00069354, 1.00274488,
5.0006986, 7.00323528, 1.00079179, 7.00324162, 1.00078604, 1.00274579) for cola_a.

6-78 Developer's Guide

Example of Coordinate System Transformation

Example 6-18 Output of SELECT Statements in Coordinate System Transformation
Example

SQL> -- Return the transformation of cola_c using to_srid 8199
SQL> -- ("Longitude / Latitude (Arc 1950)%)
SQL> SELECT c.name, SDO_CS.TRANSFORM(c.shape, 8199)

2 FROM cola_markets_cs ¢ WHERE c.name = "cola_c";

cola_c

SDO_GEOMETRY (2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074114, 3.00291482, 6.00067068, 3.00291287, 6.0006723, 5.00307625, 4.0007
1961, 5.00307838, 3.00074114, 3.00291482))

SQL>

SQL> -- Same as preceding, but using to_srname parameter.

SQL> SELECT c.name, SDO_CS.TRANSFORM(c.shape, "Longitude / Latitude (Arc 1950)")
2 FROM cola_markets_cs ¢ WHERE c.name = "cola_c”;

cola_c

SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074114, 3.00291482, 6.00067068, 3.00291287, 6.0006723, 5.00307625, 4.0007
1961, 5.00307838, 3.00074114, 3.00291482))

SQL>

SQL> -- Transform the entire SHAPE layer and put results in the table

SQL> -- named cola_markets_cs_8199, which the procedure will create.

SQL> CALL SDO_CS.TRANSFORM_LAYER("COLA_MARKETS_CS*®, "SHAPE", "COLA_MARKETS_CS 8199",
8199);

Call completed.

SQL>

SQL> -- Select all from the old (existing) table.
SQL> SELECT * from cola_markets_cs;

MKT_ID NAME

1 cola_a
SDO_GEOMETRY (2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(1, 1, 5,1,5,7,1, 7,1, 1))

2 cola b
SDO_GEOMETRY (2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(, 1, 8,1, 8,6, 5, 7, 5, 1))

3 cola_c

MKT_ID NAME

Coordinate Systems (Spatial Reference Systems) 6-79

Example of Coordinate System Transformation

SDO_GEOMETRY (2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3, 3, 6, 3, 6, 5, 4, 5, 3, 3))

4 cola_d
SDO_GEOMETRY (2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(10, 9, 11, 9, 11, 10, 10, 10, 10, 9))

SQL>
SQL> -- Select all from the new (layer transformed) table.
SQL> SELECT * from cola_markets_cs_8199;

SDO_ROWID

AAABZZAABAAAOSBAAA

SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(1.00078604, 1.00274579, 5.00069354, 1.00274488, 5.0006986, 7.00323528, 1.0007
9179, 7.00324162, 1.00078604, 1.00274579))

AAABZZAABAAAOAGAAB

SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5.00069354, 1.00274488, 8.00062191, 1.00274427, 8.00062522, 6.00315345, 5.000
6986, 7.00323528, 5.00069354, 1.00274488))

SDO_ROWID

AAABZZAABAAAORBAAC

SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074114, 3.00291482, 6.00067068, 3.00291287, 6.0006723, 5.00307625, 4.0007
1961, 5.00307838, 3.00074114, 3.00291482))

AAABZZAABAAAORBAAD
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(10.0005802, 9.00337775, 11.0005553, 9.00337621, 11.0005569, 10.0034478, 10.00

SDO_ROWID

05819, 10.0034495, 10.0005802, 9.00337775))

SQL>
SQL> -- Show metadata for the new (layer transformed) table.
SQL> DESCRIBE cola_markets_cs_8199;

Name Null? Type

SDO_ROWID ROWID

GEOMETRY SDO_GEOMETRY
SQL>

SQL> -- Use a geodetic MBR with SDO_FILTER

SQL> SELECT c.name FROM cola_markets_cs ¢ WHERE
2 SDO_FILTER(c.shape,
3 SDO_GEOMETRY (
4 2003,

6-80 Developer's Guide

Example of Coordinate System Transformation

5 8307, -- SRID for WGS 84 longitude/latitude
6 NULL,
7 SDO_ELEM_INFO_ARRAY(1,1003,3),
8 SDO_ORDINATE_ARRAY(6,5, 10,10))
9) = "TRUE";
NAME
cola c
cola b
cola_d

Coordinate Systems (Spatial Reference Systems) 6-81

Example of Coordinate System Transformation

6-82 Developer's Guide

v

Linear Referencing System

Linear referencing is a natural and convenient means to associate attributes or events
to locations or portions of a linear feature. It has been widely used in transportation
applications (such as for highways, railroads, and transit routes) and utilities
applications (such as for gas and oil pipelines). The major advantage of linear
referencing is its capability of locating attributes and events along a linear feature with
only one parameter (usually known as measure) instead of two (such as longitude/
latitude or x/y in Cartesian space). Sections of a linear feature can be referenced and
created dynamically by indicating the start and end locations along the feature
without explicitly storing them.

The linear referencing system (LRS) application programming interface (API) in
Oracle Spatial and Graph provides server-side LRS capabilities at the cartographic
level. The linear measure information is directly integrated into the Oracle Spatial and
Graph geometry structure. The Oracle Spatial and Graph LRS API provides support
for dynamic segmentation, and it serves as a groundwork for third-party or middle-
tier application development for virtually any linear referencing methods and models
in any coordinate system.

For an example of LRS, see Example of LRS Functions (page 7-15). However, you
may want to read the rest of this chapter first, to understand the concepts that the
example illustrates.

For reference information about LRS functions and procedures, see SDO_LRS Package
(Linear Referencing System) (page 24-1).

This chapter contains the following major sections:
® Terms and Concepts (page 7-1)

® LRS Data Model (page 7-6)

¢ Indexing of LRS Data (page 7-7)

¢ 3D Formats of LRS Functions (page 7-7)

® LRS Operations (page 7-8)

® Tolerance Values with LRS Functions (page 7-15)

¢ Example of LRS Functions (page 7-15)

7.1 Terms and Concepts

This section explains important terms and concepts related to linear referencing
support in Oracle Spatial and Graph.

Linear Referencing System 7-1

Terms and Concepts

7.1.1 Geometric Segments (LRS Segments)

Geometric segments are basic LRS elements in Oracle Spatial and Graph. A geometric
segment can be any of the following:

¢ Line string: an ordered, nonbranching, and continuous geometry (for example, a
simple road)

¢ Multiline string: nonconnected line strings (for example, a highway with a gap
caused by a lake or a bypass road)

¢ Polygon (for example, a racetrack or a scenic tour route that starts and ends at the
same point)

A geometric segment must contain at least start and end measures for its start and end
points. Measures of points of interest (such as highway exits) on the geometric
segments can also be assigned. These measures are either assigned by users or derived
from existing geometric segments. Figure 7-1 (page 7-2) shows a geometric segment
with four line segments and one arc. Points on the geometric segment are represented
by triplets (x, y, m), where x and y describe the location and m denotes the measure
(with each measure value underlined in Figure 7-1 (page 7-2)).

Figure 7-1 Geometric Segment

Line Segments
End Point

(55, 15, 60.950)

Start Point
(5,10, 0) (30, 10, 26.991)
(50, 10, 53.879)
4
/
/
S e - /
~ < _ (15,511.180) (40, 5, 38.171) e

-~ -
T

Segment Direction

7.1.2 Shape Points

Shape points are points that are specified when an LRS segment is constructed, and
that are assigned measure information. In Oracle Spatial and Graph, a line segment is
represented by its start and end points, and an arc is represented by three points: start,
middle, and end points of the arc. You must specify these points as shape points, but
you can also specify other points as shape points if you need measure information
stored for these points (for example, an exit in the middle of a straight part of the
highway).

Thus, shape points can serve one or both of the following purposes: to indicate the
direction of the segment (for example, a turn or curve), and to identify a point of
interest for which measure information is to be stored.

Shape points might not directly relate to mileposts or reference posts in LRS; they are
used as internal reference points. The measure information of shape points is
automatically populated when you define the LRS segment using the

7-2 Developer's Guide

Terms and Concepts

SDO_LRS.DEFINE_GEOM_SEGMENT (page 24-18) procedure, which is described in
SDO_LRS Package (Linear Referencing System) (page 24-1).

7.1.3 Direction of a Geometric Segment

The direction of a geometric segment is indicated from the start point of the geometric
segment to the end point. The direction is determined by the order of the vertices
(from start point to end point) in the geometry definition. Measures of points on a
geometric segment always either increase or decrease along the direction of the
geometric segment.

7.1.4 Measure (Linear Measure)

7.1.5 Offset

The measure of a point along a geometric segment is the linear distance (in the
measure dimension) to the point measured from the start point (for increasing values)
or end point (for decreasing values) of the geometric segment. The measure
information does not necessarily have to be of the same scale as the distance.
However, the linear mapping relationship between measure and distance is always
preserved.

Some LRS functions use offset instead of measure to represent measured distance along
linear features. Although some other linear referencing systems might use offset to
mean what the Oracle Spatial and Graph LRS refers to as measure, offset has a
different meaning in Oracle Spatial and Graph from measure, as explained in Offset

(page 7-3).

The offset of a point along a geometric segment is the perpendicular distance between
the point and the geometric segment. Offsets are positive if the points are on the left
side along the segment direction and are negative if they are on the right side. Points
are on a geometric segment if their offsets to the segment are zero.

The unit of measurement for an offset is the same as for the coordinate system
associated with the geometric segment. For geodetic data, the default unit of
measurement is meters.

Figure 7-2 (page 7-3) shows how a point can be located along a geometric segment
with measure and offset information. By assigning an offset together with a measure,
it is possible to locate not only points that are on the geometric segment, but also
points that are perpendicular to the geometric segment.

Figure 7-2 Describing a Point Along a Segment with a Measure and an Offset

Segment Direction

Start Point
M

Positive Offset
End Point

s M
T Negative Offset
Measure \
hd Offset Value

Point to Be Located

Linear Referencing System 7-3

Terms and Concepts

7.1.6 Measure Populating

Any unassigned measures of a geometric segment are automatically populated based
upon their distance distribution. This is done before any LRS operations for geometric
segments with unknown measures (NULL in Oracle Spatial and Graph). The resulting
geometric segments from any LRS operations return the measure information
associated with geometric segments. The measure of a point on the geometric segment
can be obtained based upon a linear mapping relationship between its previous and
next known measures or locations. See the algorithm representation in Figure 7-3
(page 7-4) and the example in Figure 7-4 (page 7-4).

Figure 7-3 Measures, Distances, and Their Mapping Relationship

Mprey = 20 My = 60 Mnext = 20
© 0 Measure
Pprev(o’ 0) P(50, 0) Phext(100, 0)
< > Distance
PprevP =50
Ppreanext =100
P P
M, = prev
pm ——W -M)+ M
Ppreanext next " V'prev prev

Figure 7-4 Measure Populating of a Geometric Segment

0 60 90 120

Before Measure Populating

Assigned
0 60 90 120 Measures
o O
15 30 45 70 80 100 110 Populated
Measures

After Measure Populating

Measures are evenly spaced between assigned measures. However, the assigned
measures for points of interest on a geometric segment do not need to be evenly

spaced. This could eliminate the problem of error accumulation and account for

inaccuracy of data source.

Moreover, the assigned measures do not even need to reflect actual distances (for
example, they can reflect estimated driving time); they can be any valid values within
the measure range. Figure 7-5 (page 7-4) shows the measure population that results
when assigned measure values are not proportional and reflect widely varying gaps.

Figure 7-5 Measure Populating with Disproportional Assignhed Measures

0 88 97 100
O O

Before Measure Populating

Assigned
0 88 97 100 Measures
o o
22 44 66 91 94 98 99 Populated
After Measure Populating Measures

7-4 Developer's Guide

Terms and Concepts

In all cases, measure populating is done in an incremental fashion along the segment
direction. This improves the performance of current and subsequent LRS operations.

7.1.7 Measure Range of a Geometric Segment

The start and end measures of a geometric segment define the linear measure range of
the geometric segment. Any valid LRS measures of a geometric segment must fall
within its linear measure range.

7.1.8 Projection

The projection of a point along a geometric segment is the point on the geometric
segment with the minimum distance to the specified point. The measure information
of the resulting point is also returned in the point geometry.

7.1.9 LRS Point

LRS points are points with linear measure information along a geometric segment. A
valid LRS point is a point geometry with measure information.

All LRS point data must be stored in the SDO_ELEM_INFO_ARRAY and
SDO_ORDINATE_ARRAY, and cannot be stored in the SDO_POINT field in the
SDO_GEOMETRY definition of the point.

7.1.10 Linear Features

Linear features are any spatial objects that can be treated as a logical set of linear
segments. Examples of linear features are highways in transportation applications and
pipelines in utility industry applications. The relationship of linear features, geometric
segments, and LRS points is shown in Figure 7-6 (page 7-5), where a single linear
feature consists of three geometric segments, and three LRS points are shown on the
first segment.

Figure 7-6 Linear Feature, Geometric Segments, and LRS Points

Linear Feature

I |
(I >
I LRS Point : b -
" s M1 2 ol 1 M3
Mg g3 M
\/’I ‘el ! - >
N = === | L -~ |
IS~ 2 _ - ~ | Direction I I Direction I
: Direction | [I
P > < U l
Geometric Segment 1 Geometric Segment 2 Geometric Segment 3

7.1.11 Measures with Multiline Strings and Polygons with Holes

With a multiline string or polygon with hole LRS geometry, the
SDO_LRS.DEFINE_GEOM_SEGMENT (page 24-18) procedure and
SDO_LRS.CONVERT_TO_LRS_GEOM (page 24-11) function by default assign the
same measure value to the end point of one segment and the start point (separated by
a gap) of the next segment, although you can later assign different measure values to
points. Thus, by default there will duplicate measure values in different segments for
such geometries. In such cases, LRS subprograms use the first point with a specified
measure, except when doing so would result in an invalid geometry.

Linear Referencing System 7-5

LRS Data Model

For example, assume that in a multiline string LRS geometry, the first segment is from
measures 0 through 100 and the second segment is from measures 100 through 150. If
you use the SDO_LRS.LOCATE_PT (page 24-40) function to find the point at measure
100, the returned point will be at measure 100 in the first segment. If you use the
SDO_LRS.CLIP_GEOM_SEGMENT (page 24-5), SDO_LRS.DYNAMIC_SEGMENT
(page 24-20), or SDO_LRS.OFFSET_GEOM_SEGMENT (page 24-45) function to return
the geometry object between measures 75 and 125, the result is a multiline string
geometry consisting of two segments. If you use the same function to return the
geometry object between measures 100 and 125, the point at measure 100 in the first
segment is ignored, and the result is a line string along the second segment from
measures 100 through 125.

7.2 LRS Data Model

The Oracle Spatial and Graph LRS data model incorporates measure information into
its geometry representation at the point level. The measure information is directly
integrated into the Oracle Spatial and Graph model. To accomplish this, an additional
measure dimension must be added to the Oracle Spatial and Graph metadata.

Oracle Spatial and Graph LRS support affects the spatial metadata and data (the
geometries). Example 7-1 (page 7-6) shows how a measure dimension can be added
to two-dimensional geometries in the spatial metadata. The measure dimension must
be the last element of the SDO_DIM_ARRAY in a spatial object definition (shown in
bold in Example 7-1 (page 7-6)).

Figure 7-7 Creating a Geometric Segment

Start Measure End Measure
(5,10,0) (35, 10, NULL) (55, 10, 100)

O
Start Point End Point

(20, 5, NULL)

In Figure 7-7 (page 7-6), the geometric segment has the following definition (with
measure values underlined):

SDO_GEOMETRY (3302, NULL, NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),
SDO_ORDINATE_ARRAY(5,10,0, 20,5,NULL, 35,10,NULL, 55,10,100))

Whenever a geometric segment is defined, its start and end measures must be defined
or derived from some existing geometric segment. The unsigned measures of all shape
points on a geometric segment will be automatically populated.

The SDO_GTYPE of any point geometry used with an LRS function must be 3301.
Example 7-1 Including LRS Measure Dimension in Spatial Metadata

INSERT INTO user_sdo_geom_metadata
(TABLE_NAME,
COLUMN_NAME,
DIMINFO,
SRID)
VALUES(
*LRS_ROUTES",
"GEOMETRY ",
SDO_DIM_ARRAY (
SDO_DIM_ELEMENT(*X*, 0, 20, 0.005),
SDO_DIM_ELEMENT(*Y*, 0, 20, 0.005),

7-6 Developer's Guide

Indexing of LRS Data

SDO DI M ELEMENT(' M, 0, 100, 0.005)),
NULL);

After adding the new measure dimension, geometries with measure information such
as geometric segments and LRS points can be represented. An example of creating a
geometric segment with three line segments is shown in Figure 7-7 (page 7-6).

7.3 Indexing of LRS Data

If LRS data has four dimensions (three plus the M dimension) and if you need to index
all three non-measure dimensions, you must use a spatial R-tree index to index the
data, and you must specify PARAMETERS('sdo_indx_dims=3") in the CREATE
INDEX (page 17-7) statement to ensure that the first three dimensions are indexed.
Note, however, that if you specify an sdo_indx_dims value of 3 or higher, only those
operators listed in Three-Dimensional Spatial Objects (page 1-16) as considering all
three dimensions can be used on the indexed geometries; the other operators
described in Spatial Operators (page 18-1) cannot be used. (The default value for the
sdo_indx_dims keyword is 2, which would cause only the first two dimensions to
be indexed.) For example, if the dimensions are X, Y, Z, and M, specify
sdo_indx_dims=3 to index the X, Y, and Z dimensions, but not the measure (M)
dimension. Do not include the measure dimension in a spatial index, because this
causes additional processing overhead and produces no benefit.

Information about the CREATE INDEX (page 17-7) statement and its parameters and
keywords is in SQL Statements for Indexing Spatial Data (page 17-1).

7.4 3D Formats of LRS Functions

Most LRS functions have formats that end in _3D: for example,
DEFINE_GEOM_SEGMENT_3D, CLIP_GEOM_SEGMENT_3D,
FIND_MEASURE_3D, and LOCATE_PT_3D. If a function has a 3D format, it is
identified in the Usage Notes for the function in SDO_LRS Package (Linear
Referencing System) (page 24-1).

The 3D formats are supported only for line string and multiline string geometries. The
3D formats should be used only when the geometry object has four dimensions and
the fourth dimension is the measure (for example, X, Y, Z, and M), and only when you
want the function to consider the first three dimensions (for example, X, Y, and Z). If
the standard format of a function (that is, without the _3D) is used on a geometry with
four dimensions, the function considers only the first two dimensions (for example, X
and Y).

For example, the following format considers the X, Y, and Z dimensions of the
specified GEOM object in performing the clip operation:

SELECT SDO_LRS.CLIP_GEOM_SEGMENT_3D(a.geom, m.diminfo, 5, 10)
FROM routes r, user_sdo_geom metadata m
WHERE m.table_name = "ROUTES®" AND m.column_name = "GEOM"
AND r.route_id = 1;

However, the following format considers only the X and Y dimensions, and ignores
the Z dimension, of the specified GEOM object in performing the clip operation:

SELECT SDO_LRS.CLIP_GEOM_SEGMENT(a.geom, m.diminfo, 5, 10)
FROM routes r, user_sdo_geom metadata m
WHERE m.table_name = "ROUTES®" AND m.column_name = "GEOM"
AND r.route_id = 1;

Linear Referencing System 7-7

LRS Operations

The parameters for the standard and 3D formats of any function are the same, and the
Usage Notes apply to both formats.

The 3D formats are not supported with the following:
¢ Geodetic data

* Polygons, arcs, or circles

7.5 LRS Operations

This section describes several linear referencing operations supported by the Oracle
Spatial and Graph LRS APL

7.5.1 Defining a Geometric Segment

There are two ways to create a geometric segment with measure information:
e Construct a geometric segment and assign measures explicitly.

¢ Define a geometric segment with specified start and end, and any other measures,
in an ascending or descending order. Measures of shape points with unknown
(unassigned) measures (null values) in the geometric segment will be automatically
populated according to their locations and distance distribution.

Figure 7-8 (page 7-8) shows different ways of defining a geometric segment:

Figure 7-8 Defining a Geometric Segment

(5,10, NULL) (85, 10, NULL) (55, 10, NULL)
Start Point Eand Point
(20,5, NULL)
a. Geometric Segment with No Measures Assigned
Start Measure End Measure
Start Point End Point
(20, 5, NULL)

b. Geometric Segment with Start and End Measures

(5,10, 0) (35, 10, 61.257) (55, 10, 100)
0
Start Point End Point

(20, 5, 30.628)

c. Populating Measures of Shape Points in a Geometric Segment

An LRS segment must be defined (or must already exist) before any LRS operations
can proceed. That is, the start, end, and any other assigned measures must be present
to derive the location from a specified measure. The measure information of
intermediate shape points will automatically be populated if measure values are not
assigned.

7-8 Developer's Guide

LRS Operations

7.5.2 Redefining a Geometric Segment

You can redefine a geometric segment to replace the existing measures of all shape
points between the start and end point with automatically calculated measures.
Redefining a segment can be useful if errors have been made in one or more explicit
measure assignments, and you want to start over with proportionally assigned
measures.

Figure 7-9 (page 7-9) shows the redefinition of a segment where the existing (before)
assigned measure values are not proportional and reflect widely varying gaps.

Figure 7-9 Redefining a Geometric Segment

Assigned

0 88 97 100 Measures
o e}

22 44 66 91 94 98 99 Populated

Before Segment Redefinition Measures

Assigned

0 100 Measures
o o

10 20 30 40 50 60 70 80 90 Populated

Measures

After Segment Redefinition

After the segment redefinition in Figure 7-9 (page 7-9), the populated measures reflect
proportional distances along the segment.

7.5.3 Clipping a Geometric Segment

You can clip a geometric segment to create a new geometric segment out of an existing
geometric segment, as shown in Figure 7-10 (page 7-9), part a.

Figure 7-10 Clipping, Splitting, and Concatenating Geometric Segments

| |
.| __Segment Direction | -
Start Point | End Point Start Poin Segment Direction
IS E— s End Point

M
1 C| e
a. Segment Clipping

§ —_

! > SegmemT ——»

b. Segment Splitting Segment 2
——
Segment 2

c. Segment Concatenation

In Figure 7-10 (page 7-9), part a, a segment is created from part of a larger segment.
The new segment has its own start and end points, and the direction is the same as in
the original larger segment.

Linear Referencing System 7-9

LRS Operations

7.5.4 Splitting a Geometric Segment

You can create two new geometric segments by splitting a geometric segment, as
shown in Figure 7-10 (page 7-9), part b. The direction of each new segment is the same
as in the original segment.

Note:

In Figure 7-10 (page 7-9) and several figures that follow, small gaps between
segments are used in illustrations of segment splitting and concatenation.
Each gap simply reinforces the fact that two different segments are involved.
However, the two segments (such as segment 1 and segment 2 in Figure 7-10
(page 7-9), parts b and c) are actually connected. The tolerance (see Tolerance
(page 1-6)) is considered in determining whether or not segments are
connected.

7.5.5 Concatenating Geometric Segments

You can create a new geometric segment by concatenating two geometric segments, as
shown in Figure 7-10 (page 7-9), part c. The geometric segments do not need to be
spatially connected, although they are connected in the illustration in Figure 7-10
(page 7-9), part c. (If the segments are not spatially connected, the concatenated result
is a multiline string.) The measures of the second geometric segment are shifted so that
the end measure of the first segment is the same as the start measure of the second
segment. The direction of the segment resulting from the concatenation is the same as
in the two original segments.

Measure assignments for the clipping, splitting, and concatenating operations in
Figure 7-10 (page 7-9) are shown in Figure 7-11 (page 7-10). Measure information and
segment direction are preserved in a consistent manner. The assignment is done
automatically when the operations have completed.

Figure 7-11 Measure Assignment in Geometric Segment Operations

M0 : Mo M I25 M I70
I | |
M=0 | | |

'\@’ M=100 : M=100
Segment 1 =50 !

M=2 |
Segment 2 =100 !

M=70

a. Segment Splitting b. Segment Clipping

Second Segment Measure
M=0 M=0 Shifted By 20

w
Segment 1
M=3 e
Segment 2 M=80 M=100

Continuous Measures for Segment Concatenation
c. Segment Concatenation

7-10 Developer's Guide

LRS Operations

The direction of the geometric segment resulting from concatenation is always the
direction of the first segment (geom_segmentl in the call to the
SDO_LRS.CONCATENATE_GEOM_SEGMENTS (page 24-6) function), as shown in
Figure 7-12 (page 7-11).

Figure 7-12 Segment Direction with Concatenation

Directions of Segments Concatenate Direction of Resulting Segment
(Always Same as First Segment)
> > >
T
—_— > <+— >
e
—_—_ - P
_——— .>

geom_segment1i geom_segment2

In addition to explicitly concatenating two connected segments using the
SDO_LRS.CONCATENATE_GEOM_SEGMENTS (page 24-6) function, you can
perform aggregate concatenation: that is, you can concatenate all connected geometric
segments in a column (layer) using the SDO_AGGR_LRS_CONCAT (page 19-4)
spatial aggregate function. (See the description and example of the
SDO_AGGR_LRS_CONCAT (page 19-4) spatial aggregate function in Spatial
Aggregate Functions (page 19-1).)

7.5.6 Scaling a Geometric Segment

You can create a new geometric segment by performing a linear scaling operation on a
geometric segment. Figure 7-13 (page 7-11) shows the mapping relationship for
geometric segment scaling.

Figure 7-13 Scaling a Geometric Segment

—»Mshiﬂ Shift Measure

N (New Start Measure)
Segment Direction M
N s M (New End Measure)
M Staw ©
e — End Point

(|e _ M‘s) '
M -Mg) | *Ms*+ Mshit

f—Scaling Factor

Linear Mapping Relationship

M’ = (M - M) x

In general, scaling a geometric segment only involves rearranging measures of the
newly created geometric segment. However, if the scaling factor is negative, the order
of the shape points needs to be reversed so that measures will increase along the
geometric segment's direction (which is defined by the order of the shape points).

A scale operation can perform any combination of the following operations:

¢ Translating (shifting) measure information. (For example, add the same value to
Ms and Me to get M's and M'e.)

Linear Referencing System 7-11

LRS Operations

* Reversing measure information. (Let M's = Me, M'e = Ms, and Mshift = 0.)

¢ Performing simple scaling of measure information. (Let Mshift = 0.)

For examples of these operations, see the Usage Notes and Examples for
theSDO_LRS.SCALE_GEOM_SEGMENT (page 24-56),
SDO_LRS.TRANSLATE_MEASURE (page 24-62), SDO_LRS.REVERSE_GEOMETRY
(page 24-53), and SDO_LRS.REDEFINE_GEOM_SEGMENT (page 24-50) subprograms
in SDO_LRS Package (Linear Referencing System) (page 24-1).

7.5.7 Offsetting a Geometric Segment

You can create a new geometric segment by performing an offsetting operation on a
geometric segment. Figure 7-14 (page 7-12) shows the mapping relationship for
geometric segment offsetting.

Figure 7-14 Offsetting a Geometric Segment

Direction of the Segments

»
>

Resulting Segment

O O
| Positive Offset |
(for example, 5)

Start Measure| Negative Offset End Measure
(for example, -5)

In the offsetting operation shown in Figure 7-14 (page 7-12), the resulting geometric
segment is offset by 5 units from the specified start and end measures of the original
segment.

For more information, see the Usage Notes and Examples for the
SDO_LRS.OFFSET_GEOM_SEGMENT (page 24-45) function in SDO_LRS Package
(Linear Referencing System) (page 24-1).

7.5.8 Locating a Point on a Geometric Segment

You can find the position of a point described by a measure and an offset on a
geometric segment (see Figure 7-15 (page 7-12)).

Figure 7-15 Locating a Point Along a Segment with a Measure and an Offset

Segment Direction
Start Point Projectigl Point

Positive Offset
End Point

Negative Offset

Measure \
h4 Offset (Positive if to left along segment direction;

Point to Be Located negative if to right along segment direction.)

There is always a unique location with a specific measure on a geometric segment.
Ambiguity arises when offsets are given and the points described by the measures fall
on shape points of the geometric segment (see Figure 7-16 (page 7-13)).

7-12 Developer's Guide

LRS Operations

Figure 7-16 Ambiguity in Location Referencing with Offsets

Segment Direction (35, 10, 61.257) (55, 10, 100)

0 (20, 5, 30.628)

- =

o
P One-to-One Mapping
(35,10, 61.257) (55, 10, 100)
—)

Many-to-One Mapping

Q
Middle Point—"" Offset Arc

As shown in Figure 7-16 (page 7-13), an offset arc of a shape point on a geometric
segment is an arc on which all points have the same minimum distance to the shape
point. As a result, all points on the offset arc are represented by the same (measure,
offset) pair. To resolve this one-to-many mapping problem, the middle point on the
offset arc is returned.

7.5.9 Projecting a Point onto a Geometric Segment

You can find the projection point of a point with respect to a geometric segment. The
point to be projected can be on or off the segment. If the point is on the segment, the
point and its projection point are the same.

Projection is a reverse operation of the point-locating operation shown in Figure 7-15
(page 7-12). Similar to a point-locating operation, all points on the offset arc of a shape
point will have the same projection point (that is, the shape point itself), measure, and
offset (see Figure 7-16 (page 7-13)). If there are multiple projection points for a point,
the first one from the start point is returned (Projection Point 1 in both illustrations in
Figure 7-17 (page 7-13)).

Figure 7-17 Multiple Projection Points

Projection Point 11 --

\A : Segment ~ o ~ Segment
I Direction projection Point * Direction
1 1
\
: \/ \
P _ . >~ Projection Point 2 \j
Point to Be Projected Point to Be Projected

7.5.10 Converting LRS Geometries

You can convert geometries from standard line string format to LRS format, and the
reverse. The main use of conversion functions will probably occur if you have a large
amount of existing line string data, in which case conversion is a convenient

Linear Referencing System 7-13

LRS Operations

alternative to creating all of the LRS segments manually. However, if you need to
convert LRS segments to standard line strings for certain applications, that capability
is provided also.

Functions are provided to convert:

¢ Individual line strings or points

For conversion from standard format to LRS format, a measure dimension (named
M by default) is added, and measure information is provided for each point. For
conversion from LRS format to standard format, the measure dimension and
information are removed. In both cases, the dimensional information (DIMINFO)
metadata in the USER_SDO_GEOM_METADATA view is not affected.

* Layers (all geometries in a column)

For conversion from standard format to LRS format, a measure dimension (named
M by default) is added, but no measure information is provided for each point. For
conversion from LRS format to standard format, the measure dimension and
information are removed. In both cases, the dimensional information (DIMINFO)
metadata in the USER_SDO_GEOM_METADATA view is modified as needed.

¢ Dimensional information (DIMINFO)

The dimensional information (DIMINFO) metadata in the
USER_SDO_GEOM_METADATA view is modified as needed. For example,
converting a standard dimensional array with X and Y dimensions
(SDO_DIM_ELEMENT) to an LRS dimensional array causes an M dimension
(SDO_DIM_ELEMENT) to be added.

Figure 7-18 (page 7-14) shows the addition of measure information when a standard
line string is converted to an LRS line string (using the
SDO_LRS.CONVERT_TO_LRS_GEOM (page 24-11) function). The measure
dimension values are underlined in Figure 7-18 (page 7-14).

Figure 7-18 Conversion from Standard to LRS Line String
Standard Line String

o O 0
(0, 0) (10, 0) (20, 0)

LRS Line String (After Conversion)

O O
(0,0,00 (10,0,10) (20,0, 20)

For conversions of point geometries, the SDO_POINT attribute (described in
SDO_POINT (page 2-7)) in the returned geometry is affected as follows:

e If a standard point is converted to an LRS point, the SDO_POINT attribute
information in the input geometry is used to set the SDO_ELEM_INFO and
SDO_ORDINATES attributes (described in SDO_ELEM_INFO (page 2-8) and
SDO_ORDINATES (page 2-11)) in the resulting geometry, and the SDO_POINT
attribute in the resulting geometry is set to null.

e Ifan LRS point is converted to a standard point, the information in the
SDO_ELEM_INFO and SDO_ORDINATES attributes (described in
SDO_ELEM_INFO (page 2-8) and SDO_ORDINATES (page 2-11)) in the input
geometry is used to set the SDO_POINT attribute information in the resulting

7-14 Developer's Guide

Tolerance Values with LRS Functions

geometry, and the SDO_ELEM_INFO and SDO_ORDINATES attributes in the
resulting geometry are set to null.

The conversion functions are listed in Table 24-3 (page 24-4) in SDO_LRS Package
(Linear Referencing System) (page 24-1). See also the reference information in
SDO_LRS Package (Linear Referencing System) (page 24-1) about each conversion
function.

7.6 Tolerance Values with LRS Functions

Many LRS functions require that you specify a tolerance value or one or more
dimensional arrays. Thus, you can control whether to specify a single tolerance value
for all non-measure dimensions or to use the tolerance associated with each non-
measure dimension in the dimensional array or arrays. The tolerance is applied only
to the geometry portion of the data, not to the measure dimension. The tolerance value
for geodetic data is in meters, and for non-geodetic data it is in the unit of
measurement associated with the data. (For a detailed discussion of tolerance, see
Tolerance (page 1-6).)

Be sure that the tolerance value used is appropriate to the data and your purpose. If
the results of LRS functions seem imprecise or incorrect, you may need to specify a
smaller tolerance value.

For clip operations (see Clipping a Geometric Segment (page 7-9)) and offset
operations (see Offsetting a Geometric Segment (page 7-12)), if the returned segment
has any shape points within the tolerance value of the input geometric segment from
what would otherwise be the start point or end point of the returned segment, the
shape point is used as the start point or end point of the returned segment. This is
done to ensure that the resulting geometry does not contain any redundant vertices,
which would cause the geometry to be invalid. For example, assume that the tolerance
associated with the geometric segment (non-geodetic data) in Figure 7-19 (page 7-15)
is 0.5.

Figure 7-19 Segment for Clip Operation Affected by Tolerance
(5,10, 0) (35, 10, 61.257) (55, 10, 100)
O
Start Point End Point

(20, 5, 30.628)

If you request a clip operation to return the segment between measure values 0 (the
start point) and 61.5 in Figure 7-19 (page 7-15), and if the distance between the points
associated with measure values 61.5 and 61.257 is less than the 0.5 tolerance value, the
end point of the returned segment is (35, 10, 61.257).

7.7 Example of LRS Functions

This section presents a simplified example that uses LRS functions. It refers to
concepts that are explained in this chapter and uses functions documented in
SDO_LRS Package (Linear Referencing System) (page 24-1).

This example uses the road that is illustrated in Figure 7-20 (page 7-16).

Linear Referencing System 7-15

Example of LRS Functions

Figure 7-20 Simplified LRS Example: Highway

: Route1 (end)
1 Exit 6
»

1 A Segment
11 \ Direction
1 |V S S

Exit 5 I
9 |
8 |
7 |
6 |
5 Exit 2 Exit 3 Exif4 !
4 Py o |
- | I e ettt N
o| Exitli I
1] Route1 (start)

0 1 23456 7289101112 1314 15

In Figure 7-20 (page 7-16), the highway (Route 1) starts at point 2,2 and ends at point
5,14, follows the path shown, and has six entrance-exit points (Exit 1 through Exit 6).
For simplicity, each unit on the graph represents one unit of measure, and thus the
measure from start to end is 27 (the segment from Exit 5 to Exit 6 being the hypotenuse
of a 3-4-5 right triangle).

Each row in Table 7-1 (page 7-16) lists an actual highway-related feature and the LRS
feature that corresponds to it or that can be used to represent it.

Table 7-1 Highway Features and LRS Counterparts
- - - - |

Highway Feature LRS Feature

Named route, road, or street LRS segment, or linear feature (logical set
of segments)

Mile or kilometer marker Measure

Accident reporting and location tracking SDO_LRS.LOCATE_PT (page 24-40)
function

Construction zone (portion of a road) SDO_LRS.CLIP_GEOM_SEGMENT

(page 24-5) function

Road extension (adding at the beginning or end) SDO_LRS.CONCATENATE_GEOM_SEG
or combination (designating or renaming two MENTS (page 24-6) function
roads that meet as one road)

Road reconstruction or splitting (resulting in two SDO_LRS.SPLIT_GEOM_SEGMENT
named roads from one named road) (page 24-60) procedure

Finding the closest point on the road to a point SDO_LRS.PROJECT_PT (page 24-48)
off the road (such as a building) function

Guard rail or fence alongside a road SDO_LRS.OFFSET_GEOM_SEGMENT
(page 24-45) function

7-16 Developer's Guide

Example of LRS Functions

Example 7-2 (page 7-17) does the following:
¢ Creates a table to hold the segment depicted in Figure 7-20 (page 7-16)

¢ Inserts the definition of the highway depicted in Figure 7-20 (page 7-16) into the
table

¢ Inserts the necessary metadata into the USER_SDO_GEOM_METADATA view

* Uses PL/SQL and SQL statements to define the segment and perform operations
on it

Example 7-2 Simplified Example: Highway

-- Create a table for routes (highways).
CREATE TABLE Irs_routes (
route_id NUMBER PRIMARY KEY,
route_name VARCHAR2(32),
route_geometry SDO_GEOMETRY);

-- Populate table with just one route for this example.
INSERT INTO Irs_routes VALUES(

1,

"Routel”,

SDO_GEOMETRY (
3302, -- line string, 3 dimensions: X,Y,M
NULL,
NULL,

SDO_ELEM_INFO_ARRAY(1,2,1), -- one line string, straight segments
SDO_ORDINATE_ARRAY (

2,2,0, -- Start point - Exitl; O is measure from start.

2,4,2, -- Exit2; 2 is measure from start.

8,4,8, -- Exit3; 8 is measure from start.

12,4,12, -- Exit4; 12 is measure from start.

12,10,NULL, -- Not an exit; measure automatically calculated and filled.
8,10,22, -- Exit5; 22 is measure from start.

5,14,27) -- End point (Exit6); 27 is measure from start.

)
):

-- Update the spatial metadata.
INSERT INTO user_sdo_geom_metadata
(TABLE_NAME,
COLUMN_NAME,
DIMINFO,
SRID)

VALUES (

"Irs_routes”,

"route_geometry”,

SDO_DIM_ARRAY(-- 20X20 grid
SDO_DIM_ELEMENT("X", 0, 20, 0.005),
SDO_DIM_ELEMENT("Y", 0, 20, 0.005),
SDO_DIM_ELEMENT("M®, 0, 20, 0.005) -- Measure dimension

),
NULL ~ -- SRID

):

-- Create the spatial index.

CREATE INDEX Irs_routes_idx ON Irs_routes(route_geometry)
INDEXTYPE 1S MDSYS.SPATIAL_INDEX;

-- Test the LRS procedures.

Linear Referencing System 7-17

Example of LRS Functions

DECLARE

geom_segment SDO_GEOMETRY;
line_string SDO_GEOMETRY;
dim_array SDO_DIM_ARRAY;
result_geom_1 SDO_GEOMETRY;
result_geom 2 SDO_GEOMETRY;
result_geom_3 SDO_GEOMETRY;

BEGIN

SELECT a.route_geometry into geom_segment FROM Irs_routes a
WHERE a.route_name = "Routel”;
SELECT m.diminfo into dim_array from
user_sdo_geom_metadata m
WHERE m.table_name = "LRS_ROUTES" AND m.column_name = "ROUTE_GEOMETRY";

-- Define the LRS segment for Routel. This will populate any null measures.

-- No need to specify start and end measures, because they are already defined
-- in the geometry.

SDO_LRS.DEFINE_GEOM_SEGMENT (geom_segment, dim_array);

SELECT a.route_geometry INTO line_string FROM Irs_routes a
WHERE a.route_name = "Routel”;

-- Split Routel into two segments.
SDO_LRS.SPLIT_GEOM_SEGMENT(line_string,dim_array,5,result_geom_1,result_geom 2);

-- Concatenate the segments that were just split.
result_geom 3 := SDO_LRS.CONCATENATE_GEOM_SEGMENTS(result_geom_1, dim_array,
result_geom 2, dim_array);

-- Update and insert geometries into table, to display later.
UPDATE Irs_routes a SET a.route_geometry = geom_segment
WHERE a.route_id = 1;

INSERT INTO Irs_routes VALUES(
11,

"result_geom_1°,
result_geom 1

);
INSERT INTO Irs_routes VALUES(
12,

"result_geom_2°,
result_geom 2

);
INSERT INTO Irs_routes VALUES(
13,

"result_geom_3",
result_geom 3

);

END;
/

-- First, display the data in the LRS table.
SELECT route_id, route_name, route_geometry FROM Irs_routes;

-- Are result_geom 1 and result_geom2 connected?
SELECT SDO_LRS.CONNECTED_GEOM_SEGMENTS(a.route_geometry,
b.route_geometry, 0.005)
FROM Irs_routes a, Irs_routes b

7-18 Developer's Guide

Example of LRS Functions

WHERE a.route_id = 11 AND b.route_id = 12;

-- Is the Routel segment valid?
SELECT SDO_LRS.VALID_GEOM_SEGMENT(route_geometry)
FROM Irs_routes WHERE route_id = 1;

-- Is 50 a valid measure on Routel? (Should return FALSE; highest Routel measure is
27.)
SELECT SDO_LRS.VALID_MEASURE(route_geometry, 50)

FROM Irs_routes WHERE route_id = 1;

-- Is the Routel segment defined?
SELECT SDO_LRS.1S_GEOM_SEGMENT_DEFINED(route_geometry)
FROM Irs_routes WHERE route_id = 1;

-- How long is Routel?
SELECT SDO_LRS.GEOM_SEGMENT_LENGTH(route_geometry)
FROM Irs_routes WHERE route_id = 1;

-- What is the start measure of Routel?
SELECT SDO_LRS.GEOM_SEGMENT_START_MEASURE(route_geometry)
FROM Irs_routes WHERE route_id = 1;

-- What is the end measure of Routel?
SELECT SDO_LRS.GEOM_SEGMENT_END_MEASURE(route_geometry)
FROM Irs_routes WHERE route_id = 1;

-- What is the start point of Routel?
SELECT SDO_LRS.GEOM_SEGMENT_START PT(route_geometry)
FROM Irs_routes WHERE route_id = 1;

-- What is the end point of Routel?
SELECT SDO_LRS.GEOM_SEGMENT_END_PT(route_geometry)
FROM Irs_routes WHERE route_id = 1;

-- Translate (shift measure values) (+10).
-- First, display the original segment; then, translate.
SELECT a.route_geometry FROM Irs_routes a WHERE a.route_id = 1;
SELECT SDO_LRS.TRANSLATE_MEASURE(a.route_geometry, m.diminfo, 10)
FROM Irs_routes a, user_sdo_geom metadata m
WHERE m.table_name = "LRS_ROUTES" AND m.column_name = "ROUTE_GEOMETRY"
AND a.route_id = 1;

-- Redefine geometric segment to "convert™ miles to kilometers
DECLARE

geom_segment SDO_GEOMETRY;

dim_array SDO_DIM_ARRAY;

BEGIN

SELECT a.route_geometry into geom_segment FROM Irs_routes a
WHERE a.route_name = "Routel®;
SELECT m.diminfo into dim_array from
user_sdo_geom_metadata m
WHERE m.table_name = "LRS_ROUTES" AND m.column_name = "ROUTE_GEOMETRY";

-- "Convert" mile measures to kilometers (27 * 1.609 = 43.443).
SDO_LRS.REDEFINE_GEOM_SEGMENT (geom_segment,
dim_array,
0, -- Zero starting measure: LRS segment starts at start of route.
43.443); -- End of LRS segment. 27 miles = 43.443 kilometers.

Linear Referencing System 7-19

Example of LRS Functions

-- Update and insert geometries into table, to display later.
UPDATE Irs_routes a SET a.route_geometry = geom_segment
WHERE a.route_id = 1;

END;/
-- Display the redefined segment, with all measures "converted."
SELECT a.route_geometry FROM Irs_routes a WHERE a.route_id = 1;

-- Clip a piece of Routel.
SELECT SDO_LRS.CLIP_GEOM_SEGMENT(route_geometry, 5, 10)
FROM Irs_routes WHERE route_id = 1;

-- Point (9,3,NULL) is off the road; should return (9,4,9).
SELECT SDO_LRS.PROJECT_PT(route_geometry,
SDO_GEOMETRY (3301, NULL, NULL,
SDO_ELEM_INFO_ARRAY(1, 1, 1),
SDO_ORDINATE_ARRAY(9, 3, NULL)))
FROM Irs_routes WHERE route_id = 1;

-- Return the measure of the projected point.
SELECT SDO_LRS.GET_MEASURE(
SDO_LRS.PROJECT_PT(a.route_geometry, m.diminfo,
SDO_GEOMETRY (3301, NULL, NULL,
SDO_ELEM_INFO_ARRAY(1, 1, 1),
SDO_ORDINATE_ARRAY(9, 3, NULL))),
m.diminfo)
FROM Irs_routes a, user_sdo_geom metadata m
WHERE m.table_name = "LRS_ROUTES" AND m.column_name = "ROUTE_GEOMETRY"
AND a.route_id = 1;

-- Is point (9,3,NULL) a valid LRS point? (Should return TRUE.)
SELECT SDO_LRS.VALID_LRS_PT(
SDO_GEOMETRY (3301, NULL, NULL,
SDO_ELEM_INFO_ARRAY(1, 1, 1),
SDO_ORDINATE_ARRAY(9, 3, NULL)),
m.diminfo)
FROM Irs_routes a, user_sdo_geom metadata m
WHERE m.table_name = "LRS_ROUTES" AND m.column_name = "ROUTE_GEOMETRY"
AND a.route_id = 1;

-- Locate the point on Routel at measure 9, offset O.
SELECT SDO_LRS.LOCATE_PT(route_geometry, 9, 0)
FROM Irs_routes WHERE route_id = 1;

Example 7-3 (page 7-20) shows the output of the SELECT statements in Example 7-2
(page 7-17).
Example 7-3 Simplified Example: Output of SELECT Statements

SQL> -- First, display the data in the LRS table.
SQL> SELECT route_id, route_name, route_geometry FROM Irs_routes;

ROUTE_ID ROUTE_NAME

1 Routel
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2,2,0,2,4,2,8,4,8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

11 result_geom 1

7-20 Developer's Guide

Example of LRS Functions

SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2,2,0,2, 4,2, 5,4, 5)

12 result_geom 2

ROUTE_ID ROUTE_NAME

SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5,4,5,8, 4,8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

13 result_geom 3
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2,2,0,2,4,2,5,4,5,8, 4,8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27)
)

SQL> -- Are result_geom_1 and result_geom2 connected?

SQL> SELECT SDO_LRS.CONNECTED_GEOM_SEGMENTS(a.route_geometry,
2 b.route_geometry, 0.005)
3 FROM Irs_routes a, Irs_routes b
4 WHERE a.route_id = 11 AND b.route_id = 12;

SDO_LRS.CONNECTED_GEOM_SEGMENTS(A.ROUTE_GEOMETRY ,B.ROUTE_GEOMETRY,0.005)

SQL> -- Is the Routel segment valid?
SQL> SELECT SDO_LRS.VALID_GEOM_SEGMENT (route_geometry)
2 FROM Irs_routes WHERE route_id = 1;

SDO_LRS.VALID_GEOM_SEGMENT(ROUTE_GEOMETRY)

SQL> -- Is 50 a valid measure on Routel? (Should return FALSE; highest Routel
measure is 27.)
SQL> SELECT SDO_LRS.VALID_MEASURE(route_geometry, 50)

2 FROM Irs_routes WHERE route_id = 1;

SDO_LRS.VALID_MEASURE(ROUTE_GEOMETRY,50)

SQL> -- Is the Routel segment defined?
SQL> SELECT SDO_LRS.IS_GEOM_SEGMENT_DEFINED(route_geometry)
2 FROM Irs_routes WHERE route_id = 1;

SDO_LRS. IS_GEOM_SEGMENT_DEF INED(ROUTE_GEOMETRY)

SQL> -- How long is Routel?

SQL> SELECT SDO_LRS.GEOM_SEGMENT_LENGTH(route_geometry)
2 FROM Irs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_LENGTH(ROUTE_GEOMETRY)

SQL> -- What is the start measure of Routel?

Linear Referencing System 7-21

Example of LRS Functions

SQL> SELECT SDO_LRS.GEOM_SEGMENT_START MEASURE(route_geometry)
2 FROM Irs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_START_MEASURE (ROUTE_GEOMETRY)

SQL> -- What is the end measure of Routel?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_END_MEASURE(route_geometry)
2 FROM Irs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_END_MEASURE(ROUTE_GEOMETRY)

SQL> -- What is the start point of Routel?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_START_PT(route_geometry)
2 FROM Irs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_START_PT(ROUTE_GEOMETRY)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
2, 2, 0)

SQL> -- What is the end point of Routel?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_END_PT(route_geometry)
2 FROM Irs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_END_PT(ROUTE_GEOMETRY)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y,
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
5, 14, 27))

SQL> -- Translate (shift measure values) (+10).
SQL> -- First, display the original segment; then, translate.
SQL> SELECT a.route_geometry FROM Irs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2,2,0,2,4,2,8,4,8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

SQL> SELECT SDO_LRS.TRANSLATE_MEASURE(a.route_geometry, m.diminfo, 10)
2 FROM Irs_routes a, user_sdo_geom metadata m
3 WHERE m._table_name = "LRS_ROUTES®" AND m.column_name = "ROUTE_GEOMETRY"
4 AND a.route_id = 1;

SDO_LRS. TRANSLATE_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO,10)(SDO_GTYPE, SDO_SRID, SD
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2,10, 2, 4, 12, 8, 4, 18, 12, 4, 22, 12, 10, 28, 8, 10, 32, 5, 14, 37))

SQL> -- Redefine geometric segment to "convert" miles to kilometers
SQL> DECLARE

2 geom_segment SDO_GEOMETRY;
dim_array SDO_DIM_ARRAY;

BEGIN

~No ok~ w

SELECT a.route_geometry into geom_segment FROM Irs_routes a

7-22 Developer's Guide

Example of LRS Functions

8 WHERE a.route_name = "Routel”;

9 SELECT m.diminfo into dim_array from

10 user_sdo_geom_metadata m

11 WHERE m._table_name = "LRS_ROUTES®" AND m.column_name = "ROUTE_GEOMETRY";
12

13 -- "Convert" mile measures to kilometers (27 * 1.609 = 43.443).

14 SDO_LRS.REDEFINE_GEOM_SEGMENT (geom_segment,

15 dim_array,

16 0, -- Zero starting measure: LRS segment starts at start of route.
17 43.443); -- End of LRS segment. 27 miles = 43.443 kilometers.

18

19 -- Update and insert geometries into table, to display later.
20 UPDATE Irs_routes a SET a.route_geometry = geom_segment

21 WHERE a.route_id = 1;

22

23 END;

24 /

PL/SQL procedure successfully completed.

SQL> -- Display the redefined segment, with all measures "converted."
SQL> SELECT a.route_geometry FROM Irs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2,2,0,2, 4,3.218, 8, 4, 12.872, 12, 4, 19.308, 12, 10, 28.962, 8, 10, 35.398
, 5, 14, 43.443))

SQL> -- Clip a piece of Routel.
SQL> SELECT SDO_LRS.CLIP_GEOM_SEGMENT(route_geometry, 5, 10)
2 FROM Irs_routes WHERE route_id = 1;

SDO_LRS.CLIP_GEOM_SEGMENT(ROUTE_GEOMETRY,5,10)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 4, 5, 8, 4, 8, 10, 4, 10))

SQL> -- Point (9,3,NULL) is off the road; should return (9,4,9).
SQL> SELECT SDO_LRS.PROJECT PT(route_geometry,

2 SDO_GEOMETRY (3301, NULL, NULL,

3 SDO_ELEM_INFO_ARRAY(1, 1, 1),

4 SDO_ORDINATE_ARRAY(9, 3, NULL)))

5 FROM Irs_routes WHERE route_id = 1;

SDO_LRS.PROJECT_PT(ROUTE_GEOMETRY,SDO_GEOMETRY (3301, NULL,NULL,SDO_EL
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
9, 4, 9))

SQL> -- Return the measure of the projected point.
SQL> SELECT SDO_LRS.GET_MEASURE(
2 SDO_LRS.PROJECT_PT(a.route_geometry, m.diminfo,
SDO_GEOMETRY (3301, NULL, NULL,
SDO_ELEM_INFO_ARRAY(1, 1, 1),
SDO_ORDINATE_ARRAY(9, 3, NULL))),
m.diminfo)
FROM Irs_routes a, user_sdo_geom metadata m
WHERE m.table_name = "LRS_ROUTES" AND m.column_name = "ROUTE_GEOMETRY"
AND a.route_id = 1;

© 0o ~NO Ol b Ww

Linear Referencing System 7-23

Example of LRS Functions

SDO_LRS.GET_MEASURE(SDO_LRS.PROJECT_PT(A.ROUTE_GEOMETRY ,M.DIMINFO,SDO_GEOM

SQL> -- Is point (9,3,NULL) a valid LRS point? (Should return TRUE.)
SQL> SELECT SDO_LRS.VALID_LRS PT(
2 SDO_GEOMETRY (3301, NULL, NULL,
SDO_ELEM_INFO_ARRAY(1, 1, 1),
SDO_ORDINATE_ARRAY(9, 3, NULL)),
m.diminfo)
FROM Irs_routes a, user_sdo_geom metadata m
WHERE m.table_name = "LRS_ROUTES®" AND m.column_name = *ROUTE_GEOMETRY"
AND a.route_id = 1;

0 ~NO Ol Ww

SDO_LRS.VALID_LRS_PT(SDO_GEOMETRY(3301,NULL,NULL,SDO_ELEM_INFO_ARRAY

SQL> -- Locate the point on Routel at measure 9, offset O.
SQL> SELECT SDO_LRS.LOCATE_PT(route_geometry, 9, 0)
2 FROM Irs_routes WHERE route_id = 1;

SDO_LRS.LOCATE_PT(ROUTE_GEOMETRY,9,0)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), S

SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
9, 4, 9))

7-24 Developer's Guide

8

Spatial Analysis and Mining

This chapter describes the Oracle Spatial and Graph features that enable the use of
spatial data in data mining applications.

Note:

To use the features described in this chapter, you must understand the main
concepts and techniques explained in the documentation for Oracle Data
Mining, a component of the Oracle Advanced Analytics Option.

For reference information about spatial analysis and mining functions and procedures
in the SDO_SAM package, see SDO_SAM Package (Spatial Analysis and Mining)
(page 28-1).

Note:

SDO_SAM subprograms are supported for two-dimensional geometries only.
They are not supported for three-dimensional geometries.

This chapter contains the following major sections:

¢ Spatial Information and Data Mining Applications (page 8-1)
® Spatial Binning for Detection of Regional Patterns (page 8-3)
® Materializing Spatial Correlation (page 8-4)

¢ Colocation Mining (page 8-4)

® Spatial Clustering (page 8-5)

® Location Prospecting (page 8-5)

8.1 Spatial Information and Data Mining Applications

Oracle Data Mining allows automatic discovery of knowledge from a database. Its
techniques include discovering hidden associations between different data attributes,
classification of data based on some samples, and clustering to identify intrinsic
patterns. Spatial data can be materialized for inclusion in data mining applications.
Thus, Oracle Data Mining might enable you to discover that sales prospects with
addresses located in specific areas (neighborhoods, cities, or regions) are more likely to
watch a particular television program or to respond favorably to a particular
advertising solicitation. (The addresses are geocoded into longitude/latitude points
and stored in an Oracle Spatial and Graph geometry object.)

Spatial Analysis and Mining 8-1

Spatial Information and Data Mining Applications

In many applications, data at a specific location is influenced by data in the
neighborhood. For example, the value of a house is largely determined by the value of
other houses in the neighborhood. This phenomenon is called spatial correlation (or,
neighborhood influence), and is discussed further in Materializing Spatial Correlation
(page 8-4). The spatial analysis and mining features in Oracle Spatial and Graph let
you exploit spatial correlation by using the location attributes of data items in several
ways: for binning (discretizing) data into regions (such as categorizing data into
northern, southern, eastern, and western regions), for materializing the influence of
neighborhood (such as number of customers within a two-mile radius of each store),
and for identifying colocated data items (such as video rental stores and pizza
restaurants).

To perform spatial data mining, you materialize spatial predicates and relationships
for a set of spatial data using thematic layers. Each layer contains data about a specific
kind of spatial data (that is, having a specific "theme"), for example, parks and
recreation areas, or demographic income data. The spatial materialization could be
performed as a preprocessing step before the application of data mining techniques, or
it could be performed as an intermediate step in spatial mining, as shown in Figure 8-1
(page 8-2).

Figure 8-1 Spatial Mining and Oracle Data Mining

Spatial Mining
(Oracle Data Mining + Spatial enging)

Original data

Spatial Mining

——————— Spatial thematic
Functions

data layers

Y

Materialized data
(spatial binning,
proximity, colocation
materialization)

Oracle Data
Mining engina

- Mining results

8-2 Developer's Guide

Spatial Binning for Detection of Regional Patterns

Notes on Figure 8-1 (page 8-2):

¢ The original data, which included spatial and nonspatial data, is processed to
produce materialized data.

® Spatial data in the original data is processed by spatial mining functions to produce
materialized data. The processing includes such operations as spatial binning,
proximity, and colocation materialization.

® The Oracle Data Mining engine processes materialized data (spatial and
nonspatial) to generate mining results.

The following are examples of the kinds of data mining applications that could benefit
from including spatial information in their processing:

* Business prospecting: Determine if colocation of a business with another franchise
(such as colocation of a Pizza Hut restaurant with a Blockbuster video store) might
improve its sales.

® Store prospecting: Find a good store location that is within 50 miles of a major city
and inside a state with no sales tax. (Although 50 miles is probably too far to drive
to avoid a sales tax, many customers may live near the edge of the 50-mile radius
and thus be near the state with no sales tax.)

¢ Hospital prospecting: Identify the best locations for opening new hospitals based
on the population of patients who live in each neighborhood.

® Spatial region-based classification or personalization: Determine if southeastern
United States customers in a certain age or income category are more likely to
prefer "soft" or "hard" rock music.

e Automobile insurance: Given a customer's home or work location, determine if it is
in an area with high or low rates of accident claims or auto thefts.

¢ Property analysis: Use colocation rules to find hidden associations between
proximity to a highway and either the price of a house or the sales volume of a
store.

* Property assessment: In assessing the value of a house, examine the values of
similar houses in a neighborhood, and derive an estimate based on variations and
spatial correlation.

8.2 Spatial Binning for Detection of Regional Patterns

Spatial binning (spatial discretization) discretizes the location values into a small
number of groups associated with geographical areas. The assignment of a location to
a group can be done by any of the following methods:

* Reverse geocoding the longitude/latitude coordinates to obtain an address that
specifies (for United States locations) the ZIP code, city, state, and country

¢ Checking a spatial bin table to determine which bin this specific location belongs in

You can then apply Oracle Data Mining techniques to the discretized locations to
identify interesting regional patterns or association rules. For example, you might
discover that customers in area A prefer regular soda, while customers in area B prefer
diet soda.

Spatial Analysis and Mining 8-3

Materializing Spatial Correlation

The following functions and procedures, documented in SDO_SAM Package (Spatial
Analysis and Mining) (page 28-1), perform operations related to spatial binning:

e SDO_SAM.BIN_GEOMETRY (page 28-5)

e SDO_SAM.BIN_LAYER (page 28-6)

8.3 Materializing Spatial Correlation

Spatial correlation (or, neighborhood influence) refers to the phenomenon of the location
of a specific object in an area affecting some nonspatial attribute of the object. For
example, the value (nonspatial attribute) of a house at a given address (geocoded to
give a spatial attribute) is largely determined by the value of other houses in the
neighborhood.

To use spatial correlation in a data mining application, you materialize the spatial
correlation by adding attributes (columns) in a data mining table. You use associated
thematic tables to add the appropriate attributes. You then perform mining tasks on
the data mining table using Oracle Data Mining functions.

The following functions and procedures, documented in SDO_SAM Package (Spatial
Analysis and Mining) (page 28-1), perform operations related to materializing spatial
correlation:

e SDO_SAM.SIMPLIFY_GEOMETRY (page 28-9)

e SDO_SAM.SIMPLIFY_LAYER (page 28-10)

e SDO_SAM.AGGREGATES_FOR_GEOMETRY (page 28-2)
e SDO_SAM.AGGREGATES_FOR_LAYER (page 28-4)

8.4 Colocation Mining

Colocation is the presence of two or more spatial objects at the same location or at
significantly close distances from each other. Colocation patterns can indicate
interesting associations among spatial data objects with respect to their nonspatial
attributes. For example, a data mining application could discover that sales at
franchises of a specific pizza restaurant chain were higher at restaurants colocated
with video stores than at restaurants not colocated with video stores.

Two types of colocation mining are supported:

¢ Colocation of items in a data mining table. Given a data layer, this approach
identifies the colocation of multiple features. For example, predator and prey
species could be colocated in animal habitats, and high-sales pizza restaurants
could be colocated with high-sales video stores. You can use a reference-feature
approach (using one feature as a reference and the other features as thematic
attributes, and materializing all neighbors for the reference feature) or a buffer-
based approach (materializing all items that are within all windows of a specified
size).

¢ Colocation with thematic layers. Given several data layers, this approach identifies
colocation across the layers. For example, given a lakes layer and a vegetation
layer, lakes could be colocated with areas of high vegetation. You materialize the
data, add categorical and numerical spatial relationships to the data mining table,
and apply the Oracle Data Mining Association-Rule mechanisms.

8-4 Developer's Guide

Spatial Clustering

The following functions and procedures, documented in SDO_SAM Package (Spatial
Analysis and Mining) (page 28-1), perform operations related to colocation mining:

e SDO_SAM.COLOCATED_REFERENCE_FEATURES (page 28-7)
e SDO_SAM.BIN_GEOMETRY (page 28-5)

8.5 Spatial Clustering

Spatial clustering returns cluster geometries for a layer of data. An example of spatial
clustering is the clustering of crime location data.

The SDO_SAM.SPATIAL_CLUSTERS (page 28-11) function, documented in
SDO_SAM Package (Spatial Analysis and Mining) (page 28-1), performs spatial
clustering. This function requires a spatial R-tree index on the geometry column of the
layer, and it returns a set of SDO_REGION objects where the geometry column
specifies the boundary of each cluster and the geometry_key value is set to null.

You can use the SDO_SAM.BIN_GEOMETRY (page 28-5) function, with the returned
spatial clusters in the bin table, to identify the cluster to which a geometry belongs.

8.6 Location Prospecting

Location prospecting can be performed by using thematic layers to compute
aggregates for a layer, and choosing the locations that have the maximum values for
computed aggregates.

The following functions, documented in SDO_SAM Package (Spatial Analysis and
Mining) (page 28-1), perform operations related to location prospecting:

e SDO_SAM.AGGREGATES_FOR_GEOMETRY (page 28-2)
e SDO_SAM.AGGREGATES_FOR_LAYER (page 28-4)
e SDO_SAM.TILED_AGGREGATES (page 28-12)

Spatial Analysis and Mining 8-5

Location Prospecting

8-6 Developer's Guide

9

Extending Spatial Indexing Capabilities

This chapter shows how to create and use spatial indexes on objects other than a
geometry column. In other chapters, the focus is on indexing and querying spatial data
that is stored in a single column of type SDO_GEOMETRY. This chapter shows how
to:

¢ Embed an SDO_GEOMETRY object in a user-defined object type, and index the
geometry attribute of that type (see SDO_GEOMETRY Objects in User-Defined
Type Definitions (page 9-1))

e (reate and use a function-based index where the function returns an
SDO_GEOMETRY object (see SDO_GEOMETRY Objects in Function-Based Indexes

(page 9-3))

The techniques in this chapter are intended for experienced and knowledgeable
application developers. You should be familiar with the Spatial and Graph concepts
and techniques described in other chapters. You should also be familiar with, or able
to learn about, relevant Oracle database features, such as user-defined data types and
function-based indexing.

9.1 SDO_GEOMETRY Obijects in User-Defined Type Definitions

The SDO_GEOMETRY type can be embedded in a user-defined data type definition.
The procedure is very similar to that for using the SDO_GEOMETRY type for a spatial
data column:

1. Create the user-defined data type.

2. Create a table with a column based on that data type.
3. Insert data into the table.

4. Update the USER_SDO_GEOM_METADATA view.
5. Create the spatial index on the geometry attribute.

6. Perform queries on the data.

For example, assume that you want to follow the cola markets scenario in the
simplified example in Simple Example: Inserting_ Indexing_ and Querying Spatial
Data (page 2-1), but want to incorporate the market name attribute and the geometry
attribute in a single type. First, create the user-defined data type, as in the following
example that creates an object type named MARKET_TYPE:

CREATE OR REPLACE TYPE market_ type AS OBJECT
(name VARCHAR2(32), shape SDO_GEOMETRY);
/

Extending Spatial Indexing Capabilities 9-1

SDO_GEOMETRY Objects in User-Defined Type Definitions

Create a table that includes a column based on the user-defined type. The following
example creates a table named COLA_MARKETS_2 that will contain the same
information as the COLA_MARKETS table used in the example in Simple Example:
Inserting_ Indexing_ and Querying Spatial Data (page 2-1).

CREATE TABLE cola_markets_2 (
mkt_id NUMBER PRIMARY KEY,
market MARKET_TYPE);

Insert data into the table, using the object type name as a constructor. For example:

INSERT INTO cola_markets_2 VALUES(
1,
MARKET_TYPE(*cola_a",
SDO_GEOMETRY (
2003, -- two-dimensional polygon
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3), -- one rectangle (1003 = exterior)
SDO_ORDINATE_ARRAY(1,1, 5,7) -- only 2 points needed to
-- define rectangle (lower left and upper right)
)
)
);

Update the USER_SDO_GEOM_METADATA view, using dot-notation to specify the
column name and spatial attribute. The following example specifies MARKET.SHAPE
as the COLUMN_NAME (explained in COLUMN_NAME (page 2-48)) in the metadata
view.

INSERT INTO user_sdo_geom_metadata

(TABLE_NAME,
COLUMN_NAME,
DIMINFO,
SRID)

VALUES (

"cola_markets_2°",

"market.shape”,

SDO_DIM_ARRAY(-- 20X20 grid
SDO_DIM_ELEMENT(*X*, 0, 20, 0.005),
SDO_DIM_ELEMENT(*Y*, 0, 20, 0.005)

),
NULL -- SRID
);

Create the spatial index, specifying the column name and spatial attribute using dot-
notation. For example.

CREATE INDEX cola_spatial_idx_2
ON cola_markets_2(market.shape)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

Perform queries on the data, using dot-notation to refer to attributes of the user-
defined type. The following simple query returns information associated with the cola
market named cola_a.

SELECT c.mkt_id, c.market.name, c.market.shape
FROM cola_markets 2 ¢
WHERE c.market.name = "cola_a";

9-2 Developer's Guide

SDO_GEOMETRY Objects in Function-Based Indexes

The following query returns information associated with all geometries that have any
spatial interaction with a specified query window, namely, the rectangle with lower-
left coordinates (4,6) and upper-right coordinates (8,8).

SELECT c.mkt_id, c.market.name, c.market.shape
FROM cola_markets_2 ¢
WHERE SDO_RELATE(c.market.shape,
SDO_GEOMETRY (2003, NULL, NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),
SDO_ORDINATE_ARRAY(4,6, 8,8)),
"mask=anyinteract” = "TRUE";

9.2 SDO_GEOMETRY Obijects in Function-Based Indexes

A function-based spatial index facilitates queries that use locational information (of
type SDO_GEOMETRY) returned by a function or expression. In this case, the spatial
index is created based on the precomputed values returned by the function or
expression.

If you are not already familiar with function-based indexes, see the following for
detailed explanations of their benefits, options, and requirements, as well as usage
examples:

® Oracle Database Development Guide

e QOracle Database Administrator’s Guide

The procedure for using an SDO_GEOMETRY object in a function-based index is as
follows:

1. Create the function that returns an SDO_GEOMETRY object.
The function must be declared as DETERMINISTIC.

2. If the spatial data table does not already exist, create it, and insert data into the
table.

3. Update the USER_SDO_GEOM_METADATA view.

4. Create the spatial index.

For a function-based spatial index, the number of parameters must not exceed 32.

5. Perform queries on the data.

The rest of this section describes two examples of using function-based indexes. In
both examples, a function is created that returns an SDO_GEOMETRY object, and a
spatial index is created on that function. In the first example, the input parameters to
the function are a standard Oracle data type (NUMBER). In the second example, the
input to the function is a user-defined object type.

9.2.1 Example: Function with Standard Types

In the following example, the input parameters to the function used for the function-
based index are standard numeric values (longitude and latitude).

Assume that you want to create a function that returns the longitude and latitude of a
point and to use that function in a spatial index. First, create the function, as in the
following example that creates a function named GET_LONG_LAT_PT:

Extending Spatial Indexing Capabilities 9-3

SDO_GEOMETRY Objects in Function-Based Indexes

-- Create a function to return a point geometry (SDO_GTYPE = 2001) with
-- input of 2 numbers: longitude and latitude (SDO_SRID = 8307, for

-- "Longitude / Latitude (WGS 84)", probably the most widely used

-- coordinate system, and the one used for GPS devices.

-- Specify DETERMINISTIC for the function.

create or replace function get_long_lat_pt(longitude in number,
latitude in number)

return SDO_GEOMETRY deterministic is
begin

return sdo_geometry(2001, 8307,

sdo_point_type(longitude, latitude, NULL),NULL, NULL);

end;
/

If the spatial data table does not already exist, create the table and add data to it, as in
the following example that creates a table named LONG_LAT_TABLE:

create table LONG_LAT_TABLE
(lon number, lat number, name varchar2(32));

insert into LONG_LAT_TABLE values (10,10, "Placel");
insert into LONG_LAT_TABLE values (20,20, "Place2");
insert into LONG_LAT_TABLE values (30,30, "Place3");

Update the USER_SDO_GEOM_METADATA view, using dot-notation to specify the
schema name and function name. The following example specifies
SCOTT.GET_LONG_LAT_PT(LON,LAT) as the COLUMN_NAME (explained in
COLUMN_NAME (page 2-48)) in the metadata view.

-- Set up the metadata entry for this table.

-- The column name sets up the function on top

-- of the two columns used in this function,

-- along with the owner of the function.

insert into user_sdo_geom_metadata values("LONG_LAT TABLE®",

"scott.get_long_lat_pt(lon,lat)",

sdo_dim_array(
sdo_dim_element("Longitude®, -180, 180, 0.005),
sdo_dim_element("Latitude®, -90, 90, 0.005)), 8307);

Create the spatial index, specifying the function name with parameters. For example:

create index LONG_LAT_TABLE_IDX on
LONG_LAT TABLE(get_long_lat_pt(lon, lat))
indextype is mdsys.spatial_index;

Perform queries on the data. The following example specifies the user-defined
function in a call to the SDO_FILTER (page 18-8) operator.

select name from LONG_LAT_TABLE a
where sdo_filter(
get_long_lat_pt(a.lon,a.lat),
sdo_geometry(2001, 8307, sdo_point_type(10,10,NULL), NULL, NULL)
)="TRUE";

Placel

9-4 Developer's Guide

SDO_GEOMETRY Objects in Function-Based Indexes

9.2.2 Example: Function with a User-Defined Object Type

In the following example, the input parameter to the function used for the function-
based index is an object of a user-defined type that includes the longitude and latitude.

Assume that you want to create a function that returns the longitude and latitude of a
point and to create a spatial index on that function. First, create the user-defined data
type, as in the following example that creates an object type named LONG_LAT and
its member function GetGeometry:

create type long_lat as object (
longitude number,
latitude number,
member function GetGeometry(SELF in long_lat)
RETURN SDO_GEOMETRY DETERMINISTIC)
/

create or replace type body long_lat as
member function GetGeometry(self in long_lat)
return SDO_GEOMETRY is
begin
return sdo_geometry(2001, 8307,
sdo_point_type(longitude, latitude, NULL), NULL,NULL);
end;
end;
/

If the spatial data table does not already exist, create the table and add data to it, as in
the following example that creates a table named TEST_LONG_LAT:

create table test_long_lat
(location long_lat, name varchar2(32));

insert into test_long_lat values (long_lat(10,10), "Placel®);
insert into test_long_lat values (long_lat(20,20), "Place2");
insert into test_long_lat values (long_lat(30,30), "Place3");

Update the USER_SDO_GEOM_METADATA view, using dot-notation to specify the
schema name, table name, and function name and parameter value. The following
example specifies SCOTT.LONG_LAT.GetGeometry(LOCATION) as the
COLUMN_NAME (explained in COLUMN_NAME (page 2-48)) in the metadata view.

insert into user_sdo_geom_metadata values("test_long_lat",
"scott.long_lat.GetGeometry(location)”,
sdo_dim_array/(
sdo_dim_element("Longitude®, -180, 180, 0.005),
sdo_dim_element("Latitude”, -90, 90, 0.005)), 8307);

Create the spatial index, specifying the column name and function name using dot-
notation. For example:

create index test_long_lat_idx on test_long_lat(location.GetGeometry())
indextype is mdsys.spatial_index;

Perform queries on the data. The following query performs a primary filter operation,
asking for the names of geometries that are likely to interact spatially with point
(10,10).

Extending Spatial Indexing Capabilities 9-5

SDO_GEOMETRY Objects in Function-Based Indexes

SELECT a.name FROM test_long_lat a
WHERE SDO_FILTER(a. location.GetGeometry(),
SDO_GEOMETRY (2001, 8307,
SDO_POINT_TYPE(10,10,NULL), NULL, NULL)
) = "TRUE";

9-6 Developer's Guide

Part Il

Spatial Web Services

This document has the following parts:

Conceptual and Usage Information (page 1) provides conceptual and usage
information about Oracle Spatial and Graph.

Part II provides conceptual and usage information about Oracle Spatial and Graph
web services.

Reference Information (page 1) provides reference information about Oracle
Spatial and Graph operators, functions, and procedures.

Supplementary Information (page 1) provides supplementary information
(appendixes and a glossary).

Part II contains the following chapters:

Introduction to Spatial Web Services (page 10-1)
Geocoding Address Data (page 11-1)

Business Directory (Yellow Pages) Support (page 12-1)
Routing Engine (page 13-1)

OpenLS Support (page 14-1)

Web Feature Service (WFS) Support (page 15-1)

Catalog Services for the Web (CSW) Support (page 16-1)

10

Introduction to Spatial Web Services

This chapter introduces the Oracle Spatial and Graph support for spatial web services.
A web service enables developers of Oracle Spatial and Graph applications to provide
feature data and metadata to their application users over the web.

This chapter contains the following major sections:

Note:

If you are using Spatial and Graph Web Feature Service (WFS) or Catalog
Services for the Web (CSW) support, and if you have data from a previous
release that was indexed using one or more SYS.XMLTABLEINDEX indexes,
you must drop the associated indexes before the upgrade and re-create the
indexes after the upgrade.

For more information, see Index Maintenance Before and After an Upgrade
(WES and CSW) (page A-2).

Types of Spatial Web Services (page 10-1)
Types of Users of Spatial Web Services (page 10-2)
Setting Up the Client for Spatial Web Services (page 10-2)

Demo Files for Sample Java Client (page 10-5)

10.1 Types of Spatial Web Services

Oracle Spatial and Graph provides the following types of web services:

Geocoding, which enables users to associate spatial locations (longitude and
latitude coordinates) with postal addresses. Geocoding support is explained in
Geocoding Address Data (page 11-1).

Yellow Pages, which enables users to find businesses by name or category based on
their relationship to a location. Yellow Pages support is explained in Business
Directory (Yellow Pages) Support (page 12-1).

Routing, which provides driving information and instructions for individual or
multiple routes. Routing support is explained in Routing Engine (page 13-1).

OpenLS, which provides location-based services based on the Open Location
Services Initiative (OpenLS) specification for geocoding, mapping, routing, and
yellow pages. OpenLS support is explained in OpenLS Support (page 14-1).

Introduction to Spatial Web Services 10-1

Types of Users of Spatial Web Services

e Web Feature Services (WFS), which enables users to find features (roads, rivers,
and so on) based on their relationship to a location or a nonspatial attribute. WFS
support is explained in Web Feature Service (WFS) Support (page 15-1).

¢ Catalog Services for the Web (CSW), which describes the Oracle Spatial and Graph
implementation of the Open GIS Consortium specification for catalog services.
According to this specification: "Catalogue services support the ability to publish
and search collections of descriptive information (metadata) for data, services, and
related information objects." CSW support is explained in Catalog Services for the
Web (CSW) Support (page 16-1).

10.2 Types of Users of Spatial Web Services

In the general business sense of the word "user," implementing any spatial web
services application involves the following kinds of people:

* Administrators set up the web services infrastructure. Administrators might create
database users, grant privileges and access rights to new and existing database
users, and do other operations that affect multiple database users. For web feature
services, administrators register feature tables, publish feature types, and unlock
certain accounts.

For example, an administrator might set up the infrastructure to enable access to
spatial features, such as roads and rivers.

¢ Application developers create and manage the spatial data and metadata. They
create spatial data tables, create spatial indexes, insert rows into the
USER_SDO_GEOM_METADATA view, and use spatial functions and procedures
to implement the application logic.

For example, an application developer might create tables of roads and rivers, and
implement application logic that enables end users to find roads and rivers based
on spatial query criteria.

¢ End users access the services through their web browsers.

For example, an end user might ask for all roads that are within one mile of a
specific river or that intersect (cross) that river.

From the perspective of an administrator, application developers and end users are all
"users” because database users must be created to accommodate their needs.
Application developers will connect to the database as users with sufficient privileges
to create and manage spatial tables and to use Oracle Spatial and Graph functions and
procedures. End users will access the database through a database user with limited
access privileges, typically read-only access to data or limited write access.

The chapters about Spatial and Graph web services are written for administrators and
application developers, not for end users.

10.3 Deploying and Configuring Spatial Web Services

This topic describes actions that apply to deploying and configuring spatial web
services, and particularly WES, WCS, and CSW. These services are implemented as
Java web applications and can be deployed to run on WebLogic 12.1.3 or later. The
required Java version is JDK 1.8 or later. They are packaged in the sdows.ear.zip
file.

e WEFS, CSW, and CSW are packaged in the sdows.ear . zip file.

10-2 Developer's Guide

Deploying and Configuring Spatial Web Services

* The Geocoder service is packaged in the geocoder .ear.zip file.

* The Routing Engine is packaged in the routeserver.ear.zip file.

In addition to the “general” instructions in this topic, see the chapter about each
specific spatial web service that you plan to use for any additional deployment and
configuration tasks.

Deploying any Oracle Spatial and Graph web services includes the following major
tasks.

1. Preparing WebLogic Server (Version 12.1.3 or Later)

2. Creating a Domain on WebLogic Server

3. Unpacking the sdows.ear.zip File (WFS, WCS, CSW)

4. Deploying Spatial Web Services on WebLogic Server and Editing the web.xml File
5. Ensuring the Web Service Web Project is in the Active State

6. Configuring Each Spatial Web Service

Preparing WebLogic Server (Version 12.1.3 or Later)

Before you deploy the web service engine, it is recommended that you create a
managed server in WebLogic Server.

For the Web Service Engine to be successfully deployed on a managed server, a
WebLogic domain must be created.

Creating a Domain on WebLogic Server

You must ensure that a domain exists for web services on WebLogic Server. To create
a spatial domain, follow these steps.

1. Login to the WebLogic Server console.
2. Select Create a New WebLogic Domain, and click Next.

3. Select Domain Source: Generate a Domain Configured Automatically, and click
Next.

4. Configure the Administrator Username and Password, and click Next.
5. For Server Start Mode, select Development or Production.
6. For JDK, select one of the available JDKs.

7. For Customize Environment and Service Settings, either accept the default
values or specify any customizations.

8. On the Create WebLogic Domain page, click Create, then Next.

9. On the Creating Domain page, click Done.

For more information about creating and configuring a domain, see the WebLogic
Server documentation.

Introduction to Spatial Web Services 10-3

Deploying and Configuring Spatial Web Services

Unpacking the sdows.ear.zip File (WFS, WCS, CSW)

Before anyone can use Spatial and Graph WFS, WCS, and CSW services, you, as an
administrator with the DBA role, must ensure that the sdows .ear . zip file, found in
$ORACLE_HOME/md/j Iib, is unzipped into a desired directory before deployment.
The resulting path should end with an sdows . ear directory, which is sometimes
referred to as the sdows exploded directory.

Deploying Spatial Web Services on WebLogic Server and Editing the web.xml
File

Spatial web services should be deployed as an exploded directory because log files are
generated inside this directory.

For backward compatibility for WES service only (because WCS 2.0.1 and CSW 2.0.2
are newly added services as of Release 12.2), if you prefer SpatialWS-SpatialWs-
context-root (or any other preferred root name), then in the web . xml file, for the
<env-entry-name>oracle/spatial/ws/publish_url_as/contextPath</
env-entry-name> element, specify the desired value in its <env-entry-value>
element. In this case, also modify these other files to reflect a root other than the
default oraclespatial: application.xml, context.xml, weblogic.xml,
wFs._wsdl and csw202 _wsdl.

Similarly, if you need to change the servlet path for WES, WCS, or CSW, all relevant
<env-entry-name> and <env-entry-type> elements in the web . xml file must
specify the desired values. For example:

<env-entry-name>oracle/spatial/ws/publish_url_as/servletPath/wf s</env-entry-name>
<env-entry-type>java. lang.String</env-entry-type>

<env-entry-name>oracle/spatial/ws/publish_url_as/servletPath/csw</env-entry-name>
<env-entry-type>java. lang.String</env-entry-type>

<env-entry-name>oracle/spatial/ws/publish_url_as/servletPath/wcs</env-entry-name>
<env-entry-type>java. lang.String</env-entry-type>

If a proxy server is used as an intermediary for requests from clients, the following
env-entry elements in the web . xml file should be edited.

e oracle/spatial/ws/publish_url_as/host

e oracle/spatial/ws/publish_url_as/port

e oracle/spatial/ws/publish_url_as/protocol

e oracle/spatial/ws/publish_url_as/contextPath

e oracle/spatial/ws/publish_url_as/servletPath/ws

e oracle/spatial/ws/publish_url_as/servletPath/wfs

e oracle/spatial/ws/publish_url_as/servletPath/csw

e oracle/spatial/ws/publish_url_as/servletPath/wcs

e oracle/spatial/ws/publish_url_as/xmlserviletPath/ws
e oracle/spatial/ws/publish_url_as/xmlservletPath/wfs

e oracle/spatial/ws/publish_url_as/xmlservletPath/csw

10-4 Developer's Guide

Demo Files for Sample Java Client

e oracle/spatial/ws/publish_url_as/xmlservletPath/wcs

To deploy a spatial web service on WebLogic Server, follow these steps.
1. Log in to the WLS console
2. Click Deployments, then Install.

3. Ensure that Path is set to the application deployment (Exploded Archive)
directory.

4. Select sdows.ear (a directory), and click Next.

5. Ensure that the Install this deployment as an application targeting style is
selected, and click Next.

6. In the list of potential servers to which to deploy the WFS Engine, select the name
of the managed server that you created, select I will make the deployment
accessible from the following location, enter the Exploded Archive (Application
deployment) Directory, and click Next.

7. Ensure that the deployment name is sdows, and click Finish.

Ensuring the Web Service Web Project is in the Active State

After completing the necessary steps for a spatial web service, check on the
Deployments page that the application is in the Active state.

If it is in the Prepared state, click Start to start the application.

Configuring Each Spatial Web Service

The next step is to configure each spatial web service that you will use (such as WES,
WCS, or CSW) independently. You must perform specific tasks that depend on which
web services you will be supporting for use in your environment. You will probably
need to create and grant privileges to database users. You may need to download and
load special data (such as for geocoding), modify configuration files or create data
sources in WebLogic Server.

See the chapter for each relevant spatial web service for instructions specific to that
service.

10.4 Demo Files for Sample Java Client

To help you get started with spatial web services, Oracle supplies a. jar file
(wsclient. jar) with the source code and related files for setting up a sample Java
client. To use this file, follow these steps:

1. Find wsclient. jar under the Spatial and Graph demo directory.

2. Expand (unzip) wsclient. jar into a directory of your choice.

The top-level directory for all the files in the .jar file is named src.

3. Inthe src directory, read the file named Readme . txt and follow its instructions.

The Readme . txt file contains detailed explanations and guidelines.

Introduction to Spatial Web Services 10-5

Demo Files for Sample Java Client

10-6 Developer's Guide

11

Geocoding Address Data

Geocoding is the process of associating spatial locations (longitude and latitude
coordinates) with postal addresses. This chapter includes the following major sections:

¢ Concepts for Geocoding (page 11-1)

* Data Types for Geocoding (page 11-6)

¢ Using the Geocoding Capabilities (page 11-10)
¢ Geocoding from a Place Name (page 11-10)

e Data Structures for Geocoding (page 11-11)

* Using the Geocoding Service (XML API) (page 11-33)

11.1 Concepts for Geocoding

This section describes concepts that you must understand before you use the Spatial
and Graph geocoding capabilities.

11.1.1 Address Representation

Addresses to be geocoded can be represented either as formatted addresses or
unformatted addresses.

A formatted address is described by a set of attributes for various parts of the address,
which can include some or all of those shown in Table 11-1 (page 11-1).

Table 11-1 Attributes for Formal Address Representation

Address Attribute Description

Name Place name (optional).
Intersecting street Intersecting street name (optional).

Street Street address, including the house or building number, street name,
street type (Street, Road, Blvd, and so on), and possibly other
information.

In the current release, the first four characters of the street name must
match a street name in the geocoding data for there to be a potential
street name match.

Settlement The lowest-level administrative area to which the address belongs. In
most cases it is the city. In some European countries, the settlement can
be an area within a large city, in which case the large city is the
municipality.

Geocoding Address Data 11-1

Concepts for Geocoding

Table 11-1 (Cont.) Attributes for Formal Address Representation
__|

Address Attribute Description

Municipality The administrative area above settlement. Municipality is not used for
United States addresses. In European countries where cities contain
settlements, the municipality is the city.

Region The administrative area above municipality (if applicable), or above
settlement if municipality does not apply. In the United States, the
region is the state; in some other countries, the region is the province.

Postal code Postal code (optional if administrative area information is provided). In
the United States, the postal code is the 5-digit ZIP code.

Postal add-on code String appended to the postal code. In the United States, the postal add-
on code is typically the last four numbers of a 9-digit ZIP code specified

in "5-4" format.

Country The country name or ISO country code.

Formatted addresses are specified using the SDO_GEO_ADDR data type, which is
described in SDO_GEO_ADDR Type (page 11-6).

An unformatted address is described using lines with information in the postal
address format for the relevant country. The address lines must contain information
essential for geocoding, and they might also contain information that is not needed for
geocoding (something that is common in unprocessed postal addresses). An
unformatted address is stored as an array of strings. For example, an address might
consist of the following strings: '22 Monument Square' and 'Concord, MA 01742'.

Unformatted addresses are specified using the SDO_KEYWORDARRAY data type,
which is described in SDO_KEYWORDARRAY Type (page 11-9).

11.1.2 Match Modes

The match mode for a geocoding operation determines how closely the attributes of an
input address must match the data being used for the geocoding. Input addresses can
include different ways of representing the same thing (such as Street and the
abbreviation St), and they can include minor errors (such as the wrong postal code,
even though the street address and city are correct and the street address is unique
within the city).

You can require an exact match between the input address and the data used for
geocoding, or you can relax the requirements for some attributes so that geocoding
can be performed despite certain discrepancies or errors in the input addresses.

Table 11-2 (page 11-3) lists the match modes and their meanings. Use a value from
this table with the MatchMode attribute of the SDO_GEO_ADDR data type (described
in SDO_GEO_ADDR Type (page 11-6)) and for the match_mode parameter of a
geocoding function or procedure.

11-2 Developer's Guide

Concepts for Geocoding

Table 11-2 Match Modes for Geocoding Operations
- - -~ - |

Match Mode Description

EXACT All attributes of the input address must match the data used for
geocoding. However, if the house or building number, base name
(street name), street type, street prefix, and street suffix do not all
match the geocoding data, a location in the first match found in
the following is returned: postal code, city or town (settlement)
within the state, and state. For example, if the street name is
incorrect but a valid postal code is specified, a location in the
postal code is returned.

RELAX_STREET_TYPE The street type can be different from the data used for geocoding.
For example, if Main St is in the data used for geocoding, Main
Street would also match that, as would Main Blud if there was no
Main Blvd and no other street type named Main in the relevant
area.

RELAX_POI_NAME The name of the point of interest does not have to match the data
used for geocoding. For example, if Jones State Park is in the data
used for geocoding, Jones State Pk and Jones Park would also
match as long as there were no ambiguities or other matches in
the data.

RELAX_HOUSE_NUMB The house or building number and street type can be different

ER from the data used for geocoding. For example, if 123 Main St is
in the data used for geocoding, 123 Main Lane and 124 Main St
would also match as long as there were no ambiguities or other
matches in the data.

RELAX_BASE_NAME The base name of the street, the house or building number, and
the street type can be different from the data used for geocoding.
For example, if Pleasant Valley is the base name of a street in the
data used for geocoding, Pleasant Vale would also match as long
as there were no ambiguities or other matches in the data.

RELAX_POSTAL_CODE The postal code (if provided), base name, house or building
number, and street type can be different from the data used for
geocoding.

RELAX_BUILTUP_AREA The address can be outside the city specified as long as it is
within the same county. Also includes the characteristics of
RELAX_POSTAL_CODE.

RELAX_ALL Equivalent to RELAX_BUILTUP_AREA.
DEFAULT Equivalent to RELAX_POSTAL_CODE.
11.1.3 Match Codes

The match code is a number indicating which input address attributes matched the
data used for geocoding. The match code is stored in the MatchCode attribute of the
output SDO_GEO_ADDR object (described in SDO_GEO_ADDR Type (page 11-6)).

Table 11-3 (page 11-4) lists the possible match code values.

Geocoding Address Data 11-3

Concepts for Geocoding

Table 11-3 Match Codes for Geocoding Operations
- - -~ - |

Match Description

Code

1 Exact match: the city name, postal code, street base name, street type (and suffix or
prefix or both, if applicable), and house or building number match the data used for
geocoding.

2 The city name, postal code, street base name, and house or building number match
the data used for geocoding, but the street type, suffix, or prefix does not match.

3 The city name, postal code, and street base name match the data used for geocoding,
but the house or building number does not match.

4 The city name and postal code match the data used for geocoding, but the street
address does not match.

10 The city name matches the data used for geocoding, but the postal code does not
match.

11 The postal code matches the data used for geocoding, but the city name does not
match.

12 The region matches the data in the geocoder schema, but the city name and postal

code do not match.

11.1.4 Error Messages for Output Geocoded Addresses

Note:

You are encouraged to use the MatchVector attribute (see Match Vector for
Output Geocoded Addresses (page 11-5)) instead of the ErrorMessage
attribute, which is described in this section.

For an output geocoded address, the ErrorMessage attribute of the
SDO_GEO_ADDR object (described in SDO_GEO_ADDR Type (page 11-6))

contains a string that indicates which address attributes have been matched against
the data used for geocoding. Before the geocoding operation begins, the string is set to

have been matched.

Table 11-4 (page 11-4) lists the character positions in the string and the address
attribute corresponding to each position. It also lists the character value that the
position is set to if the attribute is matched.

Table 11-4 Geocoded Address Error Message Interpretation

Position Attribute Value If Matched
1-2 (Reserved for future ??
use)
3 Address point
4 POI name 0]

11-4 Developer's Guide

Concepts for Geocoding

Table 11-4 (Cont.) Geocoded Address Error Message Interpretation
__|

Position Attribute Value If Matched
5 House or building #
number
6 Street prefix E
7 Street base name N
8 Street suffix U
9 Street type T
10 Secondary unit S
11 Built-up area or city B
12-13 (Reserved) (Ignore any values in these positions.)
14 Region 1
15 Country C
16 Postal code P
17 Postal add-on code A

11.1.5 Match Vector for Output Geocoded Addresses

For an output geocoded address, the MatchVector attribute of the SDO_GEO_ADDR
object (described in SDO_GEO_ADDR Type (page 11-6)) contains a string that
indicates how each address attribute has been matched against the data used for
geocoding. It gives more accurate and detailed information about the match status of
each address attribute than the ErrorMessage attribute (described in Error Messages
for Output Geocoded Addresses (page 11-4)). Before the geocoding operation begins,

indicates the match status of an address attribute.

Table 11-5 (page 11-5) lists the character positions in the string and the address
attribute corresponding to each position. Following the table is an explanation of what
the value in each character position represents.

Table 11-5 Geocoded Address Match Vector Interpretation

Position Attribute

1-2 (Reserved for future use)

3 Address point

4 POI name

5 House or building number
6 Street prefix

7 Street base name

Geocoding Address Data 11-5

Data Types for Geocoding

Table 11-5 (Cont.) Geocoded Address Match Vector Interpretation
__|

Position Attribute

8 Street suffix

9 Street type

10 Secondary unit

11 Built-up area or city
14 Region

15 Country

16 Postal code

17 Postal add-on code

Each character position in Table 11-5 (page 11-5) can have one of the following
possible numeric values:

® (: The input attribute is not null and is matched with a non-null value.

¢ 1: The input attribute is null and is matched with a null value.

e 2: The input attribute is not null and is replaced by a different non-null value.
¢ 3: The input attribute is not null and is replaced by a null value.

e 4: The input attribute is null and is replaced by a non-null value.

11.2 Data Types for Geocoding

This section describes the data types specific to geocoding functions and procedures.

11.2.1 SDO_GEO_ADDR Type

The SDO_GEO_ADDR object type is used to describe an address. When a geocoded
address is output by an SDO_GCDR function or procedure, it is stored as an object of
type SDO_GEO_ADDR.

Table 11-6 (page 11-6) lists the attributes of the SDO_GEO_ADDR type. Not all
attributes will be relevant in any given case. The attributes used for a returned
geocoded address depend on the geographical context of the input address, especially
the country.

Table 11-6 SDO_GEO_ADDR Type Attributes

Attribute Data Type Description

Id NUMBER (Not used.)

AddressLines SDO_KEYWORDA Address lines. (The SDO_KEYWORDARRAY
RRAY type is described in SDO_KEYWORDARRAY

Type (page 11-9).)

11-6 Developer's Guide

Data Types for Geocoding

Table 11-6 (Cont.) SDO_GEO_ADDR Type Attributes
. __|

Attribute Data Type Description

PlaceName VARCHAR2(200) Point of interest (POI) name. Example:
CALIFORNIA PACIFIC MEDICAL CTR

StreetName VARCHAR2(200) Street name, including street type. Example:
MAIN ST

IntersectStreet VARCHAR2(200) Intersecting street.

SecUnit VARCHAR2(200) Secondary unit, such as an apartment number or
building number.

Settlement VARCHAR2(200) Lowest-level administrative area to which the
address belongs. (See Table 11-1 (page 11-1).)

Municipality VARCHAR2(200) Administrative area above settlement. (See
Table 11-1 (page 11-1).)

Region VARCHAR2(200) Administrative area above municipality (if
applicable), or above settlement if municipality
does not apply. (See Table 11-1 (page 11-1).)

Country VARCHAR2(100) Country name or ISO country code.

PostalCode VARCHAR2(20) Postal code (optional if administrative area
information is provided). In the United States,
the postal code is the 5-digit ZIP code.

PostalAddOnCode = VARCHAR2(20) String appended to the postal code. In the
United States, the postal add-on code is typically
the last four numbers of a 9-digit ZIP code
specified in "5-4" format.

FullPostalCode VARCHAR2(20) Full postal code, including the postal code and
postal add-on code.

POBox VARCHAR2(100) Post Office box number.

HouseNumber VARCHAR2(100) House or building number. Example: 123 in 123
MAIN ST

BaseName VARCHAR2(200) Base name of the street. Example: MAIN in 123
MAIN ST

StreetType VARCHAR2(20) Type of the street. Example: ST in 123 MAIN ST

StreetTypeBefore VARCHAR2(1) (Not used.)

StreetTypeAttached VARCHAR2(1) (Not used.)

StreetPrefix VARCHAR2(20) Prefix for the street. Example: S in 123 S MAIN
ST

StreetSuffix VARCHAR?2(20) Suffix for the street. Example: NE in 123 MAIN

ST NE

Geocoding Address Data 11-7

Data Types for Geocoding

Table 11-6 (Cont.) SDO_GEO_ADDR Type Attributes
. __|

Attribute Data Type Description

Side VARCHAR2(1) Side of the street (L for left or R for right) that the
house is on when you are traveling along the
road segment following its orientation (that is,
from its start node toward its end node). The
house numbers may be increasing or decreasing.

Percent NUMBER Number from 0 to 1 (multiply by 100 to get a
percentage value) indicating how far along the
street you are when traveling following the road
segment orientation.

EdgelD NUMBER Edge ID of the road segment.

ErrorMessage VARCHAR2(20) Error message (see Error Messages for Output
Geocoded Addresses (page 11-4)). Note: You are
encouraged to use the MatchVector attribute
instead of the ErrorMessage attribute.

MatchCode NUMBER Match code (see Match Codes (page 11-3)).
MatchMode VARCHAR2(30) Match mode (see Match Modes (page 11-2)).
Longitude NUMBER Longitude coordinate value.

Latitude NUMBER Latitude coordinate value.

MatchVector VARCHAR2(20) A string that indicates how each address

attribute has been matched against the data used
for geocoding (see Match Vector for Output
Geocoded Addresses (page 11-5)).

You can return the entire SDO_GEO_ADDR object, or you can specify an attribute
using standard "dot" notation. Example 11-1 (page 11-8) contains statements that
geocode the address of the San Francisco City Hall; the first statement returns the
entire SDO_GEO_ADDR object, and the remaining statements return some specific
attributes.

Example 11-1 Geocoding, Returning Address Object and Specific Attributes

SELECT SDO_GCDR.GEOCODE("SCOTT",
SDO_KEYWORDARRAY ("1 Carlton B Goodlett P1*, "San Francisco, CA 94102%),
"US", "RELAX BASE_NAME®") FROM DUAL;

SDO_GCDR. GEOCODE(" SCOTT*, SDO_KEYWORDARRAY (" 1CARLTONBGOODLETTPL" , " SANFRANCISCO
SDO_GEO_ADDR(0, SDO_KEYWORDARRAY(), NULL, "CARLTON B GOODLETT PL®, NULL, NULL,
SAN FRANCISCO®, NULL, "CA®, *US", "94102", NULL, *94102", NULL, "1", "CARLTON B
GOODLETT®, "PL*, "F", "F", NULL, NULL, "L", .01, 23614360, "????#ENUT?B281CP?",
1, "RELAX_BASE_NAME®, -122.41815, 37.7784183, "????0101010?2?2000?")

SELECT SDO_GCDR.GEOCODE("SCOTT",
SDO_KEYWORDARRAY("1 Carlton B Goodlett P1*, "San Francisco, CA 94102"%),
"US", "RELAX_BASE_NAME").StreetType FROM DUAL;

SDO_GCDR.GEOCODE("SCOTT",SDO_KEYWORDARRAY (" 1CARLTONBGOODLETTPL ", "SANFRANCISCO

11-8 Developer's Guide

Data Types for Geocoding

PL

SELECT SDO_GCDR.GEOCODE("SCOTT",
SDO_KEYWORDARRAY ("1 Carlton B Goodlett P1*", "San Francisco, CA 94102%),
"US", "RELAX_BASE_NAME").Side RROM DUAL;

SELECT SDO_GCDR.GEOCODE("SCOTT",
SDO_KEYWORDARRAY ("1 Carlton B Goodlett P1*, "San Francisco, CA 94102%),
"US", "RELAX_BASE_NAME").Percent FROM DUAL;

SDO_GCDR . GEOCODE("SCOTT*",SDO_KEYWORDARRAY (" 1CARLTONBGOODLETTPL™, " SANFRANCISCO

SELECT SDO_GCDR.GEOCODE("SCOTT",
SDO_KEYWORDARRAY ("1 Carlton B Goodlett P1*, "San Francisco, CA 94102%),
"US", "RELAX_BASE_NAME").EdgelD FROM DUAL;

SDO_GCDR . GEOCODE("SCOTT*,SDO_KEYWORDARRAY (" 1CARLTONBGOODLETTPL™, " SANFRANCISCO

23614360

SELECT SDO_GCDR.GEOCODE("SCOTT",
SDO_KEYWORDARRAY ("1 Carlton B Goodlett P1*", "San Francisco, CA 94102%),
"US", "RELAX_BASE_NAME").MatchCode FROM DUAL;

SDO_GCDR . GEOCODE("SCOTT*,SDO_KEYWORDARRAY (" 1CARLTONBGOODLETTPL™, " SANFRANCISCO

SELECT SDO_GCDR.GEOCODE(*SCOTT",
SDO_KEYWORDARRAY ("1 Carlton B Goodlett P1*", "San Francisco, CA 94102"),
"US", "RELAX_BASE_NAME").MatchVector FROM DUAL;

SDO_GCDR.GEOCODE("SC

????0101010??0007?

11.2.2 SDO_ADDR_ARRAY Type

The SDO_ADDR_ARRAY type is a VARRAY of SDO_GEO_ADDR objects (described
in SDO_GEO_ADDR Type (page 11-6)) used to store geocoded address results.
Multiple address objects can be returned when multiple addresses are matched as a
result of a geocoding operation.

The SDO_ADDR_ARRAY type is defined as follows:
CREATE TYPE sdo_addr_array AS VARRAY(1000) OF sdo_geo_addr;

11.2.3 SDO_KEYWORDARRAY Type

The SDO_KEYWORDARRAY type is a VARRAY of VARCHAR?2 strings used to store
address lines for unformatted addresses. (Formatted and unformatted addresses are
described in Address Representation (page 11-1).)

The SDO_KEYWORDARRAY type is defined as follows:

Geocoding Address Data 11-9

Using the Geocoding Capabilities

CREATE TYPE sdo_keywordarray AS VARRAY(10000) OF VARCHAR2(9000);

11.3 Using the Geocoding Capabilities

To use the Oracle Spatial and Graph geocoding capabilities, you must use data
provided by a geocoding vendor, and the data must be in the format supported by the
Oracle Spatial and Graph geocoding feature. For information about geocoding, go to:

database/options

To geocode an address using the geocoding data, use the SDO_GCDR PL/SQL
package subprograms, which are documented in SDO_GCDR Package (Geocoding)
(page 22-1):

¢ The SDO_GCDR.GEOCODE (page 22-2) function geocodes an unformatted
address to return an SDO_GEO_ADDR object.

* The SDO_GCDR.GEOCODE_ADDR (page 22-3) function geocodes an input
address using attributes in an SDO_GEO_ADDR object, and returns the first
matched address as an SDO_GEO_ADDR object.

¢ The SDO_GCDR.GEOCODE_ADDR_ALL (page 22-4) function geocodes an
input address using attributes in an SDO_GEO_ADDR object, and returns
matching addresses as an SDO_ADDR_ARRAY object.

¢ The SDO_GCDR.GEOCODE_AS_GEOMETRY (page 22-7) function geocodes an
unformatted address to return an SDO_GEOMETRY object.

¢ The SDO_GCDR.GEOCODE_ALL (page 22-5) function geocodes all addresses
associated with an unformatted address and returns the result as an
SDO_ADDR_ARRAY object (an array of address objects).

® The SDO_GCDR.REVERSE_GEOCODE (page 22-8) function reverse geocodes a
location, specified by its spatial geometry object and country, and returns the result
as an SDO_GEO_ADDR object.

11.4 Geocoding from a Place Name

If you know a place name (point of interest) but not its locality details, you can create a
PL/SQL function to construct an SDO_GEO_ADDR object from placename and
country input parameters, as shown in Example 11-2 (page 11-10), which creates a
function named create_addr_from_placename. The SELECT statement in this
example uses the SDO_GCDR.GEOCODE_ADDR (page 22-3) function to geocode

the address constructed using the create_addr_from_placename function.

Example 11-2 Geocoding from a Place Name and Country

create or replace function create_addr_from_placename(
placename varchar2,
country varchar?)
return sdo_geo_addr
deterministic
as
addr sdo_geo_addr ;
begin
addr := sdo_geo_addr() ;
addr.country := country ;
addr.placename := placename ;
addr.matchmode := "default” ;
return addr ;

11-10 Developer's Guide

Data Structures for Geocoding

end;
/

SELECT sdo_gcdr.geocode_addr("SCOTT",
create_addr_from_placename("CALIFORNIA PACIFIC MEDICAL CTR", "UST))
FROM DUAL;

Example 11-3 Geocoding from a Place Name, Country, and Other Fields

If you know at least some of the locality information, such as settlement, region, and
postal code, you can get better performance if you can provide such information.
Example 11-3 (page 11-11) provides an alternate version of the
create_addr_from_placename function that accepts additional parameters. To
call this version of the function, specify actual values for the placename and country
parameters, and specify an actual value or a null value for each of the other input
parameters.

create or replace function create_addr_from_placename(

placename varchar2,

city varchar2,

state varchar2,

postalcode varchar2,

country varchar?)

return sdo_geo_addr

deterministic

as
addr sdo_geo_addr ;
begin
addr := sdo_geo_addr() ;
addr.settlement := city ;
addr.region := state ;
addr.postalcode := postalcode ;
addr.country := country ;
addr.placename := placename ;
addr.matchmode := "default” ;
return addr ;
end;
/

SELECT sdo_gcdr.geocode_addr("SCOTT",
create_addr_from_placename("CALIFORNIA PACIFIC MEDICAL CTR",
"san francisco®, "ca", null, "US")) FROM DUAL;

11.5 Data Structures for Geocoding
Oracle uses the following tables for geocoding:
¢ GC_PARSER_PROFILES
¢ GC_PARSER_PROFILEAFS
¢ GC_COUNTRY_PROFILE
e GC_AREA_<suffix>
¢ GC_POSTAL_CODE_<suffix>
¢ GC_ROAD_SEGMENT_<suffix>
¢ GC_ROAD_<suffix>

Geocoding Address Data 11-11

Data Structures for Geocoding

e GC_POI_<suffix>

e GC_INTERSECTION_<suffix>

The GC_PARSER_PROFILES and GC_PARSER_PROFILEAFS tables store address
format definitions of all supported counties. These tables are used by the internal
address parser in parsing postal addresses into addressing fields. The data for these
two tables is provided by your data provider or by Oracle. (If these tables are not
supplied by your data provider, you will need to install and populate them as
explained in Installing the Profile Tables (page 11-33).) The remaining tables store
geocoding data provided by data vendors.

Each user that owns the tables containing geocoding data (that is, each user that can be
specified with the username parameter in a call to an SDO_GCDR subprogram) must
have one GC_PARSER_PROFILES table, one GC_PARSER_PROFILEAFS table, and
one GC_COUNTRY_PROFILE table. Each such user can have multiple sets of the
other tables (GC_xxx_<suffix>). Each set of tables whose names end with the same
suffix stores geocoding data of a country. For example, the following set of tables can
be used to store geocoding data of the United States:

e GC_AREA_US

e GC_POSTAL_CODE_US

¢ GC_ROAD_SEGMENT_US
¢ GC_ROAD_US

¢ GC_POI_US

e GC_INTERSECTION_US

Geocoding data of one country cannot be stored in more than one set of those tables.
The table suffix is defined by data venders and is specified in the GC_TABLE_SUFFIX
column in the GC_COUNTRY_PROFILE table (described in GC_COUNTRY_PROFILE
Table (page 11-15)).

The following sections describe the vendor-supplied tables that store geocoding data,
in alphabetical order by table name.

Indexes on Tables for Geocoding (page 11-32) describes the indexes that you must
create in order to use these tables for geocoding.

11.5.1 GC_ADDRESS_POINT_<suffix> Table and Index

The GC_ADDRESS_POINT_<suffix> table (for example, GC_ADDRESS_POINT_US)
stores the geographic (latitude, longitude) coordinates for addresses in the country or
group of countries associated with the table-name suffix. This table is not required for
geocoding (although it is required for point-based geocoding); however, it enables the
geocoder to provide more accurate location results. It is automatically used when
present in the schema. This table contains one row for each address stored in the table,
and it contains the columns shown in Table 11-7 (page 11-12).

Table 11-7 GC_ADDRESS_ POINT_<suffix> Table

Column Name Data Type Description

ADDRESS_POIN NUMBER(10) ID number of the address point. (Required)
T_ID

11-12 Developer's Guide

Data Structures for Geocoding

Table 11-7 (Cont.) GC_ADDRESS_POINT_<suffix> Table
. |

Column Name Data Type Description

ROAD_ID NUMBER ID number of the road on which the address point is
located. (Required)

ROAD_SEGMEN NUMBER(10) ID number of the road segment on the road on which

T_ID the address point is located. (Required)

SIDE VARCHAR2(1) Side of the road on which the address point is located.
Possible values: L (left) or R (right). (Required)

LANG_CODE VARCHAR2(3) 3-letter ISO national language code for the language
associated with the address point. (Required) point

HOUSE_NUMBE VARCHAR2(60 House number of the address point; may contain non-

R 0 CHAR) numeric characters. (Required)

PERCENT NUMBER Decimal fraction of the length of the road segment on
which the address point is located. It is computed by
dividing the distance from the segment start point to
the address point by the length of the road segment.
(Required).

ADDR_LONG NUMBER(10) Longitude coordinate value of the address point.
(Required)

ADDR_LAT NUMBER(10) Latitude coordinate value of the address point.
(Required)

COUNTRY_COD VARCHAR2(2) 2-letter ISO country code of the country to which the

E 2 address point belongs. (Required)

PARTITION_ID NUMBER Partition key used for partitioning geocoder data by

geographic boundaries. If the data is not partitioned,
set the value to 1. (Required)

If you use the GC_ADDRESS_POINT_<suffix> table, you must create an index on the
table using a statement in the following form:

CREATE INDEX idx_<suffix>_addrpt_addr ON gc_address_point_<suffix> (road_segment_id,
road_id, house_number, side);

11.5.2 GC_AREA _<suffix> Table

The GC_AREA_<suffix> table (for example, CG_AREA_US) stores administration
area information for the country associated with the table name suffix. This table
contains one row for each administration area, and it contains the columns shown in
Table 11-8 (page 11-13).

Table 11-8 GC_AREA_<suffix> Table
- ___|

Column Name Data Type Description
AREA_ID NUMBER(10) Area ID number. (Required)
AREA_NAME VARCHAR2(64 Areaname. (Required)

)

Geocoding Address Data 11-13

Data Structures for Geocoding

Table 11-8 (Cont.) GC_AREA_<suffix> Table
. ___|

Column Name Data Type Description

LANG_CODE VARCHAR2(3) 3-letter ISO national language code for the language
associated with the area. (Required)

ADMIN_LEVEL NUMBER(1) Administration hierarchy level for the area. (Required)

LEVEL1_AREA_ I NUMBER(10) ID of the level-1 area to which the area belongs. In the
D administration hierarchy, the level-1 area is the
country. (Required)

LEVEL2_AREA_I NUMBER(10) ID of the level-2 area to which the area belongs, if

D applicable. You must specify an area ID for each level
in the administration hierarchy to which this area
belongs. (Optional)

LEVEL3_AREA_I NUMBER(10) ID of the level-3 area to which the area belongs, if

D applicable. You must specify an area ID for each level
in the administration hierarchy to which this area
belongs. (Optional)

LEVEL4_AREA_I NUMBER(10) ID of the level-4 area to which the area belongs, if

D applicable. You must specify an area ID for each level
in the administration hierarchy to which this area
belongs. (Optional)

LEVEL5_AREA_I NUMBER(10) ID of the level-5 area to which the area belongs, if

D applicable. You must specify an area ID for each level
in the administration hierarchy to which this area
belongs. (Optional)

LEVEL6_AREA_I NUMBER(10) ID of the level-6 area to which the area belongs, if

D applicable. You must specify an area ID for each level
in the administration hierarchy to which this area
belongs. (Optional)

LEVEL7_AREA_I NUMBER(10) ID of the level-7 area to which the area belongs, if

D applicable. You must specify an area ID for each level
in the administration hierarchy to which this area
belongs. (Optional)

CENTER_LONG NUMBER Longitude value of the center of the area. The center is
set to the closest road segment to the center longitude
and latitude values. Oracle recommends that these two
attributes be set properly. If these values are not set,
the longitude and latitude coordinates of the geocoded
result of an area will be (0,0). (Optional)

CENTER_LAT NUMBER Latitude value of the center of the area. (See the
explanation for the CENTER_LONG column.)
(Optional)

ROAD_SEGMEN NUMBER(10) ID of the road segment to which the area center is set.
T_ID This value must be set correctly if the geocoder is
intended to work with the Oracle Spatial and Graph
routing engine (described in Routing Engine
(page 13-1)); otherwise, it can be set to any nonzero
value, but it cannot be null. (Required)

11-14 Developer's Guide

Data Structures for Geocoding

Table 11-8 (Cont.) GC_AREA_<suffix> Table
. ___|

Column Name Data Type Description
POSTAL_CODE VARCHAR2(16 Postal code for the center of the area. Oracle
) recommends that this attribute be set correctly. If this

value is null, the postal code attribute of the geocoded
result of an area will be null. (Optional)

COUNTRY_COD VARCHAR2(2) 2-letter ISO country code of the country to which the
E 2 area belongs. (Required)

PARTITION_ID = NUMBER Partition key used for partitioning geocoder data by
geographic boundaries. If the data is not partitioned,
set the value to 1. (Required)

REAL_NAME VARCHAR2(64 The real name of the area, as spelled using the local
) language. This column is useful for area names that

are not in English. For example, the German name of
city MUNICH is MUNCHEN. It is allowed to be spelled as
MUNCHEN, but its REAL_NAME value should be
MUNCHEN. In the area table for Germany, areas with
name MUNCHEN and MUNCHEN both refer to the same
area, and they both have the same real name
MUNCHEN. If the area name does not have any non-
English characters, set REAL_NAME to be the same as
AREA_NAME. (Required)

IS_ALIAS VARCHAR2(1) Contains T if this area is an alias of another area that is
an officially recognized administrative area; contains F
if this area is not an alias of another area that is an
officially recognized administrative area. For example,
Manhattan is not an officially recognized
administrative area, but it is used by the public to refer
to a part of New York City. In this case, Manhattan is
an alias of New York City. (Required)

NUM_STREETS NUMBER The number of streets inside this area. (Optional)

11.5.3 GC_COUNTRY_PROFILE Table

The GC_COUNTRY_PROFILE table stores country profile information used by the
geocoder. This information includes administrative-area hierarchy definitions, the
national languages, and the table-name suffix used by the data tables and their
indexes. This table contains one row for each supported country, and it contains the
columns shown in Table 11-9 (page 11-15).

Table 11-9 GC_COUNTRY_PROFILE Table
s

Column Name Data Type Description

COUNTRY_NAM VARCHAR2(60 Country name. (Required)
E)

COUNTRY_COD VARCHAR2(3) 3-letter ISO country code. (Required)
E_3

COUNTRY_COD VARCHAR2(2) 2-letter ISO country code. (Required)
E 2

Geocoding Address Data 11-15

Data Structures for Geocoding

Table 11-9 (Cont.) GC_COUNTRY_PROFILE Table
. __|

Column Name Data Type Description

LANG_CODE_1 VARCHAR2(3) 3-letter ISO national language code. Some countries
might have multiple national languages, in which case
LANG_CODE_2 and perhaps other LANG_CODE_n
columns should contain values. (Required)

LANG_CODE_2 VARCHAR2(3) 3-letter ISO national language code. (Optional)

LANG_CODE_3 VARCHAR2(3) 3-letter ISO national language code. (Optional)

LANG_CODE_4 VARCHAR2(3) 3-letter ISO national language code. (Optional)

NUMBER_ADMI NUMBER(1) Number of administration hierarchy levels. A country

N_LEVELS can have up to 7 administration area levels, numbered
from 1 to 7 (largest to smallest). The top level area
(country) is level 1. For the United States, the
administration hierarchy is as follows: level 1 =
country, level 2 = state, level 3 = county, level 4 = city.
(Required)

SETTLEMENT_L NUMBER(1) Administration hierarchy level for a settlement, which

EVEL is the lowest area level used in addressing. In the
United States, this is the city level; in Europe, this is
generally a subdivision of a city (level 5). (Required)

MUNICIPALITY_ NUMBER(1) Administration hierarchy level for a municipality,

LEVEL which is the second-lowest area level used in
addressing. In the United States, this is the county
(level 3); in Europe, this is generally a city (level 4).
(Optional)

REGION_LEVEL NUMBER(1) Administrative level for the region, which is above the
municipality level. In the United States, this is the state
or third-lowest area level used in addressing (level 2);
in Europe, this is a recognized subdivision of the
country (level 2 or level 3). (Optional)

SETTLEMENT_IS VARCHAR2(1) Contains T if settlement information is optional in the

_OPTIONAL address data; contains F if settlement information is
not optional (that is, is required) in the address data.
(Required)

MUNICIPALITY_ VARCHAR2(1) Contains T if municipality information is optional in

IS_OPTIONAL the address data; contains F if municipality
information is not optional (that is, is required) in the
address data. (Required)

REGION_IS_OPT VARCHAR2(1) Contains T if region information is optional in the

IONAL address data; contains F if region information is not
optional (that is, is required) in the address data.
(Required)

POSTCODE_IN_S VARCHAR(1) Contains T if each postal code must be completely

ETTLEMENT

11-16 Developer's Guide

within a settlement area; contains F if a postal code
can include areas from multiple settlements.
(Required)

Data Structures for Geocoding

Table 11-9 (Cont.) GC_COUNTRY_PROFILE Table
. __|

Column Name Data Type

Description

SETTLEMENT_A VARCHAR(1)
S_CITY

CACHED_ADMI NUMBER
N_AREA_LEVEL
GC_TABLE_SUFF VARCHAR2(5)
IX

CENTER_LONG NUMBER
CENTER_LAT NUMBER
SEPARATE_PREF VARCHAR2(1)
IX

SEPARATE_SUFF VARCHAR2(1)
IX

SEPARATE_STYP VARCHAR2(1)
E

AREA_ID NUMBER
VERSION VARCHAR2(10

)

Contains T if a city name can identify both a
municipality and a settlement; contains F if a city
name can identify only a settlement. For example, in
the United Kingdom, London can be both the name of
a municipality area and the name of a settlement area,
which is inside the municipality of London. This is
common in large cities in some European countries,
such as the UK and Belgium. (Required)

(Reserved for future use.)

Table name suffix identifying the country for the GC_*
data tables. For example, if the value of
GC_TABLE_SUFFIX is US, the names of tables with
geocoding data for this country end with _US (for
example, CG_AREA_US). (Required)

Longitude value of the center of the area. (Optional)
Latitude value of the center of the area. (Optional)

Contains T if the street name prefix is a separate word
from the street name; contains F if the street name
prefix is in the same word with the street name. For
example, in an American street address of 123 N
Main St, the prefix is N, and it is separate from the
street name, which is Main. (Optional; not currently
used by Oracle)

Contains T if the street name suffix is a separate word
from the street name; contains F if the street name
suffix is in the same word with the street name. For
example, in an American street address of 123 Main
St NW, the suffix is NW, and it is separate from the
street name, which is Main, and from the street type,
which is St. (Optional; not currently used by Oracle)

Contains T if the street type is a separate word from
the street name; contains F if the street type is in the
same word with the street name. For example, in a
German street address of 123 Beethovenstrass,
the type is strass, and it is in the same word with the
street name, which is Beethoven. (Optional; not
currently used by Oracle)

Not currently used by Oracle. (Optional)

Version of the data. The first version should be 1.0.
(Required)

11.5.4 GC_INTERSECTION_<suffix> Table

The GC_INTERSECTION_<suffix> table (for example, GC_INTERSECTION_US)
stores information on road intersections for the country or group of countries

Geocoding Address Data 11-17

Data Structures for Geocoding

associated with the table-name suffix. An intersection occurs when roads meet or cross
each other. This table contains the columns shown in Table 11-10 (page 11-18).

Table 11-10 GC_INTERSECTION_<suffix> Table

Column Name Data Type Description

ROAD_ID_1 NUMBER ID number of the first road on which the intersection is
located. (Required)

ROAD_SEGMEN NUMBER ID number of the road segment on the first road on

T_ID_1 which the intersection is located. (Required)

ROAD_ID_2 NUMBER ID number of the second road on which the
intersection is located. (Required)

ROAD_SEGMEN NUMBER ID number of the road segment on the second road on

T ID_2 which the intersection is located. (Required)

INTS_LONG NUMBER Longitude coordinate value of the intersection.
(Required)

INTS_LAT NUMBER Latitude coordinate value of the intersection.
(Required)

HOUSE_NUMBE NUMBER The leading numerical part of the house number at the

R intersection. (See the explanation of house numbers

after Table 11-16 (page 11-30) in
GC_ROAD_SEGMENT_<suffix> Table (page 11-30).)
(Required)

HOUSE_NUMBE VARCHAR2(10 The second part of the house number at the

R 2) intersection. (See the explanation of house numbers
after Table 11-16 (page 11-30) in
GC_ROAD_SEGMENT_<suffix> Table (page 11-30).)
(Required)

SIDE VARCHAR2(1) Side of the street on which the house at the
intersection is located. Possible values: L (left) or R
(right). (Required)

COUNTRY_COD VARCHAR2(2) 2-letter ISO country code of the country to which the
E 2 house at the intersection belongs. (Required)

PARTITION_ID = NUMBER Partition key used for partitioning geocoder data by
geographic boundaries. If the data is not partitioned,
set the value to 1. (Required)

11.5.5 GC_PARSER_PROFILES Table

The GC_PARSER_PROFILES table stores information about keywords typically found
in postal addresses. The geocoder uses keywords to identify address fields, such as
house number, road name, city name, state name, and postal code. A keyword can be
the type of street (such as road, street, drive, or avenue) or the prefix or suffix of a
street (such as north, south, east, or west). This table contains the columns shown in
Table 11-11 (page 11-19).

11-18 Developer's Guide

Data Structures for Geocoding

Table 11-11 GC_PARSER_PROFILES Table
I

Column Name Data Type Description

COUNTRY_CO VARCHAR2(2) 2- letter ISO country code of the country for the
DE keyword. (Required)

KEYWORDS SDO_KEYWORD A single array of keywords for a specific address
ARRAY field. The array may contain a single word, or a

group of words and abbreviations that can be used
with the same meaning; for example, United States of
America, USA, and United States all refer to the US.
The first word of this array should be the official full
name of the keyword, if there is any. The US uses
over 400 keywords in parsing addresses. The
following are some examples of keyword arrays and
keywords from the US data set; however, only a
single SDO_KEYWORDARRAY object is stored in
each row:

SDO_KEYWORDARRAY('UNITED STATES OF
AMERICA','US, 'USA', 'UNITED STATES', US.A.,,
USs.)

SDO_KEYWORDARRAY(AVENUE','AV', 'AVE,
'AVEN', 'AVENU', 'AVN', 'AVNUE, 'AV., AVE.)
SDO_KEYWORDARRAY('40TH', 'FORTIETH)
SDO_KEYWORDARRAY(NEW YORK',NY')

SDO_KEYWORDARRAY('LIBRARY")

OUTPUT_KEY VARCHAR2(2000) A keyword used in the geocoder data to represent an

WORD address field. It must be the same as one of the
keywords used in the keyword array. The output
keyword is used to match the addresses stored in the
geocoding data tables to the user's input, for
example, if the output keyword AV is used for street
type Avenue in the GC_ROAD_US table, wherever a
user enters an address containing any of the
keywords (AVENUE, AV, AVE, AVEN, AVENU,
AVN, AVNUE, AV., AVE.), the keyword will be
interpreted and matched to the output keyword AV
to help find the address in the database The
following are some examples of output keywords;
however, only a single output keyword is stored in
each row:

us

AV

40TH

NY
LIBRARY

Geocoding Address Data 11-19

Data Structures for Geocoding

Table 11-11 (Cont.) GC_PARSER_PROFILES Table
|

Column Name Data Type Description
SECTION_LABE VARCHAR2(30) A label used to identify the type of keyword
L represented in the KEYWORDS and

OUTPUT_KEYWORD columns. There are the
multiple different section labels; however, only a
single section label for each row is used in
identifying the type of keywords:

COUNTRY_NAME: Identifies keywords that are
used to represent country names.

LOCALITY_KEYWORD_DICTIONARY: Identifies
keywords that are used to replace words in a locality
(city, state, province, and so on) with a standardized
form of the word. For example, Saint is replaced by
St; and by doing so, the city names Saint Thomas and
St. Thomas will be standardized to St Thomas, which
is stored in the database.

PLACE_NAME_KEYWORD: Identifies a point of
interest (POI) name keyword, such as for a restaurant
or a hotel.

REGION_LIST: Identifies keywords that are known
names of regions, such as NY, New York, NH, and
New Hampshire. The regions identified must be
administrative areas that belong to the third-lowest
area level or third-smallest area used in addressing.
In the US this is the state level (the lowest area level
or smallest area is the city level).

SECOND_UNIT_KEYWORD: Identifies keywords
used in second-unit descriptions, such as Floor, #,
Suite, and Apartment.

STREET_KEYWORD_DICTIONARY: Identifies
keywords used to replace non-street-type keywords
in street names (such as 40TH and Fortieth) with a
standardized form.

STREET_PREFIX_KEYWORD: Identifies street name
prefix keywords, such as South, North, West, and East.

STREET_TYPE_KEYWORD: Identifies street type
keywords, such as Road, Street, and Drive.

IN_LINE_STREET_TYPE_KEYWORD: Identifies
street type keywords that are attached to street
names, such as strasse in the German street name
Steinstrasse.

POSITION VARCHAR2(1) The position of the keyword relative to a street name.
It indicates whether the keyword can precede (P) or
follow (F) the actual street name, or both (B). Thus, P,
F, and B are the only valid entries. In the US, most
street type keywords follow the street names, for
example, the street type Blvd in Hollywood Blvd. In
France, however, street type keywords usually
precede the street names, for example, the street type
Avenue in Avenue De Paris.

11-20 Developer's Guide

Data Structures for Geocoding

Table 11-11 (Cont.) GC_PARSER_PROFILES Table
|

Column Name Data Type Description
SEPARATENES VARCHAR2(1) Indicates whether the keyword is separate from a
S street name. Keywords are either separable (S) or

non-separable (N). Thus, S and N are the only valid
entries. In the US, all street-type keywords are
separate words from the street name, for example,
the street type Blvd in Hollywood Blvd. In Germany,
however, the street-type keywords are not separate
from the street name, for example, the street type
strasse in Augustenstrasse.

11.5.6 GC_PARSER_PROFILEAFS Table

The GC_PARSER_PROFILEAFS table stores the XML definition of postal-address
formats. An XML string describes each address format for a specific country. In the
Oracle Geocoder 10g and earlier, the J2EE geocoder uses a country_name.ppr file
instead of this table. The content of the country_name.ppr file is equivalent to the
content of the ADDRESS_FORMAT_STRING attribute. This table contains the
columns shown in Table 11-12 (page 11-21).

Table 11-12 GC_PARSER_PROFILEAFS Table
e

Column Name Data Type Description

COUNTRY_CODE VARCHAR2(2 2- letter ISO country code of the country. (Required)
)

ADDRESS_FORMAT CLOB XML string describing the address format for the
_STRING country specified in the COUNTRY_CODE column.
(Example 11-4 (page 11-21) shows the XML
definition for the US address format, and
ADDRESS_FORMAT_STRING Description
(page 11-23) explains the elements used in the US
address format definition.).

Example 11-4 (page 11-21) shows the ADDRESS_FORMAT_STRING definition for
the US address format.

Example 11-4 XML Definition for the US Address Format

<address_format unit_separator="," replace_hyphen="true">
<address_line>
<place_name />
</address_line>
<address_line>
<street_address>
<house_number>
<format form="0*" effective="0-1" output="$" />
<format form="0*1*" effective="0-1" output="$">
<exception form="0*TH" />
<exception form="0*ST" />
<exception form="0*2ND" />
<exception form="0*3RD" />
</format>
<format form="0*10*" effective="0-1" output="$" />
<format form="0*-0*" effective="0-1" output="$" />

Geocoding Address Data 11-21

Data Structures for Geocoding

<format form="0*.0*" effective="0-1" output="$" />
<format form="0* 0*/0*" effective="0-1" output="$" />
</house_number>
<street_name>
<prefix />
<base_name />
<suffix />
<street_type />
<special_format>
<format form="1* HWY 0*" effective="7-8" addon_effective="0-1" addon_output="$
HWY* />
<format form="1* HIGHWAY 0*" effective="11-12" addon_effective="0-1"
addon_output="$ HWY"'/>
<format form="1* HWY-0*" effective="7-8" addon_effective="0-1" addon_output="$
HWY* />
<format form="1* HIGHWAY-0*" effective="11-12" addon_effective="0-1"
addon_output="$ HWY"'/>
<format form="HWY 0*" effective="4-5" addon_output="HWY" />
<format form="HIGHWAY 0*" effective="8-9" addon_output="HWY" />
<format form="ROUTE 0*" effective="6-7" addon_output="RT" />
<format form="1 0*" effective="2-3" addon_output="1" />
<format form="11 0*" effective="3-4" addon_effective="0-1" />
<format form="10*" effective="1-2" addon_output="1" />
<format form="1-0*" effective="2-3" addon_output="1" />
<format form="11-0*" effective="3-4" addon_effective="0-1" />
<format form="ROUTE-0*" effective="6-7" addon_output="RT" />
<format form="USO*" effective="2-3" addon_output="US" />
<format form="HWY-0*" effective="2-3" addon_output="US" />
<format form="HIGHWAY-0*" effective="8-9" addon_output="HWY" />
</special_format>
</street_name>
<second_unit>
<special_format>
<format form="# 0*" effective="2-3" output="APT $" />
<format form="#0*" effective="1-2" output="APT $" />
</special_format>
</second_unit>
</street_address>
</address_line>
<address_line>
<po_hox>
<format form="PO BOX 0*" effective="7-8" />
<format form="P.0. BOX 0*" effective="9-10" />
<format form="PO 0*" effective="3-4" />
<format form="P.0. 0*" effective="5-6" />
<format form="POBOX 0*" effective="6-7" />
</po_hox>
</address_line>
<address_line>
<city optional="no" />
<region optional="no" order="1" />
<postal_code>
<format form="00000" effective="0-4" />
<format form="00000-0000" effective="0-4" addon_effective="6-9" />
<format form="00000 0000" effective="0-4" addon_effective="6-9" />
</postal_code>
</address_line>
</address_format>

11-22 Developer's Guide

Data Structures for Geocoding

11.5.6.1 ADDRESS_FORMAT_STRING Description

The ADDRESS_FORMAT_ STRING column of the GC_PARSER_PROFILEAFS table
describes the format of address fields and their positioning in valid postal addresses.
The address format string is organized by address lines, because postal addresses are
typically written in multiple address lines.

The address parser uses the format description defined in the XML address format,
combined with the keyword definition for each address field defined in the
GC_PARSER_PROFILES table, to parse the input address and identify individual
address fields.

<address_format> Element

The <address_format> element includes the unit_separator and
replace_hyphen attributes. The unit_separator attribute is used to separate
fields in the stored data. By default it is a comma (unit_separator=",""). The
replace_hyphen attribute specifies whether to replace all hyphens in the user's
input with a space. By default it is set to true (replace_hyphen=""true"), that is, it
is expected that all names in the data tables will contain a space instead of a hyphen.

If replace_hyphen=""true"’, administrative-area names in the data tables
containing hyphens will not be matched during geocoding if
replace_hyphen="true"; however, these area names with hyphens can be placed
in the REAL_NAME column of the GC_AREA table to be returned as the
administrative-area name in the geocoded result. Road names in the NAME column of
the GC_ROAD table containing hyphens will, however, be matched during geocoding,
but the matching performance will be degraded

<address_line> Elements

Each <address_line> element in the XML address format string describes the
format of an address line. Each <address_ 1 ine> element can have one or more child
elements describing the individual address fields, such as street address, city, state
(region or province), and postal code. These address field elements are listed in the
order that the address fields appear in valid postal addresses. The optional attribute
of the address field element is set to "'no™" if the address field is mandatory. By default,
address field elements are optional.

<format> Elements

The format descriptions for house number, special street name, post box, and postal
code elements are specified with a single or multiple <format> elements. Each
<format> element specifies a valid layout and range of values for a particular
address field. The following example illustrates the format used to define a special
street name:

<format
form=""1* HWY 0*"
effective="7-8"
output="$"
addon_effective="0-1"
addon_output="$ HIGHWAY" />

The Form attribute uses a regular expression-like string to describe the format: 1
stands for any alphabetic letter; O stands for any numerical digit; 2 stands for any
alphabetic letter or any numerical digit; 1* specifies a sting consisting of all alphabetic
letters; O* specifies a string consisting of all numerical digits; 2* specifies a string
consisting of any combination of numerical digits and alphabetic letters. All other
symbols represent themselves.

Geocoding Address Data 11-23

Data Structures for Geocoding

Any string matching the pattern specified by the form attribute is considered to be a
valid string for its (parent) address field. A valid string can then be broken down into
segments specified by the attributes effective and addon_effective. The
effective attribute specifies the more important, primary piece of the address string;
the addon_effective attribute specifies the secondary piece of the address string.

¢ The effective attribute specifies a substring of the full pattern using the start
and end positions for the end descriptor of the Form attribute. In the preceding
example, effective=""7-8" retrieves the substring (counting from position 0)
starting at position 7 and ending at position 8, which is the substring defined by
0*, at the end of the Form attribute.

e The addon_effective attribute specifies a substring of the full pattern using the
start and end positions for the start descriptor of the form attribute. In the
preceding example, addon_effective="0-1" retrieves the substring, (counting
from position 0) starting at position 0 and ending at position 1, which is the
substring defined by 1%, at the beginning of the form attribute.

The output and addon_output attributes specify the output form of the address
string for segments specified by the effective and addon_effective attributes,
respectively. These output forms are used during address matching. The symbol $
stands for the matched string, and other symbols represent themselves. In the
preceding example:

e Inoutput="%", the $ stands for the substring that was matched in the
effective attribute.

¢ Inaddon_output="%$ HIGHWAY", the $ HIGHWAY stands for the substring that
was matched in the addon_effective attribute, followed by a space, followed by
the word HIGHWAY.

Using the <format> element in the preceding example, with form="1* HWY O*",
the input string 'STATE HWY 580" will have effective=580, output=580,
addon_effective=STATE, and addon_output=STATE HIGHWAY.

The <format> element may also contain an <exception> element. The
<exception> element specifies a string that has a valid form, but must be excluded
from the address field. For example, in a <house_number> element with valid
numbers 0*1* (that is, any numeric digits followed by any alphabetic letters),
specifying <exception form="0*TH" /> means that any house number with (or
without) numeric digits and ending with "TH" must be excluded.

11.5.7 GC_POI_<suffix> Table

The GC_POI_<suffix> table (for example, GC_POI_US) stores point of interest (POI)
information for the country or group of countries associated with the table name
suffix. POIs include features such as airports, monuments, and parks. This table
contains one or more rows for each point of interest. (For example, it can contain
multiple rows for a POI if the POl is associated with multiple settlements.) The
GC_POL_<suffix> table contains the columns shown in Table 11-13 (page 11-24).

Table 11-13 GC_POI_<suffix> Table
- - __|

Column Name Data Type Description

POL_ID NUMBER ID number of the POL (Required)

11-24 Developer's Guide

Data Structures for Geocoding

Table 11-13 (Cont.) GC_POI_<suffix> Table
. ___|

Column Name Data Type Description
POI_NAME VARCHAR2(64 Name of the POL (Required)
)
LANG_CODE VARCHAR2(3) 3-letter ISO national language code for the language
for the POI name. (Required)
FEATURE_CODE NUMBER Feature code for the PO], if the data vendor classifies
POIs by category. (Optional)
HOUSE_NUMBE VARCHAR2(10 House number of the POL; may contain non-numeric
R) characters. (Required)
STREET_NAME VARCHAR2(80 Road name of the POI. (Required)
)
SETTLEMENT_I = NUMBER(10) ID number of the settlement to which the POI belongs.
D (Required if the POl is associated with a settlement)
MUNICIPALITY_ NUMBER(10) ID number of the municipality to which the POI
ID belongs. (Required if the POI is associated with a
municipality)
REGION_ID NUMBER(10) ID number of the region to which the POI belongs.
(Required if the POl is associated with a region)
SETTLEMENT_N VARCHAR2(64 Name of the settlement to which the POI belongs.
AME) (Required if the POl is associated with a settlement)
MUNICIPALITY_ VARCHAR2(64 Name of the municipality to which the POI belongs.
NAME) (Required if the POl is associated with a municipality)
REGION_NAME VARCHAR2(64 Name of the region to which the POI belongs.
) (Required if the POl is associated with a region)
POSTAL_CODE VARCHAR2(16 Postal code of the POI. (Required)
)
VANITY_CITY VARCHAR2(35 Name of the city popularly associated with the POI, if
) it is different from the actual city containing the POI.
For example, the London Heathrow Airport is actually
located in a town named Hayes, which is part of
greater London, but people tend to associate the
airport only with London. In this case, the
VANITY_CITY value is London. (Optional)
ROAD_SEGMEN NUMBER ID of the road segment on which the POl is located.
T_ID (Required)
SIDE VARCHAR2(1) Side of the street on which the POl is located. Possible
values: L (left) or R (right). (Required)
PERCENT NUMBER Percentage value at which the POI is located on the

road. It is computed by dividing the distance from the
street segment start point to the POI by the length of
the street segment. (Required)

Geocoding Address Data 11-25

Data Structures for Geocoding

Table 11-13 (Cont.) GC_POI_<suffix> Table
. ___|

Column Name Data Type Description

TELEPHONE_N VARCHAR2(20 Telephone number of the POL. (Optional)

UMBER)

LOC_LONG NUMBER Longitude coordinate value of the POI. (Required)
LOC_LAT NUMBER Latitude coordinate value of the POI. (Required)
COUNTRY_COD VARCHAR2(2) 2-letter ISO country code of the country to which the
E_ 2 POI belongs. (Required)

PARTITION_ID = NUMBER Partition key used for partitioning geocoder data by

geographic boundaries. If the data is not partitioned,
set the value to 1. (Required)

11.5.8 GC_POSTAL_CODE_<suffix> Table

The GC_POSTAL_CODE_<suffix> table (for example, GC_POSTAL_CODE_US)
stores postal code information for the country or group of countries associated with
the table-name suffix, if postal codes are used in the address format. This table
contains one or more rows for each postal code; it may contain multiple rows for a
postal code when the postal code is associated with multiple settlements. The
GC_POSTAL_CODE_<suffix> table contains the columns shown in Table 11-14
(page 11-26).

Table 11-14 GC_POSTAL_CODE_<suffix> Table
|

Column Name Data Type Description

POSTAL_CODE VARCHAR2(16 Postal code for the postal code area. (Required)

)

SETTLEMENT_N VARCHAR2(64 Name of the settlement to which the postal code
AME) belongs. (Required if the postal code is associated with
a settlement)

MUNICIPALITY_ VARCHAR2(64 Name of the municipality to which the postal code
NAME) belongs. (Required if the postal code is associated with
a municipality)

REGION_NAME VARCHAR2(64 Name of the region to which the postal code belongs.

) (Required if the postal code is associated with a

region)

LANG_CODE VARCHAR2(3) 3-letter ISO national language code for the language
associated with the area. (Required)

SETTLEMENT_I = NUMBER(10) ID number of the settlement to which the postal code

D belongs. (Required if the postal code is associated with
a settlement)

MUNICIPALITY_ NUMBER(10) ID number of the municipality to which the postal

ID code belongs. (Required if the postal code is associated

11-26 Developer's Guide

with a municipality)

Data Structures for Geocoding

Table 11-14 (Cont.) GC_POSTAL_CODE_<suffix> Table
|

Column Name

Data Type

Description

REGION_ID

CENTER_LONG

CENTER_LAT

ROAD_SEGMEN
T_ID

COUNTRY_COD
E_2

PARTITION_ID

NUM_STREETS

NUMBER(10)

NUMBER

NUMBER

NUMBER(10)

VARCHAR2(2)

NUMBER

NUMBER

ID number of the region to which the postal code
belongs. (Required if the postal code is associated with
aregion)

Longitude value of the center of the postal-code area.
The center (longitude, latitude) value is set to the start-
or end-point of the closest road segment to the center,
depending on which point is closer. Oracle
recommends that the CENTER_LONG and
CENTER_LAT values be correctly set. If these values
are not set, the longitude, latitude values of the
geocoded result for an area will be (0,0). (Optional)

Latitude value of the center of the area. (See the
explanation for the CENTER_LONG column.)
(Optional)

ID of the road segment to which the area center is set.
This value must be set correctly if the geocoder is
intended to work with the Oracle Spatial and Graph
routing engine (described in Routing Engine

(page 13-1)); otherwise, it can be set to any nonzero
value, but it cannot be null. (Required)

2- letter ISO country code of the country to which the
area belongs. (Required)

Partition key used for partitioning geocoder data by
geographic boundaries. If the data is not partitioned,
set the value to 1. (Required)

The number of streets inside this postal code area.
(Optional)

11.5.9 GC_ROAD_<suffix> Table

The GC_ROAD_<suffix> table (for example, GC_ROAD_US) stores road information
for the country associated with the table name suffix. A road is a collection of road
segments with the same name in the same settlement area; a road segment is defined
in GC_ROAD_SEGMENT_<suffix> Table (page 11-30). The GC_ROAD_<suffix>
table contains one or more rows for each road. (For example, it can contain multiple
rows for a road if the road is associated with multiple settlements.) The
GC_ROAD_<sulffix> table contains the columns shown in Table 11-15 (page 11-27).

Table 11-15 GC_ROAD_<suffix> Table
-]

Column Name Data Type Description
ROAD_ID NUMBER ID number of the road. (Required)
SETTLEMENT_I = NUMBER(10) ID number of the settlement to which the road

D

belongs. (Required if the road is associated with a
settlement)

Geocoding Address Data 11-27

Data Structures for Geocoding

Table 11-15 (Cont.) GC_ROAD_<suffix> Table
. __|

Column Name

Data Type

Description

MUNICIPALITY_
ID

PARENT_AREA_
ID

LANG_CODE

NAME

BASE_NAME

PREFIX

SUFFIX

STYPE_BEFORE

STYPE_AFTER

STYPE_ATTACH
ED

START_HN

11-28 Developer's Guide

NUMBER(10)

NUMBER(10)

VARCHAR2(3)

VARCHAR2(64
)

VARCHAR2(64
)

VARCHAR2(32
)

VARCHAR2(32
)

VARCHAR2(32

)

VARCHAR2(32
)

VARCHAR2(1)

NUMBER(5)

ID number of the municipality to which the road
belongs. (Required if the road is associated with a
municipality)

ID number of the parent area of the municipality to
which the road belongs. (Required if the road is
associated with a parent area)

3-letter ISO national language code for the language
for the road name. (Required)

Name of the road, including the type (if any), the
prefix (if any), and the suffix (if any). For example, N
Main Stas NAME. (Required)

Name of the road, excluding the type (if any), the
prefix (if any), and the suffix (if any). For example, N
Main Stas NAME, with Main as BASE_NAME.
(Required)

Prefix of the road name. For example, N Main Stas
NAME, with N as PREFIX. (Required if the road name
has a prefix)

Suffix of the road name. For example, Main St NW as
NAME, with NW as SUFFIX. (Required if the road
name has a suffix)

Street type that precedes the base name. For example,
Avenue Victor Hugo as NAME, with Avenue as
STYPE_BEFORE and Victor Hugo as BASE_NAME.
(Required if the road type precedes the base name)

Street type that follows the base name. For example,
Main Stas NAME, with St as STYPE_AFTER and
Main as BASE_NAME. (Required if the road type
follows the base name)

Contains T if the street type is in the same word with
the street name; contains F if the street type is a
separate word from the street name. For example, in a
German street address of 123 Beethovenstrass,
the street type is strass, and it is in the same word
with the street name, which is Beethoven. (Required)

The lowest house number on the road. It is returned
when a specified house number is lower than this
value.

Data Structures for Geocoding

Table 11-15 (Cont.) GC_ROAD_<suffix> Table
. __|

Column Name Data Type Description

CENTER_HN NUMBER(5) Leading numerical part of the center house number.
The center house number is the left side house number
at the start point of the center road segment, which is
located in the center of the whole road. (See the
explanation of house numbers after Table 11-16
(page 11-30) in GC_ROAD_SEGMENT _<suffix>
Table (page 11-30).) It is returned when no house
number is specified in an input address. (Required)

END_HN NUMBER(5) The highest house number on the road. It is returned
when a specified house number is higher than this
value.

START _HN_SIDE VARCHAR2(1) Side of the road of the lowest house number: L for left
or R for right.

CENTER_HN_SI VARCHAR2(1) Side of the road of the center house number: L for left

DE or R for right. The center house number is the left side
house number at the start point of the center road
segment, which is located in the center of the whole
road. (See the explanation of house numbers after
Table 11-16 (page 11-30) in
GC_ROAD_SEGMENT_<suffix> Table (page 11-30).)
(Required if there are houses on the road)

END_HN_SIDE VARCHAR2(1) Side of the road of the highest house number: L for left
or R for right.

START_LONG NUMBER Longitude value of the lowest house number.
START_LAT NUMBER Latitude value of the lowest house number.
CENTER_LONG NUMBER Longitude value of the center house number. The

center house number is the left side house number at
the start point of the center road segment, which is
located in the center of the whole road. (See the
explanation of house numbers after Table 11-16
(page 11-30) in GC_ROAD_SEGMENT_<suffix>
Table (page 11-30).) (Required)

CENTER_LAT NUMBER Latitude value of the center house number. (See also
the explanation of the CENTER_LONG column.)
(Required)

END_LONG NUMBER Longitude value of the highest house number.

END_LAT NUMBER Latitude value of the highest house number.

START ROAD_S NUMBER(5) ID number of the road segment at the start of the road.
EG_ID

CENTER_ROAD_ NUMBER(5) ID number of the road segment at the center point of
SEG_ID the road. (Required)

END_ROAD_SEG NUMBER(5) ID number of the road segment at the end of the road.
_ID

Geocoding Address Data 11-29

Data Structures for Geocoding

Table 11-15 (Cont.) GC_ROAD_<suffix> Table
. __|

Column Name Data Type Description

POSTAL_CODE VARCHAR2(16 Postal code for the road. (Required)
)

COUNTRY_COD VARCHAR2(2) 2-letter ISO country code of the country to which the
E 2 road belongs. (Required)

PARTITION_ID = NUMBER Partition key used for partitioning geocoder data by
geographic boundaries. If the data is not partitioned,
set the value to 1. (Required)

CENTER_HN2 VARCHAR2(10 The second part of the center house number. (See the
) explanation of house numbers after Table 11-16
(page 11-30) in GC_ROAD_SEGMENT _<suffix>
Table (page 11-30).) (Required)

11.5.10 GC_ROAD_SEGMENT _<suffix> Table

The GC_ROAD_SEGMENT_<suffix> table (for example, GC_ROAD_SEGMENT_US)
stores road segment information for the country associated with the table name suffix.
A road segment is the portion of a road between two continuous intersections along
the road; an intersection occurs when roads meet or cross each other. A road segment
can also be the portion of a road between the start (or end) of the road and its closest
intersection along the road, or it can be the entire length of a road if there are no
intersections along the road. The GC_ROAD_SEGMENT_<suffix> table contains one
row for each road segment, and it contains the columns shown in Table 11-16

(page 11-30).

Table 11-16 GC_ROAD_SEGMENT_<suffix> Table
L |

Column Name Data Type Description

ROAD_SEGMEN NUMBER ID number of the road segment. (Required)

T_ID

ROAD_ID NUMBER ID number of the road containing this road segment.
(Required)

L_ADDR_FORM VARCHAR2(1) Leftside address format. Specify N if there are one or

AT more house numbers on the left side of the road
segment; leave null if there is no house number on the
left side of the road segment. (Required)

R_ADDR_FORM VARCHAR2(1) Right side address format. Specify N if there are one or

AT more house numbers on the right side of the road
segment; leave null if there is no house number on the
right side of the road segment. (Required)

L_ADDR_SCHE VARCHAR2(1) Numbering scheme for house numbers on the left side

ME of the road segment: O (all odd numbers), E (all even
numbers), or M (mixture of odd and even numbers).
(Required)

11-30 Developer's Guide

Data Structures for Geocoding

Table 11-16 (Cont.) GC_ROAD_SEGMENT_<suffix> Table
. __________ |

Column Name

Data Type

Description

R_ADDR_SCHE
ME

START_HN

END_HN

L_START_HN

L_END_HN

R_START_HN

R_END_HN

POSTAL_CODE

GEOMETRY

COUNTRY_COD
E 2

PARTITION_ID

L_START_HN2

L_END_HN2

VARCHAR2(1)

NUMBER(5)

NUMBER(5)

NUMBER(5)

NUMBER(5)

NUMBER(5)

NUMBER(5)

VARCHAR2(16
)

SDO_GEOMET
RY

VARCHAR2(2)

NUMBER

VARCHAR2(10
)

VARCHAR2(10
)

Numbering scheme for house numbers on the right
side of the road segment: O (all odd numbers), E (all
even numbers), or M (mixture of odd and even
numbers). (Required)

The lowest house number on this road segment.
(Required)

The highest house number on this road segment.
(Required)

The leading numerical part of the left side starting
house number. (See the explanation of house numbers
after this table.) (Required)

The leading numerical part of the left side ending
house number. (See the explanation of house numbers
after this table.) (Required)

The leading numerical part of the right side starting
house number. (See the explanation of house numbers
after this table.) (Required)

The leading numerical part of the right side ending
house number. (See the explanation of house numbers
after this table.) (Required)

Postal code for the road segment. If the left side and
right side of the road segment belong to two different
postal codes, create two rows for the road segment
with identical values in all columns except for
POSTAL_CODE. (Required)

Spatial geometry object representing the road
segment. (Required)

2- letter ISO country code of the country to which the
road segment belongs. (Required)

Partition key used for partitioning geocoder data by
geographic boundaries. If the data is not partitioned,
set the value to 1. (Required)

The second part of the left side starting house number.
(See the explanation of house numbers after this table.)
(Required if the left side starting house number has a
second part)

The second part of the left side ending house number.
(See the explanation of house numbers after this table.)
(Required if the left side ending house number has a
second part)

Geocoding Address Data 11-31

Data Structures for Geocoding

Table 11-16 (Cont.) GC_ROAD_SEGMENT_<suffix> Table
. __________ |

Column Name Data Type Description

R_START_HN2 VARCHAR2(10 The second part of the right side starting house
) number. (See the explanation of house numbers after
this table.) (Required if the right side starting house
number has a second part)

R_END_HN?2 VARCHAR2(10 The second part of the right side ending house
) number. (See the explanation of house numbers after
this table.) (Required if the right side ending house
number has a second part)

A house number is a descriptive part of an address that helps identify the location of a
establishment along a road segment. A house number is divided into two parts: the
leading numerical part and the second part, which is the rest of the house number. The
leading numerical part is the numerical part of the house number that starts from the
beginning of the complete house number string and ends just before the first non-
numeric character (if present). If the house number contains non-numeric characters,
the second part of the house number is the portion from the first non-numeric
character through the last character of the string. For example, if the house number is
123, the leading numerical part is 123 and the second part is null; however, if the
house number is 123A23, the leading numerical part is 123 and the second part is
A23.

The starting house number is the house number at the start point of a road segment;
the start point of the road segment is the first shape point of the road segment
geometry. The ending house number is the house number at the end point of a road
segment; the end point of the road segment is the last shape point of the road segment
geometry. The left and right side starting house numbers do not need to be lower than
the left and right side ending house numbers. The house number attributes in the data
tables follow these conventions in locating establishments along road segments.

11.5.11 Indexes on Tables for Geocoding

To use the vendor-supplied tables for geocoding, indexes must be created on many of
the tables, and the names of these indexes must follow certain requirements.

Example 11-5 (page 11-32) lists the format of CREATE INDEX statements that create
the required indexes. In each statement, you must use the index name, table name,
column names, and (if multiple columns are indexed) sequence of column names as
shown in Example 11-5 (page 11-32), except that you must replace all occurrences of
<suffix> with the appropriate string (for example, US for the United States). Note that
the first index in the example is a spatial index. Optionally, you can also include other
valid keywords and clauses in the CREATE INDEX statements.

Example 11-5 Required Indexes on Tables for Geocoding

CREATE INDEX idx_<suffix>_road_geom ON gc_road_segment_<suffix> (geometry) INDEXTYPE IS
mdsys.spatial_index;

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE

INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX

idx_<suffix>_road_seg_rid ON gc_road_segment_<suffix> (road_id, start_hn, end_hn);
idx_<suffix>_road_id ON gc_road_<suffix> (road_id);

idx_<suffix>_road_setbn ON gc_road_<suffix> (settlement_id, base_name);
idx_<suffix>_road_munbn ON gc_road_<suffix> (municipality_id, base_name);
idx_<suffix>_road_parbn ON gc_road_<suffix> (parent_area_id, country_code_2, base_name);
idx_<suffix>_road_setbnsd ON gc_road_<suffix> (settlement_id, soundex(base_name));
idx_<suffix>_road_munbnsd ON gc_road_<suffix> (municipality_id, soundex(base_name));

11-32 Developer's Guide

Installing the Profile Tables

CREATE INDEX idx_<suffix>_road_parbnsd ON gc_road_<suffix> (parent_area_id, country_code 2,
soundex(base_name));

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE

INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX

idx_<suffix>_inters ON gc_intersection_<suffix> (country_code 2, road_id_1, road_id_2);
idx_<suffix>_area_name_id ON gc_area_<suffix> (country_code_2, area_name, admin_level);
idx_<suffix>_area_id_name ON gc_area_<suffix> (area_id, area_name, country_code_2);
idx_<suffix>_poi_name ON gc_poi_<suffix> (country_code_2, name);

idx_<suffix>_poi_setnm ON gc_poi_<suffix> (country_code_2, settlement_id, name);
idx_<suffix>_poi_ munnm ON gc_poi_<suffix> (country_code_2, municipality_id, name);
idx_<suffix>_poi_ regnm ON gc_poi_<suffix> (country_code_2, region_id, name);
idx_<suffix>_ postcode ON gc_postal_code_<suffix> (country_code_2, postal_code);
idx_<suffix>_addrpt_addr ON gc_address_point_<suffix> (road_segment_id, road_id,

house_number, side);

11.6 Installing the Profile Tables

The Oracle Geocoder profile tables are typically supplied by a data provider. Use the
data provider's profile tables for geocoding whenever they are available. For users
building their own geocoder schema, Oracle provides sample
GC_COUNTRY_PROFILE, GC_PARSER_PROFILES, and GC_PARSER_PROFILEAFS
tables; however, you should install these Oracle-supplied profile tables only if profile
tables are not supplied with the data tables.

The Oracle-supplied tables contain parser profiles for a limited number of countries. If
profiles for your country or group of countries of interest are not included, you will
need to manually add them; and for a quick start, you can copy the parser profiles of a
country with a similar address format to your country of interest, and edit these
profiles where necessary. If your parser profiles of interest are included in the Oracle-
supplied tables, you can use them directly or update them if necessary. No sample
country profiles are provided, so you will need to add your own

To install and query the Oracle-supplied profile tables, perform the following steps:

1. Log on to your database as the geocoder user. The geocoder user is the user under
whose schema the geocoder schema will be loaded.

2. Create the GC_COUNTRY_PROFILE, GC_PARSER_PROFILES, and
GC_PARSER_PROFILEAFS tables by executing the
SDO_GCDR.CREATE_PROFILE_TABLES (page 22-1) procedure:

SQL> EXECUTE SDO_GCDR.CREATE_PROFILE_TABLES;

3. Populate the GC_PARSER_PROFILES and GC_PARSER_PROFILEAFS tables by
running the sdogcprs.sql script in the $ORACLE_HOME/md/admin/ directory.
For example:

SQL> @$ORACLE_HOME/md/admin/sdogcprs.-sql

4. Query the profile tables to determine if parser profiles for your country of interest
are supplied, by checking if its country code is included in the output of the
following statements:

SQL> SELECT DISTINCT(country_code) FROM gc_parser_profiles ORDER BY country_code;
SQL> SELECT DISTINCT(country_code) FROM gc_parser_profileafs ORDER BY
country_code;

11.7 Using the Geocoding Service (XML API)

In addition to the SQL API, Oracle Spatial and Graph also provides an XML API for a
geocoding service that enables you to geocode addresses. A Java geocoder application

Geocoding Address Data 11-33

Using the Geocoding Service (XML API)

engine performs international address standardization, geocoding, and POI matching,
by querying geocoder data stored in the Oracle database. The support for unparsed
addresses adds flexibility and convenience to customer applications.

This geocoding service is implemented as a Java 2 Enterprise Edition (J2EE) Web
application that you can deploy in a WebLogic Server environment.

Figure 11-1 (page 11-34) shows the basic flow of action with the geocoding service: a
client locates a remote geocoding service instance, sends a geocoding request, and
processes the response returned by the geocoding service instance.

Figure 11-1 Basic Flow of Action with the Spatial Geocoding Service

Geocoding Client

Geocoding Request: r Geocoding Response:
Input addresses (one or Geocoded address or addresses
more, formatted or (longitude, latitude, ...}
unformatted) Y

Geocoding Service
(running in WeblLogic Server,
for example)

Oracle Spatial
and Graph

As shown in Figure 11-1 (page 11-34):

1. The client sends an XML geocoding request, containing one or more input
addresses to be geocoded, to the geocoding service using the HTTP protocol.

2. The geocoding service parses the input request and looks up the input address in
the database.

3. The geocoding service sends the geocoded result in XML format to the client
using the HTTP protocol.

After you load the geocoder schema into the database, you must configure the J2EE
geocoder before it can be used, as explained in Deploying and Configuring the J2EE
Geocoder (page 11-35)

11-34 Developer's Guide

Using the Geocoding Service (XML API)

11.7.1 Deploying and Configuring the J2EE Geocoder

The J2EE geocoder processes geocoding requests and generates responses. To enable
this geocoding service, a geocoder .ear . zip file must be deployed using Oracle
WebLogic Server. To deploy and configure the geocoding service, follow these steps.

1. Deploy the geocoder using Oracle WebLogic Server:

a. Unzip the geocoder .ear.zip file found in your $ORACLE_HOME/md/jlib
directory into a suitable directory. Your resulting directory structure should
be: $geocoder.ear/web.war/. . ..

b. Log on to the WebLogic Server console (for example, http://<host name>:
7001/console); and from Deployments install the geocoder . ear file,
accepting the Name geocoder for the deployment and choosing the Location
option Make the deployment accessible from the following
location.

2. Launch the geocoder welcome page in a web browser using the URL http://
<host nanme>: <port >/geocoder . On the welcome page, select the
Administration link and enter the administrator (weblogic) user name and
password.

Note:

If you are not using the default WebLogic administrator user name
(weblogic), you will need to edit the weblogic.xml file located in the
$geocoder .ear/web_war/WEB-INF/ directory. Replace <principal-
name>weblogic</principal-name> with your WebLogic Server
administrator user name, for example, <principal-
name>my_weblogic_admin</principal-name>.

If the welcome page was not displayed, ensure that the newly deployed
geocoding service was successfully started. (It is assumed that you are
running WebLogic Server 12.1 or later with an Oracle Database 12.2 or later
geocoder.ear.zip file.)

3. Modify the geocoder configuration file (Jeocodercfg.xml). Uncomment at least
one <geocoder> element, and change the <database> element attributes of that
<geocoder> element to reflect the configuration of your database. For information
about this file, see Configuring the geocodercfg.xml File (page 11-36).

4. Save the changes to the file, and restart the geocoder.

5. Test the database connection by going to the welcome page at URL http://
<host name>: <por t >/geocoder and running the XML geocoding request page.
(This demo requires geocoder data for the United States.)

Examples are available to demonstrate various capabilities of the geocoding
service. Reviewing the examples at URL http://<host name>: <port >/
geocoder/gcxmlreq_exp_af.html is a good way to learn the XML API, which
is described in Geocoding Request XML Schema Definition and Example

(page 11-36).

Geocoding Address Data 11-35

Using the Geocoding Service (XML API)

11.7.1.1 Configuring the geocodercfg.xml File

You will need to edit the <database> element in the default geocodercfg.xml file
that is included with Spatial and Graph, to specify the database and schema where the
geocoding data is loaded.

In this file, each <geocoder> element defines the geocoder for the database in which
the geocoder schema resides. The <database> element defines the database
connection for the geocoder. In Oracle 11g or later, there are two ways to define a
database connection: by providing the JDBC database connection parameters, or by
providing the JNDI name (container_ds) of a predefined container data source.

Example 11-6 (page 11-36) illustrates two different ways in which a <database>
element can be defined. The first definition specifies a JDBC connection; the second
definition uses the JNDI name of a predefined container data source.

Example 11-6 <database> Element Definitions

<database name="gcdatabase"
host="gisserver.example.com"
port="1521"
sid="orcl"
mode=""thin"
user="geocoder_us"
password="geocoder_us"
load_db_parser_profiles="true" />

<database container_ds="jdbc/gc_europe"
load_db_parser_profiles="true" />

The attributes of the <database> element are as follows

* name is a descriptive name for the database connection; it is not used to connect to
the database.

¢ host, port, and sid identify the database.
¢ mode identifies the type of JDBC driver to use for the connection.

e user and password are the user name and password for the database user under
whose schema the geocoding data is stored.

e load_db_parser_profiles specifies whether to load the address parser
profiles from the specified database connection. If true, the address parser-profiles
are loaded from the geocoder schema; otherwise, the parser profiles are loaded
from the application at . . /applications/geocoder/web/WEB-INF/
parser_profiles/<country- name>.ppr (for example, usa.ppr). Before Oracle
11g, parser profiles were loaded from the application only. This parameter should
be set to true.

e container_ds specifies the JNDI name for a predefined data source.

11.7.2 Geocoding Request XML Schema Definition and Example

For a geocoding request (HTTP GET or POST method), it is assumed the request has a
parameter named xml_request whose value is a string containing the XML
document for the request. The input XML document describes the input addresses that
need to be geocoded. One XML request can contain one or more input addresses.
Several internationalized address formats are available for describing the input

11-36 Developer's Guide

Using the Geocoding Service (XML API)

addresses. (The input XML API also supports reverse geocoding, that is, a longitude/
latitude point to a street address.)

The XML schema definition (XSD) for a geocoding request is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<I-- Schema for an XML geocoding request that takes one or more input_locations and
supports reverse geocoding using the input_location®s attributes -->
<xsd:schema xmlns:xsd="http://ww.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">
<xsd:complexType name="address_lineType'>
<xsd:attribute name="value" type="xsd:string" use="required"/>
</xsd:complexType>
<xsd:complexType name="address_listType">
<xsd:sequence>
<xsd:element name="input_location" type="input_locationType"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="gdf_formType'>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="street" type="xsd:string"/>
<xsd:attribute name="intersecting_street" type="xsd:string"/>
<xsd:attribute name="builtup_area" type="xsd:string"/>
<xsd:attribute name="order8_area" type='xsd:string"/>
<xsd:attribute name="order2_area" type="xsd:string"/>
<xsd:attribute name="orderl_area" type="xsd:string"/>
<xsd:attribute name="country" type="xsd:string"/>
<xsd:attribute name="postal_code" type="xsd:string"/>
<xsd:attribute name="postal_addon_code" type="xsd:string"/>
</xsd:complexType>
<xsd:complexType name="gen_formType'>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="street" type="xsd:string"/>
<xsd:attribute name="intersecting_street" type="xsd:string"/>
<xsd:attribute name="sub_area" type="xsd:string"/>
<xsd:attribute name="city" type="xsd:string"/>
<xsd:attribute name="region" type="xsd:string"/>
<xsd:attribute name="country" type="xsd:string"/>
<xsd:attribute name="postal_code" type="xsd:string"/>
<xsd:attribute name="postal_addon_code" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="geocode_request'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="address_list" type="address_listType'/>
</xsd:sequence>
<xsd:attribute name="vendor" type="xsd:string"/>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="input_addressType'>
<xsd:choice>
<xsd:element name="us_forml" type="us_formlType"/>
<xsd:element name="us_form2" type="us_form2Type"/>
<xsd:element name="gdf_form" type="gdf_formType"/>
<xsd:element name="gen_form" type="gen_formType"/>
<xsd:element name="unformatted" type="unformattedType'/>
</xsd:choice>
<xsd:attribute name="match_mode" default="relax_postal_code'>
<xsd:simpleType>
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="exact"/>

Geocoding Address Data 11-37

Using the Geocoding Service (XML API)

<xsd:enumeration value="relax_street_type"/>
<xsd:enumeration value="relax_poi_name"/>
<xsd:enumeration value="relax_house_number"/>
<xsd:enumeration value="relax_bhase_name"/>
<xsd:enumeration value="relax_postal_code"/>
<xsd:enumeration value="relax_builtup_area"/>
<xsd:enumeration value="relax_all"/>
<xsd:enumeration value="DEFAULT"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
<xsd:complexType name="input_locationType">
<xsd:sequence>
<xsd:element name="input_address" type="input_addressType"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:string"/>
<xsd:attribute name="country" type="xsd:string"/>
<xsd:attribute name="longitude" type="xsd:string"/>
<xsd:attribute name="latitude" type="xsd:string"/>
<xsd:attribute name="x" type='"xsd:string"/>
<xsd:attribute name="y" type='"xsd:string"/>
<xsd:attribute name="srid" type="xsd:string"/>
<xsd:attribute name="multimatch_number" type="xsd:string" default="1000"/>
</xsd:complexType>
<xsd:complexType name="unformattedType'>
<xsd:sequence>
<xsd:element name="address_line" type="address_lineType"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="country" type="xsd:string"/>
</xsd:complexType>
<xsd:complexType name="us_formlType'>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="street" type="xsd:string"/>
<xsd:attribute name="intersecting_street" type="xsd:string"/>
<xsd:attribute name="lastline" type="xsd:string"/>
</xsd:complexType>
<xsd:complexType name="us_form2Type'>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="street" type="xsd:string"/>
<xsd:attribute name="intersecting_street" type="xsd:string"/>
<xsd:attribute name="city" type="xsd:string"/>
<xsd:attribute name="state" type='"'xsd:string"/>
<xsd:attribute name="zip_code" type="xsd:string"/>
</xsd:complexType>
</xsd:schema>

Example 11-7 (page 11-38) is a request to geocode several three addresses
(representing two different actual physical addresses), using different address formats
and an unformatted address.

Example 11-7 Geocoding Request (XML API)

<?xml version="1.0" encoding="UTF-8"?>
<geocode_request xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi :noNamespaceSchemalLocation="../geocode_request.xsd">
<address_list>
<input_location id="1">
<input_address>
<us_form2 name="Oracle" street="500 Oracle Parkway" city="Redwood City"

11-38 Developer's Guide

Using the Geocoding Service (XML API)

state="CA" zip_code="94021"/>
</input_address>
</input_location>
<input_location id="2">
<input_address>
<gdf_form street="1 Oracle Drive" builtup_area="Nashua" orderl_area="NH"
postal_code="03062" country="US"/>
</input_address>
</input_location>
<input_location id="3">
<input_address>
<gen_form street="1 Oracle Drive" city="Nashua" region="NH" postal_code="03062" country="US"/>
</input_address>
</input_location>
<input_location id="4">
<input_address>
<unformatted country="UNITED STATES">
<address_line value=""Oracle NEDC"/>
<address_line value="1 Oracle drive "/>
<address_line value="Nashua "/>
<address_line value="NH"/>
</unformatted>
</input_address>
</input_location>
</address_list>
</geocode_request>

11.7.3 Geocoding Response XML Schema Definition and Example

A geocoding response contains one or more standardized addresses including
longitude/latitude points, the matching code, and possibly multiple match and no
match indication and an error message.

The XML schema definition (XSD) for a geocoding response is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<I-- Schema for an XML geocoding response -->
<xsd:schema xmIns:xsd="http://www.w3.0org/2001/XMLSchema"
elementFormDefault="qualified">
<xsd:complexType name="geocodeType">
<xsd:sequence>
<xsd:element name="match" type="matchType" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:string" use="required"/>
<xsd:attribute name="match_count" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="geocode_response'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="geocode" type="geocodeType" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="matchType">
<xsd:sequence>
<xsd:element name="output_address™ type="output_addressType"/>
</xsd:sequence>
<xsd:attribute name="sequence" type="xsd:string" use="required"/>
<xsd:attribute name="longitude" type="xsd:string" use="required"/>
<xsd:attribute name="latitude" type="xsd:string" use="required"/>

Geocoding Address Data 11-39

Using the Geocoding Service (XML API)

<xsd:attribute name="match_code" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="0"/>
<xsd:enumeration value="1"/>
<xsd:enumeration value="2"/>
<xsd:enumeration value="3"/>
<xsd:enumeration value="4"/>
<xsd:enumeration value="10"/>
<xsd:enumeration value="11"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="error_message" type='"xsd:string"/>
</xsd:complexType>
<xsd:complexType name="output_addressType'>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="house_number" type="xsd:string"/>
<xsd:attribute name="street" type="xsd:string"/>
<xsd:attribute name="builtup_area" type="xsd:string"/>
<xsd:attribute name="orderl_area" type="xsd:string"/>
<xsd:attribute name="order8 area" type="xsd:string"/>
<xsd:attribute name="country" type="xsd:string"/>
<xsd:attribute name="postal_code" type="xsd:string"/>
<xsd:attribute name="postal_addon_code" type="xsd:string"/>
<xsd:attribute name="side" type="xsd:string"/>
<xsd:attribute name="percent" type="xsd:string"/>
<xsd:attribute name="edge_id" type="xsd:string"/>
</xsd:complexType>
</xsd:schema>

Example 11-8 (page 11-40) is the response to the request in Example 11-7 (page 11-38)
in Geocoding Request XML Schema Definition and Example (page 11-36).

Example 11-8 Geocoding Response (XML API)

<?xml version="1.0" encoding="UTF-8"?>
<geocode_response xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation=""../geocode_response.xsd">
<geocode i1d="1" match_count="1">
<match sequence="0"
longitude="-122.26193971893862" latitude="37.53195483966782"
match_code="10" error_message="????#ENUT?B281C??"">
<output_address name=""" house_number="500" street="ORACLE PKY"
builtup_area="REDWOOD CITY" orderl_area="CA" order8 area=""
country="US" postal_code="94065" postal_addon_code="" side="L"
percent="0.33166666666666667" edge_id="28503563"/>
</match>
</geocode>
<geocode i1d="2" match_count="1">
<match sequence="0"
longitude="-71.45937299307225" latitude="42.70784494226865"
match_code="1" error_message="????#ENUT?B281CP?"">
<output_address name="" house_number="1" street="0RACLE DR"
builtup_area="NASHUA" orderl_area="NH" order8_area=""
country="US" postal_code="03062" postal_addon_code="" side="L"
percent="0.01" edge_id="22325991"/>
</match>
</geocode>
<geocode i1d="3" match_count="1">
<match sequence="0"
longitude="-71.45937299307225" latitude="42.70784494226865"

11-40 Developer's Guide

Using the Geocoding Service (XML API)

match_code="1" error_message="????#ENUT?B281CP?"">
<output_address name="" house_number="1" street="0RACLE DR"
builtup_area="NASHUA" orderl_area="NH" order8_area=""
country="US" postal_code="03062" postal_addon_code="" side="L"
percent="0.01" edge_id="22325991"/>
</match>
</geocode>
<geocode i1d="4" match_count="1">
<match sequence="0"
longitude="-71.45937299307225" latitude="42.70784494226865"
match_code="1" error_message="????#ENUT?B281CP?"">
<output_address name=""" house_number="1" street="ORACLE DR"
builtup_area="NASHUA" orderl_area="NH" order8_area=""'
country="US" postal_code="03062" postal_addon_code="" side="L"
percent="0.01" edge_id="22325991"/>
</match>
</geocode>
</geocode_response>

Geocoding Address Data 11-41

Using the Geocoding Service (XML API)

11-42 Developer's Guide

12

Business Directory (Yellow Pages) Support

This chapter describes Oracle Spatial and Graph support for OpenLS business
directory (Yellow Pages, or YP) services. It includes the following major sections:

* Business Directory Concepts (page 12-1)
* Using the Business Directory Capabilities (page 12-1)

e Data Structures for Business Directory Support (page 12-2)

12.1 Business Directory Concepts

Business directory services provide lists of businesses in a given area and matching a
specified name or category.

Business directory data comes from third-party providers of such data. These
providers probably have different business categories, and even different hierarchical
structures. A unifying pattern in the various approaches is that businesses are
categorized by subject and location. The location component is well understood; for
example, for the United States, either a ZIP code or the combination of a city and state,
and optionally a specific address, can be used to determine the location from which to
start searching.

The categorization of businesses, on the other hand, is not uniformly implemented.
Some providers offer a flat list of categories, user-selected by simple substring
matching. Others offer a 3-level or 4-level hierarchical organization of subcategories,
often with a fanout (maximum number of child categories at a level) of 20 to 50, and
sometimes more than 100. A user might start the hierarchy traversal at the root of the
hierarchy (by default). Alternatively, a user might enter a keyword that is matched to
an appropriate starting point within the hierarchy. Such keyword matching might go
beyond simple substring matching and result in more intelligent choices.

12.2 Using the Business Directory Capabilities

To use the Oracle Spatial business directory capabilities, you must use data provided
by a business directory (YP) vendor, and the data must be in the format supported by
the Oracle Spatial and Graph OpenLS support (see OPENLS_DIR_BUSINESSES Table
(page 12-2)).

To submit users' directory services requests and to return the responses, use the
OpenLS web services API, which is introduced in OpenLS Application Programming

Interfaces (page 14-2). For information about directory services requests and
responses, with examples, see OpenLS Service Support and Examples (page 14-2).

Business Directory (Yellow Pages) Support 12-1

Data Structures for Business Directory Support

12.3 Data Structures for Business Directory Support

After you acquire the business directory data and invoke the appropriate procedure to
load it into the database, the procedure populates the following tables, all owned by
the MDSYS schema, which are used for business directory support:

e OPENLS_DIR_BUSINESSES

e OPENLS_DIR_BUSINESS_CHAINS
e OPENLS_DIR_CATEGORIES

e OPENLS_DIR_CATEGORIZATIONS
e OPENLS_DIR_CATEGORY_TYPES

e OPENLS_DIR_SYNONYMS

In some tables, some rows have null values for some columns, because the information
does not apply in this instance or because the data provider did not supply a value.

The following sections describe these tables, in alphabetical order by table name.

12.3.1 OPENLS_DIR_BUSINESSES Table

The OPENLS_DIR_BUSINESSES table stores information about each business (that is,
each business that has an address). If the business is part of a larger business chain, the
CHAIN_ID column is a foreign key to the CHAIN_ID column in the
OPENLS_DIR_BUSINESS_CHAINS table (described in
OPENLS_DIR_BUSINESS_CHAINS Table (page 12-3)).

The OPENLS_DIR_BUSINESSES table contains one row for each business, and it
contains the columns shown in Table 12-1 (page 12-2).

Table 12-1 OPENLS_DIR_BUSINESSES Table
L

Column Name Data Type Description

BUSINESS_ID NUMBER Business ID number. (Required)
BUSINESS_NAM VARCHAR2(128) Area name. (Required)

E

CHAIN_ID NUMBER ID number of the business chain (in the

OPENLS_BIR_BUSINESS_CHAIN table), if the
business is part of a chain.

DESCRIPTION VARCHAR2(1024 Description of the business.
)

PHONE VARCHAR2(64) Phone number, in an appropriate format for the
location.
COUNTRY VARCHAR2(64) Country code or name. (Required)

COUNTRY_SUB VARCHAR2(128) Subdivision of the country, if applicable.
DIVISION

12-2 Developer's Guide

Data Structures for Business Directory Support

Table 12-1 (Cont.) OPENLS_DIR_BUSINESSES Table
|

Column Name Data Type Description

COUNTRY_SEC VARCHAR2(128) Subdivision within COUNTRY_SUBDIVISION, if

ONDARY_SUBDI applicable.

VISION

MUNICIPALITY VARCHAR2(128) Municipality name.

MUNICIPALITY_ VARCHAR2(128) Subdivision within MUNICIPALITY, if applicable.

SUBDIVISION

POSTAL_CODE VARCHAR2(32) Postal code (for example, 5-digit ZIP code in the
United Stated and Canada). (Required)

POSTAL_CODE_ VARCHAR2(32) Postal code extension (for example, 4-digit extension

EXT if the 5-4 ZIP code format is used).

STREET VARCHAR2(128) Street address, including house or unit number.
(Required)

INTERSECTING_ VARCHAR2(128) Name of the street (if any) that intersects STREET at

STREET this address.

BUILDING VARCHAR2(128) Name of the building that includes this address.

PARAMETERS XMLTYPE XML document with additional information about
the business.

GEOM SDO_GEOMETR Point geometry representing the address of the

Y

business.

12.3.2 OPENLS_DIR_BUSINESS_CHAINS Table

The OPENLS_DIR_BUSINESS_CHAINS table stores information about each business
chain. A business chain is a business that has multiple associated businesses; for
example, a restaurant chain has multiple restaurants that have the same name and
offer basically the same menu. If the business is part of a business chain, the row for
that business in the OPENLS_DIR_BUSINESSES table (described in
OPENLS_DIR_BUSINESSES Table (page 12-2)) contains a CHAIN_ID column value
that matches a value in the CHAIN_ID column in the
OPENLS_DIR_BUSINESS_CHAINS table.

The OPENLS_DIR_BUSINESS_CHAINS table contains one row for each business
chain, and it contains the columns shown in Table 12-2 (page 12-3).

Table 12-2 OPENLS_DIR_BUSINESS_CHAINS Table
L

Column Name Data Type Description
CHAIN_ID NUMBER Business chain ID number. (Required)
CHAIN_NAME VARCHAR2(128) Business chain name.

Business Directory (Yellow Pages) Support 12-3

Data Structures for Business Directory Support

12.3.3 OPENLS_DIR_CATEGORIES Table

The OPENLS_DIR_CATEGORIES table stores information about each category into
which a business can be placed. If the data provider uses a category hierarchy, this
table contains rows for categories at all levels of the hierarchy, using the PARENT_ID
column to indicate the parent category of a child category. For example, a Restaurants
category might be the parent of several child categories, one of which might be
Chinese.

The OPENLS_DIR_CATEGORIES table contains one row for each category, and it
contains the columns shown in Table 12-3 (page 12-4).

Table 12-3 OPENLS_DIR_CATEGORIES Table
I

Column Name Data Type Description

CATEGORY_ID VARCHAR2(32) Category ID string. (Required)

CATEGORY_TYP NUMBER Category type ID number. Must match a value in the
E_ID CATEGORY_TYPE_ID column of the
OPENLS_DIR_CATEGORY_TYPES table (described
in OPENLS_DIR_CATEGORY_TYPES Table
(page 12-5)). (Required)

CATEGORY_NA VARCHAR2(128) Category name. (Required)

ME

PARENT_ID VARCHAR2(32) CATEGORY_ID value of the parent category, if any,
for this category.

PARAMETERS XMLTYPE XML document with additional information about
the category.

12.3.4 OPENLS_DIR_CATEGORIZATIONS Table

The OPENLS_DIR_CATEGORIZATIONS table stores information about associations
of businesses with categories. Each business can be in multiple categories; and the
categories for a business can be independent of each other or in a parent-child
relationship, or both. For example, a store that sells books and music CDs might be in
the categories for Bookstores, Music, and its child category Music Stores, in which case
there will be three rows for that business in this table.

The OPENLS_DIR_CATEGORIZATIONS table contains one row for each association
of a business with a category, and it contains the columns shown in Table 12-4
(page 12-4).

Table 12-4 OPENLS_DIR_CATEGORIZATIONS Table
L

Column Name Data Type Description

BUSINESS_ID NUMBER Business ID. Must match a value in the
BUSINESS_ID column of the
OPENLS_DIR_BUSNESSES table (described in
OPENLS_DIR_BUSINESSES Table (page 12-2)).
(Required)

12-4 Developer's Guide

Data Structures for Business Directory Support

Table 12-4 (Cont.) OPENLS_DIR_CATEGORIZATIONS Table
|

Column Name Data Type Description

CATEGORY_ID VARCHAR2(32 Category ID string. The CATEGORY_ID and
) CATEGORY_TYPE_ID values must match
corresponding column values in a single row in the
OPENLS_DIR_CATEGORIES table (described in
OPENLS_DIR_CATEGORIES Table (page 12-4)).

(Required)
CATEGORY_TYPE NUMBER Category type ID number. The CATEGORY_ID and
_ID CATEGORY_TYPE_ID values must match

corresponding column values in a single row in the
OPENLS_DIR_CATEGORIES table (described in
OPENLS_DIR_CATEGORIES Table (page 12-4)).
(Required)

CATEGORIZATIO VARCHAR2(8) EXPLICIT (the default) or IMPLICIT.
N_TYPE

USER_SPECIFIC_C VARCHAR2(32 User-specified categorization, if any.
ATEGORIZATION)

PARAMETERS XMLTYPE XML document with additional information about
the association of the business with the category.

12.3.5 OPENLS_DIR_CATEGORY_TYPES Table

The OPENLS_DIR_CATEGORY_TYPES table stores information about category types.
This table contains the columns shown in Table 12-5 (page 12-5).

Table 12-5 OPENLS_DIR_CATEGORY_TYPES Table
I

Column Name Data Type Description

CATEGORY_TYPE_.I = NUMBER Category type ID number. (Required)

D

CATEGORY_TYPE_N VARCHAR2(128) Name of the category type. (Required)

AME

PARAMETERS XMLTYPE XML document with additional information

about the category type.

12.3.6 OPENLS_DIR_SYNONYMS Table

The OPENLS_DIR_SYNONYMS table stores information about synonyms for
categories. Synonyms can be created to expand the number of terms (strings)
associated with a category, so that users get more complete and meaningful results
from a search.

The OPENLS_DIR_SYNONYMS table contains one row for each synonym definition,
and it contains the columns shown in Table 12-6 (page 12-6).

Business Directory (Yellow Pages) Support 12-5

Data Structures for Business Directory Support

Table 12-6 OPENLS_DIR_SYNONYMS Table
L

Column Name Data Type Description
STANDARD_NAM VARCHAR2(12 Standard name of a category, as the user might
E 8) enter it.

CATEGORY VARCHAR2(12 Category name, as it appears in the

8) OPENLS_DIR_CATEGORIES table (described in
OPENLS_DIR_CATEGORIES Table (page 12-4)).

AKA VARCHAR2(12

.Additional or alternate name for the category.
8)

("AKA" stands for "also known as.")

12-6 Developer's Guide

13

Routing Engine

The Spatial and Graph routing engine (often referred to as the routing engine) enables
you to host an XML-based web service that provides the following features:

* Simple route requests return route information between the two locations.

¢ Simple multi-address route requests return route information between three or
more locations. The ordering of the locations in the response is user specified and is
not optimized.

¢ Traveling salesperson (TSP) route requests are a form of multi-address route
request and also return route information between three or more locations. The
ordering of some or all of the locations in the response can be reordered to optimize
the overall route.

¢ Batched route requests are a batch of one or more simple or multi-address route
requests. This can be a mix of simple, simple multi-address and TSP requests. Each
individual request looks like a single request but is encapsulated in a
<batch_route_request> element. The routing engine differentiates batched requests
from batch mode requests when it finds a <route_request> element embedded in
the <batch_route_request> element.

¢ Batch mode route requests return multiple responses, each with the same start
location but different end locations.

For all requests, the start, intermediate, and end locations are identified by addresses,
pre-geocoded addresses, or longitude/latitude coordinates.

Multi-address routes are explained in Routing (page 13-2).

The Oracle Routing engine is implemented as a Java 2 Enterprise Edition (J2EE) Web
application that can be deployed in an application server such as Oracle WebLogic
Server.

Figure 13-1 (page 13-2) shows the basic flow of action with the routing engine: a
client locates a remote routing engine instance, sends a route request, and processes
the route response returned by the routing engine instance.

Routing Engine 13-1

Routing

Figure 13-1 Basic Flow of Action with the Spatial and Graph Routing Engine

Route Request: Route Response:
- Preferences Routing Client - Route Information
- Start Location - Segment Information
- End Location (for each route segment)
or or
Batch Route Request: Batch Route Response:
- Preferences - Route Information
- Start Location (for each route)
- End Locations Routing Engine
(running in
WeblLogic Server)

Oracle Spatial
and Graph

This chapter contains the following major sections:

* Routing (page 13-2)

* Deploying the Routing Engine (page 13-6)

* Routing Engine XML API (page 13-8)

¢ Data Structures Used by the Routing Engine (page 13-54)

This chapter does not include information about administering the routing engine.
That information, which is for advanced users with specialized needs, is in Routing
Engine Administration (page E-1).

13.1 Routing

Routes are computed between location elements. There are three types of location
elements: <start_location>, <location> (intermediate locations or waypoints),
and <end_location>. A location element can be specified as an address that is
geocoded; as a pre-geocoded address, edge id/percentage pair; or as a latitude/
longitude pair that is reverse geocoded.

This section includes the following topics:

¢ Simple Route Request (page 13-3)

¢ Simple Multi-address Route Request (page 13-3)

* Traveling Salesperson (TSP) Route Request (page 13-4)

* Batched Route Request (page 13-5)

13-2 Developer's Guide

Routing

* Batch Mode Route Request (page 13-5)

13.1.1 Simple Route Request

Simple route requests must contain both a <start_Jlocation> and
<end_location> element. The response for a simple route request is a single route
from the start location to the end location.

Several attributes in a simple route request control how the route is computed and
what is returned in the route response. These attributes are discussed in Routing
Engine XML API (page 13-8).

13.1.2 Simple Multi-address Route Request

Simple multi-address route requests must contain at least three locations, including a
required <start_location> element. Multi-address route requests must also
contain one or more <location> elements, and optionally an <end_location>
element.

The result of a simple multi-address route request is a single route from the start
location, through each intermediate location, to the end location. This single route
consists of multiple subroutes. Subroutes are the routes between each of the
individual locations.

In a simple multi-address route request, the optimize_route attribute must be
absent or set to FALSE. In simple multi-address route requests, all locations are fixed.
There is no attempt to optimize the order in which the locations are visited. The
locations in the route are visited in the order in which they were specified in the
request.

Simple multi-address route requests use the route_type attribute to classify the
route as an open or closed tour:

¢ Open tour: The route ends at the final intermediate location or a specified end
location.

e (Closed tour: The route returns to the start location.

If a simple multi-address closed tour route is requested, the <start_Jlocation>
element specification also used as the end location during route computation. If an
<end_location> element is specified in a simple multi-address closed tour route
request, an error is returned.

Example: Simple Multi-address Open Tour Route Request

Assume you want to drive from your workplace to customer A, then to customer B,
and then to customer C.

* The route request has your workplace as the start location, customers A and B as
intermediate locations, and customer C as the end location.

* The returned route has three subroutes: (1) workplace to customer A, (2) customer
A to customer B, and (3) customer B to customer C.

e Each subroute probably has multiple segments, each one associated with a specific
driving direction step.

Example: Simple Multi-address Closed Tour Route Request

Assume you want to drive from your workplace to customer A, then to customer B,
then to customer C, and then back to your workplace.

Routing Engine 13-3

Routing

® The route request has your workplace as the start location, and customers A, B, and
C as intermediate locations. Your workplace is also used as the end location. An
<end_location> element .should not be specified in the route request. The
routing engine adds the subroute from customer C to the workplace automatically
when it sees a request for a closed tour.

¢ The returned route has four subroutes: (1) workplace to customer A, (2) customer
A to customer B, (3) customer B to customer C, and (4) customer C back to the
workplace.

e Each subroute probably has multiple segments, each one associated with a specific
driving direction step.

Simple multi-address requests can contain several attributes specific to each subroute.
These attributes include return_subroutes, return_subroute_edge ids, and
return_subroute_geometry. These attributes are explained in Route Request
XML Schema Definition (page 13-37).

13.1.3 Traveling Salesperson (TSP) Route Request

A traveling salesperson (TSP) route request must have at least three locations. Unlike
simple multi-address route requests, the <start_location> element is optional.

TSP route requests are multi-address requests that have the optimize_route
attribute present and set to TRUE. TSP route requests attempt to reorder the unfixed
locations in the request to optimize the overall route.

All the locations in a TSP request are classified as unfixed or fixed:
* Unfixed location: If a location is specified with the <location> element, it is

considered an unfixed location and is subject to reordering during route
computation.

¢ Fixed location: If the location is specified with a <start_location> or
<end_location> element, it is considered a fixed location and is not subject to
reordering during route computation.

If intermediate locations need to be fixed, a simple multi-address route request
should be used instead of a TSP route request.

TSP route requests use the route_type attribute to classify the route as an open or
closed tour.:

® Open tour: The route does not return to the start location.

e (Closed tour: The route returns to the start location.

If a TSP closed tour route is requested, the <start_location> element must be
specified. This start location is also used as the end location during route
computation. If an <end_location> element is specified in a TSP closed tour
route request, an error is returned. By definition, TSP closed tour routes use a
single fixed start and end location but the intermediate locations are still subject to
reordering.

Example: TSP Open Tour Route Request

To drive from your workplace, visiting customers A, B, and C:

® The route has the workplace as a fixed start location.

13-4 Developer's Guide

Routing

e The route has customers A, B, and C as unfixed intermediate locations. These
locations are reordered to optimize the overall route.

® The returned route is an optimized open tour route from the workplace to the first
reordered location, through the second reordered location, to the final location.

Example: TSP Closed Tour Route Request

To drive from your workplace, visiting customers A, B, and C, and then returning to
your workplace:

¢ The route has the workplace as a fixed start location. The workplace is also used as
a fixed end location. An <end_location> element should not be specified in the
route request. The routing engine adds the subroute from last unfixed location to
the workplace automatically when it sees a request for a closed tour.

e The route has customers A, B, and C as unfixed intermediate locations. These
locations are reordered to optimize the overall route.

¢ The returned route is an optimized closed tour route from the workplace to the first
reordered location, through the second and third reordered locations, and finally
back to the start location.

TSP route requests can contain several attributes specific to each subroute. These
attributes include return_subroutes, return_subroute_edge_ids, and
return_subroute_geometry. These attributes are explained in Route Request
XML Schema Definition (page 13-37).

13.1.4 Batched Route Request

Batched route requests are a hybrid of batch mode requests (explained in Batch Mode
Route Request (page 13-5)) and individual route requests. Batched route requests

are a way to process multiple simple, simple multi-address, and TSP route requests in
one request to the routing engine. Batching of batch mode requests is not allowed.

Like a batch mode request, the outermost element of a batched route request is
<batch_route_request>. Unlike a batch mode request, batched route requests
have one or more <route_request> elements nested inside the batch request.

In a batched route request, all attributes associated with the encompassing
<batch_route_request> element are ignored. Instead, the attributes associated
with the nested <route_request> elements are used when processing each
individual route. This allows users to mix simple, simple multi-address, and TSP
requests in a single batched individual route request.

The batched route request is useful for submitting multiple variations of a single route
request with differing attributes and comparing the results, for example, for
comparing the fastest route with the shortest route.

The individual route requests in a batched route request can use any of the attributes
from simple route requests. They can also use any of the subroute-specific attributes of
simple multi-address and TSP route requests.

All of the individual route requests in a batched route request are standalone; they
have no effect on any other route request in the batch.

13.1.5 Batch Mode Route Request

A batch mode route request contains one <start_location> element and one or
more <end_location> elements.

Routing Engine 13-5

Deploying the Routing Engine

The result of a batch mode route request contains multiple routes. Each route is from
the start location to one of the end locations. Each route in a batch mode request is
completely separate from all the other routes except for the shared start location.

Batch mode route requests may contain several batch mode specific attributes. These
attributes include cutoff_distance and sort_by distance. These attributes are
explained in Route Request XML Schema Definition (page 13-37).

13.2 Deploying the Routing Engine
Deploying the routing engine involves the following major tasks:
¢ Preparing WebLogic Server (page 13-6)
¢ Unpacking the routeserver.ear File (page 13-6)
¢ Editing the web.xml File (page 13-7)

¢ Deploying the Routing Engine on WebLogic Server (page 13-8)

13.2.1 Preparing WebLogic Server

Before you deploy the routing engine, a Managed Server should be created in WebLogic
Server (WLS). The managed server should have at least four gigabytes of memory in
the heap. The more memory that is allocated to the heap, the more local partitions can
be kept in the cache. Being able to keep more partitions in the cache is the single best
way to improve the performance of the routing engine.

For the routing engine to be successfully deployed on a managed server, the server
must have a data source associated with it. This data source provides a pool of
connections to the database schema that contains the road network data and user data.

It is recommended that a WLS Work Manager be created and associated with the
managed server. A work manager stores constraints on the number of requests that
can run concurrently on the managed server. It also stores a constraint on the number
of requests that can be queued before the managed server starts rejecting requests.

13.2.2 Unpacking the routeserver.ear File

To unpack the routeserver.ear.zip file, follow these steps.

In examples in these steps, the following values are used:

¢ The WebLogic Server Home ($WLS_HOME) is /scratch/software/Oracle/
Middleware/user_projects/domains/spatial/.

* The application deployment directory is $WLS_HOME/applications/.

However, use the values appropriate for your environment if they are different.

1. Copy routeserver.ear.zip to the application deployment directory:
cp routeserver._ear.zip $WLS_HOME/applications/
2. Unzip routeserver.ear.zip:

cd $WLS_HOME/applications/
unzip routeserver.ear.zip

13-6 Developer's Guide

Deploying the Routing Engine

13.2.3 Editing the web.xml File

This section describes changes to parameter values in the web . xml file that you must
make for the routing engine to deploy properly. (There are also additional parameters
that you can change to alter how the routing engine operates.)

Change the container_ds parameter to be the JNDI Name of the data source
associated with the managed server. For example: INDI/NorthAmericanDS

Change the routeserver_network_name parameter to the name of the Network
Data Model (NDM) network built on the routing engine road network data. For
example: NorthAmericanNetwork

If the WLS Managed Server has a Work Manager associated with it, change the wl -
dispatch-policy parameter value to the name of the Work Manager. For
example: NorthAmer icanWM

Check to be sure the geocoder_type parameter is set to httpclient or None.
(thinclient is no longer supported.)

— If set to httpclient, then also set geocoder_http_url to the URL of the
Geocoder servlet. For example: http://1ocalhost:8888/geocoder/
gcserver

— Ifan HTTP proxy is being used, then also specify
geocoder_http_ proxy_host and geocoder_http_proxy_ port. If no
proxy exists, these two parameters can be ignored

If necessary, change the logfi le_name parameter value. By default, the
logfile_name parameter is set to log/RouteServer . 1og. This default relative
path includes a subdirectory named l0g, relative to where the routing engine is
installed. The logFfi le_name parameter can also be set to an absolute path, for
example: /scratch/logs/RouteServer . log.

Change the partition_cache_size parameter. The default value for this
parameter is 70, but it will probably need to be changed depending on the amount
of memory allocated to the heap on the managed server. The following formula can
be used to get a good starting point for a cache size.

partition_cache_size = (NodesPerGigabyte/
AvgNodesPartition)*UsableMemory

Where:

- NodesPerGigabyte is the number of nodes per gigabyte. (This value should
not change. In the data sets as of December 2013, this value is 15000000, that is,
1.5 million.)

— AvgNodesPartition is the average number of nodes per local partition. This
does not include the highway partition 0. The memory for the highway partition
is accounted for in the 1 gigabyte subtracted from the allocated heap size. For
the North American data set, the AvgNodesPartition value is around 26000.
You can check the actual average nodes per partition by using the following

query:

SELECT AVG(COUNT(node_id))
FROM node

Routing Engine 13-7

Routing Engine XML API

WHERE partition_id>0
GROUP BY partition_id;

- UsableMemoryis the managed server allocated heap size in Gigabytes minus
1 Gigabyte.

This formula generates a safe number for the partition_cache_size
parameter. Depending on the types of user information being used and the average
number of concurrent requests being processed, it may be possible to add another
15% to 20% to this number. Use the WLS console to monitor the heap usage before
changing this number.

The heap can then be monitored while the routing engine is running to tune this
number up or down. However, setting this value too high may cause the managed
server to run out of memory.

13.2.4 Deploying the Routing Engine on WebLogic Server

To deploy the routing engine on WebLogic Server, follow these steps:

1. Log into the WLS console.
2. Click Deployments > Install.

3. Make sure that Path is set to the application deployment directory (as explained in
Unpacking the routeserver.ear File (page 13-6)).

4. Select routeserver.ear (a directory) and click Next.

5. Ensure that the Install this deployment as an application targeting style is
selected, and click Next.

6. In the list of potential servers to which to deploy the routing engine, select the
name of the managed server that you created, and click Next.

7. Ensure that the deployment name is routeserver, and click Finish.

After the routing engine is deployed, you can test the deployment with a set of routing
engine test queries. For example, if the managed server was set up to run on port 7003,
the routing engine servlet can be tested from http://localhost:7003/
routeserver/.

These queries can run a variety of different types of route requests. These queries
contain North American addresses, but the addresses can easily be manipulated on the
web page for other data sets.

13.3 Routing Engine XML API

This section explains how to submit route requests in XML format to the routing
engine, and it describes the XML Schema Definitions (XSDs) for the route requests
(input) and responses (output). XML is widely used for transmitting structured
documents using the HTTP protocol. If an HTTP request (GET or POST method) is
used, it is assumed the request has a parameter named xml_request whose value is
a string containing the XML document for the request.

A request to the routing engine servlet has the following format:

http://host name: port /rout e- server-servl et - pat h?xml_request=xm - r equest

In this format:

13-8 Developer's Guide

Routing Engine XML API

hostname is the network path of the server on which the routing engine is running.
port is the port on which the application server listens.

route-server-servlet-path is the routing engine servlet path (for example,
routeserver/servlet/RouteServerServlet).

xml-request is the URL-encoded XML request submitted using the HTML GET or
POST method.

The input XML is required for all requests. The output will be an XML document.

In a simple route request, you must specify a route ID, and you can specify one or
more of the following attributes:

route_preference: fastest or shortest (default)
road_preference: highway (default) or local

return_driving_directions (whether to return driving directions): true or
false (default)

return_hierarchical_directions (whether to return hierarchical
directions): true or false (default)

return_locations (return geocoded results for the start and end locations of the
route and any subroutes): true or false (default)

return_subroutes (whether to return subroutes): true (default if a multi-
address route, ignored for a single-address route) or false

return_route_geometry (whether to return the line string coordinates for the
route): true or false (default)

return_subroute_geometry (whether to return the line string coordinates for
each subroute): true or false (default for multi-address routes)

return_segment_geometry (whether to return the line string coordinates for
each maneuver in the route): true or false (default)

return_detailed_geometry: true (default; returns detailed geometries) or
false (returns generalized geometries)

language: language used to generate driving directions (ENGL I SH (default),
FRENCH, GERMAN, ITALIAN, or SPANISH)

distance_unit: kilometer, mile (default), or meter
length_unit: us for feet (default) or metric for meters
time_unit: hour, minute (default), or second
weilght_unit: us for tons (default) or metric for metric tons

pre_geocoded_locations (whether the start and end locations are input
locations (address specifications or points) or previously geocoded locations): true
(previously geocoded locations) or false (default; input locations)

driving_directions_detail: high, medium (default) or low

optimize_route: true or false (default)

Routing Engine 13-9

Routing Engine XML API

e route_type: open (default) or closed

e vehicle_type: auto (default) or truck

e truck type:delivery, public, resident, or trailer; (no default)
¢ truck_height: floating-point number in length_units

¢ truck_length: floating-point number in length_units

e truck_per_axle_weight: floating-point number in weight_units

e truck_weight: floating-point number in weight_units

e truck_width: floating-point number in length_units

Batched route requests are groups of one or more simple (single, multi-address, or TSP)
requests encapsulated in a <batch_route_request> element. All attributes
associated with the <batch_route_request> element are ignored. Because all
encapsulated requests are simple requests, they use the preceding listed attributes.

In a batch mode route request, you must specify a request ID, a start location, and one or
more end locations. Each location must have an ID attribute. Most of the attributes
used for simple requests have no meaning for batch mode. You can use one or more of
the following attributes in a batch mode route request, but using an attribute not in
this list will cause an exception to be raised.

¢ route_ preference: fastest or shortest (default)

e road_preference: highway (default) or local

e distance_unit: kilometer, km, mile (default), or meter
e time_unit: hour, minute (default), or second

e sort_by_distance (whether to sort the returned routes in ascending order by
distance of the end location from the start location): true or false (default)

e cutoff_distance (returning only routes where the end location is less than or
equal to a specified number of distance units from the start location): (number;
default = no limit)

e pre_geocoded_locations (whether the start and end locations are input
locations (address specifications or points) or previously geocoded locations): true
(previously geocoded locations) or False (default; input locations)

This section includes the following topics:

* Route Request and Response Examples (page 13-11)

* Route Request XML Schema Definition (page 13-37)

* Route Response XML Schema Definition (page 13-44)

¢ Batch Mode Route Request and Response Examples (page 13-48)
e Batch Route Request XML Schema Definition (page 13-50)

¢ Batch Route Response XML Schema (page 13-53)

13-10 Developer's Guide

Routing Engine XML API

13.3.1 Route Request and Response Examples

This section contains XML examples of route requests and the responses generated by
those requests. One request uses specified addresses, another uses points specified by
longitude and latitude coordinates, and another uses previously geocoded locations.
For reference information about the available elements and attributes, see Route
Request XML Schema Definition (page 13-37) for requests and Route Response XML
Schema Definition (page 13-44) for responses.

Example 13-1 Route Request with Specified Addresses

Example 13-1 (page 13-11) shows a simple request for the fastest route, preferably
using highways, between two offices at specified addresses (in Waltham,
Massachusetts and Nashua, New Hampshire) in a 5.67 metric ton delivery truck. The
response contains driving directions for each segment using kilometers for distances
and minutes for times. This request also returns the geocode information for the start
and end location.

<?xml version="1.0" standalone="yes"?>
<route_request
id="8"
route_preference="fastest"
road_preference="highway"
vehicle_type="truck"
truck_type="delivery"
truck_weight="5.67"
return_driving_directions="true
return_locations="true"
distance_unit="km"
time_unit="minute"
weight_unit="metric">
<start_location>
<input_location id="1">
<input_address>
<us_forml
street="1000 Winter St"
lastline="Waltham, MA" />
</input_address>
</input_location></start_location>
<end_location>
<input_location id="2">
<input_address>
<us_forml
street="1 Oracle Dr"
lastline="Nashua, NH" />
</input_address>
</input_location>
</end_location>
</route_request>

Example 13-2 Response for Route Request with Specified Addresses

Example 13-2 (page 13-11) shows the response generated by the request in
Example 13-1 (page 13-11). (The output is reformatted for readability.)

<I-- Oracle Routeserver version 12.1.0.1.0 (data version 11.1.0.7.1) -->
<route_response>
<route id="8" step_count="12"
distance="46.07216796875" distance_unit="km"
time="31.133371988932293" time_unit="minute"

Routing Engine 13-11

Routing Engine XML API

start_location="1" end_location="2">
<start_location>
<location id="1"
longitude="-71.25962" latitude="42.39741"
house_number="399" street="WINTER ST"
city="WALTHAM" state="MA" country="US"
driving_side="R"
postal_code="02451"
edge_1d="906810462" percent="0.0"/>
</start_location>
<segment sequence="1"
instruction="Start out on Winter St (Going Southwest)"
distance="0.0" time="0.0"/>
<segment sequence="2"
instruction="Turn RIGHT onto Wyman St (Going North)"
distance="0.3453199939727783" time="0.3597083270549774"/>
<segment sequence="3"
instruction="Take RAMP toward Peabody"
distance="0.43125000953674314" time="0.3478285253047943"/>
<segment sequence="4"
instruction="Merge onto 1-95 N/RT-128 N (Going North)"
distance="9.598520091056823" time="6.1528975268205"/>
<segment sequence="5"
instruction="Continue on toward Burlington"
distance="0.0" time="0.0"/>
<segment sequence="6"
instruction="Stay STRAIGHT to go onto RAMP (Going East)"
distance="0.22952000427246094" time="0.23908333778381347"/>
<segment sequence="7"
instruction="Continue on toward Lowell"
distance="0.5157099990844727" time="0.5371979157129924"/>
<segment sequence="8"
instruction="Stay STRAIGHT to go onto US-3 N (Going Northwest)"
distance="33.26371000862122" time="21.322891048093638"/>
<segment sequence="9"
instruction="Take EXIT 1 toward S. Nashua"
distance="0.6134100036621094" time="0.5454034169514974"/>
<segment sequence="10"
instruction="Continue on toward So. Nashua"
distance="0.27333999633789063" time="0.41415150960286456"/>
<segment sequence="11"
instruction="Turn LEFT onto Spit Brook Rd (Going West)"
distance="0.8013799934387207" time="1.2142121195793152"/>
<segment sequence="12"
instruction="Turn RIGHT onto Oracle Dr (Going North)"
distance="0.0" time="0.0"/>
<end_location>
<location id="2"
longitude="-71.45937" latitude="42.70783"
house_number="1" street="ORACLE DR"
city="NASHUA" state="NH" country="US"
driving_side="R"
postal_code="03062"
edge_1d="22325991" percent="0.0"/>
</end_location>
</route>

</route_response>

13-12 Developer's Guide

Routing Engine XML AP

Example 13-3 Route Request with Locations Specified as Longitude/Latitude
Points

Example 13-3 (page 13-13) shows a request for a closed tour TSP shortest route,
preferably using highways, between four locations specified as longitude/latitude
points. (The points are associated with four locations in San Francisco, California: the
World Trade Center, Golden Gate Park, 3001 Larkin Street, and 100 Flower Street.) The
route starts and ends at a fixed location at the World Trade Center, but the other three
locations are subject to reordering to produce an optimal route. The information from
the geocoder is returned for all location in the route. The geometry is displayed at the
subroute level, and edge IDs are displayed with the driving directions at the segment
level.

<?xml version="1.0" standalone="yes"?>
<route_request id="8"
route_preference="shortest"
route_type="closed"
optimize_route="true"
road_preference="highway"
return_locations="true"
return_driving_directions="true"
return_subroutes="true"
return_route_geometry="false"
return_subroute_geometry="true"
return_segment_geometry= "false"
return_segment_edge_ids= "true"
>
<start_location>
<input_location id="1" longitude="-122.39436" latitude="37.79579"/>
</start_location>
<location>
<input_location id="2" longitude="-122_45412" latitude="37.7714" />;
</location>
<location>
<input_location id="3" longitude="-122.422" latitude="37.80551" />
</location>
<location>
<input_location id="4" longitude="-122.40459" latitude="37.74211" />
</location>
</route_request>

Example 13-4 Response for Route Request with Locations Specified as Longitude/
Latitude Points

Example 13-4 (page 13-13) shows the response generated by the request in
Example 13-3 (page 13-13). (The output is reformatted for readability.)

<I-- Oracle Routeserver version 12.1.0.2.0 (data version 11.1.0.7.1) -->
<route_response>
<route id="8" step_count="88"
distance="15.105344411681319" distance_unit="mile"
time="35.63843688964844" time_unit="minute"
start_location="1" end_location="1">
<subroute id="1" step_count="5"
distance="1.8589950065634127" distance_unit="mile"
time="4.305604044596354" time_unit="minute"
start_location="1" end_location="3">
<subroute_geometry>
<LineString><coordinates>
-122.39436,37.79579 -122.39436,37.79579 -122.39454,37.79601
-122.39467,37.79614 -122.39486,37.79633 -122.39499,37.79647

Routing Engine 13-13

Routing Engine XML API

13-14 Developer's Guide

-122.39529,37.79678 -122.39558,37.79709 -122.39592,37.79747
-122.3963,37.7979 -122.39646,37.79808 -122.3969,37.79858
-122.39741,37.79916 -122.39755,37.79929 -122.39776,37.79918
-122.39793,37.79907 -122.39811,37.79899 -122.39821,37.79896
-122.39836,37.79892 -122.39867,37.79889 -122.39986,37.79874
-122.40104,37.7986 -122.40223,37.79845 -122.40302,37.79835
-122.40308,37.79834 -122.40349,37.79828 -122.40384,37.79824
-122.40466,37.79813 -122.40545,37.79802 -122.40549,37.79802
-122.4062,37.79794 -122.40622,37.79794 -122.40664,37.79789
-122.40707,37.79816 -122.40789,37.79872 -122.40846,37.7991
-122.40898,37.7995 -122.41017,37.80031 -122.41038,37.80045
-122.41078,37.80073 -122.41089,37.8008 -122.41094,37.80084
-122.41136,37.80112 -122.41143,37.80118 -122.41248,37.80188
-122.41254,37.80193 -122.41289,37.80218 -122.41367,37.80274
-122.41488,37.80355 -122.41547,37.80396 -122.41607,37.80441
-122.41657,37.80475 -122.41681,37.80492 -122.4172,37.80519
-122.4178,37.8056 -122.41837,37.80598 -122.41873,37.80593
-122.42035,37.80573 -122.422,37.80551
-122.42199999992847,37.805509999663826
</coordinates></LineString>
</subroute_geometry>
<start_location>
<location id="1"
longitude="-122.39436" latitude="37.79579"
house_number="" street="HERB CAEN WAY"
city="SAN FRANCISCO" state="CA" country="US"
driving_side="R"
postal_code="94111"
edge_1d="724791174" percent="1.0"/>
</start_location>
<segment sequence="1"
instruction="Start out on The Embarcadero (Going Northwest)"
distance="0.29822904401544625" time="0.49993750055631003">
<segment_edge_ids><edge_ids>
724791174, 724791175, 733049363, 915793201, 915793202, 830932896,
112011102, 112011103, 830934259, 830934260, 726169597, 112011105,
37830229
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="2"
instruction="Turn LEFT onto Broadway (Going Southwest)"
distance="0.5093705394140182" time="1.2420151789983114">
<segment_edge_ids><edge_ids>
-24571168, -724946174, -724946173, -23598782, -23621077, -23598783,
-23598784, -23598786, -23598787, -23598788, -23598789, -23598791,
-23598792
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="3"
instruction="Turn SLIGHT RIGHT onto Columbus Ave (Going Northwest)"
distance="0.8505250718279074" time="2.07386361459891">
<segment_edge_ids><edge_ids>
23601001, 23601002, 23601003, 23601004, 830239101, 830239102,
799420615, 23601006, 23601007, 23601008, 23737804, 23601009,
23601010, 23601011, 23737805, 23601012, 754219681, 754219682,
23622414, 754224948, 754224949
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="4"
instruction="Turn SLIGHT LEFT onto North Point St (Going West)"
distance="0.20086994241069608" time="0.48978787660598755">

Routing Engine XML AP

<segment_edge_ids><edge_ids>
-23612405, -23612406, -23612407
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="5"
instruction="Turn LEFT onto Larkin St (Going South)"
distance="2.3560371803568745E-8" time="5.744803956986288">
<segment_edge_ids><edge_ids>
-23609029
</edge_ids></segment_edge_ids>
</segment>
<end_location>
<location id="3"
longitude="-122.42199999966279" latitude="37.80551000007165"
house_number="2999" street="LARKIN ST" city="SAN FRANCISCO"
state="CA" country="US"
driving_side="R"
postal_code="94109"
edge_id="23609029" percent="0.9999996412873026"/>
</end_location>
</subroute>
<subroute i1d="2" step_count="32"
distance="4.0150478493172495" distance_unit="mile"
time="9.790025838216145" time_unit="minute"
start_location="3" end_location="2">
<subroute_geometry>
<LineString><coordinates>
-122.42199999992847,37.805509999663826 -122.422,37.80551
-122.42364,37.8053 -122.42345,37.80436 -122.42327,37.80342
-122.42482,37.80322 -122.42496,37.8032 -122.42545,37.80314
-122.42656,37.803 -122.42638,37.80207 -122.4262,37.80111
-122.42782,37.8009 -122.42947,37.80069 -122.43111,37.80048
-122.43276,37.80026 -122.43439,37.80006 -122.43605,37.79985
-122.43597,37.79943 -122.43588,37.79896 -122.43751,37.79874
-122.43742,37.79828 -122.43733,37.79781 -122.43895,37.79759
-122.43877,37.79667 -122.44041,37.79645 -122.44025,37.79554
-122.4419,37.7953 -122.44173,37.79439 -122.44153,37.79343
-122.44308,37.79323 -122.44317,37.79322 -122.44328,37.79321
-122.44476,37.79302 -122.44487,37.79301 -122.44496,37.793
-122.44643,37.7928 -122.4463,37.79188 -122.44614,37.79099
-122.44595,37.79011 -122.44577,37.78924 -122.44559,37.78836
-122.44697,37.78818 -122.44688,37.78775 -122.44687,37.78769
-122.44678,37.78726 -122.44676,37.78705 -122.44671,37.78679
-122.44675,37.78651 -122.4468,37.78635 -122.44689,37.78618
-122.44697,37.78603 -122.44749,37.7855 -122.44766,37.78538
-122.44792,37.78513 -122.448,37.78507 -122.44814,37.78496
-122.44929,37.78468 -122.45012,37.78448 -122.45015,37.78432
-122.4502,37.78418 -122.45034,37.78396 -122.45041,37.78383
-122.45043,37.78369 -122.45012,37.78218 -122.45112,37.78205
-122.45109,37.78192 -122.45082,37.78064 -122.45186,37.78049
-122.45287,37.78037 -122.45385,37.78023 -122.45374,37.77943
-122.45367,37.77905 -122.45349,37.77817 -122.45339,37.77781
-122.45332,37.77763 -122.45318,37.77685 -122.45303,37.77596
-122.45299,37.77574 -122.45283,37.77499 -122.45297,37.77497
-122.45287,37.77443 -122.45279,37.77404 -122.45262,37.7731
-122.45241,37.77215 -122.45276,37.77206 -122.45301,37.77195
-122.45346,37.77172 -122.45387,37.77153 -122.45398,37.77148
-122.45412868777395,37.77142244344235
</coordinates></LineString>
</subroute_geometry>
<start_location>

Routing Engine 13-15

Routing Engine XML API

<location id="3"
longitude="-122.42199999966279" latitude="37.80551000007165"
house_number="2999" street="LARKIN ST" city="SAN FRANCISCO"
state="CA" country="US"
driving_side="R"
postal_code="94109"
edge_1d="23609029" percent="0.9999996412873026"/>
</start_location>
<segment sequence="1"
instruction="Start out on Larkin St (Going North)"
distance="2.3560371803568745E-8" time="5.7448039569862884E-8">
<segment_edge_ids><edge_ids>
23609029
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="2"
instruction="Turn LEFT onto North Point St (Going West)"
distance="0.09072267445473188" time="0.22121211687723796"">
<segment_edge_ids><edge_ids>
-23612408
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="3"
instruction="Turn LEFT onto Polk St (Going South)"
distance="0.1314981638707435" time="0.3206363519032796"">
<segment_edge_ids><edge_ids>
-23614397, -23614396
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="4"
instruction="Turn RIGHT onto Francisco St (Going West)"
distance="0.1819921735430389" time="0.443757571776708">
<segment_edge_ids><edge_ids>
-23604420, -120906034, -916007650, -916007649
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="5"
instruction="Turn LEFT onto Franklin St (Going South)"
distance="0.13209470069661014" time="0.32209091186523436">
<segment_edge_ids><edge_ids>
-23604500, -23604499
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="6"
instruction="Turn RIGHT onto Lombard St (Going West)"
distance="0.544926363604202"
time="1.3287121295928954"">
<segment_edge_ids><edge_ids>
-23609690, -23609691, -23609692, -23609693, -23609694,
-23609695
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="7"
instruction="Turn LEFT onto Fillmore St (Going South)"
distance="0.06220717119887626"
time="0.15168182055155435">
<segment_edge_ids><edge_ids>
-23604040, -23604039
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="8"

13-16 Developer's Guide

Routing Engine XML AP

instruction="Turn RIGHT onto Greenwich St (Going West)"
distance="0.09030634551112576"
time="0.22019697825113932"">
<segment_edge_ids><edge_ids>
-23605619
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="9"
instruction="Turn LEFT onto Steiner St (Going South)"
distance="0.06502205890116725" t
time="0.15854545434316"">
<segment_edge_ids><edge_ids>
-23618095, -23618094
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="10"
instruction="Turn RIGHT onto Filbert St (Going West)"
distance="0.08977195129603127"
time="0.21889394124348957"">
<segment_edge_ids><edge_ids>
-23603994
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="11"
instruction="Turn LEFT onto Pierce St (Going South)"
distance="0.06433853285001388"
time="0.15687878926595053"">
<segment_edge_ids><edge_ids>
-23614117
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="12"
instruction="Turn RIGHT onto Union St (Going West)"
distance="0.09084695019464499"
time="0.22151514689127605">
<segment_edge_ids><edge_ids>
-23619255
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="'13"
instruction="Turn LEFT onto Scott St (Going South)"
distance="0.06349965975356134"
time="0.15483333269755045">
<segment_edge_ids><edge_ids>
-23616716
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="14"
instruction="Turn RIGHT onto Green St (Going West)"
distance="0.09162990537119692"
time="0.2234242598215739">
<segment_edge_ids><edge_ids>
-23605539
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="15"

instruction="Turn LEFT onto Divisadero St (Going South)"

distance="0.13081463781959013"

time="0.3189696947733561">

<segment_edge_ids><edge_ids>
-23602190, -23602189

Routing Engine 13-17

Routing Engine XML API

</edge_ids></segment_edge_ids>
</segment>
<segment sequence="16"
instruction="Turn RIGHT onto Broadway (Going West)"
distance="0.2711613656927398"
time="0.6611817995707194">
<segment_edge_ids><edge_ids>
-829713884, -829713883, -829713879, -829713878,
-829713874, -829713887,-829713886
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="17"
instruction="Turn LEFT onto Lyon St (Going South)"
distance="0.3103461147339876"
<segment sequence="16"
instruction="Turn RIGHT onto Broadway (Going West)"
distance="0.2711613656927398"
time="0.6611817995707194">
<segment_edge_ids><edge_ids>
-829713884, -829713883, -829713879, -829713878,
-829713874, -829713887,-829713886
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="17"
instruction="Turn LEFT onto Lyon St (Going South)"
distance="0.3103461147339876"
time="0.7567272663116456">
<segment_edge_ids><edge_ids>
-28479560, -23609965, -23609964, -23609963, -23609962
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="18"
instruction="Turn RIGHT onto Sacramento St (Going West)"
distance="0.07639346451339481"
time="0.18627273241678874">
<segment_edge_ids><edge_ids>
-23615823
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="'19"
instruction="Turn LEFT onto Presidio Ave (Going South)"
distance="0.09716025402078811"
time="0.23690908749898273"">
<segment_edge_ids><edge_ids>
-754763527, -754763526,-23747787
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="20"
instruction="Turn SLIGHT RIGHT onto RAMP (Going South)"
distance="0.054849932668282114"
time="0.1337424119313558">
<segment_edge_ids><edge_ids>
-23747788
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="21"
instruction="Turn SLIGHT RIGHT onto Masonic Ave (Going Southwest)"
distance="0.09798048860074304"
time="0.23890908559163412"">
<segment_edge_ids><edge_ids>
-723450070, -723450073

13-18 Developer's Guide

Routing Engine XML AP

</edge_ids></segment_edge_ids>
</segment>
time="0.7567272663116456">
<segment_edge_ids><edge_ids>
-28479560, -23609965, -23609964, -23609963, -23609962
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="18"
instruction="Turn RIGHT onto Sacramento St (Going West)"
distance="0.07639346451339481"
time="0.18627273241678874">
<segment_edge_ids><edge_ids>
-23615823
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="'19"
instruction="Turn LEFT onto Presidio Ave (Going South)"
distance="0.09716025402078811"
time="0.23690908749898273">
<segment_edge_ids><edge_ids>
-754763527, -754763526,-23747787
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="20"
instruction="Turn SLIGHT RIGHT onto RAMP (Going South)"
distance="0.054849932668282114"
time="0.1337424119313558">
<segment_edge_ids><edge_ids>
-23747788
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="21"
instruction="Turn SLIGHT RIGHT onto Masonic Ave (Going Southwest)"
distance="0.09798048860074304"
time="0.23890908559163412"">
<segment_edge_ids><edge_ids>
-723450070, -723450073
</edge_ids></segment_edge_ids>
</segment>
<end_location>
<location id="2"
longitude="-122.45412868707837" latitude="37.771422441619094"
house_number="" street="JOHN F KENNEDY DR"
city="SAN FRANCISCO" state="CA" country="US"
driving_side="R"
postal_code="94118"
edge_1d="728011751" percent="0.5203619908971352"/>
</end_location>
</subroute>
<subroute i1d="3" step_count="36"
distance="4.848880093441248" distance_unit="mile"
time="11.788133748372395" time_unit="minute"
start_location="2" end_location="4">
<subroute_geometry>
<LineString><coordinates>
-122.45412868777395,37.77142244344235 -122.45429,37.77136
-122.4546,37.77123 -122.45483,37.77114 -122.4551,37.77103
-122.4552,37.77097 -122.45533,37.77086 -122.45501,37.77098
-122.4547,37.77107 -122.45447,37.77116 -122.45424,37.77124
-122.45396,37.77135 -122.45384,37.7714 -122.45382,37.77141
-122.45369,37.77143 -122.45358,37.77144 -122.45347,37.77143

Routing Engine 13-19

Routing Engine XML API

-122.4529,37.77133 -122.45222,37.77123 -122.45205,37.77031
-122.45043,37.77051 -122.45021,37.76958 -122.44967,37.76964
-122.44945,37.76872 -122.44839,37.76885 -122.44756,37.76895
-122.44672,37.76907 -122.44593,37.76917 -122.44555,37.76733
-122.44473,37.76743 -122.44467,37.76702 -122.44456,37.76645
-122.44451,37.76631 -122.44418,37.76596 -122.44361,37.76539
-122.44347,37.76536 -122.44273,37.76532 -122.44246,37.7653
-122.44232,37.76529 -122.44192,37.76527 -122.44202,37.76513
-122.44229,37.76511 -122.44232,37.76508 -122.44232,37.765
-122.44219,37.76499 -122.44209,37.76496 -122.44107,37.76443
-122.43976,37.76376 -122.4392,37.76348 -122.43908,37.76344
-122.43795,37.76329 -122.43781,37.7633 -122.43709,37.76333
-122.43528,37.76346 -122.43523,37.76312 -122.43519,37.76283
-122.43516,37.76264 -122.43515,37.76258 -122.43511,37.76207
-122.43504,37.76128 -122.435,37.76089 -122.43388,37.76095
-122.43278,37.76101 -122.43057,37.76115 -122.43048,37.76036
-122.43039,37.75958 -122.42824,37.75972 -122.42816,37.7589
-122.42805,37.75806 -122.42789,37.75807 -122.42583,37.75821
-122.42566,37.75822 -122.42347,37.75836 -122.42126,37.75851
-122.42047,37.75854 -122.42028,37.75695 -122.41999,37.75696
-122.4197,37.75698 -122.41892,37.75702 -122.41874,37.75545
-122.41766,37.75553 -122.41659,37.75557 -122.41549,37.75563
-122.41533,37.75405 -122.41425,37.75412 -122.41385,37.75414
-122.41312,37.75417 -122.41204,37.75424 -122.41109,37.75428
-122.4102,37.75433 -122.41004,37.75276 -122.40913,37.75282
-122.40818,37.75287 -122.40733,37.75292 -122.40713,37.75133
-122.40617,37.75138 -122.40614,37.75103 -122.40613,37.75096
-122.40611,37.75088 -122.40602,37.75067 -122.40599,37.75051
-122.40578,37.75013 -122.40565,37.74987 -122.40529,37.74937
-122.40518,37.74924 -122.40506,37.74913 -122.40483,37.74896
-122.4045,37.74873 -122.40441,37.74867 -122.40437,37.74864
-122.4041,37.74845 -122.40393,37.74827 -122.40384,37.74815
-122.40378,37.74801 -122.40375,37.74785 -122.40381,37.74762
-122.40397,37.74719 -122.4043,37.74633 -122.40434,37.74618
-122.40434,37.74603 -122.40431,37.74594 -122.4042,37.74554
-122.40416,37.7453 -122.40417,37.74515 -122.40431,37.74464
-122.40445,37.74427 -122.40461,37.74393 -122.40479,37.74362
-122.40522,37.74304 -122.40538,37.74284 -122.40565,37.7425
-122.40517,37.74233 -122.40459,37.74211
</coordinates></LineString>
</subroute_geometry>
<start_location>
<location id="2"
longitude="-122.45412868707837" latitude="37.771422441619094"
house_number="" street="JOHN F KENNEDY DR"
city="SAN FRANCISCO" state="CA" country="US"
driving_side="R"
postal_code="94118"
edge_id="728011751" percent="0.5203619908971352"/>
</start_location>
<segment sequence="1"
instruction="Start out on John F Kennedy Dr (Going West)"
distance="0.02898340160626114"
time="0.07067119280497233"">
<segment_edge_ids><edge_ids>
-728011751, -728011750
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="2"
instruction="Stay STRAIGHT to go onto Kezar Dr (Going Southwest)"
distance="0.04787796125753919"

13-20 Developer's Guide

Routing Engine XML AP

time="0.11674242814381917"">
<segment_edge_ids><edge_ids>
-23747756
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="3"
instruction="Turn SHARP LEFT onto John F Kennedy Dr (Going East)"
distance="0.08222829797036355"
time="0.20049999952316283"">
<segment_edge_ids><edge_ids>
23747762, 728012586, 724789094
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="4"
instruction="Stay STRAIGHT to go onto Oak St (Going Northeast)"
distance="0.09773193475050901"
time="0.2383030315240224">
<segment_edge_ids><edge_ids>
724764533, 724764534, -23738012
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="5"
instruction="Turn RIGHT onto Shrader St (Going South)"
distance="0.06425775409315192"
time="0.15668182373046874">
<segment_edge_ids><edge_ids>
-23617167
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="6"
instruction="Turn LEFT onto Page St (Going East)"
distance="0.08957932247692126"
time="0.21842424074808756">
<segment_edge_ids><edge_ids>
23613434
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="7"
instruction="Turn RIGHT onto Cole St (Going South)"
distance="0.06538868039329745"
time="0.1594394048055013">
<segment_edge_ids><edge_ids>
-23600911
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="8"
instruction="Turn LEFT onto Haight St (Going East)"
distance="0.02978934855322748"
time="0.07263635794321696"">
<segment_edge_ids><edge_ids>
23605814
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="9"
instruction="Turn RIGHT onto Belvedere St (Going South)"
distance="0.06471136481056884"
time="0.1577878793080648">
<segment_edge_ids><edge_ids>
-23598189
</edge_ids></segment_edge_ids>
</segment>

Routing Engine 13-21

Routing Engine XML API

<segment sequence="10"
instruction="Turn LEFT onto Waller St (Going East)"
distance="0.1948176204828599"
time="0.4750302950541178">
<segment_edge_ids><edge_ids>
23620205, 23620204, 23620203, 23620202
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="11"
instruction="Turn RIGHT onto Delmar St (Going South)"
distance="0.12885726410065712"
time="0.3141969680786133">
<segment_edge_ids><edge_ids>
-23602039
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="12"
instruction="Turn LEFT onto Frederick St (Going East)"
distance="0.04533026592197986"
time="0.11053029696146648">
<segment_edge_ids><edge_ids>
23604508
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="'13"
instruction="Turn RIGHT onto Masonic Ave (Going South)"
distance="0.2072702425733493"
time="0.5053939501444499">
<segment_edge_ids><edge_ids>
-932510459, -932510458, -23610757, -23610758,
-814886921
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="14"
instruction="Stay STRAIGHT to go onto Roosevelt Way (Going East)"
distance="0.04439197258915798"
time="0.1082424263159434">
<segment_edge_ids><edge_ids>
-814886920, -799371986, -799371985
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="15"
instruction="Turn RIGHT onto Levant St (Going Southwest)"
distance="0.03410178286259032"
time="0.0831515113512675">
<segment_edge_ids><edge_ids>
-799371984, -799371983
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="16"
instruction="Turn LEFT onto States St (Going Southeast)"
distance="0.4172186714314114"
time="1.0173182010650634">
<segment_edge_ids><edge_ids>
-829568337, -936352352, -936352351, -932495104,
932495103, 799475779
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="17"
instruction="Turn RIGHT onto Castro St (Going South)"
distance="0.1783259826221157"

13-22 Developer's Guide

Routing Engine XML AP

time="0.4348181843757629">
<segment_edge_ids><edge_ids>
-754012004, -833349280, -833349279, -905543898,
-905543897, -753950604, -753950603
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="18"
instruction="Turn LEFT onto 18th St (Going East)"
distance="0.24272664830496957"
time="0.5918484846750895">
<segment_edge_ids><edge_ids>
23594648, 23594647, 23594646
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="'19"
instruction="Turn RIGHT onto Sanchez St (Going South)"
distance="0.10895420615626991"
time="0.26566667556762696"">
<segment_edge_ids><edge_ids>
-23616290, -23616291
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="20"
instruction="Turn LEFT onto 19th St (Going East)"
distance="0.11787733607670552"
time="0.2874242464701335">
<segment_edge_ids><edge_ids>
23594737
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="21"
instruction="Turn RIGHT onto Church St (Going South)"
distance="0.115211584951289"
time="0.2809242566426595">
<segment_edge_ids><edge_ids>
-23600503, -23600504
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="22"
instruction="Turn LEFT onto 20th St (Going East)"
distance="0.4155409305719238"
time="1.0132273137569427"">
<segment_edge_ids><edge_ids>
732180611, 732180612, 23747712, 23594835,
23594834, 23594833
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="23"

instruction="Turn RIGHT onto Lexington St (Going South)"

distance="0.11038339612853318"
time="0.5921333312988282">
<segment_edge_ids><edge_ids>
-23609398
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="'24"
instruction="Turn LEFT onto 21st St (Going East)"
distance="0.07448580061634548"
time="0.18162120978037516"">
<segment_edge_ids><edge_ids>
23594883, 23594882, 23594881

Routing Engine 13-23

Routing Engine XML API

</edge_ids></segment_edge_ids>
</segment>

<segment sequence="25"
instruction="Turn RIGHT onto Mission St (Going South)"

distance="0.10895420141545431"
time="0.26566665967305503"">
<segment_edge_ids><edge_ids>
-23611414
</edge_ids></segment_edge_ids>
</segment>

<segment sequence="26"
instruction="Turn LEFT onto 22nd St (Going East)"

distance="0.17805878047745186"
time="0.4341666539510091">
<segment_edge_ids><edge_ids>
23594956, 23594955, 23594954
</edge_ids></segment_edge_ids>
</segment>

<segment sequence="27"
instruction="Turn RIGHT onto Shotwell St (Going South)"

distance="0.10955073824132096"
time="0.2671212196350098">
<segment_edge_ids><edge_ids>
-23617156
</edge_ids></segment_edge_ids>
</segment>

<segment sequence="28"
instruction="Turn LEFT onto 23rd St (Going East)"

distance="0.28101037926858485"
time="0.6851969718933105">
<segment_edge_ids><edge_ids>
23595024, 799561724, 799561725, 23595022,
23595021, 23595020
</edge_ids></segment_edge_ids>
</segment>

<segment sequence="29"
instruction="Turn RIGHT onto Florida St (Going South)"

distance="0.10886099698092727"
time="0.26543939908345543"">
<segment_edge_ids><edge_ids>
-23604143
</edge_ids></segment_edge_ids>
</segment>

<segment sequence="30"
instruction="Turn LEFT onto 24th St (Going East)"

distance="0.14851177530603368"
time="0.3621212085088094"">
<segment_edge_ids><edge_ids>
23595090, 23595089, 23595088
</edge_ids></segment_edge_ids>
</segment>

<segment sequence="31"
instruction="Turn RIGHT onto Hampshire St (Going South)"

distance="0.11043310832082466"
time="0.26927274068196616"">
<segment_edge_ids><edge_ids>
-23605909
</edge_ids></segment_edge_ids>
</segment>

<segment sequence="32"
instruction="Turn LEFT onto 25th St (Going East)"

13-24 Developer's Guide

Routing Engine XML AP

distance="0.05257565439032596"
time="0.1281969706217448">
<segment_edge_ids><edge_ids>
23595179
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="'33"
instruction="Turn RIGHT onto Potrero Ave (Going South)"
distance="0.050077673617465915"
time="0.1221060593922933">
<segment_edge_ids><edge_ids>
-724773368, -724773367
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="34"
instruction="Take RAMP toward Bayshore Blvd"
distance="0.03984341188503202"
time="0.09715151786804199"">
<segment_edge_ids><edge_ids>
-915517048
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="35"
instruction="Stay STRAIGHT to go onto Bayshore Blvd(Going Southeast)"
distance="0.5910582184784158"
time="1.0831619163354238">
<segment_edge_ids><edge_ids>
-915517047, -120885637, -830210066, -776735343,
-776735342, -756632225, -756632224, -127815508,
-23621037, -23621038, -23621034, -756635722,
-756635721, -23597820, -756635724, -756635723
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="'36"
instruction="Turn LEFT onto Flower St (Going East)"
distance="0.06390356064909457"
time="0.15581818421681723">
<segment_edge_ids><edge_ids>
-23604154, -23604155
</edge_ids></segment_edge_ids>
</segment>
<end_location>
<location id="4"
longitude="-122.40459" latitude="37.74211"
house_number="99" street="FLOWER ST" city="SAN FRANCISCO"
state="CA" country="US"
driving_side="R"
postal_code="94124"
edge_1d="23604155" percent="0.0"/>
</end_location>
</subroute>
<subroute i1d="4" step_count="15"
distance="4.382421462359411" distance_unit="mile"
time="9.754673258463542" time_unit="minute"
start_location="4" end_location="1">
<subroute_geometry>
<LineString><coordinates>
-122.40459,37.74211 -122.40459,37.74211 -122.40431,37.74253
-122.40366,37.74342 -122.40322,37.74381 -122.40289,37.74515
-122.40268,37.74635 -122.40295,37.74675 -122.40311,37.747
-122.40327,37.74723 -122.40332,37.74737 -122.40342,37.74753

Routing Engine 13-25

Routing Engine XML API

13-26 Developer's Guide

-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.
-122.

40348,37.74767 -122.40354,37.74787 -122.40365,37.74821
40367,37.74839 -122.40366,37.74857 -122.40358,37.74883
40353,37.74897 -122.40343,37.74916 -122.40336,37.74926
40329,37.74932 -122.4032,37.74936 -122.40306,37.7494
40283,37.74944 -122.40283,37.74994 -122.40281,37.75019
4028,37.75044 -122.40276,37.7505 -122.40266,37.75057
40221,37.7506 -122.40231,37.75197 -122.40242,37.75326
40254,37.75452 -122.40163,37.75458 -122.40178,37.75614
40187,37.75714 -122.40198,37.75826 -122.40199,37.75842
4021,37.75969 -122.40222,37.76095 -122.40235,37.76223
40248,37.76352 -122.40254,37.76478 -122.40268,37.7661
40282,37.76738 -122.40295,37.76865 -122.40306,37.76983
40351,37.76981 -122.40363,37.76989 -122.40378,37.76999
40382,37.77002 -122.40386,37.77004 -122.4036,37.77025
40285,37.77086 -122.40226,37.77134 -122.40203,37.77153
40166,37.77183 -122.40131,37.77211 -122.40113,37.77226
39968,37.7734 -122.39956,37.7735 -122.39943,37.77361
39723,37.77535 -122.39539,37.77679 -122.39499,37.77711
39457,37.77743 -122.3943,37.77764 -122.3939,37.77795
39356,37.77823 -122.39344,37.77832 -122.3933,37.77843
39275,37.77886 -122.39259,37.77899 -122.39256,37.77902
39239,37.77915 -122.39222,37.77929 -122.39203,37.77944
39141,37.77994 -122.39108,37.7802 -122.39052,37.78062
38974,37.78123 -122.38923,37.78161 -122.38911,37.78166
38896,37.78173 -122.38863,37.78179 -122.38841,37.78181
38814,37.7818 -122.38813,37.78195 -122.38811,37.7823
38811,37.78254 -122.3881,37.78266 -122.38806,37.78316
38802,37.78335 -122.38791,37.78477 -122.38789,37.78504
3878,37.7861 -122.3878,37.78615 -122.38771,37.78707
3877,37.78722 -122.38769,37.78747 -122.3877,37.78766
38772,37.78791 -122.38779,37.78835 -122.38788,37.7888
38794,37.78896 -122.38816,37.78937 -122.38838,37.78965
38859,37.78984 -122.38935,37.79047 -122.38978,37.79082
38992,37.79095 -122.39013,37.7912 -122.39028,37.79141
39041,37.79166 -122.39049,37.79181 -122.39061,37.79205
39071,37.79226 -122.39093,37.79252 -122.39117,37.79276
3915,37.79303 -122.392,37.79344 -122.39233,37.79374
39246,37.79387 -122.39257,37.79397 -122.39275,37.79414
39303,37.7944 -122.39319,37.79455 -122.39335,37.79471
39357,37.79494 -122.39374,37.79511 -122.39382,37.79518
39407,37.79546 -122.39436,37.79579

</coordinates></LineString>
</subroute_geometry>
<start_location>
<location id="4"
longitude="-122.40459" latitude="37.74211"
house_number="99" street="FLOWER ST" city="SAN FRANCISCO"
state="CA" country="US"
driving_side="R"
postal_code="94124"
edge_1d="23604155" percent="0.0"/>
</start_location>

<segment

sequence=""1"

instruction="Start out on Flower St (Going East)"
distance="0.0"
time="0.0">
<segment_edge_ids><edge_ids>
-23604155
</edge_ids></segment_edge_ids>
</segment>

<segment

sequence="2"

Routing Engine XML AP

instruction="Turn LEFT onto Loomis St (Going Northeast)"
distance="0.1399739006534103"
time="0.341303030649821">
<segment_edge_ids><edge_ids>
23609757, 23609756
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="3"
instruction="Turn SLIGHT LEFT onto Barneveld Ave (Going North)"
distance="0.1780836365735976"
time="0.43422727584838866"">
<segment_edge_ids><edge_ids>
23597607
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="4"
instruction="Turn SLIGHT LEFT onto Jerrold Ave (Going Northwest)"
distance="0.06884359716369064"
time="0.16786363919576008">
<segment_edge_ids><edge_ids>
127821131
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="5"
instruction="Stay STRAIGHT to go onto RAMP (Going Northwest)"
distance="0.04681538329577495"
time="0.11415150960286459">
<segment_edge_ids><edge_ids>
127821133
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="6"
instruction="Stay STRAIGHT to go onto Cesar Chavez (Going North)"
distance="0.1321568397517706"
time="0.22154166897137959"">
<segment_edge_ids><edge_ids>
23621025, 830210057, 830210058, 120885622
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="7"
instruction="Turn LEFT onto Vermont St (Going North)"
distance="0.06916050646352936"
time="0.16863636970520018">
<segment_edge_ids><edge_ids>
754243248, 754243249
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="8"
instruction="Turn SLIGHT RIGHT onto 26th St (Going East)"
distance="0.036668115529443365"
time="0.08940908908843995">
<segment_edge_ids><edge_ids>
23595258
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="9"
instruction="Turn LEFT onto Kansas St (Going North)"
distance="0.27153420476451817"
time="0.6620909055074056">
<segment_edge_ids><edge_ids>
23608261, 23608260, 23608259

Routing Engine 13-27

Routing Engine XML API

</edge_ids></segment_edge_ids>
</segment>
<segment sequence="10"
instruction="Turn RIGHT onto 23rd St (Going East)"
distance="0.049897472846428766"
time="0.12166666984558105">
<segment_edge_ids><edge_ids>
23595010
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="11"
instruction="Turn LEFT onto Rhode Island St (Going North)"
distance="1.0569688657972653"
time="2.5772424399852754">
<segment_edge_ids><edge_ids>
933038005, 933038006, 933038001, 933038002,
23615271, 23615270, 23615269, 23615268,
23615267, 23615266, 23615265, 23615264,
23615263
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="12"
instruction="Turn LEFT onto Division St (Going West)"
distance="0.043919717429223945"
time="0.10709091226259868"">
<segment_edge_ids><edge_ids>
-23602204, 829577422, 829577423
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="13"
instruction="Stay STRAIGHT to go onto RAMP (Going Northwest)"
distance="0.0055987076548075785"
time="0.013651515046755472"">
<segment_edge_ids><edge_ids>
24552756
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="14"
instruction="Turn RIGHT onto Townsend St (Going Northeast)"
distance="1.192965882328057"
time="2.9088484485944113">
<segment_edge_ids><edge_ids>
916742043, 916742044, 916742041, 916742042,
916637669, 916637670, 916637671, 916637672,
23618959, 724706739, 724706740, 915025718,
915025719, 915025717, 23618956, 915025720,
915025721, 23618954, 916135978, 916135979,
916135980, 916135981, 916135982, 799424055,
23618951, 23618950, 799362044, 799362045,
724686775, -23841533
</edge_ids></segment_edge_ids>
</segment>
<segment sequence="15"
instruction="Turn LEFT onto The Embarcadero (Going North)"
distance="1.0898340975809355"
time="1.8269479304552079">
<segment_edge_ids><edge_ids>
807424014, 807424015, 733049265, 830425790,
830425791, 112011086, 799424653, 799424654,
724665449, 830416191, 830416192, 120886507,
120886508, 112011094, 112011097, 725001298,

13-28 Developer's Guide

Routing Engine XML AP

830434313, 830434314, 724945050, 724945051,
830222369, 830222370, 23841522, 825450115,
825450116, 127810052, 724791171, 724791172,
799417573, 799417574, 724791173, 724791174
</edge_ids></segment_edge_ids>
</segment>
<end_location>
<location id="1"
longitude="-122.39436" latitude="37.79579"
house_number="" street="HERB CAEN WAY" city=""SAN FRANCISCO"
state="CA" country="US"
driving_side="R" postal_code="94111"
edge_1d="724791174"percent="1.0"/>
</end_location>
</subroute>
</route>
</route_response>

Example 13-5 Batched Route Request with Locations Specified as Addresses, Pre-
geocoded Locations, and Longitude/Latitude Points

Example 13-5 (page 13-29) shows a batched request for the a route between the same
two points as an auto requesting the fastest route, an auto requesting the shortest
route, a truck requesting the fastest route, and a truck requesting the shortest route.
The locations in all the requests are the same, but they are specified in a mix of input
addresses, pre-geocoded locations, and longitude/latitude points.

<?xml version="1.0" standalone="yes"?>
<batch_route_request id="1">
<route_request id="1"
route_preference="fastest"
road_preference="highway"
return_locations="true"
return_driving_directions="true"
vehicle_type="auto"
distance_unit="mile"
time_unit="minute"
>
<start_location>
<input_location id="1">
<input_address>
<us_forml
street="875 ALMA ST"
lastline="94301"/>
</input_address>
</input_location>
</start_location>
<end_location>
<input_location id="2">
<input_address>
<us_forml
street="660 BLOSSOM HILL RD"
lastline="95123" />
</input_address>
</input_location>
</end_location>
</route_request>
<route_request id="2"
route_preference="shortest"
road_preference="highway"
pre_geocoded_locations="true"

Routing Engine 13-29

Routing Engine XML API

return_locations="true"
return_driving_directions="true"
vehicle_type="auto"
distance_unit="mile"
time_unit="minute"
>
<start_location>
<pre_geocoded_location id="1">
<edge_id>23694266</edge_id>
<percent>0.0</percent>
<side>R</side>
</pre_geocoded_location>
</start_location>
<end_location>
<pre_geocoded_location id="2">
<edge_id>812218080</edge_id>
<percent>0.0</percent>
<side>R</side>
</pre_geocoded_location>
</end_location>
</route_request>
<route_request id="3"
route_preference="fastest"
road_preference="highway"
return_locations="true"
return_driving_directions="true"
vehicle_type="truck"
truck_height="13.6"
truck_length="75"
truck_weight="30"
distance_unit="mile"
time_unit="minute"
>
<start_location>
<input_location id="1"
longitude="-122.15901"
latitude="37.4403" />
</start_location>
<end_location>
<input_location id="2"
longitude="-121.83459"
latitude="37.25125" />
</end_location>
</route_request>
<route_request id="4"
route_preference="shortest"
road_preference="highway"
pre_geocoded_locations="true"
vehicle_type="truck"
truck_height="13.6"
truck_length="75"
truck weight="30"
return_driving_directions="true"
distance_unit="mile"
time_unit="minute"
>
<start_location>
<pre_geocoded_location id="1">
<edge_id>23694266</edge_id>
<percent>0.0</percent>
<side>R</side>

13-30 Developer's Guide

Routing Engine XML AP

</pre_geocoded_location>
</start_location>
<end_location>
<pre_geocoded_location id="2">
<edge_id>812218080</edge_id>
<percent>0.0</percent>
<side>R</side>
</pre_geocoded_location>
</end_location>
</route_request>
</batch_route_request>

Example 13-6 Response for Batched Route Request with Locations Specified as
Addresses, Pre-geocoded Locations, and Longitude/Latitude Points

Example 13-6 (page 13-31) shows the response to the request in Example 13-5
(page 13-29). (The output is reformatted for readability.)

<I-- Oracle Routeserver version 12.1.0.2.0 (data version 11.1.0.7.1) -->
<batch_route_response>
<route_response>
<route id="1" step_count="15"
distance="26.103862121729946" distance_unit="mile"
time="26.6184814453125" time_unit="minute"
start_location="1" end_location="2">
<start_location>
<location id="1"
longitude="-122.15901" latitude="37.4403"
house_number="898" street="ALMA ST" city="PALO ALTO"
state="CA" country="US"
driving_side="R"
postal_code="94301"
edge_i1d="23694266" percent="0.0"/>
</start_location>
<segment sequence="1"
instruction="Start out on Alma St (Going Southeast)"
distance="1.3587211956625542"
time="2.504421416918437"/>
<segment sequence="2"
instruction="Take RAMP toward Oregon Expwy"
distance="0.12862735113732848"
time="0.215624996026357"/>
<segment sequence="3"
instruction="Stay STRAIGHT togo onto Oregon Expy (Going Northeast)"
distance="1.3840054698278719"
time="2.3200833360354105"/>
<segment sequence="4"
instruction="Take RAMP toward San Jose"
distance="0.2647486517044605"
time="0.44381250540415446"/>
<segment sequence="5"
instruction="Stay STRAIGHT to go onto US-101 S (Going Southeast)"
distance="11.747225529883993"
time="10.16387637803952"/>
<segment sequence="6"
instruction="Take RAMP toward Guadalupe Pkwy"
distance="0.40232399596959373"
time="0.6744375069936116"/>
<segment sequence="7"
instruction="Stay STRAIGHT to go onto CA-87 S (Going Southeast)"
distance="2.6388802347934055"
time="2.2831989218791326"/>

Routing Engine 13-31

Routing Engine XML API

<segment sequence="8"
instruction="Stay STRAIGHT to go onto CA-87 S (Going Southeast)"
distance="5.839967669586142"
time="5.052827918032805"/>
<segment sequence="9"
instruction="Stay STRAIGHT to go onto RAMP (Going South)"
distance="0.1527496425121632"
time="0.15757692654927571"/>
<segment sequence="10"
instruction="Continue on toward Gilroy"
distance="0.8405766344600814"
time="0.8671410039067269"/>
<segment sequence="11"
instruction="Stay STRAIGHT to go onto CA-85 S (Going East)"
distance="0.3956813619067624"
time="0.34234946966171265"/>
<segment sequence="12"
instruction="Take RAMP toward Blossom Hill Road"
distance="0.22891319287702547"
time="0.38373958468437197"/>
<segment sequence="13"
instruction="Turn LEFT onto Blossom Hill Rd (Going East)"
distance="0.49810476095097306"
time="0.8349999914566676"/>
<segment sequence="14"
instruction="Turn LEFT onto Snell Ave (Going North)"
distance="0.011060709151221367"
time="0.01854166587193807"/>
<segment sequence="15"
instruction="Turn LEFT onto Blossom Hill Rd (Going West)"
distance="0.21227241518009607"
time="0.35584374765555066""/>
<end_location>
<location id="2"
longitude="-121.83459" latitude="37.25125"
house_number="499" street="BLOSSOM HILL RD" city=""SAN JOSE"
state="CA" country="US"
driving_side="R"
postal_code="95123"
edge_1d="812218080" percent="0.0"/>
</end_location>
</route>
</route_response>
<route_response>
<route id="2" step_count="18"
distance="24.879477393121235" distance_unit="mile"
time="39.014546712239586" time_unit="minute"
start_location="1" end_location="2">
<start_location>
<location id="1"
longitude=""" latitude=""
house_number=""" street=""" city=""
state="" country=""
driving_side="N"
postal_code=""'
edge_id="23694266" percent="0.0"/>
</start_location>
<segment sequence="1"
instruction="Start out on Alma St (Going Southeast)"
distance="0.2592928618616754"
time="0.6322424242893855"/>

13-32 Developer's Guide

Routing Engine XML AP

<segment sequence="2"
instruction="Turn LEFT onto Kingsley Ave (Going Northeast)"
distance="0.08879637204118493"
time="0.2165151596069336""/>

<segment sequence="3"
instruction="Turn SLIGHT RIGHT onto Embarcadero Rd (Going East)"
distance="0.6481327160471586"
time="1.5803636133670806"/>

<segment sequence="4"
instruction="Turn RIGHT onto Middlefield Rd (Going Southeast)"
distance="2.96746411421623"
time="7.235666685303053"/>

<segment sequence="5"
instruction="Stay STRAIGHT to go onto Old Middlefield Way (Going East)"
distance="0.8495432761786168"
time="1.789845637480418"/>

<segment sequence="6"
instruction="Stay STRAIGHT to go onto RAMP (Going East)"
distance="0.22642142849860966"
time="0.37956250508626305"/>

<segment sequence="7"
instruction="Stay STRAIGHT to go onto US-101 S (Going Southeast)"
distance="9.176685525492026"
time="7.939806487659613"/>

<segment sequence="8"
instruction="Take RAMP toward Brokaw Road"
distance="0.20942024511139234"
time="0.3510625004768372"/>

<segment sequence="9"
instruction="Stay STRAIGHT to go onto Old Bayshore Hwy (Going East)"
distance="0.1670850676627406"
time="0.2800937493642171"/>

<segment sequence="10"
instruction="Turn SLIGHT RIGHT onto N 1st St (Going Southeast)"
distance="1.9476604686858663"
time="3.9989981204271317"/>

<segment sequence="11"
instruction="Turn LEFT onto Jackson St (Going Northeast)"
distance="0.07099981550357595"
time="0.17312120993932087"/>

<segment sequence="12"
instruction="Turn RIGHT onto 2nd St (Going Southeast)"
distance="2.3224258991749434"
time="5.6628484646479285"/>

<segment sequence="13"
instruction="Stay STRAIGHT to go onto S 1st St (Going Southeast)"
distance="0.18884608205270126"
time="0.31657291650772096"/>

<segment sequence="14"
instruction="Stay STRAIGHT to go onto Monterey Rd (Going Southeast)"
distance="3.887951286200716"
time="5.287046383817991"/>

<segment sequence="15"
instruction="Turn SLIGHT RIGHT onto RAMP (Going South)"
distance="0.0414465897894999"
time="0.1010606050491333"/>

<segment sequence="16"
instruction="Turn RIGHT onto Skyway Dr (Going Southwest)"
distance="0.34504443027423093"
time="0.5849081456661225"/>

<segment sequence="17"

Routing Engine 13-33

Routing Engine XML API

instruction="Turn LEFT onto Snell Ave (Going East)"

distance="1.279357478030909"
time="2.1446562389532726"/>
<segment sequence="18"

instruction="Turn RIGHT onto Blossom Hill Rd (Going West)"

distance="0.20292052293456395"
time="0.34016666412353513"/>
<end_location>
<location id="2"
longitude=""" latitude=""
house_number=""" street=""" city=""
state="" country=""
driving_side="N"
postal_code=""'
edge_1d="812218080" percent="0.0"/>
</end_location>
</route>
</route_response>
<route_response>
<route id="3" step_count="14"

distance="25.906590792580626" distance_unit="mile"
time="29.140561930338542" time_unit="minute"
start_location="1" end_location="2">
<start_location>
<location id="1"
longitude="-122.15901" latitude="37.4403"
house_number="900" street="ALMA ST" city="PALO ALTO"
state="CA" country="US"
driving_side="R"
postal_code="94301"
edge_1d="23694267" percent="1.0"/>
</start_location>
<segment sequence="1"
instruction="Start out on Alma St (Going Northwest)"
distance="0.0"
time="0.0"/>
<segment sequence="2"
instruction="Turn RIGHT onto Channing Ave(Going Northeast)"
distance="2.1771018293093087"
time="5.30849996805191"/>
<segment sequence="3"
instruction="Turn RIGHT onto W Bayshore Rd (Going Southwest)"
distance="0.12998197519156232"
time="0.31693938573201497"/>
<segment sequence="4"
instruction="Turn LEFT onto Embarcadero Rd (Going Northeast)"
distance="0.006878766976215882"
time="0.016772727171579998" />
<segment sequence="5"
instruction="Take RAMP toward San Jose"
distance="0.4222705568230516"
time="0.707875007390976"/>
<segment sequence="6"
instruction="Stay STRAIGHT to go onto US-101 S (Going Southeast)"
distance="11.747225529883993"
time="10.16387637803952"/>
<segment sequence="7"
instruction="Take RAMP toward Guadalupe Pkwy"
distance="0.40232399596959373"
time="0.6744375069936116"/>
<segment sequence="8"

13-34 Developer's Guide

Routing Engine XML AP

instruction="Stay STRAIGHT to go onto CA-87 S (Going Southeast)"
distance="2.6388802347934055"
time="2.2831989218791326"/>
<segment sequence="9"
instruction="Stay STRAIGHT to go onto CA-87 S (Going Southeast)"
distance="4.708519202974121"
time="4.073881677289804"/>
<segment sequence="10"
instruction="Take EXIT 1D toward Capitol Expwy Auto Mall"
distance="0.23860684637032842"
time="0.3948361724615097""/>
<segment sequence="11"
instruction="Turn LEFT onto W Capitol Expy (Going East)"
distance="1.2198347095111897"
time="1.4871818164984385"/>
<segment sequence="12"
instruction="Turn SLIGHT RIGHT onto RAMP (Going East)"
distance="0.029621573459855412"
time="0.049656248092651366"/>
<segment sequence="13"
instruction="Turn SLIGHT RIGHT onto Snell Ave (Going Southeast)"
distance="1.9824209209108623"
time="3.3232395708560944"/>
<segment sequence="14"
instruction="Turn RIGHT onto Blossom Hill Rd (Going West)"
distance="0.20292052293456395"
time="0.34016666412353513"/>
<end_location>
<location id="2"
longitude="-121.83459" latitude="37.25125"
house_number="499" street="BLOSSOM HILL RD" city=""SAN JOSE"
state="CA" country="US"
driving_side="R"
postal_code="95123"
edge_1d="812218080" percent="0.0"/>
</end_location>
</route>
</route_response>
<route_response>
<route id="4" step_count="28"
distance="25.43010499518424" distance_unit="mile"
time="41.812373860677084" time_unit="minute"
start_location="1" end_location="2">
<segment sequence="1"
instruction="Start out on Alma St (Going Southeast)"
distance="2.512197865475656"
time="4.438056838512421"/>
<segment sequence="2"
instruction="Turn RIGHT onto W Meadow Dr (Going Southwest)"
distance="0.259249367249032"
time="0.6321363727251689"/>
<segment sequence="3"
instruction="Turn LEFT onto El Camino Way (Going Southeast)"
distance="0.19732181646496028"
time="0.48113636175791424"/>
<segment sequence="4"
instruction="Stay STRAIGHT to go onto RAMP (Going Southwest)"
distance="0.009935996875112263"
time="0.02422727147738139"/>
<segment sequence="5"
instruction="Turn LEFT onto El Camino Real (Going Southeast)"

Routing Engine

13-35

Routing Engine XML API

distance="0.7259305251035061"
time="1.2169166604677837"/>

<segment sequence="6"
instruction="Stay STRAIGHT to go onto El Camino Real (Going Southeast)"
distance="10.18052570327847"
time="17.06616668154796"/>

<segment sequence="7"
instruction="Turn RIGHT onto Madison St (Going Southeast)"
distance="0.1341639244777912"
time="0.32713637351989744"/>

<segment sequence="8"
instruction="Turn LEFT onto Harrison St (Going East)"
distance="0.06893059350020074"
time="0.16807576020558676"/>

<segment sequence="9"
instruction="Turn RIGHT onto Monroe St (Going Southeast)"
distance="0.0705648403396469"
time="0.1720606009165446"/>

<segment sequence="10"
instruction="Turn LEFT onto Fremont St (Going East)"
distance="0.07203753203577691"
time="0.17565151850382488"/>

<segment sequence="11"
instruction="Turn RIGHT onto Jackson St (Going Southeast)"
distance="0.2098303612161659"
time="0.5116363684336345"/>

<segment sequence="12"
instruction="Turn LEFT onto Homestead Rd (Going East)"
distance="0.13950164667868017"
time="0.3401515007019043"/>

<segment sequence="13"
instruction="Turn RIGHT onto Washington St (Going Southeast)"
distance="0.14307462872056173"
time="0.3488636334737142"/>

<segment sequence="14"
instruction="Turn LEFT onto Santa Clara St (Going East)"
distance="0.06947120055412777"
time="0.16939393679300943"/>

<segment sequence="15"
instruction="Turn RIGHT onto Lafayette St (Going Southeast)"
distance="0.06759460559205673"
time="0.16481818358103434"/>

<segment sequence="16"
instruction="Turn LEFT onto Market St (Going East)"
distance="0.17456658015544202"
time="0.4256515165170034"/>

<segment sequence="17"
instruction="Turn RIGHT onto The Alameda (Going Southeast)"
distance="2.317572876182314"
time="4.207776539524397"/>

<segment sequence="18"
instruction="Stay STRAIGHT to go onto W Santa Clara St (Going East)"
distance="0.03303921082684557"
time="0.05538541873296102"/>

<segment sequence="19"
instruction="Stay STRAIGHT to go onto CA-82 (Going East)"
distance="0.05555210434715647"
time="0.09312500158945719"/>

<segment sequence="20"
instruction="Stay STRAIGHT to go onto W Santa Clara St (Going East)"
distance="0.17006772690279195"

13-36 Developer's Guide

Routing Engine XML AP

time="0.33163256843884786"/>

<segment sequence="21"
instruction="Turn RIGHT onto Delmas Ave (Going Southeast)"
distance="0.49640216162493195"
time="1.2103939274946849"/>

<segment sequence="22"
instruction="Take CA-87 RAMP toward Guadalupe Pky"
distance="0.1178586975602079"
time="0.197572918732961"/>

<segment sequence="23"
instruction="Stay STRAIGHT to go onto CA-87 S (Going Southeast)"
distance="3.628403629205081"
time="3.139349430302779"/>

<segment sequence="24"
instruction="Take EXIT 1D toward Capitol Expwy Auto Mall"
distance="0.23860684637032842"
time="0.3948361724615097""/>

<segment sequence="25"
instruction="Turn LEFT onto W Capitol Expy (Going East)"
distance="0.9895544609762458"
time="1.2064318120479585"/>

<segment sequence="26"
instruction="Turn SLIGHT RIGHT onto Rosenbaum Ave (Going East)"
distance="0.49535202237807563"
time="1.2078333616256713"/>

<segment sequence="27"
instruction="Turn RIGHT onto Snell Ave (Going Southeast)"
distance="1.649872606747162"
time="2.7657708187898"/>

<segment sequence="28"
instruction="Turn RIGHT onto Blossom Hill Rd (Going West)"
distance="0.20292052293456395"
time="0.34016666412353513"/>

</route>
</route_response>
</batch_route_response>

13.3.2 Route Request XML Schema Definition

The following is the XML Schema Definition for a route request. The main elements
and attributes of the Schema Definition are explained in sections that follow.

<xsd:schema xmIns:xsd="http://www.w3.0org/2001/XMLSchema"
elementFormDefault="qualified">
<xsd:include schemalLocation="geocoder_request.xsd"/>
<xsd:simpleType name="positiveDecimal'>
<xsd:restriction base="xsd:decimal>
<xsd:minExclusive value="0"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="distanceUnit">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="mile"/>
<xsd:enumeration value="km"/>
<xsd:enumeration value="kilometer"/>
<xsd:enumeration value="meter"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="timeUnit">

Routing Engine 13-37

Routing Engine XML API

<xsd:restriction base="xsd:string">
<xsd:enumeration value="minute"/>
<xsd:enumeration value="hour"/>
<xsd:enumeration value="second"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="unitType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="us"/>
<xsd:enumeration value="metric"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="edgePercentage'>
<xsd:restriction base="xsd:decimal'>
<xsd:minlInclusive value="0.0"/>
<xsd:maxInclusive value="1.0"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="roadPreference'>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="highway"/>
<xsd:enumeration value="local"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="routePreference'>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="shortest"/>
<xsd:enumeration value="fastest"/>
<xsd:enumeration value="traffic”/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="truckType'>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="delivery"/>
<xsd:enumeration value="public"/>
<xsd:enumeration value="resident"/>
<xsd:enumeration value="trailer"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="vehicleType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="auto"/>
<xsd:enumeration value="truck"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="pregeocodedType">
<xsd:all>
<xsd:element name="edge_id" type="xsd:long" />
<xsd:element name="percent" type="edgePercentage"/>
<xsd:element name="side">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="L"/>
<xsd:enumeration value="R"/>
</xsd:restriction>
</xsd:simpleType>

13-38 Developer's Guide

Routing Engine XML AP

</xsd:element>
</xsd:all>
</xsd:complexType>

<xsd:complexType name="routerInputLocation>
<xsd:choice>
<xsd:element name="router_input_location" type="input_locationType"/>
<xsd:element name="router_pregeocoded_location" type="pregeocodedType"/>
</xsd:choice>
</xsd:complexType>
<xsd:element name="batch_route_request" type="batchRouteRequest™ />
<xsd:complexType name="batchRouteRequest'>
<xsd:sequence>
<xsd:element name="route_request" type="routeRequest"
minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:nonNegativelnteger" use="required"/>
</xsd:complexType>

<xsd:element name="route_request" type="routeRequest" />
<xsd:complexType name="routeRequest'>
<xsd:sequence>
<xsd:element name="start_location" type="routerlInputLocation"
minOccurs="0" maxOccurs="1"/>
<xsd:element name="location" type="routerlnputLocation"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="end_location" type="routerlnputLocation"
minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:nonNegativelnteger" use="required"/>
<xsd:attribute name="pre_geocoded_locations" type="xsd:boolean"
use="optional"/>
<xsd:attribute name="route_preference" type="routePreference"
use="optional"/>
<xsd:attribute name="road_preference" type="roadPreference"
use="optional"/>
<xsd:attribute name="start_date" type='xsd:date"
use="optional"/>
<xsd:attribute name="start_time" type="xsd:time"
use="optional"/>
<xsd:attribute name="date_format" type="xsd:date"
use="optional"/>
<xsd:attribute name="time_format" type="xsd:time"
use="optional"/>
<xsd:attribute name="output_time_format" type="'xsd:date"
use="optional"/>

<xsd:attribute name="optimize_route" type="xsd:boolean" use="optional'/>
<xsd:attribute name="route_type" use="optional'>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="open"/>
<xsd:enumeration value="closed"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="driving_directions_detail" use="optional">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="medium"/>
<xsd:enumeration value="high"/>

Routing Engine

13-39

Routing Engine XML API

<xsd:enumeration value="low"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="language" use="optional'>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="English"/>
<xsd:enumeration value="French"/>
<xsd:enumeration value="German"/>
<xsd:enumeration value="Italian"/>
<xsd:enumeration value="Portuguese”/>
<xsd:enumeration value="Spanish"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="distance_unit" type="distanceUnit" use="optional'/>
<xsd:attribute name="length_unit" type="unitType" use="optional"/>
<xsd:attribute name="time_unit" type="timeUnit" use="optional"/>
<xsd:attribute name="weight_unit" type="unitType" use="optional"/>
<xsd:attribute name="return_locations" type="xsd:boolean"
use="optional"/>
<xsd:attribute name="return_subroutes" type="xsd:boolean"
use="optional"/>
<xsd:attribute name="return_route_time" type="xsd:boolean"
use="optional"/>
<xsd:attribute name="return_subroute_time" type="xsd:boolean"
use="optional"/>

<xsd:attribute name="return_driving_directions" type="xsd:boolean"
use="optional"/>

<xsd:attribute name="return_hierarchical_directions" type="xsd:boolean"
use="optional"/>

<xsd:attribute name="return_route_geometry" type='"xsd:boolean"
use="optional"/>

<xsd:attribute name="return_subroute_geometry" type="xsd:boolean"
use="optional"/>

<xsd:attribute name="return_segment_geometry" type="xsd:boolean"
use="optional"/>

<xsd:attribute name="return_detailed_geometry" type="xsd:boolean"
use="optional"/>

<xsd:attribute name="return_route_edge_ids" type="xsd:boolean"
use="optional"/>

<xsd:attribute name="return_subroute_edge_ids" type="xsd:boolean"
use="optional"/>

<xsd:attribute name="return_segment_edge_ids" type="xsd:boolean"
use="optional"/>

<xsd:attribute name="vehicle_type" type="vehicleType" use="optional"/>

<xsd:attribute name="truck_type" type="truckType" use="optional'/>

<xsd:attribute name="truck_height" type="positiveDecimal"
use="optional"/>

<xsd:attribute name="truck_length" type="positiveDecimal"
use="optional"/>

<xsd:attribute name="truck per_axle_weight" type="positiveDecimal"
use="optional"/>

<xsd:attribute name="truck weight" type="positiveDecimal"
use="optional"/>

<xsd:attribute name="truck width" type="positiveDecimal" use="optional"/>

</xsd:complexType>

13-40 Developer's Guide

Routing Engine XML API

13.3.2.1 route_request Element
The <route_request> element has the following definition:

<xsd:element name="route_request" type="routeRequest" />

The root element of a route request is always named route_request.

The <start_location> child element specifies the start location for the route, as an
address specification, a geocoded address, or longitude/latitude coordinates.
Depending on the route request, there can be 0 or 1 <start_Jlocation> elements. A
simple route request requires a <start_location> element, whereas an open tour
TSP request does not.

The <location> child element specifies a location for a segment, as an address
specification, a geocoded address, or longitude/latitude coordinates. In a simple route
request there are no <location> elements; if there are one or more <location>
elements, it is a multi-address route.

The <end_location> child element specifies the end location for the route, as an
address specification, a geocoded address, or longitude/latitude coordinates.
Depending on the route request, there can be 0 or 1 <end_location> elements. A
simple route request requires an <end_location> element, whereas a closed tour
multi-address or TSP tour must not contain an <end_ location> element.

In a route request:

¢ If <start_location> is an address specification or longitude/latitude
coordinates, each <end_location> and <location> element can be either an
address specification or longitude/latitude coordinate; however, it cannot be a pre-
geocoded address.

e If<start_location> is a pre-geocoded address, <end_location> and any
<location> specifications must also be pre-geocoded addresses.

In a batched route request, each of the individual route requests must follow the
preceding rules. However, within the batch, because the individual requests are
independent, you can mix address, pre-geocoded, and longitude/latitude locations, as
long as they are consistent within an individual request.

13.3.2.2 route_request Attributes

The root element <route_request> has a number of attributes, most of them
optional. The attributes are defined as follows.

vendor is an optional attribute whose default value identifies the routing provider as
Oracle.

id is a required attribute that specifies an identification number to be associated with
the request.

route_preference is an optional attribute that specifies whether you want the
route with the lowest estimated driving time (FASTEST) or the route with the shortest
driving distance (SHORTEST, the default).

road_preference is an optional attribute that allows the routing process to have a
preference for highways (HIGHWAY, the default) or local roads (LOCAL).

return_driving_directions is an optional attribute that specifies whether
driving directions for the route are returned. TRUE returns driving directions; FALSE
(the default) does not return driving directions.

Routing Engine 13-41