

Oracle® C++ Call Interface
Programmer's Guide

12c Release 1 (12.1)

E48221-07

June 2016

Oracle C++ Call Interface Programmer's Guide, 12c Release 1 (12.1)

E48221-07

Copyright © 1999, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Rod Ward, Roza Leyderman

Contributors: Sandeepan Banerjee, Subhranshu Banerjee, Kalyanji Chintakayala, Krishna Itikarlapalli,
Shankar Iyer, Maura Joglekar, Toliver Jue, Ravi Kasamsetty, Srinath Krishnaswamy, Shoaib Lari, Geoff Lee,
Chetan Maiya, Kuassi Mensah, Vipul Modi, Rajendra Pingte, John Stewart, Rekha Vallam, Krishna Verma

Contributor: The Database 12c documentation is dedicated to Mark Townsend, who was an inspiration to
all who worked on this release.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. xvii

Audience.. xvii
Documentation Accessibility .. xvii
... xvii
Related Documents .. xvii
Conventions ... xviii

Changes in This Release for Oracle C++ Call Interface Programmer's Guide xix

Changes in Oracle Database 12c Release 1 (12.1).. xix

1 Introduction to OCCI

Overview of OCCI ... 1-1
Benefits of OCCI... 1-2
Building a C++ Application with OCCI ... 1-2
Functionality of OCCI ... 1-3
Procedural and Nonprocedural Elements.. 1-3

Processing SQL Statements .. 1-4
Data Definition Language Statements .. 1-4
Control Statements... 1-5
Data Manipulation Language Statements .. 1-5
Queries... 1-5

Overview of PL/SQL ... 1-5
Special OCCI/SQL Terms ... 1-6
Object Support.. 1-7

Client-Side Object Cache... 1-8
Run-time Environment for Objects.. 1-8
Associative and Navigational Interfaces .. 1-8
Interoperability with C (OCI) ... 1-9
Metadata Class.. 1-9
Object Type Translator Utility.. 1-9

Additional Support ... 1-10
Building OCCI Demos.. 1-10
OCCI on the Oracle Technology Network .. 1-10

iv

2 Installation and Upgrading

Installing Oracle C++ Call Interface... 2-1
Upgrading Considerations ... 2-1
Determining the Oracle Database Versions ... 2-1

Determining the Oracle Client Version During Compilation ... 2-1
Determining the Oracle Client and Server Versions at Run Time.. 2-2

Instant Client... 2-2
Benefits of Instant Client ... 2-2
Installing Instant Client ... 2-2
Using Instant Client ... 2-4
Patching Instant Client Shared Libraries on UNIX ... 2-4
Regenerating the Data Shared Library and Zip Files ... 2-4
Database Connection Names for Instant Client... 2-5
Environment Variables for OCCI Instant Client ... 2-6

Instant Client Light (English) .. 2-6
Globalization Settings for Instant Client Light (English) ... 2-6
Using Instant Client Light (English).. 2-7
Installing Instant Client Light (English) ... 2-7

Using OCCI with Microsoft Visual C++ ... 2-8

3 Accessing Oracle Database Using C++

Connecting to a Database ... 3-1
Creating and Terminating an Environment... 3-1
Opening and Closing a Connection .. 3-2
Support for Pluggable Databases... 3-3

Pooling Connections.. 3-3
Using Connection Pools .. 3-3
Stateless Connection Pooling.. 3-5
Database Resident Connection Pooling .. 3-9

Executing SQL DDL and DML Statements.. 3-12
Creating a Statement Object .. 3-12
Creating a Statement Object that Executes SQL Commands.. 3-12
Reusing the Statement Object.. 3-13
Terminating a Statement Object.. 3-13

Types of SQL Statements in the OCCI Environment .. 3-13
Standard Statements ... 3-14
Parameterized Statements.. 3-14
Callable Statements... 3-14
Streamed Reads and Writes... 3-16
Modifying Rows Iteratively... 3-18

Executing SQL Queries .. 3-20
Using the Result Set .. 3-20
Specifying the Query .. 3-21
Optimizing Performance by Setting Prefetch Count ... 3-21

Executing Statements Dynamically ... 3-21
Statement Status Definitions ... 3-22

Using Larger Row Count and Error Code Range Data Types .. 3-24

v

Using Larger Row Count in SELECT Operations .. 3-24
Using Larger Row Count in INSERT, UPDATE, and DELETE Operations........................... 3-25

Committing a Transaction ... 3-26
Caching Statements... 3-26
Handling Exceptions... 3-28

Handling Null and Truncated Data ... 3-29

4 Object Programming

Overview of Object Programming.. 4-1
Working with Objects in C++ with OCCI... 4-2

Persistent Objects ... 4-2
Transient Objects .. 4-3
Values... 4-4

Representing Objects in C++ Applications .. 4-4
Creating Persistent and Transient Objects ... 4-4
Creating Object Representations using the OTT Utility... 4-5

Developing a C++ Application using OCCI ... 4-5
Basic Object Program Structure ... 4-6
Basic Object Operational Flow ... 4-7

Migrating C++ Applications to Oracle Using OCCI ... 4-9
Overview of Associative Access .. 4-9

Using SQL to Access Objects ... 4-10
Inserting and Modifying Values ... 4-10

Overview of Navigational Access .. 4-10
Retrieving an Object Reference (REF) from the Database Server ... 4-11
Pinning an Object .. 4-11
Manipulating Object Attributes .. 4-12
Marking Objects and Flushing Changes.. 4-12
Marking an Object as Modified (Dirty).. 4-12
Recording Changes in the Database .. 4-12
Collecting Garbage in the Object Cache .. 4-13
Ensuring Transactional Consistency of References.. 4-13

Overview of Complex Object Retrieval.. 4-14
Retrieving Complex Objects .. 4-14
Prefetching Complex Objects .. 4-16

Working with Collections.. 4-16
Fetching Embedded Objects .. 4-17
Nullness .. 4-17

Using Object References.. 4-18
Deleting Objects from the Database ... 4-18
Type Inheritance.. 4-18

Substitutability... 4-19
NOT INSTANTIABLE Types and Methods.. 4-19
OCCI Support for Type Inheritance ... 4-20
OTT Support for Type Inheritance ... 4-20

A Sample OCCI Application .. 4-21

vi

5 Data Types

Overview of Oracle Data Types .. 5-1
OCCI Type and Data Conversion.. 5-1

Internal Data Types ... 5-2
Character Strings and Byte Arrays .. 5-3
Universal Rowid (UROWID).. 5-3

External Data Types ... 5-4
Description of External Data Types... 5-6

Data Conversions .. 5-16
Data Conversions for LOB Data Types.. 5-17
Data Conversions for Date, Timestamp, and Interval Data Types .. 5-18

6 Metadata

Overview of Metadata ... 6-1
Identity Column Metadata ... 6-2
Describing Database Metadata.. 6-3

Metadata Code Examples ... 6-4
Attribute Reference.. 6-7

Parameter Attributes ... 6-7
Table and View Attributes.. 6-8
Procedure, Function, and Subprogram Attributes.. 6-8
Package Attributes ... 6-9
Type Attributes... 6-9
Type Attribute Attributes .. 6-10
Type Method Attributes... 6-11
Collection Attributes... 6-11
Synonym Attributes.. 6-12
Sequence Attributes .. 6-12
Column Attributes .. 6-13
Argument and Result Attributes .. 6-13
List Attributes .. 6-15
Schema Attributes ... 6-15
Database Attributes .. 6-15

7 Programming with LOBs

Overview of LOBs .. 7-1
Introducing Internal LOBs.. 7-1
Introducing External LOBs ... 7-2
Storing LOBs ... 7-2

Creating LOBs in OCCI Applications .. 7-2
Restricting the Opening and Closing of LOBs... 7-3
Reading and Writing LOBs .. 7-4

Reading LOBs ... 7-4
Writing LOBs .. 7-5
Enhancing the Performance of LOB Reads and Writes .. 7-6
Updating LOBs ... 7-7

vii

Reading and Writing Multiple LOBs .. 7-7
Using Objects with LOB Attributes ... 7-8
Using SecureFiles ... 7-9

Using SecureFile Compression .. 7-9
Using SecureFiles Encryption... 7-9
Using SecureFiles Deduplication.. 7-10
Combining SecureFiles Compression, Encryption, and Deduplication 7-10
SecureFiles LOB Types and Constants... 7-10

8 Object Type Translator Utility

Overview of the Object Type Translator Utility .. 8-1
Using the OTT Utility.. 8-2
Creating Types in the Database... 8-2
Invoking the OTT Utility.. 8-2

Specifying OTT Parameters .. 8-3
Invoking the OTT Utility on the Command Line.. 8-3
OTT Utility Parameters ... 8-4
Where OTT Parameters Can Appear ... 8-11
File Name Comparison Restriction .. 8-12
OTT Command on Microsoft Windows .. 8-12

Using the INTYPE File ... 8-12
Overview of the INTYPE File .. 8-13
Structure of the INTYPE File ... 8-14
Nested #include File Generation... 8-15

OTT Utility Data Type Mappings.. 8-18
Default Name Mapping ... 8-22

Overview of the OUTTYPE File ... 8-23
The OTT Utility and OCCI Applications ... 8-24

C++ Classes Generated by the OTT Utility ... 8-26
Map Registry Function ... 8-26
Extending C++ Classes... 8-27

Carrying Forward User Added Code ... 8-27
Properties of OTT Markers .. 8-28
Using OTT Markers .. 8-29

9 Globalization and Unicode Support

Overview of Globalization and Unicode Support... 9-1
Specifying Charactersets... 9-1
Data Types for Globalization and Unicode Support .. 9-2

UString Data Type ... 9-2
Multibyte and UTF16 data.. 9-3
CLOB and NCLOB Data Types.. 9-3

Objects and OTT Support .. 9-4

10 Oracle Streams Advanced Queuing

Overview of Oracle Streams Advanced Queuing ... 10-1

viii

AQ Implementation in OCCI ... 10-2
Message .. 10-2
Agent... 10-2
Producer ... 10-3
Consumer ... 10-3
Listener ... 10-3
Subscription ... 10-3

Creating Messages... 10-4
Message Payloads ... 10-4
Message Properties ... 10-4

Enqueuing Messages .. 10-5
Dequeuing Messages.. 10-6

Dequeuing Options... 10-7
Listening for Messages... 10-7
Registering for Notification .. 10-8

Publish-Subscribe Notifications .. 10-8
Notification Callback .. 10-11

Message Format Transformation.. 10-11

11 Oracle XA Library

Application Development with XA and OCCI ... 11-1
APIs for XA Support ... 11-2

12 Optimizing Performance of C++ Applications

Transparent Application Failover .. 12-1
Using Transparent Application Failover ... 12-2
Objects and Transparent Application Failover... 12-3
Connection Pooling and Transparent Application Failover... 12-3

Connection Sharing .. 12-5
Introduction to Thread Safety ... 12-6
Implementing Thread Safety... 12-6
Serialization.. 12-7
Operating System Considerations .. 12-8

Application-Managed Data Buffering .. 12-8
setDataBuffer() Method.. 12-9
executeArrayUpdate() Method ... 12-10

Array Fetch Using next() Method ... 12-11
Modifying Rows Iteratively .. 12-11
Run-time Load Balancing of the Stateless Connection Pool .. 12-12

API Support ... 12-12
Fault Diagnosability ... 12-12

ADR Base Location ... 12-13
Using ADRCI ... 12-14
Controlling ADR Creation and Disabling Fault Diagnosability .. 12-16

Client Result Cache... 12-16
Client-Side Deployment Parameters and Auto Tuning .. 12-17

ix

13 OCCI Application Programming Interface

OCCI Classes and Methods... 13-2
Common OCCI Constants ... 13-7
Agent Class ... 13-8
AnyData Class.. 13-19
BatchSQLException Class.. 13-50
Bfile Class ... 13-54
Blob Class ... 13-76
Bytes Class .. 13-103
Clob Class ... 13-111
Connection Class ... 13-144
ConnectionPool Class... 13-178
Consumer Class ... 13-194
Date Class ... 13-220
Environment Class .. 13-245
IntervalDS Class .. 13-282
IntervalYM Class ... 13-312
Listener Class ... 13-339
Map Class.. 13-346
Message Class .. 13-348
MetaData Class .. 13-379
NotifyResult Class .. 13-404
Number Class... 13-410
PObject Class ... 13-477
Producer Class.. 13-496
Ref Class.. 13-512
RefAny Class .. 13-530
ResultSet Class... 13-540
SQLException Class .. 13-596
StatelessConnectionPool Class... 13-607
Statement Class.. 13-630
Stream Class ... 13-740
Subscription Class... 13-746
Timestamp Class ... 13-771

Index

x

List of Examples

1–1 Creating a Table .. 1-4
1–2 Specifying Access to a Table.. 1-4
1–3 Creating an Object Table.. 1-4
1–4 Inserting Data Through Input Bind Variables.. 1-5
1–5 Inserting Objects into the Oracle Database ... 1-5
1–6 Using the Simple SELECT Statement... 1-5
1–7 Using the SELECT Statement with Input Variables .. 1-5
1–8 Using PL/SQL to Obtain an Output Variable .. 1-6
1–9 Using PL/SQL to Insert Partial Records into Placeholders.. 1-6
1–10 Using SQL to Extract Partial Records .. 1-6
2–1 How to Determine the Major Client Version and Set Performance Features 2-1
2–2 How to Regenerate the Data Shared Library Files... 2-5
2–3 How to set the ORA_TZFILE Environment Variable.. 2-6
2–4 Installing Instant Client Light (English) through Oracle Universal Installer..................... 2-8
3–1 How to Create an OCCI Environment... 3-1
3–2 How to Terminate an OCCI Environment .. 3-1
3–3 How to Use Environment Scope with Blob Objects... 3-2
3–4 How to Create an Environment and then a Connection to the Database........................... 3-2
3–5 How to Terminate a Connection to the Database and the Environment............................ 3-3
3–6 The createConnectionPool() Method ... 3-4
3–7 How to Create a Connection Pool .. 3-4
3–8 The createProxyConnection() Method... 3-5
3–9 How to Use a StatelessConnectionPool ... 3-6
3–10 How to Create and Use a Homogeneous Stateless Connection Pool.................................. 3-7
3–11 How to Create and Use a Heterogeneous Stateless Connection Pool................................. 3-7
3–12 How to Administer the Database Resident Connection Pools.. 3-10
3–13 How to Get a Connection from a Database Resident Connection Pool 3-11
3–14 Using Client-Side Pool and Server-Side Pool .. 3-11
3–15 How to Create a Statement... 3-12
3–16 How to Create a Database Table Using the executeUpdate() Method 3-12
3–17 How to Add Records Using the executeUpdate() Method.. 3-13
3–18 How to Specify a SQL Statement Using the setSQL() Method.. 3-13
3–19 How to Reset a SQL Statement Using the setSQL() Method... 3-13
3–20 How to Terminate a Statement Using the terminateStatement() Method....................... 3-13
3–21 How to Use setxxx() Methods to Set Individual Column Values..................................... 3-14
3–22 How to Specify the IN Parameters of a PL/SQL Stored Procedure................................. 3-15
3–23 How to Specify OUT Parameters of a PL/SQL Stored Procedure 3-15
3–24 How to Bind Data in a Streaming Mode .. 3-17
3–25 How to Fetch Data in a Streaming Mode Using PL/SQL.. 3-17
3–26 How to Read and Write with Multiple Streams.. 3-18
3–27 How to Execute an Iterative Operation .. 3-19
3–28 How to Fetch Data in Streaming Mode Using ResultSet ... 3-20
3–29 SELECT with getUb8RowCount(); simple ... 3-24
3–30 SELECT with getUb8RowCount(); with prefetch ... 3-24
3–31 SELECT with getUb8RowCount(); array fetch with prefetch ... 3-25
3–32 INSERT with getUb8RowCount(); simple ... 3-25
3–33 INSERT with getUb8RowCount(); with iterations.. 3-25
3–34 UPDATE with getUb8RowCount() ... 3-26
3–35 Statement Caching without Connection Pooling .. 3-26
3–36 Statement Caching with Connection Pooling .. 3-27
4–1 Creating Standalone Objects ... 4-3
4–2 Creating Embedded Objects.. 4-3
4–3 Two Methods for Operator new() in the Object Type Translator Utility 4-3
4–4 How to Dynamically Create a Transient Object... 4-3

xi

4–5 How to Create a Transient Object as a Local Variable .. 4-4
4–6 How to Create a Persistent Object .. 4-4
4–7 How to Create a Transient Object... 4-5
4–8 How to Declare a Custom Type in the Database ... 4-5
4–9 How to Create a VARRAY Collection .. 4-16
4–10 OTT Support Inheritance .. 4-20
4–11 Listing of demo2.sql for a Sample OCCI Application .. 4-21
4–12 Listing of demo2.typ for a Sample OCCI Application ... 4-21
4–13 Listing of OTT Command that Generates Files for a Sample OCCI Application........... 4-21
4–14 Listing of mappings.h for a Sample OCCI Application ... 4-22
4–15 Listing of mappings.cpp for a Sample OCCI Application... 4-22
4–16 Listing of demo2.h for a Sample OCCI Application... 4-22
4–17 Listing of demo2.cpp for a Sample OCCI Application... 4-25
4–18 Listing of myDemo.h for a Sample OCCI Application ... 4-34
4–19 Listing for myDemo.cpp for a Sample OCCI Application... 4-35
4–20 Listing of main.cpp for a Sample OCCI Application.. 4-36
5–1 Definition of the BDOUBLE Data Type... 5-7
5–2 Definition of the BFLOAT Data Type .. 5-7
6–1 How to use Identity Column Metadata... 6-2
6–2 How to Obtain Metadata About Attributes of a Simple Database Table 6-4
6–3 How to Obtain Metadata from a Column Containing User-Defined Types...................... 6-5
6–4 How to Obtain Object Metadata from a Reference .. 6-6
6–5 How to Obtain Metadata About a Select List from a ResultSet Object............................... 6-6
7–1 How to Read Non-Streamed BLOBs .. 7-4
7–2 How to Read Non-Streamed BFILESs ... 7-4
7–3 How to Read Streamed BLOBs ... 7-5
7–4 How to Write Non-Streamed BLOBs ... 7-5
7–5 How to Write Streamed BLOBs .. 7-6
7–6 Updating a CLOB Value .. 7-7
7–7 Updating a BFILE Value .. 7-7
7–8 How to Use a Persistent Object with a BLOB Attribute.. 7-8
7–9 How to Use a Persistent Object with a BFILE Attribute ... 7-9
8–1 How to Use the OTT Utility .. 8-2
8–2 Object Creation Statements of the OTT Utility ... 8-2
8–3 How to Invoke the OTT Utility to Generate C++ Classes... 8-4
8–4 How to use the SCHEMA_NAMES Parameter in OTT Utility .. 8-8
8–5 How to Define a Schema for Unicode Support in OTT.. 8-10
8–6 How to Use UNICODE=ALL Parameter in OTT.. 8-10
8–7 How to Use UNICODE=ONLYCHAR Parameter in OTT .. 8-10
8–8 How to Create a User Defined INTYPE File Using the OTT Utility 8-13
8–9 Listing of ott95a.h... 8-16
8–10 Listing of ott95b.h .. 8-16
8–11 How to Represent Object Attributes Using the OTT Utility.. 8-18
8–12 How to Map Object Data Types Using the OTT Utility ... 8-20
8–13 OUTTYPE File Generated by the OTT Utility ... 8-23
8–14 How to Generate C++ Classes Using the OTT Utility.. 8-26
8–15 How to Extend C++ Classes Using the OTT Utility ... 8-27
8–16 How to Add User Code to a Header File Using OTT Utility .. 8-29
8–17 How to Add User Code to the Source File Using the OTT Utility 8-30
9–1 How to Use Globalization and Unicode Support .. 9-2
9–2 Using wstring Data Type... 9-2
9–3 Binding UTF8 Data Using the string Data Type .. 9-3
9–4 Binding UTF16 Data Using the UString Data Type... 9-3
9–5 Using CLOB and NCLOB Data Types ... 9-3
10–1 Creating an Agent.. 10-3

xii

10–2 Setting the Agent on the Consumer .. 10-3
10–3 Creating an AnyData Message with a String Payload ... 10-4
10–4 Determining the Type of the Payload in an AnyData Message.. 10-4
10–5 Creating an User-defined Payload .. 10-4
10–6 Specifying the Correlation identifier... 10-5
10–7 Specifying the Sender identifier... 10-5
10–8 Specifying the Delay and Expiration times of the message... 10-5
10–9 Specifying message recipients.. 10-5
10–10 Specifying the Priority of a Message... 10-5
10–11 Creating a Producer, Setting Visibility, and Enqueuing the Message 10-6
10–12 Creating a Consumer, Naming the Consumer, and Receiving a Message...................... 10-6
10–13 Receiving a Message.. 10-6
10–14 Specifying dequeuing options.. 10-7
10–15 Listening for messages .. 10-7
10–16 How to Register for Notifications; Direct Registration .. 10-8
10–17 How to Use Open Registration with LDAP .. 10-10
11–1 How to Use Transaction Managers with XA ... 11-1
12–1 How to Enable TAF for Connection Pooling ... 12-3
12–2 How to Insert Records Using the addIteration() method .. 12-10
12–3 How to Insert Records Using the executeArrayUpdate() Method 12-10
12–4 How to use Array Fetch with a ResultSet .. 12-11
12–5 How to Modify Rows Iteratively and Handle Errors ... 12-11
12–6 How to Use ADRCI for OCCI Application Incidents... 12-15
12–7 How to Use ADRCI for Instant Client .. 12-16
12–8 How to Enable and Use the Client Result Cache .. 12-16
13–1 Converting From an SQL Pre-Defined Type To AnyData Type..................................... 13-19
13–2 Creating an SQL Pre-Defined Type From AnyData Type ... 13-19
13–3 Converting From a User-Defined Type To AnyData Type ... 13-19
13–4 Converting From a User-Defined Type To AnyData Type ... 13-20
13–5 How to Get a Date from Database and Use it in Standalone Calculations 13-220
13–6 How to Use an Empty IntervalDS Object through Direct Assignment 13-282
13–7 How to Use an Empty IntervalDS Object Through *Text() Methods........................... 13-282
13–8 How to Use an Empty IntervalYM Object Through Direct Assignment..................... 13-312
13–9 How to Use an IntervalYM Object Through ResultSet and toText() Method............. 13-312
13–10 How to Retrieve and Use a Number Object... 13-410
13–11 Using Default Timestamp Constructor... 13-774
13–12 Using fromText() method to Initialize a NULL Timestamp Instance 13-774
13–13 Comparing Timestamps Stored in the Database... 13-774

xiii

List of Figures

1–1 The OCCI Development Process .. 1-2
4–1 Basic Object Operational Flow .. 4-7
8–1 The OTT Utility with OCCI .. 8-25

xiv

List of Tables

3–1 Normal Data - Not Null and Not Truncated .. 3-30
3–2 Null Data .. 3-30
3–3 Truncated Data.. 3-30
5–1 Summary of Oracle Internal Data Types.. 5-2
5–2 External Data Types and Corresponding C++ and OCCI Types.. 5-4
5–3 Format of the DATE Data Type ... 5-8
5–4 VARNUM Examples .. 5-15
5–5 Data Conversions Between External and Internal Data Types .. 5-16
5–6 Data Conversions for LOBs ... 5-17
5–7 Data Conversions for Date, Timestamp, and Interval Data Types.................................. 5-18
6–1 Attribute Groupings .. 6-3
6–2 Attributes that Belong to All Elements ... 6-7
6–3 Attributes that Belong to Tables or Views.. 6-8
6–4 Attributes Specific to Tables... 6-8
6–5 Attributes that Belong to Procedures or Functions... 6-8
6–6 Attributes that Belong to Package Subprograms .. 6-8
6–7 Attributes that Belong to Packages.. 6-9
6–8 Attributes that Belong to Types ... 6-9
6–9 Attributes that Belong to Type Attributes... 6-10
6–10 Attributes that Belong to Type Methods ... 6-11
6–11 Attributes that Belong to Collection Types ... 6-12
6–12 Attributes that Belong to Synonyms .. 6-12
6–13 Attributes that Belong to Sequences .. 6-12
6–14 Attributes that Belong to Columns of Tables or Views... 6-13
6–15 Attributes that Belong to Arguments / Results ... 6-14
6–16 Values for ATTR_LIST_TYPE ... 6-15
6–17 Attributes Specific to Schemas .. 6-15
6–18 Attributes Specific to Databases ... 6-15
7–1 Values of Type LobOptionType.. 7-10
7–2 Values of Type LobOptionValue .. 7-10
8–1 Summary of OTT Utility Parameters .. 8-5
8–2 C++ Object Data Type Mappings for Object Type Attributes.. 8-19
10–1 Notification Result Attributes; ANONYMOUS and AQ Namespace........................... 10-11
13–1 Summary of OCCI Classes .. 13-2
13–2 Enumerated Values Used by All OCCI Classes ... 13-7
13–3 Summary of Agent Methods ... 13-8
13–4 OCCI Data Types supported by AnyData Class .. 13-20
13–5 Summary of AnyData Methods.. 13-20
13–6 Summary of BatchSQLException Methods... 13-50
13–7 Summary of Bfile Methods.. 13-54
13–8 Summary of Blob Methods.. 13-76
13–9 Summary of Bytes Methods .. 13-103
13–10 Summary of Clob Methods.. 13-111
13–11 Enumerated Values Used by Connection Class ... 13-144
13–12 Summary of Connection Methods.. 13-144
13–13 Summary of ConnectionPool Methods.. 13-178
13–14 Enumerated Values Used by Consumer Class ... 13-194
13–15 Summary of Consumer Methods ... 13-194
13–16 Summary of Date Methods.. 13-220
13–17 Enumerated Values Used by Environment Class .. 13-245
13–18 Summary of Environment Methods... 13-245
13–19 Fields of IntervalDS Class.. 13-282
13–20 Summary of IntervalDS Methods... 13-283

xv

13–21 Fields of IntervalYM Class... 13-312
13–22 Summary of IntervalYM Methods.. 13-313
13–23 Summary of Listener Methods.. 13-339
13–24 Summary of Map Methods.. 13-346
13–25 Enumerated Values Used by Message Class .. 13-348
13–26 Summary of Message Methods... 13-348
13–27 Enumerated Values Used by MetaData Class .. 13-379
13–28 Summary of MetaData Methods... 13-387
13–29 Summary of NotifyResult Methods ... 13-404
13–30 Summary of Number Methods... 13-411
13–31 Enumerated Values Used by PObject Class.. 13-477
13–32 Summary of PObject Methods .. 13-477
13–33 Enumerated Values Used by Producer Class ... 13-496
13–34 Summary of Producer Methods.. 13-496
13–35 Enumerated Values Used by Ref Class.. 13-512
13–36 Summary of Ref Methods .. 13-512
13–37 Summary of RefAny Methods .. 13-530
13–38 Enumerated Values Used by ResultSet Class ... 13-540
13–39 Summary of ResultSet Methods ... 13-540
13–40 Summary of SQLException ... 13-596
13–41 Enumerated Values Used by StatelessConnectionPool Class 13-607
13–42 Summary of StatelessConnectionPool Methods... 13-607
13–43 Enumerated Values used by the Statement Class .. 13-630
13–44 Statement Methods ... 13-630
13–45 Enumerated Values Used by Stream Class ... 13-740
13–46 Summary of Stream Methods ... 13-740
13–47 Enumerated Values Used by Subscription Class ... 13-746
13–48 Summary of Subscription Methods.. 13-746
13–49 Fields of Timestamp and Their Legal Ranges... 13-771
13–50 Summary of Timestamp Methods.. 13-771

xvi

xvii

Preface

The Oracle C++ Call Interface (OCCI) is an application programming interface (API)
that allows applications written in C++ to interact with one or more Oracle database
servers. OCCI gives your programs the ability to perform the full range of database
operations that are possible with an Oracle database server, including SQL statement
processing and object manipulation.

Audience
The Oracle C++ Call Interface Programmer's Guide is intended for programmers, system
analysts, project managers, and other Oracle users who perform, or are interested in
learning about, the following tasks:

■ Design and develop database applications in the Oracle environment.

■ Convert existing database applications to run in the Oracle environment.

■ Manage the development of database applications.

To use this document, you need a basic understanding of object-oriented
programming concepts, familiarity with the use of Structured Query Language (SQL),
and a working knowledge of application development using C++.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see these Oracle resources:

■ Oracle C++ Call Interface product information page for white papers, additional
examples, and so on, at http://www.oracle.com/technetwork/index.html

xviii

■ Discussion forum for all Oracle C++ Call Interface related information is at
http://community.oracle.com/welcome

■ Demos at $ORACLE_HOME/rdbms/demo

■ Oracle Database Concepts

■ Oracle Database SQL Language Reference

■ Oracle Database Object-Relational Developer's Guide

■ Oracle Database SecureFiles and Large Objects Developer's Guide

■ Oracle Database New Features Guide

■ Oracle Call Interface Programmer's Guide

■ Oracle Database Administrator's Guide

■ Oracle Database Advanced Queuing User's Guide

■ Oracle Database Globalization Support Guide

■ Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how you
can use them yourself.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xix

Changes in This Release for Oracle C++ Call
Interface Programmer's Guide

This preface contains:

■ Changes in Oracle Database 12c Release 1 (12.1)

Changes in Oracle Database 12c Release 1 (12.1)
The following are changes in Oracle C++ Call Interface Programmer's Guide for Oracle
Database 12c Release 1 (12.1).

New Features
The following features are new in this release:

■ OCCI Identity Column Metadata

The current database release provides columns that may be created as identity
columns. When rows are inserted into the tables, values for these columns are
generated automatically.

See "Identity Column Metadata" on page 6-2.

This feature adds a new ColumnAttrId enum to the MetaData Class (see
Table 13–27), and an overloaded form of getBoolean() method in the MetaData
Class.

Additionally, see Oracle Database Reference for more information,

■ Support for Row Count Per Iteration for Array DML

This feature retrieves the number of rows affected by each iteration of a DML
statement that is executed with multiple iterations.

See "Executing an Iterative Operation" on page 3-19.

This feature adds three new methods in the Statement Class:
getDMLRowCounts(), getRowCountsOption(), and setRowCountsOption().

■ Support for client side deployment settings. This includes:

– New deployment settings oraaccess.xml file

See "Client-Side Deployment Parameters and Auto Tuning" on page 12-17 and
Oracle Call Interface Programmer's Guide for more information.

■ Support for Larger Row Count and Error Code Range Data Types

xx

This feature enhances OCCI row count values from current int limit to an oraub8
value, and enhances OCCI error codes to support values that exceed ORA-65535.

See "Using Larger Row Count and Error Code Range Data Types" on page 3-24.

This feature adds a new method for returning large row count to Statement Class:
getUb8RowCount().

■ Instant Client Library Reorganized

The library structure is changed for clarity and ease of development. See
"Installing Instant Client" on page 2-2.

■ OCCI and Transaction Guard

The purpose of these features is to safely replay ongoing work after an outage or
migration. It may be used to restore the system after both planned and unplanned
outages. These features detect a failed connection or session and quickly
re-establish it on a surviving instance of the distributed application. They provide
a set of interfaces that return the last transaction outcome. The impact of these
features follows:

– Transaction Idempotence supports and exposes the logical transaction id. An
attribute on the handle gets the value of the ltxid, and a PL/SQL call gets its
status.

– TAF SELECT mode enhances transaction idempotence support by using it
implicitly.

– Error Classification APIs provide the information regarding the error, whether
it is recoverable: due to a temporary server outage (server
node/instance/process crash). Recoverable errors are likely to succeed after
the application is reconnected and the call is attempted again.

These features add a new method getLTXID() to Connection Class and a new
method isRecoverable() to SQLException Class. These features are discussed more
fully in Oracle Database Development Guide.

■ Support for Pluggable Databases

See "Support for Pluggable Databases" on page 3-3.

■ Added four new methods to the Environment class

These methods include:

– getNLSLanguage() - Returns the NLS Language for the current environment.

– setNLSLanguage() - Specifies the NLS Language for the current environment.

– getNLSTerritory() - Returns the NLS Territory for the current environment.

– setNLSTerritory() - Specifies the NLS Territory Language for the current
environment.

These methods provide a programmatic way of setting the Language and
Territory. The values set using these methods override the values set through the
process environment variable NLS_LANG.

■ Added overloaded methods for the setDataBuffer() and setDataBufferArray()
methods in the Statement class and the setDataBuffer() method in the Resultset
class to support larger (32K) VARCHAR2, NVARCHAR2, and RAW data types

1

Introduction to OCCI 1-1

1 Introduction to OCCI

This chapter provides an overview of Oracle C++ Call Interface (OCCI) and introduces
terminology used in discussing OCCI. You are provided with the background
information needed to develop C++ applications that run in an Oracle environment.

This chapter contains these topics:

■ Overview of OCCI

■ Processing SQL Statements

■ Overview of PL/SQL

■ Special OCCI/SQL Terms

■ Object Support

■ Additional Support

Overview of OCCI
Oracle C++ Call Interface (OCCI) is an Application Programming Interface (API) that
provides C++ applications access to data in an Oracle database. OCCI enables C++
programmers to use the full range of Oracle database operations, including SQL
statement processing and object manipulation.

OCCI provides for:

■ High performance applications through the efficient use of system memory and
network connectivity

■ Scalable applications that can service an increasing number of users and requests

■ Comprehensive support for application development by using Oracle database
objects, including client-side access to Oracle database objects

■ Simplified user authentication and password management

■ n-tiered authentication

■ Consistent interfaces for dynamic connection management and transaction
management in two-tier client/server environments or multitiered environments

■ Encapsulated and opaque interfaces

OCCI provides a library of standard database access and retrieval functions in the
form of a dynamic run-time library (OCCI classes) that can be linked in a C++
application at run time. This eliminates the requirement to embed SQL or PL/SQL
within third-generation language (3GL) programs.

This section discusses the following topics:

Overview of OCCI

1-2 Oracle C++ Call Interface Programmer's Guide

■ Benefits of OCCI

■ Building a C++ Application with OCCI

■ Functionality of OCCI

■ Functionality of OCCI

Benefits of OCCI
OCCI provides these significant advantages over other methods of accessing an Oracle
database:

■ Leverages C++ and the Object Oriented Programming paradigm

■ Is easy to use

■ Is easy to learn for those familiar with JDBC

■ Has a navigational interface to manipulate database objects of user-defined types
as C++ class instances

Note that OCCI does not support nonblocking mode.

Building a C++ Application with OCCI
As Figure 1–1 shows, you compile and link an OCCI program in the same way that
you compile and link an application that does not use the database.

Figure 1–1 The OCCI Development Process

Overview of OCCI

Introduction to OCCI 1-3

Oracle supports most popular third-party compilers. The details of linking an OCCI
program vary from system to system. On some platforms, it may be necessary to
include other libraries, in addition to the OCCI library, to properly link your OCCI
programs.

Functionality of OCCI
OCCI provides the following functionality:

■ APIs to design scalable, multithreaded applications that can support large
numbers of users securely

■ SQL access functions, for managing database access, processing SQL statements,
and manipulating objects retrieved from an Oracle database server

■ Data type mapping and manipulation functions, for manipulating data attributes
of Oracle types

■ Advanced Queuing for message management

■ XA compliance for distributed transaction support

■ Statement caching of SQL and PL/SQL queries

■ Connection pooling for managing multiple connections

■ Globalization and Unicode support to customize applications for international and
regional language requirement

■ Object Type Translator Utility

■ Transparent Application Failover support

Procedural and Nonprocedural Elements
Oracle C++ Call Interface (OCCI) enables you to develop scalable, multithreaded
applications on multitiered architectures that combine nonprocedural data access
power of structured query language (SQL) with procedural capabilities of C++.

In a nonprocedural language program, the set of data to be operated on is specified,
but what operations may performed, or how the operations can be carried out, is not
specified. The nonprocedural nature of SQL makes it an easy language to learn and
use to perform database transactions. It is also the standard language used to access
and manipulate data in modern relational and object-relational database systems.

In a procedural language program, the execution of most statements depends on
previous or subsequent statements and on control structures, such as loops or
conditional branches, which are not available in SQL. The procedural nature of these
languages makes them more complex than SQL, but it also makes them very flexible
and powerful.

The combination of both nonprocedural and procedural language elements in an
OCCI program provides easy access to an Oracle database in a structured
programming environment.

OCCI supports all SQL data definition, data manipulation, query, and transaction
control facilities that are available through an Oracle database server. For example, an
OCCI program can run a query against an Oracle database. The queries can require the
program to supply data to the database by using input (bind) variables, as follows:

See Also: Your operating system-specific Oracle documentation and
the Oracle Database Installation Guide for more information about
compiling and linking an OCCI application for your specific platform

Processing SQL Statements

1-4 Oracle C++ Call Interface Programmer's Guide

SELECT name FROM employees WHERE employee_id = :empnum

In this SQL statement, empnum is a placeholder for a value that is supplied by the
application.

In an OCCI application, you can also take advantage of PL/SQL, Oracle's procedural
extension to SQL. The applications you develop can be more powerful and flexible
than applications written in SQL alone. OCCI also provides facilities for accessing and
manipulating objects in an Oracle database server.

Processing SQL Statements
One of the main tasks of an OCCI application is to process SQL statements. Different
types of SQL statements require different processing steps in your program. It is
important to take this into account when coding your OCCI application. Oracle
recognizes several types of SQL statements:

■ Data Definition Language Statements (DDL)

■ Control Statements

■ Data Manipulation Language Statements (DML)

■ Queries

Data Definition Language Statements
Data Definition Language (DDL) statements manage schema objects in the database.
These statements create new tables, drop old tables, and establish other schema
objects. They also control access to schema objects. Example 1–1 illustrates how to
create a table, and Example 1–2 shows how to grant and revoke privileges on this
table.

Example 1–1 Creating a Table

CREATE TABLE employee_information (
employee_id NUMBER(6),
ssn NUMBER(9),
dependents NUMBER(1),
mail_address VARCHAR(60))

Example 1–2 Specifying Access to a Table

GRANT UPDATE, INSERT, DELETE ON employee_information TO donna
REVOKE UPDATE ON employee_information FROM jamie

DDL statements also allow you to work with objects in the Oracle database, as in
Example 1–3, which illustrates how to create an object table.

Example 1–3 Creating an Object Table

CREATE TYPE person_info_type AS OBJECT (
employee_id NUMBER(6),
ssn NUMBER(9),
dependents NUMBER(1),
mail_address VARCHAR(60))

CREATE TABLE person_info_table OF person_info_type

Overview of PL/SQL

Introduction to OCCI 1-5

Control Statements
OCCI applications treat transaction control, connection control, and system control
statements (for example, DML statements).

Data Manipulation Language Statements
Data Manipulation Language (DML) statements can change data in database tables.
For example, DML statements insert new rows into a table, update column values in
existing rows, delete rows from a table, lock a table in the database, and explain the
execution plan for a SQL statement.

DML statements may require an application to supply data to the database by using
input bind variables, as in Example 1–4. This statement can be executed several times
with different bind values, or several rows can be added through array insert in a
single round-trip to the server.

Example 1–4 Inserting Data Through Input Bind Variables

INSERT INTO departments VALUES(:1,:2,:3)

DML statements also enable you to work with objects in the Oracle Database, as in
Example 1–5, which shows the insertion of an instance of a type into an object table.

Example 1–5 Inserting Objects into the Oracle Database

INSERT INTO person_info_table
VALUES (person_info_type('450987','123456789','3','146 Winfield Street'))

Queries
Queries are statements that retrieve data from tables in a database. A query can return
zero, one, or many rows of data. All queries begin with the SQL keyword SELECT, as in
Example 1–6:

Example 1–6 Using the Simple SELECT Statement

SELECT department_name FROM departments
WHERE department_id = 30

Queries can require the program to supply data to the database server by using input
bind variables, as in Example 1–7:

Example 1–7 Using the SELECT Statement with Input Variables

SELECT first_name, last_name
FROM employees
WHERE employee_id = :emp_id

In this SQL statement, emp_id is a placeholder for a value that is supplied by the
application.

Overview of PL/SQL
PL/SQL is Oracle's procedural extension to the SQL language. PL/SQL processes tasks
that are more complicated than simple queries and SQL data manipulation language

See Also: Oracle Database SQL Language Reference for information
about control statements.

Special OCCI/SQL Terms

1-6 Oracle C++ Call Interface Programmer's Guide

statements. PL/SQL allows several constructs to be grouped into a single block and
executed as a unit. Among these are the following constructs:

■ One or more SQL statements

■ Variable declarations

■ Assignment statements

■ Procedural control statements (IF ... THEN ... ELSE statements and loops)

■ Exception handling

In addition to calling PL/SQL stored procedures from an OCCI program, you can use
PL/SQL blocks in your OCCI program to perform the following tasks:

■ Call other PL/SQL stored procedures and stored functions.

■ Combine procedural control statements with several SQL statements, to be
executed as a unit.

■ Access special PL/SQL features such as records, tables, cursor FOR loops, and
exception handling.

■ Use cursor variables.

■ Access and manipulate objects in an Oracle database.

A PL/SQL procedure or function can also return an output variable. This is called an
out bind variable, as in Example 1–8:

Example 1–8 Using PL/SQL to Obtain an Output Variable

GET_EMPLOYEE_NAME(:1, :2);

Here, the first parameter is an input variable that provides the ID number of an
employee. The second parameter, or the out bind variable, contains the return value of
employee name.

PL/SQL can also be used to issue a SQL statement to retrieve values from a table of
employees, given a particular employee number. Example 1–9 demonstrates the use of
placeholders in PL/SQL statements.

Example 1–9 Using PL/SQL to Insert Partial Records into Placeholders

SELECT last_name, first_name, salary, commission_pct
INTO :emp_last, :emp_first, :sal, :comm
FROM employees
WHERE employee_id = :emp_id;

Note that the placeholders in this statement are not PL/SQL variables. They represent
input and output parameters passed to and from the database server when the
statement is processed. These placeholders must be specified in your program.

Special OCCI/SQL Terms
This guide uses special terms to refer to the different parts of a SQL statement.
Consider Example 1–10:

Example 1–10 Using SQL to Extract Partial Records

SELECT first_name, last_name, email
FROM employees

Object Support

Introduction to OCCI 1-7

WHERE department_id = 80
AND commission_pct > :base;

This example contains these parts:

■ A SQL command: SELECT

■ Three select-list items: first_name, last_name, and email

■ A table name in the FROM clause: employees

■ Two column names in the WHERE clause: department_id and commission_pct

■ A numeric input value in the WHERE clause: 40

■ A placeholder for an input bind variable in the WHERE clause: :base

When you develop your OCCI application, you call routines that specify to the
database server the value of, or reference to, input and output variables in your
program. In this guide, specifying the placeholder variable for data is called a bind
operation. For input variables, this is called an in bind operation. For output
variables, this is called an out bind operation.

Object Support
OCCI has facilities for working with object types and objects. An object type is a
user-defined data structure representing an abstraction of a real-world entity. For
example, the database might contain a definition of a person object. That object type
might have attributes, such as first_name, last_name, and age, which represent a
person's identifying characteristics.

The object type definition serves as the basis for creating objects, which represent
instances of the object type. By using the object type as a structural definition, a person
object could be created with the attributes John, Bonivento, and 30. Object types may
also contain methods, or programmatic functions that represent the behavior of that
object type.

OCCI provides a comprehensive API for programmers seeking to use the Oracle
database server's object capabilities. These features can be divided into several major
categories, which are discussed in subsequent topics:

■ Client-Side Object Cache

■ Run-time Environment for Objects

■ Associative and Navigational Interfaces

■ Interoperability with C (OCI)

■ Metadata Class

■ Object Type Translator Utility (OTT) utility, which maps internal Oracle schema
information to client-side language bind variables

See Also:

■ Oracle Database Concepts

■ Oracle Database Object-Relational Developer's Guide for a more
detailed explanation of object types and objects

Object Support

1-8 Oracle C++ Call Interface Programmer's Guide

Client-Side Object Cache
The object cache is a client-side memory buffer that provides lookup and memory
management support for objects. It stores and tracks objects which have been fetched
by an OCCI application from the server to the client side. The client-side object cache is
created when the OCCI environment is initialized in object mode. Multiple
applications running against the same server have their own object cache. The
client-side object cache tracks the objects that are currently in memory, maintains
references to objects, manages automatic object swapping and tracks the
meta-attributes or type information about objects. The client-side object cache provides
the following benefits:

■ Improved application performance by reducing the number of client/server
round-trips required to fetch and operate on objects

■ Enhanced scalability by supporting object swapping from the client-side cache

■ Improved concurrency by supporting object-level locking

■ Automatic garbage collection when cache thresholds are exceeded

Run-time Environment for Objects
OCCI provides a run-time environment for objects that offers a set of methods for
managing how Oracle objects are used on the client side. These methods provide the
necessary functionality for performing these tasks:

■ Connecting to an Oracle database server to access its object functionality

■ Allocating the client-side object cache and tuning its parameters

■ Retrieving error and warning messages

■ Controlling transactions that access objects in the database

■ Associatively accessing objects through SQL

■ Describing a PL/SQL procedure or function whose parameters or result are of
Oracle object type

Associative and Navigational Interfaces
Applications that use OCCI can access objects in the database through several types of
interfaces, such as SQL SELECT, INSERT, and UPDATE statements, and C++ pointers and
references that access objects in the client-side object cache by traversing the
corresponding references.

OCCI provides a set of methods to support object manipulation by using SQL SELECT,
INSERT, and UPDATE statements. To access Oracle objects, these SQL statements use a
consistent set of steps as if they were accessing relational tables. OCCI provides
methods to access objects by using SQL statements for:

■ Binding object type instances and references as input and output variables of SQL
statements and PL/SQL stored procedures

■ Executing SQL statements that contain object type instances and references

■ Fetching object type instances and references

■ Retrieving column values from a result set as objects

■ Describing a select-list item of an Oracle object type

Object Support

Introduction to OCCI 1-9

OCCI provides a seamless interface for navigating objects, enabling you to manipulate
database objects in the same way that you would operate on transient C++ objects. You
can dereference the overloaded arrow (->) operator on an object reference to
transparently materialize the object from the database into the application space.

Interoperability with C (OCI)
The OCCI application can retrieve the underlying OCI handles and descriptors by
calling getOCIxxx() methods on the OCCI class instances. These handles can be used
to call OCI functions.

Note that the application must be aware that if any properties are changed on the OCI
handles, the corresponding OCCI instances may or may not reflect this.

This interoperability between OCCI and OCI is not supported if the application uses
OCI functions for any object-related functionality.

Metadata Class
Each Oracle data type is represented in OCCI by a C++ class. The class exposes the
behavior and characteristics of the data type by overloaded operators and methods.
For example, the Oracle data type NUMBER is represented by the Number class. OCCI
provides a metadata class that enables you to retrieve metadata describing database
objects, including object types.

Object Type Translator Utility
The Object Type Translator (OTT) utility translates schema information about Oracle
object types into client-side language bindings. That is, OTT translates object type
information into declarations of host language variables, such as structures and
classes. OTT takes an intype file that contains information about Oracle database
schema objects as input. OTT generates an outtype file and the necessary header and
implementation files that must be included in a C++ application that runs against the
object schema.

In summary, OCCI supports object handling in an Oracle database by:

■ Improving application developer productivity by eliminating the requirement to
write the host language variables that correspond to schema objects

■ Maintaining SQL as the data definition language of choice by providing the ability
to automatically map Oracle database schema objects created by SQL to host
language variables; this allows Oracle to support a consistent, enterprise-wide
model of the user's data

■ Facilitating schema evolution of object types by regenerating included header files
when the schema is changed, allowing Oracle applications to support schema
evolution

■ Executing SQL statements that manipulate object data and schema information

■ Passing object references and instances as input variables in SQL statements

■ Declaring object references and instances as variables to receive the output of SQL
statements

■ Fetching object references and instances from a database

■ Describing properties of SQL statements that return object instances and
references

Additional Support

1-10 Oracle C++ Call Interface Programmer's Guide

■ Describing PL/SQL procedures or functions with object parameters or results

■ Extending commit and rollback calls to synchronize object and relational
functionality

■ Advanced queuing of objects

OTT is typically invoked from the command line by specifying the intype file, the
outtype file, and the specific database connection.

Additional Support
This section discusses how to build the OCCI examples that ship with Oracle
Database, and additional resources.

Building OCCI Demos
You must install the demonstration programs as described in Oracle Database Examples
Installation Guide. Parts of these demos are used as examples in this book. To build the
examples, see the following steps:

1. Navigate to the demo directory.

On Windows, this directory is ORACLE_HOME\rdbms\demo.

On Linux and UNIX, this directory is ORACLE_HOME/rdbms/demo.

2. Ensure that this directory contains the file demo_rdbms.mk.

3. Create the OCCI demo using the make command.

■ To make all the demos at the same time, use the following parameters:

make -f demo_rdbms.mk occidemos

■ To make only one demo, use parameters:

make -f demo_rdbms.mk demoname

■ To make a single demo with objects, use parameters:

make -f demo_rdbms.mk buildocci EXE=demoname OBJS=demoname.o

■ To make a single demo with static libraries, use parameters:

make -f demo_rdbms.mk buildocci_static EXE=demoname OBJS=demoname.o

■ For more options, examine the demo_rdbms.mk file.

OCCI on the Oracle Technology Network
You can find additional information on OCCI, including a forum, downloads, and
white papers, at:
http://www.oracle.com/technetwork/database/features/oci/index-090820.html.

2

Installation and Upgrading 2-1

2 Installation and Upgrading

This chapter provides an overview of installation and upgrading for Oracle C++ Call
Interface (OCCI).

This chapter contains these topics:

■ Installing Oracle C++ Call Interface

■ Upgrading Considerations

■ Determining the Oracle Database Versions

■ Instant Client

■ Instant Client Light (English)

■ Using OCCI with Microsoft Visual C++

Installing Oracle C++ Call Interface
OCCI is installed as part of the Oracle Database. To determine additional configuration
requirements, you should refer to the Oracle Database Installation Guide and the Oracle
Database Client Installation Guide that is specific to your platform.

Upgrading Considerations
To use the new features available in this release, you must recompile and relink all
OCCI applications, including classes generated through the Object Type Translator
Utility, when upgrading from an earlier Oracle Client release.

Determining the Oracle Database Versions
When an application uses several separate code paths with different server versions or
client patchsets, you can verify these options both during compilation and at run time.

Determining the Oracle Client Version During Compilation
The OCCI header files define OCCI_MAJOR_VERSION and OCCI_MINOR_VERSION macros.
Example 2–1 illustrates one way to use these macros:

Example 2–1 How to Determine the Major Client Version and Set Performance Features

#if (OCCI_MAJOR_VERSION > 9)
 env->setCacheSortedFlush(true); // benefit of performance, if available
#endif

Instant Client

2-2 Oracle C++ Call Interface Programmer's Guide

Determining the Oracle Client and Server Versions at Run Time
 During run time, you can check both the client and server versions of the current
Connection by using the getClientVersion(), getServerVersion(), and
getServerVersionUString() methods.

Instant Client
The Instant Client feature makes it extremely easy and fast to deploy OCCI based
customer application by eliminating the need for ORACLE_HOME. The storage space
requirements are an additional benefit; Instant Client shared libraries occupy about
one-fourth of the disk space required for a full client installation.

Benefits of Instant Client
■ Installation involves copying only four files.

■ Storage space requirement for the client is minimal

■ No loss of functionality or performance exists for deployed applications

■ Simplified packaging with ISV applications

The OCCI Instant Client capability simplifies OCCI installation. Even though OCCI is
independent of ORACLE_HOME setting in the Instant Client mode, applications that rely
on ORACLE_HOME settings can continue operation by setting it to the appropriate value.
The activation of the Instant Client mode is only dependent on the ability to load the
Instant Client data shared library. In particular, this feature allows interoperability
with Oracle applications that use ORACLE_HOME for their data, but use a newer release
of Oracle Client.

Installing Instant Client
OCCI requires only four shared libraries (or dynamic link libraries, as they are called
on some operating systems) to be loaded by the dynamic loader of the operating
system. Oracle Database 12c Release 1 (12.1) library names are used; the number part
of library names changes to remain consistent with future release numbers.

For clarity and ease of development, the library structure is changed starting with
Oracle Database 12c Release 1 (12.1). The client shared library, libclntsh.so.12.1,
depends on libclntshcore.so.12.1. The libclntshcore.so.12.1 library contains the
NLS and CORE functionality. Both of these libraries must be installed in the same
directory.

■ OCI Instant Client Data Shared Library (libociei.so on Linux and UNIX and
oraociei11.dll on Windows); correct installation of this file determines if you are
operating in Instant Client mode

■ Client Code Library (libclntsh.so.11.1 on Linux and UNIX and oci.dll on
Windows)

■ Security Library (libnnz11.so on Linux and UNIX and orannzsbb11.dll on
Windows)

■ OCCI Library (libocci.so.11.1 on Linux and UNIX and oraocci11.dll on
Windows)

Note: The libclntshcore.so.12.1 file must now reside in the same
library as the data shared library.

Instant Client

Installation and Upgrading 2-3

Oracle Technology Network
The Instant Client libraries are also available on the Oracle Technology Network
(OTN) Web site at:

http://www.oracle.com/technology/tech/oci/instantclient/

If these four libraries are accessible through the directory on the Operating System
Library Path variable (LD_LIBRARY_PATH on Linux and UNIX, and PATH on Windows),
then OCCI operates in the Instant Client mode. In this mode, there is no dependency
on ORACLE_HOME and none of the other code and data files provided in ORACLE_HOME are
needed by OCCI.

If you are installing Instant Client from the Oracle Technology Network,

1. Download and install the Instant Client libraries to an empty directory, such as
instantclient_12_1.

2. Set the operating system shared library path environment variable (LD_LIBRARY_
PATH on Linux and UNIX and PATH on Windows) to the directory used in step 1,
instantclient_12_1.

Instant Client SDK Instant Client can also be downloaded as an SDK package. The SDK
contains all necessary header files and a makefile for developing OCCI applications in
an Instant Client environment. Once developed, these applications can be deployed in
any client environment. The SDK has these additional features:

■ It contains C++ demonstration programs.

■ It includes libraries required to link applications on Windows, and a Make.bat file
is provided to build demos.

■ The Makefile demo.mk is provided to build the demos for Linux and UNIX. The
instantclient_12_1 directory must be on the LD_LIBRARY_PATH before linking the
application. These programs require symbolic links for the Client Code Library
and the OCCI library, libclntsh.so.12.1 and libocci.so.12.1 respectively, in
the instantclient_12_1 directory. The demo Makefile, demo.mk, generates these
before the link step. These symbolic links can also be created in a shell script:

cd instantclient_12_1
ln -s libclntsh.so.11.1 libclntsh.so
ln -s libocci.so.11.1 libocci.so

■ The SDK also contains the Object Type Translator (OTT) utility and its classes to
generate the application header files.

Complete Client Installation
If you performed a complete client installation by choosing the Admin option,

■ On Linux or UNIX platforms, the libociei.so library can be copied from the
$ORACLE_HOME/instantclient directory. All the other libraries can be copied from
the $ORACLE_HOME/lib directory in a full Oracle installation.

■ On Windows, the oraociei11.dll library can be copied from the ORACLE_
HOME\instantclient directory. All other Windows libraries can be copied from the
ORACLE_HOME\bin directory.

Oracle Universal Installer
If you did not install the database, you can install these libraries by choosing the
Instant Client option from the Oracle Universal Installer. After completing these steps,
you can begin running OCCI applications.

Instant Client

2-4 Oracle C++ Call Interface Programmer's Guide

1. Install the Instant Client shared libraries to a directory such as instantclient_12_
1.

2. Set the operating system shared library path environment variable to the directory
from step 1. For example, on Linux or UNIX, set the LD_LIBRARY_PATH to
instantclient_12_1. On Windows, set PATH to locate the instantclient_12_1
directory.

Instant Client CD
You can also install Instant Client from the Instant Client CD. You must install Instant
Client either in an empty directory or on a different system.

There should be only one set of Oracle libraries on the operating system Library Path
variable; if you have several directories or copies of Instant Client libraries, only one
directory should be on the operating system Library Path.

Similarly, if you also have an installation on an ORACLE_HOME of the same system, do
not place both the ORACLE_HOME/lib and Instant Client directory on the operating
system Library Path, regardless of the order in which they appear on the Library Path.
Only one of ORACLE_HOME/lib directory (for non-Instant Client operation) or Instant
Client directory (for Instant Client operation) should be on the operating system
Library Path variable.

Using Instant Client
The Instant Client feature is designed for running production applications. For
development, use either the Instant Client SDK or a full installation to access OCCI
header files, makefiles, demonstration programs, and so on.

Patching Instant Client Shared Libraries on UNIX
This feature is not available on Windows platforms.

Because Instant Client is primarily a deployment feature, one of its design objectives is
to reduce the number and size of necessary files. Therefore, Instant Client deployment
does not include all files for patching shared libraries. You should use the OPATCH
utility on an ORACLE_HOME-based full client to patch the Instant Client shared libraries.
The OPATCH utility stores the patching information of the ORACLE_HOME installation in
libclntsh.so.11.1 for Linux and UNIX. This information can be retrieved using the
genezi utility:

genezi -v

If the genezi utility is not installed on the system that deploys Instant Client, you can
copy it from the ORACLE_HOME/bin directory of the ORACLE_HOME system.

After applying the patch in an ORACLE_HOME environment, copy the files listed
in"Installing Instant Client" on page 2-2 to the Instant Client directory.

Instead of copying individual files, you can generate Instant Client *.zip files, as
described in "Regenerating the Data Shared Library and Zip Files". Then, instead of
copying individual files, you can instead copy the zip files to the target system and
unzip them.

Regenerating the Data Shared Library and Zip Files
This feature is not available on Windows platforms.

Instant Client

Installation and Upgrading 2-5

The Instant Client Data Shared Library, libociei.so, can be regenerated in a Client
Admin Install of ORACLE_HOME. Executing Example 2–2 creates a new libociei.so file
based on current file in ORACLE_HOME and place it in the ORACLE_
HOME/rdbms/install/instantclient directory; the make target ilibociei generates
libociei.so.

This location of the regenerated data shared library, libociei.so, is different from the
original location of ORACLE_HOME/instantclient

The script in Example 2–2 also creates a directory for Instant Client Light (English)

Example 2–2 How to Regenerate the Data Shared Library Files

mkdir -p $ORACLE_HOME/rdbms/install/instantclient/light
cd $ORACLE_HOME/rdbms/lib
make -f ins_rdbms.mk ilibociei

Database Connection Names for Instant Client
All Oracle net naming methods that do not require use of ORACLE_HOME or TNS_ADMIN to
locate configuration files such as tnsnames.ora or sqlnet.ora work in the Instant
Client mode.

The connectString parameter in the createConnection() call can be specified in the
following formats:

■ As an SQL Connect URL string, of the form:

//host:[port][/service name]

such as:

//myserver111:5521/bjava21

■ As an Oracle Net keyword-value pair. For example:

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=myserver111) (PORT=5521))
(CONNECT_DATA=(SERVICE_NAME=bjava21)))

■ As a connection name that is resolved through Directory Naming when the site is
configured for LDAP server discovery.

■ As an entry in the tnsnames.ora file.

If the TNS_ADMIN environment variable is not set, and TNSNAMES entries such as
inst1 are used, then the ORACLE_HOME variable must be set and the configuration
files are expected to be in the $ORACLE_HOME/network/admin directory.

Naming methods that require TNS_ADMIN to locate configuration files continue to
work if the TNS_ADMIN environment variable is set.

The ORACLE_HOME variable in this case is only used for locating Oracle Net
configuration files, and no other component of OCCI Client Code Library uses the
value of ORACLE_HOME.

The empty connectString parameter of createConnection() is supported by setting the
environment variable (TWO_TASK on Linux and UNIX, and LOCAL on Windows) to one
of the values described earlier.

See Also: Oracle Database Net Services Administrator's Guide for more
information on the connect descriptor.

Instant Client Light (English)

2-6 Oracle C++ Call Interface Programmer's Guide

Environment Variables for OCCI Instant Client
The ORACLE_HOME environment variable no longer determines the location of
Globalization Support, CORE, and error message files. An OCCI-only application
should not require ORACLE_HOME to be set. However, if it is set, it does not have an
impact on OCCI's operation. OCCI always obtains its data from the Data Shared
Library. If the Data Shared Library is not available, only then is ORACLE_HOME used and
a full client installation is assumed. When set, ORACLE_HOME should be a valid
operating system path name that identifies a directory.

Environment variables ORA_NLS33, ORA_NLS32, and ORA_NLS are ignored in the Instant
Client mode.

In the Instant Client mode, if the ORA_TZFILE variable is not set, then the larger,
default, timezlrg_n.dat file (where n is the version number of the file) from the Data
Shared Library is used. If using the smaller timezone_n.dat file from the Data Shared
Library, then set the ORA_TZFILE environment variable to the name of the file without
any absolute or relative path names, as shown in Example 2–3.

Example 2–3 How to set the ORA_TZFILE Environment Variable

On Linux and UNIX:

setenv ORA_TZFILE timezone_n.dat

On Windows:

set ORA_TZFILE timezone_n.dat

If OCCI is not operating in the Instant Client mode because the Data Shared Library is
not available, the ORA_TZFILE variable, if set, names a complete path name.

If TNSNAMES entries are used, then TNS_ADMIN directory must contain the TNSNAMES
configuration files. If TNS_ADMIN is not set, the ORACLE_HOME/network/admin directory
must contain Oracle Net Services configuration files.

Instant Client Light (English)
Instant Client Light (English) further reduces installation space requirements of the
client installation over Instant Client by another 63 MB. Specifically, the installation of
the Instant Client Light (English) shared library, libociicus.so on Linux and UNIX
and oraociicus11.dll for Windows, occupies 4 MB on UNIX platforms, when the full
Instant Client shared library, libociei.so, occupies 67 MB of disk space.

Instant Client Light (English), as the name implies, is geared toward applications that
require English-only error messages and use either US7ASCII, WE8DEC, or a Unicode
characterset. Instant Client Light (English) also has no restrictions on the TERRITORY
field of the NLS_LANG setting. As a result, applications that meet these characterset and
territory criteria can significantly reduce its footprint if they operate in the Instant
Client Light (English) environment.

Globalization Settings for Instant Client Light (English)
Instant Client Light (English) supports the following character sets:

■ Single-byte character sets include US7ASCII, WE8DEC, WE8MSWIN1252, and
WE8ISO8859P1.

■ Unicode character sets include UTF8, AL16UTF16, and AL32UTF8.

Instant Client Light (English)

Installation and Upgrading 2-7

Instant Client Light (English) returns an error message if the application attempts to
use a character set or a national character set not listed here, either on the client or on
the database. The possible error messages, listed here, are only available in English:

■ ORA-12734 Instant Client Light: unsupported client national character set (NLS_
LANG value set)

■ ORA-12735 Instant Client Light: unsupported client character set (NLS_LANG
value set)

■ ORA-12736 Instant Client Light: unsupported server national character set (NLS_
LANG value set)

■ ORA-12737 Instant Client Light: unsupported server character set (NLS_LANG
value set)

When setting NLS_LANG parameters, use the following:

American_territory.charset

where territory is any valid Territory that can be specified through NLS_LANG, and
charset is a character set listed in this section.

Using Instant Client Light (English)
To determine whether to operate in the Instant Client mode, OCCI applications look
for the Data Shared Library on the LD_LIBRARY_PATH for Linux and UNIX and PATH on
Windows. If this library is not found, OCCI attempts to load the Instant Client Light
(English) Data Shared Library, libociicus.so for Linux and UNIX and
oraociicus11.dll on Windows. If neither is found, a full ORACLE_HOME installation is
assumed.

Installing Instant Client Light (English)
There are three ways to install Instant Client Light (English): from Oracle Technology
Network Download, through Client Admin Install, and through Oracle Universal
Installer.

Note that all Instant Client and Instant Client Light (English) files should always be
copied or installed into an empty directory to ensure that there are no incompatible
binaries in the final installation

Oracle Technology Network Download
When installing Instant Client Light (English) from Oracle Technology Network
(OTN), download and unzip the basiclite.zip package instead of the usual
basic.zip package. You must ensure that the instantclient_12_1 directory is empty
before unzipping the libraries. The downloadable package is at the following URL on
OTN:

http://www.oracle.com/technology/tech/oci/instantclient/

Client Admin Install
Instead of copying the Instant Client Data Shared Library from the ORACLE_
HOME/instantclient directory, use the Instant Client Light (English) Data Shared
Library, libociicus.so for Linux and UNIX and oraociicus11.dll for Windows,
from the ORACLE_HOME/instantclient/light directory. In other words, the Instant

See Also: Oracle Database Globalization Support Guide for more
information about NLS settings.

Using OCCI with Microsoft Visual C++

2-8 Oracle C++ Call Interface Programmer's Guide

Client directory on the LD_LIBRARY_PATH for Linux and UNIX and PATH for Windows
should contain the smaller Instant Client Light (English) Data Shared Libraries.

Oracle Universal Installer
If the Instant Client option is selected from the Oracle Universal Installer (OUI), the
full Instant Client is installed by default, but the libraries for Instant Client Light
(English) are also installed. To operate in Instant Client Light (English) mode, the
Instant Client Light (English) Data Shared Library must replace the Instant Client
library. Therefore, you must place libociicus.so on the LD_LIBRARY_PATH for Linux and
UNIX, and oraociicus11.dll on the PATH for Windows. This design ensures that the
Instant Client Light (English) is not enabled by default.

The Instant Client Light (English) Data Shared Library is initially placed in the
ORACLE_HOME/instantclient/light directory. You must move it to the base directory
of the installation, ORACLE_HOME/instantclient, and remove the Instant Client Data
Shared Library in that directory.

Example 2–4 Installing Instant Client Light (English) through Oracle Universal Installer

If the OUI has installed the Instant Client in my_oraic_12_1 directory on the LD_
LIBRARY_PATH, then the following commands would ensure operation in the Instant
Client Light (English) mode. Note that to avoid use of incompatible binary files, all
Instant Client files should be copied and installed in an empty directory.

cd my_oraic_12_1
rm libociei.so
mv light/libociicus.so .

Using OCCI with Microsoft Visual C++
The Oracle Database 12c Release 1 (12.1) includes OCCI libraries for developing
applications with Microsoft Visual C++ version 10.0 (.NET 2010 SP1 10.0), Microsoft
Visual C++ version 11.0 (.NET 2012 11.0), Microsoft Visual C++ version 12.0 (.NET
2013 12.0), and Intel 12.1 C compilers with Microsoft Visual Studio 2010 STLs.
Microsoft Visual C++ version 8.0 and version 9.0 are no longer supported.

Microsoft Visual C++ version 10.0 libraries are installed in the following default
locations:

ORACLE_BASE\ORACLE_HOME\bin\oraocci12.dll
ORACLE_BASE\ORACLE_HOME\oci\lib\msvc\oraocci12.lib

Copies of these two files are also installed under the directory:

ORACLE_BASE\ORACLE_HOME\oci\lib\msvc\vc10

Microsoft Visual C++ 2012 OCCI libraries are installed in the following default
location:

ORACLE_BASE\ORACLE_HOME\oci\lib\msvc\vc11

When developing OCCI applications with MSVC++ 2012, ensure that the OCCI
libraries are correctly selected from this directory for linking and executing.

Microsoft Visual C++ 2013 OCCI libraries are installed in the following default
location:

ORACLE_BASE\ORACLE_HOME\oci\lib\msvc\vc12

Using OCCI with Microsoft Visual C++

Installation and Upgrading 2-9

When developing OCCI applications with MSVC++ 2013, ensure that the OCCI
libraries are correctly selected from this directory for linking and executing.

Applications should link with the appropriate OCCI library. You must ensure that the
corresponding DLL is located in the Windows system PATH.

Applications that link to MSVCRTD.DLL, a debug version of Microsoft C-Runtime, /MDd
compiler flag, should link with these specific OCCI libraries: oraocci12d.lib and
oraocci12d.dll.

All Instant Client packages contain the versions of the OCCI DLLs that are compatible
with Microsoft Visual C++ version 10.0.

Using OCCI with Microsoft Visual C++

2-10 Oracle C++ Call Interface Programmer's Guide

3

Accessing Oracle Database Using C++ 3-1

3 Accessing Oracle Database Using C++

This chapter describes the basics of developing C++ applications using Oracle C++
Call Interface (OCCI) to work with data stored in relational databases.

This chapter contains these topics:

■ Connecting to a Database

■ Pooling Connections

■ Executing SQL DDL and DML Statements

■ Types of SQL Statements in the OCCI Environment

■ Executing SQL Queries

■ Executing Statements Dynamically

■ Using Larger Row Count and Error Code Range Data Types

■ Committing a Transaction

■ Caching Statements

■ Handling Exceptions

Connecting to a Database
You have several different options for how your application connects to the database.

Creating and Terminating an Environment
All OCCI processing takes place inside the Environment class. An OCCI environment
provides application modes and user-specified memory management functions.
Example 3–1 illustrates how to create an OCCI environment.

Example 3–1 How to Create an OCCI Environment

Environment *env = Environment::createEnvironment();

All OCCI objects created with the createxxx() methods (connections, connection
pools, statements) must be explicitly terminated. When appropriate, you must also
explicitly terminate the environment. Example 3–2 shows how you terminate an OCCI
environment.

Example 3–2 How to Terminate an OCCI Environment

Environment::terminateEnvironment(env);

Connecting to a Database

3-2 Oracle C++ Call Interface Programmer's Guide

In addition, an OCCI environment should have a scope that is larger than the scope of
the following object types created inside that environment: Agent, Bytes, Date,
Message, IntervalDS, IntervalYM, Subscription, and Timestamp. This rule does not
apply to BFile, Blob, and Clob objects, as demonstrated in Example 3–3.

Example 3–3 How to Use Environment Scope with Blob Objects

const string userName = "HR";
const string password = "password";
const string connectString = "";

Environment *env = Environment::createEnvironment();
{

Connection *conn = env->createConnection(
userName, password, connectString);

Statement *stmt = conn->createStatement(
"SELECT blobcol FROM mytable");

ResultSet *rs = stmt->executeQuery();
rs->next();
Blob b = rs->getBlob(1);
cout << "Length of BLOB : " << b.length();
...
stmt->closeResultSet(rs);
conn->terminateStatement(stmt);
env->terminateConnection(conn);

}
Environment::terminateEnvironment(env);

If the application requires access to objects in the global scope, such as static or global
variables, these objects must be set to NULL before the environment is terminated. In
the preceding example, if b was a global variable, a b.setNull() call has to be made
before the terminateEnvironment() call.

You can use the mode parameter of the createEnvironment() method to specify that
your application:

■ Runs in a threaded environment (THREADED_MUTEXED or THREADED_UNMUTEXED)

■ Uses objects (OBJECT)

The mode can be set independently in each environment.

Opening and Closing a Connection
The Environment class is the factory class for creating Connection objects. You first
create an Environment instance, and then use it to enable users to connect to the
database through the createConnection() method.

Example 3–4 creates an environment instance and then uses it to create a database
connection for a database user HR with the appropriate password.

Example 3–4 How to Create an Environment and then a Connection to the Database

Environment *env = Environment::createEnvironment();
Connection *conn = env->createConnection("HR", "password");

You must use the terminateConnection() method shown in the following code
example to explicitly close the connection at the end of the working session. In
addition, the OCCI environment should be explicitly terminated.

Pooling Connections

Accessing Oracle Database Using C++ 3-3

You should remember that all objects (Refs, Bfiles, Producers, Consumers, and so on)
created or named within a Connection instance must be within the inner scope of that
instance; the scope of these objects must be explicitly terminated before the
Connection is terminated. Example 3–5 demonstrates how to terminate the connection
and the environment.

Example 3–5 How to Terminate a Connection to the Database and the Environment

env->terminateConnection(conn);
Environment::terminateEnvironment(env);

Support for Pluggable Databases
The multitenant architecture enables an Oracle database to contain a portable
collection of schemas, schema objects, and nonschema objects that appear to an Oracle
client as a separate database. A multitenant container database (CDB) is an Oracle
database that includes one or more pluggable databases (PDBs).

OCCI clients can connect to a PDB using a service whose pluggable database property
has been set to the relevant PDB.

Pooling Connections
This section discusses how to use the connection pooling feature of OCCI. The
information covered includes the following topics:

■ Using Connection Pools

■ Stateless Connection Pooling

The primary difference between the two is that StatelessConnectionPools are used
for applications that do not depend on state considerations; these applications can
benefit from performance improvements available through use of pre-authenticated
connections.

Using Connection Pools
For many middle-tier applications, connections to the database should be enabled for a
large number of threads. Because each thread exists for a relatively short time, opening
a connection to the database for every thread would be inefficient use of connections,
and would result in poor performance.

By employing the connection pooling feature, your application can create a small set
of connections available to a large number of threads, enabling you to use database
resources very efficiently.

Creating a Connection Pool
To create a connection pool, you use the createConnectionPool() method on
page 13-248, as demonstrated in Example 3–6.

See: Oracle Database Administrator's Guide for more information
about PDBs and for more details about configuring the services to
connect to various PDBs

See: Oracle Call Interface Programmer's Guide for information about
restrictions while working with PDBs

Pooling Connections

3-4 Oracle C++ Call Interface Programmer's Guide

Example 3–6 The createConnectionPool() Method

virtual ConnectionPool* createConnectionPool(
const string &poolUserName,
const string &poolPassword,
const string &connectString ="",
unsigned int minConn =0,
unsigned int maxConn =1,
unsigned int incrConn =1) = 0;

The following parameters are used in Example 3–6:

■ poolUserName: The owner of the connection pool

■ poolPassword: The password to gain access to the connection pool

■ connectString: The database name that specifies the database server to which the
connection pool is related

■ minConn: The minimum number of connections to be opened when the connection
pool is created

■ maxConn: The maximum number of connections that can be maintained by the
connection pool. When the maximum number of connections are open in the
connection pool, and all the connections are busy, an OCCI method call that needs
a connection waits until it gets one, unless setErrorOnBusy() was called on the
connection pool

■ incrConn: The additional number of connections to be opened when all the
connections are busy and a call needs a connection. This increment is implemented
only when the total number of open connections is less than the maximum
number of connections that can be opened in that connection pool.

Example 3–7 demonstrates how you can create a connection pool.

Example 3–7 How to Create a Connection Pool

const string connectString = "";
unsigned int maxConn = 5;
unsigned int minConn = 3;
unsigned int incrConn = 2;

ConnectionPool *connPool = env->createConnectionPool(
poolUserName,
poolPassword,
connectString,
minConn,
maxConn,
incrConn);

You can also configure all these attributes dynamically. This lets you design an
application that has the flexibility of reading the current load (number of open
connections and number of busy connections) and tune these attributes appropriately.
In addition, you can use the setTimeOut() method to time out the connections that are
idle for more than the specified time. The OCCI terminates idle connections
periodically to maintain an optimum number of open connections.

There is no restriction that one environment must have only one connection pool.
There can be multiple connection pools in a single OCCI environment, and these can
connect to the same or different databases. This is useful for applications requiring
load balancing.

Pooling Connections

Accessing Oracle Database Using C++ 3-5

Proxy Connections
If you authorize the connection pool user to act as a proxy for other connections, then
no password is required to log in database users who use connections in the
connection pool.

A proxy connection can be created by using either of the following two versions of the
createProxyConnection() method on page 13-180, demonstrated in Example 3–8.

Example 3–8 The createProxyConnection() Method

ConnectionPool->createProxyConnection(
const string &username,
Connection::ProxyType proxyType = Connection::PROXY_DEFAULT);

or

ConnectionPool->createProxyConnection(
const string &username,
string roles[],
int numRoles,
Connection::ProxyType proxyType = Connection::PROXY_DEFAULT);

The following parameters are used in the previous method example:

■ roles[]: The roles array specifies a list of roles to be activated after the proxy
connection is activated for the client

■ Connection::ProxyType proxyType = Connection::PROXY_DEFAULT: The
enumeration Connection::ProxyType lists constants representing the various
ways of achieving proxy authentication. PROXY_DEFAULT is used to indicate that
name represents a database username and is the only proxy authentication mode
currently supported.

Stateless Connection Pooling
Stateless Connection Pooling is specifically designed for use in applications that
require short connection times and do not deal with state considerations. The primary
benefit of Stateless Connection Pooling is increased performance, since the time
consuming connection and authentication protocols are eliminated.

Stateless Connection Pools create and maintain a group of stateless, authenticated
connection to the database that can be used by multiple threads. Once a thread finishes
using its connection, it should release the connection back to the pool. If no
connections are available, new ones are generated. Thus, the number of connections in
the pool can increase dynamically.

Some connections in the pool may be tagged with specific properties. The user may
request a default connection, set certain attributes, such as Globalization Support
settings, then tag it and return it to the pool. When a connection with same attributes is
needed, a request for a connection with the same tag can be made, and one of several
connections in the pool with the same tag can be reused. The tag on a connection can
be changed or reset.

Proxy connections may also be created and maintained through the Stateless
Connection Pooling interface.

Stateless connection pooling improves the scalability of the mid-tier applications by
multiplexing the connections. However, connections from a StatelessConnectionPool
should not be used for long transactions, as holding connections for long periods leads
to reduced concurrency.

Pooling Connections

3-6 Oracle C++ Call Interface Programmer's Guide

There are two types of stateless connection pools:

■ A homogeneous pool is one in which all the connections are authenticated with
the username and password provided at the time of creation of the pool.
Therefore, all connections have the same authentication context. Proxy connections
are not allowed in such pools.

■ Different connections can be authenticated by different usernames in
heterogeneous pools. Proxy connections can also exist in heterogeneous pools,
provided the necessary privileges for creating them are granted on the server.
Additionally, heterogeneous pools support external authentication.

Example 3–9 illustrates a basic usage scenario for connection pools. Example 3–10
presents the usage scenario for creating and using a homogeneous stateless connection
pool, while Example 3–11 covers the use of heterogeneous pools.

Example 3–9 How to Use a StatelessConnectionPool

Because the pool size is dynamic, in response to changing user requirements, up to the
specified maximum number of connections. Assume that a stateless connection pool is
created with the following parameters:

■ minConn = 5

■ incrConn = 2

■ maxConn = 10

Five connections are opened when the pool is created:

■ openConn = 5

Using get[AnyTagged][Proxy]Connection() methods, the user consumes all 5 open
connections:

■ openConn = 5

■ busyConn = 5

When the user wants another connection, the pool opens 2 new connections and
returns one of them to the user.

■ openConn = 7

■ busyConn = 6

The upper limit for the number of connections that can be pooled is maxConn specified
at the time of creation of the pool.

The user can also modify the pool parameters after the pool is created using the call to
setPoolSize() method.

If a heterogeneous pool is created, the incrConn and minConn arguments are ignored.

Caution:

■ OCCI does not check for the correctness of the connection-tag pair.
You are responsible for ensuring that connections with different
client-side properties do not have the same tag.

■ Your application should commit or rollback any open transactions
before releasing the connection back to the pool. If this is not
done, Oracle automatically commits any open transactions when
the connection is released.

Pooling Connections

Accessing Oracle Database Using C++ 3-7

Example 3–10 How to Create and Use a Homogeneous Stateless Connection Pool

To create a homogeneous stateless connection pool, follow these basic steps and
pseudocode commands:

1. Create a stateless connection pool in the HOMOGENEOUS mode of the Environment
with a createStatelessConnectionPool() call.

StatelessConnectionPool *scp =
env->createStatelessConnectionPool(

username, passwd, connectString, maxCon, minCon, incrCon,
StatelessConnectionPool::HOMOGENEOUS);

2. Get a new or existing connection from the pool by calling the getConnection()
method.

Connection *conn=scp->getConnection(tag);

During the execution of this call, the pool is searched for a connection with a
matching tag. If such a connection exists, it is returned to the user. Otherwise, an
untagged connection authenticated by the pool username and password is
returned.

Alternatively, you can obtain a connection with getAnyTaggedConnection() call. It
returns a connection with a non-matching tag if neither a matching tag or NULL tag
connections are available. You should verify the tag returned by a getTag() call on
Connection.

Connection *conn=scp->getAnyTaggedConnection(tag);
string tag=conn->getTag();

3. Use the connection.

4. Release the connection to the StatelessConnectionPool through the
releaseConnection() call.

scp->releaseConnection(conn, tag);

An empty tag, "", untags the Connection.

You have an option of retrieving the connection from the
StatelessConnectionPool using the same tag parameter value in a
getConnection() call.

Connection *conn=scp->getConnection(tag);

Instead of returning the Connection to the StatelessConnectionPool, you may
want to destroy it using the terminateConnection() call.

scp->terminateConnection(conn);

5. Destroy the pool through aterminateStatelessConnectionPool() call on the
Environment object.

env->terminateStatelessConnectionPool(scp);

Example 3–11 How to Create and Use a Heterogeneous Stateless Connection Pool

To create a heterogeneous stateless connection pool, follow these basic steps and
pseudocode commands:

1. Create a stateless connection pool in the HETEROGENEOUS mode of the Environment
with a createStatelessConnectionPool() call.

Pooling Connections

3-8 Oracle C++ Call Interface Programmer's Guide

StatelessConnectionPool *scp =
env->createStatelessConnectionPool(

username, passwd, connectString, maxCon, minCon, incrCon,
StatelessConnectionPool::HETEROGENEOUS);

If you are enabling external authentication, you must also activate the USES_EXT_
AUTH mode in the createStatelessConnectionPool() call.

StatelessConnectionPool *scp =
env->createStatelessConnectionPool(

username, passwd, connectString, maxCon, minCon, incrCon,
StatelessConnectionPool::PoolType(

StatelessConnectionPool::USES_EXT_AUTH|
StatelessConnectionPool::HETEROGENEOUS));

2. Get a new or existing connection from the pool by calling the getConnection()
method of the StatelessConnectionPool that is overloaded for the heterogeneous
pool option.

Connection *conn=scp->getConnection(username, passwd, tag);

During the execution of this call, the heterogeneous pool is searched for a
connection with a matching tag. If such a connection exists, it is returned to the
user. Otherwise, an appropriately authenticated untagged connection with a NULL
tag is returned.

Alternatively, you can obtain a connection with getAnyTaggedConnection() call
that has been overloaded for heterogeneous pools. It returns a connection with a
non-matching tag if neither a matching tag or NULL tag connections are available.
You should verify the tag returned by a getTag() call on Connection.

Connection *conn=scp->getAnyTaggedConnection(username, passwd, tag);
string tag=conn->getTag();

You may also want to use proxy connections by getProxyConnection() or
getAnyTaggedProxyConnection() calls on the StatelessConnectionPool.

Connection *pconn = scp->getProxyConnection(proxyName, roles{},
nuRoles, tag, proxyType);

Connection *pconn = scp->getAnyTaggedProxyConnection(proxyName, tag,
proxyType);

If the pool supports external authentication, use the following getConnection()
call:

Connection *conn=scp->getConnection();

3. Use the connection.

4. Release the connection to the StatelessConnectionPool through the
releaseConnection() call.

scp->releaseConnection(conn, tag);

An empty tag, "", untags the Connection.

You have an option of retrieving the connection from the
StatelessConnectionPool using the same tag parameter value in a
getConnection() call.

Connection *conn=scp->getConnection(tag);

Pooling Connections

Accessing Oracle Database Using C++ 3-9

Instead of returning the Connection to the StatelessConnectionPool, you may
want to destroy it using the terminateConnection() call.

scp->terminateConnection(conn);

5. Destroy the pool through a terminateStatelessConnectionPool() call on the
Environment object.

env->terminateStatelessConnectionPool(scp);

Database Resident Connection Pooling
Enterprise-level applications must typically handle a high volume of simultaneous
user sessions that are implemented as persistent connections to the database. The
memory overhead of creating and managing these connections has significant
implications for the performance of the database.

Database Resident Connection Pooling solves the problem of too many persistent
connections by providing a pool of dedicated servers for handling a large set of
application connections, thus enabling the database to scale to tens of thousands of
simultaneous connections. It significantly reduces the memory footprint on the
database tier and increases the scalability of both the database and middle tiers.
Database Resident Connection Pooling is designed for architectures with multi-process
application servers and multiple middle tiers that cannot accommodate connection
pooling in the middle tier.

Database Resident Connection Pooling architecture closely follows the default
dedicated model for connecting to an Oracle Database instance; however, it removes
the overhead of assigning a specific server to each connection. On the server tier, most
connections are inactive at any given time, and each of these connections consumes
memory. Therefore, database systems that support high connection volumes face the
risk of quickly exhausting all available memory. Database Resident Connection
Pooling allows a connection to use a dedicated server, which combines an Oracle
server process and a user session. Once the connection becomes inactive, it returns its
resources to the pool, for use by similar connections.

In multithreaded middle tiers that are capable of comprehensive connection pooling,
the issue of unused connections is somewhat different. As the number of middle tiers
increases, each middle tier privately holds several connections to the database; these
connections cannot be shared with other middle tiers. Locating the connection pool on
the database instead enables the sharing of connections across similar clients.

Database Resident Connection Pooling supports password-based authentication,
statement caching, tagging, and Fast Application Notification. You can also use
client-side stateless connection pooling with the database resident connection pooling.

Note that clients that hold connections from the database resident connection pool are
persistently connected to a background Connection Broker process. The Connection
Broker implements the pool functionality and multiplexes inbound client connections
to a pool of dedicated server processes. Clients that do not use the connection pool use
dedicated server processes instead.

Pooling Connections

3-10 Oracle C++ Call Interface Programmer's Guide

Administrating Database Resident Connection Pools
To implement database resident connection pooling, it must first be enabled on the
system by a user with SYSDBA privileges. See Example 3–12 for steps necessary to
initiate and maintain a database resident connection pool.

Example 3–12 How to Administer the Database Resident Connection Pools

A user with SYSDBA privileges must perform the next steps.

1. Connect to the database.

SQLPLUS / AS SYSDBA

2. [Optional] Configure the parameters of the database resident connection pool. The
default values of a pool are set in the following way:

DBMS_CONNECTION_POOL.CONFIGURE_POOL('SYS_DEFAULT_CONNECTION_POOL',
 MIN=>10,
 MAX=>200);

3. [Optional] Alter specific parameters of the database resident connection pool
without affecting other parameters.

DBMS_CONNECTION_POOL.ALTER_PARAM('SYS_DEFAULT_CONNECTION_POOL',
 'INACTIVITY_TIMEOUT',
 10);

4. Start the connection pool. After this step, the connection pool is available to all
qualified clients.

DBMS_CONNECTION_POOL.START_POOL('SYS_DEFAULT_CONNECTION_POOL');

5. [Optional] Change the parameters of the database resident connection pool.

DBMS_CONNECTION_POOL.ALTER_PARAM('SYS_DEFAULT_CONNECTION_POOL',
 'MAXSIZE',
 20);

6. [Optional] The configuration of the connection pool can be reset to default values.

DBMS_CONNECTION_POOL.RESTORE_DEFAULTS ('SYS_DEFAULT_CONNECTION_POOL');

7. Stop the pool. Note that pool information is persistent: stopping the pool does not
destroy the pool name and configuration parameters.

DBMS_CONNECTION_POOL.STOP_POOL();

Note that in Oracle RAC configurations, the database resident connection pool starts
on all configured nodes. If the pool is not stopped, the starting configuration is
persistent across instance restarts: the pool is started automatically when the instance
comes up.

See Also:

■ Oracle Database Concepts for details about the architecture of
Database Resident Connection Pooling

■ Oracle Database Administrator's Guide for details on configuring
Database Resident Connection Pooling

■ Oracle Database PL/SQL Packages and Types Reference, for the DBMS_
CONNECTION_POOL package

Pooling Connections

Accessing Oracle Database Using C++ 3-11

Using Database Resident Connection Pools
To use database resident connection pooling, you must specify the connection class
and connection purity. If the application requests a connection that cannot be
potentially tainted with prior connection state, it must specify purity as NEW; Oracle
recommends this approach if clients from different geographic locale settings share the
same database instance. When the application can use a previously used connection,
the purity should be set to SELF. In conjunction with connection class and purity
specifications, you can also use an application-specific tags to choose a previously
used connection that has the desired state. The default connection pool name, as
demonstrated in Example 3–12, is SYS_DEFAULT_CONNECTION_POOL.

This feature overloads StatelessConnectionPool Class and Environment Class
interfaces for retrieving a connection (getConnection() and getProxyConnection())
by adding the parameters that specify connection class and purity. Every connection
request outside of a client-side connection pool has a default purity of NEW. Connection
requests inside a client-side connection pool have a default purity of SELF.

Example 3–13 How to Get a Connection from a Database Resident Connection Pool

conn1 = env->createConnection (/*username */"hr",
 /*password*/ "password", /* database*/ "inst1_cmon",
 /* connection class */"TESTCC", /* purity */Connection::SELF);
stmt1 = conn1->createStatement("select count(*) from emp");
rs=stmt1->executeQuery();
while (rs->next())
 {
 int num = rs->getInt(1);
 sprintf((char *)tmp, "%d", num);
 cout << tmp << endl;
 }
stmt1->closeResultSet(rs);
conn1->terminateStatement(stmt1);
env->terminateConnection(conn1);

Example 3–14 Using Client-Side Pool and Server-Side Pool

StatelessConnectionPool *scPool;
OCCIConnection *conn1, *conn2;
 scPool = env->createStatelessConnectionPool
 (poolUserName, poolPassword, connectString, maxConn,
 minConn, incrConn, StatelessConnectionPool::HOMOGENEOUS);

conn1= scPool->getConnection(/* Connection class name */"TESTCC",
 /* Purity */ Connection::SELF);
 /* or, for proxy coonnections */
 conn2= scPool->getProxyConnection(/* username*/ "HR_PROXY",
 /*Connection class */"TESTCC", /* Purity */Connection::SELF);
/* or, for getting a tagged connection */
conn3 = scPool->getConnection(/*connection class */"TESTCC",
 /*purity*/ Connection::SELF,
 /*tag*/ "TESTTAG");
/* Releasing a tagged connection is done presently */
scPool->releaseConnection(conn3, "TESTTAG");

/* To specify purity as new */
conn4 = scPool->getConnection(/* connection class */"TESTCC",/* purity of new */
 Connection::NEW);

/* Get a connection using username and password */

Executing SQL DDL and DML Statements

3-12 Oracle C++ Call Interface Programmer's Guide

conn5 = scPool->getConnection (username, password,"TESTCC", Connection::SELF);

/* Using roles when asking for a connection */
conn6 = scPool->getProxyConnection (username, roles, nRoles,"TESTCC",
 Connection::SELF);

...

/* The other code continues as is...writing for clarity */
 ...
 stmt1=conn1->createStatement ("INSERT INTO emp values (:c1, :c2)");
 stmt1->setInt(1, thrid);
 stmt1->setString(2, "Test");
 int count = stmt1->executeUpdate ();
 conn1->commit();
 conn1->terminateStatement(stmt1);
/* Release the connection */
 scPool->releaseConnection (conn1);
...
 env->terminateStatelessConnectionPool (scPool);

Executing SQL DDL and DML Statements
SQL is the industry-wide language for working with relational databases. In OCCI you
execute SQL commands through the Statement class.

Creating a Statement Object
To create a Statement object, call the createStatement() method of the Connection
object, as demonstrated in Example 3–15,

Example 3–15 How to Create a Statement

Statement *stmt = conn->createStatement();

Creating a Statement Object that Executes SQL Commands
Once you have created a Statement object, execute SQL commands by calling the
execute(), executeUpdate(), executeArrayUpdate(), or executeQuery() methods on the
Statement object. These methods are used for the following purposes:

■ execute() executes all nonspecific statement types

■ executeUpdate() executes DML and DDL statements

■ executeArrayUpdate() executes multiple DML statements

■ executeQuery() executes a query

Creating a Database Table
Example 3–16 demonstrates how you can create a database table using the
executeUpdate() method.

Example 3–16 How to Create a Database Table Using the executeUpdate() Method

stmt->executeUpdate("CREATE TABLE shopping_basket
(item_number VARCHAR2(30), quantity NUMBER(3))");

Types of SQL Statements in the OCCI Environment

Accessing Oracle Database Using C++ 3-13

Inserting Values into a Database Table
Similarly, you can execute a SQL INSERT statement by invoking the executeUpdate()
method, as demonstrated in Example 3–17.

Example 3–17 How to Add Records Using the executeUpdate() Method

stmt->executeUpdate("INSERT INTO shopping_basket
VALUES('MANGO', 3)");

The executeUpdate() method returns the number of rows affected by the SQL
statement.

Reusing the Statement Object
You can reuse a Statement object to execute SQL statements multiple times. To
repeatedly execute the same statement with different parameters, you should specify
the statement by the setSQL() method of the Statement object on page 13-726, as
demonstrated in Example 3–18.

Example 3–18 How to Specify a SQL Statement Using the setSQL() Method

stmt->setSQL("INSERT INTO shopping_basket VALUES(:1,:2)");

You may now execute this INSERT statement as many times as required. If at a later
time you want to execute a different SQL statement, you simply reset the statement
object, as demonstrated in Example 3–19.

Example 3–19 How to Reset a SQL Statement Using the setSQL() Method

stmt->setSQL("SELECT * FROM shopping_basket WHERE quantity >= :1");

By using the setSQL() method on page 13-726, OCCI statement objects and their
associated resources are not allocated or freed unnecessarily. To retrieve the contents of
the current statement object at any time, use the getSQL() method on page 13-675.

Terminating a Statement Object
You should explicitly terminate and deallocate a Statement object using the
terminateStatement() method on page 13-174, as demonstrated in Example 3–20.

Example 3–20 How to Terminate a Statement Using the terminateStatement() Method

Connection::conn->terminateStatement(Statement *stmt);

Types of SQL Statements in the OCCI Environment
There are three types of SQL statements in the OCCI environment:

■ Standard Statements use SQL commands with specified values

■ Parameterized Statements have parameters, or bind variables

■ Callable Statements call stored PL/SQL procedures and functions

See Also: $ORACLE_HOME/rdbms/demo for a code example that
demonstrates how to perform insert, select, update, and delete
operations on table rows.

Types of SQL Statements in the OCCI Environment

3-14 Oracle C++ Call Interface Programmer's Guide

The methods of the Statement Class are subdivided into those applicable to all
statements, to parameterized statements, and to callable statements. Standard
statements are a superset of parameterized statements, and parameterized statements
are a superset of callable statements.

Standard Statements
Both Example 3–16 and Example 3–17 demonstrate standard statements in which you
must explicitly define the values of the statement. In Example 3–16, the CREATE TABLE
statement specifies the name of the table shopping_basket. In Example 3–17, the
INSERT statement stipulates the values that are inserted into the table, ('MANGO', 3).

Parameterized Statements
You can execute the same statement with different parameters by setting placeholders
for the input variables of the statement. These statements are referred to as
parameterized statements because they can accept parameter input from a user or a
program.

If you want to execute an INSERT statement with different parameters, you must first
specify the statement by the setSQL() method of the Statement object on page 13-726,
as demonstrated in Example 3–18.

You then call the setxxx() methods to specify the parameters, where xxx stands for
the type of the parameter. Provided that the value of the statement object is "INSERT
INTO shopping_basket VALUES(:1,:2)", as specified in Example 3–18, you can use
the code in Example 3–21 to invoke the setString() method on page 13-728 and setInt()
method on page 13-713 to input the values of these types into the first and second
parameters, and the executeUpdate() method on page 13-642 to insert the new row
into the table.You can reuse the statement object by re-setting the parameters and
again calling the executeUpdate() method on page 13-642. If your application is
executing the same statement repeatedly, you should avoid changing the input
parameter types because this initiates a rebind operation, and affects application
performance.

Example 3–21 How to Use setxxx() Methods to Set Individual Column Values

stmt->setString(1, "Banana"); // value for first parameter
stmt->setInt(2, 5); // value for second parameter
stmt->executeUpdate(); // execute statement
...
stmt->setString(1, "Apple"); // value for first parameter
stmt->setInt(2, 9); // value for second parameter
stmt->executeUpdate(); // execute statement

Callable Statements
PL/SQL stored procedures, as their name suggests, are procedures that are stored on
the database server for reuse by an application. In OCCI, a callable statement is a call
to a procedure which contains other SQL statements.

If you want to call a procedure countGroceries(), that returns the quantity of a
specified kind of fruit, you must first specify the input parameters of a PL/SQL stored
procedure through the setXXX() methods of the Statement class, as demonstrated in
Example 3–22.

Types of SQL Statements in the OCCI Environment

Accessing Oracle Database Using C++ 3-15

Example 3–22 How to Specify the IN Parameters of a PL/SQL Stored Procedure

stmt->setSQL("BEGIN countGroceries(:1, :2); END:");
int quantity;
stmt->setString(1, "Apple"); // specify the first (IN) parameter of procedure

However, before calling a stored procedure, you must specify the type and size of any
OUT parameters by calling the registerOutParam() method on page 13-690, as
demonstrated in Example 3–23. For IN/OUT parameters, use the setXXX() methods to
pass in the parameter, and getXXX() methods to retrieve the results.

Example 3–23 How to Specify OUT Parameters of a PL/SQL Stored Procedure

stmt->registerOutParam(2, Type::OCCIINT, sizeof(quantity));
// specify type and size of the second (OUT) parameter

You now execute the statement by calling the procedure:

stmt->executeUpdate(); // call the procedure

Finally, you obtain the output parameters by calling the relevant getxxx() method:

quantity = stmt->getInt(2); // get value of the second (OUT) parameter

Callable Statements that Use Array Parameters
A PL/SQL stored procedure executed through a callable statement can have array of
values as parameters. The number of elements in the array and the dimension of
elements in the array are specified through the setDataBufferArray() method.

The following example shows the setDataBufferArray() method:

void setDataBufferArray(
unsigned int paramIndex,
void *buffer,
Type type,
ub4 arraySize,
ub4 *arrayLength,
sb4 elementSize,
ub2 *elementLength,
sb2 *ind = NULL,
ub2 *rc = NULL);

The following parameters are used in the previous method example:

■ paramIndex: Parameter number

■ buffer: Data buffer containing an array of values

■ Type: Type of data in the data buffer

■ arraySize: Maximum number of elements in the array

■ arrayLength: Number of elements in the array

■ elementSize: Size of the current element in the array

■ elementLength: Pointer to an array of lengths. elementLength[i] has the current
length of the ith element of the array

■ ind: Indicator information

■ rc: Returns code

Types of SQL Statements in the OCCI Environment

3-16 Oracle C++ Call Interface Programmer's Guide

Streamed Reads and Writes
OCCI supports a streaming interface for insertion and retrieval of very large columns
by breaking the data into a series of small chunks. This approach minimizes client-side
memory requirements. This streaming interface can be used with parameterized
statements such as SELECT and various DML commands, and with callable statements
in PL/SQL blocks. The data types supported by streams are BLOB, CLOB, LONG, LONG
RAW, RAW, and VARCHAR2.

 Streamed data is of three kinds:

■ A writable stream corresponds to a bind variable in a SELECT/DML statement or
an IN argument in a callable statement.

■ A readable stream corresponds to a fetched column value in a SELECT statement or
an OUT argument in a callable statement.

■ A bidirectional stream corresponds to an IN/OUT bind variable.

Methods of the Stream Class support the stream interface.

The getStream() method of the Statement Class returns a stream object that supports
reading and writing for DML and callable statements:

■ For writing, it passes data to a bind variable or to an IN or IN/OUT argument

■ For reading, it fetches data from an OUT or IN/OUT argument

The getStream() method of the ResultSet Class returns a stream object that can be used
for reading data.

The status() method of these classes determines the status of the streaming
operation.

Binding Data in Streaming Mode; SELECT/DML and PL/SQL
To bind data in a streaming mode, follow these steps and review Example 3–24:

1. Create a SELECT/DML or PL/SQL statement with appropriate bind placeholders.

2. Call the setBinaryStreamMode() or setCharacterStreamMode() method of the
Statement Class for each bind position that is used in the streaming mode. If the
bind position is a PL/SQL IN or IN/OUT argument type, indicate this by calling the
three-argument versions of these methods and setting the inArg parameter to
TRUE.

3. Execute the statement; the status() method of the Statement Class returns NEEDS_
STREAM_DATA.

4. Obtain the stream object through a getStream() method of the Statement Class.

5. Use writeBuffer() and writeLastBuffer() methods of the Stream Class to write data.

6. Close the stream with closeStream() method of the Statement Class.

7. After all streams are closed, the status() method of the Statement Class changes to
an appropriate value, such as UPDATE_COUNT_AVAILABLE.

Note: For setBinaryStreamMode(), the size parameter is limited to
32KB (32,768 bytes).

Types of SQL Statements in the OCCI Environment

Accessing Oracle Database Using C++ 3-17

Example 3–24 How to Bind Data in a Streaming Mode

Statement *stmt = conn->createStatement(
"Insert Into testtab(longcol) values (:1)"); //longcol is LONG type column

stmt->setCharacterStreamMode(1, 100000);
stmt->executeUpdate();

Stream *instream = stmt->getStream(1);
char buffer[1000];
instream->writeBuffer(buffer, len); //write data
instream->writeLastBuffer(buffer, len); //repeat
stmt->closeStream(instream); //stmt->status() is

//UPDATE_COUNT_AVAILABLE

Statement *stmt = conn->createStatement("BEGIN testproc(:1); END;");

//if the argument type to testproc is IN or IN/OUT then pass TRUE to
//setCharacterStreamMode or setBinaryStreamMode
stmt->setBinaryStreamMode(1, 32768, TRUE);

Fetching Data in Streaming Mode: PL/SQL
To fetch data from a streaming mode, follow these steps and review Example 3–25:

1. Create a SELECT/DML statement with appropriate bind placeholders.

2. Call the setBinaryStreamMode() or setCharacterStreamMode() method of the
Statement Class for each bind position into which data is retrieved from the
streaming mode.

3. Execute the statement; the status() method of the Statement Class returns STREAM_
DATA_AVAILABLE.

4. Obtain the stream object through a getStream() method of the Statement Class.

5. Use readBuffer() and readLastBuffer() methods of the Stream Class to read data.

6. Close the stream with closeStream() method of the Statement Class.

Example 3–25 How to Fetch Data in a Streaming Mode Using PL/SQL

Statement *stmt = conn->createStatement("BEGIN testproc(:1); END;");
//argument 1 is OUT type

stmt->setCharacterStreamMode(1, 100000);
stmt->execute();

Stream *outarg = stmt->getStream(1);
//use Stream::readBuffer/readLastBuffer to read data

Fetching Data in Streaming Mode: ResultSet
Executing SQL Queries and Example 3–28 on page 3-20 provide an explanation of
how to use the streaming interface with result sets.

Working with Multiple Streams
If you must work with multiple read and write streams, you must ensure that the read
or write of one stream is completed before reading or writing on another stream. To
determine stream position, use the getCurrentStreamParam() method of the Statement
Class or the getCurrentStreamColumn() method of the ResultSet Class. The status()
method of the Stream Class returns READY_FOR_READ if there is data in the stream
available for reading, or it returns INACTIVE if all the data has been read, as described
in Table 13–45. The application can then read the next streaming column.

Types of SQL Statements in the OCCI Environment

3-18 Oracle C++ Call Interface Programmer's Guide

Example 3–26 demonstrates how to read and write with two concurrent streams. Note
that it is not possible to use these streaming interfaces with the setDataBuffer()
method in the same Statement and ResultSet objects.

Example 3–26 How to Read and Write with Multiple Streams

Statement *stmt = conn->createStatement(
"Insert into testtab(longcol1, longcol2) values (:1,:2)");

//longcol1 AND longcol2 are 2 columns inserted in streaming mode

stmt->setBinaryStreamMode(1, 100000);
stmt->setBinaryStreamMode(2, 32768);
stmt->executeUpdate();

Stream *col1 = stmt->getStream(1);
Stream *col2 = stmt->getStream(2);

col1->writeBuffer(buffer, len); //first stream
... //complete writing coll stream

col1->writeLastBuffer(buffer, len); //finish first stream and move to col2

col2->writeBuffer(buffer, len); //second stream

//reading multiple streams
stmt = conn->createStatement("select longcol1, longcol2 from testtab");
ResultSet *rs = stmt->executeQuery();
rs->setBinaryStreamMode(1, 100000);
rs->setBinaryStreamMode(2, 100000);

while (rs->next())
{
 Stream *s1 = rs->getStream(1)
 while (s1->status() == Stream::READY_FOR_READ)
 {
 s1->readBuffer(buffer,size); //process
 } //first streaming column done
 rs->closeStream(s1);

//move onto next column. rs->getCurrentStreamColumn() returns 2

 Stream *s2 = rs->getStream(2)
 while (s2->status() == Stream::READY_FOR_READ)
 {
 s2->readBuffer(buffer,size); //process
 } //close the stream
 rs->closeStream(s2);
}

Modifying Rows Iteratively
While you can issue the executeUpdate method repeatedly for each row, OCCI
provides an efficient mechanism for sending data for multiple rows in a single
network round-trip. Use the addIteration() method of the Statement class to
perform batch operations that modify a different row with each iteration.

To execute INSERT, UPDATE, and DELETE operations iteratively, you must:

See Also: "Application-Managed Data Buffering" on page 12-8

Types of SQL Statements in the OCCI Environment

Accessing Oracle Database Using C++ 3-19

■ Set the maximum number of iterations

■ Set the maximum parameter size for variable length parameters

Setting the Maximum Number of Iterations
For iterative execution, first specify the maximum number of iterations that would be
done for the statement by calling the setMaxIterations() method:

Statement->setMaxIterations(int maxIterations);

You can retrieve the current maximum iterations setting by calling the
getMaxIterations() method.

Setting the Maximum Parameter Size
If the iterative execution involves variable-length data types, such as string and
Bytes, then you must set the maximum parameter size so that OCCI can allocate the
maximum size buffer:

Statement->setMaxParamSize(int parameterIndex, int maxParamSize);

You do not have to set the maximum parameter size for fixed-length data types, such
as Number and Date, or for parameters that use the setDataBuffer() method.

You can retrieve the current maximum parameter size setting by calling the
getMaxParamSize() method.

Executing an Iterative Operation
Once you have set the maximum number of iterations and (if necessary) the maximum
parameter size, iterative execution using a parameterized statement is straightforward,
as shown in Example 3–27.

Iterative execution is designed only for use in INSERT, UPDATE and DELETE operations
that use either standard or parameterized statements. It cannot be used for callable
statements and queries. Note that the data type cannot be changed between iterations.
For example, if you use setInt() for parameter 1, then you cannot use setString()
for the same parameter in a later iteration

Example 3–27 How to Execute an Iterative Operation

stmt->setSQL("INSERT INTO basket_tab VALUES(:1, :2)");

stmt->setString(1, "Apples"); // value for first parameter of first row
stmt->setInt(2, 6); // value for second parameter of first row
stmt->addIteration(); // add the iteration

stmt->setString(1, "Oranges"); // value for first parameter of second row
stmt->setInt(1, 4); // value for second parameter of second row

stmt->executeUpdate(); // execute statement

As shown in the example, you call the addIteration() method after each iteration
except the last, after which you invoke executeUpdate() method. Of course, if you did
not have a second row to insert, then you would not have to call the addIteration()
method or make the subsequent calls to the setxxx() methods.

In order to get the number of rows affected by each iteration in the DML execution in
Example 3–27, use setRowCountsOption() to enables the feature, followed by
getDMLRowCounts() to return the vector of the number of rows. For the total number

Executing SQL Queries

3-20 Oracle C++ Call Interface Programmer's Guide

of rows affected, you can use the return value of executeUpdate(), or call
getUb8RowCount().

Executing SQL Queries
SQL query statements allow your applications to request information from a database
based on any constraints specified. A result set is returned by the query.

Using the Result Set
Execution of a database query puts the results of the query into a set of rows called the
result set. In OCCI, a SQL SELECT statement is executed by the executeQuery method
of the Statement class. This method returns an ResultSet object that represents the
results of a query.

ResultSet *rs = stmt->executeQuery("SELECT * FROM basket_tab");

Once you have the data in the result set, you can perform operations on it. For
example, suppose you wanted to print the contents of this table. The next() method of
the ResultSet is used to fetch data, and the getxxx() methods are used to retrieve the
individual columns of the result set, as shown in the following code example:

cout << "The basket has:" << endl;

while (rs->next())
{

string fruit = rs->getString(1); // get the first column as string
int quantity = rs->getInt(2); // get the second column as int

cout << quantity << " " << fruit << endl;
}

The next() and status() methods of the ResultSet class return Status, as defined in
Table 13–38.

If data is available for the current row, then the status is DATA_AVAILABLE. After all the
data has been read, the status changes to END_OF_FETCH. If there are any output
streams to be read, then the status is STREAM_DATA_AVAILABLE, until all the streamed
data are read successfully.

Example 3–28 illustrates how to fetch streaming data into a result set, while section
"Streamed Reads and Writes" on page 3-16 provides the general background.

Example 3–28 How to Fetch Data in Streaming Mode Using ResultSet

char buffer[4096];
ResultSet *rs = stmt->executeQuery

("SELECT col1, col2 FROM tab1 WHERE col1 = 11");
rs->setCharacterStreamMode(2, 10000);

while (rs->next ())
{

unsigned int length = 0;
unsigned int size = 500;
Stream *stream = rs->getStream (2);
while (stream->status () == Stream::READY_FOR_READ)
{

length += stream->readBuffer (buffer +length, size);
}
cout << "Read " << length << " bytes into the buffer" << endl;

Executing Statements Dynamically

Accessing Oracle Database Using C++ 3-21

}

Specifying the Query
The IN bind variables can be used with queries to specify constraints in the WHERE
clause of a query. For example, the following program prints only those items that
have a minimum quantity of 4:

stmt->setSQL("SELECT * FROM basket_tab WHERE quantity >= :1");
int minimumQuantity = 4;
stmt->setInt(1, minimumQuantity); // set first parameter
ResultSet *rs = stmt->executeQuery();
cout << "The basket has:" << endl;

while (rs->next())
cout << rs->getInt(2) << " " << rs->getString(1) << endl;

Optimizing Performance by Setting Prefetch Count
Although the ResultSet method retrieves data one row at a time, the actual fetch of
data from the server need not entail a network round-trip for each row queried. To
maximize the performance, you can set the number of rows to prefetch in each
round-trip to the server.

You effect this either by setting the number of rows to be prefetched through the
setPrefetchRowCount() method, or by setting the memory size to be used for
prefetching through the setPrefetchMemorySize() method.

If you set both of these attributes, then the specified number of rows are prefetched
unless the specified memory limit is reached first. If the specified memory limit is
reached first, then the prefetch returns as many rows as can fit in the memory space
defined by the call to the setPrefetchMemorySize() method.

By default, prefetching is turned on and the database fetches an extra row all the time.
To turn prefetching off, set both the prefetch row count and memory size to 0.

Prefetching is not in effect if LONG, LOB or Opaque Type columns (such as XMLType) are
part of the query.

Executing Statements Dynamically
When you know that you must execute a DML operation, you use the executeUpdate
method. Similarly, when you know that you must execute a query, you use
executeQuery() method.

If your application must allow for dynamic events and you cannot be sure of which
statement must be executed at run time, then OCCI provides the execute() method.
Invoking the execute() method returns one of the following statuses:

■ UNPREPARED

■ PREPARED

■ RESULT_SET_AVAILABLE

■ UPDATE_COUNT_AVAILABLE

■ NEEDS_STREAM_DATA

■ STREAM_DATA_AVAILABLE

Executing Statements Dynamically

3-22 Oracle C++ Call Interface Programmer's Guide

While invoking the execute() method returns one of these statuses, you can further
'interrogate' the statement by using the status() method.

Statement stmt = conn->createStatement();
Statement::Status status = stmt->status(); // status is UNPREPARED
stmt->setSQL("select * from emp");
status = stmt->status(); // status is PREPARED

If a statement object is created with a SQL string, then it is created in a PREPARED state.
For example:

Statement stmt = conn->createStatement("insert into foo(id) values(99)");
Statement::Status status = stmt->status();// status is PREPARED
status = stmt->execute(); // status is UPDATE_COUNT_AVAILABLE

When you set another SQL statement on the Statement, the status changes to
PREPARED. For example:

stmt->setSQL("select * from emp"); // status is PREPARED
status = stmt->execute(); // status is RESULT_SET_AVAILABLE

Statement Status Definitions
This section describes the possible values of Status related to a statement object:

■ UNPREPARED

■ PREPARED

■ RESULT_SET_AVAILABLE

■ UPDATE_COUNT_AVAILABLE

■ NEEDS_STREAM_DATA

■ STREAM_DATA_AVAILABLE

UNPREPARED
If you have not used the setSQL() method to attribute a SQL string to a statement
object, then the statement is in an UNPREPARED state.

Statement stmt = conn->createStatement();
Statement::Status status = stmt->status(); // status is UNPREPARED

PREPARED
If a Statement is created with an SQL string, then it is created in a PREPARED state. For
example:

Statement stmt = conn->createStatement("INSERT INTO demo_tab(id) VALUES(99)");
Statement::Status status = stmt->status(); // status is PREPARED

Setting another SQL statement on the Statement changes the status to PREPARED. For
example:

status = stmt->execute(); // status is UPDATE_COUNT_AVAILABLE
stmt->setSQL("SELECT * FROM demo_tab"); // status is PREPARED

RESULT_SET_AVAILABLE
A status of RESULT_SET_AVAILABLE indicates that a properly formulated query has
been executed and the results are accessible through a result set.

Executing Statements Dynamically

Accessing Oracle Database Using C++ 3-23

When you set a statement object to a query, it is PREPARED. Once you have executed the
query, the statement changes to RESULT_SET_AVAILABLE. For example:

stmt->setSQL("SELECT * from EMP"); // status is PREPARED
status = stmt->execute(); // status is RESULT_SET_AVAILABLE

To access the data in the result set, issue the following statement:

ResultSet *rs = Statement->getResultSet();

UPDATE_COUNT_AVAILABLE
When a DDL or DML statement in a PREPARED state is executed, its state changes to
UPDATE_COUNT_AVAILABLE, as shown in the following code example:

Statement stmt = conn->createStatement("INSERT INTO demo_tab(id) VALUES(99)");
Statemnt::Status status = stmt->status(); // status is PREPARED
status = stmt->execute(); // status is UPDATE_COUNT_AVAILABLE

This status refers to the number of rows affected by the execution of the statement. It
indicates that:

■ The statement did not include any input or output streams.

■ The statement was not a query but either a DDL or DML statement.

You can obtain the number of rows affected by issuing the following statement:

stmt->getUb8RowCount();

Note that a DDL statement results in an update count of zero (0). Similarly, an update
that does not meet any matching conditions also produces a count of zero (0). In such a
case, you cannot determine the kind of statement that has been executed from the
reported status.

NEEDS_STREAM_DATA
If there are any output streams to be written, the execute does not complete until all
the stream data is completely provided. In this case, the status changes to NEEDS_
STREAM_DATA to indicate that a stream must be written. After writing the stream, call
the status() method to find out if more stream data should be written, or whether the
execution has completed.

In cases where your statement includes multiple streamed parameters, use the
getCurrentStreamParam() method to discover which parameter must be written.

If you are performing an iterative or array execute, the getCurrentStreamIteration()
method reveals to which iteration the data is to be written.

Once all the stream data has been processed, the status changes to either RESULT_SET_
AVAILABLE or UPDATE_COUNT_AVAILABLE.

STREAM_DATA_AVAILABLE
This status indicates that the application requires some stream data to be read in OUT or
IN/OUT parameters before the execution can finish. After reading the stream, call the
status method to find out if more stream data should be read, or whether the
execution has completed.

In cases in which your statement includes multiple streamed parameters, use the
getCurrentStreamParam() method to discover which parameter must be read.

Using Larger Row Count and Error Code Range Data Types

3-24 Oracle C++ Call Interface Programmer's Guide

If you are performing an iterative or array execute, then the
getCurrentStreamIteration() method reveals from which iteration the data is to be
read.

Once all the stream data has been handled, the status changes to UPDATE_COUNT_
REMOVE_AVAILABLE.

The ResultSet class also has readable streams and it operates similar to the readable
streams of the Statement class.

Using Larger Row Count and Error Code Range Data Types
Starting with Oracle Database Release 12c, Oracle C++ Call Interface supports larger
row count and error code range data types. The method that returns the larger row
count is getUb8RowCount() in Statement Class.

This has two benefits:

■ Applications running a statement that affects more than UB4MAXVAL rows may
now see the precise value for the number of rows affected.

■ Oracle Database can correctly return newer error codes (above ORA-65535) to
application clients, starting with Oracle Database Release 12c. Older clients receive
an informative message that indicates error code overflow.

This section contains the following topics:

■ "Using Larger Row Count in SELECT Operations" on page 3-24

■ "Using Larger Row Count in INSERT, UPDATE, and DELETE Operations" on
page 3-25

Using Larger Row Count in SELECT Operations
Method getUb8RowCount() returns the number of rows processed after executing the
SELECT statement, as ub8 type. The examples in this section illustrate how to use
getUb8RowCount() in various SELECT scenarios.

■ In the simplest scenario in Example 3–29, the number of rows affected is the same
as the number fetched.

■ When the prefetch option is set, as demonstrated by Example 3–30, it includes the
number of rows prefetched.

■ When using an array fetching mechanism in Example 3–31 by invoking the
setDataBuffer() interface, getUb8RowCount() returns the total number of rows
fetched into user buffers, independent of prefetch option.

Example 3–29 SELECT with getUb8RowCount(); simple

The number of rows affected is the number of rows already fetched.

oraub8 largeRowCount = 0;
Statement *stmt = conn->createStatement("SELECT salary FROM employees");
ResultSet *rs = stmt->executeQuery ();
rs->next();
largeRowCount = stmt->getUb8RowCount();

Example 3–30 SELECT with getUb8RowCount(); with prefetch

Here the number of rows affected is the same as those fetched in previous iterations,
plus the number of rows prefetched in the next() call.

Using Larger Row Count and Error Code Range Data Types

Accessing Oracle Database Using C++ 3-25

oraub8 largeRowCount = 0;
Statement *stmt = conn->createStatement("SELECT salary FROM employees");
stmt -> setPrefetchRowCount(prefetch_count);
ResultSet *rs = stmt->executeQuery ();
rs->next();
largeRowCount = stmt->getUb8RowCount();

Example 3–31 SELECT with getUb8RowCount(); array fetch with prefetch

Here number of rows affected, value of largeRowCount, is the number of rows fetched
into user buffer in previous iterations, plus the number of rows fetched in either
next(max) or next() call. It is independent of the value of prefetch.

oraub8 largeRowCount = 0;
Statement *stmt=conn->createStatement("SELECT col1 FROM table1");
int max = 20;
int prefetch_count = 10;
ub2 lengthC1[max];
ub4 c1[max];

for (i = 0; i < max; ++i) {
c1[i] = 0;
lengthC1[i] = sizeof (c1[i]);

}

stmt -> setPrefetchRowCount(prefetch_count);
ResultSet *rs = stmt->executeQuery();
rs->setDataBuffer (1, c1, OCCIINT, sizeof (ub4), lengthC1);
rs->next(max);

largeRowCount = stmt->getUb8RowCount();

Using Larger Row Count in INSERT, UPDATE, and DELETE Operations
For INSERT, UPDATE, and DELETE statements, method getUb8RowCount() returns the
number of rows processed by the most recent statement.

Example 3–32 INSERT with getUb8RowCount(); simple

The value of largeRowCount is the number of rows inserted, which is 1.

oraub8 largeRowCount = 0;
Statement *stmt = conn->createStatement("INSERT INTO table1 values (:1)");
stmt->setNumber(1, 100);
stmt->executeUpdate();
largeRowCount = stmt->getUb8RowCount();

Example 3–33 INSERT with getUb8RowCount(); with iterations

Here the value of largeRowCount is equal to max.

int max;
oraub8 largeRowCount = 0;
Statement *stmt=conn->createStatement("INSERT INTO table1 values (:1)");
stmt->setMaxIterations (max);

for(i = 0; i < max-1; i++) {
stmt->setNumber(1, 100);
stmt->addIteration ();

}

Committing a Transaction

3-26 Oracle C++ Call Interface Programmer's Guide

stmt->setNumber(1, 100);
stmt->executeUpdate();
largeRowCount = stmt->getUb8RowCount();

Example 3–34 UPDATE with getUb8RowCount()

Here the value of largeRowCount is the number of rows updated.

oraub8 largeRowCount = 0;
Statement *stmt=conn->createStatement(

"UPDATE table1 SET COL1 = COL1+100 WHERE COL1=:1");
stmt->setNumber(1, 200);
stmt->executeUpdate();
largeRowCount = stmt->getUb8RowCount();

Committing a Transaction
All SQL DML statements are executed in the context of a transaction. An application
causes the changes made by these statement to become permanent by either
committing the transaction, or undoing them by performing a rollback. While the SQL
COMMIT and ROLLBACK statements can be executed with the executeUpdate() method,
you can also call the Connection::commit() and Connection::rollback() methods.

If you want the DML changes that were made to be committed immediately, you can
turn on the auto commit mode of the Statement class by issuing the following
statement:

Statement::setAutoCommit(TRUE);

Once auto commit is in effect, each change is automatically made permanent. This is
similar to issuing a commit right after each execution.

To return to the default mode, auto commit off, issue the following statement:

Statement::setAutoCommit(FALSE);

Caching Statements
The statement caching feature establishes and manages a cache of statements within a
session. It improves performance and scalability of application by efficiently using
prepared cursors on the server side and eliminating repetitive statement parsing.

Statement caching can be used with connection and session pooling, and also without
connection pooling. Please review Example 3–35 and Example 3–36 for typical usage
scenarios.

Example 3–35 Statement Caching without Connection Pooling

These steps and accompanying pseudocode implement the statement caching feature
without use of connection pools:

1. Create a Connection by making a createConnection() call on the Environment
object.

Connection *conn = env->createConnection(
username, password, connecstr);

2. Enable statement caching on the Connection object by using a nonzero size
parameter in the setStmtCacheSize() call.

conn->setStmtCacheSize(10);

Caching Statements

Accessing Oracle Database Using C++ 3-27

Subsequent calls to getStmtCacheSize() would determine the size of the cache,
while setStmtCacheSize() call changes the size of the statement cache, or disables
statement caching if the size parameter is set to zero.

3. Create a Statement by making a createStatement() call on the Connection object;
the Statement is returned if it is in the cache, or a new Statement with a NULL tag
is created for the user.

Statement *stmt = conn->createStatement(sql);

To retrieve a previously cached tagged statement, use the alternate form of the
createStatement() method:

Statement *stmt = conn->createStatement(sql, tag);

4. Use the statement to execute SQL commands and obtain results.

5. Return the statement to cache.

conn->terminateStatement(stmt, tag);

If you do not want to cache this statement, use the disableCaching() call and an
alternate from of terminateStatement():

stmt->disableCaching();
conn->terminateStatement(stmt);

If you must verify whether a statement has been cached, issue an isCached() call
on the Connection object.

You can choose to tag a statement at release time and then reuse it for another
statement with the same tag. The tag is used to search the cache. An untagged
statement, where tag is NULL, is a special case of a tagged statement. Two
statements are considered different if they only differ in their tags, and if only one
of them is tagged.

6. Terminate the connection.

Example 3–36 Statement Caching with Connection Pooling

These steps and accompanying pseudocode implement the statement caching feature
with connection pooling.

Statement caching is enabled only for connection created after the
setStmtCacheSize() call.

If statement cac.hing is not enabled at the pool level, it can still be implemented for
individual connections in the pool.

1. Create a ConnectionPool by making a call to the createConnectionPool() of the
Environment object.

ConnectionPool *conPool = env->createConnectionPool(
username, password, connecstr,
minConn, maxConn, incrConn);

If using a StatelessConnectionPool, call createStatelessConnectionPool() instead.
Subsequent operations are the same for ConnectionPool and
StatelessConnectionPool objects.

Stateless ConnectionPool *conPool = env->createStatelessConnectionPool(
username, password, connecstr,
minConn, maxConn, incrConn, mode);

Handling Exceptions

3-28 Oracle C++ Call Interface Programmer's Guide

2. Enable statement caching for all Connections in the ConnectionPool by using a
nonzero size parameter in the setStmtCacheSize() call.

conPool->setStmtCacheSize(10);

Subsequent calls to getStmtCacheSize() would determine the size of the cache,
while setStmtCacheSize() call changes the size of the statement cache, or disables
statement caching if the size parameter is set to zero.

3. Get a Connection from the pool by making a createConnection() call on the
ConnectionPool object; the Statement is returned if it is in the cache, or a new
Statement with a NULL tag is created for the user.

Connection *conn = conPool->createConnection(username, password, connecstr);

To retrieve a previously cached tagged statement, use the alternate form of the
createStatement() method:

Statement *stmt = conn->createStatement(sql, tag);

4. Create a Statement by making a createStatement() call on the Connection object;
the Statement is returned if it is in the cache, or a new Statement with a NULL tag
is created for the user.

Statement *stmt = conn->createStatement(sql);

To retrieve a previously cached tagged statement, use the alternate form of the
createStatement() method:

Statement *stmt = conn->createStatement(sql, tag);

5. Use the statement to execute SQL commands and obtain results.

6. Return the statement to cache.

conn->terminateStatement(stmt, tag);

If you do not want to cache this statement, use the disableCaching() call and an
alternate from of terminateStatement():

stmt->disableCaching();
conn->terminateStatement(stmt);

If you must verify whether a statement has been cached, issue an isCached() call
on the Connection object.

7. Release the connection terminateConnection().

conPool->terminateConnection(conn);

Handling Exceptions
Each OCCI method can generate an exception if it is not successful. This exception is of
type SQLException. OCCI uses the C++ Standard Template Library (STL), so any
exception that can be thrown by the STL can also be thrown by OCCI methods.

The STL exceptions are derived from the standard exception class. The
exception::what() method returns a pointer to the error text. The error text is
guaranteed to be valid during the catch block

Handling Exceptions

Accessing Oracle Database Using C++ 3-29

The SQLException class contains Oracle specific error numbers and messages. It is
derived from the standard exception class, so it too can obtain the error text by using
the exception::what() method.

In addition, the SQLException class has two methods it can use to obtain error
information. The getErrorCode() method returns the Oracle error number. The same
error text returned by exception::what() can be obtained by the getMessage()
method. The getMessage() method returns an STL string so that it can be copied like
any other STL string.

Based on your error handling strategy, you may choose to handle OCCI exceptions
differently from standard exceptions, or you may choose not to distinguish between
the two.

If you decide that it is not important to distinguish between OCCI exceptions and
standard exceptions, your catch block might look similar to the following:

catch (exception &excp)
{

cerr << excp.what() << endl;
}

Should you decide to handle OCCI exceptions differently than standard exceptions,
your catch block might look like the following:

catch (SQLException &sqlExcp)
{

cerr <<sqlExcp.getErrorCode << ": " << sqlExcp.getErrorMessage() << endl;
}
catch (exception &excp)
{

cerr << excp.what() << endl;
}

In the preceding catch block, SQL exceptions are caught by the first block and
non-SQL exceptions are caught by the second block. If the order of these two blocks
were to be reversed, SQL exceptions would never be caught. Since SQLException is
derived from the standard exception, the standard exception catch block would handle
the SQL exception as well.

Handling Null and Truncated Data
In general, OCCI does not cause an exception when the data value retrieved by using
the getxxx() methods of the ResultSet class or Statement class is NULL or truncated.
However, this behavior can be changed by calling the setErrorOnNull() method or
setErrorOnTruncate() method. If the setErrorxxx() methods are called with
causeException=TRUE, then an SQLException is raised when a data value is NULL or
truncated.

See Also:

■ Description of a special feature for handling errors that arise
during batch updates, described in section "Modifying Rows
Iteratively" on page 12-11 in Chapter 12, "Optimizing Performance
of C++ Applications"

■ Oracle Database Error Messages for more information about Oracle
error messages.

Handling Exceptions

3-30 Oracle C++ Call Interface Programmer's Guide

The default behavior is not to raise an SQLException. A column or parameter value
can also be NULL, as determined by a call to isNull() for a ResultSet or Statement
object returning TRUE:

rs->isNull(columnIndex);
stmt->isNull(paramIndex);

If the column or parameter value is truncated, it also returns TRUE as determined by a
isTruncated() call on a ResultSet or Statement object:

rs->isTruncated(columnIndex);
stmt->isTruncated(paramIndex);

For data retrieved through the setDataBuffer() method and setDataBufferArray()
method, exception handling behavior is controlled by the presence or absence of
indicator variables and return code variables as shown in Table 3–1, Table 3–2, and
Table 3–3.

In Table 3–3, data_len is the actual length of the data that has been truncated if this
length is less than or equal to SB2MAXVAL. Otherwise, the indicator is set to -2.

Table 3–1 Normal Data - Not Null and Not Truncated

Return Code Indicator - not provided Indicator - provided

Not provided error = 0 error = 0
indicator = 0

Provided error = 0
return code = 0

error = 0
indicator = 0
return code = 0

Table 3–2 Null Data

Return Code Indicator - not provided Indicator - provided

Not provided SQLException
error = 1405

error = 0
indicator = -1

Provided SQLException
error = 1405
return code = 1405

error = 0
indicator = -1
return code = 1405

Table 3–3 Truncated Data

Return Code Indicator - not provided Indicator - provided

Not provided SQLException
error = 1406

SQLException
error = 1406
indicator = data_len

Provided error = 24345
return code = 1405

error = 24345
indicator = data_len
return code = 1406

4

Object Programming 4-1

4 Object Programming

This chapter provides information on how to implement object-relational
programming using the Oracle C++ Call Interface (OCCI).

This chapter contains these topics:

■ Overview of Object Programming

■ Working with Objects in C++ with OCCI

■ Representing Objects in C++ Applications

■ Developing a C++ Application using OCCI

■ Migrating C++ Applications to Oracle Using OCCI

■ Overview of Associative Access

■ Overview of Navigational Access

■ Overview of Complex Object Retrieval

■ Working with Collections

■ Using Object References

■ Deleting Objects from the Database

■ Type Inheritance

■ A Sample OCCI Application

Overview of Object Programming
OCCI supports both the associative and navigational style of data access. Traditionally,
third-generation language (3GL) programs manipulate data stored in a database by
using the associative access based on the associations organized by relational database
tables. In associative access, data is manipulated by executing SQL statements and
PL/SQL procedures. OCCI supports associative access to objects by enabling your
applications to execute SQL statements and PL/SQL procedures on the database
server without incurring the cost of transporting data to the client.

Object-oriented programs that use OCCI can also make use of navigational access that
is a key aspect of this programming paradigm. Object relationships between objects
are implemented as references (REFs). Typically, an object application that uses
navigational access first retrieves one or more objects from the database server by
issuing a SQL statement that returns REFs to those objects. The application then uses
those REFs to traverse related objects, and perform computations on these other objects
as required. Navigational access does not involve executing SQL statements, except to

Working with Objects in C++ with OCCI

4-2 Oracle C++ Call Interface Programmer's Guide

fetch the references of an initial set of objects. By using the OCCI APIs for navigational
access, your application can perform the following functions on Oracle objects:

■ Creating, accessing, locking, deleting, copying and flushing objects

■ Getting references to objects and navigating through the references

This chapter gives examples that show you how to create a persistent object, access an
object, modify an object, and flush the changes to the database server. It discusses how
to access the object using both navigational and associative approaches.

Working with Objects in C++ with OCCI
Many of the programming principles that govern a relational OCCI applications are
identical for object-relational applications. An object-relational application uses the
standard OCCI calls to establish database connections and process SQL statements.
The difference is that the SQL statements that are issued retrieve object references,
which can then be manipulated with OCCI object functions. An object can also be
directly manipulated as a value (without using its object reference).

Instances of an Oracle type are categorized into persistent objects and transient
objects based on their lifetime. Instances of persistent objects can be further divided
into standalone objects and embedded objects depending on whether they are
referenced by way of an object identifier.

This section discusses the following topics:

■ Persistent Objects

■ Transient Objects

■ Values

Persistent Objects
A persistent object is an object which is stored in an Oracle database. It may be
fetched into the object cache and modified by an OCCI application. The lifetime of a
persistent object can exceed that of the application which is accessing it. There are two
types of persistent objects:

■ A standalone instance is stored in a database table row, and has a unique object
identifier. An OCCI application can retrieve a reference to a standalone object, pin
the object, and navigate from the pinned object to other related objects. Standalone
objects may also be referred to as referenceable objects.

It is also possible to select a persistent object, in which case you fetch the object by
value instead of fetching it by reference.

■ An embedded instance is not stored in a database table row, but rather is
embedded within another object. Examples of embedded objects are objects which
are attributes of another object, or objects that exist in an object column of a
database table. Embedded objects do not have object identifiers, and OCCI
applications cannot get REFs to embedded instances.

Embedded objects may also be referred to as nonreferenceable objects or value
instances. You may sometimes see them referred to as values, which is not to be
confused with scalar data values. The context should make the meaning clear.

Users do not have to explicitly delete persistent objects that have been materialized
through references.

Working with Objects in C++ with OCCI

Object Programming 4-3

Users should delete persistent objects created by application when the transactions are
rolled back

The SQL examples, Example 4–1 and Example 4–2, demonstrate the difference
between these two types of persistent objects.

Example 4–1 Creating Standalone Objects

Objects that are stored in the object table person_tab are standalone objects. They have
object identifiers and can be referenced. They can be pinned in an OCCI application.

CREATE TYPE person_t AS OBJECT
(name varchar2(30),
age number(3));

CREATE TABLE person_tab OF person_t;

Example 4–2 Creating Embedded Objects

Objects which are stored in the manager column of the department table are embedded
objects. They do not have object identifiers, and they cannot be referenced. Therefore,
they cannot be pinned in an OCCI application, and they also never have to be
unpinned. They are always retrieved into the object cache by value.

CREATE TABLE department
(deptno number,
deptname varchar2(30),
manager person_t);

The Array Pin feature allows a vector of references to be dereferenced in one
round-trip to return a vector of the corresponding objects. A new global method,
pinVectorOfRefs(), takes a vector of Refs and populates a vector of PObjects in a
single round-trip, saving the cost of pinning n-1 references in n-1 round-trips.

Transient Objects
A transient object is an instance of an object type. Its lifetime cannot exceed that of the
application. The application can also delete a transient object at any time.

The Object Type Translator (OTT) utility generates two operator new methods for
each C++ class, as demonstrated in Two Methods for Operator new() in the Object
Type Translator UtilityExample 4–3:

Example 4–3 Two Methods for Operator new() in the Object Type Translator Utility

class Person : public PObject {
...

public:
dvoid *operator new(size_t size); // creates transient instance
dvoid *operator new(size_t size, Connection &conn, string table);

 // creates persistent instance
}

Example 4–4 demonstrates how to dynamically create a transient object. Transient
objects cannot be converted to persistent objects. Their role is fixed at the time they are
instantiated, and it is your responsibility to free memory by deleting transient objects.

Example 4–4 How to Dynamically Create a Transient Object

Person *p = new Person();

Representing Objects in C++ Applications

4-4 Oracle C++ Call Interface Programmer's Guide

A transient object can also be created on the stack as a local variable, as demonstrated
in Example 4–5. The latter approach guarantees that the transient object is destroyed
when the scope of the variable ends.

Example 4–5 How to Create a Transient Object as a Local Variable

Person p;

Values
In this manual, a value refers to either:

■ A scalar value which is stored in a non-object column of a database table. An
OCCI application can fetch values from a database by issuing SQL statements.

■ An embedded (nonreferenceable) object.

The context should make it clear which meaning is intended.

It is possible to SELECT a referenceable object into the object cache, rather than pinning
it, in which case you fetch the object by value instead of fetching it by reference.

Representing Objects in C++ Applications
Before an OCCI application can work with object types, those types must exist in the
database. Typically, you create types with SQL DDL statements, such as CREATE TYPE.

This section discusses the following topics:

■ Creating Persistent and Transient Objects

■ Creating Object Representations using the OTT Utility

Creating Persistent and Transient Objects
This section discusses how persistent and transient objects are created.

Before you create a persistent object, you must have created the environment and
opened a connection.

A persistent object is created in the database only when one of the following occurs:

■ The transaction is committed (Connection::commit())

■ The object cache is flushed (Connection::flushCache())

■ The object itself is flushed (PObject::flush())

Example 4–6 shows how to create a persistent object, addr, in the database table, addr_
tab.

Example 4–6 How to Create a Persistent Object

CREATE TYPE ADDRESS AS OBJECT (
state CHAR(2),
zip_code CHAR(5));

CREATE TABLE ADDR_TAB of ADDRESS;
ADDRESS *addr = new(conn, "ADDR_TAB") ADDRESS("CA", "94065");

Example 4–7 shows hot to create an instance of the transient object ADDRESS.

See Also:

■ Oracle Database Concepts for more information about objects

Developing a C++ Application using OCCI

Object Programming 4-5

Example 4–7 How to Create a Transient Object

ADDRESS *addr_trans = new ADDRESS("MD", "94111");

Creating Object Representations using the OTT Utility
When your C++ application retrieves instances of object types from the database, it
must have a client-side representation of the objects. The Object Type Translator (OTT)
utility generates C++ class representations of database object types for you.
Example 4–8 shows the declaration of a custom type in the database, and the
corresponding C++ class that the OTT utility generates.

Example 4–8 How to Declare a Custom Type in the Database

CREATE TYPE address AS OBJECT (state CHAR(2), zip_code CHAR(5));

The OTT utility produces the following C++ class:

class ADDRESS : public PObject {

protected:
string state;
string zip;

public:
void *operator new(size_t size);
void *operator new(size_t size,

const Connection* conn,
const string& table);

string getSQLTypeName() const;
void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,

unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const;

ADDRESS(void *ctx) : PObject(ctx) { };
static void *readSQL(void *ctx);
virtual void readSQL(AnyData& stream);
static void writeSQL(void *obj, void *ctx);
virtual void writeSQL(AnyData& stream);

}

These class declarations in Example 4–8 are automatically written by OTT to a header
file that you name. This header file is included in the source files for an application to
provide access to objects. Instances of a PObject (and also instances of classes derived
from PObjects) can be either transient or persistent. The methods writeSQL() and
readSQL() are used internally by the OCCI object cache to linearize and delinearize the
objects and are not to be used or modified by OCCI clients.

Developing a C++ Application using OCCI
This section discusses the steps involved in developing a basic OCCI object
application.

This section discusses the following topics:

■ Basic Object Program Structure

■ Basic Object Operational Flow

See Also: Chapter 8, "Object Type Translator Utility" for more
information about the OTT utility

Developing a C++ Application using OCCI

4-6 Oracle C++ Call Interface Programmer's Guide

Basic Object Program Structure
The basic structure of an OCCI application that uses objects is similar to a relational
OCCI application, the difference being object functionality. The steps involved in an
OCCI object program include:

1. Initialize the Environment. Initialize the OCCI programming environment in object
mode. Your application must include C++ class representations of database objects
in a header file. You can create these classes by using the Object Type Translator
(OTT) utility, as described in Chapter 8, "Object Type Translator Utility".

2. Establish a Connection. Use the environment handle to establish a connection to
the database server.

3. Prepare a SQL statement. This is a local (client-side) step, which may include
binding placeholders. In an object-relational application, this SQL statement
should return a reference (REF) to an object.

4. Access the object.

a. Associate the prepared statement with a database server, and execute the
statement.

b. By using navigational access, retrieve an object reference (REF) from the
database server and pin the object. You can then perform some or all of the
following:

– Manipulate the attributes of an object and mark it as dirty (modified)

– Follow a reference to another object or series of objects

– Access type and attribute information

– Navigate a complex object retrieval graph

– Flush modified objects to the database server

c. By using associative access, you can fetch an entire object by value by using
SQL. Alternately, you can select an embedded (nonreferenceable) object. You
can then perform some or all of the following:

– Insert values into a table

– Modify existing values

5. Commit the transaction. This step implicitly writes all modified objects to the
database server and commits the changes.

6. Free statements and handles; the prepared statements should not be used or
executed again.

See Also:

■ Chapter 3, "Accessing Oracle Database Using C++" for
information about using OCCI to connect to a database server,
process SQL statements, and allocate handles

■ Chapter 8, "Object Type Translator Utility" for information about
the OTT utility

■ Chapter 13, "OCCI Application Programming Interface" for
descriptions of OCCI relational functions and the Connect class
and the getMetaData() method

Developing a C++ Application using OCCI

Object Programming 4-7

Basic Object Operational Flow
Figure 3-1 shows a simple program logic flow for how an application might work with
objects. For simplicity, some required steps are omitted.

Figure 4–1 Basic Object Operational Flow

The steps shown in Figure 3-1 are discussed in the following sections:

Initialize OCCI in Object Mode
If your OCCI application accesses and manipulates objects, then it is essential that you
specify a value of OBJECT for the mode parameter of the createEnvironment() method,
the first call in any OCCI application. Specifying this value for mode indicates to OCCI
that your application works with objects. This notification has the following important
effects:

■ The object run-time environment is established.

■ The object cache is set up.

Note that ithe mode parameter is not set to OBJECT, any attempt to use an object-related
function results in an error.

The following code example demonstrates how to specify the OBJECT mode when
creating an OCCI environment:

Environment *env;
Connection *con;
Statement *stmt;

env = Environment::createEnvironment(Environment::OBJECT);
con = Connection(userName, password, connectString);

Your application does not have to allocate memory when database objects are loaded
into the object cache. The object cache provides transparent and efficient memory
management for database objects. When database objects are loaded into the object
cache, they are transparently mapped into the host language (C++) representation.

Developing a C++ Application using OCCI

4-8 Oracle C++ Call Interface Programmer's Guide

The object cache maintains the association between the object copy in the object cache
and the corresponding database object. Upon commit, changes made to the object copy
in the object cache are automatically propagated back to the database.

The object cache maintains a look-up table for mapping references to objects. When an
application dereferences a reference to an object and the corresponding object is not
yet cached in the object cache, the object cache automatically sends a request to the
database server to fetch the object from the database and load it into the object cache.
Subsequent dereferences of the same reference are faster since they are to the object
cache itself and do not incur a round-trip to the database server.

Subsequent dereferences of the same reference fetch from the cache instead of
requiring a round-trip. The exception to this is in a dereferencing operation that occurs
just after a commit. In this case, the latest object copy from the server is returned. This
ensures that the latest object from the database is cached after each transaction.

The object cache maintains a pin count for each persistent object in the object cache.
When an application dereferences a reference to an object, the pin count of the object is
incremented. The subsequent dereferencing of the same reference to the object does
not change the pin count. Until the reference to the object goes out of scope, the object
continues to be pinned in the object cache and be accessible by the OCCI client.

The pin count functions as a reference count for the object. The pin count of the object
becomes zero (0) only when there are no more references referring to this object,
during which time the object becomes eligible for garbage collection. The object cache
uses a least recently used algorithm to manage the size of the object cache. This
algorithm frees objects with a pin count of 0 when the object cache reaches the
maximum size.

Pin Object
In most situations, OCCI users do not have to explicitly pin or unpin the objects
because the object cache automatically keeps track of the pin counts of all the objects in
the cache. As explained earlier, the object cache increments the pin count when a
reference points to the object and decrements it when the reference goes out of scope
or no longer points to the object.

But there is one exception. If an OCCI application uses Ref<T>::ptr() method to get a
pointer to the object, then the pin and unpin methods of the PObject class can be used
by the application to control pinning and unpinning of the objects in the object cache.

Operate on Object in Cache
Note that the object cache does not manage the contents of object copies; it does not
automatically refresh object copies. Your application must ensure the validity and
consistency of object copies.

Flush Changes to Object
Whenever changes are made to object copies in the object cache, your application is
responsible for flushing the changed object to the database.

Memory for the object cache is allocated on demand when objects are loaded into the
object cache.

The client-side object cache is allocated in the program's process space. This object
cache is the memory for objects that have been retrieved from the database server and
are available to your application.

If you initialize the OCCI environment in object mode, your application allocates
memory for the object cache, whether the application actually uses object calls.

Overview of Associative Access

Object Programming 4-9

There is only one object cache allocated for each OCCI environment. All objects
retrieved or created through different connections within the environment use the
same physical object cache. Each connection has its own logical object cache.

Deletion of an Object
For objects retrieved into the cache by dereferencing a reference, you should not
perform an explicit delete. For such objects, the pin count is incremented when a
reference is dereferenced for the first time and decremented when the reference goes
out of scope. When the pin count of the object becomes 0, indicating that all references
to that object are out of scope, the object is automatically eligible for garbage collection
and subsequently deleted from the cache.

For persistent objects that have been created by calling the new operator, you must call
a delete if you do not commit the transaction. Otherwise, the object is garbage
collected after the commit. This is because when such an object is created using new, its
pin count is initially 0. However, because the object is dirty it remains in the cache.
After a commit, it is no longer dirty and thus garbage collected. Therefore, a delete is
not required.

If a commit is not performed, then you must explicitly call delete to destroy that
object. You can do this if there are no references to that object. For transient objects,
you must delete explicitly to destroy the object.

You should not call a delete operator on a persistent object. A persistent object that is
not marked/dirty is freed by the garbage collector when its pin count is 0. However,
for transient objects you must delete explicitly to destroy the object.

Migrating C++ Applications to Oracle Using OCCI
This section describes how to migrate existing C++ applications using OCCI.

The steps of migration are:

1. Determine object model and class hierarchy

2. Use JDeveloper9i to map to Oracle object schema

3. Generate C++ header files using Oracle Type Translator

4. Modify old C++ access classes as required to work with new object type
definitions

5. Add functionality for transient and persistent object management, as required.

Overview of Associative Access
You can employ SQL within OCCI to retrieve objects, and to perform DML operations.

This section discusses the following topics:

■ Using SQL to Access Objects

■ Inserting and Modifying Values

See Also: complete code listing of the demonstration programs

Overview of Navigational Access

4-10 Oracle C++ Call Interface Programmer's Guide

Using SQL to Access Objects
In the previous sections we discussed navigational access, where SQL is used only to
fetch the references of an initial set of objects and then navigate from them to the other
objects. Here we discuss how to fetch the objects using SQL.

The following example shows how to use the ResultSet::getObject() method to
fetch objects through associative access where it gets each object from the table, addr_
tab, using SQL:

string sel_addr_val = "SELECT VALUE(address) FROM ADDR_TAB address";

ResultSet *rs = stmt->executeQuery(sel_addr_val);

while (rs->next())
{

ADDRESS *addr_val = rs->getObject(1);
cout << "state: " << addr_val->getState();

}

The objects fetched through associative access are termed value instances and they
behave just like transient objects. Methods such as markModified(), flush(), and
markDeleted() are applicable only for persistent objects.

Any changes made to these objects are not reflected in the database.

Since the object returned is a value instance, it is the user's responsibility to free
memory by deleting the object pointer.

Inserting and Modifying Values
We have just seen how to use SQL to access objects. OCCI also provides the ability to
use SQL to insert new objects or modify existing objects in the database server through
the Statement::setObject method interface.

The following example creates a transient object Address and inserts it into the
database table addr_tab:

ADDRESS *addr_val = new address("NV", "12563"); // new a transient instance
stmt->setSQL("INSERT INTO ADDR_TAB values(:1)");
stmt->setObject(1, addr_val);
stmt->execute();

Overview of Navigational Access
By using navigational access, you engage in a series of operations.

This section discusses the following topics:

■ Retrieving an Object Reference (REF) from the Database Server

■ Pinning an Object

■ Manipulating Object Attributes

■ Marking Objects and Flushing Changes

■ Marking an Object as Modified (Dirty)

■ Recording Changes in the Database

■ Collecting Garbage in the Object Cache

■ Ensuring Transactional Consistency of References

Overview of Navigational Access

Object Programming 4-11

Retrieving an Object Reference (REF) from the Database Server
To work with objects, your application must first retrieve one or more objects from the
database server. You accomplish this by issuing a SQL statement that returns
references (REFs) to one or more objects.

It is also possible for a SQL statement to fetch value instances, rather than REFs, from a
database.

The following SQL statement retrieves a REF to a single object address from the
database table addr_tab:

string sel_addr = "SELECT REF(address)
FROM addr_tab address
WHERE zip_code = '94065'";

The following code example illustrates how to execute the query and fetch the REF
from the result set.

ResultSet *rs = stmt->executeQuery(sel_addr);
rs->next();
Ref<address> addr_ref = rs->getRef(1);

At this point, you could use the object reference to access and manipulate the object or
objects from the database.

Pinning an Object
This section deals with a simple pin operation involving a single object at a time. For
information about retrieving multiple objects through complex object retrieval, see the
section Overview of Complex Object Retrieval on page 4-14.

Upon completion of the fetch step, your application has a REF to an object. The actual
object is not currently available to work with. Before you can manipulate an object, it
must be pinned. Pinning an object loads the object into the object cache, and enables
you to access and modify the object's attributes and follow references from that object
to other objects. Your application also controls when modified objects are written back
to the database server.

OCCI requires only that you dereference the REF in the same way you would
dereference any C++ pointer. Dereferencing the REF transparently materializes the
object as a C++ class instance.

Continuing the Address class example from the previous section, assume that the user
has added the following method:

string Address::getState()
{

return state;
}

To dereference this REF and access the object's attributes and methods:

string state = addr_ref->getState(); // -> pins the object

See Also: complete code listing of the demonstration programs

See Also: "Executing SQL DDL and DML Statements" on page 3-12
for general information about preparing and executing SQL
statements

Overview of Navigational Access

4-12 Oracle C++ Call Interface Programmer's Guide

The first time Ref<T> (addr_ref) is dereferenced, the object is pinned, which is to say
that it is loaded into the object cache from the database server. From then on, the
behavior of operator -> on Ref<T> is just like that of any C++ pointer (T *). The
object remains in the object cache until the REF (addr_ref) goes out of scope. It then
becomes eligible for garbage collection.

Now that the object has been pinned, your application can modify that object.

Manipulating Object Attributes
Manipulating object attributes is no different from that of accessing them as shown in
the previous section. Let us assume the Address class has the following user defined
method that sets the state attribute to the input value:

void Address::setState(string new_state)
{

state = new_state;
}

The following example shows how to modify the state attribute of the object, addr:

addr_ref->setState("PA");

As explained earlier, the first invocation of the operator -> on Ref<T> loads the object,
if it is not in the object cache.

Marking Objects and Flushing Changes
In the example in the previous section, an attribute of an object was changed. This
change exists only in the client-side cache; you must implement specific programmatic
steps to write the changes to the database.

Marking an Object as Modified (Dirty)
The first step is to indicate that the object has been modified. This is done by calling
the markModified() method on the object (derived method of PObject). This method
marks the object as dirty (modified).

Continuing the previous example, after object attributes are manipulated, the object
referred to by addr_ref can be marked dirty as follows:

addr_ref->markModified();

Recording Changes in the Database
Objects that have had their dirty flag set must be flushed to the database server for the
changes to be recorded in the database. This can be done in three ways:

■ Flush a single object marked dirty by calling the method flush, a derived method
of PObject.

■ Flush the entire object cache using the Connection::flushCache() method. In this
case, OCCI traverses the dirty list maintained by the object cache and flushes all
the dirty objects.

■ Commit a transaction by calling the Connection::commit() method. Doing so also
traverses the dirty list and flushes the objects to the database server. The dirty list
includes newly created persistent objects.

Overview of Navigational Access

Object Programming 4-13

Collecting Garbage in the Object Cache
The object cache has two important associated parameters:

■ The maximum cache size percentage

■ The optimal cache size

These parameters refer to levels of cache memory usage, and they help determine
when the cache automatically 'ages out' eligible objects to free up memory.

If the memory occupied by the objects currently in the cache reaches or exceeds the
maximum cache size, the cache automatically begins to free (or age out) unmarked
objects which have a pin count of zero. The cache continues freeing such objects until
memory usage in the cache reaches the optimal size, or until it runs out of objects
eligible for freeing. Note that the cache can grow beyond the specified maximum cache
size.

The maximum object cache size (in bytes) is computed by incrementing the optimal
cache size (optimal_size) by the maximum cache size percentage (max_size_
percentage), as follows:

Maximum cache size = optimal_size + optimal_size * max_size_percentage / 100;

The default value for the maximum cache size percentage is 10%. The default value for
the optimal cache size is 8MB. When a persistent object is created through the
overloaded PObject::new() operator, the newly created object is marked dirty and its
pin count is set to 0.

These parameters can be set or retrieved using the following member functions of the
Environment class:

■ void setCacheMaxSize(unsigned int maxSize);

■ unsigned int getCacheMaxSize() const;

■ void setCacheOptSize(unsigned int OptSize);

■ unsigned int getCacheOptSize() const;

"Pin Object" on page 4-8 describes how pin count of an object functions as a reference
count and how an unmarked object with a 0 pin count can become eligible for garbage
collection. For a newly created persistent object, the object is unmarked after the
transaction is committed or aborted, and if the object has a 0 pin count. Because
nothing is referencing this object, it becomes a candidate for ageing out.

If you are working with several object that have a large number of string or collection
attributes, most of the memory is allocated from the C++ heap; this is because OCCI
uses STLs. You should therefore set the cache size to a low value to avoid high
memory use before garbage collection activates.

Ensuring Transactional Consistency of References
As described in the previous section, dereferencing a Ref<T> for the first time results in
the object being loaded into the object cache from the database server. From then on,
the behavior of operator -> on Ref<T> equals any C++ pointer, and it provides access
to the object copy in the cache. But when the transaction commits or aborts, the object
copy in the cache can no longer be valid because it could be modified by any other
client. Therefore, after the transaction ends, when the Ref<T> is again dereferenced, the

See Also: Chapter 13, "OCCI Application Programming Interface"
for details.

Overview of Complex Object Retrieval

4-14 Oracle C++ Call Interface Programmer's Guide

object cache recognizes the fact that the object is no longer valid and fetches the most
recent copy from the database server.

Overview of Complex Object Retrieval
In the examples discussed earlier, only a single object was fetched or pinned at a time.
In these cases, each pin operation involved a separate database server round-trip to
retrieve the object.

Object-oriented applications often model their problems as a set of interrelated objects
that form graphs of objects. These applications process objects by starting with some
initial set of objects and then using the references in these objects to traverse the
remaining objects. In a client/server setting, each of these traversals could result in
costly network round-trips to fetch objects.

The performance of such applications can be increased with complex object retrieval
(COR). This is a prefetching mechanism in which an application specifies some criteria
(content and boundary) for retrieving a set of linked objects in a single network
round-trip. Using COR does not mean that these prefetched objects are pinned. They
are fetched into the object cache, so that subsequent pin calls are local operations.

A complex object is a set of logically related objects consisting of a root object, and a
set of objects each of which is prefetched based on a given depth level. The root object
is explicitly fetched or pinned. The depth level is the shortest number of references
that have to be traversed from the root object to a given prefetched object in a complex
object.

An application specifies a complex object by describing its content and boundary. The
fetching of complex objects is constrained by an environment's prefetch limit, the
amount of memory in the object cache that is available for prefetching objects.

The use of complex object retrieval does not add functionality; it only improves
performance, and so its use is optional.

This section discusses the following topics:

■ Retrieving Complex Objects

■ Prefetching Complex Objects

Retrieving Complex Objects
An OCCI application can achieve COR by setting the appropriate attributes of a
Ref<T> before dereferencing it using the following methods:

// prefetch attributes of the specified type name up to the specified depth
Ref<T>::setPrefetch(const string &typeName, unsigned int depth);
// prefetch all the attribute types up to the specified depth.
Ref<T>::setPrefetch(unsigned int depth);

The application can also choose to fetch all objects reachable from the root object by
way of REFs (transitive closure) to a certain depth. To do so, set the level parameter to
the depth desired. For the preceding two examples, the application could also specify
(PO object REF, OCCI_MAX_PREFETCH_DEPTH) and (PO object REF, 1) respectively
to prefetch required objects. Doing so results in many extraneous fetches but is quite
simple to specify, and requires only one database server round-trip.

As an example for this discussion, consider the following type declaration:

See Also: complete code listing of the demonstration programs

Overview of Complex Object Retrieval

Object Programming 4-15

CREATE TYPE customer(...);
CREATE TYPE line_item(...);
CREATE TYPE line_item_varray as VARRAY(100) of REF line_item;
CREATE TYPE purchase_order AS OBJECT

(po_number NUMBER,
cust REF customer,
related_orders REF purchase_order,
line_items line_item_varray);

The purchase_order type contains a scalar value for po_number, a VARRAY of line_
items, and two references. The first is to a customer type and the second is to a
purchase_order type, indicating that this type can be implemented as a linked list.

When fetching a complex object, an application must specify the following:

■ A reference to the desired root object

■ One or more pairs of type and depth information to specify the boundaries of the
complex object. The type information indicates which REF attributes should be
followed for COR, and the depth level indicates how many levels deep those links
should be followed.

In the case of the purchase_order object in the preceding example, the application
must specify the following:

■ The reference to the root purchase_order object

■ One or more pairs of type and depth information for customer, purchase_order,
or line_item

An application prefetching a purchase order needs access to the customer information
for that purchase order. Using simple navigation, this would require two database
server accesses to retrieve the two objects.

Through complex object retrieval, customer can be prefetched when the application
pins the purchase_order object. In this case, the complex object would consist of the
purchase_order object and the customer object it references.

In the previous example, if the application wanted to prefetch a purchase order and
the related customer information, the application would specify the purchase_order
object and indicate that customer should be followed to a depth level of one as
follows:

Ref<PURCHASE_ORDER> poref;
poref.setPrefetch("CUSTOMER",1);

If the application wanted to prefetch a purchase order and all objects in the object
graph it contains, the application would specify the purchase_order object and
indicate that both customer and purchase_order should be followed to the maximum
depth level possible as follows:

Ref<PURCHASE_ORDER> poref;
poref.setPrefetch("CUSTOMER", OCCI_MAX_PREFETCH_DEPTH);
poref.setPrefetch("PURCHASE_ORDER", OCCI_MAX_PREFETCH_DEPTH);

where OCCI_MAX_PREFETCH_DEPTH specifies that all objects of the specified type
reachable through references from the root object should be prefetched.

If an application wanted to prefetch a purchase order and all the line items associated
with it, the application would specify the purchase_order object and indicate that
line_items should be followed to the maximum depth level possible as follows:

Ref<PURCHASE_ORDER> poref;

Working with Collections

4-16 Oracle C++ Call Interface Programmer's Guide

poref.setPrefetch("LINE_ITEM", 1);

Prefetching Complex Objects
After specifying and fetching a complex object, subsequent fetches of objects contained
in the complex object do not incur the cost of a network round-trip, because these
objects have been prefetched and are in the object cache. Keep in mind that excessive
prefetching of objects can lead to a flooding of the object cache. This flooding, in turn,
may force out other objects that the application had pinned, leading to a performance
degradation instead of performance improvement.

Note that if there is insufficient memory in the object cache to hold all prefetched
objects, some objects may not be prefetched. The application then incurs a network
round-trip when those objects are accessed later.

You must have the READ or SELECT privilege for all prefetched objects. Objects in the
complex object for which the application does not have READ or SELECT privilege
cannot prefetched.

An entire vector of Refs can be prefetched into object cache in a single round-trip by
using the global pinVectorOfRefs() method of the Connection Class. This method
reduces the number of round-trips for an n-sized vector of Refs from n to 1, and tracks
the newly pinned objects through an OUT parameter vector.

Working with Collections
Oracle supports two kinds of collections - variable length arrays (ordered collections)
and nested tables (unordered collections). OCCI maps both of them to a Standard
Template Library (STL) vector container, giving you the full power, flexibility, and
speed of an STL vector to access and manipulate the collection elements. Example 4–9
shows the SQL DDL to create a VARRAY and an object that contains an attribute of type
VARRAY, and the resulting C++ declaration that OTT generates.

Example 4–9 How to Create a VARRAY Collection

CREATE TYPE ADDR_LIST AS VARRAY(3) OF REF ADDRESS;
CREATE TYPE PERSON AS OBJECT (name VARCHAR2(20), addr_l ADDR_LIST);

Here is the C++ class declaration generated by OTT:

class PERSON : public PObject
{

protected:
string name;
vector< Ref< ADDRESS > > addr_1;

public:
void *operator new(size_t size);
void *operator new(size_t size,
const Connection* conn,
const string& table);
string getSQLTypeName() const;
void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,

unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const;

PERSON (void *ctx) : PObject(ctx) { };
static void *readSQL(void *ctx);
virtual void readSQL(AnyData& stream);
static void writeSQL(void *obj, void *ctx);

Working with Collections

Object Programming 4-17

virtual void writeSQL(AnyData& stream);
}

Fetching Embedded Objects
If your application must fetch an embedded object, which is an object stored in a
column of a regular table rather than an object table, you cannot use the REF retrieval
mechanism. Embedded instances do not have object identifiers, so it is not possible to
get a reference to them. Therefore, they cannot serve as the basis for object navigation.
There are still many situations, however, in which an application fetches embedded
instances.

For example, assume that an address type has been created.

CREATE TYPE address AS OBJECT
(street1 varchar2(50),

street2 varchar2(50),
city varchar2(30),
state char(2),
zip number(5));

You could then use that type as the data type of a column in another table:

CREATE TABLE clients
(name varchar2(40),

addr address);

Your OCCI application could then issue the following SQL statement:

SELECT addr FROM clients
WHERE name='BEAR BYTE DATA MANAGEMENT';

This statement would return an embedded address object from the clients table. The
application could then use the values in the attributes of this object for other
processing. The application should execute the statement and fetch the object in the
same way as described in the section "Overview of Associative Access" on page 4-9.

Nullness
If a column in a row of a database table has no value, then that column is said to be
NULL, or to contain a NULL. Two different types of NULLs can apply to objects:

■ Any attribute of an object can have a NULL value. This indicates that the value of
that attribute of the object is not known.

■ An object may be atomically NULL. Therefore, the value of the entire object is
unknown.

Atomic NULLness is different from nonexistence. An atomically NULL object still exists,
its value is just not known. It may be thought of as an existing object with no data.

For every type of object attribute, OCCI provides a corresponding class. For instance,
NUMBER attribute type maps to the Number class, REF maps to RefAny, and so on. Each
and every OCCI class that represents a data type provides two methods:

■ isNull() — returns whether the object is NULL

■ setNull() — sets the object to NULL

See Also: complete code listing of the demonstration programs

Using Object References

4-18 Oracle C++ Call Interface Programmer's Guide

Similarly, these methods are inherited from the PObject class by all the objects and can
be used to access and set atomically NULL information about them.

Using Object References
OCCI provides the application with the flexibility to access the contents of the objects
using their pointers or their references. OCCI provides the PObject::getRef() method
to return a reference to a persistent object. This call is valid for persistent objects only.

Deleting Objects from the Database
OCCI users can use the overloaded PObject::operator new() to create the persistent
objects. However, to delete the object from the database server, it is best to call
ref.markDelete() directly on the Ref; this prevents the object from getting into the
client cache. If the object is in the client cache, it can be removed by an
obj.markDelete() call on the object. The object marked for deletion is permanently
removed when the transaction commits.

Type Inheritance
Type inheritance of objects has many similarities to inheritance in C++ and Java. You
can create an object type as a subtype of an existing object type. The subtype is said to
inherit all the attributes and methods (member functions and procedures) of the
supertype, which is the original type. Only single inheritance is supported; an object
cannot have multiple supertypes. The subtype can add new attributes and methods to
the ones it inherits. It can also override (redefine the implementation) of any of its
inherited methods. A subtype is said to extend (that is, inherit from) its supertype.

As an example, a type Person_t can have a subtype Student_t and a subtype
Employee_t. In turn, Student_t can have its own subtype, PartTimeStudent_t. A type
declaration must have the flag NOT FINAL so that it can have subtypes. The default is
FINAL, which means that the type can have no subtypes.

All types discussed so far in this chapter are FINAL. All types in applications
developed before Oracle Database release 8.1.7 are FINAL. A type that is FINAL can be
altered to be NOT FINAL. A NOT FINAL type with no subtypes can be altered to be
FINAL. Person_ t is declared as NOT FINAL for our example:

CREATE TYPE Person_t AS OBJECT
(ssn NUMBER,

name VARCAHR2(30),
address VARCHAR2(100)) NOT FINAL;

A subtype inherits all the attributes and methods declared in its supertype. It can also
declare new attributes and methods, which must have different names than those of
the supertype. The keyword UNDER identifies the supertype, like this:

CREATE TYPE Student_t UNDER Person_t
(deptid NUMBER,

major VARCHAR2(30)) NOT FINAL;

The newly declared attributes deptid and major belong to the subtype Student_t. The
subtype Employee_t is declared as, for example:

See Also: Oracle Database Object-Relational Developer's Guide for a
more complete discussion of this topic

Type Inheritance

Object Programming 4-19

CREATE TYPE Employee_t UNDER Person_t
(empid NUMBER,

mgr VARCHAR2(30));

Subtype Student_t can have its own subtype, such as PartTimeStudent_t:

CREATE TYPE PartTimeStuden_t UNDER Student_t (numhours NUMBER) ;

Substitutability
The benefits of polymorphism derive partially from the property substitutability.
Substitutability allows a value of some subtype to be used by code originally written
for the supertype, without any specific knowledge of the subtype being needed in
advance. The subtype value behaves to the surrounding code just like a value of the
supertype would, even if it perhaps uses different mechanisms within its
specializations of methods.

Instance substitutability refers to the ability to use an object value of a subtype in a
context declared in terms of a supertype. REF substitutability refers to the ability to use
a REF to a subtype in a context declared in terms of a REF to a supertype.

REF type attributes are substitutable, that is, an attribute defined as REF T can hold a
REF to an instance of T or any of its subtypes.

Object type attributes are substitutable, that is, an attribute defined to be of (an object)
type T can hold an instance of T or any of its subtypes.

Collection element types are substitutable, that is, if we define a collection of elements
of type T, then it can hold instances of type T and any of its subtypes. Here is an
example of object attribute substitutability:

CREATE TYPE Book_t AS OBJECT
(title VARCHAR2(30),

author Person_t /* substitutable */);

Thus, a Book_t instance can be created by specifying a title string and a Person_t (or
any subtype of Person_t) object:

Book_t('My Oracle Experience',
Employee_t(12345, 'Joe', 'SF', 1111, NULL))

NOT INSTANTIABLE Types and Methods
A type can be declared NOT INSTANTIABLE, which means that there is no constructor
(default or user defined) for the type. Thus, it is not be possible to construct instances
of this type. The typical usage would be to define instantiable subtypes for such a
type. Here is how this property is used:

CREATE TYPE Address_t AS OBJECT(...) NOT INSTANTIABLE NOT FINAL;
CREATE TYPE USAddress_t UNDER Address_t(...);
CREATE TYPE IntlAddress_t UNDER Address_t(...);

A method of a type can be declared to be NOT INSTANTIABLE. Declaring a method as
NOT INSTANTIABLE means that the type is not providing an implementation for that

See Also:

■ "OTT Support for Type Inheritance" on page 4-20 for the classes
generated by OTT for this example.

Type Inheritance

4-20 Oracle C++ Call Interface Programmer's Guide

method. Further, a type that contains any NOT INSTANTIABLE methods must
necessarily be declared as NOT INSTANTIABLE. For example:

CREATE TYPE T AS OBJECT
(x NUMBER,

NOT INSTANTIABLE MEMBER FUNCTION func1() RETURN NUMBER
) NOT INSTANTIABLE;

A subtype of NOT INSTANTIABLE can override any of the NOT INSTANTIABLE methods of
the supertype and provide concrete implementations. If there are any NOT
INSTANTIABLE methods remaining, the subtype must also necessarily be declared as
NOT INSTANTIABLE.

A NOT INSTANTIABLE subtype can be defined under an instantiable supertype.
Declaring a NOT INSTANTIABLE type to be FINAL is not useful and is not allowed.

OCCI Support for Type Inheritance
The following calls support type inheritance.

Connection::getMetaData()
This method provides information specific to inherited types. Additional attributes
have been added for the properties of inherited types. For example, you can get the
supertype of a type.

Bind and Define Functions
The setRef(), setObject() and setVector() methods of the Statement class are used
to bind REF, object, and collections respectively. All these functions support REF,
instance, and collection element substitutability. Similarly, the corresponding getxxx()
methods to fetch the data also support substitutability.

OTT Support for Type Inheritance
Class declarations for objects with inheritance are similar to the simple object
declarations except that the class is derived from the parent type class and only the
fields corresponding to attributes not in the parent class are included. The structure for
these declarations is listed in Example 4–10:

Example 4–10 OTT Support Inheritance

class <typename> : public <parentTypename>
{

protected:
<OCCItype1> <attributename1>;
...
<OCCItypen> <attributenamen>;

public:
void *operator new(size_t size);
void *operator new(size_t size, const Connection* conn,

const string& table);
string getSQLTypeName() const;
void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,

unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const;

<typename> (void *ctx) : <parentTypename>(ctx) { };
static void *readSQL(void *ctx);
virtual void readSQL(AnyData& stream);

A Sample OCCI Application

Object Programming 4-21

static void writeSQL(void *obj, void *ctx);
virtual void writeSQL(AnyData& stream);

}

In this structure, all variables are the same as in the simple object case.
parentTypename refers to the name of the parent type, that is, the class name of the
type from which typename inherits.

A Sample OCCI Application
This section describes a sample OCCI application that uses some features discussed in
this chapter.

Example 4–11 Listing of demo2.sql for a Sample OCCI Application

drop table ADDR_TAB
/
drop table PERSON_TAB
/
drop type STUDENT
/
drop type PERSON
/
drop type ADDRESS_TAB
/
drop type ADDRESS
/
drop type FULLNAME
/
CREATE TYPE FULLNAME AS OBJECT (first_name CHAR(20), last_name CHAR(20))
/
CREATE TYPE ADDRESS AS OBJECT (state CHAR(20), zip CHAR(20))
/
CREATE TYPE ADDRESS_TAB AS VARRAY(3) OF REF ADDRESS
/
CREATE TYPE PERSON AS OBJECT (id NUMBER, name FULLNAME,curr_addr REF ADDRESS,
prev_addr_l ADDRESS_TAB) NOT FINAL
/
CREATE TYPE STUDENT UNDER PERSON (school_name CHAR(20))
/
CREATE TABLE ADDR_TAB OF ADDRESS
/
CREATE TABLE PERSON_TAB OF PERSON
/

Example 4–12 Listing of demo2.typ for a Sample OCCI Application

TYPE FULLNAME GENERATE CFullName as MyFullName
TYPE ADDRESS GENERATE CAddress as MyAddress
TYPE PERSON GENERATE CPerson as MyPerson
TYPE STUDENT GENERATE CStudent as MyStudent

Example 4–13 Listing of OTT Command that Generates Files for a Sample OCCI
Application

OTT attempts to connect with user name demousr; the system prompts for the
password.

ott userid=demousr intype=demo2.typ code=cpp hfile=demo2.h
cppfile=demo2.cpp mapfile=mappings.cpp attraccess=private

A Sample OCCI Application

4-22 Oracle C++ Call Interface Programmer's Guide

Example 4–14 Listing of mappings.h for a Sample OCCI Application

#ifndef MAPPINGS_ORACLE
define MAPPINGS_ORACLE

#ifndef OCCI_ORACLE
include <occi.h>
#endif

#ifndef DEMO2_ORACLE
include "demo2.h"
#endif

void mappings(oracle::occi::Environment* envOCCI_);

#endif

Example 4–15 Listing of mappings.cpp for a Sample OCCI Application

#ifndef MAPPINGS_ORACLE
include "mappings.h"
#endif

void mappings(oracle::occi::Environment* envOCCI_)
{
 oracle::occi::Map *mapOCCI_ = envOCCI_->getMap();
 mapOCCI_->put("HR.FULLNAME", &CFullName::readSQL, &CFullName::writeSQL);
 mapOCCI_->put("HR.ADDRESS", &CAddress::readSQL, &CAddress::writeSQL);
 mapOCCI_->put("HR.PERSON", &CPerson::readSQL, &CPerson::writeSQL);
 mapOCCI_->put("HR.STUDENT", &CStudent::readSQL, &CStudent::writeSQL);
}

Example 4–16 Listing of demo2.h for a Sample OCCI Application

#ifndef DEMO2_ORACLE
define DEMO2_ORACLE

#ifndef OCCI_ORACLE
include <occi.h>
#endif

using namespace std;
using namespace oracle::occi;

class MyFullName;
class MyAddress;
class MyPerson;
/* Changes ended here */

/* GENERATED DECLARATIONS FOR THE FULLNAME OBJECT TYPE. */
class CFullName : public oracle::occi::PObject {

private:
 OCCI_STD_NAMESPACE::string FIRST_NAME;
 OCCI_STD_NAMESPACE::string LAST_NAME;

public:
 OCCI_STD_NAMESPACE::string getFirst_name() const;
 void setFirst_name(const OCCI_STD_NAMESPACE::string &value);
 OCCI_STD_NAMESPACE::string getLast_name() const;
 void setLast_name(const OCCI_STD_NAMESPACE::string &value);

A Sample OCCI Application

Object Programming 4-23

 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table);
 void *operator new(size_t, void *ctxOCCI_);
 void *operator new(size_t size, const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema);
 string getSQLTypeName() const;
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 CFullName();
 CFullName(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
 ~CFullName();
};

/* GENERATED DECLARATIONS FOR THE ADDRESS OBJECT TYPE. */
class CAddress : public oracle::occi::PObject {

private:
 OCCI_STD_NAMESPACE::string STATE;
 OCCI_STD_NAMESPACE::string ZIP;

public:
 OCCI_STD_NAMESPACE::string getState() const;
 void setState(const OCCI_STD_NAMESPACE::string &value);
 OCCI_STD_NAMESPACE::string getZip() const;
 void setZip(const OCCI_STD_NAMESPACE::string &value);
 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table);
 void *operator new(size_t, void *ctxOCCI_);
 void *operator new(size_t size, const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema);
 string getSQLTypeName() const;
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 CAddress();
 CAddress(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
 ~CAddress();
};

/* GENERATED DECLARATIONS FOR THE PERSON OBJECT TYPE. */
class CPerson : public oracle::occi::PObject {

private:

A Sample OCCI Application

4-24 Oracle C++ Call Interface Programmer's Guide

 oracle::occi::Number ID;
 MyFullName * NAME;
 oracle::occi::Ref< MyAddress > CURR_ADDR;
 OCCI_STD_NAMESPACE::vector< oracle::occi::Ref< MyAddress > > PREV_ADDR_L;

public:
 oracle::occi::Number getId() const;
 void setId(const oracle::occi::Number &value);
 MyFullName * getName() const;
 void setName(MyFullName * value);
 oracle::occi::Ref< MyAddress > getCurr_addr() const;
 void setCurr_addr(const oracle::occi::Ref< MyAddress > &value);
 OCCI_STD_NAMESPACE::vector<oracle::occi::Ref< MyAddress>>&
 getPrev_addr_l();
 const OCCI_STD_NAMESPACE::vector<oracle::occi::Ref<MyAddress>>&
 getPrev_addr_l() const;
 void setPrev_addr_l(const OCCI_STD_NAMESPACE::vector
 <oracle::occi::Ref< MyAddress > > &value);
 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table);
 void *operator new(size_t, void *ctxOCCI_);
 void *operator new(size_t size, const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema);
 string getSQLTypeName() const;
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 CPerson();
 CPerson(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
 ~CPerson();
};

/* GENERATED DECLARATIONS FOR THE STUDENT OBJECT TYPE. */
/* changes to the generated file - declarations for the MyPerson class. */
class MyPerson : public CPerson {

public:
 MyPerson(Number id_i, MyFullName *name_i, const Ref<MyAddress>& addr_i) ;
 MyPerson(void *ctxOCCI_);
 void move(const Ref<MyAddress>& new_addr);
 void displayInfo();
 MyPerson();
};
/* changes end here */

class CStudent : public MyPerson {
private:
 OCCI_STD_NAMESPACE::string SCHOOL_NAME;

public:
 OCCI_STD_NAMESPACE::string getSchool_name() const;
 void setSchool_name(const OCCI_STD_NAMESPACE::string &value);\

A Sample OCCI Application

Object Programming 4-25

 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,\
 const OCCI_STD_NAMESPACE::string& table);
 void *operator new(size_t, void *ctxOCCI_);
 void *operator new(size_t size, const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema);
 string getSQLTypeName() const;
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 CStudent();
 CStudent(void *ctxOCCI_) : MyPerson (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
 ~CStudent();
};

/*changes made to the generated file */
/* declarations for the MyFullName class. */
class MyFullName : public CFullName
{ public:
 MyFullName(string first_name, string last_name);
 void displayInfo();
 MyFullName(void *ctxOCCI_);
};

// declarations for the MyAddress class.
class MyAddress : public CAddress
{ public:
 MyAddress(string state_i, string zip_i);
 void displayInfo();
 MyAddress(void *ctxOCCI_);
};

class MyStudent : public CStudent
{
 public :
 MyStudent(void *ctxOCCI_) ;
};
/* changes end here */
#endif

Example 4–17 Listing of demo2.cpp for a Sample OCCI Application

#ifndef DEMO2_ORACLE
include "demo2.h"
#endif

/* GENERATED METHOD IMPLEMENTATIONS FOR THE FULLNAME OBJECT TYPE. */
OCCI_STD_NAMESPACE::string CFullName::getFirst_name() const
{
 return FIRST_NAME;
}

void CFullName::setFirst_name(const OCCI_STD_NAMESPACE::string &value)

A Sample OCCI Application

4-26 Oracle C++ Call Interface Programmer's Guide

{
 FIRST_NAME = value;
}

OCCI_STD_NAMESPACE::string CFullName::getLast_name() const
{
 return LAST_NAME;
}

void CFullName::setLast_name(const OCCI_STD_NAMESPACE::string &value)
{
 LAST_NAME = value;
}

void *CFullName::operator new(size_t size)
{
 return oracle::occi::PObject::operator new(size);
}

void *CFullName::operator new(size_t size, const oracle::occi::Connection *
 sess, const OCCI_STD_NAMESPACE::string& table)
{
 return oracle::occi::PObject::operator new(size, sess, table,
 (char *) "HR.FULLNAME");
}

void *CFullName::operator new(size_t size, void *ctxOCCI_)
{
 return oracle::occi::PObject::operator new(size, ctxOCCI_);
}

void *CFullName::operator new(size_t size,
 const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema)
{
 return oracle::occi::PObject::operator new(size, sess, tableName,
 typeName, tableSchema, typeSchema);
}

OCCI_STD_NAMESPACE::string CFullName::getSQLTypeName() const
{
 return OCCI_STD_NAMESPACE::string("HR.FULLNAME");
}

void CFullName::getSQLTypeName(oracle::occi::Environment *env,
 void **schemaName, unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const
{
 PObject::getSQLTypeName(env, &CFullName::readSQL, schemaName,
 schemaNameLen, typeName, typeNameLen);
}

CFullName::CFullName()
{
}

void *CFullName::readSQL(void *ctxOCCI_)

A Sample OCCI Application

Object Programming 4-27

{
 MyFullName *objOCCI_ = new(ctxOCCI_) MyFullName(ctxOCCI_);
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);

 try
 {
 if (streamOCCI_.isNull())
 objOCCI_->setNull();
 else
 objOCCI_->readSQL(streamOCCI_);
 }
 catch (oracle::occi::SQLException& excep)
 {
 delete objOCCI_;
 excep.setErrorCtx(ctxOCCI_);
 return (void *)NULL;
 }
 return (void *)objOCCI_;
}

void CFullName::readSQL(oracle::occi::AnyData& streamOCCI_)
{
 FIRST_NAME = streamOCCI_.getString();
 LAST_NAME = streamOCCI_.getString();
}

void CFullName::writeSQL(void *objectOCCI_, void *ctxOCCI_)
{
 CFullName *objOCCI_ = (CFullName *) objectOCCI_;
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);

 try
 {
 if (objOCCI_->isNull())
 streamOCCI_.setNull();
 else
 objOCCI_->writeSQL(streamOCCI_);
 }
 catch (oracle::occi::SQLException& excep)
 {
 excep.setErrorCtx(ctxOCCI_);
 }
 return;
}

void CFullName::writeSQL(oracle::occi::AnyData& streamOCCI_)
{
 streamOCCI_.setString(FIRST_NAME);
 streamOCCI_.setString(LAST_NAME);
}

CFullName::~CFullName()
{
 int i;
}

/* GENERATED METHOD IMPLEMENTATIONS FOR THE ADDRESS OBJECT TYPE. */
OCCI_STD_NAMESPACE::string CAddress::getState() const
{
 return STATE;

A Sample OCCI Application

4-28 Oracle C++ Call Interface Programmer's Guide

}

void CAddress::setState(const OCCI_STD_NAMESPACE::string &value)
{
 STATE = value;
}

OCCI_STD_NAMESPACE::string CAddress::getZip() const
{
 return ZIP;
}

void CAddress::setZip(const OCCI_STD_NAMESPACE::string &value)
{
 ZIP = value;
}

void *CAddress::operator new(size_t size)
{
 return oracle::occi::PObject::operator new(size);
}

void *CAddress::operator new(size_t size,
const oracle::occi::Connection * sess,
const OCCI_STD_NAMESPACE::string& table)

{
 return oracle::occi::PObject::operator new(size, sess, table,
 (char *) "HR.ADDRESS");
}

void *CAddress::operator new(size_t size, void *ctxOCCI_)
{
 return oracle::occi::PObject::operator new(size, ctxOCCI_);
}

void *CAddress::operator new(size_t size,
 const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema)
{
 return oracle::occi::PObject::operator new(size, sess, tableName,
 typeName, tableSchema, typeSchema);
}

OCCI_STD_NAMESPACE::string CAddress::getSQLTypeName() const
{
 return OCCI_STD_NAMESPACE::string("HR.ADDRESS");
}

void CAddress::getSQLTypeName(oracle::occi::Environment *env,
void **schemaName,
unsigned int &schemaNameLen,
void **typeName,
unsigned int &typeNameLen) const

{
 PObject::getSQLTypeName(env, &CAddress::readSQL, schemaName,
 schemaNameLen, typeName, typeNameLen);
}

A Sample OCCI Application

Object Programming 4-29

CAddress::CAddress()
{
}

void *CAddress::readSQL(void *ctxOCCI_)
{
 MyAddress *objOCCI_ = new(ctxOCCI_) MyAddress(ctxOCCI_);
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);

 try
 {
 if (streamOCCI_.isNull())
 objOCCI_->setNull();
 else
 objOCCI_->readSQL(streamOCCI_);
 }
 catch (oracle::occi::SQLException& excep)
 {
 delete objOCCI_;
 excep.setErrorCtx(ctxOCCI_);
 return (void *)NULL;
 }
 return (void *)objOCCI_;
}

void CAddress::readSQL(oracle::occi::AnyData& streamOCCI_)
{
 STATE = streamOCCI_.getString();
 ZIP = streamOCCI_.getString();
}

void CAddress::writeSQL(void *objectOCCI_, void *ctxOCCI_)
{
 CAddress *objOCCI_ = (CAddress *) objectOCCI_;
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);

 try
 {
 if (objOCCI_->isNull())
 streamOCCI_.setNull();
 else
 objOCCI_->writeSQL(streamOCCI_);
 }
 catch (oracle::occi::SQLException& excep)
 {
 excep.setErrorCtx(ctxOCCI_);
 }
 return;
}

void CAddress::writeSQL(oracle::occi::AnyData& streamOCCI_)
{
 streamOCCI_.setString(STATE);
 streamOCCI_.setString(ZIP);
}

CAddress::~CAddress()
{
 int i;

A Sample OCCI Application

4-30 Oracle C++ Call Interface Programmer's Guide

}

/* GENERATED METHOD IMPLEMENTATIONS FOR THE PERSON OBJECT TYPE. */
oracle::occi::Number CPerson::getId() const
{
 return ID;
}

void CPerson::setId(const oracle::occi::Number &value)
{
 ID = value;
}

MyFullName * CPerson::getName() const
{
 return NAME;
}

void CPerson::setName(MyFullName * value)
{
 NAME = value;
}

oracle::occi::Ref< MyAddress > CPerson::getCurr_addr() const
{
 return CURR_ADDR;
}

void CPerson::setCurr_addr(const oracle::occi::Ref< MyAddress > &value)
{
 CURR_ADDR = value;
}

OCCI_STD_NAMESPACE::vector< oracle::occi::Ref< MyAddress > >&
CPerson::getPrev_addr_l()

{
 return PREV_ADDR_L;
}

const OCCI_STD_NAMESPACE::vector< oracle::occi::Ref< MyAddress > >&
 CPerson::getPrev_addr_l() const
{
 return PREV_ADDR_L;
}

void CPerson::setPrev_addr_l(const OCCI_STD_NAMESPACE::vector<
 oracle::occi::Ref< MyAddress > > &value)
{
 PREV_ADDR_L = value;
}
void *CPerson::operator new(size_t size)
{
 return oracle::occi::PObject::operator new(size);
}

void *CPerson::operator new(size_t size,
const oracle::occi::Connection * sess,
const OCCI_STD_NAMESPACE::string& table)

{
 return oracle::occi::PObject::operator new(size, sess, table,

A Sample OCCI Application

Object Programming 4-31

 (char *) "HR.PERSON");
}

void *CPerson::operator new(size_t size, void *ctxOCCI_)
{
 return oracle::occi::PObject::operator new(size, ctxOCCI_);
}

void *CPerson::operator new(size_t size,
 const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema)
{
 return oracle::occi::PObject::operator new(size, sess, tableName,
 typeName, tableSchema, typeSchema);
}

OCCI_STD_NAMESPACE::string CPerson::getSQLTypeName() const
{
 return OCCI_STD_NAMESPACE::string("HR.PERSON");
}

void CPerson::getSQLTypeName(oracle::occi::Environment *env,
void **schemaName,
unsigned int &schemaNameLen,
void **typeName,
unsigned int &typeNameLen) const

{
 PObject::getSQLTypeName(env, &CPerson::readSQL, schemaName,
 schemaNameLen, typeName, typeNameLen);
}

CPerson::CPerson()
{
 NAME = (MyFullName *) 0;
}

void *CPerson::readSQL(void *ctxOCCI_)
{
 MyPerson *objOCCI_ = new(ctxOCCI_) MyPerson(ctxOCCI_);
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);
 try
 {
 if (streamOCCI_.isNull())
 objOCCI_->setNull();
 else
 objOCCI_->readSQL(streamOCCI_);
 }
 catch (oracle::occi::SQLException& excep)
 {
 delete objOCCI_;
 excep.setErrorCtx(ctxOCCI_);
 return (void *)NULL;
 }
 return (void *)objOCCI_;
}

void CPerson::readSQL(oracle::occi::AnyData& streamOCCI_)

A Sample OCCI Application

4-32 Oracle C++ Call Interface Programmer's Guide

{
 ID = streamOCCI_.getNumber();
 NAME = (MyFullName *) streamOCCI_.getObject(&MyFullName::readSQL);
 CURR_ADDR = streamOCCI_.getRef();
 oracle::occi::getVectorOfRefs(streamOCCI_, PREV_ADDR_L);
}

void CPerson::writeSQL(void *objectOCCI_, void *ctxOCCI_)
{
 CPerson *objOCCI_ = (CPerson *) objectOCCI_;
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);
 try
 {
 if (objOCCI_->isNull())
 streamOCCI_.setNull();
 else
 objOCCI_->writeSQL(streamOCCI_);
 }
 catch (oracle::occi::SQLException& excep)
 {
 excep.setErrorCtx(ctxOCCI_);
 }
 return;
}

void CPerson::writeSQL(oracle::occi::AnyData& streamOCCI_)
{
 streamOCCI_.setNumber(ID);
 streamOCCI_.setObject(NAME);
 streamOCCI_.setRef(CURR_ADDR);
 oracle::occi::setVectorOfRefs(streamOCCI_, PREV_ADDR_L);
}

CPerson::~CPerson()
{
 int i;
 delete NAME;
}

/* GENERATED METHOD IMPLEMENTATIONS FOR THE STUDENT OBJECT TYPE. */
OCCI_STD_NAMESPACE::string CStudent::getSchool_name() const
{
 return SCHOOL_NAME;
}

void CStudent::setSchool_name(const OCCI_STD_NAMESPACE::string &value)
{
 SCHOOL_NAME = value;
}

void *CStudent::operator new(size_t size)
{
 return oracle::occi::PObject::operator new(size);
}

void *CStudent::operator new(size_t size,
const oracle::occi::Connection * sess,
const OCCI_STD_NAMESPACE::string& table)

{
 return oracle::occi::PObject::operator new(size, sess, table,

A Sample OCCI Application

Object Programming 4-33

 (char *) "HR.STUDENT");
}

void *CStudent::operator new(size_t size, void *ctxOCCI_)
{
 return oracle::occi::PObject::operator new(size, ctxOCCI_);
}

void *CStudent::operator new(size_t size,
 const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema)
{
 return oracle::occi::PObject::operator new(size, sess, tableName,
 typeName, tableSchema, typeSchema);
}

OCCI_STD_NAMESPACE::string CStudent::getSQLTypeName() const
{
 return OCCI_STD_NAMESPACE::string("HR.STUDENT");
}

void CStudent::getSQLTypeName(oracle::occi::Environment *env,
void **schemaName,
unsigned int &schemaNameLen,
void **typeName,
unsigned int &typeNameLen) const

{
 PObject::getSQLTypeName(env, &CStudent::readSQL, schemaName,
 schemaNameLen, typeName, typeNameLen);
}

CStudent::CStudent()
{
}
void *CStudent::readSQL(void *ctxOCCI_)
{
 MyStudent *objOCCI_ = new(ctxOCCI_) MyStudent(ctxOCCI_);
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);

 try
 {
 if (streamOCCI_.isNull())
 objOCCI_->setNull();
 else
 objOCCI_->readSQL(streamOCCI_);
 }
 catch (oracle::occi::SQLException& excep)
 {
 delete objOCCI_;
 excep.setErrorCtx(ctxOCCI_);
 return (void *)NULL;
 }
 return (void *)objOCCI_;
}

void CStudent::readSQL(oracle::occi::AnyData& streamOCCI_)
{

A Sample OCCI Application

4-34 Oracle C++ Call Interface Programmer's Guide

 CPerson::readSQL(streamOCCI_);
 SCHOOL_NAME = streamOCCI_.getString();
}

void CStudent::writeSQL(void *objectOCCI_, void *ctxOCCI_)
{
 CStudent *objOCCI_ = (CStudent *) objectOCCI_;
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);
 try
 {
 if (objOCCI_->isNull())
 streamOCCI_.setNull();
 else
 objOCCI_->writeSQL(streamOCCI_);
 }
 catch (oracle::occi::SQLException& excep)
 {
 excep.setErrorCtx(ctxOCCI_);
 }
 return;
}

void CStudent::writeSQL(oracle::occi::AnyData& streamOCCI_)
{
 CPerson::writeSQL(streamOCCI_);
 streamOCCI_.setString(SCHOOL_NAME);
}

CStudent::~CStudent()
{
 int i;
}

Let us assume OTT generates FULL_NAME, ADDRSESS, PERSON, and PFGRFDENT class
declarations in demo2.h. The following sample OCCI application extends the classes
generated by OTT, as specified in demo2.typ file in Example 4–12, and adds some
user-defined methods. Note that these class declarations have been incorporated into
demo2.h to ensure correct compilation.

Example 4–18 Listing of myDemo.h for a Sample OCCI Application

#ifndef MYDEMO_ORACLE
#define MYDEMO_ORACLE

#include <string>

#ifndef DEMO2_ORACLE
#include <demo2.h>
#endif

using namespace std;
using namespace oracle::occi;

// declarations for the MyFullName class.
class MyFullName : public CFullName
{ public:
 MyFullName(string first_name, string last_name);
 void displayInfo();
};

A Sample OCCI Application

Object Programming 4-35

// declarations for the MyAddress class.
class MyAddress : public CAddress
{ public:
 MyAddress(string state_i, string zip_i);
 void displayInfo();
};

// declarations for the MyPerson class.
class MyPerson : public CPerson
{ public:
 MyPerson(Number id_i, MyFullname *name_i,

const Ref<MyAddress>& addr_i);
 void move(const Ref<MyAddress>& new_addr);
 void displayInfo();
};

#endif

Example 4–19 Listing for myDemo.cpp for a Sample OCCI Application

#ifndef DEMO2_ORACLE
#include <demo2.h>
#endif

using namespace std;

/* initialize MyFullName */
MyFullName::MyFullName(string first_name,string last_name)
{
 setFirst_name(first_name);
 setLast_name(last_name);
}

/* display all the information in MyFullName */
void MyFullName::displayInfo()
{
 cout << "FIRST NAME is" << getFirst_name() << endl;
 cout << "LAST NAME is" << getLast_name() << endl;
}

MyFullName::MyFullName(void *ctxOCCI_):CFullName(ctxOCCI_)
{
}

/* METHOD IMPLEMENTATIONS FOR MyAddress CLASS. */

/* initialize MyAddress */
MyAddress::MyAddress(string state_i, string zip_i)
{
 setState(state_i);
 setZip(zip_i);
}

/* display all the information in MyAddress */
void MyAddress::displayInfo()
{
 cout << "STATE is" << getState() << endl;
 cout << "ZIP is" << getZip() << endl;
}

A Sample OCCI Application

4-36 Oracle C++ Call Interface Programmer's Guide

MyAddress::MyAddress(void *ctxOCCI_) :CAddress(ctxOCCI_)
{
}

/* METHOD IMPLEMENTATIONS FOR MyPerson CLASS. */

/* initialize MyPerson */
MyPerson::MyPerson(Number id_i, MyFullName* name_i,

const Ref<MyAddress>& addr_i)
{
 setId(id_i);
 setName(name_i);
 setCurr_addr(addr_i);
}

MyPerson::MyPerson(void *ctxOCCI_) :CPerson(ctxOCCI_)
{
}

/* move Person from curr_addr to new_addr */
void MyPerson::move(const Ref<MyAddress>& new_addr)
{
 // append curr_addr to the vector //
 getPrev_addr_l().push_back(getCurr_addr());
 setCurr_addr(new_addr);

 // mark the object as dirty
 this->markModified();
}

/* display all the information of MyPerson */
void MyPerson::displayInfo()
{
 cout << "ID is" << (int)getId() << endl;
 getName()->displayInfo();

 // de-referencing the Ref attribute using -> operator
 getCurr_addr()->displayInfo();
 cout << "Prev Addr List: " << endl;
 for (int i = 0; i < getPrev_addr_l().size(); i++)
 {
 // access the collection elements using [] operator
 (getPrev_addr_l())[i]->displayInfo();
 }
}

MyPerson::MyPerson()
{
}

MyStudent::MyStudent(void *ctxOCCI_) : CStudent(ctxOCCI_)
{
}

Example 4–20 Listing of main.cpp for a Sample OCCI Application

#ifndef DEMO2_ORACLE
#include <demo2.h>
#endif

A Sample OCCI Application

Object Programming 4-37

#ifndef MAPPINGS_ORACLE
#include <mappings.h>
#endif

#include <iostream>
using namespace std;
using namespace::oracle;

int main()
{
 Environment *env = Environment::createEnvironment(Environment::OBJECT);
 mappings(env);

 try {
 Connection *conn = Connection("HR", "password");

 /* Call the OTT generated function to register the mappings */
 /* create a persistent object of type ADDRESS in the database table,
 ADDR_TAB */
 MyAddress *addr1 = new(conn, "ADDR_TAB") MyAddress("CA", "94065");
 conn->commit();

 Statement *st = conn->createStatement("select ref(a) from addr_tab a");
 ResultSet *rs = st->executeQuery();
 Ref<MyAddress> r1;
 if (rs->next())
 r1 = rs->getRef(1);
 st->closeResultSet(rs);
 conn->terminateStatement(st);

 MyFullName * name1 = new MyFullName("Joe", "Black");

 /* create a persistent object of type Person in the database table
 PERSON_TAB */
 MyPerson *person1 = new(conn, "PERSON_TAB") MyPerson(1,name1,r1);
 conn->commit();

 /* selecting the inserted information */
 Statement *stmt = conn->createStatement();
 ResultSet *resultSet =
 stmt->executeQuery("SELECT REF(a) from person_tab a where id = 1");

 if (resultSet->next())
 {
 Ref<MyPerson> joe_ref = (Ref<MyPerson>) resultSet->getRef(1);
 joe_ref->displayInfo();

 /* create a persistent object of type ADDRESS in the database table
 ADDR_TAB */
 MyAddress *new_addr1 = new(conn, "ADDR_TAB") MyAddress("PA", "92140");
 joe_ref->move(new_addr1->getRef());
 joe_ref->displayInfo();
 }

 /* commit the transaction which results in the newly created object
 new_addr and the dirty object joe to be flushed to the server.
 Note that joe was marked dirty in move(). */
 conn->commit();

 conn->terminateStatement(stmt);

A Sample OCCI Application

4-38 Oracle C++ Call Interface Programmer's Guide

 env->terminateConnection(conn);
 }

 catch (exception &x)

 {
 cout << x.what () << endl;
 }
 Environment::terminateEnvironment(env);
 return 0;
}

5

Data Types 5-1

5 Data Types

This chapter is a reference for Oracle data types used by Oracle C++ Interface
applications. This information helps you to understand the conversions between
internal and external representations of data that occur when you transfer data
between your application and the database server.

This chapter contains these topics:

■ Overview of Oracle Data Types

■ Internal Data Types

■ External Data Types

■ Data Conversions

Overview of Oracle Data Types
Accurate communication between your C++ program and the Oracle database server
is critical. OCCI applications can retrieve data from database tables by using SQL
queries or they can modify existing data with SQL INSERT, UPDATE, and DELETE
functions. To facilitate communication between the host language C++ and the
database server, you must be aware of how C++ data types are converted to Oracle
data types and back again.

In the Oracle database, values are stored in columns in tables. Internally, Oracle
represents data in particular formats called internal data types. NUMBER, VARCHAR2, and
DATE are examples of Oracle internal data types.

OCCI applications work with host language data types, or external data types,
predefined by the host language. When data is transferred between an OCCI
application and the database server, the data from the database is converted from
internal data types to external data types.

OCCI Type and Data Conversion
OCCI defines an enumerator called Type that lists the possible data representation
formats available in an OCCI application. These representation formats are called
external data types. When data is sent to the database server from the OCCI
application, the external data type indicates to the database server what format to
expect the data. When data is requested from the database server by the OCCI
application, the external data type indicates the format of the data to be returned.

For example, on retrieving a value from a NUMBER column, the program may be set to
retrieve it in OCCIINT format (a signed integer format into an integer variable). Or, the

Internal Data Types

5-2 Oracle C++ Call Interface Programmer's Guide

client might be set to send data in OCCIFLOAT format (floating-point format) stored in a
C++ float variable to be inserted in a column of NUMBER type.

An OCCI application binds input parameters to a Statement, by calling a setxxx()
method (the external datatype is implicitly specified by the method name), or by
calling the registerOutParam(), setDataBuffer(), or setDataBufferArray() method
(the external data type is explicitly specified in the method call). Similarly, when data
values are fetched through a ResultSet object, the external representation of the
retrieved data must be specified. This is done by calling a getxxx() method (the
external datatype is implicitly specified by the method name) or by calling the
setDataBuffer() method (the external data type is explicitly specified in the method
call).

Note that there are more external data types than internal data types. In some cases, a
single external data type maps to a single internal data type; in other cases, many
external data types map to a single internal data type. The many-to-one mapping
provides you with added flexibility.

Internal Data Types
The internal (built-in) data types provided by Oracle are listed in this section. A brief
summary of internal Oracle data types, including description, code, and maximum
size, appears in Table 5–1.

See Also: External Data Types on page 5-4

Table 5–1 Summary of Oracle Internal Data Types

Internal Data Type Maximum Size

BFILE 4 gigabytes

BINARY_DOUBLE 8 bytes

BINARY_FLOAT 4 bytes

CHAR 2,000 bytes

DATE 7 bytes

INTERVAL DAY TO SECOND REF 11 bytes

INTERVAL YEAR TO MONTH REF 5 bytes

LONG 2 gigabytes (2^31-1 bytes)

LONG RAW 2 gigabytes (2^31-1 bytes)

NCHAR 2,000 bytes

NUMBER 21 bytes

NVARCHAR2 32,767 bytes

RAW 2000 bytes (standard), 32,767 bytes (extended)

REF Not Applicable

BLOB 4 gigabytes

CLOB 4 gigabytes

NCLOB 4 gigabytes

ROWID 10 bytes

TIMESTAMP 11 bytes

Internal Data Types

Data Types 5-3

Character Strings and Byte Arrays
You can use five Oracle internal data types to specify columns that contain either
characters or arrays of bytes: CHAR, VARCHAR2, RAW, LONG, and LONG RAW.

CHAR, VARCHAR2, and LONG columns normally hold character data. RAW and LONG RAW
hold bytes that are not interpreted as characters, for example, pixel values in a
bitmapped graphics image. Character data can be transformed when passed through a
gateway between networks. For example, character data passed between systems by
using different languages (where single characters may be represented by differing
numbers of bytes) can be significantly changed in length. Raw data is never converted
in this way.

The database designer is responsible for choosing the appropriate Oracle internal data
type for each column in a table. You must be aware of the many possible ways that
character and byte-array data can be represented and converted between variables in
the OCCI program and Oracle database tables.

Universal Rowid (UROWID)
The universal rowid (UROWID) is a data type that can store both the logical and the
physical rowid of rows in Oracle tables and in foreign tables, such as DB2 tables
accessed through a gateway. Logical rowid values are primary key-based logical
identifiers for the rows of index-organized tables.

To use columns of the UROWID data type, the value of the COMPATIBLE initialization
parameter must be set to 8.1 or higher.

The following OCCI_SQLT types can be bound to universal rowids:

■ OCCI_SQLT_CHR (VARCHAR2)

■ OCCI_SQLT_VCS (VARCHAR)

■ OCCI_SQLT_STR (NULL terminated string)

■ OCCI_SQLT_LVC (long VARCHAR)

■ OCCI_SQLT_AFC (CHAR)

■ OCCI_SQLT_AVC (CHARZ)

■ OCCI_SQLT_VST (string)

TIMESTAMP WITH LOCAL TIME ZONE 7 bytes

TIMESTAMP WITH TIME ZONE 13 bytes

UROWID 4000 bytes

User-defined type (object type, VARRAY,
nested table)

Not Applicable

VARCHAR2 4000 bytes (standard), 32,767 bytes extended

See Also:

■ Oracle Database SQL Language Reference

■ Oracle Database Concepts

Table 5–1 (Cont.) Summary of Oracle Internal Data Types

Internal Data Type Maximum Size

External Data Types

5-4 Oracle C++ Call Interface Programmer's Guide

■ OCCI_SQLT_RDD (ROWID descriptor)

External Data Types
OCCI application communicate with the Oracle database server by using external data
types. Specifically, external data types are mapped to C++ data types.

Table 5–2 lists the Oracle external data types, the C++ equivalent (what the Oracle
internal data type is usually converted to), and the corresponding OCCI type. Note the
following conditions:

■ In C++ Data Type column, n stands for variable length and depends on program
requirements or operating system.

■ The usage of types in Statement class methods is as follows:

■ setDataBuffer() and setDataBufferArray(): Only types of the form OCCI_
SQLT_xxx (for example, OCCI_SQLT_INT) in the occiCommon.h file are
permitted.

■ registerOutParam(): Only types of the form OCCIxxx (for example,
OCCIDOUBLE, OCCICURSOR, and so on) on the occiCommon.h file are permitted.
However, there are some exceptions: OCCIANYDATA, OCCIMETADATA, OCCISTREAM,
and OCCIBOOL are not permitted.

■ In the ResultSet class, only types of the form OCCI_SQLT_xxx (for example, OCCI_
SQLT_INT) in the occiCommon.h file are permitted for use in setDataBuffer() and
setDataBufferArray() methods.

■ The TIMESTAMP and TIMESTAMP WITH TIME ZONE data types are collectively known as
datetimes. The INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND are
collectively known as intervals.

Table 5–2 External Data Types and Corresponding C++ and OCCI Types

External Data Type C++ Type OCCI Type Usage Notes

16 bit signed INTEGER signed short,
signed int

OCCIINT Use with setDataBuffer(),
setDataBufferArray().

32 bit signed INTEGER signed int,
signed long

OCCIINT Use with setDataBuffer(),
setDataBufferArray().

8 bit signed INTEGER signed char OCCIINT Use with setDataBuffer(),
setDataBufferArray().

BFILE Bfile OCCIBFILE Use with regiserOutParam().

FBFILE OCILobLocator OCCI_SQLT_FILE Use with setDataBuffer(),
setDataBufferArray().

BLOB OCILobLocator OCCI_SQLT_BLOB Use with setDataBuffer(),
setDataBufferArray().

BLOB Blob OCCIBLOB Use with regiserOutParam().

BOOL bool OCCIBOOL Use with regiserOutParam().

BYTES Bytes OCCIBYTES Use with regiserOutParam().

CHAR char[n] OCCI_SQLT_AFC Use with setDataBuffer(),
setDataBufferArray().

CHAR string OCCICHAR Use with regiserOutParam().

CLOB OCILobLocator OCCI_SQLT_CLOB Use with setDataBuffer(),
setDataBufferArray().

External Data Types

Data Types 5-5

CHARZ char[n+1] OCCI_SQLT_RDD Use with setDataBuffer(),
setDataBufferArray().

CLOB Clob OCCICLOB Use with regiserOutParam().

CURSOR ResultSet OCCICURSOR Use with regiserOutParam().

DATE char[7] OCCI_SQLT_DAT Use with setDataBuffer(),
setDataBufferArray().

DATE Date OCCIDATE Use with regiserOutParam().

DOUBLE double OCCIDOUBLE Use with regiserOutParam().

FLOAT float, double OCCIFLOAT Use with setDataBuffer(),
setDataBufferArray().

FLOAT float OCCIFLOAT Use with regiserOutParam().

INT int OCCIINT Use with regiserOutParam().

INTERVAL DAY TO
SECOND

char[11] OCCI_SQLT_
INTERVAL_DS

Use with setDataBuffer(),
setDataBufferArray().

INTERVAL YEAR TO
MONTH

char[5] OCCI_SQLT_
INTERVAL_YM

Use with setDataBuffer(),
setDataBufferArray().

INTERVALDS IntervalDS OCCIINTERVALDS Use with regiserOutParam().

INTERVALYM IntervalYM OCCIINTERVALYM Use with regiserOutParam().

LONG char[n] OCCI_SQLT_LNG Use with setDataBuffer(),
setDataBufferArray().

LONG RAW unsigned
char[n]

OCCI_SQLT_LBI Use with setDataBuffer(),
setDataBufferArray().

LONG VARCHAR char[n+siezeof(
integer)]

OCCI_SQLT_LVC Use with setDataBuffer(),
setDataBufferArray().

LONG VARRAW unsigned
char[n+siezeof(
integer)]

OCCI_SQLT_LVB Use with setDataBuffer(),
setDataBufferArray().

METADATA MetaData OCCIMETADATA Use with regiserOutParam().

NAMED DATA TYPE struct OCCI_SQLT_NTY Use with setDataBuffer(),
setDataBufferArray().

NATIVE DOUBLE double OCCIBDOUBLE Use with setDataBuffer(),
setDataBufferArray().

NATIVE DOUBLE Bdouble, double OCCIBDOUBLE Use with regiserOutParam().

NATIVE FLOAT float OCCIBFLOAT Use with setDataBuffer(),
setDataBufferArray().

NATIVE FLOAT BFloat, float OCCIBFLOAT Use with regiserOutParam().

null terminated
STRING

char[n+1] OCCI_SQLT_STR Use with setDataBuffer(),
setDataBufferArray().

NUMBER unsigned
char[21]

OCCI_SQLT_NUM Use with setDataBuffer(),
setDataBufferArray().

NUMBER Number OCCINUMBER Use with regiserOutParam().

POBJECT User defined
types generated
by OTT utility.

OCCIPOBJECT Use with regiserOutParam().

Table 5–2 (Cont.) External Data Types and Corresponding C++ and OCCI Types

External Data Type C++ Type OCCI Type Usage Notes

External Data Types

5-6 Oracle C++ Call Interface Programmer's Guide

Description of External Data Types
This section provides a description for each of the external data types.

BFILE
The external data type BFILE allows read-only byte stream access to large files on the
file system of the database server. A BFILE is a large binary data object stored in
operating system files outside database tablespaces. These files use reference
semantics. The Oracle server can access a BFILE provided the underlying server
operating system supports stream-mode access to these operating system files.

RAW unsigned
char[n]

OCCI_SQLT_BIN Use with setDataBuffer(),
setDataBufferArray().

REF OCIRef OCCI_SQLT_REF Use with setDataBuffer(),
setDataBufferArray().

REF Ref OCCIREF Use with regiserOutParam().

REFANY RefAny OCCIREFANY Use with regiserOutParam().

ROWID OCIRowid OCCI_SQLT_RID Use with setDataBuffer(),
setDataBufferArray().

ROWID Bytes OCCIROWID Use with regiserOutParam().

ROWID descriptor OCIRowid OCCI_SQLT_RDD Use with setDataBuffer(),
setDataBufferArray().

STRING STL string OCCISTRING Use with regiserOutParam().

TIMESTAMP char[11] OCCI_SQLT_
TIMESTAMP

Use with setDataBuffer(),
setDataBufferArray().

TIMESTAMP Timestamp OCCITIMESTAMP Use with regiserOutParam().

TIMESTAMP WITH
LOCAL TIME ZONE

char[7] OCCI_SQLT_
TIMESTAMP_LTZ

Use with setDataBuffer(),
setDataBufferArray().

TIMESTAMP WITH TIME
ZONE

char[13] OCCI_SQLT_
TIMESTAMP_TZ

Use with setDataBuffer(),
setDataBufferArray().

UNSIGNED INT unsigned int OCCIUNSIGNED_
INT

Use with setDataBuffer(),
setDataBufferArray().

UNSIGNED INT unsigned int OCCIUNSIGNED_
INT

Use with regiserOutParam().

VARCHAR char[n+sizeof(
short integer)]

OCCI_SQLT_VCS Use with setDataBuffer(),
setDataBufferArray().

VARCHAR2 char[n] OCCI_SQLT_CHR Use with setDataBuffer(),
setDataBufferArray().

VARNUM char[22] OCCI_SQLT_VNU Use with setDataBuffer(),
setDataBufferArray().

VARRAW unsigned
char[n+sizeof(
short integer)]

OCCI_SQLT_VBI Use with setDataBuffer(),
setDataBufferArray().

VECTOR STL vector OCCIVECTOR Use with regiserOutParam().

Table 5–2 (Cont.) External Data Types and Corresponding C++ and OCCI Types

External Data Type C++ Type OCCI Type Usage Notes

External Data Types

Data Types 5-7

BDOUBLE
The BDouble interface in OCCI encapsulates the native double data and the NULL
information of a column or object attribute of the type binary_double. The OCCI
methods in AnyData Class, ResultSet Class and Statement Class, and the global
methods that take these class objects as parameters, use the following definition for the
BDOUBLE data type:

Example 5–1 Definition of the BDOUBLE Data Type

struct BDouble
{
 double value;
 bool isNull;

 BDouble()
 {
 isNull = false;
 value = 0.;
 }
};

BFLOAT
The BFloat interface in OCCI encapsulates the native float data and the NULL
information of a column or object attribute of the type binary_float. The OCCI
methods in AnyData Class, ResultSet Class and Statement Class, and the global
methods that take these class objects as parameters, use the following definition for the
BFLOAT data type:

Example 5–2 Definition of the BFLOAT Data Type

struct BFloat
{
 float value;
 bool isNull;

 BFloat()
 {
 isNull = false;
 value = 0.;
 }
};

BLOB
The external data type BLOB stores unstructured binary large objects. A BLOB can be
thought of as a bitstream with no character set semantics. BLOBs can store up to 4
gigabytes of binary data.

BLOB data types have full transactional support. Changes made through OCCI
participate fully in the transaction. BLOB value manipulations can be committed or
rolled back. You cannot save a BLOB locator in a variable in one transaction and then
use it in another transaction or session.

CHAR
The external data type CHAR is a string of characters, with a maximum length of 2000
characters. Character strings are compared by using blank-padded comparison
semantics.

External Data Types

5-8 Oracle C++ Call Interface Programmer's Guide

CHARZ
The external data type CHARZ is similar to the CHAR data type, except that the string
must be NULL terminated on input, and Oracle places a NULL terminator character at the
end of the string on output. The NULL terminator serves only to delimit the string on
input or output. It is not part of the data in the table.

CLOB
The external data type CLOB stores fixed-width or varying-width character data. A
CLOB can store up to 4 gigabytes of character data. CLOBs have full transactional
support. Changes made through OCCI participate fully in the transaction. CLOB value
manipulations can be committed or rolled back. You cannot save a CLOB locator in a
variable in one transaction and then use it in another transaction or session.

DATE
The external data type DATE can update, insert, or retrieve a date value using the
Oracle internal seven byte date binary format, as listed in Table 5–3:

Example 1, 01-JUN-2000, 3:17PM:

■ The century and year bytes (1 and 2) are in excess-100 notation. Dates BCE (Before
Common Era) are less than 100. Dates in the Common Era (CE), 0 and after, are
greater than 100. For dates 0 and after, the first digit of both bytes 1 and 2 signifies
that it is of the CE.

■ For byte 1, the second and third digits of the century are calculated as the year (an
integer) divided by 100. With integer division, the fractional portion is discarded.
The following calculation is for the year 1992: 1992 / 100 = 19.

■ For byte 1, 119 represents the twentieth century, 1900 to 1999. A value of 120
would represent the twenty-first century, 2000 to 2099.

■ For byte 2, the second and third digits of the year are calculated as the year
modulo 100: 1992 % 100 = 92.

■ For byte 2, 192 represents the ninety-second year of the current century. A value of
100 would represent the zeroth year of the current century.

■ The year 2000 would yield 120 for byte 1 and 100 for byte 2.

■ For bytes 3 through 7, valid dates begin at 01-JAN of the year. The month byte
ranges from 1 to 12, the date byte ranges from 1 to 31, the hour byte ranges from 1
to 24, the minute byte ranges from 1 to 60, and the second byte ranges from 1 to
60.

Example 2, 01-JAN-4712 BCE:

■ For years before 0 CE, centuries and years are represented by the difference
between 100 and the number.

■ For byte 1, 01-JAN-4712 BCE is century 53: 100 - 47 = 53.

Table 5–3 Format of the DATE Data Type

Example
Byte 1:
Century

Byte 2:
Year

Byte 3:
Month

Byte 4:
Day

Byte 5:
Hour

Byte 6:
Minute

Byte 7:
Second

1: 01-JUN-2000, 3:17PM 120 100 6 1 16 18 1

2: 01-JAN-4712 BCE 53 88 1 1 1 1 1

External Data Types

Data Types 5-9

■ For byte 2, 01-JAN-4712 BCE is year 88: 100 - 12 = 88.

If no time is specified for a date, the time defaults to midnight and bytes 5 through 6
are set to 1: 1, 1, 1.

When you enter a date in binary format by using the external data type DATE, the
database does not perform consistency or range checking. All data in this format must
be validated before input.

There is little need for the external data type DATE. It is more convenient to convert
DATE values to a character format, because most programs deal with dates in a
character format, such as DD-MON-YYYY. Instead, you may use the Date data type.

When a DATE column is converted to a character string in your program, it is returned
in the default format mask for your session, or as specified in the INIT.ORA file.

This data type is different from OCCI DATE which corresponds to a C++ Date data type.

FLOAT
The external data type FLOAT processes numbers with fractional parts. The number is
represented in the host system's floating-point format. Normally, the length is 4 or 8
bytes.

The internal format of an Oracle number is decimal. Most floating-point
implementations are binary. Oracle, therefore, represents numbers with greater
precision than floating-point representations.

INTEGER
The external data type INTEGER is used for converting numbers. An external integer is
a signed binary number. Its size is operating system-dependent. If the number being
returned from Oracle is not an integer, then the fractional part is discarded, and no
error is returned. If the number returned exceeds the capacity of a signed integer for
the system, then Oracle returns an overflow on conversion error.

A rounding error may occur when converting between FLOAT and NUMBER. Using a
FLOAT as a bind variable in a query may return an error. You can work around this by
converting the FLOAT to a string and using the OCCI type OCCI_SQLT_CHR or the OCCI
type OCCI_SQLT_STR for the operation.

INTERVAL DAY TO SECOND
The external data type INTERVAL DAY TO SECOND stores the difference between two
datetime values in terms of days, hours, minutes, and seconds. Specify this data type
as follows:

INTERVAL DAY [(day_precision)]
TO SECOND [(fractional_seconds_precision)]

This example uses the following placeholders:

■ day_precision: Number of digits in the DAY datetime field. Accepted values are 1
to 9. The default is 2.

■ fractional_seconds_precision: Number of digits in the fractional part of the
SECOND datetime field. Accepted values are 0 to 9. The default is 6.

To specify an INTERVAL DAY TO SECOND literal with nondefault day and second
precision, you must specify the precisions in the literal. For example, you might
specify an interval of 100 days, 10 hours, 20 minutes, 42 seconds, and 22 hundredths
of a second as follows:

External Data Types

5-10 Oracle C++ Call Interface Programmer's Guide

INTERVAL '100 10:20:42.22' DAY(3) TO SECOND(2)

You can also use abbreviated forms of the INTERVAL DAY TO SECOND literal. For example:

■ INTERVAL '90' MINUTE maps to INTERVAL '00 00:90:00.00' DAY TO SECOND(2)

■ INTERVAL '30:30' HOUR TO MINUTE maps to INTERVAL '00 30:30:00.00' DAY TO
SECOND(2)

■ INTERVAL '30' SECOND(2,2) maps to INTERVAL '00 00:00:30.00' DAY TO
SECOND(2)

INTERVAL YEAR TO MONTH
The external data type INTERVAL YEAR TO MONTH stores the difference between two
datetime values by using the YEAR and MONTH datetime fields. Specify INTERVAL YEAR TO
MONTH as follows:

INTERVAL YEAR [(year_precision)] TO MONTH

The placeholder year_precision is the number of digits in the YEAR datetime field.
The default value of year_precision is 2. To specify an INTERVAL YEAR TO MONTH literal
with a nondefault year_precision, you must specify the precision in the literal. For
example, the following INTERVAL YEAR TO MONTH literal indicates an interval of 123
years, 2 months:

INTERVAL '123-2' YEAR(3) TO MONTH

You can also use abbreviated forms of the INTERVAL YEAR TO MONTH literal. For example,

■ INTERVAL '10' MONTH maps to INTERVAL '0-10' YEAR TO MONTH

■ INTERVAL '123' YEAR(3) maps to INTERVAL '123-0' YEAR(3) TO MONTH

LONG
The external data type LONG stores character strings longer than 4000 bytes and up to 2
gigabytes in a column of data type LONG. Columns of this type are only used for
storage and retrieval of long strings. They cannot be used in methods, expressions, or
WHERE clauses. LONG column values are generally converted to and from character
strings.

LONG RAW
The external data type LONG RAW is similar to the external data type RAW, except that it
stores up to 2 gigabytes.

LONG VARCHAR
The external data type LONG VARCHAR stores data from and into an Oracle LONG column.
The first four bytes contain the length of the item. The maximum length of a LONG
VARCHAR is 2 gigabytes.

LONG VARRAW
The external data type LONG VARRAW store data from and into an Oracle LONG RAW
column. The length is contained in the first four bytes. The maximum length is 2
gigabytes.

External Data Types

Data Types 5-11

NCLOB
The external data type NCLOB is a national character version of a CLOB. It stores
fixed-width, multibyte national character set character (NCHAR), or varying-width
character set data. An NCLOB can store up to 4 gigabytes of character text data.

NCLOBs have full transactional support. Changes made through OCCI participate fully
in the transaction. NCLOB value manipulations can be committed or rolled back. You
cannot save an NCLOB locator in a variable in one transaction and then use it in another
transaction or session.

You cannot create an object with NCLOB attributes, but you can specify NCLOB
parameters in methods.

NUMBER
You should not have to use NUMBER as an external data type. If you do use it, Oracle
returns numeric values in its internal 21-byte binary format and expects this format on
input. The following discussion is included for completeness only.

Oracle stores values of the NUMBER data type in a variable-length format. The first byte
is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit of the
exponent byte is the sign bit; it is set for positive numbers and it is cleared for negative
numbers. The lower 7 bits represent the exponent, which is a base-100 digit with an
offset of 65.

To calculate the decimal exponent, add 65 to the base-100 exponent and add another
128 if the number is positive. If the number is negative, you do the same, but
subsequently the bits are inverted. For example, -5 has a base-100 exponent = 62
(0x3e). The decimal exponent is thus (~0x3e)-128-65 = 0xc1-128-65 = 193-128-65
= 0.

Each mantissa byte is a base-100 digit, in the range 1 to 100. For positive numbers, the
digit has 1 added to it. So, the mantissa digit for the value 5 is 6. For negative numbers,
instead of adding 1, the digit is subtracted from 101. So, the mantissa digit for the
number -5 is: 101-5 = 96. Negative numbers have a byte containing 102 appended to
the data bytes. However, negative numbers that have 20 mantissa bytes do not have
the trailing 102 byte. Because the mantissa digits are stored in base-100, each byte can
represent two decimal digits. The mantissa is normalized; leading zeroes are not
stored.

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to be
accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum
precision of 38 digits for an internal data type NUMBER.

Note that this data type is different from OCCI NUMBER which corresponds to a C++
Number data type.

OCCI BFILE

OCCI BLOB

See Also: Chapter 13, "OCCI Application Programming Interface",
Bfile Class on page 13-54

See Also: Chapter 13, "OCCI Application Programming Interface",
Blob Class on page 13-76

External Data Types

5-12 Oracle C++ Call Interface Programmer's Guide

OCCI BYTES

OCCI CLOB

OCCI DATE

OCCI INTERVALDS

OCCI INTERVALYM

OCCI NUMBER

OCCI POBJECT

OCCI REF

OCCI REFANY

OCCI STRING
The external data type OCCI STRING corresponds to an STL string.

OCCI TIMESTAMP

See Also: Chapter 13, "OCCI Application Programming Interface",
Bytes Class on page 13-103

See Also: Chapter 13, "OCCI Application Programming Interface",
Clob Class on page 13-111

See Also: Chapter 13, "OCCI Application Programming Interface",
Date Class on page 13-220

See Also: Chapter 13, "OCCI Application Programming Interface",
IntervalDS Class on page 13-282

See Also: Chapter 13, "OCCI Application Programming Interface",
IntervalYM Class on page 13-312

See Also: Chapter 13, "OCCI Application Programming Interface",
Number Class on page 13-410

See Also: Chapter 13, "OCCI Application Programming Interface",
PObject Class on page 13-477

See Also: Chapter 13, "OCCI Application Programming Interface",
Ref Class on page 13-512

See Also: Chapter 13, "OCCI Application Programming Interface",
RefAny Class on page 13-530

See Also: Chapter 13, "OCCI Application Programming Interface",
Timestamp Class on page 13-771

External Data Types

Data Types 5-13

OCCI VECTOR
The external data type OCCI VECTOR is used to represent collections, for example, a
nested table or VARRAY. CREATE TYPE num_type as VARRAY OF NUMBER(10) can be
represented in a C++ application as vector<int>, vector<Number>, and so on.

RAW
The external data type RAW is used for binary data or byte strings that are not to be
interpreted or processed by Oracle. RAW could be used, for example, for graphics
character sequences. The maximum length of a RAW column is 2000 bytes. If the
init.ora parameter max_string_size = standard (default value), the maximum
length of a RAW can be 2000 bytes. If the init.ora parameter max_string_size =
extended, the maximum length of a RAW can be 32767 bytes.

When RAW data in an Oracle table is converted to a character string, the data is
represented in hexadecimal code. Each byte of RAW data is represented as two
characters that indicate the value of the byte, ranging from 00 to FF. If you input a
character string by using RAW, then you must use hexadecimal coding.

REF
The external data type REF is a reference to a named data type. To allocate a REF for use
in an application, declare a variable as a pointer to a REF.

ROWID
The external data type ROWID identifies a particular row in a database table. The ROWID
is often returned from a query by issuing a statement similar to the following example:

SELECT ROWID, var1, var2 FROM db;

You can then use the returned ROWID in further DELETE statements.

If you are performing a SELECT for an UPDATE operation, then the ROWID is implicitly
returned.

STRING
The external data type STRING behaves like the external data type VARCHAR2 (data type
code 1), except that the external data type STRING must be NULL-terminated.

Note that this data type is different from OCCI STRING which corresponds to a C++
STL string data type.

TIMESTAMP
The external data type TIMESTAMP is an extension of the DATE data type. It stores the
year, month, and day of the DATE data type, plus hour, minute, and second values.
Specify the TIMESTAMP data type as follows:

TIMESTAMP [(fractional_seconds_precision)]

The placeholder fractional_seconds_precision optionally specifies the number of
digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6. For example, you specify TIMESTAMP(2) as a literal as
follows:

TIMESTAMP '1997-01-31 09:26:50.10'

Note that this data type is different from OCCI TIMESTAMP.

External Data Types

5-14 Oracle C++ Call Interface Programmer's Guide

TIMESTAMP WITH LOCAL TIME ZONE
The external data type TIMESTAMP WITH TIME ZONE (TSTZ) is a variant of TIMESTAMP that
includes an explicit time zone displacement in its value. The time zone displacement is
the difference (in hours and minutes) between local time and Coordinated Universal
Time (UTC), formerly Greenwich Mean Time. Specify the TIMESTAMP WITH TIME ZONE
data type as follows:

TIMESTAMP(fractional_seconds_precision) WITH TIME ZONE

The placeholder fractional_seconds_precision optionally specifies the number of
digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6.

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent the
same instant in UTC, regardless of the TIME ZONE offsets stored in the data.

TIMESTAMP WITH TIME ZONE
The external data type TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that
includes a time zone displacement in its value. The time zone displacement is the
difference (in hours and minutes) between local time and Coordinated Universal Time
(UTC), formerly Greenwich Mean Time. Specify the TIMESTAMP WITH TIME ZONE data
type as follows:

TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE

The placeholder fractional_seconds_precision optionally specifies the number of
digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6. For example, you might specify TIMESTAMP(0) WITH TIME
ZONE as a literal as follows:

TIMESTAMP '1997-01-31 09:26:50+02.00'

UNSIGNED INT
The external data type UNSIGNED INT is used for unsigned binary integers. The size in
bytes is operating system dependent. The host system architecture determines the
order of the bytes in a word. If the number being output from Oracle is not an integer,
the fractional part is discarded, and no error is returned. If the number to be returned
exceeds the capacity of an unsigned integer for the operating system, Oracle returns an
overflow on conversion error.

VARCHAR
The external data type VARCHAR store character strings of varying length. The first two
bytes contain the length of the character string, and the remaining bytes contain the
actual string. The specified length of the string in a bind or a define call must include
the two length bytes, meaning the largest VARCHAR string is 65533 bytes long, not
65535. For converting longer strings, use the LONG VARCHAR external data type.

VARCHAR2
The external data type VARCHAR2 is a variable-length string of characters up to 4000
bytes. If the init.ora parameter max_string_size = standard (default value), the
maximum length of a VARCHAR2 can be 4000 bytes. If the init.ora parameter max_
string_size = extended, the maximum length of a VARCHAR2 can be 32767 bytes.

External Data Types

Data Types 5-15

VARNUM
The external data type VARNUM is similar to the external data type NUMBER, except that
the first byte contains the length of the number representation. This length value does
not include the length byte itself. Reserve 22 bytes to receive the longest possible
VARNUM. You must set the length byte when you send a VARNUM value to the database.

VARRAW
The external data type VARRAW is similar to the external data type RAW, except that the
first two bytes contain the length of the data. The specified length of the string in a
bind or a define call must include the two length bytes. So the largest VARRAW string
that can be received or sent is 65533 bytes, not 65535. For converting longer strings,
use the LONG VARRAW data type.

NATIVE DOUBLE
This external data type implements the IEEE 754 standard double-precision floating
point data type. It is represented in the host system's native floating point format. The
data type is stored in the Oracle Server in a byte comparable canonical format, and
requires 8 bytes for storage, including the length byte. It is an alternative to Oracle
NUMBER and has the following advantages over NUMBER:

■ Fewer bytes used in storage

■ Matches data types used by RDBMS Clients

■ Supports a wider range of values used in scientific calculations.

NATIVE FLOAT
This external data type implements the IEEE 754 single-precision floating point data
type. It is represented in the host system's native floating point format. The data type
is stored in the Oracle Server in a byte comparable canonical format, and requires 4
bytes for storage, including the length byte. It is an alternative to Oracle NUMBER and
has the following advantages over NUMBER:

■ Fewer bytes used in storage

■ Matches data types used by RDBMS Clients

■ Supports a wider range of values used in scientific calculations

Table 5–4 VARNUM Examples

Decimal Value Length Byte Exponent Byte Mantissa Bytes Terminator Byte

0 1 128 NA1

1 NA means not applicable.

NA

5 2 193 6 NA

-5 3 62 96 102

2767 3 194 28, 68 NA

-2767 4 61 74, 34 102

100000 2 195 11 NA

1234567 5 196 2, 24, 46, 68 NA

Data Conversions

5-16 Oracle C++ Call Interface Programmer's Guide

Data Conversions
Table 5–5 lists the supported conversions from Oracle internal data types to external
data types, and from external data types to internal column representations.

Note the following conditions:

■ A REF stored in the database is converted to OCCI_SQLT_REF on output.

■ An OCCI_SQLT_REF is converted to the internal representation of a REF on input.

■ A named data type stored in the database is converted to OCCI_SQLT_NTY (and
represented by a C structure in the application) on output.

■ An OCCI_SQLT_NTY (represented by a C structure in an application) is converted to
the internal representation of the corresponding data type on input.

■ LOBs and BFILEs are represented by descriptors in OCCI applications, so there are
no input or output conversions.

Also note that in Table 5–5, conversions have the following numeric codes:

1. The data type must be in Oracle ROWID format for input; it is returned in Oracle
ROWID format on output.

2. The data type must be in Oracle DATE format for input; it is returned in Oracle
DATE format on output.

3. The data type must be in hexadecimal format for input; it is returned in
hexadecimal format on output.

4. The data type must represent a valid number for output.

5. The length must be less than or equal to 2000 characters.

6. The data type must be stored in hexadecimal format on output; it is in
hexadecimal format on output.

Table 5–5 Data Conversions Between External and Internal Data Types

NA1 Internal Data Types

External Data
Types VARCHAR2 NUMBER LONG ROWID DATE RAW LONG RAW CHAR BFLOAT BDOUBLE

CHAR I/O I/O I/O I/O1 I/O2 I/O3 I3, 5 I/O I/O I/O

CHARZ I/O I/O I/O I/O1 I/O2 I/O3 I3, 5 I/O NA NA

DATE I/O NA I NA I/O NA NA I/O NA NA

DECIMAL I/O4 I/O I NA NA NA NA I/O4 NA NA

FLOAT I/O4 I/O I NA NA NA NA I/O4 I/O I/O

INTEGER I/O4 I/O I NA NA NA NA I/O4 I/O I/O

LONG I/O I/O I/O I/O1 I/O2 I/O3 I/O3, 5 I/O I/O II/O

LONG RAW O6 NA I5, 6 NA NA I/O I/O O6 NA NA

LONG VARCHAR I/O I/O I/O I/O1 I/O2 I/O3 I/O3, 5 I/O I/O I/O

LONG VARRAW I/O6 NA I5, 6 NA NA I/O I/O I/O6 NA NA

NUMBER I/O4 I/O I NA NA NA NA I/O4 I/O I/O

OCCI BDouble I/O 1/O I NA NA NA NA I/O I/O I/O

OCCI BFloat I/O 1/O I NA NA NA NA I/O I/O I/O

OCCI Bytes I/O6 NA I5, 6 NA NA I/O I/O I/O6 NA NA

Data Conversions

Data Types 5-17

Data Conversions for LOB Data Types

OCCI Date I/O2 NA I NA I/O NA NA I/O NA NA

OCCI Number I/O4 I/O I NA NA NA NA I/O4 I/O I/O

OCCI Timestamp NA NA NA NA NA NA NA NA NA NA

RAW I/O6 NA I5, 6 NA NA I/O I/O I/O6 NA NA

ROWID I NA I I/O NA NA NA I NA NA

STL string I/O I/O I/O I/O1 I/O2 I/O3 I/O3 - I/O4 I/O4

STRING I/O I/O I/O I/O1 I/O2 I/O3 I/O3, 5 I/O I/O I/O

UNSIGNED I/O4 I/O I NA NA NA NA I/O4 I/O I/O

VARCHAR I/O I/O I/O I/O1 I/O2 I/O3 I/O3 NA I/O I/O

VARCHAR2 I/O I/O I/O I/O1 I/O2 I/O3 I/O3, 5 I/O I/O I/O

VARNUM I/O4 I/O I NA NA NA NA I/O4 I/O I/O

VARRAW I/O6 NA I5, 6 NA NA I/O I/O I/O6 NA NA

1 NA means not applicable.
2 I/O = Conversion is valid for input and output, unless otherwise specified.

Table 5–6 Data Conversions for LOBs

EXTERNAL DATATYPES

INTERNAL DATATYPES

CLOB BLOB

VARCHAR I/O1

1 I/O = Conversion is valid for input and output.

NA2

2 NA means not applicable.

CHAR I/O NA

LONG I/O NA

LONG VARCHAR I/O NA

STL String I/O NA

RAW NA I/O

VARRAW NA I/O

LONG RAW NA I/O

LONG VARRAW NA I/O

OCCI Bytes NA I/O

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide for an introduction to LOB data types.

Table 5–5 (Cont.) Data Conversions Between External and Internal Data Types

NA1 Internal Data Types

External Data
Types VARCHAR2 NUMBER LONG ROWID DATE RAW LONG RAW CHAR BFLOAT BDOUBLE

Data Conversions

5-18 Oracle C++ Call Interface Programmer's Guide

Data Conversions for Date, Timestamp, and Interval Data Types
You can also use a character data type for the host variable used in a fetch or insert
operation from or to a datetime or interval column. Oracle performs the conversion
between the character data type and datetime/interval data type for you.

These consideration apply when converting between Date, Timestamp and Interval
data types:

■ When assigning a source with time zone to a target without a time zone, the time
zone portion of the source is ignored. On assigning a source without a time zone to
a target with a time zone, the time zone of the target is set to the session's default
time zone.

■ When assigning an Oracle DATE to a TIMESTAMP, the TIME portion of the DATE is
copied over to the TIMESTAMP. When assigning a TIMESTAMP to Oracle DATE, the
TIME portion of the result DATE is set to zero. This is done to encourage migration
of Oracle DATE to ANSI compliant DATETIME data types.

■ (When assigning an ANSI DATE to an Oracle DATE or a TIMESTAMP, the TIME portion
of the Oracle DATE and the TIMESTAMP are set to zero. When assigning an Oracle
DATE or a TIMESTAMP to an ANSI DATE, the TIME portion is ignored.

■ When assigning a DATETIME to a character string, the DATETIME is converted using
the session's default DATETIME format. When assigning a character string to a
DATETIME, the string must contain a valid DATETIME value based on the session's
default DATETIME format.

Table 5–7 Data Conversions for Date, Timestamp, and Interval Data Types

External Types Internal Types

NA1

1 NA means not applicable.

 VARCHAR,
CHAR DATE TS TSTZ TSLTZ

INTERVAL YEAR
TO MONTH

INTERVAL DAY
TO SECOND

VARCHAR2, CHAR I/O2

2 I/O = Conversion is valid for input and output.

I/O I/O I/O I/O I/O I/O

STL String I/O I/O I/O I/O I/O I/O I/O

DATE I/O I/O I/O I/O I/O NA NA

OCCI Date I/O I/O I/O I/O I/O NA NA

ANSI DATE I/O I/O I/O I/O I/O NA NA

TIMESTAMP (TS) I/O I/O I/O I/O I/O NA NA

OCCI Timestamp I/O I/O I/O I/O I/O NA NA

TIMESTAMP WITH TIME
ZONE (TSTZ)

I/O I/O I/O I/O I/O NA NA

TIMESTAMP WITH
LOCAL TIME ZONE
(TSLTZ)

I/O I/O I/O I/O I/O NA NA

INTERVAL YEAR TO
MONTH

I/O NA NA NA NA I/O NA

OCCI IntervalYM I/O NA NA NA NA I/O NA

INTERVAL DAY TO
SECOND

I/O NA NA NA NA NA I/O

OCCI IntervalDS I/O NA NA NA NA NA I/O

Data Conversions

Data Types 5-19

■ When assigning a character string to an INTERVAL, the character string must be a
valid INTERVAL character format.

■ When converting from TSLTZ to CHAR, DATE, TIMESTAMP and TSTZ, the value is
adjusted to the session time zone.

■ When converting from CHAR, DATE, and TIMESTAMP to TSLTZ, the session time zone
is stored in memory.

■ When assigning TSLTZ to ANSI DATE, the time portion is 0.

■ When converting from TSTZ, the time zone that the time stamp is in is stored in
memory.

■ When assigning a character string to an interval, the character string must be a
valid interval character format.

Data Conversions

5-20 Oracle C++ Call Interface Programmer's Guide

6

Metadata 6-1

6 Metadata

This chapter describes how to retrieve metadata about result sets or the database as a
whole.

This chapter contains these topics:

■ Overview of Metadata

■ Identity Column Metadata

■ Describing Database Metadata

■ Attribute Reference

Overview of Metadata
Database objects have various attributes that describe them; you can obtain
information about a particular schema object by performing a DESCRIBE operation. The
result can be accessed as an object of the Metadata class by passing object attributes as
arguments to the various methods of the Metadata class.

You can perform an explicit DESCRIBE operation on the database as a whole, on the
types and properties of the columns contained in a ResultSet class, or on any of the
following schema and subschema objects, such as tables, types, sequences, views, type
attributes, columns, procedures, type methods, arguments, functions, collections,
results, packages, synonyms, and lists

You must specify the type of the attribute you are looking for. By using the
getAttributeCount(), getAttributeId(), and getAttributeType() methods of the
MetaData class, you can scan through each available attribute.

All DESCRIBE information is cached until the last reference to it is deleted. Users are in
this way prevented from accidentally trying to access DESCRIBE information that is
freed.

You obtain metadata by calling the getMetaData() method on the Connection class in
case of an explicit describe, or by calling the getColumnListMetaData() method on the
ResultSet class to get the metadata of the result set columns. Both methods return a
MetaData object with the describing information. The MetaData class provides the
getxxx() methods to access this information.

When performing DESCRIBE operations, be aware of the following issues:

See Also: Table 13–27, " Enumerated Values Used by MetaData
Class" on page 13-379

Identity Column Metadata

6-2 Oracle C++ Call Interface Programmer's Guide

■ The ATTR_TYPECODE returns type codes that represent the type supplied when you
created a new type by using the CREATE TYPE statement. These type codes are of
the enumerated type TypeCode, which are represented by OCCI_TYPECODE
constants. Internal PL/SQL types (boolean, indexed table) are not supported

■ The ATTR_DATA_TYPE returns types that represent the data types of the database
columns. These values are of enumerated type Type. For example, LONG types
return OCCI_SQLT_LNG types.

Identity Column Metadata
Starting with Oracle Database Release 12c, columns may be created as identity
columns. When new rows are inserted into tables, the values for these columns are
generated automatically.

This feature adds a new ColumnAttrId enum to the MetaData Class (see Table 13–27),
and an overloaded form of getBoolean() method in the MetaData Class. Example 6–1
shows how to use this feature.

Example 6–1 How to use Identity Column Metadata

vector<MetaData> v1;
MetaData metaData = conn->getMetaData(tableName);
columnCount = metaData.getInt(MetaData::ATTR_NUM_COLS);
cout << "Number of Columns : " << columnCount << endl;

v1 = metaData.getVector(MetaData::ATTR_LIST_COLUMNS);

for(int i=0; i < v1.size(); i++) {
MetaData md = v1[i];
colNames[i] = md.getString(MetaData::ATTR_NAME);
size[i] = md.getInt(MetaData::ATTR_DATA_SIZE);
precision[i] = md.getInt(MetaData::ATTR_PRECISION);
scale[i] = md.getInt(MetaData::ATTR_SCALE);

if (md.getBoolean(MetaData::ATTR_IS_NULL))
strcpy (isnull[i], "YES");

else
strcpy (isnull[i], "NO");

if (md.getBoolean(MetaData::ATTR_COL_IS_IDENTITY))
strcpy (isIdentity[i], "YES");

else
strcpy (isIdentity[i], "NO");

if (md.getBoolean(MetaData::ATTR_COL_IS_GEN_ALWAYS))
strcpy (isGenAlways[i], "YES");

else
strcpy (isGenAlways[i], "NO");

if (md.getBoolean(MetaData::ATTR_COL_IS_GEN_BY_DEF_ON_NULL))
strcpy (isGenOnNull[i], "YES");

else
strcpy (isGenOnNull[i], "NO");

}

cout << "\n columnName isNull isIdentity isGenAlways" << " isGenOnNull "
<< endl;

cout <<"---" << endl;

Describing Database Metadata

Metadata 6-3

for(int i=0; i < columnCount; ++i) {
cout << " " << colNames[i] << " ";
printf("%10s%10s%12s%12s\n", isnull[i], isIdentity[i], isGenAlways[i],

isGenOnNull[i]);
}

For more information, see Oracle Database Migration Guide, and Oracle Database SQL
Language Reference. Additionally, see the changes to Oracle Database Reference:

■ A new IDENTITY_COLUMN column for views ALL_TAB_COLUMNS, DBA_TAB_COLUMNS,
USER_TAB_COLUMNS, ALL_TAB_COLS, DBA_TAB_COLS, and USER_TAB_COLS

■ A new HAS_IDENTITY column for views ALL_TABLES, DBA_TABLES, and USER_TABLES

■ The new views ALL_TAB_IDENTITY_COLS, DBA_TAB_IDENTITY_COLS, and USER_TAB_
IDENTITY_COLS, which display a table's identity column properties

Describing Database Metadata
Describing database metadata is equivalent to an explicit DESCRIBE operation. The
object to describe must be an object in the schema. In describing a type, you call the
getMetaData() method from the connection, passing the name of the object or a
RefAny object. You must first initialize the environment in the OBJECT mode. The
getMetaData() method returns an object of type MetaData. Each type of MetaData
object has a list of attributes that are part of the describe tree. The describe tree can
then be traversed recursively to point to subtrees that contain more information. More
information about an object can be obtained by calling the getxxx() methods.

If you must construct a browser that describes the database and its objects recursively,
then you can access information regarding the number of attributes for each object in
the database (including the database), the attribute ID listing, and the attribute types
listing. By using this information, you can recursively traverse the describe tree from
the top node (the database) to the columns in the tables, the attributes of a type, the
parameters of a procedure or function, and so on.

For example, consider the typical case of describing a table and its contents. You call
the getMetaData() method from the connection, passing the name of the table to be
described. The MetaData object returned contains the table information. Because you
are aware of the type of the object you want to describe (table, column, type, collection,
function, procedure, and so on), you can obtain the attribute list. You can retrieve the
value into a variable of the type specified in the table by calling the corresponding
getxxx() method.

Table 6–1 Attribute Groupings

Attribute Type Description

Parameter Attributes on page 6-7 Attributes belonging to all elements

Table and View Attributes on page 6-8 Attributes belonging to tables and views

Procedure, Function, and Subprogram
Attributes on page 6-8

Attributes belonging to procedures, functions,
and package subprograms

Package Attributes on page 6-9 Attributes belonging to packages

Type Attributes on page 6-9 Attributes belonging to types

Type Attribute Attributes on page 6-10 Attributes belonging to type attributes

Type Method Attributes on page 6-11 Attributes belonging to type methods

Collection Attributes on page 6-11 Attributes belonging to collection types

Describing Database Metadata

6-4 Oracle C++ Call Interface Programmer's Guide

Metadata Code Examples
This section provides code examples for using metadata:

■ Example 6–2, "How to Obtain Metadata About Attributes of a Simple Database
Table" on page 6-4

■ Example 6–3, "How to Obtain Metadata from a Column Containing User-Defined
Types" on page 6-5

■ Example 6–4, "How to Obtain Object Metadata from a Reference" on page 6-6

■ Example 6–5, "How to Obtain Metadata About a Select List from a ResultSet
Object" on page 6-6

Example 6–2 How to Obtain Metadata About Attributes of a Simple Database Table

This example demonstrates how to obtain metadata about attributes of a simple
database table:

/* Create an environment and a connection to the HR database */
.
.
/* Call the getMetaData method on the Connection object obtainedv*/
MetaData emptab_metaData = connection->getMetaData(

"EMPLOYEES", MetaData::PTYPE_TABLE);
/* Now that you have the metadata information on the EMPLOYEES table,

call the getxxx methods using the appropriate attributes */

/* Call getString */
cout<<"Schema:"<<

(emptab_metaData.getString(MetaData::ATTR_OBJ_SCHEMA))<<endl;

if(emptab_metaData.getInt(
emptab_metaData::ATTR_PTYPE)==MetaData::PTYPE_TABLE)

cout<<"EMPLOYEES is a table"<<endl;
else
 cout<<"EMPLOYEES is not a table"<<endl;

/* Call getInt to get the number of columns in the table */
int columnCount=emptab_metaData.getInt(MetaData::ATTR_NUM_COLS);
cout<<"Number of Columns:"<<columnCount<<endl;

/* Call getTimestamp to get the timestamp of the table object */
Timestamp tstamp = emptab_metaData.getTimestamp(MetaData::ATTR_TIMESTAMP);
/* Now that you have the value of the attribute as a Timestamp object,

Synonym Attributes on page 6-12 Attributes belonging to synonyms

Sequence Attributes on page 6-12 Attributes belonging to sequences

Column Attributes on page 6-13 Attributes belonging to columns of tables or
views

Argument and Result Attributes on page 6-13 Attributes belonging to arguments / results

List Attributes on page 6-15 Attributes that designate the list type

Schema Attributes on page 6-15 Attributes specific to schemas

Database Attributes on page 6-15 Attributes specific to databases

Table 6–1 (Cont.) Attribute Groupings

Attribute Type Description

Describing Database Metadata

Metadata 6-5

you can call methods to obtain the components of the timestamp */
int year;
unsigned int month, day;
tstamp.getData(year, month, day);

/* Call getVector for attributes of list type, such as ATTR_LIST_COLUMNS */
vector<MetaData>listOfColumns;
listOfColumns=emptab_metaData.getVector(MetaData::ATTR_LIST_COLUMNS);

/* Each of the list elements represents a column metadata,
so now you can access the column attributes*/

for (int i=0;i<listOfColumns.size();i++
{

MetaData columnObj=listOfColumns[i];
cout<<"Column Name:"<<(columnObj.getString(MetaData::ATTR_NAME))<<endl;
cout<<"Data Type:"<<(columnObj.getInt(MetaData::ATTR_DATA_TYPE))<<endl;

 .
 .

/* and so on to obtain metadata on other column specific attributes */
}

Example 6–3 How to Obtain Metadata from a Column Containing User-Defined Types

This example demonstrates how to obtain metadata from a column that contains
user-defined types database table.

/* Create an environment and a connection to the HR database */
...
/* Call the getMetaData method on the Connection object obtained */
MetaData custtab_metaData = connection->getMetaData(

"CUSTOMERS", MetaData::PTYPE_TABLE);

/* Have metadata information on CUSTOMERS table; call the getxxx methods */
/* Call getString */
cout<<"Schema:"<<(custtab_metaData.getString(MetaData::ATTR_OBJ_SCHEMA))

<<endl;
if(custtab_metaData.getInt(custtab_metaData::ATTR_PTYPE)==MetaData::PTYPE_TABLE)

cout<<"CUSTOMERS is a table"<<endl;
else

cout<<"CUSTOMERS is not a table"<<endl;

/* Call getVector to obtain list of columns in the CUSTOMERS table */
vector<MetaData>listOfColumns;
listOfColumns=custtab_metaData.getVector(MetaData::ATTR_LIST_COLUMNS);

/* Assuming metadata for column cust_address_typ is fourth element in list*/
MetaData customer_address=listOfColumns[3];

/* Obtain the metadata for the customer_address attribute */
int typcode = customer_address.getInt(MetaData::ATTR_TYPECODE);
if(typcode==OCCI_TYPECODE_OBJECT)

cout<<"customer_address is an object type"<<endl;
else

cout<<"customer_address is not an object type"<<endl;

string objectName=customer_address.getString(MetaData::ATTR_OBJ_NAME);

/* Now that you have the name of the address object,
the metadata of the attributes of the type can be obtained by using
getMetaData on the connection by passing the object name

*/

Describing Database Metadata

6-6 Oracle C++ Call Interface Programmer's Guide

MetaData address = connection->getMetaData(objectName);

/* Call getVector to obtain the list of the address object attributes */
vector<MetaData> attributeList =

address.getVector(MetaData::ATT_LIST_TYPE_ATTRS);

/* and so on to obtain metadata on other address object specific attributes */

Example 6–4 How to Obtain Object Metadata from a Reference

This example demonstrates how to obtain metadata about an object when using a
reference to it:

Type ADDRESS(street VARCHAR2(50), city VARCHAR2(20));
Table Person(id NUMBER, addr REF ADDRESS);

/* Create an environment and a connection to the HR database */
.
.
/* Call the getMetaData method on the Connection object obtained */
MetaData perstab_metaData = connection->getMetaData(

"Person", MetaData::PTYPE_TABLE);

/* Now that you have the metadata information on the Person table,
 call the getxxx methods using the appropriate attributes */
/* Call getString */
cout<<"Schema:"<<(perstab_metaData.getString(MetaData::ATTR_OBJ_SCHEMA))<<endl;

if(perstab_metaData.getInt(perstab_metaData::ATTR_PTYPE)==MetaData::PTYPE_TABLE)
cout<<"Person is a table"<<endl;

else
cout<<"Person is not a table"<<endl;

/* Call getVector to obtain the list of columns in the Person table*/
vector<MetaData>listOfColumns;
listOfColumns=perstab_metaData.getVector(MetaData::ATTR_LIST_COLUMNS);

/* Each of the list elements represents a column metadata,
so now get the data type of the column by passing ATTR_DATA_TYPE
to getInt */

for(int i=0;i<numCols;i++)
{

int dataType=colList[i].getInt(MetaData::ATTR_DATA_TYPE);
/* If the data type is a reference, get the Ref and obtain the metadata

 about the object by passing the Ref to getMetaData */
if(dataType==SQLT_REF)

 RefAny refTdo=colList[i].getRef(MetaData::ATTR_REF_TDO);

/* Now you can obtain the metadata about the object as shown
MetaData tdo_metaData=connection->getMetaData(refTdo);

/* Now that you have the metadata about the TDO, you can obtain the metadata
 about the object */
}

Example 6–5 How to Obtain Metadata About a Select List from a ResultSet Object

This example demonstrates how to obtain metadata about a select list from a
ResultSet.

/* Create an environment and a connection to the database */

Attribute Reference

Metadata 6-7

...
/* Create a statement and associate it with a select clause */
string sqlStmt="SELECT * FROM EMPLOYEES";
Statement *stmt=conn->createStatement(sqlStmt);

/* Execute the statement to obtain a ResultSet */
ResultSet *rset=stmt->executeQuery();

/* Obtain the metadata about the select list */
vector<MetaData>cmd=rset->getColumnListMetaData();

/* The metadata is a column list and each element is a column metaData */
int dataType=cmd[i].getInt(MetaData::ATTR_DATA_TYPE);
...

The getMetaData method is called for the ATTR_COLLECTION_ELEMENT attribute only.

Attribute Reference
This section describes the attributes belonging to schema and subschema objects.

Parameter Attributes
All elements have some attributes specific to that element and some generic attributes.
Table 6–2 describes the attributes that belong to all elements:

Table 6–2 Attributes that Belong to All Elements

Attribute Description Attribute Data Type

ATTR_OBJ_ID Object or schema ID unsigned int

ATTR_OBJ_NAME Object, schema, or database name string

ATTR_OBJ_SCHEMA Schema where object is located string

ATTR_OBJ_PTYPE Type of information described by the parameter. Possible
values are:

PTYPE_TABLE, Table

PTYPE_VIEW, View

PTYPE_PROC, Procedure

PTYPE_FUNC, Function

PTYPE_PKG, Package

PTYPE_TYPE, Type

PTYPE_TYPE_ATTR, Attribute of a type

PTYPE_TYPE_COLL, Collection type information

PTYPE_TYPE_METHOD, A method of a type

PTYPE_SYN, Synonym

PTYPE_SEQ, Sequence

PTYPE_COL, Column of a table or view

PTYPE_ARG, Argument of a function or procedure

PTYPE_TYPE_ARG, Argument of a type method

PTYPE_TYPE_RESULT, Results of a method

PTYPE_SCHEMA, Schema

PTYPE_DATABASE, Database

int

ATTR_TIMESTAMP The TIMESTAMP of the object this description is based on
(Oracle DATE format).

Timestamp

Attribute Reference

6-8 Oracle C++ Call Interface Programmer's Guide

The sections that follow list attributes specific to different types of elements.

Table and View Attributes
A parameter for a table or view (type PTYPE_TABLE or PTYPE_VIEW) has the following
type-specific attributes described in Table 6–3:

The additional attributes belonging to tables are described in Table 6–4.

Procedure, Function, and Subprogram Attributes
A parameter for a procedure or function (type PTYPE_PROC or PTYPE_FUNC) has the
type-specific attributes described in Table 6–5.

The additional attributes belonging to package subprograms are described in
Table 6–6.

Table 6–3 Attributes that Belong to Tables or Views

Attribute Description Attribute Data Type

ATTR_OBJID Object ID unsigned int

ATTR_NUM_COLS Number of columns int

ATTR_LIST_COLUMNS Column list (type PTYPE_LIST) vector<MetaData>

ATTR_REF_TDO REF to the object type that is being described RefAny

ATTR_IS_TEMPORARY Identifies whether the table or view is temporary bool

ATTR_IS_TYPED Identifies whether the table or view is typed bool

ATTR_DURATION Duration of a temporary table. Values can be:

■ DURATION_SESSION (session)

■ DURATION_TRANS (transaction)

■ DURATION_NULL (table not temporary)

int

Table 6–4 Attributes Specific to Tables

Attribute Description Attribute Data Type

ATTR_DBA Data block address of the segment header unsigned int

ATTR_TABLESPACE Tablespace the table resides on int

ATTR_CLUSTERED Identifies whether the table is clustered bool

ATTR_PARTITIONED Identifies whether the table is partitioned bool

ATTR_INDEX_ONLY Identifies whether the table is index only bool

Table 6–5 Attributes that Belong to Procedures or Functions

Attribute Description Attribute Data Type

ATTR_LIST_ARGUMENTS Argument list; refer to List Attributes on
page 6-15.

vector<MetaData>

ATTR_IS_INVOKER_RIGHTS Identifies whether the procedure or
function has invoker's rights.

int

Table 6–6 Attributes that Belong to Package Subprograms

Attribute Description Attribute Data Type

ATTR_NAME Name of procedure or function string

Attribute Reference

Metadata 6-9

Package Attributes
A parameter for a package (type PTYPE_PKG) has the type-specific attributes described
in Table 6–7.

Type Attributes
A parameter for a type (type PTYPE_TYPE) has attributes described in Table 6–8.

ATTR_OVERLOAD_ID Overloading ID number (relevant in case
the procedure or function is part of a
package and is overloaded). Values
returned may be different from direct query
of a PL/SQL function or procedure.

int

Table 6–7 Attributes that Belong to Packages

Attribute Description Attribute Data Type

ATTR_LIST_SUBPROGRAMS Subprogram list; refer to List Attributes on
page 6-15.

vector<MetaData>

ATTR_IS_INVOKER_RIGHTS Identifies whether the package has
invoker's rights

bool

Table 6–8 Attributes that Belong to Types

Attribute Description Attribute Data Type

ATTR_REF_TDO Returns the in-memory ref of the type
descriptor object for the type, if the column
type is an object type.

RefAny

ATTR_TYPECODE Type code. Can be:

■ OCCI_TYPECODE_OBJECT

■ OCCI_TYPECODE_NAMEDCOLLECTION

int

ATTR_COLLECTION_TYPECODE Type code of collection if type is collection;
invalid otherwise. Can be:

■ OCCI_TYPECODE_VARRAY

■ OCCI_TYPECODE_TABLE

int

ATTR_VERSION A NULL-terminated string containing the
user-assigned version

string

ATTR_IS_FINAL_TYPE Identifies whether this is a final type bool

ATTR_IS_INSTANTIABLE_TYPE Identifies whether this is an instantiable
type

bool

ATTR_IS_SUBTYPE Identifies whether this is a subtype bool

ATTR_SUPERTYPE_SCHEMA_NAME Name of the schema containing the
supertype

string

ATTR_SUPERTYPE_NAME Name of the supertype string

ATTR_IS_INVOKER_RIGHTS Identifies whether this type is invoker's
rights

bool

ATTR_IS_INCOMPLETE_TYPE Identifies whether this type is incomplete bool

ATTR_IS_SYSTEM_TYPE Identifies whether this is a system type bool

ATTR_IS_PREDEFINED_TYPE Identifies whether this is a predefined type bool

ATTR_IS_TRANSIENT_TYPE Identifies whether this is a transient type bool

ATTR_IS_SYSTEM_GENERATED_TYPE Identifies whether this is a
system-generated type

bool

Table 6–6 (Cont.) Attributes that Belong to Package Subprograms

Attribute Description Attribute Data Type

Attribute Reference

6-10 Oracle C++ Call Interface Programmer's Guide

Type Attribute Attributes
A parameter for an attribute of a type (type PTYPE_TYPE_ATTR) has the attributes
described in Table 6–9.

ATTR_HAS_NESTED_TABLE Identifies whether this type contains a
nested table attribute

bool

ATTR_HAS_LOB Identifies whether this type contains a LOB
attribute

bool

ATTR_HAS_FILE Identifies whether this type contains a FILE
attribute

bool

ATTR_COLLECTION_ELEMENT Handle to collection element

Refer to Collection Attributes on page 6-11

MetaData

ATTR_NUM_TYPE_ATTRS Number of type attributes unsigned int

ATTR_LIST_TYPE_ATTRS List of type attributes

Refer to List Attributes on page 6-15

vector<MetaData>

ATTR_NUM_TYPE_METHODS Number of type methods unsigned int

ATTR_LIST_TYPE_METHODS List of type methods

Refer to List Attributes on page 6-15

vector<MetaData>

ATTR_MAP_METHOD Map method of type

Refer to Type Method Attributes on
page 6-11

MetaData

ATTR_ORDER_METHOD Order method of type; refer to Type Method
Attributes on page 6-11

MetaData

Table 6–9 Attributes that Belong to Type Attributes

Attribute Description Attribute Data Type

ATTR_DATA_SIZE Maximum size of the type attribute. This length is
returned in bytes and not characters for strings and
raws. Returns 22 for NUMBER.

int

ATTR_TYPECODE Type code int

ATTR_DATA_TYPE Data type of the type attribute int

ATTR_NAME A pointer to a string that is the type attribute name string

ATTR_PRECISION Precision of numeric type attributes. If the precision is
nonzero and scale is -127, then it is a FLOAT; otherwise
a NUMBER(p, s). If precision is 0, then NUMBER(p, s)
can be represented simply by NUMBER.

int

ATTR_SCALE Scale of numeric type attributes. If the precision is
nonzero and scale is -127, then it is a FLOAT;
otherwise a NUMBER(p, s). If precision is 0, then
NUMBER(p, s) can be represented simply as NUMBER.

int

ATTR_TYPE_NAME A string that is the type name. The returned value
contains the type name if the data type is SQLT_NTY or
SQLT_REF. If the data type is SQLT_NTY, then the name
of the named data type's type is returned. If the data
type is SQLT_REF, then the type name of the named
data type pointed to by the REF is returned.

string

ATTR_SCHEMA_NAME String with the schema name under which the type
has been created

string

ATTR_REF_TDO Returns the in-memory REF of the TDO for the type, if
the column type is an object type.

RefAny

Table 6–8 (Cont.) Attributes that Belong to Types

Attribute Description Attribute Data Type

Attribute Reference

Metadata 6-11

Type Method Attributes
A parameter for a method of a type (type PTYPE_TYPE_METHOD) has the attributes
described in Table 6–10.

Collection Attributes
A parameter for a collection type (type PTYPE_COLL) has the attributes described in
Table 6–11.

ATTR_CHARSET_ID Character set ID, if the type attribute is of a string or
character type

int

ATTR_CHARSET_FORM Character set form, if the type attribute is of a string
or character type

int

ATTR_FSPRECISION The fractional seconds precision of a datetime or
interval

int

ATTR_LFPRECISION The leading field precision of an interval int

Table 6–10 Attributes that Belong to Type Methods

Attribute Description Attribute Data Type

ATTR_NAME Name of method (procedure or function) string

ATTR_ENCAPSULATION Encapsulation level of the method; can be:

■ OCCI_TYPEENCAP_PRIVATE

■ OCCI_TYPEENCAP_PUBLIC)

int

ATTR_LIST_ARGUMENTS Argument list vector<MetaData>

ATTR_IS_CONSTRUCTOR Identifies whether the method is a
constructor

bool

ATTR_IS_DESTRUCTOR Identifies whether the method is a
destructor

bool

ATTR_IS_OPERATOR Identifies whether the method is an
operator

bool

ATTR_IS_SELFISH Identifies whether the method is selfish bool

ATTR_IS_MAP Identifies whether the method is a map
method

bool

ATTR_IS_ORDER Identifies whether the method is an order
method

bool

ATTR_IS_RNDS Identifies whether "Read No Data State" is
set for the method

bool

ATTR_IS_RNPS Identifies whether "Read No Process State"
is set for the method

bool

ATTR_IS_WNDS Identifies whether "Write No Data State" is
set for the method

bool

ATTR_IS_WNPS Identifies whether "Write No Process State"
is set for the method

bool

ATTR_IS_FINAL_METHOD Identifies whether this is a final method bool

ATTR_IS_INSTANTIABLE_METHOD Identifies whether this is an instantiable
method

bool

ATTR_IS_OVERRIDING_METHOD Identifies whether this is an overriding
method

bool

Table 6–9 (Cont.) Attributes that Belong to Type Attributes

Attribute Description Attribute Data Type

Attribute Reference

6-12 Oracle C++ Call Interface Programmer's Guide

Synonym Attributes
A parameter for a synonym (type PTYPE_SYN) has the attributes described in
Table 6–12.

Sequence Attributes
A parameter for a sequence (type PTYPE_SEQ) has the attributes described in
Table 6–13.

Table 6–11 Attributes that Belong to Collection Types

Attribute Description Attribute Data Type

ATTR_DATA_SIZE Maximum size of the type attribute. This length is
returned in bytes and not characters for strings and
raws. Returns 22 for NUMBER.

int

ATTR_TYPECODE Typecode. int

ATTR_DATA_TYPE The data type of the type attribute. int

ATTR_NUM_ELEMENTS Number of elements in an array; only valid for
collections that are arrays.

unsigned int

ATTR_NAME A pointer to a string that is the type attribute name string

ATTR_PRECISION Precision of numeric type attributes. If the precision is
nonzero and scale is -127, then it is a FLOAT;
otherwise a NUMBER(p, s). If precision is 0, then
NUMBER(p, s) can be represented simply as NUMBER.

int

ATTR_SCALE Scale of numeric type attributes. If the precision is
nonzero and scale is -127, then it is a FLOAT; otherwise
a NUMBER(p, s). If precision is 0, then NUMBER(p, s)
can be represented simply as NUMBER.

int

ATTR_TYPE_NAME String that is the type name. The returned value
contains the type name if the data type is SQLT_NTY or
SQLT_REF. If the data type is SQLT_NTY, then the name
of the named data type's type is returned. If the data
type is SQLT_REF, then the type name of the named
data type pointed to by the REF is returned

string

ATTR_SCHEMA_NAME String with the schema name under which the type
has been created

string

ATTR_REF_TDO Returns the in memory REF of the TDO for the type. RefAny

ATTR_CHARSET_ID Typecode. int

ATTR_CHARSET_FORM The data type of the type attribute. int

Table 6–12 Attributes that Belong to Synonyms

Attribute Description
Attribute Data
Type

ATTR_OBJID Object ID unsigned int

ATTR_SCHEMA_NAME Null-terminated string containing the schema name of
the synonym translation

string

ATTR_NAME Null-terminated string containing the object name of
the synonym translation

string

ATTR_LINK Null-terminated string containing the database link
name of the synonym translation

string

Table 6–13 Attributes that Belong to Sequences

Attribute Description
Attribute Data
Type

ATTR_OBJID Object ID unsigned int

Attribute Reference

Metadata 6-13

Column Attributes
A parameter for a column of a table or view (type PTYPE_COL) has the attributes
described in Table 6–14.

Argument and Result Attributes
A parameter for an argument or a procedure or function type (type PTYPE_ARG), for a
type method argument (type PTYPE_TYPE_ARG), or for method results (type PTYPE_
TYPE_RESULT) has the attributes described in Table 6–15.

ATTR_MIN Minimum value (in Oracle number format) Number

ATTR_MAX Maximum value (in Oracle number format) Number

ATTR_INCR Increment (in Oracle number format) Number

ATTR_CACHE Number of sequence numbers cached; zero if the
sequence is not a cached sequence (in Oracle number
format)

Number

ATTR_ORDER Identifies whether the sequence is ordered bool

ATTR_HW_MARK High-water mark (in Oracle number format) Number

Table 6–14 Attributes that Belong to Columns of Tables or Views

Attribute Description
Attribute Data
Type

ATTR_DATA_SIZE Maximum size of the column. This length is returned in
bytes and not characters for strings and raws. Returns
22 for NUMBER..

int

ATTR_DATA_TYPE The data type of the column. Type

ATTR_NAME Pointer to a string that is the column name. string

ATTR_PRECISION Returns the precision. int

ATTR_SCALE Scale of numeric columns. If the precision is nonzero
and scale is -127, then it is a FLOAT; otherwise a
NUMBER(p, s). If precision is 0, then NUMBER(p, s) can
be represented simply as NUMBER.

int

ATTR_IS_NULL Returns FALSE if null values are not permitted for the
column.

bool

ATTR_TYPE_NAME Returns a string that is the type name. The returned
value contains the type name if the data type is OCCI_
SQLT_NTY or OCCI_SQLT_REF. If the data type is OCCI_
SQLT_NTY, then the name of the named data type's type
is returned. If the data type is OCCI_SQLT_REF, then the
type name of the named data type pointed to by the REF
is returned.

string

ATTR_SCHEMA_NAME Returns a string with the schema name under which
the type has been created.

string

ATTR_REF_TDO The REF of the TDO for the type, if the column type is
an object type.

RefAny

ATTR_CHARSET_ID Character set ID for character column. If not set, the
character set ID defaults to the character set ID set in
the direct path context.

int

ATTR_CHARSET_FORM Character set form of the column. Setting this attribute
specifies the use of the database or national character
set on the client side.

int

Table 6–13 (Cont.) Attributes that Belong to Sequences

Attribute Description
Attribute Data
Type

Attribute Reference

6-14 Oracle C++ Call Interface Programmer's Guide

Table 6–15 Attributes that Belong to Arguments / Results

Attribute Description Attribute Data Type

ATTR_NAME Returns a pointer to a string which is the
argument name

string

ATTR_POSITION Position of the argument in the argument list.
Always returns 0.

int

ATTR_TYPECODE Typecode. int

ATTR_DATA_TYPE Data type of the argument. int

ATTR_DATA_SIZE Size of the data type of the argument. This length
is returned in bytes and not characters for strings
and raws. Returns 22 for NUMBER.

int

ATTR_PRECISION Precision of numeric arguments. If the precision is
nonzero and scale is -127, then it is a FLOAT;
otherwise a NUMBER(p, s). If precision is 0, then
NUMBER(p, s) can be represented simply as
NUMBER.

int

ATTR_SCALE Scale of numeric arguments. If the precision is
nonzero and scale is -127, then it is a FLOAT;
otherwise a NUMBER(p, s). If precision is 0, then
NUMBER(p, s) can be represented simply as
NUMBER.

int

ATTR_LEVEL Data type levels. This attribute always returns 0. int

ATTR_HAS_DEFAULT Indicates whether an argument has a default int

ATTR_LIST_ARGUMENTS The list of arguments at the next level (when the
argument is of a record or table type)

vector<MetaData>

ATTR_IOMODE Indicates the argument mode; valid values are:

■ 0 for IN (OCCI_TYPEPARAM_IN)

■ 1 for OUT (OCCI_TYPEPARAM_OUT)

■ 2 for IN/OUT (OCCI_TYPEPARAM_INOUT)

int

ATTR_RADIX Returns a radix (if number type) int

ATTR_IS_NULL Returns FALSE if NULL values are not permitted for
the column.

bool

ATTR_TYPE_NAME Returns a string that is the type name (or the
package name for local package types). The
returned value contains the type name if the data
type is SQLT_NTY or SQLT_REF. If the data type is
SQLT_NTY, then the name of the named data type's
type is returned. If the data type is SQLT_REF, then
the type name of the named data type pointed to
by the REF is returned.

string

ATTR_SCHEMA_NAME For SQLT_NTY or SQLT_REF, returns a string with
the schema name under which the type was
created (or for local package types, the package
name).

string

ATTR_SUB_NAME For SQLT_NTY or SQLT_REF, returns a string with
the type name.

string

ATTR_LINK For SQLT_NTY or SQLT_REF, returns a string with
the database link name of the database on which
the type exists. This can happen only for
package-ocal types, when the package is remote.

string

ATTR_REF_TDO Returns the REF of the TDO for the type, if the
argument type is an object.

RefAny

ATTR_CHARSET_ID Returns the character set ID if the argument is of a
string or character type.

int

ATTR_CHARSET_FORM Returns the character set form if the argument is of
a string or character type.

int

Attribute Reference

Metadata 6-15

List Attributes
A list type of attribute can be described for all the elements in the list. In case of a
function argument list, position 0 has a parameter for return values (PTYPE_ARG).

The list is described iteratively for all the elements. The results are stored in a C++
vector<MetaData>. Call the getVector() method to describe list type of attributes.
Table 6–16 displays the list attributes.

Schema Attributes
A parameter for a schema type (type PTYPE_SCHEMA) has the attributes described in
Table 6–17.

Database Attributes
A parameter for a database (type PTYPE_DATABASE) has the attributes described in
Table 6–18.

Table 6–16 Values for ATTR_LIST_TYPE

Possible Values Description

ATTR_LIST_COLUMNS Column list

ATTR_LIST_ARGUMENTS Procedure or function arguments list

ATTR_LIST_SUBPROGRAMS Subprogram list

ATTR_LIST_TYPE_ATTRIBUTES Type attribute list

ATTR_LIST_TYPE_METHODS Type method list

ATTR_LIST_OBJECTS Object list within a schema

ATTR_LIST_SCHEMAS Schema list within a database

Table 6–17 Attributes Specific to Schemas

Attribute Description Attribute Data Type

ATTR_LIST_OBJECTS List of objects in the schema string

Table 6–18 Attributes Specific to Databases

Attribute Description Attribute Data Type

ATTR_VERSION Database version string

ATTR_CHARSET_ID Database character set ID from the server
handle

int

ATTR_NCHARSET_ID Database native character set ID from the
server handle

int

ATTR_LIST_SCHEMAS List of schemas (type PTYPE_SCHEMA) in the
database

vector<MetaData>

ATTR_MAX_PROC_LEN Maximum length of a procedure name unsigned int

ATTR_MAX_COLUMN_LEN Maximum length of a column name unsigned int

Attribute Reference

6-16 Oracle C++ Call Interface Programmer's Guide

ATTR_CURSOR_COMMIT_BEHAVIOR How a COMMIT operation affects cursors and
prepared statements in the database; values
are:

■ OCCI_CURSOR_OPEN for preserving
cursor state as before the commit
operation

■ OCCI_CURSOR_CLOSED for cursors that
are closed on COMMIT, although the
application can execute the statement
for the second time without preparing it
again

int

ATTR_MAX_CATALOG_NAMELEN Maximum length of a catalog (database)
name

int

ATTR_CATALOG_LOCATION Position of the catalog in a qualified table;
values are:

■ OCCI_CL_START

■ OCCI_CL_END

int

ATTR_SAVEPOINT_SUPPORT Identifies whether the database supports
savepoints; values are:

■ OCCI_SP_SUPPORTED

■ OCCI_SP_UNSUPPORTED

int

ATTR_NOWAIT_SUPPORT Identifies whether the database supports the
nowait clause; values are:

■ OCCI_NW_SUPPORTED

■ OCCI_NW_UNSUPPORTED

int

ATTR_AUTOCOMMIT_DDL Identifies whether the autocommit mode is
required for DDL statements; values are:

■ OCCI_AC_DDL

■ OCCI_NO_AC_DDL

int

ATTR_LOCKING_MODE Locking mode for the database; values are:

■ OCCI_LOCK_IMMEDIATE

■ OCCI_LOCK_DELAYED

int

Table 6–18 (Cont.) Attributes Specific to Databases

Attribute Description Attribute Data Type

7

Programming with LOBs 7-1

7 Programming with LOBs

This chapter provides an overview of LOBs and their use in OCCI.

This chapter contains these topics:

■ Overview of LOBs

■ Creating LOBs in OCCI Applications

■ Restricting the Opening and Closing of LOBs

■ Reading and Writing LOBs

■ Using Objects with LOB Attributes

■ Using SecureFiles

Overview of LOBs
Oracle C++ Call Interface includes classes and methods for performing operations on
large objects, LOBs. LOBs are either internal or external depending on their location
with respect to the database.

Introducing Internal LOBs
Internal LOBs are stored inside database tablespaces in a way that optimizes space and
enables efficient access. Internal LOBs use copy semantics and participate in the
transactional model of the server. You can recover internal LOBs after transaction or
media failure, and any changes to an internal LOB value can be committed or rolled
back. There are three SQL data types for defining instances of internal LOBs:

■ BLOB: A LOB whose value is composed of unstructured binary (raw) data

■ CLOB: A LOB whose value is composed of character data that corresponds to the
database character set defined for the Oracle database

■ NCLOB: A LOB whose value is composed of character data that corresponds to the
national character set defined for the Oracle database

The copy semantics for LOBs dictate that when you insert or update a LOB with a LOB
from another row in the same table, both the LOB locator and the LOB value are
copied. In other words, each row has a copy of the LOB value.

See also: Oracle Database SecureFiles and Large Objects Developer's
Guide for extensive information about LOBs

Creating LOBs in OCCI Applications

7-2 Oracle C++ Call Interface Programmer's Guide

Introducing External LOBs
BFILEs are large binary (raw) data objects data stored in operating system files outside
database tablespaces; therefore, they are referred to as external LOBs. These files use
reference semantics, where only the locator for the LOB is reproduced when inserting
or updating in the same table. Apart from conventional secondary storage devices
such as hard disks, BFILEs may also be located on tertiary block storage devices such
as CD-ROMs, PhotoCDs and DVDs. The BFILE data type allows read-only byte stream
access to large files on the file system of the database server. Oracle can access BFILEs
if the underlying server operating system supports stream mode access to these files.

External LOBs do not participate in transactions. Any support for integrity and
durability must be provided by the underlying file and operating systems. An external
LOB must reside on a single device; it may not be striped across a disk array.

Storing LOBs
The size of the LOB value, among other things, dictates where it is stored. The LOB
value is either stored inline with the row data or outside the row.

■ Locator storage: a LOB locator, a pointer to the actual location of the LOB value, is
stored inline with the row data and indicates where the LOB value is stored.

For internal LOBs, the LOB column stores a locator to the LOB value stored in a
database tablespace. Each internal LOB column and attribute for a particular row
has its own unique LOB locator and a distinct copy of the LOB value stored in the
database tablespace.

For external LOBs, the LOB column stores a locator to the external operating
system file that houses the BFILE. Each external LOB column and attribute for a
given row has its own BFILE locator. However, two different rows can contain a
BFILE locator that points to the same operating system file.

■ Inline storage: Data stored in a LOB is termed the LOB value. The value of an
internal LOB may or may not be stored inline with the other row data. If you do
not set DISABLE STORAGE IN ROW, and if the internal LOB value is less than
approximately 4,000 bytes, then the value is stored inline.Otherwise, it is stored
outside the row.

Since LOBs are intended to be large objects, inline storage is only relevant if your
application mixes small and large LOBs.The LOB value is automatically moved
out of the row once it extends beyond approximately 4,000 bytes.

Creating LOBs in OCCI Applications
Follow these steps to use LOBs in your application:

■ Initialize a new LOB locator in the database.

■ Assign a value to the LOB. In case of BFILEs, assign a reference to a valid external
file.

■ To access and manipulate LOBs, see the OCCI classes that implement the methods
for using LOBs in an application. All are detailed in Chapter 13, "OCCI
Application Programming Interface":

■ Bfile Class on page 13-54 contains the APIs for BFILEs, as summarized in
Table 13–7.

■ Blob Class on page 13-76 contains the APIs for BLOBs, as summarized in
Table 13–8.

Restricting the Opening and Closing of LOBs

Programming with LOBs 7-3

■ Clob Class on page 13-111 contains the APIs for CLOBs and NCLOBs, as
summarized in Table 13–10.

■ Whenever you want to modify an internal LOB column or attribute using write,
copy, trim, and similar operations, you must lock the row that contains the target
LOB. Use a SELECT...FOR UPDATE statement to select the LOB locator.

■ A transaction must be open before a LOB write command succeeds. Therefore, you
must write the data before committing a transaction (since COMMIT closes the
transaction). Otherwise, you must lock the row again by reissuing the
SELECT...FOR UPDATE statement. Each of the LOB class implementations in OCCI
have open() and close() methods. To check whether a LOB is open, call the
isOpen() method of the class.

■ The methods open(), close() and isOpen() should also be used to mark the
beginning and end of a series of LOB operations. Whenever a LOB modification is
made, it triggers updates on extensible indexes. If these modifications are made
within open()...close() code blocks, the individual triggers are disabled until
after the close() call, and then all are issued at the same time. This
implementation enables the efficient processing of maintenance operations, such
as updating indexes, when the LOBs are closed. However, this also means that
extensive indexes are not valid during the execution of the open()...close()
code block.

Note that for internal LOBs, the concept of openness is associated with the LOB
and not the LOB locator. The LOB locator does not store any information about
whether the LOB to which it refers is open. It is possible for multiple LOB locators
to point to the same open LOB. However, for external LOBs, openness is
associated with a specific external LOB locator. Therefore, multiple open() calls
can be made on the same BFILE using different external LOB locators.

Restricting the Opening and Closing of LOBs
The definition of a transaction within which an open LOB value must be closed is one
of the following:

■ Between SET TRANSACTION and COMMIT

■ Between DATA MODIFYING DML and COMMIT

■ Between SELECT...FOR UPDATE and COMMIT

■ Within an autonomous transaction block

The LOB opening and closing mechanism has the following restrictions:

■ An application must close all previously opened LOBs before committing a
transaction. Failing to do so results in an error. If a transaction is rolled back, then
all open LOBs are discarded along with the changes made, so associated triggers
are not fired.

■ While there is no limit to the number of open internal LOBs, there is a limit on the
number of open files. Note that assigning an opened locator to another locator
does not count as opening a new LOB.

■ It is an error to open or close the same internal LOB twice within the same
transaction, either with different locators or with the same locator.

■ It is an error to close a LOB that has not been opened.

Reading and Writing LOBs

7-4 Oracle C++ Call Interface Programmer's Guide

Reading and Writing LOBs
There are two general methods for reading and writing LOBs: non-streamed, and
streamed.

Reading LOBs
Example 7–1 illustrates how to get data from a non-NULL internal LOB, using a
non-streamed method. This method requires that you keep track of the read offset and
the amount remaining to be read, and pass these values to the read() method.

Example 7–1 How to Read Non-Streamed BLOBs

ResultSet *rset=stmt->executeQuery("SELECT ad_composite FROM print_media
 WHERE product_id=6666");
while(rset->next())
{
 Blob blob=rset->getBlob(1);
 if(blob.isNull())
 cerr <<"Null Blob"<<endl;
 else
 {
 blob.open(OCCI_LOB_READONLY);

 const unsigned int BUFSIZE=100;
 char buffer[BUFSIZE];
 unsigned int readAmt=BUFSIZE;
 unsigned int offset=1;

 //reading readAmt bytes from offset 1
 blob.read(readAmt,buffer,BUFSIZE,offset);

 //process information in buffer
 ...
 blob.close();
 }
}
stmt->closeResultSet(rset);

Example 7–2 is similar as it demonstrates how to read data from a BFILE, where the
BFILE locator is not NULL, by using a non-streamed read.

Example 7–2 How to Read Non-Streamed BFILESs

ResultSet *rset=stmt->executeQuery("SELECT ad_graphic FROM print_media
 WHERE product_id=6666");
while(rset->next())
{
 Bfile file=rset->getBfile(1);
 if(bfile.isNull())
 cerr <<"Null Bfile"<<endl;
 else
 {
 //display the directory alias and the file name of the BFILE
 cout <<"File Name:"<<bfile.getFileName()<<endl;
 cout <<"Directory Alias:"<<bfile.getDirAlias()<<endl;

 if(bfile.fileExists())
 {
 unsigned int length=bfile.length();

Reading and Writing LOBs

Programming with LOBs 7-5

 char *buffer=new char[length];
 bfile.read(length, buffer, length, 1);
 //read all the contents of the BFILE into buffer, then process
 ...
 delete[] buffer;
 }
 else
 cerr <<"File does not exist"<<endl;
 }
}
stmt->closeResultSet(rset);

In contrast to Example 7–1 and Example 7–2, the streamed reading demonstrated in
Example 7–3 on a non-NULL BLOB does not require keeping track of the offset.

Example 7–3 How to Read Streamed BLOBs

ResultSet *rset=stmt->executeQuery("SELECT ad_composite FROM print_media
 WHERE product_id=6666");
while(rset->next())
{
 Blob blob=rset->getBlob(1);
 if(blob.isNull())
 cerr <<"Null Blob"<<endl;
 else
 {
 Stream *instream=blob.getStream(1,0);
 //reading from offset 1 to the end of the BLOB

 unsigned int size=blob.getChunkSize();
 char *buffer=new char[size];

 while((unsigned int length=instream->readBuffer(buffer,size))!=-1)
 {
 //process "length" bytes read into buffer
 ...
 }
 delete[] buffer;
 blob.closeStream(instream);
 }
}
stmt->closeResultSet(rset);

Writing LOBs
Example 7–4 demonstrates how to write data to an internal non-NULL LOB by using a
non-streamed write. The writeChunk() method is enclosed by the open() and close()
methods; it operates on a LOB that is currently open and ensures that triggers do not
fire for every chunk read. The write() method can be used for the writeChunk()
method; however, the write() method implicitly opens and closes the LOB.

Example 7–4 How to Write Non-Streamed BLOBs

ResultSet *rset=stmt->executeQuery("SELECT ad_composite FROM print_media
 WHERE product_id=6666 FOR UPDATE");
while(rset->next())
{
 Blob blob=rset->getBlob(1);
 if(blob.isNull())
 cerr <<"Null Blob"<<endl;

Reading and Writing LOBs

7-6 Oracle C++ Call Interface Programmer's Guide

 else
 {
 blob.open(OCCI_LOB_READWRITE);

 const unsigned int BUFSIZE=100;
 char buffer[BUFSIZE];
 unsigned int writeAmt=BUFSIZE;
 unsigned int offset=1;

 //writing writeAmt bytes from offset 1
 //contents of buffer are replaced after each writeChunk(),
 //typically with an fread()
 while(<fread "BUFSIZE" bytes into buffer succeeds>)
 {
 blob.writeChunk(writeAmt, buffer, BUFSIZE, offset);
 offset += writeAmt;
 }
 blob.writeChunk(<remaining amt>, buffer, BUFSIZE, offset);

 blob.close();
 }
}
stmt->closeResultSet(rset);
conn->commit();

Example 7–5 demonstrates how to write data to an internal LOB that is populated by
using a streamed write.

Example 7–5 How to Write Streamed BLOBs

ResultSet *rset=stmt->executeQuery("SELECT ad_composite FROM print_media
 WHERE product_id=6666 FOR UPDATE");
while(rset->next())
{
 Blob blob=rset->getBlob(1);
 if(blob.isNull())
 cerr <<"Null Blob"<<endl;
 else
 {
 char buffer[BUFSIZE];
 Stream *outstream=blob.getStream(1,0);

 //writing from buffer beginning at offset 1 until
 //a writeLastBuffer() method is issued.
 //contents of buffer are replaced after each writeBuffer(),
 //typically with an fread()
 while(<fread "BUFSIZE" bytes into buffer succeeds>)
 ostream->writeBuffer(buffer,BUFSIZE);
 ostream->writeLastBuffer(buffer,<remaining amt>);
 blob.closeStream(outstream);
 }
}
stmt->closeResultSet(rset);
conn->commit();

Enhancing the Performance of LOB Reads and Writes
Reading and writing of internal LOBs can be improved by using either
getChunkSize() method.

Reading and Writing LOBs

Programming with LOBs 7-7

Using the getChunkSize() Method
The getChunkSize() method returns the usable chunk size in bytes for BLOBs, and in
characters for CLOBs and NCLOBs. Performance improves when a read or a write begins
on a multiple of the usable chunk size, and the request size is also a multiple of the
usable chunk size. You can specify the chunk size for a LOB column when you create a
table that contains the LOB.

Calling the getChunkSize() method returns the usable chunk size of the LOB. An
application can batch a series of write operations until an entire chunk can be written,
rather than issuing multiple LOB write calls that operate on the same chunk

To read through the end of a LOB, use the read() method with an amount of 4 GB.
This avoids the round-trip involved with first calling the getLength() method because
the read() method with an amount of 4 GB reads until the end of the LOB is reached.

For LOBs that store variable width characters, the GetChunkSize() method returns the
number of Unicode characters that fit in a LOB chunk.

Updating LOBs
To update a value of a LOB in the database, you must assign the new value to the LOB,
execute a SQL UPDATE command in the database, and then commit the transaction.
Example 7–6 demonstrates how to update an existing CLOB (in this case, by setting it to
empty), while Example 7–7 demonstrates how to update a BFILE.

Example 7–6 Updating a CLOB Value

Clob clob(conn);
clob.setEmpty();
stmt->setSQL("UPDATE print_media SET ad_composite = :1
 WHERE product_id=6666");
stmt->setClob(1, clob);
stmt->executeUpdate();
conn->commit();

Example 7–7 Updating a BFILE Value

Bfile bfile(conn);
bfile.setName("MEDIA_DIR", "img1.jpg");
stmt->setSQL("UPDATE print_media SET ad_graphic = :1
 WHERE product_id=6666");
stmt->setBfile(1, bfile);
stmt->executeUpdate();
conn->commit();

Reading and Writing Multiple LOBs
As of Oracle Database 10g Release 2, OCCI has new interfaces that enhance application
performance while reading and writing multiple LOBs, such as Bfiles, Blobs, Clobs
and NClobs.

These interfaces have several advantages over the standard methods for reading and
writing a single LOB at a time:

■ Reading and writing multiple LOBs through OCCI in a single server round-trip
improves performance by decreasing I/O time between the application and the
back end.

■ The new APIs provide support for LOBs that are larger than the previous limit of
4 GB. The new interfaces accept the oraub8 data type for amount, offsets, buffer

Using Objects with LOB Attributes

7-8 Oracle C++ Call Interface Programmer's Guide

and length parameters. These parameters are mapped to the appropriate 64-bit
native data type, which is determined by the compiler and the operating system.

■ For Clob-related methods, the user can specify the data amount read or written in
terms of character counts or byte counts.

New APIs for this features are described in Chapter 13, "OCCI Application
Programming Interface", section on Connection Class, and include
readVectorOfBfiles() on page 13-167, readVectorOfBlobs() on page 13-168,
readVectorOfClobs() on page 13-169 (overloaded to support general charactersets, and
the UTF16 characterset in particular), writeVectorOfBlobs() on page 13-176, and
writeVectorOfClobs() on page 13-177 (overloaded to support general charactersets,
and the UTF16 characterset in particular).

Using the Interfaces for Reading and Writing Multiple LOBs
Each of the readVectorOfxxx() and writeVectorOfxxx() interface uses the following
parameters:

■ conn, a Connection class object

■ vec, a vector of LOB objects: Bfile, Blob, Clob, or NClob

■ byteAmts, array of amounts, in bytes, for reading or writing

■ charAmts, array of amounts, in characters, for reading or writing (only applicable
for Clobs and NClobs)

■ offsets, array of offsets, in bytes for Bfiles and Blobs, and in characters for Clobs
and NClobs

■ buffers, array of buffer pointers

■ bufferLengths, array of buffer lengths.

If there are errors in either reading or writing of one of the LOBs in the vector, the
whole operation is cancelled. The byteAmts or charAmts parameters should be checked
to determine the actual number of bytes or characters read or written.

Using Objects with LOB Attributes
An OCCI application can use the operator new() to create a persistent object with a
LOB attribute. By default, all LOB attributes are constructed by using the default
constructor, and are initialized to NULL.

Example 7–8 demonstrates how to create and use persistent objects with internal LOB
attributes. Example 7–9 demonstrates how to create and use persistent objects with
external LOB attributes.

Example 7–8 How to Use a Persistent Object with a BLOB Attribute

1. Create a persistent object with a BLOB attribute:

Person *p=new(conn,"PERSON_TAB")Person();
p->imgBlob = Blob(conn);

2. Either initialize the Blob object to empty:

p->imgBlob.setEmpty();

Or set it to some existing value

3. Mark the Blob object as dirty:

Using SecureFiles

Programming with LOBs 7-9

p->markModified();

4. Flush the object:

p->flush();

5. Repin the object after obtaining a REF to it, thereby retrieving a refreshed version
of the object from the database and acquiring an initialized LOB:

Ref<Person> r = p->getRef();
delete p;
p = r.ptr();

6. Write the data:

p->imgBlob.write(...);

Example 7–9 How to Use a Persistent Object with a BFILE Attribute

1. Create a persistent object with a BFILE attribute:

Person *p=new(conn,"PERSON_TAB")Person();
p->imgBFile = BFile(conn);

2. Initialize the Bfile object:

p->setName(directory_alias, file_name);

3. Mark the Bfile object as dirty:

p->markModified();

4. Flush the object:

p->flush();

5. Read the data:

p->imgBfile.read(...);

Using SecureFiles
Introduced with Oracle Database 11g Release 1, SecureFiles LOBs add powerful new
features for LOB compression, encryption, and deduplication.

Using SecureFile Compression
SecureFiles compression enables server-side compression of LOB data, transparent to
the application. Using SecureFiles compression saves storage space with minimal
impact on reading and updating performance for SecureFiles LOB data.

Using SecureFiles Encryption
SecureFiles introduce a new encryption capability for LOB data and extend
Transparent Data Encryption by enabling efficient random read and write access to
encrypted SecureFiles LOBs.

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide

Using SecureFiles

7-10 Oracle C++ Call Interface Programmer's Guide

Using SecureFiles Deduplication
SecureFiles deduplication allows the Oracle Database to automatically detect duplicate
LOB data, and to conserve space by storing a single copy of the SecureFiles LOB.

Combining SecureFiles Compression, Encryption, and Deduplication
You can combine compression, encryption and deduplication in any combination.
Oracle Database applies these features according to the following rules:

■ Deduplicate detection, if enabled, is performed before compression and
encryption. This prevents potentially unnecessary and expensive compression and
encryption operations on duplicate SecureFiles LOBs.

■ Compression is performed before encryption, to allow for the highest possible
compression ratios.

SecureFiles LOB Types and Constants
The following types for SecureFiles LOBs enable additional flexibility for compression,
encryption, and deduplication. Table 7–1 lists options for the LobOptionType, while
Table 7–2 lists options for the LobOptionValue.

Table 7–1 Values of Type LobOptionType

Value Description

OCCI_LOB_OPT_COMPRESS Compression option type

OCCI_LOB_OPT_ENCRYPT Encryption option type

OCCI_LOB_OPT_DEDUPLICATE Deduplicate option type

Table 7–2 Values of Type LobOptionValue

Value Description

OCCI_LOB_COMPRESS_OFF Turns off SecureFiles compression

OCCI_LOB_COMPRESS_ON Turns on SecureFiles compression

OCCI_LOB_ENCRYPT_OFF Turns off SecureFiles encryption

OCCI_LOB_ENCRYPT_ON Turns on SecureFiles encryption

OCCI_LOB_DEDUPLICATE_OFF Turns off SecureFiles deduplication

OCCI_LOB_DEDUPLICATE_ON Turns off LOB deduplication

8

Object Type Translator Utility 8-1

8 Object Type Translator Utility

This chapter discusses the Object Type Translator (OTT) utility, which is used to map
database object types, LOB types, and named collection types to C++ class declarations
for use in OCCI applications.

This chapter contains these topics:

■ Overview of the Object Type Translator Utility

■ Using the OTT Utility

■ Creating Types in the Database

■ Invoking the OTT Utility

■ Using the INTYPE File

■ OTT Utility Data Type Mappings

■ Overview of the OUTTYPE File

■ The OTT Utility and OCCI Applications

■ Carrying Forward User Added Code

Overview of the Object Type Translator Utility
The Object Type Translator (OTT) utility assists in the development of applications
that make use of user-defined types in an Oracle database server.

You can create object types using the SQL CREATE TYPE statement. The definitions of
these types are stored in the database, and can be subsequently used to create database
tables. Once these tables are populated, an OCCI programmer can access objects stored
in the tables.

An application that accesses object data must be able to represent the data in a host
language format. This is accomplished by representing object types classes in C++.

You could code structures or classes manually to represent database object types, but
this is time-consuming and error-prone. The OTT utility simplifies this step by
automatically generating the appropriate classes for C++.

For OCCI, the application must include and link the following files:

■ Include the header file containing the generated class declarations

See Also: $ORACLE_HOME/rdbms/demo for a complete code listing
of the demonstration program used in this chapter, and the class
and method implementation generated by the OTT utility.

Using the OTT Utility

8-2 Oracle C++ Call Interface Programmer's Guide

■ Include the header file containing the prototype for the function to register the
mappings

■ Link with the C++ source file containing the static methods to be called by OCCI
while instantiating the objects

■ Link with the file containing the function to register the mappings with the
environment and call this function

Using the OTT Utility
To translate database types to C++ representation, you must explicitly invoke the OTT
utility. OCCI programmers must register the mappings with the environment. This
function is generated by the OTT utility.

On most operating systems, the OTT utility is invoked on the command line. It takes
as input an INTYPE file, and generates an OUTTYPE file, one or more C++ header files
that contain the prototype information, and additional C++ method files that register
generated mappings.

Example 8–1 How to Use the OTT Utility

The following command invokes the OTT utility and generates C++ classes. OTT
attempts to connect with user name demousr; the system prompts for the password.

ott userid=demousr intype=demoin.typ outtype=demoout.typ code=cpp
hfile=demo.h cppfile=demo.cpp mapfile=RegisterMappings.cpp

OTT utility uses the demoin.typ file as the INTYPE file, and the demoout.typ file as the
OUTTYPE file. The resulting declarations are output to the file demo.h in C++, specified
by the CODE=cpp parameter, the method implementations written to the file demo.cpp,
and the functions to register mappings is written to RegisterMappings.cpp with its
prototype written to RegisterMappings.h.

Creating Types in the Database
The first step in using the OTT utility is to create object types or named collection
types and store them in the database. This is accomplished by the SQL CREATE TYPE
statement.

Example 8–2 Object Creation Statements of the OTT Utility

CREATE TYPE FULL_NAME AS OBJECT (first_name CHAR(20), last_name CHAR(20));
CREATE TYPE ADDRESS AS OBJECT (state CHAR(20), zip CHAR(20));
CREATE TYPE ADDRESS_TAB AS VARRAY(3) OF REF ADDRESS;
CREATE TYPE PERSON AS OBJECT (id NUMBER, name FULL_NAME, curr_addr REF ADDRESS,

prev_addr_1 ADDRESS_TAB) NOT FINAL;
CREATE TYPE STUDENT UNDER PERSON (school_name CHAR(20));

Invoking the OTT Utility
After creating types in the database, the next step is to invoke the OTT utility.

See Also: Extending C++ Classes on page 8-27 for a complete
C++ example

Invoking the OTT Utility

Object Type Translator Utility 8-3

Specifying OTT Parameters
You can specify OTT parameters either on the command line or in a configuration file.
Certain parameters can also be specified in the INTYPE file.

If you specify a parameter in multiple locations, then its value on the command line
takes precedence over its value in the INTYPE file. The value in the INTYPE file takes
precedence over its value in a user-defined configuration file, which takes precedence
over its value in the default configuration file.

Parameter precedence then is as follows:

1. OTT command line

2. Value in INTYPE file

3. User-defined configuration file

4. Default configuration file

For global options (that is, options on the command line or options at the beginning of
the INTYPE file before any TYPE statements), the value on the command line overrides
the value in the INTYPE file. (The options that can be specified globally in the INTYPE
file are CASE, INITFILE, INITFUNC, MAPFILE and MAPFUNC, but not HFILE or CPPFILE.)
Anything in the INTYPE file in a TYPE specification applies to a particular type only and
overrides anything on the command line that would otherwise apply to the type. So if
you enter TYPE person HFILE=p.h, then it applies to person only and overrides the
HFILE on the command line. The statement is not considered a command line
parameter.

Setting Parameters on the Command Line
Parameters (also called options) set on the command line override any parameters or
option set elsewhere.

Setting Parameters in the INTYPE File
The INTYPE file gives a list of types for the OTT utility to translate.

The parameters CASE, CPPFILE, HFILE, INITFILE, INITFUNC, MAPFILE, and MAPFUNC can
appear in the INTYPE file.

Setting Parameters in the Configuration File
A configuration file is a text file that contains OTT parameters. Each nonblank line in
the file contains one parameter, with its associated value or values. If multiple
parameters are on the same line, then only the first one is used. No blank space is
allowed on any nonblank line of a configuration file.

A configuration file can be named on the command line. In addition, a default
configuration file is always read. This default configuration file must always exist, but
can be empty. The name of the default configuration file is ottcfg.cfg, and the
location of the file is operating system-specific.

Invoking the OTT Utility on the Command Line
On most platforms, the OTT utility is invoked on the command line. You can specify
the input and output files and the database connection information at the command
line, among other things.

See Also: Your operating system-specific documentation for more
information about the location of the default configuration file.

Invoking the OTT Utility

8-4 Oracle C++ Call Interface Programmer's Guide

Example 8–3 How to Invoke the OTT Utility to Generate C++ Classes

OTT attempts to connect with user name demousr; the system prompts for the
password.

ott userid=demousr intype=demoin.typ outtype=demoout.typ code=cpp
hfile=demo.h cppfile=demo.cpp mapfile=RegisterMappings.cpp

An OTT command line statement consists of the command OTT, followed by a list of
OTT utility parameters.

The HFILE parameter is almost always used. If omitted, then HFILE must be specified
individually for each type in the INTYPE file. If the OTT utility determines that a type
not listed in the INTYPE file must be translated, then an error is reported. Therefore, it
is safe to omit the HFILE parameter only if the INTYPE file was previously generated as
an OTT OUTTYPE file.

If the INTYPE file is omitted, then the entire schema is translated. See the parameter
descriptions in the following section for more information.

Elements Used on the OTT Command Line
Elements used on the OTT command line are:

■ OTT command that invokes the OTT utility. It must be the first item on the
command line.

■ USERID parameter on page 8-11

■ INTYPE parameter on page 8-7

■ OUTTYPE parameter on page 8-7.

■ CODE parameter on page 8-6.

■ HFILE parameter on page 8-7.

■ CPPFILE parameter on page 8-6.

■ MAPFILE parameter on page 8-7.

OTT Utility Parameters
To generate C++ using the OTT utility, the CODE parameter must be set to CODE=CPP.
Once CODE=CPP is specified, you are required to specify the CPPFILE and MAPFILE
parameters to define the filenames for the method implementation file and the
mappings registration function file. The name of the mapping function is derived by
the OTT utility from the MAPFILE or you may specify the name with the MAPFUNC
parameter. ATTRACCESS is also an optional parameter that can be specified to change
the generated code. These parameters control the generation of C++ classes.

■ Enter parameters on the OTT command line where parameter is the literal
parameter string and value is a valid parameter setting. The literal parameter
string is not case sensitive:

parameter=value

See Also: Your operating system-specific documentation to see how
to invoke the OTT utility on your operating system

Caution: No spaces are permitted around the equals sign (=) on the
OTT command line.

Invoking the OTT Utility

Object Type Translator Utility 8-5

■ Separate command line parameters by using either spaces or tabs.

■ Parameters can also appear within a configuration file, but, in that case, no
whitespace is permitted within a line, and each parameter must appear on a
separate line. Additionally, the parameters CASE, CPPFILE, HFILE, INITFILE,
INTFUNC, MAPFILE, and MAPFUNC can appear in the INTYPE file.

Table 8–1 lists all OTT Utility parameters:

ATTRACCESS
This parameter specifies access to type attributes:

■ PROTECTED is the default.

■ PRIVATE indicates that the OTT utility generates accessory and mutator methods
for each type attribute, getXXX() and setXXX().

CASE
This parameter affects the letter case of generated C++ identifiers. The valid values of
CASE are:

Table 8–1 Summary of OTT Utility Parameters

Parameter Description

ATTRACCESS Specifies whether the access to type attributes is PROTECTED or
PRIVATE.

CASE Affects the letter case of generated C++ identifiers

CODE Specifies the target language for the translation. Use CPP.

CONFIG Specifies the name of the OTT configuration file that lists
commonly used parameter specifications.

CPPFILE Specifies the name of the C++ source file into which the method
implementations are written.

ERRTYPE Specifies the name of the error message output file.

HFILE Specifies the name of the C++ header file to which the generated
C++ classes are written.

INTYPE Specifies the name of the INTYPE file.

MAPFILE Specifies the name of the mapping file and the corresponding
header file generated by the OTT utility.

MAPFUNC Specifies the name of the function used to register generated
mappings.

OUTTYPE Specifies the name of the OUTTYPE file.

SCHEMA_NAMES Controls the qualifying the database name of a type from the
default schema

TRANSITIVE Indicates whether to translate type dependency that are not
explicitly listed in the INTYPE.

UNICODE Indicates whether the application should provide UTF16 support
generate UString types.

USE_MARKER Indicates whether OTT markers should be supported to carry
forward user added cod

USERID Specifies the database connection information that the OTT utility
uses.

Invoking the OTT Utility

8-6 Oracle C++ Call Interface Programmer's Guide

■ SAME is the case of letters remains unchanged when converting database type and
attribute names to C++ identifiers.

■ LOWER indicates that all uppercase letters are converted to lowercase.

■ UPPER indicates that all lowercase letters are converted to uppercase.

■ OPPOSITE indicates that all uppercase letters are converted to lowercase, and all
lowercase letters are converted to uppercase.

This parameter affects only those identifiers (attributes or types not explicitly listed)
not mentioned in the INTYPE file. Case conversion takes place after a legal identifier
has been generated.

Case insensitive SQL identifiers not mentioned in the INTYPE file appear in uppercase
if CASE=SAME, and in lowercase if CASE=OPPOSITE. A SQL identifier is case insensitive if
it was not quoted when it was declared.

CODE
This parameter specifies the host language to be output by the OTT utility. CODE=CPP
must be specified for the OTT utility to generate C++ code for OCCI applications.

CONFIG
This parameter specifies the name of the OTT configuration file that lists commonly
used parameter specifications. Parameter specifications are also read from a system
configuration file found in an operating system-dependent location. All remaining
parameter specifications must appear either on the command line or in the INTYPE file.

The CONFIG parameter can only be specified on the OTT command line. It is not
allowed in the CONFIG file.

CPPFILE
This parameter specifies the name of the C++ source file that contains the method
implementations generated by the OTT utility. The methods generated in this file are
called by OCCI while instantiating the objects and are not to be called directly in the
an application.

This parameter is required under the following conditions:

■ A type not mentioned in the INTYPE file must be generated and two or more
CPPFILEs are being generated. In this case, the unmentioned type goes in the
CPPFILE specified on the command line.

■ The INTYPE parameter is not specified, and you want the OTT utility to translate
all the types in the schema.

This parameter is optional when the CPPFILE is specified for individual types in the
INTYPE file.

ERRTYPE
This parameter specifies the name of the error message output file. Information and
error messages are sent to the standard output regardless of whether the ERRTYPE
parameter is specified. Essentially, the ERRTYPE file is a copy of the INTYPE file with
error messages added. In most cases, an error message includes a pointer to the text
that caused the error.

If the filename specified for the ERRTYPE parameter on the command line does not
include an extension, a platform-specific extension, like .TLS or .tls, is added
automatically.

Invoking the OTT Utility

Object Type Translator Utility 8-7

HFILE
This parameter specifies the name of the header (.h) file to be generated by the OTT
utility. The HFILE specified on the command line contains the declarations of types that
are mentioned in the INTYPE file but whose header files are not specified there.

This parameter is required unless the header file for each type is specified individually
in the INTYPE file. This parameter is also required if a type not mentioned in the INTYPE
file must be generated because other types require it, and these other types are
declared in two or more different files.

If the filename specified for the HFILE parameter on the command line or in the INTYPE
file does not include an extension, a platform-specific extension, like .H or .h, is added
automatically.

INTYPE
This parameter specifies the name of the file from which to read the list of object type
specifications. The OTT utility translates each type in the list. If the INTYPE parameter
is not specified, all types in the user's schema is translated.

If the filename specified for the INTYPE parameter on the command line does not
include an extension, a platform-specific extension, like .TYP or .typ, is automatically
added.

INTYPE= may be omitted if USERID and INTYPE are the first two parameters, in that
order, and USERID= is omitted.

The INTYPE file can be thought of as a makefile for type declarations. It lists the types
for which C++ classes are needed.

MAPFILE
This parameter specifies the name of the mapping file (XXX.cpp) and corresponding
header file (XXX.h) that are generated by the OTT utility. The XXX.cpp file contains the
implementation of the functions to register the mappings, while the XXX.h file contains
the prototype for the function.

This parameter may be specified either on the command line or in the INTYPE file.

MAPFUNC
This parameter specifies the name of the function to be used to register the mappings
generated by the OTT utility.

If this parameter is omitted, then the name of the function to register the mappings is
derived from the filename specified in the MAPFILE parameter.

This parameter may be specified either on the command line or in the INTYPE file.

OUTTYPE
This parameter specifies the name of the file into which the OTT utility writes type
information for all the object data types it processes. This file includes all types
explicitly named in the INTYPE file, and may include additional types that are
translated because they are used in the declarations of other types that must be
translated. This file may be used as an INTYPE file in a future invocation of the OTT
utility.

See Also: "Structure of the INTYPE File" on page 8-14 for more
information about the format of the INTYPE file

Invoking the OTT Utility

8-8 Oracle C++ Call Interface Programmer's Guide

If the INTYPE and OUTTYPE parameters refer to the same file, then the new INTYPE
information replaces the old information in the INTYPE file. This provides a convenient
way for the same INTYPE file to be used repeatedly in the cycle of altering types,
generating type declarations, editing source code, precompiling, compiling, and
debugging.

If the filename specified for the OUTTYPE parameter on the command line or in the
INTYPE file does not include an extension, a platform-specific extension, like.TYP or
.typ, is automatically added.

SCHEMA_NAMES
This parameter offers control in qualifying the database name of a type from the
default schema that is named in the OUTTYPE file. The OUTTYPE file generated by
the OTT utility contains information about the types processed by the OTT utility,
including the type names. Valid values include:

■ ALWAYS (default) indicates that all type names in the OUTTYPE file are qualified
with a schema name.

■ IF_NEEDED indicates that the type names in the OUTTYPE file that belong to the
default schema are not qualified with a schema name. Type names belonging to
other schemas are qualified with the schema name.

■ FROM_INTYPE indicates that a type mentioned in the INTYPE file is qualified with a
schema name in the OUTTYPE file only if it was qualified with a schema name in
the INTYPE file. A type in the default schema that is not mentioned in the INTYPE
file but generated because of type dependency is written with a schema name only
if the first type encountered by the OTT utility that depends on it is also written
with a schema name. However, a type that is not in the default schema to which
the OTT utility is connected is always written with an explicit schema name.

The name of a type from a schema other that the default schema is always qualified
with a schema name in the OUTTYPE file.

The schema name, or its absence, determines in which schema the type is found
during program execution.

Example 8–4 How to use the SCHEMA_NAMES Parameter in OTT Utility

Consider an example where the SCHEMA_NAMES parameter is set to FROM_INTYPE, and
the INTYPE file contains the following:

TYPE Person
TYPE joe.Dept
TYPE sam.Company

If the OTT utility and the application both connect to schema joe, then the application
uses the same type (joe.Person) that the OTT utility uses. If the OTT utility connects
to schema joe but the application connects to schema mary, then the application uses
the type mary.Person. This behavior is appropriate only if the same CREATE TYPE
Person statement has been executed in schema joe and schema mary.

On the other hand, the application uses type joe.Dept regardless of which schema the
application is connected to. If this is the behavior you want, then be sure to include
schema names with your type names in the INTYPE file.

In some cases, the OTT utility translates a type that the user did not explicitly name.
For example, consider the following SQL declarations:

CREATE TYPE Address AS OBJECT
(

Invoking the OTT Utility

Object Type Translator Utility 8-9

street VARCHAR2(40),
city VARCHAR(30),
state CHAR(2),
zip_code CHAR(10)

);

CREATE TYPE Person AS OBJECT
(

name CHAR(20),
age NUMBER,
addr ADDRESS

);

Suppose that the OTT utility connects to schema joe, SCHEMA_NAMES=FROM_INTYPE is
specified, and the user's INTYPE files include either TYPE Person or TYPE joe.Person.
The INTYPE file does not mention the type joe.Address, which is used as a nested
object type in type joe.Person.

■ If Type Person appears in the INTYPE file, then TYPE Person and TYPE Address
appears in the OUTTYPE file.

■ If TYPE joe.Person appears in the INTYPE file, then TYPE joe.Person and TYPE
joe.Address appear in the OUTTYPE file.

■ If the joe.Address type is embedded in several types translated by the OTT utility,
but it is not explicitly mentioned in the INTYPE file, then the decision of whether to
use a schema name is made the first time the OTT utility encounters the
embedded joe.Address type. If, for some reason, the user wants type joe.Address
to have a schema name but does not want type Person to have one, then you must
explicitly request this in the INTYPE file: TYPE joe.Address.

In the usual case in which each type is declared in a single schema, it is safest for you
to qualify all type names with schema names in the INTYPE file.

TRANSITIVE
This parameter indicates whether type dependencies not explicitly listed in the INTYPE
file are to be translated. Valid values are:

■ TRUE (default): types needed by other types and not mentioned in the INTYPE file
are generated

■ FALSE: types not mentioned in the INTYPE file are not generated, even if they are
used as attribute types of other generated types.

UNICODE
This parameter specifies whether the application provides unicode (UTF16) support.

■ NONE (default)

■ ALL: All CHAR (CHAR/VARCHAR) and NCHAR (NCHAR/NVARCHAR2) type attributes are
declared as UString type in the OTT generated C++ class files. The corresponding
getXXX()/setXXX() return values or parameters are UString types. The generated
persistent operator new would also take only UString arguments.

This setting is necessary when both the client characterset and the national
characterset is UTF16.

■ ONLYNCHAR: Similar to the ALL option, but only NCHAR type attributes are declared as
UString.

Invoking the OTT Utility

8-10 Oracle C++ Call Interface Programmer's Guide

This setting is necessary when the application sets only the Environment's national
characterset to UTF16.

Example 8–5 How to Define a Schema for Unicode Support in OTT

create type CitiesList as varray(100) of varchar2(100);

create type Country as object
(CNo Number(10),

CName Varchar2(100),
CNationalName NVarchar2(100),
MainCities CitiesList);

Example 8–6 How to Use UNICODE=ALL Parameter in OTT

class Country : public oracle::occi::PObject
{

private:
oracle::occi::Number CNO;
oracle::occi::UString CNAME;
oracle::occi::UString CNATIONALNAME;
OCCI_STD_NAMESPACE:::vector< oracle::occi::UString > MAINCITIES;

public:

oracle::occi::Number getCno() const;
void setCno(const oracle::occi::Number &value);

oracle::occi::UString getCname() const;
void setCname(const oracle::occi::UString &value);

oracle::occi::UString getCnationalname() const;
void setCnationalname(const oracle::occi::UString &value);

OCCI_STD_NAMESPACE::vector< oracle::occi::UString >& getMaincities();
const OCCI_STD_NAMESPACE::vector< oracle::occi::UString >&

getMaincities() const;
void setMaincities(const OCCI_STD_NAMESPACE::vector< oracle::occi::UString

 > &value);
...
}

Example 8–7 How to Use UNICODE=ONLYCHAR Parameter in OTT

class Country : public oracle::occi::PObject
{

private:
oracle::occi::Number CNO;
oracle::occi::string CNAME;
oracle::occi::UString CNATIONALNAME;
OCCI_STD_NAMESPACE::vector< std::string > MAINCITIES;

public:

oracle::occi::Number getCno() const;
void setCno(const oracle::occi::Number &value);

oracle::occi::string getCname() const;
void setCname(const OCCI_STD_NAMESPACE::string &value);

oracle::occi::UString getCnationalname() const;

Invoking the OTT Utility

Object Type Translator Utility 8-11

void setCnationalname(const oracle::occi::UString &value);

OCCI_STD_NAMESPACE::vector< OCCI_STD_NAMESPACE::string>&
getMaincities();

const OCCI_STD_NAMESPACE::vector< OCCI_STD_NAMESPACE::string >&
getMaincities() const;

void setMaincities(const OCCI_STD_NAMESPACE::vector
< OCCI_STD_NAMESPACE::string > &value);

...
}

USE_MARKER
This parameter indicates whether to support OTT markers for carrying forward user
added code. Valid values are:

■ FALSE (default): User-supplied code is not carried forward, even if the code is
added between OTT_USERCODE_START and OTT_USERCODE_END markers.

■ TRUE: User-supplied code, between the markers OTT_USER_CODESTART and OTT_
USERCODE_END, is carried forward when the same file is generated again.

USERID
This parameter specifies the Oracle username and optional database name (Oracle Net
database specification string). If the database name is omitted, the default database is
assumed.

USERID=username[@db_name]

If this is the first parameter, then USERID= may be omitted as shown:

OTT username ...

Note that the system prompts you for the password that corresponds to the user id.

This parameter is optional. If omitted, the OTT utility automatically attempts to
connect to the default database as user OPS$username, where username is the user's
operating system username.

Where OTT Parameters Can Appear
Supply OTT parameters on the command line, in a CONFIG file named on the command
line, or both. Some parameters are also allowed in the INTYPE file.

The OTT utility is invoked as follows:

OTT parameters

You can name a configuration file on the command line with the CONFIG parameter as
follows:

CONFIG=filename

If you name this parameter on the command line, then additional parameters are read
from the configuration file named filename.

In addition, parameters are also read from a default configuration file that resides in
an operating system-dependent location. This file must exist, but can be empty. If you
choose to enter data in the configuration file, note that no white space is allowed on a
line and parameters must be entered one to a line.

Using the INTYPE File

8-12 Oracle C++ Call Interface Programmer's Guide

If the OTT utility is executed without any arguments, then an online parameter
reference is displayed.

The types for the OTT utility to translate are named in the file specified by the INTYPE
parameter. The parameters CASE, CPPFILE, HFILE, INITFILE, INITFUNC, MAPFILE, and
MAPFNC may also appear in the INTYPE file. OUTTYPE files generated by the OTT utility
include the CASE parameter, and include the INITFILE, and INITFUNC parameters if an
initialization file was generated or the MAPFILE and MAPFUNC parameters if C++ codes
was generated. The OUTTYPE file and the CPPFILE for C++ specify the HFILE
individually for each type.

The case of the OTT command is operating system-dependent.

File Name Comparison Restriction
Currently, the OTT utility determines if two files are the same by comparing the
filenames provided by the user either on the command line or in the INTYPE file. But
one potential problem can occur when the OTT utility must know if two filenames
refer to the same file. For example, if the OTT-generated file foo.h requires a type
declaration written to foo1.h, and another type declaration written to
/private/smith/foo1.h, then the OTT utility should generate one #include if the two
files are the same, and two #includes if the files are different. In practice, though, it
concludes that the two files are different, and generates two #includes as follows:

#ifndef FOO1_ORACLE
#include "foo1.h"
#endif
#ifndef FOO1_ORACLE
#include "/private/smith/foo1.h"
#endif

If foo1.h and /private/smith/foo1.h are different files, then only the first one is
included. If foo1.h and /private/smith/foo1.h are the same file, then a redundant
#include is written.

Therefore, if a file is mentioned several times on the command line or in the INTYPE
file, then each mention of the file should use the same filename.

OTT Command on Microsoft Windows
OTT executable on Microsoft Windows in the current release is ott.bat, instead of
ott.exe as in the earlier releases. This may break Windows batch scripts, as the scripts
exit immediately after executing ott. To fix this problem, OTT should be invoked as
follows, in Windows batch scripts:

call ott [arguments]

Using the INTYPE File
When you run the OTT utility, the INTYPE file tells the OTT utility which database
types should be translated. The INTYPE file also controls the naming of the generated
structures or classes. You can either create an INTYPE file or use the OUTTYPE file of a

Note: ORACLE_HOME\precomp\admin\ott.exe can be used until the
scripts are fixed, as an intermediate solution. However, this
intermediate solution will not be provided in future releases.

Using the INTYPE File

Object Type Translator Utility 8-13

previous invocation of the OTT utility. If you do not use an INTYPE file, then all types
in the schema to which the OTT utility connects are translated.

Overview of the INTYPE File

Example 8–8 How to Create a User Defined INTYPE File Using the OTT Utility

CASE=LOWER
TYPE employee

TRANSLATE SALARY$ AS salary
DEPTNO AS department

TYPE ADDRESS
TYPE item
TYPE "Person"
TYPE PURCHASE_ORDER AS p_o

■ In the first line, the CASE parameter indicates that generated C identifiers should be
in lowercase. However, this CASE parameter is only applied to those identifiers that
are not explicitly mentioned in the INTYPE file. Thus, employee and ADDRESS
would always result in C structures employee and ADDRESS, respectively. The
members of these structures are named in lowercase.

■ The lines that begin with the TYPE keyword specify which types in the database
should be translated. In this case, the EMPLOYEE, ADDRESS, ITEM, PERSON, and
PURCHASE_ORDER types are set to be translated.

■ The TRANSLATE...AS keywords specify that the name of an object attribute should
be changed when the type is translated into a C structure. In this case, the SALARY$
attribute of the employee type is translated to salary.

■ The AS keyword in the final line specifies that the name of an object type should be
changed when it is translated into a structure. In this case, the purchase_order
database type is translated into a structure called p_o.

The OTT utility may have to translate additional types that are not listed in the INTYPE
file. This is because the OTT utility analyzes the types in the INTYPE file for type
dependencies before performing the translation, and it translates other types as
necessary. For example, if the ADDRESS type were not listed in the INTYPE file, but the
Person type had an attribute of type ADDRESS, then the OTT utility would still translate
ADDRESS because it is required to define the Person type.

You may indicate whether the OTT utility should generate required object types that
are not specified in the INTYPE file. Set TRANSITIVE=FALSE so the OTT utility does not
to generate required object types. The default is TRANSITIVE=TRUE.

A normal case insensitive SQL identifier can be spelled in any combination of
uppercase and lowercase in the INTYPE file, and is not quoted.

Use quotation marks, such as TYPE "Person" to reference SQL identifiers that have
been created in a case sensitive manner, for example, CREATE TYPE "Person". A SQL
identifier is case sensitive if it was quoted when it was declared. Quotation marks can
also be used to refer to a SQL identifier that is an OTT-reserved word, for example,
TYPE "CASE". In this case, the quoted name must be in uppercase if the SQL identifier
was created in a case insensitive manner, for example, CREATE TYPE Case. If an
OTT-reserved word is used to refer to the name of a SQL identifier but is not quoted,
then the OTT utility reports a syntax error in the INTYPE file.

Using the INTYPE File

8-14 Oracle C++ Call Interface Programmer's Guide

Structure of the INTYPE File
The INTYPE and OUTTYPE files list the types translated by the OTT utility and provide
all the information needed to determine how a type or attribute name is translated to a
legal C or C++ identifier. These files contain one or more type specifications, and may
also contain specifications of CASE, CPPFILE, HFILE, INITFILE, INITFUNC, MAPFILE, or
MAPFUNC.

If the CASE, INITFILE, INITFUNC, MAPFILE, or MAPFUNC options are present, then they
must precede any type specifications. If these options appear both on the command
line and in the INTYPE file, then the value on the command line is used.

INTYPE File Type Specifications
A type specification in the INTYPE file names an object data type that is to be
translated. The following is an example of a user-created INTYPE file:

TYPE employee
TRANSLATE SALARY$ AS salary

DEPTNO AS department
TYPE ADDRESS
TYPE PURCHASE_ORDER AS p_o

The structure of a type specification is as follows:

TYPE type_name
[GENERATE type_identifier]
[AS type_identifier]
[VERSION [=] version_string]
[HFILE [=] hfile_name]
[CPPFILE [=] cppfile_name]
[TRANSLATE{member_name [AS identifier]}...]

The type_name syntax follows this form:

[schema_name.]type_name

In this syntax, schema_name is the name of the schema that owns the given object data
type, and type_name is the name of the type. The default schema, if one is not
specified, is that of the userID invoking the OTT utility. To use a specific schema, you
must use schema_name.

The components of the type specification are:

■ type_name: Name of the object data type.

■ type_identifier: C / C++ identifier used to represent the class. The GENERATE
clause is used to specify the name of the class that the OTT utility generates. The
AS clause specifies the name of the class that you write. The GENERATE clause is

See Also:

■ "Structure of the INTYPE File" on page 8-14 for a more detailed
specification of the structure of the INTYPE file and the available
options.

■ "CASE" on page 8-5 for further information regarding the CASE
parameter

See Also: "Overview of the OUTTYPE File" on page 8-23 for an
example of a simple user-defined INTYPE file and of the full OUTTYPE
file that the OTT utility generates from it

Using the INTYPE File

Object Type Translator Utility 8-15

typically used to extend a class. The AS clause, when optionally used without the
GENERATE clause, specifies the name of the C structure or the C++ class that
represents the user-defined type.

■ version_string: Version string of the type that was used when the code was
generated by the previous invocation of the OTT utility. The version string is
generated by the OTT utility and written to the OUTTYPE file, which can later be
used as the INTYPE file in later invocations of the OTT utility. The version string
does not affect how the OTT utility operates, but can be used to select which
version of the object data type is used in the running program.

■ hfile_name: Name of the header file into which the declarations of the
corresponding class are written. If you omit the HFILE clause, then the file
specified by the command line HFILE parameter is used.

■ cppfile_name: Name of the C++ source file into which the method
implementations of the corresponding class is written. If you omit the CPPFILE
clause, the file specified by the command line CPPFILE parameter is used.

■ member_name: Name of an attribute (data member) that is to be translated to the
identifier.

■ identifier: C / C++ identifier used to represent the attribute in the program. You
can specify identifiers in this way for any number of attributes. The default name
mapping algorithm is used for the attributes not mentioned.

An object data type may be translated for one of two reasons:

■ It appears in the INTYPE file.

■ It is required to declare another type that must be translated, and the TRANSITIVE
parameter is set to TRUE.

If a type that is not mentioned explicitly is necessary to types declared in exactly one
file, then the translation of the required type is written to the same files as the
explicitly declared types that require it.

If a type that is not mentioned explicitly is necessary to types declared in multiple files,
then the translation of the required type is written to the global HFILE file.

You may indicate whether the OTT utility should generate required object types that
are not specified in the INTYPE file. Set TRANSITIVE=FALSE so the OTT utility does not
to generate required object types. The default is TRANSITIVE=TRUE.

Nested #include File Generation
HFILE files generated by the OTT utility #include other necessary files, and #define a
symbol constructed from the name of the file. This symbol #define can then be used to
determine if the related HFILE file has been included. Consider, for example, a
database with the following types:

create type px1 AS OBJECT (col1 number, col2 integer);
create type px2 AS OBJECT (col1 px1);
create type px3 AS OBJECT (col1 px1);

The INTYPE file contains the following information:

CASE=lower
type pxl

hfile tott95a.h
type px3

hfile tott95b.h

Using the INTYPE File

8-16 Oracle C++ Call Interface Programmer's Guide

You invoke the OTT utility as follows:

>ott hr intype=tott95i.typ outtype=tott95o.typ code=cpp
...
Enter password: password

The OTT utility then generates the following two header files, named tott95a.h and
tott95b.h. They are listed in

Example 8–9 Listing of ott95a.h

#ifndef TOTT95A_ORACLE
define TOTT95A_ORACLE

#ifndef OCCI_ORACLE
include <occi.h>
#endif

/**/
// generated declarations for the PX1 object type.
/**/

class px1 : public oracle::occi::PObject {

protected:
 oracle::occi::Number col1;
 oracle::occi::Number col2;

public:
 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table);
 void *operator new(size_t, void *ctxOCCI_);
 void *operator new(size_t size, const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema);
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 px1();
 px1(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
 ~px1();
};

#endif

Example 8–10 Listing of ott95b.h

#ifndef TOTT95B_ORACLE
define TOTT95B_ORACLE

#ifndef OCCI_ORACLE
include <occi.h>
#endif

Using the INTYPE File

Object Type Translator Utility 8-17

#ifndef TOTT95A_ORACLE
include "tott95a.h"
#endif

/**/
// generated declarations for the PX3 object type.
/**/

class px3 : public oracle::occi::PObject {

protected:
 px1 * col1;

public:
 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table);
 void *operator new(size_t, void *ctxOCCI_);
 void *operator new(size_t size, const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema);
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 px3();
 px3(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
 ~px3();
};
#endif

In the tott95b.h file, the symbol TOTT95B_ORACLE is #define d at the beginning of the
file. This enables you to conditionally #include this header file in another file, using
the following construct:

#ifndef TOTT95B_ORACLE
#include "tott95b.h"
#endif

By using this technique, you can #include tott95b.h in, say foo.h, without having to
know whether some other file #included in foo.h also #includes tott95b.h.

Next, the file tott95a.h is included because it contains the declaration of struct px1,
that tott95b.h requires. When the INTYPE file requests that type declarations be
written to multiple files, the OTT utility determines which other files each HFILE must
#include, and generates each necessary #include.

Note that the OTT utility uses quotes in this #include. When a program including
tott95b.h is compiled, the search for tott95a.h begins where the source program was
found, and thereafter follows an implementation-defined search rule. If tott95a.h
cannot be found in this way, then a complete filename (for example, a UNIX absolute
path name beginning with a slash character (/)) is necessary in the INTYPE file to
specify the location of tott95a.h.

OTT Utility Data Type Mappings

8-18 Oracle C++ Call Interface Programmer's Guide

OTT Utility Data Type Mappings
When the OTT utility generates a C++ class from a database type, the structure or class
contains one element corresponding to each attribute of the object type. The data types
of the attributes are mapped to types that are used in Oracle object data types. The
data types found in Oracle include a set of predefined, primitive types and provide for
the creation of user-defined types, like object types and collections.

The set of predefined types includes standard types that are familiar to most
programmers, including number and character types. It also includes large object data
types (for example, BLOB or CLOB).

Example 8–11 How to Represent Object Attributes Using the OTT Utility

Oracle also includes a set of predefined types that are used to represent object type
attributes in C++ classes. Consider the following object type definition, and its
corresponding OTT-generated structure declarations:

CREATE TYPE employee AS OBJECT
(name VARCHAR2(30),

empno NUMBER,
deptno NUMBER,
hiredate DATE,
salary NUMBER

);

The OTT utility, assuming that the CASE parameter is set to LOWER and there are no
explicit mappings of type or attribute names, produces the following output:

#ifndef DATATYPES_ORACLE
define DATATYPES_ORACLE

#ifndef OCCI_ORACLE
include <occi.h>
#endif

/**/
// generated declarations for the EMPLOYEE object type.
/**/

class employee : public oracle::occi::PObject {

protected:
 OCCI_STD_NAMESPACE::string NAME;
 oracle::occi::Number EMPNO;
 oracle::occi::Number DEPTNO;
 oracle::occi::Date HIREDATE;
 oracle::occi::Number SALARY;

public:
 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table);
 void *operator new(size_t, void *ctxOCCI_);
 void *operator new(size_t size, const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema);
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,

OTT Utility Data Type Mappings

Object Type Translator Utility 8-19

 unsigned int &typeNameLen) const;
 employee();
 employee(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
 ~employee();

};

#endif

Table 8–2 lists the mappings from types that can be used as attributes to object data
types that are generated by the OTT utility.

Table 8–2 C++ Object Data Type Mappings for Object Type Attributes

Object Attribute Types C++ Mapping

BFILE Bfile

BLOB Blob

BINARY_DOUBLE BDouble

BINARY_FLOAT BFloat

CHAR(n), CHARACTER(n) string

CLOB Clob

DATE Date

DEC, DEC(n), DEC(n,n) Number

DECIMAL, DECIMAL(n), DECIMAL(n,n) Number

FLOAT, FLOAT(n), DOUBLE PRECISION Number

INT, INTEGER, SMALLINT Number

INTERVAL DAY TO SECOND IntervalDS

INTERVAL YEAR TO MONTH IntervalYM

Nested Object Type C++ name of the nested object type

NESTED TABLE vector<attribute_type>

NUMBER, NUMBER(n), NUMBER(n,n) Number

NUMERIC, NUMERIC(n), NUMERIC(n,n) Number

RAW Bytes

REAL Number

REF Ref<attribute_type>

TIMESTAMP,TIMESTAMP WITH TIME ZONE, TIMESTAMP
WITH LOCAL TIME ZONE

Timestamp

VARCHAR(n) string

VARCHAR2(n) string

VARRAY vector<attribute_type>

OTT Utility Data Type Mappings

8-20 Oracle C++ Call Interface Programmer's Guide

Example 8–12 How to Map Object Data Types Using the OTT Utility

The example assumes that the following database types are created:

CREATE TYPE my_varray AS VARRAY(5) of integer;

CREATE TYPE object_type AS OBJECT
(object_name VARCHAR2(20));

CREATE TYPE other_type AS OBJECT
(object_number NUMBER);

CREATE TYPE my_table AS TABLE OF object_type;

CREATE TYPE many_types AS OBJECT
(
 the_varchar VARCHAR2(30),
the_char CHAR(3),
the_blob BLOB,
the_clob CLOB,
the_object object_type,
another_ref REF other_type,
the_ref REF many_types,
the_varray my_varray,
the_table my_table,
the_date DATE,
the_num NUMBER,
the_raw RAW(255)

);

An INTYPE file exists, and includes the following:

CASE = LOWER
TYPE many_types

The following is an example of the OTT type mappings for C++, given the types
created in the example in the previous section, and an INTYPE file that includes the
following:

CASE = LOWER
TYPE many_types

#ifndef MYFILENAME_ORACLE
#define MYFILENAME_ORACLE

#ifndef OCCI_ORACLE
#include <occi.h>
#endif

/**/
// generated declarations for the OBJECT_TYPE object type.
/**/

class object_type : public oracle::occi::PObject
{

protected:
OCCI_STD_NAMESPACE::string object_name;

public:
void *operator new(size_t size);
void *operator new(size_t size, const oracle::occi::Connection * sess,

const OCCI_STD_NAMESPACE::string& table);

OTT Utility Data Type Mappings

Object Type Translator Utility 8-21

void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const;

object_type();
object_type(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
static void *readSQL(void *ctxOCCI_);
virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
static void writeSQL(void *objOCCI_, void *ctxOCCI_);
virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);

};

/**/
// generated declarations for the OTHER_TYPE object type.
/**/

class other_type : public oracle::occi::PObject
{

protected:
oracle::occi::Number object_number;

public:
void *operator new(size_t size);
void *operator new(size_t size, const oracle::occi::Connection * sess,

const OCCI_STD_NAMESPACE::string& table);
void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,

unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const;

other_type();
other_type(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
static void *readSQL(void *ctxOCCI_);
virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
static void writeSQL(void *objOCCI_, void *ctxOCCI_);
virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);

};

/**/
// generated declarations for the MANY_TYPES object type.
/**/

class many_types : public oracle::occi::PObject
{

protected:
OCCI_STD_NAMESPACE::string the_varchar;
OCCI_STD_NAMESPACE::string the_char;
oracle::occi::Blob the_blob;
oracle::occi::Clob the_clob;
object_type * the_object;
oracle::occi::Ref< other_type > another_ref;
oracle::occi::Ref< many_types > the_ref;
OCCI_STD_NAMESPACE::vector< oracle::occi::Number > the_varray;
OCCI_STD_NAMESPACE::vector< object_type * > the_table;
oracle::occi::Date the_date;
oracle::occi::Number the_num;
oracle::occi::Bytes the_raw;

public:
void *operator new(size_t size);
void *operator new(size_t size, const oracle::occi::Connection * sess,

const OCCI_STD_NAMESPACE::string& table);
void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,

OTT Utility Data Type Mappings

8-22 Oracle C++ Call Interface Programmer's Guide

unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const;

many_types();
many_types(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
static void *readSQL(void *ctxOCCI_);
virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
static void writeSQL(void *objOCCI_, void *ctxOCCI_);
virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);

};

#endif

The OTT utility generates the following C++ class declarations (comments are not part
of the OTT output, and are added only to clarify the example):

For C++, when TRANSITIVE=TRUE, the OTT utility automatically translates any types
that are used as attributes of a type being translated, including types that are only
being accessed by a pointer or REF in an object type attribute. Even though only the
many_types object was specified in the INTYPE file for the C++ example, a class
declaration was generated for all the object types, including the other_type object,
which was only accessed by a REF in the many_types object.

Default Name Mapping
When the OTT utility creates a C or C++ identifier name for an object type or attribute,
it translates the name from the database character set to a legal C or C++ identifier.
First, the name is translated from the database character set to the character set used
by the OTT utility. Next, if a translation of the resulting name is supplied in the INTYPE
file, that translation is used. Otherwise, the OTT utility translates the name
character-by-character to the compiler character set, applying the character case
specified in the CASE parameter. The following text describes this in more detail.

When the OTT utility reads the name of a database entity, the name is automatically
translated from the database character set to the character set used by the OTT utility.
In order for the OTT utility to read the name of the database entity successfully, all the
characters of the name must be found in the OTT character set, although a character
may have different encodings in the two character sets.

The easiest way to guarantee that the character set used by the OTT utility contains all
the necessary characters is to make it the same as the database character set. Note,
however, that the OTT character set must be a superset of the compiler character set.
That is, if the compiler character set is 7-bit ASCII, then the OTT character set must
include 7-bit ASCII as a subset, and if the compiler character set is 7-bit EBCDIC, then
the OTT character set must include 7-bit EBCDIC as a subset. The user specifies the
character set that the OTT utility uses by setting the NLS_LANG environment variable, or
by some other operating system-specific mechanism.

Once the OTT utility has read the name of a database entity, it translates the name
from the character set used by the OTT utility to the compiler's character set. If a
translation of the name appears in the INTYPE file, then the OTT utility uses that
translation.

Otherwise, the OTT utility attempts to translate the name as follows:

1. If the OTT character set is a multibyte character set, all multibyte characters in the
name that have single-byte equivalents are converted to those single-byte
equivalents.

2. The name is converted from the OTT character set to the compiler character set.
The compiler character set is a single-byte character set such as US7ASCII.

Overview of the OUTTYPE File

Object Type Translator Utility 8-23

3. The case of letters is set according to how the CASE parameter is defined, and any
character that is not legal in a C or C++ identifier, or that has no translation in the
compiler character set, is replaced by an underscore character (_). If at least one
character is replaced by an underscore, then the OTT utility gives a warning
message. If all the characters in a name are replaced by underscores, the OTT
utility gives an error message.

Character-by-character name translation does not alter underscores, digits, or
single-byte letters that appear in the compiler character set, so legal C or C++
identifiers are not altered.

Name translation may, for example, translate accented single-byte characters such as o
with an umlaut or an a with an accent grave to o or a, with no accent, and may
translate a multibyte letter to its single-byte equivalent. Name translation typically
fails if the name contains multibyte characters that lack single-byte equivalents. In this
case, the user must specify name translations in the INTYPE file.

The OTT utility does not detect a naming clash caused by two or more database
identifiers being mapped to the same C name, nor does it detect a naming problem
where a database identifier is mapped to a C keyword.

Overview of the OUTTYPE File
The OUTTYPE file is named on the OTT command line. When the OTT utility generates
a C++ header file, it also writes the results of the translation into the OUTTYPE file. This
file contains an entry for each of the translated types, including its version string and
the header file to which its C++ representation was written.

The OUTTYPE file from one OTT utility run can be used as the INTYPE file for a
subsequent invocation of the OTT utility.

Example 8–13 OUTTYPE File Generated by the OTT Utility

In this INTYPE file, the programmer specifies the case for OTT-generated C++
identifiers, and provides a list of types that should be translated. In two of these types,
naming conventions are specified. This is what the OUTTYPE file looks like after
running the OTT utility:

The following example shows what t:

CASE = LOWER
TYPE EMPLOYEE AS employee

VERSION = "$8.0"
HFILE = demo.h
TRANSLATE SALARY$ AS salary

DEPTNO AS department
TYPE ADDRESS AS ADDRESS

VERSION = "$8.0"
HFILE = demo.h

TYPE ITEM AS item
VERSION = "$8.0"
HFILE = demo.h

TYPE "Person" AS Person
VERSION = "$8.0"
HFILE = demo.h

TYPE PURCHASE_ORDER AS p_o
VERSION = "$8.0"
HFILE = demo.h

The OTT Utility and OCCI Applications

8-24 Oracle C++ Call Interface Programmer's Guide

When examining the contents of the OUTTYPE file, you might discover types listed that
were not included in the INTYPE file specification. For example, consider the case
where the INTYPE file only specified that the person type was to be translated:

CASE = LOWER
TYPE PERSON

If the definition of the person type includes an attribute of type address, then the
OUTTYPE file includes entries for both PERSON and ADDRESS. The person type cannot be
translated completely without first translating address.

The OTT utility analyzes the types in the INTYPE file for type dependencies before
performing the translation, and translates other types as necessary.

You may indicate whether the OTT utility should generate required object types that
are not specified in the INTYPE file. Set TRANSITIVE=FALSE so the OTT utility does not
generate required object types. The default is TRANSITIVE=TRUE.

The OTT Utility and OCCI Applications
The OTT utility generates objects and maps SQL data types to C++ classes. The OTT
utility also implements a few methods called by OCCI when instantiating objects and
a function that is called in the OCCI application to register the mappings with the
environment. These declarations are stored in a header file that you include (#include)
in your OCCI application. The prototype for the function that registers the mappings is
written to a separate header file, which you also include in your OCCI application. The
method implementations are stored in a C++ source code file (with extension .cpp)
that is linked with the OCCI application. The function that registers the mappings is
stored in a separate C++ (xxx.cpp) file that is also linked with the application.

Figure 8–1 shows the steps involved in using the OTT utility with OCCI. These steps
are described following the figure.

The OTT Utility and OCCI Applications

Object Type Translator Utility 8-25

Figure 8–1 The OTT Utility with OCCI

1. Create the type definitions in the database by using the SQL DLL.

2. Create the INTYPE file that contains the database types to be translated by the OTT
utility.

3. Specify that C++ should be generated and invoke the OTT utility.

The OTT utility then generates the following files:

■ A header file (with the extension .h) that contains C++ class representations of
object types; the filename is specified on the OTT command line by the HFILE
parameter.

■ A header file that contains the prototype of the function (MAPFUNC) that
registers the mappings.

■ A C++ source file (with the extension .cpp) that contains the static methods
called by OCCI while instantiating the objects; the filename is specified on the
OTT command line by the CPPFILE parameter. Do not call these methods
directly from your OCCI application.

■ A file that contains the function used to register the mappings with the
environment (with the extension .cpp); the filename is specified on the OTT
command line by the MAPFILE parameter.

■ A file (OUTTYPE file) that contains an entry for each of the translated types,
including the version string and the file into which it is written; the filename is
specified on the OTT command line by the OUTTYPE parameter.

4. Write the OCCI application and include the header files created by the OTT utility
in the OCCI source code file.

The application declares an environment and calls the function MAPFUNC to register
the mappings.

The OTT Utility and OCCI Applications

8-26 Oracle C++ Call Interface Programmer's Guide

5. Compile the OCCI application to create the OCCI object code, and link the object
code with the OCCI libraries to create the program executable.

C++ Classes Generated by the OTT Utility
When the OTT utility generates a C++ class from a database object type, the class
declaration contains one element corresponding to each attribute of the object type.
The data types of the attribute are mapped to types that are used in Oracle object data
types, as defined in Table 8–2 on page 8-19.

For each class, two new operators, readSQL() and writeSQL() methods are generated.
They are used by OCCI to marshall and unmarshall objects.

By default, the C++ classes generated by the OTT utility for an object type are derived
from the PObject class, so the generated constructor in the class also derives from the
PObject class. For inherited database types, the class is derived from the parent type
class as is the generated constructor and only the elements corresponding to attributes
not in the parent class are included.

Class declarations that include the elements corresponding to the database type
attributes and the method declarations are included in the header file generated by the
OTT utility. The method implementations are included in the CPPFILE file generated
by the OTT utility.

Example 8–14 How to Generate C++ Classes Using the OTT Utility

This example demonstrates how to generate C++ classes using the OTT utility:

1. Define the types:

CREATE TYPE FULL_NAME AS OBJECT (first_name CHAR(20),
last_name CHAR(20));

CREATE TYPE ADDRESS AS OBJECT (state CHAR(20), zip CHAR(20));
CREATE TYPE ADDRESS_TAB AS VARRAY(3) of REF ADDRESS;
CREATE TYPE PERSON AS OBJECT (id NUMBER, name FULL_NAME,

curr_addr REF ADDRESS, prev_addr_l ADDRESS_TAB) NOT FINAL;
CREATE TYPE STUDENT UNDER PERSON (school_name CHAR(20));

2. Provide an INTYPE file:

CASE = SAME
MAPFILE = RegisterMappings_3.cpp
TYPE FULL_NAME AS FullName

TRANSLATE first_name as FirstName
last_name as LastName

TYPE ADDRESS
TYPE PERSON
TYPE STUDENT

3. Invoke the OTT utility:

ott userid=demousr intype=demoin_3.typ outype=demoout_3.typ
code=cpp hfile=demo_3.h cppfile=demo_3.cpp

Map Registry Function
One function to register the mappings with the environment is generated by the OTT
utility. The function contains the mappings for all the types translated by the
invocation of the OTT utility. The function name is either specified in the MAPFUNC
parameter or, if that parameter is not specified, derived from MAPFILE parameter. The
only argument to the function is the pointer to Environment.

Carrying Forward User Added Code

Object Type Translator Utility 8-27

The function uses the provided Environment to get Map and then registers the mapping
of each translated type.

Extending C++ Classes
To enhance the functionality of a class generated by the OTT utility, you can derive
new classes. You can also add methods to a class, but Oracle does not recommend
doing so due to an inherent risk.

To generate both CAddress and MyAddress classes from the SQL object type ADDRESS,
MyAddress class can be derived from CAddress class. The OTT utility must then alter
the code it generates in the following ways:

■ By using the MyAddress class instead of the CAddress class to represent attributes
whose database type is ADDRESS

■ By using the MyAddress class instead of the CAddress class to represent vector and
REF elements whose database type is ADDRESS

■ By using the MyAddress class instead of the CAddress class as the base class for
database object types that are inherited from ADDRESS. Even though a derived class
is a subtype of MyAddress, the readSQL() and writeSQL() methods called are those
of the CAddress class.

Example 8–15 How to Extend C++ Classes Using the OTT Utility

To use the OTT utility to generate the CAddress class, which is derived from MyAddress
class), the following clause must be specified in the TYPE statement:

TYPE ADDRESS GENERATE CAdress AS MyAddress

Given the database types FULL_NAME, ADDRESS, PERSON, and PFGRFDENT as they were
created before and changing the INTYPE file to include the GENERATE...AS clause:

CASE = SAME
MAPFILE = RegisterMappings_5.cpp

TYPE FULL_NAME GENERATE CFullName AS MyFullName
TRANSLATE first_name as FirstName

last_name as LastName

TYPE ADDRESS GENERATE CAddress AS MyAddress
TYPE PERSON GENERATE CPerson AS MyPerson
TYPE STUDENT GENERATE CStudent AS MyStudent

Carrying Forward User Added Code
To extend the functionality of OTT generated code, at times programmers may want to
add code in the OTT generated file. The way OTT can distinguish between OTT
generated code and code added by the user is by looking for some predefined markers

See Also: "Carrying Forward User Added Code" on page 8-27 for
details on how to use OTT markers to retain code you want to add in
OTT generated files

Caution: When a class is both extended and used as a base class for
another generated class, the inheriting type class and the inherited type
class must be generated in separate files.

Carrying Forward User Added Code

8-28 Oracle C++ Call Interface Programmer's Guide

(tags). OTT recognizes OTT_USERCODE_START as the start of user code marker, and OTT_
USERCODE_END as the end of user code marker.

For OTT marker support, a user block is defined as

OTT_USERCODE_START + user added code + OTT_USERCODE_END

OTT marker support enables carrying forward the user added blocks in *.h and *.cpp
files.

Properties of OTT Markers
These items describe the properties of OTT Markers Support:

1. User must use the command line option USE_MARKER=TRUE from the very first
time OTT is invoked to generate a file.

2. User should treat markers like other C++ statements; a marker defined by OTT in
the generated file as follows when the command line option USE_MARKER=TRUE is
used:

 #ifndef OTT_USERCODE_START
 #define OTT_USERCODE_START
 #endif
 #ifndef OTT_USERCODE_END
 #define OTT_USERCODE_END
 #endif

3. The markers, OTT_USERCODE_START and OTT_USERCODE_END, must be preceded
and followed by white space.

4. OTT copies the text or code given within markers verbatim, along with the
markers, while generating the code next time.

User modified code:

 1 // --- modified generated code
 2 OTT_USERCODE_START
 3 // --- including "myfullname.h"
 4 #ifndef MYFULLNAME_ORACLE
 5 #include "myfullname.h"
 6 #endif
 7 OTT_USERCODE_END
 8 // --- end of code addition

 Carried forward code:

 1 OTT_USERCODE_START
 2 // --- including "myfullname.h"
 3 #ifndef MYFULLNAME_ORACLE
 4 #include "myfullname.h"
 5 #endif
 6 OTT_USERCODE_END

5. OTT does not carry forward user-added code properly if the database TYPE or
INTYPE file undergoes changes as shown in the following cases:

■ If user modifies the case of the type name, OTT fails to determine the class
name with which the code was associated earlier, as the case of the class name
is modified by the user in the INTYPE file.

CASE=UPPER CASE=LOWER
TYPE employee TYPE employee

Carrying Forward User Added Code

Object Type Translator Utility 8-29

TRANSLATE SALARY$ AS salary TRANSLATE SALARY$ AS salary
DEPTNO AS department DEPTNO AS department

TYPE ADDRESS TYPE ADDRESS
TYPE item TYPE item
TYPE "Person" TYPE "Person"
TYPE PURCHASE_ORDER AS p_o TYPE PURCHASE_ORDER AS p_o

■ If user asks to generate the class with a different name (GENERATE AS clause of
INTYPE file), OTT fails to determine the class name with which the code was
associated earlier as the class name was modified by the user in the INTYPE
file.

CASE=LOWER CASE=LOWER
TYPE employee TYPE employee
TRANSLATE SALARY$ AS salary TRANSLATE SALARY$ AS salary
 DEPTNO AS department DEPTNO AS department
TYPE ADDRESS TYPE ADDRESS
TYPE item TYPE item
TYPE "Person" TYPE "Person"
TYPE PURCHASE_ORDER AS p_o TYPE PURCHASE_ORDER AS
 purchase_order

6. If OTT encounters an error while parsing an .h or .cpp file, it reports the error and
leaves the file having error as it is so that the user can go back and correct the error
reported, and rerun OTT.

7. OTT flags an error if:

■ it does not find a matching OTT_USERCODE_END for OTT_USERCODE_START
encountered

■ markers are nested (OTT finds next OTT_USERCODE_START before OTT_
USERCODE_END is found for the previous OTT_USERCODE_START)

■ OTT_USERCODE_END is encountered before OTT_USERCODE_START

Using OTT Markers
The user must use command line option USE_MARKER=TRUE to turn on marker support.
There are two general ways in which OTT markers can carry forward user added code:

1. User code added in .h file.

■ User code added in global scope. This is typically the case when user must
include different header files, forward declaration, and so on. Refer to the code
example provided later.

■ User code added in class declaration. At any point of time OTT generated
class declaration has private scope for data members and public scope for
methods, or protected scope for data members and public scope for methods.
User blocks can be added after all OTT generated declarations in either access
specifiers.

Example 8–16 How to Add User Code to a Header File Using OTT Utility

...
#ifndef OTT_USERCODE_START
#define OTT_USERCODE_START
#endif
#ifndef OTT_USERCODE_END
#define OTT_USERCODE_END
#endif

Carrying Forward User Added Code

8-30 Oracle C++ Call Interface Programmer's Guide

#ifndef OCCI_ORACLE
#include <occi.h>
#endif

OTT_USERCODE_START // user added code
...
OTT_USERCODE_END

#ifndef ... // OTT generated include
#include " ... "
#endif

OTT_USERCODE_START // user added code
...
OTT_USERCODE_END

class <class_name_1> : public oracle::occi::PObject
{ protected:

... // OTT generated data members
OTT_USERCODE_START // user added code for data member / method
... // declaration / inline method
OTT_USERCODE_END

public:

void *operator new(size_t size);
...
OTT_USERCODE_START // user added code for data member / method
... // declaration / inline method definition
OTT_USERCODE_END

};

OTT_USERCODE_START // user added code
...
OTT_USERCODE_END

class <class_name_2> : public oracle::occi::PObject
{

...
};

OTT_USERCODE_START // user added code
...
OTT_USERCODE_END
...
#endif // end of .h file

2. User code added in .cpp file. OTT supports adding a new user defined method
within OTT markers. The user block must be added at the beginning of the file,
just after the includes and before the definition of OTT-generated methods. If there
are multiple OTT-generated includes, user code can also be added between OTT
generated includes. User code added in any other part of a xxx.cpp file is not
carried forward.

Example 8–17 How to Add User Code to the Source File Using the OTT Utility

#ifndef OTT_USERCODE_START
#define OTT_USERCODE_START
#endif

Carrying Forward User Added Code

Object Type Translator Utility 8-31

#ifndef OTT_USERCODE_END
#define OTT_USERCODE_END
#endif
...

OTT_USERCODE_START // user added code
...

OTT_USERCODE_END
...

OTT_USERCODE_START // user added code
...

OTT_USERCODE_END

/***
/ generated method implementations for the ... object type.
/***/

void *<class_name_1>::operator new(size_t size)
{

return oracle::occi::PObject::operator new(size);
}
...
// end of .cpp file

Carrying Forward User Added Code

8-32 Oracle C++ Call Interface Programmer's Guide

9

Globalization and Unicode Support 9-1

9 Globalization and Unicode Support

This chapter describes OCCI support for multibyte and Unicode charactersets.

This chapter contains these topics:

■ Overview of Globalization and Unicode Support

■ Specifying Charactersets

■ Data Types for Globalization and Unicode Support

■ Objects and OTT Support

Overview of Globalization and Unicode Support
OCCI now enables application development in all Oracle supported multibyte and
Unicode charactersets. The UTF16 encoding of Unicode is fully supported. Application
programs can specify their charactersets when the OCCI Environment is created.
OCCI interfaces that take character string arguments (such as SQL statements, user
names, error messages, object names, and so on) have been extended to handle data in
any characterset. Character data from relational tables or objects can be in any
characterset. OCCI can be used to develop multi-lingual, global and Unicode
applications.

Specifying Charactersets
OCCI applications must specify the client characterset and client national characterset
when initializing the OCCI Environment. The client characterset specifies the
characterset for all SQL statements, object/user names, error messages, and data of all
CHAR data type (CHAR, VARCHAR2, LONG) columns/attributes. The client national
characterset specifies the characterset for data of all NCHAR data type (NCHAR,
NVARCHAR2) columns/attributes.

A new createEnvironment() interface that takes the client characterset and client
national characterset is now provided. This allows OCCI applications to set
characterset information dynamically, independent of the NLS_LANG and NLS_CHAR
initialization parameter.

Note that if an application specifies OCCIUTF16 as the client characterset (first
argument), then the application should use only the UTF16 interfaces of OCCI. These
interfaces take UString argument types.

The charactersets in the OCCI Environment are client-side only. They indicate the
charactersets the OCCI application uses to interact with Oracle. The database
characterset and database national characterset are specified when the database is

Data Types for Globalization and Unicode Support

9-2 Oracle C++ Call Interface Programmer's Guide

created. Oracle converts all data from the client characterset/national characterset to
the database characterset/national characterset before the server processes the data.

Example 9–1 How to Use Globalization and Unicode Support

Environment *env = Environment:createEnvironment("JA16SJIS","UTF8");

This statement creates an OCCI Environment with JA16SJIS as the client characterset
and UTF8 as the client national characterset.

Any valid Oracle characterset name (except AL16UTF16) can be passed to
createEnvironment(). An OCCI specific string OCCIUTF16 (in uppercase) can be
passed to specify UTF16 as the characterset.

Environment *env = Environment::createEnvironment("OCCIUTF16","OCCIUTF16");
Environment *env = Environment::createEnvironment("US7ASCII", "OCCIUTF16");

Data Types for Globalization and Unicode Support
The data types used for supporting globalization and use of unicode include UString
Data Type, Multibyte and UTF16 data, and CLOB and NCLOB Data Types.

UString Data Type
UString is a data type that enables applications and the OCCI library to pass and
receive Unicode data in UTF-16 encoding. UString is templated from the C++ STL
basic_string with Oracle's utext data type.

typedef basic_string<utext> UString;

Oracle's utext data type is a 2 byte short data type and represents Unicode characters
in the UTF-16 encoding. A Unicode character's codepoint can be represented in 1
utext or 2 utexts (2 or 4 bytes). Characters from European and most Asian scripts are
represented in a single utext. Supplementary characters defined in the Unicode 3.1
standard are represented with 2 utext elements.

In Microsoft Windows platforms, UString is equivalent to the C++ standard wstring
data type. This is because the wchar_t data type is type defined to a 2 byte short in
these platforms, which is same as Oracle's utext, allowing applications to use a
wstring type variable where a UString would be normally required. Consequently,
applications can also pass wide-character string literals, created by prefixing the literal
with the letter 'L', to OCCI Unicode APIs.

Example 9–2 Using wstring Data Type

//bind Unicode data using wstring data type
//binding the Euro symbol, UTF16 codepoint 0x20AC
wchar_t eurochars[] = {0x20AC,0x00};
wstring eurostr(eurochars);
stmt->setUString(1,eurostr);

//Call the Unicode version of createConnection by
//passing widechar literals
Connection *conn = Connection(L"HR",L"password",L"");

OCCI applications should use the UString data type for data in UTF16 characterset

Data Types for Globalization and Unicode Support

Globalization and Unicode Support 9-3

Multibyte and UTF16 data
For data in multibyte charactersets like JA16SJIS and UTF8, applications should use
the C++ string type. The existing OCCI APIs that take string arguments can handle
data in any multibyte characterset. Due to the use of string type, OCCI supports only
byte length semantics for multibyte characterset strings.

Example 9–3 Binding UTF8 Data Using the string Data Type

//bind UTF8 data
//binding the Euro symbol, UTF8 codepoint : 0xE282AC
char eurochars[] = {0xE2,0x82,0xAC,0x00};
string eurostr(eurochars)
stmt->setString(1,eurostr);//use the string interface

For Unicode data in the UTF16 characterset, the OCCI specific data type: UString and
the OCCI UTF16 interfaces must be used.

Example 9–4 Binding UTF16 Data Using the UString Data Type

//bind Unicode data using UString data type
//binding the Euro symbol, UTF16 codepoint 0x20AC
utext eurochars[] = {0x20AC,0x00};
UString eurostr(eurochars);
stmt->setUString(1,eurostr);//use the UString interface

CLOB and NCLOB Data Types
Oracle provides the CLOB and NCLOB data types for storing and processing large
amounts of character data. CLOBs represent data in the database characterset and
NCLOBs represent data in the database national characterset. CLOBs and NCLOBs can be
used as column types in relational tables and as attributes in object types.

The OCCI Clob class is used to work with both CLOB and NCLOB data types. If the
database type is NCLOB, then the Clob set CharSetForm() method should be called with
OCCI_SQLCS_NCHAR before reading/writing from the LOB.

The OCCI Clob class has support for multibyte and UTF16 charactersets. By default,
the Clob interfaces assume the data is encoded in the client-side characterset (for both
CLOBs and NCLOBs). To specify a different characterset or to specify the client-side
national characterset for a NCLOB, call the setCharSetId() or setCharSetIdUString()
methods with the appropriate characterset. The OCCI specific string 'OCCIUTF16' can
be passed to indicate UTF16 as the characterset.

Example 9–5 Using CLOB and NCLOB Data Types

//client characterset - ZHT16BIG5, national characterset - UTF16
Environment *env = Environment::createEnvironment("ZHT16BIG5","OCCIUTF16");
...
Clob nclobvar;
//for NCLOBs, must call setCharSetForm method.
nclobvar.setCharSetForm(OCCI_SQLCS_NCHAR);
...
//if reading/writing data in UTF16 for this NCLOB, still must
//explicitly call setCharSetId
nclobvar.setCharSetId("OCCIUTF16")

To read or write data in multibyte charactersets, use the existing read and write
interfaces that take a char buffer. New overloaded interfaces that take utext buffers for

Objects and OTT Support

9-4 Oracle C++ Call Interface Programmer's Guide

UTF16 data have been added to the Clob Class as read(), write() and writeChunk()
methods. The arguments and return values for these methods are either bytes or
characters, depending on the characterset of the LOB.

Objects and OTT Support
Multibyte and UTF16 charactersets are supported for handling character data in object
attributes. All CHAR data type (CHAR or VARCHAR2) attributes hold data in the client-side
characterset, while all NCHAR data type (NCHAR or NVARCHAR2) attributes hold data in the
client-side national characterset. A member variable of UString data type represents
an attribute in UTF16 characterset.

See Also:

■ Chapter 13, "OCCI Application Programming Interface": two
new versions of operator new() on page 13-491 that have been
added to the PObject Class for object support

■ Chapter 8, "Object Type Translator Utility": a new UNICODE
parameter on page 8-9 that has been added for OTT utility
support.

10

Oracle Streams Advanced Queuing 10-1

10 Oracle Streams Advanced Queuing

This chapter describes the OCCI implementation of Oracle Streams Advanced
Queuing (AQ) for messages.

This chapter contains these topics:

■ Overview of Oracle Streams Advanced Queuing

■ AQ Implementation in OCCI

■ Creating Messages

■ Enqueuing Messages

■ Dequeuing Messages

■ Listening for Messages

■ Registering for Notification

■ Message Format Transformation

Overview of Oracle Streams Advanced Queuing
Oracle Streams is a new information sharing feature that provides replication, message
queuing, data warehouse loading, and event notification. It is also the foundation
behind Oracle Streams Advanced Queuing (AQ).

Advanced Queuing is the integrated message queuing feature that exposes message
queuing capabilities of Oracle Streams. AQ enables applications to:

■ Perform message queuing operations similar to SQL operations from the Oracle
database

■ Communicate asynchronously through messages in AQ queues

■ Integrate with database for unprecedented levels of operational simplicity,
reliability, and security to message queuing

■ Audit and track messages

■ Supports both synchronous and asynchronous modes of communication

The advantages of using AQ in OCCI applications include:

See Also:

■ Oracle Database Advanced Queuing User's Guide for basic
concepts of Advanced Queuing

■ Chapter 13, "OCCI Application Programming Interface"

AQ Implementation in OCCI

10-2 Oracle C++ Call Interface Programmer's Guide

■ Create applications that communicate with each other in a consistent, reliable,
secure, and autonomous manner

■ Store messages in database tables, bringing the reliability and recoverability of the
database to your messaging infrastructure

■ Retain messages in the database automatically for auditing and business
intelligence

■ Create applications that leverage messaging without having to deal with a
different security, data type, or operational mode

■ Leverage transactional characteristics of the database

Since traditional messaging solutions have single subscriber queues, a queue must be
created for each pair of applications that communicate with each other. The
publish/subscribe protocol of the AQ makes it easy to add additional applications
(subscribers) to a conversation between multiple applications.

AQ Implementation in OCCI
OCCI AQ is a set of interfaces that allows messaging clients to access the Advanced
Queuing feature of Oracle for enterprise messaging applications. Currently, OCCI AQ
supports only the operational interfaces and not the administrative interface, but
administrative operations can be accessed through embedded PL/SQL calls.

The AQ feature can be used with other interfaces available through OCCI for sending,
receiving, publishing, and subscribing in a message-enabled database. Synchronous
and asynchronous message consumption is available based on a message selection
rule.

Enqueuing refers to sending a message to a queue and dequeuing refers to receiving
one. A client application can create a message, set the desired properties on it and
enqueue it by storing the message in the queue, a table in the database. When
dequeuing a message, an application can either dequeue it synchronously by calling
receive methods on the queue, or asynchronously by waiting for a notification from
the database.

The AQ feature is implemented through the abstractions Message, Agent, Producer,
Consumer, Listener and Subscription.

Message
A message is the basic unit of information being inserted into and retrieved from a
queue. A message consists of control information and payload data. The control
information represents message properties used by AQ to manage messages. The
payload data is the information stored in the queue and is transparent to AQ.

Agent
An Agent represents and identifies a user of the queue, either producer or consumer of
the message, either an end-user or an application. An Agent is identified by a name, an

See Also: Package DBMS_AQADM in Oracle Database PL/SQL Packages
and Types Reference for administrative operations in AQ support
through PL/SQL

See Also: Message Class documentation in Chapter 13, "OCCI
Application Programming Interface"

AQ Implementation in OCCI

Oracle Streams Advanced Queuing 10-3

address and a protocol. The name can be either assigned by the application, or be the
application itself. The address is determined in terms of the communication protocol.
If the protocol is 0 (default), the address is of the form[schema.]queuename[@dblink],
a database link.

Agents on the same queue must have a unique combination of name, address, and
protocol. Example 10–1 demonstrates an instantiation of a new Agent object in a client
program.

Example 10–1 Creating an Agent

Agent agt(env, "Billing_app", "billqueue", 0);

Producer
A client uses a Producer object to enqueue Messages into a queue. It is also used to
specify various enqueue options.

Consumer
A client uses a Consumer object to dequeue Messages that have been delivered to a
queue. It also specifies various dequeuing options.

Before a consumer can receive messages,

Example 10–2 Setting the Agent on the Consumer

Consumer cons(conn);
...
cons.setAgent(ag);
cons.receive();

Listener
A Listener listens for Messages for registered Agents at specified queues.

Subscription
A Subscription encapsulates the information and operations necessary for registering
a subscriber for notifications.

See Also: Agent Class documentation in Chapter 13, "OCCI
Application Programming Interface"

See Also: Producer Class documentation in Chapter 13, "OCCI
Application Programming Interface"

See Also: Consumer Class documentation in Chapter 13, "OCCI
Application Programming Interface"

See Also: Listener Class documentation in Chapter 13, "OCCI
Application Programming Interface"

Creating Messages

10-4 Oracle C++ Call Interface Programmer's Guide

Creating Messages
As mentioned previously, a Message is a basic unit of information that contains both
the properties of the message and its content, or payload. Each message is enqueued
by the Producer and dequeued by the Consumer objects.

Message Payloads
OCCI supports three types of message payloads: RAW, AnyData, and User-defined.

RAW
RAW payloads are mapped as objects of the Bytes Class in OCCI.

AnyData
The AnyData type models self-descriptive data encapsulation; it contains both the type
information and the actual data value. Data values of most SQL types can be
converted to AnyData, and then be converted to the original data type. AnyData also
supports user-defined data types. The advantage of using AnyData payloads is that it
ensures both type preservation after an enqueue and dequeue process, and that it
allows the user to use a single queue for all types used in the application.
Example 10–3 demonstrates how to create an AnyData message. Example 10–4 shows
how to retrieve the original data type from the message.

Example 10–3 Creating an AnyData Message with a String Payload

AnyData any(conn);
any.setFromString("item1");
Message mes(env);
mes.setAnyData(any);

Example 10–4 Determining the Type of the Payload in an AnyData Message

TypeCode tc = any.getType();

User-defined
OCCI supports enqueuing and dequeuing of user-defined types as payloads.
Example 10–5 demonstrates how to create a payload with a user-defined Employee
object.

Example 10–5 Creating an User-defined Payload

// Assuming type Employee (name varchar2(25),
// deptid number(10),
// manager varchar2(25))
Employee *emp = new Employee();
emp.setName("Scott");
emp.setDeptid(10);
emp.setManager("James");
Message mes(env);
mes.setObject(emp);

Message Properties
Aside from payloads, the user can specify several additional message properties, such
as Correlation, Sender, Delay and Expiration, Recipients, and Priority and Ordering.

Enqueuing Messages

Oracle Streams Advanced Queuing 10-5

Correlation
Applications can specify a correlation identifier of the message during the enqueuing
process, as demonstrated in Example 10–6. This identifier can then be used by the
dequeuing application.

Example 10–6 Specifying the Correlation identifier

mes.setCorrelationId("enq_corr_di");

Sender
Applications can specify the sender of the message, as demonstrated in Example 10–7.
The sender identifier can then be used by the receiver of the message.

Example 10–7 Specifying the Sender identifier

mes.setSenderId(agt);

Delay and Expiration
Time settings control the delay and expiration times of the message in seconds, as
demonstrated in Example 10–8.

Example 10–8 Specifying the Delay and Expiration times of the message

mes.setDelay(10);
mes.setExpirationTime(60);

Recipients
The agents for whom the message is intended can be specified during message
encoding, as demonstrated in Example 10–9. This ensures that only the specified
recipients can access the message.

Example 10–9 Specifying message recipients

vector<Agent> agt_list;
for (i=0; i<num_recipients; i++)
 agt_list.push_back(Agent(name, address, protocol));
mes.setRecipientList(agt_list);

Priority and Ordering
By assigning a priority level to a message, the sender can control the order in which
the messages are dequeued by the receiver. Example 10–10 demonstrates how to set
the priority of a message.

Example 10–10 Specifying the Priority of a Message

mes.setPriority(3);

Enqueuing Messages
Messages are enqueued by the Producer. The Producer Class is also used to specify
enqueue options. A Producer object can be created on a valid connection where
enqueuing is performed, as illustrated in Example 10–11.

The transactional behavior of the enqueue operation can be defined based on
application requirements. The application can make the effect of the enqueue
operation visible externally either immediately after it is completed, as in

Dequeuing Messages

10-6 Oracle C++ Call Interface Programmer's Guide

Example 10–11, or only after the enclosing transaction has been committed.

To enqueue the message, use the send() method, as demonstrated in Example 10–11.
A client may retain the Message object after it is sent, modify it, and send it again.

Example 10–11 Creating a Producer, Setting Visibility, and Enqueuing the Message

Producer prod(conn);
...
prod.setVisibility(Producer::ENQ_IMMEDIATE);
...
Message mes(env);
...
mes.setBytes(obj); // obj represents the content of the message
prod.send(mes, queueName); // queueName is the name of the queue

Dequeuing Messages
Messages delivered to a queue are dequeued by the Consumer. The Consumer Class is
also used to specify dequeue options. A Consumer object can be created on a valid
connection to the database where a queue exists, as demonstrated in Example 10–12.

In applications that support multiple consumers in the same queue, the name of the
consumer has to be specified as a registered subscriber to the queue, as shown in
Example 10–12.

To dequeue the message, use the receive() method, as demonstrated in
Example 10–12. The typeName and schemaName parameters of the receive() method
specify the type of payload and the schema of the payload type.

Example 10–12 Creating a Consumer, Naming the Consumer, and Receiving a Message

Consumer cons(conn);
...
// Name must be registered with the queue through administrative interface
cons.setConsumerName("BillApp");
cons.setQueueName(queueName);
...
Message mes = cons.receive(Message::OBJECT, "BILL_TYPE", "BILL_PROCESSOR");
...
// obj is is assigned the content of the message
obj = mes.getObject();

When the queue payload type is either RAW or AnyData, schemaName and typeName
are optional, but you must specify these parameters explicitly when working with
user-defined payloads. This is illustrated in Example 10–13.

Example 10–13 Receiving a Message

//receiving a RAW message
Message mes = cons.receive(Message::RAW);
...
//receiving an ANYDATA message
Message mes = cons.receive(Message::ANYDATA);
...

Listening for Messages

Oracle Streams Advanced Queuing 10-7

Dequeuing Options
The dequeuing application can specify several dequeuing options before it begins to
receive messages. These include Correlation, Mode, and Navigation.

Correlation
The message can be dequeued based on the value of its correlation identifier using the
setCorrelationId() method, as shown in Example 10–14.

Mode
Based on application requirements, the user can choose to only browse through
messages in the queue, remove the messages from the queue, or lock messages using
the setDequeueMode() method, as shown in Example 10–14.

Navigation
Messages enqueued in a single transaction can be viewed as a single group by
implementing the setPositionOfMessage() method, as shown in Example 10–14.

Example 10–14 Specifying dequeuing options

cons.setCorrelationId(corrId);
...
cons.setDequeueMode(deqMode);
...
cons.setPositionOfMessage(Consumer::DEQ_NEXT_TRANSACTION);

Listening for Messages
The Listener listens for messages on queues on behalf of its registered clients. The
Listener Class implements the listen() method, which is a blocking call that returns
when a queue has a message for a registered agent, or throws an error when the time
out period expires. Example 10–15 illustrates the listening protocol.

Example 10–15 Listening for messages

Listener listener(conn);

vector<Agent> agtList;
for(int i=0; i<num_agents; i++)

agtList.push_back(Agent(name, address, protocol);

listener.setAgentList(agtList);
listener.setTimeOutForListen(10);

Agent agt(env);

try{
agt = listener.listen();

}
catch{

cout<<e.getMessage()<<endl;
}

Registering for Notification

10-8 Oracle C++ Call Interface Programmer's Guide

Registering for Notification
The Subscription Class implements the publish-subscribe notification feature. It allows
an OCCI AQ application to receive client notifications directly, register an e-mail
address to which notifications can be sent, register an HTTP URL to which
notifications can be posted, or register a PL/SQL procedure to be invoked on a
notification. Registered clients are notified asynchronously when events are triggered
or on an explicit AQ enqueue. Clients do not have to be connected to a database.

An OCCI application can do all of the following:

■ Register interest in notification in the AQ namespace, and be notified when an
enqueue occurs.

■ Register interest in subscriptions to database events, and receive notifications
when these events are triggered.

■ Manage registrations, such as disable registrations temporarily, or dropping
registrations entirely.

■ Post (or send) notifications to registered clients.

Publish-Subscribe Notifications
Notifications can work in several ways. They can be:

■ received directly by the OCCI application

■ sent to a pre-specified e-mail address

■ sent to a pre-defined HTTP URL

■ invoke a pre-specified database PL/SQL procedure

Registered clients are notified asynchronously when events are triggered, or on an
explicit AQ enqueue. Clients do not have to be connected to a database for
notifications to work. Registration can be accomplished either as Direct Registration or
Open Registration.

Direct Registration
You can register directly with the database. This is relatively simple, and the
registration takes effect immediately. Example 10–16 outlines the required steps to
successfully register for direct event notification. It is assumed that the appropriate
event trigger or queue is in existence, and that the initialization parameter COMPATIBLE
is set to 8.1 or higher.

Example 10–16 How to Register for Notifications; Direct Registration

1. Create the environment in Environment::EVENTS mode.

2. Create the Subscription object.

3. Set these Subscription attributes.

The namespace can be set to these options:

■ To receive notifications from AQ queues, namespace must be set to
Subscription::NS_AQ. The subscription name is then either of the form
SCHEMA.QUEUE when registering on a single consumer queue, or
SCHEMA.QUEUE:CONSUMER_NAME when registering on a multiconsumer queue.

Registering for Notification

Oracle Streams Advanced Queuing 10-9

■ To receive notifications from other applications that use
conn->postToSubscription() method, namespace must be set to
Subscription::NS_ANONYMOUS

The protocol can be set to these options:

■ If an OCCI client must receive an event notification, this attribute should be
set to Subscription::PROTO_CBK. You also must set the notification callback
and the subscription context before registering the Subscription. The
notification callback is called when the event occurs.

■ For an e-mail notification, set the protocol to Subscription::PROTO_MAIL. You
must set the recipient name before subscribing to avoid an application error.

■ For an HTTP URL notification, set the protocol to Subscription::HTTP. You
must set the recipient name before subscribing to avoid an application error.

■ To invoke PL/SQL procedures in the database on event notification, set
protocol to Subscription::PROTO_SERVER. You must set the recipient name
before subscribing to avoid an application error.

4. Register the subscriptions using connection->registerSubscriptions().

Open Registration
You can also register through an intermediate LDAP that sends the registration request
to the database. This is used when the client cannot have a direct database connection;
for example, the client wants to register for an open event while the database is down.
This approach is also used when a client wants to register for the same event(s) in
multiple databases, concurrently.

Example 10–17 outlines the LDAP open registration using the Oracle Enterprise
Security Manager (OESM). Open registration has these prerequisites:

■ The client must be an enterprise user

■ In each enterprise domain, create an enterprise role ENTERPRISE_AQ_USER_ROLE

■ For each database in the enterprise domain, add a global role GLOBAL_AQ_
USER_ROLE to enterprise the role ENTERPRISE_AQ_USER_ROLE.

■ For each enterprise domain, add an enterprise role ENTERPRISE_AQ_USER_ROLE
to the privilege group cn=OracleDBAQUsers under cn=oraclecontext in the
administrative context

■ For each enterprise user that is authorized to register for events in the
database, grant enterprise the role ENTERPRISE_AQ_USER_ROLE

■ The compatibility of the database must be 9.0 or higher

■ LDAP_REGISTRATION_ENABLED must be set to TRUE (default is FALSE):

ALTER SYSTEM SET LDAP_REGISTRATION_ENABLED=TRUE

■ LDAP_REG_SYNC_INTERVAL must be set to the time_interval (in seconds) to refresh
registrations from LDAP (default is 0, do not refresh):

ALTER SYSTEM SET LDAP_REG_SYNC_INTERVAL = time_interval

To force a database refresh of LDAP registration information immediately, issue this
command:

ALTER SYSTEM REFRESH LDAP_REGISTRATION

Registering for Notification

10-10 Oracle C++ Call Interface Programmer's Guide

Example 10–17 How to Use Open Registration with LDAP

1. Create the environment in Environment::EVENTS|Environment::USE_LDAP mode.

2. Set the Environment object for accessing LDAP:

■ The host and port on which the LDAP server is residing and listening

■ The authentication method; only simple username and password
authentication is currently supported

■ The username (distinguished name) and password for authentication with the
LDAP server

■ The administrative context for Oracle in the LDAP server

3. Create the Subscription object.

4. Set the distinguished names of the databases in which the client wants to receive
notifications on the Subscription object.

5. Set these Subscription attributes.

The namespace can be set to these options:

■ To receive notifications from AQ queues, namespace must be set to
Subscription::NS_AQ. The subscription name is then either of the form
SCHEMA.QUEUE when registering on a single consumer queue, or
SCHEMA.QUEUE:CONSUMER_NAME when registering on a multiconsumer queue.

■ To receive notifications from other applications that use
conn->postToSubscription() method, namespace must be set to
Subscription::NS_ANONYMOUS

The protocol can be set to these options:

■ If an OCCI client must receive an event notification, this attribute should be
set to Subscription::PROTO_CBK. You also must set the notification callback
and the subscription context before registering the Subscription. The
notification callback is called when the event occurs.

■ For an e-mail notification, set the protocol to Subscription::PROTO_MAIL. You
must then set the recipient name to the e-mail address to which the
notifications must be sent.

■ For an HTTP URL notification, set the protocol to Subscription::HTTP. You
must set the recipient name to the URL to which the notification must be
posted.

■ To invoke PL/SQL procedures in the database on event notification, set
protocol to Subscription::PROTO_SERVER. You must set the recipient name to
the database procedure invoked on notification.

6. Register the subscription: environment->registerSubscriptions().

Open registration takes effect when the database accesses LDAP to pick up new
registrations. The frequency of pick-ups is determined by the value of REG_SYNC_
INTERVAL.

Clients can temporarily disable subscriptions, re-enable them, or permanently
unregister from future notifications.

Message Format Transformation

Oracle Streams Advanced Queuing 10-11

Notification Callback
The client must register a notification callback. This callback is invoked only when
there is some activity on the registered subscription. In the Streams AQ namespace,
this happens when a message of interest is enqueued.

The callback must return 0, and it must have the following specification:

typedef unsigned int (*callbackfn) (Subscription &sub, NotifyResult *nr);

where:

■ The sub parameter is the Subscription object which was used when the callback
was registered.

■ The nr parameter is the NotifyResult object holding the notification info.

Ensure that the subscription object used to register for notifications is not destroyed
until it explicitly unregisters the subscription.

The user can retrieve the payload, message, message id, queue name and consumer
name from the NotifyResult object, depending on the source of notification. These
results are summarized in Table 10–1. Only a bytes payload is currently supported,
and you must explicitly dequeue messages from persistent queues in the AQ
namespace. If notifications come from non-persistent queues, messages are available to
the callback directly; only RAW payloads are supported. If notifications come from
persistent queues, the message has to be explicitly dequeued; all payload types are
supported.

Message Format Transformation
Applications often use data in different formats, and this requires a type
transformation. A transformation is implemented as a SQL function that takes the
source data type as input and returns an object of the target data type.

Transformations can be applied when message are enqueued, dequeued, or when they
are propagated to a remote subscriber.

Table 10–1 Notification Result Attributes; ANONYMOUS and AQ Namespace

Notification Result
Attribute

ANONYMOUS
Namespace

AQ Namespace,
Persistent Queue

AQ Namespace,
Non-Persistent Queue

payload valid invalid invalid

message invalid invalid valid

messageID invalid valid valid

consumer name invalid valid valid

queue name invalid valid valid

See Also: The following chapters of the Oracle Database Advanced
Queuing User's Guide for information of format transformation:

■ Oracle Streams AQ Administrative Interface

■ Oracle Streams AQ Administrative Interface: Views

■ Oracle Streams AQ Operational Interface: Basic Operations

Message Format Transformation

10-12 Oracle C++ Call Interface Programmer's Guide

11

Oracle XA Library 11-1

11 Oracle XA Library

The Oracle XA library is an external interface that allows transaction managers other
than the Oracle server to coordinate global transactions. The XA library supports
non-Oracle resource managers in distributed transactions. This is particularly useful in
transactions between several databases and resources.

The implementation of the Oracle XA library conforms to the X/Open Distributed
Transaction Processing (DTP) software architecture's XA interface specification. The
Oracle XA Library is installed as part of the Oracle Database Enterprise Edition.

This chapter contains these topics:

■ Application Development with XA and OCCI

■ APIs for XA Support

Application Development with XA and OCCI
For connection, disconnection, and transaction control on Oracle databases,
applications must interface with a transaction manager. OCCI has APIs for interacting
with Environment and Connection objects within XA and make them available for
Oracle database access, such as SELECT queries, DML statements, object access, and so
on.

Example 11–1 How to Use Transaction Managers with XA

/* Transaction manager opens connection to the Oracle server*/
tpopen("oracle_xa+acc=p/HR/password+sestm=10", 1, TMNOFLAGS);
/* Transaction manager issues XA commands to start a global transaction*/
tpbegin();

/* Access the underlying Oracle database using OCCI */
Environment *xaenv = Environment::getXAEnvironment(

"oracle_xa+acc=p/HR/password+sestm=10");
Connection *xaconn = xaenv->getXAConnection(

"oracle_xa+acc=p/HR/password+sestm=10");

See Also:

■ http://www.opengroup.org

■ Oracle Database Development Guide for more details on the
Oracle XA library and architecture

■ Chapter 13, "OCCI Application Programming Interface"

APIs for XA Support

11-2 Oracle C++ Call Interface Programmer's Guide

/* Use the Environment & Connection objects */
Statement *stmt = xaconn->createStatement(

"Update Emp set sal = sal * 0.2");

...

/* Release the Environment & Connection objects */
xaenv->releaseXAConnection(xaconn);
Environment::releaseXAEnvironment(xaenv);

APIs for XA Support
The following methods of the Environment Class support use of XA libraries:

■ getXAConnection() on page 13-265

■ releaseXAEnvironment() on page 13-268

■ releaseXAConnection() on page 13-267

■ releaseXAEnvironment() on page 13-268

In addition, the getXAErrorCode() method of SQLException Class on page 13-603 is
necessary for XA enabled applications to determine if thrown exceptions are due to an
SQL error (XA_OK) or an XA error (an XA error code).

12

Optimizing Performance of C++ Applications 12-1

12 Optimizing Performance of C++ Applications

This chapter describes a few suggestions that lead to better performance for your
OCCI custom applications.

This chapter contains these topics:

■ Transparent Application Failover

■ Connection Sharing

■ Application-Managed Data Buffering

■ Array Fetch Using next() Method

■ Modifying Rows Iteratively

■ Run-time Load Balancing of the Stateless Connection Pool

■ Fault Diagnosability

■ Client Result Cache

■ Client-Side Deployment Parameters and Auto Tuning

Transparent Application Failover
OCCI Transparent Application Failover (TAF) enables OCCI to be more robust in
handling database instance failures in distributed applications at run time. If a server
node becomes unavailable, applications automatically reconnect to another surviving
node.

TAF occurs when the client application, during a roundtrip operation, detects that the
database instance is down. It establishes a connection to the backup database
configured for TAF. This backup can be another node in an Oracle RAC configuration,
a hot standby database, or the same database instance itself.

The OCCI/OCI API responsible for the roundtrip on the failed connection will
typically return one of the following errors:

■ ORA-25401: can not continue fetches

■ ORA-25402: transaction must roll back

■ ORA-25408: can not safely replay call

The new connection is may be used for subsequent application requests and for any
ongoing work that must be restarted.

See Also:

■ Chapter 13, "OCCI Application Programming Interface"

Transparent Application Failover

12-2 Oracle C++ Call Interface Programmer's Guide

Idle connections in the application are not affected.

Some design options should be considered when including Transparent Application
Failover in an application:

■ Because of the delays inherent to failover processing, the design of the application
may include a notice to the user that a failover is in progress and that normal
operation should resume shortly.

■ If the session on the initial instance received ALTER SESSION commands before the
failover began, they are not automatically replayed on the second instance.

Consequently, the developer may want to replay these ALTER SESSION commands
on the second instance.

It is the user's responsibility to track changes to the SESSION parameters.

To address these problems, the application can register a failover callback function.
After a failover, the callback function is invoked at different times while reestablishing
the user's session.

■ The first call to the callback function occurs when Oracle first detects an instance
connection loss. This callback is intended to allow the application to inform the
user of an upcoming delay.

■ If failover is successful, a second call to the callback function occurs when the
connection is reestablished and usable. At this time the client may want to replay
ALTER SESSION commands and inform the user that failover has happened. Note
that you must keep track of SESSION parameter changes and then replay them
after the failover is complete.

If failover is unsuccessful, then the callback function is called to inform the
application that failover cannot take place.

■ An initial attempt at failover may not always successful. The failover callback
should return FO_RETRY to indicate that the failover should be attempted again.

Using Transparent Application Failover
To enable TAF, the connect string has to be configured for failover and registered on
Connection (created from Environment, ConnectionPool and
StatelessConnectionPool). To register the callback function, use the Connection Class
interface setTAFNotify() on page 13-173:

void Connection::setTAFNotify(
int (*notifyFn)(

Environment *env,
Connection *conn,
void *ctx,
FailOverType foType,
FailOverEventType foEvent),

void *ctxTAF);

See Also:

■ Definition of FailOverType and FailOverEventType in
Table 13–11, " Enumerated Values Used by Connection Class" in
Chapter 13, "OCCI Application Programming Interface"

■ Oracle Database Net Services Administrator's Guide for more detailed
information about application failover.

Transparent Application Failover

Optimizing Performance of C++ Applications 12-3

Note that TAF support for ConnectionPools does not include BACKUP and PRECONNECT
clauses; these should not be used in the connect string.

Objects and Transparent Application Failover
Transparent application failover works with the OCCI navigational and associative
access models and the object cache. In a non-Oracle RAC setup, you must ensure that
the object type definitions and object OIDs in primary and backup instances are
identical.

If the application receives ORA-25402: transaction must roll back error after the
failover, then it must initiate a rollback to correctly reset the object cache on the client.
If a transaction has not started before the failover, the application should still initiate a
rollback after the failover to refresh the objects on the client object cache from the new
instance.

Connection Pooling and Transparent Application Failover
If the transparent application failover feature is activated, connections created in a
connection pool are also failed over. The application failover callback must be
specified for each connection obtained from the connection pool; these connections are
failed over when used after the primary instance failure.

Note that connections in a custom connection pool must be explicitly cleaned and
repaired. Consider an application that has 500 connections in a pool; 10 of the
connections are busy (doing a round-trip) and 490 are free or idle. If the database
instance fails, then TAF will work on 10 active connections, and client requests on
these connections must be restarted. When each of the other 490 connections are
picked up by the application, TAF is performed and OCCI returns one of error codes
ORA-25401, ORA-24502, or ORA-25408, forcing a restart of the user request. The
application can avoid these errors on the 490 idle connections by repairing or purging
these connections by using the knowledge that TAF was previously activated on 10
connections in the connection pool.

To repair connections in OCCI, use the Connection Class interface getServerVersion()
on page 13-160, a light-weight, data-neutral database call for starting TAF on
connections to failed instances:

string getServerVersion() const;

In the OCCI TAF callback, applications may invoke getServerVersion() on idle
connections in the custom pool, to start and complete failover for these connections.

Example 12–1 demonstrates how to use OCCI for TAF callbacks and for repairing bad
connections. Note that the example does not show custom pool data structure or
mutexing and concurrency control.

Note that TAF behavior is the same for standalone connections and connections in a
custom connection pool.

Example 12–1 How to Enable TAF for Connection Pooling

#include <occi.h>
#include <iostream>
#include <time.h>

using namespace std;
using namespace oracle::occi;

//Application custom pool of 3 connections

Transparent Application Failover

12-4 Oracle C++ Call Interface Programmer's Guide

Environment *env;
Connection *conn1,*conn2,*conn3;
bool conn1free,conn2free,conn3free;
bool repairing = false;

int taf_callback(Environment *env, Connection *conn, void *ctx,
 Connection::FailOverType foType, Connection::FailOverEventType foEvent)
{
 cout << "TAF callback for connection " << conn << endl;

 if(foEvent == Connection::FO_ERROR)
 {
 cout << "Retrying" << endl;
 return FO_RETRY;
 }

 if (foEvent == Connection::FO_END)
 {
 cout << "TAF complete for connnection " << conn << endl;
 if (repairing == false)
 {
 repairing = true;
 cout << "repairing other idle connections" << endl;

 //ignore errors during TAF
 try
 {
 if (conn1free) conn1->getServerVersion();
 }
 catch (...)
 {
 }
 try
 {
 if (conn2free) conn2->getServerVersion();
 }
 catch (...)
 {
 }
 try
 {
 if (conn3free) conn3->getServerVersion();
 }
 catch (...)
 {
 }
 repairing = false;
 }//if
 }//if

 return 0; //continue failover
}

main()
{
try
{
env = Environment::createEnvironment(Environment::THREADED_MUTEXED);
//open 3 connections;
 conn1 = env->createConnection("hr","password","inst1_failback");

Connection Sharing

Optimizing Performance of C++ Applications 12-5

 conn2 = env->createConnection("hr","password","inst1_failback");
 conn3 = env->createConnection("hr","password","inst1_failback");

//all connections are 'free'
conn1free = conn2free = conn3free = true;

//set TAF callbacks on all connection
conn1->setTAFNotify(taf_callback,NULL);
conn2->setTAFNotify(taf_callback,NULL);
conn3->setTAFNotify(taf_callback,NULL);

//use 1 connection
conn1free=false;
cout << "Using conn1" << endl;
Statement *stmt = conn1->createStatement ("select * from employees");
ResultSet *rs = stmt->executeQuery();
while (rs->next())
{
 cout << (rs->getString(2)) << endl;
}
stmt->closeResultSet(rs);
conn1->terminateStatement(stmt);

cout << "Shutdown and restart the database" << endl;
string buf;
cin >> buf;

Statement *stmt2;
try
{
 cout << "Trying a update on EMP table" << endl;
 stmt2 = conn1->createStatement("delete from employees");
 stmt2->executeUpdate();
}
catch (SQLException &ex)
{
 cout << "Update EMPLOYEES returned error : " << ex.getMessage() << endl;
 cin >> buf;
}

cout << "Done" << endl;
env->terminateConnection(conn1);
env->terminateConnection(conn2);
env->terminateConnection(conn3);
Environment::terminateEnvironment(env);
}
catch(SQLException &ex)
{
cout << ex.getMessage() << endl;
}
}

Connection Sharing
This section covers the following topics:

■ Introduction to Thread Safety

■ Implementing Thread Safety

■ Serialization

Connection Sharing

12-6 Oracle C++ Call Interface Programmer's Guide

■ Operating System Considerations

Introduction to Thread Safety
Threads are lightweight processes that exist within a larger process. Threads each
share the same code and data segments, but have their own program counters, system
registers, and stack. Global and static variables are common to all threads, and a
mutual exclusivity mechanism may be required to manage access to these variables
from multiple threads within an application.

Once spawned, threads run asynchronously to one another. They can access common
data elements and make OCCI calls in any order. Because of this shared access to data
elements, a mechanism is required to maintain the integrity of data being accessed by
multiple threads. The mechanism to manage data access takes the form of mutexes
(mutual exclusivity locks), which ensure that no conflicts arise between multiple
threads that are accessing shared resources within an application. In OCCI, mutexes
are granted on an OCCI environment basis.

This thread safety feature of the Oracle database server and OCCI library enables
developers to use OCCI in a multithreaded application with these added benefits:

■ Multiple threads of execution can make OCCI calls with the same result as
successive calls made by a single thread.

■ When multiple threads make OCCI calls, there are no side effects between threads.

■ Even if you do not write a multithreaded program, you do not pay any
performance penalty for including thread-safe OCCI calls.

■ Use of multiple threads can improve program performance. You can discern gains
on multiprocessor systems where threads run concurrently on separate processors,
and on single processor systems where overlap can occur between slower
operations and faster operations.

In addition to client/server applications, where the client can be a multithreaded
program, thread safety is typically used in three-tier or client/agent/server
architectures. In this architecture, the client is concerned only with presentation
services. The agent (or application server) processes the application logic for the client
application. Typically, this relationship is a many-to-one relationship, with multiple
clients sharing the same application server.

The server tier in the three-tier architecture is an Oracle database server. The
applications server (agent) supports multithreading, with each thread serving a
separate client application. In an Oracle environment, this middle-tier application
server is an OCCI or precompiler program.

Implementing Thread Safety
To take advantage of thread safety by using OCCI, an application must be running in a
thread-safe operating system. Then the application must inform OCCI that the
application is running in multithreaded mode by specifying THREADED_MUTEXED or
THREADED_UNMUTEXED for the mode parameter of the createEnvironment() method.
For example, to turn on mutual exclusivity locking, issue the following statement:

Environment *env = Environment::createEnvironment(
 Environment::THREADED_MUTEXED);

Connection Sharing

Optimizing Performance of C++ Applications 12-7

Note that once createEnvironment is called with THREADED_MUTEXED or THREADED_
UNMUTEXED, all subsequent calls to the createEnvironment method must also be made
with THREADED_MUTEXED or THREADED_UNMUTEXED modes.

If a multithreaded application is running in a thread-safe operating system, then the
OCCI library manages mutexes for the application on a for each-OCCI-environment
basis. However, you can override this feature and have your application maintain its
own mutex scheme. This is done by specifying a mode value of THREADED_UNMUTEXED
to the createEnvironment() method.

Applications that run on non-thread-safe platforms should not pass a value of
THREADED_MUTEXED or THREADED_UNMUTEXED to the createEnvironment() method.

If an application is single threaded, regardless of whether the platform is thread safe,
the application should pass a value of Environment::DEFAULT to the
createEnvironment() method. This is also the default value for the mode parameter.
Single threaded applications which run in THREADED_MUTEXED mode may incur
performance degradation.

OCCI does not support nonblocking mode.

Serialization
As an application programmer, you have two basic options regarding concurrency in a
multithreaded application:

■ Automatic serialization, in which you use OTIS's transparent mechanisms

■ Application-provided serialization, in which you manage the contingencies
involved in maintaining multiple threads

Automatic Serialization
In cases where there are multiple threads operating on objects (connections and
connection pools) derived from an OCCI environment, you can elect to let OCCI
serialize access to those objects. The first step is to pass a value of THREADED_MUTEXED to
the createEnvironment method. At this point, the OCCI library automatically acquires
a mutex on thread-safe objects in the environment.

When the OCCI environment is created with THREADED_MUTEXED mode, then only the
Environment, Map, ConnectionPool, StatelessConnectionPool and Connection objects
are thread-safe. That is, if two threads make simultaneous calls on one of these objects,
then OCCI serializes them internally. However, note that all other OCCI objects, such
as Statement, ResultSet, SQLException, Stream, and so on, are not thread-safe as,
applications should not operate on these objects simultaneously from multiple threads.

Note that the bulk of processing for an OCCI call happens on the server, so if two
threads that use OCCI calls go to the same connection, then one of them could be
blocked while the other finishes processing at the server.

Application-Provided Serialization
In cases where there are multiple threads operating on objects derived from an OCCI
environment, you can chose to manage serialization. The first step is to pass a value of
THREADED_UNMUTEXED for the createEnvironment mode. In this case the application
must mutual exclusively lock OCCI calls made on objects derived from the same OCCI
environment. This has the advantage that the mutex scheme can be optimized based
on the application design to gain greater concurrency.

When an OCCI environment is created in this mode, OCCI recognizes that the
application is running in a multithreaded application, but that OCCI need not acquire

Application-Managed Data Buffering

12-8 Oracle C++ Call Interface Programmer's Guide

its internal mutexes. OCCI assumes that all calls to methods of objects derived from
that OCCI environment are serialized by the application. You can achieve this two
different ways:

■ Each thread has its own environment. That is, the environment and all objects
derived from it (connections, connection pools, statements, result sets, and so on)
are not shared across threads. In this case your application need not apply any
mutexes.

■ If the application shares an OCCI environment or any object derived from the
environment across threads, then it must serialize access to those objects (by using
a mutex, and so on) such that only one thread is calling an OCCI method on any of
those objects.

In both cases, no mutexes are acquired by OCCI. You must ensure that only one OCCI
call is in process on any object derived from the OCCI environment at any given time
when THREADED_UNMUTEXED is used.

OCCI is optimized to reuse objects as much as possible. Since each environment has its
own heap, multiple environments result in increased consumption of memory. Having
multiple environments may imply duplicating work regarding connections,
connection pools, statements, and result set objects. This results in further memory
consumption.

Having multiple connections to the server results in more resource consumption on
both the server and the network. Having multiple environments normally entails more
connections.

Operating System Considerations
Some operating systems provide facilities for spawning processes that allow child
processes to reuse states created by their parent process.

After a parent process spawns a child process, the child process must not use the
database connection created by the parent. Because SQL*Net expects only one user
process to use a particular connection to the database, attempts by the child process to
use the same database connection as the parent may cause undesired connection
interference, and result in intermittent ORA-03137 errors.

When the application requires multiple concurrent connections, Oracle recommends
using threads on platforms that support threading. Oracle supports concurrent
connections in both single-threaded and multi-threaded applications.

See "Introduction to Thread Safety" on page 12-6 and "Implementing Thread Safety" on
page 12-6 for more information about threads.

For improving performance with many concurrently opened connections, see "Pooling
Connections" on page 3-3.

Application-Managed Data Buffering
When you provide data for bind parameters by the setxxx methods in parameterized
statements, the values are copied into an internal data buffer, and the copied values are
then provided to the database server for insertion. To reduce overhead of copying
string type data that is available in user buffers, use the setDataBuffer() and next()
methods of the ResultSet Class and the execute() method of the Statement Class.

Application-Managed Data Buffering

Optimizing Performance of C++ Applications 12-9

setDataBuffer() Method
For high performance applications, OCCI provides the setDataBuffer method
whereby the data buffer is managed by the application. The following example shows
the setDataBuffer() method:

void setDataBuffer(int paramIndex,
void *buffer,
Type type,
sb4 size,
ub2 *length,
sb2 *ind = NULL,
ub2 *rc = NULL);

The following parameters are used in the previous method example:

■ paramIndex: Parameter number

■ buffer: Data buffer containing data

■ type: Type of the data in the data buffer

■ size: Size of the data buffer

■ length: Current length of data in the data buffer

■ ind: Indicator information. This indicates whether the data is NULL or not. For
parameterized statements, a value of -1 means a NULL value is to be inserted. For
data returned from callable statements, a value of -1 means NULL data is retrieved.

■ rc: Return code. This variable is not applicable to data provided to the Statement
method. However, for data returned from callable statements, the return code
specifies parameter-specific error numbers.

Not all data types can be provided and retrieved by the setDataBuffer() method. For
instance, C++ Standard Library strings cannot be provided with the setDataBuffer()
interface.

There is an important difference between the data provided by the setxxx() methods
and setDataBuffer() method. When data is copied in the setxxx() methods, the
original can change once the data is copied. For example, you can use a
setString(str1) method, then change the value of str1 before execute. The value of
str1 that is used is the value at the time setString(str1) is called. However, for data
provided by the setDataBuffer() method, the buffer must remain valid until the
execution is completed.

If iterative executes or the executeArrayUpdate() method is used, then data for
multiple rows and iterations can be provided in a single buffer. In this case, the data
for the ith iteration is at buffer + (i-1) *size address and the length, indicator, and
return codes are at *(length + i), *(ind + i), and *(rc + i) respectively.

This interface is also meant for use with array executions and callable statements that
have array or OUT bind parameters.

The same method is available in the ResultSet class to retrieve data without
re-allocating the buffer for each fetch.

See Also: Table 5–2, " External Data Types and Corresponding C++
and OCCI Types" in Chapter 5, "Data Types" for specific cases

Application-Managed Data Buffering

12-10 Oracle C++ Call Interface Programmer's Guide

executeArrayUpdate() Method
If all data is provided with the setDataBuffer() methods or output streams (that is,
no setxxx() methods besides setDataBuffer() or getStream() are called), then there
is a simplified way of doing iterative execution.

In this case, you should not call setMaxIterations() and setMaxParamSize(). Instead,
call the setDataBuffer() or getStream() method for each parameter with the
appropriate size arrays to provide data for each iteration, followed by the
executeArrayUpdate(int arrayLength) method. The arrayLength parameter specifies
the number of elements provided in each buffer. Essentially, this is same as setting the
number of iterations to arrayLength and executing the statement.

Since the stream parameters are specified only once, they can be used with array
executes as well. However, if any setxxx() methods are used, then the
addIteration() method is called to provide data for multiple rows. To compare the
two approaches, consider Example 12–2 that inserts two employees in the employees
table:

Example 12–2 How to Insert Records Using the addIteration() method

Statement *stmt = conn->createStatement(
"insert into departments (department_id, department_name) values(:1, :2)");

char dnames[][100] = {"Community Outreach", "University Recruiting"};
ub2 dnameLen[2];

for (int i = 0; i < 2; i++)
dnameLen[i] = strlen(dnames[i] + 1);

stmt->setMaxIterations(2); // set maximum number of iterations

stmt->setInt(1, 7369); // specify data for the first row
stmt->setDataBuffer(2, dnames, OCCI_SQLT_STR, sizeof(dnames[0]), dnameLen);
stmt->addIteration();

stmt->setInt(1, 7654); // specify data for the second row
 // a setDatBuffer is unnecessary for the second
 // bind parameter as data provided through
 // setDataBuffer is specified only once.
stmt->executeUpdate();

However, if the first parameter could also be provided through the setDataBuffer()
interface, then, instead of the addIteration() method, you would use the
executeArrayUpdate() method, as shown in Example 12–3:

Example 12–3 How to Insert Records Using the executeArrayUpdate() Method

Statement *stmt = conn->createStatement(
"insert into departments (department_id, department_name) values(:1, :2)");

char dnames[][100] = {"Community Outreach", "University Recruiting"};
ub2 dnameLen[2];

for (int i = 0; i < 2; i++)
dnameLen[i] = strlen(dnames[i] + 1);

int ids[2] = {7369, 7654};
ub2 idLen[2] = {sizeof(ids[0]), sizeof(ids[1])};
stmt->setDataBuffer(1, ids, OCCIINT, sizeof(ids[0]), idLen);
stmt->setDataBuffer(2, dnames, OCCI_SQLT_STR, sizeof(dnames[0]), dnameLen);

Modifying Rows Iteratively

Optimizing Performance of C++ Applications 12-11

stmt->executeArrayUpdate(2); // data for two rows is inserted.

Array Fetch Using next() Method
If the application is fetching data with only the setDataBuffer() interface or the
stream interface, then an array fetch can be executed. The array fetch is implemented
through the next() method of the ResultSet class. You must process the results
obtained through next() before calling it again.

Example 12–4 How to use Array Fetch with a ResultSet

ResultSet *resultSet = stmt->executeQuery(...);
resultSet->setDataBuffer(...);
while (resultSet->next(numRows) == DATA_AVAILABLE)

process(resultSet->getNumArrayRows());

 This causes up to numRows amount of data to be fetched for each column. The buffers
specified with the setDataBuffer() interface should large enough to hold at least
numRows of data.

Modifying Rows Iteratively
To process batch errors, specify that the Statement object is in a batchMode of
execution using the setBatchErrorMode() method. Once the batchMode is set and a
batch update runs, any resulting errors are reported through the BatchSQLException
Class.

The BatchSQLException class provides methods that handle batch errors.
Example 12–5 illustrates how batch handling can be implemented within any OCCI
application.

Example 12–5 How to Modify Rows Iteratively and Handle Errors

1. Create the Statement object and set its batch error mode to TRUE.

Statement *stmt = conn->createStatement ("...");
stmt->setBatchErrorMode (true);

2. Perform programmatic changes necessary by the application.

3. Update the statement.

try {
updateCount = stmt->executeUpdate ();

}

4. Catch and handle any errors generated during the batch insert or update.

catch (BatchSQLException &batchEx)
{
cout<<"Batch Exception: "<<batchEx.what()<<endl;
int errCount = batchEx.getFailedRowCount();
cout << "Number of rows failed " << errCount <endl;
for (int i = 0; i < errCount; i++)
{
SQLException err = batchEx.getException(i);
unsigned int rowIndex = batchEx.getRowNum(i);
cout<<"Row " << rowIndex << " failed because of "
 << err.getErrorCode() << endl;

}

Run-time Load Balancing of the Stateless Connection Pool

12-12 Oracle C++ Call Interface Programmer's Guide

// take recovery action on the failed rows
}

5. Catch and handle other errors generated during the statement update. Note that
statement-level errors are still thrown as instances of a SQLException.

catch(SQLException &ex) // to catch other SQLExceptions.
{
 cout << "SQLException: " << e.what() << endl;
}

Run-time Load Balancing of the Stateless Connection Pool
Run-time load balancing in a stateless connection pool dynamically routs connection
requests to the least loaded instance of the database. This is achieved by use of service
metrics, which are distributed by the Oracle RAC load-balancing advisory.

The feature modifies the stateless connection pool in the following ways:

■ The pool receives periodic notifications about the instance load.

■ When a request for a connection is received, the pool picks the best possible
connection for the type of request, based on the load of the instance.

■ The stateless connection pool periodically terminates connections of overloaded
instances, maintaining the connection topology that corresponds to the instance
load.

■ Since the connections to overloaded instances may be terminated, the pool creates
new connections to maintain the concurrency requirement. These new connections
are created using the connect-time load balancing of the Oracle RAC listener.

Run-time load balancing is turned on by default when the OCCI environment is
created in THREADED_MUTEXED and EVENTS modes, and when the server is configured to
issue event notifications.

API Support
New NO_RLB option for the PoolType attribute of the StatelessConnectionPool Class on
page 13-607 disables run-time load balancing.

Fault Diagnosability
Fault diagnosability captures diagnostic data, such as dump files or core dump files,
on the OCCI client when a problem incident occurs. For each incident, the fault
diagnosability feature creates an Automatic Diagnostic Repository (ADR) subdirectory
for storing this diagnostic data. For example, if either a Linux or a UNIX application
fails with a null pointer reference, then the core file appears in the ADR home
directory (if it exists), not in the operating system directory. This section discusses the
ADR subdirectory structure and the utility to manage its output, the ADR Command
Interpreter (ADRCI).

An ADR home is the root directory for all diagnostic data for an instance of a product,
such as OCCI, and a particular operating system user. All ADR homes appear under
the same root directory, the ADR base.

See Also: Oracle Call Interface Programmer's Guide

See Also: Oracle Database Administrator's Guide

Fault Diagnosability

Optimizing Performance of C++ Applications 12-13

ADR Base Location
The location of the ADR base is determined in the following order:

1. In the sqlnet.ora file (on Windows, in the %TNS_ADMIN% directory, or on Linux or
UNIX, in the $TNS_ADMIN directory).

If there is no TNS_ADMIN directory, then sqlnet.ora is stored in the current
directory.

If the ADR base is listed in the sqlnet.ora file, it is a statement of the type:

ADR_BASE=/directory/adr

where:

■ The adr argument is a directory that must exist and be writable by all
operating system users who execute OCCI applications and want to share the
same ADR base.

■ The directory argument is the path name

If ADR_BASE is set, and if all users share a single sqlnet.ora file, then OCCI stops
searching when directory adr does not exist or if it is not writable. If ADR_BASE is
not set, then OCCI continues the search, testing for the existence of other specific
directories.

For example, if sqlnet.ora contains the entry ADR_BASE=/home/chuck/test then:

■ ADR base is:

/home/chuck/test/oradiag_chuck

■ ADR home may be:

/home/chuck/test/oradiag_chuck/diag/clients/user_chuck/host_4144260688_11

2. If the Oracle base exists (on Windows: %ORACLE_BASE%, or on Linux and UNIX:
$ORACLE_BASE), the client subdirectory also exists because it is created by the
Oracle Universal Installer when the database is installed.

For example, if $ORACLE_BASE is /home/chuck/obase , then:

■ ADR base is:

/home/chuck/obase

■ ADR home may be:

/home/chuck/obase/diag/clients/user_chuck/host_4144260688_11

3. If the Oracle home exists (on Windows: %ORACLE_HOME%, or on Linux and UNIX:
$ORACLE_HOME), the client subdirectory also exists because it is created by the
Oracle Universal Installer when the database is installed.

For example, if $ORACLE_HOME is /ade/chuck_l1/oracle , then:

■ ADR base is:

/ade/chuck_l1/oracle/log

■ ADR home may be:

/ade/chuck_l1/oracle/log/diag/clients/user_chuck/host_4144260688_11

4. On the operating system home directory.

Fault Diagnosability

12-14 Oracle C++ Call Interface Programmer's Guide

■ On Windows, the operating system home directory is %USERPROFILE%.

The location of folder Oracle is at:

C:\Documents and Settings\chuck

If the application runs as a service, the home directory option is skipped.

■ On Linux and UNIX, the operating system home directory is $HOME.

The location may be:

/home/chuck/oradiag_chuck

For example, in an Instant Client, if $HOME is /home/chuck, then:

■ ADR base is:

/home/chuck/oradiag_chuck

■ ADR home may be:

/home/chuck/oradiag_chuck/diag/clients/user_chuck/host_4144260688_11

5. In the temporary directory.

■ On Windows, the temporary directories are searched in the following order:

– %TMP%

– %TEMP%

– %USERPROFILE%

– Windows system directory

■ On Linux and UNIX, the temporary directory is in /var/tmp.

For example, in an Instant Client, if $HOME is not writable, then:

■ ADR base is:

/var/tmp/oradiag_chuck

■ ADR home may be:

/var/tmp/oradiag_chuck/diag/clients/user_chuck/host_4144260688_11

If none of these directory choices are available and writable, ADR is not created and
diagnostics are not stored.

Using ADRCI
ADRCI is a command-line tool that enables you to view diagnostic data within the
ADR, and to package incident and problem information into a zip file that can be
shared with Oracle Support. ADRCI can be used either interactively and through a
script.

A problem is a critical error in OCI or the client. Each problem has a problem key. An
incident is a single occurrence of a problem, and it is identified by a unique numeric
incident ID. Each incident has a problem key which has a set of attributes: the ORA

See Also: "Instant Client" on page 2-2

See Also: Oracle Database Net Services Reference

Fault Diagnosability

Optimizing Performance of C++ Applications 12-15

error number, error parameter values, and similar information. Two incidents have the
same root cause if their problem keys match.

The following examples demonstrate how to use ADRCI on a Linux operating system.
Note that ARDCI commands are case-insensitive. All user input is in bold typeface.

Example 12–6 How to Use ADRCI for OCCI Application Incidents

To launch ADRCI in a Linux system, use the adrci command. Once ADRCI starts, find
out the particulars of the show base command with help, and then determine the base
of a particular client using the -product client option (necessary for OCCI
applications). To set the ADRCI base, use the set base command. Once ADRCI starts,
then the default ADR base is for the rdbms server. The $ORACLE_HOME is set to
/ade/chuck_l3/oracle. To view the incidents, use the show incidents command. to
exit ADRCI, use the quit command.

% adrci

ADRCI: Release 11.2. - on Wed November 25 16:16:55 2008

Copyright (c) 1982, 2008, Oracle. All rights reserved.

adrci> help show base

 Usage: SHOW BASE [-product <product_name>]

 Purpose: Show the current ADR base setting.

 Options:
 [-product <product_name>]: This option allows users to show the
 given product's ADR Base location. The current registered products are
 "CLIENT" and "ADRCI".

 Examples:
 show base -product client
 show base

adrci> show base -product client
ADR base is "/ade/chuck_l3/oracle/log"

adrci> help set base

 Usage: SET BASE <base_str>

 Purpose: Set the ADR base to use in the current ADRCI session.
 If there are valid ADR homes under the base, all homes
 are added to the current ADRCI session.

 Arguments:
 <base_str>: It is the ADR base directory, which is a system-dependent
 directory path string.

 Notes:
 On platforms that use "." to signify current working directory,
 it can be used as base_str.

 Example:
 set base /net/sttttd1/scratch/someone/view_storage/someone_v1/log
 set base .

Client Result Cache

12-16 Oracle C++ Call Interface Programmer's Guide

adrci> set base /ade/chuck_l3/oracle/log

adrci> show incidents
...
adrci> quit

Example 12–7 How to Use ADRCI for Instant Client

Because Instant Client does not use $ORACLE_HOME, the default ADR base is the user's
home directory.

adrci> show base -product client
ADR base is "/home/chuck/oradiag_chuck"
adrci> set base /home/chuck/oradiag_chuck
adrci> show incidents

ADR Home = /home/chuck/oradiag_chuck/diag/clients/user_chuck/host_4144260688_11:

INCIDENT_ID PROBLEM_KEY CREATE_TIME

1 oci 24550 [6] 2007-05-01 17:20:02.803697 -07:00
1 rows fetched

adrci> quit

Controlling ADR Creation and Disabling Fault Diagnosability
To disable the fault diagnosability feature, you must turn off the capture of
diagnostics. Edit the sqlnet.ora file by changing the values of the DIAG_ADR_ENABLED
and DIAG_DDE_ENABLED parameters to either FALSE or OFF; the default values are either
TRUE or ON.

To turn off the OCCI signal handler and to re-enable standard operating system failure
processing, edit the sqlnet.ora file by adding the corresponding parameter: DIAG_
SIGHANDLER_ENABLED=FALSE.

Client Result Cache
The Client Result Cache improves the response times of queries that are executed
repeatedly. This feature uses client memory to cache results of SQL queries executed
and fetched from the database. Subsequent execution of the same query fetches the
results from the client cache, reducing server CPU usage. Because database round-trips
are eliminated, applications have improved response times.

OCCI applications may transparently use the Client Result Cache feature by enabling
OCCI statement caching. Note that SELECT queries that must be cached are annotated
with a /*+ result_cache */ hint. Example 12–8 shows how to create a OCCI
Statement object that uses such a SELECT query.

Example 12–8 How to Enable and Use the Client Result Cache

Connection *conn;
Statement *stmt;

See Also:

■ Oracle Database Utilities for an introduction to the ADRCI

■ "Instant Client" on page 2-2

See Also: Oracle Database Net Services Reference

Client-Side Deployment Parameters and Auto Tuning

Optimizing Performance of C++ Applications 12-17

ResultSet *rs;

...
//enable OCCI Statement Caching
conn->setStmtCacheSize(20);

//Specify the hint in the SELECT query
stmt = conn->createStatement("select /*+ result_cache */ * from products \
 where product_id = :1");

//the following execute fetches rows from the client cache if
//the query results are cached. If this is the first execute
//of the query, the results fetched from the server are
//cached on the client side.
rs = stmt->executeQuery();

For usage guidelines, cache consistency, and restrictions, see Oracle Call Interface
Programmer's Guide.

Client-Side Deployment Parameters and Auto Tuning
Starting with Oracle Database Release 12c Release 1 (12.1), Oracle provides
oraaccess.xml, a client-side configuration file that can be used to configure selected
properties, allowing the application behavior to be changed during deployment
without modifying the source code.

Note: Do not use the prefetch deployment parameter if the OCCI
application is already using the setPrefetchRowCount() or
setPrefetchMemorySize() methods.

See: Oracle Call Interface Programmer's Guide for more information
about client-side deployment parameters and auto tuning

Client-Side Deployment Parameters and Auto Tuning

12-18 Oracle C++ Call Interface Programmer's Guide

13

OCCI Application Programming Interface 13-1

13 OCCI Application Programming Interface

This chapter describes the OCCI classes and methods for C++.

See Also:

■ Format Models in Oracle Database SQL Language Reference

■ Table A-1 in Oracle Database Globalization Support Guide

OCCI Classes and Methods

13-2 Oracle C++ Call Interface Programmer's Guide

OCCI Classes and Methods

Table 13–1 provides a brief description of all the OCCI classes. This section is followed
by detailed descriptions of each class and its methods.

Table 13–1 Summary of OCCI Classes

Class Description

Agent Class on page 13-8 Represents an agent in the Advanced Queuing context.

AnyData Class on page 13-19 Provides methods for the Object Type Translator (OTT)
utility, read and write SQL methods for linearization of
objects, and conversions to and from other data types.

BatchSQLException Class on
page 13-50

Provides methods for handling batch processing errors;
extends the SQLException Class.

Bfile Class on page 13-54 Provides access to a SQL BFILE value.

Blob Class on page 13-76 Provides access to a SQL BLOB value.

Bytes Class on page 13-103 Examines individual bytes of a sequence for comparing
bytes, searching bytes, and extracting bytes.

Clob Class on page 13-111 Provides access to a SQL CLOB value.

Connection Class on page 13-144 Represents a connection with a specific database.

ConnectionPool Class on
page 13-178

Represents a connection pool with a specific database.

Consumer Class on page 13-194 Supports dequeuing of Messages and controls the
dequeuing options.

Date Class on page 13-220 Specifies abstraction for SQL DATE data items. Also
provides formatting and parsing operations to support the
OCCI escape syntax for date values.

Environment Class on page 13-245 Provides an OCCI environment to manager memory and
other resources of OCCI objects. An OCCI driver manager
maps to an OCCI environment handle.

IntervalDS Class on page 13-282 Represents a time period in terms of days, hours, minutes,
and seconds.

IntervalYM Class on page 13-312 Represents a time period in terms of year and months.

Listener Class on page 13-339 Listens on behalf of one or more agents on one or more
queues.

Map Class on page 13-346 Used to store the mapping of the SQL structured type to
C++ classes.

Message Class on page 13-348 A unit that is enqueued or dequeued.

MetaData Class on page 13-379 Used to determine types and properties of columns in a
ResultSet, that of existing schema objects in the database,
or the database as a whole.

NotifyResult Class on page 13-404 Used to hold notification information from the Streams
AQ callback function.

Number Class on page 13-410 Models the numeric data type.

PObject Class on page 13-477 When defining types, enables specification of persistent or
transient instances. Class instances derived from PObject
can be either persistent or transient. If persistent, a class
instance derived from PObject inherits from the PObject
class; if transient, there is no inheritance.

OCCI Classes and Methods

OCCI Application Programming Interface 13-3

Producer Class on page 13-496 Supports enqueuing options and enqueues Messages.

Ref Class on page 13-512 The mapping in C++ for the SQL REF value, which is a
reference to a SQL structured type value in the database.

RefAny Class on page 13-530 The mapping in C++ for the SQL REF value, which is a
reference to a SQL structured type value in the database.

ResultSet Class on page 13-540 Provides access to a table of data generated by executing
an OCCI Statement.

SQLException Class on
page 13-596

Provides information on database access errors.

StatelessConnectionPool Class on
page 13-607

Represents a pool of stateless, authenticated connections to
the database.

Statement Class on page 13-630 Used for executing SQL statements, including both query
statements and insert / update / delete statements.

Stream Class on page 13-740 Used to provide streamed data (usually of the LONG data
type) to a prepared DML statement or stored procedure
call.

Subscription Class on page 13-746 Encapsulates the information and operations necessary for
registering a subscriber for notification.

Timestamp Class on page 13-771 Specifies abstraction for SQL TIMESTAMP data items.
Also provides formatting and parsing operations to
support the OCCI escape syntax for time stamp values.

Table 13–1 (Cont.) Summary of OCCI Classes

Class Description

Using OCCI Classes

13-4 Oracle C++ Call Interface Programmer's Guide

Using OCCI Classes

OCCI classes are defined in the oracle::occi namespace. An OCCI class name within
the oracle::occi namespace can be referred to in one of three ways:

■ Use the scope resolution operator (::) for each OCCI class name.

■ Use the using declaration for each OCCI class name.

■ Use the using directive for all OCCI class name.

13Using Scope Resolution Operator for OCCI
The scope resolution operator (::) is used to explicitly specify the oracle::occi
namespace and the OCCI class name. To declare myConnection, a Connection object,
using the scope resolution operator, you would use the following syntax:

oracle::occi::Connection myConnection;

13Using Declaration in OCCI
The using declaration is used when the OCCI class name can be used in a compilation
unit without conflict. To declare the OCCI class name in the oracle::occi namespace,
you would use the following syntax:

using oracle::occi::Connection;

Connection now refers to oracle::occi::Connection, and myConnection can be
declared as Connection myConnection;.

13Using Directive in OCCI
The using directive is used when all OCCI class names can be used in a compilation
unit without conflict. To declare all OCCI class names in the oracle::occi namespace,
you would use the following syntax:

using oracle::occi;

Then, just as with the using declaration, the following declaration would now refer to
the OCCI class Connection as Connection myConnection;.

13Using Advanced Queuing in OCCI
The Advanced Queuing classes Producer, Consumer, Message, Agent, Listener,
Subscription and NotifyResult are defined in oracle::occi::aq namespace.

OCCI Classes and Methods

OCCI Application Programming Interface 13-5

OCCI Support for Windows NT and z/OS

When building OCCI application on Windows, a preprocessor definition for
WIN32COMMON has to be added.

The following global methods are designed for accessing collections of Refs in
ResultSet Class and Statement Class on Windows NT and z/OS. While method names
changed, the number of parameters and their types remain the same.

■ Use getVectorOfRefs() instead of getVector() on Windows NT and z/OS.

■ Use setVectorOfRefs() instead of setVector() on Windows NT and z/OS.

Applications on Windows NT and z/OS should be calling these new methods only for
retrieving and inserting collections of references. Applications not running on
Windows NT or z/OS can use either set of accessors. However, Oracle recommends
the use of the new methods for any vector operations with Refs.

Working with Collections of Refs
Collections of Refs can be fetched and inserted using methods of the following classes:

ResultSet Class

Fetching Collection of Refs Use the following version of getVectorOfRefs() on
page 13-579 to return a column of references:

void getVectorOfRefs(
ResultSet *rs,
unsigned int index,
vector<Ref<T> > &vect);

Statement Class

Fetching Collection of Refs Use getVectorOfRefs() on page 13-686 to return a
collection of references from a column:

void getVectorOfRefs(
Statement *stmt,
unsigned int index,
vector<Ref<T> > &vect);

Inserting a Collection of Refs Use setVectorOfRefs() on page 13-738 to insert a
collection of references into a column:

template <class T>
void setVectorOfRefs(

Statement *stmt,
unsigned int paramIndex,
const vector<Ref<T> > &vect,
const string &sqltype);

Inserting a Collection of Refs: Multibyte Support The following method is necessary
for multibyte support:

void setVectorOfRefs(
Statement *stmt,
unsigned int paramIndex,
const vector<Ref<T> > &vect,
const string &schemaName,
const string &typeName);

OCCI Support for Windows NT and z/OS

13-6 Oracle C++ Call Interface Programmer's Guide

Inserting a Collection of Refs: UString (UTF16) Support The following method is
necessary for UString support:

template <class T>
void setVectorOfRefs(

Statement *stmt,
unsigned int paramIndex,
const vector<Ref<T> > &vect,
const UString &schemaName,
const UString &typeName);

Common OCCI Constants

OCCI Application Programming Interface 13-7

Common OCCI Constants

Table 13–2 defines the common constants used by all OCCI classes. Constants that are
defined for use within specific classes are summarized at the beginning of
class-specific sections.

Table 13–2 Enumerated Values Used by All OCCI Classes

Attribute Options

LockOptions ■ OCCI_LOCK_NONE clears the lock setting on the Ref object.

■ OCCI_LOCK_X indicates that the object should be locked, and to wait for
the lock to be available if the object is locked by another session.

■ OCCI_LOCK_X_NOWAIT indicates that the object should be locked, and
returns an error if it is locked by another session.

CharSetForm ■ OCCI_SQLCS_IMPLICIT indicates that the local database character set must
be used.

■ OCCI_SQLCS_NCHAR indicates that the local database NCHAR set must be
used.

■ OCCI_SQLCS_EXPLICIT indicates that the character set is specified
explicitly.

■ OCCI_SQLCS_FLEXIBLE means that the character set is a PL/SQL flexible
parameter.

ReturnStatus ■ OCCI_SUCCESS indicates that the call has been made successfully
(transaction failover mode).

■ FO_RETRY indicates that the call should be retried (transaction failover
mode).

Agent Class

13-8 Oracle C++ Call Interface Programmer's Guide

Agent Class

The Agent class represents an agent in the Advanced Queuing context.

Table 13–3 Summary of Agent Methods

Method Summary

Agent() on page 13-9 Agent class constructor.

getAddress() on page 13-10 Returns the address of the Agent.

getName() on page 13-11 Returns the name of the Agent.

getProtocol() on page 13-12 Returns the protocol of the Agent.

isNull() on page 13-13 Tests whether the Agent object is NULL.

operator=() on page 13-14 Assignment operator for Agent.

setAddress() on page 13-15 Sets address of the Agent object.

setName() on page 13-16 Sets name of the Agent object.

setNull() on page 13-17 Sets Agent object to NULL.

setProtocol() on page 13-18 Sets protocol of the Agent object.

Agent Class

OCCI Application Programming Interface 13-9

Agent()

Agent class constructor.

Syntax Description

Agent(
const Environment *env);

Creates an Agent object initialized to its default
values.

Agent(
const Agent& agent);

Copy constructor.

Agent(
const Environment *env,
const string& name,
const string& address,
unsigned int protocol = 0);

Creates an Agent object with specified Agent's name,
address, and protocol.

Parameter Description

env Environment

name Name

agent Original agent

address Address

protocol Protocol

getAddress()

13-10 Oracle C++ Call Interface Programmer's Guide

getAddress()

Returns a string containing Agent's address.

Syntax
string getAddress() const;

Agent Class

OCCI Application Programming Interface 13-11

getName()

Returns a string containing Agent's name.

Syntax
string getName() const;

getProtocol()

13-12 Oracle C++ Call Interface Programmer's Guide

getProtocol()

Returns a numeric code representing Agent's protocol.

Syntax
unsigned int getProtocol() const;

Agent Class

OCCI Application Programming Interface 13-13

isNull()

Tests whether the Agent object is NULL. If the Agent object is NULL, then TRUE is
returned; otherwise, FALSE is returned.

Syntax
bool isNull() const;

operator=()

13-14 Oracle C++ Call Interface Programmer's Guide

operator=()

Assignment operator for Agent class.

Syntax
void operator=(
const Agent& agent);

Parameter Description

agent The original Agent object.

Agent Class

OCCI Application Programming Interface 13-15

setAddress()

Sets the address of the Agent object.

Syntax
void setAddress(

const string& addr);

Parameter Description

addr The name of the Agent object.

setName()

13-16 Oracle C++ Call Interface Programmer's Guide

setName()

Sets the name of the Agent object.

Syntax
void setName(

const string& name);

Parameter Description

name The name of the Agent object.

Agent Class

OCCI Application Programming Interface 13-17

setNull()

Sets the Agent object to NULL. Unless operating in an inner scope, this call should be
made before terminating the Connection used to create this Agent.

Syntax
void setNull();

setProtocol()

13-18 Oracle C++ Call Interface Programmer's Guide

setProtocol()

Sets the protocol of the Agent object.

Syntax
void setProtocol(

unsigned int protocol = 0);

Parameter Description

protocol The protocol of the Agent object.

AnyData Class

OCCI Application Programming Interface 13-19

AnyData Class

The AnyData class models self-descriptive data by encapsulating the type information
with the actual data. AnyData is used primarily with OCCI Advanced Queuing feature,
to represent and enqueue data and to receive messages from queues as AnyData
instances.

Most SQL and user-defined types can be converted into an AnyData type using the
setFromxxx() methods. An AnyData object can be converted into most SQL and
user-defined types using getAsxxx() methods. SYS.ANYDATA type models AnyData
both in SQL and PL/SQL. See Table 13–4, " OCCI Data Types supported by AnyData
Class" for supported data types.

The getType() call returns the TypeCode represented by an AnyData object, while the
isNull() call determines if AnyData contains a NULL value. The setNull() method sets the
value of AnyData to NULL.

To use the OCCI AnyData type, the environment has to be initiated in OBJECT mode.

Example 13–1 Converting From an SQL Pre-Defined Type To AnyData Type

This example demonstrates how to convert types from string to AnyData.

Connection *conn;
...
AnyData any(conn);
string str("Hello World");
any.setFromString(str);
...

Example 13–2 Creating an SQL Pre-Defined Type From AnyData Type

This example demonstrates how to convert an AnyData object back to a string object.
Note the use of getType() and isNull() methods to validate AnyData before conversion.

Connection *conn;
string str;
...
if(!any.isNULL())
{ if(any.getType()==OCCI_TYPECODE_VARCHAR2)

{
str = any.getAsString();
cout<<str;

}
}
...

Example 13–3 Converting From a User-Defined Type To AnyData Type

This example demonstrates how to convert from a user-defined type to AnyData type.

Connection *conn;
...
// Assume an OBJECT of type Person with the following defined fields
// CREATE TYPE person as OBJECT (
// FRIST_NAME VARCHAR2(20),
// LAST_NAME VARCHAR2(25),
// EMAIL VARCHAR2(25),
// SALARY NUMBER(8,2)
//);

AnyData Class

13-20 Oracle C++ Call Interface Programmer's Guide

// Assume relevant classes have been generated by OTT.
...
Person *pers new Person("Steve", "Addams",

"steve.addams@anycompany.com", 50000.00);
AnyData anyObj(conn);
anyObj.setFromObject(pers);
...

Example 13–4 Converting From a User-Defined Type To AnyData Type

This example demonstrates how to convert an AnyData object back to a user-defined
type. Note the use of getType() and isNull() methods to validate AnyData before
conversion.

Connection *conn;
// Assume an OBJECT of type Person with the following defined fields
// CREATE TYPE person as OBJECT (
// FRIST_NAME VARCHAR2(20),
// LAST_NAME VARCHAR2(25),
// EMAIL VARCHAR2(25),
// SALARY NUMBER(8,2)
//);
// Assume relevant classes have been generated by OTT.
Person *pers = new Person();
...
If(!anyObj.isNull())
{ if(anyObj.getType()==OCCI_TYPECODE_OBJECT)

pers = anyObj.getAsObject();
}
...

Table 13–4 OCCI Data Types supported by AnyData Class

Data Type TypeCode

BDouble OCCI_TYPECODE_BDOUBLE

BFile OCCI_TYPECODE_BFILE

BFloat OCCI_TYPECODE_BFLOAT

Bytes OCCI_TYPECODE_RAW

Date OCCI_TYPECODE_DATE

IntervalDS OCCI_TYPECODE_INTERVAL_DS

IntervalYM OCCI_TYPECODE_INTERVAL_YM

Number OCCI_TYPECODE_NUMBERB

PObject OCCI_TYPECODE_OBJECT

Ref OCCI_TYPECODE_REF

string OCCI_TYPECODE_VARCHAR2

TimeStamp OCCI_TYPECODE_TIMESTAMP

Table 13–5 Summary of AnyData Methods

Method Summary

AnyData() on page 13-22 AnyData class constructor.

AnyData Class

OCCI Application Programming Interface 13-21

getAsBDouble() on page 13-23 Converts an AnyData object into BDouble.

getAsBfile() on page 13-24 Converts an AnyData object into Bfile.

getAsBFloat() on page 13-25 Converts an AnyData object into BFloat.

getAsBytes() on page 13-26 Converts an AnyData object into Bytes.

getAsDate() on page 13-27 Converts an AnyData object into Date.

getAsIntervalDS() on page 13-28 Converts an AnyData object into IntervalDS.

getAsIntervalYM() on page 13-29 Converts an AnyData object into IntervalYM.

getAsNumber() on page 13-30 Converts an AnyData object into Number.

getAsObject() on page 13-31 Converts an AnyData object into PObject.

getAsRef() on page 13-32 Converts an AnyData object into RefAny.

getAsString() on page 13-33 Converts an AnyData object into a namespace string.

getAsTimestamp() on page 13-34 Converts an AnyData object into Timestamp.

getType() on page 13-35 Retrieves the DataType held by the AnyData object. See
Table 13–4.

isNull() on page 13-36 Tests whether AnyData object is NULL.

setFromBDouble() on page 13-37 Converts a BDouble into Anydata.

setFromBfile() on page 13-38 Converts a Bfile into Anydata.

setFromBFloat() on page 13-39 Converts a BFloat into Anydata.

setFromBytes() on page 13-40 Converts a Bytes into Anydata.

setFromDate() on page 13-41 Converts a Date into Anydata.

setFromIntervalDS() on
page 13-42

 Converts an IntervalDS into Anydata.

setFromIntervalYM() on
page 13-43

 Converts an IntervalYM into Anydata.

setFromNumber() on page 13-44 Converts a Number into Anydata.

setFromObject() on page 13-45 Converts a PObject into Anydata.

setFromRef() on page 13-46 Converts a RefAny into Anydata.

setFromString() on page 13-47 Converts a namespace string into Anydata.

setFromTimestamp() on
page 13-48

 Converts a Timestamp into Anydata.

setNull() on page 13-49 Sets AnyData object to NULL.

Table 13–5 (Cont.) Summary of AnyData Methods

Method Summary

AnyData()

13-22 Oracle C++ Call Interface Programmer's Guide

AnyData()

AnyData constructor.

Syntax
AnyData(

const Connection *conn);

Parameter Description

conn The connection.

AnyData Class

OCCI Application Programming Interface 13-23

getAsBDouble()

Converts an AnyData object into BDouble.

Syntax
BDouble getAsBDouble() const;

getAsBfile()

13-24 Oracle C++ Call Interface Programmer's Guide

getAsBfile()

Converts an AnyData object into Bfile.

Syntax
Bfile getAsBfile() const;

AnyData Class

OCCI Application Programming Interface 13-25

getAsBFloat()

Converts an AnyData object into BFloat.

Syntax
BFloat getAsBFloat() const;

getAsBytes()

13-26 Oracle C++ Call Interface Programmer's Guide

getAsBytes()

Converts an AnyData object into Bytes.

Syntax
Bytes getAsBytes() const;

AnyData Class

OCCI Application Programming Interface 13-27

getAsDate()

Converts an AnyData object into Date.

Syntax
Date getAsDate() const;

getAsIntervalDS()

13-28 Oracle C++ Call Interface Programmer's Guide

getAsIntervalDS()

Converts an AnyData object into IntervalDS.

Syntax
IntervalDS getAsIntervalDS() const;

AnyData Class

OCCI Application Programming Interface 13-29

getAsIntervalYM()

Converts an AnyData object into IntervalYM.

Syntax
IntervalYS getAsIntervalYM() const;

getAsNumber()

13-30 Oracle C++ Call Interface Programmer's Guide

getAsNumber()

Converts an AnyData object into Number.

Syntax
Number getAsNumber() const;

AnyData Class

OCCI Application Programming Interface 13-31

getAsObject()

Converts an AnyData object into PObject.

Syntax
PObject* getAsObject() const;

getAsRef()

13-32 Oracle C++ Call Interface Programmer's Guide

getAsRef()

Converts an AnyData object into RefAny.

Syntax
RefAny getAsRef() const;

AnyData Class

OCCI Application Programming Interface 13-33

getAsString()

Converts an AnyData object into a namespace string.

Syntax
string getAsString() const;

getAsTimestamp()

13-34 Oracle C++ Call Interface Programmer's Guide

getAsTimestamp()

Converts an AnyData object into Timestamp.

Syntax
Timestamp getAsTimestamp() const;

AnyData Class

OCCI Application Programming Interface 13-35

getType()

Retrieves the data type held by the AnyData object. Refer to Table 13–4 on page 13-20
for valid values for TypeCode.

Syntax
TypeCode getType();

isNull()

13-36 Oracle C++ Call Interface Programmer's Guide

isNull()

Tests whether the AnyData object is NULL. If the AnyData object is NULL, then TRUE is
returned; otherwise, FALSE is returned.

Syntax
bool isNull() const;

AnyData Class

OCCI Application Programming Interface 13-37

setFromBDouble()

Converts a BDouble into AnyData.

Syntax
void setFromBDouble(

const BDouble& bdouble);

Parameter Description

bdouble The BDouble that is converted into AnyData.

setFromBfile()

13-38 Oracle C++ Call Interface Programmer's Guide

setFromBfile()

Converts a Bfile into AnyData.

Syntax
void setFromBfile(

const Bfile& bfile);

Parameter Description

bfile The Bfile that is converted into AnyData.

AnyData Class

OCCI Application Programming Interface 13-39

setFromBFloat()

Converts a BFloat into AnyData.

Syntax
void setFromBFloat(

const BFloat& bfloat);

Parameter Description

bfloat The BFloat that is converted into AnyData.

setFromBytes()

13-40 Oracle C++ Call Interface Programmer's Guide

setFromBytes()

Converts a Bytes into AnyData.

Syntax
void setFromBytes(

const Bytes& bytes);

Parameter Description

bytes The Bytes that is converted into AnyData.

AnyData Class

OCCI Application Programming Interface 13-41

setFromDate()

Converts a Date into AnyData.

Syntax
void setFromDate(

const Date& date);

Parameter Description

date The Date that is converted into AnyData.

setFromIntervalDS()

13-42 Oracle C++ Call Interface Programmer's Guide

setFromIntervalDS()

Converts an IntervalDS into AnyData.

Syntax
void setFromIntervalDS(

const IntervalDS& intervalds);

Parameter Description

invtervalds The IntervalDS that is converted into AnyData.

AnyData Class

OCCI Application Programming Interface 13-43

setFromIntervalYM()

Converts an IntervalYM into AnyData.

Syntax
void setFromIntervalYM(

const IntervalYM& intervalym);

Parameter Description

invalym The IntervalYM that is converted into AnyData.

setFromNumber()

13-44 Oracle C++ Call Interface Programmer's Guide

setFromNumber()

Converts a Number into AnyData.

Syntax
void setFromNumber(

const Number& num);

Parameter Description

num The Number that is converted into AnyData.

AnyData Class

OCCI Application Programming Interface 13-45

setFromObject()

Converts a PObject into AnyData.

Syntax
void setFromObject(

const PObject* objptr);

Parameter Description

objptr The PObject that is converted into AnyData.

setFromRef()

13-46 Oracle C++ Call Interface Programmer's Guide

setFromRef()

Converts a PObject into AnyData.

Syntax
void setFromRef(

const RefAny& ref
const string &typeName,
const string &schema);

Parameter Description

ref The RefAny that is converted into AnyData.

typeName The name of the type.

schema The name of the schema where the type is defined.

AnyData Class

OCCI Application Programming Interface 13-47

setFromString()

Converts a namespace string into AnyData.

Syntax
void setFromString(

string& str);

Parameter Description

str The namespace string that is converted into AnyData.

setFromTimestamp()

13-48 Oracle C++ Call Interface Programmer's Guide

setFromTimestamp()

Converts a Timestamp into AnyData.

Syntax
void setFromTimestamp(

const Timestamp& timestamp);

Parameter Description

timestamp The Timestamp that is converted into AnyData.

AnyData Class

OCCI Application Programming Interface 13-49

setNull()

Sets AnyData object to NULL.

Syntax
void setNull();

BatchSQLException Class

13-50 Oracle C++ Call Interface Programmer's Guide

BatchSQLException Class

The BatchSQLException class provides methods for handling batch processing errors.
Because BatchSQLException class is derived from the SQLException Class, all
BatchSQLException instances support all methods of SQLException, in addition to the
methods summarized in Table 13–6.

See Also: "Modifying Rows Iteratively" section in Example 12,
"Optimizing Performance of C++ Applications".

Table 13–6 Summary of BatchSQLException Methods

Method Summary

getException() on page 13-51 Returns the exception.

getFailedRowCount() on page 13-52 Returns the number of rows with failed inserts or
updates.

getRowNum() on page 13-53 Returns the number of the row that has an insert or
updated error

BatchSQLException Class

OCCI Application Programming Interface 13-51

getException()

Returns the exception that matches the specified index.

Syntax
SQLException getSQLException (

unsigned int index) const;

Parameter Description

index The index into the list of errors returned by the batch process.

getFailedRowCount()

13-52 Oracle C++ Call Interface Programmer's Guide

getFailedRowCount()

Returns the number of rows for which the statement insert or update failed.

Syntax
unsigned int getFailedRowCount() const;

BatchSQLException Class

OCCI Application Programming Interface 13-53

getRowNum()

Returns the number of the row with an error, matching the specified index.

Syntax
unsigned int getRowNum(

unsigned int index) const;

Parameter Description

index The index into the list of errors returned by the batch process.

Bfile Class

13-54 Oracle C++ Call Interface Programmer's Guide

Bfile Class

The Bfile class defines the common properties of objects of type BFILE. A BFILE is a
large binary file stored in an operating system file outside of the Oracle database. A
Bfile object contains a logical pointer to a BFILE, not the BFILE itself.

Methods of the Bfile class enable you to perform specific tasks related to Bfile
objects.

Methods of the ResultSet and Statement classes, such as getBfile() and setBfile(),
enable you to access an SQL BFILE value.

The only methods valid on a NULL Bfile object are setName(), isNull(), and
operator=().

A Bfile object can be initialized by:

■ The setName() method. The BFILE can then be modified by inserting this BFILE
into the table and then retrieving it using SELECT...FOR UPDATE. The write()
method modifies the BFILE; however, the modified data is flushed to the table only
when the transaction is committed. Note that an INSERT operation is not required.

■ Assigning an initialized Bfile object to it.

See Also: In-depth discussion of LOBs in the introductory chapter of
Oracle Database SecureFiles and Large Objects Developer's Guide,

Table 13–7 Summary of Bfile Methods

Method Summary

Bfile() on page 13-56 Bfile class constructor.

close() on page 13-57 Closes a previously opened BFILE.

closeStream() on page 13-58 Closes the stream obtained from the BFILE.

fileExists() on page 13-59 Tests whether the BFILE exists.

getDirAlias() on page 13-60 Returns the directory object of the BFILE.

getFileName() on page 13-61 Returns the name of the BFILE.

getStream() on page 13-62 Returns data from the BFILE as a Stream object.

getUStringDirAlias() on
page 13-63

Returns a UString containing the directory object
associated with the BFILE.

getUStringFileName() on
page 13-64

Returns a UString containing the file name associated with
the BFILE.

isInitialized() on page 13-65 Tests whether the Bfile object is initialized.

isNull() on page 13-66 Tests whether the Bfile object is atomically NULL.

isOpen() on page 13-67 Tests whether the BFILE is open.

length() on page 13-68 Returns the number of bytes in the BFILE.

open() on page 13-69 Opens the BFILE with read-only access.

operator=() on page 13-70 Assigns a BFILE locator to the Bfile object.

operator==() on page 13-71 Tests whether two Bfile objects are equal.

operator!=() on page 13-72 Tests whether two Bfile objects are not equal.

operator==() on page 13-71 Reads a specified portion of the BFILE into a buffer.

Bfile Class

OCCI Application Programming Interface 13-55

setName() on page 13-74 Sets the directory object and file name of the BFILE.

setNull() on page 13-75 Sets the Bfile object to atomically NULL.

Table 13–7 (Cont.) Summary of Bfile Methods

Method Summary

Bfile()

13-56 Oracle C++ Call Interface Programmer's Guide

Bfile()

Bfile class constructor.

Syntax Description

Bfile(); Creates a NULL Bfile object.

Bfile(
const Connection *connectionp);

Creates an uninitialized Bfile object.

Bfile(
const Bfile &srcBfile);

Creates a copy of a Bfile object.

Parameter Description

connectionp The connection pointer

srcBfile The source Bfile object

Bfile Class

OCCI Application Programming Interface 13-57

close()

Closes a previously opened Bfile.

Syntax
void close();

closeStream()

13-58 Oracle C++ Call Interface Programmer's Guide

closeStream()

Closes the stream obtained from the Bfile.

Syntax
void closeStream(

Stream *stream);

Parameter Description

stream The stream to be closed.

Bfile Class

OCCI Application Programming Interface 13-59

fileExists()

Tests whether the BFILE exists. If the BFILE exists, then TRUE is returned; otherwise,
FALSE is returned.

Syntax
bool fileExists() const;

getDirAlias()

13-60 Oracle C++ Call Interface Programmer's Guide

getDirAlias()

Returns a string containing the directory object associated with the BFILE.

Syntax
string getDirAlias() const;

Bfile Class

OCCI Application Programming Interface 13-61

getFileName()

Returns a string containing the file name associated with the BFILE.

Syntax
string getFileName() const;

getStream()

13-62 Oracle C++ Call Interface Programmer's Guide

getStream()

Returns a Stream object read from the BFILE. If a stream is open, it is disallowed to
open another stream on the Bfile object. The stream must be closed before performing
any Bfile object operations.

Syntax
Stream* getStream(

unsigned int offset = 1,
unsigned int amount = 0);

Parameter Description

offset The starting position at which to begin reading data from the BFILE. If offset is
not specified, the data is written from the beginning of the BLOB. Valid values are
numbers greater than or equal to 1.

amount The total number of bytes to be read from the BFILE; if amount is 0, the data is
read in a streamed mode from input offset until the end of the BFILE.

Bfile Class

OCCI Application Programming Interface 13-63

getUStringDirAlias()

Returns a UString containing the directory object associated with the BFILE. Note the
UString object is in UTF16 character set. The environment associated with BFILE
should be associated with UTF16 characterset.

Syntax
UString getUStringDirAlias() const;

getUStringFileName()

13-64 Oracle C++ Call Interface Programmer's Guide

getUStringFileName()

Returns a UString containing the file name associated with the BFILE. Note the
UString object is in UTF16 characterset. The environment associated with BFILE
should be associated with UTF16 characterset.

Syntax
UString getUStringFileName() const;

Bfile Class

OCCI Application Programming Interface 13-65

isInitialized()

Tests whether the Bfile object has been initialized. If the Bfile object has been
initialized, then TRUE is returned; otherwise, FALSE is returned.

Syntax
bool isInitialized() const;

isNull()

13-66 Oracle C++ Call Interface Programmer's Guide

isNull()

Tests whether the Bfile object is atomically NULL. If the Bfile object is atomically
NULL, then TRUE is returned; otherwise, FALSE is returned.

Syntax
bool isNull() const;

Bfile Class

OCCI Application Programming Interface 13-67

isOpen()

Tests whether the BFILE is open. The BFILE is considered to be open only if it was
opened by a call on this Bfile object. (A different Bfile object could have opened this
file as multiple open() calls can be performed on the same file by associating the file
with different Bfile objects). If the BFILE is open, then TRUE is returned; otherwise,
FALSE is returned.

Syntax
bool isOpen() const;

length()

13-68 Oracle C++ Call Interface Programmer's Guide

length()

Returns the number of bytes (inclusive of the end of file marker) in the BFILE.

Syntax
unsigned int length() const;

Bfile Class

OCCI Application Programming Interface 13-69

open()

Opens an existing BFILE for read-only access. This function is meaningful the first
time it is called for a Bfile object.

Syntax
void open();

operator=()

13-70 Oracle C++ Call Interface Programmer's Guide

operator=()

Assigns a Bfile object to the current Bfile object. The source Bfile object is assigned
to this Bfile object only when this Bfile object gets stored in the database.

Syntax
Bfile& operator=(

const Bfile &srcBfile);

Parameter Description

srcBfile The Bfile object to be assigned to the current Bfile object.

Bfile Class

OCCI Application Programming Interface 13-71

operator==()

Compares two Bfile objects for equality. The Bfile objects are equal if they both refer
to the same BFILE. If the Bfile objects are NULL, then FALSE is returned. If the Bfile
objects are equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax
bool operator==(

const Bfile &srcBfile) const;

Parameter Description

srcBfile The Bfile object to be compared with the current Bfile object.

operator!=()

13-72 Oracle C++ Call Interface Programmer's Guide

operator!=()

Compares two Bfile objects for inequality. The Bfile objects are equal if they both
refer to the same BFILE. If the Bfile objects are not equal, then TRUE is returned;
otherwise, FALSE is returned.

Syntax
bool operator!=(

const Bfile &srcBfile) const;

Parameter Description

srcBfile The Bfile object to be compared with the current Bfile object.

Bfile Class

OCCI Application Programming Interface 13-73

read()

Reads a part or all of the BFILE into the buffer specified, and returns the number of
bytes read.

Syntax
unsigned int read(

unsigned int amt,
unsigned char *buffer,
unsigned int bufsize,
unsigned int offset = 1) const;

Parameter Description

amt The number of bytes to be read. Valid values are numbers greater
than or equal to 1.

buffer The buffer that the BFILE data is to be read into. Valid values are
numbers greater than or equal to amt.

buffsize The size of the buffer that the BFILE data is to be read into. Valid
values are numbers greater than or equal to amt.

offset The starting position at which to begin reading data from the BFILE.
If offset is not specified, the data is written from the beginning of
the BFILE.

setName()

13-74 Oracle C++ Call Interface Programmer's Guide

setName()

Sets the directory object and file name of the BFILE.

Syntax Description

void setName(
const string &dirAlias,
const string &fileName);

Sets the directory object and file name of
the BFILE.

void setName(
const UString &dirAlias,
const UString &fileName);

Sets the directory object and file name of
the BFILE (Unicode support). The client
Environment should be initialized in
OCCIUTIF16 mode.

Parameter Description

dirAlias The directory object to be associated with the BFILE.

fileName The file name to be associated with the BFILE.

Bfile Class

OCCI Application Programming Interface 13-75

setNull()

Sets the Bfile object to atomically NULL.

Syntax
void setNull();

Blob Class

13-76 Oracle C++ Call Interface Programmer's Guide

Blob Class

The Blob class defines the common properties of objects of type BLOB. A BLOB is a large
binary object stored as a column value in a row of a database table. A Blob object
contains a logical pointer to a BLOB, not the BLOB itself.

Methods of the Blob class enable you to perform specific tasks related to Blob objects.

Methods of the ResultSet and Statement classes, such as getBlob() and setBlob(),
enable you to access an SQL BLOB value.

The only methods valid on a NULL Blob object are setName(), isNull(), and operator=().

An uninitialized Blob object can be initialized by:

■ The setEmpty() method. The BLOB can then be modified by inserting this BLOB into
the table and then retrieving it using SELECT...FOR UPDATE. The write() method
modifies the BLOB; however, the modified data is flushed to the table only when
the transaction is committed. Note that an update is not required.

■ Assigning an initialized Blob object to it.

See Also:

■ In-depth discussion of LOBs in Oracle Database SecureFiles and
Large Objects Developer's Guide

Table 13–8 Summary of Blob Methods

Method Summary

Blob() on page 13-78 Blob class constructor.

append() on page 13-79 Appends a specified BLOB to the end of the current BLOB.

close() on page 13-80 Closes a previously opened BLOB.

closeStream() on page 13-81 Closes the Stream object obtained from the BLOB.

copy() on page 13-82 Copies a specified portion of a BFILE or BLOB into the
current BLOB.

getChunkSize() on page 13-83 Returns the smallest data size to perform efficient writes to
the BLOB.

getContentType() on page 13-84 Returns the content type of the Blob.

getOptions() on page 13-85 Returns the BLOB's LobOptionValue for a specified
LobOptionType.

getStream() on page 13-86 Returns data from the BLOB as a Stream object.

isInitialized() on page 13-87 Tests whether the Blob object is initialized

isNull() on page 13-88 Tests whether the Blob object is atomically NULL.

isOpen() on page 13-89 Tests whether the BLOB is open.

length() on page 13-90 Returns the number of bytes in the BLOB.

open() on page 13-91 Opens the BLOB with read or read/write access.

operator=() on page 13-92 Assigns a BLOB locator to the Blob object.

operator==() on page 13-93 Tests whether two Blob objects are equal.

operator!= () on page 13-94 Tests whether two Blob objects are not equal.

Blob Class

OCCI Application Programming Interface 13-77

read() on page 13-95 Reads a portion of the BLOB into a buffer.

setContentType() on page 13-96 Sets the content type of the Blob.

setEmpty() on page 13-97 Sets the Blob object to empty.

setNull() on page 13-98 Sets the Blob object to atomically NULL.

setOptions() on page 13-99 Specifies a LobOptionValue for a particular
LobOptionType. Enables advanced compression,
encryption and deduplication of BLOBs.

trim() on page 13-100 Truncates the BLOB to a specified length.

write() on page 13-101 Writes a buffer into an unopened BLOB.

writeChunk() on page 13-102 Writes a buffer into an open BLOB.

Table 13–8 (Cont.) Summary of Blob Methods

Method Summary

Blob()

13-78 Oracle C++ Call Interface Programmer's Guide

Blob()

Blob class constructor.

Syntax Description

Blob(); Creates a NULL Blob object.

Blob(
const Connection *connectionp);

Creates an uninitialized Blob object.

Blob(
const Blob &srcBlob);

Creates a copy of a Blob object.

Parameter Description

connectionp The connection pointer

srcBlob The source Blob object.

Blob Class

OCCI Application Programming Interface 13-79

append()

Appends a BLOB to the end of the current BLOB.

Syntax
void append(

const Blob &srcBlob);

Parameter Description

srcBlob The BLOB object to be appended to the current BLOB object.

close()

13-80 Oracle C++ Call Interface Programmer's Guide

close()

Closes a BLOB.

Syntax
void close();

Blob Class

OCCI Application Programming Interface 13-81

closeStream()

Closes the Stream object obtained from the BLOB.

Syntax
void closeStream(

Stream *stream);

Parameter Description

stream The Stream to be closed.

copy()

13-82 Oracle C++ Call Interface Programmer's Guide

copy()

Copies a part or all of a BFILE or BLOB into the current BLOB.

Syntax Description

void copy(
const Bfile &srcBfile,
unsigned int numBytes,
unsigned int dstOffset = 1,
unsigned int srcOffset = 1);

Copies a part of a BFILE into the current BLOB.

void copy(
const Blob &srcBlob,
unsigned int numBytes,
unsigned int dstOffset = 1,
unsigned int srcOffset = 1);

Copies a part of a BLOB into the current BLOB.

If the destination BLOB has deduplication
enabled, and the source and destination BLOBs
are in the same column, the new BLOB is
created as copy-on-write. All other settings are
inherited from the source BLOB. If the
destination BLOB has deduplication disabled, it
is a completely new copy of the BLOB.

Parameter Description

srcBfile The BFILE from which the data is to be copied.

srcBlob The BLOB from which the data is to be copied.

numBytes The number of bytes to be copied from the source BFILE or BLOB. Valid
values are numbers greater than 0.

dstOffset The starting position at which to begin writing data into the current BLOB.
Valid values are numbers greater than or equal to 1.

srcOffset The starting position at which to begin reading data from the source BFILE
or BLOB. Valid values are numbers greater than or equal to 1.

Blob Class

OCCI Application Programming Interface 13-83

getChunkSize()

Returns the smallest data size to perform efficient writes to the BLOB.

Syntax
unsigned int getChunkSize() const;

getContentType()

13-84 Oracle C++ Call Interface Programmer's Guide

getContentType()

Returns the content type of the Blob. If a content type has not been assigned, returns a
NULL string.

Syntax
string getContentType();

Blob Class

OCCI Application Programming Interface 13-85

getOptions()

Returns the BLOB's LobOptionValue for a specified LobOptionType.

Throws an exception if attempting to retrieve a value for an option that is not
configured on the database column or partition that stores the BLOB.

Syntax
LobOptionValue getOptions(

LobOptionType optType);

Parameter Description

optType The LobOptionType setting requested. These may be combined using
bitwise or (|) to avoid server round trips. See Table 7–1, " Values of
Type LobOptionType" and Table 7–2, " Values of Type LobOptionValue"

getStream()

13-86 Oracle C++ Call Interface Programmer's Guide

getStream()

Returns a Stream object from the BLOB. If a stream is open, it is disallowed to open
another stream on Blob object, so the user must always close the stream before
performing any Blob object operations.

Syntax
Stream* getStream(

unsigned int offset = 1,
unsigned int amount = 0);

Parameter Description

offset The starting position at which to begin reading data from the BLOB. If offset is
not specified, the data is written from the beginning of the BLOB. Valid values are
numbers greater than or equal to 1.

amount The total number of bytes to be read from the BLOB; if amount is 0, the data is read
in a streamed mode from input offset until the end of the BLOB.

Blob Class

OCCI Application Programming Interface 13-87

isInitialized()

Tests whether the Blob object is initialized. If the Blob object is initialized, then TRUE is
returned; otherwise, FALSE is returned.

Syntax
bool isInitialized() const;

isNull()

13-88 Oracle C++ Call Interface Programmer's Guide

isNull()

Tests whether the Blob object is atomically NULL. If the Blob object is atomically NULL,
then TRUE is returned; otherwise, FALSE is returned.

Syntax
bool isNull() const;

Blob Class

OCCI Application Programming Interface 13-89

isOpen()

Tests whether the BLOB is open. If the BLOB is open, then TRUE is returned; otherwise,
FALSE is returned.

Syntax
bool isOpen() const;

length()

13-90 Oracle C++ Call Interface Programmer's Guide

length()

Returns the number of bytes in the BLOB.

Syntax
unsigned int length() const;

Blob Class

OCCI Application Programming Interface 13-91

open()

Opens the BLOB in read/write or read-only mode.

Syntax
void open(

LobOpenMode mode = OCCI_LOB_READWRITE);

Parameter Description

mode The mode the BLOB is to be opened in. Valid values are:

■ OCCI_LOB_READWRITE

■ OCCI_LOB_READONLY

operator=()

13-92 Oracle C++ Call Interface Programmer's Guide

operator=()

Assigns a BLOB to the current BLOB. The source BLOB gets copied to the destination BLOB
only when the destination BLOB gets stored in the table.

Syntax
Blob& operator=(

const Blob &srcBlob);

Parameter Description

srcBlob The source BLOB from which to copy data.

Blob Class

OCCI Application Programming Interface 13-93

operator==()

Compares two Blob objects for equality. Two Blob objects are equal if they both
refer to the same BLOB. Two NULL Blob objects are not considered equal. If the Blob
objects are equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax
bool operator==(

const Blob &srcBlob) const;

Parameter Description

srcBlob The source BLOB to be compared with the current BLOB.

operator!= ()

13-94 Oracle C++ Call Interface Programmer's Guide

operator!= ()

Compares two Blob objects for inequality. Two Blob objects are equal if they both
refer to the same BLOB. Two NULL Blob objects are not considered equal. If the Blob
objects are not equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax
bool operator!=(

const Blob &srcBlob) const;

Parameter Description

srcBlob The source BLOB to be compared with the current BLOB.

Blob Class

OCCI Application Programming Interface 13-95

read()

Reads a part or all of the BLOB into a buffer. The actual number of bytes read is
returned.

Syntax
unsigned int read(

unsigned int amt,
unsigned char *buffer,
unsigned int bufsize,
unsigned int offset = 1) const;

Parameter Description

amt The number of bytes to be read. Valid values are numbers greater than or equal
to 1.

buffer The buffer that the BLOB data is to be read into. Valid values are numbers greater
than or equal to amt.

buffsize The size of the buffer that the BLOB data is to be read into. Valid values are
numbers greater than or equal to amt.

offset The starting position at which to begin reading data from the BLOB. If offset is
not specified, the data is written from the beginning of the BLOB.

setContentType()

13-96 Oracle C++ Call Interface Programmer's Guide

setContentType()

Sets the content type of the Blob. If the Blob is not a SecureFile, throws an exception.

Syntax
void setContentType(

const string contenttype);

Parameter Description

contenttype The content type of the Blob; an ASCII Mime compliant string.

Blob Class

OCCI Application Programming Interface 13-97

setEmpty()

Sets the Blob object to empty.

Syntax Description

void setEmpty(); Sets the Blob object to empty.

void setEmpty(
const Connection* connectionp);

Sets the Blob object to empty and initializes
the connection pointer to the passed
parameter.

Parameter Description

connectionp The new connection pointer for the BLOB object.

setNull()

13-98 Oracle C++ Call Interface Programmer's Guide

setNull()

Sets the Blob object to atomically NULL.

Syntax
void setNull();

Blob Class

OCCI Application Programming Interface 13-99

setOptions()

Specifies a LobOptionValue for a particular LobOptionType. Enables advanced
compression, encryption and deduplication of BLOBs. See Table 7–1, " Values of Type
LobOptionType" and Table 7–2, " Values of Type LobOptionValue".

Throws an exception if attempting to set or un-set an option that is not configured on
the database column or partition that stores the BLOB.

Throws an exception if attempting to turn off encryption in an encrypted BLOB column.

Syntax
void setOptions(

LobOptionType optType,
LobOptionValue optValue);

Parameter Description

optType The LobOptionType setting being specified. These may be combined
using bitwise or (|) to avoid server round trips.

optValue The LobOptionValue setting for the LobOptionType specified by the
optType parameter

trim()

13-100 Oracle C++ Call Interface Programmer's Guide

trim()

Truncates the BLOB to the new length specified.

Syntax
void trim(

unsigned int newlen);

Parameter Description

newlen The new length of the BLOB. Valid values are numbers less than or
equal to the current length of the BLOB.

Blob Class

OCCI Application Programming Interface 13-101

write()

Writes data from a buffer into a BLOB. This method implicitly opens the BLOB, copies
the buffer into the BLOB, and implicitly closes the BLOB. If the BLOB is open, use
writeChunk() instead. The actual number of bytes written is returned.

Syntax
unsigned int write(

unsigned int amt,
unsigned char *buffer,
unsigned int bufsize,
unsigned int offset = 1);

Parameter Description

amt The number of bytes to be written to the BLOB.

buffer The buffer containing the data to be written to the BLOB.

buffsize The size of the buffer containing the data to be written to the BLOB.
Valid values are numbers greater than or equal to amt.

offset The starting position at which to begin writing data into the BLOB. If offset is
not specified, the data is written from the beginning of the BLOB. Valid values are
numbers greater than or equal to 1.

writeChunk()

13-102 Oracle C++ Call Interface Programmer's Guide

writeChunk()

Writes data from a buffer into a previously opened BLOB. The actual number of bytes
written is returned.

Syntax
unsigned int writeChunk(

unsigned int amount,
unsigned char *buffer,
unsigned int bufsize,
unsigned int offset = 1);

Parameter Description

amt The number of bytes to be written to the BLOB.

buffer The buffer containing the data to be written to the BLOB.

buffsize The size of the buffer containing the data to be written to the BLOB. Valid values
are numbers greater than or equal to amt.

offset The starting position at which to begin writing data into the BLOB. If offset is
not specified, the data is written from the beginning of the BLOB. Valid values are
numbers greater than or equal to 1.

Bytes Class

OCCI Application Programming Interface 13-103

Bytes Class

Methods of the Bytes class enable you to perform specific tasks related to Bytes
objects.

Table 13–9 Summary of Bytes Methods

Method Summary

Bytes() on page 13-104 Bytes class constructor.

byteAt() on page 13-105 Returns the byte at the specified position of the Bytes object.

getBytes() on page 13-106 Returns a byte array from the Bytes object.

isNull() on page 13-107 Tests whether the Bytes object is NULL.

length() on page 13-108 Returns the number of bytes in the Bytes object.

operator=() on page 13-109 Assignment operator for Bytes class.

setNull() on page 13-110 Sets the Bytes object to NULL.

Bytes()

13-104 Oracle C++ Call Interface Programmer's Guide

Bytes()

Bytes class constructor.

Syntax Description

Bytes(
Environment *env = NULL);

Creates a Bytes object.

Bytes(
unsigned char *value,
unsigned int count
unsigned int offset = 0,
const Environment *env = NULL);

Creates a Bytes object that contains a subarray of
bytes from a character array.

Bytes(
const Bytes &e);

Creates a copy of a Bytes object, use the syntax

Parameter Description

env Environment

value Initial value of the new object

count The size of the subset of the character array that is copied into the new bytes
object

offset The first position from which to begin copying the character array

e The source Bytes object.

Bytes Class

OCCI Application Programming Interface 13-105

byteAt()

Returns the byte at the specified position in the Bytes object.

Syntax
unsigned char byteAt(

unsigned int index) const;

Parameter Description

index The position of the byte to be returned from the Bytes object; the
first byte of the Bytes object is at 0.

getBytes()

13-106 Oracle C++ Call Interface Programmer's Guide

getBytes()

Copies bytes from a Bytes object into the specified byte array.

Syntax
void getBytes(

unsigned char *dst,
unsigned int count,
unsigned int srcBegin = 0,
unsigned int dstBegin = 0) const;

Parameter Description

dst The destination buffer into which data from the Bytes object is to be written.

count The number of bytes to copy.

srcBegin The starting position at which data is to be read from the Bytes object; the
position of the first byte in the Bytes object is at 0.

dstBegin The starting position at which data is to be written in the destination buffer; the
position of the first byte in dst is at 0.

Bytes Class

OCCI Application Programming Interface 13-107

isNull()

Tests whether the Bytes object is atomically NULL. If the Bytes object is atomically
NULL, then TRUE is returned; otherwise FALSE is returned.

Syntax
bool isNull() const;

length()

13-108 Oracle C++ Call Interface Programmer's Guide

length()

This method returns the length of the Bytes object.

Syntax
unsigned int length() const;

Bytes Class

OCCI Application Programming Interface 13-109

operator=()

Assignment operator for Bytes class.

Syntax
void operator=(

const Bytes& bytes);

Parameter Description

bytes The original Bytes.

setNull()

13-110 Oracle C++ Call Interface Programmer's Guide

setNull()

This method sets the Bytes object to atomically NULL.

Syntax
void setNull();

Clob Class

OCCI Application Programming Interface 13-111

Clob Class

The Clob class defines the common properties of objects of type CLOB. A Clob is a large
character object stored as a column value in a row of a database table. A Clob object
contains a logical pointer to a CLOB, not the CLOB itself.

Methods of the Clob class enable you to perform specific tasks related to Clob objects,
including methods for getting the length of a SQL CLOB, for materializing a CLOB on the
client, and for extracting a part of the CLOB.

The only methods valid on a NULL CLOB object are setName(), isNull(), and operator=().

Methods in the ResultSet and Statement classes, such as getClob() and setClob(),
enable you to access an SQL CLOB value.

An uninitialized CLOB object can be initialized by:

■ The setEmpty() method. The CLOB can then be modified by inserting this CLOB into
the table and retrieving it using SELECT...FOR UPDATE. The write() method
modifies the CLOB; however, the modified data is flushed to the table only when
the transaction is committed. Note that an insert is not required.

■ Assigning an initialized Clob object to it.

See Also:

■ In-depth discussion of LOBs in the introductory chapter of Oracle
Database SecureFiles and Large Objects Developer's Guide,

Table 13–10 Summary of Clob Methods

Method Summary

Clob() on page 13-113 Clob class constructor.

append() on page 13-114 Appends a Clob at the end of the current Clob.

close() on page 13-115 Closes a previously opened Clob.

closeStream() on page 13-116 Closes the Stream object obtained from the current Clob.

copy() on page 13-117 Copies all or a portion of a Clob or BFILE into the current
Clob.

getCharSetForm() on page 13-118 Returns the character set form of the Clob.

getCharSetId() on page 13-119 Returns the character set ID of the Clob.

getCharSetIdUString() on
page 13-120

Retrieves the characterset name associated with the Clob;
UString version.

getChunkSize() on page 13-121 Returns the smallest data size to perform efficient writes to
the CLOB.

getContentType() on page 13-122 Returns the content type of the Clob.

getOptions() on page 13-123 Returns the CLOB's LobOptionValue for a specified
LobOptionType.

getStream() on page 13-124 Returns data from the CLOB as a Stream object.

isInitialized() on page 13-125 Tests whether the Clob object is initialized.

isNull() on page 13-126 Tests whether the Clob object is atomically NULL.

isOpen() on page 13-127 Tests whether the Clob is open.

Clob Class

13-112 Oracle C++ Call Interface Programmer's Guide

length() on page 13-128 Returns the number of characters in the current CLOB.

open() on page 13-129 Opens the CLOB with read or read/write access.

operator=() on page 13-130 Assigns a CLOB locator to the current Clob object.

operator==() on page 13-131 Tests whether two Clob objects are equal.

operator!=() on page 13-132 Tests whether two Clob objects are not equal.

read() on page 13-133 Reads a portion of the CLOB into a buffer.

setCharSetId() on page 13-134 Sets the character set ID associated with the Clob.

setCharSetIdUString() on
page 13-135

Sets the character set ID associated with the Clob; used
when the environment character set is UTF16.

setCharSetForm() on page 13-136 Sets the character set form associated with the Clob.

setContentType() on page 13-137 Sets the content type of the Clob.

setEmpty() on page 13-138 Sets the Clob object to empty.

setNull() on page 13-139 Sets the Clob object to atomically NULL.

setOptions() on page 13-140 Specifies a LobOptionValue for a particular
LobOptionType. Enables advanced compression,
encryption and deduplication of CLOBs.

trim() on page 13-141 Truncates the Clob to a specified length.

write() on page 13-142 Writes a buffer into an unopened CLOB.

writeChunk() on page 13-143 Writes a buffer into an open CLOB.

Table 13–10 (Cont.) Summary of Clob Methods

Method Summary

Clob Class

OCCI Application Programming Interface 13-113

Clob()

Clob class constructor.

Syntax Description

Clob(); Creates a NULL Clob object.

Clob(
const Connection *connectionp);

Creates an uninitialized Clob object.

Clob(
const Clob *srcClob);

Creates a copy of a Clob object.

Parameter Description

connectionp Connection pointer

srcClob The source Clob object

append()

13-114 Oracle C++ Call Interface Programmer's Guide

append()

Appends a CLOB to the end of the current CLOB.

Syntax
void append(

const Clob &srcClob);

Parameter Description

srcClob The CLOB to be appended to the current CLOB.

Clob Class

OCCI Application Programming Interface 13-115

close()

Closes a CLOB.

Syntax
void close();

closeStream()

13-116 Oracle C++ Call Interface Programmer's Guide

closeStream()

Closes the Stream object obtained from the CLOB.

Syntax
void closeStream(

Stream *stream);

Parameter Description

stream The Stream object to be closed.

Clob Class

OCCI Application Programming Interface 13-117

copy()

Copies a part or all of a BFILE or CLOB into the current CLOB.

OCCI does not perform any characterset conversions when loading data from a Bfile
into a Clob; therefore, ensure that the contents of the Bfile are character data in the
server's Clob storage characterset.

Syntax Description

void copy(
const Bfile &srcBfile,
unsigned int numBytes,
unsigned int dstOffset = 1,
unsigned int srcOffset = 1);

Copies a BFILE into the current CLOB.

void copy(
const Clob &srcClob,
unsigned int numBytes,
unsigned int dstOffset = 1,
unsigned int srcOffset = 1);

Copies a CLOB into the current CLOB.

If the destination CLOB has deduplication
enabled, and the source and destination CLOBs
are in the same column, the new CLOB is
created as copy-on-write. All other settings are
inherited from the source CLOB. If the
destination CLOB has deduplication disabled, it
is a completely new copy of the CLOB.

Parameter Description

srcBfile The BFILE from which the data is to be copied.

srcClob The CLOB from which the data is to be copied.

numBytes The number of bytes to be copied from the source BFILE or CLOB. Valid values
are numbers greater than 0.

dstOffset The starting position at which data is to be is at 0.

The starting position at which to begin writing data into the current CLOB Valid
values are numbers greater than or equal to 1 written in the destination buffer;
the position of the first byte.

srcOffset The starting position at which to begin reading data from the source BFILE or
CLOB. Valid values are numbers greater than or equal to 1.

getCharSetForm()

13-118 Oracle C++ Call Interface Programmer's Guide

getCharSetForm()

Returns the character set form of the CLOB.

Syntax
CharSetForm getCharSetForm() const;

Clob Class

OCCI Application Programming Interface 13-119

getCharSetId()

Returns the character set ID of the CLOB, in string form.

Syntax
string getCharSetId() const;

getCharSetIdUString()

13-120 Oracle C++ Call Interface Programmer's Guide

getCharSetIdUString()

Retrieves the characterset name associated with the Clob; UString version.

Syntax
UString getCharSetIdUString() const;

Clob Class

OCCI Application Programming Interface 13-121

getChunkSize()

Returns the smallest data size to perform efficient writes to the CLOB.

Syntax
unsigned int getChunkSize() const;

getContentType()

13-122 Oracle C++ Call Interface Programmer's Guide

getContentType()

Returns the content type of the Clob. If a content type has not been assigned, returns a
NULL string.

Syntax
string getContentType();

Clob Class

OCCI Application Programming Interface 13-123

getOptions()

Returns the CLOB's LobOptionValue for a specified LobOptionType.

Throws an exception if attempting to retrieve a value for an option that is not
configured on the database column or partition that stores the CLOB.

Syntax
LobOptionValue getOptions(

LobOptionType optType);

Parameter Description

optType The LobOptionType setting requested. These may be combined using
bitwise or (|) to avoid server round trips. See Table 7–1, " Values of
Type LobOptionType" and Table 7–2, " Values of Type LobOptionValue"

getStream()

13-124 Oracle C++ Call Interface Programmer's Guide

getStream()

Returns a Stream object from the CLOB. If a stream is open, it is disallowed to open
another stream on CLOB object, so the user must always close the stream before
performing any Clob object operations. The client's character set id and form is used
by default, unless they are explicitly set through setCharSetId() and setEmpty() calls.

Syntax
Stream* getStream(

unsigned int offset = 1,
unsigned int amount = 0);

Parameter Description

offset The starting position at which to begin reading data from the CLOB. If offset is
not specified, the data is written from the beginning of the CLOB. Valid values are
numbers greater than or equal to 1.

amount The total number of consecutive characters to be read. If amount is 0, the data is
read from the offset value until the end of the CLOB.

Clob Class

OCCI Application Programming Interface 13-125

isInitialized()

Tests whether the Clob object is initialized. If the Clob object is initialized, TRUE is
returned; otherwise, FALSE is returned.

Syntax
bool isInitialized() const;

isNull()

13-126 Oracle C++ Call Interface Programmer's Guide

isNull()

Tests whether the Clob object is atomically NULL. If the Clob object is atomically NULL,
TRUE is returned; otherwise, FALSE is returned.

Syntax
bool isNull() const;

Clob Class

OCCI Application Programming Interface 13-127

isOpen()

Tests whether the CLOB is open. If the CLOB is open, TRUE is returned; otherwise, FALSE
is returned.

Syntax
bool isOpen() const;

length()

13-128 Oracle C++ Call Interface Programmer's Guide

length()

Returns the number of characters in the CLOB.

Syntax
unsigned int length() const;

Clob Class

OCCI Application Programming Interface 13-129

open()

Opens the CLOB in read/write or read-only mode.

Syntax
void open(

LObOpenMode mode = OCCI_LOB_READWRITE);

Parameter Description

mode The mode the CLOB is to be opened in. Valid values are:

■ OCCI_LOB_READWRITE

■ OCCI_LOB_READONLY

operator=()

13-130 Oracle C++ Call Interface Programmer's Guide

operator=()

Assigns a CLOB to the current CLOB. The source CLOB gets copied to the destination CLOB
only when the destination CLOB gets stored in the table.

Syntax
Clob& operator=(

const Clob &srcClob);

Parameter Description

srcClob The Clob from which the data must be copied.

Clob Class

OCCI Application Programming Interface 13-131

operator==()

Compares two Clob objects for equality. Two Clob objects are equal if they both refer to
the same CLOB. Two NULL Clob objects are not considered equal. If the Blob objects are
equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax
bool operator==(

const Clob &srcClob) const;

Parameter Description

srcClob The Clob object to be compared with the current Clob object.

operator!=()

13-132 Oracle C++ Call Interface Programmer's Guide

operator!=()

Compares two Clob objects for inequality. Two Clob objects are equal if they both
refer to the same CLOB. Two NULL Clob objects are not considered equal. If the Clob
objects are not equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax
bool operator!=(

const Clob &srcClob) const;

Parameter Description

srcClob The Clob object to be compared with the current Clob object.

Clob Class

OCCI Application Programming Interface 13-133

read()

Reads a part or all of the CLOB into a buffer.

Returns the actual number of characters read for fixed-width charactersets, such as
UTF16, or the number of bytes read for multibyte charactersets, including UTF8.

The client's character set id and form is used by default, unless they are explicitly set
through setCharSetId(), setCharSetIdUString() and setCharSetForm() calls.

Note that for the second version of the method, the return value represents either the
number of characters read for fixed-width charactersets (UTF16), or the number of
bytes read for multibyte charactersets (including UTF8).

Syntax Description

unsigned int read(
unsigned int amt,
unsigned char *buffer,
unsigned int bufsize,
unsigned int offset=1) const;

Reads a part or all of the CLOB into a buffer.

unsigned int read(
unsigned int amt,
unsigned utext *buffer,
unsigned int bufsize,
unsigned int offset=1) const;

Reads a part or all of the CLOB into a buffer;
globalization enabled. Should be called
after setting character set to OCCIUTF16
using setCharSetId() method.

Parameter Description

amt The number of bytes to be read. from the CLOB.

buffer The buffer that the CLOB data is to be read into.

buffsize The size of the buffer. Valid values are numbers greater than or
equal to amt.

offset The starting position at which to begin reading data from the CLOB.
If offset is not specified, the data is written from the beginning of
the CLOB. Valid values are numbers greater than or equal to 1.

setCharSetId()

13-134 Oracle C++ Call Interface Programmer's Guide

setCharSetId()

Sets the Character set Id associated with Clob. The characterset id set is used for
read/write and getStream() operations. If no value is set explicitly, the default client's
character set id is used. List of character sets supported is given in Globalization
Support Guide Appendix A.

Syntax
void setCharSetId(

const string &charset);

Parameter Description

charset Oracle supported characterset name, such as E8DEC, ZHT16BIG5, or
OCCIUTF16.

Clob Class

OCCI Application Programming Interface 13-135

setCharSetIdUString()

Sets the characterset id associated with Clob; used when the environment's
characterset is UTF16. The charset id set is used for read, write and getStream()
operations.

Syntax
void setCharSetIdUSString(

const string &charset);

Parameter Description

charset Oracle supported characterset name, such as WE8DEC, ZHT16BIG5, or
OCCIUTF16 in UString (UTF16 characterset).

setCharSetForm()

13-136 Oracle C++ Call Interface Programmer's Guide

setCharSetForm()

Sets the character set form associated with the CLOB. The charset form set is used for
read, write and getStream() operations. If no value is set explicitly, by default, OCCI_
SQLCS_IMPLICIT is used.

Syntax
void setCharSetForm(

CharSetForm csfrm);

Parameter Description

csfrm The charset form for Clob.

Clob Class

OCCI Application Programming Interface 13-137

setContentType()

Sets the content type of the Clob. If the Clob is not a SecureFile, throws an exception.

Syntax
void setContentType(

const string contenttype);

Parameter Description

contenttype The content type of the Clob; an ASCII Mime compliant string.

setEmpty()

13-138 Oracle C++ Call Interface Programmer's Guide

setEmpty()

Sets the Clob object to empty.

Syntax Description

void setEmpty(); Sets the Clob object to empty.

void setEmpty(
const Connection* connectionp);

Sets the Clob object to empty and initializes the
connection pointer to the passed parameter.

Parameter Description

connectionp The new connection pointer for the Clob object.

Clob Class

OCCI Application Programming Interface 13-139

setNull()

Sets the Clob object to atomically NULL.

Syntax
void setNull();

setOptions()

13-140 Oracle C++ Call Interface Programmer's Guide

setOptions()

Specifies a LobOptionValue for a particular LobOptionType. Enables advanced
compression, encryption and deduplication of CLOBs. See Table 7–1, " Values of Type
LobOptionType" and Table 7–2, " Values of Type LobOptionValue".

Throws an exception if attempting to set or un-set an option that is not configured on
the database column or partition that stores the CLOB.

Throws an exception if attempting to turn off encryption in an encrypted CLOB column.

Syntax
void setOptions(

LobOptionType optType,
LobOptionValue optValue);

Parameter Description

optType The LobOptionType setting being specified. These may be combined
using bitwise or (|) to avoid server round trips.

optValue The LobOptionValue setting for the LobOptionType specified by the
optType parameter

Clob Class

OCCI Application Programming Interface 13-141

trim()

Truncates the CLOB to the new length specified.

Syntax
void trim(

unsigned int newlen);

Parameter Description

newlen The new length of the CLOB. Valid values are numbers less than or equal to the
current length of the CLOB.

write()

13-142 Oracle C++ Call Interface Programmer's Guide

write()

Writes data from a buffer into a CLOB.

This method implicitly opens the CLOB, copies the buffer into the CLOB, and implicitly
closes the CLOB. If the CLOB is open, use writeChunk() instead. The actual number of
characters written is returned. The client's character set id and form is used by default,
unless they are explicitly set through setCharSetId() and setCharSetForm() calls.

Syntax Description

unsigned int write(
unsigned int amt,
unsigned char *buffer,
unsigned int bufsize,
unsigned int offset=1);

Writes data from a buffer into a CLOB.

unsigned int write(
unsigned int amt,
utext *buffer,
unsigned int bufsize,
unsigned int offset=1);

Writes data from a UTF16 buffer into a CLOB;
globalization enabled. Should be called after setting
character set to OCCIUTF16 using
setCharSetIdUString() method.

Parameter Description

amt The amount parameter represents:

■ number of characters written for fixed-width charactersets (UTF16)

■ number of bytes written for multibyte charactersets (including UTF8)

buffer The buffer containing the data to be written to the CLOB.

buffsize The size of the buffer containing the data to be written to the CLOB. Valid values
are numbers greater than or equal to amt.

offset The starting position at which to begin writing data into the CLOB. If offset is
not specified, the data is written from the beginning of the CLOB. Valid values are
numbers greater than or equal to 1.

Clob Class

OCCI Application Programming Interface 13-143

writeChunk()

Writes data from a buffer into a previously opened CLOB. Returns the actual number of
characters. The client's character set id and form is used by default, unless they are
explicitly set through setCharSetId() and setCharSetForm() calls.

Syntax Description

unsigned int writeChunk(
unsigned int amt,
unsigned char *buffer,
unsigned int bufsize,
unsigned int offset=1);

Writes data from a buffer into a previously
opened CLOB.

unsigned int writeChunk(
unsigned int amt,
utext *buffer,
unsigned int bufsize,
unsigned int offset=1);

Writes data from a UTF16 buffer into a
CLOB; globalization enabled. Should be
called after setting characterset to
OCCIUTF16 using setCharSetIdUString()
method.

Parameter Description

amt The amount parameter represents either a number of characters written for
fixed-width charactersets (UTF16) or a number of bytes written for multibyte
charactersets (including UTF8)

buffer The buffer containing the data to be written to the CLOB.

buffsize The size of the buffer containing the data to be written to the CLOB. Valid values
are numbers greater than or equal to amt.

offset The starting position at which to begin writing data into the CLOB. If offset is
not specified, the data is written from the beginning of the CLOB. Valid values are
numbers greater than or equal to 1.

Connection Class

13-144 Oracle C++ Call Interface Programmer's Guide

Connection Class

The Connection class represents a connection with a specific database. Inside the
connection, SQL statements are executed and results are returned.

Table 13–11 Enumerated Values Used by Connection Class

Attribute Options

FailOverEventType ■ FO_BEGIN indicates that a lost connection has been detected;
failover is starting.

■ FO_END indicates that a failover completed successfully; the
Connection is ready for use.

■ FO_ABORT indicates that the failover was unsuccessful; it is not be
attempted again.

■ FO_REAUTH indicates that the user session has been
reauthenticated.

■ FO_ERROR indicates that a failover was unsuccessful; the
application can handle the error and retry failover.

FailOverType ■ FO_NONE indicates that the user requested no protection for
failover.

■ FO_SESSION indicates that the user requested only session
failover.

■ FO_SELECT indicates that the use requested select failover.

ProxyType ■ PROXY_DEFAULT is the database user name.

Table 13–12 Summary of Connection Methods

Method Summary

changePassword() on page 13-146 Changes the password for the current user.

commit() on page 13-147 Commits changes made since the previous commit or
rollback and release any database locks held by the
session.

createStatement() on page 13-148 Creates a Statement object to execute SQL statements.

flushCache() on page 13-149 Flushes the object cache associated with the connection.

getClientCharSet() on page 13-150 Returns the default client character set.

getClientCharSetUString() on
page 13-151

Returns the globalization enabled client character set in
UString.

getClientNCHARCharSet() on
page 13-152

Returns the default client NCHAR character set.

getClientNCHARCharSetUString()
on page 13-153

Returns the globalization enabled client NCHAR character
set in UString.

getClientVersion() on page 13-154 Returns the version of the client used.

getLTXID() on page 13-155 Returns logical transaction id that may be used in various
calls of package DBMS_APP_CONT.

getMetaData() on page 13-156 Returns the metadata for an object accessible from the
connection.

getOCIServer() on page 13-157 Returns the OCI server context associated with the
connection.

Connection Class

OCCI Application Programming Interface 13-145

getOCIServiceContext() on
page 13-158

Returns the OCI service context associated with the
connection.

getOCISession() on page 13-159 Returns the OCI session context associated with the
connection.

getServerVersion() on page 13-160 Returns the version of the Oracle server used, as string.

getServerVersionUString() on
page 13-161

Returns the version of the Oracle server used, as a
UString.

getStmtCacheSize() on page 13-162 Retrieves the size of the statement cache.

getTag() on page 13-163 Returns the tag associated with the connection.

isCached() on page 13-164 Determines if the specified statement is cached.

pinVectorOfRefs() on page 13-165 Pins an entire vector of Ref objects into object cache in a
single round trip; pinned objects are available through an
OUT parameter vector.

postToSubscriptions() on
page 13-166

Posts notifications to subscriptions.

readVectorOfBfiles() on page 13-167 Reads multiple Bfiles in a single server round-trip.

readVectorOfBlobs() on page 13-168 Reads multiple Blobs in a single server round-trip.

readVectorOfClobs() on
page 13-169

Reads multiple Clobs in a single server round-trip.

registerSubscriptions() on
page 13-170

Registers several Subscriptions for notification.

rollback() on page 13-171 Rolls back all changes made since the previous commit or
rollback and release any database locks held by the
session.

setStmtCacheSize() on page 13-172 Enables or disables statement caching.

setTAFNotify() on page 13-173 Registers failover callback function on the Connection
object.

terminateStatement() on
page 13-174

Closes a Statement object and free all resources
associated with it.

unregisterSubscription() on
page 13-175

Unregisters a Subscription, turns off its notifications.

writeVectorOfBlobs() on
page 13-176

Writes multiple Blobs in a single server round-trip.

writeVectorOfClobs() on
page 13-177

Writes multiple Clobs in a single server round-trip.

Table 13–12 (Cont.) Summary of Connection Methods

Method Summary

changePassword()

13-146 Oracle C++ Call Interface Programmer's Guide

changePassword()

Changes the password of the user currently connected to the database.

Syntax Description

void changePassword(
const string &user,
const string &oldPassword,
const string &newPassword)=0;

Changes the password of the user.

void changePassword(
const UString &user,
const UString &oldPassword,
const UString &newPassword)=0;

Changes the password of the user (Unicode support).
The client Environment should be initialized in
OCCIUTIF16 mode.

Parameter Description

user The user currently connected to the database.

oldPassword The current password of the user.

newPassword The new password of the user.

Connection Class

OCCI Application Programming Interface 13-147

commit()

Commits all changes made since the previous commit or rollback, and releases any
database locks currently held by the session.

Syntax
void commit()=0;

createStatement()

13-148 Oracle C++ Call Interface Programmer's Guide

createStatement()

Creates a Statement object with the SQL statement specified.

Note that for the caching-enabled version of this method, the cache is initially searched
for a statement with a matching tag, which is returned. If no match is found, the cache
is searched again for a statement that matches the sql parameter, which is returned. If
no match is found, a new statement with a NULL tag is created and returned. If the sql
parameter is empty and the tag search fails, this call generates an ERROR.

Also note that non-caching versions of this method always create and return a new
statement.

Syntax Description

Statement* createStatement(
const string &sql="")=0;

Searches the cache for a specified SQL
statement and returns it; if not found,
creates a new statement.

Statement* createStatement(
const string &sql,
const string &tag)=0;

Searches the cache for a statement with a
matching tag; if not found, creates a new
statement with the specified SQL content.

Statement* createStatement(
const UString &sql)=0;

Searches the cache for a specified SQL
statement and returns it; if not found,
creates a new statement. Globalization
enabled.

Statement* createStatement(
const Ustring &sql,
const Ustring &tag)=0;

Searches the cache for a matching tag and
returns it; if not found, creates a new
statement with the specified SQL content.
Globalization enabled.

Parameter Description

sql The SQL string to be associated with the statement object.

tag The tag whose associated statement must be retrieved from the
cache. Ignored if statement caching is disabled.

Connection Class

OCCI Application Programming Interface 13-149

flushCache()

Flushes the object cache associated with the connection.

Syntax
void flushCache()=0;

getClientCharSet()

13-150 Oracle C++ Call Interface Programmer's Guide

getClientCharSet()

Returns the session's character set.

Syntax
string getClientCharSet() const=0;

Connection Class

OCCI Application Programming Interface 13-151

getClientCharSetUString()

Returns the globalization enabled client character set in UString.

Syntax
UString getClientCharSetUString() const=0;

getClientNCHARCharSet()

13-152 Oracle C++ Call Interface Programmer's Guide

getClientNCHARCharSet()

Returns the session's NCHAR character set.

Syntax
string getClientNCHARCharSet() const=0;

Connection Class

OCCI Application Programming Interface 13-153

getClientNCHARCharSetUString()

Returns the globalization enabled client NCHAR character set in UString.

Syntax
UString getClientNCHARCharSetUString() const=0;

getClientVersion()

13-154 Oracle C++ Call Interface Programmer's Guide

getClientVersion()

Returns the version of the client library the application is using at run time.

This is used by applications to determine the version of the OCCI client at run time,
and if the application uses several separate code paths that use several different client
patchsets.

The values of parameters majorVersion and minorVersion use macros OCCI_MAJOR_
VERSION and OCCI_MINOR_VERSION, respectively. These macros define the major and
minor versions of the OCCI client library. Compares the versions returned.

Syntax
void getClientVersion(

int &majorVersion,
int &minorVersion,
int &updateNum,
int &patchNumber,
int &portUpdateNum)

Parameter Description

majorVersion The major version of the client library.

minorVersion The minor version of the client library.

updateNum The update number.

patchNumber The number of the patch applied to the library.

portUpdateNumber The number of the port-specific port update applied to the library.

Connection Class

OCCI Application Programming Interface 13-155

getLTXID()

Returns logical transaction id that may be used in various calls of package DBMS_APP_
CONT.

Syntax
Bytes getLTXID() const = 0

getMetaData()

13-156 Oracle C++ Call Interface Programmer's Guide

getMetaData()

Returns metadata for an object in the database.

Syntax Description

MetaData getMetaData(
const string &object,
MetaData::ParamType prmtyp=MetaData::PTYPE_UNK) const=0;

Returns metadata for
an object in the
database.

MetaData getMetaData(
const UString &object,
MetaData::ParamType prmtyp=MetaData::PTYPE_UNK) const=0;

Returns metadata for a
globalization enabled
object in the database.

MetaData getMetaData(
const RefAny &ref) const=0;

Returns metadata for
an object in the
database through a
reference.

Parameter Description

object The SQL string to be associated with the statement object.

prmtyp The type of the schema object being described, as defined by the
enumerated ParamType of the MetaData class, Table 13–27 on
page 13-379

ref A REF to the Type Descriptor Object (TDO) of the type to be
described.

Connection Class

OCCI Application Programming Interface 13-157

getOCIServer()

Returns the OCI server context associated with the connection.

Syntax
OCIServer* getOCIServer() const=0;

getOCIServiceContext()

13-158 Oracle C++ Call Interface Programmer's Guide

getOCIServiceContext()

Returns the OCI service context associated with the connection.

Syntax
OCISvcCtx* getOCIServiceContext() const=0;

Connection Class

OCCI Application Programming Interface 13-159

getOCISession()

Returns the OCI session context associated with the connection.

Syntax
OCISession* getOCISession() const=0;

getServerVersion()

13-160 Oracle C++ Call Interface Programmer's Guide

getServerVersion()

Returns the version of the database server, as a string, used by the current
Connection object. This can be used when an application uses several separate code
paths and connects to several different server versions.

Syntax
string getServerVersion() const;

Connection Class

OCCI Application Programming Interface 13-161

getServerVersionUString()

Returns the version of the database server, as a UString, used by the current
Connection object. This can be used when an application uses several separate code
paths and connects to several different server versions.

Syntax
UString getServerVersionUString() const;

getStmtCacheSize()

13-162 Oracle C++ Call Interface Programmer's Guide

getStmtCacheSize()

Retrieves the size of the statement cache.

Syntax
unsigned int getStmtCacheSize() const=0;

Connection Class

OCCI Application Programming Interface 13-163

getTag()

Returns the tag associated with the connection. Valid only for connections from a
stateless connection pool.

Syntax
string getTag() const=0;

isCached()

13-164 Oracle C++ Call Interface Programmer's Guide

isCached()

Determines if the specified statement is cached.

Syntax Description

bool isCached(
const string &sql,
const string &tag="")=0;

Searches the cache for a statement with a
matching tag. If the tag is not specified,
the cache is searched for a matching SQL
statement.

bool isCached(
const Ustring &sql,
const Ustring &tag)=0;

Searches the cache for a statement with a
matching tag. If the tag is not specified,
the cache is searched for a matching SQL
statement. Globalization enabled.

Parameter Description

sql The SQL string to be associated with the statement object.

tag The tag whose associated statement must be retrieved from the
cache. Ignored if statement caching is disabled.

Connection Class

OCCI Application Programming Interface 13-165

pinVectorOfRefs()

Pins an entire vector of Ref objects into object cache in a single round-trip. Pinned
objects are available through an OUT parameter vector.

Syntax Description

template <class T> void
pinVectorOfRefs(

const Connection *conn,
vector <Ref<T>> & vect,
vector <T*> &vectObj,
LockOptions lockOpt=OCCI_LOCK_NONE);

Returns the objects.

template <class T> void
pinVectorOfRefs(

const Connection *conn,
vector <Ref<T>> & vect,
LockOptions lockOpt=OCCI_LOCK_NONE);

Does not explicitly return the objects; an
application must dereference a particular Ref
object by a ptr() call, which returns a
previously pinned object.

Parameter Description

conn Connection

vect Vector of Ref objects that are pinned.

vectObj Vector that contains objects after the pinning operation is complete; an OUT
parameter.

lockOpt Lock option used during the pinning of the array, as defined by LockOptions in
Table 13–2 on page 13-7. The only supported value is OCCI_LOCK_NONE.

postToSubscriptions()

13-166 Oracle C++ Call Interface Programmer's Guide

postToSubscriptions()

Posts notifications to subscriptions.

The Subscription object must have a valid subscription name, and the namespace
should be set to NS_ANONYMOUS. The payload must be set before invoking this call;
otherwise, the payload is assumed to be NULL and is not delivered.

The caller has to preserve the payload until the posting call is complete. This call
provides a best-effort guarantee; a notification is sent to registered clients at most once.

This call is primarily used for light-weight notification and is useful for dealing with
several system events. If the application needs more rigid guarantees, it can use the
Oracle Streams Advanced Queuing functionality.

Syntax
void postToSubscriptions(

const vector<aq::Subscription>& sub)=0;

Parameter Description

sub The vector of subscriptions that receive postings.

Connection Class

OCCI Application Programming Interface 13-167

readVectorOfBfiles()

Reads multiple Bfiles in a single server round-trip. All Bfiles must be open for
reading.

Syntax
void readVectorOfBfiles(

const Connection *conn,
vector<Bfile> &vec,
oraub8 *byteAmts,
oraub8 *offsets,
unsigned char *buffers[],
oraub8 *bufferLengths);

Parameter Description

conn Connection.

vec Vector of Bfile objects; each Bfile must be open for reading.

byteAmts Array of amount of bytes to read from the individual Bfiles. The actual
number of bytes read from each Bfile is returned in this array.

offsets Array of offsets, starting position where reading from the Bfiles starts.

buffers Array of pointers to buffers into which the data is read.

bufferLengths Array of sizes of each buffer, in bytes.

readVectorOfBlobs()

13-168 Oracle C++ Call Interface Programmer's Guide

readVectorOfBlobs()

Reads multiple BLOBs in a single server round-trip.

Syntax
void readVectorOfBlobs(

const Connection *conn,
vector<Blob> &vec,
oraub8 *byteAmts,
oraub8 *offsets,
unsigned char *buffers[],
oraub8 *bufferLengths);

Parameter Description

conn Connection.

vec Vector of Blob objects.

byteAmts Array of amount of bytes to read from the individual Blobs. The actual
number of bytes read from each Blob is returned in this array.

offsets Array of offsets, starting position where reading from the Blobs starts.

buffers Array of pointers to buffers into which the data is read.

bufferLengths Array of sizes of each buffer, in bytes.

Connection Class

OCCI Application Programming Interface 13-169

readVectorOfClobs()

Reads multiple Clobs in a single server round-trip. All Clobs should be in the same
characterset form and belong to the same characterset ID.

Syntax Description

void readVectorOfClobs(
const Connection *conn,
vector<Clob> &vec,
oraub8 *byteAmts,
araub8 *charAmts,
oraub8 *offsets,
unsigned char *buffers[],
oraub8 *bufferLengths);

General form of the method.

void readVectorOfClobs(
const Connection *conn,
vector<Clob> &vec,
oraub8 *byteAmts,
araub8 *charAmts,
oraub8 *offsets,
utext *buffers[],
oraub8 *bufferLengths);

Form of the method used with utext
buffers, when data is in UTF16
characterset encoding.

Parameter Description

conn Connection.

vec Vector of Clob objects.

byteAmts Array of amount of bytes to read from the individual Clobs. Only used if
the charAmts is NULL, or 0 for any Clob index. Returns the number of bytes
read for each Clob.

charAmts Array of amount of characters to read from individual Clobs. Returns the
number of characters read for each Clob.

offsets Array of offsets, starting position where reading from the Clobs starts, in
characters.

buffers Array of pointers to buffers into which the data is read.

bufferLengths Array of sizes of each buffer, in bytes.

registerSubscriptions()

13-170 Oracle C++ Call Interface Programmer's Guide

registerSubscriptions()

Registers Subscriptions for notification.

New client processes and existing processes that restart after a shut down must
register for all subscriptions of interest. If the client stays up during a server shut
down and restart, this client continues to receive notifications for DISCONNECTED
registrations, but not for CONNECTED registrations because they are lost during the
server down time.

Syntax
void registerSubscriptions(

const vector<aq::Subscription>& sub)=0;

Parameter Description

sub Vector of subscriptions that are registered for notification.

Connection Class

OCCI Application Programming Interface 13-171

rollback()

Drops all changes made since the previous commit or rollback, and releases any
database locks currently held by the session.

Syntax
void rollback()=0;

setStmtCacheSize()

13-172 Oracle C++ Call Interface Programmer's Guide

setStmtCacheSize()

Enables or disables statement caching. A nonzero value enables statement caching,
with a cache of specified size. A zero value disables caching.

Syntax
void setStmtCacheSize(

unsigned int cacheSize)=0;

Parameter Description

cacheSize The maximum number of statements in the cache.

Connection Class

OCCI Application Programming Interface 13-173

setTAFNotify()

Registers the failover callback function on the Connection object for which failover is
configured and must be detected.

The failover callback should return OCCI_SUCCESS to indicate that OCCI can continue
with default processing. The failover event, foEvent, is defined in Table 13–11 on
page 13-144. When the foEvent is FO_ERROR, the callback function may return either
FO_RETRY to indicate that failover must be attempted again, or OCCI_SUCCESS to end
failover attempts.

Syntax
void setTAFNotify(

int (*notifyFn)(
Environment *env,
Connection *conn,
void *ctx,
FailOverType foType,
FailOverEventType foEvent),

void *ctxTAF)

Parameter Description

notifyFn The user defined callback function invoked during failover events.

env Environment object from which the failing Connection was created.

conn The failing Connection on which the callback function is registered.

ctx Context supplied by the user when registering the callback.

foType The configured FailOverType, values FO_SESSION or FO_SELECT, as defined in
Table 13–11 on page 13-144.

foEvent Failover event type that is triggering the callback; the FailOverEventType,
values FO_BEGIN, FO_END, FO_ABORT and FO_ERROR as defined in Table 13–11 on
page 13-144.

ctxTAF User context passed back to the callback function at invocation.

terminateStatement()

13-174 Oracle C++ Call Interface Programmer's Guide

terminateStatement()

Closes a Statement object.

Syntax Description

void terminateStatement(
Statement *stmt)=0;

Closes a Statement object and frees all
resources associated with it.

void terminateStatement(
Statement *stmt,
const string &tag)=0;

Releases statement back to the cache after
adding an optional tag, a string.

void terminateStatement(
Statement* stmt,
const UString &tag) = 0;

Releases statement back to the cache after
adding an optional tag, a UString.

Parameter Description

stmt The Statement to be closed.

tag The tag associated with the statement, either a string or a UString.

Connection Class

OCCI Application Programming Interface 13-175

unregisterSubscription()

Unregisters a Subscription, turning off its notifications.

Syntax
void unregisterSubscription(

const aq::Subscription& sub)=0;

Parameter Description

sub Subscription whose notifications is turned off.

writeVectorOfBlobs()

13-176 Oracle C++ Call Interface Programmer's Guide

writeVectorOfBlobs()

Writes multiple Blobs in a single server round-trip.

Syntax
void writeVectorOfBlobs(

const Connection *conn,
vector<Blob> &vec,
oraub8 *byteAmts,
oraub8 *offsets,
unsigned char *buffers[],
oraub8 *bufferLengths);

Parameter Description

conn Connection.

vec Vector of Blob objects.

byteAmts Array of amount of bytes to write to the individual Blobs.

offsets Array of offsets, starting position where writing to the Blobs starts.

buffers Array of pointers to buffers from which the data is written.

bufferLengths Array of sizes of each buffer, in bytes.

Connection Class

OCCI Application Programming Interface 13-177

writeVectorOfClobs()

Writes multiple Clobs in a single server round-trip. All Clobs should be in the same
characterset form and belong to the same characterset ID.

Syntax Description

void writeVectorOfClobs(
const Connection *conn,
vector<Clob> &vec,
oraub8 *byteAmts,
araub8 *charAmts,
oraub8 *offsets,
unsigned char *buffers[],
oraub8 *bufferLengths);

General form of the method.

void writeVectorOfClobs(
const Connection *conn,
vector<Clob> &vec,
oraub8 *byteAmts,
araub8 *charAmts,
oraub8 *offsets,
utext *buffers[],
oraub8 *bufferLengths);

Form of the method used with utext
buffers, when data is in UTF16
characterset encoding.

Parameter Description

conn Connection.

vec Vector of Clob objects.

byteAmts Array of amount of bytes to write to the individual Clobs. Only used if the
charAmts is NULL or 0 for any Clob index. Returns the number of bytes
written for each Clob.

charAmts Array of amount of characters to write to individual Clobs. Returns the
number of characters read for each Clob.

offsets Array of offsets, starting position where writing to the Clobs starts, in
characters.

buffers Array of pointers to buffers from which the data is written.

bufferLengths Array of sizes of each buffer, in bytes.

ConnectionPool Class

13-178 Oracle C++ Call Interface Programmer's Guide

ConnectionPool Class

The ConnectionPool class represents a pool of connections for a specific database.

Table 13–13 Summary of ConnectionPool Methods

Method Summary

createConnection() on page 13-179 Creates a pooled connection.

createProxyConnection() on
page 13-180

Creates a proxy connection.

getBusyConnections() on
page 13-181

Returns the number of busy connections in the connection
pool.

getIncrConnections() on
page 13-182

Returns the number of incremental connections in the
connection pool.

getMaxConnections() on
page 13-183

Returns the maximum number of connections in the
connection pool.

getMinConnections() on
page 13-184

Returns the minimum number of connections in the
connection pool.

getOpenConnections() on
page 13-185

Returns the number of open connections in the connection
pool.

getPoolName() on page 13-186 Returns the name of the connection pool.

getStmtCacheSize() on
page 13-187

Retrieves the size of the statement cache.

getTimeOut() on page 13-188 Returns the time out period for a connection in the
connection pool.

setErrorOnBusy() on page 13-189 Specifies that a SQLException should be generated when
all connections in the connection pool are busy and no
further connections can be opened.

setPoolSize() on page 13-190 Sets the minimum, maximum, and incremental number of
pooled connections for the connection pool.

setStmtCacheSize() on page 13-191 Enables or disables statement caching.

setTimeOut() on page 13-189 Sets the time out period, in seconds, for a connection in the
connection pool.

terminateConnection() on
page 13-193

Destroys the connection.

ConnectionPool Class

OCCI Application Programming Interface 13-179

createConnection()

Creates a pooled connection.

Syntax Description

Connection* createConnection(
const string &userName,
const string &password)=0;

Creates a pooled connection. If the userName and
password are both NULL, the connection is externally
authenticated.

Connection* createConnection(
const UString &username,
const UString &password)=0;

Creates a globalization enabled pooled connection.

Parameter Description

userName The name of the user with which to connect.

password The password of the user.

createProxyConnection()

13-180 Oracle C++ Call Interface Programmer's Guide

createProxyConnection()

Creates a proxy connection from the connection pool.

Syntax Description

Connection* createProxyConnection(
const string &name,
Connection::ProxyType

proxyType=Connection::PROXY_DEFAULT)=0;

Creates a proxy connection.

Connection* createProxyConnection(
const UString &name,
Connection::ProxyType

proxyType=Connection::PROXY_DEFAULT)=0;

Creates a globalization enabled proxy
connection.

Connection* createProxyConnection(
const string &name,
string roles[],
int numRoles,
Connection::ProxyType

proxyType=Connection::PROXY_DEFAULT)=0;

Creates a proxy connection for several
roles.

Connection* createProxyConnection(
const UString &name,
string roles[],
unsigned int numRoles,
Connection::ProxyType

proxyType=Connection::PROXY_DEFAULT)=0;

Creates a globalization enabled proxy
connection for several roles.

Parameter Description

name The user name to connect with.

roles The roles to activate on the database server.

numRoles The number of roles to activate on the database server.

proxyType The type of proxy authentication to perform, ProxyType, defined in Table 13–11
on page 13-144. Valid values are:

■ PROXY_DEFAULT representing a database user name.

ConnectionPool Class

OCCI Application Programming Interface 13-181

getBusyConnections()

Returns the number of busy connections in the connection pool. When using database
resident connection pooling, this is the number of persistent connections to the
Connection Broker.

Syntax
unsigned int getBusyConnections() const=0;

getIncrConnections()

13-182 Oracle C++ Call Interface Programmer's Guide

getIncrConnections()

Returns the number of incremental connections in the connection pool. When using
database resident connection pooling, this is the number of persistent connections to
the Connection Broker.

Syntax
unsigned int getIncrConnections() const=0;

ConnectionPool Class

OCCI Application Programming Interface 13-183

getMaxConnections()

Returns the maximum number of connections in the connection pool. When using
database resident connection pooling, this is the number of persistent connections to
the Connection Broker.

Syntax
unsigned int getMaxConnections() const=0;

getMinConnections()

13-184 Oracle C++ Call Interface Programmer's Guide

getMinConnections()

Returns the minimum number of connections in the connection pool. When using
database resident connection pooling, this is the number of persistent connections to
the Connection Broker.

Syntax
unsigned int getMinConnections() const=0;

ConnectionPool Class

OCCI Application Programming Interface 13-185

getOpenConnections()

Returns the number of open connections in the connection pool. When using database
resident connection pooling, this is the number of persistent connections to the
Connection Broker.

Syntax
unsigned int getOpenConnections() const=0;

getPoolName()

13-186 Oracle C++ Call Interface Programmer's Guide

getPoolName()

Returns the name of the connection pool.

Syntax
string getPoolName() const=0;

ConnectionPool Class

OCCI Application Programming Interface 13-187

getStmtCacheSize()

Retrieves the size of the statement cache.

Syntax
unsigned int getStmtCacheSize() const=0;

getTimeOut()

13-188 Oracle C++ Call Interface Programmer's Guide

getTimeOut()

Returns the time out period of a connection in the connection pool.

Syntax
unsigned int getTimeOut() const=0;

ConnectionPool Class

OCCI Application Programming Interface 13-189

setErrorOnBusy()

Specifies that a SQLException is to be generated when all connections in the
connection pool are busy and no further connections can be opened.

Syntax
void setErrorOnBusy()=0;

setPoolSize()

13-190 Oracle C++ Call Interface Programmer's Guide

setPoolSize()

Sets the minimum, maximum, and incremental number of pooled connections for the
connection pool.

Syntax
void setPoolSize(

unsigned int minConn = 0,
unsigned int maxConn = 1,
unsigned int incrConn = 1)=0;

Parameter Description

minConn The minimum number of connections for the connection pool.

maxConn The maximum number of connections for the connection pool.

incrConn The incremental number of connections for the connection pool.

ConnectionPool Class

OCCI Application Programming Interface 13-191

setStmtCacheSize()

Enables or disables statement caching. A nonzero value enables statement caching,
with a cache of specified size. A zero value disables caching.

Syntax
void setStmtCacheSize(

unsigned int cacheSize)=0;

Parameter Description

cacheSize The size of the statement cache.

setTimeOut()

13-192 Oracle C++ Call Interface Programmer's Guide

setTimeOut()

Sets the time out period for a connection in the connection pool. OCCI terminates any
connections related to this connection pool that have been idle for longer than the time
out period specified.

If this attribute is not set, the least recently used sessions are timed out when pool
space is required. Oracle only checks for timed out sessions when it releases a session
back to the pool.

Syntax
void setTimeOut(

unsigned int connTimeOut = 0)=0;

Parameter Description

connTimeOut The timeout period in number of seconds.

ConnectionPool Class

OCCI Application Programming Interface 13-193

terminateConnection()

Terminates the pooled connection or proxy connection.

Syntax
void terminateConnection(

Connection *connection)=0;

Parameter Description

connection The pooled connection or proxy connection to terminate.

Consumer Class

13-194 Oracle C++ Call Interface Programmer's Guide

Consumer Class

The Consumer class supports dequeuing of Messages and controls the dequeuing
options.

Table 13–14 Enumerated Values Used by Consumer Class

Attribute Options

DequeMode ■ DEQ_BROWSE indicates that the message should be read without
acquiring a lock; equivalent to a SELECT.

■ DEQ_LOCKED indicates that the message should be read. Get its write
lock, which lasts s for the duration of the transaction; equivalent to a
SELECT FOR UPDATE.

■ DEQ_REMOVE indicates that the message should be read. Update or
delete it; the message can be retained in the queue table based on
the retention properties. This is the default setting.

■ DEQ_REMOVE_NODATA indicates that the receipt of the message should
be confirmed, but its actual content should not be delivered.

Navigation ■ DEQ_FIRST_MSG indicates that the first available message on the
queue that matches the search criteria must be retrieved. Resets the
position to the beginning of the queue.

■ DEQ_NEXT_TRANSACTION indicates that the next available message on
the queue that matches the search criteria must be retrieved. If the
previous message belongs to a message group, AQ retrieves the
next available message that matches the search criteria and belongs
to the message group. This is the default setting.

■ DEQ_NEXT_MSG indicates that the remainder of the current transaction
group, if any, should be skipped. The first message of the next
transaction group may then be retrieved. This option can only be
used if message grouping is enabled for the current queue.

Visibility ■ DEQ_IMMEDIATE indicates that the dequeued message is not part of
the current transaction. It constitutes a transaction on its own.

■ DEQ_ON_COMMIT indicates that the dequeue is part of the current
transaction. This is the default setting.

DequeWaitOption ■ DEQ_WAIT_FOREVER indicates that the consumer waits for the
Message indefinitely.

■ DEQ_NO_WAIT indicates that there should be not wait if there are no
messages on the queue.

Table 13–15 Summary of Consumer Methods

Method Description

Consumer() on page 13-196 Consumer class constructor.

getConsumerName() on
page 13-197

Retrieves the name of the Consumer.

getCorrelationId() on page 13-198 Retrieves she correlation id of the message that is to be
dequeued.

getDequeueMode() on page 13-199 Retrieves the dequeue mode of the Consumer.

getMessageIdToDequeue() on
page 13-200

Retrieves the id of the message that is dequeued.

getQueueName() on page 13-202 Gets the name of the queue used by the consumer.

Consumer Class

OCCI Application Programming Interface 13-195

getPositionOfMessage() on
page 13-201

Retrieves the position of the Message that is dequeued.

getTransformation() on page 13-203 Retrieves the transformation applied before a Message is
dequeued.

getVisibility() on page 13-204 Retrieves the transactional behavior of the dequeue
operation.

getWaitTime() on page 13-205 Retrieves the specified behavior of the Consumer when
waiting for a Message with matching search criteria.

isNull() on page 13-206 Tests whether the Consumer object is NULL.

operator=() on page 13-207 Assignment operator for the Consumer class.

receive() on page 13-208 Receives and dequeues a Message

setAgent() on page 13-209 Sets the Agent's name and address (queue name) on the
consumer.

setConsumerName() on
page 13-210

Sets the Consumer name.

setCorrelationId() on page 13-211 Specifies the correlation identifier of the message to be
dequeued.

setDequeueMode() on page 13-212 Specifies the locking behavior associated with dequeuing.

setMessageIdToDequeue() on
page 13-213

Specifies the identifier of the Message to be dequeued.

setNull() on page 13-214 Nullifies the Consumer; frees the memory associated with
this object.

setPositionOfMessage() on
page 13-215

Specifies position of the Message to be retrieved.

setQueueName() on page 13-216 Specifies the name of a queue before dequeuing Messages.

setTransformation() on page 13-217 Specifies transformation applied before dequeuing a
Message.

setVisibility() on page 13-218 Specifies if Message should be dequeued as part of the
current transaction.

setWaitTime() on page 13-219 Specifies wait conditions if there are no Messages with
matching criteria.

Table 13–15 (Cont.) Summary of Consumer Methods

Method Description

Consumer()

13-196 Oracle C++ Call Interface Programmer's Guide

Consumer()

Consumer class constructor.

Syntax Description

Consumer(
const Connection *conn);

Creates a new Consumer object with the
specified Connection handle.

Consumer(
const Connection *conn
const Agent& agent);

Creates a new Consumer object with
specified Connection and properties of
the specified Agent.

Consumer(
const Connection *conn,
const string& queue);

Creates a new Consumer object with
specified Connection and queue.

Consumer(
const Consumer& consumer);

Copy constructor.

Parameter Description

conn The connection in which the Consumer is created.

agent Agent assigned to the Consumer.

queue Queue at which the Consumer retrieves messages.

consumer Original Consumer object.

Consumer Class

OCCI Application Programming Interface 13-197

getConsumerName()

Retrieves the name of the Consumer.

Syntax
string getConsumerName() const;

getCorrelationId()

13-198 Oracle C++ Call Interface Programmer's Guide

getCorrelationId()

Retrieves she correlation id of the message that is to be dequeued

Syntax
string geCorrelationId() const;

Consumer Class

OCCI Application Programming Interface 13-199

getDequeueMode()

Retrieves the dequeue mode of the Consumer. DequeueMode is defined in Table 13–14 on
page 13-194.

Syntax
DequeueMode getDequeueMode() const;

getMessageIdToDequeue()

13-200 Oracle C++ Call Interface Programmer's Guide

getMessageIdToDequeue()

Retrieves the id of the message that is dequeued.

Syntax
Bytes getMessageToDequeue() const;

Consumer Class

OCCI Application Programming Interface 13-201

getPositionOfMessage()

Retrieves the position, or navigation, of the message that is dequeued. Navigation is
defined in Table 13–14 on page 13-194.

Syntax
Navigation getPositionOfMessage() const;

getQueueName()

13-202 Oracle C++ Call Interface Programmer's Guide

getQueueName()

Gets the name of the queue used by the consumer.

Syntax
string getQueueName() const;

Consumer Class

OCCI Application Programming Interface 13-203

getTransformation()

Retrieves the transformation applied before a Message is dequeued.

Syntax
string getTransformation() const;

getVisibility()

13-204 Oracle C++ Call Interface Programmer's Guide

getVisibility()

Retrieves the transactional behavior of the dequeue operation, or visibility. Visibility
is defined in Table 13–14 on page 13-194.

Syntax
Visibility getVisibility() const;

Consumer Class

OCCI Application Programming Interface 13-205

getWaitTime()

Retrieves the specified behavior of the Consumer when waiting for a Message with
matching search criteria. DequeWaitOption is defined in Table 13–14 on page 13-194.

Syntax
DequeWaitOption getWaitTime() const;

isNull()

13-206 Oracle C++ Call Interface Programmer's Guide

isNull()

Tests whether the Consumer object is NULL. If the Consumer object is NULL, TRUE is
returned; otherwise, FALSE is returned.

Syntax
bool isNull() const;

Consumer Class

OCCI Application Programming Interface 13-207

operator=()

Assignment operator for Consumer class.

Syntax
void operator=(

const Consumer& consumer);

Parameter Description

consumer The original Consumer.

receive()

13-208 Oracle C++ Call Interface Programmer's Guide

receive()

Receives and dequeues a Message.

Syntax
Message receive(

Message::PayloadType pType,
const string& type="",
const string& schema="");

Parameter Description

pType The type of payload expected. Payload Type is defined in
Table 13–14 on page 13-194.

type The type of the payload when type is OBJECT.

schema The schema in which the type is defined when pType is OBJECT.

Consumer Class

OCCI Application Programming Interface 13-209

setAgent()

Sets the Agent's name and address (queue name) on the consumer.

Syntax
void setAgent(

const Agent& agent);

Parameter Description

agent Name of the Agent.

setConsumerName()

13-210 Oracle C++ Call Interface Programmer's Guide

setConsumerName()

Sets the Consumer name. Only messages with matching consumer name can be
accessed. If a queue is not set up for multiple consumer, this option should be set to
NULL.

Syntax
void setConsumerName(

const string& name);

Parameter Description

name Name of the Consumer.

Consumer Class

OCCI Application Programming Interface 13-211

setCorrelationId()

Specifies the correlation identifier of the message to be dequeued. Special pattern
matching characters, such as the percent sign (%) and the underscore(_) can be used. If
several messages satisfy the pattern, the order of dequeuing is undetermined.

Syntax
void setCorrelationId

const string& id);

Parameter Description

id The identifier of the Message.

setDequeueMode()

13-212 Oracle C++ Call Interface Programmer's Guide

setDequeueMode()

Specifies the locking behavior associated with dequeuing.

Syntax
void setDequeueMode(

DequeueMode mode);

Parameter Description

mode Behavior of enqueuing. DequeMode is defined in Table 13–14 on page 13-194.

Consumer Class

OCCI Application Programming Interface 13-213

setMessageIdToDequeue()

Specifies the identifier of the Message to be dequeued.

Syntax
void setMessageIdToDequeue(

const Bytes& msgid);

Parameter Description

msgid Identifier of the Message to be dequeued.

setNull()

13-214 Oracle C++ Call Interface Programmer's Guide

setNull()

Nullifies the Consumer; frees the memory associated with this object.

Syntax
void setNull();

Consumer Class

OCCI Application Programming Interface 13-215

setPositionOfMessage()

Specifies position of the Message to be retrieved.

Syntax
void setPositionOfMessage(

Navigation pos);

Parameter Description

pos Position of the message, Navigation, is defined in Table 13–14 on page 13-194.

setQueueName()

13-216 Oracle C++ Call Interface Programmer's Guide

setQueueName()

Specifies the name of a queue before dequeuing Messages. Typically used when
dequeuing multiple messages from the same queue.

Syntax
void setQueueName(

const string& queue);

Parameter Description

queue The name of a valid queue in the database.

Consumer Class

OCCI Application Programming Interface 13-217

setTransformation()

Specifies transformation applied before dequeuing the Message.

Syntax
void setTransformation(

string &fName);

Parameter Description

fName SQL transformation function.

setVisibility()

13-218 Oracle C++ Call Interface Programmer's Guide

setVisibility()

Specifies if Message should be dequeued as part of the current transaction. Visibility
parameter is ignored when in DEQ_BROWSE mode.

Syntax
void setVisibility(

Visibility option);

Parameter Description

option Visibility option being set, defined in Table 13–14 on page 13-194.

Consumer Class

OCCI Application Programming Interface 13-219

setWaitTime()

Specifies wait conditions if there are no Messages with matching criteria. The wait
parameter is ignored if messages in the same group are being dequeued.

Syntax
void setWaitTime(

DequeWaitOption wait);

Parameter Description

wait Waiting conditions. DequeWaitOption is defined in Table 13–14 on page 13-194.

Date Class

13-220 Oracle C++ Call Interface Programmer's Guide

Date Class

The Date class specifies the abstraction for a SQL DATE data item. The Date class also
adds formatting and parsing operations to support the OCCI escape syntax for date
values.

Since the SQL standard DATE is a subset of Oracle Date, this class can be used to
support both.

Objects from the Date class can be used as standalone class objects in client side
numeric computations and also used to fetch from, and set to, the database.

Example 13–5 How to Get a Date from Database and Use it in Standalone Calculations

This example demonstrates a Date column value being retrieved from the database, a
bind using a Date object, and a computation using a standalone Date object.

/* Create a connection */
Environment *env = Environment::createEnvironment(Environment::DEFAULT);
Connection *conn = Connection(user, passwd, db);

/* Create a statement and associate a DML statement to it */
string sqlStmt = "SELECT job-id, start_date from JOB_HISTORY
 where end_date = :x";
Statement *stmt = conn->createStatement(sqlStmt);

/* Create a Date object and bind it to the statement */
Date edate(env, 2000, 9, 3, 23, 30, 30);
stmt->setDate(1, edate);
ResultSet *rset = stmt->executeQuery();

/* Fetch a date from the database */
while(rset->next())
{
 Date sd = rset->getDate(2);
 Date temp = sd; /*assignment operator */
 /* Methods on Date */
 temp.getDate(year, month, day, hour, minute, second);
 temp.setMonths(2);
 IntervalDS inter = temp.daysBetween(sd);
 .
 .
}

Table 13–16 Summary of Date Methods

Method Summary

Date() on page 13-222 Date class constructor.

addDays() on page 13-223 Returns a Date object with n days added.

addMonths() on page 13-224 Returns a Date object with n months added.

daysBetween() on page 13-225 Returns the number of days between the current Date
object and the date specified.

fromBytes() on page 13-226 Convert an external Bytes representation of a Date object
to a Date object.

Date Class

OCCI Application Programming Interface 13-221

fromText() on page 13-227 Convert the date from a given input string with format
and NLS parameters specified.

getDate() on page 13-228() Returns the date and time components of the Date object.

getSystemDate() on page 13-229 Returns a Date object containing the system date.

isNull() on page 13-230 Returns TRUE if Date is NULL; otherwise returns false.

lastDay() on page 13-231 Returns a Date that is the last day of the month.

nextDay() on page 13-232 Returns a Date that is the date of the next day of the week.

operator=() on page 13-233 Assigns the values of a date to another.

operator==() on page 13-234 Returns TRUE if a and b are the same, false otherwise.

operator!=() on page 13-235 Returns TRUE if a and b are unequal, false otherwise.

operator>() on page 13-236 Returns TRUE if a is past b, false otherwise.

operator>=() on page 13-237 Returns TRUE if a is past b or equal to b, false
otherwise.

operator=() on page 13-233 Returns TRUE if a is before b, false otherwise.

operator>() on page 13-236 Returns TRUE if a is before b, or equal to b, false otherwise.

setDate() on page 13-240 Sets the date from the date components input.

setNull() on page 13-241 Sets the object state to NULL.

toBytes() on page 13-242 Converts the Date object into an external Bytes
representation.

toText() on page 13-243 Returns the Date object as a string.

toZone() on page 13-244 Returns a Date object converted from one time zone to
another.

Table 13–16 (Cont.) Summary of Date Methods

Method Summary

Date()

13-222 Oracle C++ Call Interface Programmer's Guide

Date()

Date class constructor.

Syntax Description

Date(); Creates a NULL Date object.

Date(
const Date &srcDate);

Creates a copy of a Date object.

Date(
const Environment *envp,
int year = 1,
unsigned int month = 1,
unsigned int day = 1,
unsigned int hour = 0,
unsigned int minute = 0,
unsigned int seconds = 0);

Creates a Date object using integer parameters.

Parameter Description

year -4712 to 9999, except 0

month 1 to 12

day 1 to 31

minutes 0 to 59

seconds 0 to 59

Date Class

OCCI Application Programming Interface 13-223

addDays()

Adds a specified number of days to the Date object and returns the new date.

Syntax
Date addDays(

int val) const;

Parameter Description

val The number of days to be added to the current Date object.

addMonths()

13-224 Oracle C++ Call Interface Programmer's Guide

addMonths()

Adds a specified number of months to the Date object and returns the new date.

Syntax
Date addMonths(

int val) const;

Parameter Description

val The number of months to be added to the current Date object.

Date Class

OCCI Application Programming Interface 13-225

daysBetween()

Returns the number of days between the current Date object and the date specified.

Syntax
IntervalDS daysBetween(

const Date &date) const;

Parameter Description

date The date to be used to compute the days between.

fromBytes()

13-226 Oracle C++ Call Interface Programmer's Guide

fromBytes()

Converts a Bytes object to a Date object.

Syntax
void fromBytes(

const Bytes &byteStream,
const Environment *envp = NULL);

Parameter Description

byteStream Date in external format in the form of Bytes.

envp The OCCI environment.

Date Class

OCCI Application Programming Interface 13-227

fromText()

Sets Date object to value represented by a string or UString.

The value is interpreted based on the fmt and nlsParam parameters. In cases where
nlsParam is not passed, the Globalization Support settings of the envp parameter are
used.

See Also: Oracle Database SQL Language Reference for information on
TO_DATE

Syntax Description

void fromText(
const string &datestr,
const string &fmt = "",
const string &nlsParam = "",
const Environment *envp = NULL);

Sets Date object to value represented by a string.

void fromText(
const UString &datestr,
const UString &fmt,
const UString &nlsParam,
const Environment *envp = NULL);

Sets Date object to value represented by a UString;
globalization enabled.

Parameter Description

envp The OCCI environment.

datestr The date string to be converted to a Date object.

fmt The format string; default is DD-MON-YY.

nlsParam The NLS parameters string. If nlsParam is specified, this determines
the NLS parameters to be used for the conversion. If nlsParam is not
specified, the NLS parameters are picked up from envp.

getDate()

13-228 Oracle C++ Call Interface Programmer's Guide

getDate()

Returns the date in the form of the date components year, month, day, hour, minute,
seconds.

Syntax
void getDate(

int &year,
unsigned int &month,
unsigned int &day,
unsigned int &hour,
unsigned int &min,
unsigned int &seconds) const;

Parameter Description

year The year component of the date.

month The month component of the date.

day The day component of the date.

hour The hour component of the date.

min The minutes component of the date.

seconds The seconds component of the date.

Date Class

OCCI Application Programming Interface 13-229

getSystemDate()

Returns the system date.

Syntax
static Date getSystemDate(

const Environment *envp);

Parameter Description

envp The environment in which the system date is returned.

isNull()

13-230 Oracle C++ Call Interface Programmer's Guide

isNull()

Tests whether the Date is NULL. If the Date is NULL, TRUE is returned; otherwise, FALSE is
returned.

Syntax
bool isNull() const;

Date Class

OCCI Application Programming Interface 13-231

lastDay()

Returns a date representing the last day of the current month.

Syntax
Date lastDay() const;

nextDay()

13-232 Oracle C++ Call Interface Programmer's Guide

nextDay()

Returns a date representing the day after the day of the week specified.

See Also: Oracle Database SQL Language Reference for information on
TO_DATE

Syntax Description

Date nextDay(
const string &dow) const;

Returns a date representing the day after the day of the
week specified.

Date nextDay(
const UString &dow) const;

Returns a date representing the day after the day of the
week specified.; globalization enabled. The parameter
should be in the character set associated with the
environment from which the date was created.

Parameter Description

dow A string representing the day of the week.

Date Class

OCCI Application Programming Interface 13-233

operator=()

Assigns the date object on the right side of the equal (=) sign to the date object on the
left side of the equal (=) sign.

Syntax
Date& operator=(

const Date &d);

Parameter Description

date The date object that is assigned.

operator==()

13-234 Oracle C++ Call Interface Programmer's Guide

operator==()

Compares the dates specified. If the dates are equal, TRUE is returned; otherwise, FALSE
is returned.

Syntax
bool operator==(

const Date &first,
const Date &second);

Parameter Description

first The first date to be compared.

second The second date to be compared.

Date Class

OCCI Application Programming Interface 13-235

operator!=()

Compares the dates specified. If the dates are not equal then TRUE is returned;
otherwise, FALSE is returned.

Syntax
bool operator!=(

const Date &first,
const Date &second);

Parameter Description

first The first date to be compared.

second The second date to be compared.

operator>()

13-236 Oracle C++ Call Interface Programmer's Guide

operator>()

Compares the dates specified. If the first date is in the future relative to the second
date then TRUE is returned; otherwise, FALSE is returned. If either date is NULL then
FALSE is returned. If the dates are of different type, then FALSE is returned.

Syntax
bool operator>(

const Date &first,
const Date &second);

Parameter Description

first The first date to be compared.

second The second date to be compared.

Date Class

OCCI Application Programming Interface 13-237

operator>=()

Compares the dates specified. If the first date is in the future relative to the second
date or the dates are equal then TRUE is returned; otherwise, FALSE is returned. If either
date is NULL then FALSE is returned. If the dates are of a different type, then FALSE is
returned.

Syntax
bool operator>=(

const Date &first,
const Date &second);

Parameter Description

first The first date to be compared.

second The second date to be compared.

operator<()

13-238 Oracle C++ Call Interface Programmer's Guide

operator<()

Compares the dates specified. If the first date precedes the second date, then TRUE is
returned; otherwise, FALSE is returned. If either date is NULL then FALSE is returned. If
the dates are of a different type, then FALSE is returned.

Syntax
bool operator<(

const Date &first,
const Date &second);

Parameter Description

first The first date to be compared.

second The second date to be compared.

Date Class

OCCI Application Programming Interface 13-239

operator<=()

Compares the dates specified. If the first date precedes the second date or the dates are
equal then TRUE is returned; otherwise, FALSE is returned. If either date is NULL then
FALSE is returned. If the dates are of a different type, then FALSE is returned.

Syntax
bool operator<=(

const Date &first,
const Date &second);

Parameter Description

first The first date to be compared.

second The second date to be compared.

setDate()

13-240 Oracle C++ Call Interface Programmer's Guide

setDate()

Sets the date to the values specified.

Syntax
void setDate(

int year = 1,
unsigned int month = 1,
unsigned int day = 1,
unsigned int hour = 0,
unsigned int minute = 0,
unsigned int seconds = 0);

Parameter Description

year The argument specifying the year value. Valid values are -4713 through 9999.

month The argument specifying the month value. Valid values are 1 through 12.

day The argument specifying the day value. Valid values are 1 through 31.

hour The argument specifying the hour value. Valid values are 0 through 23.

min The argument specifying the minutes value. Valid values are 0 through 59.

seconds The argument specifying the seconds value. Valid values are 0 through 59.

Date Class

OCCI Application Programming Interface 13-241

setNull()

Sets the Date to atomically NULL.

Syntax
void setNull();

toBytes()

13-242 Oracle C++ Call Interface Programmer's Guide

toBytes()

Returns the date in Bytes representation.

Syntax
Bytes toBytes() const;

Date Class

OCCI Application Programming Interface 13-243

toText()

Returns a string or UString with the value of this date formatted using fmt and
nlsParam.

The value is interpreted based on the fmt and nlsParam parameters. In cases where
nlsParam is not passed, the Globalization Support settings of the envp parameter are
used.

See Also: Oracle Database SQL Language Reference for information on
TO_DATE

Syntax Description

string toText(
const string &fmt = "",
const string &nlsParam = "") const;

Returns a string with the value of this date
formatted using fmt and nlsParam.

UString toText(
const UString &fmt,
const UString &nlsParam) const;

Returns a UString with the value of this date
formatted using fmt and nlsParam.

Parameter Description

fmt The format string; default is DD-MON-YY.

nlsParam The NLS parameters string. If nlsParam is specified, this determines the NLS
parameters to be used for the conversion. If nlsParam is not specified, the NLS
parameters are picked up from envp.

toZone()

13-244 Oracle C++ Call Interface Programmer's Guide

toZone()

Returns Date value converted from one time zone to another.

Syntax
Date toZone(

const string &zone1,
const string &zone2) const;

Valid time zone codes are:

Parameter Description

zone1 A string representing the time zone to be converted from.

zone2 A string representing the time zone to be converted to.

Zone code Value

AST, ADT Atlantic Standard or Daylight Time

BST, BDT Bering Standard or Daylight Time

CST, CDT Central Standard or Daylight Time

EST, EDT Eastern Standard or Daylight Time

GMT Greenwich Mean Time

HST, HDT Alaska-Hawaii Standard Time or Daylight Time

MST, MDT Mountain Standard or Daylight Time

NST Newfoundland Standard Time

PST, PDT Pacific Standard or Daylight Time

YST, YDT Yukon Standard or Daylight Time

Environment Class

OCCI Application Programming Interface 13-245

Environment Class

The Environment class provides an OCCI environment to manage memory and other
resources for OCCI objects.

The application can have multiple OCCI environments. Each environment would have
its own heap and thread-safety mutexes.

Table 13–17 Enumerated Values Used by Environment Class

Attribute Options

Mode ■ DEFAULT is used for creating an Environment object; it has no thread safety or
object support.

■ OBJECT is for creating an Environment object; it uses object features.

■ NO_USERCALLBACKS is for creating an Environment object; it does not support
user callbacks.

■ THREADED_MUTEXED is a thread safe mode for creating an Environment object,
mutexed internally by OCCI.

■ THREADED_UNMUTEXED is a thread safe mode for creating an Environment
object; the client is responsible for mutexing.

■ EVENTS supports registration for event notification used in Oracle Streams
Advanced Queuing.

■ USE_LDAP supports registration with LDAP.

Table 13–18 Summary of Environment Methods

Method Summary

createConnection() on page 13-247 Establishes a connection to the specified database.

createConnectionPool() on
page 13-248

Creates a connection pool.

createEnvironment() on page 13-249 Creates an Environment object.

createStatelessConnectionPool() on
page 13-250

Creates a stateless connection pool.

enableSubscription() on page 13-251 Enables subscription notification

disableSubscription() on page 13-252 Disables subscription notification

getCacheMaxSize() on page 13-253 Retrieves the Cache Max heap size.

getCacheOptSize() on page 13-254 Retrieves the cache optimal heap size.

getCacheSortedFlush() on
page 13-255

Retrieves the setting of the cache sorting flag.

getClientVersion() on page 13-154 Returns the version of the client library.

getCurrentHeapSize() on
page 13-256

Returns the current amount of memory allocated to all
objects in the current environment.

getLDAPAdminContext() on
page 13-257

Returns the administrative context when using LDAP
open notification registration.

getLDAPAuthentication() on
page 13-258

Returns the authentication mode when using LDAP
open notification registration.

getLDAPHost() on page 13-258 Returns the host on which the LDAP server runs.

getLDAPPort() on page 13-258 Returns the port on which the LDAP server is listening.

Environment Class

13-246 Oracle C++ Call Interface Programmer's Guide

getMap() on page 13-261() Returns the Map for the current environment.

getNLSLanguage() on page 13-262 Returns the NLS Language for the current environment.

getNLSTerritory() on page 13-263 Returns the NLS Territory for the current environment.

getOCIEnvironment() on
page 13-264

Returns the OCI environment associated with the
current environment.

getXAConnection() on page 13-265 Creates an XA connection to a database.

getXAEnvironment() on page 13-266 Creates an XA Environment object.

releaseXAConnection() on
page 13-267

Releases all resources allocated by a getXAConnection()
call.

releaseXAEnvironment() on
page 13-268

Releases all resources allocated by a
getXAEnvironment() call.

setCacheMaxSize() on page 13-269 Specifies the maximum size for the client-side object
cache as a percentage of the optimal size.

setCacheOptSize() on page 13-270 Specifies the optimal size for the client-side object cache
in bytes.

setCacheSortedFlush() on
page 13-271

Specifies whether to sort cache in table order before
flushing.

setLDAPAdminContext() on
page 13-272

Specifies the administrative context for the LDAP client.

setLDAPAuthentication() on
page 13-273

Specifies the LDAP authentication mode.

setLDAPHostAndPort() on
page 13-274

Specifies the LDAP server host and port.

setLDAPLoginNameAndPassword()
on page 13-275

Specifies the login name and password when connecting
to an LDAP server.

setNLSLanguage() on page 13-276 Specifies the NLS Language for the current environment.

setNLSTerritory() on page 13-277 Specifies the NLS Territory for the current environment.

terminateConnection() on
page 13-278

Closes the connection pool and free all related resources.

terminateConnectionPool() on
page 13-279

Closes the connection pool and free all related resources.

terminateEnvironment() on
page 13-280

Destroys the environment.

terminateStatelessConnectionPool()
on page 13-281

Closes the stateless connection pool and free all related
resources.

Table 13–18 (Cont.) Summary of Environment Methods

Method Summary

Environment Class

OCCI Application Programming Interface 13-247

createConnection()

This method establishes a connection to the database specified.

Syntax Description

Connection * createConnection(
const string &userName,
const string &password,
const string &connectString="")=0;

Creates a default connection; if the
userName and password are NULL, the
connection may be authenticated
externally.

Connection * createConnection(
const UString &userName,
const UString &password,
const UString &connectString)=0;

Creates a connection (Unicode support).
The client Environment should be
initialized in OCCIUTIF16 mode.

Connection * createConnection(
const string &userName,
const string &password,
const string &connectString,
const string &connectionClass,

 const Connection::Purity &purity)=0;

Creates a connection for database resident
connection pooling.

Connection * createConnection(
const UString &userName,
const UString &password,
const UString &connectString,
const UString &connectionClass

 const Connection::Purity &purity)=0;

Creates a connection for database resident
connection pooling (Unicode support). The
client Environment should be initialized in
OCCIUTIF16 mode.

Parameter Description

userName The name of the user with which to connect.

password The password of the user.

connectString The database to which the connection is made.

purity The purity of the connection used for database resident connection
pooling; either SELF or NEW.

connectionClass The connection class used for database resident connection pooling.

createConnectionPool()

13-248 Oracle C++ Call Interface Programmer's Guide

createConnectionPool()

Creates a connection pool based on the parameters specified.

Syntax Description

ConnectionPool* createConnectionPool(
const string &poolUserName,
const string &poolPassword,
const string &connectString = "",
unsigned int minConn = 0,
unsigned int maxConn = 1,
unsigned int incrConn = 1)=0;

Creates a default connection pool.

ConnectionPool* createConnectionPool(
const UString &poolUserName,
const UString &poolPassword,
const UString &connectString,
unsigned int minConn = 0,
unsigned int maxConn = 1,
unsigned int incrConn = 1)=0;

Creates a connection pool (Unicode
support). The client Environment should be
initialized in OCCIUTIF16 mode.

Parameter Description

poolUserName The pool user name.

poolPassword The pool password.

connectString The connection string for the server

minConn The minimum number of connections in the pool. The minimum number
of connections are opened by this method. Additional connections are
opened only when necessary. Generally, minConn should be set to the
number of concurrent statements the application is expected to run.

maxConn The maximum number of connections in the pool. Valid values are 1 and
greater.

incrConn The increment by which to increase the number of connections to be
opened if the current number of connections is less than maxConn. Valid
values are 1 and greater.

Environment Class

OCCI Application Programming Interface 13-249

createEnvironment()

Creates an Environment object. It is created with the specified memory management
functions specified in the setMemMgrFunctions() method. If no memory manager
functions are specified, then OCCI uses its own default functions. An Environment
object must eventually be closed to free all the system resources it has acquired.

If the Mode is specified is either THREADED_MUTEXED or THREADED_UNMUTEXED as defined
in Table 13–17 on page 13-245, then all three memory management functions must be
thread-safe.

Syntax Description

static Environment * createEnvironment(
Mode mode = DEFAULT,
void *ctxp = 0,
void *(*malocfp)(void *ctxp,

size_t size) = 0,
void *(*ralocfp)(void *ctxp,

void *memptr,
size_t newsize) = 0,

void (*mfreefp)(void *ctxp,
void *memptr) = 0);

Creates a default environment.

static Environment * createEnvironment(
const string &charset,
const string &ncharset,
Mode mode = DEFAULT,
void *ctxp = 0,
void *(*malocfp)(void *ctxp,

size_t size) = 0,
void *(*ralocfp)(void *ctxp,

void *memptr,
size_t newsize) = 0,

void (*mfreefp)(void *ctxp,
void *memptr) = 0);

Creates an environment with the specified
character set and NCHAR character set ids
(Unicode support). The client Environment
should be initialized in OCCIUTIF16 mode.

Parameter Description

mode Values are defined as part of Mode in Table 13–17 on page 13-245: DEFAULT,
THREADED_MUTEXED, THREADED_UNMUTEXED, OBJECT.

ctxp Context pointer for user-defined memory management function.

size The size of the memory allocated by user-defined memory allocation function.

newsize The new size of the memory to be reallocated.

memptr The existing memory that must be reallocated to new size.

malocfp User-defined memory allocation function.

ralocfp User-defined memory reallocation function.

mfreefp User-defined memory free function.

charset Character set id that replaces the one specified in NLS_LANG.

ncharset Character set id that replaces the one specified in NLS_NCHAR.

createStatelessConnectionPool()

13-250 Oracle C++ Call Interface Programmer's Guide

createStatelessConnectionPool()

Creates a StatelessConnectionPool object with specified pool attributes.

Syntax Description

StatelessConnectionPool* createStatelessConnectionPool(
const string &poolUserName,
const string &poolPassword,
const string connectString="",
unsigned int maxConn=1,
unsigned int minConn=0,
unsigned int incrConn=1,
StatelessConnectionPool::PoolType

pType=StatelessConnectionPool::HETEROGENEOUS);

Support for string.

StatelessConnectionPool* createStatelessConnectionPool(
const UString &poolUserName,
const UString &poolPassword,
const UString &connectString,
unsigned int maxConn = 1,
unsigned int minConn = 0,
unsigned int incrConn = 1,
StatelessConnectionPool::PoolType
pType=StatelessConnectionPool::HETEROGENEOUS);

Support for UString.

Parameter Description

poolUserName The pool user name.

poolPassword The pool password.

connectString The connection string for the server.

maxConn The maximum number of connections that can be opened the pool;
additional sessions cannot be open.

minConn The number of connections initially created in a pool. This parameter is
considered only if the PoolType is set to HOMOGENEOUS, as defined in
Table 13–41 on page 13-607.

incrConn The number of connections by which to increment the pool if all open
connections are busy, up to a maximum open connections specified by
maxConn parameter. This parameter is considered only if the PoolType is
set to HOMOGENEOUS, as defined in Table 13–41 on page 13-607.

pType The PoolType of the connection pool, defined in Table 13–41 on
page 13-607.

Environment Class

OCCI Application Programming Interface 13-251

enableSubscription()

Enables subscription notification.

Syntax
void enableSubscription(

const aq::Subscription &sub);

Parameter Description

sub The Subscription.

disableSubscription()

13-252 Oracle C++ Call Interface Programmer's Guide

disableSubscription()

Disables subscription notification.

Syntax
void disableSubscription(

Subscription &subscr);

Parameter Description

subscr The Subscription.

Environment Class

OCCI Application Programming Interface 13-253

getCacheMaxSize()

Retrieves the maximum size of the cache.

Syntax
unsigned int getCacheMaxSize() const;

getCacheOptSize()

13-254 Oracle C++ Call Interface Programmer's Guide

getCacheOptSize()

Retrieves the Cache optimal heap size.

Syntax
unsigned int getCacheOptSize() const;

Environment Class

OCCI Application Programming Interface 13-255

getCacheSortedFlush()

Retrieves the current setting of the cache sorting flag; TRUE or FALSE.

Syntax
bool getCacheSortedFlush() const;

getCurrentHeapSize()

13-256 Oracle C++ Call Interface Programmer's Guide

getCurrentHeapSize()

Returns the amount of memory currently allocated to all objects in this environment.

Syntax
unsigned int getCurrentHeapSize() const;

Environment Class

OCCI Application Programming Interface 13-257

getLDAPAdminContext()

Returns the administrative context when using LDAP open notification registration.

Syntax
string getLDAPAdminContext() const;

getLDAPAuthentication()

13-258 Oracle C++ Call Interface Programmer's Guide

getLDAPAuthentication()

Returns the authentication mode when using LDAP open notification registration.

Syntax
unsigned int getLDAPAuthentication() const;

Environment Class

OCCI Application Programming Interface 13-259

getLDAPHost()

Returns the host on which the LDAP server runs.

Syntax
string getLDAPHost() const;

getLDAPPort()

13-260 Oracle C++ Call Interface Programmer's Guide

getLDAPPort()

Returns the port on which the LDAP server is listening.

Syntax
unsigned int getLDAPPort() const;

Environment Class

OCCI Application Programming Interface 13-261

getMap()

Returns a pointer to the map for this environment.

Syntax
Map *getMap() const;

getNLSLanguage()

13-262 Oracle C++ Call Interface Programmer's Guide

getNLSLanguage()

Returns the NLS Language for the current environment.

Syntax
string getNLSLanguage() const;

Environment Class

OCCI Application Programming Interface 13-263

getNLSTerritory()

Returns the NLS Territory for the current environment.

Syntax
string getNLSTerritory() const;

getOCIEnvironment()

13-264 Oracle C++ Call Interface Programmer's Guide

getOCIEnvironment()

Returns a pointer to the OCI environment associated with this environment.

Syntax
OCIEnv *getOCIEnvironment() const;

Environment Class

OCCI Application Programming Interface 13-265

getXAConnection()

Returns a pointer to an OCCI Connection object that corresponds to the one opened by
the XA library.

Syntax
Connection* getXAConnection(

const string &dbname);

Parameter Description

dbname The database name; same as the optional dbname provided in the Open
String (and used in connection to the Resource Manager).

getXAEnvironment()

13-266 Oracle C++ Call Interface Programmer's Guide

getXAEnvironment()

Returns a pointer to an OCCI Environment object that corresponds to the one opened
by the XA library.

Syntax
Environment *getXAEnvironment(

const string &dbname);

Parameter Description

dbname The database name; same as the optional dbname provided in the Open
String (and used in connection to the Resource Manager).

Environment Class

OCCI Application Programming Interface 13-267

releaseXAConnection()

Release/deallocate all resources allocated by the getXAConnection() method.

Syntax
void releaseXAConnection(

Connection* conn);

Parameter Description

conn The connection returned by the getXAConnection() method.

releaseXAEnvironment()

13-268 Oracle C++ Call Interface Programmer's Guide

releaseXAEnvironment()

Release/deallocate all resources allocated by the getXAEnvironment() method.

Syntax
void releaseXAEnvironment(

Environment* env);

Parameter Description

env The environment returned by the getXAEnvironment() method.

Environment Class

OCCI Application Programming Interface 13-269

setCacheMaxSize()

Sets the maximum size for the client-side object cache as a percentage of the optimal
size. The default value is 10%.

Syntax
void setCacheMaxSize(

unsigned int maxSize);

Parameter Description

maxSize The value of the maximum size, as a percentage.

setCacheOptSize()

13-270 Oracle C++ Call Interface Programmer's Guide

setCacheOptSize()

Sets the optimal size for the client-side object cache in bytes. The default value is 8MB.

Syntax
void setCacheOptSize(

unsigned int optSize);

Parameter Description

optSize The value of the optimal size, in bytes.

Environment Class

OCCI Application Programming Interface 13-271

setCacheSortedFlush()

Sets the cache flushing protocol. By default, objects in cache are flushed in the order
they are modified; flag=FALSE. To improve server-side performance, set flag=TRUE, so
that the objects in cache are sorted in table order before flushing from client cache.

Syntax
void setCacheSortedFlush(

bool flag);

Parameter Description

flag FALSE (default): no sorting; TRUE: sorting in table order

setLDAPAdminContext()

13-272 Oracle C++ Call Interface Programmer's Guide

setLDAPAdminContext()

Sets the administrative context of the client. This is usually the root of the Oracle
RDBMS LDAP schema in the LDAP server.

Syntax
void setLDAPAdminContext(

const string &ctx);

Parameter Description

ctx The client context

Environment Class

OCCI Application Programming Interface 13-273

setLDAPAuthentication()

Specifies the authentication mode. Currently the only supported value is 0x1: Simple
authentication; username/password authentication.

Syntax
void setLDAPAuthentication(

unsigned int mode);

Parameter Description

mode The authentication mode

setLDAPHostAndPort()

13-274 Oracle C++ Call Interface Programmer's Guide

setLDAPHostAndPort()

Specifies the host on which the LDAP server is running, and the port on which it is
listening for requests.

Syntax
void setLDAPHostAndPort(

const string &host,
unsigned int port);

Parameter Description

host The host for LDAP

port The port for LDAP

Environment Class

OCCI Application Programming Interface 13-275

setLDAPLoginNameAndPassword()

Specifies the login distinguished name and password used when connecting to an
LDAP server.

Syntax
void setLDAPLoginNameAndPassword(

const string &login,
const &passwd);

Parameter Description

login The login name

passwd The login password

setNLSLanguage()

13-276 Oracle C++ Call Interface Programmer's Guide

setNLSLanguage()

Specifies the NLS Language for the current environment. The setting is effective for the
connections created after this method has been called. The setting overrides the value
set through the process environment variable NLS_LANG.

Syntax
void setNLSLanguage(

const string &lang);

Parameter Description

lang The language of the current environment

Environment Class

OCCI Application Programming Interface 13-277

setNLSTerritory()

Specifies the NLS Territory for the current environment. The setting is effective for the
connections created after this method has been called. The setting overrides the value
set through the process environment variable NLS_LANG.

Syntax
void setNLSTerritory(

const string &Terr);

Parameter Description

Terr The territory of the current environment

terminateConnection()

13-278 Oracle C++ Call Interface Programmer's Guide

terminateConnection()

Closes the connection to the environment, and frees all related system resources.

Syntax
void terminateConnection(

Connection *connection);

Parameter Description

connection A pointer to the connection instance to be terminated.

Environment Class

OCCI Application Programming Interface 13-279

terminateConnectionPool()

Closes the connections in the connection pool, and frees all related system resources.

Syntax
void terminateConnectionPool(

ConnectionPool *poolPointer);

Parameter Description

poolPointer A pointer to the connection pool instance to be terminated.

terminateEnvironment()

13-280 Oracle C++ Call Interface Programmer's Guide

terminateEnvironment()

Closes the environment, and frees all related system resources.

Syntax
void terminateEnvironment(

Environment *env);

Parameter Description

env Environment to be closed.

Environment Class

OCCI Application Programming Interface 13-281

terminateStatelessConnectionPool()

Destroys the specified StatelessConnectionPool.

Syntax
void termimnateStatelessConnectionPool(

StatelessConnectionPool* poolPointer,
StatelessConnectionPool::DestroyMode mode=StatelessConnectionPool::DEFAULT);

Parameter Description

poolPointer The StatelessConnectionPool to be destroyed.

mode DestroyMode as defined Table 13–41 on page 13-607: DEFAULT or SPF_FORCE.

IntervalDS Class

13-282 Oracle C++ Call Interface Programmer's Guide

IntervalDS Class

The IntervalDS class encapsulates time interval calculations in terms of days, hours,
minutes, seconds, and fractional seconds. Leading field precision is determined by
number of decimal digits in day input. Fraction second precision is determined by
number of fraction digits on input.

Example 13–6 How to Use an Empty IntervalDS Object through Direct Assignment

This example demonstrates how the default constructor creates a NULL value, and how
you can assign a non NULL value to a day-second interval and then perform operations
on it.

Environment *env = Environment::createEnvironment();

// Create a NULL day-second interval
IntervalDS ds;
if(ds.isNull())
 cout << "\n ds is null";

// Assign a non-NULL value to ds
IntervalDS anotherDS(env, "10 20:14:10.2");
ds = anotherDS;

// Now all operations on IntervalDS are valid
int DAY = ds.getDay();

Example 13–7 How to Use an Empty IntervalDS Object Through *Text() Methods

This example demonstrates how to create a NULL day-second interval, initialize the
day-second interval by using the fromText() method, add to the day-second interval
by using the += operator, multiply by using the * operator, compare 2 day-second
intervals, and convert a day-second interval to a string by using the toText method:

Environment *env = Environment::createEnvironment();

// Create a null day-second interval
IntervalDS ds1

// Initialize a null day-second interval by using the fromText method
ds1.fromText("20 10:20:30.9","",env);

IntervalDS addWith(env,2,1);

Table 13–19 Fields of IntervalDS Class

Field Type Description

day int Day component. Valid values are -10^9 through 10^9.

hour int Hour component. Valid values are -23 through 23.

minute int Minute component. Valid values are -59 through 59.

second int Second component. Valid values are -59 through 59.

fs int Fractional second component. Constructs a NULL IntervalDS object.
A NULL intervalDS can be initialized by assignment or calling
fromText method. Methods that can be called on NULL intervalDS
objects are setName() and isNull().

IntervalDS Class

OCCI Application Programming Interface 13-283

ds1 += addWith; //call += operator

IntervalDS mulDs1=ds1 * Number(env,10);
 //call * operator
if(ds1==mulDs1) //call == operator
 .
 .
string strds=ds1.toText(2,4);
 //2 is leading field precision
 //4 is the fractional field precision

Table 13–20 Summary of IntervalDS Methods

Method Summary

IntervalDS() on page 13-284 IntervalDS class constructor.

fromText() on page 13-285 Returns an IntervalDS converted from a string.

fromUText() on page 13-286 Returns an IntervalDS converted from a UString.

getDay() on page 13-287 Returns day interval values.

getFracSec() on page 13-288 Returns fractional second interval values.

getFracSec() on page 13-288 Returns hour interval values.

getMinute() on page 13-290 Returns minute interval values.

getSecond() on page 13-291 Returns second interval values.

isNull() on page 13-292 Returns true if IntervalDS is NULL, false otherwise.

operator*() on page 13-293 Returns the product of two IntervalDS values.

operator*=() on page 13-294 Multiplication assignment.

operator=() on page 13-295 Simple assignment.

operator==() on page 13-296 Checks if a and b are equal.

operator!=() on page 13-297 Checks if a and b are not equal.

operator/() on page 13-298 Returns an IntervalDS with value (a / b).

operator/=() on page 13-299 Division assignment.

operator>() on page 13-300 Checks if a is greater than b

operator>=() on page 13-301 Checks if a is greater than or equal to b.

operator<() on page 13-302 Checks if a is less than b.

operator<=() on page 13-303 Checks if a is less than or equal to b.

operator-() on page 13-304 Returns an IntervalDS with value (a - b).

operator-=() on page 13-305 Subtraction assignment.

operator+() on page 13-306 Returns the sum of two IntervalDS values.

operator+=() on page 13-307 Addition assignment.

set() on page 13-308 Sets day-second interval.

setNull() on page 13-309 Sets day-second interval to NULL.

toText() on page 13-310 Converts to a string representation for the interval.

toUText() on page 13-311 Converts to a UString representation for the interval.

IntervalDS()

13-284 Oracle C++ Call Interface Programmer's Guide

IntervalDS()

IntervalDS class constructor.

Syntax Description

IntervalDS(); Constructs a NULL IntervalDS object. A NULL IntervalDS can
be initialized by assignment or calling fromText() method.
Methods that can be called on NULL IntervalDS objects are
setName() and isNull().

IntervalDS(
const Environment *env,
int day = 0,
int hour = 0,
int minute = 0,
int second = 0,
int fs = 0);

Constructs an IntervalDS object within a specified
Environment.

IntervalDS(
const IntervalDS &src);

Constructs an IntervalYM object from src.

Parameter Description

env The Environment.

day The day field of IntervalDS.

hour The hour field of IntervalDS.

minute The minute field of IntervalDS.

second The second field of IntervalDS.

fs The fs field of IntervalDS.

src The source that the IntervalDS object is copied from.

IntervalDS Class

OCCI Application Programming Interface 13-285

fromText()

Creates the interval from the string specified. The string is converted using the nls
parameters associated with the relevant environment. The nls parameters are picked
up from env. If env is NULL, the nls parameters are picked up from the environment
associated with the instance, if any.

Syntax
void fromText(

const string &inpstr,
const string &nlsParam = "",
const Environment *env = NULL);

Parameter Description

inpstr Input string representing a day second interval of the form 'days
hours:minutes:seconds', for example, '10 20:14:10.2'

nlsParam The NLS parameter string. If nlsParam is specified, this determines the NLS
parameters to be used for the conversion. If nlsParam is not specified, the
NLS parameters are picked up from envp.

env Environment whose NLS parameters are used.

fromUText()

13-286 Oracle C++ Call Interface Programmer's Guide

fromUText()

Creates the interval from the UString specified.

Syntax
void fromUText(

const UString &inpstr,
const Environment *env=NULL);

Parameter Description

inpstr Input UString representing a day second interval of the form 'days
hours:minutes:seconds', for example, '10 20:14:10.2'

env The Environment.

IntervalDS Class

OCCI Application Programming Interface 13-287

getDay()

Returns the day component of the interval.

Syntax
int getDay() const;

getFracSec()

13-288 Oracle C++ Call Interface Programmer's Guide

getFracSec()

Returns the fractional second component of the interval.

Syntax
int getFracSec() const;

IntervalDS Class

OCCI Application Programming Interface 13-289

getHour()

Returns the hour component of the interval.

Syntax
int getHour() const;

getMinute()

13-290 Oracle C++ Call Interface Programmer's Guide

getMinute()

Returns the minute component of this interval.

Syntax
int getMinute() const;

IntervalDS Class

OCCI Application Programming Interface 13-291

getSecond()

Returns the seconds component of this interval.

Syntax
int getSecond() const;

isNull()

13-292 Oracle C++ Call Interface Programmer's Guide

isNull()

Tests whether the interval is NULL. If the interval is NULL then TRUE is returned;
otherwise, FALSE is returned.

Syntax
bool isNull() const;

IntervalDS Class

OCCI Application Programming Interface 13-293

operator*()

Multiplies an interval by a specified value and returns the result.

Syntax
const IntervalDS operator*(

const IntervalDS &interval,
const Number &val);

Parameter Description

interval Interval to be multiplied.

val Value by which interval is to be multiplied.

operator*=()

13-294 Oracle C++ Call Interface Programmer's Guide

operator*=()

Assigns the product of IntervalDS and a to IntervalDS.

Syntax
IntervalDS& operator*=(

const IntervalDS &factor);

Parameter Description

factor A day second interval.

IntervalDS Class

OCCI Application Programming Interface 13-295

operator=()

Assigns the specified value to the interval.

Syntax
IntervalDS& operator=(

const IntervalDS &src);

Parameter Description

src Value to be assigned.

operator==()

13-296 Oracle C++ Call Interface Programmer's Guide

operator==()

Compares the intervals specified. If the intervals are equal, then TRUE is returned;
otherwise, FALSE is returned. If either interval is NULL then SQLException is thrown.

Syntax
bool operator==(

const IntervalDS &first,
const IntervalDS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

IntervalDS Class

OCCI Application Programming Interface 13-297

operator!=()

Compares the intervals specified. If the intervals are not equal then TRUE is returned;
otherwise, FALSE is returned. If either interval is NULL then SQLException is thrown.

Syntax
bool operator!=(

const IntervalDS &first,
const IntervalDS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

operator/()

13-298 Oracle C++ Call Interface Programmer's Guide

operator/()

Returns the result of dividing an interval by a constant value.

Syntax
const IntervalDS operator/(

const IntervalDS ÷nd,
const Number &factor);

Parameter Description

dividend The interval to be divided.

factor Value by which interval is to be divided.

IntervalDS Class

OCCI Application Programming Interface 13-299

operator/=()

Assigns the quotient of IntervalDS and val to IntervalDS.

Syntax
IntervalDS& operator/=(

const IntervalDS &factor);

Parameter Description

factor A day second interval.

operator>()

13-300 Oracle C++ Call Interface Programmer's Guide

operator>()

Compares the intervals specified. If the first interval is greater than the second interval
then TRUE is returned; otherwise, FALSE is returned. If either interval is NULL then
SQLException is thrown.

Syntax
bool operator>(

const IntervalDS &first,
const IntervalDS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

IntervalDS Class

OCCI Application Programming Interface 13-301

operator>=()

Compares the intervals specified. If the first interval is greater than or equal to the
second interval then TRUE is returned; otherwise, FALSE is returned. If either interval is
NULL then SQLException is thrown.

Syntax
bool operator>=(

const IntervalDS &first,
const IntervalDS &first);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

operator<()

13-302 Oracle C++ Call Interface Programmer's Guide

operator<()

Compares the intervals specified. If the first interval is less than the second interval
then TRUE is returned; otherwise, FALSE is returned. If either interval is NULL then
SQLException is thrown.

Syntax
bool operator<(

const IntervalDS &first,
const IntervalDS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

IntervalDS Class

OCCI Application Programming Interface 13-303

operator<=()

Compares the intervals specified. If the first interval is less than or equal to the second
interval then TRUE is returned; otherwise, FALSE is returned. If either interval is NULL
then SQLException is thrown.

Syntax
bool operator<=(

const IntervalDS &first,
const IntervalDS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

operator-()

13-304 Oracle C++ Call Interface Programmer's Guide

operator-()

Returns the difference between the intervals first and second.

Syntax
const IntervalDS operator-(

const IntervalDS &first,
const IntervalDS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

IntervalDS Class

OCCI Application Programming Interface 13-305

operator-=()

Assigns the difference between IntervalDS and val to IntervalDS.

Syntax
IntervalDS& operator-=(

const IntervalDS &val);

Parameter Description

val A day second interval.

operator+()

13-306 Oracle C++ Call Interface Programmer's Guide

operator+()

Returns the sum of the intervals specified.

Syntax
const IntervalDS operator+(

const IntervalDS &first,
const IntervalDS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

IntervalDS Class

OCCI Application Programming Interface 13-307

operator+=()

Assigns the sum of IntervalDS and val to IntervalDS.

Syntax
IntervalDS& operator+=(

const IntervalDS &val);

Parameter Description

val A day second interval.

set()

13-308 Oracle C++ Call Interface Programmer's Guide

set()

Sets the interval to the values specified.

Syntax
void set(

int day,
int hour,
int minute,
int second,
int fracsec);

Parameter Description

day Day component.

hour Hour component.

min Minute component.

second Second component.

fracsec Fractional second component.

IntervalDS Class

OCCI Application Programming Interface 13-309

setNull()

Sets the IntervalDS to NULL.

Syntax
void setNull();

toText()

13-310 Oracle C++ Call Interface Programmer's Guide

toText()

Converts to a string representation for the interval.

Syntax
string toText(

unsigned int lfprec,
unsigned int fsprec,
const string &nlsParam = "") const;

Parameter Description

lfprec Leading field precision.

fsprec Fractional second precision.

nlsParam The NLS parameters string. If nlsParam is specified, this determines
the NLS parameters to be used for the conversion. If nlsParam is not
specified, the NLS parameters are picked up from envp.

IntervalDS Class

OCCI Application Programming Interface 13-311

toUText()

Converts to a UString representation for the interval.

Syntax
UString toUText(

unsigned int lfprec,
unsigned int fsprec) cosnt;

Parameter Description

lfprec Leading field precision.

fsprec Fractional second precision.

IntervalYM Class

13-312 Oracle C++ Call Interface Programmer's Guide

IntervalYM Class

IntervalYM supports the SQL standard data type Year-Month Interval.

Leading field precision is determined by number of decimal digits on input.

Example 13–8 How to Use an Empty IntervalYM Object Through Direct Assignment

This example demonstrates that the default constructor creates a NULL value, and how
you can assign a non NULL value to a year-month interval and then perform operations
on it:

Environment *env = Environment::createEnvironment();

// Create a NULL year-month interval
IntervalYM ym
if(ym.isNull())
 cout << "\n ym is null";

// Assign a non-NULL value to ym
IntervalYM anotherYM(env, "10-30");
ym=anotherYM;

// Now all operations on YM are valid
int yr = ym.getYear();

Example 13–9 How to Use an IntervalYM Object Through ResultSet and toText() Method

This example demonstrates how to get the year-month interval column from a result
set, add to the year-month interval by using the += operator, multiply by using the *
operator, compare 2 year-month intervals, and convert a year-month interval to a
string by using the toText() method.

//SELECT WARRANT_PERIOD from PRODUCT_INFORMATION
//obtain result set
resultset->next();

//get interval value from resultset
IntervalYM ym1 = resultset->getIntervalYM(1);

IntervalYM addWith(env, 10, 1);
ym1 += addWith; //call += operator

IntervalYM mulYm1 = ym1 * Number(env, 10); //call * operator
if(ym1<mulYm1) //comparison
 .
 .
string strym = ym1.toText(3); //3 is the leading field precision

Table 13–21 Fields of IntervalYM Class

Field Type Description

year int Year component. Valid values are -10^9 through 10^9.

month int Month component. Valid values are -11 through 11.

IntervalYM Class

OCCI Application Programming Interface 13-313

Table 13–22 Summary of IntervalYM Methods

Method Summary

IntervalYM() on page 13-314 IntervalYM class constructor.

fromText() on page 13-315 Converts a string into an IntervalYM.

fromUText() on page 13-316 Converts a UString into an IntervalYM.

getMonth() on page 13-317 Returns month interval value.

getYear() on page 13-318 Returns year interval value.

isNull() on page 13-319 Checks if the interval is NULL.

operator*() on page 13-320 Returns the product of two IntervalYM values.

operator*=() on page 13-321 Multiplication assignment.

operator=() on page 13-322 Simple assignment.

operator==() on page 13-323 Checks if a and b are equal.

operator!=() on page 13-324 Checks if a and b are not equal.

operator/() on page 13-325 Returns an interval with value (a/b).

operator/=() on page 13-326 Division assignment.

operator>() on page 13-327 Checks if a is greater than b.

operator>=() on page 13-328 Checks if a is greater than or equal to b.

operator<() on page 13-329 Checks if a is less than b.

operator<=() on page 13-330 Checks if a is less than or equal to b.

operator-() on page 13-331 Returns an interval with value (a - b).

operator-=() on page 13-332 Subtraction assignment.

operator+() on page 13-333 Returns the sum of two IntervalYM values.

operator+=() on page 13-334 Addition assignment.

set() on page 13-335 Sets the interval to the values specified.

setNull() on page 13-336 Sets the interval to NULL.

toText() on page 13-337 Converts to a string representation of the interval.

toUText() on page 13-338 Converts to a UString representation of the interval.

IntervalYM()

13-314 Oracle C++ Call Interface Programmer's Guide

IntervalYM()

IntervalYM class constructor.

Syntax Description

IntervalYM(); Constructs a NULL IntervalYM object. A NULL IntervalYM can
be initialized by assignment or calling operator*() method.
Methods that can be called on NULL IntervalYM objects are
setName() and isNull().

IntervalYM(
const Environment *env,
int year = 0,
int month = 0);

Creates an IntervalYM object within the specified
Environment.

IntervalDS(
const IntervalYM &src);

Copy constructor.

Parameter Description

env The Environment.

year The year field of the IntervalYM object.

month The month field of the IntervalYM object.

src The source that the IntervalYM object is copied from.

IntervalYM Class

OCCI Application Programming Interface 13-315

fromText()

This method initializes the interval to the values in inpstr. The string is interpreted
using the NLS parameters set in the environment.

The NLS parameters are picked up from env. If env is NULL, the NLS parameters are
picked up from the environment associated with the instance, if any.

Syntax
void fromText(

const string &inpStr,
const string &nlsParam = "",
const Environment *env = NULL);

Parameter Description

inpStr Input string representing a year month interval of the form 'year-month'.

nlsParam The NLS parameters string. If nlsParam is specified, this determines the
NLS parameters to be used for the conversion. If nlsParam is not specified,
the NLS parameters are picked up from envp.

env Environment whose NLS parameters are used.

fromUText()

13-316 Oracle C++ Call Interface Programmer's Guide

fromUText()

Creates the interval from the UString specified.

Syntax
void fromUText(

const UString &inpStr,
const Environment *env=NULL);

Parameter Description

inpStr Input UString representing a year month interval of the form 'year-month'.

env The Environment.

IntervalYM Class

OCCI Application Programming Interface 13-317

getMonth()

This method returns the month component of the interval.

Syntax
int getMonth() const;

getYear()

13-318 Oracle C++ Call Interface Programmer's Guide

getYear()

This method returns the year component of the interval.

Syntax
int getYear() const;

IntervalYM Class

OCCI Application Programming Interface 13-319

isNull()

This method tests whether the interval is NULL. If the interval is NULL then TRUE is
returned; otherwise, FALSE is returned.

Syntax
bool isNull() const;

operator*()

13-320 Oracle C++ Call Interface Programmer's Guide

operator*()

This method multiplies the interval by a factor and returns the result.

Syntax
const IntervalYM operator*(

const IntervalDS &interval
const Number &val);

Parameter Description

interval Interval to be multiplied.

val Value by which interval is to be multiplied.

IntervalYM Class

OCCI Application Programming Interface 13-321

operator*=()

This method multiplies the interval by a specified value.

Syntax

IntervalYM& operator*=(
const Number &factor);

Parameter Description

factor Value to be multiplied.

operator=()

13-322 Oracle C++ Call Interface Programmer's Guide

operator=()

This method assigns the specified value to the interval.

Syntax
IntervalYM& operator=(

const IntervalYM &src);

Parameter Description

src Value to be assigned.

IntervalYM Class

OCCI Application Programming Interface 13-323

operator==()

This method compares the intervals specified. If the intervals are equal then TRUE is
returned; otherwise, FALSE is returned. If either interval is NULL then SQLException is
thrown.

Syntax
bool operator==(

const IntervalYM &first,
const IntervalYM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

operator!=()

13-324 Oracle C++ Call Interface Programmer's Guide

operator!=()

This method compares the intervals specified. If the intervals are not equal then TRUE
is returned; otherwise, FALSE is returned. If either interval is NULL then SQLException
is thrown.

Syntax
bool operator!=(

const IntervalYM &first,
const IntervalYM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

IntervalYM Class

OCCI Application Programming Interface 13-325

operator/()

This method returns the result of dividing the interval by a factor.

Syntax
const IntervalYM operator/(

const IntervalYM ÷nd,
const Number &factor);

Parameter Description

dividend The interval to be divided.

factor Value by which interval is to be divided.

operator/=()

13-326 Oracle C++ Call Interface Programmer's Guide

operator/=()

This method divides the interval by a factor.

Syntax
IntervalYM& operator/=(

const Number &factor);

Parameter Description

factor A day second interval.

IntervalYM Class

OCCI Application Programming Interface 13-327

operator>()

This method compares the intervals specified. If the first interval is greater than the
second interval then TRUE is returned; otherwise, FALSE is returned. If either interval is
NULL then SQLException is thrown.

Syntax
bool operator>(

const IntervalYM &first,
const IntervalYM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

operator>=()

13-328 Oracle C++ Call Interface Programmer's Guide

operator>=()

This method compares the intervals specified. If the first interval is greater than or
equal to the second interval then TRUE is returned; otherwise, FALSE is returned. If
either interval is NULL then SQLException is thrown.

Syntax
bool operator>=(

const IntervalYM &first,
const IntervalYM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

IntervalYM Class

OCCI Application Programming Interface 13-329

operator<()

This method compares the intervals specified. If the first interval is less than the
second interval then TRUE is returned; otherwise, FALSE is returned. If either interval is
NULL then SQLException is thrown.

Syntax
bool operator<(

const IntervalYM &first,
const IntervalYM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

operator<=()

13-330 Oracle C++ Call Interface Programmer's Guide

operator<=()

This method compares the intervals specified. If the first interval is less than or equal
to the second interval then TRUE is returned; otherwise, FALSE is returned. If either
interval is NULL then SQLException is thrown

Syntax
bool operator<=(

const IntervalYM &first,
const IntervalYM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

IntervalYM Class

OCCI Application Programming Interface 13-331

operator-()

This method returns the difference between the intervals specified.

Syntax
const IntervalYM operator-(

const IntervalYM &first,
const IntervalYM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

operator-=()

13-332 Oracle C++ Call Interface Programmer's Guide

operator-=()

This method computes the difference between itself and another interval.

Syntax
IntervalYM& operator-=(

const IntervalYM &val);

Parameter Description

val A day second interval.

IntervalYM Class

OCCI Application Programming Interface 13-333

operator+()

This method returns the sum of the intervals specified.

Syntax
const IntervalYM operator+(

const IntervalYM &first,
const IntervalYM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

operator+=()

13-334 Oracle C++ Call Interface Programmer's Guide

operator+=()

This method assigns the sum of IntervalYM and val to IntervalYM.

Syntax
IntervalYM& operator+=(

const IntervalYM &val);

Parameter Description

val A day second interval.

IntervalYM Class

OCCI Application Programming Interface 13-335

set()

This method sets the interval to the values specified.

Syntax
void set(

int year,
int month);

Parameter Description

year Year component. Valid values are -10^9 through 10^9.

month Month component. Valid values are -11 through 11.

setNull()

13-336 Oracle C++ Call Interface Programmer's Guide

setNull()

This method sets the interval to NULL.

Syntax
void setNull();

IntervalYM Class

OCCI Application Programming Interface 13-337

toText()

This method returns the string representation of the interval.

Syntax
string toText(

unsigned int lfprec,
const string &nlsParam = "") const;

Parameter Description

lfprec Leading field precision.

nlsParam The NLS parameters string. If nlsParam is specified, this determines
the NLS parameters to be used for the conversion. If nlsParam is not
specified, the NLS parameters are picked up from envp.

toUText()

13-338 Oracle C++ Call Interface Programmer's Guide

toUText()

Converts to a UString representation for the interval.

Syntax
UString toUText(

unsigned int lfprec) cosnt;

Parameter Description

lfprec Leading field precision.

Listener Class

OCCI Application Programming Interface 13-339

Listener Class

The Listener class encapsulates the ability to listen for Messages, on behalf of
registered Agents, at specified queues.

Table 13–23 Summary of Listener Methods

Method Summary

Listener() on page 13-340 Listener class constructor.

getAgentList() on page 13-341 Retrieves the list of Agents for which the Listener
provides its services.

getTimeOutForListen() on
page 13-342

Retrieves the time out for a call.

listen() on page 13-343 Listens for Messages and returns the name of the Agent
for whom a Message is intended.

setAgentList() on page 13-344 Specifies the list of Agents for which the Listener
provides its services.

setTimeOutForListen() on page 13-345 Specifies the time out for a listen() call.

Listener()

13-340 Oracle C++ Call Interface Programmer's Guide

Listener()

Listener class constructor.

Syntax Description

Listener(
const Connection* conn);

Creates a Listener object.

Listener(
const Connection* conn
vector<Agent> &aglist,
int waitTime=0);

Creates a Listener object and sets the list
of Agents on behalf of which it listens on
queues. Also sets the waiting time; default:
no waiting.

Parameter Description

conn The connection of the new Listener object.

aglist The list of agents on behalf of which the Listener object waits on queues;
clients of this Listener.

waitTime The time to wait on queues for messages of interest for the clients; in
seconds.

Listener Class

OCCI Application Programming Interface 13-341

getAgentList()

Retrieves the list of Agents for which the Listener provides its services.

Syntax
vector<Agent> getAgentList() const;

getTimeOutForListen()

13-342 Oracle C++ Call Interface Programmer's Guide

getTimeOutForListen()

Retrieves the time out for a call.

Syntax
int getTimeOutForListen() const;

Listener Class

OCCI Application Programming Interface 13-343

listen()

Listens for Messages on behalf of specified Agents for the amount of time specified by a
previous setTimeOutForListen() call. Returns the Agent for which there is a Message.

Note that this is a blocking call. Before this call, complete the following steps:

■ Registers each Agent listener through a setAgentList() call.

■ Make a blocking call to setTimeOutForListen() that returns when a Message for one
of the Agents on the list arrives. If no Messages arrive before the wait time expires,
the call returns an error.

Syntax
Agent listen();

setAgentList()

13-344 Oracle C++ Call Interface Programmer's Guide

setAgentList()

Specifies the list of Agents for which the Listener provides its services.

Syntax
void setAgentList(

vector<Agent>& agList);

Parameter Description

agList The list of Agents.

Listener Class

OCCI Application Programming Interface 13-345

setTimeOutForListen()

Specifies the time out for a listen() call.

Syntax
void setTimeOutForListen(

int waitTime);

Parameter Description

waitTime The time interval, in seconds, during which the Listener is waiting for
Messages at specified queues.

Map Class

13-346 Oracle C++ Call Interface Programmer's Guide

Map Class

The Map class is used to store the mapping of the SQL structured type to C++ classes.

For each user defined type, the Object Type Translator (OTT) generates a C++ class
declaration and implements the static methods readSQL() and writeSQL(). The
readSQL() method is called when the object from the server appears in the application
as a C++ class instance. The writeSQL() method is called to marshal the object in the
application cache to server data when it is being written / flushed to the server. The
readSQL() and writeSQL() methods generated by OTT are based upon the OCCI
standard C++ mappings.

If you want to override the standard OTT generated mappings with customized
mappings, you must implement a custom C++ class along with the readSQL() and
writeSQL() methods for each SQL structured type you must customize. In addition,
you must add an entry for each such class into the Map member of the Environment.

Table 13–24 Summary of Map Methods

Method Summary

put() on page 13-347 Adds a map entry for the type type_name.

Map Class

OCCI Application Programming Interface 13-347

put()

Adds a map entry for the type, type_name, that must be customized; you must
implement the type_name C++ class.

You must then add this information into a map object, which should be registered with
the connection if the user wants the standard mappings to overridden.This registration
can be done by calling the this method after the environment is created passing the
environment.

Syntax Description

void put(
const string &schemaType,
void *(*rSQL)(void *),
void (*wSQL) (void *, void *));

Registers a type and its corresponding C++
readSQL and writeSQL functions.

void put(
const string& schName,
const string& typName,
void *(*rSQL)(void *),
void (*wSQL)(void *, void *));

Registers a type and its corresponding C++
readSQL and writeSQL functions; multibyte
support.

void put(
const UString& schName,
const UString& typName,
void *(*rSQL)(void *),
void (*wSQL)(void *, void *));

Registers a type and its corresponding C++
readSQL and writeSQL functions; unicode
support.

Parameter Description

schemaType The schema and typename, separated by ".", like HR.TYPE1

schName Name of the schema

typName Name of the type

rDQL The readSQL function pointer of the C++ class that corresponds to the type

wSQL The writeSQL function pointer of the C++ class that corresponds to the type

Message Class

13-348 Oracle C++ Call Interface Programmer's Guide

Message Class

A message is the unit that is enqueued dequeued. A Message object holds both its
content, or payload, and its properties. This class provides methods to get and set
message properties.

Table 13–25 Enumerated Values Used by Message Class

Attribute Options

MessageState ■ MSG_WAITING indicates that the message delay time has not been
reached

■ MSG_READY indicates that the message is ready to be processed

■ MSG_PROCESSED indicates that the message has been processed, and
is being retained

■ MSG_EXPIRED indicates that the message has been moved to the
exception queue.

PayloadType ■ RAW

■ ANYDATA

■ OBJECT

Table 13–26 Summary of Message Methods

Method Summary

Message() on page 13-350 Message class constructor.

getAnyData() on page 13-351 Retrieves AnyData payload of the message.

getAttemptsToDequeue() on
page 13-352

Retrieves the number of attempts made to dequeue the
message.

getBytes() on page 13-353 Retrieves Bytes payload of the message.

getCorrelationId() on page 13-354 Retrieves the identification string.

getDelay() on page 13-355 Retrieves delay with which message was enqueued.

getExceptionQueueName() on
page 13-356

Retrieves name of queue to which Message is moved
when it cannot be processed.

getExpiration() on page 13-357 Retrieves the expiration of the message.

getMessageEnqueuedTime() on
page 13-358

Retrieves time at which message was enqueued.

getMessageState() on page 13-359 Retrieves state of the message at time of enqueuing.

getObject() on page 13-360 Retrieves object payload of the message.

getOriginalMessageId() on
page 13-361

Retrieves the Id of the message that generated this
message on the last queue.

getPayloadType() on page 13-362 Retrieves the type of the payload.

getPriority() on page 13-363 Retrieves the priority of the message.

getSenderId() on page 13-364 Retrieves the agent who send the Message.

isNull() on page 13-365 Tests whether the Message object is NULL.

operator=() on page 13-366 Assignment operator for Message.

setAnyData() on page 13-367 Specifies AnyData payload of the message.

Message Class

OCCI Application Programming Interface 13-349

setBytes() on page 13-368 Specifies Bytes payload of the message.

setCorrelationId() on page 13-369 Specifies the identification string.

setDelay() on page 13-370 Specifies the number of seconds to delay the enqueued
Message.

setExceptionQueueName() on
page 13-371

Specifies the name of the queue to which the Message
object is moved if it cannot be precessed.

setExpiration() on page 13-372 Specifies the duration of time that Message can be
dequeued before it expires.

setNull() on page 13-373 Sets the Message object to NULL.

setObject() on page 13-374 Specifies object payload of the message.

setOriginalMessageId() on
page 13-375

Specifies id of last queue that generated the Message.

setPriority() on page 13-376 Specifies priority of the Message object.

setRecipientList() on page 13-377 Specifies the list of agents for whom the message is
intended.

setSenderId() on page 13-378 Specifies the sender of the Message.

Table 13–26 (Cont.) Summary of Message Methods

Method Summary

Message()

13-350 Oracle C++ Call Interface Programmer's Guide

Message()

Message class constructor.

Syntax Description

Message(
 const Environment *env);

Creates a Message object within the
specified Environment.

Message(
const Message& mes);

Copy constructor.

Parameter Description

env The environment of the Message.

mes The original Message.

Message Class

OCCI Application Programming Interface 13-351

getAnyData()

Retrieves the AnyData payload of the Message.

Syntax
AnyData getAnyData() const;

getAttemptsToDequeue()

13-352 Oracle C++ Call Interface Programmer's Guide

getAttemptsToDequeue()

Retrieves the number of attempts made to dequeue the message. This property cannot
be retrieved while enqueuing.

Syntax
int getAttemptsToDequeue() const;

Message Class

OCCI Application Programming Interface 13-353

getBytes()

Retrieves Bytes payload of the Message.

Syntax
Bytes getBytes() const;

getCorrelationId()

13-354 Oracle C++ Call Interface Programmer's Guide

getCorrelationId()

Retrieves the identification string.

Syntax
string getCorrelationId() const;

Message Class

OCCI Application Programming Interface 13-355

getDelay()

Retrieves the delay (in seconds) with which the Message was enqueued.

Syntax
int getDelay() const;

getExceptionQueueName()

13-356 Oracle C++ Call Interface Programmer's Guide

getExceptionQueueName()

Retrieves the name of the queue to which the Message is moved, in cases when the
Message cannot be processed successfully.

Syntax
string getExceptionQueueName() const;

Message Class

OCCI Application Programming Interface 13-357

getExpiration()

Retrieves the expiration time of the Message (in seconds). This is the duration for
which the message is available for dequeuing.

Syntax
int getExpiration() const;

getMessageEnqueuedTime()

13-358 Oracle C++ Call Interface Programmer's Guide

getMessageEnqueuedTime()

Retrieves the time at which the message was enqueued, in Date format. This value is
determined by the system, and cannot be set by the user.

Syntax
Date getMessageEnqueuedTime() const;

Message Class

OCCI Application Programming Interface 13-359

getMessageState()

Retrieves the state of the message at the time of enqueuing. This parameter cannot be
set an enqueuing time. MessageState is defined in Table 13–25 on page 13-348.

Syntax
MessageState getMessageState() const;

getObject()

13-360 Oracle C++ Call Interface Programmer's Guide

getObject()

Retrieves object payload of the Message.

Syntax
PObject* getObject();

Message Class

OCCI Application Programming Interface 13-361

getOriginalMessageId()

Retrieves the original message Id. When a message is propagated from one queue to
another, gets the ID to the last queue that generated this message.

Syntax
Bytes getOriginalMessageId() const;

getPayloadType()

13-362 Oracle C++ Call Interface Programmer's Guide

getPayloadType()

Retrieves the type of the payload, as defined for PayloadType in Table 13–25 on
page 13-348.

Syntax
PayloadType getPayloadType() const;

Message Class

OCCI Application Programming Interface 13-363

getPriority()

Retrieves the priority of the Message.

Syntax
int getPriority() const;

getSenderId()

13-364 Oracle C++ Call Interface Programmer's Guide

getSenderId()

Retrieves the agent who send the Message.

Syntax
Agent getSenderId() const;

Message Class

OCCI Application Programming Interface 13-365

isNull()

Tests whether the Message object is NULL. If the Message object is NULL, then TRUE is
returned; otherwise, FALSE is returned.

Syntax
bool isNull() const;

operator=()

13-366 Oracle C++ Call Interface Programmer's Guide

operator=()

Assignment operator for Message.

void operator=(
const Message& mes);

Parameter Description

mes Original message.

Message Class

OCCI Application Programming Interface 13-367

setAnyData()

Specifies AnyData payload of the Message.

Syntax
void setAnyData(

const AnyData& anydata);

Parameter Description

anydata Data content of the Message.

setBytes()

13-368 Oracle C++ Call Interface Programmer's Guide

setBytes()

Specifies Bytes payload of the Message.

Syntax
void setBytes(

const Bytes& bytes);

Parameter Description

bytes Data content of the Message.

Message Class

OCCI Application Programming Interface 13-369

setCorrelationId()

Specifies the identification string. This parameter is set at enqueuing time by the
Producer. Messages can be dequeued with this id. The id can contain wildcard
characters.

Syntax
void setCorrelationId(

const string& id);

Parameter Description

id The id; upper limit of 128 bytes.

setDelay()

13-370 Oracle C++ Call Interface Programmer's Guide

setDelay()

Specifies the time (in seconds) to delay the enqueued Message. After the delay ends,
the Message is available for dequeuing.

Note that dequeuing by msgid overrides the delay specification. A Message enqueued
with delay is in the WAITING state. Delay is set by the producer of the Message.

Syntax
void setDelay(

int delay);

Parameter Description

delay The delay.

Message Class

OCCI Application Programming Interface 13-371

setExceptionQueueName()

Specifies the name of the queue to which the Message object is moved if it cannot be
processed successfully. The queue name must be valid.

Note that if the exception queue does not exist at the time of the move, the Message is
moved to the default exception queue associated with the queue table; a warning is
logged in the alert log.

Also note that if the default exception queue is used, the parameter returns a NULL
value at enqueuing time; the attribute must refer to a valid queue name.

Syntax
void setExceptionQueueName(

const string& queue);

Parameter Description

queue The name of the exception queue.

setExpiration()

13-372 Oracle C++ Call Interface Programmer's Guide

setExpiration()

Specifies the duration time (in seconds) that the Message object is available for
dequeuing. A Message expires after this time.

Syntax
void setExpiration(

int exp);

Parameter Description

exp The duration of expiration.

Message Class

OCCI Application Programming Interface 13-373

setNull()

Sets the Message object to NULL. Before the Connection is destroyed by the
terminateConnection() call of the Environment Class, all Message objects must be set to
NULL.

Syntax
void setNull();

setObject()

13-374 Oracle C++ Call Interface Programmer's Guide

setObject()

Specifies object payload of the Message.

Syntax
void setObject(

PObject& pobj);

Parameter Description

pobj Content of the data

Message Class

OCCI Application Programming Interface 13-375

setOriginalMessageId()

Sets the Id of the last queue that generated the message, when a message is
propagated from one queue to another.

Syntax
void setOriginalMessageId(

const Bytes& queue);

Parameter Description

queue The last queue.

setPriority()

13-376 Oracle C++ Call Interface Programmer's Guide

setPriority()

Specifies the priority of the Message object. This property is set during enqueuing time,
and can be negative. Default is 0.

Syntax
void setPriority(

int priority);

Parameter Description

priority The priority of the Message.

Message Class

OCCI Application Programming Interface 13-377

setRecipientList()

Specifies the list of Agents for whom the Message is intended. These recipients are not
identical to subscribers of the queue. The property is set during enqueuing. All Agents
in the list must be valid. The recipient list overrides the default subscriber list.

Syntax
void setRecipientList(

vector<Agent>& agentList);

Parameter Description

agentList The list of Agents.

setSenderId()

13-378 Oracle C++ Call Interface Programmer's Guide

setSenderId()

Specifies the sender of the Message.

Syntax
void setSenderId(

const Agent& sender);

Parameter Description

sender Sender id.

MetaData Class

OCCI Application Programming Interface 13-379

MetaData Class

A MetaData object can be used to describe the types and properties of the columns in a
ResultSet or the existing schema objects in the database. It also provides information
about the database as a whole. The enumerated values of MetaData are in Table 13–27,
and the summary of its methods is in Table 13–28 on page 13-387.

Table 13–27 Enumerated Values Used by MetaData Class

Attribute Options

ParamType The parameter types for objects are:

■ PTYPE_ARG is the argument of a function or procedure.

■ PTYPE_COL is the column of a table or view.

■ PTYPE_DATABASE is the database.

■ PTYPE_FUNC is the function.

■ PTYPE_PKG is the package.

■ PTYPE_PROC is the procedure.

■ PTYPE_SCHEMA is the schema.

■ PTYPE_SEQ is the sequence.

■ PTYPE_SYN is the synonym.

■ PTYPE_TABLE is the table.

■ PTYPE_TYPE is the type.

■ PTYPE_TYPE_ARG is the argument of a type method.

■ PTYPE_TYPE_ATTR is the attribute of a type.

■ PTYPE_TYPE_COLL is the collection type information.

■ PTYPE_TYPE_METHOD is the method of a type.

■ PTYPE_TYPE_RESULT is the results of a method.

■ PTYPE_UNK is the object of an unknown type.

■ PTYPE_VIEW is the view.

AttrId common to
all parameters

Attributes of all parameters:

■ ATTR_OBJ_ID is the object or schema id.

■ ATTR_OBJ_NAME is either the database name, or the object name in a
schema.

■ ATTR_OBJ_SCHEMA is the name of the schema describing the object.

■ ATTR_PTYPE is the type of information described by a parameter,
ParamType

■ ATTR_TIMESTAMP is the timestamp of an object.

MetaData Class

13-380 Oracle C++ Call Interface Programmer's Guide

AttrId for Tables
and Views

Parameters for a table or view (ParamType of PTYPE_TABLE and PTYPE_
VIEW) have the following type-specific attributes:

■ ATTR_OBJID is the object id

■ ATTR_NUM_COLS is the number of columns

■ ATTR_LIST_COLUMNS is the column list

■ ATTR_REF_TDO is the REF to the TDO of the base type in case of extent
tables

■ ATTR_IS_TEMPORARY indicates the table is temporary

■ ATTR_IS_TYPED indicates the table is typed

■ ATTR_DURATION is the duration of a temporary table. Values can be
DURATION_SESSION, DURATION_TRANS, and DURATION_NULL, as defined
for attribute AttrValues

AttrId for Tables
only

Parameters for a tables only (ParamType of PTYPE_TABLE):

■ ATTR_RDBA indicates the data block address of the segment header

■ ATTR_TABLESPACE indicates the tablespace the table resides in

■ ATTR_CLUSTERED indicates the table is clustered

■ ATTR_PARTITIONED indicates the table is partitioned

■ ATTR_INDEX_ONLY indicates the table is index-only

AttrId for Functions
and Procedures

Parameters for functions and procedures (ParamType of PTYPE_FUNC and
PTYPE_PROC, respectively):

■ ATTR_LIST_ARGUMENTS indicates the argument list

■ ATTR_IS_INVOKER_RIGHTS indicates the procedure or function has
invoker's rights

■ ATTR_NAME indicates the name of the procedure or function

■ ATTR_OVERLOAD_ID indicates the overloading ID number, relevant
when the procedure or function is part of a class and it is
overloaded; values returned may be different from direct query of a
PL/SQL function or procedure

AttrId for Packages Parameters for packages (ParamType of PTYPE_PKG):

■ ATTR_LIST_SUBPROGRAMS indicates the subprogram list

■ ATTR_IS_INVOKER_RIGHTS indicates the procedure or function has
invoker's rights

Table 13–27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

MetaData Class

OCCI Application Programming Interface 13-381

AttrId for Types Parameter is for types (ParamType of PTYPE_TYPE):

■ ATTR_REF_TDO indicates the in-memory REF of the type descriptor
for the type, if the column type is an object type. If space has not
been reserved, then it is allocated implicitly in the cache. The caller
can then pin the object.

■ ATTR_TYPECODE indicates the data type code

■ ATTR_COLLECTION_TYPECODE indicates the typecode of collection, if
type is collection

■ ATTR_IS_INCOMPLETE_TYPE indicates that this is an incomplete type

■ ATTR_IS_SYSTEM_TYPE indicates that this is a system generated type

■ ATTR_IS_PREDEFINED_TYPE indicates that this is a predefined type

■ ATTR_IS_TRANSIENT_TYPE indicates that this is a transient type

■ ATTR_IS_SYSTEM_GENERATED_TYPE indicates that this is a system
generated type

■ ATTR_HAS_NESTED_TABLE indicates that this type contains a nested
table attribute

■ ATTR_HAS_LOB indicates that this type contains a LOB attribute

■ ATTR_HAS_FILE indicates that this type contains a BFILE attribute

■ ATTR_COLLECTION_ELEMENT indicates a reference to a collection
element

■ ATTR_NUM_TYPE_ATTRS indicates the number of type attributes

■ ATTR_LIST_TYPE_ATTRS indicates the list of type attributes

■ ATTR_NUM_TYPE_METHODS indicates the number of type methods

■ ATTR_LIST_TYPE_METHODS indicates the list of type methods

■ ATTR_MAP_METHOD indicates the map method of the type

■ ATTR_ORDER_METHOD indicates the order method of the type

■ ATTR_IS_INVOKER_RIGHTS indicates the type has invoker's rights

■ ATTR_NAME indicates the type attribute name

■ ATTR_SCHEMA_NAME indicates the schema where the type is created

■ ATTR_IS_FINAL_TYPE indicates this is a final type

■ ATTR_IS_INSTANTIABLE_TYPE indicates this is an instantiable type

■ ATTR_IS_SUBTYPE indicates this is a subtype

■ ATTR_SUPERTYPE_SCHEMA_NAME indicates the name of the schema that
contains the supertype

■ ATTR_SUPERTYPE_NAME indicates the name of the supertype

Table 13–27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

MetaData Class

13-382 Oracle C++ Call Interface Programmer's Guide

AttrId for Type
Attributes

Parameter is for attributes of types (ParamType of PTYPE_TYPE_ATTR):

■ ATTR_DATA_SIZE indicates the maximum size of the type attribute

■ ATTR_TYPECODE indicates the data type code

■ ATTR_DATA_TYPE indicates the data type of the type attribute

■ ATTR_NAME indicates the name of the procedure or function

■ ATTR_PRECISION indicates the precision of numeric type attributes.

■ ATTR_SCALE indicates the scale of the numeric type attributes

■ ATTR_TYPE_NAME indicates a type name

■ ATTR_SCHEMA_NAME indicates the name of the schema where the type
has been created

■ ATTR_REF_TDO indicates the in-memory REF of the type, if the
column type is an object type. If the space has not been reserved, it
is allocated implicitly in the cache. The caller can then pin the object.

■ ATTR_CHARSET_ID indicates the characterset ID

■ ATTR_CHARSET_FORM indicates the characterset form

■ ATTR_FSPRECISION indicates the fractional seconds precision of a
Timestamp, IntervalDS or IntervalYM

■ ATTR_LFPRECISION indicates the leading field precision of an
IntervalDS or IntervalYM

AttrId for Type
Methods

Parameter is for methods of types (ParamType of PTYPE_TYPE_METHOD):

■ ATTR_NAME indicates the name of the procedure or function

■ ATTR_ENCAPSULATION indicates the method's level of encapsulation

■ ATTR_LIST_ARGUMENTS indicates the argument list

■ ATTR_IS_CONSTRUCTOR indicates the method is a constructor

■ ATTR_IS_DESTRUCTOR indicates the method is a destructor

■ ATTR_IS_OPERATOR indicates the method is an operator

■ ATTR_IS_SELFISH indicates the method is selfish

■ ATTR_IS_MAP indicates the method is a map method

■ ATTR_IS_ORDER indicates the method is an order method

■ ATTR_IS_RNDS indicates that the method is in "read no data" state

■ ATTR_IS_RNPS indicates that the method is in a "read no process"
state

■ ATTR_IS_WNDS indicates that the method is in "write no data" state

■ ATTR_IS_WNPS indicates that the method is in "write no process"
state

■ ATTR_IS_FINAL_METHOD indicates that this is a final method

■ ATTR_IS_INSTANTIABLE_METHOD indicates that this is an instantiable
method

■ ATTR_IS_OVERRIDING_METHOD indicates that this is an overriding
method

Table 13–27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

MetaData Class

OCCI Application Programming Interface 13-383

AttrId for
Collections

Parameter is for collections (ParamType of PTYPE_TYPE_COLL):

■ ATTR_DATA_SIZE indicates ...

■ ATTR_TYPECODE indicates ...

■ ATTR_DATA_TYPE indicates the data type of the type attribute

■ ATTR_NUM_ELEMS indicates the number of elements in a collection

■ ATTR_NAME indicates the name of the type attribute

■ ATTR_PRECISION indicates the precision of a numeric attribute

■ ATTR_SCALE indicates the scale of a numeric attribute

■ ATTR_TYPE_NAME indicates the type name

■ ATTR_SCHEMA_NAME indicates the schema where the type has been
created

■ ATTR_REF_TDO indicates the in-memory REF of the type, if the
column type is an object type. If the space has not been reserved, it
is allocated implicitly in the cache. The caller can then pin the object.

■ ATTR_CHARSET_ID indicates the characterset id

■ ATTR_CHARSET_FORM indicates the characterset form

■ ATTR_IS_IDENTITY indicates that the column may be
auto-incremented

AttrId for
Synonyms

Parameter is for synonyms (ParamType of PTYPE_SYN):

■ ATTR_OBJID indicates the object id

■ ATTR_SCHEMA_NAME indicates the schema name of the synonym
translation

■ ATTR_NAME indicates a NULL-terminated object name of the synonym
translation

■ ATTR_LINK indicates a NULL-terminated database link name of the
synonym installation

AttrId for
Sequences

Parameter is for sequences (ParamType of PTYPE_SEQ):

■ ATTR_OBJID indicates the object id

■ ATTR_MIN indicates the minimum value

■ ATTR_MAX indicates the maximum value

■ ATTR_INCR indicates the increment

■ ATTR_CACHE indicates the number of sequence numbers cached; 0 if
the sequence is not cached

■ ATTR_ORDER indicates whether the sequence is ordered

■ ATTR_HW_MARK indicates the "high-water mark"

Table 13–27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

MetaData Class

13-384 Oracle C++ Call Interface Programmer's Guide

AttrId for Columns Parameter is for columns of tables or views (ParamType of PTYPE_COL):

■ ATTR_CHAR_USED indicates the type of length semantics of the
column. 0 means byte-length semantics and 1 means
character-length semantics.

■ ATTR_CHAR_SIZE indicates the column character length, or number
of characters allowed in a column

■ ATTR_DATA_SIZE indicates the maximum size of a column, or
number of bytes allowed in a column

■ ATTR_DATA_TYPE indicates the data type of the column

■ ATTR_NAME indicates the column name

■ ATTR_PRECISION indicates the precision of numeric columns

■ ATTR_SCALE indicates the scale of numeric columns

■ ATTR_IS_NULL indicates 0 if NULL values are not permitted for the
column

■ ATTR_TYPE_NAME indicates a type name

■ ATTR_SCHEMA_NAME indicates the schema where the type was created

■ ATTR_REF_TDO indicates the REF for the type, if the column is of
object type

■ ATTR_CHARSET_ID indicates the characterset ID

■ ATTR_CHARSET_FORM indicates the characterset form

Table 13–27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

MetaData Class

OCCI Application Programming Interface 13-385

AttrId for
Arguments and
Results

Parameter for arguments of a procedure or function (PTYPE_ARG), a
method (PTYPE_TYPE_ARG), or a result (PTYPE_TYPE_RESULT)

■ ATTR_NAME indicates the argument name

■ ATTR_POSITION indicates the position of the argument in the list

■ ATTR_TYPECODE indicates the typecode

■ ATTR_DATA_TYPE indicates the data type

■ ATTR_DATA_SIZE indicates the size of the data type

■ ATTR_PRECISION indicates the precision of a numeric argument

■ ATTR_SCALE indicates the scale of a numeric argument

■ ATTR_LEVEL indicates the data type level

■ ATTR_HAS_DEFAULT indicates whether an argument has a default

■ ATTR_LIST_ARGUMENTS indicates the list of arguments at the next
level, for records or table types

■ ATTR_IOMODE indicates the argument mode: 0 for IN, 1 for OUT, 2 for
IN/OUT

■ ATTR_RADIX indicates the radix of a number type

■ ATTR_IS_NULL indicates 0 if NULL values are not permitted

■ ATTR_TYPE_NAME indicates the type name

■ ATTR_SCHEMA_NAME indicates the schema name where the type was
created

■ ATTR_SUB_NAME indicates the type name for package local types

■ ATTR_LINK indicates a NULL-terminated database link name where
the type is defined, for package local types when the package is
remote

■ ATTR_REF_TDO is the REF to the TDO of the type if the argument is an
object

■ ATTR_CHARSET_ID indicates the characterset ID

■ ATTR_CHARSET_FORM indicates the characterset form

AttrId for Schemas Parameter is for schemas (ParamType of PTYPE_SCHEMA):

■ ATTR_LIST_OBJECTS indicates the list of objects in the schema

AttrId for Lists Parameter is for list of columns, arguments or subprograms:

■ ATTR_LIST_COLUMNS indicates a column list

■ ATTR_LIST_ARGUMENTS indicates a procedure or function argument
list

■ ATTR_LIST_SUBPROGRAMS indicates a subprogram list

■ ATTR_LIST_TYPE_ATTRIBS indicates a type attribute list

■ ATTR_TYPE_METHODS indicates a type method list

■ ATTR_TYPE_OBJECTS indicates a list of objects in a schema

■ ATTR_LIST_SCHEMAS indicates a list of schemas in a database

Table 13–27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

MetaData Class

13-386 Oracle C++ Call Interface Programmer's Guide

AttrId for
Databases

Parameter is for list of columns, arguments or subprograms (ParamType
of PTYPE_DATABASE):

■ ATTR_VERSION indicates the database version

■ ATTR_CHARSET_ID indicates the characterset ID of the database

■ ATTR_NCHARSET_ID indicates the national characterset of the
database

■ ATTR_LIST_SCHEMAS indicates the list of schemas, PTYPE_SCHEMA

■ ATTR_MAX_PROC_LEN indicates the maximum length of a procedure
name

■ ATTR_MAX_COLUMN_LEN indicates the maximum length of a column
name

■ ATTR_CURSOR_COMMIT_BEHAVIOR indicates how a commit affects
cursors and prepared statements. Values can be CURSOR_OPEN and
CURSER_CLOSED, as defined for attribute AttrValues

■ ATTR_MAX_CATALOG_NAMELEN indicates the maximum length of a
database (catalog) name

■ ATTR_CATALOG_LOCATION indicates the position of the catalog in a
qualified table. Values can be CL_START and CL_END, as defined for
attribute AttrValues

■ ATTR_SAVEPOINT_SUPPORT indicates whether the database supports
savepoints. Values can be SP_SUPPORTED and SP_UNSUPPORTED, as
defined for attribute AttrValues

■ ATTR_NOWAIT_SUPPORT indicates whether the database supports the
"no wait" condition. Values can be NW_SUPPORTED and NW_
UNSUPPORTED, as defined for attribute AttrValues

■ ATTR_AUTOCOMMIT_DDL indicates if an autocommit mode is required
for DDL statements. Values can be AC_DDL and NO_AC_DDL, as
defined for attribute AttrValues

■ ATTR_LOCKING_MODE indicates the locking mode for the database.
Values can be LOCK_IMMEDIATE and LOCK_DELAYED, as defined for
attribute AttrValues

Table 13–27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

MetaData Class

OCCI Application Programming Interface 13-387

AttrValues Attribute values are returned on executing a getxxx() method and
passing in an attribute, for which these are the results:

■ DURATION_SESSION is the duration of a temporary table: session.

■ DURATION_TRANS is the duration of a temporary table: transaction.

■ DURATION_NULL is the duration of a temporary table: table not
temporary.

■ TYPEENCAP_PRIVATE is the encapsulation level of the method:
private.

■ TYPEENCAP_PUBLIC is the encapsulation level of the method: public.

■ TYPEPARAM_IN is the argument mode: IN.

■ TYPEPARAM_OUT is the argument mode: OUT.

■ TYPEPARAM_INOUT is the argument mode: IN/OUT.

■ CURSOR_OPEN is the effect of COMMIT operation on cursors and
prepared statements in the database: preserve cursor state as before
the COMMIT operation.

■ CURSER_CLOSED is the effect of COMMIT operation on cursors and
prepared statements in the database: cursors are closed on COMMIT,
but the application can still rerun the statement without preparing it
again.

■ CL_START is the position of the catalog in a qualified table: start.

■ CL_END is the position of the catalog in a qualified table: end.

■ SP_SUPPORTED is the database supports savepoints.

■ SP_UNSUPPORTED is the database does not support savepoints.

■ NW_SUPPORTED is the database supports nowait clause.

■ NW_UNSUPPORTED is the database does not supports nowait clause.

■ AC_DDL is the autocommit mode required for DDL statements.

■ NO_AC_DDL is the autocommit mode not required for DDL
statements.

■ LOCK_IMMEDIATE is the locking mode for the database: immediate.

■ LOCK_DELAYED is the locking mode for the database: delayed.

ColumnAttrId Attributes for column identity enable automatic increment support.
Possible values are:

■ ATTR_COL_IS_IDENTITY is true when column is an identity column.

■ ATTR_COL_IS_GEN_ALWAYS is true when the column is always
generated.

■ ATTR_COL_IS_GEN_BY_DEF_ON_NULL is true when the identity
column is generated by default on null.

Table 13–28 Summary of MetaData Methods

Method Description

MetaData() on page 13-389 MetaData class constructor.

getAttributeCount() on page 13-390 Gets the count of the attribute as a MetaData object

getAttributeId() on page 13-391 Gets the ID of the specified attribute

getAttributeType() on page 13-392 Gets the type of the specified attribute.

getBoolean() on page 13-393 Gets the value of the attribute as a C++ boolean.

Table 13–27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

MetaData Class

13-388 Oracle C++ Call Interface Programmer's Guide

getInt() on page 13-394 Gets the value of the attribute as a C++ int.

getMetaData() on page 13-395 Gets the value of the attribute as a MetaData object

getNumber() on page 13-396 Returns the specified attribute as a Number object.

getRef() on page 13-397 Gets the value of the attribute as a Ref<T>.

getString() on page 13-398 Gets the value of the attribute as a string.

getTimeStamp() on page 13-399 Gets the value of the attribute as a Timestamp object

getUInt() on page 13-400 Gets the value of the attribute as a C++ unsigned int.

getUString() on page 13-401 Returns the value of the attribute as a UString in the
character set associated with the metadata.

getVector() on page 13-402 Gets the value of the attribute as an C++ vector.

operator=() on page 13-403 Assigns one metadata object to another.

Table 13–28 (Cont.) Summary of MetaData Methods

Method Description

MetaData Class

OCCI Application Programming Interface 13-389

MetaData()

MetaData class constructor.

Syntax
MetaData(

const MetaData &omd);

Parameter Description

cmd The source that the MetaData object is copied from.

getAttributeCount()

13-390 Oracle C++ Call Interface Programmer's Guide

getAttributeCount()

This method returns the number of attributes related to the metadata object.

Syntax
unsigned int getAttributeCount() const;

MetaData Class

OCCI Application Programming Interface 13-391

getAttributeId()

This method returns the attribute ID, such as ATTR_NUM_COLS, of the attribute
represented by the attribute number specified.

Syntax
AttrId getAttributeId(

unsigned int attributeNum) const;

Parameter Description

attributeNum The number of the attribute for which the attribute ID is to be returned.

getAttributeType()

13-392 Oracle C++ Call Interface Programmer's Guide

getAttributeType()

This method returns the attribute type, such as NUMBER or INT, of the attribute
represented by attribute number specified.

Syntax
Type getAttributeType(

unsigned int attributeNum) const;

Parameter Description

attributeNum The number of the attribute for which the attribute type is to be returned.

MetaData Class

OCCI Application Programming Interface 13-393

getBoolean()

This method returns the value of the attribute as a C++ boolean. If the value is a SQL
NULL, the result is FALSE. The overloaded version returns the value of the column
attribute.

Syntax Description

bool getBoolean(
MetaData::AttrId attributeId) const;

Returns the value of the
attribute.

bool getBoolean(
MetaData::ColumnAttrId colAttributeId) const;

Returns the value of the
column attribute

Parameter Description

attributeId The attribute ID

colAttributeId The column attribute ID

getInt()

13-394 Oracle C++ Call Interface Programmer's Guide

getInt()

This method returns the value of the attribute as a C++ int. If the value is SQL NULL,
the result is 0.

Syntax
int getInt(

MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

MetaData Class

OCCI Application Programming Interface 13-395

getMetaData()

This method returns a MetaData instance holding the attribute value. A metadata
attribute value can be retrieved as a MetaData instance. This method can only be called
on attributes of the metadata type.

Syntax
MetaData getMetaData(

MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

getNumber()

13-396 Oracle C++ Call Interface Programmer's Guide

getNumber()

This method returns the value of the attribute as a Number object. If the value is a SQL
NULL, the result is NULL.

Syntax
Number getNumber(

MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

MetaData Class

OCCI Application Programming Interface 13-397

getRef()

This method returns the value of the attribute as a RefAny, or Ref to a TDO. If the value
is SQL NULL, the result is NULL.

Syntax
RefAny getRef(

MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

getString()

13-398 Oracle C++ Call Interface Programmer's Guide

getString()

This method returns the value of the attribute as a string. If the value is SQL NULL, the
result is NULL.

Syntax
string getString(

MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

MetaData Class

OCCI Application Programming Interface 13-399

getTimeStamp()

This method returns the value of the attribute as a Timestamp object. If the value is a
SQL NULL, the result is NULL.

Syntax
Timestamp getTimestamp(

MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

getUInt()

13-400 Oracle C++ Call Interface Programmer's Guide

getUInt()

This method returns the value of the attribute as a C++ unsigned int. If the value is a
SQL NULL, the result is 0.

Syntax
unsigned int getUInt(

MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

MetaData Class

OCCI Application Programming Interface 13-401

getUString()

Returns the value of an attribute as a UString in the character set associated with the
metadata.

Syntax
UString getUString(

MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

getVector()

13-402 Oracle C++ Call Interface Programmer's Guide

getVector()

This method returns a C++ vector containing the attribute value. A collection attribute
value can be retrieved as a C++ vector instance. This method can only be called on
attributes of a list type.

Syntax
vector<MetaData> getVector(

MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

MetaData Class

OCCI Application Programming Interface 13-403

operator=()

This method assigns one MetaData object to another. This increments the reference
count of the MetaData object that is assigned.

Syntax
void operator=(

const MetaData &omd);

Parameter Description

cmd MetaData object to be assigned

NotifyResult Class

13-404 Oracle C++ Call Interface Programmer's Guide

NotifyResult Class

A NotifyResult object holds the notification information in the Streams AQ notification
callback. It is created by OCCI before invoking a user-callback, and is destroyed after
the user-callback returns.

Table 13–29 Summary of NotifyResult Methods

Method Summary

getConsumerName() on page 13-405 Returns the name of the notification consumer.

getMessage() on page 13-406 Returns the message.

getMessageId() on page 13-407 Returns the message ID.

getPayload() on page 13-408 Returns the payload.

getQueueName() on page 13-409 Returns the name of the queue.

NotifyResult Class

OCCI Application Programming Interface 13-405

getConsumerName()

Gets the name of the consumer for which the message has been enqueued. In a single
consumer queue, this is a empty string.

string getConsumerName() const;

getMessage()

13-406 Oracle C++ Call Interface Programmer's Guide

getMessage()

Gets the message which has been enqueued into the non-persistent queue.

Message getMessage() const;

NotifyResult Class

OCCI Application Programming Interface 13-407

getMessageId()

Gets the id of the message which has been enqueued.

Bytes getMessageId() const;

getPayload()

13-408 Oracle C++ Call Interface Programmer's Guide

getPayload()

Gets the payload in case of a notification from NS_ANONYMOUS namespace.

Bytes getPayload() const;

NotifyResult Class

OCCI Application Programming Interface 13-409

getQueueName()

Gets the name of the queue on which the enqueue has happened

string getQueueName() const;

Number Class

13-410 Oracle C++ Call Interface Programmer's Guide

Number Class

The Number class handles limited-precision signed base 10 numbers. A Number
guarantees 38 decimal digits of precision. All positive numbers in the range displayed
here can be represented to a full 38-digit precision:

10^-130

and

9.99999999999999999999999999999999999999*10^125

The range of representable negative numbers is symmetrical.

The number zero can be represented exactly. Also, Oracle numbers have
representations for positive and negative infinity. These are generally used to indicate
overflow.

The internal storage type is opaque and private. Scale is not preserved when Number
instances are created.

Number does not support the concept of NaN and is not IEEE-754-85 compliant. Number
does support +Infinity and -Infinity.

Objects from the Number class can be used as standalone class objects in client side
numeric computations. They can also be used to fetch from and set to the database.

Example 13–10 How to Retrieve and Use a Number Object

This example demonstrates a Number column value being retrieved from the database,
a bind using a Number object, and a comparison using a standalone Number object.

/* Create a connection */
Environment *env = Environment::createEnvironment(Environment::DEFAULT);
Connection *conn = Connection(user, passwd, db);

/* Create a statement and associate a select clause with it */
string sqlStmt = "SELECT department_id FROM DEPARTMENTS";
Statement *stmt = conn->createStatement(sqlStmt);

/* Run the statement to get a result set */
ResultSet *rset = stmt->executeQuery();
while(rset->next())
{
 Number deptId = rset->getNumber(1);
 /* Display the department id with the format string 9,999 */
 cout << "Department Id" << deptId.toText(env, "9,999");

 /* Use the number obtained as a bind value in the following query */
 stmt->setSQL("SELECT * FROM EMPLOYEES WHERE department_id = :x");
 stmt->setNumber(1, deptId);
 ResultSet *rset2 = stmt->executeQuery();
 .
 .
}
/* Using a Number object as a standalone and the operations on them */

/* Create a number to a double value */
double value = 2345.123;
Number nu1 (value);

Number Class

OCCI Application Programming Interface 13-411

/* Some common Number methods */
Number abs = nu1.abs(); /* absolute value */
Number sqrt = nu1.squareroot(); /* square root */
Environment *env = Environment::createEnvironment();

//create a null year-month interval
IntervalYM ym
if(ym.isNull())
 cout << "\n ym is null";

//assign a non null value to ym
IntervalYM anotherYM(env, "10-30");
ym = anotherYM;

//now all operations are valid on ym
int yr = ym.getYear();

Table 13–30 Summary of Number Methods

Method Summary

Number() on page 13-414 Number class constructor.

abs() on page 13-415 Returns the absolute value of the number.

arcCos() on page 13-416 Returns the arcCosine of the number.

arcSin() on page 13-417 Returns the arcSine of the number.

arcTan() on page 13-418 Returns the arcTangent of the number.

arcTan2() on page 13-419 Returns the arcTangent2 of the input number y and this
number x.

ceil() on page 13-420 Returns the smallest integral value not less than the value of
the number.

cos() on page 13-421 Returns the cosine of the number.

exp() on page 13-422 Returns the natural exponent of the number.

floor() on page 13-423 Returns the largest integral value not greater than the value
of the number.

fromBytes() on page 13-424 Returns a Number derived from a Bytes object.

fromText() on page 13-425 Returns a Number from a given number string, format
string and NLS parameters specified.

hypCos() on page 13-426 Returns the hyperbolic cosine of the number.

hypSin() on page 13-427 Returns the hyperbolic sine of the number.

hypTan() on page 13-428 Returns the hyperbolic tangent of the number.

intPower() on page 13-429 Returns the number raised to the integer value specified.

isNull() on page 13-430 Checks if Number is NULL.

ln() on page 13-431 Returns the natural logarithm of the number.

log() on page 13-432 Returns the logarithm of the number to the base value
specified.

operator++() on page 13-433 Increments the number.

operator--() on page 13-434 Decrements the number.

operator*() on page 13-294 Returns the product of two Numbers.

Number Class

13-412 Oracle C++ Call Interface Programmer's Guide

operator/() on page 13-436 Returns the quotient of two Numbers.

operator%() on page 13-437 Returns the modulo of two Numbers.

operator+() on page 13-438 Returns the sum of two Numbers.

operator-() on page 13-439 Returns the negated value of Number.

operator-() on page 13-439 Returns the difference between two Numbers.

operator<() on page 13-441 Checks if a number is less than an other number.

operator<=() on page 13-442 Checks if a number is less than or equal to an other number.

operator>() on page 13-443 Checks if a number is greater than an other number.

operator>=() on page 13-237 Checks if a number is greater than or equal to an other
number.

operator=() on page 13-233 Assigns one number to another.

operator==() on page 13-234 Checks if two numbers are equal.

operator!=() on page 13-235 Checks if two numbers are not equal.

operator*=() on page 13-294 Multiplication assignment.

operator/=() on page 13-299 Division assignment.

operator%=() on page 13-450 Modulo assignment.

operator+=() on page 13-451 Addition assignment.

operator-=() on page 13-452 Subtraction assignment.

operator char() on page 13-453 Returns Number converted to native char.

operator signed char() on
page 13-454

Returns Number converted to native signed char.

operator double() on
page 13-455

Returns Number converted to a native double.

operator float() on page 13-456 Returns Number converted to a native float.

operator int() on page 13-457 Returns Number converted to native integer.

operator long() on page 13-458 Returns Number converted to native long.

operator long double() on
page 13-459

Returns Number converted to a native long double.

operator short() on page 13-460 Returns Number converted to native short integer.

operator unsigned char() on
page 13-461

Returns Number converted to an unsigned native char.

operator unsigned int() on
page 13-462

Returns Number converted to an unsigned native integer.

operator unsigned long() on
page 13-463

Returns Number converted to an unsigned native long.

operator unsigned short() on
page 13-464

Returns Number converted to an unsigned native short
integer.

power() on page 13-465 Returns Number raised to the power of another number
specified.

prec() on page 13-466 Returns Number rounded to digits of precision specified.

Table 13–30 (Cont.) Summary of Number Methods

Method Summary

Number Class

OCCI Application Programming Interface 13-413

round() on page 13-467 Returns Number rounded to decimal place specified.
Negative values are allowed.

setNull() on page 13-468 Sets Number to NULL.

shift() on page 13-469 Returns a Number that is equivalent to the passed value *
10^n, where n may be positive or negative.

sign() on page 13-470 Returns the sign of the value of the passed value: -1 for the
passed value < 0, 0 for the passed value == 0, and 1 for the
passed value > 0.

sin() on page 13-471 Returns sine of the number.

squareroot() on page 13-472 Returns the square root of the number.

tan() on page 13-473 Returns tangent of the number.

toBytes() on page 13-474 Returns a Bytes object representing the Number.

toText() on page 13-475 Returns the number as a string formatted based on the
format and NLS parameters.

trunc() on page 13-476 Returns a Number with the value truncated at n decimal
place(s). Negative values are allowed.

Table 13–30 (Cont.) Summary of Number Methods

Method Summary

Number()

13-414 Oracle C++ Call Interface Programmer's Guide

Number()

Number class constructor.

Syntax Description

Number(); Default constructor.

Number(
const Number &srcNum);

Creates a copy of a Number.

Number(
long double &val);

Translates a native long double into a Number. The Number is
created using the precision of the platform-specific constant
LDBL_DIG.

Number(
double val);

Translates a native double into a Number. The Number is created
using the precision of the platform-specific constant DBL_DIG.

Number(
float val);

Translates a native float into a Number. The Number is created
using the precision of the platform-specific constant FLT_DIG.

Number(
long val);

Translates a native long into a Number.

Number(
int val);

Translates a native int into a Number.

Number(
shot val);

Translates a native short into a Number.

Number(
char val);

Translates a native char into a Number.

Number(
signed char val);

Translates a native signed char into a Number.

Number(
unsigned long val);

Translates an native unsigned long into a Number.

Number(
unsigned int val);

Translates a native unsigned int into a Number.

Number(
unsigned short val);

Translates a native unsigned short into a Number.

Number(
unsigned char val);

Translates the unsigned character array into a Number.

Parameter Description

srcNum The source Number copied into the new Number object.

val The value assigned to the Number object.

Number Class

OCCI Application Programming Interface 13-415

abs()

This method returns the absolute value of the Number object.

Syntax
const Number abs() const;

arcCos()

13-416 Oracle C++ Call Interface Programmer's Guide

arcCos()

This method returns the arccosine of the Number object.

Syntax
const Number arcCos() const;

Number Class

OCCI Application Programming Interface 13-417

arcSin()

This method returns the arcsine of the Number object.

Syntax
const Number arcSin() const;

arcTan()

13-418 Oracle C++ Call Interface Programmer's Guide

arcTan()

This method returns the arctangent of the Number object.

Syntax
const Number arcTan() const;

Number Class

OCCI Application Programming Interface 13-419

arcTan2()

This method returns the arctangent of the Number object with the parameter specified.
It returns atan2 (val, x) where val is the parameter specified and x is the current
number object.

Syntax
const Number arcTan2(

const Number &val) const;

Parameter Description

val Number parameter val to the arcTangent function atan2(val,x).

ceil()

13-420 Oracle C++ Call Interface Programmer's Guide

ceil()

This method returns the smallest integer that is greater than or equal to the Number
object.

Syntax
const Number ceil() const;

Number Class

OCCI Application Programming Interface 13-421

cos()

This method returns the cosine of the Number object.

Syntax
const Number cos() const;

exp()

13-422 Oracle C++ Call Interface Programmer's Guide

exp()

This method returns the natural exponential of the Number object.

Syntax
const Number exp() const;

Number Class

OCCI Application Programming Interface 13-423

floor()

This method returns the largest integer that is less than or equal to the Number object.

Syntax
const Number floor() const;

fromBytes()

13-424 Oracle C++ Call Interface Programmer's Guide

fromBytes()

This method returns a Number object represented by the byte string specified.

Syntax
void fromBytes(

const Bytes &str);

Parameter Description

str A byte string.

Number Class

OCCI Application Programming Interface 13-425

fromText()

Sets Number object to value represented by a string or UString.

The value is interpreted based on the fmt and nlsParam parameters. In cases where
nlsParam is not passed, the Globalization Support settings of the envp parameter are
used.

See Also: Oracle Database SQL Language Reference for information on
TO_NUMBER

Syntax Description

void fromText(
const Environment *envp,
const string &number,
const string &fmt,
const string &nlsParam = "");

Sets Number object to value represented by
a string.

void fromText(
const Environment *envp,
const UString &number,
const UString &fmt,
const UString &nlsParam);

Sets Number object to value represented by
a UString.

Parameter Description

envp The OCCI environment.

number The number string to be converted to a Number object.

fmt The format string.

nlsParam The NLS parameters string. If nlsParam is specified, this
determines the NLS parameters to be used for the conversion. If
nlsParam is not specified, the NLS parameters are picked up
from envp.

hypCos()

13-426 Oracle C++ Call Interface Programmer's Guide

hypCos()

This method returns the hypercosine of the Number object.

Syntax
const Number hypCos() const;

Number Class

OCCI Application Programming Interface 13-427

hypSin()

This method returns the hypersine of the Number object.

Syntax
const Number hypSin() const;

hypTan()

13-428 Oracle C++ Call Interface Programmer's Guide

hypTan()

This method returns the hypertangent of the Number object.

Syntax
const Number hypTan() const;

Number Class

OCCI Application Programming Interface 13-429

intPower()

This method returns a Number whose value is the number object raised to the power of
the value specified.

Syntax
const Number intPower(

int val) const;

Parameter Description

val Power to which the number is raised.

isNull()

13-430 Oracle C++ Call Interface Programmer's Guide

isNull()

This method tests whether the Number object is NULL. If the Number object is NULL, then
TRUE is returned; otherwise, FALSE is returned.

Syntax
bool isNull() const;

Number Class

OCCI Application Programming Interface 13-431

ln()

This method returns the natural logarithm of the Number object.

Syntax
const Number ln() const;

log()

13-432 Oracle C++ Call Interface Programmer's Guide

log()

This method returns the logarithm of the Number object with the base provided by the
parameter specified.

Syntax
const Number log(

const Number &val) const;

Parameter Description

val The base to be used in the logarithm calculation.

Number Class

OCCI Application Programming Interface 13-433

operator++()

Unary operator++(). This is a postfix operator.

Syntax Description

Number& operator++(); This method returns the Number object incremented by 1.

const Number operator++(
int incr);

This method returns the Number object incremented by the
integer specified.

Parameter Description

incr The number by which the Number object is incremented.

operator--()

13-434 Oracle C++ Call Interface Programmer's Guide

operator--()

Unary operator--(). This is a prefix operator.

Syntax Description

Number& operator--(); This method returns the Number object decremented by 1.

const Number operator--(
int decr);

This method returns the Number object decremented by the
integer specified.

Parameter Description

decr The number by which the Number object is decremented.

Number Class

OCCI Application Programming Interface 13-435

operator*()

This method returns the product of the parameters specified.

Syntax
Number operator*(

const Number &first,
const Number &second);

Parameter Description

first First multiplicand.

second Second multiplicand.

operator/()

13-436 Oracle C++ Call Interface Programmer's Guide

operator/()

This method returns the quotient of the parameters specified.

Syntax
Number operator/(

const Number ÷nd,
const Number &divisor);

Parameter Description

dividend The number to be divided.

divisor The number by which to divide.

Number Class

OCCI Application Programming Interface 13-437

operator%()

This method returns the remainder of the division of the parameters specified.

Syntax
Number operator%(

const Number ÷nd,
const Number ÷r);

Parameter Description

dividend The number to be divided.

divizor The number by which to divide.

operator+()

13-438 Oracle C++ Call Interface Programmer's Guide

operator+()

This method returns the sum of the parameters specified.

Syntax
Number operator+(

const Number &first,
const Number &second);

Parameter Description

first First number to be added.

second Second number to be added.

Number Class

OCCI Application Programming Interface 13-439

operator-()

Unary operator-(). This method returns the negated value of the Number object.

Syntax
const Number operator-();

operator-()

13-440 Oracle C++ Call Interface Programmer's Guide

operator-()

This method returns the difference between the parameters specified.

Syntax
Number operator-(

const Number &subtrahend,
const Number &subtractor);

Parameter Description

subtrahend The number to be reduced.

subtractor The number to be subtracted.

Number Class

OCCI Application Programming Interface 13-441

operator<()

This method checks whether the first parameter specified is less than the second
parameter specified. If the first parameter is less than the second parameter, then TRUE
is returned; otherwise, FALSE is returned. If either parameter equals infinity, then FALSE
is returned.

Syntax
bool operator<(

const Number &first,
const Number &second);

Parameter Description

first First number to be compared.

second Second number to be compared.

operator<=()

13-442 Oracle C++ Call Interface Programmer's Guide

operator<=()

This method checks whether the first parameter specified is less than or equal to the
second parameter specified. If the first parameter is less than or equal to the second
parameter, then TRUE is returned; otherwise, FALSE is returned. If either parameter
equals infinity, then FALSE is returned.

Syntax
bool operator<=(

const Number &first,
const Number &second);

Parameter Description

first First number to be compared.

second Second number to be compared.

Number Class

OCCI Application Programming Interface 13-443

operator>()

This method checks whether the first parameter specified is greater than the second
parameter specified. If the first parameter is greater than the second parameter, then
TRUE is returned; otherwise, FALSE is returned. If either parameter equals infinity, then
FALSE is returned.

Syntax
bool operator>(

const Number &first,
const Number &second);

Parameter Description

first First number to be compared.

second Second number to be compared.

operator>=()

13-444 Oracle C++ Call Interface Programmer's Guide

operator>=()

This method checks whether the first parameter specified is greater than or equal to
the second parameter specified. If the first parameter is greater than or equal to the
second parameter, then TRUE is returned; otherwise, FALSE is returned. If either
parameter equals infinity, then FALSE is returned.

Syntax
bool operator>=(

const Number &first,
const Number &second);

Parameter Description

first First number to be compared.

second Second number to be compared.

Number Class

OCCI Application Programming Interface 13-445

operator==()

This method checks whether the parameters specified are equal. If the parameters are
equal, then TRUE is returned; otherwise, FALSE is returned. If either parameter equals
+infinity or -infinity, then FALSE is returned.

Syntax
bool operator==(

const Number &first,
const Number &second);

Parameter Description

first First number to be compared.

second Second number to be compared.

operator!=()

13-446 Oracle C++ Call Interface Programmer's Guide

operator!=()

This method checks whether the first parameter specified equals the second parameter
specified. If the parameters are not equal, TRUE is returned; otherwise, FALSE is
returned.

Syntax
bool operator!=(

const Number &first,
const Number &second);

Parameter Description

first First number to be compared.

second Second number to be compared.

Number Class

OCCI Application Programming Interface 13-447

operator=()

This method assigns the value of the parameter specified to the Number object.

Syntax
Number& operator=(

const Number &num);

Parameter Description

num A parameter of type Number.

operator*=()

13-448 Oracle C++ Call Interface Programmer's Guide

operator*=()

This method multiplies the Number object by the parameter specified, and assigns the
product to the Number object.

Syntax
Number& operator*=(

const Number &num);

Parameter Description

num A parameter of type Number.

Number Class

OCCI Application Programming Interface 13-449

operator/=()

This method divides the Number object by the parameter specified, and assigns the
quotient to the Number object.

Syntax
Number& operator/=(

const Number &num);

Parameter Description

num A parameter of type Number.

operator%=()

13-450 Oracle C++ Call Interface Programmer's Guide

operator%=()

This method divides the Number object by the parameter specified, and assigns the
remainder to the Number object.

Syntax
Number& operator%=(

const Number &num);

Parameter Description

num A parameter of type Number.

Number Class

OCCI Application Programming Interface 13-451

operator+=()

This method adds the Number object and the parameter specified, and assigns the
sum to the Number object.

Syntax
Number& operator+=(

const Number &num);

Parameter Description

num A parameter of type Number.

operator-=()

13-452 Oracle C++ Call Interface Programmer's Guide

operator-=()

This method subtracts the parameter specified from the Number object, and assigns the
difference to the Number object.

Syntax
Number& operator-=(

const Number &num);

Parameter Description

num A parameter of type Number.

Number Class

OCCI Application Programming Interface 13-453

operator char()

This method returns the value of the Number object converted to a native char.

Syntax
operator char() const;

operator signed char()

13-454 Oracle C++ Call Interface Programmer's Guide

operator signed char()

This method returns the value of the Number object converted to a native signed
char.

Syntax
operator signed char() const;

Number Class

OCCI Application Programming Interface 13-455

operator double()

This method returns the value of the Number object converted to a native double.

Syntax
operator double() const;

operator float()

13-456 Oracle C++ Call Interface Programmer's Guide

operator float()

This method returns the value of the Number object converted to a native float.

Syntax
operator float() const;

Number Class

OCCI Application Programming Interface 13-457

operator int()

This method returns the value of the Number object converted to a native int.

Syntax
operator int() const;

operator long()

13-458 Oracle C++ Call Interface Programmer's Guide

operator long()

This method returns the value of the Number object converted to a native long.

Syntax
operator long() const;

Number Class

OCCI Application Programming Interface 13-459

operator long double()

This method returns the value of the Number object converted to a native long double.

Syntax
operator long double() const;

operator short()

13-460 Oracle C++ Call Interface Programmer's Guide

operator short()

This method returns the value of the Number object converted to a native short integer.

Syntax
operator short() const;

Number Class

OCCI Application Programming Interface 13-461

operator unsigned char()

This method returns the value of the Number object converted to a native unsigned
char.

Syntax
operator unsigned char() const;

operator unsigned int()

13-462 Oracle C++ Call Interface Programmer's Guide

operator unsigned int()

This method returns the value of the Number object converted to a native unsigned
int.

Syntax
operator unsigned int() const;

Number Class

OCCI Application Programming Interface 13-463

operator unsigned long()

This method returns the value of the Number object converted to a native unsigned
long.

Syntax
operator unsigned long() const;

operator unsigned short()

13-464 Oracle C++ Call Interface Programmer's Guide

operator unsigned short()

This method returns the value of the Number object converted to a native unsigned
short integer.

Syntax
operator unsigned short() const;

Number Class

OCCI Application Programming Interface 13-465

power()

This method returns the value of the Number object raised to the power of the value
provided by the parameter specified.

Syntax
const Number power(

const Number &val) const;

Parameter Description

val The power to which the number has to be raised.

prec()

13-466 Oracle C++ Call Interface Programmer's Guide

prec()

This method returns the value of the Number object rounded to the digits of precision
provided by the parameter specified.

Syntax
const Number prec(

int digits) const;

Parameter Description

digits The number of digits of precision.

Number Class

OCCI Application Programming Interface 13-467

round()

This method returns the value of the Number object rounded to the decimal place
provided by the parameter specified.

Syntax
const Number round(

int decPlace) const;

Parameter Description

decPlace The number of digits to the right of the decimal point.

setNull()

13-468 Oracle C++ Call Interface Programmer's Guide

setNull()

This method sets the value of the Number object to NULL.

Syntax
void setNull();

Number Class

OCCI Application Programming Interface 13-469

shift()

This method returns the Number object multiplied by 10 to the power provided by the
parameter specified.

Syntax
const Number shift(

int val) const;

Parameter Description

val An integer value.

sign()

13-470 Oracle C++ Call Interface Programmer's Guide

sign()

This method returns the sign of the value of the Number object. If the Number object is
negative, then create a Date object using integer parameters is returned. If the Number
object equals 0, then create a Date object using integer parameters is returned. If the
Number object is positive, then 1 is returned.

Syntax
const int sign() const;

Number Class

OCCI Application Programming Interface 13-471

sin()

This method returns the sin of the Number object.

Syntax
const Number sin() const;

squareroot()

13-472 Oracle C++ Call Interface Programmer's Guide

squareroot()

This method returns the square root of the Number object.

Syntax
const Number squareroot() const;

Number Class

OCCI Application Programming Interface 13-473

tan()

This method returns the tangent of the Number object.

Syntax
const Number tan() const;

toBytes()

13-474 Oracle C++ Call Interface Programmer's Guide

toBytes()

This method converts the Number object into a Bytes object. The bytes representation is
assumed to be in length excluded format, that is, the Byte.length() method gives the
length of valid bytes and the 0th byte is the exponent byte.

Syntax
Bytes toBytes() const;

Number Class

OCCI Application Programming Interface 13-475

toText()

Convert the Number object to a formatted string or UString based on the parameters
specified.

See Also: Oracle Database SQL Language Referencefor information on
TO_NUMBER

Syntax Description

string toText(
const Environment *envp,
const string &fmt,
const string &nlsParam = "") const;

Convert the Number object to a formatted
string based on the parameters specified.

UString toText(
const Environment *envp,
const UString &fmt,
const UString &nlsParam) const;

Convert the Number object to a UString
based on the parameters specified.

Parameter Description

envp The OCCI environment.

fmt The format string.

nlsParam The NLS parameters string. If nlsParam is specified, this
determines the NLS parameters to be used for the conversion. If
nlsParam is not specified, the NLS parameters are picked up
from envp.

trunc()

13-476 Oracle C++ Call Interface Programmer's Guide

trunc()

This method returns the Number object truncated at the number of decimal places
provided by the parameter specified.

Syntax
const Number trunc(

int decPlace) const;

Parameter Description

decPlace The number of places to the right of the decimal place at which
the value is to be truncated.

PObject Class

OCCI Application Programming Interface 13-477

PObject Class

OCCI provides object navigational calls that enable applications to perform any of the
following on objects:

■ Creating, accessing, locking, deleting, copying, and flushing objects

■ Getting references to the objects

This class enables the type definer to specify when a class can have persistent or
transient instances. Instances of classes derived from PObject are either persistent or
transient. For example, class A that is persistent-capable inherits from the PObject
class:

class A : PObject { ... }

The only methods valid on a NULL PObject are setName(), isNull(), and operator=().

Some methods, such as lock(), apply only for persistent instances, not for transient
instances.

Table 13–31 Enumerated Values Used by PObject Class

Attribute Options

LockOption ■ OCCI_LOCK_WAIT instructs the cache to pin the object only after
acquiring a lock; if the object is locked by another user, the pin call
with this option waits until it can acquire the lock before returning
to the caller; equivalent to SELECT FOR UPDATE

■ OCCI_LOCK_NOWAIT instructs the cache to pin the object only after
acquiring a lock; does not wait if the object is currently locked by
another user; equivalent to SELECT FOR UPDATE WITH NOWAIT

UnpinOption ■ OCCI_PINCOUNT_RESET resets the object's pin count to 0

■ OCCI_PINCOUNT_DECR decrements the object's pin count by 1

Table 13–32 Summary of PObject Methods

Method Summary

PObject() on page 13-479 PObject class constructor.

flush() on page 13-480 Flushes a modified persistent object to the database server.

getConnection() on page 13-481 Returns the connection from which the PObject object was
instantiated.

getRef() on page 13-482 Returns a reference to a given persistent object.

getSQLTypeName() on
page 13-483

Returns the Oracle database typename for this class.

isLocked() on page 13-484 Tests whether the persistent object is locked.

isNull() on page 13-485 Tests whether the object is NULL.

lock() on page 13-486 Lock a persistent object on the database server. The default
mode is to wait for the lock if not available.

markDelete() on page 13-487 Marks a persistent object as deleted.

markModified() on page 13-488 Marks a persistent object as modified or dirty.

operator=() on page 13-489 Assigns one PObject to another.

PObject Class

13-478 Oracle C++ Call Interface Programmer's Guide

operator delete() on page 13-490 Remove the persistent object from the application cache
only.

operator new() on page 13-491 Creates a new persistent / transient instance.

pin() on page 13-492 Pins an object.

setNull() on page 13-493 Sets the object value to NULL.

unmark() on page 13-494 Unmarks an object as dirty.

unpin() on page 13-495 Unpins an object. In the default mode, the pin count of the
object is decremented by one.

Table 13–32 (Cont.) Summary of PObject Methods

Method Summary

PObject Class

OCCI Application Programming Interface 13-479

PObject()

PObject class constructor.

Syntax Description

PObject(); Creates a NULL PObject.

PObject(
const PObject &obj);

Creates a copy of PObject.

Parameter Description

obj The source object.

flush()

13-480 Oracle C++ Call Interface Programmer's Guide

flush()

This method flushes a modified persistent object to the database server.

Syntax
void flush();

PObject Class

OCCI Application Programming Interface 13-481

getConnection()

Returns the connection from which the persistent object was instantiated.

Syntax
const Connection *getConnection() const;

getRef()

13-482 Oracle C++ Call Interface Programmer's Guide

getRef()

This method returns a reference to the persistent object.

Syntax
RefAny getRef() const;

PObject Class

OCCI Application Programming Interface 13-483

getSQLTypeName()

Returns the Oracle database typename for this class.

Syntax
string getSQLTypeName() const;

isLocked()

13-484 Oracle C++ Call Interface Programmer's Guide

isLocked()

This method test whether the persistent object is locked. If the persistent object is
locked, then TRUE is returned; otherwise, FALSE is returned.

Syntax
bool isLocked() const;

PObject Class

OCCI Application Programming Interface 13-485

isNull()

This method tests whether the persistent object is NULL. If the persistent object is NULL,
then TRUE is returned; otherwise, FALSE is returned.

Syntax
bool isNull() const;

lock()

13-486 Oracle C++ Call Interface Programmer's Guide

lock()

Locks a persistent object on the database server.

Syntax
void lock(

PObject::LockOption lock_option);

Parameter Description

lock_option Locking options; see Table 13–31.

PObject Class

OCCI Application Programming Interface 13-487

markDelete()

This method marks a persistent object as deleted.

Syntax
void markDelete();

markModified()

13-488 Oracle C++ Call Interface Programmer's Guide

markModified()

This method marks a persistent object as modified or dirty.

Syntax
void mark_Modified();

PObject Class

OCCI Application Programming Interface 13-489

operator=()

This method assigns the value of a persistent object this PObject object. The nature
(transient or persistent) of the object is maintained. NULL information is copied from
the source instance.

Syntax
PObject& operator=(

const PObject& obj);

Parameter Description

obj The object from which the assigned value is obtained.

operator delete()

13-490 Oracle C++ Call Interface Programmer's Guide

operator delete()

Deletes a persistent or transient object. The delete operator on a persistent object
removes the object from the application cache only. To delete the object from the
database server, invoke the markDelete() method.

Syntax
void operator delete(

void *obj,
size_t size);

Parameter Description

obj The pointer to object to be deleted

size (Optional) Size is implicitly obtained from the object

PObject Class

OCCI Application Programming Interface 13-491

operator new()

This method creates a new object. A persistent object is created if the connection and
table name are provided. Otherwise, a transient object is created.

Syntax Description

void *operator new(
size_t size);

Creates a default new object, with a size
specification only

void *operator new(
size_t size,
const Connection *conn,
const string& tableName,
const char *typeName);

Used for creating transient objects when client
side characterset is multibyte.

void *operator new(
size_t size,
const Connection *conn,
const string& tableName,
const string& typeName,
const string& schTableName="",
const string& schTypeName="");

Used for creating persistent objects when
client side characterset is multibyte.

void *operator new(
size_t size,
const Connection *conn,
const UString& tableName,
const UString& typeName,
const UString& schTableName="",
const UString& schTypeName="");

Used for creating persistent objects when
client side characterset is unicode (UTF16).

Parameter Description

size size of the object

conn The connection to the database in which the persistent object is to
be created.

tableName The name of the table in the database server.

typeName The SQL type name corresponding to this C++ class. The format is
<schemaname>.<typename>.

schTableName The schema table name.

schTypeName The schema type name.

pin()

13-492 Oracle C++ Call Interface Programmer's Guide

pin()

This method pins the object and increments the pin count by one. If the object is
pinned, it is not freed by the cache even if there are no references to this object
instance.

Syntax
void pin();

PObject Class

OCCI Application Programming Interface 13-493

setNull()

This method sets the object value to NULL.

Syntax
void setNull();

unmark()

13-494 Oracle C++ Call Interface Programmer's Guide

unmark()

This method unmarks a persistent object as modified or deleted.

Syntax
void unmark();

PObject Class

OCCI Application Programming Interface 13-495

unpin()

This method unpins a persistent object. In the default mode, the pin count of the object
is decremented by one. When this method is invoked with OCCI_PINCOUNT_RESET, the
pin count of the object is reset. If the pin count is reset, this method invalidates all the
references (Refs) pointing to this object. The cache sets the object eligible to be freed, if
necessary, reclaiming memory.

Syntax
void unpin(

UnpinOption mode=OCCI_PINCOUNT_DECR);

Parameter Description

mode Specifies whether the UnpinOption mode, or the pin count, should
be decremented or reset to 0. See Table 13–31. Valid values are OCCI_
PINCOUNT_RESET and OCCI_PINCOUNT_DECR.

Producer Class

13-496 Oracle C++ Call Interface Programmer's Guide

Producer Class

The Producer enqueues Messages into a queue and defines the enqueue options.

Table 13–33 Enumerated Values Used by Producer Class

Attribute Options

EnqueueSequence ■ ENQ_BEFORE indicates that the message is enqueued before the
message specified by the related message id.

■ ENQ_TOP indicates that the message is enqueued before any other
messages.

Visibility ■ ENQ_IMMEDIATE indicates that the enqueue is not part of the current
transaction. The operation constitutes a transaction of its own.

■ ENQ_ON_COMMIT indicates that the enqueue is part of the current
transaction. The operation is complete when the transaction
commits. This is the default setting.

Table 13–34 Summary of Producer Methods

Method Summary

Producer() on page 13-497 Producer class constructor.

getQueueName() on page 13-498 Retrieves the name of a queue on which the Messages is
enqueued.

getRelativeMessageId() on
page 13-499

Retrieves the Message id that is referenced in a sequence
deviation operation.

getSequenceDeviation() on
page 13-500

Retrieves information regarding whether the Message
should be dequeued ahead of other Messages in the
queue.

getTransformation() on page 13-501 Retrieves the transformation applied before a Message is
enqueued.

getVisibility() on page 13-502 Retrieves the transactional behavior of the enqueue
request.

isNull() on page 13-503 Tests whether the Producer is NULL.

send() on page 13-505 Enqueues and sends a Message.

operator=() on page 13-504 Assignment operator for Producer.

setNull() on page 13-506 Frees memory if the scope of the Producer extends
beyond the Connection on which it was created.

setQueueName() on page 13-507 Specifies the name of a queue on which the Messages is
enqueued.

setRelativeMessageId() on
page 13-508

Specifies the Message id to be referenced in the sequence
deviation operation.

setSequenceDeviation() on
page 13-509

Specifies whether Message should be dequeued before
other Messages in the queue.

setTransformation() on page 13-510 Specifies transformation applied before enqueuing a
Message.

setVisibility() on page 13-511 Specifies transaction behavior of the enqueue request.

Producer Class

OCCI Application Programming Interface 13-497

Producer()

Producer object constructor.

Syntax Description

Producer(
const Connection *conn);

Creates a Producer object with the
specified Connection.

Producer(
const Connection *conn,
const string& queue);

Creates a Producer object with the
specified Connection and queue name.

Parameter Description

conn The connection of the new Producer object.

queue The queue that is used by the new Producer object.

getQueueName()

13-498 Oracle C++ Call Interface Programmer's Guide

getQueueName()

Retrieves the name of a queue on which the Messages are enqueued.

Syntax
string getQueueName() cosnt;

Producer Class

OCCI Application Programming Interface 13-499

getRelativeMessageId()

Retrieves the Message id that is referenced in a sequence deviation operation. Used
only if a sequence deviation is specified; ignored otherwise.

Syntax
Bytes getRelativeMessageId() const;

getSequenceDeviation()

13-500 Oracle C++ Call Interface Programmer's Guide

getSequenceDeviation()

Retrieves information regarding whether the Message should be dequeued ahead of
other Messages in the queue. Valid return values are ENQ_BEFORE and ENQ_TOP, as
defined in Table 13–33 on page 13-496.

Syntax
EnqueueSequence getSequenceDeviation() const;

Producer Class

OCCI Application Programming Interface 13-501

getTransformation()

Retrieves the transformation applied before a Message is enqueued.

Syntax
string getTransformation() const;

getVisibility()

13-502 Oracle C++ Call Interface Programmer's Guide

getVisibility()

Retrieves the transactional behavior of the enqueue request. Visibility is defined in
Table 13–33 on page 13-496.

Syntax
Visibility getVisibility() const;

Producer Class

OCCI Application Programming Interface 13-503

isNull()

Tests whether the Producer is NULL. If the Producer is NULL, then TRUE is returned;
otherwise, FALSE is returned.

Syntax
bool isNull() const;

operator=()

13-504 Oracle C++ Call Interface Programmer's Guide

operator=()

The assignment operator for Producer.

Syntax
void operator=(

const Producer& prod);

Parameter Description

prod The original Producer

Producer Class

OCCI Application Programming Interface 13-505

send()

Enqueues and sends a Message.

Syntax Description

Bytes send(
Message& msg);

Used when queueName has been previously set by the
setQueueName() method.

Bytes send(
Message& msg,
string& queue);

Enqueue the Message to the specified queueName.

Parameter Description

msg The Message that is enqueued.

queue The name of a valid queue in the database.

setNull()

13-506 Oracle C++ Call Interface Programmer's Guide

setNull()

Frees memory associated with the Producer. Unless working in inner scope, this call
should be made before terminating the Connection.

Syntax
void setNull();

Producer Class

OCCI Application Programming Interface 13-507

setQueueName()

Specifies the name of a queue on which the Messages are enqueued. Typically used
when enqueuing multiple messages to the same queue.

Syntax
void setQueueName(

const string& queue);

Parameter Description

queue The name of a valid queue in the database, to which the Messages
are enqueued.

setRelativeMessageId()

13-508 Oracle C++ Call Interface Programmer's Guide

setRelativeMessageId()

Specifies the Message id to be referenced in the sequence deviation operation. If the
sequence deviation is not specified, this parameter is ignored. Can be set for each
enqueuing of a Message.

Syntax
void setRelativeMessageId(

const Bytes& msgid);

Parameter Description

msgid The id of the relative Message.

Producer Class

OCCI Application Programming Interface 13-509

setSequenceDeviation()

Specifies whether Message being enqueued should be dequeued before other
Message(s) in the queue. Can be set for each enqueuing of a Message.

Syntax
void setSequenceDeviation(

EnqueueSequence option);

Parameter Description

option The enqueue sequence being set, defined in Table 13–33 on page 13-496.

setTransformation()

13-510 Oracle C++ Call Interface Programmer's Guide

setTransformation()

Specifies transformation function applied before enqueuing the Message.

Syntax
void setTransformation(

string &fName);

Parameter Description

fName SQL transformation function.

Producer Class

OCCI Application Programming Interface 13-511

setVisibility()

Specifies transaction behavior of the enqueue request. Can be set for each enqueuing
of a Message.

Syntax
void setVisibility(

Visibility option);

Parameter Description

option Visibility option being set, defined in Table 13–33 on page 13-496.

Ref Class

13-512 Oracle C++ Call Interface Programmer's Guide

Ref Class

The mapping in the C++ programming language of an SQL REF value, which is a
reference to an SQL structured type value in the database.

Each REF value has a unique identifier of the object it refers to. An SQL REF value
may be used instead of the SQL structured type it references; it may be used as either a
column value in a table or an attribute value in a structured type.

Because an SQL REF value is a logical pointer to an SQL structured type, a Ref object is
by default also a logical pointer; thus, retrieving an SQL REF value as a Ref object does
not materialize the attributes of the structured type on the client.

The only methods valid on a NULL Ref object are isNull(), and operator=().

A Ref object can be saved to persistent storage and is de-referenced through
operator*(), operator->() or ptr() methods. T must be a class derived from PObject. In
the following sections, T* and PObject* are used interchangeably.

Table 13–35 Enumerated Values Used by Ref Class

Attribute Options

LockOptions ■ OCCI_LOCK_NONE clears the lock setting on the Ref object.

■ OCCI_LOCK_X indicates that the object should be locked, and to wait
for the lock to be available if the object is locked by another session.

■ OCCI_LOCK_X_NOWAIT indicates that the object should be locked, and
returns an error if it is locked by another session.

PrefetchOption ■ OCCI_MAX_PREFETCH_DEPTH indicates that the fetch should be done
to maximum depth.

Table 13–36 Summary of Ref Methods

Method Summary

Ref() on page 13-514 Ref object constructor.

clear() on page 13-515 Clears the reference.

getConnection() on page 13-516 Returns the connection this ref was created from.

isClear() on page 13-517 Checks if the Ref is cleared.

isNull() on page 13-518 Checks if the Ref is NULL.

markDelete() on page 13-519 Marks the referred object as deleted.

operator->() on page 13-520 Dereferences the Ref and pins the object if necessary.

operator*() on page 13-521 Dereferences the Ref and pins or fetches the object if
necessary.

operator==() on page 13-522 Checks if the Ref and the pointer refer to the same object.

operator!=() on page 13-523 Checks if the Ref and the pointer refer to different objects.

operator=() on page 13-524 Assignment operator.

ptr() on page 13-525 Returns a pointer to a PObject. Dereferences the Ref and
pins or fetches the object if necessary.

setLock() on page 13-526 Sets the lock option for the object referred from this.

setNull() on page 13-527 Sets the Ref to NULL.

Ref Class

OCCI Application Programming Interface 13-513

setPrefetch() on page 13-528 Sets the prefetch options for complex object retrieval.

unmarkDelete() on page 13-529 Unmarks for delete the object referred by this.

Table 13–36 (Cont.) Summary of Ref Methods

Method Summary

Ref()

13-514 Oracle C++ Call Interface Programmer's Guide

Ref()

Ref object constructor.

Syntax Description

Ref(); Creates a NULL Ref.

Ref(
const Ref<T> &src);

Creates a copy of Ref.

Parameter Description

src The Ref that is being copied.

Ref Class

OCCI Application Programming Interface 13-515

clear()

This method clears the Ref object.

Syntax
void clear();

getConnection()

13-516 Oracle C++ Call Interface Programmer's Guide

getConnection()

Returns the connection from which the Ref object was instantiated.

Syntax
const Connection *getConnection() const;

Ref Class

OCCI Application Programming Interface 13-517

isClear()

This method checks if Ref object is cleared.

Syntax
bool isClear() const;

isNull()

13-518 Oracle C++ Call Interface Programmer's Guide

isNull()

This method tests whether the Ref object is NULL. If the Ref object is NULL, then TRUE is
returned; otherwise, FALSE is returned.

Syntax
bool isNull() const;

Ref Class

OCCI Application Programming Interface 13-519

markDelete()

This method marks the referenced object as deleted.

Syntax
void markDelete();

operator->()

13-520 Oracle C++ Call Interface Programmer's Guide

operator->()

This method dereferences the Ref object and pins, or fetches the referenced object if
necessary. This might result in prefetching a graph of objects if prefetch attributes of
the referenced object are set.

Syntax Description

T *operator->(); Dereferences and pins or fetches a non-const Ref object.

const T *operator->() const; Dereferences and pins or fetches a const Ref object.

Ref Class

OCCI Application Programming Interface 13-521

operator*()

This method dereferences the Ref object and pins or fetches the referenced object if
necessary. This might result in prefetching a graph of objects if prefetch attributes of
the referenced object are set. The object does not have to be deleted. Destructor would
be automatically called when it goes out of scope.

Syntax Description

T& operator*(); Dereferences and pins or fetches a non-const Ref object.

const T& operator*() const; Dereferences and pins or fetches a const Ref object.

operator==()

13-522 Oracle C++ Call Interface Programmer's Guide

operator==()

This method tests whether two Ref objects are referencing the same object. If the Ref
objects are referencing the same object, then TRUE is returned; otherwise, FALSE is
returned.

Syntax
bool operator == (

const Ref<T> &ref) const;

Parameter Description

ref The Ref object of the object to be compared.

Ref Class

OCCI Application Programming Interface 13-523

operator!=()

This method tests whether two Ref objects are referencing the same object. If the Ref
objects are not referencing the same object, then TRUE is returned; otherwise, FALSE is
returned.

Syntax
bool operator!= (

const Ref<T> &ref) const;

Parameter Description

ref The Ref object of the object to be compared.

operator=()

13-524 Oracle C++ Call Interface Programmer's Guide

operator=()

Assigns the Ref or the object to a Ref. For the first case, the Refs are assigned and for
the second case, the Ref is constructed from the object and then assigned.

Syntax Description

Ref<T>& operator=(
const Ref<T> &src);

Assigns a Ref to a Ref.

Ref<T>& operator=(
const T *)obj;

Assigns a Ref to an object.

Parameter Description

src The source Ref object to be assigned.

obj The source object pointer whose Ref object is to be assigned.

Ref Class

OCCI Application Programming Interface 13-525

ptr()

Returns a pointer to a PObject. This operator dereferences the Ref and pins or fetches
the object if necessary. This might result in prefetching a graph of objects if prefetch
attributes of the Ref are set.

Syntax Description

T *ptr(); Returns a pointer of a non-const Ref object.

const T *ptr() const; Returns a pointer of a const Ref object.

setLock()

13-526 Oracle C++ Call Interface Programmer's Guide

setLock()

This method specifies how the object should be locked when dereferenced.

Syntax
void setLock(lockOptions);

Argument Description

lockOptions The lock options as defined by LockOptions in Table 13–35 on page 13-512.

Ref Class

OCCI Application Programming Interface 13-527

setNull()

This method sets the Ref object to NULL.

Syntax
void setNull();

setPrefetch()

13-528 Oracle C++ Call Interface Programmer's Guide

setPrefetch()

Sets the prefetching options for complex object retrieval. This method specifies depth
up to which all objects reachable from this object through Refs (transitive closure)
should be prefetched. If only selected attribute types are to be prefetched, then the first
version of the method must be used. This method specifies which Ref attributes of the
object it refers to should be followed for prefetching of the objects (complex object
retrieval) and how many levels deep those links should be followed.

Syntax Description

void setPrefetch(
const string &typeName,
unsigned int depth);

Sets the prefetching options for complex object
retrieval, using type name and depth.

void setPrefetch(
unsigned int depth);

Sets the prefetching options for complex object
retrieval, using depth only.

void setPrefetch(
const string &schName,
const string &typeName,
unsigned int depth);

Sets the prefetching options for complex object
retrieval, using schema, type name, and depth.

void setPrefetch(
const UString &schName,
const UString &typeName,
unsigned int depth);

Sets the prefetching options for complex object
retrieval, using schema, type name, and depth, and
UString support.

Parameter Description

typeName Type of the Ref attribute to be prefetched.

schName Schema name of the Ref attribute to be prefetched.

depth Depth level to which the links should be followed; can use
PrefetchOption as defined in Table 13–35 on page 13-512.

Ref Class

OCCI Application Programming Interface 13-529

unmarkDelete()

This method unmarks the referred object as dirty and available for deletion.

Syntax
void unmarkDelete();

RefAny Class

13-530 Oracle C++ Call Interface Programmer's Guide

RefAny Class

The RefAny class is designed to support a reference to any type. Its primary purpose is
to handle generic references and allow conversions of Ref in the type hierarchy. A
RefAny object can be used as an intermediary between any two types, Ref<x> and
Ref<y>, where x and y are different types.

Table 13–37 Summary of RefAny Methods

Method Summary

RefAny() on page 13-531 Constructor for RefAny class.

clear() on page 13-532 Clears the reference.

getConnection() on page 13-533 Returns the connection this ref was created from.

isNull() on page 13-534 Checks if the RefAny object is NULL.

markDelete() on page 13-535 Marks the object as deleted.

operator=() on page 13-536 Assignment operator for RefAny.

operator==() on page 13-537 Checks if this RefAny object equals a specified RefAny.

operator!=() on page 13-538 Checks if not equal.

unmarkDelete() on page 13-539 Unmarks the object as deleted.

RefAny Class

OCCI Application Programming Interface 13-531

RefAny()

A Ref<T> can always be converted to a RefAny; there is a method to perform the
conversion in the Ref<T> template. Each Ref<T> has a constructor and assignment
operator that takes a reference to RefAny.

Syntax Description

RefAny(); Creates a NULL RefAny.

RefAny(
const Connection *sessptr,
const OCIRef *ref);

Creates a RefAny from a session pointer and a reference.

RefAny(
const RefAny& src);

Creates a RefAny as a copy of another RefAny object.

Parameter Description

sessptr Session pointer

ref A reference

src The source RefAny object to be assigned

clear()

13-532 Oracle C++ Call Interface Programmer's Guide

clear()

This method clears the reference.

Syntax
void clear();

RefAny Class

OCCI Application Programming Interface 13-533

getConnection()

Returns the connection from which this reference was instantiated.

Syntax
const Connection* getConnection() const;

isNull()

13-534 Oracle C++ Call Interface Programmer's Guide

isNull()

Returns TRUE if the object pointed to by this ref is NULL else FALSE.

Syntax
bool isNull() const;

RefAny Class

OCCI Application Programming Interface 13-535

markDelete()

This method marks the referred object as deleted.

Syntax
void markDelete();

operator=()

13-536 Oracle C++ Call Interface Programmer's Guide

operator=()

Assignment operator for RefAny.

Syntax
RefAny& operator=(

const RefAny& src);

Parameter Description

src The source RefAny object to be assigned.

RefAny Class

OCCI Application Programming Interface 13-537

operator==()

Compares this ref with a RefAny object and returns TRUE if both the refs are referring
to the same object in the cache, otherwise it returns FALSE.

Syntax
bool operator== (

const RefAny &refAnyR) const;

Parameter Description

refAnyR RefAny object to which the comparison is made.

operator!=()

13-538 Oracle C++ Call Interface Programmer's Guide

operator!=()

Compares this ref with the RefAny object and returns TRUE if both the refs are not
referring to the same object in the cache, otherwise it returns FALSE.

Syntax
bool operator!= (

const RefAny &refAnyR) const;

Parameter Description

refAnyR RefAny object to which the comparison is made.

RefAny Class

OCCI Application Programming Interface 13-539

unmarkDelete()

This method unmarks the referred object as dirty.

Syntax
void unmarkDelete();

ResultSet Class

13-540 Oracle C++ Call Interface Programmer's Guide

ResultSet Class

A ResultSet provides access to a table of data generated by executing a Statement.
Table rows are retrieved in sequence. Within a row, column values can be accessed in
any order.

A ResultSet maintains a cursor pointing to its current row of data. Initially the cursor
is positioned before the first row. The next method moves the cursor to the next row.

The getxxx() methods retrieve column values for the current row. You can retrieve
values using the index number of the column. Columns are numbered beginning at 1.
For the getxxx() methods, OCCI attempts to convert the underlying data to the
specified C++ type and returns a C++ value. SQL types are mapped to C++ types with
the ResultSet::getxxx() methods.

The number, types and properties of a ResultSet's columns are provided by the
MetaData object returned by the getColumnListMetaData() method.

Table 13–38 Enumerated Values Used by ResultSet Class

Attribute Options

Status ■ DATA_AVAILABLE indicates that data for one or more rows was successfully
fetched from the server; up to the requested number of rows (numRows) were
returned. When in streamed mode, use the getNumArrayRows() method to
determine the exact number of rows retrieved when numRows is greater than 1.

■ STREAM_DATA_AVAILABLE indicates that the application should call the
getCurrentStreamColumn() method and read stream.

■ END_OF_FETCH indicates that no data was available for fetching.

Table 13–39 Summary of ResultSet Methods

Method Description

cancel() on page 13-543 Cancels the ResultSet.

closeStream() on page 13-544 Closes the specified Stream.

getBDouble() on page 13-545 Returns the value of a column in the current row as a
BDouble.

getBfile() on page 13-546 Returns the value of a column in the current row as a
Bfile.

getBFloat() on page 13-547 Returns the value of a column in the current row as a
BFloat.

getBlob() on page 13-548 Returns the value of a column in the current row as a
Blob object.

getBytes() on page 13-549 Returns the value of a column in the current row as a
Bytes array.

getCharSet() on page 13-550 Returns the character set in which data would be
fetched.

getCharSetUString() on page 13-551 Returns the character set in which data would be
fetched as a UString.

getClob() on page 13-552 Returns the value of a column in the current row as a
Clob object.

getColumnListMetaData() on
page 13-553

Returns the describe information of the result set
columns as a MetaData object.

ResultSet Class

OCCI Application Programming Interface 13-541

getCurrentStreamColumn() on
page 13-554

Returns the column index of the current readable
Stream.

getCurrentStreamRow() on
page 13-555

Returns the current row of the ResultSet being
processed.

getCursor() on page 13-556 Returns the nested cursor as a ResultSet.

getDate() on page 13-558 Returns the value of a column in the current row as a
Date object.

getDatabaseNCHARParam() on
page 13-557

Returns whether data is in NCHAR character set or not.

getDouble() on page 13-559 Returns the value of a column in the current row as a
C++ double.

getFloat() on page 13-560 Returns the value of a column in the current row as a
C++ float.

getInt() on page 13-561 Returns the value of a column in the current row as a
C++ int.

getIntervalDS() on page 13-562 Returns the value of a column in the current row as a
IntervalDS.

getIntervalYM() on page 13-563 Returns the value of a column in the current row as a
IntervalYM.

getMaxColumnSize() on page 13-564 Returns the value set by setMaxColumnSize().

getNumArrayRows() on page 13-565 Returns the actual number of rows fetched in the last
array fetch.

getNumber() on page 13-566 Returns the value of a column in the current row as a
Number object.

getObject() on page 13-567 Returns the value of a column in the current row as a
PObject.

getRef() on page 13-568 Returns the value of a column in the current row as a
Ref.

getRowid() on page 13-569 Returns the current ROWID for a SELECT FOR UPDATE
statement.

getRowPosition() on page 13-570 Returns the row id of the current row position.

getStatement() on page 13-571 Returns the Statement of the ResultSet.

getStream() on page 13-572 Returns the value of a column in the current row as a
Stream.

getString() on page 13-573 Returns the value of a column in the current row as a
string.

getTimestamp() on page 13-574 Returns the value of a column in the current row as a
Timestamp object.

getUInt() on page 13-575 Returns the value of a column in the current row as a
C++ unsigned int

getUString() on page 13-576 Returns the value of a column in the current row as a
UString.

getVector() on page 13-577 Returns the specified collection parameter as a vector.

getVectorOfRefs() on page 13-579 Returns the column in the current position as a vector
of Refs.

Table 13–39 (Cont.) Summary of ResultSet Methods

Method Description

ResultSet Class

13-542 Oracle C++ Call Interface Programmer's Guide

isNull() on page 13-580 Checks whether the value is NULL.

isTruncated() on page 13-581 Checks whether truncation has occurred.

next() on page 13-582 Makes the next row the current row in a ResultSet.

preTruncationLength() on
page 13-583

Returns the actual length of the parameter before
truncation.

setBinaryStreamMode() on
page 13-584

Specifies that a column is to be returned as a binary
stream.

setCharacterStreamMode() on
page 13-585

Specifies that a column is to be returned as a character
stream.

setCharSet() on page 13-586 Specifies the character set in which the data is to be
returned.

setCharSetUString() on page 13-587 Specifies the character set in which the data is to be
returned.

setDatabaseNCHARParam() on
page 13-588

If the parameter is going to be retrieved from a column
that contains data in the database's NCHAR character
set, then OCCI must be informed by passing a true
value.

setDataBuffer() on page 13-589 Specifies the data buffer into which data is to be
fetched, or the gather and scatter binds and defines
made.

setErrorOnNull() on page 13-590 Enables Or Disables exception when NULL value is read.

setErrorOnTruncate() on page 13-591 Enables Or Disables exception when truncation occurs.

setPrefetchMemorySize() on
page 13-592

Sets the amount of memory that is used internally by
OCCI to store data fetched during each round trip to
the server.

setPrefetchRowCount() on
page 13-593

Sets the number of rows that are fetched internally by
OCCI during each round trip to the server.

setMaxColumnSize() on page 13-594 Specifies the maximum amount of data in bytes to read
from a column. It should be based on the environment's
character set, in which the env has been created.

status() on page 13-595 Returns the current status of the ResultSet.

Table 13–39 (Cont.) Summary of ResultSet Methods

Method Description

ResultSet Class

OCCI Application Programming Interface 13-543

cancel()

This method cancels the result set.

Syntax
void cancel();

closeStream()

13-544 Oracle C++ Call Interface Programmer's Guide

closeStream()

This method closes the stream specified by the parameter stream.

Syntax
void closeStream(

Stream *stream);

Parameter Description

stream The Stream to be closed.

ResultSet Class

OCCI Application Programming Interface 13-545

getBDouble()

This method returns the value of a column in the current row as a BDouble. If the value
is SQL NULL, the result is NULL.

Syntax
BDouble getBDouble(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

getBfile()

13-546 Oracle C++ Call Interface Programmer's Guide

getBfile()

This method returns the value of a column in the current row as a Bfile. Returns the
column value; if the value is SQL NULL, the result is NULL.

Syntax
Bfile getBfile(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

ResultSet Class

OCCI Application Programming Interface 13-547

getBFloat()

This method returns the value of a column in the current row as a BFloat. If the value
is SQL NULL, the result is NULL.

Syntax
BFloat getBFloat(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

getBlob()

13-548 Oracle C++ Call Interface Programmer's Guide

getBlob()

Get the value of a column in the current row as an Blob. Returns the column value; if
the value is SQL NULL, the result is NULL.

Syntax
Blob getBlob(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

ResultSet Class

OCCI Application Programming Interface 13-549

getBytes()

Get the value of a column in the current row as a Bytes array. The bytes represent the
raw values returned by the server. Returns the column value; if the value is SQL NULL,
the result is NULL array

Syntax
Bytes getBytes(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

getCharSet()

13-550 Oracle C++ Call Interface Programmer's Guide

getCharSet()

Gets the character set in which data would be fetched, as a string.

Syntax
string getCharSet(

unsigned int colIndex) const;

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

ResultSet Class

OCCI Application Programming Interface 13-551

getCharSetUString()

Gets the character set in which data would be fetched, as a string.

Syntax
UString getCharSetUString(

unsigned int colIndex) const;

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

getClob()

13-552 Oracle C++ Call Interface Programmer's Guide

getClob()

Get the value of a column in the current row as a Clob. Returns the column value; if
the value is SQL NULL, the result is NULL.

Syntax
Clob getClob(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

ResultSet Class

OCCI Application Programming Interface 13-553

getColumnListMetaData()

The number, types and properties of a ResultSet's columns are provided by the
getMetaData method. Returns the description of a ResultSet's columns. This method
returns the value of the given column as a PObject. The type of the C++ object is the
C++ PObject type corresponding to the column's SQL type registered with
Environment's map. This method is used to materialize data of SQL user-defined
types.

Syntax
vector<MetaData> getColumnListMetaData() const;

getCurrentStreamColumn()

13-554 Oracle C++ Call Interface Programmer's Guide

getCurrentStreamColumn()

If the result set has any input Stream parameters, this method returns the column
index of the current input Stream that must be read. If no output Stream must be read,
or there are no input Stream columns in the result set, this method returns 0. Returns
the column index of the current input Stream column that must be read.

Syntax
unsigned int getCurrentStreamColumn() const;

ResultSet Class

OCCI Application Programming Interface 13-555

getCurrentStreamRow()

If the result has any input Streams, this method returns the current row of the result
set that is being processed by OCCI. If this method is called after all the rows in the set
of array of rows have been processed, it returns 0. Returns the row number of the
current row that is being processed. The first row is numbered 1 and so on.

Syntax
unsigned int getCurrentStreamRow() const;

getCursor()

13-556 Oracle C++ Call Interface Programmer's Guide

getCursor()

Get the nested cursor as an ResultSet. Data can be fetched from this result set. A
nested cursor results from a nested query with a CURSOR(SELECT...) clause:

SELECT last_name,
CURSOR(SELECT department_name FROM departments)

FROM employees WHERE last_name = 'JONES'

Note that if there are multiple REF CURSORs being returned, data from each cursor must
be completely fetched before retrieving the next REF CURSOR and starting fetch on it.
Returns A ResultSet for the nested cursor.

Syntax
ResultSet * getCursor(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

ResultSet Class

OCCI Application Programming Interface 13-557

getDatabaseNCHARParam()

Returns whether data is in NCHAR character set or not.

Syntax
bool getDatabaseNCHARParam(

unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index, first parameter is 1, second is 2, and so on.

getDate()

13-558 Oracle C++ Call Interface Programmer's Guide

getDate()

Get the value of a column in the current row as a Date object. Returns the column
value; if the value is SQL NULL, the result is NULL.

Syntax
Date getDate(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

ResultSet Class

OCCI Application Programming Interface 13-559

getDouble()

Gets the value of a column in the current row as a C++ double. Returns the column
value; if the value is SQL NULL, the result is 0.

Syntax
double getDouble(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

getFloat()

13-560 Oracle C++ Call Interface Programmer's Guide

getFloat()

Get the value of a column in the current row as a C++ float. Returns the column value;
if the value is SQL NULL, the result is 0.

Syntax
float getFloat(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

ResultSet Class

OCCI Application Programming Interface 13-561

getInt()

Get the value of a column in the current row as a C++ int. Returns the column value; if
the value is SQL NULL, the result is 0.

Syntax
int getInt(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

getIntervalDS()

13-562 Oracle C++ Call Interface Programmer's Guide

getIntervalDS()

Get the value of a column in the current row as a IntervalDS object. Returns the
column value; if the value is SQL NULL, the result is NULL.

Syntax
IntervalDS getIntervalDS(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

ResultSet Class

OCCI Application Programming Interface 13-563

getIntervalYM()

Get the value of a column in the current row as a IntervalYM object. Returns the
column value; if the value is SQL NULL, the result is NULL.

Syntax
IntervalYM getIntervalYM(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

getMaxColumnSize()

13-564 Oracle C++ Call Interface Programmer's Guide

getMaxColumnSize()

Get the value set by setMaxColumnSize().

Syntax
unsigned int getMaxColumnSize(

unsigned int colIndex) const;

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

ResultSet Class

OCCI Application Programming Interface 13-565

getNumArrayRows()

Returns the actual number of rows fetched in the last array fetch. Used in conjunction
with the next() method. This method cannot be used for non-array fetches.

Syntax
unsigned int getNumArrayRows() const;

getNumber()

13-566 Oracle C++ Call Interface Programmer's Guide

getNumber()

Get the value of a column in the current row as a Number object. Returns the column
value; if the value is SQL NULL, the result is NULL.

Syntax
Number getNumber(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

ResultSet Class

OCCI Application Programming Interface 13-567

getObject()

Returns a pointer to a PObject holding the column value.

Syntax
PObject * getObject(

unsigned int colIndex);

Parameter Description

colIndex Column index; first column is 1, second is 2, and so on.

getRef()

13-568 Oracle C++ Call Interface Programmer's Guide

getRef()

Get the value of a column in the current row as a RefAny. Retrieving a Ref value does
not materialize the data to which Ref refers. Also the Ref value remains valid while
the session or connection on which it is created is open. Returns a RefAny holding the
column value.

Syntax
RefAny getRef(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

ResultSet Class

OCCI Application Programming Interface 13-569

getRowid()

Get the current row id for a SELECT...FOR UPDATE statement. The row id can be bound
to a prepared DELETE statement and so on. Returns current rowid for a
SELECT...FOR UPDATE statement.

Syntax
Bytes getRowid(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

getRowPosition()

13-570 Oracle C++ Call Interface Programmer's Guide

getRowPosition()

Get the rowid of the current row position.

Syntax
Bytes getRowPosition() const;

ResultSet Class

OCCI Application Programming Interface 13-571

getStatement()

This method returns the statement of the ResultSet.

Syntax
Statement* getStatement() const;

getStream()

13-572 Oracle C++ Call Interface Programmer's Guide

getStream()

This method returns the value of a column in the current row as a Stream.

Syntax
Stream * getStream(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

ResultSet Class

OCCI Application Programming Interface 13-573

getString()

Get the value of a column in the current row as a string. Returns the column value; if
the value is SQL NULL, the result is an empty string.

Syntax
string getString(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

getTimestamp()

13-574 Oracle C++ Call Interface Programmer's Guide

getTimestamp()

Get the value of a column in the current row as a Timestamp object. Returns the
column value; if the value is SQL NULL, the result is NULL.

Syntax
Timestamp getTimestamp(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

ResultSet Class

OCCI Application Programming Interface 13-575

getUInt()

Get the value of a column in the current row as a C++ int. Returns the column value;
if the value is SQL NULL, the result is 0.

Syntax
unsigned int getUInt(

unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

getUString()

13-576 Oracle C++ Call Interface Programmer's Guide

getUString()

Returns the value as a UString.

This method should be called only if the environment's character set is UTF16, or if
setCharset() method has been called to explicitly retrieve UTF16 data.

Syntax
UString getUString(

unsigned int colIndex);

Parameter Description

colIndex Column index; first column is 1, second is 2, and so on.

ResultSet Class

OCCI Application Programming Interface 13-577

getVector()

This method returns the column in the current position as a vector. The column should
be a collection type (varray or nested table). The SQL type of the elements in the
collection should be compatible with the data type of the objects in the vector.

Syntax Description

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<BDouble> &vect);

Used for BDouble vectors.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<Bfile> &vect);

Used for Bfile vectors.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<BFloat> &vect);

Used for BFloat vectors.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<Blob> &vect);

Used for Blob vectors.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<Bytes> &vect);

Used for vectors of Bytes Class.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<Clob> &vect);

Used for Clob vectors.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<Date> &vect);

Used for vectors of Date Class.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<double> &vect);

Used for vectors of double type.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<float> &vect);

Used for vectors of float type.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<int> &vect);

Used for vectors of int type.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<IntervalDS> &vect);

Used for vectors of IntervalDS Class.

getVector()

13-578 Oracle C++ Call Interface Programmer's Guide

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<IntervalYM> &vect);

Used for vectors of IntervalYM Class.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<Number> &vect);

Used for vectors of Number Class.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<Ref<T>> &vect);

Available only on platforms where partial ordering
of function templates is supported. This function
may be deprecated in the future. getVectorOfRefs()
can be used instead.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<RefAny> &vect);

Used for vectors of RefAny Class.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<string> &vect);

Used for vectors of string type.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<T *> &vect);

Intended for use on platforms where partial
ordering of function templates is supported.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<T> &vect);

Intended for use on platforms where partial
ordering of function templates is not supported,
such as Windows NT and z/OS.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<Timestamp> &vect);

Used for vectors of Timestamp Class.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<unsigned int> &vect);

Used for vectors of unsigned int type.

void getVector(
ResultSet *rs,
unsigned int colIndex,
vector<UString> &vect);

Used for vectors of UString Class; globalization
enabled.

Parameter Description

rs The result set

colIndex Column index, first column is 1, second is 2, and so on.

vect The reference to the vector (OUT parameter).

Syntax Description

ResultSet Class

OCCI Application Programming Interface 13-579

getVectorOfRefs()

Returns the column in the current position as a vector of REFs. The column should be a
collection type (varray or nested table) of REFs. It is recommend to use this function
instead of specialized method getVector() for Ref<T>.

Syntax
void getVectorOfRefs(

ResultSet *rs,
unsigned int colIndex,
vector< Ref<T> > &vect);

Parameter Description

rs The result set

colIndex Column index, first column is 1, second is 2, and so on.

vect The reference to the vector of REFs (OUT parameter).

isNull()

13-580 Oracle C++ Call Interface Programmer's Guide

isNull()

A column may have the value of SQL NULL; isNull() reports whether the last column
read had this special value. Note that you must first call getxxx() on a column to try
to read its value and then call isNull() to find if the value was the SQL NULL. Returns
TRUE if last column read was SQL NULL.

Syntax
bool isNull(

unsigned int colIndex) const;

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

ResultSet Class

OCCI Application Programming Interface 13-581

isTruncated()

This method checks whether the value of the parameter is truncated. If the value of the
parameter is truncated, then TRUE is returned; otherwise, FALSE is returned.

Syntax
bool isTruncated(

unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index, first parameter is 1, second is 2, and so on.

next()

13-582 Oracle C++ Call Interface Programmer's Guide

next()

This method fetches a specified number of rows, numRows, from a previously executed
query, and reports the Status of this fetch as defined in Table 13–38.

For non-streamed mode, next() only returns the status of DATA_AVAILABLE or END_OF_
FETCH.

■ When fetching one row at a time (numRows=1), process the data using getxxx()
methods.

■ When fetching several rows at once (numRows>1), as in an Array Fetch, you must
use the setDataBuffer() method to specify the location of your preallocated buffers
before invoking next().

Up to numRows data records would populate the buffers specified by the
setDataBuffer() call. To determine exactly how many records were returned, use the
getNumArrayRows() method.

Syntax
Status next(

unsigned int numRows =1);

Parameter Description

numRows Number of rows to fetch for array fetches.

ResultSet Class

OCCI Application Programming Interface 13-583

preTruncationLength()

Returns the actual length of the parameter before truncation.

Syntax
int preTruncationLength(

unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index, first parameter is 1, second is 2, and so on.

setBinaryStreamMode()

13-584 Oracle C++ Call Interface Programmer's Guide

setBinaryStreamMode()

Defines that a column is to be returned as a binary stream by the getStream method.

Syntax
void setBinaryStreamMode(

unsigned int colIndex,
unsigned int size);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

size The amount of data to be read as a binary stream.

ResultSet Class

OCCI Application Programming Interface 13-585

setCharacterStreamMode()

Defines that a column is to be returned as a character stream by the getStream()
method.

Syntax
void setCharacterStreamMode(

unsigned int colIndex,
unsigned int size);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

size The amount of data to be read as a character stream.

setCharSet()

13-586 Oracle C++ Call Interface Programmer's Guide

setCharSet()

Overrides the default character set for the specified column. Data is converted from
the database character set to the specified character set for this column.

Syntax
void setCharSet(

unsigned int colIndex,
string charSet);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

charSet Desired character set, as a string.

ResultSet Class

OCCI Application Programming Interface 13-587

setCharSetUString()

Specifies the character set value as a UString in which the data is returned.

Syntax
UString setCharSetUString(

unsigned int colIndex,
const UString &charSet);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

charSet Desired character set, as a string.

setDatabaseNCHARParam()

13-588 Oracle C++ Call Interface Programmer's Guide

setDatabaseNCHARParam()

If the parameter is going to be retrieved from a column that contains data in the
database's NCHAR character set, then OCCI must be informed by passing a TRUE value.
A FALSE can be passed to restore the default.

Syntax
void setDatabaseNCHARParam(

unsigned int paramIndex,
bool isNCHAR);

Parameter Description

paramIndex Parameter index, first parameter is 1, second is 2, and so on.

isNCHAR TRUE or FALSE.

ResultSet Class

OCCI Application Programming Interface 13-589

setDataBuffer()

Specifies a data buffer where data would be fetched or bound. The buffer parameter
is a pointer to a user allocated data buffer. The current length of data must be specified
in the length parameter. The amount of data should not exceed the size parameter.
Finally, type is the data type of the data. Only non OCCI and non C++ specific types
can be used, such as STL string. OCCI classes like Bytes and Date cannot be used.

If setDataBuffer() is used to fetch data for array fetches, it should be called only once
for each result set. Data for each row is assumed to be at buffer (i- 1)location,
where i is the row number. Similarly, the length of the data would be assumed to be at
(length+(i-1)).

For more information on the version of this method that uses 32K length parameter,
see Oracle Database SQL Language Reference.

Syntax Description

void setDataBuffer(
unsigned int colIndex,
void *buffer,
Type type,
sb4 size = 0,
ub2 *length = NULL,
sb2 *ind = NULL,
ub2 *rc = NULL);

Uses ub2 length buffer. This limits VARCHAR2 and NVARCHAR2
length to 4,000 bytes, and RAW data types to 2,000 bytes.

void setDataBuffer(
unsigned int colIndex,
void *buffer,
Type type,
sb4 size = 0,
ub4 *length = NULL,
sb2 *ind = NULL,
ub2 *rc = NULL);

Uses ub4 length buffer (32K). This increases the length of
VARCHAR2, NVARCHAR2 and RAW data types.

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

buffer Pointer to user-allocated buffer. For array fetches, it should have
numRows * size bytes in it. For gather or scatter binds and defines,
this structure stores the address of OCIIOVec and the number of
OCIIOVec elements that start at that address.

type Type of the data that is provided (or retrieved) in the buffer.

size Size of the data buffer. For array fetches, it is the size of each
element of the data items.

length Pointer to the length of data in the buffer; for array fetches, it
should be an array of length data for each buffer element; the size of
the array should be equal to arrayLength.

ind Pointer to an indicator variable or array (IN/OUT).

rc Pointer to array of column level return codes (OUT).

setErrorOnNull()

13-590 Oracle C++ Call Interface Programmer's Guide

setErrorOnNull()

This method enables/disables exceptions for reading of NULL values on colIndex
column of the result set.

Syntax
void setErrorOnNull(

unsigned int colIndex,
bool causeException);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

causeException Enable exceptions if TRUE. Disable if FALSE.

ResultSet Class

OCCI Application Programming Interface 13-591

setErrorOnTruncate()

This method enables/disables exceptions when truncation occurs.

Syntax
void setErrorOnTruncate(

unsigned int paramIndex,
bool causeException);

Parameter Description

paramIndex Parameter index, first parameter is 1, second is 2, and so on.

causeException Enable exceptions if TRUE. Disable if FALSE.

setPrefetchMemorySize()

13-592 Oracle C++ Call Interface Programmer's Guide

setPrefetchMemorySize()

Sets the amount of memory that is used internally by OCCI to store data fetched
during each round trip to the server. A value of 0 means that the amount of data
fetched during the round trip is constrained by the FetchRowCount parameter. If both
parameters are nonzero, the smaller of the two is used.

Syntax
void setPrefetchMemorySize(

unsigned int bytes);

Parameter Description

bytes Number of bytes used for storing data fetched during each server round trip.

ResultSet Class

OCCI Application Programming Interface 13-593

setPrefetchRowCount()

Sets the number of rows that are fetched internally by OCCI during each round trip to
the server. A value of 0 means that the amount of data fetched during the round trip is
constrained by the FetchMemorySize parameter. If both parameters are nonzero, the
smaller of the two is used. If both of these parameters are zero, row count internally
defaults to 1 row and that is the value returned from the getFetchRowCount() method.

Syntax
void setPrefetchRowCount(

unsigned int rowCount);

Parameter Description

rowCount Number of rows to fetch for each round trip to the server.

setMaxColumnSize()

13-594 Oracle C++ Call Interface Programmer's Guide

setMaxColumnSize()

Specifies the maximum amount of data in bytes to read from a column. It should be
based on the environment's character set, in which the env has been created.

Syntax
void setMaxColumnSize(

unsigned int colIndex,
unsigned int max);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

max The maximum amount of data in bytes to be read.

ResultSet Class

OCCI Application Programming Interface 13-595

status()

Returns the current Status of the result set, as defined in Table 13–38. This method can
be called repeatedly.

Syntax
Status status() const;

SQLException Class

13-596 Oracle C++ Call Interface Programmer's Guide

SQLException Class

The SQLException class provides information on generated errors, their codes and
associated messages.

Table 13–40 Summary of SQLException

Method Description

SQLException() on page 13-597 SQLException constructor.

getErrorCode() on page 13-598 Returns the database error code.

getMessage() on page 13-599 Returns the error message string for this exception.

getNLSMessage() on page 13-600 Returns the error message string for this exception
(Unicode support).

getNLSUStringMessage() on
page 13-601

Returns the error message UString for this exception
(Unicode support).

getUStringMessage() on
page 13-602

Returns the error message UString for this exception.

getXAErrorCode() on page 13-599 Returns the error message string for this exception.

isRecoverable() on page 13-604 Determines whether an application can failover and
recover from an error.

setErrorCtx() on page 13-605 Sets the error context.

what() on page 13-606 Returns the error message associated with the
SQLException.

SQLException Class

OCCI Application Programming Interface 13-597

SQLException()

This is the SQLException constructor.

Syntax Description

SQLException(); Constructs a NULL SQLException object.

SQLException(
const SQLException &e);

Constructs an SQLException object as a copy of another
SQLException object.

Parameter Description

e The SQLException to be copied.

getErrorCode()

13-598 Oracle C++ Call Interface Programmer's Guide

getErrorCode()

Gets the database error code.

Syntax
int getErrorCode() const;

SQLException Class

OCCI Application Programming Interface 13-599

getMessage()

Returns the error message string of this SQLException if it was created with an error
message string. Returns NULL if the SQLException was created with no error message.

Syntax
string getMessage() const;

getNLSMessage()

13-600 Oracle C++ Call Interface Programmer's Guide

getNLSMessage()

Returns the error message string of this SQLException if it was created with an error
message string. Passes the globalization enabled environment. Returns a NULL
string if the SQLException was created with no error message. The error message is in
the character set associated with the environment.

Syntax
string getNLSMessage(

Environment *env) const;

Parameter Description

env The globalization enabled environment.

SQLException Class

OCCI Application Programming Interface 13-601

getNLSUStringMessage()

Returns the error message UString of this SQLException if it was created with an error
message UString. Passes the globalization enabled environment. Returns a NULL
UString if the SQLException was created with no error message. The error message is
in the character set associated with the environment.

Syntax
UString getNLSUStringMessage(

Environment *env) const;

Parameter Description

env The globalization enabled environment.

getUStringMessage()

13-602 Oracle C++ Call Interface Programmer's Guide

getUStringMessage()

Returns the error message UString of this SQLException if it was created with an error
message UString. Returns a NULL UString if the SQLException was created with no
error message. The error message is in the character set associated with the
environment.

Syntax
UString getUStringMessage() const;

SQLException Class

OCCI Application Programming Interface 13-603

getXAErrorCode()

Determine if the thrown exception is due to an XA or an SQL error.

Used by C++ XA applications with dynamic registration. Returns an XA error code if
the exception is due to XA, or XA_OK otherwise.

Syntax
int getXAErrorCode(

const string &dbname) const;

Parameter Description

dbname The database name; same as the optional dbname provided in the Open
String and used when connecting to the Resource Manager.

isRecoverable()

13-604 Oracle C++ Call Interface Programmer's Guide

isRecoverable()

Determines whether an application can failover and recover from an error. Returns
TRUE if recoverable.

For example, an application may recover from ORA-03113, but not from ORA-942.

Syntax
bool isRecoverable();

SQLException Class

OCCI Application Programming Interface 13-605

setErrorCtx()

Sets the pointer to the error context.

Syntax
void setErrorCtx(

void *ctx);

Parameter Description

ctx The pointer to the error context.

what()

13-606 Oracle C++ Call Interface Programmer's Guide

what()

Standard C++ compliant function; returns the error message associated with the
SQLException.

Syntax
const char *what() const throw();

StatelessConnectionPool Class

OCCI Application Programming Interface 13-607

StatelessConnectionPool Class

This class represents a pool of stateless, authenticated connections to the database.

Table 13–41 Enumerated Values Used by StatelessConnectionPool Class

Attribute Options

PoolType ■ HETEROGENEOUS is the default state; connections with different
authentication contexts can be created in the same pool. This pool
type also supports external authentication.

■ HOMOGENEOUS indicates that all connections in the pool are
authenticated with the username and password provided during
pool creation. No proxy connections can be created. minConn and
incrConn values are considered only in these HOMOGENEOUS pools.

■ NO_RLB turns off run-time load balancing in the connection pool.
Can be used with both HETEROGENEOUS and HOMOGENEOUS pools.

■ USES_EXT_AUTH indicates that the connections in the pool support
external authentication. Can only be used with HETEROGENEOUS
pools.

BusyOption ■ WAIT indicates that the thread waits and blocks until the connection
becomes free.

■ NOWAIT throws and error.

■ FORCEGET indicates that a new connection is created, even when
maximum number of connections is opened and all are busy.

DestroyMode ■ DEFAULT indicates that if are still active busy connections in the pool,
ORA24422 error is thrown

■ SPD_FORCE indicates that any busy connections in the pool are
forcefully terminated and the pool is destroyed; the user loses
memory corresponding to the number of connections forcefully
terminated.

Table 13–42 Summary of StatelessConnectionPool Methods

Method Description

getAnyTaggedConnection() on
page 13-609

Returns a pointer to the connection object, without the
restriction of a matching tag.

getAnyTaggedProxyConnection() on
page 13-610

Returns a proxy connection from a connection pool.

getBusyConnections() on page 13-611 Returns the number of busy connections in the
connection pool.

getBusyOption() on page 13-612 Returns the behavior of the stateless connection pool
when all the connections in the pool are busy and the
number of connections have reached maximum

getConnection() on page 13-613 Returns a pointer to the Connection object.

getIncrConnections() on page 13-615 Returns the number of incremental connections in the
connection pool.

getMaxConnections() on page 13-616 Returns the maximum number of connections in the
connection pool.

getMinConnections() on page 13-617 Returns the minimum number of connections in the
connection pool.

StatelessConnectionPool Class

13-608 Oracle C++ Call Interface Programmer's Guide

getOpenConnections() on
page 13-618

Returns the number of open connections in the
connection pool.

getPoolName() on page 13-619 Returns the name of the connection pool.

getProxyConnection() on page 13-620 Returns a proxy connection from a connection pool.

getTimeOut() on page 13-623 Returns the timeout period of a connection in the
connection pool.

releaseConnection() on page 13-624 Releases the connection back to the pool with an
optional tag.

setBusyOption() on page 13-625 Specifies the behavior of the stateless connection pool
when:

■ all the connections in the pool are busy, and

■ the number of connections have reached
maximum.

setPoolSize() on page 13-626 Sets the maximum, minimum, and incremental number
of pooled connections for the connection pool.

setTimeOut() on page 13-627 Sets the timeout period of a connection in the
connection pool.

terminateConnection() on
page 13-629

Closes the connection and remove it from the pool.

Table 13–42 (Cont.) Summary of StatelessConnectionPool Methods

Method Description

StatelessConnectionPool Class

OCCI Application Programming Interface 13-609

getAnyTaggedConnection()

Returns a pointer to the connection object, without the restriction of a matching tag.

This method works in an environment with enabled database resident connection
pooling.

During the execution of this call, the pool is first searched based on the tag provided. If
a connection with the specified tag exists, it is returned to the user. If a matching
connection is not available, an appropriately authenticated untagged connection (with
a NULL tag) is returned. In cases where an undated connection is not free, an
appropriately authenticated connection with a different tag is returned.

A getTag() call to the Connection verifies that the connection tag is received.

Syntax Description

Connection *getAnyTaggedConnection(
string &tag="")=0;

Returns a pointer to the connection object from a
homogeneous stateless connection pool, without
the restriction of a matching tag; string support.

Connection* getAnyTaggedConnection(
const UString &tag)=0;

Returns a pointer to the connection object from a
homogeneous stateless connection pool, without
the restriction of a matching tag; UString support.

Connection *getAnyTaggedConnection(
const string &userNname,
const string &password,
const string &tag="")=0;

Returns a pointer to the connection object from a
heterogeneous stateless connection pool, without
the restriction of a matching tag; string support.

Connection* getAnyTaggedConnection(
const UString &userName,
const UString &Password,
const UString &tag)=0 ;

Returns a pointer to the connection object from a
heterogeneous stateless connection pool, without
the restriction of a matching tag; UString support.

Parameter Description

userName The database username

password The database password.

tag User-defined type of connection requested. This parameter can be ignored if a
default connection is requested.

getAnyTaggedProxyConnection()

13-610 Oracle C++ Call Interface Programmer's Guide

getAnyTaggedProxyConnection()

Returns a proxy connection from a connection pool.

This method works in an environment with enabled database resident connection
pooling.

During the execution of this call, the pool is first searched based on the tag provided. If
a connection with the specified tag exists, it is returned to the user. If a matching
connection is not available, an appropriately authenticated connection with a different
tag is returned. In cases where an undated connection is not free, an appropriately
authenticated connection with a different tag is returned.

Restrictions for matching the tag may be removed by passing an empty tag argument
parameter.

A getTag() call to the connection verifies the connection tag received.

Syntax Description

Connection *getAnyTaggedProxyConnection(
const string &name,
string roles[],
unsigned int numRoles,
const string tag="",
Connection::ProxyType

proxyType=Connection::PROXY_DEFAULT);

Get a proxy connection with role
specifications from a connection pool;
includes support for roles and string
support.

Connection* getAnyTaggedProxyConnection(
const UString &name,
string roles[],
unsigned int numRoles,
const UString &tag,
Connection::ProxyType

proxyType = Connection::PROXY_DEFAULT);

Get a proxy connection with role
specifications from a connection pool;
includes support for roles and UString
support.

Connection *getAnyTaggedProxyConnection(
const string &name,
const string tag="",
Connection::ProxyType

proxyType=Connection::PROXY_DEFAULT);

Get a proxy connection with role
specifications from a connection pool;
string support.

Connection* getAnyTaggedProxyConnection(
const UString &name,
const UString &tag,
Connection::ProxyType

proxyType = Connection::PROXY_DEFAULT);

Get a proxy connection within role
specifications from the connection pool;
UString support.

Parameter Description

name The username.

roles The roles to activate on the database server

numRoles The number of roles to activate on the database server

tag User defined tag associated with the connection.

proxyType The type of proxy authentication to perform; ProxyType is defined
in Table 13–11 on page 13-144.

StatelessConnectionPool Class

OCCI Application Programming Interface 13-611

getBusyConnections()

Returns the number of busy connections in the connection pool. When using database
resident connection pooling, this is the number of persistent connections to the
Connection Broker.

Syntax
unsigned int getBusyConnections() const=0;

getBusyOption()

13-612 Oracle C++ Call Interface Programmer's Guide

getBusyOption()

Returns the behavior of the stateless connection pool when all the connections in the
pool are busy, and when the number of connections have reached maximum. The
return values are defined for BusyOption in Table 13–41 on page 13-607.

Syntax
BusyOption getBusyOption()=0;

StatelessConnectionPool Class

OCCI Application Programming Interface 13-613

getConnection()

Returns a pointer to the connection object of a StatelessConnectionPool.

This method works in an environment with enabled database resident connection
pooling.

Syntax Description

Connection *getConnection()=0; Returns a connection that can be
authenticated externally.

Connection *getConnection(
string &tag="")=0;

Returns an authenticated connection,
with a connection pool username and
password; string support.

Connection* getConnection(
const UString &tag)=0;

Returns an authenticated connection,
with a connection pool username and
password; UString support.

Connection *getConnection(
const string &userName,
const string &password,
const string &tag="")=0;

Returns a pointer to the connection
object from a heterogeneous stateless
connection pool; string support.

Connection* getConnection(
const UString &userName,
const UString &password,
const UString &tag)=0;

Returns a pointer to the connection
object from a heterogeneous stateless
connection pool; UString support.

Connection *getConnection(
const string &connectionClass,
const Connection::Purity &purity)=0;

Returns a pointer to the connection
object from a database resident
connection pool; string support.

Connection* getConnection(
const UString &connectionClass,
const Connection::Purity &purity)=0;

Returns a pointer to the connection
object from a database resident
connection pool; UString support.

Connection *getConnection(
const string &userName,

 const string &password,
const string &connectionClass,
const Connection::Purity &purity)=0;

Returns a pointer to the connection
object from a database resident
connection pool; user name and
password authentication; string
support.

Connection* getConnection(
const UString &userName,

 const UString &password,
const UString &connectionClass,
const Connection::Purity &purity)=0;

Returns a pointer to the connection
object from a database resident
connection pool; user name and
password authentication; UString
support.

Connection *getConnection(
const string &connectionClass,
const Connection::Purity &purity,

 const string &tag)=0;

Returns a tagged connection object
from a database resident connection
pool; string support.

Connection* getConnection(
const UString &connectionClass,
const Connection::Purity &purity,

 const UString &tag)=0;

Returns a tagged connection object
from a database resident connection
pool; UString support.

Parameter Description

userName The database username.

getConnection()

13-614 Oracle C++ Call Interface Programmer's Guide

password The database password.

tag The user defined tag associated with the connection. During the
call, the pool is first searched based on the tag provided. If a
connection with the specified tag exists it is returned; otherwise a
new connection is created and returned.

connectionClass The class of connection used by database resident connection pool.

purity The purity of connection used by database resident connection
pool; either SELF or NEW.

Parameter Description

StatelessConnectionPool Class

OCCI Application Programming Interface 13-615

getIncrConnections()

Returns the number of incremental connections in the connection pool. This call is
useful only in cases of homogeneous connection pools. When using database resident
connection pooling, this is the number of persistent connections to the Connection
Broker.

Syntax
unsigned int getIncrConnections() const=0;

getMaxConnections()

13-616 Oracle C++ Call Interface Programmer's Guide

getMaxConnections()

Returns the maximum number of connections in the connection pool. When using
database resident connection pooling, this is the number of persistent connections to
the Connection Broker.

Syntax
unsigned int getMaxConnections() const=0;

StatelessConnectionPool Class

OCCI Application Programming Interface 13-617

getMinConnections()

Returns the minimum number of connections in the connection pool. When using
database resident connection pooling, this is the number of persistent connections to
the Connection Broker.

Syntax
unsigned int getMinConnections() const=0;

getOpenConnections()

13-618 Oracle C++ Call Interface Programmer's Guide

getOpenConnections()

Returns the number of open connections in the connection pool. When using database
resident connection pooling, this is the number of persistent connections to the
Connection Broker.

Syntax
unsigned int getOpenConnections() const=0;

StatelessConnectionPool Class

OCCI Application Programming Interface 13-619

getPoolName()

Returns the name of the connection pool.

Syntax
string getPoolName() const=0;

getProxyConnection()

13-620 Oracle C++ Call Interface Programmer's Guide

getProxyConnection()

Returns a proxy connection from a connection pool.

This method works in an environment with enabled database resident connection
pooling.

Syntax Description

Connection *getProxyConnection(
const string &userName,
string roles[],
unsigned int numRoles,
const string& tag="",
Connection::ProxyType

proxyType=Connection::PROXY_DEFAULT)=0;

Get a proxy connection with role
specifications from a connection
pool; support for roles and string
support.

Connection* getProxyConnection(
const UString &userName,
UString roles[],
unsigned int numRoles,
const UString &tag,
Connection::ProxyType

proxyType = Connection::PROXY_DEFAULT);

Get a proxy connection with role
specifications from a connection
pool; support for roles and UString
support.

Connection *getProxyConnection(
const string &userName,
const string &connectionClass,

 const Connection::Purity &purity)=0;

Get a proxy connection from a
database resident connection pool;
string support.

Connection *getProxyConnection(
const UString &userName,
const UString &connectionClass,

 const Connection::Purity &purity)=0;

Get a proxy connection from a
database resident connection pool;
UString support.

Connection *getProxyConnection(
const string &userName,
string roles[],
unsigned int numRoles,
const string &connectionClass,

 const Connection::Purity &purity)=0;

Get a proxy connection with role
specifications from a connection
pool; support for roles and database
resident connection pooling; string
support.

Connection* getProxyConnection(
const UString &userName,
UString roles[],
unsigned int numRoles,
const UString &connectionClass,

 const Connection::Purity &purity)=0;

Get a proxy connection with role
specifications from a connection
pool; support for roles and database
resident connection pooling; UString
support.

Connection *getProxyConnection(
const string &userName,
const string& tag="",
Connection::ProxyType

proxyType=Connection::PROXY_DEFAULT)=0;

Get a proxy connection without role
specifications from a connection
pool; string support.

Connection* getProxyConnection(
const UString &userName,
const UString &tag,
Connection::ProxyType
proxyType = Connection::PROXY_DEFAULT)

Get a proxy connection without role
specifications from a connection
pool; UString support.

StatelessConnectionPool Class

OCCI Application Programming Interface 13-621

Parameter Description

userName The user name.

roles The roles to activate on the database server.

numRoles The number of roles to activate on the database server.

tag The user defined tag associated with the connection. During the
execution of this call, the pool is first searched based on the tag
provided. If a connection with the specified tag exists it is returned;
otherwise, a new connection is created and returned.

proxyType The type of proxy authentication to perform; ProxyType is defined
in Table 13–11 on page 13-144.

connectionClass The class of connection used by database resident connection pool.

purity The purity of connection used by database resident connection
pool; either SELF or NEW.

getStmtCacheSize()

13-622 Oracle C++ Call Interface Programmer's Guide

getStmtCacheSize()

Retrieves the size of the statement cache.

Syntax
unsigned int getStmtCacheSize() const=0;

StatelessConnectionPool Class

OCCI Application Programming Interface 13-623

getTimeOut()

Returns the timeout period of a connection in the connection pool.

Syntax
unsigned int getTimeOut() const=0;

releaseConnection()

13-624 Oracle C++ Call Interface Programmer's Guide

releaseConnection()

Releases the connection back to the pool with an optional tag.

This method works in an environment with enabled database resident connection
pooling.

Syntax Description

void releaseConnection(
Connection *connection,
const string& tag="");

Support for string tag.

void releaseConnection(
Connection *connection,
const UString &tag);

Support for UString tag.

Parameter Description

connection The connection to be released.

tag The user defined tag associated with the connection. The default of
this parameter is "", which untags the connection.

StatelessConnectionPool Class

OCCI Application Programming Interface 13-625

setBusyOption()

Specifies the behavior of the stateless connection pool when all the connections in the
pool are busy, and when the number of connections have reached maximum.

Syntax
void setBusyOption(

BusyOption busyOption)=0;

Parameter Description

busyOption Valid values are defined in BusyOption in Table 13–41 on page 13-607.

setPoolSize()

13-626 Oracle C++ Call Interface Programmer's Guide

setPoolSize()

Sets the maximum, minimum, and incremental number of pooled connections for the
connection pool.

Syntax
void setPoolSize(

unsigned int maxConn=1,
unsigned int minConn=0,
unsigned int incrConn=1)=0;

Parameter Description

maxConn The maximum number of connections in the connection pool.

minConn The minimum number of connections, in homogeneous pools only.

incrConn The incremental number of connections, in homogeneous pools only.

StatelessConnectionPool Class

OCCI Application Programming Interface 13-627

setTimeOut()

Sets the time out period of a connection in the connection pool. OCCI terminates any
connections related to this connection pool that have been idle for longer than the
timeout period specified.

If this attribute is not set, the least recently used connection is timed out when pool
space is required. Oracle only checks for timed out connections when it releases a
connection back to the pool.

Syntax
void setTimeOut(

unsigned int connTimeOut=0)=0;

Parameter Description

connTimeOut The time out period, given in seconds.

setStmtCacheSize()

13-628 Oracle C++ Call Interface Programmer's Guide

setStmtCacheSize()

Enables or disables statement caching. A nonzero value enables statement caching,
with a cache of specified size. A zero value disables caching.

If the user changes the cache size of individual connections and subsequently returns
the connection back to the pool with a tag, the cache size does not revert to the one set
for the pool. If the connection is untagged, the cache size is reset to equal the cache size
specified for the pool.

Syntax
void setStmtCacheSize(

unsigned int cacheSize)=0;

Parameter Description

cacheSize The size of the statement cache

StatelessConnectionPool Class

OCCI Application Programming Interface 13-629

terminateConnection()

Closes the connection and removes it from the pool.

This method works in an environment with enabled database resident connection
pooling.

Syntax
void terminateConnection(

Connection *connection)=0;

Parameter Description

connection The connection to be terminated

Statement Class

13-630 Oracle C++ Call Interface Programmer's Guide

Statement Class

A Statement object is used for executing SQL statements. The statement may be a
query returning result set, or a non-query statement returning an update count.
Non-query SQL can be insert, update, or delete statements. Non-query SQL statements
can also be DML statements (such as create, grant, and so on) or stored procedure
calls.

A query, insert / update / delete, or stored procedure call statements may have IN
bind parameters, while a stored procedure call statement may have either OUT bind
parameters or bind parameters that are both IN and OUT, referred to as IN/OUT
parameters.

The Statement class methods are divided into three categories:

■ Statement methods applicable to all statements

■ Methods applicable to prepared statements with IN bind parameters

■ Methods applicable to callable statements with OUT or IN/OUT bind parameters.

Table 13–43 Enumerated Values used by the Statement Class

Attribute Options

Status ■ NEEDS_STREAM_DATA indicates that output Streams must be written for the
streamed IN bind parameters. If there are multiple streamed parameters,
call the getCurrentStreamParam() method to find out the bind parameter
that needs the stream. If the statement is executed iteratively, call
getCurrentIteration() to find the iteration for the stream that must to be
written.

■ PREPARED indicates that the Statement is set to a query.

■ RESULT_SET_AVAILABLE indicates that the getResultSet() method must be
called to get the result set.

■ STREAM_DATA_AVAILABLE indicates that the input Streams must be read for
the streamed OUT bind parameters. If there are multiple streamed
parameters, call the getCurrentStreamParam() method to find out the bind
parameter that needs the stream. If the statement is executed iteratively,
call getCurrentIteration() to find the iteration for the stream that must be
read.

■ UPREPARED indicates that the Statement object is not set to a query.

■ UPDATE_COUNT_AVAILABLE indicates that the getUb8RowCount() method
must be called to find out the update count.

Table 13–44 Statement Methods

Method Description

addIteration() on page 13-635 Adds an iteration for execution.

closeResultSet() on page 13-636 Immediately releases a result set's database and OCCI
resources instead of waiting for automatic release.

closeStream() on page 13-637 Closes the stream specified by the parameter stream.

disableCaching() on page 13-638 Disables statement caching.

execute() on page 13-639 Runs the SQL statement.

executeArrayUpdate() on
page 13-640

Runs insert, update, and delete statements that use only
the setDataBuffer() or stream interface for bind
parameters.

Statement Class

OCCI Application Programming Interface 13-631

executeQuery() on page 13-641 Runs a SQL statement that returns a single ResultSet.

executeUpdate() on page 13-642 Runs a SQL statement that does not return a ResultSet.

getAutoCommit() on page 13-643 Returns the current auto-commit state.

getBatchErrorMode() on
page 13-644

Returns the state of the batch error mode.

getBDouble() on page 13-645 Returns the value of an IEEE754 DOUBLE as a BDouble
object.

getBfile() on page 13-646 Returns the value of a BFILE as a Bfile object.

getBFloat() on page 13-647 Returns the value of a IEEE754 FLOAT as a BFloat object.

getBlob() on page 13-648 Returns the value of a BLOB as a Blob object.

getBytes() on page 13-649 Returns the value of a SQL BINARY or VARBINARY parameter
as Bytes.

getCharSet() on page 13-650 Returns the characterset that is in effect for the specified
parameter, as a string.

getCharSetUString() on
page 13-651

Returns the characterset that is in effect for the specified
parameter, as a UString.

getClob() on page 13-652 Returns the value of a CLOB as a Clob object.

getConnection() on page 13-653 Returns the connection from which the Statement object
was instantiated.

getCurrentIteration() on
page 13-654

Returns the iteration number of the current iteration that is
being processed.

getCurrentStreamIteration() on
page 13-655

Returns the current iteration for which stream data is to be
read or written.

getCurrentStreamParam() on
page 13-656

Returns the parameter index of the current output Stream
that must be read or written.

getCursor() on page 13-657 Returns the REF CURSOR value of an OUT parameter as a
ResultSet.

getDatabaseNCHARParam() on
page 13-658

Returns whether data is in NCHAR character set.

getDate() on page 13-659 Returns the value of a parameter as a Date object

getDMLRowCounts() on
page 13-660

Returns the row counts affected by each iteration of the
current DML statement when it executes with multiple
iterations.

getDouble() on page 13-661 Returns the value of a parameter as a C++ double.

getBFloat() on page 13-647 Returns the value of a parameter as an IEEE754 float.

getFloat() on page 13-662 Returns the value of a parameter as a C++ float.

getInt() on page 13-663 Returns the value of a parameter as a C++ int.

getIntervalDS() on page 13-664 Returns the value of a parameter as a IntervalDS object.

getIntervalYM() on page 13-665 Returns the value of a parameter as a IntervalYM object.

getMaxIterations() on page 13-666 Returns the current limit on maximum number of
iterations.

getMaxParamSize() on
page 13-667

Returns the current max parameter size limit.

Table 13–44 (Cont.) Statement Methods

Method Description

Statement Class

13-632 Oracle C++ Call Interface Programmer's Guide

getNumber() on page 13-668 Returns the value of a parameter as a Number object.

getObject() on page 13-669 Returns the value of a parameter as a PObject.

getOCIStatement() on page 13-670 Returns the OCI statement handle associated with the
Statement.

getRef() on page 13-671 Returns the value of a REF parameter as RefAny

getResultSet() on page 13-672 Returns the current result as a ResultSet.

getRowCountsOption() on
page 13-673

Determines if the DML row counts option is enabled.

getRowid() on page 13-674 Returns the row id parameter value as a Bytes object.

getSQL() on page 13-675 Returns the current SQL string associated with the
Statement object.

getSQLUString() on page 13-676 Returns the current SQL string associated with the
Statement object; globalization enabled.

getStream() on page 13-677 Returns the value of the parameter as a stream.

getString() on page 13-678 Returns the value of the parameter as a string.

getTimestamp() on page 13-679 Returns the value of the parameter as a Timestamp object.

getUb8RowCount() on
page 13-681

Returns the number of rows processed.

getUInt() on page 13-681 Returns the value of the parameter as a C++ unsigned
integer.

getUpdateCount() on page 13-682 Returns the number of rows processed.

getUString() on page 13-683 Returns the value of a UString.

getVector() on page 13-684 Returns the specified parameter as a vector.

getVectorOfRefs() on page 13-686 Returns the column in the current position as a vector of
REFs.

isNull() on page 13-687 Checks whether the parameter is NULL.

isTruncated() on page 13-688 Checks whether the value is truncated.

preTruncationLength() on
page 13-689

Returns the actual length of the parameter before
truncation.

registerOutParam() on
page 13-690

Registers the type and max size of the OUT parameter.

setAutoCommit() on page 13-691 Specifies auto commit mode.

setBatchErrorMode() on
page 13-692

Enables or disables the batch error processing mode.

setBDouble() on page 13-693 Sets a parameter to an IEEE double value.

setBfile() on page 13-694 Sets a parameter to a Bfile value.

setBFloat() on page 13-695 Sets a parameter to an IEEE float value.

setBinaryStreamMode() on
page 13-696

Specifies that a column is to be returned as a binary
stream.

setBlob() on page 13-697 Sets a parameter to a Blob value.

setBytes() on page 13-698 Sets a parameter to a Bytes array.

Table 13–44 (Cont.) Statement Methods

Method Description

Statement Class

OCCI Application Programming Interface 13-633

setCharacterStreamMode() on
page 13-699

Specifies that a column is to be returned as a character
stream.

setCharSet() on page 13-699 Specifies the characterset as a string.

setCharSetUString() on
page 13-701

Specifies the character set as a UString.

setClob() on page 13-702 Sets a parameter to a Clob value.

setDate() on page 13-703 Sets a parameter to a Date value.

setDatabaseNCHARParam() on
page 13-704

Sets to true if the data is to be in the NCHAR character set
of the database; set to false to restore the default.

setDataBuffer() on page 13-705 Specifies a data buffer where data would be available for
reading or writing.

setDataBufferArray() on
page 13-707

Specifies an array of data buffers where data would be
available for reading or writing.

setDouble() on page 13-709 Sets a parameter to a C++ double value.

setErrorOnNull() on page 13-710 Enables Or Disables exceptions for reading of NULL values.

setErrorOnTruncate() on
page 13-711

Enables Or Disables exception when truncation occurs.

setFloat() on page 13-712 Sets a parameter to a C++ float value.

setInt() on page 13-713 Sets a parameter to a C++ int value.

setIntervalDS() on page 13-714 Sets a parameter to a IntervalDS value.

setIntervalYM() on page 13-715 Sets a parameter to a IntervalYM value.

setMaxIterations() on page 13-716 Sets the maximum number of invocations that area made
for the DML statement.

setMaxParamSize() on
page 13-717

Sets the maximum amount of data that can sent or
returned from the parameter.

setNull() on page 13-718 Sets a parameter to SQL NULL.

setNumber() on page 13-719 Sets a parameter to a Number value.

setObject() on page 13-720 Sets the value of a parameter using an object.

setPrefetchMemorySize() on
page 13-721

Sets the amount of memory that is used internally by
OCCI to store data fetched during each round trip to the
server.

setPrefetchRowCount() on
page 13-722

Sets the number of rows that are fetched internally by
OCCI during each round trip to the server.

setRef() on page 13-723 Sets the value of a parameter to a reference.

setRowCountsOption() on
page 13-724

Set flag to TRUE to enable return of DML row counts per
iteration when invoking getDMLRowCounts().

setRowid() on page 13-725 Sets a row id bytes array for a bind position.

setSQL() on page 13-726 Associates new SQL string with Statement object.

setSQLUString() on page 13-727 Associates new SQL string with Statement object;
globalization enabled.

setString() on page 13-728 Sets a parameter for a specified index.

setTimestamp() on page 13-729 Sets a parameter to a Timestamp value.

Table 13–44 (Cont.) Statement Methods

Method Description

Statement Class

13-634 Oracle C++ Call Interface Programmer's Guide

setUInt() on page 13-730 Sets a parameter to a C++ unsigned int value.

setUString() on page 13-731 Sets a parameter for a specified index; globalization
enabled.

setVector() on page 13-732 Sets a parameter to a vector of unsigned int.

setVectorOfRefs() on page 13-738 Sets a parameter to a vector; is necessary when the type is
a collection of REFs.

status() on page 13-739 Returns the current status of the statement. This is useful
when there is streamed data to be written.

Table 13–44 (Cont.) Statement Methods

Method Description

Statement Class

OCCI Application Programming Interface 13-635

addIteration()

After specifying set parameters, an iteration is added for execution.

Syntax
void addIteration();

closeResultSet()

13-636 Oracle C++ Call Interface Programmer's Guide

closeResultSet()

Immediately releases the specified resultSet's database and OCCI resources when the
result set is not needed.

Syntax
void closeResultSet(

ResultSet *resultSet);

Parameter Description

resultSet The result set to be closed; may be a result of getResultSet(),
executeQuery(), or getCursor() calls on the current statement, or by a
getCursor() call of another result set on the same statement.

Statement Class

OCCI Application Programming Interface 13-637

closeStream()

Closes the stream specified by the parameter stream.

Syntax
void closeStream(

Stream *stream);

Parameter Description

stream The stream to be closed.

disableCaching()

13-638 Oracle C++ Call Interface Programmer's Guide

disableCaching()

Disables statement caching. Used if a user wants to destroy a statement instead of
caching it. Effective only if statement caching is enabled.

Syntax
void disableCaching();

Statement Class

OCCI Application Programming Interface 13-639

execute()

Executes an SQL statement that may return either a result set or an update count. The
statement may have read-able streams which may have to be written, in which case
the results of the execution may not be readily available. The returned value Status is
defined in Table 13–43 on page 13-630.

If output streams are used for OUT bind variables, they must be completely read in
order. The getCurrentStreamParam() method would indicate which stream must be
read. Similarly, getCurrentIteration() would indicate the iteration for which data is
available.

Syntax Description

Status execute(
const string &sql="");

Executes the SQL Statement.

Status execute(
const UString &sql);

Executes the SQL Statement; globalization enabled.

Parameter Description

sql The SQL statement to be executed. This can be NULL if the
executeArrayUpdate() method was used to associate the sql with
the statement.

executeArrayUpdate()

13-640 Oracle C++ Call Interface Programmer's Guide

executeArrayUpdate()

Executes insert/update/delete statements which use only the setDataBuffer() or
stream interface for bind parameters. The bind parameters must be arrays of size
arrayLength parameter. The statement may have writable streams which may have to
be written. The returned value Status is defined in Table 13–43 on page 13-630.

If output streams are used for OUT bind variables, they must be completely read in
order. The getCurrentStreamParam() method would indicate which stream must be
read. Similarly, getCurrentIteration() would indicate the iteration for which data is
available.

Note that you cannot perform array executes for queries or callable statements.

Syntax
Status executeArrayUpdate(

unsigned int arrayLength);

Parameter Description

arrayLength The number of elements provided in each buffer of bind variables.

Statement Class

OCCI Application Programming Interface 13-641

executeQuery()

Runs a SQL statement that returns a ResultSet. Should not be called for a statement
which is not a query, has streamed parameters. Returns a ResultSet that contains the
data produced by the query.

Syntax Description

ResultSet* executeQuery(
const string &sql="");

Executes the SQL Statement that returns a ResultSet.

ResultSet* executeQuery(
const UString &sql);

Executes the SQL Statement that returns a ResultSet;
globalization enabled.

Parameter Description

sql The SQL statement to be executed. This can be NULL if the
executeArrayUpdate() method was used to associate the sql with
the statement.

executeUpdate()

13-642 Oracle C++ Call Interface Programmer's Guide

executeUpdate()

Executes a non-query statement such as a SQL INSERT, UPDATE, DELETE statement, a
DDL statement such as CREATE/ALTER and so on, or a stored procedure call. Returns
either the row count for INSERT, UPDATE or DELETE or 0 for SQL statements that return
nothing.

If the number of rows processed as a result of this call exceeds UB4MAXVAL, it may
throw an exception. In such scenarios, use execute() instead, followed by
getUb8RowCount() to obtain the number of rows processed.

Syntax Description

unsigned int executeUpdate(
const string &sql="");

Executes a non-query statement.

unsigned int executeUpdate(
const UString &sql);

Executes a non-query statement; globalization enabled.

Parameter Description

sql The SQL statement to be executed. This can be NULL if the
executeArrayUpdate() method was used to associate the sql with
the statement.

Statement Class

OCCI Application Programming Interface 13-643

getAutoCommit()

Returns the current auto-commit state.

Syntax
bool getAutoCommit() const;

getBatchErrorMode()

13-644 Oracle C++ Call Interface Programmer's Guide

getBatchErrorMode()

Returns the state of the batch error mode; TRUE if the batch error mode is enabled,
FALSE otherwise.

Syntax
bool getBatchErrorMode() const;

Statement Class

OCCI Application Programming Interface 13-645

getBDouble()

Returns the value of an IEEE754 DOUBLE column, which has been defined as an OUT
bind. If the value is SQL NULL, the result is 0.

Syntax
BDouble getBDouble(

unsigned int paramIndex) = 0;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getBfile()

13-646 Oracle C++ Call Interface Programmer's Guide

getBfile()

Returns the value of a BFILE parameter as a Bfile object.

Syntax
Bfile getBfile(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Statement Class

OCCI Application Programming Interface 13-647

getBFloat()

Gets the value of an IEEE754 FLOAT column, which has been defined as an OUT bind. If
the value is SQL NULL, the result is 0.

Syntax
BFloat getBFloat(

unsigned int paramIndex) = 0;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getBlob()

13-648 Oracle C++ Call Interface Programmer's Guide

getBlob()

Returns the value of a BLOB parameter as a Blob.

Syntax
Blob getBlob(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Statement Class

OCCI Application Programming Interface 13-649

getBytes()

Returns the value of n SQL BINARY or VARBINARY parameter as Bytes; if the value is
SQL NULL, the result is NULL.

Syntax
Bytes getBytes(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getCharSet()

13-650 Oracle C++ Call Interface Programmer's Guide

getCharSet()

Returns the characterset that is in effect for the specified parameter, as a string.

Syntax
string getCharSet(

unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Statement Class

OCCI Application Programming Interface 13-651

getCharSetUString()

Returns the character set that is in effect for the specified parameter, as a UString.

Syntax
UString getCharSetUString(

unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getClob()

13-652 Oracle C++ Call Interface Programmer's Guide

getClob()

Get the value of a CLOB parameter as a Clob. Returns the parameter value.

Syntax
Clob getClob(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Statement Class

OCCI Application Programming Interface 13-653

getConnection()

Returns the connection from which the Statement object was instantiated.

Syntax
Connection* getConnection() const;

getCurrentIteration()

13-654 Oracle C++ Call Interface Programmer's Guide

getCurrentIteration()

If the prepared statement has any output Streams, this method returns the current
iteration of the statement that is being processed by OCCI. If this method is called after
all the invocations in the set of iterations has been processed, it returns 0. Returns the
iteration number of the current iteration that is being processed. The first iteration is
numbered 1 and so on. If the statement has finished execution, a 0 is returned.

Syntax
unsigned int getCurrentIteration() const;

Statement Class

OCCI Application Programming Interface 13-655

getCurrentStreamIteration()

Returns the current parameter stream for which data is available.

Syntax
unsigned int getCurrentStreamIteration() const;

getCurrentStreamParam()

13-656 Oracle C++ Call Interface Programmer's Guide

getCurrentStreamParam()

Returns the parameter index of the current output Stream parameter that must be
written. If the prepared statement has any output Stream parameters, this method
returns the parameter index of the current output Stream that must be written. If no
output Stream must be written, or there are no output Stream parameters in the
prepared statement, this method returns 0.

Syntax
unsigned int getCurrentStreamParam() const;

Statement Class

OCCI Application Programming Interface 13-657

getCursor()

Gets the REF CURSOR value of an OUT parameter as a ResultSet. Data can be fetched
from this result set. The OUT parameter must be registered as CURSOR with the
registerOutParam() method. Returns a ResultSet for the OUT parameter value.

Note that if there are multiple REF CURSORs being returned due to a batched call, data
from each cursor must be completely fetched before retrieving the next REF CURSOR and
starting fetch on it.

Syntax
ResultSet * getCursor(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getDatabaseNCHARParam()

13-658 Oracle C++ Call Interface Programmer's Guide

getDatabaseNCHARParam()

Returns whether data is in NCHAR character set or not.

Syntax
bool getDatabaseNCHARParam(

unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Statement Class

OCCI Application Programming Interface 13-659

getDate()

Get the value of a SQL DATE parameter as a Date object. Returns the parameter value; if
the value is SQL NULL, the result is NULL.

Syntax
Date getDate(

unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getDMLRowCounts()

13-660 Oracle C++ Call Interface Programmer's Guide

getDMLRowCounts()

Returns the row counts affected by each iteration of the current DML statement when
it executes with multiple iterations.

Use this method in conjunction with getRowCountsOption() and
setRowCountsOption().

Syntax
vector<oraub8> getDMLRowCounts();

Statement Class

OCCI Application Programming Interface 13-661

getDouble()

Get the value of a DOUBLE parameter as a C++ double. Returns the parameter value; if
the value is SQL NULL, the result is 0.

Syntax
double getDouble(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getFloat()

13-662 Oracle C++ Call Interface Programmer's Guide

getFloat()

Get the value of a FLOAT parameter as a C++ float. Returns the parameter value; if the
value is SQL NULL, the result is 0.

Syntax
float getFloat(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Statement Class

OCCI Application Programming Interface 13-663

getInt()

Get the value of an INTEGER parameter as a C++ int. Returns the parameter value; if
the value is SQL NULL, the result is 0.

Syntax
unsigned int getInt(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getIntervalDS()

13-664 Oracle C++ Call Interface Programmer's Guide

getIntervalDS()

Get the value of a parameter as a IntervalDS object.

Syntax
IntervalDS getIntervalDS(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Statement Class

OCCI Application Programming Interface 13-665

getIntervalYM()

Get the value of a parameter as a IntervalYM object.

Syntax
IntervalYM getIntervalYM(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getMaxIterations()

13-666 Oracle C++ Call Interface Programmer's Guide

getMaxIterations()

Gets the current limit on maximum number of iterations. Default is 1. Returns the
current maximum number of iterations.

Syntax
unsigned int getMaxIterations() const;

Statement Class

OCCI Application Programming Interface 13-667

getMaxParamSize()

The maxParamSize limit (in bytes) is the maximum amount of data sent or returned for
any parameter value; it only applies to character and binary types. If the limit is
exceeded, the excess data is silently discarded. Returns the current max parameter size
limit.

Syntax
unsigned int getMaxParamSize(

unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getNumber()

13-668 Oracle C++ Call Interface Programmer's Guide

getNumber()

Gets the value of a NUMERIC parameter as a Number object. Returns the parameter value;
if the value is SQL NULL, the result is NULL.

Syntax
Number getNumber(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Statement Class

OCCI Application Programming Interface 13-669

getObject()

Gets the value of a parameter as a PObject. This method returns an PObject whose
type corresponds to the SQL type that was registered for this parameter using
registerOutParam(). Returns A PObject holding the OUT parameter value.

This method may be used to read database-specific, abstract data types.

Syntax
PObject * getObject(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getOCIStatement()

13-670 Oracle C++ Call Interface Programmer's Guide

getOCIStatement()

Get the OCI statement handle associated with the Statement.

Syntax
OCIStmt * getOCIStatement() const;

Statement Class

OCCI Application Programming Interface 13-671

getRef()

Get the value of a REF parameter as RefAny. Returns the parameter value.

Syntax
RefAny getRef(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getResultSet()

13-672 Oracle C++ Call Interface Programmer's Guide

getResultSet()

Returns the current result as a ResultSet.

Syntax
ResultSet * getResultSet();

Statement Class

OCCI Application Programming Interface 13-673

getRowCountsOption()

Determines if the DML row counts option is enabled.

If TRUE, DML statements can be executed to return the row counts for each iteration
using the method getDMLRowCounts().

Syntax
bool getRowCountsOption();

getRowid()

13-674 Oracle C++ Call Interface Programmer's Guide

getRowid()

Get the rowid parameter value as a Bytes.

Syntax
Bytes getRowid(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Statement Class

OCCI Application Programming Interface 13-675

getSQL()

Returns the current SQL string associated with the Statement object.

Syntax
string getSQL() const;

getSQLUString()

13-676 Oracle C++ Call Interface Programmer's Guide

getSQLUString()

Returns the current SQL UString associated with the Statement object; globalization
enabled.

Syntax
UString getSQLUString() const;

Statement Class

OCCI Application Programming Interface 13-677

getStream()

Returns the value of the parameter as a stream.

Syntax
Stream * getStream(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getString()

13-678 Oracle C++ Call Interface Programmer's Guide

getString()

Get the value of a CHAR, VARCHAR, or LONGVARCHAR parameter as an string. Returns the
parameter value; if the value is SQL NULL, the result is empty string.

Syntax
string getString(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Statement Class

OCCI Application Programming Interface 13-679

getTimestamp()

Get the value of a SQL TIMESTAMP parameter as a Timestamp object. Returns the
parameter value; if the value is SQL NULL, the result is NULL

Syntax
Timestamp getTimestamp(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getUb8RowCount()

13-680 Oracle C++ Call Interface Programmer's Guide

getUb8RowCount()

Returns the number of rows affected by the execution of a DML statement.

This method enables a return of a large number of rows than was possible before
Oracle Database Release 12c.

Syntax
oraub8 getUb8RowCount();

Statement Class

OCCI Application Programming Interface 13-681

getUInt()

Get the value of a BIGINT parameter as a C++ unsigned int. Returns the parameter
value; if the value is SQL NULL, the result is 0.

Syntax
unsigned int getUInt(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getUpdateCount()

13-682 Oracle C++ Call Interface Programmer's Guide

getUpdateCount()

Returns the number of rows affected, if DML statement is executed.

Note: This method has been deprecated. Use getUb8RowCount() instead.

Syntax
unsigned int getUpdateCount() const;

Statement Class

OCCI Application Programming Interface 13-683

getUString()

Returns the value as a UString.

This method should be called only if the environment's character set is UTF16, or if
setCharset() method has been called to explicitly retrieve UTF16 data.

Syntax
UString getUString(

unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getVector()

13-684 Oracle C++ Call Interface Programmer's Guide

getVector()

Returns the column in the current position as a vector. The column at the position,
specified by index, should be a collection type (varray or nested table). The SQL type
of the elements in the collection should be compatible with the type of the vector.

Syntax Description

void getVector(
Statement *stmt,
unsigned int paramIndex,
std::vector<UString> &vect);

Used for vectors of UString Class; globalization
enabled.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<BDouble> &vect);

Used for BDouble vectors.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<BFile> &vect);

Used for vectors of Bfile Class.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<BFloat> &vect);

Used for BFloat vectors.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<Blob> &vect);

Used for vectors of Blob Class.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<Bytes> &vect);

Used for vectors of Bytes Class.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<Clob> &vect);

Used for Clob vectors.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<Date> &vect);

Used for vectors of Date Class.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<double> &vect);

Used for vectors of double Class.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<float> &vect);

Used for vectors of float Class.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<int> &vect);

Used for vectors of int Class.

Statement Class

OCCI Application Programming Interface 13-685

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<IntervalDS> &vect);

Used for vectors of IntervalDS Class.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<IntervalYM> &vect);

Used for vectors of IntervalYM Class.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<Number> &vect);

Used for vectors of Number Class.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<RefAny> &vect);

Used for vectors of RefAny Class.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<string> &vect);

Used for vectors of string Class.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<T *> &vect);

Intended for use on platforms where partial ordering of
function templates is supported.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<T> &vect);

Intended for use on platforms where partial ordering of
function templates is not supported, such as Windows
NT and z/OS. For OUT binds.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<Timestamp> &vect);

Used for vectors of Timestamp Class.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<u <Ref<T> > &vect);

Available only on platforms where partial ordering of
function templates is supported.

void getVector(
Statement *stmt,
unsigned int paramIndex,
vector<unsigned int> &vect);

Used for on vectors of unsigned int Class.

Parameter Description

stmt The statement.

paramIndex Parameter index.

vect Reference to the vector (OUT parameter) into which the values should be
retrieved.

Syntax Description

getVectorOfRefs()

13-686 Oracle C++ Call Interface Programmer's Guide

getVectorOfRefs()

This method returns the column in the current position as a vector of REFs. The column
should be a collection type (varray or nested table) of REFs. Used with OUT binds.

Syntax
void getVectorOfRefs(

Statement *stmt,
unsigned int colIndex,
vector< Ref<T> > &vect);

Parameter Description

stmt The statement object.

colIndex Column index; first column is 1, second is 2, and so on.

vect The reference to the vector of REFs (OUT parameter). It is
recommended to use getVectorOfRefs() instead of specialized
getVector() function for Ref<T>.

Statement Class

OCCI Application Programming Interface 13-687

isNull()

An OUT parameter may have the value of SQL NULL; isNull() reports whether the last
value read has this special value. Note that you must first call getxxx() on a
parameter to read its value and then call isNull() to see if the value was SQL NULL.
Returns TRUE if the last parameter read was SQL NULL.

Syntax
bool isNull(

unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

isTruncated()

13-688 Oracle C++ Call Interface Programmer's Guide

isTruncated()

This method checks whether the value of the parameter is truncated. If the value of the
parameter is truncated, then TRUE is returned; otherwise, FALSE is returned.

Syntax
bool isTruncated(

unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Statement Class

OCCI Application Programming Interface 13-689

preTruncationLength()

Returns the actual length of the parameter before truncation.

Syntax
int preTruncationLength(

unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

registerOutParam()

13-690 Oracle C++ Call Interface Programmer's Guide

registerOutParam()

This method registers the type of each out parameter of a PL/SQL stored procedure.
Before executing a PL/SQL stored procedure, you must explicitly call this method to
register the type of each out parameter. This method should be called for out
parameters only. Use the setxxx() method for in/out parameters.

■ When reading the value of an out parameter, you must use the getxxx() method
that corresponds to the parameter's registered SQL type. For example, use getInt
or getNumber when OCCIINT or OCCINumber is the type specified.

■ If a PL/SQL stored procedure has an out parameter of type ROWID, the type
specified in this method should be OCCISTRING. The value of the out parameter
can then be retrieved by calling the getString() method.

■ If a PL/SQL stored procedure has an in/out parameter of type ROWID, call the
methods setString() and getString() to set the type and retrieve the value of
the IN/OUT parameter.

Syntax Description

void registerOutParam(
unsigned int paramIndex,
Type type,
unsigned int maxSize=0,
const string &sqltype="");

Registers the type of each out
parameter of a PL/SQL stored
procedure.

void registerOutParam(
unsigned int paramIndex,
Type type,
unsigned int maxSize,
const string typName,
const string &schName);

Registers the type of each out
parameter of a PL/SQL stored
procedure; string support.

void registerOutParam(
unsigned int paramIndex,
Type type,
unsigned int maxSize,
const UString &typName,
const UString &schName);

Registers the type of each out
parameter of a PL/SQL stored
procedure; globalization enabled, or
UString support.

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

type SQL type code defined by type; only data types corresponding to
OCCI data types such as Date, Bytes, and so on.

maxSize The maximum size of the retrieved value. For data types of
OCCIBYTES and OCCISTRING, maxSize should be greater than 0.

sqltype The name of the type in the data base (used for types which have
been created with CREATE TYPE).

typName The name of the type.

schName The schema name.

Statement Class

OCCI Application Programming Interface 13-691

setAutoCommit()

A Statement can be in auto-commit mode. In this case any statement executed is also
automatically committed. By default, the auto-commit mode is turned-off.

Syntax
void setAutoCommit(

bool autoCommit);

Parameter Description

autoCommit TRUE enables auto-commit; FALSE disables auto-commit.

setBatchErrorMode()

13-692 Oracle C++ Call Interface Programmer's Guide

setBatchErrorMode()

Enables or disables the batch error processing mode.

Syntax
virtual void setBatchErrorMode(

bool batchErrorMode);

Parameter Description

batchErrorMode TRUE enables batch error processing; FALSE disables batch error processing.

Statement Class

OCCI Application Programming Interface 13-693

setBDouble()

Sets an IEEE754 double as a bind value to a Statement object at the position specified
by paramIndex attribute.

Syntax
void setBDouble(

unsigned int paramIndex,
const BDouble &dval);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

dval The parameter value.

setBfile()

13-694 Oracle C++ Call Interface Programmer's Guide

setBfile()

Sets a parameter to a Bfile value.

Syntax
void setBfile(

unsigned int paramIndex,
const Bfile &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

Statement Class

OCCI Application Programming Interface 13-695

setBFloat()

Sets an IEEE754 float as a bind value to a Statement object at the position specified by
the paramIndex attribute.

Syntax
void setBFloat(

unsigned int paramIndex,
const BFloat &fval);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

fval The parameter value.

setBinaryStreamMode()

13-696 Oracle C++ Call Interface Programmer's Guide

setBinaryStreamMode()

Defines that a column is to be returned as a binary stream.

Syntax Description

void setBinaryStreamMode(
unsigned int colIndex,
unsigned int size);

Sets column returned to be a binary stream.

void setBinaryStreamMode(
unsigned int colIndex,
unsigned int size
bool inArg);

Sets column returned to be a binary stream; used with
PL/SQL IN or IN/OUT arguments in the bind position.

Parameter Description

colIndex Column index; first column is 1, second is 2, and so on.

size The amount of data to be read or returned as a binary Stream. This is limited
to 32KB (32,768 bytes).

inArg Pass TRUE if the bind position is a PL/SQL IN or IN/OUT argument

Statement Class

OCCI Application Programming Interface 13-697

setBlob()

Sets a parameter to a Blob value.

Syntax
void setBlob(

unsigned int paramIndex,
const Blob &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

setBytes()

13-698 Oracle C++ Call Interface Programmer's Guide

setBytes()

Sets a parameter to a Bytes array.

Syntax
void setBytes(

unsigned int paramIndex,
const Bytes &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

Statement Class

OCCI Application Programming Interface 13-699

setCharacterStreamMode()

Defines that a column is to be returned as a character stream.

Syntax Description

void setCharacterStreamMode(
unsigned int colIndex,
unsigned int size);

Sets column returned to be a character stream.

void setCharacterStreamMode(
unsigned int colIndex,
unsigned int size,
bool inArg);

Sets column returned to be a character stream; used with
PL/SQL IN or IN/OUT arguments in the bind position.

Parameter Description

colIndex Column index; first column is 1, second is 2, and so on.

size The amount of data to be read or returned as a character Stream.

inArg Pass TRUE if the bind position is a PL/SQL IN or IN/OUT argument

setCharSet()

13-700 Oracle C++ Call Interface Programmer's Guide

setCharSet()

Overrides the default character set for the specified parameter. Data is assumed to be
in the specified character set and is converted to database character set. For OUT binds,
this specifies the character set to which database characters are converted to.

Syntax
void setCharSet(

unsigned int paramIndex,
string &charSet);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

charSet Selected character set, as a string.

Statement Class

OCCI Application Programming Interface 13-701

setCharSetUString()

Overrides the default character set for the specified parameter. Data is assumed to be
in the specified character set and is converted to database character set. For OUT binds,
this specifies the character set to which database characters are converted to.

Syntax
void setCharSetUString(

unsigned int paramIndex,
const UString& charSet);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

charSet Selected character set, as a UString.

setClob()

13-702 Oracle C++ Call Interface Programmer's Guide

setClob()

Sets a parameter to a Clob value.

Syntax
void setClob(

unsigned int paramIndex,
const Clob &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

Statement Class

OCCI Application Programming Interface 13-703

setDate()

Sets a parameter to a Date value.

Syntax
void setDate(

unsigned int paramIndex,
const Date &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

setDatabaseNCHARParam()

13-704 Oracle C++ Call Interface Programmer's Guide

setDatabaseNCHARParam()

If the parameter is going to be inserted in a column that contains data in the database's
NCHAR character set, then OCCI must be informed by passing a TRUE value. A FALSE can
be passed to restore the dafault.Returns returns the character set that is in effect for the
specified parameter.

Syntax
void setDatabaseNCHARParam(

unsigned int paramIndex,
bool isNCHAR);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

isNCHAR TRUE if this parameter contains data in Database's NCHAR character
set; FALSE otherwise

Statement Class

OCCI Application Programming Interface 13-705

setDataBuffer()

Specifies a data buffer where data would be available. Also used for OUT bind
parameters of callable statements.

The buffer parameter is a pointer to a user allocated data buffer. The current length of
data must be specified in the length parameter. The amount of data should not exceed
the size parameter. Finally, type is the data type of the data.

Note that not all types can be supplied in the buffer. For example, all OCCI allocated
types (such as Bytes, Date and so on) cannot be provided by the setDataBuffer()
interface. Similarly, C++ Standard Library strings cannot be provided with the
setDataBuffer() interface either. The type can be any of OCI data types such VARCHAR2,
CSTRING, CHARZ and so on.

If setDataBuffer() is used to specify data for iterative or array executes, it should be
called only once in the first iteration only. For subsequent iterations, OCCI would
assume that data is at buffer +(i*size) location where i is the iteration number.
Similarly the length of the data would be assumed to be at (length+i).

For more information on the version of this method that uses 32K length parameter,
see Oracle Database SQL Language Reference.

Syntax Description

void setDataBuffer(
unsigned int paramIndex,
void *buffer,
Type type,
sb4 size,
ub2 *length,
sb2 *ind = NULL,
ub2 *rc= NULL);

Uses ub2 length buffer. This limits VARCHAR2 and NVARCHAR2
length to 4,000 bytes, and RAW data types to 2,000 bytes.

void setDataBuffer(
unsigned int paramIndex,
void *buffer,
Type type,
sb4 size,
ub4 *length,
sb2 *ind = NULL,
ub2 *rc= NULL);

Uses ub4 length buffer (32K). This increases the length of
VARCHAR2, NVARCHAR2 and RAW data types.

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

buffer Pointer to user-allocated buffer. For iterative or array executes, it should
have numIterations() size bytes in it. For array fetches, it should have
numRows * size bytes in it. For gather or scatter binds and defines, this
structure stores the address of OCIIOVec and the number of OCIIOVec
elements that start at that address.

type Type of the data that is provided (or retrieved) in the buffer.

size Size of the data buffer; for iterative and array executes, it is the size of each
element of the data items. For gather or scatter binds and defines, it is the
size of the OCIIOVecArray to which the buffer points; the mode must be set
to IOVEC.

setDataBuffer()

13-706 Oracle C++ Call Interface Programmer's Guide

length Pointer to the length of data in the buffer; for iterative and array executes, it
should be an array of length data for each buffer element; the size of the
array should be equal to arrayLength().

ind Indicator. For iterative and array executes, an indicator for every buffer
element.

rc Returns code; for iterative and array executes, a return code for every buffer
element.

Parameter Description

Statement Class

OCCI Application Programming Interface 13-707

setDataBufferArray()

Specifies an array of data buffers where data would be available for reading or
writing. Used for IN, OUT, and IN/OUT bind parameters for stored procedures which
read/write array parameters.

■ A stored procedure can have an array of values for IN, IN/OUT, or OUT parameters.
In this case, the parameter must be specified using the setDataBufferArray()
method. The array is specified just as for the setDataBuffer() method for iterative
or array executes, but the number of elements in the array is determined by
*arrayLength parameter.

■ For OUT and IN/OUT parameters, the maximum number of elements in the array is
specified (and returned) by the arraySize parameter. The client must ensure that
it has allocated size *arraySize bytes for the buffer. For iterative prepared
statements, the number of elements in the array is determined by the number of
iterations, and for array executes the number of elements in the array is
determined by the arrayLength parameter of the executeArrayUpdate() method.
However, for array parameters of stored procedures, the number of elements in
the array must be specified in the arrayLength parameter of the
setDataBufferArray() method because each parameter may have a different size
array.

■ This is different from prepared statements where for iterative and array executes,
the number of elements in the array for each parameter is the same and is
determined by the number of iterations of the statement, but a callable statement
is executed only once, and each of its parameter can be a varying length array with
possibly a different length.

■ For more information on the version of this method that uses 32K elementLength
parameter, see Oracle Database SQL Language Reference.

Syntax Description

void setDataBufferArray(
unsigned int paramIndex,
void *buffer,
Type type,
ub4 arraySize,
ub4 *arrayLength,
sb4 elementSize,
ub2 *elementLength,
sb2 *ind = NULL,
ub2 *rc = NULL);

Uses ub2 elementLength buffer. This limits VARCHAR2 and
NVARCHAR2 length to 4,000 bytes, and RAW data types to
2,000 bytes.

void setDataBufferArray(
unsigned int paramIndex,
void *buffer,
Type type,
ub4 arraySize,
ub4 *arrayLength,
sb4 elementSize,
ub4 *elementLength,
sb2 *ind = NULL,
ub2 *rc = NULL);

Uses ub4 elementLength buffer (32K). This increases the
length of VARCHAR2, NVARCHAR2 and RAW data types.

setDataBufferArray()

13-708 Oracle C++ Call Interface Programmer's Guide

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

buffer Pointer to user-allocated buffer. It should have size* arraySize bytes in it.
For gather or scatter binds and defines, this structure stores the address of
OCIIOVec and the number of OCIIOVec elements that start at that address.

type Type of the data that is provided (or retrieved) in the buffer.

arraySize Maximum number of elements in the array.

arrayLength Pointer to number of current elements in the array.

elementSize Size of the data buffer for each element. For iterative and array executes, it
is the size of each element of the data items. When using gather or scatter
binds and defines, it is the size of the OCIIOVecArray; the mode must be set
to IOVEC.

elementLemgth Pointer to an array of lengths. elementLength[i] has the current length of
the ith element of the array.

ind Pointer to an array of indicators. An indicator for every buffer element.

rcs Pointer to an array of return codes.

Statement Class

OCCI Application Programming Interface 13-709

setDouble()

Sets a parameter to a C++ double value.

Syntax
void setDouble(

unsigned int paramIndex,
double val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

setErrorOnNull()

13-710 Oracle C++ Call Interface Programmer's Guide

setErrorOnNull()

Enables/disables exceptions for reading of NULL values on paramIndex parameter of
the statement. If exceptions are enabled, calling a getxxx() on paramIndex parameter
would result in an SQLException if the parameter value is NULL. This call can also be
used to disable exceptions.

Syntax
void setErrorOnNull(

unsigned int paramIndex,
bool causeException);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

causeException Enable exceptions if TRUE. Disable if FALSE.

Statement Class

OCCI Application Programming Interface 13-711

setErrorOnTruncate()

This method enables/disables exceptions when truncation occurs.

Syntax
void setErrorOnTruncate(

unsigned int paramIndex,
bool causeException);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

causeException Enable exceptions if TRUE. Disable if FALSE.

setFloat()

13-712 Oracle C++ Call Interface Programmer's Guide

setFloat()

Sets a parameter to a C++ float value.

Syntax
void setFloat(

unsigned int paramIndex,
float val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

Statement Class

OCCI Application Programming Interface 13-713

setInt()

Sets a parameter to a C++ int value.

Syntax
void setInt(

unsigned int paramIndex,
int val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

setIntervalDS()

13-714 Oracle C++ Call Interface Programmer's Guide

setIntervalDS()

Sets a parameter to a IntervalDS value.

Syntax
void setIntervalDS(

unsigned int paramIndex,
const IntervalDS &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

Statement Class

OCCI Application Programming Interface 13-715

setIntervalYM()

Sets a parameter to a Interval value.

Syntax
void setIntervalYM(

unsigned int paramIndex,
const IntervalYM &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

setMaxIterations()

13-716 Oracle C++ Call Interface Programmer's Guide

setMaxIterations()

Sets the maximum number of invocations that are made for the DML statement. This
must be called before any parameters are set on the prepared statement. The larger the
iterations, the larger the numbers of parameters sent to the server in one round trip.
However, a large number causes more memory to be reserved for all the parameters.
Note that this is just the maximum limit. Actual number of iterations depends on the
number of calls to addIteration().

Syntax
void setMaxIterations(

unsigned int maxIterations);

Parameter Description

maxIterations Maximum number of iterations allowed on this statement.

Statement Class

OCCI Application Programming Interface 13-717

setMaxParamSize()

This method sets the maximum amount of data to be sent or received for the specified
parameter. It only applies to character and binary data. If the maximum amount is
exceeded, the excess data is discarded. This method can be very useful when working
with a LONG column. It can be used to truncate the LONG column by reading or writing
it into a string or Bytes data type.

If the getSQL() or setBytes() method has been called to bind a value to an IN/OUT
parameter of a PL/SQL procedure, and the size of the OUT value is expected to be
greater than the size of the IN value, then setMaxParamSize() should be called.

Syntax
void setMaxParamSize(

unsigned int paramIndex,
unsigned int maxSize);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

maxSize The new maximum parameter size limit; must be >0.

setNull()

13-718 Oracle C++ Call Interface Programmer's Guide

setNull()

Sets a parameter to SQL NULL. Note that you must specify the parameter's SQL type.

Syntax Description

void setNull(
unsigned int paramIndex,
Type type);

Sets the value of a parameter to NULL
using an object.

void setNull(
unsigned int paramIndex,
Type type,
const string &typeName,
const string &schemaName = "")

Sets the value of a parameter to NULL
for object and collection types,
OCCIPOBJECT and OCCIVECTOR. Uses
the appropriate schema and type
name of the object or collection type.
Support for string.

void setNull(
unsigned int paramIndex,
Type type,
UString &typeName,
UString &schemaName);

Sets the value of a parameter to NULL
for object and collection types,
OCCIPOBJECT and OCCIVECTOR. Uses
the appropriate schema and type
name of the object or collection type.
Support for UString.

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

type SQL type.

typeName Type name of the object or collection.

schemaName Name of the schema where the object or collection is defined.

Statement Class

OCCI Application Programming Interface 13-719

setNumber()

Sets a parameter to a Number value.

Syntax
void setNumber(

unsigned int paramIndex,
const Number &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

setObject()

13-720 Oracle C++ Call Interface Programmer's Guide

setObject()

Sets the value of a parameter using an object; use the C++.lang equivalent objects for
integral values. The OCCI specification specifies a standard mapping from C++ Object
types to SQL types. The given parameter C++ object is converted to the corresponding
SQL type before being sent to the database.

Syntax
void setObject(

unsigned int paramIndex,
PObject* val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The object containing the input parameter value.

sqltyp The SQL type name of the object to be set.

Statement Class

OCCI Application Programming Interface 13-721

setPrefetchMemorySize()

Sets the amount of memory that is used internally by OCCI to store data fetched
during each round trip to the server. A value of 0 means that the amount of data
fetched during the round trip is constrained by the FetchRowCount parameter. If both
parameters are nonzero, the smaller of the two is used.

Syntax
void setPrefetchMemorySize(

unsigned int bytes);

Parameter Description

bytes Number of bytes used for storing data fetched during each server round trip.

setPrefetchRowCount()

13-722 Oracle C++ Call Interface Programmer's Guide

setPrefetchRowCount()

Sets the number of rows that are fetched internally by OCCI during each round trip to
the server. A value of 0 means that the amount of data fetched during the round trip is
constrained by the FetchMemorySize parameter. If both parameters are nonzero, the
smaller of the two is used. If both of these parameters are zero, row count internally
defaults to 1 row and that is the value returned from the getFetchRowCount() method.

Syntax
void setPrefetchRowCount(

unsigned int rowCount);

Parameter Description

rowCount Number of rows to fetch for each round trip to the server.

Statement Class

OCCI Application Programming Interface 13-723

setRef()

Sets the value of a parameter to a reference. A Ref<T> instance is implicitly converted
to a RefAny object during this call.

Syntax Description

void setRef(
unsigned int paramIndex,
const RefAny &refAny);

Sets the value of a parameter to a reference.

void setRef(
unsigned int paramIndex,
const RefAny &refAny,
const string &typName,
const string &schName = "");

Sets the value of a parameter to a reference. If
the Statement represents a callable PL/SQL
method, pass the schema name and type
name of the object represented by the Ref.
Support for string.

void setRef(
unsigned int paramIndex,
const RefAny &refAny,
const UString &typName,
const UString &schName);

Sets the value of a parameter to a reference. If
the Statement represents a callable PL/SQL
method, pass the schema name and type
name of the object represented by the Ref.
Support for UString.

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

refAny The reference.

typName The type of the object [optional].

schName The schema where the object type is defined [optional].

setRowCountsOption()

13-724 Oracle C++ Call Interface Programmer's Guide

setRowCountsOption()

Set flag to TRUE to enable return of DML row counts per iteration when invoking
getDMLRowCounts().

This option should be set before the statement executes. By default, the DML row
counts per iteration are not returned.

Syntax
void setRowCountsOption(

bool flag);

Parameter Description

flag TRUE to return DML row counts, FALSE otherwise

Statement Class

OCCI Application Programming Interface 13-725

setRowid()

Sets a Rowid bytes array for a bind position.

Syntax
void setRowid(

unsigned int paramIndex,
const Bytes &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

setSQL()

13-726 Oracle C++ Call Interface Programmer's Guide

setSQL()

A new SQL string can be associated with a Statement object using this call. Resources
associated with the previous SQL statement are freed. In particular, a previously
obtained result set is invalidated. If an empty SQL string, "", is used when the
Statement is created, a setSQL method with the proper SQL string must be performed
first.

Syntax
void setSQL(

const string &sql);

Parameter Description

sql Any SQL statement.

Statement Class

OCCI Application Programming Interface 13-727

setSQLUString()

Associate an SQL statement with this object. Unicode support: the client Environment
should be initialized in OCCIUTIF16 mode.

Syntax
void setSQLUString(

const UString &sql);

Parameter Description

sql A SQL statement in same character set as the connection source of the statement.

setString()

13-728 Oracle C++ Call Interface Programmer's Guide

setString()

Sets a parameter for a specified index.

Syntax
void setString(

unsigned int paramIndex,
const string &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

Statement Class

OCCI Application Programming Interface 13-729

setTimestamp()

Sets a parameter to a Timestamp value.

Syntax
void setTimestamp(

unsigned int paramIndex,
const Timestamp &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

setUInt()

13-730 Oracle C++ Call Interface Programmer's Guide

setUInt()

Sets a parameter to a C++ unsigned int value.

Syntax
void setUInt(

unsigned int paramIndex,
unsigned int val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

Statement Class

OCCI Application Programming Interface 13-731

setUString()

Sets a parameter for a specified index; globalization enabled.

Syntax
void setUString(

unsigned int paramIndex,
const UString &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

setVector()

13-732 Oracle C++ Call Interface Programmer's Guide

setVector()

Sets a parameter to a vector. This method is necessary when the type is a collection
type, varrays or nested tables. The SQL Type of the elements in the collection should
be compatible with the type of the vector. For example, if the collection is a varray of
VARCHAR2, use vector<string>.

Syntax Description

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector< T > &vect,
const string &schemaName,
const string &typeName);

Intended for use on platforms
where partial ordering of function
templates is not supported, such
as Windows NT and z/OS.
Multibyte support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<T* > &vect,
const string &schemaName,
const string &typeName);

Intended for use on platforms
where partial ordering of function
templates is supported. Multibyte
support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<BDouble> &vect
const string &sqltype);

Sets a BDouble vector.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<Bfile> &vect,
const string &schemaName,
const string &typeName);

Sets a const Bfile vector;
multibyte support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<Bfile> &vect,
const UString &schemaName,
const UString &typeName);

Sets a const BFile vector; UTF16
support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<BFloat> &vect
const string &sqltype);

Sets a BFloat vector.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<Blob> &vect,
const string &schemaName,
const string &typeName);

Sets a const Blob vector;
multibyte support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<Blob> &vect,
const UString &schemaName,
const UString &typeName);

Sets a const Blob vector; UTF16
support.

Statement Class

OCCI Application Programming Interface 13-733

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<Bytes> &vect,
const string &sqltype);

Sets a const Bytes vector.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<Bytes> &vect,
const string &schemaName,
const string &typeName);

Sets a const Bytes vector;
multibyte support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<Bytes> &vect,
const Ustring &schemaName,
const Ustring &typeName);

Sets a const Bytes vector; UTF16
support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<Clob> &vect,
const string &schemaName,
const string &typeName);

Sets a const Clob vector;
multibyte support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<Clob> &vect,
const UString &schemaName,
const UString &typeName);

Sets a const Clob vector; UTF16
support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<Date> &vect,
const string &schemaName,
const string &typeName);

Sets a const Date vector;
multibyte support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<Date> &vect,
const UString &schemaName,
const UString &typeName);

Sets a const Date vector; UTF16
support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<double> &vect,
const string &schemaName,
const string &typeName);

Sets a const double vector;
multibyte support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<double> &vect,
const UString &schemaName,
const UString &typeName);

Sets a const double vector; UTF16
support.

Syntax Description

setVector()

13-734 Oracle C++ Call Interface Programmer's Guide

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<float> &vect,
const string &schemaName,
const string &typeName);

Sets a const float vector;
multibyte support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<float> &vect,
const UString &schemaName,
const UString &typeName);

Sets a const float vector; UTF16
support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<int> &vect,
const string &schemaName,
const string &typeName);

Sets a const int vector; multibyte
support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<int> &vect,
const UString &schemaName,
const UString &typeName);

Sets a const int vector; UTF16
support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<IntervalDS> &vect,
const string &schemaName,
const string &typeName);

Sets a const IntervalDS vector;
multibyte support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<IntervalDS> &vect,
const UString &schemaName,
const UString &typeName);

Sets a const IntervalDS vector;
UTF16 support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<IntervalYM> &vect,
const string &schemaName,
const string &typeName);

Sets a const IntervalYM vector;
multibyte support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<IntervalYM> &vect,
const UString &schemaName,
const UString &typeName);

Sets a const IntervalYM vector;
UTF16 support

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<Number> &vect,
const string &schemaName,
const string &typeName);

Sets a const Number vector;
multibyte support.

Syntax Description

Statement Class

OCCI Application Programming Interface 13-735

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<Number> &vect,
const UString &schemaName,
const UString &typeName);

Sets a const Number vector; UTF16
support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<RefAny> &vect,
const string &schemaName,
const string &typeName);

Sets a const RefAny vector;
multibyte support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<RefAny> &vect,
const UString &schemaName,
const UString &typeName);

Sets a const RefAny vector; UTF16
support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<string> &vect,
const string &schemaName,
const string &typeName);

Sets a const string vector;
multibyte support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<string> &vect,
const UString &schemaName,
const UString &typeName);

Sets a const string vector; UTF16
support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<Timestamp> &vect,
const string &schemaName,
const string &typeName);

Sets a const Timestamp vector;
multibyte support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<Timestamp> &vect,
const UString &schemaName,
const UString &typeName);

Sets a const Timestamp vector;
UTF16 support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<unsigned int> &vect,
const string &schemaName,
const string &typeName);

Sets a const unsigned int vector;
multibyte support.

void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<unsigned int> &vect,
const UString &schemaName,
const UString &typeName);

Sets a const unsigned int vector;
UTF16 support.

Syntax Description

setVector()

13-736 Oracle C++ Call Interface Programmer's Guide

void setVector(
Statement *stmt,
unsigned int paramIndex,
vector<Bfile> &vect,
string &sqltype);

Sets a Bfile vector.

void setVector(
Statement *stmt,
unsigned int paramIndex,
vector<Blob> &vect,
string &sqltype);

Sets a Blob vector.

void setVector(
Statement *stmt,
unsigned int paramIndex,
vector<Clob> &vect,
string &sqltype);

Sets a Clob vector.

void setVector(
Statement *stmt,
unsigned int paramIndex,
vector<Date> &vect,
string &sqltype);

Sets a Date vector.

void setVector(
Statement *stmt,
unsigned int paramIndex,
vector<double> &vect,
string &sqltype);

Sets a double vector.

void setVector(
Statement *stmt,
unsigned int paramIndex,
vector<float> &vect,
string &sqltype);

Sets a float vector.

void setVector(
Statement *stmt,
unsigned int paramIndex,
vector<int> &vect,
string &sqltype);

Sets an int vector.

void setVector(
Statement *stmt,
unsigned int paramIndex,
vector<IntervalDS> &vect,
string &sqltype);

Sets an IntervalDS vector.

void setVector(
Statement *stmt,
unsigned int paramIndex,
vector<IntervalYM> &vect,
string &sqltype);

Sets an IntervalYM vector.

void setVector(
Statement *stmt,
unsigned int paramIndex,
vector<Number> &vect,
string &sqltype);

Sets a Number vector.

Syntax Description

Statement Class

OCCI Application Programming Interface 13-737

void setVector(
Statement *stmt,
unsigned int paramIndex,
vector<RefAny> &vect,
string &sqltype);

Sets a RefAny vector.

void setVector(
Statement *stmt,
unsigned int paramIndex,
vector<string> &vect,
string &sqltype);

Sets a string vector.

void setVector(
Statement *stmt,
unsigned int paramIndex,
vector<Timestamp> &vect,
string &sqltype);

Sets a Timestamp vector.

void setVector(
Statement *stmt,
unsigned int paramIndex,
vector<unsigned int> &vect,
string &sqltype);

Sets an unsigned int vector.

template <class T>
void setVector(

Statement *stmt,
unsigned int paramIndex,
const vector< T* > &vect,
const string &sqltype);

Intended for use on platforms
where partial ordering of function
templates is not supported.

template <class T>
void setVector(

Statement *stmt,
unsigned int paramIndex,
const vector<T> &vect,
const string &sqltype);

Intended for use on platforms
where partial ordering of function
templates is supported.

template <class T>
void setVector(

Statement *stmt,
unsigned int paramIndex,
vector<Ref<T>> &vect,
string &sqltype);

Available only on platforms where
partial ordering of function
templates is supported.
setVectorOfRefs() can be used
instead.

Parameter Description

stmt Statement on which parameter is to be set.

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

vect The vector to be set.

sqltype Sqltype of the collection in the database. For example, CREATE TYPE num_coll
AS VARRAY OF NUMBER. And the column/parameter type is num_coll. The
sqltype would be num_coll.

schemaName Name of the schema used

typeName Type

Syntax Description

setVectorOfRefs()

13-738 Oracle C++ Call Interface Programmer's Guide

setVectorOfRefs()

Sets a parameter to a vector; is necessary when the type is a collection of REFs or nested
tables of REFs.

Syntax Description

template <class T> void setVectorOfRefs(
Statement *stmt, unsigned int paramIndex,
const vector<Ref<T> > &vect,
const string &sqltype);

Sets a parameter to a vector; is
necessary when the type is a
collection of REFs are varrays or
nested tables of REFs.

template <class T> void setVectorOfRefs(
Statement *stmt,
unsigned int paramIndex,
const vector<Ref<T> > &vect,
const string &sqltype);

Used for multibyte support.

template <class T> void setVectorOfRefs(
Statement *stmt,
unsigned int paramIndex,
const vector<Ref<T>> &vect,
const string &schemaName,
const string &typeName);

Used for multibyte support.

template <class T> void setVectorOfRefs(
Statement *stmt,
unsigned int paramIndex,
const vector<Ref<T> &vect,
const UString &schemaName,
const UString &typeName);

Used for UTF16 support on
platforms where partial ordering
of function templates is not
supported, such as Windows NT
and z/OS.

template <class T> void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<T* > &vect,
const UString &schemaName,
const UString &typeName);

Used for UTF16 support on
platforms where partial ordering
of function templates is supported.

Parameter Description

stmt Statement on which parameter is to be set.

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

vect Vector to be set.

sqltype Sqltype of the parameter or column. Use setVectorOfRefs() instead
of specialized function setVector() for Ref<T>.

schemaName Name of the schema used

typeName Type

Statement Class

OCCI Application Programming Interface 13-739

status()

Returns the current status of the statement. Useful when there is streamed data to be
written (or read). Other methods such as getCurrentStreamParam() and
getCurrentIteration() can be called to find out the streamed parameter that must be
written and the current iteration number for an iterative or array execute. The
status()method can be called repeatedly to find out the status of the execution.

The returned value, Status, is defined in Table 13–43 on page 13-630.

Syntax
Status status() const;

Stream Class

13-740 Oracle C++ Call Interface Programmer's Guide

Stream Class

You use a Stream to read or write streamed data (usually LONG).

■ A read-able Stream is used to obtain streamed data from a result set or OUT bind
variable from a stored procedure call. A read-able Stream must be read completely
until the end of data is reached or it should be closed to discard any unwanted
data.

■ A write-able Stream is used to provide streamed data (usually LONG) to
parameterized statements including callable statements.

Table 13–45 Enumerated Values Used by Stream Class

Attribute Options

Status ■ READY_FOR_READ indicates that the Stream is ready for read operations

■ READY_FOR_WRITE indicates that the Stream is ready for write operations

■ INACTIVE indicates that the Stream is not available for ready or write
operations

Table 13–46 Summary of Stream Methods

Method Summary

readBuffer() on page 13-741 Reads the stream and returns the amount of data read
from the Stream object.

readLastBuffer() on page 13-742 Reads last buffer from Stream.

writeBuffer() on page 13-743 Writes data from buffer to the stream.

writeLastBuffer() on page 13-744 Writes the last data from buffer to the stream.

status() on page 13-745 Returns the current status of the stream.

Stream Class

OCCI Application Programming Interface 13-741

readBuffer()

Reads data from Stream. The size parameter specifies the maximum number of byte
characters to read. Returns the amount of data read from the Stream object. -1 means
end of data on the stream.

Syntax
virtual int readBuffer(

char *buffer,
unsigned int size) = 0;

Parameter Description

buffer Pointer to data buffer; must be allocated and freed by caller.

size Specifies the number of bytes to be read.

readLastBuffer()

13-742 Oracle C++ Call Interface Programmer's Guide

readLastBuffer()

Reads the last buffer from the Stream. It can also be called top discard unread data.
The size parameter specifies the maximum number of byte characters to read. Returns
the amount of data read from the Stream object; -1 means end of data on the stream.

Syntax
virtual int readLastBuffer(

char *buffer,
unsigned int size) = 0;

Parameter Description

buffer Pointer to data buffer; must be allocated and freed by caller.

size Specifies the number of bytes to be read.

Stream Class

OCCI Application Programming Interface 13-743

writeBuffer()

Writes data from buffer to the stream. The amount of data is determined by size.

Syntax
virtual void writeBuffer(

char *buffer,
unsigned int size) = 0;

Parameter Description

buffer Pointer to data buffer.

size Specifies the number of chars to be written.

writeLastBuffer()

13-744 Oracle C++ Call Interface Programmer's Guide

writeLastBuffer()

This method writes the last data buffer to the stream. It can also be called to write the
last chunk of data. The amount of data written is determined by size.

Syntax
virtual void writeLastBuffer(

char *buffer,
unsigned int size) = 0;

Parameter Description

buffer Pointer to data buffer.

size Specifies the number of bytes to be written.

Stream Class

OCCI Application Programming Interface 13-745

status()

Returns the current Status, as defined in Table 13–45 on page 13-740.

Syntax
virtual Status status() const;

Subscription Class

13-746 Oracle C++ Call Interface Programmer's Guide

Subscription Class

The subscription class encapsulates the information and operations necessary for
registering a subscriber for notification.

Table 13–47 Enumerated Values Used by Subscription Class

Attribute Options

Presentation ■ PRES_DEFAULT indicates that the event notification should be in
default format.

■ PRES_XML indicates that the event notification should be in XML
format.

Protocol ■ PROTO_CBK indicates that the client receives notifications through the
default system protocol.

■ PROTO_MAIL indicates that the client receives notifications through
e-mail, like xyz@oracle.com. The database does not check if the
e-mail is valid.

■ PROTO_SERVER indicates that the client receives notifications through
an invoked PL/SQL procedure in the database, like
schema.procedure. The subscriber must have the appropriate
permissions on the procedure.

■ PROTO_HTTP indicates that the client receives notifications through
an HTTP URL, like http://www.oracle.com:80. The database does
not check if the URL is valid.

Namespace ■ NS_ANONYMOUS indicates that the registrations are made in an
anonymous namespace.

■ NS_AQ indicates that the registrations are made in the Oracle Streams
Advanced Queuing namespace.

Table 13–48 Summary of Subscription Methods

Method Summary

Subscription() on page 13-748 Subscription class constructor.

getCallbackContext() on
page 13-749

Retrieves the callback context.

getDatabaseServersCount() on
page 13-750

Retrieves the number of database servers in which the
client is interested for the registration.

getDatabaseServerNames() on
page 13-751

Returns the names of all the database servers where the
client registered an interest for notification.

getNotifyCallback() on
page 13-752

Returns the pointer to the registered callback function.

getPayload() on page 13-753 Retrieves the payload that has been set on the
Subscription object before posting.

getSubscriptionName() on
page 13-754

Retrieves the name of the Subscription.

getSubscriptionNamespace() on
page 13-755

Retrieves the namespace of the Subscription.

getRecipientName() on
page 13-756

Retrieves the name of the Subscription recipient.

getPresentation() on page 13-757 Retrieves the notification presentation mode.

Subscription Class

OCCI Application Programming Interface 13-747

getProtocol() on page 13-758 Retrieves the notification protocol.

isNull() on page 13-759 Determines if the Subscription is NULL.

operator=() on page 13-760 Assignment operator for Subscription.

setCallbackContext() on
page 13-761

Registers a callback function for OCI protocol.

setDatabaseServerNames() on
page 13-762

Specifies the database server distinguished names from
which the client receives notifications.

setNotifyCallback() on
page 13-763

Specifies the context passed to user callbacks

setNull() on page 13-764 Specifies the Subscription object to NULL and frees the
memory associated with the object.

setSubscriptionName() on
page 13-768

Specifies the name of the subscription.

setSubscriptionNamespace() on
page 13-769

Specifies the namespace in which the subscription is used.

setPayload() on page 13-765 Specifies the buffer content of the notification.

setRecipientName() on
page 13-770

Specifies the name of the recipient of the notification.

setPresentation() on page 13-766 Specifies the presentation mode in which the client
receives notifications.

setProtocol() on page 13-767 Specifies the protocol in which the client receives
notifications.

setSubscriptionName() on
page 13-768

Specifies the name of the subscription.

setSubscriptionNamespace() on
page 13-769

Specifies the namespace where the subscription is used.

setRecipientName() on
page 13-770

Specifies the name of the recipient of the notification.

Table 13–48 (Cont.) Summary of Subscription Methods

Method Summary

Subscription()

13-748 Oracle C++ Call Interface Programmer's Guide

Subscription()

Subscription class constructor.

Syntax
Subscription(const Subscription& sub);

Syntax Description

Subscription (
const Environment *env);

Creates a Subscription within a
specified Environment.

Subscription(
const Subscription& sub);

Copy constructor.

Parameter Description

env The Environment.

sub The original Subscription.

Subscription Class

OCCI Application Programming Interface 13-749

getCallbackContext()

Retrieves the callback context.

Syntax
void* getCallbackContext() const;

getDatabaseServersCount()

13-750 Oracle C++ Call Interface Programmer's Guide

getDatabaseServersCount()

Returns the number of database servers in which the client is interested for the
registration.

Syntax
unsigned int getDatabaseServersCount() const;

Subscription Class

OCCI Application Programming Interface 13-751

getDatabaseServerNames()

Returns the names of all the database servers where the client registered an interest for
notification.

Syntax
vector<string> getDatabaseServerNames() const;

getNotifyCallback()

13-752 Oracle C++ Call Interface Programmer's Guide

getNotifyCallback()

Returns the pointer to the callback function registered for this Subscription.

Syntax
unsigned int (*getNotifyCallback() const)(

Subscription& sub,
NotifyResult *nr);

Parameter Description

sub The Subscription.

nr The NotifyResult.

Subscription Class

OCCI Application Programming Interface 13-753

getPayload()

Retrieves the payload that has been set on the Subscription object before posting.

Syntax
Bytes getCPayload() const;

getSubscriptionName()

13-754 Oracle C++ Call Interface Programmer's Guide

getSubscriptionName()

Retrieves the name of the subscription.

Syntax
string getSubscriptionName() const;

Subscription Class

OCCI Application Programming Interface 13-755

getSubscriptionNamespace()

Retrieves the namespace of the subscription. The subscription name must be consistent
with its namespace. Valid Namespace values are NS_AQ and NS_ANONYMOUS, as defined in
Table 13–47 on page 13-746.

Syntax
Namespace getSubscriptionNamespace() const;

getRecipientName()

13-756 Oracle C++ Call Interface Programmer's Guide

getRecipientName()

Retrieves the name of the recipient of the notification. Possible return values are E-mail
address, the HTTP url and the PL/SQL procedure, depending on the protocol.

Syntax
string getRecipientName() const;

Subscription Class

OCCI Application Programming Interface 13-757

getPresentation()

Retrieves the presentation mode in which the client receives notifications. Valid
Presentation values are defined in Table 13–47 on page 13-746.

Syntax
Presentation getPresentation() const;

getProtocol()

13-758 Oracle C++ Call Interface Programmer's Guide

getProtocol()

Retrieves the protocol in which the client receives notifications. Valid Protocol values
are defined in Table 13–47 on page 13-746.

Syntax
Protocol getProtocol() const;

Subscription Class

OCCI Application Programming Interface 13-759

isNull()

Returns TRUE if Subscription is NULL or FALSE otherwise.

Syntax
bool isNull() const;

operator=()

13-760 Oracle C++ Call Interface Programmer's Guide

operator=()

Assignment operator for Subscription.

Syntax
void operator=(

const Subscription& sub);

Parameter Description

sub The original Subscription.

Subscription Class

OCCI Application Programming Interface 13-761

setCallbackContext()

Registers a notification callback function when the protocol is PROTO_CBK, as defined in
Table 13–47 on page 13-746. Context registration is also included in this call.

Syntax
void setCallbackContext(

void *ctx);

Parameter Description

ctx The context set.

setDatabaseServerNames()

13-762 Oracle C++ Call Interface Programmer's Guide

setDatabaseServerNames()

Specifies the list of database server distinguished names from which the client receives
notifications.

Syntax
void setDatabaseServerNames(

const vector<string>& dbsrv);

Parameter Description

dbsrv The list of database distinguished names

Subscription Class

OCCI Application Programming Interface 13-763

setNotifyCallback()

Sets the context that the client wants to get passed to the user callback. If the protocol
is set to PROTO_CBK or not specified, this attribute must be set before registering the
subscription handle.

Syntax
void setNotifyCallback(

unsigned int (*callback)(
Subscription& sub,
NotifyResult *nr));

Parameter Description

callback The user callback function.

sub The Subscription object.

nr The NotifyResult object.

setNull()

13-764 Oracle C++ Call Interface Programmer's Guide

setNull()

Sets the Subscription object to NULL and frees the memory associated with the object.

Syntax
void setNull();

Subscription Class

OCCI Application Programming Interface 13-765

setPayload()

Sets the buffer content that corresponds to the payload to be posted to the
Subscription.

Syntax
void setPayload(

const Bytes& payload);

Parameter Description

payload Content of the notification.

setPresentation()

13-766 Oracle C++ Call Interface Programmer's Guide

setPresentation()

Sets the presentation mode in which the client receives notifications.

Syntax
void setPresentation(

Presentation pres);

Parameter Description

pres Presentation mode, as defined in Table 13–47 on page 13-746.

Subscription Class

OCCI Application Programming Interface 13-767

setProtocol()

Sets the Protocol in which the client receives event notifications, as defined in
Table 13–47 on page 13-746.

Syntax
void setProtocol(

Protocol prot);

Parameter Description

prot Protocol mode

setSubscriptionName()

13-768 Oracle C++ Call Interface Programmer's Guide

setSubscriptionName()

Sets the name of the subscription. All subscriptions are identified by a subscription
name, which consists of a sequence of bytes of specified length.

If the namespace is NS_AQ, the subscription name is:

■ SCHEMA.QUEUE when registering on a single consumer queue

■ SCHEMA.QUEUE:CONSUMER_NAME when registering on a multiconsumer queue

Syntax
void setSubscriptionName(

const string& name);

Parameter Description

name Subscription name.

Subscription Class

OCCI Application Programming Interface 13-769

setSubscriptionNamespace()

Sets the namespace where the subscription is used. The subscription name must be
consistent with its namespace. Default value is NS_AQ.

Syntax
void setSubscriptionNamespace(

Namespace nameSpace);

Parameter Description

nameSpace Namespace in which the subscription is used, as defined in
Table 13–47 on page 13-746.

setRecipientName()

13-770 Oracle C++ Call Interface Programmer's Guide

setRecipientName()

Sets the name of the recipient of the notification.

Syntax
void setRecipientName(

const string& name);

Parameter Description

name Name of the notification recipient.

Timestamp Class

OCCI Application Programming Interface 13-771

Timestamp Class

This class supports the SQL standard TIMESTAMP WITH TIME ZONE and TIMESTAMP
WITHOUT TIME ZONE types, and works with all database TIMESTAMP types: TIMESTAMP,
TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE.

Timestamp time components, such as hour, minute, second and fractional section are in
the time zone specified for the Timestamp. This is new behavior for the 10g release;
previous versions supported GMT values of time components. Time components were
only converted to the time zone specified by Timestamp when they were stored in the
database. For example, the following Timestamp() call constructs a Timestamp value
13-Nov 2003 17:24:30.0 in timezone +5:30.

Timestamp ts(env, 2003, 11, 13, 17, 24, 30, 0, 5, 30);

The behavior of this call in previous releases would interpret the timestamp
components as GMT, resulting in a timestamp value of 13-Nov 2003 11:54:30.0 in
timezone +5:30. Users were forced to convert the timestamps to GMT before invoking
the constructor. Note that for GMT timezone, both hour and minute equal 0.

This behavior change also applies to setDate() and setTime() methods.

The fields of Timestamp class and their legal ranges are provided in Table 13–49. An
SQLException occurs if a parameter is out of range.

Table 13–49 Fields of Timestamp and Their Legal Ranges

Field Type Minimum Value Maximum value

year int -4713 9999

month unsigned int 1 12

day unsigned int 1 31

hour unsigned int 0 23

min unsigned int 0 59

sec unsigned int 0 61

tzhour int -12 14

tzmin int -59 59

Table 13–50 Summary of Timestamp Methods

Method Summary

Timestamp() on page 13-773 Timestamp class constructor.

fromText() on page 13-776 Sets the time stamp from the values provided by the
string.

getDate() on page 13-777 Gets the date from the Timestamp object.

getTime() on page 13-778 Gets the time from the TimeStamp object.

getTimeZoneOffset() on
page 13-779

Returns the time zone hour and minute offset value.

intervalAdd() on page 13-780 Returns a Timestamp object with value (this + interval).

intervalSub() on page 13-781 Returns a Timestamp object with value (this - interval).

isNull() on page 13-782 Checks if Timestamp is NULL.

Timestamp Class

13-772 Oracle C++ Call Interface Programmer's Guide

operator=() on page 13-783 Simple assignment.

operator==() on page 13-784 Checks if a and b are equal.

operator!=() on page 13-785 Checks if a and b are not equal.

operator>() on page 13-786 Checks if a is greater than b.

operator>=() on page 13-787 Checks if a is greater than or equal to b.

operator<() on page 13-788 Checks if a is less than b.

operator<=() on page 13-789 Checks if a is less than or equal to b.

setDate() on page 13-790 Sets the year, month, day components contained for
this timestamp.

setNull() on page 13-791 Sets the value of Timestamp to NULL

setTime() on page 13-792 Sets the day, hour, minute, second and fractional
second components for this timestamp.

setTimeZoneOffset() on
page 13-793

Sets the hour and minute offset for time zone.

subDS() on page 13-794 Returns a IntervalDS representing this - val.

subYM() on page 13-795 Returns a IntervalYM representing this - val.

toText() on page 13-796 Returns a string representation for the timestamp in
the format specified.

Table 13–50 (Cont.) Summary of Timestamp Methods

Method Summary

Timestamp Class

OCCI Application Programming Interface 13-773

Timestamp()

Timestamp class constructor.

Syntax Description

Timestamp(
const Environment *env,
int year=1,
unsigned int month=1,
unsigned int day=1,
unsigned int hour=0,
unsigned int min=0,
unsigned int sec=0,
unsigned int fs=0,
int tzhour=0,
int tzmin=0);

Returns a default Timestamp object. Time
components are understood to be in the
specified time zone.

Timestamp(); Returns a NULL Timestamp object. A NULL
timestamp can be initialized by assignment
or calling the fromText() method. Methods
that can be called on NULL timestamp objects
are setNull(), isNull() and operator=().

Timestamp(
const Environment *env,
int year,
unsigned int month,
unsigned int day,
unsigned int hour,
unsigned int min,
unsigned int sec,
unsigned int fs,
const string &timezone);

Multibyte support. The timezone can be
passed as region, "US/Eastern", or as an
offset from GMT, "+05:30". If an empty string
is passed, then the time is considered to be in
the current session's time zone. Used for
constructing values for TIMESTAMP WITH
LOCAL TIME ZONE types.

Timestamp(
const Environment *env,
int year,
unsigned int month,
unsigned int day,
unsigned int hour,
unsigned int min,
unsigned int sec,
unsigned int fs,
const UString &timezone);

UTF16 (UString) support. The timezone can
be passed as region, "US/Eastern", or as an
offset from GMT, "+05:30". If an empty string
is passed, then the time is considered to be in
the current session's time zone. Used for
constructing values for TIMESTAMP WITH
LOCAL TIME ZONE types.

Timestamp(
const Timestamp &src);

Copy constructor.

Parameter Description

year Year component.

month Month component.

day Day component.

hour Hour component.

minute Minute component.

Timestamp()

13-774 Oracle C++ Call Interface Programmer's Guide

Example 13–11 Using Default Timestamp Constructor

This example demonstrates that the default constructor creates a NULL value, and how
you can assign a non-NULL value to a Timestamp and perform operations on it:

Environment *env = Environment::createEnvironment();

//create a null timestamp
Timestamp ts;
if(ts.isNull())
 cout << "\n ts is Null";

//assign a non null value to ts
Timestamp notNullTs(env, 2000, 8, 17, 12, 0, 0, 0, 5, 30);
ts = notNullTs;

//now all operations are valid on ts
int yr;
unsigned int mth, day;
ts.getDate(yr, mth, day);

Example 13–12 Using fromText() method to Initialize a NULL Timestamp Instance

The following code example demonstrates how to use the fromText() method to
initialize a NULL timestamp:

Environment *env = Environment::createEnvironment();

Timestamp ts1;
ts1.fromText("01:16:17.12 04/03/1825", "hh:mi:ssxff dd/mm/yyyy", "", env);

Example 13–13 Comparing Timestamps Stored in the Database

The following code example demonstrates how to get the timestamp column from a
result set, check whether the timestamp is NULL, get the timestamp value in string
format, and determine the difference between 2 timestamps:

Timestamp reft(env, 2001, 1, 1);
ResultSet *rs=stmt->executeQuery(

"select order_date from orders where customer_id=1");
rs->next();

//retrieve the timestamp column from result set
Timestamp ts=rs->getTimestamp(1);

//check timestamp for null
if(!ts.isNull())
{

string tsstr=ts.toText(//get the timestamp value in string format
"dd/mm/yyyy hh:mi:ss [tzh:tzm]",0);

second Second component.

fs Fractional second component.

tzhour Time zone difference hour component.

tzmin Timezone difference minute component.

src The original Timezone.

Parameter Description

Timestamp Class

OCCI Application Programming Interface 13-775

if(reft<ts //compare timestamps
IntervalDS ds=reft.subDS(ts); //get difference between timestamps

}

fromText()

13-776 Oracle C++ Call Interface Programmer's Guide

fromText()

Sets the timestamp value from the string. The string is expected to be in the format
specified. If nlsParam is specified, this determines the NLS parameters to be used for
the conversion. If nlsParam is not specified, the NLS parameters are picked up from
the environment which has been passed. In case environment is not passed,
Globalization Support parameters are obtained from the environment associated with
the instance, if any.

Sets Timestamp object to value represented by a string or UString.

The value is interpreted based on the fmt and nlsParam parameters. In cases where
nlsParam is not passed, the Globalization Support settings of the envp parameter are
used.

See Also: Oracle Database SQL Language Reference for information on
TO_DATE

Syntax Description

void fromText(
const string ×tmpStr,
const string &fmt,
const string &nlsParam = "",
const Environment *env = NULL);

Sets Timestamp object to value represented by
a string.

void fromText(
const UString ×tmpStr,
const UString &fmt,
const UString &nlsParam,
const Environment *env = NULL);

Sets Timestamp object to value represented by
a UString; globalization enabled.

Parameter Description

timestmpStr The timestamp string or UString to be converted to a Timestamp object.

fmt The format string.

nlsParam The NLS parameters string. If nlsParam is specified, this determines the NLS
parameters to be used for the conversion. If nlsParam is not specified, the NLS
parameters are picked up from envp.

env The OCCI environment. In globalization enabled version of the method, used
to determine NLS_CALENDAR for interpreting timestampStr. If env is not
passed, the environment associated with the object controls the setting.
Should be a non-NULL value if called on a NULL Timestamp object.

Timestamp Class

OCCI Application Programming Interface 13-777

getDate()

Returns the year, month and day values of the Timestamp.

Syntax
void getDate(

int &year,
unsigned int &month,
unsigned int &day) const;

Parameter Description

year Year component.

month Month component.

day Day component.

getTime()

13-778 Oracle C++ Call Interface Programmer's Guide

getTime()

Returns the hour, minute, second, and fractional second components

Syntax
void getTime(

unsigned int &hour,
unsigned int &minute,
unsigned int &second,
unsigned int &fs) const;

Parameter Description

hour Hour component.

minute Minute component.

second Second component.

fs Fractional second component.

Timestamp Class

OCCI Application Programming Interface 13-779

getTimeZoneOffset()

Returns the time zone offset in hours and minutes.

Syntax
void getTimeZoneOffset(

int &hour,
int &minute) const;

Parameter Description

hour Time zone hour.

minute Time zone minute.

intervalAdd()

13-780 Oracle C++ Call Interface Programmer's Guide

intervalAdd()

Adds an interval to timestamp.

Syntax Description

const Timestamp intervalAdd(
const IntervalDS& val) const;

Adds an IntervalDS interval to the timestamp.

const Timestamp intervalAdd(
const IntervalYM& val) const;

Adds an IntervalYM interval to the timestamp.

Parameter Description

val Interval to be added.

Timestamp Class

OCCI Application Programming Interface 13-781

intervalSub()

Subtracts an interval from a timestamp and returns the result as a timestamp. Returns
a Timestamp with the value of this - val.

Syntax Description

const Timestamp intervalSub(
const IntervalDS& val) const;

Subtracts an IntervalDS interval to the
timestamp.

const Timestamp intervalsUB(
const IntervalYM& val) const;

Subtracts an IntervalYM interval to the
timestamp.

Parameter Description

val Interval to be subtracted.

isNull()

13-782 Oracle C++ Call Interface Programmer's Guide

isNull()

Returns TRUE if Timestamp is NULL or FALSE otherwise.

Syntax
bool isNull() const;

Timestamp Class

OCCI Application Programming Interface 13-783

operator=()

Assigns a given timestamp object to this object.

Syntax
Timestamp & operator=(

const Timestamp &src);

Parameter Description

src Value to be assigned.

operator==()

13-784 Oracle C++ Call Interface Programmer's Guide

operator==()

Compares the timestamps specified. If the timestamps are equal, returns TRUE, FALSE
otherwise. If either a or b is NULL then FALSE is returned.

Syntax
bool operator==(

const Timestamp &first,
const Timestamp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

Timestamp Class

OCCI Application Programming Interface 13-785

operator!=()

Compares the timestamps specified. If the timestamps are not equal then TRUE is
returned; otherwise, FALSE is returned. If either timestamp is NULL then FALSE is
returned.

Syntax
bool operator!=(

const Timestamp &first,
const Timestamp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

operator>()

13-786 Oracle C++ Call Interface Programmer's Guide

operator>()

Returns TRUE if first is greater than second, FALSE otherwise. If either is NULL then
FALSE is returned.

Syntax
bool operator>(

const Timestamp &first,
const Timestamp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

Timestamp Class

OCCI Application Programming Interface 13-787

operator>=()

Compares the timestamps specified. If the first timestamp is greater than or equal to
the second timestamp then TRUE is returned; otherwise, FALSE is returned. If either
timestamp is NULL then FALSE is returned.

Syntax
bool operator>=(

const Timestamp &first,
const Timestamp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

operator<()

13-788 Oracle C++ Call Interface Programmer's Guide

operator<()

Returns TRUE if first is less than second, FALSE otherwise. If either a or b is NULL then
FALSE is returned.

Syntax
bool operator<(

const Timestamp &first,
const Timestamp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

Timestamp Class

OCCI Application Programming Interface 13-789

operator<=()

Compares the timestamps specified. If the first timestamp is less than or equal to the
second timestamp then TRUE is returned; otherwise, FALSE is returned. If either
timestamp is NULL then FALSE is returned.

Syntax
bool operator<=(

const Timestamp &first,
const Timestamp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

setDate()

13-790 Oracle C++ Call Interface Programmer's Guide

setDate()

Sets the year, month, day components contained for this timestamp

Syntax
void setDate(

int year,
unsigned int month,
unsigned int day);

Parameter Description

year Year component. Valid values are -4713 through 9999.

month Month component. Valid values are 1 through 12.

day Day component. Valid values are 1 through 31.

Timestamp Class

OCCI Application Programming Interface 13-791

setNull()

Sets the timestamp to NULL.

Syntax
void setNull();

setTime()

13-792 Oracle C++ Call Interface Programmer's Guide

setTime()

Sets the day, hour, minute, second and fractional second components for this
timestamp.

Syntax
void setTime(

unsigned int hour,
unsigned int minute,
unsigned int second,
unsigned int fs);

Parameter Description

hour Hour component. Valid values are 0 through 23.

minute Minute component. Valid values are 0 through 59.

second Second component. Valid values are 0 through 59.

fs Fractional second component.

Timestamp Class

OCCI Application Programming Interface 13-793

setTimeZoneOffset()

Sets the hour and minute offset for time zone.

Syntax
void setTimeZoneOffset(

int hour,
int minute);

Parameter Description

hour Time zone hour. Valid values are -12 through 12.

minute Time zone minute. Valid values are -59 through 59.

subDS()

13-794 Oracle C++ Call Interface Programmer's Guide

subDS()

Computes the difference between this timestamp and the specified timestamp and
return the difference as an IntervalDS.

Syntax
const IntervalDS subDS(

const Timestamp& val) const;

Parameter Description

val Timestamp to be subtracted.

Timestamp Class

OCCI Application Programming Interface 13-795

subYM()

Computes the difference between timestamp values and return the difference as an
IntervalYM.

Syntax
const IntervalYM subYM(

const Timestamp& val) const;

Parameter Description

val Timestamp to be subtracted.

toText()

13-796 Oracle C++ Call Interface Programmer's Guide

toText()

Returns a string or UString representation for the timestamp in the format specified.

If nlsParam is specified, this determines the NLS parameters used for the conversion.
If nlsParam is not specified, the NLS parameters are picked up from the environment
associated with the instance, if any.

See Also: Oracle Database SQL Language Reference for information on
TO_DATE

Syntax Description

string toText(
const string &fmt,
unsigned int fsprec,
const string &nlsParam = "") const;

Returns a string representation for the
timestamp in the format specified.

UString toText(
const UString &fmt,
unsigned int fsprec,
const UString &nlsParam) const;

Returns a UString representation for the
timestamp in the format specified;
globalization enabled.

Parameter Description

fmt The format string.

fsprec The precision for the fractional second component of Timestamp.

nlsParam The NLS parameters string. If nlsParam is specified, this determines the
NLS parameters to be used for the conversion. If nlsParam is not specified,
the NLS parameters are picked up from envp.

Index-1

Index

A
ADR, 12-12

ADRC utility, 12-14
base location, 12-13

ADR Command Interpreter, 12-12
ADRCI, 12-12, 12-14
Agent class, 13-8

methods, 13-8
AnyData class, 13-19

methods, 13-20
supported data type, 13-20
usage examples, 13-19

application managed data buffering, 12-8
application-provided serialization, 12-7
associative access

overview, 4-9
atomic null, 4-17
attributes, 1-7
automatic diagnostic repository (ADR), 12-12
automatic serialization, 12-7

B
BatchSQLException

methods, 13-50
BatchSQLException class, 13-50
Bfile class, 13-54

methods, 13-54
BFILEs

external data type, 5-6
bind operations

in bind operations, 1-7
out bind operations, 1-7

Blob class, 13-76
methods, 13-76

BLOBs
external data type, 5-7

Bytes class, 13-103
methods, 13-103

C
callable statements, 3-14

with arrays as parameters, 3-15
CASE OTT parameter, 8-5

CHAR
external data type, 5-7

classes
Agent class, 13-8
AnyData class, 13-19
BatchSQLException class, 13-50
Bfile class, 13-54
Blob class, 13-76
Bytes class, 13-103
Clob class, 13-111
Connection class, 13-144
ConnectionPool class, 13-178
Consumer class, 13-194
Date class, 13-220
Environment class, 13-245
IntervalDS class, 13-282
IntervalYM class, 13-312
Listener class, 13-339
Map class, 13-346
Message class, 13-348
Metadata class, 13-379
NotifyResult class, 13-404
Number class, 13-410
PObject class, 13-477
Producer class, 13-496
Ref class, 13-512
RefAny class, 13-530
ResultSet class, 3-20, 13-540
SQLException class, 13-596
StatelessConnectionPool class, 13-607
Statement class, 13-630
Stream class, 13-740
Subscription class, 13-746
Timestamp class, 13-771

Client Result Cache, 12-16
hint, 12-16

Clob class, 13-111
methods, 13-112

CLOBs
external data type, 5-8

CODE OTT parameter, 8-6
collections

working with, 4-16
committing a transaction, 3-26
complex object retrieval

complex object, 4-14

Index-2

depth level, 4-14
implementing, 4-14
overview, 4-14
prefetch limit, 4-14
root object, 4-14

complex objects, 4-14
prefetching, 4-16
retrieving, 4-14

CONFIG OTT parameter, 8-6
configuration files

and the OTT utility, 8-2
connecting to a database, 3-1
Connection class, 13-144

methods, 13-144
connection pool

createConnectionPool method, 3-4
creating, 3-3

connection pooling, 3-3
transparent application failover, 12-3

ConnectionPool class, 13-178
methods, 13-178

Consumer class, 13-194
methods, 13-194

control statements, 1-5

D
data buffering, 12-8
data conversion

Date, 5-18
DATE data type, 5-18
internal data type, 5-16
Interval, 5-18
INTERVAL data type, 5-18
LOB data type, 5-17
LOBs, 5-17
Timestamp, 5-18
TIMESTAMP data type, 5-18

data type
AnyData, 13-20
external data type, 5-1, 5-4
internal data type, 5-2
internal data types, 5-1
OTT mappings, 8-18
overview, 5-1

data types, 5-1
Database, 3-9
database

connecting to, 3-1
database resident connection pooling, 3-9

administration, 3-10
using, 3-11

DATE
external data type, 5-8

data conversion, 5-18
Date class, 13-220

methods, 13-220
usage examples, 13-220

DDL statements
executing, 3-12

depth level, 4-14
DML statements

executing, 3-12

E
elements, 1-3
embedded objects, 4-2

creating, 4-3
fetching, 4-17
prefetching, 4-17

Environment class, 13-245
methods, 13-245

ERRTYPE OTT parameter, 8-6
examples

Date class, 13-220
IntervalDS class, 13-282
IntervalYM class, 13-312
Number class, 13-410

exception handling, 3-28
executing SQL queries, 3-20
executing statements dynamically, 3-21
external data type, 5-6

BFILE, 5-6
BLOB, 5-7
CHAR, 5-7
CHARZ, 5-8
CLOB, 5-8
DATE, 5-8
FLOAT, 5-9
INTEGER, 5-9
INTERVAL DAY TO SECOND, 5-9
INTERVAL YEAR TO MONTH, 5-10
LONG, 5-10
LONG RAW, 5-10
LONG VARCHAR, 5-10
LONG VARRAW, 5-10
NCLOB, 5-11
NUMBER, 5-11
OCCI BFILE, 5-11
OCCI BLOB, 5-11
OCCI BYTES, 5-12
OCCI CLOB, 5-12
OCCI DATE, 5-12
OCCI INTERVALDS, 5-12
OCCI INTERVALYM, 5-12
OCCI NUMBER, 5-12
OCCI POBJECT, 5-12
OCCI REF, 5-12
OCCI REFANY, 5-12
OCCI STRING, 5-12
OCCI TIMESTAMP, 5-12
OCCI VECTOR, 5-13
RAW, 5-13
REF, 5-13
ROWID, 5-13
STRING, 5-13
TIMESTAMP, 5-13
TIMESTAMP WITH LOCAL TIME ZONE, 5-14
TIMESTAMP WITH TIME ZONE, 5-14

Index-3

UNSIGNED INT, 5-14
VARCHAR, 5-14
VARCHAR2, 5-14
VARNUM, 5-15
VARRAW, 5-15

F
Fault Diagnosability

disabling, 12-16
fault diagnosability, 12-12
fields

IntervalDS class, 13-282
IntervalYM class, 13-312
Timestamp fields, 13-771

FLOAT
external data type, 5-9

H
HFILE OTT parameter, 8-7

I
identity column metadata, 6-2
index-organized table, 5-3
Instant Client, 2-2

benefits, 2-2
connection names, 2-5
database connection, 2-5
environment variables, 2-6

Solaris, 2-6
Windows, 2-6

installation, 2-2
libraries, 2-4

Data Shared Library, 2-4
patching, 2-4
regenerating, 2-4

patching libraries, 2-4
SDK, 2-3
using, 2-4

Instant Client Light (English), 2-6
character sets, 2-6
errors, 2-7
globalization settings, 2-6
installation, 2-7

Client Admin Install, 2-7
Oracle Universal Installer, 2-8
OTN download, 2-7

using, 2-7
INTEGER

external data type, 5-9
internal data type, 5-2

CHAR, 5-3
LONG, 5-3
LONG RAW, 5-3
RAW, 5-3
VARCHAR2, 5-3

INTERVAL DAY TO SECOND
external data type, 5-9

INTERVAL YEAR TO MONTH

external data type, 5-10
IntervalDS class, 13-282

fields, 13-282
methods, 13-283
usage examples, 13-282

IntervalYM class, 13-312
fields, 13-312
methods, 13-313
usage examples, 13-312

INTYPE file
structure of, 8-14

INTYPE OTT parameter, 8-7

L
Listener class, 13-339

methods, 13-339
LOBs

external data type
data conversion, 5-17

LONG
external data type, 5-10

LONG RAW
external data type, 5-10

LONG VARCHAR
external data type, 5-10

M
manipulating object attributes, 4-12
Map class, 13-346

methods, 13-346, 13-347
Message class, 13-348

methods, 13-348
metadata

argument and result attributes, 6-13
attribute groupings, 6-3

argument and result attributes, 6-4
collection attributes, 6-3
column attributes, 6-4
database attributes, 6-4
list attributes, 6-4
package attributes, 6-3
parameter attributes, 6-3
procedure, function, and subprogram

attributes, 6-3
schema attributes, 6-4
sequence attributes, 6-4
synonym attributes, 6-4
table and view attributes, 6-3
type attribute attributes, 6-3
type attributes, 6-3
type method attributes, 6-3

attributes, 6-7
code example, 6-4
collection attributes, 6-11
column attributes, 6-13
database attributes, 6-15
describing database objects, 6-3
list attributes, 6-15

Index-4

overview, 6-1
package attributes, 6-9
parameter attributes, 6-7
procedure, function, and subprogram

attributes, 6-8
schema attributes, 6-15
sequence attributes, 6-12
synonym attributes, 6-12
table and view attributes, 6-8
type attribute attributes, 6-10
type attributes, 6-9
type methods attributes, 6-11

MetaData class, 13-379
methods, 13-387

methods, 1-7
Agent methods, 13-8
AnyData methods, 13-20
BatchSQLException methods, 13-50
Bfile methods, 13-54
Blob methods, 13-76
Bytes methods, 13-103
Clob methods, 13-111
Connection methods, 13-144
ConnectionPool methods, 13-178
Consumer methods, 13-194
createConnection method, 3-2
createConnectionPool method, 3-3
createEnvironment method, 3-2
createProxyConnection method, 3-5
createStatement method, 3-12
Date methods, 13-220
Environment class, 13-245
execute method, 3-12
executeArrayUpdate method, 3-12, 12-10
executeQuery method, 3-12
IntervalDS methods, 13-283
IntervalYM class, 13-313
Listener methods, 13-339
Map methods, 13-346, 13-347
Message methods, 13-348
MetaData class, 13-387
NotifyResult methods, 13-404
Number class, 13-411
PObject methods, 13-477
Producer methods, 13-496
Ref methods, 13-512
RefAny methods, 13-530
ResultSet methods, 13-540
setDataBuffer method, 12-9
SQLException methods, 13-596
StatelessConnectionPool, 13-607
Statement, 13-630
Stream methods, 13-740
Subscription methods, 13-746
terminateConnection method, 3-2, 3-3
terminateEnvironment method, 3-3
terminateStatement method, 3-13
Timestamp methods, 13-771

modifying rows iteratively, 12-11

N
navigational access

overview, 4-10
NCLOBs

external data type, 5-11
NEEDS_STREAM_DATA status, 3-22, 3-23
nonprocedural elements, 1-3
nonreferenceable objects, 4-2
NotifyResult class, 13-404

methods, 13-404
nullness, 4-17
NUMBER

external data type, 5-11
Number class, 13-410

methods, 13-411
usage examples, 13-410

O
object cache, 4-8

flushing, 4-8
object mode, 4-7
object programming

overview, 4-1
using OCCI, 4-1

object references
using, 4-18
see also REF

Object Type Translator utility
see OTT utility

object types, 1-7
objects

access using SQL, 4-10
attributes, 1-7
client-side, 1-8
dirty, 4-12
environment, 1-8
flushing, 4-12
freeing, 4-18
in OCCI, 4-2
inserting, 4-10
interfaces, 1-8

associative, 1-8
navigational, 1-8

manipulating attributes, 4-12
marking, 4-12
Metadata Class, 1-9
methods, 1-7
modifying, 4-10
object cache, 1-8
object types, 1-7
pinned, 4-11
pinning, 4-8, 4-11
recording database changes, 4-12
run-time environment, 1-8
transparent application failover, 12-3

OCCI
benefits, 1-2
building applications, 1-2
functionality, 1-3

Index-5

object mode, 4-7
overview, 1-1
special SQL terms, 1-6

OCCI classes
Agent class, 13-8
AnyData class, 13-19
BatchSQLException class, 13-50
Bfile class, 13-54
Blob class, 13-76
Bytes class, 13-103
Clob class, 13-111
Connection class, 13-144
ConnectionPool class, 13-178
Consumer class, 13-194
Data class, 13-220
Environment class, 13-245
IntervalDS class, 13-282
IntervalYM class, 13-312
Listener class, 13-339
Map class, 13-346
Message class, 13-348
MetaData class, 13-379
NotifyResult class, 13-404
Number class, 13-410
PObject class, 13-477
Producer class, 13-496
Ref class, 13-512
RefAny class, 13-530
ResultSet class, 13-540
SQLException class, 13-596
StatelessConnectionPool class, 13-607
Statement class, 13-630
Stream class, 13-740
Subscription class, 13-746
Timestamp class, 13-771

OCCI environment
connection pool, 3-3
creating, 3-1
opening a connection, 3-2
scope, 3-2
terminating, 3-1

OCCI program
example of, 4-21

OCCI program development, 4-5
operational flow, 4-7
program structure, 4-6

OCCI types
data conversion, 5-1

optimizing performance, 3-21
setting prefetch count, 3-21

OTT parameter TRANSITIVE, 8-9
OTT parameters

CASE, 8-5
CODE, 8-6
CONFIG, 8-6
ERRTYPE, 8-6
HFILE, 8-7
INTYPE, 8-7
OUTTYPE, 8-7
SCHEMA_NAMES, 8-8

USERID, 8-11
where they appear, 8-11

OTT utility
benefits, 1-9
creating types in the database, 8-2
default name mapping, 8-22
description, 1-9
parameters, 8-4
using, 8-2

out bind variables, 1-6
OUTTYPE OTT parameter, 8-7

P
parameterized statements, 3-14
performance

optimizing
executeArrayUpdate method, 12-10
setDataBuffer method, 12-9

performance tuning, 12-1
application managed data buffering, 12-8
array fetch using next() method, 12-11
connection sharing, 12-5
data buffering, 12-8
reading and writing multiple LOBs, 7-7
shared server environments, 12-6

thread safety, 12-6
thread safety, 12-6
transparent application failover, 12-1

persistent objects, 4-2
creating, 4-4
standalone objects, 4-3
types

embedded objects, 4-2
nonreferenceable objects, 4-2
referenceable objects, 4-2
standalone objects, 4-2

pinning objects, 4-8, 4-11
PL/SQL

out bind variables, 1-6
overview, 1-5

pluggable databases
OCCI support for, 3-3

PObject class, 13-477
methods, 13-477

prefetch count
set, 3-21

prefetch limit, 4-14
PREPARED status, 3-22
procedural elements, 1-3
Producer class, 13-496

methods, 13-496
proxy connections, 3-5

using createProxyConnection method, 3-5

Q
queries, 1-5

how to specify, 3-21

Index-6

R
RAW

external data type, 5-13
REF

external data type, 5-13
retrieving a reference to an object

Ref class, 13-512
methods, 13-512

RefAny class, 13-530
methods, 13-530

referenceable objects, 4-2
relational programming

using OCCI, 3-1
RESULT_SET_AVAILABLE status, 3-22
ResultSet class, 3-20, 13-540

methods, 13-540
root object, 4-14
ROWID

external data type, 5-13
rows

iterative modification, 12-11
modify, 12-11

S
SCHEMA_NAMES OTT parameter, 8-8
shared connections

using, 12-5
shared server environments

application-provided serialization, 12-7
automatic serialization, 12-7
concurrency, 12-7
thread safety, 12-6

implementing, 12-6
SQL statements

control statements, 1-5
DML statements, 1-5
processing of, 1-4
queries, 1-5
types

callable statements, 3-13, 3-14
parameterized statements, 3-13, 3-14
standard statements, 3-13, 3-14

SQLException class, 13-596
methods, 13-596

sqlnet.ora, 12-16
standalone objects, 4-2

creating, 4-3
standard statements, 3-14
StatelessConnectionPool class, 13-607

methods, 13-607
statement caching, 3-26
Statement class, 13-630

methods, 13-630
statement handles

creating, 3-12
reusing, 3-13
terminating, 3-13

status
NEEDS_STREAM_DATA, 3-22, 3-23

PREPARED, 3-22
RESULT_SET_AVAILABLE, 3-22
STREAM_DATA_AVAILABLE, 3-22, 3-23
UNPREPARED, 3-22
UPDATE_COUNT_AVAILABLE, 3-22, 3-23

Stream class, 13-740
methods, 13-740

STREAM_DATA_AVAILABLE status, 3-22, 3-23
streamed reads, 3-16
streamed writes, 3-16
STRING

external data type, 5-13
Subscription class, 13-746

methods, 13-746
substitutability, 4-19

T
table

index-organized, 5-3
thread safety, 12-6

implementing, 12-6
TIMESTAMP

external data type, 5-13
Timestamp class

methods, 13-771
TIMESTAMP WITH LOCAL TIME ZONE

external data type, 5-14
TIMESTAMP WITH TIME ZONE

external data type, 5-14
transient objects, 4-2, 4-3

creating, 4-3, 4-5
TRANSITIVE OTT parameter, 8-9
transparent application failover, 12-1

connection pooling, 12-3
objects, 12-3
using, 12-2

type inheritance, 4-18, 4-20

U
UNPREPARED status, 3-22
UNSIGNED INT

external data type, 5-14
UPDATE_COUNT_AVAILABLE status, 3-22, 3-23
USERID OTT parameter, 8-11

V
values

in context of this document, 4-4
in object applications, 4-4

VARCHAR
external data type, 5-14

VARCHAR2
external data type, 5-14

VARNUM
external data type, 5-15

VARRAW
external data type, 5-10, 5-15

Index-7

X
XA library, 11-1

Index-8

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle C++ Call Interface Programmer's Guide
	Changes in Oracle Database 12c Release 1 (12.1)

	1 Introduction to OCCI
	Overview of OCCI
	Benefits of OCCI
	Building a C++ Application with OCCI
	Functionality of OCCI
	Procedural and Nonprocedural Elements

	Processing SQL Statements
	Data Definition Language Statements
	Control Statements
	Data Manipulation Language Statements
	Queries

	Overview of PL/SQL
	Special OCCI/SQL Terms
	Object Support
	Client-Side Object Cache
	Run-time Environment for Objects
	Associative and Navigational Interfaces
	Interoperability with C (OCI)
	Metadata Class
	Object Type Translator Utility

	Additional Support
	Building OCCI Demos
	OCCI on the Oracle Technology Network

	2 Installation and Upgrading
	Installing Oracle C++ Call Interface
	Upgrading Considerations
	Determining the Oracle Database Versions
	Determining the Oracle Client Version During Compilation
	Determining the Oracle Client and Server Versions at Run Time

	Instant Client
	Benefits of Instant Client
	Installing Instant Client
	Oracle Technology Network
	Instant Client SDK

	Complete Client Installation
	Oracle Universal Installer
	Instant Client CD

	Using Instant Client
	Patching Instant Client Shared Libraries on UNIX
	Regenerating the Data Shared Library and Zip Files
	Database Connection Names for Instant Client
	Environment Variables for OCCI Instant Client

	Instant Client Light (English)
	Globalization Settings for Instant Client Light (English)
	Using Instant Client Light (English)
	Installing Instant Client Light (English)
	Oracle Technology Network Download
	Client Admin Install
	Oracle Universal Installer

	Using OCCI with Microsoft Visual C++

	3 Accessing Oracle Database Using C++
	Connecting to a Database
	Creating and Terminating an Environment
	Opening and Closing a Connection
	Support for Pluggable Databases

	Pooling Connections
	Using Connection Pools
	Creating a Connection Pool
	Proxy Connections

	Stateless Connection Pooling
	Database Resident Connection Pooling
	Administrating Database Resident Connection Pools
	Using Database Resident Connection Pools

	Executing SQL DDL and DML Statements
	Creating a Statement Object
	Creating a Statement Object that Executes SQL Commands
	Creating a Database Table
	Inserting Values into a Database Table

	Reusing the Statement Object
	Terminating a Statement Object

	Types of SQL Statements in the OCCI Environment
	Standard Statements
	Parameterized Statements
	Callable Statements
	Callable Statements that Use Array Parameters

	Streamed Reads and Writes
	Binding Data in Streaming Mode; SELECT/DML and PL/SQL
	Fetching Data in Streaming Mode: PL/SQL
	Fetching Data in Streaming Mode: ResultSet
	Working with Multiple Streams

	Modifying Rows Iteratively
	Setting the Maximum Number of Iterations
	Setting the Maximum Parameter Size
	Executing an Iterative Operation

	Executing SQL Queries
	Using the Result Set
	Specifying the Query
	Optimizing Performance by Setting Prefetch Count

	Executing Statements Dynamically
	Statement Status Definitions
	UNPREPARED
	PREPARED
	RESULT_SET_AVAILABLE
	UPDATE_COUNT_AVAILABLE
	NEEDS_STREAM_DATA
	STREAM_DATA_AVAILABLE

	Using Larger Row Count and Error Code Range Data Types
	Using Larger Row Count in SELECT Operations
	Using Larger Row Count in INSERT, UPDATE, and DELETE Operations

	Committing a Transaction
	Caching Statements
	Handling Exceptions
	Handling Null and Truncated Data

	4 Object Programming
	Overview of Object Programming
	Working with Objects in C++ with OCCI
	Persistent Objects
	Transient Objects
	Values

	Representing Objects in C++ Applications
	Creating Persistent and Transient Objects
	Creating Object Representations using the OTT Utility

	Developing a C++ Application using OCCI
	Basic Object Program Structure
	Basic Object Operational Flow
	Initialize OCCI in Object Mode
	Pin Object
	Operate on Object in Cache
	Flush Changes to Object
	Deletion of an Object

	Migrating C++ Applications to Oracle Using OCCI
	Overview of Associative Access
	Using SQL to Access Objects
	Inserting and Modifying Values

	Overview of Navigational Access
	Retrieving an Object Reference (REF) from the Database Server
	Pinning an Object
	Manipulating Object Attributes
	Marking Objects and Flushing Changes
	Marking an Object as Modified (Dirty)
	Recording Changes in the Database
	Collecting Garbage in the Object Cache
	Ensuring Transactional Consistency of References

	Overview of Complex Object Retrieval
	Retrieving Complex Objects
	Prefetching Complex Objects

	Working with Collections
	Fetching Embedded Objects
	Nullness

	Using Object References
	Deleting Objects from the Database
	Type Inheritance
	Substitutability
	NOT INSTANTIABLE Types and Methods
	OCCI Support for Type Inheritance
	Connection::getMetaData()
	Bind and Define Functions

	OTT Support for Type Inheritance

	A Sample OCCI Application

	5 Data Types
	Overview of Oracle Data Types
	OCCI Type and Data Conversion

	Internal Data Types
	Character Strings and Byte Arrays
	Universal Rowid (UROWID)

	External Data Types
	Description of External Data Types
	BFILE
	BDOUBLE
	BFLOAT
	BLOB
	CHAR
	CHARZ
	CLOB
	DATE
	Example 1, 01-JUN-2000, 3:17PM:
	Example 2, 01-JAN-4712 BCE:

	FLOAT
	INTEGER
	INTERVAL DAY TO SECOND
	INTERVAL YEAR TO MONTH
	LONG
	LONG RAW
	LONG VARCHAR
	LONG VARRAW
	NCLOB
	NUMBER
	OCCI BFILE
	OCCI BLOB
	OCCI BYTES
	OCCI CLOB
	OCCI DATE
	OCCI INTERVALDS
	OCCI INTERVALYM
	OCCI NUMBER
	OCCI POBJECT
	OCCI REF
	OCCI REFANY
	OCCI STRING
	OCCI TIMESTAMP
	OCCI VECTOR
	RAW
	REF
	ROWID
	STRING
	TIMESTAMP
	TIMESTAMP WITH LOCAL TIME ZONE
	TIMESTAMP WITH TIME ZONE
	UNSIGNED INT
	VARCHAR
	VARCHAR2
	VARNUM
	VARRAW
	NATIVE DOUBLE
	NATIVE FLOAT

	Data Conversions
	Data Conversions for LOB Data Types
	Data Conversions for Date, Timestamp, and Interval Data Types

	6 Metadata
	Overview of Metadata
	Identity Column Metadata
	Describing Database Metadata
	Metadata Code Examples

	Attribute Reference
	Parameter Attributes
	Table and View Attributes
	Procedure, Function, and Subprogram Attributes
	Package Attributes
	Type Attributes
	Type Attribute Attributes
	Type Method Attributes
	Collection Attributes
	Synonym Attributes
	Sequence Attributes
	Column Attributes
	Argument and Result Attributes
	List Attributes
	Schema Attributes
	Database Attributes

	7 Programming with LOBs
	Overview of LOBs
	Introducing Internal LOBs
	Introducing External LOBs
	Storing LOBs

	Creating LOBs in OCCI Applications
	Restricting the Opening and Closing of LOBs
	Reading and Writing LOBs
	Reading LOBs
	Writing LOBs
	Enhancing the Performance of LOB Reads and Writes
	Using the getChunkSize() Method

	Updating LOBs
	Reading and Writing Multiple LOBs
	Using the Interfaces for Reading and Writing Multiple LOBs

	Using Objects with LOB Attributes
	Using SecureFiles
	Using SecureFile Compression
	Using SecureFiles Encryption
	Using SecureFiles Deduplication
	Combining SecureFiles Compression, Encryption, and Deduplication
	SecureFiles LOB Types and Constants

	8 Object Type Translator Utility
	Overview of the Object Type Translator Utility
	Using the OTT Utility
	Creating Types in the Database
	Invoking the OTT Utility
	Specifying OTT Parameters
	Setting Parameters on the Command Line
	Setting Parameters in the INTYPE File
	Setting Parameters in the Configuration File

	Invoking the OTT Utility on the Command Line
	Elements Used on the OTT Command Line

	OTT Utility Parameters
	ATTRACCESS
	CASE
	CODE
	CONFIG
	CPPFILE
	ERRTYPE
	HFILE
	INTYPE
	MAPFILE
	MAPFUNC
	OUTTYPE
	SCHEMA_NAMES
	TRANSITIVE
	UNICODE
	USE_MARKER
	USERID

	Where OTT Parameters Can Appear
	File Name Comparison Restriction
	OTT Command on Microsoft Windows

	Using the INTYPE File
	Overview of the INTYPE File
	Structure of the INTYPE File
	INTYPE File Type Specifications

	Nested #include File Generation

	OTT Utility Data Type Mappings
	Default Name Mapping

	Overview of the OUTTYPE File
	The OTT Utility and OCCI Applications
	C++ Classes Generated by the OTT Utility
	Map Registry Function
	Extending C++ Classes

	Carrying Forward User Added Code
	Properties of OTT Markers
	Using OTT Markers

	9 Globalization and Unicode Support
	Overview of Globalization and Unicode Support
	Specifying Charactersets
	Data Types for Globalization and Unicode Support
	UString Data Type
	Multibyte and UTF16 data
	CLOB and NCLOB Data Types

	Objects and OTT Support

	10 Oracle Streams Advanced Queuing
	Overview of Oracle Streams Advanced Queuing
	AQ Implementation in OCCI
	Message
	Agent
	Producer
	Consumer
	Listener
	Subscription

	Creating Messages
	Message Payloads
	RAW
	AnyData
	User-defined

	Message Properties
	Correlation
	Sender
	Delay and Expiration
	Recipients
	Priority and Ordering

	Enqueuing Messages
	Dequeuing Messages
	Dequeuing Options
	Correlation
	Mode
	Navigation

	Listening for Messages
	Registering for Notification
	Publish-Subscribe Notifications
	Direct Registration
	Open Registration

	Notification Callback

	Message Format Transformation

	11 Oracle XA Library
	Application Development with XA and OCCI
	APIs for XA Support

	12 Optimizing Performance of C++ Applications
	Transparent Application Failover
	Using Transparent Application Failover
	Objects and Transparent Application Failover
	Connection Pooling and Transparent Application Failover

	Connection Sharing
	Introduction to Thread Safety
	Implementing Thread Safety
	Serialization
	Automatic Serialization
	Application-Provided Serialization

	Operating System Considerations

	Application-Managed Data Buffering
	setDataBuffer() Method
	executeArrayUpdate() Method

	Array Fetch Using next() Method
	Modifying Rows Iteratively
	Run-time Load Balancing of the Stateless Connection Pool
	API Support

	Fault Diagnosability
	ADR Base Location
	Using ADRCI
	Controlling ADR Creation and Disabling Fault Diagnosability

	Client Result Cache
	Client-Side Deployment Parameters and Auto Tuning

	13 OCCI Application Programming Interface
	OCCI Classes and Methods
	Using OCCI Classes
	OCCI Support for Windows NT and z/OS
	Working with Collections of Refs
	ResultSet Class
	Statement Class

	Common OCCI Constants
	Agent Class
	Agent()
	getAddress()
	getName()
	getProtocol()
	isNull()
	operator=()
	setAddress()
	setName()
	setNull()
	setProtocol()

	AnyData Class
	AnyData()
	getAsBDouble()
	getAsBfile()
	getAsBFloat()
	getAsBytes()
	getAsDate()
	getAsIntervalDS()
	getAsIntervalYM()
	getAsNumber()
	getAsObject()
	getAsRef()
	getAsString()
	getAsTimestamp()
	getType()
	isNull()
	setFromBDouble()
	setFromBfile()
	setFromBFloat()
	setFromBytes()
	setFromDate()
	setFromIntervalDS()
	setFromIntervalYM()
	setFromNumber()
	setFromObject()
	setFromRef()
	setFromString()
	setFromTimestamp()
	setNull()

	BatchSQLException Class
	getException()
	getFailedRowCount()
	getRowNum()

	Bfile Class
	Bfile()
	close()
	closeStream()
	fileExists()
	getDirAlias()
	getFileName()
	getStream()
	getUStringDirAlias()
	getUStringFileName()
	isInitialized()
	isNull()
	isOpen()
	length()
	open()
	operator=()
	operator==()
	operator!=()
	read()
	setName()
	setNull()

	Blob Class
	Blob()
	append()
	close()
	closeStream()
	copy()
	getChunkSize()
	getContentType()
	getOptions()
	getStream()
	isInitialized()
	isNull()
	isOpen()
	length()
	open()
	operator=()
	operator==()
	operator!= ()
	read()
	setContentType()
	setEmpty()
	setNull()
	setOptions()
	trim()
	write()
	writeChunk()

	Bytes Class
	Bytes()
	byteAt()
	getBytes()
	isNull()
	length()
	operator=()
	setNull()

	Clob Class
	Clob()
	append()
	close()
	closeStream()
	copy()
	getCharSetForm()
	getCharSetId()
	getCharSetIdUString()
	getChunkSize()
	getContentType()
	getOptions()
	getStream()
	isInitialized()
	isNull()
	isOpen()
	length()
	open()
	operator=()
	operator==()
	operator!=()
	read()
	setCharSetId()
	setCharSetIdUString()
	setCharSetForm()
	setContentType()
	setEmpty()
	setNull()
	setOptions()
	trim()
	write()
	writeChunk()

	Connection Class
	changePassword()
	commit()
	createStatement()
	flushCache()
	getClientCharSet()
	getClientCharSetUString()
	getClientNCHARCharSet()
	getClientNCHARCharSetUString()
	getClientVersion()
	getLTXID()
	getMetaData()
	getOCIServer()
	getOCIServiceContext()
	getOCISession()
	getServerVersion()
	getServerVersionUString()
	getStmtCacheSize()
	getTag()
	isCached()
	pinVectorOfRefs()
	postToSubscriptions()
	readVectorOfBfiles()
	readVectorOfBlobs()
	readVectorOfClobs()
	registerSubscriptions()
	rollback()
	setStmtCacheSize()
	setTAFNotify()
	terminateStatement()
	unregisterSubscription()
	writeVectorOfBlobs()
	writeVectorOfClobs()

	ConnectionPool Class
	createConnection()
	createProxyConnection()
	getBusyConnections()
	getIncrConnections()
	getMaxConnections()
	getMinConnections()
	getOpenConnections()
	getPoolName()
	getStmtCacheSize()
	getTimeOut()
	setErrorOnBusy()
	setPoolSize()
	setStmtCacheSize()
	setTimeOut()
	terminateConnection()

	Consumer Class
	Consumer()
	getConsumerName()
	getCorrelationId()
	getDequeueMode()
	getMessageIdToDequeue()
	getPositionOfMessage()
	getQueueName()
	getTransformation()
	getVisibility()
	getWaitTime()
	isNull()
	operator=()
	receive()
	setAgent()
	setConsumerName()
	setCorrelationId()
	setDequeueMode()
	setMessageIdToDequeue()
	setNull()
	setPositionOfMessage()
	setQueueName()
	setTransformation()
	setVisibility()
	setWaitTime()

	Date Class
	Date()
	addDays()
	addMonths()
	daysBetween()
	fromBytes()
	fromText()
	getDate()
	getSystemDate()
	isNull()
	lastDay()
	nextDay()
	operator=()
	operator==()
	operator!=()
	operator>()
	operator>=()
	operator<()
	operator<=()
	setDate()
	setNull()
	toBytes()
	toText()
	toZone()

	Environment Class
	createConnection()
	createConnectionPool()
	createEnvironment()
	createStatelessConnectionPool()
	enableSubscription()
	disableSubscription()
	getCacheMaxSize()
	getCacheOptSize()
	getCacheSortedFlush()
	getCurrentHeapSize()
	getLDAPAdminContext()
	getLDAPAuthentication()
	getLDAPHost()
	getLDAPPort()
	getMap()
	getNLSLanguage()
	getNLSTerritory()
	getOCIEnvironment()
	getXAConnection()
	getXAEnvironment()
	releaseXAConnection()
	releaseXAEnvironment()
	setCacheMaxSize()
	setCacheOptSize()
	setCacheSortedFlush()
	setLDAPAdminContext()
	setLDAPAuthentication()
	setLDAPHostAndPort()
	setLDAPLoginNameAndPassword()
	setNLSLanguage()
	setNLSTerritory()
	terminateConnection()
	terminateConnectionPool()
	terminateEnvironment()
	terminateStatelessConnectionPool()

	IntervalDS Class
	IntervalDS()
	fromText()
	fromUText()
	getDay()
	getFracSec()
	getHour()
	getMinute()
	getSecond()
	isNull()
	operator*()
	operator*=()
	operator=()
	operator==()
	operator!=()
	operator/()
	operator/=()
	operator>()
	operator>=()
	operator<()
	operator<=()
	operator-()
	operator-=()
	operator+()
	operator+=()
	set()
	setNull()
	toText()
	toUText()

	IntervalYM Class
	IntervalYM()
	fromText()
	fromUText()
	getMonth()
	getYear()
	isNull()
	operator*()
	operator*=()
	operator=()
	operator==()
	operator!=()
	operator/()
	operator/=()
	operator>()
	operator>=()
	operator<()
	operator<=()
	operator-()
	operator-=()
	operator+()
	operator+=()
	set()
	setNull()
	toText()
	toUText()

	Listener Class
	Listener()
	getAgentList()
	getTimeOutForListen()
	listen()
	setAgentList()
	setTimeOutForListen()

	Map Class
	put()

	Message Class
	Message()
	getAnyData()
	getAttemptsToDequeue()
	getBytes()
	getCorrelationId()
	getDelay()
	getExceptionQueueName()
	getExpiration()
	getMessageEnqueuedTime()
	getMessageState()
	getObject()
	getOriginalMessageId()
	getPayloadType()
	getPriority()
	getSenderId()
	isNull()
	operator=()
	setAnyData()
	setBytes()
	setCorrelationId()
	setDelay()
	setExceptionQueueName()
	setExpiration()
	setNull()
	setObject()
	setOriginalMessageId()
	setPriority()
	setRecipientList()
	setSenderId()

	MetaData Class
	MetaData()
	getAttributeCount()
	getAttributeId()
	getAttributeType()
	getBoolean()
	getInt()
	getMetaData()
	getNumber()
	getRef()
	getString()
	getTimeStamp()
	getUInt()
	getUString()
	getVector()
	operator=()

	NotifyResult Class
	getConsumerName()
	getMessage()
	getMessageId()
	getPayload()
	getQueueName()

	Number Class
	Number()
	abs()
	arcCos()
	arcSin()
	arcTan()
	arcTan2()
	ceil()
	cos()
	exp()
	floor()
	fromBytes()
	fromText()
	hypCos()
	hypSin()
	hypTan()
	intPower()
	isNull()
	ln()
	log()
	operator++()
	operator--()
	operator*()
	operator/()
	operator%()
	operator+()
	operator-()
	operator-()
	operator<()
	operator<=()
	operator>()
	operator>=()
	operator==()
	operator!=()
	operator=()
	operator*=()
	operator/=()
	operator%=()
	operator+=()
	operator-=()
	operator char()
	operator signed char()
	operator double()
	operator float()
	operator int()
	operator long()
	operator long double()
	operator short()
	operator unsigned char()
	operator unsigned int()
	operator unsigned long()
	operator unsigned short()
	power()
	prec()
	round()
	setNull()
	shift()
	sign()
	sin()
	squareroot()
	tan()
	toBytes()
	toText()
	trunc()

	PObject Class
	PObject()
	flush()
	getConnection()
	getRef()
	getSQLTypeName()
	isLocked()
	isNull()
	lock()
	markDelete()
	markModified()
	operator=()
	operator delete()
	operator new()
	pin()
	setNull()
	unmark()
	unpin()

	Producer Class
	Producer()
	getQueueName()
	getRelativeMessageId()
	getSequenceDeviation()
	getTransformation()
	getVisibility()
	isNull()
	operator=()
	send()
	setNull()
	setQueueName()
	setRelativeMessageId()
	setSequenceDeviation()
	setTransformation()
	setVisibility()

	Ref Class
	Ref()
	clear()
	getConnection()
	isClear()
	isNull()
	markDelete()
	operator->()
	operator*()
	operator==()
	operator!=()
	operator=()
	ptr()
	setLock()
	setNull()
	setPrefetch()
	unmarkDelete()

	RefAny Class
	RefAny()
	clear()
	getConnection()
	isNull()
	markDelete()
	operator=()
	operator==()
	operator!=()
	unmarkDelete()

	ResultSet Class
	cancel()
	closeStream()
	getBDouble()
	getBfile()
	getBFloat()
	getBlob()
	getBytes()
	getCharSet()
	getCharSetUString()
	getClob()
	getColumnListMetaData()
	getCurrentStreamColumn()
	getCurrentStreamRow()
	getCursor()
	getDatabaseNCHARParam()
	getDate()
	getDouble()
	getFloat()
	getInt()
	getIntervalDS()
	getIntervalYM()
	getMaxColumnSize()
	getNumArrayRows()
	getNumber()
	getObject()
	getRef()
	getRowid()
	getRowPosition()
	getStatement()
	getStream()
	getString()
	getTimestamp()
	getUInt()
	getUString()
	getVector()
	getVectorOfRefs()
	isNull()
	isTruncated()
	next()
	preTruncationLength()
	setBinaryStreamMode()
	setCharacterStreamMode()
	setCharSet()
	setCharSetUString()
	setDatabaseNCHARParam()
	setDataBuffer()
	setErrorOnNull()
	setErrorOnTruncate()
	setPrefetchMemorySize()
	setPrefetchRowCount()
	setMaxColumnSize()
	status()

	SQLException Class
	SQLException()
	getErrorCode()
	getMessage()
	getNLSMessage()
	getNLSUStringMessage()
	getUStringMessage()
	getXAErrorCode()
	isRecoverable()
	setErrorCtx()
	what()

	StatelessConnectionPool Class
	getAnyTaggedConnection()
	getAnyTaggedProxyConnection()
	getBusyConnections()
	getBusyOption()
	getConnection()
	getIncrConnections()
	getMaxConnections()
	getMinConnections()
	getOpenConnections()
	getPoolName()
	getProxyConnection()
	getStmtCacheSize()
	getTimeOut()
	releaseConnection()
	setBusyOption()
	setPoolSize()
	setTimeOut()
	setStmtCacheSize()
	terminateConnection()

	Statement Class
	addIteration()
	closeResultSet()
	closeStream()
	disableCaching()
	execute()
	executeArrayUpdate()
	executeQuery()
	executeUpdate()
	getAutoCommit()
	getBatchErrorMode()
	getBDouble()
	getBfile()
	getBFloat()
	getBlob()
	getBytes()
	getCharSet()
	getCharSetUString()
	getClob()
	getConnection()
	getCurrentIteration()
	getCurrentStreamIteration()
	getCurrentStreamParam()
	getCursor()
	getDatabaseNCHARParam()
	getDate()
	getDMLRowCounts()
	getDouble()
	getFloat()
	getInt()
	getIntervalDS()
	getIntervalYM()
	getMaxIterations()
	getMaxParamSize()
	getNumber()
	getObject()
	getOCIStatement()
	getRef()
	getResultSet()
	getRowCountsOption()
	getRowid()
	getSQL()
	getSQLUString()
	getStream()
	getString()
	getTimestamp()
	getUb8RowCount()
	getUInt()
	getUpdateCount()
	getUString()
	getVector()
	getVectorOfRefs()
	isNull()
	isTruncated()
	preTruncationLength()
	registerOutParam()
	setAutoCommit()
	setBatchErrorMode()
	setBDouble()
	setBfile()
	setBFloat()
	setBinaryStreamMode()
	setBlob()
	setBytes()
	setCharacterStreamMode()
	setCharSet()
	setCharSetUString()
	setClob()
	setDate()
	setDatabaseNCHARParam()
	setDataBuffer()
	setDataBufferArray()
	setDouble()
	setErrorOnNull()
	setErrorOnTruncate()
	setFloat()
	setInt()
	setIntervalDS()
	setIntervalYM()
	setMaxIterations()
	setMaxParamSize()
	setNull()
	setNumber()
	setObject()
	setPrefetchMemorySize()
	setPrefetchRowCount()
	setRef()
	setRowCountsOption()
	setRowid()
	setSQL()
	setSQLUString()
	setString()
	setTimestamp()
	setUInt()
	setUString()
	setVector()
	setVectorOfRefs()
	status()

	Stream Class
	readBuffer()
	readLastBuffer()
	writeBuffer()
	writeLastBuffer()
	status()

	Subscription Class
	Subscription()
	getCallbackContext()
	getDatabaseServersCount()
	getDatabaseServerNames()
	getNotifyCallback()
	getPayload()
	getSubscriptionName()
	getSubscriptionNamespace()
	getRecipientName()
	getPresentation()
	getProtocol()
	isNull()
	operator=()
	setCallbackContext()
	setDatabaseServerNames()
	setNotifyCallback()
	setNull()
	setPayload()
	setPresentation()
	setProtocol()
	setSubscriptionName()
	setSubscriptionNamespace()
	setRecipientName()

	Timestamp Class
	Timestamp()
	fromText()
	getDate()
	getTime()
	getTimeZoneOffset()
	intervalAdd()
	intervalSub()
	isNull()
	operator=()
	operator==()
	operator!=()
	operator>()
	operator>=()
	operator<()
	operator<=()
	setDate()
	setNull()
	setTime()
	setTimeZoneOffset()
	subDS()
	subYM()
	toText()

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X

